Sample records for optical sectioning capability

  1. Time-resolved wide-field optically sectioned fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dupuis, Guillaume; Benabdallah, Nadia; Chopinaud, Aurélien; Mayet, Céline; Lévêque-Fort, Sandrine

    2013-02-01

    We present the implementation of a fast wide-field optical sectioning technique called HiLo microscopy on a fluorescence lifetime imaging microscope. HiLo microscopy is based on the fusion of two images, one with structured illumination and another with uniform illumination. Optically sectioned images are then digitally generated thanks to a fusion algorithm. HiLo images are comparable in quality with confocal images but they can be acquired faster over larger fields of view. We obtain 4D imaging by combining HiLo optical sectioning, time-gated detection, and z-displacement. We characterize the performances of this set-up in terms of 3D spatial resolution and time-resolved capabilities in both fixed- and live-cell imaging modes.

  2. Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode.

    PubMed

    Poher, V; Zhang, H X; Kennedy, G T; Griffin, C; Oddos, S; Gu, E; Elson, D S; Girkin, M; French, P M W; Dawson, M D; Neil, M A

    2007-09-03

    We describe an optical sectioning microscopy system with no moving parts based on a micro-structured stripe-array light emitting diode (LED). By projecting arbitrary line or grid patterns onto the object, we are able to implement a variety of optical sectioning microscopy techniques such as grid-projection structured illumination and line scanning confocal microscopy, switching from one imaging technique to another without modifying the microscope setup. The micro-structured LED and driver are detailed and depth discrimination capabilities are measured and calculated.

  3. Speckle-field digital holographic microscopy.

    PubMed

    Park, YongKeun; Choi, Wonshik; Yaqoob, Zahid; Dasari, Ramachandra; Badizadegan, Kamran; Feld, Michael S

    2009-07-20

    The use of coherent light in conventional holographic phase microscopy (HPM) poses three major drawbacks: poor spatial resolution, weak depth sectioning, and fixed pattern noise due to unwanted diffraction. Here, we report a technique which can overcome these drawbacks, but maintains the advantage of phase microscopy - high contrast live cell imaging and 3D imaging. A speckle beam of a complex spatial pattern is used for illumination to reduce fixed pattern noise and to improve optical sectioning capability. By recording of the electric field of speckle, we demonstrate high contrast 3D live cell imaging without the need for axial scanning - neither objective lens nor sample stage. This technique has great potential in studying biological samples with improved sensitivity, resolution and optical sectioning capability.

  4. Microbend fiber-optic temperature sensor

    DOEpatents

    Weiss, J.D.

    1995-05-30

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber`s transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature. 5 figs.

  5. Microbend fiber-optic temperature sensor

    DOEpatents

    Weiss, Jonathan D.

    1995-01-01

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber's transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature.

  6. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system

    PubMed Central

    Kelner, Roy; Katz, Barak; Rosen, Joseph

    2015-01-01

    We propose a new type of confocal microscope using Fresnel incoherent correlation holography (FINCH). Presented here is a confocal configuration of FINCH using a phase pinhole and point illumination that is able to suppress out-of-focus information from the recorded hologram and hence combine the super-resolution capabilities of FINCH with the sectioning capabilities of confocal microscopy. PMID:26413560

  7. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy

    PubMed Central

    Lim, Daryl; Ford, Tim N.; Chu, Kengyeh K.; Mertz, Jerome

    2011-01-01

    We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish. PMID:21280920

  8. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy.

    PubMed

    Lim, Daryl; Ford, Tim N; Chu, Kengyeh K; Mertz, Jerome

    2011-01-01

    We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish.

  9. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy

    NASA Astrophysics Data System (ADS)

    Lim, Daryl; Ford, Tim N.; Chu, Kengyeh K.; Mertz, Jerome

    2011-01-01

    We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish.

  10. On the possibility of producing true real-time retinal cross-sectional images using a graphics processing unit enhanced master-slave optical coherence tomography system.

    PubMed

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Frederick; Podoleanu, Adrian

    2015-07-01

    In a previous report, we demonstrated master-slave optical coherence tomography (MS-OCT), an OCT method that does not need resampling of data and can be used to deliver en face images from several depths simultaneously. In a separate report, we have also demonstrated MS-OCT's capability of producing cross-sectional images of a quality similar to those provided by the traditional Fourier domain (FD) OCT technique, but at a much slower rate. Here, we demonstrate that by taking advantage of the parallel processing capabilities offered by the MS-OCT method, cross-sectional OCT images of the human retina can be produced in real time. We analyze the conditions that ensure a true real-time B-scan imaging operation and demonstrate in vivo real-time images from human fovea and the optic nerve, with resolution and sensitivity comparable to those produced using the traditional FD-based method, however, without the need of data resampling.

  11. Fourier Domain Iterative Approach to Optical Sectioning of 3d Translucent Objects for Ophthalmology Purposes

    NASA Astrophysics Data System (ADS)

    Razguli, A. V.; Iroshnikov, N. G.; Larichev, A. V.; Romanenko, T. E.; Goncharov, A. S.

    2017-05-01

    In this paper we deal with the problem of optical sectioning. This is a post processing step while investigating of 3D translucent medical objects based on rapid refocusing of the imaging system by the adaptive optics technique. Each image, captured in focal plane, can be represented as the sum of in-focus true section and out-of-focus images of the neighboring sections of the depth that are undesirable in the subsequent reconstruction of 3D object. The problem of optical sectioning under consideration is to elaborate a robust approach capable of obtaining a stack of cross section images purified from such distortions. For a typical sectioning statement arising in ophthalmology we propose a local iterative method in Fourier spectral plane. Compared to the non-local constant parameter selection for the whole spectral domain, the method demonstrates both improved sectioning results and a good level of scalability when implemented on multi-core CPUs.

  12. Spectral ophthalmoscopy based on supercontinuum

    NASA Astrophysics Data System (ADS)

    Cheng, Yueh-Hung; Yu, Jiun-Yann; Wu, Han-Hsuan; Huang, Bo-Jyun; Chu, Shi-Wei

    2010-02-01

    Confocal scanning laser ophthalmoscope (CSLO) has been established to be an important diagnostic tool for retinopathies like age-related macular degeneration, glaucoma and diabetes. Compared to a confocal laser scanning microscope, CSLO is also capable of providing optical sectioning on retina with the aid of a pinhole, but the microscope objective is replaced by the optics of eye. Since optical spectrum is the fingerprint of local chemical composition, it is attractive to incorporate spectral acquisition into CSLO. However, due to the limitation of laser bandwidth and chromatic/geometric aberration, the scanning systems in current CSLO are not compatible with spectral imaging. Here we demonstrate a spectral CSLO by combining a diffraction-limited broadband scanning system and a supercontinuum laser source. Both optical sectioning capability and sub-cellular resolution are demonstrated on zebrafish's retina. To our knowledge, it is also the first time that CSLO is applied onto the study of fish vision. The versatile spectral CSLO system will be useful to retinopathy diagnosis and neuroscience research.

  13. Optical biopsy of lymph node morphology using optical coherence tomography.

    PubMed

    Luo, Wei; Nguyen, Freddy T; Zysk, Adam M; Ralston, Tyler S; Brockenbrough, John; Marks, Daniel L; Oldenburg, Amy L; Boppart, Stephen A

    2005-10-01

    Optical diagnostic imaging techniques are increasingly being used in the clinical environment, allowing for improved screening and diagnosis while minimizing the number of invasive procedures. Diffuse optical tomography, for example, is capable of whole-breast imaging and is being developed as an alternative to traditional X-ray mammography. While this may eventually be a very effective screening method, other optical techniques are better suited for imaging on the cellular and molecular scale. Optical Coherence Tomography (OCT), for instance, is capable of high-resolution cross-sectional imaging of tissue morphology. In a manner analogous to ultrasound imaging except using optics, pulses of near-infrared light are sent into the tissue while coherence-gated reflections are measured interferometrically to form a cross-sectional image of tissue. In this paper we apply OCT techniques for the high-resolution three-dimensional visualization of lymph node morphology. We present the first reported OCT images showing detailed morphological structure and corresponding histological features of lymph nodes from a carcinogen-induced rat mammary tumor model, as well as from a human lymph node containing late stage metastatic disease. The results illustrate the potential for OCT to visualize detailed lymph node structures on the scale of micrometastases and the potential for the detection of metastatic nodal disease intraoperatively.

  14. MAMMALIAN APOPTOSIS IN WHOLE NEONATAL OVARIES, EMBRYOS AND FETAL LIMBS USING CONFOCAL MICROSCOPY

    EPA Science Inventory

    The emergence of confocal laser scanning microscopy (CLSM) as a technique capable of optically generating serial sections of whole-mount tissue and then reassembling the computer-stored images as a virtual 3-dimensional structure offers a viable alternative to traditional section...

  15. Temporal focusing microscopy combined with three-dimensional structured illumination

    NASA Astrophysics Data System (ADS)

    Isobe, Keisuke; Toda, Keisuke; Song, Qiyuan; Kannari, Fumihiko; Kawano, Hiroyuki; Miyawaki, Atsushi; Midorikawa, Katsumi

    2017-05-01

    Temporal focusing microscopy provides the optical sectioning capability in wide-field two-photon fluorescence imaging. Here, we demonstrate temporal focusing microscopy combined with three-dimensional structured illumination, which enables us to enhance the three-dimensional spatial resolution and reject the background fluorescence. Experimentally, the periodic pattern of the illumination was produced not only in the lateral direction but also in the axial direction by the interference between three temporal focusing pulses, which were easily generated using a digital micromirror device. The lateral resolution and optical sectioning capability were successfully enhanced by factors of 1.6 and 3.6, respectively, compared with those of temporal focusing microscopy. In the two-photon fluorescence imaging of a tissue-like phantom, the out-of-focus background fluorescence and the scattered background fluorescence could also be rejected.

  16. Dental optical coherence domain reflectometry explorer

    DOEpatents

    Everett, Matthew J.; Colston, Jr., Billy W.; Sathyam, Ujwal S.; Da Silva, Luiz B.

    2001-01-01

    A hand-held, fiber optic based dental device with optical coherence domain reflectometry (OCDR) sensing capabilities provides a profile of optical scattering as a function of depth in the tissue at the point where the tip of the dental explorer touches the tissue. This system provides information on the internal structure of the dental tissue, which is then used to detect caries and periodontal disease. A series of profiles of optical scattering or tissue microstructure are generated by moving the explorer across the tooth or other tissue. The profiles are combined to form a cross-sectional, or optical coherence tomography (OCT), image.

  17. Light Sheet Fluorescence Microscopy (LSFM)

    PubMed Central

    Adams, Michael W.; Loftus, Andrew F.; Dunn, Sarah E.; Joens, Matthew S.; Fitzpatrick, James A.J.

    2015-01-01

    The development of confocal microscopy techniques introduced the ability to optically section fluorescent samples in the axial dimension, perpendicular to the image plane. These approaches, via the placement of a pinhole in the conjugate image plane, provided superior resolution in the axial (z) dimension resulting in nearly isotropic optical sections. However, increased axial resolution, via pinhole optics, comes at the cost of both speed and excitation efficiency. Light Sheet Fluorescent Microscopy (LSFM), a century old idea (Siedentopf and Zsigmondy, 1902) made possible with modern developments in both excitation and detection optics, provides sub-cellular resolution and optical sectioning capabilities without compromising speed or excitation efficiency. Over the past decade, several variations of LSFM have been implemented each with its own benefits and deficiencies. Here we discuss LSFM fundamentals and outline the basic principles of several major light sheet based imaging modalities (SPIM, inverted SPIM, multi-view SPIM, Bessel beam SPIM, and stimulated emission depletion SPIM while considering their biological relevance in terms of intrusiveness, temporal resolution, and sample requirements. PMID:25559221

  18. Multi-modality endoscopic imaging for the detection of colorectal cancer

    NASA Astrophysics Data System (ADS)

    Wall, Richard Andrew

    Optical coherence tomography (OCT) is an imaging method that is considered the optical analog to ultrasound, using the technique of optical interferometry to construct two-dimensional depth-resolved images of tissue microstructure. With a resolution on the order of 10 um and a penetration depth of 1-2 mm in highly scattering tissue, fiber optics-coupled OCT is an ideal modality for the inspection of the mouse colon with its miniaturization capabilities. In the present study, the complementary modalities laser-induced fluorescence (LIF), which offers information on the biochemical makeup of the tissue, and surface magnifying chromoendoscopy, which offers high contrast surface visualization, are combined with OCT in endoscopic imaging systems for the greater specificity and sensitivity in the differentiation between normal and neoplastic tissue, and for the visualization of biomarkers which are indicative of early events in colorectal carcinogenesis. Oblique incidence reflectometry (OIR) also offers advantages, allowing the calculation of bulk tissue optical properties for use as a diagnostic tool. The study was broken up into three specific sections. First, a dual-modality OCTLIF imaging system was designed, capable of focusing light over 325-1300 nm using a reflective distal optics design. A dual-modality fluorescence-based SMC-OCT system was then designed and constructed, capable of resolving the stained mucosal crypt structure of the in vivo mouse colon. The SMC-OCT instrument's OIR capabilities were then modeled, as a modified version of the probe was used measure tissue scattering and absorption coefficients.

  19. Improved Cryogenic Optical Test Capability at Marshall Space Flight Center's X-ray Cryogenic Test Facility

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey; Haight, Harlan; Hogue, William; Carpenter, Jay; Siler, Richard; Wright, Ernie; Eng, Ron; Baker, Mark; McCracken, Jeff

    2005-01-01

    Marshall Space Flight Center's X-ray & Cryogenic Test Facility (XRCF) has been performing optical wavefront testing and thermal structural deformation testing at subliquid nitrogen cryogenic temperatures since 1999. Recent modifications have been made to the facility in support of the James Webb Space Telescope (JWST) program. The test article envelope and the chamber's refrigeration capacity have both been increased. A new larger helium-cooled enclosure has been added to the existing enclosure increasing both the cross-sectional area and the length. This new enclosure is capable of supporting six JWST Primary Mirror Segment Assemblies. A second helium refrigeration system has been installed essentially doubling the cooling capacity available at the facility. Modifications have also been made to the optical instrumentation area. Improved access is now available for both the installation and operation of optical instrumentation outside the vacuum chamber. Chamber configuration, specifications, and performance data will be presented.

  20. Holographic techniques for cellular fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Myung K.

    2017-04-01

    We have constructed a prototype instrument for holographic fluorescence microscopy (HFM) based on self-interference incoherent digital holography (SIDH) and demonstrate novel imaging capabilities such as differential 3D fluorescence microscopy and optical sectioning by compressive sensing.

  1. Fast Calcium Imaging with Optical Sectioning via HiLo Microscopy.

    PubMed

    Lauterbach, Marcel A; Ronzitti, Emiliano; Sternberg, Jenna R; Wyart, Claire; Emiliani, Valentina

    2015-01-01

    Imaging intracellular calcium concentration via reporters that change their fluorescence properties upon binding of calcium, referred to as calcium imaging, has revolutionized our way to probe neuronal activity non-invasively. To reach neurons densely located deep in the tissue, optical sectioning at high rate of acquisition is necessary but difficult to achieve in a cost effective manner. Here we implement an accessible solution relying on HiLo microscopy to provide robust optical sectioning with a high frame rate in vivo. We show that large calcium signals can be recorded from dense neuronal populations at high acquisition rates. We quantify the optical sectioning capabilities and demonstrate the benefits of HiLo microscopy compared to wide-field microscopy for calcium imaging and 3D reconstruction. We apply HiLo microscopy to functional calcium imaging at 100 frames per second deep in biological tissues. This approach enables us to discriminate neuronal activity of motor neurons from different depths in the spinal cord of zebrafish embryos. We observe distinct time courses of calcium signals in somata and axons. We show that our method enables to remove large fluctuations of the background fluorescence. All together our setup can be implemented to provide efficient optical sectioning in vivo at low cost on a wide range of existing microscopes.

  2. Fast Calcium Imaging with Optical Sectioning via HiLo Microscopy

    PubMed Central

    Sternberg, Jenna R.; Wyart, Claire; Emiliani, Valentina

    2015-01-01

    Imaging intracellular calcium concentration via reporters that change their fluorescence properties upon binding of calcium, referred to as calcium imaging, has revolutionized our way to probe neuronal activity non-invasively. To reach neurons densely located deep in the tissue, optical sectioning at high rate of acquisition is necessary but difficult to achieve in a cost effective manner. Here we implement an accessible solution relying on HiLo microscopy to provide robust optical sectioning with a high frame rate in vivo. We show that large calcium signals can be recorded from dense neuronal populations at high acquisition rates. We quantify the optical sectioning capabilities and demonstrate the benefits of HiLo microscopy compared to wide-field microscopy for calcium imaging and 3D reconstruction. We apply HiLo microscopy to functional calcium imaging at 100 frames per second deep in biological tissues. This approach enables us to discriminate neuronal activity of motor neurons from different depths in the spinal cord of zebrafish embryos. We observe distinct time courses of calcium signals in somata and axons. We show that our method enables to remove large fluctuations of the background fluorescence. All together our setup can be implemented to provide efficient optical sectioning in vivo at low cost on a wide range of existing microscopes. PMID:26625116

  3. In-vivo, real-time cross-sectional images of retina using a GPU enhanced master slave optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Frederick; Podoleanu, Adrian

    2016-03-01

    In our previous reports we demonstrated a novel Fourier domain optical coherence tomography method, Master Slave optical coherence tomography (MS-OCT), that does not require resampling of data and can deliver en-face images from several depths simultaneously. While ideally suited for delivering information from a selected depth, the MS-OCT has been so far inferior to the conventional FFT based OCT in terms of time of producing cross section images. Here, we demonstrate that by taking advantage of the parallel processing capabilities offered by the MS-OCT method, cross-sectional OCT images of the human retina can be produced in real-time by assembling several T-scans from different depths. We analyze the conditions that ensure a real-time B-scan imaging operation, and demonstrate in-vivo real-time images from human fovea and the optic nerve, of comparable resolution and sensitivity to those produced using the traditional Fourier domain based method.

  4. Assessment of nerve ultrastructure by fibre-optic confocal microscopy.

    PubMed

    Cushway, T R; Lanzetta, M; Cox, G; Trickett, R; Owen, E R

    1996-01-01

    Fibre-optic technology combined with confocality produces a microscope capable of optical thin sectioning. In this original study, tibial nerves have been stained in a rat model with a vital dye, 4-(4-diethylaminostyryl)-N-methylpyridinium iodide, and analysed by fibre-optic confocal microscopy to produce detailed images of nerve ultrastructure. Schwann cells, nodes of Ranvier and longitudinal myelinated sheaths enclosing axons were clearly visible. Single axons appeared as brightly staining longitudinal structures. This allowed easy tracing of multiple signal axons within the nerve tissue. An accurate measurement of internodal lengths was easily accomplished. This technique is comparable to current histological techniques, but does not require biopsy, thin sectioning or tissue fixing. This study offers a standard for further in vivo microscopy, including the possibility of monitoring the progression of nerve regeneration following microsurgical neurorraphy.

  5. A 10Gbps optical burst switching network incorporating ultra-fast (5ns) wavelength switched tunable laser sources

    NASA Astrophysics Data System (ADS)

    Ryan, Neil; Todd, Michael; Farrell, Tom; Lavin, Adrian; Rigole, Pierre-Jean; Corbett, Brian; Roycroft, Brendan; Engelstaedter, Jan-Peter

    2017-11-01

    This paper outlines the development of a prototype optical burst mode switching network based upon a star topology, the ultimate application of which could be as a transparent payload processor onboard satellite repeaters. The network architecture incorporates multiple tunable laser sources, burst mode receivers and a passive optical router (Arrayed Waveguide Grating). Each tunable optical signal should carry >=10Gbps and be capable of wavelength switching in c. 5ns timescales. Two monolithic tunable laser types, based upon different technologies, will be utilised: a Slotted Fabry Perot laser (a Fabry Perot laser with slots added in order to introduce controlled cavity perturbations); and a Modulated Grating Y-Branch Laser (MGY: a widely tunable, multi-section device similar to the DBR laser). While the Slotted Fabry Perot laser is expected to achieve the required switching times, it is an immature technology not yet capable of achieving tunability over 80 ITU channels from a single chip. The MGY device is a more mature technology and has full C-band ITU channel coverage, but is not capable of the required short switching times. Hence, in order to facilitate the integration of this more mature technology into the prototype breadboard with the requisite switching time capabilities, a system of `dual laser' transmitters is being developed to enable data transmission from one MGY laser while the other switches and vice-versa. This work is being performed under ESA contract AO 1-5025/06/NL/PM, Optical Technologies for Ultra - fast Processing.

  6. Dual-wavelength quantum cascade laser for trace gas spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jágerská, J.; Tuzson, B.; Mangold, M.

    2014-10-20

    We demonstrate a sequentially operating dual-wavelength quantum cascade laser with electrically separated laser sections, emitting single-mode at 5.25 and 6.25 μm. Based on a single waveguide ridge, this laser represents a considerable asset to optical sensing and trace gas spectroscopy, as it allows probing multiple gas species with spectrally distant absorption features using conventional optical setups without any beam combining optics. The laser capability was demonstrated in simultaneous NO and NO{sub 2} detection, reaching sub-ppb detection limits and selectivity comparable to conventional high-end spectroscopic systems.

  7. Label-free photoacoustic nanoscopy

    PubMed Central

    Danielli, Amos; Maslov, Konstantin; Garcia-Uribe, Alejandro; Winkler, Amy M.; Li, Chiye; Wang, Lidai; Chen, Yun; Dorn, Gerald W.; Wang, Lihong V.

    2014-01-01

    Abstract. Super-resolution microscopy techniques—capable of overcoming the diffraction limit of light—have opened new opportunities to explore subcellular structures and dynamics not resolvable in conventional far-field microscopy. However, relying on staining with exogenous fluorescent markers, these techniques can sometimes introduce undesired artifacts to the image, mainly due to large tagging agent sizes and insufficient or variable labeling densities. By contrast, the use of endogenous pigments allows imaging of the intrinsic structures of biological samples with unaltered molecular constituents. Here, we report label-free photoacoustic (PA) nanoscopy, which is exquisitely sensitive to optical absorption, with an 88 nm resolution. At each scanning position, multiple PA signals are successively excited with increasing laser pulse energy. Because of optical saturation or nonlinear thermal expansion, the PA amplitude depends on the nonlinear incident optical fluence. The high-order dependence, quantified by polynomial fitting, provides super-resolution imaging with optical sectioning. PA nanoscopy is capable of super-resolution imaging of either fluorescent or nonfluorescent molecules. PMID:25104412

  8. Optically Sectioned Imaging of Microvasculature of In-Vivo and Ex-Vivo Thick Tissue Models with Speckle-illumination HiLo Microscopy and HiLo Image Processing Implementation in MATLAB Architecture

    NASA Astrophysics Data System (ADS)

    Suen, Ricky Wai

    The work described in this thesis covers the conversion of HiLo image processing into MATLAB architecture and the use of speckle-illumination HiLo microscopy for use of ex-vivo and in-vivo imaging of thick tissue models. HiLo microscopy is a wide-field fluorescence imaging technique and has been demonstrated to produce optically sectioned images comparable to confocal in thin samples. The imaging technique was developed by Jerome Mertz and the Boston University Biomicroscopy Lab and has been implemented in our lab as a stand-alone optical setup and a modification to a conventional fluorescence microscope. Speckle-illumination HiLo microscopy combines two images taken under speckle-illumination and standard uniform-illumination to generate an optically sectioned image that reject out-of-focus fluorescence. The evaluated speckle contrast in the images is used as a weighting function where elements that move out-of-focus have a speckle contrast that decays to zero. The experiments shown here demonstrate the capability of our HiLo microscopes to produce optically-sectioned images of the microvasculature of ex-vivo and in-vivo thick tissue models. The HiLo microscope were used to image the microvasculature of ex-vivo mouse heart sections prepared for optical histology and the microvasculature of in-vivo rodent dorsal window chamber models. Studies in label-free surface profiling with HiLo microscopy is also presented.

  9. Dual-beam optical trapping of cells in an optofluidic device fabricated by femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Bellini, N.; Bragheri, F.; Vishnubhatla, K. C.; Ferrara, L.; Minzioni, P.; Cerullo, G.; Ramponi, R.; Cristiani, I.; Osellame, R.

    2010-02-01

    We present design and optimization of an optofluidic monolithic chip, able to provide optical trapping and controlled stretching of single cells. The chip is fabricated in a fused silica glass substrate by femtosecond laser micromachining, which can produce both optical waveguides and microfluidic channels with great accuracy. Versatility and three-dimensional capabilities of this fabrication technology provide the possibility to fabricate circular cross-section channels with enlarged access holes for an easy connection with an external fluidic circuit. Moreover, a new fabrication procedure adopted allows the demonstration of microchannels with a square cross-section, thus guaranteeing an improved quality of the trapped cell images. Optical trapping and stretching of single red blood cells are demonstrated, thus proving the effectiveness of the proposed device as a monolithic optical stretcher. We believe that femtosecond laser micromachining represents a promising technique for the development of multifunctional integrated biophotonic devices that can be easily coupled to a microscope platform, thus enabling a complete characterization of the cells under test.

  10. Analyzing speckle contrast for HiLo microscopy optimization.

    PubMed

    Mazzaferri, J; Kunik, D; Belisle, J M; Singh, K; Lefrançois, S; Costantino, S

    2011-07-18

    HiLo microscopy is a recently developed technique that provides both optical sectioning and fast imaging with a simple implementation and at a very low cost. The methodology combines widefield and speckled illumination images to obtain one optically sectioned image. Hence, the characteristics of such speckle illumination ultimately determine the quality of HiLo images and the overall performance of the method. In this work, we study how speckle contrast influence local variations of fluorescence intensity and brightness profiles of thick samples. We present this article as a guide to adjust the parameters of the system for optimizing the capabilities of this novel technology.

  11. Analyzing speckle contrast for HiLo microscopy optimization

    NASA Astrophysics Data System (ADS)

    Mazzaferri, J.; Kunik, D.; Belisle, J. M.; Singh, K.; Lefrançois, S.; Costantino, S.

    2011-07-01

    HiLo microscopy is a recently developed technique that provides both optical sectioning and fast imaging with a simple implementation and at a very low cost. The methodology combines widefield and speckled illumination images to obtain one optically sectioned image. Hence, the characteristics of such speckle illumination ultimately determine the quality of HiLo images and the overall performance of the method. In this work, we study how speckle contrast influence local variations of fluorescence intensity and brightness profiles of thick samples. We present this article as a guide to adjust the parameters of the system for optimizing the capabilities of this novel technology.

  12. Optimization of the excitation light sheet in selective plane illumination microscopy

    PubMed Central

    Gao, Liang

    2015-01-01

    Selective plane illumination microscopy (SPIM) allows rapid 3D live fluorescence imaging on biological specimens with high 3D spatial resolution, good optical sectioning capability and minimal photobleaching and phototoxic effect. SPIM gains its advantage by confining the excitation light near the detection focal plane, and its performance is determined by the ability to create a thin, large and uniform excitation light sheet. Several methods have been developed to create such an excitation light sheet for SPIM. However, each method has its own strengths and weaknesses, and tradeoffs must be made among different aspects in SPIM imaging. In this work, we present a strategy to select the excitation light sheet among the latest SPIM techniques, and to optimize its geometry based on spatial resolution, field of view, optical sectioning capability, and the sample to be imaged. Besides the light sheets discussed in this work, the proposed strategy is also applicable to estimate the SPIM performance using other excitation light sheets. PMID:25798312

  13. Virtual k -Space Modulation Optical Microscopy

    NASA Astrophysics Data System (ADS)

    Kuang, Cuifang; Ma, Ye; Zhou, Renjie; Zheng, Guoan; Fang, Yue; Xu, Yingke; Liu, Xu; So, Peter T. C.

    2016-07-01

    We report a novel superresolution microscopy approach for imaging fluorescence samples. The reported approach, termed virtual k -space modulation optical microscopy (VIKMOM), is able to improve the lateral resolution by a factor of 2, reduce the background level, improve the optical sectioning effect and correct for unknown optical aberrations. In the acquisition process of VIKMOM, we used a scanning confocal microscope setup with a 2D detector array to capture sample information at each scanned x -y position. In the recovery process of VIKMOM, we first modulated the captured data by virtual k -space coding and then employed a ptychography-inspired procedure to recover the sample information and correct for unknown optical aberrations. We demonstrated the performance of the reported approach by imaging fluorescent beads, fixed bovine pulmonary artery endothelial (BPAE) cells, and living human astrocytes (HA). As the VIKMOM approach is fully compatible with conventional confocal microscope setups, it may provide a turn-key solution for imaging biological samples with ˜100 nm lateral resolution, in two or three dimensions, with improved optical sectioning capabilities and aberration correcting.

  14. 1550 nm superluminescent diode and anti-Stokes effect CCD camera based optical coherence tomography for full-field optical metrology

    NASA Astrophysics Data System (ADS)

    Kredzinski, Lukasz; Connelly, Michael J.

    2011-06-01

    Optical Coherence Tomography (OCT) is a promising non-invasive imaging technology capable of carrying out 3D high-resolution cross-sectional images of the internal microstructure of examined material. However, almost all of these systems are expensive, requiring the use of complex optical setups, expensive light sources and complicated scanning of the sample under test. In addition most of these systems have not taken advantage of the competitively priced optical components available at wavelength within the main optical communications band located in the 1550 nm region. A comparatively simple and inexpensive full-field OCT system (FF-OCT), based on a superluminescent diode (SLD) light source and anti-stokes imaging device was constructed, to perform 3D cross-sectional imaging. This kind of inexpensive setup with moderate resolution could be easily applicable in low-level biomedical and industrial diagnostics. This paper involves calibration of the system and determines its suitability for imaging structures of biological tissues such as teeth, which has low absorption at 1550 nm.

  15. Analysis of silicon on insulator (SOI) optical microring add-drop filter based on waveguide intersections

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, Andrzej; Bogaerts, Wim; Van Thourhout, Dries; Drouard, Emmanuel; Rojo-Romeo, Pedro; Giannone, Domenico; Gaffiot, Frederic

    2008-04-01

    We present a compact passive optical add-drop filter which incorporates two microring resonators and a waveguide intersection in silicon-on-insulator (SOI) technology. Such a filter is a key element for designing simple layouts of highly integrated complex optical networks-on-chip. The filter occupies an area smaller than 10μm×10μm and exhibits relatively high quality factors (up to 4000) and efficient signal dropping capabilities. In the present work, the influence of filter parameters such as the microring-resonators radii and the coupling section shape are analyzed theoretically and experimentally

  16. Real-time distributed fiber microphone based on phase-OTDR.

    PubMed

    Franciscangelis, Carolina; Margulis, Walter; Kjellberg, Leif; Soderquist, Ingemar; Fruett, Fabiano

    2016-12-26

    The use of an optical fiber as a real-time distributed microphone is demonstrated employing a phase-OTDR with direct detection. The method comprises a sample-and-hold circuit capable of both tuning the receiver to an arbitrary section of the fiber considered of interest and to recover in real-time the detected acoustic wave. The system allows listening to the sound of a sinusoidal disturbance with variable frequency, music and human voice with ~60 cm of spatial resolution through a 300 m long optical fiber.

  17. Anti-Stokes effect CCD camera and SLD based optical coherence tomography for full-field imaging in the 1550nm region

    NASA Astrophysics Data System (ADS)

    Kredzinski, Lukasz; Connelly, Michael J.

    2012-06-01

    Full-field Optical coherence tomography is an en-face interferometric imaging technology capable of carrying out high resolution cross-sectional imaging of the internal microstructure of an examined specimen in a non-invasive manner. The presented system is based on competitively priced optical components available at the main optical communications band located in the 1550 nm region. It consists of a superluminescent diode and an anti-stokes imaging device. The single mode fibre coupled SLD was connected to a multi-mode fibre inserted into a mode scrambler to obtain spatially incoherent illumination, suitable for OCT wide-field modality in terms of crosstalk suppression and image enhancement. This relatively inexpensive system with moderate resolution of approximately 24um x 12um (axial x lateral) was constructed to perform a 3D cross sectional imaging of a human tooth. To our knowledge this is the first 1550 nm full-field OCT system reported.

  18. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing

    PubMed Central

    Yun, S.H.; Vakoc, B.J.; Shishkov, M.; Desjardins, A.E.; Park, B.H.; de Boer, J.F.; Tearney, G.J.; Bouma, B.E.

    2009-01-01

    Polarization sensitive optical coherence tomography (PS-OCT) provides a cross-sectional image of birefringence in biological samples that is complementary in many applications to the standard reflectance-based image. Recent ex vivo studies have demonstrated that birefringence mapping enables the characterization of collagen and smooth muscle concentration and distribution in vascular tissues. Instruments capable of applying these measurements percutaneously in vivo may provide new insights into coronary atherosclerosis and acute myocardial infarction. We have developed a polarization sensitive optical frequency domain imaging (PS-OFDI) system that enables high-speed intravascular birefringence imaging through a fiber-optic catheter. The novel design of this system utilizes frequency multiplexing to simultaneously measure reflectance of two incident polarization states, overcoming concerns regarding temporal variations of the catheter fiber birefringence and spatial variations in the birefringence of the sample. We demonstrate circular cross-sectional birefringence imaging of a human coronary artery ex vivo through a flexible fiber-optic catheter with an A-line rate of 62 kHz and a ranging depth of 6.2 mm. PMID:18542183

  19. Exploratory development and services for preparing and examining ultrathin polished sections of lunar rocks and particulates, part 1

    NASA Technical Reports Server (NTRS)

    Beauchamp, R. H.; Williford, J. F.; Gafford, E. L.

    1972-01-01

    Development of improved procedures is reported for three classes of lunar materials: dense rocks, breccias, and particulates. High quality ultrathin sections of these materials are obtained. Lists of equipment and supplies, procedures, photomicrographic documentation, and training are provided. Advantages of ultrathin polished sections for conventional and unconventional optical microscopy methods are described. Recommendations are provided for use of ultrathin sections in lunar rock studies, for further refinement of ultrathinning procedures, and for additional training efforts to establish a capability at the Manned Space Center. For Part 2, See N72-50754.

  20. Miniature fiber Fabry-Perot sensors based on fusion splicing

    NASA Astrophysics Data System (ADS)

    Zhu, Jia-li; Wang, Ming; Yang, Chun-di; Wang, Ting-ting

    2013-03-01

    Fiber-optic Fabry-Perot (F-P) sensors are widely investigated because they have several advantages over conventional sensors, such as immunity to electromagnetic interference, ability to operate under bad environments, high sensitivity and the potential for multiplexing. A new method to fabricate micro-cavity Fabry-Perot interferometer is introduced, which is fusion splicing a section of conventional single-mode fiber (SMF) and a section of hollow core or solid core photonic crystal fiber (PCF) together to form a micro-cavity at the splice joint. The technology of fusion splicing is discussed, and two miniature optical fiber sensors based on Fabry-Perot interference using fusion splicing are presented. The two sensors are completely made of fused silica, and have good high-temperature capability.

  1. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    DOEpatents

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  2. Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity.

    PubMed

    Chan, Jasper; Eichenfield, Matt; Camacho, Ryan; Painter, Oskar

    2009-03-02

    Design of a doubly-clamped beam structure capable of localizing mechanical and optical energy at the nanoscale is presented. The optical design is based upon photonic crystal concepts in which patterning of a nanoscale-cross-section beam can result in strong optical localization to an effective optical mode volume of 0.2 cubic wavelengths ( (lambdac)(3)). By placing two identical nanobeams within the near field of each other, strong optomechanical coupling can be realized for differential motion between the beams. Current designs for thin film silicon nitride beams at a wavelength of lambda?= 1.5 microm indicate that such structures can simultaneously realize an optical Q-factor of 7x10(6), motional mass m(u) approximately 40 picograms, mechanical mode frequency Omega(M)/2pi approximately 170 MHz, and an optomechanical coupling factor (g(OM) identical with domega(c)/dx = omega(c)/L(OM)) with effective length L(OM) approximately lambda= 1.5 microm.

  3. A perspective of synthetic aperture radar for remote sensing

    NASA Technical Reports Server (NTRS)

    Skolnik, M. I.

    1978-01-01

    The characteristics and capabilities of synthetic aperture radar are discussed so as to identify those features particularly unique to SAR. The SAR and Optical images were compared. The SAR is an example of radar that provides more information about a target than simply its location. It is the spatial resolution and imaging capability of SAR that has made its application of interest, especially from spaceborne platforms. However, for maximum utility to remote sensing, it was proposed that other information be extracted from SAR data, such as the cross section with frequency and polarization.

  4. Spectral optical coherence tomography: a novel technique for cornea imaging.

    PubMed

    Kaluzny, Bartłomiej J; Kaluzy, Bartłomiej J; Kałuzny, Jakub J; Szkulmowska, Anna; Gorczyńska, Iwona; Szkulmowski, Maciej; Bajraszewski, Tomasz; Wojtkowski, Maciej; Targowski, Piotr

    2006-09-01

    Spectral optical coherence tomography (SOCT) is a new, noninvasive, noncontact, high-resolution technique that provides cross-sectional images of the objects that weakly absorb and scatter light. SOCT, because of very short acquisition time and high sensitivity, is capable of providing tomograms of substantially better quality than the conventional OCT. The aim of this paper is to show the application of the SOCT to cross-sectional imaging of the cornea and its pathologies. Eleven eyes with different corneal pathologies were examined with a slit lamp and the use of a prototype SOCT instrument constructed in the Institute of Physics, Nicolaus Copernicus University, Toruń, Poland. Our SOCT system provides high-resolution (4 microm axial, 10 microm transversal) tomograms composed of 3000-5000 A-scans with an acquisition time of 120-200 ms. The quality of the images is adequate for detailed cross-sectional evaluation of various corneal pathologies. Objective assessment of the localization, size, shape, and light-scattering properties of the changed tissue is possible. Corneal and epithelial thickness and the depth and width of lesions can be estimated. SOCT technique allows acquiring clinically valuable cross-sectional optical biopsy of the cornea and its pathologies.

  5. Advancing Test Capabilities at NASA Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James

    2015-01-01

    NASA maintains twelve major wind tunnels at three field centers capable of providing flows at 0.1 M 10 and unit Reynolds numbers up to 45106m. The maintenance and enhancement of these facilities is handled through a unified management structure under NASAs Aeronautics and Evaluation and Test Capability (AETC) project. The AETC facilities are; the 11x11 transonic and 9x7 supersonic wind tunnels at NASA Ames; the 10x10 and 8x6 supersonic wind tunnels, 9x15 low speed tunnel, Icing Research Tunnel, and Propulsion Simulator Laboratory, all at NASA Glenn; and the National Transonic Facility, Transonic Dynamics Tunnel, LAL aerothermodynamics laboratory, 8 High Temperature Tunnel, and 14x22 low speed tunnel, all at NASA Langley. This presentation describes the primary AETC facilities and their current capabilities, as well as improvements which are planned over the next five years. These improvements fall into three categories. The first are operations and maintenance improvements designed to increase the efficiency and reliability of the wind tunnels. These include new (possibly composite) fan blades at several facilities, new temperature control systems, and new and much more capable facility data systems. The second category of improvements are facility capability advancements. These include significant improvements to optical access in wind tunnel test sections at Ames, improvements to test section acoustics at Glenn and Langley, the development of a Supercooled Large Droplet capability for icing research, and the development of an icing capability for large engine testing. The final category of improvements consists of test technology enhancements which provide value across multiple facilities. These include projects to increase balance accuracy, provide NIST-traceable calibration characterization for wind tunnels, and to advance optical instruments for Computational Fluid Dynamics (CFD) validation. Taken as a whole, these individual projects provide significant enhancements to NASA capabilities in ground-based testing. They ensure that these wind tunnels will provide accurate and relevant experimental data for years to come, supporting both NASAs mission and the missions of our government and industry customers.

  6. Durable fiber optic sensor for gas temperature measurement in the hot section of turbine engines

    NASA Astrophysics Data System (ADS)

    Tregay, George W.; Calabrese, Paul R.; Finney, Mark J.; Stukey, K. B.

    1994-10-01

    An optical sensor system extends gas temperature measurement capability in turbine engines beyond the present generation of thermocouple technology. The sensing element which consists of a thermally emissive insert embedded inside a sapphire lightguide is capable of operating above the melting point of nickel-based super alloys. The emissive insert generates an optical signal as a function of temperature. Continued development has led to an optically averaged system by combining the optical signals from four individual sensing elements at a single detector assembly. The size of the signal processor module has been reduced to overall dimensions of 2 X 4 X 0.7 inches. The durability of the optical probe design has been evaluated in an electric-utility operated gas turbine under the sponsorship of the Electric Power Research Institute. The temperature probe was installed between the first stage rotor and second stage nozzle on a General Electric MS7001B turbine. The combined length of the ceramic support tube and sensing element reached 1.5 inches into the hot gas stream. A total of over 2000 hours has been accumulated at probe operation temperatures near 1600 degree(s)F. An optically averaged sensor system was designed to replace the existing four thermocouple probes on the upper half of a GE F404 aircraft turbine engine. The system was ground tested for 250 hours as part of GE Aircraft Engines IR&D Optical Engine Program. Subsequently, two flight sensor systems were shipped for use on the FOCSI (Fiber Optic Control System Integration) Program. The optical harnesses, each with four optical probes, measure the exhaust gas temperature in a GE F404 engine.

  7. Comparison of diagnostic capability of macular ganglion cell complex and retinal nerve fiber layer among primary open angle glaucoma, ocular hypertension, and normal population using Fourier-domain optical coherence tomography and determining their functional correlation in Indian population

    PubMed Central

    Barua, Nabanita; Sitaraman, Chitra; Goel, Sonu; Chakraborti, Chandana; Mukherjee, Sonai; Parashar, Hemandra

    2016-01-01

    Context: Analysis of diagnostic ability of macular ganglionic cell complex and retinal nerve fiber layer (RNFL) in glaucoma. Aim: To correlate functional and structural parameters and comparing predictive value of each of the structural parameters using Fourier-domain (FD) optical coherence tomography (OCT) among primary open angle glaucoma (POAG) and ocular hypertension (OHT) versus normal population. Setting and Design: Single centric, cross-sectional study done in 234 eyes. Materials and Methods: Patients were enrolled in three groups: POAG, ocular hypertensive and normal (40 patients in each group). After comprehensive ophthalmological examination, patients underwent standard automated perimetry and FD-OCT scan in optic nerve head and ganglion cell mode. The relationship was assessed by correlating ganglion cell complex (GCC) parameters with mean deviation. Results were compared with RNFL parameters. Statistical Analysis: Data were analyzed with SPSS, analysis of variance, t-test, Pearson's coefficient, and receiver operating curve. Results: All parameters showed strong correlation with visual field (P < 0.001). Inferior GCC had highest area under curve (AUC) for detecting glaucoma (0.827) in POAG from normal population. However, the difference was not statistically significant (P > 0.5) when compared with other parameters. None of the parameters showed significant diagnostic capability to detect OHT from normal population. In diagnosing early glaucoma from OHT and normal population, only inferior GCC had statistically significant AUC value (0.715). Conclusion: In this study, GCC and RNFL parameters showed equal predictive capability in perimetric versus normal group. In early stage, inferior GCC was the best parameter. In OHT population, single day cross-sectional imaging was not valuable. PMID:27221682

  8. Optical mesoscopy without the scatter: broadband multispectral optoacoustic mesoscopy

    PubMed Central

    Chekkoury, Andrei; Gateau, Jérôme; Driessen, Wouter; Symvoulidis, Panagiotis; Bézière, Nicolas; Feuchtinger, Annette; Walch, Axel; Ntziachristos, Vasilis

    2015-01-01

    Optical mesoscopy extends the capabilities of biological visualization beyond the limited penetration depth achieved by microscopy. However, imaging of opaque organisms or tissues larger than a few hundred micrometers requires invasive tissue sectioning or chemical treatment of the specimen for clearing photon scattering, an invasive process that is regardless limited with depth. We developed previously unreported broadband optoacoustic mesoscopy as a tomographic modality to enable imaging of optical contrast through several millimeters of tissue, without the need for chemical treatment of tissues. We show that the unique combination of three-dimensional projections over a broad 500 kHz–40 MHz frequency range combined with multi-wavelength illumination is necessary to render broadband multispectral optoacoustic mesoscopy (2B-MSOM) superior to previous optical or optoacoustic mesoscopy implementations. PMID:26417486

  9. Cross-Sectional Transport Imaging in a Multijunction Solar Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haegel, Nancy M.; Ke, Chi-Wen; Taha, Hesham

    2015-06-14

    Combining highly localized electron-beam excitation at a point with the spatial resolution capability of optical near-field imaging, we have imaged carrier transport in a cross-sectioned multijunction (GaInP/GaInAs/Ge) solar cell. We image energy transport associated with carrier diffusion throughout the full width of the middle (GaInAs) cell and luminescent coupling from point excitation in the top cell GaInP to the middle cell. Supporting cathodoluminescence and near-field photoluminescence measurements demonstrate excitation-dependent Fermi level splitting effects that influence cross-sectioned spectroscopy results as well as transport limitations on the spatial resolution of cross-sectional measurements.

  10. Purely wavelength- and amplitude-modulated quartz-enhanced photoacoustic spectroscopy.

    PubMed

    Patimisco, Pietro; Sampaolo, Angelo; Bidaux, Yves; Bismuto, Alfredo; Scott, Marshall; Jiang, James; Muller, Antoine; Faist, Jerome; Tittel, Frank K; Spagnolo, Vincenzo

    2016-11-14

    We report here on a quartz-enhanced photoacoustic (QEPAS) sensor employing a quantum cascade laser (QCL) structure capable of operating in a pure amplitude or wavelength modulation configuration. The QCL structure is composed of three electrically independent sections: Gain, Phase (PS) and Master Oscillator (MO). Selective current pumping of these three sections allows obtaining laser wavelength tuning without changes in the optical power, and power modulation without emission wavelength shifts. A pure QEPAS amplitude modulation condition is obtained by modulating the PS current, while pure wavelength modulation is achieved by modulating simultaneously the MO and PS QCL sections and slowly scanning the DC current level injected in the PS section.

  11. The 27-28 October 1986 FIRE IFO cirrus case study - Cloud optical properties determined by High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Grund, C. J.; Eloranta, E. W.

    1990-01-01

    The High Spectral Resolution Lidar (HSRL) was operated from a roof-top site in Madison, Wisconsin. The transmitter configuration used to acquire the case study data produces about 50 mW of ouput power and achieved eye-safe, direct optical depth, and backscatter cross section measurements with 10 min averaging times. A new continuously pumped, injection seeded, frequency doubled Nd:YAG laser transmitter reduces time-averaging constraints by a factor of about 10, while improving the aerosol-molecular signal separation capabilities and wavelength stability of the instrument. The cirrus cloud backscatter-phase functions have been determined for the October 27-28, 1986 segment of the HSRL FIRE dataset. Features exhibiting backscatter cross sections ranging over four orders of magnitude have been observed within this 33 h period. During this period, cirrus clouds were observed with optical thickness ranging from 0.01 to 1.4. The altitude relationship between cloud top and bottom boundaries and the optical center of the cloud is influenced by the type of formation observed.

  12. Optical mechanisms for detection of lipid-rich atherosclerotic plaques by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hull, Edward L.; Gardner, Craig M.; Muller, James E.; Muller, Vianna J.; Salvato, Christopher V.; Lisauskas, Jennifer B.; Caplan, Jay D.

    2008-02-01

    InfraReDx has developed a spectroscopic cardiac catheter system capable of acquiring near-infrared (NIR) reflectance spectra from coronary arteries in vivo for identification of lipid-rich plaques of interest (LRP). The spectral data are analyzed with a chemometric model, producing a hyperspectral image (a chemogram) used to identify LRP in the interrogated region. In this paper, we describe a FT-IR microscopy system for measurement of the NIR scattering and absorption properties of healthy and diseased regions of human coronary arteries in small volumes (~10 μl). Scattering and absorption coefficients are obtained from sequential 140 um x 140 um regions of interest across the face of 500-micron thick, saline-irrigated fresh coronary artery sections. A customized FTIR microscope, measurement protocol, and inversion algorithm are used for optical property determination, and the system is calibrated using measurements of tissue-simulating phantoms having well-characterized optical properties. Tissue optical properties are co-registered with brightfield transmission images as well as with stained histologic thin sections (H&E, Movat Pentachrome, and Oil Red O) acquired from an immediately-adjacent section. The ultimate goal of these experiments is to establish a mechanistic link between the multivariate model predictions displayed on the InfraReDx chemogram and the light-tissue interactions that govern the measured NIR reflectance spectra.

  13. Fiber optically guided CO2 laser myringotomy through an otoscope: animal experimentation

    NASA Astrophysics Data System (ADS)

    DeRowe, Ari; Ophir, Dov; Katzir, Abraham

    1992-08-01

    We have developed an otoscope which contains an optical fiber capable of transmitting CO2 laser energy. Such a hand-held unit may prove useful in the treatment of acute otitis media and otitis media with effusion. We used crystalline fibers (0.9 mm diameter) capable of transmitting CO2 laser energy. Four guinea pigs were anaesthetized. In one ear a laser myringotomy was performed using 7.5 watts for 0.1 seconds. The diameter of the myringotomy was 1.5 mm. In the other ear a similar conventional myringotomy was performed. After three weeks three laser and three conventional myringotomies were closed. On the average conventional myringotomies closed 50% sooner than laser myringotomies. Temporal bones from three guinea pigs were removed and sectioned according to accepted methods. No histological differences were found between ears. This experiment has proven the feasibility of using an otoscope for fiberoptically guided CO2 laser myringotomy.

  14. Retrieving the aerosol complex refractive index using PyMieScatt: A Mie computational package with visualization capabilities

    NASA Astrophysics Data System (ADS)

    Sumlin, Benjamin J.; Heinson, William R.; Chakrabarty, Rajan K.

    2018-01-01

    The complex refractive index m = n + ik of a particle is an intrinsic property which cannot be directly measured; it must be inferred from its extrinsic properties such as the scattering and absorption cross-sections. Bohren and Huffman called this approach "describing the dragon from its tracks", since the inversion of Lorenz-Mie theory equations is intractable without the use of computers. This article describes PyMieScatt, an open-source module for Python that contains functionality for solving the inverse problem for complex m using extensive optical and physical properties as input, and calculating regions where valid solutions may exist within the error bounds of laboratory measurements. Additionally, the module has comprehensive capabilities for studying homogeneous and coated single spheres, as well as ensembles of homogeneous spheres with user-defined size distributions, making it a complete tool for studying the optical behavior of spherical particles.

  15. Large High Performance Optics for Spaceborne Missions: L-3 Brashear Experience and Capability

    NASA Technical Reports Server (NTRS)

    Canzian, Blaise; Gardopee, George; Clarkson, Andrew; Hull, Tony; Borucki, William J.

    2010-01-01

    Brashear is a division of L-3 Communications, Integrated Optical Systems. Brashear is well known for the ground-based telescopes it has manufactured at its facilities and delivered to satisfied customers. Optics from meter-class up to 8.3 meters diameter have been fabricated in Brashear's facilities. Brashear has demonstrated capabilities for large spaceborne optics. We describe in this paper both legacy and new Brashear capabilities for high performance spaceborne optics.

  16. Fluorescence-based surface magnifying chromoendoscopy and optical coherence tomography endoscope

    NASA Astrophysics Data System (ADS)

    Wall, R. Andrew; Barton, Jennifer K.

    2012-02-01

    A side-viewing, 2 mm diameter, surface magnifying chromoendoscopy (SMC)-optical coherence tomography (OCT) endoscope has been designed for simultaneous, non-destructive surface fluorescence visualization and cross-sectional imaging. We apply this endoscope to in vivo examination of mouse colon. A 30,000 element fiber bundle is combined with single mode fibers. The distal optics consist of a gradient-index lens and spacer to provide a magnification of 1 at a working distance of 1.58 mm in air, necessary to image the sample through a 0.23 mm thick outer glass envelope, and an aluminized right-angle prism fixed to the distal end of the GRIN lens assembly. The resulting 1:1 imaging system is capable of 3.9 μm lateral and 2.3 μm axial resolution in the OCT channel, and 125 lp/mm resolution across a 0.70 mm field of view in the SMC channel. The endoscope can perform high contrast crypt visualization, molecular imaging, and cross-sectional imaging of colon microstructure.

  17. The fundus photo has met its match: optical coherence tomography and adaptive optics ophthalmoscopy are here to stay.

    PubMed

    Morgan, Jessica I W

    2016-05-01

    Over the past 25 years, optical coherence tomography (OCT) and adaptive optics (AO) ophthalmoscopy have revolutionised our ability to non-invasively observe the living retina. The purpose of this review is to highlight the techniques and human clinical applications of recent advances in OCT and adaptive optics scanning laser/light ophthalmoscopy (AOSLO) ophthalmic imaging. Optical coherence tomography retinal and optic nerve head (ONH) imaging technology allows high resolution in the axial direction resulting in cross-sectional visualisation of retinal and ONH lamination. Complementary AO ophthalmoscopy gives high resolution in the transverse direction resulting in en face visualisation of retinal cell mosaics. Innovative detection schemes applied to OCT and AOSLO technologies (such as spectral domain OCT, OCT angiography, confocal and non-confocal AOSLO, fluorescence, and AO-OCT) have enabled high contrast between retinal and ONH structures in three dimensions and have allowed in vivo retinal imaging to approach that of histological quality. In addition, both OCT and AOSLO have shown the capability to detect retinal reflectance changes in response to visual stimuli, paving the way for future studies to investigate objective biomarkers of visual function at the cellular level. Increasingly, these imaging techniques are being applied to clinical studies of the normal and diseased visual system. Optical coherence tomography and AOSLO technologies are capable of elucidating the structure and function of the retina and ONH noninvasively with unprecedented resolution and contrast. The techniques have proven their worth in both basic science and clinical applications and each will continue to be utilised in future studies for many years to come. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  18. Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels.

    PubMed

    Polynkin, PaveL; Polynkin, Alexander; Peyghambarian, N; Mansuripur, Masud

    2005-06-01

    We report a simple optical sensing device capable of measuring the refractive index of liquids propagating in microfluidic channels. The sensor is based on a single-mode optical fiber that is tapered to submicrometer dimensions and immersed in a transparent curable soft polymer. A channel for liquid analyte is created in the immediate vicinity of the taper waist. Light propagating through the tapered section of the fiber extends into the channel, making the optical loss in the system sensitive to the refractive-index difference between the polymer and the liquid. The fabrication process and testing of the prototype sensing devices are described. The sensor can operate both as a highly responsive on-off device and in the continuous measurement mode, with an estimated accuracy of refractive-index measurement of approximately 5 x 10(-4).

  19. MSFC Optical Metrology: A National Resource

    NASA Technical Reports Server (NTRS)

    Burdine, Robert

    1998-01-01

    A national need exists for Large Diameter Optical Metrology Services. These services include the manufacture, testing, and assurance of precision and control necessary to assure the success of large optical projects. "Best Practices" are often relied on for manufacture and quality controls while optical projects are increasingly more demanding and complex. Marshall Space Flight Center (MSFC) has acquired unique optical measurement, testing and metrology capabilities through active participation in a wide variety of NASA optical programs. An overview of existing optical facilities and metrology capabilities is given with emphasis on use by other optical projects. Cost avoidance and project success is stressed through use of existing MSFC facilities and capabilities for measurement and metrology controls. Current issues in large diameter optical metrology are briefly reviewed. The need for a consistent and long duration Large Diameter Optical Metrology Service Group is presented with emphasis on the establishment of a National Large Diameter Optical Standards Laboratory. Proposals are made to develop MSFC optical standards and metrology capabilities as the primary national standards resource, providing access to MSFC Optical Core Competencies for manufacturers and researchers. Plans are presented for the development of a national lending library of precision optical standards with emphasis on cost avoidance while improving measurement assurance.

  20. Optical-sectioning microscopy of protoporphyrin IX fluorescence in human gliomas: standardization and quantitative comparison with histology

    NASA Astrophysics Data System (ADS)

    Wei, Linpeng; Chen, Ye; Yin, Chengbo; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T. C.

    2017-04-01

    Systemic delivery of 5-aminolevulinic acid leads to enhanced fluorescence image contrast in many tumors due to the increased accumulation of protoporphyrin IX (PpIX), a fluorescent porphyrin that is associated with tumor burden and proliferation. The value of PpIX-guided resection of malignant gliomas has been demonstrated in prospective randomized clinical studies in which a twofold greater extent of resection and improved progression-free survival have been observed. In low-grade gliomas and at the diffuse infiltrative margins of all gliomas, PpIX fluorescence is often too weak to be detected with current low-resolution surgical microscopes that are used in operating rooms. However, it has been demonstrated that high-resolution optical-sectioning microscopes are capable of detecting the sparse and punctate accumulations of PpIX that are undetectable via conventional low-power surgical fluorescence microscopes. To standardize the performance of high-resolution optical-sectioning devices for future clinical use, we have developed an imaging phantom and methods to ensure that the imaging of PpIX-expressing brain tissues can be performed reproducibly. Ex vivo imaging studies with a dual-axis confocal microscope demonstrate that these methods enable the acquisition of images from unsectioned human brain tissues that quantitatively and consistently correlate with images of histologically processed tissue sections.

  1. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics.

    PubMed

    Zhang, Li; Ding, Jun; Zheng, Hanyu; An, Sensong; Lin, Hongtao; Zheng, Bowen; Du, Qingyang; Yin, Gufan; Michon, Jerome; Zhang, Yifei; Fang, Zhuoran; Shalaginov, Mikhail Y; Deng, Longjiang; Gu, Tian; Zhang, Hualiang; Hu, Juejun

    2018-04-16

    The mid-infrared (mid-IR) is a strategically important band for numerous applications ranging from night vision to biochemical sensing. Here we theoretically analyzed and experimentally realized a Huygens metasurface platform capable of fulfilling a diverse cross-section of optical functions in the mid-IR. The meta-optical elements were constructed using high-index chalcogenide films deposited on fluoride substrates: the choices of wide-band transparent materials allow the design to be scaled across a broad infrared spectrum. Capitalizing on a two-component Huygens' meta-atom design, the meta-optical devices feature an ultra-thin profile (λ 0 /8 in thickness) and measured optical efficiencies up to 75% in transmissive mode for linearly polarized light, representing major improvements over state-of-the-art. We have also demonstrated mid-IR transmissive meta-lenses with diffraction-limited focusing and imaging performance. The projected size, weight and power advantages, coupled with the manufacturing scalability leveraging standard microfabrication technologies, make the Huygens meta-optical devices promising for next-generation mid-IR system applications.

  2. XRCF Testing Capabilities

    NASA Technical Reports Server (NTRS)

    Reily, Cary; Kegely, Jeff; Burdine, Robert (Technical Monitor)

    2001-01-01

    The Space Optics Manufacturing Technology Center's X-ray Calibration Facility has been recently modified to test Next Generation Space Telescope (NGST) developmental mirrors at cryogenic temperatures (35 degrees Kelvin) while maintaining capability for performance testing of x-ray optics and detectors. The facility's current cryo-optical testing capability and potential modifications for future support of NGST will be presented.

  3. A Unique, Optically Accessible Flame Tube Facility for Lean Combustor Studies

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Locke, Randy J.; Wey, Chowen C.; Bianco, Jean

    1995-01-01

    A facility that allows interrogation of combusting flows by advanced diagnostic methods and instrumentation has been developed at the NASA Lewis Research Center. An optically accessible flame tube combustor is described which has high temperature, pressure, and air flow capabilities. The windows in the combustor measure 3.8 cm axially by 5.1 cm radially, providing 67% optical access to the 7.6 cm x 7.6 cm cross section flow chamber. Advanced gas analysis instrumentation is available through a gas chromatography/mass spectrometer system (GC/MS), which has on-line capability for heavy hydrocarbon measurement with resolution to the parts per billion level. The instrumentation allows one to study combusting flows and combustor subcomponents, such as fuel injectors and air swirlers. Planar Laser Induced Fluorescence (PLIF) can measure unstable combustion species, which cannot be obtained with traditional gas sampling. This type of data is especially useful to combustion modellers. The optical access allows measurements to have high spatial and temporal resolution. GC/MS data and PLIF images of OH- are presented from experiments using a lean direct injection (LDI) combustor burning Jet-A fuel at inlet temperatures ranging from 810 K to 866 K, combustor pressures up to 1380 kPa, and equivalence ratios from 0.41 to 0.59.

  4. Parametric bicubic spline and CAD tools for complex targets shape modelling in physical optics radar cross section prediction

    NASA Astrophysics Data System (ADS)

    Delogu, A.; Furini, F.

    1991-09-01

    Increasing interest in radar cross section (RCS) reduction is placing new demands on theoretical, computation, and graphic techniques for calculating scattering properties of complex targets. In particular, computer codes capable of predicting the RCS of an entire aircraft at high frequency and of achieving RCS control with modest structural changes, are becoming of paramount importance in stealth design. A computer code, evaluating the RCS of arbitrary shaped metallic objects that are computer aided design (CAD) generated, and its validation with measurements carried out using ALENIA RCS test facilities are presented. The code, based on the physical optics method, is characterized by an efficient integration algorithm with error control, in order to contain the computer time within acceptable limits, and by an accurate parametric representation of the target surface in terms of bicubic splines.

  5. Optical-to-optical interface device

    NASA Technical Reports Server (NTRS)

    Jacobson, A. D.; Bleha, W. P.; Miller, L.; Grinberg, J.; Fraas, L.; Margerum, D.

    1975-01-01

    An investigation was conducted to develop an optical-to-optical interface device capable of performing real-time incoherent-to-incoherent optical image conversion. The photoactivated liquid crystal light valve developed earlier represented a prototype liquid crystal light valve device capable of performing these functions. A device was developed which had high performance and extended lifetime.

  6. An Analysis of the Defense Acquisition Strategy for Unmanned Systems

    DTIC Science & Technology

    2013-11-20

    Product Service Code RAA Rapid Acquisition Authority RCS Radar Cross Section REF Rapid Equipping Force RFID Radio Frequency Identification RDT...the radio frequency identification (RFID) chip also provides a useful basis for comparison. WWII served as the proving ground for RFID technology...enabling miniaturized Free Space Optical Communications systems capable of scaling across data rates, distances, and platforms and integrating with radio

  7. Neurophysiological Estimates of Human Performance Capabilities in Aerospace Systems

    DTIC Science & Technology

    1975-01-27

    effects on the visual system (in lateral geniculate bodies and optic cortex) depending on the frequency of auditory stimulation. 27 SECTION VI...of spa- tial positions. Correct responses were rewarded with food. EEG activity was recorded in the hippocampus, hypothalamus and lateral geniculate ...movement or an object movement reduce transmission of visual information through the lateral geniculate nucleus. This may be a mechanism for saccadic

  8. The fundus photo has met its match: optical coherence tomography and adaptive optics ophthalmoscopy are here to stay

    PubMed Central

    Morgan, Jessica I. W.

    2016-01-01

    Purpose Over the past 25 years, optical coherence tomography (OCT) and adaptive optics (AO) ophthalmoscopy have revolutionised our ability to non-invasively observe the living retina. The purpose of this review is to highlight the techniques and human clinical applications of recent advances in OCT and adaptive optics scanning laser/light ophthalmoscopy (AOSLO) ophthalmic imaging. Recent findings Optical coherence tomography retinal and optic nerve head (ONH) imaging technology allows high resolution in the axial direction resulting in cross-sectional visualisation of retinal and ONH lamination. Complementary AO ophthalmoscopy gives high resolution in the transverse direction resulting in en face visualisation of retinal cell mosaics. Innovative detection schemes applied to OCT and AOSLO technologies (such as spectral domain OCT, OCT angiography, confocal and non-confocal AOSLO, fluorescence, and AO-OCT) have enabled high contrast between retinal and ONH structures in three dimensions and have allowed in vivo retinal imaging to approach that of histological quality. In addition, both OCT and AOSLO have shown the capability to detect retinal reflectance changes in response to visual stimuli, paving the way for future studies to investigate objective biomarkers of visual function at the cellular level. Increasingly, these imaging techniques are being applied to clinical studies of the normal and diseased visual system. Summary Optical coherence tomography and AOSLO technologies are capable of elucidating the structure and function of the retina and ONH noninvasively with unprecedented resolution and contrast. The techniques have proven their worth in both basic science and clinical applications and each will continue to be utilised in future studies for many years to come. PMID:27112222

  9. Dynamic-focusing microscope objective for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Murali, Supraja; Rolland, Jannick

    2007-01-01

    Optical Coherence Tomography (OCT) is a novel optical imaging technique that has assumed significant importance in bio-medical imaging in the last two decades because it is non-invasive and provides accurate, high resolution images of three dimensional cross-sections of body tissue, exceeding the capabilities of the current predominant imaging technique - ultrasound. In this paper, the application of high resolution OCT, known as optical coherence microscopy (OCM) is investigated for in vivo detection of abnormal skin pathology for the early diagnosis of cancer. A main challenge in OCM is maintaining invariant resolution throughout the sample. The technology presented is based on a dynamic focusing microscope imaging probe conceived for skin imaging and the detection of abnormalities in the epithelium. A novel method for dynamic focusing in the biological sample is presented using variable-focus lens technology to obtain three dimensional images with invariant resolution throughout the cross-section and depth of the sample is presented and discussed. A low coherence broadband source centered at near IR wavelengths is used to illuminate the sample. The design, analysis and predicted performance of the dynamic focusing microscope objective designed for dynamic three dimensional imaging at 5μm resolution for the chosen broadband spectrum is presented.

  10. Three-dimensional fuse deposition modeling of tissue-simulating phantom for biomedical optical imaging

    NASA Astrophysics Data System (ADS)

    Dong, Erbao; Zhao, Zuhua; Wang, Minjie; Xie, Yanjun; Li, Shidi; Shao, Pengfei; Cheng, Liuquan; Xu, Ronald X.

    2015-12-01

    Biomedical optical devices are widely used for clinical detection of various tissue anomalies. However, optical measurements have limited accuracy and traceability, partially owing to the lack of effective calibration methods that simulate the actual tissue conditions. To facilitate standardized calibration and performance evaluation of medical optical devices, we develop a three-dimensional fuse deposition modeling (FDM) technique for freeform fabrication of tissue-simulating phantoms. The FDM system uses transparent gel wax as the base material, titanium dioxide (TiO2) powder as the scattering ingredient, and graphite powder as the absorption ingredient. The ingredients are preheated, mixed, and deposited at the designated ratios layer-by-layer to simulate tissue structural and optical heterogeneities. By printing the sections of human brain model based on magnetic resonance images, we demonstrate the capability for simulating tissue structural heterogeneities. By measuring optical properties of multilayered phantoms and comparing with numerical simulation, we demonstrate the feasibility for simulating tissue optical properties. By creating a rat head phantom with embedded vasculature, we demonstrate the potential for mimicking physiologic processes of a living system.

  11. Vertically-coupled Whispering Gallery Mode Resonator Optical Waveguide, and Methods

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatolly A. (Inventor); Matleki, Lute (Inventor)

    2007-01-01

    A vertically-coupled whispering gallery mode (WGM) resonator optical waveguide, a method of reducing a group velocity of light, and a method of making a waveguide are provided. The vertically-coupled WGM waveguide comprises a cylindrical rod portion having a round cross-section and an outer surface. First and second ring-shaped resonators are formed on the outer surface of the cylindrical rod portion and are spaced from each other along a longitudinal direction of the cylindrical rod. The first and second ringshaped resonators are capable of being coupled to each other by way an evanescent field formed in an interior of the cylindrical rod portion.

  12. A new method for solving routing and wavelength assignment problems under inaccurate routing information in optical networks with conversion capability

    NASA Astrophysics Data System (ADS)

    Luo, Yanting; Zhang, Yongjun; Gu, Wanyi

    2009-11-01

    In large dynamic networks it is extremely difficult to maintain accurate routing information on all network nodes. The existing studies have illustrated the impact of imprecise state information on the performance of dynamic routing and wavelength assignment (RWA) algorithms. An algorithm called Bypass Based Optical Routing (BBOR) proposed by Xavier Masip-Bruin et al can reduce the effects of having inaccurate routing information in networks operating under the wavelength-continuity constraint. Then they extended the BBOR mechanism (for convenience it's called EBBOR mechanism below) to be applied to the networks with sparse and limited wavelength conversion. But it only considers the characteristic of wavelength conversion in the step of computing the bypass-paths so that its performance may decline with increasing the degree of wavelength translation (this concept will be explained in the section of introduction again). We will demonstrate the issue through theoretical analysis and introduce a novel algorithm which modifies both the lightpath selection and the bypass-paths computation in comparison to EBBOR algorithm. Simulations show that the Modified EBBOR (MEBBOR) algorithm improves the blocking performance significantly in optical networks with Conversion Capability.

  13. Rare-earth doped transparent nano-glass-ceramics: a new generation of photonic integrated devices

    NASA Astrophysics Data System (ADS)

    Rodríguez-Armas, Vicente Daniel; Tikhomirov, Victor K.; Méndez-Ramos, Jorge; Yanes, Angel C.; Del-Castillo, Javier; Furniss, David; Seddon, Angela B.

    2007-05-01

    We report on optical properties and prospect applications on rare-earth doped oxyfluoride precursor glass and ensuing nano-glass-ceramics. We find out the spectral optical gain of the nano-glass-ceramics and show that its flatness and breadth are advantageous as compared to contemporary used erbium doped optical amplifiers. We present the possibility of flat gain cross-section erbium doped waveguide amplifiers as short 'chip', all-optical, devices capable of dense wavelength division multiplexing, including the potential for direct writing of these devices inside bulk glasses for three-dimensional photonic integration. We carried out a comparative study of the up-conversion luminescence in Er 3+-doped and Yb 3+-Er 3+-Tm 3+ co-doped samples, which indicates that these materials can be used as green/red tuneable up-conversion phosphors and white light simulation respectively. Observed changes in the spectra of the up-conversion luminescence provide a tool for tuning the colour opening the way for producing 3-dimensional optical recording.

  14. Fluorescence-based surface magnifying chromoendoscopy and optical coherence tomography endoscope

    NASA Astrophysics Data System (ADS)

    Wall, R. Andrew; Barton, Jennifer K.

    2012-08-01

    A side-viewing, 2.3-mm diameter, surface magnifying chromoendoscopy-optical coherence tomography (SMC-OCT) endoscope has been designed for simultaneous, nondestructive surface fluorescence visualization and cross-sectional imaging. We apply this endoscope to in vivo examination of the mouse colon. A 30,000 element fiber bundle is combined with single mode fibers, for SMC and OCT imaging, respectively. The distal optics consist of a gradient-index lens and spacer to provide a 1× magnification at a working distance of 1.58 mm in air, necessary to image the sample through a 0.23-mm thick outer glass envelope, and an aluminized right-angle prism fixed to the distal end of the gradient-index lens assembly. The resulting 1∶1 imaging system is capable of 3.9-μm lateral and 2.3-μm axial resolution in the OCT channel, and 125-lp/mm resolution across a 0.70-mm field of view in the SMC channel. The endoscope can perform high contrast crypt visualization, molecular imaging, and cross-sectional imaging of colon microstructure.

  15. Fluorescence-based surface magnifying chromoendoscopy and optical coherence tomography endoscope

    PubMed Central

    Wall, R. Andrew

    2012-01-01

    Abstract. A side-viewing, 2.3-mm diameter, surface magnifying chromoendoscopy-optical coherence tomography (SMC-OCT) endoscope has been designed for simultaneous, nondestructive surface fluorescence visualization and cross-sectional imaging. We apply this endoscope to in vivo examination of the mouse colon. A 30,000 element fiber bundle is combined with single mode fibers, for SMC and OCT imaging, respectively. The distal optics consist of a gradient-index lens and spacer to provide a 1× magnification at a working distance of 1.58 mm in air, necessary to image the sample through a 0.23-mm thick outer glass envelope, and an aluminized right-angle prism fixed to the distal end of the gradient-index lens assembly. The resulting 1∶1 imaging system is capable of 3.9-µm lateral and 2.3-µm axial resolution in the OCT channel, and 125-lp/mm resolution across a 0.70-mm field of view in the SMC channel. The endoscope can perform high contrast crypt visualization, molecular imaging, and cross-sectional imaging of colon microstructure. PMID:23224190

  16. Multiple protocol fluorometer and method

    DOEpatents

    Kolber, Zbigniew S.; Falkowski, Paul G.

    2000-09-19

    A multiple protocol fluorometer measures photosynthetic parameters of phytoplankton and higher plants using actively stimulated fluorescence protocols. The measured parameters include spectrally-resolved functional and optical absorption cross sections of PSII, extent of energy transfer between reaction centers of PSII, F.sub.0 (minimal), F.sub.m (maximal) and F.sub.v (variable) components of PSII fluorescence, photochemical and non-photochemical quenching, size of the plastoquinone (PQ) pool, and the kinetics of electron transport between Q.sub.a and PQ pool and between PQ pool and PSI. The multiple protocol fluorometer, in one embodiment, is equipped with an excitation source having a controlled spectral output range between 420 nm and 555 nm and capable of generating flashlets having a duration of 0.125-32 .mu.s, an interval between 0.5 .mu.s and 2 seconds, and peak optical power of up to 2 W/cm.sup.2. The excitation source is also capable of generating, simultaneous with the flashlets, a controlled continuous, background illumination.

  17. Optical Diagnostics in Medicine

    NASA Astrophysics Data System (ADS)

    Iftimia, Nicusor

    2003-03-01

    Light has a unique potential for non-invasive tissue diagnosis. The relatively short wavelength of light allows imaging of tissue at the resolution of histopathology. While strong multiple scattering of light in tissue makes attainment of this resolution difficult for thick tissues, most pathology emanates from epithelial surfaces. Therefore, high-resolution diagnosis of many important diseases may be achieved by transmitting light to the surface of interest. The recent fiber-optic implementation of technologies that reject multiple scattering, such as confocal microscopy and optical low coherence interferometry, have brought us one step closer to realizing non-invasive imaging of architectural and cellular features of tissue. Optical coherence tomography (OCT) can produce high-resolution cross-sectional images of biological structures. Clinical OCT studies conducted in the gastrointestinal tract and cardiovascular system have shown that OCT is capable of providing images of the architectural (> 20 µm) microanatomy of a variety of epithelial tissues, including the layered structure of squamous epithelium and arterial vessels. Fine Needle Aspiration- Low Coherence Interferometry (FNA-LCI) is another optical diagnostics technique, which is a suitable solution to increase the effectiveness of the FNA procedures. LCI is capable of measuring depth resolved (axial, z) tissue structure, birefringence, flow (Doppler shift), and spectra at a resolution of several microns. Since LCI systems are fiber-optic based, LCI probes may easily fit within the bore of a fine gauge needle, allowing diagnostic information to be obtained directly from the FNA biopsy site. Fiber optic spectrally encoded confocal microscopy (SECM) is a new confocal microscopy method, which eliminates the need for rapid beam scanning within the optical probe. This advance enables confocal microscopy to be performed through small diameter probes and will allow assessment of internal human tissues in vivo at the cellular level. A detailed description of several fiber optics based systems for early diseases diagnosis, as well as preliminary clinic results, will be presented.

  18. Summary of laser speckle photogrammetry for HOST

    NASA Technical Reports Server (NTRS)

    Pollack, Frank G.

    1986-01-01

    High temperature static strain measurement capability is important for the success of the HOST program. As part of the NASA Lewis effort to develop the technology for improved hot-section durability, the HOST instrumentation program has, as a major goal, the development of methods for measuring strain at high temperature. Development work includes both improvements in resistance strain-gauge technology and, as an alternative approach, the development of optical techniques for high temperature strain measurement.

  19. Re-scan confocal microscopy: scanning twice for better resolution.

    PubMed

    De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.

  20. Advanced high temperature instrument for hot section research applications

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Seasholtz, R. G.

    1989-01-01

    Programs to develop research instrumentation for use in turbine engine hot sections are described. These programs were initiated to provide improved measurements capability as support for a multidisciplinary effort to establish technology leading to improved hot section durability. Specific measurement systems described here include heat flux sensors, a dynamic gas temperature measuring system, laser anemometry for hot section applications, an optical system for viewing the interior of a combustor during operation, thin film sensors for surface temperature and strain measurements, and high temperature strain measuring systems. The state of development of these sensors and measuring systems is described, and, in some cases, examples of measurements made with these instruments are shown. Work done at the NASA Lewis Research Center and at various contract and grant facilities is covered.

  1. Mid infrared quantum cascade laser operating in pure amplitude modulation for background-free trace gas spectroscopy.

    PubMed

    Bidaux, Yves; Bismuto, Alfredo; Patimisco, Pietro; Sampaolo, Angelo; Gresch, Tobias; Strubi, Gregory; Blaser, Stéphane; Tittel, Frank K; Spagnolo, Vincenzo; Muller, Antoine; Faist, Jérôme

    2016-11-14

    We present a single mode multi-section quantum cascade laser source composed of three different sections: master oscillator, gain and phase section. Non-uniform pumping of the QCL's gain reveals that the various laser sections are strongly coupled. Simulations of the electronic and optical properties of the laser (based on the density matrix and scattering matrix formalisms, respectively) were performed and a good agreement with measurements is obtained. In particular, a pure modulation of the laser output power can be achieved. This capability of the device is applied in tunable-laser spectroscopy of N2O where background-free quartz enhanced photo acoustic spectral scans with nearly perfect Voigt line shapes for the selected absorption line are obtained.

  2. Recent advancements in robotic micro-optical assembly at the Lockheed Martin Optical Payload Center of Excellence

    NASA Astrophysics Data System (ADS)

    Hwang, David; Larson, Thomas M.

    2017-08-01

    Lockheed Martin Space Systems Company Optical Payloads Center of Excellence is in process of standing up the Robotic Optical Assembly System (ROAS) capability at Lockheed Martin Coherent Technologies in Colorado. This currently implemented Robotic Optical Assembly has enabled Lockheed Martin to create world-leading, ultra-lowSWAP photonic devices using a closed-loop control robot to precisely position and align micro-optics with a potential fill factor of >25 optics per square inch. This paper will discuss the anticipated applications and optical capability when ROAS is fully operational, as well as challenge the audience to update their "rules of thumb" and best practices when designing low-SWAP optical-mechanical systems that take advantage of Lockheed Martin's ROAS capability. This paper will reveal demonstrated optical pointing and stability performance achievable with ROAS and why we believe these optical specifications are relevant for the majority of anticipated applications. After a high level overview of the ROAS current state, this paper will focus in on recent results of the "Reworkable Micro-Optics Mounting IRAD". Results from this IRAD will correlate to the anticipated optical specifications required for relevant applications.

  3. Digital design of multimaterial photonic particles

    PubMed Central

    Tao, Guangming; Kaufman, Joshua J.; Shabahang, Soroush; Rezvani Naraghi, Roxana; Sukhov, Sergey V.; Joannopoulos, John D.; Fink, Yoel; Dogariu, Aristide; Abouraddy, Ayman F.

    2016-01-01

    Scattering of light from dielectric particles whose size is on the order of an optical wavelength underlies a plethora of visual phenomena in nature and is a foundation for optical coatings and paints. Tailoring the internal nanoscale geometry of such “photonic particles” allows tuning their optical scattering characteristics beyond those afforded by their constitutive materials—however, flexible yet scalable processing approaches to produce such particles are lacking. Here, we show that a thermally induced in-fiber fluid instability permits the “digital design” of multimaterial photonic particles: the precise allocation of high refractive-index contrast materials at independently addressable radial and azimuthal coordinates within its 3D architecture. Exploiting this unique capability in all-dielectric systems, we tune the scattering cross-section of equisized particles via radial structuring and induce polarization-sensitive scattering from spherical particles with broken internal rotational symmetry. The scalability of this fabrication strategy promises a generation of optical coatings in which sophisticated functionality is realized at the level of the individual particles. PMID:27274070

  4. High speed wavefront sensorless aberration correction in digital micromirror based confocal microscopy.

    PubMed

    Pozzi, P; Wilding, D; Soloviev, O; Verstraete, H; Bliek, L; Vdovin, G; Verhaegen, M

    2017-01-23

    The quality of fluorescence microscopy images is often impaired by the presence of sample induced optical aberrations. Adaptive optical elements such as deformable mirrors or spatial light modulators can be used to correct aberrations. However, previously reported techniques either require special sample preparation, or time consuming optimization procedures for the correction of static aberrations. This paper reports a technique for optical sectioning fluorescence microscopy capable of correcting dynamic aberrations in any fluorescent sample during the acquisition. This is achieved by implementing adaptive optics in a non conventional confocal microscopy setup, with multiple programmable confocal apertures, in which out of focus light can be separately detected, and used to optimize the correction performance with a sampling frequency an order of magnitude faster than the imaging rate of the system. The paper reports results comparing the correction performances to traditional image optimization algorithms, and demonstrates how the system can compensate for dynamic changes in the aberrations, such as those introduced during a focal stack acquisition though a thick sample.

  5. Dual modality instrument for simultaneous optical coherence tomography imaging and fluorescence spectroscopy.

    PubMed

    Barton, Jennifer Kehlet; Guzman, Francisco; Tumlinson, Alexandre

    2004-01-01

    We develop a dual-modality device that combines the anatomical imaging capabilities of optical coherence tomography (OCT) with the functional capabilities of laser-induced fluorescence (LIF) spectroscopy. OCT provides cross-sectional images of tissue structure to a depth of up to 2 mm with approximately 10-microm resolution. LIF spectroscopy provides histochemical information in the form of emission spectra from a given tissue location. The OCT subsystem utilizes a superluminescent diode with a center wavelength of 1300 nm, whereas a helium cadmium laser provides the LIF excitation source at wavelengths of 325 and 442 nm. Preliminary data are obtained on eight postmortem aorta samples, each 10 mm in length. OCT images and LIF spectra give complementary information from normal and atherosclerotic portions of aorta wall. OCT images show structures such as intima, media, internal elastic lamina, and fibrotic regions. Emission spectra ratios of 520/490 (325-nm excitation) and 595/635 (442-nm excitation) could be used to identify normal and plaque regions with 97 and 91% correct classification rates, respectively. With miniaturization of the delivery probe and improvements in system speed, this dual-modality device could provide a valuable tool for identification and characterization of atherosclerotic plaques. (c) 2004 Society of Photo-Optical Instrumentation Engineers.

  6. Re-scan confocal microscopy: scanning twice for better resolution

    PubMed Central

    De Luca, Giulia M.R.; Breedijk, Ronald M.P.; Brandt, Rick A.J.; Zeelenberg, Christiaan H.C.; de Jong, Babette E.; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A.; Stallinga, Sjoerd; Manders, Erik M.M.

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required. PMID:24298422

  7. Millimeter accuracy satellites for two color ranging

    NASA Technical Reports Server (NTRS)

    Degnan, John J.

    1993-01-01

    The principal technical challenge in designing a millimeter accuracy satellite to support two color observations at high altitudes is to provide high optical cross-section simultaneously with minimal pulse spreading. In order to address this issue, we provide, a brief review of some fundamental properties of optical retroreflectors when used in spacecraft target arrays, develop a simple model for a spherical geodetic satellite, and use the model to determine some basic design criteria for a new generation of geodetic satellites capable of supporting millimeter accuracy two color laser ranging. We find that increasing the satellite diameter provides: a larger surface area for additional cube mounting thereby leading to higher cross-sections; and makes the satellite surface a better match for the incoming planar phasefront of the laser beam. Restricting the retroreflector field of view (e.g. by recessing it in its holder) limits the target response to the fraction of the satellite surface which best matches the optical phasefront thereby controlling the amount of pulse spreading. In surveying the arrays carried by existing satellites, we find that European STARLETTE and ERS-1 satellites appear to be the best candidates for supporting near term two color experiments in space.

  8. Hybrid-coded 3D structured illumination imaging with Bayesian estimation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Hsi-Hsun; Luo, Yuan; Singh, Vijay R.

    2016-03-01

    Light induced fluorescent microscopy has long been developed to observe and understand the object at microscale, such as cellular sample. However, the transfer function of lense-based imaging system limits the resolution so that the fine and detailed structure of sample cannot be identified clearly. The techniques of resolution enhancement are fascinated to break the limit of resolution for objective given. In the past decades, the resolution enhancement imaging has been investigated through variety of strategies, including photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), stimulated emission depletion (STED), and structure illuminated microscopy (SIM). In those methods, only SIM can intrinsically improve the resolution limit for a system without taking the structure properties of object into account. In this paper, we develop a SIM associated with Bayesian estimation, furthermore, with optical sectioning capability rendered from HiLo processing, resulting the high resolution through 3D volume. This 3D SIM can provide the optical sectioning and resolution enhancement performance, and be robust to noise owing to the Data driven Bayesian estimation reconstruction proposed. For validating the 3D SIM, we show our simulation result of algorithm, and the experimental result demonstrating the 3D resolution enhancement.

  9. Laser-induced fluorescence in the detection of esophageal carcinoma

    NASA Astrophysics Data System (ADS)

    Wang, Kenneth K.; Gutta, Kumar; Laukka, Mark A.; Densmore, John

    1995-01-01

    Laser induced fluorescence (LIF) is a technique which can perform an 'optical biopsy' of gastrointestinal mucosa. LIF was performed in resected specimens using a pulsed N2-laser coupled fiberoptically to a probe. Fluorescence was measured using a 0.2 meter spectroscope with an intensified photodiode array. Measurements were made on fresh (<30 minutes after resection) esophageal specimens containing normal mucosa, Barrett's esophagus, and adenocarcinoma. Each tissue section was examined using an optical probe consisting of a central fiber for delivering the excitation energy and a 6 fiber bundle surrounding the central fiber for detection of the fluorescence. An excitation wavelength of 337 nm was used which generated 3-ns pulses while fluorescence intensities were acquired from 300-800 nm. Spectra were obtained from each section in a standardized fashion and background spectra subtracted. Fluorescence readings were taken from 54 normal esophageal sections and 32 sections of adenocarcinoma. A fluorescence index obtained from the tumor sections was 0.68+/- 0.01 compared with 0.51+/- 0.01 for the normal sections (p<0.001). Using a discriminant value of 0.65, this technique had a sensitivity of 81% and a specificity of 100% for detection of malignant tissue. The positive predictive value was 100% and the negative predictive value was 90% for an overall accuracy of 93%. LIF is a promising technique which has the capability of distinguishing normal versus malignant tissue in the esophagus with good accuracy.

  10. Enhancement Of Sensing Capabilities And Functionalization Of Optical Microresonators

    NASA Astrophysics Data System (ADS)

    Cocking, Alexander

    Optical microresonators have been demonstrated to provide a large enhancement in electric field by containing an resonant mode in a very small volume. This resonant enhancement is proportional to the quality of the resonator, which for microspheres has been demonstrated to be on the order of 1010. These devices can be leveraged to greatly improve light-matter interaction and for this reason the theoretical background of optical microresonators is discussed in the second chapter. This includes the use of COMSOL Multiphysics to model the mode structure and scattering from different resonator geometries. The second chapter also contains details on the fabrication and experimental design of optical microresonators. This includes the fabrication of fiber tapers for evanescent wave coupling into the devices. Once the theoretical framework for utilizing resonators as tools for enhancement has been established in the second chapter, we progress to the discussion of the microbubble geometry and its potential for use as an on-chip sensor system. Topics covered include design, fabrication, and theoretical analysis of the mode structure in this geometry. Modal interaction with a liquid filled microbubble is demonstrated. Additionally, the use of microbubble resonators as highly accurate temperature sensors is demonstrated experimentally and theoretically. In chapter 4 we investigate the use of silica microspheres as sensing devices; specifically, using them for the purpose of sensing nano-particles and chemicals in incredibly minute quantities. In this section microresonators are demonstrated to provide enhancement to Raman scattering from nano-scale particles. This configuration retains the traditional sensing methods of resonators by observing mode shifting and splitting in the resonance spectrum, while adding in a label-free sensing ability to determine material composition on adhered micro and nanoparticles. The fifth chapter discusses the characterization of a new class of materials known as two dimensional materials (2D materials). Typically made from single atomic sheets of transition metal dichalcogenides, they are called two dimensional due to their incredibly small thickness. Monolayers of metal dichalcogenides offer large values for optical nonlinear susceptibility and can be used to generate highly efficient nonlinear optical phenomena. This chapter seeks to understand and describe the capabilities of these materials in a context of eventually integrating them into optical microresonators to create a new class of silica-based miniaturized nonlinear optical devices. The final chapter in this dissertation covers the proposed and in-progress work related to those topics already covered in previous chapters. This includes direct growth of transition metal dichalcogenides onto microsphere resonators to create narrow linewidth microscopic lasers. Another novel photonic device consists of a single mode optical fiber etched to expose the core onto which a monolayer of 2D material is adhered. This presents the capability to create a simple photonic device which can easily be integrated as a discrete optical component capable of producing guided photoluminescence or extremely high second harmonic generation. Finally, spectral holography is discussed as a potential tool to record the phase information of light traveling through optical microresonators, adhered particles, and directly grown 2D materials.

  11. Automated detection of the retinal from OCT spectral domain images of healthy eyes

    NASA Astrophysics Data System (ADS)

    Giovinco, Gaspare; Savastano, Maria Cristina; Ventre, Salvatore; Tamburrino, Antonello

    2015-06-01

    Optical coherence tomography (OCT) has become one of the most relevant diagnostic tools for retinal diseases. Besides being a non-invasive technique, one distinguished feature is its unique capability of providing (in vivo) cross-sectional view of the retinal. Specifically, OCT images show the retinal layers. From the clinical point of view, the identification of the retinal layers opens new perspectives to study the correlation between morphological and functional aspects of the retinal tissue. The main contribution of this paper is a new method/algorithm for the automated segmentation of cross-sectional images of the retina of healthy eyes, obtained by means of spectral domain optical coherence tomography (SD-OCT). Specifically, the proposed segmentation algorithm provides the automated detection of different retinal layers. Tests on experimental SD-OCT scans performed by three different instruments/manufacturers have been successfully carried out and compared to a manual segmentation made by an independent ophthalmologist, showing the generality and the effectiveness of the proposed method.

  12. Automated detection of retinal layers from OCT spectral-domain images of healthy eyes

    NASA Astrophysics Data System (ADS)

    Giovinco, Gaspare; Savastano, Maria Cristina; Ventre, Salvatore; Tamburrino, Antonello

    2015-12-01

    Optical coherence tomography (OCT) has become one of the most relevant diagnostic tools for retinal diseases. Besides being a non-invasive technique, one distinguished feature is its unique capability of providing (in vivo) cross-sectional view of the retina. Specifically, OCT images show the retinal layers. From the clinical point of view, the identification of the retinal layers opens new perspectives to study the correlation between morphological and functional aspects of the retinal tissue. The main contribution of this paper is a new method/algorithm for the automated segmentation of cross-sectional images of the retina of healthy eyes, obtained by means of spectral-domain optical coherence tomography (SD-OCT). Specifically, the proposed segmentation algorithm provides the automated detection of different retinal layers. Tests on experimental SD-OCT scans performed by three different instruments/manufacturers have been successfully carried out and compared to a manual segmentation made by an independent ophthalmologist, showing the generality and the effectiveness of the proposed method.

  13. Acoustic pressure measurement of pulsed ultrasound using acousto-optic diffraction

    NASA Astrophysics Data System (ADS)

    Jia, Lecheng; Chen, Shili; Xue, Bin; Wu, Hanzhong; Zhang, Kai; Yang, Xiaoxia; Zeng, Zhoumo

    2018-01-01

    Compared with continuous ultrasound wave, pulsed ultrasound has been widely used in ultrasound imaging. The aim of this work is to show the applicability of acousto-optic diffraction on pulsed ultrasound transducer. In this paper, acoustic pressure of two ultrasound transducers is measured based on Raman-Nath diffraction. The frequencies of transducers are 5MHz and 10MHz. The pulse-echo method and simulation data are used to evaluate the results. The results show that the proposed method is capable to measure the absolute sound pressure. We get a sectional view of acoustic pressure using a displacement platform as an auxiliary. Compared with the traditional sound pressure measurement methods, the proposed method is non-invasive with high sensitivity and spatial resolution.

  14. Optical see-through head-mounted display with occlusion capability

    NASA Astrophysics Data System (ADS)

    Gao, Chunyu; Lin, Yuxiang; Hua, Hong

    2013-05-01

    Lack of mutual occlusion capability between computer-rendered and real objects is one of fundamental problems for most existing optical see-through head-mounted displays (OST-HMD). Without the proper occlusion management, the virtual view through an OST-HMD appears "ghost-like", floating in the real world. To address this challenge, we have developed an innovative optical scheme that uniquely combines the eyepiece and see-through relay optics to achieve an occlusion-capable OST-HMD system with a very compelling form factor and high optical performances. The proposed display system was based on emerging freeform optical design technologies and was designed for highly efficient liquid crystal on silicon (LCoS) type spatial light modulator (SLM) and bright Organic LED (OLED) microdisplay. The proposed display technology was capable of working in both indoor and outdoor environments. Our current design offered a 1280x1024 color resolution based on 0.8" microdisplay and SLM. The MTF values for the majority of the fields at the cutoff frequency of 40lps/mm, which is determined by the pixel size of the microdisplay, are better than 15%. The design achieved a diagonal FOV of 40 degrees, 31.7 degrees horizontally and 25.6 degrees vertically, an exit pupil diameter of 8mm (non-vignetted), and an eye clearance of 18mm. The optics weights about 20 grams per eye. Our proposed occlusion capable OST-HMD system can easily find myriads of applications in various military and commercial sectors such as military training, gaming and entertainment.

  15. Multi-access laser communications terminal

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Optical Multi-Access (OMA) Terminal is capable of establishing up to six simultaneous high-data-rate communication links between low-Earth-orbit satellites and a host satellite at synchronous orbit with only one 16-inch-diameter antenna on the synchronous satellite. The advantage over equivalent RF systems in space weight, power, and swept volume is great when applied to NASA satellite communications networks. A photograph of the 3-channel prototype constructed under the present contract to demonstrate the feasibility of the concept is presented. The telescope has a 10-inch clear aperture and a 22 deg full field of view. It consists of 4 refractive elements to achieve a telecentric focus, i.e., the focused beam is normal to the focal plane at all field angles. This feature permits image pick-up optics in the focal plane to track satellite images without tilting their optic axes to accommodate field angle. The geometry of the imager-pick-up concept and the coordinate system of the swinging arm and disk mechanism for image pick-up are shown. Optics in the arm relay the telescope focus to a communications and tracking receiver and introduce the transmitted beacon beam on a path collinear with the receive path. The electronic circuits for the communications and tracking receivers are contained on the arm and disk assemblies and relay signals to an associated PC-based operator's console for control of the arm and disk motor drive through a flexible cable which permits +/- 240 deg travel for each arm and disk assembly. Power supplies and laser transmitters are mounted in the cradle for the telescope. A single-mode fiber in the cable is used to carry the laser transmitter signal to the arm optics. The promise of the optical multi-access terminal towards which the prototype effort worked is shown. The emphasis in the prototype development was the demonstration of the unique aspect of the concept, and where possible, cost avoidance compromises were implemented in areas already proven on other programs. The design details are described in section 2, the prototype test results in section 3, additional development required in section 4, and conclusions in section 5.

  16. Multisensor Instrument for Real-Time Biological Monitoring

    NASA Technical Reports Server (NTRS)

    Zhang, Sean (Zhanxiang); Xu, Guoda; Qiu, Wei; Lin, Freddie

    2004-01-01

    The figure schematically depicts an instrumentation system, called a fiber optic-based integration system (FOBIS), that is undergoing development to enable real-time monitoring of fluid cell cultures, bioprocess flows, and the like. The FOBIS design combines a micro flow cytometer (MFC), a microphotometer (MP), and a fluorescence-spectrum- or binding-force-measuring micro-sensor (MS) in a single instrument that is capable of measuring multiple biological parameters simultaneously or sequentially. The fiber-optic-based integration system is so named because the MFC, the MP, and the MS are integrated into a single optical system that is coupled to light sources and photometric equipment via optical fibers. The optical coupling components also include a wavelength-division multiplexer and diffractive optical elements. The FOBIS includes a laserdiode- and fiber-optic-based optical trapping subsystem (optical tweezers ) with microphotometric and micro-sensing capabilities for noninvasive confinement and optical measurement of relevant parameters of a single cell or other particle. Some of the measurement techniques implemented together by the FOBIS have long been used separately to obtain basic understanding of the optical properties of individual cells and other organisms, the optical properties of populations of organisms, and the interrelationships among these properties, physiology of the organisms, and physical processes that govern the media that surround the organisms. For example, flow cytometry yields information on numerical concentrations, cross-sectional areas, and types of cells or other particles. Micro-sensing can be used to measure pH and concentrations of oxygen, carbon dioxide, glucose, metabolites, calcium, and antigens in a cell-culture fluid, thereby providing feedback that can be helpful in improving control over a bioprocess. Microphotometry (including measurements of scattering and fluorescence) can yield further information about optically trapped individual particles. In addition to the multifunctionality not previously available in a single biological monitoring system, the FOBIS offers advantages of low mass, sensitivity, accuracy, portability, low cost, compactness (the overall dimensions of the fully developed FOBIS sensor head are expected to be less than 1 by 1 by 2 cm), and immunity to electromagnetic interference at suboptical frequencies. FOBIS could be useful in a variety of laboratory and field settings in such diverse endeavors as medical, veterinary, and general biological research; medical and veterinary diagnosis monitoring of industrial bioprocesses; and analysis of biological contaminants in air, water, and food.

  17. Research on high power intra-channel crosstalk attack in optical networks

    NASA Astrophysics Data System (ADS)

    Ren, Shuai; Zhang, Yinfa; Wang, Jingyu; Zhang, Jumei; Rao, Xuejun; Fang, Yuanyuan

    2017-02-01

    The mechanism of high power intra-channel crosstalk attack is analyzed theoretically and the conclusion that power of attack signal and crosstalk coefficient of optical switch are the main factors for which high power intra-channel have destructive effect on quality of legitimate signals is drawn. Effects of high power intra-channel crosstalk attack on quality of legitimate signals and its capability of attack propagation are investigated quantitatively by building the simulation system in VPI software. The results show that legitimate signals through the first and the second stage optical switch are affected by attack and legitimate signal through the third stage optical switch is almost unaffected by attack when power of original attack signal (OAS) is above 20dB more than that of legitimate signals and crosstalk coefficient of optical switch is -20dB at optical cross connect 1 (OXC1). High power intra-channel crosstalk attack has a certain capability of attack propagation. Attack capability of OAS can be propagated to OXC3 when power of OAS is 27dB more than that of legitimate signals and crosstalk coefficient of optical switch is -20dB. We also find that the secondary attack signal (SAS) does not have capability of attack propagation.

  18. SCOUT: a small vacuum chamber for nano-wire grid polarizer tests in the ultraviolet band

    NASA Astrophysics Data System (ADS)

    Landini, F.; Pancrazzi, M.; Totaro, M.; Pennelli, G.; Romoli, M.

    2012-01-01

    Within the Section of Astronomy of the Department of Physics and Astronomy of the University of Firenze, Italy), the XUVLab laboratory is active since 1998 dedicated to technological development, mainly UV oriented. The technological research is focused both on electronics and optics. Our last approach is dedicated to the development of innovative wiregrid polarizers optimized to work in transmission at 121.6 nm. The manufacturing of such optical devices requires advanced technological expertise and suitable experimental structures. First, nanotechnology capability is necessary, in order to build several tiny parallel conductive lines separated by tens of nanometers on wide areas to be macroscopically exploitable in an optical laboratory. Moreover, the characterization of such an advanced optical device has to be performed in vacuum, being air absorptive at 121.6 nm. A dedicated small vacuum chamber, SCOUT (Small Chamber for Optical UV Tests) was developed within our laboratory in order to perform practical and fast measurements. SCOUT hosts an optical bench and is equipped with several opening flanges, in order to be as flexible as possible. The flexibility that has been reached with SCOUT allows us to use the chamber beyond the goals it was thought for. It is exploitable by whatever compact (within 1 m) optical experiment that investigates the UV band of the spectrum.

  19. Characterization of a Hybrid Optical Microscopy/Laser Ablation Liquid Vortex Capture/Electrospray Ionization System for Mass Spectrometry Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    Herein, a commercial optical microscope, laser microdissection instrument was coupled with an electrospray ionization mass spectrometer via a low profile liquid vortex capture probe to yield a hybrid optical microscopy/mass spectrometry imaging system. The instrument has bright-field and fluorescence microscopy capabilities in addition to a highly focused UV laser beam that is utilized for laser ablation of samples. With this system, material laser ablated from a sample using the microscope was caught by a liquid vortex capture probe and transported in solution for analysis by electrospray ionization mass spectrometry. Both lane scanning and spot sampling mass spectral imaging modes weremore » used. The smallest area the system was able to ablate was ~0.544 μm × ~0.544 μm, achieved by oversampling of the smallest laser ablation spot size that could be obtained (~1.9 μm). With use of a model photoresist surface, known features as small as ~1.5 μm were resolved. The capabilities of the system with real world samples were demonstrated first with a blended polymer thin film containing poly(2-vinylpyridine) and poly(N-vinylcarbazole). Using spot sampling imaging, sub-micrometer sized features (0.62, 0.86, and 0.98 μm) visible by optical microscopy were clearly distinguished in the mass spectral images. A second real world example showed the imaging of trace amounts of cocaine in mouse brain thin tissue sections. Lastly, with use of a lane scanning mode with ~6 μm × ~6 μm data pixels, features in the tissue as small as 15 μm in size could be distinguished in both the mass spectral and optical images.« less

  20. Characterization of a Hybrid Optical Microscopy/Laser Ablation Liquid Vortex Capture/Electrospray Ionization System for Mass Spectrometry Imaging

    DOE PAGES

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    2015-10-22

    Herein, a commercial optical microscope, laser microdissection instrument was coupled with an electrospray ionization mass spectrometer via a low profile liquid vortex capture probe to yield a hybrid optical microscopy/mass spectrometry imaging system. The instrument has bright-field and fluorescence microscopy capabilities in addition to a highly focused UV laser beam that is utilized for laser ablation of samples. With this system, material laser ablated from a sample using the microscope was caught by a liquid vortex capture probe and transported in solution for analysis by electrospray ionization mass spectrometry. Both lane scanning and spot sampling mass spectral imaging modes weremore » used. The smallest area the system was able to ablate was ~0.544 μm × ~0.544 μm, achieved by oversampling of the smallest laser ablation spot size that could be obtained (~1.9 μm). With use of a model photoresist surface, known features as small as ~1.5 μm were resolved. The capabilities of the system with real world samples were demonstrated first with a blended polymer thin film containing poly(2-vinylpyridine) and poly(N-vinylcarbazole). Using spot sampling imaging, sub-micrometer sized features (0.62, 0.86, and 0.98 μm) visible by optical microscopy were clearly distinguished in the mass spectral images. A second real world example showed the imaging of trace amounts of cocaine in mouse brain thin tissue sections. Lastly, with use of a lane scanning mode with ~6 μm × ~6 μm data pixels, features in the tissue as small as 15 μm in size could be distinguished in both the mass spectral and optical images.« less

  1. Assessment of the present NASA optical metrology capabilities and recommendations for establishing an in-house NASA Optical Metrology Group

    NASA Technical Reports Server (NTRS)

    Parks, Robert E.

    1991-01-01

    An investigation into when it was first recognized that there was a deficiency in NASA optical metrology oversight capability, why this deficiency existed unnoticed for so long, and a proposal for correcting the problem is presented. It is explained why this optical metrology oversight is so critical to program success and at the same time, why it is difficult to establish due to the nature of the technology. The solution proposed is the establishment of an Optics Metrology Group within the NASA/MSFC Optics Branch with a line of authority from NASA S & MA.

  2. Application of smart optical fiber sensors for structural load monitoring

    NASA Astrophysics Data System (ADS)

    Davies, Heddwyn; Everall, Lorna A.; Gallon, Andrew M.

    2001-06-01

    This paper describes a smart monitoring system, incorporating optical fiber sensing techniques, capable of providing important structural information to designers and users alike. This technology has wide industrial and commercial application in areas including aerospace, civil, maritime and automotive engineering. In order to demonstrate the capability of the sensing system it has been installed in a 35m free-standing carbon fiber yacht mast, where a complete optical network of strain and temperature sensors were embedded into a composite mast and boom during lay-up. The system was able to monitor the behavior of the composite rig through a range of handling conditions. The resulting strain information can be used by engineers to improve the structural design process. Embedded fiber optic sensors have wide ranging application for structural load monitoring. Due to their small size, optical fiber sensors can be readily embedded into composite materials. Other advantages include their immediate multiplexing capability and immunity to electro-magnetic interference. The capability of this system has been demonstrated within the maritime and industrial environment, but can be adapted for any application.

  3. Optics Recycle Loop Strategy for NIF Operations above UV Laser-Induced Damage Threshold

    DOE PAGES

    Spaeth, M. L.; Wegner, P. J.; Suratwala, T. I.; ...

    2017-03-23

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) houses the world’s largest laser system, composed of 192 individual, 40-cm-aperture beamlines. The NIF laser routinely operates at ultraviolet (UV) fluences above 8 J/cm 2, more than twice the (3ω only) damage threshold of commercially available UV-grade fused silica. NIF is able to maintain such high fluence operation by using an optics recycling loop strategy. Successful operation of the loop relies on a number of technologies specifically developed for NIF. One of the most important is the capability developed by LLNL and their vendors for producing highly damage-resistant optics.more » Other technologies developed for the optics recycle loop raise the operating point of NIF by keeping damage growth in check. LLNL has demonstrated the capability to sustain UV fused silica optic recycling rates of up to 40 optics per week. The optics are ready for reinstallation after a 3-week trip through a recycle loop where the damage state of each optic is assessed and repaired. The impact of the optics recycle loop has been profound, allowing the experimental program to routinely employ energies and fluences that would otherwise have been unachievable. Without the recycle loop, it is likely that the NIF fluence would need to be kept below the UV threshold for damage growth, ~4 J/cm 2, thus keeping the energy delivered to the target significantly below 1 MJ. With the recycle loop implemented during the National Ignition Campaign, NIF can routinely deliver >1.8 MJ on target, an increase in operational capability of more than 100%. Finally, in this paper, the enabling technological advances, optical performance, and operational capability implications of the optics recycle loop are discussed.« less

  4. Optics Recycle Loop Strategy for NIF Operations above UV Laser-Induced Damage Threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaeth, M. L.; Wegner, P. J.; Suratwala, T. I.

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) houses the world’s largest laser system, composed of 192 individual, 40-cm-aperture beamlines. The NIF laser routinely operates at ultraviolet (UV) fluences above 8 J/cm 2, more than twice the (3ω only) damage threshold of commercially available UV-grade fused silica. NIF is able to maintain such high fluence operation by using an optics recycling loop strategy. Successful operation of the loop relies on a number of technologies specifically developed for NIF. One of the most important is the capability developed by LLNL and their vendors for producing highly damage-resistant optics.more » Other technologies developed for the optics recycle loop raise the operating point of NIF by keeping damage growth in check. LLNL has demonstrated the capability to sustain UV fused silica optic recycling rates of up to 40 optics per week. The optics are ready for reinstallation after a 3-week trip through a recycle loop where the damage state of each optic is assessed and repaired. The impact of the optics recycle loop has been profound, allowing the experimental program to routinely employ energies and fluences that would otherwise have been unachievable. Without the recycle loop, it is likely that the NIF fluence would need to be kept below the UV threshold for damage growth, ~4 J/cm 2, thus keeping the energy delivered to the target significantly below 1 MJ. With the recycle loop implemented during the National Ignition Campaign, NIF can routinely deliver >1.8 MJ on target, an increase in operational capability of more than 100%. Finally, in this paper, the enabling technological advances, optical performance, and operational capability implications of the optics recycle loop are discussed.« less

  5. Micro guidance and control synthesis: New components, architectures, and capabilities

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Hadaegh, Fred Y.

    1993-01-01

    New GN&C (guidance, navigation and control) system capabilities are shown to arise from component innovations that involve the synergistic use of microminiature sensors and actuators, microelectronics, and fiber optics. Micro-GN&C system and component concepts are defined that include micro-actuated adaptive optics, micromachined inertial sensors, fiber-optic data nets and light-power transmission, and VLSI microcomputers. The thesis is advanced that these micro-miniaturization products are capable of having a revolutionary impact on space missions and systems, and that GN&C is the pathfinder micro-technology application that can bring that about.

  6. Non-Contact Optical Ultrasound Concept for Biomedical Imaging

    DTIC Science & Technology

    2016-11-03

    Non -Contact Optical Ultrasound Concept for Biomedical Imaging Robert Haupt1, Charles Wynn1, Jonathan Fincke2, Shawn Zhang2, Brian Anthony2...results. Lastly, we present imaging capabilities using a non -contact laser ultrasound proof-of-concept system. Two and three dimensional time... non -contact, standoff optical ultrasound has the potential to provide a fixed reference measurement capability that minimizes operator variability as

  7. Laser diode technology for coherent communications

    NASA Technical Reports Server (NTRS)

    Channin, D. J.; Palfrey, S. L.; Toda, M.

    1989-01-01

    The effect of diode laser characteristics on the overall performance capabilities of coherent communication systems is discussed. In particular, attention is given to optical performance issues for diode lasers in coherent systems, measurements of key performance parameters, and optical requirements for coherent single-channel and multichannel communication systems. The discussion also covers limitations imposed by diode laser optical performance on multichannel system capabilities and implications for future developments.

  8. Swift Observatory Space Simulation Testing

    NASA Technical Reports Server (NTRS)

    Espiritu, Mellina; Choi, Michael K.; Scocik, Christopher S.

    2004-01-01

    The Swift Observatory is a Middle-Class Explorer (MIDEX) mission that is a rapidly re-pointing spacecraft with immediate data distribution capability to the astronomical community. Its primary objectives are to characterize and determine the origin of Gamma Ray Bursts (GRBs) and to use the collected data on GRB phenomena in order to probe the universe and gain insight into the physics of black hole formation and early universe. The main components of the spacecraft are the Burst Alert Telescope (BAT), Ultraviolet and Optical Telescope (UVOT), X-Ray Telescope (XRT), and Optical Bench (OB) instruments coupled with the Swift spacecraft (S/C) bus. The Swift Observatory will be tested at the Space Environment Simulation (SES) chamber at the Goddard Space Flight Center from May to June 2004 in order to characterize its thermal behavior in a vacuum environment. In order to simulate the independent thermal zones required by the BAT, XRT, UVOT, and OB instruments, the spacecraft is mounted on a chariot structure capable of maintaining adiabatic interfaces and enclosed in a modified, four section MSX fixture in order to accommodate the strategic placement of seven cryopanels (on four circuits), four heater panels, and a radiation source burst simulator mechanism. There are additionally 55 heater circuits on the spacecraft. To mitigate possible migration of silicone contaminants from BAT to the XRT and UVOT instruments, a contamination enclosure is to be fabricated around the BAT at the uppermost section of the MSX fixture. This paper discuses the test requirements and implemented thermal vacuum test configuration for the Swift Observatory.

  9. Non-destructive optical clearing technique enhances optical coherence tomography (OCT) for real-time, 3D histomorphometry of brain tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Paul, Akshay; Chang, Theodore H.; Chou, Li-Dek; Ramalingam, Tirunelveli S.

    2016-03-01

    Evaluation of neurodegenerative disease often requires examination of brain morphology. Volumetric analysis of brain regions and structures can be used to track developmental changes, progression of disease, and the presence of transgenic phenotypes. Current standards for microscopic investigation of brain morphology are limited to detection of superficial structures at a maximum depth of 300μm. While histological techniques can provide detailed cross-sections of brain structures, they require complicated tissue preparation and the ultimate destruction of the sample. A non-invasive, label-free imaging modality known as Optical Coherence Tomography (OCT) can produce 3-dimensional reconstructions through high-speed, cross-sectional scans of biological tissue. Although OCT allows for the preservation of intact samples, the highly scattering and absorbing properties of biological tissue limit imaging depth to 1-2mm. Optical clearing agents have been utilized to increase imaging depth by index matching and lipid digestion, however, these contemporary techniques are expensive and harsh on tissues, often irreversibly denaturing proteins. Here we present an ideal optical clearing agent that offers ease-of-use and reversibility. Similar to how SeeDB has been effective for microscopy, our fructose-based, reversible optical clearing technique provides improved OCT imaging and functional immunohistochemical mapping of disease. Fructose is a natural, non-toxic sugar with excellent water solubility, capable of increasing tissue transparency and reducing light scattering. We will demonstrate the improved depth-resolving performance of OCT for enhanced whole-brain imaging of normal and diseased murine brains following a fructose clearing treatment. This technique potentially enables rapid, 3-dimensional evaluation of biological tissues at axial and lateral resolutions comparable to histopathology.

  10. Component and Technology Development for Advanced Liquid Metal Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Mark

    2017-01-30

    The following report details the significant developments to Sodium Fast Reactor (SFR) technologies made throughout the course of this funding. This report will begin with an overview of the sodium loop and the improvements made over the course of this research to make it a more advanced and capable facility. These improvements have much to do with oxygen control and diagnostics. Thus a detailed report of advancements with respect to the cold trap, plugging meter, vanadium equilibration loop, and electrochemical oxygen sensor is included. Further analysis of the university’s moving magnet pump was performed and included in a section ofmore » this report. A continuous electrical resistance based level sensor was built and tested in the sodium with favorable results. Materials testing was done on diffusion bonded samples of metal and the results are presented here as well. A significant portion of this work went into the development of optical fiber temperature sensors which could be deployed in an SFR environment. Thus, a section of this report presents the work done to develop an encapsulation method for these fibers inside of a stainless steel capillary tube. High temperature testing was then done on the optical fiber ex situ in a furnace. Thermal response time was also explored with the optical fiber temperature sensors. Finally these optical fibers were deployed successfully in a sodium environment for data acquisition. As a test of the sodium deployable optical fiber temperature sensors they were installed in a sub-loop of the sodium facility which was constructed to promote the thermal striping effect in sodium. The optical fibers performed exceptionally well, yielding unprecedented 2 dimensional temperature profiles with good temporal resolution. Finally, this thermal striping loop was used to perform cross correlation velocimetry successfully over a wide range of flow rates.« less

  11. Optical antenna for a visible light communications receiver

    NASA Astrophysics Data System (ADS)

    Valencia-Estrada, Juan Camilo; García-Márquez, Jorge; Topsu, Suat; Chassagne, Luc

    2018-01-01

    Visible Light Communications (VLC) receivers adapted to be used in high transmission rates will eventually use either, high aperture lenses or non-linear optical elements capable of converting light arriving to the receiver into an electric signal. The high aperture lens case, reveals a challenge from an optical designers point-of-view. As a matter of fact, the lens must collect a wide aperture intensity flux using a limited aperture as its use is intended to portable devices. This last also limits both, lens thickness and its focal length. Here, we show a first design to be adapted to a VLC receiver that take these constraints into account. This paper describes a method to design catadioptric and monolithic lenses to be used as an optical collector of light entering from a near point light source as a spherical fan L with a wide acceptance angle α° and high efficiency. These lenses can be mass produced and therefore one can find many practical applications in VLC equipped devices. We show a first design for a near light source without magnification, and second one with a detector's magnification in a meridional section. We utilize rigorous geometric optics, vector analysis and ordinary differential equations.

  12. A three-dimensional orthogonal laser velocimeter for the NASA Ames 7- by 10-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.; Cooper, Donald L.

    1995-01-01

    A three-component dual-beam laser-velocimeter system has been designed, fabricated, and implemented in the 7-by 10-Foot Wind Tunnel at NASA Ames Research Center. The instrument utilizes optical access from both sides and the top of the test section, and is configured for uncoupled orthogonal measurements of the three Cartesian coordinates of velocity. Bragg cell optics are used to provide fringe velocity bias. Modular system design provides great flexibility in the location of sending and receiving optics to adapt to specific experimental requirements. Near-focus Schmidt-Cassegrain optic modules may be positioned for collection of forward or backward scattered light over a large solid angle, and may be clustered to further increase collection solid angle. Multimode fiber optics transmit collected light to the photomultiplier tubes for processing. Counters are used to process the photomultiplier signals and transfer the processed data digitally via buffered interface controller to the host MS-DOS computer. Considerable data reduction and graphical display programming permit on-line control of data acquisition and evaluation of the incoming data. This paper describes this system in detail and presents sample data illustrating the system's capability.

  13. Detection, mapping, and quantification of single walled carbon nanotubes in histological specimens with photoacoustic microscopy.

    PubMed

    Avti, Pramod K; Hu, Song; Favazza, Christopher; Mikos, Antonios G; Jansen, John A; Shroyer, Kenneth R; Wang, Lihong V; Sitharaman, Balaji

    2012-01-01

    In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM) was investigated to detect, map, and quantify trace amounts [nanograms (ng) to micrograms (µg)] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies (histological specimens from implanted tissue engineering scaffolds). Optical-resolution (OR) and acoustic-resolution (AR)--Photoacoustic microscopy (PAM) was employed to detect, map and quantify the SWCNTs in a variety of tissue histological specimens and compared with other optical techniques (bright-field optical microscopy, Raman microscopy, near infrared (NIR) fluorescence microscopy). Both optical-resolution and acoustic-resolution PAM, allow the detection and quantification of SWCNTs in histological specimens with scalable spatial resolution and depth penetration. The noise-equivalent detection sensitivity to SWCNTs in the specimens was calculated to be as low as ∼7 pg. Image processing analysis further allowed the mapping, distribution, and quantification of the SWCNTs in the histological sections. The results demonstrate the potential of PAM as a promising imaging technique to detect, map, and quantify SWCNTs in histological specimens, and could complement the capabilities of current optical and electron microscopy techniques in the analysis of histological specimens containing SWCNTs.

  14. Visible light optical coherence tomography for microvascular oximetry in ocular circulation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Siyu; Yi, Ji; Zhang, Hao F.

    2016-03-01

    Visible light optical coherence tomography (vis-OCT) is intrinsically capable of optical determination of blood oxygen saturation (sO2). Thanks to its 3D sectioning ability, confounding factors that plaque multi-wavelength fundus photography can be avoided. We further supplemented it with motion-enhanced angiography (vis-OCTA), which allowed us to resolve retinal micro vessels without losing spectral information. As a result, spectroscopic vis-OCTA can extract microvascular sO2 which are generally inaccessible. Here we extend the theoretical formulation of vis-OCTA oximetry to include optical attenuation, scattering and motion contrast. The model allows robust estimation of sO2, while also promising reduction of illuminating power to 1/3 of current value of ~1 mW. To demonstrate the capability of our approach, we performed oxygen challenge while taking vis-OCTA measurements on rat ocular circulation in vivo. We supplied the experiment animal with the following gas mixture: normal air, 5% CO2 air, pure O2 and 10% O2 air. For each inhalation gas, the OCTA measurements were compared with peripheral capillary sO2 (spO2) provided by a pulse oximeter. The retinal artery sO2 measurements corresponded well with spO2 reading as expected (R2 = 0.87). We found that both retinal and choroidal circulation sO2 moderately increased when we supplied 5% CO2 air. 100% O2 inhalation significantly increased both artery and vein oxygenation. On the contrary, 10% O2 air could deplete the oxygen reservoir in the circulation and lead to low sO2 readings.

  15. Optical nondestructive dynamic measurements of wafer-scale encapsulated nanofluidic channels.

    PubMed

    Liberman, Vladimir; Smith, Melissa; Weaver, Isaac; Rothschild, Mordechai

    2018-05-20

    Nanofluidic channels are of great interest for DNA sequencing, chromatography, and drug delivery. However, metrology of embedded or sealed nanochannels and measurement of their fill-state have remained extremely challenging. Existing techniques have been restricted to optical microscopy, which suffers from insufficient resolution, or scanning electron microscopy, which cannot measure sealed or embedded channels without cleaving the sample. Here, we demonstrate a novel method for accurately extracting nanochannel cross-sectional dimensions and monitoring fluid filling, utilizing spectroscopic ellipsometric scatterometry, combined with rigorous electromagnetic simulations. Our technique is capable of measuring channel dimensions with better than 5-nm accuracy and assessing channel filling within seconds. The developed technique is, thus, well suited for both process monitoring of channel fabrication as well as for studying complex phenomena of fluid flow through nanochannel structures.

  16. Optical bistability for optical signal processing and computing

    NASA Astrophysics Data System (ADS)

    Peyghambarian, N.; Gibbs, H. M.

    1985-02-01

    Optical bistability (OB) is a phenomenon in which a nonlinear medium responds to an optical input beam by changing its transmission abruptly from one value to another. A 'nonlinear medium' is a medium in which the index of refraction depends on the incident light intensity. A device is said to be optically bistable if two stable output states exist for the same value of the input. Optically bistable devices can perform a number of logic functions related to optical memory, optical transistor, optical discriminator, optical limiter, optical oscillator, and optical gate. They also have the potential for subpicosecond switching, greatly exceeding the capability of electronics. This potential is one of several advantages of optical data processing over electronic processing. Other advantages are greater immunity to electromagnetic interference and crosstalk, and highly parallel processing capability. The present investigation is mainly concerned with all-optical etalon devices. The considered materials, include GaAs, ZnS and ZnSe, CuCl, InSb, InAs, and CdS.

  17. High-resolution (>5 800 time-bandwidth product) shear mode TeO2 deflector

    NASA Astrophysics Data System (ADS)

    Soos, Jolanta I.; Caviris, Nicholas P.; Phuvan, Sonlinh

    1992-12-01

    Acousto-optic deflectors play an important role in optical signal processing systems due to their real time processing capabilities, as well as their conversion capabilities of a function of time to a function of space and time. In this work Brimrose investigated the design and fabrication of state-of-the-art, very large time-bandwidth acousto-optic devices from TeO2 single crystals.

  18. Surface figure control for coated optics

    DOEpatents

    Ray-Chaudhuri, Avijit K.; Spence, Paul A.; Kanouff, Michael P.

    2001-01-01

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The optic section has an optical section thickness.sup.2 /optical section diameter ratio of between about 5 to 10 mm, and a thickness variation between front and back surfaces of less than about 10%. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  19. Australian Space Situational Awareness Capability Demonstrations

    NASA Astrophysics Data System (ADS)

    Morreale, B.; Bessell, T.; Rutten, M.; Cheung, B.

    Australia is increasing its contribution to the global space situational awareness (SSA) problem by committing to acquire and operate SSA sensors. Over the last year, a series of collaborative SSA experiments have been undertaken to demonstrate the capabilities of Australian sensors. These experiments aimed to demonstrate how existing Australian sensors could perform in a surveillance of space role, prove passive radar’s capability to observe low earth orbit (LEO) satellites and perform SSA handoffs to optical sensors. The trials established a data sharing and communications protocol that bridged defence, academia, and industry partners. Geographically dispersed optical assets, including the Falcon telescope in Canberra, Raven telescopes in Exmouth (Western Australia) and Defence Science and Technology (DST) Telescopes in Adelaide (South Australia) collected on LEO satellites and established cueing protocols. The Murchison Widefield Array (MWA) located in Western Australia, demonstrated the capability of passive radar as an SSA asset after successfully observing LEO satellites based on reflected terrestrial radio signals. The combination of radar and optical SSA assets allows for the exploitation of each sensors unique advantages and locations across the Australian continent. This paper outlines the capabilities and diversity of Australian optical and radar sensors as demonstrated by field trials in 2016 and 2017. It suggests future potential for harnessing novel radar and optical integration techniques to supplement high-value assets such as the Space Surveillance Telescope as part of the Space Surveillance Network.

  20. Multimodal label-free ex vivo imaging using a dual-wavelength microscope with axial chromatic aberration compensation.

    PubMed

    Filippi, Andrea; Dal Sasso, Eleonora; Iop, Laura; Armani, Andrea; Gintoli, Michele; Sandri, Marco; Gerosa, Gino; Romanato, Filippo; Borile, Giulia

    2018-03-01

    Label-free microscopy is a very powerful technique that can be applied to study samples with no need for exogenous fluorescent probes, keeping the main benefits of multiphoton microscopy, such as longer penetration depths and intrinsic optical sectioning while enabling serial multitechniques examinations on the same specimen. Among the many label-free microscopy methods, harmonic generation (HG) is one of the most intriguing methods due to its generally low photo-toxicity and relative ease of implementation. Today, HG and common two-photon microscopy (TPM) are well-established techniques, and are routinely used in several research fields. However, they require a significant amount of fine-tuning to be fully exploited, making them quite difficult to perform in parallel. Here, we present our designed multimodal microscope, capable of performing simultaneously TPM and HG without any kind of compromise thanks to two, separate, individually optimized laser sources with axial chromatic aberration compensation. We also apply our setup to the examination of a plethora of ex vivo samples to prove its capabilities and the significant advantages of a multimodal approach. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  1. Shielded Coaxial Optrode Arrays for Neurophysiology

    PubMed Central

    Naughton, Jeffrey R.; Connolly, Timothy; Varela, Juan A.; Lundberg, Jaclyn; Burns, Michael J.; Chiles, Thomas C.; Christianson, John P.; Naughton, Michael J.

    2016-01-01

    Recent progress in the study of the brain has been greatly facilitated by the development of new tools capable of minimally-invasive, robust coupling to neuronal assemblies. Two prominent examples are the microelectrode array (MEA), which enables electrical signals from large numbers of neurons to be detected and spatiotemporally correlated, and optogenetics, which enables the electrical activity of cells to be controlled with light. In the former case, high spatial density is desirable but, as electrode arrays evolve toward higher density and thus smaller pitch, electrical crosstalk increases. In the latter, finer control over light input is desirable, to enable improved studies of neuroelectronic pathways emanating from specific cell stimulation. Here, we introduce a coaxial electrode architecture that is uniquely suited to address these issues, as it can simultaneously be utilized as an optical waveguide and a shielded electrode in dense arrays. Using optogenetically-transfected cells on a coaxial MEA, we demonstrate the utility of the architecture by recording cellular currents evoked from optical stimulation. We also show the capability for network recording by radiating an area of seven individually-addressed coaxial electrode regions with cultured cells covering a section of the extent. PMID:27375415

  2. Binary optics: Trends and limitations

    NASA Technical Reports Server (NTRS)

    Farn, Michael W.; Veldkamp, Wilfrid B.

    1993-01-01

    We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.

  3. Interferometer for Space Station Windows

    NASA Technical Reports Server (NTRS)

    Hall, Gregory

    2003-01-01

    Inspection of space station windows for micrometeorite damage would be a difficult task insitu using current inspection techniques. Commercially available optical profilometers and inspection systems are relatively large, about the size of a desktop computer tower, and require a stable platform to inspect the test object. Also, many devices currently available are designed for a laboratory or controlled environments requiring external computer control. This paper presents an approach using a highly developed optical interferometer to inspect the windows from inside the space station itself using a self- contained hand held device. The interferometer would be capable as a minimum of detecting damage as small as one ten thousands of an inch in diameter and depth while interrogating a relatively large area. The current developmental state of this device is still in the proof of concept stage. The background section of this paper will discuss the current state of the art of profilometers as well as the desired configuration of the self-contained, hand held device. Then, a discussion of the developments and findings that will allow the configuration change with suggested approaches appearing in the proof of concept section.

  4. White-Light Whispering Gallery Mode Optical Resonator System and Method

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy A. (Inventor); Maleki, Lute (Inventor)

    2009-01-01

    An optical resonator system and method that includes a whispering-gallery mode (WGM) optical resonator that is capable of resonating across a broad, continuous swath of frequencies is provided. The optical resonator of the system is shaped to support at least one whispering gallery mode and includes a top surface, a bottom surface, a side wall, and a first curved transition region extending between the side wall and the top surface. The system further includes a coupler having a coupling surface which is arranged to face the transition region of the optical resonator and in the vicinity thereof such that an evanescent field emitted from the coupler is capable of being coupled into the optical resonator through the first curved transition region

  5. FIBER AND INTEGRATED OPTICS. OPTOELECTRONICS: Method for calculation of the parameters of guided waves in anisotropic dielectric waveguides

    NASA Astrophysics Data System (ADS)

    Goncharenko, I. A.

    1989-07-01

    The method of shift formulas is applied to anisotropic dielectric waveguides capable of conserving a given state of polarization of the transmitted signal. Equations are derived for calculation of the propagation constants and of the dispersion of the fundamental modes in waveguides with an anisotropic permittivity and a noncircular shape of the transverse cross section. Distributions of electric and magnetic fields of these modes are obtained in a transverse cross section of the waveguide. It is shown that under the influence of the anisotropy of the dielectric an energy spot describing the distribution of the mode field becomes of an ellipse with its axes oriented along the coordinates coinciding with the principal axes of the permittivity tensor.

  6. Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation.

    PubMed

    Calafiore, Giuseppe; Koshelev, Alexander; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-09-16

    Integration of complex photonic structures onto optical fiber facets enables powerful platforms with unprecedented optical functionalities. Conventional nanofabrication technologies, however, do not permit viable integration of complex photonic devices onto optical fibers owing to their low throughput and high cost. In this paper we report the fabrication of a three-dimensional structure achieved by direct nanoimprint lithography on the facet of an optical fiber. Nanoimprint processes and tools were specifically developed to enable a high lithographic accuracy and coaxial alignment of the optical device with respect to the fiber core. To demonstrate the capability of this new approach, a 3D beam splitter has been designed, imprinted and optically characterized. Scanning electron microscopy and optical measurements confirmed the good lithographic capabilities of the proposed approach as well as the desired optical performance of the imprinted structure. The inexpensive solution presented here should enable advancements in areas such as integrated optics and sensing, achieving enhanced portability and versatility of fiber optic components.

  7. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Flores, J. M.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2013-04-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We determined aerosol extinction cross sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate), slightly absorbing (Suwannee River fulvic acid), and strongly absorbing (nigrosin dye). We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross sections over the 360-420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with the literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (± 0.03) + 0.19 (± 0.08)i at 360 nm and 1.63 (± 0.03) + 0.21 (± 0.05)i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (± 0.02) + 0.07 (± 0.06)i at 360 nm and 1.66 (± 0.02) + 0.06 (± 0.04)i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross section, and complex refractive index as a function of wavelength.

  8. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Flores, J. M.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2013-01-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross-sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We determined aerosol extinction cross-sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate), slightly absorbing (Suwannee River fulvic acid), and strongly absorbing (nigrosin dye). We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross-sections over the 360-420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (±0.03) + 0.19 (±0.08) i at 360 nm and 1.53 (±0.03) + 0.21 (±0.05) i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (±0.02) + 0.07 (±0.06) i at 360 nm and 1.66 (±0.02) + 0.06 (±0.04) i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross-section, and complex refractive index as a function of wavelength.

  9. Lipid Multilayer Grating Arrays Integrated by Nanointaglio for Vapor Sensing by an Optical Nose

    PubMed Central

    Lowry, Troy W.; Prommapan, Plengchart; Rainer, Quinn; Van Winkle, David; Lenhert, Steven

    2015-01-01

    Lipid multilayer gratings are recently invented nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. Here, we show that nanointaglio is suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone) in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used here is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose. PMID:26308001

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alonso, Jesus

    Intelligent Optical Systems, Inc. has developed distributed intrinsic fiber optic sensors to directly quantify the concentration of dissolved or gas-phase CO 2 for leak detection or plume migration in carbon capture and sequestration (CCS). The capability of the sensor for highly sensitive detection of CO 2 in the pressure and temperature range of 15 to 2,000 psi and 25°C to 175°C was demonstrated, as was the capability of operating in highly corrosive and contaminated environments such as those often found in CO 2 injection sites. The novel sensor system was for the first time demonstrated deployed in a deep well,more » detecting multiple CO 2 releases, in real time, at varying depths. Early CO 2 release detection, by means of a sensor cable integrating multiple sensor segments, was demonstrated, as was the capability of quantifying the leak. The novel fiber optic sensor system exhibits capabilities not achieved by any other monitoring technology. This project represents a breakthrough in monitoring capabilities for CCS applications.« less

  11. A Toolbox of Metrology-Based Techniques for Optical System Alignment

    NASA Technical Reports Server (NTRS)

    Coulter, Phillip; Ohl, Raymond G.; Blake, Peter N.; Bos, Brent J.; Casto, Gordon V.; Eichhorn, William L.; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hagopian, John G.; Hayden, Joseph E.; hide

    2016-01-01

    The NASA Goddard Space Flight Center (GSFC) and its partners have broad experience in the alignment of flight optical instruments and spacecraft structures. Over decades, GSFC developed alignment capabilities and techniques for a variety of optical and aerospace applications. In this paper, we provide an overview of a subset of the capabilities and techniques used on several recent projects in a toolbox format. We discuss a range of applications, from small-scale optical alignment of sensors to mirror and bench examples that make use of various large-volume metrology techniques. We also discuss instruments and analytical tools.

  12. A Toolbox of Metrology-Based Techniques for Optical System Alignment

    NASA Technical Reports Server (NTRS)

    Coulter, Phillip; Ohl, Raymond G.; Blake, Peter N.; Bos, Brent J.; Eichhorn, William L.; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hagopian, John G.; Hayden, Joseph E.; Hetherington, Samuel E.; hide

    2016-01-01

    The NASA Goddard Space Flight Center (GSFC) and its partners have broad experience in the alignment of flight optical instruments and spacecraft structures. Over decades, GSFC developed alignment capabilities and techniques for a variety of optical and aerospace applications. In this paper, we provide an overview of a subset of the capabilities and techniques used on several recent projects in a "toolbox" format. We discuss a range of applications, from small-scale optical alignment of sensors to mirror and bench examples that make use of various large-volume metrology techniques. We also discuss instruments and analytical tools.

  13. Analog signal processing for optical coherence imaging systems

    NASA Astrophysics Data System (ADS)

    Xu, Wei

    Optical coherence tomography (OCT) and optical coherence microscopy (OCM) are non-invasive optical coherence imaging techniques, which enable micron-scale resolution, depth resolved imaging capability. Both OCT and OCM are based on Michelson interferometer theory. They are widely used in ophthalmology, gastroenterology and dermatology, because of their high resolution, safety and low cost. OCT creates cross sectional images whereas OCM obtains en face images. In this dissertation, the design and development of three increasingly complicated analog signal processing (ASP) solutions for optical coherence imaging are presented. The first ASP solution was implemented for a time domain OCT system with a Rapid Scanning Optical Delay line (RSOD)-based optical signal modulation and logarithmic amplifier (Log amp) based demodulation. This OCT system can acquire up to 1600 A-scans per second. The measured dynamic range is 106dB at 200A-scan per second. This OCT signal processing electronics includes an off-the-shelf filter box with a Log amp circuit implemented on a PCB board. The second ASP solution was developed for an OCM system with synchronized modulation and demodulation and compensation for interferometer phase drift. This OCM acquired micron-scale resolution, high dynamic range images at acquisition speeds up to 45,000 pixels/second. This OCM ASP solution is fully custom designed on a perforated circuit board. The third ASP solution was implemented on a single 2.2 mm x 2.2 mm complementary metal oxide semiconductor (CMOS) chip. This design is expandable to a multiple channel OCT system. A single on-chip CMOS photodetector and ASP channel was used for coherent demodulation in a time domain OCT system. Cross-sectional images were acquired with a dynamic range of 76dB (limited by photodetector responsivity). When incorporated with a bump-bonded InGaAs photodiode with higher responsivity, the expected dynamic range is close to 100dB.

  14. High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field

    PubMed Central

    Wen, X.; Datta, A.; Traverso, L. M.; Pan, L.; Xu, X.; Moon, E. E.

    2015-01-01

    Optical lithography, the enabling process for defining features, has been widely used in semiconductor industry and many other nanotechnology applications. Advances of nanotechnology require developments of high-throughput optical lithography capabilities to overcome the optical diffraction limit and meet the ever-decreasing device dimensions. We report our recent experimental advancements to scale up diffraction unlimited optical lithography in a massive scale using the near field nanolithography capabilities of bowtie apertures. A record number of near-field optical elements, an array of 1,024 bowtie antenna apertures, are simultaneously employed to generate a large number of patterns by carefully controlling their working distances over the entire array using an optical gap metrology system. Our experimental results reiterated the ability of using massively-parallel near-field devices to achieve high-throughput optical nanolithography, which can be promising for many important nanotechnology applications such as computation, data storage, communication, and energy. PMID:26525906

  15. An FBG Optical Approach to Thermal Expansion Measurements under Hydrostatic Pressure.

    PubMed

    Rosa, Priscila F S; Thomas, Sean M; Balakirev, Fedor F; Betts, Jon; Seo, Soonbeom; Bauer, Eric D; Thompson, Joe D; Jaime, Marcelo

    2017-11-04

    We report on an optical technique for measuring thermal expansion and magnetostriction at cryogenic temperatures and under applied hydrostatic pressures of 2.0 GPa. Optical fiber Bragg gratings inside a clamp-type pressure chamber are used to measure the strain in a millimeter-sized sample of CeRhIn₅. We describe the simultaneous measurement of two Bragg gratings in a single optical fiber using an optical sensing instrument capable of resolving changes in length [dL/L = (L- L₀)/L₀] on the order of 10 -7 . Our results demonstrate the possibility of performing high-resolution thermal expansion measurements under hydrostatic pressure, a capability previously hindered by the small working volumes typical of pressure cells.

  16. Radio Science from an Optical Communications Signal

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Asmar, Sami; Oudrhiri, Kamal

    2013-01-01

    NASA is currently developing the capability to deploy deep space optical communications links. This creates the opportunity to utilize the optical link to obtain range, doppler, and signal intensity estimates. These may, in turn, be used to complement or extend the capabilities of current radio science. In this paper we illustrate the achievable precision in estimating range, doppler, and received signal intensity of an non-coherent optical link (the current state-of-the-art for a deep-space link). We provide a joint estimation algorithm with performance close to the bound. We draw comparisons to estimates based on a coherent radio frequency signal, illustrating that large gains in either precision or observation time are possible with an optical link.

  17. In vivo office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yu, Lingfeng; Liu, Gangjun; Rubinstein, Marc; Saidi, Arya; Guo, Shuguang; Wong, Brian J. F.; Chen, Zhongping

    2009-02-01

    Optical coherence tomography (OCT) is an evolving noninvasive imaging modality and has been used to image the human larynx during surgical endoscopy. The design of a long GRIN lens based probe capable of capturing images of the human larynx by use of swept-source OCT during a typical office-based laryngoscopy examination is presented. In vivo OCT imaging of the human larynx is demonstrated with 40 fame/second. Dynamic vibration of the vocal folds is recorded to provide not only high-resolution cross-sectional tissue structures but also vibration parameters, such as the vibration frequency and magnitude of the vocal cord, which provide important information for clinical diagnosis and treatment, as well as in fundamental research of the voice. Office-based OCT is a promising imaging modality to study the larynx.

  18. Advanced optical position sensors for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Lafleur, S.

    1985-01-01

    A major concern to aerodynamicists has been the corruption of wind tunnel test data by model support structures, such as stings or struts. A technique for magnetically suspending wind tunnel models was considered by Tournier and Laurenceau (1957) in order to overcome this problem. This technique is now implemented with the aid of a Large Magnetic Suspension and Balance System (LMSBS) and advanced position sensors for measuring model attitude and position within the test section. Two different optical position sensors are discussed, taking into account a device based on the use of linear CCD arrays, and a device utilizing area CID cameras. Current techniques in image processing have been employed to develop target tracking algorithms capable of subpixel resolution for the sensors. The algorithms are discussed in detail, and some preliminary test results are reported.

  19. Pedestal substrate for coated optics

    DOEpatents

    Hale, Layton C.; Malsbury, Terry N.; Patterson, Steven R.

    2001-01-01

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  20. Diagnostic capability of spectral-domain optical coherence tomography for glaucoma.

    PubMed

    Wu, Huijuan; de Boer, Johannes F; Chen, Teresa C

    2012-05-01

    To determine the diagnostic capability of spectral-domain optical coherence tomography in glaucoma patients with visual field defects. Prospective, cross-sectional study. Participants were recruited from a university hospital clinic. One eye of 85 normal subjects and 61 glaucoma patients with average visual field mean deviation of -9.61 ± 8.76 dB was selected randomly for the study. A subgroup of the glaucoma patients with early visual field defects was calculated separately. Spectralis optical coherence tomography (Heidelberg Engineering, Inc) circular scans were performed to obtain peripapillary retinal nerve fiber layer (RNFL) thicknesses. The RNFL diagnostic parameters based on the normative database were used alone or in combination for identifying glaucomatous RNFL thinning. To evaluate diagnostic performance, calculations included areas under the receiver operating characteristic curve, sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio. Overall RNFL thickness had the highest area under the receiver operating characteristic curve values: 0.952 for all patients and 0.895 for the early glaucoma subgroup. For all patients, the highest sensitivity (98.4%; 95% confidence interval, 96.3% to 100%) was achieved by using 2 criteria: ≥ 1 RNFL sectors being abnormal at the < 5% level and overall classification of borderline or outside normal limits, with specificities of 88.9% (95% confidence interval, 84.0% to 94.0%) and 87.1% (95% confidence interval, 81.6% to 92.5%), respectively, for these 2 criteria. Statistical parameters for evaluating the diagnostic performance of the Spectralis spectral-domain optical coherence tomography were good for early perimetric glaucoma and were excellent for moderately advanced perimetric glaucoma. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Design and Efficiency Analysis of Operational Scenarios for Space Situational Awareness Radar System

    NASA Astrophysics Data System (ADS)

    Choi, E. J.; Cho, S.; Jo, J. H.; Park, J.; Chung, T.; Park, J.; Jeon, H.; Yun, A.; Lee, Y.

    In order to perform the surveillance and tracking of space objects, optical and radar sensors are the technical components for space situational awareness system. Especially, space situational awareness radar system in combination with optical sensors network plays an outstanding role for space situational awareness. At present, OWL-Net(Optical Wide Field patrol Network) optical system, which is the only infra structures for tracking of space objects in Korea is very limited in all-weather and observation time. Therefore, the development of radar system capable of continuous operation is becoming an essential space situational awareness element. Therefore, for an efficient space situational awareness at the current state, the strategy of the space situational awareness radar development should be considered. The purpose of this paper is to analyze the efficiency of radar system for detection and tracking of space objects. The detection capabilities are limited to an altitude of 2,000 km with debris size of 1 m2 in radar cross section (RCS) for the radar operating frequencies of L, S, C, X, and Ku-band. The power budget analysis results showed that the maximum detection range of 2,000km can be achieved with the transmitted power of 900 kW, transmit and receive antenna gains of 40 dB and 43 dB, respectively, pulse width of 2 ms, and a signal processing gain of 13.3dB, at frequency of 1.3GHz. The required signal-to-noise ratio (SNR) was assumed to be 12.6 dB for probability of detection of 80% with false alarm rate 10-6. Through the efficiency analysis and trade-off study, the key parameters of the radar system are designed. As a result, this research will provide the guideline for the conceptual design of space situational awareness system.

  2. Remote optical stethoscope and optomyography sensing device

    NASA Astrophysics Data System (ADS)

    Golberg, Mark; Polani, Sagi; Ozana, Nisan; Beiderman, Yevgeny; Garcia, Javier; Ruiz-Rivas Onses, Joaquin; Sanz Sabater, Martin; Shatsky, Max; Zalevsky, Zeev

    2017-02-01

    In this paper we present the usage of photonic remote laser based device for sensing nano-vibrations for detection of muscle contraction and fatigue, eye movements and in-vivo estimation of glucose concentration. The same concept is also used to realize a remote optical stethoscope. The advantage of doing the measurements from a distance is in preventing passage of infections as in the case of optical stethoscope or in the capability to monitor e.g. sleep quality without disturbing the patient. The remote monitoring of glucose concentration in the blood stream and the capability to perform opto-myography for the Messer muscles (chewing) is very useful for nutrition and weight control. The optical configuration for sensing the nano-vibrations is based upon analyzing the statistics of the secondary speckle patterns reflected from various tissues along the body of the subjects. Experimental results present the preliminary capability of the proposed configuration for the above mentioned applications.

  3. Waveguide device and method for making same

    DOEpatents

    Forman, Michael A [San Francisco, CA

    2007-08-14

    A monolithic micromachined waveguide device or devices with low-loss, high-power handling, and near-optical frequency ranges is set forth. The waveguide and integrated devices are capable of transmitting near-optical frequencies due to optical-quality sidewall roughness. The device or devices are fabricated in parallel, may be mass produced using a LIGA manufacturing process, and may include a passive component such as a diplexer and/or an active capping layer capable of particularized signal processing of the waveforms propagated by the waveguide.

  4. Improvements to Optical Communication Capabilities Achieved through the Optical Injection of Semiconductor Lasers

    DTIC Science & Technology

    2012-03-22

    locked Fabry - Perot laser showed a 57 fold improvement to the bit rate-distance product compared to the free-running case when received optical power...than 10dB for marginal changes in modulation rates. Temperature tuning of the master laser to each of the Fabry - Perot modes of the slave laser...demonstrated over 60 km of SMF in this work, shows that OIL of Fabry - Perot lasers is a viable approach towards a high-speed, long distance capable

  5. A Magnetron Sputter Deposition System for the Development of Multilayer X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Broadway, David; Ramsey, Brian; Gubarev, Mikhail

    2014-01-01

    The proposal objective is to establish the capability to deposit multilayer structures for x-ray, neutron, and EUV optic applications through the development of a magnetron sputtering deposition system. A specific goal of this endeavor is to combine multilayer deposition technology with the replication process in order to enhance the MSFC's position as a world leader in the design of innovative X-ray instrumentation through the development of full shell replicated multilayer optics. The development of multilayer structures is absolutely necessary in order to advance the field of X-ray astronomy by pushing the limit for observing the universe to ever increasing photon energies (i. e. up to 200 keV or higher); well beyond Chandra (approx. 10 keV) and NuStar's (approx. 75 keV) capability. The addition of multilayer technology would significantly enhance the X-ray optics capability at MSFC and allow NASA to maintain its world leadership position in the development, fabrication and design of innovative X-ray instrumentation which would be the first of its kind by combining multilayer technology with the mirror replication process. This marriage of these technologies would allow astronomers to see the universe in a new light by pushing to higher energies that are out of reach with today's instruments.To this aim, a magnetron vacum sputter deposition system for the deposition of novel multilayer thin film X-ray optics is proposed. A significant secondary use of the vacuum deposition system includes the capability to fabricate multilayers for applications in the field of EUV optics for solar physics, neutron optics, and X-ray optics for a broad range of applications including medical imaging.

  6. A Magnetron Sputter Deposition System for the Development of X-Ray Multilayer Optics

    NASA Technical Reports Server (NTRS)

    Broadway, David

    2015-01-01

    The project objective is to establish the capability to deposit multilayer structures for x-ray, neutron, and extreme ultraviolet (EUV) optic applications through the development of a magnetron sputtering deposition system. A specific goal of this endeavor is to combine multilayer deposition technology with the replication process in order to enhance NASA Marshall Space Flight Center's (MSFC's) position as a world leader in the design of innovative x-ray instrumentation through the development of full shell replicated multilayer optics. The development of multilayer structures are absolutely necessary in order to advance the field of x-ray astronomy by pushing the limit for observing the universe to ever-increasing photon energies (i.e., up to 200 keV or higher), well beyond Chandra's (approx.10 keV) and NuStar's (approx.75 keV) capability. The addition of multilayer technology would significantly enhance the x-ray optics capability at MSFC and allow NASA to maintain its world leadership position in the development, fabrication, and design of innovative x-ray instrumentation, which would be the first of its kind by combining multilayer technology with the mirror replication process. This marriage of these technologies would allow astronomers to see the universe in a new light by pushing to higher energies that are out of reach with today's instruments. To this aim, a magnetron vacuum sputter deposition system for the deposition of novel multilayer thin film x-ray optics is proposed. A significant secondary use of the vacuum deposition system includes the capability to fabricate multilayers for applications in the field of EUV optics for solar physics, neutron optics, and x-ray optics for a broad range of applications including medical imaging.

  7. Nano-Fabrication Methods for Micro-Miniature Optical Thermometers Suited to High Temperatures and Harsh Environments

    NASA Astrophysics Data System (ADS)

    DePew, K. A.; Ma, C.; Schiffbauer, J. D.; Wang, J.; Dong, B.; Lally, E.; Wang, A.

    2012-12-01

    The Center for Photonics Technology (CPT) at Virginia Tech is engaged in cutting edge research of fiber optic sensing technologies. One current research area is the design of fiber optic temperature sensors for harsh environments. Fiber optic temperature sensing offers significant advantages over electronic sensing in terms of size and insensitivity to harsh environmental conditions and electromagnetic interference. In the field, fiber optic thermometers have been used in recent snow cover studies as well as fluvial temperature profiling projects. The extended capabilities of CPT optical sensors open further possibilities for application in additional geologic realms requiring high temperature sensing in corrosive environments. Significant strides have been made in developing single-crystal sapphire based fiber optic sensing elements for high temperature environments which are otherwise difficult to instrument. Utilization of strain insensitive designs and optical sapphire materials allow for thermometers capable of operation above 1500°C with reduced sensitivity to chemical corrosion and mechanical interference. Current efforts in fabrication techniques are reducing the footprint of temperature sensors below the millimeter scale while maintaining high resolution and operating range. The FEI Helios 600 NanoLab workstation at the Virginia Tech Institute for Critical Technologies and Applied Science has been employed, providing the capabilities necessary to reduce the footprint of sensing elements to the dimensions of standard optical communication fiber using a Ga+ focused ion beam (FIB). The capability of semi-distributed multi-point sensing can also be accomplished at this scale using similar FIB milling techniques. The fiber optic thermometer designs resulting from these methods are compact, lightweight, and able to provide remote sensing without need for electrical power at the measurement point. These traits make them an ideal sensing platform for laboratory applications with minimal instrumentation egress as well as field deployment in areas where traditional electronic technologies cannot survive.

  8. Detection, Mapping, and Quantification of Single Walled Carbon Nanotubes in Histological Specimens with Photoacoustic Microscopy

    PubMed Central

    Mikos, Antonios G.; Jansen, John A.; Shroyer, Kenneth R.; Wang, Lihong V.; Sitharaman, Balaji

    2012-01-01

    Aims In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM) was investigated to detect, map, and quantify trace amounts [nanograms (ng) to micrograms (µg)] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies (histological specimens from implanted tissue engineering scaffolds). Materials and Methods Optical-resolution (OR) and acoustic-resolution (AR) - Photoacoustic microscopy (PAM) was employed to detect, map and quantify the SWCNTs in a variety of tissue histological specimens and compared with other optical techniques (bright-field optical microscopy, Raman microscopy, near infrared (NIR) fluorescence microscopy). Results Both optical-resolution and acoustic-resolution PAM, allow the detection and quantification of SWCNTs in histological specimens with scalable spatial resolution and depth penetration. The noise-equivalent detection sensitivity to SWCNTs in the specimens was calculated to be as low as ∼7 pg. Image processing analysis further allowed the mapping, distribution, and quantification of the SWCNTs in the histological sections. Conclusions The results demonstrate the potential of PAM as a promising imaging technique to detect, map, and quantify SWCNTs in histological specimens, and could complement the capabilities of current optical and electron microscopy techniques in the analysis of histological specimens containing SWCNTs. PMID:22496892

  9. Fiber optic gap gauge

    DOEpatents

    Wood, Billy E [Livermore, CA; Groves, Scott E [Brentwood, CA; Larsen, Greg J [Brentwood, CA; Sanchez, Roberto J [Pleasanton, CA

    2006-11-14

    A lightweight, small size, high sensitivity gauge for indirectly measuring displacement or absolute gap width by measuring axial strain in an orthogonal direction to the displacement/gap width. The gap gauge includes a preferably titanium base having a central tension bar with springs connecting opposite ends of the tension bar to a pair of end connector bars, and an elongated bow spring connected to the end connector bars with a middle section bowed away from the base to define a gap. The bow spring is capable of producing an axial strain in the base proportional to a displacement of the middle section in a direction orthogonal to the base. And a strain sensor, such as a Fabry-Perot interferometer strain sensor, is connected to measure the axial strain in the base, so that the displacement of the middle section may be indirectly determined from the measurement of the axial strain in the base.

  10. Development of large field-of-view two photon microscopy for imaging mouse cortex (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bumstead, Jonathan; Côté, Daniel C.; Culver, Joseph P.

    2017-02-01

    Spontaneous neuronal activity has been measured at cellular resolution in mice, zebrafish, and C. elegans using optical sectioning microscopy techniques, such as light sheet microscopy (LSM) and two photon microscopy (TPM). Recent improvements in these modalities and genetically encoded calcium indicators (GECI's) have enabled whole brain imaging of calcium dynamics in zebrafish and C. elegans. However, these whole brain microscopy studies have not been extended to mice due to the limited field of view (FOV) of TPM and the cumbersome geometry of LSM. Conventional TPM is restricted to diffraction limited imaging over this small FOV (around 500 x 500 microns) due to the use of high magnification objectives (e.g. 1.0 NA; 20X) and the aberrations introduced by relay optics used in scanning the beam across the sample. To overcome these limitations, we have redesigned the entire optical path of the two photon microscope (scanning optics and objective lens) to support a field of view of Ø7 mm with relatively high spatial resolution (<10 microns). Using optical engineering software Zemax, we designed our system with commercially available optics that minimize astigmatism, field curvature, chromatic focal shift, and vignetting. Performance of the system was also tested experimentally with fluorescent beads in agarose, fixed samples, and in vivo structural imaging. Our large-FOV TPM provides a modality capable of studying distributed brain networks in mice at cellular resolution.

  11. Simultaneous refraction measurement and OCT axial biometry of the eye during accommodation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    De Freitas, Carolina; Hernandez, Victor M.; Ruggeri, Marco; Durkee, Heather A.; Williams, Siobhan; Gregori, Giovanni; Ho, Arthur; Manns, Fabrice; Parel, Jean-Marie

    2016-03-01

    The purpose of this project is to design and evaluate a system that will enable objective assessment of the optical accommodative response in real-time while acquiring axial biometric information. The system combines three sub-systems which were integrated and mounted on a joystick x-y-z adjustable modified slit-lamp base to facilitate alignment and data acquisition: (1) a Shack-Hartmann wavefront sensor for dynamic refraction measurement, provided software calculates sphere, cylinder and axis values, (2) an extended-depth Optical Coherence Tomography (OCT) system using an optical switch records high-resolution cross-sectional images across the length of the eye, from which, dynamic axial biometry (corneal thickness, anterior chamber depth, crystalline lens thickness and vitreous depth) can be extracted, and (3) a modified dual-channel accommodation stimulus unit based on the Badal optometer for providing a step change in accommodative stimulus. The prototypal system is capable of taking simultaneous measurements of both the optical and the mechanical response of lens accommodation. These measurements can provide insight into correlating changes in lens shape with changes in lens power and ocular refraction and ultimately provide a more comprehensive understanding of accommodation, presbyopia and an objective assessment of presbyopia correction techniques.

  12. Reconfigurable microwave photonic repeater for broadband telecom missions: concepts and technologies

    NASA Astrophysics Data System (ADS)

    Aveline, M.; Sotom, M.; Barbaste, R.; Benazet, B.; Le Kernec, A.; Magnaval, J.; Ginestet, P.; Navasquillo, O.; Piqueras, M. A.

    2017-11-01

    Thales Alenia Space has elaborated innovative telecom payload concepts taking benefit from the capabilities of photonics and so-called microwave photonics. The latter consists in transferring RF/microwave signals on optical carriers and performing processing in the optical domain so as to benefit from specific attributes such as wavelength-division multiplexing or switching capabilities.

  13. A common-path optical coherence tomography based electrode for structural imaging of nerves and recording of action potentials

    NASA Astrophysics Data System (ADS)

    Islam, M. Shahidul; Haque, Md. Rezuanul; Oh, Christian M.; Wang, Yan; Park, B. Hyle

    2013-03-01

    Current technologies for monitoring neural activity either use different variety of electrodes (electrical recording) or require contrast agents introduced exogenously or through genetic modification (optical imaging). Here we demonstrate an optical method for non-contact and contrast agent free detection of nerve activity using phase-resolved optical coherence tomography (pr-OCT). A common-path variation of the pr-OCT is recently implemented and the developed system demonstrated the capability to detect rapid transient structural changes that accompany neural spike propagation. No averaging over multiple trials was required, indicating its capability of single-shot detection of individual impulses from functionally stimulated Limulus optic nerve. The strength of this OCT-based optical electrode is that it is a contactless method and does not require any exogenous contrast agent. With further improvements in accuracy and sensitivity, this optical electrode will play a complementary role to the existing recording technologies in future.

  14. Improving Coastal Ocean Color Validation Capabilities through Application of Inherent Optical Properties (IOPs)

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio

    2008-01-01

    Understanding how the different components of seawater alter the path of incident sunlight through scattering and absorption is essential to using remotely sensed ocean color observations effectively. This is particularly apropos in coastal waters where the different optically significant components (phytoplankton, detrital material, inorganic minerals, etc.) vary widely in concentration, often independently from one another. Inherent Optical Properties (IOPs) form the link between these biogeochemical constituents and the Apparent Optical Properties (AOPs). understanding this interrelationship is at the heart of successfully carrying out inversions of satellite-measured radiance to biogeochemical properties. While sufficient covariation of seawater constituents in case I waters typically allows empirical algorithms connecting AOPs and biogeochemical parameters to behave well, these empirical algorithms normally do not hold for case I1 regimes (Carder et al. 2003). Validation in the context of ocean color remote sensing refers to in-situ measurements used to verify or characterize algorithm products or any assumption used as input to an algorithm. In this project, validation capabilities are considered those measurement capabilities, techniques, methods, models, etc. that allow effective validation. Enhancing current validation capabilities by incorporating state-of-the-art IOP measurements and optical models is the purpose of this work. Involved in this pursuit is improving core IOP measurement capabilities (spectral, angular, spatio-temporal resolutions), improving our understanding of the behavior of analytical AOP-IOP approximations in complex coastal waters, and improving the spatial and temporal resolution of biogeochemical data for validation by applying biogeochemical-IOP inversion models so that these parameters can be computed from real-time IOP sensors with high sampling rates. Research cruises supported by this project provides for collection and processing of seawater samples for biogeochemical (pigments, DOC and POC) and optical (CDOM and POM absorption coefficients) analyses to enhance our understanding of the linkages between in-water optical measurements (IOPs and AOPs) and biogeochemical constituents and to provide a more comprehensive suite of validation products.

  15. An FBG Optical Approach to Thermal Expansion Measurements under Hydrostatic Pressure

    DOE PAGES

    Rosa, Priscila Ferrari Silveira; Thomas, Sean Michael; Balakirev, Fedor Fedorovich; ...

    2017-11-04

    We report on an optical technique for measuring thermal expansion and magnetostriction at cryogenic temperatures and under applied hydrostatic pressures of 2.0 GPa. Optical fiber Bragg gratings inside a clamp-type pressure chamber are used to measure the strain in a millimeter-sized sample of CeRhIn 5. We describe the simultaneous measurement of two Bragg gratings in a single optical fiber using an optical sensing instrument capable of resolving changes in length [dL/L = (L- L 0)/L 0] on the order of 10 -7. Our results demonstrate the possibility of performing high-resolution thermal expansion measurements under hydrostatic pressure, a capability previously hinderedmore » by the small working volumes typical of pressure cells.« less

  16. Integrated Radio and Optical Communication (iROC)

    NASA Technical Reports Server (NTRS)

    Raible, Daniel; Romanofsky, Robert; Pease, Gary; Kacpura, Thomas

    2016-01-01

    This is an overview of the Integrated Radio and Optical Communication (iROC) Project for Space Communication and Navigation Industry Days. The Goal is to develop and demonstrate new, high payoff space technologies that will promote mission utilization of optical communications, thereby expanding the capabilities of NASA's exploration, science, and discovery missions. This is an overview that combines the paramount features of select deep space RF and optical communications elements into an integrated system, scalable from deep space to near earth. It will realize Ka-band RF and 1550 nanometer optical capability. The approach is to prototype and demonstrate performance of key components to increase to TRL-5, leading to integrated hybrid communications system demonstration to increase to TRL-5, leading to integrated hybrid communications system demonstration.

  17. An FBG Optical Approach to Thermal Expansion Measurements under Hydrostatic Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosa, Priscila Ferrari Silveira; Thomas, Sean Michael; Balakirev, Fedor Fedorovich

    We report on an optical technique for measuring thermal expansion and magnetostriction at cryogenic temperatures and under applied hydrostatic pressures of 2.0 GPa. Optical fiber Bragg gratings inside a clamp-type pressure chamber are used to measure the strain in a millimeter-sized sample of CeRhIn 5. We describe the simultaneous measurement of two Bragg gratings in a single optical fiber using an optical sensing instrument capable of resolving changes in length [dL/L = (L- L 0)/L 0] on the order of 10 -7. Our results demonstrate the possibility of performing high-resolution thermal expansion measurements under hydrostatic pressure, a capability previously hinderedmore » by the small working volumes typical of pressure cells.« less

  18. MEMS-based non-rotatory circumferential scanning optical probe for endoscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xu, Yingshun; Singh, Janak; Siang, Teo Hui; Ramakrishna, Kotlanka; Premchandran, C. S.; Sheng, Chen Wei; Kuan, Chuah Tong; Chen, Nanguang; Olivo, Malini C.; Sheppard, Colin J. R.

    2007-07-01

    In this paper, we present a non-rotatory circumferential scanning optical probe integrated with a MEMS scanner for in vivo endoscopic optical coherence tomography (OCT). OCT is an emerging optical imaging technique that allows high resolution cross-sectional imaging of tissue microstructure. To extend its usage to endoscopic applications, a miniaturized optical probe based on Microelectromechanical Systems (MEMS) fabrication techniques is currently desired. A 3D electrothermally actuated micromirror realized using micromachining single crystal silicon (SCS) process highlights its very large angular deflection, about 45 degree, with low driving voltage for safety consideration. The micromirror is integrated with a GRIN lens into a waterproof package which is compatible with requirements for minimally invasive endoscopic procedures. To implement circumferential scanning substantially for diagnosis on certain pathological conditions, such as Barret's esophagus, the micromirror is mounted on 90 degree to optical axis of GRIN lens. 4 Bimorph actuators that are connected to the mirror on one end via supporting beams and springs are selected in this micromirror design. When actuators of the micromirror are driven by 4 channels of sinusoidal waveforms with 90 degree phase differences, beam focused by a GRIN is redirected out of the endoscope by 45 degree tilting mirror plate and achieve circumferential scanning pattern. This novel driving method making full use of very large angular deflection capability of our micromirror is totally different from previously developed or developing micromotor-like rotatory MEMS device for circumferential scanning.

  19. 1060-nm VCSEL-based parallel-optical modules for optical interconnects

    NASA Astrophysics Data System (ADS)

    Nishimura, N.; Nagashima, K.; Kise, T.; Rizky, A. F.; Uemura, T.; Nekado, Y.; Ishikawa, Y.; Nasu, H.

    2015-03-01

    The capability of mounting a parallel-optical module onto a PCB through solder-reflow process contributes to reduce the number of piece parts, simplify its assembly process, and minimize a foot print for both AOC and on-board applications. We introduce solder-reflow-capable parallel-optical modules employing 1060-nm InGaAs/GaAs VCSEL which leads to the advantages of realizing wider modulation bandwidth, longer transmission distance, and higher reliability. We demonstrate 4-channel parallel optical link performance operated at a bit stream of 28 Gb/s 231-1 PRBS for each channel and transmitted through a 50-μm-core MMF beyond 500 m. We also introduce a new mounting technology of paralleloptical module to realize maintaining good coupling and robust electrical connection during solder-reflow process between an optical module and a polymer-waveguide-embedded PCB.

  20. A multimodal imaging platform with integrated simultaneous photoacoustic microscopy, optical coherence tomography, optical Doppler tomography and fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dadkhah, Arash; Zhou, Jun; Yeasmin, Nusrat; Jiao, Shuliang

    2018-02-01

    Various optical imaging modalities with different optical contrast mechanisms have been developed over the past years. Although most of these imaging techniques are being used in many biomedical applications and researches, integration of these techniques will allow researchers to reach the full potential of these technologies. Nevertheless, combining different imaging techniques is always challenging due to the difference in optical and hardware requirements for different imaging systems. Here, we developed a multimodal optical imaging system with the capability of providing comprehensive structural, functional and molecular information of living tissue in micrometer scale. This imaging system integrates photoacoustic microscopy (PAM), optical coherence tomography (OCT), optical Doppler tomography (ODT) and fluorescence microscopy in one platform. Optical-resolution PAM (OR-PAM) provides absorption-based imaging of biological tissues. Spectral domain OCT is able to provide structural information based on the scattering property of biological sample with no need for exogenous contrast agents. In addition, ODT is a functional extension of OCT with the capability of measurement and visualization of blood flow based on the Doppler effect. Fluorescence microscopy allows to reveal molecular information of biological tissue using autofluoresce or exogenous fluorophores. In-vivo as well as ex-vivo imaging studies demonstrated the capability of our multimodal imaging system to provide comprehensive microscopic information on biological tissues. Integrating all the aforementioned imaging modalities for simultaneous multimodal imaging has promising potential for preclinical research and clinical practice in the near future.

  1. Compact divided-pupil line-scanning confocal microscope for investigation of human tissues

    NASA Astrophysics Data System (ADS)

    Glazowski, Christopher; Peterson, Gary; Rajadhyaksha, Milind

    2013-03-01

    Divided-pupil line-scanning confocal microscopy (DPLSCM) can provide a simple and low-cost approach for imaging of human tissues with pathology-like nuclear and cellular detail. Using results from a multidimensional numerical model of DPLSCM, we found optimal pupil configurations for improved axial sectioning, as well as control of speckle noise in the case of reflectance imaging. The modeling results guided the design and construction of a simple (10 component) microscope, packaged within the footprint of an iPhone, and capable of cellular resolution. We present the optical design with experimental video-images of in-vivo human tissues.

  2. Lens based adaptive optics scanning laser ophthalmoscope.

    PubMed

    Felberer, Franz; Kroisamer, Julia-Sophie; Hitzenberger, Christoph K; Pircher, Michael

    2012-07-30

    We present an alternative approach for an adaptive optics scanning laser ophthalmoscope (AO-SLO). In contrast to other commonly used AO-SLO instruments, the imaging optics consist of lenses. Images of the fovea region of 5 healthy volunteers are recorded. The system is capable to resolve human foveal cones in 3 out of 5 healthy volunteers. Additionally, we investigated the capability of the system to support larger scanning angles (up to 5°) on the retina. Finally, in order to demonstrate the performance of the instrument images of rod photoreceptors are presented.

  3. Group-multicast capable optical virtual private ring with contention avoidance

    NASA Astrophysics Data System (ADS)

    Peng, Yunfeng; Du, Shu; Long, Keping

    2008-11-01

    A ring based optical virtual private network (OVPN) employing contention sensing and avoidance is proposed to deliver multiple-to-multiple group-multicast traffic. The network architecture is presented and its operation principles as well as performance are investigated. The main contribution of this article is the presentation of an innovative group-multicast capable OVPN architecture with technologies available today.

  4. The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR)

    NASA Astrophysics Data System (ADS)

    Peterson, Bradley M.; Fischer, Debra; LUVOIR Science and Technology Definition Team

    2017-01-01

    LUVOIR is one of four potential large mission concepts for which the NASA Astrophysics Division has commissioned studies by Science and Technology Definition Teams (STDTs) drawn from the astronomical community. LUVOIR will have an 8 to16-m segmented primary mirror and operate at the Sun-Earth L2 point. It will be designed to support a broad range of astrophysics and exoplanet studies. The notional initial complement of instruments will include 1) a high-performance optical/NIR coronagraph with imaging and spectroscopic capability, 2) a UV imager and spectrograph with high spectral resolution and multi-object capability, 3) a high-definition wide-field optical/NIR camera, and 4) a multi-resolution optical/NIR spectrograph. LUVOIR will be designed for extreme stability to support unprecedented spatial resolution and coronagraphy. It is intended to be a long-lifetime facility that is both serviceable and upgradable. This is the first report by the LUVOIR STDT to the community on the top-level architectures we are studying, including preliminary capabilities of a mission with those parameters. The STDT seeks feedback from the astronomical community for key science investigations that can be undertaken with the notional instrument suite and to identify desirable capabilities that will enable additional key science.

  5. Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yu, Lingfeng; Liu, Gangjun; Rubinstein, Marc; Saidi, Arya; Wong, Brian J. F.; Chen, Zhongping

    2009-11-01

    Optical coherence tomography (OCT) is an evolving noninvasive imaging modality that has been used to image the human larynx during surgical endoscopy. The design of a long gradient index (GRIN) lens-based probe capable of capturing images of the human larynx by use of swept-source OCT during a typical office-based laryngoscopy examination is presented. In vivo OCT imaging of the human larynx is demonstrated with a rate of 40 frames per second. Dynamic vibration of the vocal folds is recorded to provide not only high-resolution cross-sectional tissue structures but also vibration parameters, such as the vibration frequency and magnitude of the vocal cords, which provides important information for clinical diagnosis and treatment, as well as fundamental research of the voice itself. Office-based OCT is a promising imaging modality to study the larynx for physicians in otolaryngology.

  6. Multiplexed displacement fiber sensor using thin core fiber exciter.

    PubMed

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2015-06-01

    This letter reports a multiplexed optical displacement sensor using a thin core fiber (TCF) exciter. The TCF exciter is followed by a stripped single mode optical fiber. A small section of buffer is used as the movable component along the single mode fiber. Ultra-weak cladding mode reflection (< - 75 dB) was employed to probe the refractive index discontinuity between the air and buffer coating boundary. The position change of the movable buffer segment results in a delay change of the cladding mode reflection. Thus, it is a measure of the displacement of the buffer segment with respect to the glass fiber. The insertion loss of one sensor was measured to be less than 3 dB. A linear relationship was evaluated between the measurement position and absolute position of the moving actuator. Multiplexed capability was demonstrated and no cross talk was found between the sensors.

  7. Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography.

    PubMed

    Yu, Lingfeng; Liu, Gangjun; Rubinstein, Marc; Saidi, Arya; Wong, Brian J F; Chen, Zhongping

    2009-01-01

    Optical coherence tomography (OCT) is an evolving noninvasive imaging modality that has been used to image the human larynx during surgical endoscopy. The design of a long gradient index (GRIN) lens-based probe capable of capturing images of the human larynx by use of swept-source OCT during a typical office-based laryngoscopy examination is presented. In vivo OCT imaging of the human larynx is demonstrated with a rate of 40 frames per second. Dynamic vibration of the vocal folds is recorded to provide not only high-resolution cross-sectional tissue structures but also vibration parameters, such as the vibration frequency and magnitude of the vocal cords, which provides important information for clinical diagnosis and treatment, as well as fundamental research of the voice itself. Office-based OCT is a promising imaging modality to study the larynx for physicians in otolaryngology.

  8. Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography

    PubMed Central

    Yu, Lingfeng; Liu, Gangjun; Rubinstein, Marc; Saidi, Arya; Wong, Brian J.F.; Chen, Zhongping

    2009-01-01

    Optical coherence tomography (OCT) is an evolving noninvasive imaging modality that has been used to image the human larynx during surgical endoscopy. The design of a long gradient index (GRIN) lens–based probe capable of capturing images of the human larynx by use of swept-source OCT during a typical office-based laryngoscopy examination is presented. In vivo OCT imaging of the human larynx is demonstrated with a rate of 40 frames per second. Dynamic vibration of the vocal folds is recorded to provide not only high-resolution cross-sectional tissue structures but also vibration parameters, such as the vibration frequency and magnitude of the vocal cords, which provides important information for clinical diagnosis and treatment, as well as fundamental research of the voice itself. Office-based OCT is a promising imaging modality to study the larynx for physicians in otolaryngology. PMID:20059258

  9. Optical damage testing at the Z-Backlighter facility at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Kimmel, Mark; Rambo, Patrick; Broyles, Robin; Geissel, Matthias; Schwarz, Jens; Bellum, John; Atherton, Briggs

    2009-10-01

    To enable laser-based radiography of high energy density physics events on the Z-Accelerator[4,5] at Sandia National Laboratories, a facility known as the Z-Backlighter has been developed. Two Nd:Phosphate glass lasers are used to create x-rays and/or proton beams capable of this radiographic diagnosis: Z-Beamlet (a multi-kilojoule laser operating at 527nm in a few nanoseconds) and Z-Petawatt (a several hundred joule laser operating at 1054nm in the subpicosecond regime) [1,2]. At the energy densities used in these systems, it is necessary to use high damage threshold optical materials, some of which are poorly characterized (especially for the sub-picosecond pulse). For example, Sandia has developed a meter-class dielectric coating capability for system optics. Damage testing can be performed by external facilities for nanosecond 532nm pulses, measuring high reflector coating damage thresholds >80J/cm2 and antireflection coating damage thresholds >20J/cm2 [3]. However, available external testing capabilities do not use femtosecond/picosecond scale laser pulses. To this end, we have constructed a sub-picoseond-laser-based optical damage test system. The damage tester system also allows for testing in a vacuum vessel, which is relevant since many optics in the Z-Backlighter system are used in vacuum. This paper will present the results of laser induced damage testing performed in both atmosphere and in vacuum, with 1054nm sub-picosecond laser pulses. Optical materials/coatings discussed are: bare fused silica and protected gold used for benchmarking; BK7; Zerodur; protected silver; and dielectric optical coatings (halfnia/silica layer pairs) produced by Sandia's in-house meter-class coating capability.

  10. Progress of Multi-Beam Long Trace-Profiler Development

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Kilaru, Kiranmayee; Merthe, Daniel J.; Kester, Thomas; McKinney, Wayne R.; Takacs, Peter Z.; Yashchuk, Valeriy V.

    2012-01-01

    The multi-beam long trace profiler (LTP) under development at NASA s Marshall Space Flight Center[1] is designed to increase the efficiency of metrology of replicated X-ray optics. The traditional LTP operates on a single laser beam that scans along the test surface to detect the slope errors. While capable of exceptional surface slope accuracy, the LTP single beam scanning has slow measuring speed. As metrology constitutes a significant fraction of the time spent in optics production, an increase in the efficiency of metrology helps in decreasing the cost of fabrication of the x-ray optics and in improving their quality. Metrology efficiency can be increased by replacing the single laser beam with multiple beams that can scan a section of the test surface at a single instance. The increase in speed with such a system would be almost proportional to the number of laser beams. A collaborative feasibility study has been made and specifications were fixed for a multi-beam long trace profiler. The progress made in the development of this metrology system is presented.

  11. Passively mode-locked interband cascade optical frequency combs.

    PubMed

    Bagheri, Mahmood; Frez, Clifford; Sterczewski, Lukasz A; Gruidin, Ivan; Fradet, Mathieu; Vurgaftman, Igor; Canedy, Chadwick L; Bewley, William W; Merritt, Charles D; Kim, Chul Soo; Kim, Mijin; Meyer, Jerry R

    2018-02-20

    Since their inception, optical frequency combs have transformed a broad range of technical and scientific disciplines, spanning time keeping to navigation. Recently, dual comb spectroscopy has emerged as an attractive alternative to traditional Fourier transform spectroscopy, since it offers higher measurement sensitivity in a fraction of the time. Midwave infrared (mid-IR) frequency combs are especially promising as an effective means for probing the strong fundamental absorption lines of numerous chemical and biological agents. Mid-IR combs have been realized via frequency down-conversion of a near-IR comb, by optical pumping of a micro-resonator, and beyond 7 μm by four-wave mixing in a quantum cascade laser. In this work, we demonstrate an electrically-driven frequency comb source that spans more than 1 THz of bandwidth centered near 3.6 μm. This is achieved by passively mode-locking an interband cascade laser (ICL) with gain and saturable absorber sections monolithically integrated on the same chip. The new source will significantly enhance the capabilities of mid-IR multi-heterodyne frequency comb spectroscopy systems.

  12. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    PubMed

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Multiphoton imaging microscopy at deeper layers with adaptive optics control of spherical aberration.

    PubMed

    Bueno, Juan M; Skorsetz, Martin; Palacios, Raquel; Gualda, Emilio J; Artal, Pablo

    2014-01-01

    Despite the inherent confocality and optical sectioning capabilities of multiphoton microscopy, three-dimensional (3-D) imaging of thick samples is limited by the specimen-induced aberrations. The combination of immersion objectives and sensorless adaptive optics (AO) techniques has been suggested to overcome this difficulty. However, a complex plane-by-plane correction of aberrations is required, and its performance depends on a set of image-based merit functions. We propose here an alternative approach to increase penetration depth in 3-D multiphoton microscopy imaging. It is based on the manipulation of the spherical aberration (SA) of the incident beam with an AO device while performing fast tomographic multiphoton imaging. When inducing SA, the image quality at best focus is reduced; however, better quality images are obtained from deeper planes within the sample. This is a compromise that enables registration of improved 3-D multiphoton images using nonimmersion objectives. Examples on ocular tissues and nonbiological samples providing different types of nonlinear signal are presented. The implementation of this technique in a future clinical instrument might provide a better visualization of corneal structures in living eyes.

  14. Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: an ex vivo study

    PubMed Central

    2017-01-01

    Purpose Optical coherence tomography (OCT) is a noninvasive diagnostic technique that may be useful for both qualitative and quantitative analyses of the periodontium. Micro-computed tomography (micro-CT) is another noninvasive imaging technique capable of providing submicron spatial resolution. The purpose of this study was to present periodontal images obtained using ex vivo dental OCT and to compare OCT images with micro-CT images and histologic sections. Methods Images of ex vivo canine periodontal structures were obtained using OCT. Biologic depth measurements made using OCT were compared to measurements made on histologic sections prepared from the same sites. Visual comparisons were made among OCT, micro-CT, and histologic sections to evaluate whether anatomical details were accurately revealed by OCT. Results The periodontal tissue contour, gingival sulcus, and the presence of supragingival and subgingival calculus could be visualized using OCT. OCT was able to depict the surface topography of the dentogingival complex with higher resolution than micro-CT, but the imaging depth was typically limited to 1.2–1.5 mm. Biologic depth measurements made using OCT were a mean of 0.51 mm shallower than the histologic measurements. Conclusions Dental OCT as used in this study was able to generate high-resolution, cross-sectional images of the superficial portions of periodontal structures. Improvements in imaging depth and the development of an intraoral sensor are likely to make OCT a useful technique for periodontal applications. PMID:28261522

  15. Semi-automated software to measure luminal and stromal areas of choroid in optical coherence tomographic images.

    PubMed

    Sonoda, Shozo; Sakamoto, Taiji; Kakiuchi, Naoko; Shiihara, Hideki; Sakoguchi, Tomonori; Tomita, Masatoshi; Yamashita, Takehiro; Uchino, Eisuke

    2018-03-01

    To determine the capabilities of "EyeGround" software in measuring the choroidal cross sectional areas in optical coherence tomographic (OCT) images. Cross sectional, prospective study. The cross-sectional area of the subfoveal choroid within a 1500 µm diameter circle centered on the fovea was measured both with and without using the EyeGround software in the OCT images. The differences between the evaluation times and the results of the measurements were compared. The inter-rater, intra-rater, inter-method agreements were determined. Fifty-one eyes of 51 healthy subjects were studied: 24 men and 27 women with an average age of 35.0 ± 8.8 years. The time for analyzing a single image was significantly shorter with the software at 3.2±1.1 min than without the software at 12.1±5.1 min (P <0.001). The inter-method correlation efficient for the measurements of the whole choroid was high [0.989, 95% CI (0.981-0.994)]. With the software, the inter-rater correlation efficient was significantly high [0.997, 95% CI (0.995-0.999)], and the intra-rater correlation efficient was also significantly high [0.999, 95% CI (0.999-1.0)]. The EyeGround software can measure the choroidal area in the OCT cross sectional images with good reproducibility and in a significantly shorter times. It can be a valuable tool for analyzing the choroid.

  16. Recent advances in polarized 3 He based neutron spin filter development

    NASA Astrophysics Data System (ADS)

    Chen, Wangchun; Gentile, Thomas; Erwin, Ross; Watson, Shannon; Krycka, Kathryn; Ye, Qiang; NCNR NIST Team; University of Maryland Team

    2015-04-01

    Polarized 3 He neutron spin filters (NSFs) are based on the strong spin-dependence of the neutron absorption cross section by 3 He. NSFs can polarize large area, widely divergent, and broadband neutron beams effectively and allow for combining a neutron polarizer and a spin flipper into a single polarizing device. The last capability utilizes 3 He spin inversion based on the adiabatic fast passage (AFP) nuclear magnetic resonance technique. Polarized 3 He NSFs are significantly expanding the polarized neutron measurement capabilities at the NIST Center for Neutron Research (NCNR). Here we present an overview of 3 He NSF applications to small-angle neutron scattering, thermal triple axis spectrometry, and wide-angle polarization analysis. We discuss a recent upgrade of our spin-exchange optical pumping (SEOP) systems that utilize chirped volume holographic gratings for spectral narrowing. The new capability allows us to polarize rubidium/potassium hybrid SEOP cells over a liter in volume within a day, with 3 He polarizations up to 88%, Finally we discuss how we can achieve nearly lossless 3 He polarization inversion with AFP.

  17. Research studies on advanced optical module/head designs for optical devices

    NASA Technical Reports Server (NTRS)

    Burke, James J.

    1991-01-01

    A summary is presented of research in optical data storage materials and of research at the center. The first section contains summary reports under the general headings of: (1) Magnetooptic media: modeling, design, fabrication, characterization, and testing; (2) Optical heads: holographic optical elements; and (3) Optical heads: integrated optics. The second section consist of a proposal entitled, Signal Processing Techniques for Optical Data Storage. And section three presents various publications prepared by the center.

  18. Dielectric Metasurface Optics: A New Platform for Compact Optical Sensing

    NASA Astrophysics Data System (ADS)

    Colburn, Shane

    Metasurfaces, the 2D analogue of bulk metamaterials, show incredible promise for achieving nanoscale optical components that could support the growing infrastructure for the Internet of Things (IoT) and future sensing technologies. Consisting of quasiperiodic arrays of subwavelength scattering elements, metasurfaces apply spatial transfer functions to incident wavefronts, abruptly altering properties of light over a wavelength-scale thickness. By appropriately patterning scatterers on the structure, arbitrary functions can be implemented up to the limitations on the scattering properties of the particular elements. This thesis details theoretical work and simulations on the design of scattering elements with advanced capabilities for dielectric metasurfaces, showing polarization-multiplexed operation in the visible regime, multiwavelength capability in the visible regime along with a general methodology for eliminating chromatic aberrations at discrete wavelengths, and compact and tunable elements for 1550 nm operation inspired by an asymmetric Fabry-Perot cavity. These advancements enhance the capabilities of metasurfaces in the visible regime and help move toward the goal of achieving reconfigurable metasurfaces for compact and efficient optical sensors.

  19. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics.

    PubMed

    Kocaoglu, Omer P; Cense, Barry; Jonnal, Ravi S; Wang, Qiang; Lee, Sangyeol; Gao, Weihua; Miller, Donald T

    2011-08-15

    Early detection of axonal tissue loss in retinal nerve fiber layer (RNFL) is critical for effective treatment and management of diseases such as glaucoma. This study aims to evaluate the capability of ultrahigh-resolution optical coherence tomography with adaptive optics (UHR-AO-OCT) for imaging the RNFL axonal bundles (RNFBs) with 3×3×3μm(3) resolution in the eye. We used a research-grade UHR-AO-OCT system to acquire 3°×3° volumes in four normal subjects and one subject with an arcuate retinal nerve fiber layer defect (n=5; 29-62years). Cross section (B-scans) and en face (C-scan) slices extracted from the volumes were used to assess visibility and size distribution of individual RNFBs. In one subject, we reimaged the same RNFBs twice over a 7month interval and compared bundle width and thickness between the two imaging sessions. Lastly we compared images of an arcuate RNFL defect acquired with UHR-AO-OCT and commercial OCT (Heidelberg Spectralis). Individual RNFBs were distinguishable in all subjects at 3° retinal eccentricity in both cross-sectional and en face views (width: 30-50μm, thickness: 10-15μm). At 6° retinal eccentricity, RNFBs were distinguishable in three of the five subjects in both views (width: 30-45μm, thickness: 20-40μm). Width and thickness RNFB measurements taken 7months apart were strongly correlated (p<0.0005). Mean difference and standard deviation of the differences between the two measurement sessions were -0.1±4.0μm (width) and 0.3±1.5μm (thickness). UHR-AO-OCT outperformed commercial OCT in terms of clarity of the microscopic retina. To our knowledge, these are the first measurements of RNFB cross section reported in the living human eye. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics

    PubMed Central

    Kocaoglu, Omer P.; Cense, Barry; Jonnal, Ravi S.; Wang, Qiang; Lee, Sangyeol; Gao, Weihua; Miller, Donald T.

    2011-01-01

    Early detection of axonal tissue loss in retinal nerve fiber layer (RNFL) is critical for effective treatment and management of diseases such as glaucoma. This study aims to evaluate the capability of ultrahigh-resolution optical coherence tomography with adaptive optics (UHR-AO-OCT) for imaging the RNFL axonal bundles (RNFBs) with 3×3×3 μm3 resolution in the eye. We used a research-grade UHR-AO-OCT system to acquire 3°×3° volumes in four normal subjects and one subject with an arcuate retinal nerve fiber layer defect (n=5; 29–62yrs). Cross section (B-scans) and en face (C-scan) slices extracted from the volumes were used to assess visibility and size distribution of individual RNFBs. In one subject, we reimaged the same RNFBs twice over a seven month interval and compared bundle width and thickness between the two imaging sessions. Lastly we compared images of an arcuate RNFL defect acquired with UHR-AO-OCT and commercial OCT (Heidelberg Spectralis). Individual RNFBs were distinguishable in all subjects at 3° retinal eccentricity in both cross-sectional and en face views (width: 30–50μm, thickness: 10–15μm). At 6° retinal eccentricity, RNFBs were distinguishable in three of the five subjects in both views (width: 30–45μm, thickness: 20–40μm). Width and thickness RNFB measurements taken seven months apart were strongly correlated (p<0.0005). Mean difference and standard deviation of the differences between the two measurement sessions were −0.1±4.0 μm (width) and 0.3±1.5 μm (thickness). UHR-AO-OCT outperformed commercial OCT in terms of clarity of the microscopic retina. To our knowledge, these are the first measurements of RNFB cross section reported in the living human eye. PMID:21722662

  1. Inspection of the interior surface of cylindrical vessels using optic fiber shearography

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wei, Quan; Tu, Jun; Arola, Dwayne D.; Zhang, Dongsheng

    2017-09-01

    In this study, a shearography system integrated with a coherent fiber-optic illumination and a fiber-optic imaging bundle is presented to inspect the quality of the interior surface of a cylindrical vessel for safety purposes. The specific optical arrangement is designed for the inspection of a certain area at a small working distance. The optical arrangement of the system was assembled and an aluminum honeycomb sample was evaluated to demonstrate the capability of the system. The important relationship between the image quality and the working distance, as well as the field of view, is discussed. The system has been applied for the inspection of the interior surface of a cylindrical vessel. The experimental results suggest that the shearography system integrated with optical and image fibers can effectively minimize the size of the inspection device and be capable of evaluating the interior surface of cylindrical structures.

  2. Overview of microoptics: Past, present, and future

    NASA Technical Reports Server (NTRS)

    Veldkamp, Wilfrid B.

    1993-01-01

    Through advances in semiconductor miniaturization technology, microrelief patterns, with characteristic dimensions as small as the wavelength of light, can now be mass reproduced to form high-quality and low-cost optical components. In a unique example of technology transfer, from electronics to optics, this capability is allowing optics designers to create innovative optical components that promise to solve key problems in optical sensors, optical communication channels, and optical processors.

  3. Optical beam forming techniques for phased array antennas

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao; Chandler, C.

    1993-01-01

    Conventional phased array antennas using waveguide or coax for signal distribution are impractical for large scale implementation on satellites or spacecraft because they exhibit prohibitively large system size, heavy weight, high attenuation loss, limited bandwidth, sensitivity to electromagnetic interference (EMI) temperature drifts and phase instability. However, optical beam forming systems are smaller, lighter, and more flexible. Three optical beam forming techniques are identified as applicable to large spaceborne phased array antennas. They are (1) the optical fiber replacement of conventional RF phased array distribution and control components, (2) spatial beam forming, and (3) optical beam splitting with integrated quasi-optical components. The optical fiber replacement and the spatial beam forming approaches were pursued by many organizations. Two new optical beam forming architectures are presented. Both architectures involve monolithic integration of the antenna radiating elements with quasi-optical grid detector arrays. The advantages of the grid detector array in the optical process are the higher power handling capability and the dynamic range. One architecture involves a modified version of the original spatial beam forming approach. The basic difference is the spatial light modulator (SLM) device for controlling the aperture field distribution. The original liquid crystal light valve SLM is replaced by an optical shuffling SLM, which was demonstrated for the 'smart pixel' technology. The advantages are the capability of generating the agile beams of a phased array antenna and to provide simultaneous transmit and receive functions. The second architecture considered is the optical beam splitting approach. This architecture involves an alternative amplitude control for each antenna element with an optical beam power divider comprised of mirrors and beam splitters. It also implements the quasi-optical grid phase shifter for phase control and grid amplifier for RF power. The advantages are no SLM is required for this approach, and the complete antenna system is capable of full monolithic integration.

  4. Design and Performance of 40 cm Ion Optics

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2001-01-01

    A 40 cm ion thruster is being developed at the NASA Glenn Research Center to obtain input power and propellant throughput capabilities of 10 kW and 550 kg. respectively. The technical approach here is a continuation of the "derating" technique used for the NSTAR ion thruster. The 40 cm ion thruster presently utilizes the NSTAR ion optics aperture geometry to take advantage of the large database of lifetime and performance data already available. Dome-shaped grids were chosen for the design of the 40 cm ion optics because this design is naturally suited for large-area ion optics. Ion extraction capabilities and electron backstreaming limits for the 40 cm ion optics were estimated by utilizing NSTAR 30 cm ion optics data. A preliminary service life assessment showed that the propellant throughput goal of 550 kg of xenon may be possible with molybdenum 40 cm ion optics. One 40 cm ion optics' set has been successfully fabricated to date. Additional ion optics' sets are presently being fabricated. Preliminary performance tests were conducted on a laboratory model 40 cm ion thruster.

  5. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    NASA Technical Reports Server (NTRS)

    Kegley, Jeff; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  6. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    NASA Technical Reports Server (NTRS)

    Kegley, Jeff; Stahl, H. Philip (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature SiO2 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  7. Acousto-Optic Tunable Filter for Time-Domain Processing of Ultra-Short Optical Pulses,

    DTIC Science & Technology

    The application of acousto - optic tunable filters for shaping of ultra-fast pulses in the time domain is analyzed and demonstrated. With the rapid...advance of acousto - optic tunable filter (AOTF) technology, the opportunity for sophisticated signal processing capabilities arises. AOTFs offer unique

  8. ALON GRIN optics for visible-MWIR applications

    NASA Astrophysics Data System (ADS)

    Nag, Nagendra; Jha, Santosh; Sastri, Suri; Goldman, Lee M.; McCarthy, Peter; Schmidt, Greg R.; Bentley, Julie L.; Moore, Duncan T.

    2016-05-01

    Surmet continuously strives to develop novel, advanced optical ceramics products for current and future defense and commercial systems. Using conventional powder processing techniques, Surmet has made substantial progress in its ability to manufacture large ALON® sensor windows, lenses, domes and transparent armor. In addition to transparency, Surmet has demonstrated the ability to incorporate other capabilities into its optical ceramic components, including: EMI shielding, heating, internal antennas and cooling channels. Working closely with the University of Rochester, Surmet has developed gradient index (GRIN) optics in ALON for use in the visible through the MWIR applications. Surmet has demonstrated the ability to tailor the refractive index of ALON® Optical Ceramic by either varying its composition or through the addition of dopants. Smooth axial and radial gradient profiles with ~0.055 change in refractive index, over depths of 1-8 mm (axial) and over 20 mm radius (radial) have been demonstrated. Initial design studies have shown that such elements provide unique capabilities. Radial gradients in particular, with their optical power contribution, provide additional degrees of freedom for color correction in broadband imaging systems. Surmet continues to mature ALON® GRIN technology along with the associated metrology. Surmet is committed to the development of its ALON® GRIN capability as well as finding insertion opportunities in novel imaging solutions for military and other commercial systems.

  9. Structural health monitoring using smart optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Davies, Heddwyn; Everall, Lorna A.; Gallon, Andrew M.

    2001-04-01

    This paper describes the potential of a smart monitoring system, incorporating optical fiber sensing techniques, to provide important structural information to designers and users alike. This technology has application in all areas including aerospace, civil, maritime and automotive engineering. In order to demonstrate the capability of the sensing system it has been installed in a 35 m free-standing carbon fiber yacht mast, where a complete optical network of strain and temperature sensors were embedded into a composite mast and boom during lay-up. The system was able to monitor the behavior of the composite rig through a range of handling conditions and the resulting strain information could be used by engineers to improve the structural design process. The optical strain sensor system comprises of three main components: the sensor network, the opto-electronic data acquisition unit (OFSSS) and the external PC which acts as a data log and display. Embedded fiber optic sensors have wide ranging application for structural load monitoring. Due to their small size, optical fiber sensors can be readily embedded into composite materials. Other advantages include their immediate multiplexing capability and immunity to electromagnetic interference. The capability of this system has been demonstrated within the maritime environment, but can be adapted for any application.

  10. Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system.

    PubMed

    Hahn, Paul; Migacz, Justin; O'Connell, Rachelle; Izatt, Joseph A; Toth, Cynthia A

    2013-01-01

    We have recently developed a microscope-integrated spectral-domain optical coherence tomography (MIOCT) device towards intrasurgical cross-sectional imaging of surgical maneuvers. In this report, we explore the capability of MIOCT to acquire real-time video imaging of vitreoretinal surgical maneuvers without post-processing modifications. Standard 3-port vitrectomy was performed in human during scheduled surgery as well as in cadaveric porcine eyes. MIOCT imaging of human subjects was performed in healthy normal volunteers and intraoperatively at a normal pause immediately following surgical manipulations, under an Institutional Review Board-approved protocol, with informed consent from all subjects. Video MIOCT imaging of live surgical manipulations was performed in cadaveric porcine eyes by carefully aligning B-scans with instrument orientation and movement. Inverted imaging was performed by lengthening of the reference arm to a position beyond the choroid. Unprocessed MIOCT imaging was successfully obtained in healthy human volunteers and in human patients undergoing surgery, with visualization of post-surgical changes in unprocessed single B-scans. Real-time, unprocessed MIOCT video imaging was successfully obtained in cadaveric porcine eyes during brushing of the retina with the Tano scraper, peeling of superficial retinal tissue with intraocular forceps, and separation of the posterior hyaloid face. Real-time inverted imaging enabled imaging without complex conjugate artifacts. MIOCT is capable of unprocessed imaging of the macula in human patients undergoing surgery and of unprocessed, real-time, video imaging of surgical maneuvers in model eyes. These capabilities represent an important step towards development of MIOCT for efficient, real-time imaging of manipulations during human surgery.

  11. Investigation of the feasibility of optical diagnostic measurements at the exit of the SSME

    NASA Technical Reports Server (NTRS)

    Shirley, John A.; Boedeker, Laurence R.

    1993-01-01

    Under Contract NAS8-36861 sponsored by NASA Marshall Space Flight Center, the United Technologies Research Center is conducting an investigation of the feasibility of remote optical diagnostics to measure temperature, species concentration and velocity at the exit of the Space Shuttle Main Engine (SSME). This is a two phase study consisting of a conceptual design phase followed by a laboratory experimental investigation. The first task of the conceptual design studies is to screen and evaluate the techniques which can be used for the measurements. The second task is to select the most promising technique or techniques, if as expected, more than one type of measurement must be used to measure all the flow variables of interest. The third task is to examine in detail analytically the capabilities and limitations of the selected technique(s). The results of this study are described in the section of this report entitled Conceptual Design Investigations. The conceptual design studies identified spontaneous Raman scattering and photodissociative flow-tagging for measurements respectively of gas temperature and major species concentration and for velocity. These techniques and others that were considered are described in the section describing the conceptual design. The objective of the second phase of investigations was to investigate experimentally the techniques identified in the first phase. The first task of the experimental feasibility study is to design and assemble laboratory scale experimental apparatus to evaluate the best approaches for SSME exit optical diagnostics for temperature, species concentrations and velocity, as selected in the Phase I conceptual design study. The second task is to evaluate performance, investigate limitations, and establish actual diagnostic capabilities, accuracies and precision for the selected optical systems. The third task is to evaluate design requirements and system trade-offs of conceptual instruments. Spontaneous Raman scattering excited by a KrF excimer laser pulse was investigated for SSME exit plane temperature and major species concentration measurements. The relative concentrations of molecular hydrogen and water vapor would be determined by measuring the integrated Q-branch scattering signals through narrow bandpass filters in front of photomultipliers. The temperature would be determined by comparing the signal from a single hydrogen rotational Raman line to the total hydrogen Q-branch signal. The rotational Raman line would be isolated by a monochromator and detected with a PMT.

  12. Metrology for the manufacturing of freeform optics

    NASA Astrophysics Data System (ADS)

    Blalock, Todd; Myer, Brian; Ferralli, Ian; Brunelle, Matt; Lynch, Tim

    2017-10-01

    Recently the use of freeform surfaces have become a realization for optical designers. These non-symmetrical optical surfaces have allowed unique solutions to optical design problems. The implementation of freeform optical surfaces has been limited by manufacturing capabilities and quality. However over the past several years freeform fabrication processes have improved in capability and precision. But as with any manufacturing, proper metrology is required to monitor and verify the process. Typical optics metrology such as interferometry has its challenges and limitations with the unique shapes of freeform optics. Two contact metrology methods for freeform metrology are presented; a Leitz coordinate measurement machine (CMM) with an uncertainty of +/- 0.5 μm and a high resolution profilometer (Panasonic UA3P) with a measurement uncertainty of +/- 0.05 μm. We are also developing a non-contact high resolution technique based on the fringe reflection technique known as deflectometry. This fast non-contact metrology has the potential to compete with accuracies of the contact methods but also can acquire data in seconds rather than minutes or hours.

  13. Piezoelectric Diffraction-Based Optical Switches

    NASA Technical Reports Server (NTRS)

    Spremo, Stevan; Fuhr, Peter; Schipper, John

    2003-01-01

    Piezoelectric diffraction-based optoelectronic devices have been invented to satisfy requirements for switching signals quickly among alternative optical paths in optical communication networks. These devices are capable of operating with switching times as short as microseconds or even nanoseconds in some cases.

  14. Nonlinear optical microscopy for immunoimaging: a custom optimized system of high-speed, large-area, multicolor imaging

    PubMed Central

    Li, Hui; Cui, Quan; Zhang, Zhihong; Luo, Qingming

    2015-01-01

    Background The nonlinear optical microscopy has become the current state-of-the-art for intravital imaging. Due to its advantages of high resolution, superior tissue penetration, lower photodamage and photobleaching, as well as intrinsic z-sectioning ability, this technology has been widely applied in immunoimaging for a decade. However, in terms of monitoring immune events in native physiological environment, the conventional nonlinear optical microscope system has to be optimized for live animal imaging. Generally speaking, three crucial capabilities are desired, including high-speed, large-area and multicolor imaging. Among numerous high-speed scanning mechanisms used in nonlinear optical imaging, polygon scanning is not only linearly but also dispersion-freely with high stability and tunable rotation speed, which can overcome disadvantages of multifocal scanning, resonant scanner and acousto-optical deflector (AOD). However, low frame rate, lacking large-area or multicolor imaging ability make current polygonbased nonlinear optical microscopes unable to meet the requirements of immune event monitoring. Methods We built up a polygon-based nonlinear optical microscope system which was custom optimized for immunoimaging with high-speed, large-are and multicolor imaging abilities. Results Firstly, we validated the imaging performance of the system by standard methods. Then, to demonstrate the ability to monitor immune events, migration of immunocytes observed by the system based on typical immunological models such as lymph node, footpad and dorsal skinfold chamber are shown. Finally, we take an outlook for the possible advance of related technologies such as sample stabilization and optical clearing for more stable and deeper intravital immunoimaging. Conclusions This study will be helpful for optimizing nonlinear optical microscope to obtain more comprehensive and accurate information of immune events. PMID:25694951

  15. Pulsed-laser capabilities at the Laser-Hardened Materials Evaluation Laboratory (LHMEL)

    NASA Astrophysics Data System (ADS)

    Royse, Robert W.; Seibert, Daniel B., II; Lander, Michael L.; Eric, John J.

    2000-08-01

    Pulsed laser capabilities at the Laser Hardened Material Evaluation Laboratory are described relevant to optical coupling, impulse generation and laser propulsion. Capabilities of the Nd:Glass laser are presented as well as supporting test systems.

  16. Manufacturing process scale-up of optical grade transparent spinel ceramic at ArmorLine Corporation

    NASA Astrophysics Data System (ADS)

    Spilman, Joseph; Voyles, John; Nick, Joseph; Shaffer, Lawrence

    2013-06-01

    While transparent Spinel ceramic's mechanical and optical characteristics are ideal for many Ultraviolet (UV), visible, Short-Wave Infrared (SWIR), Mid-Wave Infrared (MWIR), and multispectral sensor window applications, commercial adoption of the material has been hampered because the material has historically been available in relatively small sizes (one square foot per window or less), low volumes, unreliable supply, and with unreliable quality. Recent efforts, most notably by Technology Assessment and Transfer (TA and T), have scaled-up manufacturing processes and demonstrated the capability to produce larger windows on the order of two square feet, but with limited output not suitable for production type programs. ArmorLine Corporation licensed the hot-pressed Spinel manufacturing know-how of TA and T in 2009 with the goal of building the world's first dedicated full-scale Spinel production facility, enabling the supply of a reliable and sufficient volume of large Transparent Armor and Optical Grade Spinel plates. With over $20 million of private investment by J.F. Lehman and Company, ArmorLine has installed and commissioned the largest vacuum hot press in the world, the largest high-temperature/high-pressure hot isostatic press in the world, and supporting manufacturing processes within 75,000 square feet of manufacturing space. ArmorLine's equipment is capable of producing window blanks as large as 50" x 30" and the facility is capable of producing substantial volumes of material with its Lean configuration and 24/7 operation. Initial production capability was achieved in 2012. ArmorLine will discuss the challenges that were encountered during scale-up of the manufacturing processes, ArmorLine Optical Grade Spinel optical performance, and provide an overview of the facility and its capabilities.

  17. Real time optimization algorithm for wavefront sensorless adaptive optics OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Verstraete, Hans R. G. W.; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel J.; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Sarunic, Marinko V.; Verhaegen, Michel; Jian, Yifan

    2017-02-01

    Optical Coherence Tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. A limitation of the performance and utilization of the OCT systems has been the lateral resolution. Through the combination of wavefront sensorless adaptive optics with dual variable optical elements, we present a compact lens based OCT system that is capable of imaging the photoreceptor mosaic. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient eyes, and a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators for aberration correction to obtain near diffraction limited imaging at the retina. A parallel processing computational platform permitted real-time image acquisition and display. The Data-based Online Nonlinear Extremum seeker (DONE) algorithm was used for real time optimization of the wavefront sensorless adaptive optics OCT, and the performance was compared with a coordinate search algorithm. Cross sectional images of the retinal layers and en face images of the cone photoreceptor mosaic acquired in vivo from research volunteers before and after WSAO optimization are presented. Applying the DONE algorithm in vivo for wavefront sensorless AO-OCT demonstrates that the DONE algorithm succeeds in drastically improving the signal while achieving a computational time of 1 ms per iteration, making it applicable for high speed real time applications.

  18. Distributed fiber optic strain sensing to detect artificial pitting corrosion in stirrups

    NASA Astrophysics Data System (ADS)

    Zhang, Jiachen; Kancharla, Vinutha; Hoult, Neil A.

    2017-04-01

    Pitting corrosion is difficult to identify through visual inspection and can lead to sudden structural failures. As such, an experimental study was undertaken to investigate whether distributed fiber optic strain sensors are capable of detecting the locations and strain changes associated with stirrup corrosion in reinforced concrete beams. In comparison to conventional strain gauges, this type of sensor can measure the strain response along the entire length of the fiber optic cable. Two specimens were tested: a control and a deteriorated beam. The deteriorated beam was artificially corroded by reducing the cross sectional area of the closed stirrups by 50% on both sides of the stirrup at the mid-height. This level of area reduction represents severe pitting corrosion. The beams were instrumented with nylon coated fiber optic sensors to measure the distributed strains, and then tested to failure under three point bending. The load deflection behavior of the two specimens was compared to assess the impact of the artificial pitting corrosion on the capacity. Digital Image Correlation was used to locate the extent and trajectory of the crack paths. It was found that the pitting corrosion had no impact on capacity or stiffness. Also, in this investigation the fiber optic sensing system failed to detect the location and strain changes due to pitting corrosion since the shear cracks did not intersect with the pitting location.

  19. Analysis of LPFG sensor systems for aircraft wing drag optimization

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.; Ishihara, Abe

    2014-09-01

    In normal fiber, the refractive indices of the core and cladding do not change along the length of the fiber; however, by inducing a periodic modulation of refractive index along the length in the core of the optical fiber, the optical fiber grating is produced. This exhibits very interesting spectral properties and for this reason we propose to develop and integrate a distributed sensor network based on long period fiber gratings (LPFGs) technology which has grating periods on the order of 100 μm to 1 mm to be embedded in the wing section of aircraft to measure bending and torsion in real-time in order to measure wing deformation of commercial airplanes resulting in extensive benefits such as reduced structural weight, mitigation of induced drag and lower fuel consumption which is fifty percent of total cost of operation for airline industry. Fiber optic sensors measurement capabilities are as vital as they are for other sensing technologies, but optical measurements differ in important ways. In this paper we focus on the testing and aviation requirements for LPFG sensors. We discuss the bases of aviation standards for fiber optic sensor measurements, and the quantities that are measured. Our main objective is to optimize the design for material, mechanical, optical and environmental requirements. We discuss the analysis and evaluation of extensive testing of LPFG sensor systems such as attenuation, environmental, humidity, fluid immersion, temperature cycling, aging, smoke, flammability, impact resistance, flexure endurance, tensile, vitiation and shock.

  20. Measuring the In-Process Figure, Final Prescription, and System Alignment of Large Optics and Segmented Mirrors Using Lidar Metrology

    NASA Technical Reports Server (NTRS)

    Ohl, Raymond; Slotwinski, Anthony; Eegholm, Bente; Saif, Babak

    2011-01-01

    The fabrication of large optics is traditionally a slow process, and fabrication capability is often limited by measurement capability. W hile techniques exist to measure mirror figure with nanometer precis ion, measurements of large-mirror prescription are typically limited to submillimeter accuracy. Using a lidar instrument enables one to measure the optical surface rough figure and prescription in virtuall y all phases of fabrication without moving the mirror from its polis hing setup. This technology improves the uncertainty of mirror presc ription measurement to the micron-regime.

  1. Unique system of FE/PD for magneto-optical recording and magnetic switching devices

    DOEpatents

    Liu, Chian Q.; Bader, Samuel D.

    1992-01-01

    A high density magneto-optical information storage medium utilizing the properties of an ultrathin iron film on a palladium substrate. The present invention comprises a magneto-optical medium capable of thermal and magnetic stability and capable of possessing a vertical orientation of the magnetization vector for the magnetic material. Data storage relies on the temperature dependence of the coercivity of the ultrathin film. Data retrieval derives from the Kerr effect which describes the direction of rotation of a plane of polarized light traversing the ultrathin magnetic material as a function of the orientation of the magnetization vector.

  2. Optical coherence tomography in differential diagnosis of skin pathology

    NASA Astrophysics Data System (ADS)

    Gladkova, Natalia D.; Petrova, Galina P.; Derpaluk, Elena; Nikulin, Nikolai K.; Snopova, Ludmila; Chumakov, Yuri; Feldchtein, Felix I.; Gelikonov, Valentin M.; Gelikonov, Grigory V.; Kuranov, Roman V.

    2000-05-01

    The capabilities of optical coherence tomography (OCT) for imaging in vivo of optical patterns of pathomorphological processes in the skin and use of their optical patterns in clinical practice for differential diagnosis of dermatoses are presented. Images of skin tissue 0.8 - 1.5 mm deep were acquired with a resolution of 5, 12 and 20 micrometer using three compact fiber OCT devices developed at the Institute of Applied Physics RAS. The acquisition time of images of skin regions 2 - 6 mm in length was 2 - 4 s. The OCT capabilities were analyzed based on the study of 50 patients with different dermatoses. OCT images were interpreted by comparing with parallel histology. It is shown that OCT can detect in vivo optical patterns of morphological alterations in such general papulous dermatoses as lichen ruber planus and psoriasis, a capability that can be used in differential diagnosis of these diseases. Most informative are OCT images obtained with a resolution of 5 micrometer. The results of our study demonstrate the practical importance of OCT imaging for diagnosis of different dermatoses. OCT is noninvasive and, therefore, makes it possible to perform frequent multifocal examination of skin without any adverse effects.

  3. Characterization of dynamic physiology of the bladder by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yuan, Zhijia; Keng, Kerri; Pan, Rubin; Ren, Hugang; Du, Congwu; Kim, Jason; Pan, Yingtian

    2012-03-01

    Because of its high spatial resolution and noninvasive imaging capabilities, optical coherence tomography has been used to characterize the morphological details of various biological tissues including urinary bladder and to diagnose their alternations (e.g., cancers). In addition to static morphology, the dynamic features of tissue morphology can provide important information that can be used to diagnose the physiological and functional characteristics of biological tissues. Here, we present the imaging studies based on optical coherence tomography to characterize motion related physiology and functions of rat bladder detrusor muscles and compared the results with traditional biomechanical measurements. Our results suggest that optical coherence tomography is capable of providing quantitative evaluation of contractile functions of intact bladder (without removing bladder epithelium and connective tissue), which is potentially of more clinical relevance for future clinical diagnosis - if incorporated with cystoscopic optical coherence tomography.

  4. LLIMAS: Revolutionizing integrating modeling and analysis at MIT Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Doyle, Keith B.; Stoeckel, Gerhard P.; Rey, Justin J.; Bury, Mark E.

    2017-08-01

    MIT Lincoln Laboratory's Integrated Modeling and Analysis Software (LLIMAS) enables the development of novel engineering solutions for advanced prototype systems through unique insights into engineering performance and interdisciplinary behavior to meet challenging size, weight, power, environmental, and performance requirements. LLIMAS is a multidisciplinary design optimization tool that wraps numerical optimization algorithms around an integrated framework of structural, thermal, optical, stray light, and computational fluid dynamics analysis capabilities. LLIMAS software is highly extensible and has developed organically across a variety of technologies including laser communications, directed energy, photometric detectors, chemical sensing, laser radar, and imaging systems. The custom software architecture leverages the capabilities of existing industry standard commercial software and supports the incorporation of internally developed tools. Recent advances in LLIMAS's Structural-Thermal-Optical Performance (STOP), aeromechanical, and aero-optical capabilities as applied to Lincoln prototypes are presented.

  5. Career Directions--Fiber Optic Installer

    ERIC Educational Resources Information Center

    Tech Directions, 2012

    2012-01-01

    Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of light through an optical fiber that is roughly the diameter of a human hair. The light forms an electromagnetic carrier wave that is modulated to carry information. Each optical fiber is capable of carrying an enormous amount of…

  6. Combined advanced finishing and UV laser conditioning process for producing damage resistant optics

    DOEpatents

    Menapace, Joseph A.; Peterson, John E.; Penetrante, Bernardino M.; Miller, Philip E.; Parham, Thomas G.; Nichols, Michael A.

    2005-07-26

    A method for reducing the density of sites on the surface of fused silica optics that are prone to the initiation of laser-induced damage, resulting in optics which have far fewer catastrophic defects, and are better capable of resisting optical deterioration upon exposure to a high-power laser beam.

  7. Laser interference fringe tomography: a novel 3D imaging technique for pathology

    NASA Astrophysics Data System (ADS)

    Kazemzadeh, Farnoud; Haylock, Thomas M.; Chifman, Lev M.; Hajian, Arsen R.; Behr, Bradford B.; Cenko, Andrew T.; Meade, Jeff T.; Hendrikse, Jan

    2011-03-01

    Laser interference fringe tomography (LIFT) is within the class of optical imaging devices designed for in vivo and ex vivo medical imaging applications. LIFT is a very simple and cost-effective three-dimensional imaging device with performance rivaling some of the leading three-dimensional imaging devices used for histology. Like optical coherence tomography (OCT), it measures the reflectivity as a function of depth within a sample and is capable of producing three-dimensional images from optically scattering media. LIFT has the potential capability to produce high spectral resolution, full-color images. The optical design of LIFT along with the planned iterations for improvements and miniaturization are presented and discussed in addition to the theoretical concepts and preliminary imaging results of the device.

  8. Vertically-tapered optical waveguide and optical spot transformer formed therefrom

    DOEpatents

    Bakke, Thor; Sullivan, Charles T.

    2004-07-27

    An optical waveguide is disclosed in which a section of the waveguide core is vertically tapered during formation by spin coating by controlling the width of an underlying mesa structure. The optical waveguide can be formed from spin-coatable materials such as polymers, sol-gels and spin-on glasses. The vertically-tapered waveguide section can be used to provide a vertical expansion of an optical mode of light within the optical waveguide. A laterally-tapered section can be added adjacent to the vertically-tapered section to provide for a lateral expansion of the optical mode, thereby forming an optical spot-size transformer for efficient coupling of light between the optical waveguide and a single-mode optical fiber. Such a spot-size transformer can also be added to a III-V semiconductor device by post processing.

  9. Time stamping of single optical photons with 10 ns resolution

    NASA Astrophysics Data System (ADS)

    Chakaberia, Irakli; Cotlet, Mircea; Fisher-Levine, Merlin; Hodges, Diedra R.; Nguyen, Jayke; Nomerotski, Andrei

    2017-05-01

    High spatial and temporal resolution are key features for many modern applications, e.g. mass spectrometry, probing the structure of materials via neutron scattering, studying molecular structure, etc.1-5 Fast imaging also provides the capability of coincidence detection, and the further addition of sensitivity to single optical photons with the capability of timestamping them further broadens the field of potential applications. Photon counting is already widely used in X-ray imaging,6 where the high energy of the photons makes their detection easier. TimepixCam is a novel optical imager,7 which achieves high spatial resolution using an array of 256×256 55 μm × 55μm pixels which have individually controlled functionality. It is based on a thin-entrance-window silicon sensor, bump-bonded to a Timepix ASIC.8 TimepixCam provides high quantum efficiency in the optical wavelength range (400-1000 nm). We perform the timestamping of single photons with a time resolution of 20 ns, by coupling TimepixCam to a fast image-intensifier with a P47 phosphor screen. The fast emission time of the P479 allows us to preserve good time resolution while maintaining the capability to focus the optical output of the intensifier onto the 256×256 pixel Timepix sensor area. We demonstrate the capability of the (TimepixCam + image intensifier) setup to provide high-resolution single-photon timestamping, with an effective frame rate of 50 MHz.

  10. A novel all-fiber optic flow cytometer technology for Point-of Care and Remote Environments

    NASA Astrophysics Data System (ADS)

    Mermut, Ozzy

    Traditional flow cytometry designs tend to be bulky systems with a complex optical-fluidic sub-system and often require trained personnel for operation. This makes them difficult to readily translate to remote site testing applications. A new compact and portable fiber-optic flow cell (FOFC) technology has been developed at INO. We designed and engineered a specialty optical fiber through which a square hole is transversally bored by laser micromachining. A capillary is fitted into that hole to flow analyte within the fiber square cross-section for detection and counting. With demonstrated performance benchmarks potentially comparable to commercial flow cytometers, our FOFC provides several advantages compared to classic free-space con-figurations, e.g., sheathless flow, low cost, reduced number of optical components, no need for alignment (occurring in the fabrication process only), ease-of-use, miniaturization, portability, and robustness. This sheathless configuration, based on a fiber optic flow module, renders this cytometer amenable to space-grade microgravity environments. We present our recent results for an all-fiber approach to achieve a miniature FOFC to translate flow cytometry from bench to a portable, point-of-care device for deployment in remote settings. Our unique fiber approach provides the capability to illuminate a large surface with a uniform intensity distri-bution, independently of the initial shape originating from the light source, and without loss of optical power. The CVs and sensitivities are measured and compared to industry benchmarks. Finally, integration of LEDs enable several advantages in cost, compactness, and wavelength availability.

  11. Quantitative high dynamic range beam profiling for fluorescence microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, T. J., E-mail: t.j.mitchell@dur.ac.uk; Saunter, C. D.; O’Nions, W.

    2014-10-15

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly withinmore » the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.« less

  12. Role of optical computers in aeronautical control applications

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1981-01-01

    The role that optical computers play in aircraft control is determined. The optical computer has the potential high speed capability required, especially for matrix/matrix operations. The optical computer also has the potential for handling nonlinear simulations in real time. They are also more compatible with fiber optic signal transmission. Optics also permit the use of passive sensors to measure process variables. No electrical energy need be supplied to the sensor. Complex interfacing between optical sensors and the optical computer is avoided if the optical sensor outputs can be directly processed by the optical computer.

  13. Proper alignment of the microscope.

    PubMed

    Rottenfusser, Rudi

    2013-01-01

    The light microscope is merely the first element of an imaging system in a research facility. Such a system may include high-speed and/or high-resolution image acquisition capabilities, confocal technologies, and super-resolution methods of various types. Yet more than ever, the proverb "garbage in-garbage out" remains a fact. Image manipulations may be used to conceal a suboptimal microscope setup, but an artifact-free image can only be obtained when the microscope is optimally aligned, both mechanically and optically. Something else is often overlooked in the quest to get the best image out of the microscope: Proper sample preparation! The microscope optics can only do its job when its design criteria are matched to the specimen or vice versa. The specimen itself, the mounting medium, the cover slip, and the type of immersion medium (if applicable) are all part of the total optical makeup. To get the best results out of a microscope, understanding the functions of all of its variable components is important. Only then one knows how to optimize these components for the intended application. Different approaches might be chosen to discuss all of the microscope's components. We decided to follow the light path which starts with the light source and ends at the camera or the eyepieces. To add more transparency to this sequence, the section up to the microscope stage was called the "Illuminating Section", to be followed by the "Imaging Section" which starts with the microscope objective. After understanding the various components, we can start "working with the microscope." To get the best resolution and contrast from the microscope, the practice of "Koehler Illumination" should be understood and followed by every serious microscopist. Step-by-step instructions as well as illustrations of the beam path in an upright and inverted microscope are included in this chapter. A few practical considerations are listed in Section 3. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. The Precision Formation Flying Integrated Analysis Tool (PFFIAT)

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Lyon, Richard G.; Sears, Edie; Lu, Victor

    2004-01-01

    Several space missions presently in the concept phase (e.g. Stellar Imager, Submillimeter Probe of Evolutionary Cosmic Structure, Terrestrial Planet Finder) plan to use multiple spacecraft flying in precise formation to synthesize unprecedently large aperture optical systems. These architectures present challenges to the attitude and position determination and control system; optical performance is directly coupled to spacecraft pointing with typical control requirements being on the scale of milliarcseconds and nanometers. To investigate control strategies, rejection of environmental disturbances, and sensor and actuator requirements, a capability is needed to model both the dynamical and optical behavior of such a distributed telescope system. This paper describes work ongoing at NASA Goddard Space Flight Center toward the integration of a set of optical analysis tools (Optical System Characterization and Analysis Research software, or OSCAR) with the Formation Flying Test Bed (FFTB). The resulting system is called the Precision Formation Flying Integrated Analysis Tool (PFFIAT), and it provides the capability to simulate closed-loop control of optical systems composed of elements mounted on multiple spacecraft. The attitude and translation spacecraft dynamics are simulated in the FFTB, including effects of the space environment (e.g. solar radiation pressure, differential orbital motion). The resulting optical configuration is then processed by OSCAR to determine an optical image. From this image, wavefront sensing (e.g. phase retrieval) techniques are being developed to derive attitude and position errors. These error signals will be fed back to the spacecraft control systems, completing the control loop. A simple case study is presented to demonstrate the present capabilities of the tool.

  15. The Precision Formation Flying Integrated Analysis Tool (PFFIAT)

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Lyon, Richard G.; Sears, Edie; Lu, Victor

    2004-01-01

    Several space missions presently in the concept phase (e.g. Stellar Imager, Sub- millimeter Probe of Evolutionary Cosmic Structure, Terrestrial Planet Finder) plan to use multiple spacecraft flying in precise formation to synthesize unprecedently large aperture optical systems. These architectures present challenges to the attitude and position determination and control system; optical performance is directly coupled to spacecraft pointing with typical control requirements being on the scale of milliarcseconds and nanometers. To investigate control strategies, rejection of environmental disturbances, and sensor and actuator requirements, a capability is needed to model both the dynamical and optical behavior of such a distributed telescope system. This paper describes work ongoing at NASA Goddard Space Flight Center toward the integration of a set of optical analysis tools (Optical System Characterization and Analysis Research software, or OSCAR) with the Formation J?lying Test Bed (FFTB). The resulting system is called the Precision Formation Flying Integrated Analysis Tool (PFFIAT), and it provides the capability to simulate closed-loop control of optical systems composed of elements mounted on multiple spacecraft. The attitude and translation spacecraft dynamics are simulated in the FFTB, including effects of the space environment (e.g. solar radiation pressure, differential orbital motion). The resulting optical configuration is then processed by OSCAR to determine an optical image. From this image, wavefront sensing (e.g. phase retrieval) techniques are being developed to derive attitude and position errors. These error signals will be fed back to the spacecraft control systems, completing the control loop. A simple case study is presented to demonstrate the present capabilities of the tool.

  16. Combined hostile fire and optics detection

    NASA Astrophysics Data System (ADS)

    Brännlund, Carl; Tidström, Jonas; Henriksson, Markus; Sjöqvist, Lars

    2013-10-01

    Snipers and other optically guided weapon systems are serious threats in military operations. We have studied a SWIR (Short Wave Infrared) camera-based system with capability to detect and locate snipers both before and after shot over a large field-of-view. The high frame rate SWIR-camera allows resolution of the temporal profile of muzzle flashes which is the infrared signature associated with the ejection of the bullet from the rifle. The capability to detect and discriminate sniper muzzle flashes with this system has been verified by FOI in earlier studies. In this work we have extended the system by adding a laser channel for optics detection. A laser diode with slit-shaped beam profile is scanned over the camera field-of-view to detect retro reflection from optical sights. The optics detection system has been tested at various distances up to 1.15 km showing the feasibility to detect rifle scopes in full daylight. The high speed camera gives the possibility to discriminate false alarms by analyzing the temporal data. The intensity variation, caused by atmospheric turbulence, enables discrimination of small sights from larger reflectors due to aperture averaging, although the targets only cover a single pixel. It is shown that optics detection can be integrated in combination with muzzle flash detection by adding a scanning rectangular laser slit. The overall optics detection capability by continuous surveillance of a relatively large field-of-view looks promising. This type of multifunctional system may become an important tool to detect snipers before and after shot.

  17. Design and analysis study of a spacecraft optical transceiver package

    NASA Technical Reports Server (NTRS)

    Lambert, S. G.

    1985-01-01

    A detailed system level design of an Optical Transceiver Package (OPTRANSPAC) for a deep space vehicle whose mission is outer planet exploration is developed. In addition to the terminal design, this study provides estimates of the dynamic environments to be encountered by the transceiver throughout its mission life. Optical communication link analysis, optical thin lens design, electronic functional design and mechanical layout and packaging are employed in the terminal design. Results of the study describe an Optical Transceiver Package capable of communicating to an Earth Orbiting Relay Station at a distance of 10 Astronomical Units (AU) and data rates up to 100 KBPS. The transceiver is also capable of receiving 1 KBPS of command data from the Earth Relay. The physical dimensions of the terminal are contained within a 3.5' x 1.5' x 2.0' envelope and the transceiver weight and power are estimated at 52.2 Kg (115 pounds) and 57 watts, respectively.

  18. A versatile fibre optic sensor interrogation system for the Ariane Launcher based on an electro-optically tuneable laser diode

    NASA Astrophysics Data System (ADS)

    Plattner, M. P.; Hirth, F.; Müller, M. S.; Hoffmann, L.; Buck, T. C.; Koch, A. W.

    2017-11-01

    Availability of reliable flight sensor data and knowledge of the structural behaviour are essential for safe operation of the Ariane launcher. The Ariane launcher is currently monitored by hundreds of electric sensors during test and qualification. Fibre optic sensors are regarded as a potential technique to overcome limitations of recent monitoring systems for the Ariane launcher [1]. These limitations include cumbersome application of sensors and harness as well as a very limited degree of distributed sensing capability. But, in order to exploit the various advantages of fibre optic sensors (high degree of multiplexing, distributed sensing capability, lower mass impact, etc.) dedicated measurement systems have to be developed and investigated. State-of-the-art fibre optic measurement systems often use free beam setups making them bulky and sensitive to vibration impact. Therefore a new measurement system is developed as part of the ESAstudy [2].

  19. Energy efficient flexible hybrid wavelength division multiplexing-time division multiplexing passive optical network with pay as you grow deployment

    NASA Astrophysics Data System (ADS)

    Garg, Amit Kumar; Madavi, Amresh Ashok; Janyani, Vijay

    2017-02-01

    A flexible hybrid wavelength division multiplexing-time division multiplexing passive optical network architecture that allows dual rate signals to be sent at 1 and 10 Gbps to each optical networking unit depending upon the traffic load is proposed. The proposed design allows dynamic wavelength allocation with pay-as-you-grow deployment capability. This architecture is capable of providing up to 40 Gbps of equal data rates to all optical distribution networks (ODNs) and up to 70 Gbps of a asymmetrical data rate to the specific ODN. The proposed design handles broadcasting capability with simultaneous point-to-point transmission, which further reduces energy consumption. In this architecture, each module sends a wavelength to each ODN, thus making the architecture fully flexible; this flexibility allows network providers to use only required OLT components and switch off others. The design is also reliable to any module or TRx failure and provides services without any service disruption. Dynamic wavelength allocation and pay-as-you-grow deployment support network extensibility and bandwidth scalability to handle future generation access networks.

  20. A growth path for deep space communications

    NASA Technical Reports Server (NTRS)

    Layland, J. W.; Smith, J. G.

    1987-01-01

    Increased Deep Space Network (DPN) receiving capability far beyond that now available for Voyager is achievable through a mix of increased antenna aperture and increased frequency of operation. In this note a sequence of options are considered: adding midsized antennas for arraying with the existing network at X-band; converting to Ka-band and adding array elements; augmenting the DSN with an orbiting Ka-band station; and augmenting the DSN with an optical receiving capability, either on the ground or in space. Costs of these options are compared as means of achieving significantly increased receiving capability. The envelope of lowest costs projects a possible path for moving from X-band to Ka-band and thence to optical frequencies, and potentially for moving from ground-based to space-based apertures. The move to Ka-band is clearly of value now, with development of optical communications technology a good investment for the future.

  1. A Concept For A High Resolution Optical Lithographic System For Producing One-Half Micron Linewidths

    NASA Astrophysics Data System (ADS)

    Reynolds, George O.

    1986-08-01

    This paper describes a concept for developing an optical printer having a one-half micron linewidth capability to meet the pro-jected needs of future Integrated Circuit (IC) production facilities. Our approach for meeting this objective is to combine the appro-priate features of the current 1:1 reflective optical printers with the stepping characteristic of the 10:1 refractive optical systems. The proposed, very deep, UV step and repeat system has the potential of reaching a one-half micron linewidth production goal entirely with optical technology. The key subsystem elements necessary to achieve these goals are discussed. These subsystems include a reflective optical system, a 10:1 stepper configuration having a linearity limit of 0.5 microns and an FOV of 15 mm, a deep UV laser source, photoresists having the required sensitivity, an alignment capability of 500 Å , a focal sensor having a 500 Å tolerance and the associated mechanical, electronic and environmental controls compatible with a produc-tion throughput of 60-four inch wafers/hour.

  2. Demonstration of an optical phased array using electro-optic polymer phase shifters

    NASA Astrophysics Data System (ADS)

    Hirano, Yoshikuni; Motoyama, Yasushi; Tanaka, Katsu; Machida, Kenji; Yamada, Toshiki; Otomo, Akira; Kikuchi, Hiroshi

    2018-03-01

    We have been investigating an optical phased array (OPA) using electro-optic (EO) polymers in phase shifters to achieve ultrafast optical beam steering. In this paper, we describe the basic structures of the OPA using EO polymer phase shifters and show the beam steering capability of the OPA. The designed OPA has a multimode interference (MMI) beam splitter and 8-channel polymer waveguides with EO polymer phase shifters. We compare 1 × 8 MMI and cascaded 1 × 2 MMI beam splitters numerically and experimentally, and then obtain uniform intensity outputs from the 1 × 8 beam splitter. We fabricate the EO polymer OPA with a 1 × 8 MMI beam splitter to prevent intensity dispersion due to radiation loss in bending waveguides. We also evaluate the optical beam steering capability of the fabricated OPA and found a 2.7° deflection of far-field patterns when applying a voltage difference of 25 V in adjacent phase shifters.

  3. Neural networks within multi-core optic fibers

    PubMed Central

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-01-01

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks. PMID:27383911

  4. Neural networks within multi-core optic fibers.

    PubMed

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-07-07

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks.

  5. Bench-top endomicroscope for visualization and imaging of nuclei using ultraviolet autofluorescence

    NASA Astrophysics Data System (ADS)

    Lin, Bevin

    The long range goal of this research was to develop autofluorescence technology and instrumentation for transition towards an in vivo endomicroscopy imaging system. This approach would provide resolution sufficient to image nuclei for real-time categorization of normal and abnormal tissue implicative of disease progression. Esophageal adenocarcinoma was the chosen model to develop this diagnostic imaging system because the heterogeneous and multifocal nature of this disease makes early diagnosis extremely challenging during the window of time when the prognosis for survival is high. The asymptomatic character of this disease generally presents at a malignant stage when removal of the esophagus has become the standard treatment. The traditional gold standard of histologic diagnosis suffers from a slow turn-around-time from tissue removal to microscopic observation, compounded by error in random biopsy sampling and tissue-processing artifacts, in addition to significant variation in pathologist diagnosis. Optical biopsy has thus been developed to alleviate the problems associated with current standard video endoscopy and histopathology. Following tremendous research in the realm of optical biopsy, some traction has been gained using confocal endomicroscopy. However, current confocal methods require contrast agents and optical sectioning in order to provide images at a cellular level. We have developed a minimally invasive imaging system using autofluorescence that highlights the short photon penetration depth of ultraviolet excitation. This approach provides cellular level resolution with a clinically relevant field of view without requiring contrast agents or optical sectioning. Optical histopathology has been demonstrated using unprocessed ex vivo human gastrointestinal tissues providing diagnostic assessment in real-time, a function imperative for improved patient care and quality of life. This robust bench-top prototype endomicroscopy system is capable of rapid throughput, high sensitivity and specificity, provides a user friendly interface, and preserves distinct advantages in cost based on instrumentation simplicity. These advantages poise this ultraviolet autofluorescence endomicroscopy system for break-through clinical implementation.

  6. Tip-enhanced near-field optical microscopy

    PubMed Central

    Mauser, Nina; Hartschuh, Achim

    2013-01-01

    Tip-enhanced near-field optical microscopy (TENOM) is a scanning probe technique capable of providing a broad range of spectroscopic information on single objects and structured surfaces at nanometer spatial resolution and with highest detection sensitivity. In this review, we first illustrate the physical principle of TENOM that utilizes the antenna function of a sharp probe to efficiently couple light to excitations on nanometer length scales. We then discuss the antenna-induced enhancement of different optical sample responses including Raman scattering, fluorescence, generation of photocurrent and electroluminescence. Different experimental realizations are presented and several recent examples that demonstrate the capabilities of the technique are reviewed. PMID:24100541

  7. Laser Communications Relay Demonstration (LCRD) Update and the Path Towards Optical Relay Operations

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Edwards, Bernard L.; Staren, John W.

    2017-01-01

    This paper provides a concept for an evolution of NASA's optical communications near Earth relay architecture. NASA's Laser Communications Relay Demonstration (LCRD), a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory - California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT LL). LCRD will provide a minimum of two years of high data rate optical communications service experiments in geosynchronous orbit (GEO), following launch in 2019. This paper will provide an update of the LCRD mission status and planned capabilities and experiments, followed by a discussion of the path from LCRD to operational network capabilities.

  8. Real-time quantitative fluorescence imaging using a single snapshot optical properties technique for neurosurgical guidance

    NASA Astrophysics Data System (ADS)

    Valdes, Pablo A.; Angelo, Joseph; Gioux, Sylvain

    2015-03-01

    Fluorescence imaging has shown promise as an adjunct to improve the extent of resection in neurosurgery and oncologic surgery. Nevertheless, current fluorescence imaging techniques do not account for the heterogeneous attenuation effects of tissue optical properties. In this work, we present a novel imaging system that performs real time quantitative fluorescence imaging using Single Snapshot Optical Properties (SSOP) imaging. We developed the technique and performed initial phantom studies to validate the quantitative capabilities of the system for intraoperative feasibility. Overall, this work introduces a novel real-time quantitative fluorescence imaging method capable of being used intraoperatively for neurosurgical guidance.

  9. Cryogenic Test Capability at Marshall Space Flight Center's X-ray Cryogenic Test Facility

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey; Baker, Mark; Carpenter, Jay; Eng, Ron; Haight, Harlan; Hogue, William; McCracken, Jeff; Siler, Richard; Wright, Ernie

    2006-01-01

    Marshall Space Flight Center's X-ray & Cryogenic Test Facility (XRCF) has been performing sub-liquid nitrogen temperature testing since 1999. Optical wavefront measurement, thermal structural deformation, mechanism functional & calibration, and simple cryo-conditioning tests have been completed. Recent modifications have been made to the facility in support of the James Webb Space Telescope (JWST) program. The chamber's payload envelope and the facility s refrigeration capacity have both been increased. Modifications have also been made to the optical instrumentation area improving access for both the installation and operation of optical instrumentation outside the vacuum chamber. The facility's capabilities, configuration, and performance data will be presented.

  10. Laser Communications Relay Demonstration (LCRD) Update and the Path Towards Optical Relay Operations

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Edwards, Bernard L.; Staren, John W.

    2017-01-01

    This Presentation provides a concept for an evolution of NASAs optical communications near Earth relay architecture. NASA's Laser Communications Relay Demonstration (LCRD), a joint project between NASAs Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory - California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT LL). LCRD will provide a minimum of two years of high data rate optical communications service experiments in geosynchronous orbit (GEO), following launch in 2019. This paper will provide an update of the LCRD mission status and planned capabilities and experiments, followed by a discussion of the path from LCRD to operational network capabilities.

  11. Micro-Fresnel Zone Plate Optical Devices Using Densely Accumulated Ray Points

    NASA Technical Reports Server (NTRS)

    Choi, Sang H. (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2011-01-01

    An embodiment generally relates to an optical device suitable for use with an optical medium for the storage and retrieval of data. The optical device includes an illumination means for providing a beam of optical radiation of wavelength .lamda. and an optical path that the beam of optical radiation follows. The optical device also includes a diffractive optical element defined by a plurality of annular sections. The plurality of annular sections having a first material alternately disposed with a plurality of annular sections comprising a second material. The diffractive optical element generates a plurality of focal points and densely accumulated ray points with phase contrast phenomena and the optical medium is positioned at a selected focal point or ray point of the diffractive optical element.

  12. Review of Microwave Photonics Technique to Generate the Microwave Signal by Using Photonics Technology

    NASA Astrophysics Data System (ADS)

    Raghuwanshi, Sanjeev Kumar; Srivastav, Akash

    2017-12-01

    Microwave photonics system provides high bandwidth capabilities of fiber optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, we can considered microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper we have thoroughly reviewed the microwave generation techniques by using photonics technology.

  13. A review of the development of optical countermeasures

    NASA Astrophysics Data System (ADS)

    Titterton, David H.

    2004-12-01

    Optical countermeasures have been used for several millenia to provide a defensive capability capability. The fundamental approach is to use an intense optical source to dazzle a sensor or distract an operator or target tracking system causing a weapon to miss its intended target. The development of the laser has provided a stimulus for anumber of soft-kill weapon systems used to enhance platform survivability and anti-air missile applications; in this case the laser may cause dazzle, or if the beam is sufficiently intense it may cause damage. Laser technology is also crucial for an aspect of directed energy weapons. The various aspects of optical countermeasures are considered in this paper, including defeat mechanisms of active and passive techniques. The review includes a historical perspective through to prospects for the future.

  14. Optical sectioning for optical scanning holography using phase-space filtering with Wigner distribution functions.

    PubMed

    Kim, Hwi; Min, Sung-Wook; Lee, Byoungho; Poon, Ting-Chung

    2008-07-01

    We propose a novel optical sectioning method for optical scanning holography, which is performed in phase space by using Wigner distribution functions together with the fractional Fourier transform. The principle of phase-space optical sectioning for one-dimensional signals, such as slit objects, and two-dimensional signals, such as rectangular objects, is first discussed. Computer simulation results are then presented to substantiate the proposed idea.

  15. Sub-micron materials characterization using near-field optics

    NASA Astrophysics Data System (ADS)

    Blodgett, David Wesley

    1998-12-01

    High-resolution sub-surface materials characterization and inspection are critical in the microelectronics and thin films industries. To this end, a technique is described that couples the bulk property measurement capabilities of high-frequency ultrasound with the high-resolution surface imaging capabilities of the near-field optical microscope. Sensing bulk microstructure variations in the material, such as grain boundaries, requires a detection footprint smaller than the variation itself. The near-field optical microscope, with the ability to exceed the diffraction limit in optical resolution, meets this requirement. Two apertureless near-field optical microscopes, on-axis and off-axis illumination, have been designed and built. Near-field and far-field approach curves for both microscopes are presented. The sensitivity of the near-field approach curve was 8.3 muV/nm. Resolution studies for the near-field microscope indicate optical resolutions on the order of 50 nm, which exceeds the diffraction limit. The near-field microscope has been adapted to detect both contact-transducer-generated and laser-generated ultrasound. The successful detection of high-frequency ultrasound with the near-field optical microscope demonstrates the potential of this technique.

  16. Laser dissection sampling modes for direct mass spectral analysis [using a hybrid optical microscopy/laser ablation liquid vortex capture/electrospray ionization system

    DOE PAGES

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    2016-02-01

    Here, laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis ofmore » single cells and tissue. Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (4-15 m) even when agglomerated together. Turbid Allium Cepa cells (150 m) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. In conclusion, laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for cases where the highest sensitivity is needed, for example, monitoring drugs present in trace amounts in tissue.« less

  17. Laser dissection sampling modes for direct mass spectral analysis [using a hybrid optical microscopy/laser ablation liquid vortex capture/electrospray ionization system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    Here, laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis ofmore » single cells and tissue. Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (4-15 m) even when agglomerated together. Turbid Allium Cepa cells (150 m) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. In conclusion, laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for cases where the highest sensitivity is needed, for example, monitoring drugs present in trace amounts in tissue.« less

  18. Optical Design of an Optical Communications Terminal

    NASA Technical Reports Server (NTRS)

    Biswas, Abhijit; Page, Norman; Hemmati, Hamid

    2005-01-01

    An optical communications terminal (OCT) is being developed to enable transmission of data at a rate as high as 2.5 Gb/s, from an aircraft or spacecraft to a ground station. In addition to transmitting high data rates, OCT will also be capable of bidirectional communications.

  19. Optical sectioning in wide-field microscopy obtained by dynamic structured light illumination and detection based on a smart pixel detector array.

    PubMed

    Mitić, Jelena; Anhut, Tiemo; Meier, Matthias; Ducros, Mathieu; Serov, Alexander; Lasser, Theo

    2003-05-01

    Optical sectioning in wide-field microscopy is achieved by illumination of the object with a continuously moving single-spatial-frequency pattern and detecting the image with a smart pixel detector array. This detector performs an on-chip electronic signal processing that extracts the optically sectioned image. The optically sectioned image is directly observed in real time without any additional postprocessing.

  20. Living Matter Observations with a Novel Hyperspectral Supercontinuum Confocal Microscope for VIS to Near-IR Reflectance Spectroscopy

    PubMed Central

    Bertani, Francesca R.; Ferrari, Luisa; Mussi, Valentina; Botti, Elisabetta; Costanzo, Antonio; Selci, Stefano

    2013-01-01

    A broad range hyper-spectroscopic microscope fed by a supercontinuum laser source and equipped with an almost achromatic optical layout is illustrated with detailed explanations of the design, implementation and data. The real novelty of this instrument, a confocal spectroscopic microscope capable of recording high resolution reflectance data in the VIS-IR spectral range from about 500 nm to 2.5 μm wavelengths, is the possibility of acquiring spectral data at every physical point as defined by lateral coordinates, X and Y, as well as at a depth coordinate, Z, as obtained by the confocal optical sectioning advantage. With this apparatus we collect each single scanning point as a whole spectrum by combining two linear spectral detector arrays, one CCD for the visible range, and one InGaAs infrared array, simultaneously available at the sensor output channel of the home made instrument. This microscope has been developed for biomedical analysis of human skin and other similar applications. Results are shown illustrating the technical performances of the instrument and the capability in extracting information about the composition and the structure of different parts or compartments in biological samples as well as in solid statematter. A complete spectroscopic fingerprinting of samples at microscopic level is shown possible by using statistical analysis on raw data or analytical reflectance models based on Abelés matrix transfer methods. PMID:24233077

  1. Advances in Measuring the Apparent Optical Properties (AOPs) of Optically Complex Waters

    NASA Technical Reports Server (NTRS)

    Morrow, John H.; Hooker, Stanford B.; Booth, Charles R.; Bernhard, Germar; Lind, Randall N.; Brown, James W.

    2010-01-01

    This report documents new technology used to measure the apparent optical properties (AOPs) of optically complex waters. The principal objective is to be prepared for the launch of next-generation ocean color satellites with the most capable commercial off-the-shelf (COTS) instrumentation. An enhanced COTS radiometer was the starting point for designing and testing the new sensors. The follow-on steps were to apply the lessons learned towards a new in-water profiler based on a kite-shaped backplane for mounting the light sensors. The next level of sophistication involved evaluating new radiometers emerging from a development activity based on so-called microradiometers. The exploitation of microradiometers resulted in an in-water profiling system, which includes a sensor networking capability to control ancillary sensors like a shadowband or global positioning system (GPS) device. A principal advantage of microradiometers is their flexibility in producing, interconnecting, and maintaining instruments. The full problem set for collecting sea-truth data--whether in coastal waters or the open ocean-- involves other aspects of data collection that were improved for instruments measuring both AOPs and inherent optical properties (IOPs), if the uncertainty budget is to be minimized. New capabilities associated with deploying solar references were developed as well as a compact solution for recovering in-water instrument systems from small boats.

  2. Optical Microresonators for Sensing and Transduction: A Materials Perspective.

    PubMed

    Heylman, Kevin D; Knapper, Kassandra A; Horak, Erik H; Rea, Morgan T; Vanga, Sudheer K; Goldsmith, Randall H

    2017-08-01

    Optical microresonators confine light to a particular microscale trajectory, are exquisitely sensitive to their microenvironment, and offer convenient readout of their optical properties. Taken together, this is an immensely attractive combination that makes optical microresonators highly effective as sensors and transducers. Meanwhile, advances in material science, fabrication techniques, and photonic sensing strategies endow optical microresonators with new functionalities, unique transduction mechanisms, and in some cases, unparalleled sensitivities. In this progress report, the operating principles of these sensors are reviewed, and different methods of signal transduction are evaluated. Examples are shown of how choice of materials must be suited to the analyte, and how innovations in fabrication and sensing are coupled together in a mutually reinforcing cycle. A tremendously broad range of capabilities of microresonator sensors is described, from electric and magnetic field sensing to mechanical sensing, from single-molecule detection to imaging and spectroscopy, from operation at high vacuum to in live cells. Emerging sensing capabilities are highlighted and put into context in the field. Future directions are imagined, where the diverse capabilities laid out are combined and advances in scalability and integration are implemented, leading to the creation of a sensor unparalleled in sensitivity and information content. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Design of a versatile clinical aberrometer

    NASA Astrophysics Data System (ADS)

    Sheehan, Matthew; Goncharov, Alexander; Dainty, Chris

    2005-09-01

    We have designed an ocular aberrometer based on the Hartmann-Shack (HS) type wavefront sensor for use in optometry clinics. The optical system has enhanced versatility compared with commercial aberrometers, yet it is compact and user-friendly. The system has the capability to sense both on-axis and off-axis aberrations in the eye within an unobstructed 20 degree field. This capability is essential to collect population data for off-axis aberrations. This data will be useful in designing future adaptive optics (AO) systems to improve image quality of eccentric retinal areas, in particular, for multi-conjugate AO systems. The ability of the examiner to control the accommodation demand is a unique feature of the design that commercial instruments are capable of only after modification. The pupil alignment channel is re-combined with the sensing channel in a parallel path and imaged on a single CCD. This makes the instrument more compact, less expensive, and it helps to synchronize the pupil center with the HS spot coordinate system. Another advantage of the optical design is telecentric re-imaging of the HS spots, increasing the robustness to small longitudinal alignment errors. The optical system has been optimized with a ray-tracing program and its prototype is being constructed. Design considerations together with a description of the optical components are presented. Difficulties and future work are outlined.

  4. Realization of arbitrarily long focus-depth optical vortices with spiral area-varying zone plates

    NASA Astrophysics Data System (ADS)

    Zheng, Chenglong; Zang, Huaping; Du, Yanli; Tian, Yongzhi; Ji, Ziwen; Zhang, Jing; Fan, Quanping; Wang, Chuanke; Cao, Leifeng; Liang, Erjun

    2018-05-01

    We provide a methodology to realize an optical vortex with arbitrarily long focus-depth. With a technique of varying each zone area of a phase spiral zone plate one can obtain optics capable of generating ultra-long focus-depth optical vortex from a plane wave. The focal property of such optics was analysed using the Fresnel diffraction theory, and an experimental demonstration was performed to verify its effectiveness. Such optics may bring new opportunity and benefits for optical vortex application such as optical manipulation and lithography.

  5. Laser Transmitter Aims At Laser Beacon

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Lesh, James R.

    1993-01-01

    Transmitter part of developmental optical communication system. Compact, lightweight, partially-self-aiming laser transmitter built to verify some capabilities of developmental free-space optical communication system. Design capable of providing 0.5 Mbps data return over range equal to Moon-Earth distance. Breadboard of transmitting terminal constructed and tested in laboratory. Prototype transmitter includes receiving circuitry that keeps it aimed at beacon, once brought into initial alignment within about 1.7 degrees of line of sight to beacon.

  6. Electro-Optic Propagation

    DTIC Science & Technology

    2003-09-30

    Electro - Optic Propagation Stephen Doss-Hammel SPAWARSYSCEN San Diego code 2858 49170 Propagation Path San Diego, CA 92152-7385 phone: (619...scenarios to extend the capabilities of TAWS to surface and low altitude situations. OBJECTIVES The electro - optical propagation objectives are: 1...development of a new propagation assessment tool called EOSTAR ( Electro - Optical Signal Transmission and Ranging). The goal of the EOSTAR project is to

  7. Wide-Band, High-Quantum-Efficiency Photodetector

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah; Wilson, Daniel; Stern, Jeffrey

    2007-01-01

    A design has been proposed for a photodetector that would exhibit a high quantum efficiency (as much as 90 percent) over a wide wavelength band, which would typically be centered at a wavelength of 1.55 m. This and similar photodetectors would afford a capability for detecting single photons - a capability that is needed for research in quantum optics as well as for the practical development of secure optical communication systems for distribution of quantum cryptographic keys. The proposed photodetector would be of the hot-electron, phonon-cooled, thin-film superconductor type. The superconducting film in this device would be a meandering strip of niobium nitride. In the proposed photodetector, the quantum efficiency would be increased through incorporation of optiA design has been proposed for a photodetector that would exhibit a high quantum efficiency (as much as 90 percent) over a wide wavelength band, which would typically be centered at a wavelength of 1.55 m. This and similar photodetectors would afford a capability for detecting single photons - a capability that is needed for research in quantum optics as well as for the practical development of secure optical communication systems for distribution of quantum cryptographic keys. The proposed photodetector would be of the hot-electron, phonon-cooled, thin-film superconductor type. The superconducting film in this device would be a meandering strip of niobium nitride. In the proposed photodetector, the quantum efficiency would be increased through incorporation of opti-

  8. User Needs and Advances in Space Wireless Sensing and Communications

    NASA Technical Reports Server (NTRS)

    Kegege, Obadiah

    2017-01-01

    Decades of space exploration and technology trends for future missions show the need for new approaches in space/planetary sensor networks, observatories, internetworking, and communications/data delivery to Earth. The User Needs to be discussed in this talk includes interviews with several scientists and reviews of mission concepts for the next generation of sensors, observatories, and planetary surface missions. These observatories, sensors are envisioned to operate in extreme environments, with advanced autonomy, whereby sometimes communication to Earth is intermittent and delayed. These sensor nodes require software defined networking capabilities in order to learn and adapt to the environment, collect science data, internetwork, and communicate. Also, some user cases require the level of intelligence to manage network functions (either as a host), mobility, security, and interface data to the physical radio/optical layer. For instance, on a planetary surface, autonomous sensor nodes would create their own ad-hoc network, with some nodes handling communication capabilities between the wireless sensor networks and orbiting relay satellites. A section of this talk will cover the advances in space communication and internetworking to support future space missions. NASA's Space Communications and Navigation (SCaN) program continues to evolve with the development of optical communication, a new vision of the integrated network architecture with more capabilities, and the adoption of CCSDS space internetworking protocols. Advances in wireless communications hardware and electronics have enabled software defined networking (DVB-S2, VCM, ACM, DTN, Ad hoc, etc.) protocols for improved wireless communication and network management. Developing technologies to fulfil these user needs for wireless communications and adoption of standardized communication/internetworking protocols will be a huge benefit to future planetary missions, space observatories, and manned missions to other planets.

  9. Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Marks, Daniel L.; Ralston, Tyler S.; Boppart, Stephen A.

    2006-03-01

    Optical coherence tomography (OCT) is an emerging high-resolution real-time biomedical imaging technology that has potential as a novel investigational tool in developmental biology and functional genomics. In this study, murine embryos and embryonic hearts are visualized with an OCT system capable of 2-µm axial and 15-µm lateral resolution and with real-time acquisition rates. We present, to our knowledge, the first sets of high-resolution 2- and 3-D OCT images that reveal the internal structures of the mammalian (murine) embryo (E10.5) and embryonic (E14.5 and E17.5) cardiovascular system. Strong correlations are observed between OCT images and corresponding hematoxylin- and eosin-stained histological sections. Real-time in vivo embryonic (E10.5) heart activity is captured by spectral-domain optical coherence tomography, processed, and displayed at a continuous rate of five frames per second. With the ability to obtain not only high-resolution anatomical data but also functional information during cardiovascular development, the OCT technology has the potential to visualize and quantify changes in murine development and in congenital and induced heart disease, as well as enable a wide range of basic in vitro and in vivo research studies in functional genomics.

  10. Performance evaluation of an improved optical computed tomography polymer gel dosimeter system for 3D dose verification of static and dynamic phantom deliveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.

    2008-09-15

    The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly amore » factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.« less

  11. Transient beam oscillation with a highly dynamic scanner for laser beam fusion cutting

    NASA Astrophysics Data System (ADS)

    Goppold, Cindy; Pinder, Thomas; Herwig, Patrick

    2016-02-01

    Sheet metals with thicknesses >8 mm have a distinct cutting performance. The free choice of the optical configuration composed of fiber diameter, collimation, and focal length offers many opportunities to influence the static beam geometry. Previous analysis points out the limitations of this method in the thick section area. Within the present study, an experimental investigation of fiber laser fusion cutting of 12 mm stainless steel was performed by means of dynamical beam oscillation. Two standard optical setups are combined with a highly dynamic galvano-driven scanner that achieves frequencies up to 4 kHz. Dependencies of the scanner parameter, the optical circumstances, and the conventional cutting parameters are discussed. The aim is to characterize the capabilities and challenges of the dynamic beam shaping in comparison to the state-of-the-art static beam shaping. Thus, the trials are evaluated by quality criteria of the cut edge as surface roughness and burr height, the feed rate, and the cut kerf geometry. The investigation emphasizes promising procedural possibilities for improvements of the cutting performance in the case of fiber laser fusion cutting of thick stainless steel by means of the application of a highly dynamic scanner.

  12. Adaptive optics and the eye (super resolution OCT).

    PubMed

    Miller, D T; Kocaoglu, O P; Wang, Q; Lee, S

    2011-03-01

    The combination of adaptive optics (AO) and optical coherence tomography (OCT) was first reported 8 years ago and has undergone tremendous technological advances since then. The technical benefits of adding AO to OCT (increased lateral resolution, smaller speckle, and enhanced sensitivity) increase the imaging capability of OCT in ways that make it well suited for three-dimensional (3D) cellular imaging in the retina. Today, AO-OCT systems provide ultrahigh 3D resolution (3 × 3 × 3 μm³) and ultrahigh speed (up to an order of magnitude faster than commercial OCT). AO-OCT systems have been used to capture volume images of retinal structures, previously only visible with histology, and are being used for studying clinical conditions. Here, we present representative examples of cellular structures that can be visualized with AO-OCT. We overview three studies from our laboratory that used ultrahigh-resolution AO-OCT to measure the cross-sectional profiles of individual bundles in the retinal nerve fiber layer; the diameters of foveal capillaries that define the terminal rim of the foveal avascular zone; and the spacing and length of individual cone photoreceptor outer segments as close as 0.5° from the fovea center.

  13. Continuously tunable optical buffer with a dual silicon waveguide design.

    PubMed

    Horak, Peter; Stewart, Will; Loh, Wei H

    2011-06-20

    We propose a design for an optical buffer that comprises two coupled silicon waveguides, which is capable of generating a large continuously tunable change in the propagation delay time. The optical delay can be varied by more than 100% through varying the spacing between the waveguides.

  14. Micro-device for coupling, multiplexing and demultiplexing using elliptical-core two-mode fiber

    NASA Technical Reports Server (NTRS)

    Wang, A.; Murphy, K. A.; Wang, G. Z.; Vengsarkar, A. M.; Claus, R. O.

    1990-01-01

    We propose and demonstrate experimentally a fiber optic micro-device that is capable of tunably splitting, multiplexing, and demultiplexing optical signals using elliptical-core two-mode optical fiber. A crosstalk of 15 dB with an insertion loss of 1.2 dB was obtained.

  15. Nonlinear and non-Hermitian optical systems applied to the development of filters and optical sensors

    NASA Astrophysics Data System (ADS)

    Amaro de Faria Júnior, A. C.

    2015-09-01

    In this work we present a method of investigation of nonlinear optical beams generated from non-Hermitian optical systems1 . This method can be applied in the development of optical filters and optical sensors to process, analyze and choose the passband of the propagation modes of an optical pulse from an non-Hermitian optical system. Non-Hermitian optical systems can be used to develop optical fiber sensors that suppress certain propagation modes of optical pulses that eventually behave as quantum noise. Such systems are described by the Nonlinear Schrödinger-like Equation with Parity-Time (PT) Symmetric Optical Potentials. There are optical fiber sensors that due to high laser intensity and frequency can produce quantum noise, such as Raman and Brillouin scattering. However, the optical fiber, for example, can be designed so that its geometry suppress certain propagation modes of the beam. We apply some results of non- Hermitian optical systems with PT symmetry to simulate optical lattice by a appropriate potential function, which among other applications, can naturally suppress certain propagation modes of an optical beam propagating through a waveguide. In other words, the optical system is modeled by a potential function in the Nonlinear Schrödinger-like Equation that one relates with the geometric aspects of the wave guides and with the optical beam interacting with the waveguide material. The paper is organized as follows: sections 1 and 2 present a brief description about nonlinear optical systems and non-Hermitian optical systems with PT symmetry. Section 3 presents a description of the dynamics of nonlinear optical pulses propagating through optical networks described by a optical potential non-Hermitian. Sections 4 and 5 present a general description of this non-Hermitian optical systems and how to get them from a more general model. Section 6 presents some conclusions and comment and the final section presents the references. Begin the abstract two lines below author names and addresses.

  16. Volume holographic reflection endoscope for in-vivo ovarian cancer clinical studies

    NASA Astrophysics Data System (ADS)

    Howlett, I. D.; Gordon, M.; Brownlee, J. W.; Barton, J. K.; Kostuk, R. K.

    2014-03-01

    We present the design for an endoscopic system capable of imaging tissues of the ovary at two selected imaging depths simultaneously. The method utilizes a multiplexed volume hologram to select wavefronts from different depths within the tissue. It is the first demonstration of an endoscopic volume holographic imaging system. The endoscope uses both gradient index (GRIN) optical components and off the shelf singlet lenses to relay an image from the distal tip to the proximal end. The endoscope has a minimum diameter of 3.75 mm. The system length is 30 cm which is connected to a handle that includes the holographic components and optics that relay the image to a camera. Preliminary evaluation of the endoscope was performed with tissue phantoms and calibrated targets, which shows lateral resolution ≍ 4 μm at an operating wavelength of 660 nm. The hologram is recorded in phenanthraquinone doped poly methacrylate and is designed to produce images from two tissue depths. One image is obtained at the tissue surface and the second 70 μm below the surface. This method requires no mechanical scanning and acquires an image at the camera frame rate. The preliminary ex-vivo results show good correlation with histology sections of the same tissue sections.

  17. Monitoring remineralization of enamel subsurface lesions by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Mandurah, Mona M.; Sadr, Alireza; Shimada, Yasushi; Kitasako, Yuichi; Nakashima, Syozi; Bakhsh, Turki A.; Tagami, Junji; Sumi, Yasunori

    2013-04-01

    Optical coherence tomography (OCT) is a potential clinical tool for enamel lesion monitoring. Swept-source OCT findings were compared with cross-sectional nanohardness findings of enamel. Subsurface bovine enamel lesions in three groups were subjected to (1) deionized water (control), (2) phosphoryl oligosaccharide of calcium (POs-Ca) or (3) POs-Ca with 1 ppm fluoride for 14 days. B-scans images were obtained at 1310-nm center wavelength on sound, demineralized and remineralized areas after 4, 7, and 14 days. The specimens were processed for cross-sectional nanoindentation. Reflectivity from enamel that had increased with demineralization decreased with remineralization. An OCT attenuation coefficient parameter (μt), derived based on the Beer-Lambert law as a function of backscatter signal slope, showed a strong linear regression with integrated nanohardness of all regions (p<0.001, r=-0.97). Sound enamel showed the smallest, while demineralized enamel showed the highest μt. In group three, μt was significantly lower at four days than baseline, but remained constant afterwards. In group two, the changes were rather gradual. There was no significant difference between groups two and three at 14 days in nanohardness or μt POs-Ca with fluoride-enhanced nanohardness of the superficial zone. OCT signal attenuation demonstrated a capability for monitoring changes of enamel lesions during remineralization.

  18. Optical coherence tomography monitoring of vocal fold femtosecond laser microsurgery

    NASA Astrophysics Data System (ADS)

    Wisweh, Henning; Merkel, Ulrich; Hüller, Ann-Kristin; Lüerßen, Kathrin; Lubatschowski, Holger

    2007-07-01

    Surgery of benign pathological alterations of the vocal folds results in permanent disphonia if the bounderies of the vocal fold layers are disregarded. Precise cutting with a femtosecond laser (fs-laser) combined with simultanous imaging of the layered structure enables accurate resections with respect to the layer boundaries. Earlier works demonstrated the capability of optical coherence tomography (OCT) for utilization on vocal folds. The layered structure can be imaged with a spatial resolution of 10-20μm up to a depth of 1.5mm. The performance of fs-laser cutting was analyzed on extracted porcine vocal folds with OCT monitoring. Histopathological sections of the same processed samples could be well correlated with the OCT images. With adequate laser parameters thermal effects induced only negligable damage to the processed tissue. The dimensions of the thermal necrosis were determined to be smaller than 1μm. OCT contolled fs-laser cutting of porcine vocal fold tissue in the μm range with minimal tissue damage is presented.

  19. Planar Imaging of Hydroxyl in a High Temperature, High Pressure Combustion Facility

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Locke, Randy J.; Anderson, Robert C.; Ockunzzi, Kelly A.

    1995-01-01

    An optically accessible flame tube combustor is described which has high temperature, pressure, and air flow capabilities. The windows in the combustor measure 3.8 cm axially by 5.1 cm radially, providing 67 percent optical access to the square cross section flow chamber. The instrumentation allows one to examine combusting flows and combustor subcomponents, such as fuel injectors and air swirlers. These internal combustor subcomponents have previously been studied only with physical probes, such as temperature and species rakes. Planar laser-induced fluorescence (PLIF) images of OH have been obtained from this lean burning combustor burning Jet-A fuel. These images were obtained using various laser excitation lines of the OH A yields X (1,0) band for two fuel injector configurations with pressures ranging from 1013 kPa (10 atm) to 1419 kPa (14 atm), and equivalence ratios from 0.41 to 0. 59. Non-uniformities in the combusting flow, attributed to differences in fuel injector configuration, are revealed by these images.

  20. Laser scanning saturated structured illumination microscopy based on phase modulation

    NASA Astrophysics Data System (ADS)

    Huang, Yujia; Zhu, Dazhao; Jin, Luhong; Kuang, Cuifang; Xu, Yingke; Liu, Xu

    2017-08-01

    Wide-field saturated structured illumination microscopy has not been widely used due to the requirement of high laser power. We propose a novel method called laser scanning saturated structured illumination microscopy (LS-SSIM), which introduces high order of harmonics frequency and greatly reduces the required laser power for SSIM imaging. To accomplish that, an excitation PSF with two peaks is generated and scanned along different directions on the sample. Raw images are recorded cumulatively by a CCD detector and then reconstructed to form a high-resolution image with extended optical transfer function (OTF). Our theoretical analysis and simulation results show that LS-SSIM method reaches a resolution of 0.16 λ, equivalent to 2.7-fold resolution than conventional wide-field microscopy. In addition, LS-SSIM greatly improves the optical sectioning capability of conventional wide-field illumination system by diminishing our-of-focus light. Furthermore, this modality has the advantage of implementation in multi-photon microscopy with point scanning excitation to image samples in greater depths.

  1. Effects of Various Parameters on Structural and Optical Properties of CBD-Grown ZnS Thin Films: A Review

    NASA Astrophysics Data System (ADS)

    Sinha, Tarkeshwar; Lilhare, Devjyoti; Khare, Ayush

    2018-02-01

    Zinc sulfide (ZnS) thin films deposited by chemical bath deposition (CBD) technique have proved their capability in a wide area of applications including electroluminescent and display devices, solar cells, sensors, and field emitters. These semiconducting thin films have attracted a much attention from the scientific community for industrial and research purposes. In this article, we provide a comprehensive review on the effect of various parameters on various properties of CBD-grown ZnS films. In the first part, we discuss the historical background of ZnS, its basic properties, and the advantages of the CBD technique. Detailed discussions on the film growth, structural and optical properties of ZnS thin films affected by various parameters, such as bath temperature and concentration, deposition time, stirring speed, complexing agents, pH value, humidity in the environment, and annealing conditions, are also presented. In later sections, brief information about the recent studies and findings is also added to explore the scope of research work in this field.

  2. True color scanning laser ophthalmoscopy and optical coherence tomography handheld probe

    PubMed Central

    LaRocca, Francesco; Nankivil, Derek; Farsiu, Sina; Izatt, Joseph A.

    2014-01-01

    Scanning laser ophthalmoscopes (SLOs) are able to achieve superior contrast and axial sectioning capability compared to fundus photography. However, SLOs typically use monochromatic illumination and are thus unable to extract color information of the retina. Previous color SLO imaging techniques utilized multiple lasers or narrow band sources for illumination, which allowed for multiple color but not “true color” imaging as done in fundus photography. We describe the first “true color” SLO, handheld color SLO, and combined color SLO integrated with a spectral domain optical coherence tomography (OCT) system. To achieve accurate color imaging, the SLO was calibrated with a color test target and utilized an achromatizing lens when imaging the retina to correct for the eye’s longitudinal chromatic aberration. Color SLO and OCT images from volunteers were then acquired simultaneously with a combined power under the ANSI limit. Images from this system were then compared with those from commercially available SLOs featuring multiple narrow-band color imaging. PMID:25401032

  3. A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy

    PubMed Central

    Zhang, Yuying; Akins, Meredith L.; Murari, Kartikeya; Xi, Jiefeng; Li, Ming-Jun; Luby-Phelps, Katherine; Mahendroo, Mala; Li, Xingde

    2012-01-01

    We report the development of an all-fiber-optic scanning endomicroscope capable of high-resolution second harmonic generation (SHG) imaging of biological tissues and demonstrate its utility for monitoring the remodeling of cervical collagen during gestation in mice. The endomicroscope has an overall 2.0 mm diameter and consists of a single customized double-clad fiber, a compact rapid two-dimensional beam scanner, and a miniature compound objective lens for excitation beam delivery, scanning, focusing, and efficient SHG signal collection. Endomicroscopic SHG images of murine cervical tissue sections at different stages of normal pregnancy reveal progressive, quantifiable changes in cervical collagen morphology with resolution similar to that of bench-top SHG microscopy. SHG endomicroscopic imaging of ex vivo murine and human cervical tissues through intact epithelium has also been performed. Our findings demonstrate the feasibility of SHG endomicroscopy technology for staging normal pregnancy, and suggest its potential application as a minimally invasive tool for clinical assessment of abnormal cervical remodeling associated with preterm birth. PMID:22826263

  4. SPED light sheet microscopy: fast mapping of biological system structure and function

    PubMed Central

    Tomer, Raju; Lovett-Barron, Matthew; Kauvar, Isaac; Andalman, Aaron; Burns, Vanessa M.; Sankaran, Sethuraman; Grosenick, Logan; Broxton, Michael; Yang, Samuel; Deisseroth, Karl

    2016-01-01

    The goal of understanding living nervous systems has driven interest in high-speed and large field-of-view volumetric imaging at cellular resolution. Light-sheet microscopy approaches have emerged for cellular-resolution functional brain imaging in small organisms such as larval zebrafish, but remain fundamentally limited in speed. Here we have developed SPED light sheet microscopy, which combines large volumetric field-of-view via an extended depth of field with the optical sectioning of light sheet microscopy, thereby eliminating the need to physically scan detection objectives for volumetric imaging. SPED enables scanning of thousands of volumes-per-second, limited only by camera acquisition rate, through the harnessing of optical mechanisms that normally result in unwanted spherical aberrations. We demonstrate capabilities of SPED microscopy by performing fast sub-cellular resolution imaging of CLARITY mouse brains and cellular-resolution volumetric Ca2+ imaging of entire zebrafish nervous systems. Together, SPED light sheet methods enable high-speed cellular-resolution volumetric mapping of biological system structure and function. PMID:26687363

  5. Military microwaves '84; Proceedings of the Conference, London, England, October 24-26, 1984

    NASA Astrophysics Data System (ADS)

    The present conference on microwave frequency electronic warfare and military sensor equipment developments consider radar warning receivers, optical frequency spread spectrum systems, mobile digital communications troposcatter effects, wideband bulk encryption, long range air defense radars (such as the AR320, W-2000 and Martello), multistatic radars, and multimode airborne and interceptor radars. IR system and subsystem component topics encompass thermal imaging and active IR countermeasures, class 1 modules, and diamond coatings, while additional radar-related topics include radar clutter in airborne maritime reconnaissance systems, microstrip antennas with dual polarization capability, the synthesis of shaped beam antenna patterns, planar phased arrays, radar signal processing, radar cross section measurement techniques, and radar imaging and pattern analysis. Attention is also given to optical control and signal processing, mm-wave control technology and EW systems, W-band operations, planar mm-wave arrays, mm-wave monolithic solid state components, mm-wave sensor technology, GaAs monolithic ICs, and dielectric resonator and wideband tunable oscillators.

  6. Nonlinear filter based decision feedback equalizer for optical communication systems.

    PubMed

    Han, Xiaoqi; Cheng, Chi-Hao

    2014-04-07

    Nonlinear impairments in optical communication system have become a major concern of optical engineers. In this paper, we demonstrate that utilizing a nonlinear filter based Decision Feedback Equalizer (DFE) with error detection capability can deliver a better performance compared with the conventional linear filter based DFE. The proposed algorithms are tested in simulation using a coherent 100 Gb/sec 16-QAM optical communication system in a legacy optical network setting.

  7. Freeform Optics: current challenges for future serial production

    NASA Astrophysics Data System (ADS)

    Schindler, C.; Köhler, T.; Roth, E.

    2017-10-01

    One of the major developments in optics industry recently is the commercial manufacturing of freeform surfaces for optical mid- and high performance systems. The loss of limitation on rotational symmetry enables completely new optical design solutions - but causes completely new challenges for the manufacturer too. Adapting the serial production from radial-symmetric to freeform optics cannot be done just by the extension of machine capabilities and software for every process step. New solutions for conventional optics productions or completely new process chains are necessary.

  8. Optical source and apparatus for remote sensing

    NASA Technical Reports Server (NTRS)

    Coyle, Donald Barry (Inventor)

    2011-01-01

    An optical amplifier is configured to amplify an injected seed optical pulse. The optical amplifier may include two or more gain sections coupled to form a continuous solid waveguide along a primary optical path. Each gain section may include: (i) an optical isolator forming an input to that gain section; (ii) a doped optical fiber having a first end coupled to the optical isolator and having a second end; (iii) a plurality of pump laser diodes; (iv) a controller providing drive signals to each of the plurality, the controller being configured to provide at least pulsed drive signals; and (v) an optical coupler having a first input port coupled to the second end, and a second input port coupled to the plurality and an output port.

  9. Eyeglass Large Aperture, Lightweight Space Optics FY2000 - FY2002 LDRD Strategic Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyde, R

    2003-02-10

    A series of studies by the Air Force, the National Reconnaissance Office and NASA have identified the critical role played by large optics in fulfilling many of the space related missions of these agencies. Whether it is the Next Generation Space Telescope for NASA, high resolution imaging systems for NRO, or beam weaponry for the Air Force, the diameter of the primary optic is central to achieving high resolution (imaging) or a small spot size on target (lethality). While the detailed requirements differ for each application (high resolution imaging over the visible and near-infrared for earth observation, high damage thresholdmore » but single-wavelength operation for directed energy), the challenges of a large, lightweight primary optic which is space compatible and operates with high efficiency are the same. The advantage of such large optics to national surveillance applications is that it permits these observations to be carried-out with much greater effectiveness than with smaller optics. For laser weapons, the advantage is that it permits more tightly focused beams which can be leveraged into either greater effective range, reduced laser power, and/or smaller on-target spot-sizes; weapon systems can be made either much more effective or much less expensive. This application requires only single-wavelength capability, but places an emphasis upon robust, rapidly targetable optics. The advantages of large aperture optics to astronomy are that it increases the sensitivity and resolution with which we can view the universe. This can be utilized either for general purpose astronomy, allowing us to examine greater numbers of objects in more detail and at greater range, or it can enable the direct detection and detailed examination of extra-solar planets. This application requires large apertures (for both light-gathering and resolution reasons), with broad-band spectral capability, but does not emphasize either large fields-of-view or pointing agility. Despite differences in their requirements and implementations, the fundamental difficulty in utilizing large aperture optics is the same for all of these applications: It is extremely difficult to design large aperture space optics which are both optically precise and can meet the practical requirements for launch and deployment in space. At LLNL we have developed a new concept (Eyeglass) which uses large diffractive optics to solve both of these difficulties; greatly reducing both the mass and the tolerance requirements for large aperture optics. During previous LDRD-supported research, we developed this concept, built and tested broadband diffractive telescopes, and built 50 cm aperture diffraction-limited diffractive lenses (the largest in the world). This work is fully described in UCRL-ID-136262, Eyeglass: A Large Aperture Space Telescope. However, there is a large gap between optical proof-of-principle with sub-meter apertures, and actual 50 meter space telescopes. This gap is far too large (both in financial resources and in spacecraft expertise) to be filled internally at LLNL; implementation of large aperture diffractive space telescopes must be done externally using non-LLNL resources and expertise. While LLNL will never become the primary contractor and integrator for large space optical systems, our natural role is to enable these devices by developing the capability of producing very large diffractive optics. Accordingly, the purpose of the Large Aperture, Lightweight Space Optics Strategic Initiative was to develop the technology to fabricate large, lightweight diffractive lenses. The additional purpose of this Strategic Initiative was, of course, to demonstrate this lens-fabrication capability in a fashion compellingly enough to attract the external support necessary to continue along the path to full-scale space-based telescopes. During this 3 year effort (FY2000-FY2002) we have developed the capability of optically smoothing and diffractively-patterning thin meter-sized sheets of glass into lens panels. We have also developed alignment and seaming techniques which allow individual lens panels to be assembled together, forming a much larger, segmented, diffractive lens. The capabilities provided by this LDRD-supported developmental effort were then demonstrated by the fabrication and testing of a lightweight, 5 meter aperture, diffractive lens.« less

  10. Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Wu, Tsai-Jung; Tzeng, Yan-Kai; Chang, Wei-Wei; Cheng, Chi-An; Kuo, Yung; Chien, Chin-Hsiang; Chang, Huan-Cheng; Yu, John

    2013-09-01

    Lung stem/progenitor cells are potentially useful for regenerative therapy, for example in repairing damaged or lost lung tissue in patients. Several optical imaging methods and probes have been used to track how stem cells incorporate and regenerate themselves in vivo over time. However, these approaches are limited by photobleaching, toxicity and interference from background tissue autofluorescence. Here we show that fluorescent nanodiamonds, in combination with fluorescence-activated cell sorting, fluorescence lifetime imaging microscopy and immunostaining, can identify transplanted CD45-CD54+CD157+ lung stem/progenitor cells in vivo, and track their engraftment and regenerative capabilities with single-cell resolution. Fluorescent nanodiamond labelling did not eliminate the cells' properties of self-renewal and differentiation into type I and type II pneumocytes. Time-gated fluorescence imaging of tissue sections of naphthalene-injured mice indicates that the fluorescent nanodiamond-labelled lung stem/progenitor cells preferentially reside at terminal bronchioles of the lungs for 7 days after intravenous transplantation.

  11. Fiber optic interconnect and optoelectronic packaging challenges for future generation avionics

    NASA Astrophysics Data System (ADS)

    Beranek, Mark W.

    2007-02-01

    Forecasting avionics industry fiber optic interconnect and optoelectronic packaging challenges that lie ahead first requires an assumption that military avionics architectures will evolve from today's centralized/unified concept based on gigabit laser, optical-to-electrical-to-optical switching and optical backplane technology, to a future federated/distributed or centralized/unified concept based on gigabit tunable laser, electro-optical switch and add-drop wavelength division multiplexing (WDM) technology. The requirement to incorporate avionics optical built-in test (BIT) in military avionics fiber optic systems is also assumed to be correct. Taking these assumptions further indicates that future avionics systems engineering will use WDM technology combined with photonic circuit integration and advanced packaging to form the technical basis of the next generation military avionics onboard local area network (LAN). Following this theme, fiber optic cable plants will evolve from today's multimode interconnect solution to a single mode interconnect solution that is highly installable, maintainable, reliable and supportable. Ultimately optical BIT for fiber optic fault detection and isolation will be incorporated as an integral part of a total WDM-based avionics LAN solution. Cost-efficient single mode active and passive photonic component integration and packaging integration is needed to enable reliable operation in the harsh military avionics application environment. Rugged multimode fiber-based transmitters and receivers (transceivers) with in-package optical BIT capability are also needed to enable fully BIT capable single-wavelength fiber optic links on both legacy and future aerospace platforms.

  12. TH-EF-207A-06: High-Resolution Optical-CT/ECT Imaging of Unstained Mice Femur, Brain, Spleen, and Tumor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, S; Dewhirst, M; Oldham, M

    2016-06-15

    Purpose: Optical transmission and emission computed tomography (optical-CT/ECT) provides high-resolution 3D attenuation and emission maps in unsectioned large (∼1cm{sup 3}) ex vivo tissue samples at a resolution of 12.9µm{sup 3} per voxel. Here we apply optical-CT/ECT to investigate high-resolution structure and auto-fluorescence in a range of optically cleared mice organs, including, for the first time, mouse bone (femur), opening the potential for study of bone metastasis and bone-mediated immune response. Methods: Three BALBc mice containing 4T1 flank tumors were sacrificed to obtain spleen, brain, tumor, and femur. Tissues were washed in 4% PFA, fixed in EtOH solution (for 5, 10,more » 10, and 2 days respectively), and then optically cleared for 3 days in BABBs. The femur was also placed in 0.25M aqueous EDTA for 15–30 days to remove calcium. Optical-CT/ECT attenuation and emission maps at 633nm (the latter using 530nm excitation light) were obtained for all samples. Bi-telecentric optical-CT was compared side-by-side with conventional optical projection tomography (OPT) imaging to evaluate imaging capability of these two rival techniques. Results: Auto-fluorescence mapping of femurs reveals vasculatures and fluorescence heterogeneity. High signals (A.U.=10) are reported in the medullary cavity but not in the cortical bone (A.U.=1). The brain strongly and uniform auto-fluoresces (A.U.=5). Thick, optically dense organs such as the spleen and the tumor (0.12, 0.46OD/mm) are reconstructed at depth without significant loss of resolution, which we attribute to the bi-telecentric optics of optical-CT. The attenuation map of tumor reveals vasculature, attenuation heterogeneity, and possibly necrotic tissue. Conclusion: We demonstrate the feasibility of optical-CT/ECT imaging of un-sectioned mice bones (femurs) and spleen with high resolution. This result, and the characterization of unstained organs, are important steps enabling future studies involving optical-CT/ECT applied to study metastasis and immunologic responses via fluorescence staining.« less

  13. Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber

    DOE PAGES

    Calafiore, Giuseppe; Koshelev, Alexander; Darlington, Thomas P.; ...

    2017-05-10

    One of the major challenges to the widespread adoption of plasmonic and nano-optical devices in real-life applications is the difficulty to mass-fabricate nano-optical antennas in parallel and reproducible fashion, and the capability to precisely place nanoantennas into devices with nanometer-scale precision. In this study, we present a solution to this challenge using the state-of-the-art ultraviolet nanoimprint lithography (UV-NIL) to fabricate functional optical transformers onto the core of an optical fiber in a single step, mimicking the 'campanile' near-field probes. Imprinted probes were fabricated using a custom-built imprinter tool with co-axial alignment capability with sub < 100 nm position accuracy, followedmore » by a metallization step. Scanning electron micrographs confirm high imprint fidelity and precision with a thin residual layer to facilitate efficient optical coupling between the fiber and the imprinted optical transformer. The imprinted optical transformer probe was used in an actual NSOM measurement performing hyperspectral photoluminescence mapping of standard fluorescent beads. The calibration scans confirmed that imprinted probes enable sub-diffraction limited imaging with a spatial resolution consistent with the gap size. This novel nano-fabrication approach promises a low-cost, high-throughput, and reproducible manufacturing of advanced nano-optical devices.« less

  14. Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calafiore, Giuseppe; Koshelev, Alexander; Darlington, Thomas P.

    One of the major challenges to the widespread adoption of plasmonic and nano-optical devices in real-life applications is the difficulty to mass-fabricate nano-optical antennas in parallel and reproducible fashion, and the capability to precisely place nanoantennas into devices with nanometer-scale precision. In this study, we present a solution to this challenge using the state-of-the-art ultraviolet nanoimprint lithography (UV-NIL) to fabricate functional optical transformers onto the core of an optical fiber in a single step, mimicking the 'campanile' near-field probes. Imprinted probes were fabricated using a custom-built imprinter tool with co-axial alignment capability with sub < 100 nm position accuracy, followedmore » by a metallization step. Scanning electron micrographs confirm high imprint fidelity and precision with a thin residual layer to facilitate efficient optical coupling between the fiber and the imprinted optical transformer. The imprinted optical transformer probe was used in an actual NSOM measurement performing hyperspectral photoluminescence mapping of standard fluorescent beads. The calibration scans confirmed that imprinted probes enable sub-diffraction limited imaging with a spatial resolution consistent with the gap size. This novel nano-fabrication approach promises a low-cost, high-throughput, and reproducible manufacturing of advanced nano-optical devices.« less

  15. Scintillator fiber optic long counter

    DOEpatents

    McCollum, Tom; Spector, Garry B.

    1994-01-01

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected.

  16. Engine throat/nozzle optics for plume spectroscopy

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.; Duncan, D. B.

    1991-01-01

    The Task 2.0 Engine Throat/Nozzle Optics for Plume Spectroscopy, effort was performed under the NASA LeRC Development of Life Prediction Capabilities for Liquid Propellant Rocket Engines program. This Task produced the engineering design of an optical probe to enable spectroscopic measurements within the SSME main chamber. The probe mounts on the SSME nozzle aft manifold and collects light emitted from the throat plane and chamber. Light collected by the probe is transferred to a spectrometer through a fiber optic cable. The design analyses indicate that the probe will function throughout the engine operating cycle and is suitable for both test stand and flight operations. By detecting metallic emissions that are indicative of component degradation or incipient failure, engine shutdown can be initiated before catastrophic failure. This capability will protect valuable test stand hardware and provide enhanced mission safety.

  17. Optics in the United kingdom.

    PubMed

    Ditchburn, R W

    1969-10-01

    Optics is interpreted to include x-ray optics, electronic optics, and short wave radiooptics as well as the more conventional visible, uv, and ir optics. Recent work in Britain on x-ray optics (applied to molecular biology), on scanning electron microscopy, and in radioastronomy (discovery of pulsars) is mentioned. In the optics of the visible and ir there is an increasing interest in over-all systems design. .The formation of large industrial units capable of carrying through major design program, requiring advanced mechanical and electronic design associated with new lens systems, is welcomed.

  18. Nano-fabricated plasmonic optical transformer

    DOEpatents

    Choo, Hyuck; Cabrini, Stefano; Schuck, P. James; Liang, Xiaogan; Yablonovitch, Eli

    2015-06-09

    The present invention provides a plasmonic optical transformer to produce a highly focuses optical beam spot, where the transformer includes a first metal layer, a dielectric layer formed on the first metal layer, and a second metal layer formed on the dielectric layer, where the first metal layer, the dielectric layer, and the second layer are patterned to a shape including a first section having a first cross section, a second section following the first section having a cross-section tapering from the first section to a smaller cross-section, and a third section following the second section having a cross-section matching the tapered smaller cross-section of the second section.

  19. Augmentation of UK Space Debris Observing Capabilities Using Univiersity Optical Telescopes

    NASA Astrophysics Data System (ADS)

    Herridge, Philip; Brown, David; Crowther, Richard

    2013-08-01

    The study of space debris requires a range of different sensors. Debris population monitoring requires survey, follow-on and characterisation capable sensors. In order to fully participate in space debris measurement the range of sensors available to the UK Space Agency needs to be augmented with additional capability. One source of untapped resource resides within the UK university sector. This paper discusses investigation into extending the optical sensor diversity available to the UK for participation in study of the debris environment through a collaboration between Space Insight Limited, a commercial company providing Space Situational Awareness (SSA) services to the UK Space Agency, and the Astronomy Group at the University of St Andrews.

  20. Multiple layer optical memory system using second-harmonic-generation readout

    DOEpatents

    Boyd, Gary T.; Shen, Yuen-Ron

    1989-01-01

    A novel optical read and write information storage system is described which comprises a radiation source such as a laser for writing and illumination, the radiation source being capable of radiating a preselected first frequency; a storage medium including at least one layer of material for receiving radiation from the radiation source and capable of being surface modified in response to said radiation source when operated in a writing mode and capable of generating a pattern of radiation of the second harmonic of the preselected frequency when illuminated by the radiation source at the preselected frequency corresponding to the surface modifications on the storage medium; and a detector to receive the pattern of second harmonic frequency generated.

  1. Time stamping of single optical photons with 10 ns resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakaberia, Irakli; Cotlet, Mircea; Fisher-Levine, Merlin

    High spatial and temporal resolution are key features for many modern applications, e.g. mass spectrometry, probing the structure of materials via neutron scattering, studying molecular structure, etc. Fast imaging also provides the capability of coincidence detection, and the further addition of sensitivity to single optical photons with the capability of timestamping them further broadens the field of potential applications. Here, photon counting is already widely used in X-ray imaging, where the high energy of the photons makes their detection easier.

  2. Time stamping of single optical photons with 10 ns resolution

    DOE PAGES

    Chakaberia, Irakli; Cotlet, Mircea; Fisher-Levine, Merlin; ...

    2017-05-08

    High spatial and temporal resolution are key features for many modern applications, e.g. mass spectrometry, probing the structure of materials via neutron scattering, studying molecular structure, etc. Fast imaging also provides the capability of coincidence detection, and the further addition of sensitivity to single optical photons with the capability of timestamping them further broadens the field of potential applications. Here, photon counting is already widely used in X-ray imaging, where the high energy of the photons makes their detection easier.

  3. A MIMO-Inspired Rapidly Switchable Photonic Interconnect Architecture (Postprint)

    DTIC Science & Technology

    2009-07-01

    capabilities of future systems. Highspeed optical processing has been looked to as a means for eliminating this interconnect bottleneck. Presented...here are the results of a study for a novel optical (integrated photonic) processor which would allow for a high-speed, secure means for arbitrarily...regarded as a Multiple Input Multiple Output (MIMO) architecture. 15. SUBJECT TERMS Free-space optical interconnects, Optical Phased Arrays, High-Speed

  4. Optical Microwave Interactions in Semiconductor Devices.

    DTIC Science & Technology

    1980-11-01

    geometry can be used in microwave-optical analog T signal processing systems. A theoretical and experimental study of mode locking in (GaAI)As injection... STUDY OF MODE-LOCKING IN (GaAl)As INJECTION LASER .......... ......................... ... 55 A. Experimental Set-Up and DC Characteristics...modulation and 4 detection of optical beams at microwave frequencies. Our approach for modulating the optical beam has been to study the modulation capability

  5. On the Development and Application of High Data Rate Architecture (HiDRA) in Future Space Networks

    NASA Technical Reports Server (NTRS)

    Hylton, Alan; Raible, Daniel; Clark, Gilbert

    2017-01-01

    Historically, space missions have been severely constrained by their ability to downlink the data they have collected. These constraints are a result of relatively low link rates on the spacecraft as well as limitations on the time during which data can be sent. As part of a coherent strategy to address existing limitations and get more data to the ground more quickly, the Space Communications and Navigation (SCaN) program has been developing an architecture for a future solar system Internet. The High Data Rate Architecture (HiDRA) project is designed to fit into such a future SCaN network. HiDRA's goal is to describe a general packet-based networking capability which can be used to provide assets with efficient networking capabilities while simultaneously reducing the capital costs and operational costs of developing and flying future space systems.Along these lines, this paper begins by reviewing various characteristics of modern satellite design as well as relevant characteristics of emerging technologies (such as free-space optical links capable of working at 100+ Gbps). Next, the paper describes HiDRA's design, and how the system is able to both integrate and support the operation of not only today's high-rate systems, but also the high-rate systems likely to be found in the future. This section also explores both existing and future networking technologies, such as Delay Tolerant Networking (DTN) protocol (RFC4838 citeRFC:1, RFC5050citeRFC:2), and explains how HiDRA supports them. Additionally, this section explores how HiDRA is used for scheduling data movement through both proactive and reactive link management. After this, the paper moves on to explore a reference implementation of HiDRA. This implementation is currently being realized based on a Field Programmable Gate Array (FPGA) memory and interface controller that is itself controlled by a local computer running DTN software. Next, this paper explores HiDRA's natural evolution, which includes an integration path for software-defined networking (SDN) switches. This section also describes considerations for both near-Earth and deep-space instantiations of HiDRA, describing how differences in latencies between the environments will necessarily influence how the system is configured and the networks operate. Finally, this paper describes future work. This section includes a description of a potential ISS implementation which will allow rapid advancement through the technology readiness levels (TRL). This section also explores work being done to support HiDRA's successful implementation and operation in a heterogeneous network: such a network could include communications equipment spanning many vintages and capabilities, and one significant aspect of HiDRA's future development involves balancing compatibility with capability.

  6. Background: Preflight Screening, In-flight Capabilities, and Postflight Testing

    NASA Technical Reports Server (NTRS)

    Gibson, Charles Robert; Duncan, James

    2009-01-01

    Recommendations for minimal in-flight capabilities: Retinal Imaging - provide in-flight capability for the visual monitoring of ocular health (specifically, imaging of the retina and optic nerve head) with the capability of downlinking video/still images. Tonometry - provide more accurate and reliable in-flight capability for measuring intraocular pressure. Ultrasound - explore capabilities of current on-board system for monitoring ocular health. We currently have limited in-flight capabilities on board the International Space Station for performing an internal ocular health assessment. Visual Acuity, Direct Ophthalmoscope, Ultrasound, Tonometry(Tonopen):

  7. Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomography: a pilot study

    NASA Astrophysics Data System (ADS)

    He, Ruoyu; Wei, Huajiang; Gu, Huimin; Zhu, Zhengguo; Zhang, Yuqing; Guo, Xiao; Cai, Tiantian

    2012-10-01

    Recently, the capability of optical coherence tomography (OCT) has been demonstrated for noninvasive blood glucose monitoring. In this work, we investigate the administration of chemical agents onto human skin tissue to increase the transparency of the surface of the skin, as a means of improving the capability of OCT imaging for clinically relevant applications. Eight groups of experiments were proposed, in which different optical clearing agents (OCA) were used. The results indicate that, when properly used, some OCAs perform well in promoting the capability of OCT for noninvasive blood glucose monitoring. Among the four kinds of OCA we used, 50% v/v glycerol solute turns out to be the best enhancer. Compared with the results of the experiments in which no OCA was used, when 50% glycerol was applied onto the human skin topically, the correlation coefficient between the OCT signal slope (OCTSS) and blood glucose concentration (BGC) was improved by 7.1% on average, and the lag time between changes in the OCTSS and BGC was cut by 8 min on average. The results of 10 w/v mannitol were also good, but not as pronounced.

  8. pH-Induced Modulation of One- and Two-Photon Absorption Properties in a Naphthalene-Based Molecular Probe.

    PubMed

    Murugan, N Arul; Kongsted, Jacob; Ågren, Hans

    2013-08-13

    Presently, there is a great demand for small probe molecules that can be used for two-photon excitation microscopy (TPM)-based monitoring of intracellular and intraorganelle activity and pH. The candidate molecules should ideally possess a large two-photon absorption cross section with optical properties sensitive to pH changes. In the present work, we investigate the potential of a methoxy napthalene (MONAP) derivative for its suitability to serve as a pH sensor using TPM. Using an integrated approach rooted in hybrid quantum mechanics/molecular mechanics, the structures, dynamics, and the one- and two-photon properties of the probe in dimethylformamide solvent are studied. It is found that the protonated form is responsible for the optical property of MONAP at moderately low pH, for which the calculated pH-induced red shift is in good agreement with experiments. A 2-fold increase in the two-photon absorption cross section in the IR region of the spectrum is predicted for the moderately low pH form of the probe, suggesting that this can be a potential probe for pH monitoring of living cells. We also propose some design principles aimed at obtaining control of the absorption spectral range of the probe by structural tuning. Our work indicates that the integrated approach employed is capable of capturing the pH-induced changes in structure and optical properties of organic molecular probes and that such in silico tools can be used to draw structure-property relationships to design novel molecular probes suitable for a specific application.

  9. Intravascular laser speckle imaging for the mechanical analysis of coronary plaques (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hosoda, Masaki; Wang, Jing; Tsikudi, Diane; Nadkarni, Seemantini

    2016-02-01

    Acute myocardial infarction is frequently caused by the rupture of coronary plaques with severely compromised viscoelastic properties. We have developed a new optical technology termed intravascular laser speckle imaging (ILSI) that evaluates plaque viscoelastic properties, by measuring the time scale (time constant, τ) of temporally evolving laser speckle fluctuations. To enable coronary evaluation in vivo, an optical ILSI catheter has been developed that accomplishes omni-directional illumination and viewing of the entire coronary circumference without the need for mechanical rotation. Here, we describe the capability of ILSI for evaluating human coronary atherosclerosis in cadaveric hearts. ILSI was conducted in conjunction with optical coherence tomography (OCT) imaging in five human cadaveric hearts. The left coronary artery (LCA), left anterior descending (LAD), left circumflex artery (LCx), and right coronary artery (RCA) segments were resected and secured on custom-developed coronary holders to enable accurate co-registration between ILSI, OCT, and histopathology. Speckle time constants, τ, calculated from each ILSI section were compared with lipid and collagen content measured from quantitative Histopathological analysis of the corresponding Oil Red O and Picrosirius Red stained sections. Because the presence of low viscosity lipid elicits rapid speckle fluctuations, we observed an inverse correlation between τ measured by ILSI and lipid content (R= -0.64, p< 0.05). In contrast, the higher viscoelastic modulus of fibrous regions resulted in a positive correlation between τ and collagen content (R= 0.54, p< 0.05). These results demonstrate the feasibility of conducting ILSI evaluation of arterial mechanical properties using a miniaturized omni-directional catheter.

  10. Analysis of Measurements for Solid State Lidar Development

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1996-01-01

    A Detector Characterization Facility (DCF), capable of measuring 2-micron detection devices and evaluating heterodyne receivers, was developed at the Marshall Space Flight Center. The DCF is capable of providing all the necessary detection parameters for design, development, and calibration of coherent and incoherent solid state laser radar (lidar) systems. The coherent lidars in particular require an accurate knowledge of detector heterodyne quantum efficient, nonlinearity properties, and voltage-current relationship as a function of applied optical power. At present, no detector manufacturer provides these qualities or adequately characterizes their detectors for heterodyne detection operation. In addition, the detector characterization facility measures the detectors DC and AC quantum efficiencies noise equivalent power and frequency response up to several GHz. The DCF is also capable of evaluating various heterodyne detection schemes such as balanced detectors and fiber optic interferometers. The design and analyses of measurements for the DCF were preformed over the previous year and a detailed description of its design and capabilities was provided in the NASA report NAS8-38609/DO77. It should also be noted that the DCF design was further improved to allow for the characterization of diffractive andholographical optical elements and other critical components of coherent lidar systems.

  11. Intrinsic polymer optical fiber sensors for high-strain applications

    NASA Astrophysics Data System (ADS)

    Kiesel, Sharon; Van Vickle, Patrick; Peters, Kara; Hassan, Tasnim; Kowalsky, Mervyn

    2006-03-01

    This paper presents intrinsic polymer fiber (POF) sensors for high-strain applications such as health monitoring of civil infrastructure systems subjected to earthquake loading or structures with large shape changes such as morphing aircraft. POFs provide a potential maximum strain range of 6-12%, are more flexible that silica optical fibers, and are more durable in harsh chemical or environmental conditions. Recent advances in the fabrication of singlemode POFs have made it possible to extend POFs to interferometric sensor capabilities. Furthermore, the interferometric nature of intrinsic sensors permits high accuracy for such measurements. However, several challenges, addressed in this paper, make the application of the POF interferometer more difficult than its silica counterpart. These include the finite deformation of the POF cross-section at high strain values, nonlinear strain optic effects in the polymer, and the attenuation with strain of the POF. In order to predict the response of the sensor a second-order (in strain) photoelastic effect is derived and combined with the second-order solution of the deformation of the optical fiber when loaded. It is determined that for the small deformation region four constants are required (two mechanical and two photoelastic properties) and for the large deformation region six additional constants are required (two mechanical and four photoelastic properties). This paper also presents initial measurements of the mechanical response of the sensor and comparison to previously reported POFs.

  12. Advances in optoplasmonic sensors - combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles

    NASA Astrophysics Data System (ADS)

    Xavier, Jolly; Vincent, Serge; Meder, Fabian; Vollmer, Frank

    2018-01-01

    Nanophotonic device building blocks, such as optical nano/microcavities and plasmonic nanostructures, lie at the forefront of sensing and spectrometry of trace biological and chemical substances. A new class of nanophotonic architecture has emerged by combining optically resonant dielectric nano/microcavities with plasmonically resonant metal nanostructures to enable detection at the nanoscale with extraordinary sensitivity. Initial demonstrations include single-molecule detection and even single-ion sensing. The coupled photonic-plasmonic resonator system promises a leap forward in the nanoscale analysis of physical, chemical, and biological entities. These optoplasmonic sensor structures could be the centrepiece of miniaturised analytical laboratories, on a chip, with detection capabilities that are beyond the current state of the art. In this paper, we review this burgeoning field of optoplasmonic biosensors. We first focus on the state of the art in nanoplasmonic sensor structures, high quality factor optical microcavities, and photonic crystals separately before proceeding to an outline of the most recent advances in hybrid sensor systems. We discuss the physics of this modality in brief and each of its underlying parts, then the prospects as well as challenges when integrating dielectric nano/microcavities with metal nanostructures. In Section 5, we hint to possible future applications of optoplasmonic sensing platforms which offer many degrees of freedom towards biomedical diagnostics at the level of single molecules.

  13. TransFit: Finite element analysis data fitting software

    NASA Technical Reports Server (NTRS)

    Freeman, Mark

    1993-01-01

    The Advanced X-Ray Astrophysics Facility (AXAF) mission support team has made extensive use of geometric ray tracing to analyze the performance of AXAF developmental and flight optics. One important aspect of this performance modeling is the incorporation of finite element analysis (FEA) data into the surface deformations of the optical elements. TransFit is software designed for the fitting of FEA data of Wolter I optical surface distortions with a continuous surface description which can then be used by SAO's analytic ray tracing software, currently OSAC (Optical Surface Analysis Code). The improved capabilities of Transfit over previous methods include bicubic spline fitting of FEA data to accommodate higher spatial frequency distortions, fitted data visualization for assessing the quality of fit, the ability to accommodate input data from three FEA codes plus other standard formats, and options for alignment of the model coordinate system with the ray trace coordinate system. TransFit uses the AnswerGarden graphical user interface (GUI) to edit input parameters and then access routines written in PV-WAVE, C, and FORTRAN to allow the user to interactively create, evaluate, and modify the fit. The topics covered include an introduction to TransFit: requirements, designs philosophy, and implementation; design specifics: modules, parameters, fitting algorithms, and data displays; a procedural example; verification of performance; future work; and appendices on online help and ray trace results of the verification section.

  14. Huygens' optical vector wave field synthesis via in-plane electric dipole metasurface.

    PubMed

    Park, Hyeonsoo; Yun, Hansik; Choi, Chulsoo; Hong, Jongwoo; Kim, Hwi; Lee, Byoungho

    2018-04-16

    We investigate Huygens' optical vector wave field synthesis scheme for electric dipole metasurfaces with the capability of modulating in-plane polarization and complex amplitude and discuss the practical issues involved in realizing multi-modulation metasurfaces. The proposed Huygens' vector wave field synthesis scheme identifies the vector Airy disk as a synthetic unit element and creates a designed vector optical field by integrating polarization-controlled and complex-modulated Airy disks. The metasurface structure for the proposed vector field synthesis is analyzed in terms of the signal-to-noise ratio of the synthesized field distribution. The design of practical metasurface structures with true vector modulation capability is possible through the analysis of the light field modulation characteristics of various complex modulated geometric phase metasurfaces. It is shown that the regularization of meta-atoms is a key factor that needs to be considered in field synthesis, given that it is essential for a wide range of optical field synthetic applications, including holographic displays, microscopy, and optical lithography.

  15. Readout Strategy of an Electro-optical Coupled PET Detector for Time-of-Flight PET/MRI

    PubMed Central

    Bieniosek, M F; Olcott, P D; Levin, C S

    2013-01-01

    Combining PET with MRI in a single system provides clinicians with complementary molecular and anatomical information. However, existing integrated PET/MRI systems do not have time-of-flight PET capabilities. This work describes an MRI-compatible front-end electronic system with ToF capabilities. The approach employs a fast arrival-time pickoff comparator to digitize the timing information, and a laser diode to drive a 10m fiber-optic cable to optically transmit asynchronous timing information to a photodiode receiver readout system. The comparator and this electo-optical link show a combined 11.5ps fwhm jitter in response to a fast digital pulse. When configured with LYSO scintillation crystals and Hamamatsu MPPC silicon photo-multipliers the comparator and electro-optical link achieved a 511keV coincidence time resolution of 254.7ps +/− 8.0ps fwhm with 3×3×20mm crystals and 166.5 +/− 2.5ps fwhm with 3×3×5mm crystals. PMID:24061218

  16. Polarized Optical Scattering Measurements of Metallic Nanoparticles on a Thin Film Silicon Wafer

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang; Liu, Tze-An; Fu, Wei-En

    2009-09-01

    Light scattering has shown its powerful diagnostic capability to characterize optical quality surfaces. In this study, the theory of bidirectional reflectance distribution function (BRDF) was used to analyze the metallic nanoparticles' sizes on wafer surfaces. The BRDF of a surface is defined as the angular distribution of radiance scattered by the surface normalized by the irradiance incident on the surface. A goniometric optical scatter instrument has been developed to perform the BRDF measurements on polarized light scattering on wafer surfaces for the diameter and distribution measurements of metallic nanoparticles. The designed optical scatter instrument is capable of distinguishing various types of optical scattering characteristics, which are corresponding to the diameters of the metallic nanoparticles, near surfaces by using the Mueller matrix calculation. The metallic nanoparticle diameter of measurement is 60 nm on 2 inch thin film wafers. These measurement results demonstrate that the polarization of light scattered by metallic particles can be used to determine the size of metallic nanoparticles on silicon wafers.

  17. Optical Fiber Protection

    NASA Technical Reports Server (NTRS)

    1999-01-01

    F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents

  18. X-ray photonic microsystems for the manipulation of synchrotron light

    DOE PAGES

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; ...

    2015-05-05

    In this study, photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractivemore » optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing.« less

  19. Optical performance analysis of plenoptic camera systems

    NASA Astrophysics Data System (ADS)

    Langguth, Christin; Oberdörster, Alexander; Brückner, Andreas; Wippermann, Frank; Bräuer, Andreas

    2014-09-01

    Adding an array of microlenses in front of the sensor transforms the capabilities of a conventional camera to capture both spatial and angular information within a single shot. This plenoptic camera is capable of obtaining depth information and providing it for a multitude of applications, e.g. artificial re-focusing of photographs. Without the need of active illumination it represents a compact and fast optical 3D acquisition technique with reduced effort in system alignment. Since the extent of the aperture limits the range of detected angles, the observed parallax is reduced compared to common stereo imaging systems, which results in a decreased depth resolution. Besides, the gain of angular information implies a degraded spatial resolution. This trade-off requires a careful choice of the optical system parameters. We present a comprehensive assessment of possible degrees of freedom in the design of plenoptic systems. Utilizing a custom-built simulation tool, the optical performance is quantified with respect to particular starting conditions. Furthermore, a plenoptic camera prototype is demonstrated in order to verify the predicted optical characteristics.

  20. Applications of multiphoton microscopy in the field of colorectal cancer

    NASA Astrophysics Data System (ADS)

    Wang, Shu; Li, Lianhuang; Zhu, Xiaoqin; Zheng, Liqin; Zhuo, Shuangmu; Chen, Jianxin

    2018-06-01

    Multiphoton microscopy (MPM) is a powerful tool for visualizing cellular and subcellular details within living tissue by its unique advantages of being label-free, its intrinsic optical sectioning ability, near-infrared excitation for deep penetration depth into tissue, reduced photobleaching and phototoxicity in the out-of-focus regions, and being capable of providing quantitative information. In this review, we focus on applications of MPM in the field of colorectal cancer, including monitoring cancer progression, detecting tumor metastasis and microenvironment, evaluating the cancer therapy response, and visualizing and ablating pre-invasive cancer cells. We also present one of the major challenges and the future research direction to exploit a colorectal multiphoton endoscope.

  1. Metasurface Enabled Wide-Angle Fourier Lens.

    PubMed

    Liu, Wenwei; Li, Zhancheng; Cheng, Hua; Tang, Chengchun; Li, Junjie; Zhang, Shuang; Chen, Shuqi; Tian, Jianguo

    2018-06-01

    Fourier optics, the principle of using Fourier transformation to understand the functionalities of optical elements, lies at the heart of modern optics, and it has been widely applied to optical information processing, imaging, holography, etc. While a simple thin lens is capable of resolving Fourier components of an arbitrary optical wavefront, its operation is limited to near normal light incidence, i.e., the paraxial approximation, which puts a severe constraint on the resolvable Fourier domain. As a result, high-order Fourier components are lost, resulting in extinction of high-resolution information of an image. Other high numerical aperture Fourier lenses usually suffer from the bulky size and costly designs. Here, a dielectric metasurface consisting of high-aspect-ratio silicon waveguide array is demonstrated experimentally, which is capable of performing 1D Fourier transform for a large incident angle range and a broad operating bandwidth. Thus, the device significantly expands the operational Fourier space, benefitting from the large numerical aperture and negligible angular dispersion at large incident angles. The Fourier metasurface will not only facilitate efficient manipulation of spatial spectrum of free-space optical wavefront, but also be readily integrated into micro-optical platforms due to its compact size. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Defining the uncertainty of electro-optical identification system performance estimates using a 3D optical environment derived from satellite

    NASA Astrophysics Data System (ADS)

    Ladner, S. D.; Arnone, R.; Casey, B.; Weidemann, A.; Gray, D.; Shulman, I.; Mahoney, K.; Giddings, T.; Shirron, J.

    2009-05-01

    Current United States Navy Mine-Counter-Measure (MCM) operations primarily use electro-optical identification (EOID) sensors to identify underwater targets after detection via acoustic sensors. These EOID sensors which are based on laser underwater imaging by design work best in "clear" waters and are limited in coastal waters especially with strong optical layers. Optical properties and in particular scattering and absorption play an important role on systems performance. Surface optical properties alone from satellite are not adequate to determine how well a system will perform at depth due to the existence of optical layers. The spatial and temporal characteristics of the 3d optical variability of the coastal waters along with strength and location of subsurface optical layers maximize chances of identifying underwater targets by exploiting optimum sensor deployment. Advanced methods have been developed to fuse the optical measurements from gliders, optical properties from "surface" satellite snapshot and 3-D ocean circulation models to extend the two-dimensional (2-D) surface satellite optical image into a three-dimensional (3-D) optical volume with subsurface optical layers. Modifications were made to an EOID performance model to integrate a 3-D optical volume covering an entire region of interest as input and derive system performance field. These enhancements extend present capability based on glider optics and EOID sensor models to estimate the system's "image quality". This only yields system performance information for a single glider profile location in a very large operational region. Finally, we define the uncertainty of the system performance by coupling the EOID performance model with the 3-D optical volume uncertainties. Knowing the ensemble spread of EOID performance field provides a new and unique capability for tactical decision makers and Navy Operations.

  3. Polarization resolved angular optical scattering of aerosol particles

    NASA Astrophysics Data System (ADS)

    Redding, B.; Pan, Y.; Wang, C.; Videen, G.; Cao, Hui

    2014-05-01

    Real-time detection and identification of bio-aerosol particles are crucial for the protection against chemical and biological agents. The strong elastic light scattering properties of airborne particles provides a natural means for rapid, non-invasive aerosol characterization. Recent theoretical predictions suggested that variations in the polarization dependent angular scattering cross section could provide an efficient means of classifying different airborne particles. In particular, the polarization dependent scattering cross section of aggregate particles is expected to depend on the shape of the primary particles. In order to experimentally validate this prediction, we built a high throughput, sampling system, capable of measuring the polarization resolved angular scattering cross section of individual aerosol particles flowing through an interrogating volume with a single shot of laser pulse. We calibrated the system by comparing the polarization dependent scattering cross section of individual polystyrene spheres with that predicted by Mie theory. We then used the system to study different particles types: Polystyrene aggregates composed 500 nm spheres and Bacillus subtilis (BG, Anthrax simulant) spores composed of elongated 500 nm × 1000 nm cylinder-line particles. We found that the polarization resolved scattering cross section depends on the shape of the constituent elements of the aggregates. This work indicates that the polarization resolved scattering cross section could be used for rapid discrimination between different bio-aerosol particles.

  4. Diagnostic capability of Pulsar perimetry in pre-perimetric and early glaucoma.

    PubMed

    Hirasawa, Kazunori; Takahashi, Natsumi; Matsumura, Kazuhiro; Kasahara, Masayuki; Shoji, Nobuyuki

    2017-06-12

    This study aimed to compare the diagnostic capability of Pulsar perimetry (Pulsar) in pre-perimetric glaucoma (PPG) and early glaucoma (EG) with that of Flicker perimetry (Flicker) and spectral-domain optical conference tomography (SD-OCT). This prospective cross-sectional study included 25 eyes of 25 PPG patients, 35 eyes of 35 EG patients, and 42 eyes of 42 healthy participants. The diagnostic capability using the area under the curve (AUC) of the best parameter and agreement of detectability between structural and functional measurements were compared. For PPG patients, the AUC of Pulsar, Flicker, OCT-disc, and OCT-macular was 0.733, 0.663, 0.842, and 0.780, respectively. The AUC of Flicker was significantly lower than that of OCT-disc (p = 0.016). For EG patients, the AUC of Pulsar, Flicker, OCT-disc, and OCT-macular were 0.851, 0.869, 0.907, and 0.861, respectively. There was no significant difference in AUC among these methods. The agreement between structural and functional measurements expressed by kappa value ranged from -0.16 to 0.07 for PPG and from 0.01 to 0.25 for EG. Although the diagnostic capability of Pulsar in the PPG and EG groups was equal to that of Flicker and SD-OCT, the agreements between structural and functional measurements for both PPG and EG were poor.

  5. Ultra-sensitive fluorescent imaging-biosensing using biological photonic crystals

    NASA Astrophysics Data System (ADS)

    Squire, Kenny; Kong, Xianming; Wu, Bo; Rorrer, Gregory; Wang, Alan X.

    2018-02-01

    Optical biosensing is a growing area of research known for its low limits of detection. Among optical sensing techniques, fluorescence detection is among the most established and prevalent. Fluorescence imaging is an optical biosensing modality that exploits the sensitivity of fluorescence in an easy-to-use process. Fluorescence imaging allows a user to place a sample on a sensor and use an imager, such as a camera, to collect the results. The image can then be processed to determine the presence of the analyte. Fluorescence imaging is appealing because it can be performed with as little as a light source, a camera and a data processor thus being ideal for nontrained personnel without any expensive equipment. Fluorescence imaging sensors generally employ an immunoassay procedure to selectively trap analytes such as antigens or antibodies. When the analyte is present, the sensor fluoresces thus transducing the chemical reaction into an optical signal capable of imaging. Enhancement of this fluorescence leads to an enhancement in the detection capabilities of the sensor. Diatoms are unicellular algae with a biosilica shell called a frustule. The frustule is porous with periodic nanopores making them biological photonic crystals. Additionally, the porous nature of the frustule allows for large surface area capable of multiple analyte binding sites. In this paper, we fabricate a diatom based ultra-sensitive fluorescence imaging biosensor capable of detecting the antibody mouse immunoglobulin down to a concentration of 1 nM. The measured signal has an enhancement of 6× when compared to sensors fabricated without diatoms.

  6. Scintillator fiber optic long counter

    DOEpatents

    McCollum, T.; Spector, G.B.

    1994-03-29

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected is described. 11 figures.

  7. Method and program product for determining a radiance field in an optical environment

    NASA Technical Reports Server (NTRS)

    Reinersman, Phillip N. (Inventor); Carder, Kendall L. (Inventor)

    2007-01-01

    A hybrid method is presented by which Monte Carlo techniques are combined with iterative relaxation techniques to solve the Radiative Transfer Equation in arbitrary one-, two- or three-dimensional optical environments. The optical environments are first divided into contiguous regions, or elements, with Monte Carlo techniques then being employed to determine the optical response function of each type of element. The elements are combined, and the iterative relaxation techniques are used to determine simultaneously the radiance field on the boundary and throughout the interior of the modeled environment. This hybrid model is capable of providing estimates of the under-water light field needed to expedite inspection of ship hulls and port facilities. It is also capable of providing estimates of the subaerial light field for structured, absorbing or non-absorbing environments such as shadows of mountain ranges within and without absorption spectral bands such as water vapor or CO.sub.2 bands.

  8. Experimental integration of quantum key distribution and gigabit-capable passive optical network

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Wang, Liu-Jun; Sun, Xiang-Xiang; Mao, Yingqiu; Yin, Hua-Lei; Wang, Bi-Xiao; Chen, Teng-Yun; Pan, Jian-Wei

    2018-01-01

    Quantum key distribution (QKD) ensures information-theoretic security for the distribution of random bits between two remote parties. To extend QKD applications to fiber-to-the-home optical communications, such as gigabit-capable passive optical networks (GPONs), an effective method is the use of wavelength-division multiplexing. However, the Raman scattering noise from intensive classical traffic and the huge loss introduced by the beam splitter in a GPON severely limits the performance of QKD. Here, we demonstrate the integration of QKD and a commercial GPON system with fiber lengths up to 14 km, in which the maximum splitting ratio of the beam splitter reaches 1:64. By placing the QKD transmitter on the optical line terminal side, we reduce the Raman noise collected at the QKD receiver. Using a bypass structure, the loss of the beam splitter is circumvented effectively. Our results pave the way to extending the applications of QKD to last-mile communications.

  9. High-Resolution “Fleezers”: Dual-Trap Optical Tweezers Combined with Single-Molecule Fluorescence Detection

    PubMed Central

    Whitley, Kevin D.; Comstock, Matthew J.; Chemla, Yann R.

    2017-01-01

    Recent advances in optical tweezers have greatly expanded their measurement capabilities. A new generation of hybrid instrument that combines nanomechanical manipulation with fluorescence detection—fluorescence optical tweezers, or “fleezers”—is providing a powerful approach to study complex macromolecular dynamics. Here, we describe a combined high-resolution optical trap/confocal fluorescence microscope that can simultaneously detect sub-nanometer displacements, sub-piconewton forces, and single-molecule fluorescence signals. The primary technical challenge to these hybrid instruments is how to combine both measurement modalities without sacrificing the sensitivity of either one. We present general design principles to overcome this challenge and provide detailed, step-by-step instructions to implement them in the construction and alignment of the instrument. Lastly, we present a set of protocols to perform a simple, proof-of-principle experiment that highlights the instrument capabilities. PMID:27844430

  10. Study on the capability of four-level partial response equalization in RSOA-based WDM-PON

    NASA Astrophysics Data System (ADS)

    Guo, Qi; Tran, An Vu

    2010-12-01

    The expected development of advanced video services with HDTV quality demands the delivery of more than Gb/s link to end users across the last mile connection. Future access networks are also required to have long reach for reduction in the number of central offices (CO). Fueled by those requirements, we propose a novel equalization scheme that increases the capacity and reach of the wavelength division multiplexing passive optical network (WDM-PON) based on a low bandwidth reflective semiconductor optical amplifier (RSOA). We investigate the characteristics of 10 Gb/s upstream transmission in WDM-PON using RSOA with only 1.2 GHz electrical bandwidth and various lengths of fiber. It is proven that the proposed four-level partial response equalizer (PRE) is capable of mitigating the impact of ISI in the received signals from optical network units (ONU) located 0 km to 75 km away from the optical line terminal (OLT).

  11. Evaluation and study of advanced optical contamination, deposition, measurement, and removal techniques. [including computer programs and ultraviolet reflection analysis

    NASA Technical Reports Server (NTRS)

    Linford, R. M. F.; Allen, T. H.; Dillow, C. F.

    1975-01-01

    A program is described to design, fabricate and install an experimental work chamber assembly (WCA) to provide a wide range of experimental capability. The WCA incorporates several techniques for studying the kinetics of contaminant films and their effect on optical surfaces. It incorporates the capability for depositing both optical and contaminant films on temperature-controlled samples, and for in-situ measurements of the vacuum ultraviolet reflectance. Ellipsometer optics are mounted on the chamber for film thickness determinations, and other features include access ports for radiation sources and instrumentation. Several supporting studies were conducted to define specific chamber requirements, to determine the sensitivity of the measurement techniques to be incorporated in the chamber, and to establish procedures for handling samples prior to their installation in the chamber. A bibliography and literature survey of contamination-related articles is included.

  12. Sequential x-ray diffraction topography at 1-BM x-ray optics testing beamline at the advanced photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoupin, Stanislav, E-mail: sstoupin@aps.anl.gov; Shvyd’ko, Yuri; Trakhtenberg, Emil

    2016-07-27

    We report progress on implementation and commissioning of sequential X-ray diffraction topography at 1-BM Optics Testing Beamline of the Advanced Photon Source to accommodate growing needs of strain characterization in diffractive crystal optics and other semiconductor single crystals. The setup enables evaluation of strain in single crystals in the nearly-nondispersive double-crystal geometry. Si asymmetric collimator crystals of different crystallographic orientations were designed, fabricated and characterized using in-house capabilities. Imaging the exit beam using digital area detectors permits rapid sequential acquisition of X-ray topographs at different angular positions on the rocking curve of a crystal under investigation. Results on sensitivity andmore » spatial resolution are reported based on experiments with high-quality Si and diamond crystals. The new setup complements laboratory-based X-ray topography capabilities of the Optics group at the Advanced Photon Source.« less

  13. Effect of a timebase mismatch in two-way optical frequency transfer

    NASA Astrophysics Data System (ADS)

    Tampellini, Anna; Clivati, Cecilia; Levi, Filippo; Mura, Alberto; Calonico, Davide

    2017-12-01

    Two-way frequency transfer on optical fibers is a powerful technique for the comparison of distant clocks over long and ultra-long hauls. In contrast to traditional Doppler noise cancellation, it is capable of sustaining higher link attenuation, mitigating the need of optical amplification and regeneration and thus reducing the setup complexity. We investigate the ultimate limitations of the two-way approach on a 300 km multiplexed fiber haul, considering fully independent setups and acquisition systems at the two link ends. We derive a theoretical model to predict the performance deterioration due to a bad synchronisation of the measurements, which is confirmed by experimental results. This study demonstrates that two-way optical frequency transfer is a reliable and performing technique, capable of sustaining remote clocks comparisons at the 10-19 resolution, and is relevant for the development of a fiber network of continental scale for frequency metrology in Europe.

  14. Effectiveness of Non-Lethal Capabilities in a Maritime Environment

    DTIC Science & Technology

    2006-09-01

    demonstrates both the space filling properties for quantitative factors of the NOLH and the lack of correlation between the factors. 27 Figure 12 ...11 b. Optical Dazzler ........................................................................ 12 c...Warning Munitions................................................................. 12 2. Lethal Capabilities

  15. On-Board Fiber-Optic Network Architectures for Radar and Avionics Signal Distribution

    NASA Technical Reports Server (NTRS)

    Alam, Mohammad F.; Atiquzzaman, Mohammed; Duncan, Bradley B.; Nguyen, Hung; Kunath, Richard

    2000-01-01

    Continued progress in both civil and military avionics applications is overstressing the capabilities of existing radio-frequency (RF) communication networks based on coaxial cables on board modem aircrafts. Future avionics systems will require high-bandwidth on- board communication links that are lightweight, immune to electromagnetic interference, and highly reliable. Fiber optic communication technology can meet all these challenges in a cost-effective manner. Recently, digital fiber-optic communication systems, where a fiber-optic network acts like a local area network (LAN) for digital data communications, have become a topic of extensive research and development. Although a fiber-optic system can be designed to transport radio-frequency (RF) signals, the digital fiber-optic systems under development today are not capable of transporting microwave and millimeter-wave RF signals used in radar and avionics systems on board an aircraft. Recent advances in fiber optic technology, especially wavelength division multiplexing (WDM), has opened a number of possibilities for designing on-board fiber optic networks, including all-optical networks for radar and avionics RF signal distribution. In this paper, we investigate a number of different novel approaches for fiber-optic transmission of on-board VHF and UHF RF signals using commercial off-the-shelf (COTS) components. The relative merits and demerits of each architecture are discussed, and the suitability of each architecture for particular applications is pointed out. All-optical approaches show better performance than other traditional approaches in terms of signal-to-noise ratio, power consumption, and weight requirements.

  16. Integrated Duo Wavelength VCSEL Using an Electrically Pumped GaInAs/AlGaAs 980 nm Cavity at the Bottom and an Optically Pumped GaInAs/AlGaInAs 1550 nm Cavity on the Top

    PubMed Central

    Islam, Samiha Ishrat; Islam, Arnob; Islam, Saiful

    2014-01-01

    In this work, an integrated single chip dual cavity VCSEL has been designed which comprises an electrically pumped 980 nm bottom VCSEL section fabricated using GaInAs/AlGaAs MQW active region and a 1550 nm top VCSEL section constructed using GaInAs/AlGaInAs MQW active region but optically pumped using half of the produced 980 nm light entering into it from the electrically pumped bottom cavity. In this design, the active region of the intracavity structure 980 nm VCSEL consists of 3 quantum wells (QWs) using Ga0.847In0.153As, 2 barriers using Al0.03Ga0.97As, and 2 separate confinement heterostructures (SCH) using the same material as the barrier. The active region of the top emitting 1550 nm VCSEL consists of 3 QWs using Ga0.47In0.52As, 2 barriers using Al0.3Ga0.17In0.53As, and 2 SCHs using the same material as the barrier. The top DBR and the bottom DBR mirror systems of the 1550 nm VCSEL section plus the top and bottom DBR mirror systems of the 980 nm VCSEL section have been formed using GaAs/Al0.8Ga0.2As. Computations show that the VCSEL is capable of producing 8.5 mW of power at 980 nm from the bottom side and 2 mW of power at the 1550 nm from top side. PMID:27379335

  17. Wide field strip-imaging optical system

    NASA Technical Reports Server (NTRS)

    Vaughan, Arthur H. (Inventor)

    1994-01-01

    A strip imaging wide angle optical system is provided. The optical system is provided with a 'virtual' material stop to avoid aberrational effects inherent in wide angle optical systems. The optical system includes a spherical mirror section for receiving light from a 180-degree strip or arc of a target image. Light received by the spherical mirror section is reflected to a frusto-conical mirror section for subsequent rereflection to a row of optical fibers. Each optical fiber transmits a portion of the received light to a detector. The optical system exploits the narrow cone of acceptance associated with optical fibers to substantially eliminate vignetting effects inherent in wide-angle systems. Further, the optical system exploits the narrow cone of acceptance of the optical fibers to substantially limit spherical aberration. The optical system is ideally suited for any application wherein a 180-degree strip image need be detected, and is particularly well adapted for use in hostile environments such as in planetary exploration.

  18. Optical computing.

    NASA Technical Reports Server (NTRS)

    Stroke, G. W.

    1972-01-01

    Applications of the optical computer include an approach for increasing the sharpness of images obtained from the most powerful electron microscopes and fingerprint/credit card identification. The information-handling capability of the various optical computing processes is very great. Modern synthetic-aperture radars scan upward of 100,000 resolvable elements per second. Fields which have assumed major importance on the basis of optical computing principles are optical image deblurring, coherent side-looking synthetic-aperture radar, and correlative pattern recognition. Some examples of the most dramatic image deblurring results are shown.

  19. Optical trapping

    PubMed Central

    Neuman, Keir C.; Block, Steven M.

    2006-01-01

    Since their invention just over 20 years ago, optical traps have emerged as a powerful tool with broad-reaching applications in biology and physics. Capabilities have evolved from simple manipulation to the application of calibrated forces on—and the measurement of nanometer-level displacements of—optically trapped objects. We review progress in the development of optical trapping apparatus, including instrument design considerations, position detection schemes and calibration techniques, with an emphasis on recent advances. We conclude with a brief summary of innovative optical trapping configurations and applications. PMID:16878180

  20. Formation of contour optical traps using a four-channel liquid crystal focusing device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korobtsov, A V; Kotova, S P; Losevsky, N N

    2014-12-31

    The capabilities and specific features of the formation and dynamic control of so-called contour optical traps using a fourchannel liquid crystal modulator are studied theoretically and experimentally. Circular, elliptical and C-shaped traps are formed. Trapping and confinement of absorbing micro-objects by the formed traps are demonstrated. (optical traps)

  1. Fiber optic sensor for measurement of pressure fluctuations at high temperatures

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Cuomo, Frank W.

    1989-01-01

    A fiber-optic sensor, based on the principle of the fiber-optic lever, is described which features small size, extended bandwidth, and capability to operate at high temeratures, as required for measurements in hypersonic flow. The principle of operation, design features peculiar to the intended application, and expected performance at high temperatures are described.

  2. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margaryan, Amur

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  3. Low-coherence interferometric sensor system utilizing an integrated optics configuration

    NASA Astrophysics Data System (ADS)

    Plissi, M. V.; Rogers, A. J.; Brassington, D. J.; Wilson, M. G. F.

    1995-08-01

    The implementation of a twin Mach-Zehnder reference interferometer in an integrated optics substrate is described. From measurements of the fringe visibilities, an identification of the fringe order is attempted as a way to provide an absolute sensor for any parameter capable of modifying the difference in path length between two interfering optical paths.

  4. Advanced Wavefront Sensing and Control Testbed (AWCT)

    NASA Technical Reports Server (NTRS)

    Shi, Fang; Basinger, Scott A.; Diaz, Rosemary T.; Gappinger, Robert O.; Tang, Hong; Lam, Raymond K.; Sidick, Erkin; Hein, Randall C.; Rud, Mayer; Troy, Mitchell

    2010-01-01

    The Advanced Wavefront Sensing and Control Testbed (AWCT) is built as a versatile facility for developing and demonstrating, in hardware, the future technologies of wave front sensing and control algorithms for active optical systems. The testbed includes a source projector for a broadband point-source and a suite of extended scene targets, a dispersed fringe sensor, a Shack-Hartmann camera, and an imaging camera capable of phase retrieval wavefront sensing. The testbed also provides two easily accessible conjugated pupil planes which can accommodate the active optical devices such as fast steering mirror, deformable mirror, and segmented mirrors. In this paper, we describe the testbed optical design, testbed configurations and capabilities, as well as the initial results from the testbed hardware integrations and tests.

  5. Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner

    NASA Astrophysics Data System (ADS)

    Liang, Shanshan; Saidi, Arya; Jing, Joe; Liu, Gangjun; Li, Jiawen; Zhang, Jun; Sun, Changsen; Narula, Jagat; Chen, Zhongping

    2012-07-01

    We developed a multimodality fluorescence and optical coherence tomography probe based on a double-clad fiber (DCF) combiner. The probe is composed of a DCF combiner, grin lens, and micromotor in the distal end. An integrated swept-source optical coherence tomography and fluorescence intensity imaging system was developed based on the combined probe for the early diagnoses of atherosclerosis. This system is capable of real-time data acquisition and processing as well as image display. For fluorescence imaging, the inflammation of atherosclerosis and necrotic core formed with the annexin V-conjugated Cy5.5 were imaged. Ex vivo imaging of New Zealand white rabbit arteries demonstrated the capability of the combined system.

  6. Gray scale operation of a multichannel optical convolver using the Semetex magnetooptic spatial light modulator

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey A.; Day, Timothy; Lilly, Roger A.; Taber, Donald B.; Liu, Hua-Kuang

    1988-01-01

    A new multichannel optical correlator/convolver architecture which uses an acoustooptic light modulator for the input channel and a Semetex magnetooptic spatial light modulator (MOSLM) for the set of parallel reference channels is presented. Details of the anamorphic optical system are discussed. Experimental results illustrate the use of the system as a convolver for performing digital multiplication by analog convolution (DMAC). A limited gray scale capability for data stored by the MOSLM is demonstrated by implementing this DMAC algorithm with trinary logic. Use of the MOSLM allows the number of parallel channels for the convolver to be increased significantly compared with previously reported techniques while retaining the capability for updating both channels at high speeds.

  7. Gray Scale Operation Of A Multichannel Optical Convolver Using The Semetex Magnetooptic Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Davis, Jeffrey A.; Day, Timothy; Lilly, Roger A.; Taber, Donald B.; Liu, Hua-Kuang; Davis, J. A.; Day, T.; Lilly, R. A.; Taber, D. B.; Liu, H.-K.

    1988-02-01

    We present a new multichannel optical correlator/convolver architecture which uses an acoustooptic light modulator (AOLM) for the input channel and a Semetex magnetooptic spatial light modulator (MOSLM) for the set of parallel reference channels. Details of the anamorphic optical system are discussed. Experimental results illustrate use of the system as a convolver for performing digital multiplication by analog convolution (DMAC). A limited gray scale capability for data stored by the MOSLM is demonstrated by implementing this DMAC algorithm with trinary logic. Use of the MOSLM allows the number of parallel channels for the convolver to be increased significantly compared with previously reported techniques while retaining the capability for updating both channels at high speeds.

  8. Gray scale operation of a multichannel optical convolver using the Semetex magnetooptic spatial light modulator

    NASA Astrophysics Data System (ADS)

    Davis, Jeffrey A.; Day, Timothy; Lilly, Roger A.; Taber, Donald B.; Liu, Hua-Kuang

    A new multichannel optical correlator/convolver architecture which uses an acoustooptic light modulator for the input channel and a Semetex magnetooptic spatial light modulator (MOSLM) for the set of parallel reference channels is presented. Details of the anamorphic optical system are discussed. Experimental results illustrate the use of the system as a convolver for performing digital multiplication by analog convolution (DMAC). A limited gray scale capability for data stored by the MOSLM is demonstrated by implementing this DMAC algorithm with trinary logic. Use of the MOSLM allows the number of parallel channels for the convolver to be increased significantly compared with previously reported techniques while retaining the capability for updating both channels at high speeds.

  9. Progress in ion figuring large optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, L.N.

    1995-12-31

    Ion figuring is an optical fabrication method that provides deterministic surface figure error correction of previously polished surfaces by using a directed, inert and neutralized ion beam to physically sputter material from the optic surface. Considerable process development has been completed and numerous large optical elements have been successfully final figured using this process. The process has been demonstrated to be highly deterministic, capable of completing complex-shaped optical element configurations in only a few process iterations, and capable of achieving high-quality surface figure accuracy`s. A review of the neutral ion beam figuring process will be provided, along with discussion ofmore » processing results for several large optics. Most notably, processing of Keck 10 meter telescope primary mirror segments and correction of one other large optic where a convergence ratio greater than 50 was demonstrated during the past year will be discussed. Also, the process has been demonstrated on various optical materials, including fused silica, ULE, zerodur, silicon and chemically vapor deposited (CVD) silicon carbide. Where available, results of surface finish changes caused by the ion bombardment process will be discussed. Most data have shown only limited degradation of the optic surface finish, and that it is generally a function of the quality of mechanical polishing prior to ion figuring. Removals of from 5 to 10 {mu}m on some materials are acceptable without adversely altering the surface finish specularity.« less

  10. Airborne Optical Systems Test Bed (AOSTB)

    DTIC Science & Technology

    2016-07-01

    resident laser radar platform with roll -on/ roll -off sensor capability. The new platform provides The Laboratory with an added capability of leveraging...29 Figure 11 – Finite Element Analysis of Loads on Isolators (9G Forward...This project created a resident sensor suite with roll -on/ roll -off capability, coupled to a resident platform (Twin Otter Aircraft). This facility

  11. Optics & Materials Science & Technology (OMST) Organization at LLNL

    ScienceCinema

    Suratwala,; Tayyab,; Nguyen, Hoang; Bude, Jeff; Dylla-Spears, Rebecca

    2018-06-13

    The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategy today.

  12. Optics & Materials Science & Technology (OMST) Organization at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suratwala,; Tayyab,; Nguyen, Hoang

    The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategymore » today.« less

  13. NASA Armstrong Flight Research Center (AFRC) Fiber Optic Sensing System (FOSS) Technology

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Chan, Patrick; Hamory, Phil; Pena, Frank

    2014-01-01

    Attached is a power point presentation created to assist the Tech Transfer Office and the FOSS project team members in responding to inquiries from the public about the capabilities of the Fiber Optic Sensing System.

  14. Neural Network Grasping Controller for Continuum Robots

    DTIC Science & Technology

    2006-01-01

    string encoders attached to the base of section 1 and optical encoders located at the end plates of section 1 and 2. The cables from each of the...string encoders run the entire length of the arm through the optical encoders at the lower sections, as seen in Figure 1. This configuration enables the...encoders at the base section and the optical encoders at the end plates of the distal sections, there were a number of protrusions on the surface of the arm

  15. Doppler imaging using spectrally-encoded endoscopy

    PubMed Central

    Yelin, Dvir; Bouma, B. E.; Rosowsky, J. J.; Tearney, G. J.

    2009-01-01

    The capability to image tissue motion such as blood flow through an endoscope could have many applications in medicine. Spectrally encoded endoscopy (SEE) is a recently introduced technique that utilizes a single optical fiber and miniature diffractive optics to obtain endoscopic images through small diameter probes. Using spectral-domain interferometry, SEE is furthermore capable of three-dimensional volume imaging at video rates. Here we show that by measuring relative spectral phases, this technology can additionally measure Doppler shifts. Doppler SEE is demonstrated in flowing Intralipid phantoms and vibrating middle ear ossicles. PMID:18795020

  16. Optical Data Storage Capabilities of Bacteriorhodopsin

    NASA Technical Reports Server (NTRS)

    Gary, Charles

    1998-01-01

    We present several measurements of the data storage capability of bacteriorhodopsin films to help establish the baseline performance of this material as a medium for holographic data storage. In particular, we examine the decrease in diffraction efficiency with the density of holograms stored at one location in the film, and we also analyze the recording schedule needed to produce a set of equal intensity holograms at a single location in the film. Using this information along with the assumptions about the performance of the optical system, we can estimate potential data storage densities in bacteriorhodopsin.

  17. Optically readout write once read many memory with single active organic layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Viet Cuong; Lee, Pooi See, E-mail: pslee@ntu.edu.sg

    An optically readable write once read many memory (WORM) in Ag/Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH PPV)/ITO is demonstrated in this work. Utilising characteristics of the organic light emitting diode structure of Ag/MEH PPV/ITO and electrochemical metallization of Ag, a WORM with light emitting capability can be realised. The simple fabrication process and multifunction capability of the device can be useful for future wearable optoelectronics and photomemory applications, where fast and parallel readout can be achieved by photons.

  18. RF/optical shared aperture for high availability wideband communication RF/FSO links

    DOEpatents

    Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul

    2014-04-29

    An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.

  19. RF/optical shared aperture for high availability wideband communication RF/FSO links

    DOEpatents

    Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul

    2015-03-24

    An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.

  20. Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers.

    PubMed

    Cao, Yingchun; Jin, Wei; Ho, Lut Hoi; Liu, Zhibo

    2012-01-15

    We demonstrate gas detection based on evanescent-wave photoacoustic (PA) spectroscopy with tapered optical fibers. Evanescent-field instead of open-path absorption is exploited for PA generation, and a quartz tuning fork is used for PA detection. A tapered optical fiber with a diameter down to the wavelength scale demonstrates detection sensitivity similar to an open-path system but with the advantages of easier optical alignment, smaller insertion loss, and multiplexing capability.

  1. Wide-angle imaging system with fiberoptic components providing angle-dependent virtual material stops

    NASA Technical Reports Server (NTRS)

    Vaughan, Arthur H. (Inventor)

    1993-01-01

    A strip imaging wide angle optical system is provided. The optical system is provided with a 'virtual' material stop to avoid aberrational effects inherent in wide angle optical systems. The optical system includes a spherical mirror section for receiving light from a 180 deg strip or arc of a target image. Light received by the spherical mirror section is reflected to a frustoconical mirror section for subsequent rereflection to a row of optical fibers. Each optical fiber transmits a portion of the received light to a detector. The optical system exploits the narrow cone of acceptance associated with optical fibers to substantially eliminate vignetting effects inherent in wide angle systems. Further, the optical system exploits the narrow cone of acceptance of the optical fibers to substantially limit spherical aberration. The optical system is ideally suited for any application wherein a 180 deg strip image need be detected, and is particularly well adapted for use in hostile environments such as in planetary exploration.

  2. Superior spatial resolution in confocal X-ray techniques using collimating channel array optics: elemental mapping and speciation in archaeological human bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, S.; Agyeman-Budu, D. N.; Woll, A. R.

    Confocal X-ray fluorescence imaging (CXFI) and confocal X-ray absorption spectroscopy (CXAS) respectively enable the study of three dimensionally resolved localization and speciation of elements. Applied to a thick sample, essentially any volume element of interest within the X-ray fluorescence escape depth can be examined without the need for physical thin sectioning. To date, X-ray confocal detection generally has employed a polycapillary optic in front of the detector to collect fluorescence from the probe volume formed at the intersection of its focus with the incident microfocus beam. This work demonstrates the capability of a novel Collimating Channel Array (CCA) optic inmore » providing an improved and essentially energy independent depth resolution approaching 2 μm. By presenting a comparison of elemental maps of archaeological bone collected without confocal detection, and with polycapillary- and CCA-based confocal detection, this study highlights the strengths and limitations of each mode. Unlike the polycapillary, the CCA shows similar spatial resolution in maps for both low (Ca) and high (Pb and Sr) energy X-ray fluorescence, thus illustrating the energy independent nature of the CCA optic resolution. While superior spatial resolution is demonstrated for all of these elements, the most significant improvement is observed for Ca, demonstrating the advantage of employing the CCA optic in examining light elements. In addition to CXFI, this configuration also enables the collection of Pb L3 CXAS data from micro-volumes with dimensions comparable to bone microstructures of interest. Our CXAS result, which represents the first CCA-based biological CXAS, demonstrates the ability of CCA optics to collect site specific spectroscopic information. The demonstrated combination of site-specific elemental localization and speciation data will be useful in diverse fields.« less

  3. Characterization of devices, circuits, and high-temperature superconductor transmission lines by electro-optic testing

    NASA Technical Reports Server (NTRS)

    Whitaker, John F.

    1991-01-01

    The development of a capability for testing transmission lines, devices, and circuits using the optically-based technique of electro-optics sampling was the goal of this project. Electro-optic network analysis of a high-speed device was demonstrated. The project involved research on all of the facets necessary in order to realize this result, including the discovery of the optimum electronic pulse source, development of an adequate test fixture, improvement of the electro-optic probe tip, and identification of a device which responded at high frequency but did not oscillate in the test fixture. In addition, during the process of investigating patterned high-critical-temperature superconductors, several non-contacting techniques for the determination of the transport properties of high T(sub c) films were developed and implemented. These are a transient, optical pump-probe, time-resolved reflectivity experiment, an impulsive-stimulated Raman scattering experiment, and a terahertz-beam coherent-spectroscopy experiment. The latter technique has enabled us to measure both the complex refractive index of an MgO substrate used for high-T(sub c) films and the complex conductivity of a YBa2Cu3O(7-x) sample. This information was acquired across an extremely wide frequency range: from the microwave to the submillimeter-wave regime. The experiments on the YBCO were conducted without patterning of, or contact to, the thin film. Thus, the need for the more difficult transmission-line experiments was eliminated. Progress in all of these areas was made and is documented in a number of papers. These papers may be found in the section listing the abstracts of the publications that were issued during the course of the research.

  4. Microbend fiber-optic chemical sensor

    DOEpatents

    Weiss, Jonathan D.

    2002-01-01

    A microbend fiber-optic chemical sensor for detecting chemicals in a sample, and a method for its use, is disclosed. The sensor comprises at least one optical fiber having a microbend section (a section of small undulations in its axis), for transmitting and receiving light. In transmission, light guided through the microbend section scatters out of the fiber core and interacts, either directly or indirectly, with the chemical in the sample, inducing fluorescence radiation. Fluorescence radiation is scattered back into the microbend section and returned to an optical detector for determining characteristics of the fluorescence radiation quantifying the presence of a specific chemical.

  5. Quantum Cascade Lasers Modulation and Applications

    NASA Astrophysics Data System (ADS)

    Luzhansky, Edward

    The mid-wave IR (MWIR) spectral band, extending from 3 to 5 microns, is considered to be a low loss atmospheric window. There are several spectral sub-bands with relatively low atmospheric attenuation in this region making it popular for various commercial and military applications. Relatively low thermal and solar background emissions, effective penetration through the natural and anthropogenic obscurants and eye safety add to the long list of advantages of MWIR wavelengths. Quantum Cascade Lasers are compact semiconductor devices capable of operating in MWIR spectrum. They are based on inter-subband transitions in a multiple-quantum-well (QW) hetero-structure, designed by means of band-structure engineering. The inter-subband nature of the optical transition has several key advantages. First, the emission wavelength is primarily a function of the QW thickness. This characteristic allows choosing well-understood and reliable semiconductors for the generation of light in a wavelength range of interest. Second, a cascade process in which tens of photons are generated per injected electron. This cascading process is behind the intrinsic high-power capabilities of QCLs. This dissertation is focused on modulation properties of Quantum Cascade Lasers. Both amplitude and phase/frequency modulations were studied including modulation bandwidth, modulation efficiency and chirp linearity. Research was consisted of the two major parts. In the first part we describe the theory of frequency modulation (FM) response of Distributed Feedback Quantum Cascade Lasers (DFB QCL). It includes cascading effect on the QCL's maximum modulation frequency. The "gain levering" effect for the maximum FM response of the two section QCLs was studied as well. In the second part of research we concentrated on the Pulse Position Amplitude Modulation of a single section QCL. The low complexity, low size, weight and power Mid-Wavelength Infra-Red optical communications transceiver concept is introduced. The concept was realized and tested in the laboratory environment. The resilience to atmospheric impairments are analyzed with simulated turbulence. The performance compared to typical telecom based Short Wavelength Infra-Red transceiver.

  6. Hybrid shearing and phase-shifting point diffraction interferometer

    DOEpatents

    Goldberg, Kenneth Alan; Naulleau, Patrick P.

    2003-06-03

    A new interferometry configuration combines the strengths of two existing interferometry methods, improving the quality and extending the dynamic range of both. On the same patterned mask, placed near the image-plane of an optical system under test, patterns for phase-shifting point diffraction interferometry and lateral shearing interferometry coexist. The former giving verifiable high accuracy for the measurement of nearly diffraction-limited optical systems. The latter enabling the measurement of optical systems with more than one wave of aberration in the system wavefront. The interferometry configuration is a hybrid shearing and point diffraction interferometer system for testing an optical element that is positioned along an optical path including: a source of electromagnetic energy in the optical path; a first beam splitter that is secured to a device that includes means for maneuvering the first beam splitter in a first position wherein the first beam splitter is in the optical path dividing light from the source into a reference beam and a test beam and in a second position wherein the first beam splitter is outside the optical path: a hybrid mask which includes a first section that defines a test window and at least one reference pinhole and a second section that defines a second beam splitter wherein the hybrid mask is secured to a device that includes means for maneuvering either the first section or the second section into the optical path positioned in an image plane that is created by the optical element, with the proviso that the first section of the hybrid mask is positioned in the optical path when first beam splitter is positioned in the optical path; and a detector positioned after the hybrid mask along the optical path.

  7. X-Ray and near-infrared imaging: similarities, differences and combinations

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.

    2010-02-01

    The integration of x-ray imaging with optical imaging is becoming routine at the pre-clinical level, as both projection and tomography systems are now commercially integrated as packaged systems. Yet, the differences between their capabilities are wide, and there is still perhaps a lack of appreciation about how difference pre-clinical x-ray systems are from clinical x-ray systems. In this survey, the key advantages of each approach, x-ray and optical, are described, and the potential synergies and deficiencies are discussed. In simple terms, the major benefit of optical imaging is in the spectroscopic capabilities, which allow the potential for imaging fluorescent agents in vivo, and the future potential for imaging multiple species at a time with spectral discrimination or spectral fitting of the data. In comparison, multienergy x-ray systems are being realized in clinical use, or automated discrimination of soft versus hard tissues, and the combination of optical imaging with this type of dual-energy x-ray imaging will significantly enhance the capabilities of the hybrid systems. Unfortunately, the power of dual energy imaging is not as possible at the pre-clinical stage, because of the limitations of contrast-resolution and x-ray dose. This is discussed and future human systems outlined.

  8. Optical CT scanning of PRESAGETM polyurethane samples with a CCD-based readout system

    NASA Astrophysics Data System (ADS)

    Doran, S. J.; Krstajic, N.; Adamovics, J.; Jenneson, P. M.

    2004-01-01

    This article demonstrates the resolution capabilities of the CCD scanner under ideal circumstances and describes the first CCD-based optical CT experiments on a new class of dosimeter, known as PRESAGETM (Heuris Pharma, Skillman, NJ).

  9. Fiber optic sensing subsystem for temperature monitoring in space in-flight applications

    NASA Astrophysics Data System (ADS)

    Abad, S.; Araujo, F.; Pinto, F.; González Torres, J.; Rodriguez, R.; Moreno, M. A.

    2017-11-01

    Fiber Optic Sensor (FOS) technology presents long recognized advantages which enable to mitigate deficient performance of conventional technology in hazard-environments common in spacecraft monitoring applications, such as: multiplexing capability, immunity to EMI/RFI, remote monitoring, small size and weight, electrical insulation, intrinsically safe operation, high sensibility and long term reliability. A key advantage is also the potential reduction of Assembly Integration and Testing (AIT) time achieved by the multiplexing capability and associated reduced harness. In the frame of the ESA's ARTES5.2 and FLPP-Phase 3 programs, Airbus DS-Crisa and FiberSensing are developing a Fiber Bragg Grating (FBG) - based temperature monitoring system for application in space telecommunication platforms and launchers. The development encompasses both the interrogation unit and the FBG temperature sensors and associated fiber harness. In parallel Airbus DS - Crisa is developing a modular RTU (RTU2015) to provide maximum flexibility and mission-customization capability for RTUs maintaining the ESA's standards at I/O interface level [1]. In this context, the FBG interrogation unit is designed as a module to be compatible, in both physical dimensions and electrical interfaces aspects, with the Electrical Internal Interface Bus of the RTU2015, thus providing the capability for a hybrid electrical and optical monitoring system.

  10. Fiber-optic interferometric sensors for measurements of pressure fluctuations - Experimental evaluation

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.; Soderman, P. T.

    1993-01-01

    A fiber optic interferometric sensor that is being developed at NASA Ames Research Center for pressure fluctuation measurements in wind tunnels is considered. Preliminary evaluation indicates that the fiber optic interferometric sensor can be successfully used as an aeroacoustic sensor and is capable of providing a powerful instrument to solve complex acoustic measurement problems in wind tunnels.

  11. CNN-coupled Humanoid Panoramic Annular Lens (PAL)-Optical System for Military Applications (Feasibility Study)

    DTIC Science & Technology

    2002-01-08

    new PAL with a total viewing angle of around 80° and suitable for foveal vision, it turned out that the optical design program ZEMAX EE we intended to...use was not capable for optimization. The reason was that ZEMAX -EE and all present optical design programs are based on see-through-window (STW

  12. Large aperture segmented optics for space-to-ground communications.

    PubMed

    Lucy, R F

    1968-08-01

    A large aperture, moderate quality segmented optical array for use in noncoherent space-to-ground laser communications is determined as a function of resolution, diameter, focal length, and number of segments in the array. Secondary optics and construction tolerances are also discussed. Performance predictions show a typical receiver to be capable of megahertz communications at Mars distances during daylight operation.

  13. Large optical 3D MEMS switches in access networks

    NASA Astrophysics Data System (ADS)

    Madamopoulos, Nicholas; Kaman, Volkan; Yuan, Shifu; Jerphagnon, Olivier; Helkey, Roger; Bowers, John E.

    2007-09-01

    Interest is high among residential customers and businesses for advanced, broadband services such as fast Internet access, electronic commerce, video-on-demand, digital broadcasting, teleconferencing and telemedicine. In order to satisfy such growing demand of end-customers, access technologies such as fiber-to-the-home/building (FTTH/B) are increasingly being deployed. Carriers can reduce maintenance costs, minimize technology obsolescence and introduce new services easily by reducing active elements in the fiber access network. However, having a passive optical network (PON) also introduces operational and maintenance challenges. Increased diagnostic monitoring capability of the network becomes a necessity as more and more fibers are provisioned to deliver services to the end-customers. This paper demonstrates the clear advantages that large 3D optical MEMS switches offer in solving these access network problems. The advantages in preventative maintenance, remote monitoring, test and diagnostic capability are highlighted. The low optical insertion loss for all switch optical connections of the switch enables the monitoring, grooming and serving of a large number of PON lines and customers. Furthermore, the 3D MEMS switch is transparent to optical wavelengths and data formats, thus making it easy to incorporate future upgrades, such higher bit rates or DWDM overlay to a PON.

  14. Bandwidth scalable, coherent transmitter based on the parallel synthesis of multiple spectral slices using optical arbitrary waveform generation.

    PubMed

    Geisler, David J; Fontaine, Nicolas K; Scott, Ryan P; He, Tingting; Paraschis, Loukas; Gerstel, Ori; Heritage, Jonathan P; Yoo, S J B

    2011-04-25

    We demonstrate an optical transmitter based on dynamic optical arbitrary waveform generation (OAWG) which is capable of creating high-bandwidth (THz) data waveforms in any modulation format using the parallel synthesis of multiple coherent spectral slices. As an initial demonstration, the transmitter uses only 5.5 GHz of electrical bandwidth and two 10-GHz-wide spectral slices to create 100-ns duration, 20-GHz optical waveforms in various modulation formats including differential phase-shift keying (DPSK), quaternary phase-shift keying (QPSK), and eight phase-shift keying (8PSK) with only changes in software. The experimentally generated waveforms showed clear eye openings and separated constellation points when measured using a real-time digital coherent receiver. Bit-error-rate (BER) performance analysis resulted in a BER < 9.8 × 10(-6) for DPSK and QPSK waveforms. Additionally, we experimentally demonstrate three-slice, 4-ns long waveforms that highlight the bandwidth scalable nature of the optical transmitter. The various generated waveforms show that the key transmitter properties (i.e., packet length, modulation format, data rate, and modulation filter shape) are software definable, and that the optical transmitter is capable of acting as a flexible bandwidth transmitter.

  15. Precision CW laser automatic tracking system investigated

    NASA Technical Reports Server (NTRS)

    Lang, K. T.; Lucy, R. F.; Mcgann, E. J.; Peters, C. J.

    1966-01-01

    Precision laser tracker capable of tracking a low acceleration target to an accuracy of about 20 microradians rms is being constructed and tested. This laser tracking has the advantage of discriminating against other optical sources and the capability of simultaneously measuring range.

  16. Fast optically sectioned fluorescence HiLo endomicroscopy.

    PubMed

    Ford, Tim N; Lim, Daryl; Mertz, Jerome

    2012-02-01

    We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies.

  17. Fast optically sectioned fluorescence HiLo endomicroscopy

    NASA Astrophysics Data System (ADS)

    Ford, Tim N.; Lim, Daryl; Mertz, Jerome

    2012-02-01

    We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies.

  18. Physics through the 1990s: Atomic, molecular and optical physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume presents a program of research initiatives in atomic, molecular, and optical physics. The current state of atomic, molecular, and optical physics in the US is examined with respect to demographics, education patterns, applications, and the US economy. Recommendations are made for each field, with discussions of their histories and the relevance of the research to government agencies. The section on atomic physics includes atomic theory, structure, and dynamics; accelerator-based atomic physics; and large facilities. The section on molecular physics includes spectroscopy, scattering theory and experiment, and the dynamics of chemical reactions. The section on optical physics discusses lasers, laser spectroscopy, and quantum optics and coherence. A section elucidates interfaces between the three fields and astrophysics, condensed matter physics, surface science, plasma physics, atmospheric physics, and nuclear physics. Another section shows applications of the three fields in ultra-precise measurements, fusion, national security, materials, medicine, and other topics.

  19. Numerical analysis of radiation propagation in innovative volumetric receivers based on selective laser melting techniques

    NASA Astrophysics Data System (ADS)

    Alberti, Fabrizio; Santiago, Sergio; Roccabruna, Mattia; Luque, Salvador; Gonzalez-Aguilar, Jose; Crema, Luigi; Romero, Manuel

    2016-05-01

    Volumetric absorbers constitute one of the key elements in order to achieve high thermal conversion efficiencies in concentrating solar power plants. Regardless of the working fluid or thermodynamic cycle employed, design trends towards higher absorber output temperatures are widespread, which lead to the general need of components of high solar absorptance, high conduction within the receiver material, high internal convection, low radiative and convective heat losses and high mechanical durability. In this context, the use of advanced manufacturing techniques, such as selective laser melting, has allowed for the fabrication of intricate geometries that are capable of fulfilling the previous requirements. This paper presents a parametric design and analysis of the optical performance of volumetric absorbers of variable porosity conducted by means of detailed numerical ray tracing simulations. Sections of variable macroscopic porosity along the absorber depth were constructed by the fractal growth of single-cell structures. Measures of performance analyzed include optical reflection losses from the absorber front and rear faces, penetration of radiation inside the absorber volume, and radiation absorption as a function of absorber depth. The effects of engineering design parameters such as absorber length and wall thickness, material reflectance and porosity distribution on the optical performance of absorbers are discussed, and general design guidelines are given.

  20. Ultrabroadband phased-array radio frequency (RF) receivers based on optical techniques

    NASA Astrophysics Data System (ADS)

    Overmiller, Brock M.; Schuetz, Christopher A.; Schneider, Garrett; Murakowski, Janusz; Prather, Dennis W.

    2014-03-01

    Military operations require the ability to locate and identify electronic emissions in the battlefield environment. However, recent developments in radio detection and ranging (RADAR) and communications technology are making it harder to effectively identify such emissions. Phased array systems aid in discriminating emitters in the scene by virtue of their relatively high-gain beam steering and nulling capabilities. For the purpose of locating emitters, we present an approach realize a broadband receiver based on optical processing techniques applied to the response of detectors in conformal antenna arrays. This approach utilizes photonic techniques that enable us to capture, route, and process the incoming signals. Optical modulators convert the incoming signals up to and exceeding 110 GHz with appreciable conversion efficiency and route these signals via fiber optics to a central processing location. This central processor consists of a closed loop phase control system which compensates for phase fluctuations induced on the fibers due to thermal or acoustic vibrations as well as an optical heterodyne approach for signal conversion down to baseband. Our optical heterodyne approach uses injection-locked paired optical sources to perform heterodyne downconversion/frequency identification of the detected emission. Preliminary geolocation and frequency identification testing of electronic emissions has been performed demonstrating the capabilities of our RF receiver.

  1. Power system applications of fiber optics

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Johnston, A.; Lutes, G.; Daud, T.; Hyland, S.

    1984-01-01

    Power system applications of optical systems, primarily using fiber optics, are reviewed. The first section reviews fibers as components of communication systems. The second section deals with fiber sensors for power systems, reviewing the many ways light sources and fibers can be combined to make measurements. Methods of measuring electric field gradient are discussed. Optical data processing is the subject of the third section, which begins by reviewing some widely different examples and concludes by outlining some potential applications in power systems: fault location in transformers, optical switching for light fired thyristors and fault detection based on the inherent symmetry of most power apparatus. The fourth and final section is concerned with using optical fibers to transmit power to electric equipment in a high voltage situation, potentially replacing expensive high voltage low power transformers. JPL has designed small photodiodes specifically for this purpose, and fabricated and tested several samples. This work is described.

  2. Vector scattering analysis of TPF coronagraph pupil masks

    NASA Astrophysics Data System (ADS)

    Ceperley, Daniel P.; Neureuther, Andrew R.; Lieber, Michael D.; Kasdin, N. Jeremy; Shih, Ta-Ming

    2004-10-01

    Rigorous finite-difference time-domain electromagnetic simulation is used to simulate the scattering from proto-typical pupil mask cross-section geometries and to quantify the differences from the normally assumed ideal on-off behavior. Shaped pupil plane masks are a promising technology for the TPF coronagraph mission. However the stringent requirements placed on the optics require that the detailed behavior of the edge-effects of these masks be examined carefully. End-to-end optical system simulation is essential and an important aspect is the polarization and cross-section dependent edge-effects which are the subject of this paper. Pupil plane masks are similar in many respects to photomasks used in the integrated circuit industry. Simulation capabilities such as the FDTD simulator, TEMPEST, developed for analyzing polarization and intensity imbalance effects in nonplanar phase-shifting photomasks, offer a leg-up in analyzing coronagraph masks. However, the accuracy in magnitude and phase required for modeling a chronograph system is extremely demanding and previously inconsequential errors may be of the same order of magnitude as the physical phenomena under study. In this paper, effects of thick masks, finite conductivity metals, and various cross-section geometries on the transmission of pupil-plane masks are illustrated. Undercutting the edge shape of Cr masks improves the effective opening width to within λ/5 of the actual opening but TE and TM polarizations require opposite compensations. The deviation from ideal is examined at the reference plane of the mask opening. Numerical errors in TEMPEST, such as numerical dispersion, perfectly matched layer reflections, and source haze are also discussed along with techniques for mitigating their impacts.

  3. Monitoring pressure profiles across an airfoil with a fiber Bragg grating sensor array

    NASA Astrophysics Data System (ADS)

    Papageorgiou, Anthony W.; Parkinson, Luke A.; Karas, Andrew R.; Hansen, Kristy L.; Arkwright, John W.

    2018-02-01

    Fluid flow over an airfoil section creates a pressure difference across the upper and lower surfaces, thus generating lift. Successful wing design is a combination of engineering design and experience in the field, with subtleties in design and manufacture having significant impact on the amount of lift produced. Current methods of airfoil optimization and validation typically involve computational fluid dynamics (CFD) and extensive wind tunnel testing with pressure sensors embedded into the airfoil to measure the pressure over the wing. Monitoring pressure along an airfoil in a wind tunnel is typically achieved using surface pressure taps that consist of hollow tubes running from the surface of the airfoil to individual pressure sensors external to the tunnel. These pressure taps are complex to configure and not ideal for in-flight testing. Fiber Bragg grating (FBG) pressure sensing arrays provide a highly viable option for both wind tunnel and inflight pressure measurement. We present a fiber optic sensor array that can detect positive and negative pressure suitable for validating CFD models of airfoil profile sections. The sensing array presented here consists of 6 independent sensing elements, each capable of a pressure resolution of less than 10 Pa over the range of 70 kPa to 120 kPa. The device has been tested with the sensor array attached to a 90mm chord length airfoil section subjected to low velocity flow. Results show that the arrays are capable of accurately detecting variations of the pressure profile along the airfoil as the angle of attack is varied from zero to the point at which stall occurs.

  4. Application of chiral critical clusters to assymetric synthesis

    DOEpatents

    Ferrieri, Richard A.

    2002-01-01

    Disclosed is a composition, a method of making and a method of using critical clusters for asymmetric synthesis using substantially optically-pure chiral solvent molecules in a supercritical fluid. The solvent molecules are capable of forming a multipoint hydrogen bonded solvate as they encage at least one solute molecule. The encaged solute molecule is capable of reacting to form an optically active chiral center. In another aspect, there is disclosed a method of directing the position of bonding between a solute molecule and a ligand involving encaging the solute molecule and the ligand with polar solvent molecules in a supercritical fluid under conditions of temperature and pressure sufficient to change electric charge distribution in the solute molecule. In yet another aspect, disclosed is a method of making pharmaceutical compounds involving encaging a solute molecule, which is capable of forming a chiral center, and a ligand with polar solvent molecules in a supercritical fluid under conditions of temperature and pressure sufficient to change electric charge distribution of the solute molecule. The solute molecule and ligand are then reacted whereby the ligand bonds to the solute molecule forming a chiral center. Also disclosed is a method for racemic resolution using critical clusters involving encaging racemic mixtures of solute molecules with substantially optically-pure chiral solvent molecules in a supercritical fluid under conditions of temperature and pressure sufficient to form critical clusters. The solvent molecules are capable of multipoint hydrogen bonding with the solute molecules. The encaged solute molecules are then nonenzymatically reacted to enhance the optical purity of the solute molecules.

  5. Airborne Optical Communications Demonstrator Design And Preflight Test Results

    NASA Technical Reports Server (NTRS)

    Biswas, Abhijit; Page, N.; Neal, J.; Zhu, D.; Wright, M.; Ovtiz, G.; Farr, W. H.; Hernnzati, H.

    2005-01-01

    A second generation optical communications demonstrator (OCD-2) intended for airborne applications like air-to-ground and air-to-air optical links is under development at JPL. This development provides the capability for unidirectional high data rate (2.5-Gbps) transmission at 1550-nm, with the ability to receive an 810-nm beacon to aid acquisition pointing and tracking. The transmitted beam width is nominally 200-(micro)rad. A 3x3 degree coarse field-of-view (FOV) acquisition sensor with a much smaller 3-mrad FOV tracking sensor is incorporated. The OCD-2 optical head will be integrated to a high performance gimbal turret assembly capable of providing pointing stability of 5- microradians from an airborne platform. Other parts of OCD-2 include a cable harness, connecting the optical head in the gimbal turret assembly to a rugged electronics box. The electronics box will house: command and control processors, laser transmitter, data-generation-electronics, power conversion/distribution hardware and state-of-health monitors. The entire assembly will be integrated and laboratory tested prior to a planned flight demonstrations.

  6. Flexible Transient Optical Waveguides and Surface-Wave Biosensors Constructed from Monocrystalline Silicon.

    PubMed

    Bai, Wubin; Yang, Hongjun; Ma, Yinji; Chen, Hao; Shin, Jiho; Liu, Yonghao; Yang, Quansan; Kandela, Irawati; Liu, Zhonghe; Kang, Seung-Kyun; Wei, Chen; Haney, Chad R; Brikha, Anlil; Ge, Xiaochen; Feng, Xue; Braun, Paul V; Huang, Yonggang; Zhou, Weidong; Rogers, John A

    2018-06-26

    Optical technologies offer important capabilities in both biological research and clinical care. Recent interest is in implantable devices that provide intimate optical coupling to biological tissues for a finite time period and then undergo full bioresorption into benign products, thereby serving as temporary implants for diagnosis and/or therapy. The results presented here establish a silicon-based, bioresorbable photonic platform that relies on thin filaments of monocrystalline silicon encapsulated by polymers as flexible, transient optical waveguides for accurate light delivery and sensing at targeted sites in biological systems. Comprehensive studies of the mechanical and optical properties associated with bending and unfurling the waveguides from wafer-scale sources of materials establish general guidelines in fabrication and design. Monitoring biochemical species such as glucose and tracking physiological parameters such as oxygen saturation using near-infrared spectroscopic methods demonstrate modes of utility in biomedicine. These concepts provide versatile capabilities in biomedical diagnosis, therapy, deep-tissue imaging, and surgery, and suggest a broad range of opportunities for silicon photonics in bioresorbable technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Wireless Optogenetic Headstage with Multichannel Electrophysiological Recording Capability

    PubMed Central

    Gagnon-Turcotte, Gabriel; Avakh Kisomi, Alireza; Ameli, Reza; Dufresne Camaro, Charles-Olivier; LeChasseur, Yoan; Néron, Jean-Luc; Brule Bareil, Paul; Fortier, Paul; Bories, Cyril; de Koninck, Yves; Gosselin, Benoit

    2015-01-01

    We present a small and lightweight fully wireless optogenetic headstage capable of optical neural stimulation and electrophysiological recording. The headstage is suitable for conducting experiments with small transgenic rodents, and features two implantable fiber-coupled light-emitting diode (LED) and two electrophysiological recording channels. This system is powered by a small lithium-ion battery and is entirely built using low-cost commercial off-the-shelf components for better flexibility, reduced development time and lower cost. Light stimulation uses customizable stimulation patterns of varying frequency and duty cycle. The optical power that is sourced from the LED is delivered to target light-sensitive neurons using implantable optical fibers, which provide a measured optical power density of 70 mW/mm2 at the tip. The headstage is using a novel foldable rigid-flex printed circuit board design, which results into a lightweight and compact device. Recording experiments performed in the cerebral cortex of transgenic ChR2 mice under anesthetized conditions show that the proposed headstage can trigger neuronal activity using optical stimulation, while recording microvolt amplitude electrophysiological signals. PMID:26371006

  8. Third order nonlinear optical response exhibited by mono- and few-layers of WS 2

    DOE PAGES

    Torres-Torres, Carlos; Perea-López, Néstor; Elías, Ana Laura; ...

    2016-04-13

    In this work, strong third order nonlinear optical properties exhibited by WS 2 layers are presented. Optical Kerr effect was identified as the dominant physical mechanism responsible for these third order optical nonlinearities. An extraordinary nonlinear refractive index together with an important contribution of a saturated absorptive response was observed to depend on the atomic layer stacking. Comparative experiments performed in mono- and few-layer samples of WS 2 revealed that this material is potentially capable of modulating nonlinear optical processes by selective near resonant induced birefringence. In conclusion, we envision applications for developing all-optical bidimensional nonlinear optical devices.

  9. Fiber-optic interconnection networks for spacecraft

    NASA Technical Reports Server (NTRS)

    Powers, Robert S.

    1992-01-01

    The overall goal of this effort was to perform the detailed design, development, and construction of a prototype 8x8 all-optical fiber optic crossbar switch using low power liquid crystal shutters capable of operation in a network with suitable fiber optic transmitters and receivers at a data rate of 1 Gb/s. During the earlier Phase 1 feasibility study, it was determined that the all-optical crossbar system had significant advantages compared to electronic crossbars in terms of power consumption, weight, size, and reliability. The result is primarily due to the fact that no optical transmitters and receivers are required for electro-optic conversion within the crossbar switch itself.

  10. Diffractive optical elements for transformation of modes in lasers

    DOEpatents

    Sridharan, Arun K.; Pax, Paul H.; Heebner, John E.; Drachenberg, Derrek R.; Armstrong, James P.; Dawson, Jay W.

    2015-09-01

    Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.

  11. Diffractive optical elements for transformation of modes in lasers

    DOEpatents

    Sridharan, Arun K; Pax, Paul H; Heebner, John E; Drachenberg, Derrek R.; Armstrong, James P.; Dawson, Jay W.

    2016-06-21

    Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.

  12. Perspective and potential of smart optical materials

    NASA Astrophysics Data System (ADS)

    Choi, Sang H.; Duzik, Adam J.; Kim, Hyun-Jung; Park, Yeonjoon; Kim, Jaehwan; Ko, Hyun-U.; Kim, Hyun-Chan; Yun, Sungryul; Kyung, Ki-Uk

    2017-09-01

    The increasing requirements of hyperspectral imaging optics, electro/photo-chromic materials, negative refractive index metamaterial optics, and miniaturized optical components from micro-scale to quantum-scale optics have all contributed to new features and advancements in optics technology. Development of multifunctional capable optics has pushed the boundaries of optics into new fields that require new disciplines and materials to maximize the potential benefits. The purpose of this study is to understand and show the fundamental materials and fabrication technology for field-controlled spectrally active optics (referred to as smart optics) that are essential for future industrial, scientific, military, and space applications, such as membrane optics, filters, windows for sensors and probes, telescopes, spectroscopes, cameras, light valves, light switches, and flat-panel displays. The proposed smart optics are based on the Stark and Zeeman effects in materials tailored with quantum dot arrays and thin films made from readily polarizable materials via ferroelectricity or ferromagnetism. Bound excitonic states of organic crystals are also capable of optical adaptability, tunability, and reconfigurability. To show the benefits of smart optics, this paper reviews spectral characteristics of smart optical materials and device technology. Experiments testing the quantum-confined Stark effect, arising from rare earth element doping effects in semiconductors, and applied electric field effects on spectral and refractive index are discussed. Other bulk and dopant materials were also discovered to have the same aspect of shifts in spectrum and refractive index. Other efforts focus on materials for creating field-controlled spectrally smart active optics on a selected spectral range. Surface plasmon polariton transmission of light through apertures is also discussed, along with potential applications. New breakthroughs in micro scale multiple zone plate optics as a micro convex lens are reviewed, along with the newly discovered pseudo-focal point not predicted with conventional optics modeling. Micron-sized solid state beam scanner chips for laser waveguides are reviewed as well.

  13. Whole-organ atlas imaged by label-free high-resolution photoacoustic microscopy assisted by a microtome

    NASA Astrophysics Data System (ADS)

    Wong, Terence T. W.; Zhang, Ruiying; Hsu, Hsun-Chia; Maslov, Konstantin I.; Shi, Junhui; Chen, Ruimin; Shung, K. Kirk; Zhou, Qifa; Wang, Lihong V.

    2018-02-01

    In biomedical imaging, all optical techniques face a fundamental trade-off between spatial resolution and tissue penetration. Therefore, obtaining an organelle-level resolution image of a whole organ has remained a challenging and yet appealing scientific pursuit. Over the past decade, optical microscopy assisted by mechanical sectioning or chemical clearing of tissue has been demonstrated as a powerful technique to overcome this dilemma, one of particular use in imaging the neural network. However, this type of techniques needs lengthy special preparation of the tissue specimen, which hinders broad application in life sciences. Here, we propose a new label-free three-dimensional imaging technique, named microtomy-assisted photoacoustic microscopy (mPAM), for potentially imaging all biomolecules with 100% endogenous natural staining in whole organs with high fidelity. We demonstrate the first label-free mPAM, using UV light for label-free histology-like imaging, in whole organs (e.g., mouse brains), most of them formalin-fixed and paraffin- or agarose-embedded for minimal morphological deformation. Furthermore, mPAM with dual wavelength illuminations is also employed to image a mouse brain slice, demonstrating the potential for imaging of multiple biomolecules without staining. With visible light illumination, mPAM also shows its deep tissue imaging capability, which enables less slicing and hence reduces sectioning artifacts. mPAM could potentially provide a new insight for understanding complex biological organs.

  14. Comparison of divided and full pupil configurations for line-scanning confocal microscopy in human skin and oral mucosa

    NASA Astrophysics Data System (ADS)

    Larson, Bjorg; Abeytunge, Sanjeewa; Glazowski, Chris; Rajadhyaksha, Milind

    2012-02-01

    Confocal point-scanning microscopy has been showing promise in the detection, diagnosing and mapping of skin lesions in clinical settings. The noninvasive technique allows provides optical sectioning and cellular resolution for in vivo diagnosis of melanoma and basal cell carcinoma and pre-operative and intra-operative mapping of margins. The imaging has also enabled more accurate "guided" biopsies while minimizing the otherwise large number of "blind" biopsies. Despite these translational advances, however, point-scanning technology remains relatively complex and expensive. Line-scanning technology may offer an alternative approach to accelerate translation to the clinic. Line-scanning, using fewer optical components, inexpensive linear-array detectors and custom electronics, may enable smaller, simpler and lower-cost confocal microscopes. A line is formed using a cylindrical lens and scanned through the back focal plane of the objective with a galvanometric scanner. A linear CCD is used for detection. Two pupil configurations were compared for performance in imaging human tissue. In the full-pupil configuration, illumination and detection is made through the full objective pupil. In the divided pupil approach, half the pupil is illuminated and the other half is used for detection. The divided pupil configuration loses spatial and axial resolution due to a diminished NA, but the sectioning capability and rejection of background is improved. Imaging in skin and oral mucosa illustrate the performance of the two configurations.

  15. Ground truth methods for optical cross-section modeling of biological aerosols

    NASA Astrophysics Data System (ADS)

    Kalter, J.; Thrush, E.; Santarpia, J.; Chaudhry, Z.; Gilberry, J.; Brown, D. M.; Brown, A.; Carter, C. C.

    2011-05-01

    Light detection and ranging (LIDAR) systems have demonstrated some capability to meet the needs of a fastresponse standoff biological detection method for simulants in open air conditions. These systems are designed to exploit various cloud signatures, such as differential elastic backscatter, fluorescence, and depolarization in order to detect biological warfare agents (BWAs). However, because the release of BWAs in open air is forbidden, methods must be developed to predict candidate system performance against real agents. In support of such efforts, the Johns Hopkins University Applied Physics Lab (JHU/APL) has developed a modeling approach to predict the optical properties of agent materials from relatively simple, Biosafety Level 3-compatible bench top measurements. JHU/APL has fielded new ground truth instruments (in addition to standard particle sizers, such as the Aerodynamic particle sizer (APS) or GRIMM aerosol monitor (GRIMM)) to more thoroughly characterize the simulant aerosols released in recent field tests at Dugway Proving Ground (DPG). These instruments include the Scanning Mobility Particle Sizer (SMPS), the Ultraviolet Aerodynamic Particle Sizer (UVAPS), and the Aspect Aerosol Size and Shape Analyser (Aspect). The SMPS was employed as a means of measuring smallparticle concentrations for more accurate Mie scattering simulations; the UVAPS, which measures size-resolved fluorescence intensity, was employed as a path toward fluorescence cross section modeling; and the Aspect, which measures particle shape, was employed as a path towards depolarization modeling.

  16. Optically pumped isotopic ammonia laser system

    DOEpatents

    Buchwald, Melvin I.; Jones, Claude R.; Nelson, Leonard Y.

    1982-01-01

    An optically pumped isotopic ammonia laser system which is capable of producing a plurality of frequencies in the middle infrared spectral region. Two optical pumping mechanisms are disclosed, i.e., pumping on R(J) and lasing on P(J) in response to enhancement of rotational cascade lasing including stimulated Raman effects, and, pumping on R(J) and lasing on P(J+2). The disclosed apparatus for optical pumping include a hole coupled cavity and a grating coupled cavity.

  17. Fiber Based Optical Amplifier for High Energy Laser Pulses Final Report CRADA No. TC02100.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messerly, M.; Cunningham, P.

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL), and The Boeing Company to develop an optical fiber-based laser amplifier capable of producing and sustaining very high-energy, nanosecond-scale optical pulses. The overall technical objective of this CRADA was to research, design, and develop an optical fiber-based amplifier that would meet specific metrics.

  18. The 1994 Fiber Optic Sensors for Aerospace Technology (FOSAT) Workshop

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert (Compiler); Adamovsky, Grigory (Compiler); Tuma, Meg (Compiler); Beheim, Glenn (Compiler); Sotomayor, Jorge (Compiler)

    1995-01-01

    The NASA Lewis Research Center conducted a workshop on fiber optic technology on October 18-20, 1994. The workshop objective was to discuss the future direction of fiber optics and optical sensor research, especially in the aerospace arena. The workshop was separated into four sections: (1) a Systems Section which dealt specifically with top level overall architectures for the aircraft and engine; (2) a Subsystems Section considered the parts and pieces that made up the subsystems of the overall systems; (3) a Sensor/Actuators section considered the status of research on passive optical sensors and optical powered actuators; and (4) Components Section which addressed the interconnects for the optical systems (e.g., optical connectors, optical fibers, etc.). This report contains the minutes of the discussion on the workshop, both in each section and in the plenary sessions. The slides used by a limited number of presenters are also included as presented. No attempt was made to homogenize this report. The view of most of the attendees was: (1) the government must do a better job of disseminating technical information in a more timely fashion; (2) enough work has been done on the components, and system level architecture definition must dictate what work should be done on components; (3) a Photonics Steering Committee should be formed to coordinate the efforts of government and industry in the photonics area, to make sure that programs complimented each other and that technology transferred from one program was used in other programs to the best advantage of the government and industry.

  19. The Rapidly Moving Telescope: an Instrument for the Precise Study of Optical Transients

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Vonrosenvinge, T. T.; Cline, T. L.; Kaipa, R.

    1983-01-01

    The development of a small telescope with a very rapid pointing capability is described whose purpose is to search for and study fast optical transients that may be associated with gamma-ray bursts and other phenomena. The primary motivation for this search is the discovery of the existence of a transient optical event from the known location of a gamma-ray bursts. The telescope has the capability of rapidly acquiring any target in the night sky within 0.7 second and locating the object's position with + or - 1 arcsec accuracy. The initial detection of the event is accomplished by the MIT explosive transient camera or ETC. This provides rough pointing coordinates to the RMT on the average within approximately 1 second after the detection of the event.

  20. Reflection type metasurface designed for high efficiency vectorial field generation

    NASA Astrophysics Data System (ADS)

    Wang, Shiyi; Zhan, Qiwen

    2016-07-01

    We propose a reflection type metal-insulator-metal (MIM) metasurface composed of hybrid nano-antennas for comprehensive spatial engineering of the properties of optical fields. The capability of such structure is illustrated in the design of a device that can be used to produce a radially polarized vectorial beam for optical needle field generation. This device consists of uniformly segmented sectors of high efficiency MIM metasurface. With each of the segment sector functioning as a local quarter-wave-plate (QWP), the device is designed to convert circularly polarized incidence into local linear polarization to create an overall radial polarization with corresponding binary phases and extremely high dynamic range amplitude modulation. The capability of such devices enables the generation of nearly arbitrarily complex optical fields that may find broad applications that transcend disciplinary boundaries.

  1. LCRD Update and Path to Optical Relay Operations

    NASA Technical Reports Server (NTRS)

    Israel, David

    2017-01-01

    Speaker and Presenter at the Lincoln Laboratory Communications Workshop on May 23, 2017 at the Massachusetts Institute of Technology Lincoln Laboratory in Lexington, MA. This presentation discusses a concept for an evolution of NASAs optical communications near-Earth relay architecture. NASA's Laser Communications Relay Demonstration (LCRD) is a joint project between NASAs Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT LL). LCRD will provide a minimum of two years of high data rate optical communications service experiments in geosynchronous orbit (GEO) following launch in 2019. This presentation will provide an update of the LCRD mission status and planned capabilities and experiments, followed by a discussion of the path from LCRD to operational network capabilities.

  2. The Engineer Topographic Laboratories /ETL/ hybrid optical/digital image processor

    NASA Astrophysics Data System (ADS)

    Benton, J. R.; Corbett, F.; Tuft, R.

    1980-01-01

    An optical-digital processor for generalized image enhancement and filtering is described. The optical subsystem is a two-PROM Fourier filter processor. Input imagery is isolated, scaled, and imaged onto the first PROM; this input plane acts like a liquid gate and serves as an incoherent-to-coherent converter. The image is transformed onto a second PROM which also serves as a filter medium; filters are written onto the second PROM with a laser scanner in real time. A solid state CCTV camera records the filtered image, which is then digitized and stored in a digital image processor. The operator can then manipulate the filtered image using the gray scale and color remapping capabilities of the video processor as well as the digital processing capabilities of the minicomputer.

  3. Enzyme-based fiber optic sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulp, T.J.; Camins, I.; Angel, S.M.

    Fiber optic chemical sensors capable of detecting glucose and penicillin were developed. Each consists of a polymer membrane that is covalently attached to the tip of a glass optical fiber. The membrane contains the enzyme and a pH-sensitive fluorescent dye (fluorescein). A signal is produced when the enzyme catalyzes the conversion of the analyte (glucose or penicillin) into a product (gluconic or penicilloic acid, respectively) that lowers the microenvironmental pH of the membrane and consequently, lowers the fluorescence intensity of the dye. Each sensor is capable of responding to analyte concentrations in the range of approx.0.1 to 100 mM. Themore » penicillin optrode response time is 40 to 60 s while that for glucose is approx.5 to 12 min. 7 figs.« less

  4. Dynamically reconfigurable optical packet switch (DROPS)

    NASA Astrophysics Data System (ADS)

    Huang, Chi-Heng; Chou, Hsu-Feng; Bowers, John E.; Toudeh-Fallah, Farzam; Gyurek, Russ

    2006-12-01

    A novel Dynamically Reconfigurable Optical Packet Switch (DROPS) that combines both spectral and spatial switching capabilities is proposed and experimentally demonstrated for the first time. Compared with an Arrayed Waveguide Grating Router (AWGR), the added spatial switching capability provided by the microelectromechanical systems (MEMS) enables dynamically reconfigurable routing that is not possible with an AWGR alone. This methodology has several advantages over an AWGR including scalability, additional degrees of freedom in routing a packet from an ingress port to an egress port and more flexibility in path or line card recovery. The experimental demonstration implemented with 10-Gb/s packets shows that the added spatial switching does not degrade the bit-error-rate performance, indicating the promising potential of DROPS as a versatile and ultra-high capacity switch for optical packet-switched networks.

  5. Manufacturing and Integration Status of the JWST OSIM Optical Simulator

    NASA Technical Reports Server (NTRS)

    Sullivan, Joe; Eichhorn, William; vonHandorf, Rob; Sabatke, Derek; Barr, Nick; Nyquist, Rich; Pederson, Bob; Bennett, Rick; Volmer, Paul; Happs, Dave; hide

    2010-01-01

    OSIM is a full field, cryogenic, optical simulator of the James Webb Space Telescope (JWST) Optical Telescope Element (OTE). It provides simulated point source/star images for optical performance testing of the JWST Integrated Science Instrument Module (ISIM). OSIM is currently being assembled at the Goddard Space Flight Center (GSFC). In this paper, we describe the capabilities, design, manufacturing and integration status, and uses of the OSIM during the optical test program of ISIM and the Science Instruments. Where applicable, the ISIM tests are also described.

  6. Modulated Fourier Transform Raman Fiber-Optic Spectroscopy

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Cooper, John B. (Inventor); Wise, Kent L. (Inventor)

    2000-01-01

    A modification to a commercial Fourier Transform (FT) Raman spectrometer is presented for the elimination of thermal backgrounds in the FT Raman spectra. The modification involves the use of a mechanical optical chopper to modulate the continuous wave laser, remote collection of the signal via fiber optics, and connection of a dual-phase digital-signal-processor (DSP) lock-in amplifier between the detector and the spectrometer's collection electronics to demodulate and filter the optical signals. The resulting Modulated Fourier Transform Raman Fiber-Optic Spectrometer is capable of completely eliminating thermal backgrounds at temperatures exceeding 300 C.

  7. Method and apparatus for distinguishing actual sparse events from sparse event false alarms

    DOEpatents

    Spalding, Richard E.; Grotbeck, Carter L.

    2000-01-01

    Remote sensing method and apparatus wherein sparse optical events are distinguished from false events. "Ghost" images of actual optical phenomena are generated using an optical beam splitter and optics configured to direct split beams to a single sensor or segmented sensor. True optical signals are distinguished from false signals or noise based on whether the ghost image is presence or absent. The invention obviates the need for dual sensor systems to effect a false target detection capability, thus significantly reducing system complexity and cost.

  8. Results of a 1000-hour wear test of 30-cm carbon-carbon ion optics

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Brophy, John R.; Anderson, John R.

    2005-01-01

    This paper discusses the results of a 1000-hour wear test intended to determine the erosion resistance and voltage standoff capability of the optics in a relevant environment, i.e. duration testing on an NSTAR-like thruster.

  9. YBCO Coated Conductor with an Integrated Optical Fiber Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathyamurthy, Srivatsan; Rupich, Marty; Schwartz, Justin

    2016-03-31

    The primary objectives of the Phase I Project was to develop a proof-of-principle for a concept of integrating an optical fiber sensor into the laminated 2G wire, there by producing a functionalized 2G wire with self-monitoring capabilities

  10. Optical Characterization Laboratory | Energy Systems Integration Facility |

    Science.gov Websites

    Laboratory offers the following capabilities. Solar Thermal Calibration The Optical Characterization collectors for solar thermal energy generation to enable the study of increasingly stable (less intermittent Characterization Laboratory's environmental characterization hub offers high-temperature/humidity thermal chambers

  11. Multi-interface level in oil tanks and applications of optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Leal-Junior, Arnaldo G.; Marques, Carlos; Frizera, Anselmo; Pontes, Maria José

    2018-01-01

    On the oil production also involves the production of water, gas and suspended solids, which are separated from the oil on three-phase separators. However, the control strategies of an oil separator are limited due to unavailability of suitable multi-interface level sensors. This paper presents a description of the multi-phase level problem on the oil industry and a review of the current technologies for multi-interface level assessment. Since optical fiber sensors present chemical stability, intrinsic safety, electromagnetic immunity, lightweight and multiplexing capabilities, it can be an alternative for multi-interface level measurement that can overcome some of the limitations of the current technologies. For this reason, Fiber Bragg Gratings (FBGs) based optical fiber sensor system for multi-interface level assessment is proposed, simulated and experimentally assessed. The results show that the proposed sensor system is capable of measuring interface level with a relative error of only 2.38%. Furthermore, the proposed sensor system is also capable of measuring the oil density with an error of 0.8 kg/m3.

  12. Integrated modeling of advanced optical systems

    NASA Astrophysics Data System (ADS)

    Briggs, Hugh C.; Needels, Laura; Levine, B. Martin

    1993-02-01

    This poster session paper describes an integrated modeling and analysis capability being developed at JPL under funding provided by the JPL Director's Discretionary Fund and the JPL Control/Structure Interaction Program (CSI). The posters briefly summarize the program capabilities and illustrate them with an example problem. The computer programs developed under this effort will provide an unprecedented capability for integrated modeling and design of high performance optical spacecraft. The engineering disciplines supported include structural dynamics, controls, optics and thermodynamics. Such tools are needed in order to evaluate the end-to-end system performance of spacecraft such as OSI, POINTS, and SMMM. This paper illustrates the proof-of-concept tools that have been developed to establish the technology requirements and demonstrate the new features of integrated modeling and design. The current program also includes implementation of a prototype tool based upon the CAESY environment being developed under the NASA Guidance and Control Research and Technology Computational Controls Program. This prototype will be available late in FY-92. The development plan proposes a major software production effort to fabricate, deliver, support and maintain a national-class tool from FY-93 through FY-95.

  13. Two-Photon Fluorescence Microscopy Developed for Microgravity Fluid Physics

    NASA Technical Reports Server (NTRS)

    Fischer, David G.; Zimmerli, Gregory A.; Asipauskas, Marius

    2004-01-01

    Recent research efforts within the Microgravity Fluid Physics Branch of the NASA Glenn Research Center have necessitated the development of a microscope capable of high-resolution, three-dimensional imaging of intracellular structure and tissue morphology. Standard optical microscopy works well for thin samples, but it does not allow the imaging of thick samples because of severe degradation caused by out-of-focus object structure. Confocal microscopy, which is a laser-based scanning microscopy, provides improved three-dimensional imaging and true optical sectioning by excluding the out-of-focus light. However, in confocal microscopy, out-of-focus object structure is still illuminated by the incoming beam, which can lead to substantial photo-bleaching. In addition, confocal microscopy is plagued by limited penetration depth, signal loss due to the presence of a confocal pinhole, and the possibility of live-cell damage. Two-photon microscopy is a novel form of laser-based scanning microscopy that allows three-dimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon microscopy, it utilizes the nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption because of the nonlinear (i.e., quadratic) electric field dependence, so an ultrafast pulsed laser source must typically be employed. On the other hand, this stringent energy density requirement effectively localizes fluorophore excitation to the focal volume. Consequently, two-photon microscopy provides optical sectioning and confocal performance without the need for a signal-limiting pinhole. In addition, there is a reduction in photo-damage because of the longer excitation wavelength, a reduction in background fluorescence, and a 4 increase in penetration depth over confocal methods because of the reduction in Rayleigh scattering.

  14. Tonopah Test Range - Index

    Science.gov Websites

    Capabilities Test Operations Center Test Director Range Control Track Control Communications Tracking Radars Us Range Videos/Photos Range Capabilities Test Operations Center Test Director Range Control Track Control Communications Tracking Radars Optical Systems Cinetheodolites Telescopes R&D Telescopes

  15. Spatiotemporal Characterization of a Fibrin Clot Using Quantitative Phase Imaging

    PubMed Central

    Gannavarpu, Rajshekhar; Bhaduri, Basanta; Tangella, Krishnarao; Popescu, Gabriel

    2014-01-01

    Studying the dynamics of fibrin clot formation and its morphology is an important problem in biology and has significant impact for several scientific and clinical applications. We present a label-free technique based on quantitative phase imaging to address this problem. Using quantitative phase information, we characterized fibrin polymerization in real-time and present a mathematical model describing the transition from liquid to gel state. By exploiting the inherent optical sectioning capability of our instrument, we measured the three-dimensional structure of the fibrin clot. From this data, we evaluated the fractal nature of the fibrin network and extracted the fractal dimension. Our non-invasive and speckle-free approach analyzes the clotting process without the need for external contrast agents. PMID:25386701

  16. Note: Laser beam scanning using a ferroelectric liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Das, Abhijit; Boruah, Bosanta R.

    2014-04-01

    In this work we describe laser beam scanning using a ferroelectric liquid crystal spatial light modulator. Commercially available ferroelectric liquid crystal spatial light modulators are capable of displaying 85 colored images in 1 s using a time dithering technique. Each colored image, in fact, comprises 24 single bit (black and white) images displayed sequentially. We have used each single bit image to write a binary phase hologram. For a collimated laser beam incident on the hologram, one of the diffracted beams can be made to travel along a user defined direction. We have constructed a beam scanner employing the above arrangement and demonstrated its use to scan a single laser beam in a laser scanning optical sectioning microscope setup.

  17. DHS S&T First Responders Group and NATO Counter UAS Proposal Interest Response.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salton, Jonathan R.

    The capability, speed, size, and widespread availability of small unmanned aerial systems (sUAS) makes them a serious security concern. The enabling technologies for sUAS are rapidly evolving and so too are the threats they pose to national security. Potential threat vehicles have a small cross-section, and are difficult to reliably detect using purely ground-based systems (e.g. radar or electro-optical) and challenging to target using conventional anti-aircraft defenses. Ground-based sensors are static and suffer from interference with the earth, vegetation and other man-made structures which obscure objects at low altitudes. Because of these challenges, sUAS pose a unique and rapidly evolvingmore » threat to national security.« less

  18. Optical limiting properties of optically active phthalocyanine derivatives

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhang, Shuang; Wu, Peiji; Ye, Cheng; Liu, Hongwei; Xi, Fu

    2001-06-01

    The optical limiting properties of four optically active phthalocyanine derivatives in chloroform solutions and epoxy resin thin plates were measured at 532 nm with 10 ns pulses. The excited state absorption cross-section σex and refractive-index cross-section σr were determined with the Z-scan technique. These chromophores possess larger σex than the ground state absorption cross-section σ0, indicating that they are the potential materials for reverse saturable absorption (RSA). The negative σr values of these chromophores add to the thermal contribution, producing a larger defocusing effect, which may be helpful in further enhancing their optical limiting performance. The optical limiting responses of the thin plate samples are stronger than those of the chloroform solutions.

  19. Satellite on-board real-time SAR processor prototype

    NASA Astrophysics Data System (ADS)

    Bergeron, Alain; Doucet, Michel; Harnisch, Bernd; Suess, Martin; Marchese, Linda; Bourqui, Pascal; Desnoyers, Nicholas; Legros, Mathieu; Guillot, Ludovic; Mercier, Luc; Châteauneuf, François

    2017-11-01

    A Compact Real-Time Optronic SAR Processor has been successfully developed and tested up to a Technology Readiness Level of 4 (TRL4), the breadboard validation in a laboratory environment. SAR, or Synthetic Aperture Radar, is an active system allowing day and night imaging independent of the cloud coverage of the planet. The SAR raw data is a set of complex data for range and azimuth, which cannot be compressed. Specifically, for planetary missions and unmanned aerial vehicle (UAV) systems with limited communication data rates this is a clear disadvantage. SAR images are typically processed electronically applying dedicated Fourier transformations. This, however, can also be performed optically in real-time. Originally the first SAR images were optically processed. The optical Fourier processor architecture provides inherent parallel computing capabilities allowing real-time SAR data processing and thus the ability for compression and strongly reduced communication bandwidth requirements for the satellite. SAR signal return data are in general complex data. Both amplitude and phase must be combined optically in the SAR processor for each range and azimuth pixel. Amplitude and phase are generated by dedicated spatial light modulators and superimposed by an optical relay set-up. The spatial light modulators display the full complex raw data information over a two-dimensional format, one for the azimuth and one for the range. Since the entire signal history is displayed at once, the processor operates in parallel yielding real-time performances, i.e. without resulting bottleneck. Processing of both azimuth and range information is performed in a single pass. This paper focuses on the onboard capabilities of the compact optical SAR processor prototype that allows in-orbit processing of SAR images. Examples of processed ENVISAT ASAR images are presented. Various SAR processor parameters such as processing capabilities, image quality (point target analysis), weight and size are reviewed.

  20. Minimally invasive surgical instruments with an accessory channel capable of integrating fibre-optic cable for optical biopsy: a review of the state of the art.

    PubMed

    Jelínek, Filip; Arkenbout, Ewout A; Sakes, Aimée; Breedveld, Paul

    2014-08-01

    This review article provides a comprehensive overview and classification of minimally invasive surgical instruments with an accessory channel incorporating fibreoptics or another auxiliary device for various purposes. More specifically, this review was performed with the focus on the newly emerging field of optical biopsy, its objective being to discuss primarily the instruments capable of carrying out the optical biopsy and subsequent tissue resection. Instruments housing the fibreoptics for other uses, as well as instruments with an accessory channel capable of housing the fibreoptics instead of their original auxiliary device after relevant design modifications, supplement the review. The entire Espacenet and Scopus databases were searched, yielding numerous patents and articles on conceptual and existing instruments satisfying the criteria. The instruments were categorised based on the function the fibreoptics or the auxiliary device serves. On the basis of their geometrical placement with respect to the tissue resector or manipulator, the subcategories were further defined. This subdivision was used to identify the feasibility of performing the optical biopsy and the tissue resection in an accurate and successive fashion. In general, the existing concepts or instruments are regarded as limited with regard to such a functionality, either due to the placement of their accessory channel with or without the fibreoptics or due to the operational restrictions of their tissue manipulators. A novel opto-mechanical biopsy harvester, currently under development at Delft University of Technology, is suggested as a promising alternative, ensuring a fast and accurate succession of the optical and the mechanical biopsies of a flat superficial tissue. © IMechE 2014.

  1. Optical Imaging and Radiometric Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Ha, Kong Q.; Fitzmaurice, Michael W.; Moiser, Gary E.; Howard, Joseph M.; Le, Chi M.

    2010-01-01

    OPTOOL software is a general-purpose optical systems analysis tool that was developed to offer a solution to problems associated with computational programs written for the James Webb Space Telescope optical system. It integrates existing routines into coherent processes, and provides a structure with reusable capabilities that allow additional processes to be quickly developed and integrated. It has an extensive graphical user interface, which makes the tool more intuitive and friendly. OPTOOL is implemented using MATLAB with a Fourier optics-based approach for point spread function (PSF) calculations. It features parametric and Monte Carlo simulation capabilities, and uses a direct integration calculation to permit high spatial sampling of the PSF. Exit pupil optical path difference (OPD) maps can be generated using combinations of Zernike polynomials or shaped power spectral densities. The graphical user interface allows rapid creation of arbitrary pupil geometries, and entry of all other modeling parameters to support basic imaging and radiometric analyses. OPTOOL provides the capability to generate wavefront-error (WFE) maps for arbitrary grid sizes. These maps are 2D arrays containing digital sampled versions of functions ranging from Zernike polynomials to combination of sinusoidal wave functions in 2D, to functions generated from a spatial frequency power spectral distribution (PSD). It also can generate optical transfer functions (OTFs), which are incorporated into the PSF calculation. The user can specify radiometrics for the target and sky background, and key performance parameters for the instrument s focal plane array (FPA). This radiometric and detector model setup is fairly extensive, and includes parameters such as zodiacal background, thermal emission noise, read noise, and dark current. The setup also includes target spectral energy distribution as a function of wavelength for polychromatic sources, detector pixel size, and the FPA s charge diffusion modulation transfer function (MTF).

  2. Fiber-Optic Communication Links Suitable for On-Board Use in Modern Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung; Ngo, Duc; Alam, Mohammad F.; Atiquzzaman, Mohammed; Sluse, James; Slaveski, Filip

    2004-01-01

    The role of the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Centers has been focused mainly on the improvement of air transportation safety, with particular emphasis on air transportation communication systems in on-board aircraft. The conventional solutions for digital optical communications systems specifically designed for local/metro area networks are, unfortunately, not capable of transporting the microwave and millimeter RF signals used in avionics systems. Optical networks capable of transporting RF signals are substantially different from the standard digital optical communications systems. The objective of this paper is to identify a number of different communication link architectures for RF/fiber optic transmission using a single backbone fiber for carrying VHF and UHF RF signals in the aircraft. To support these architectures, two approaches derived from both hybrid RF-optical and all-optical processing methodologies are discussed with single and multiple antennas for explicitly transporting VHF and UHF signals, while the relative merits and demerits of each architecture are also addressed. Furthermore, the experimental results of wavelength division multiplexing (WDM) link architecture from our test-bed platform, configured for aircraft environment to support simultaneous transmission of multiple RF signals over a single optical fiber, exhibit no appreciable signal degradation at wavelengths of both 1330 and 1550 nm, respectively. Our measurements of signal to noise ratio carried out for the transmission of FM and AM analog modulated signals at these wavelengths indicate that WDM is a fiber optic technology which is potentially suitable for avionics applications.

  3. Cryo-Infrared Optical Characterization at NASA GSFC

    NASA Technical Reports Server (NTRS)

    Boucarut, Ray; Quijada, Manuel A.; Henry, Ross M.

    2004-01-01

    The development of large space infrared optical systems, such as the Next Generation Space Telescope (NGST), has increased requirements for measurement accuracy in the optical properties of materials. Many materials used as optical components in infrared optical systems, have strong temperature dependence in their optical properties. Unfortunately, data on the temperature dependence of most of these materials is sparse. In this paper, we provide a description of the capabilities existing in the Optics Branch at the Goddard Space Flight Center that enable the characterization of the refractive index and absorption coefficient changes and other optical properties in infrared materials at cryogenic temperatures. Details of the experimental apparatus, which include continuous flow liquid helium optical cryostat, and a Fourier Transform Infrared (FTIR) spectrometer are discussed.

  4. Transmitter And Receiver Design For Microwave Fiber Optic Links

    NASA Astrophysics Data System (ADS)

    Blauvelt, H.; Yen, H.

    1984-11-01

    Optical fibers are an attractive media for transmitting microwave signals due to their low attenuation, light weight, immunity from electromagnetic interference and large bandwidth capabilities. In this paper, transmitter and receiver components for microwave fiber optic links are reviewed. Current limitations to link signal to noise imposed by the performance of these components are analyzed and promising trends in component development are discussed.

  5. Space Station-based deep-space optical communication experiments

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung; Schwartz, Jon A.

    1988-01-01

    A series of three experiments proposed for advanced optical deep-space communications is described. These proposed experiments would be carried out aboard the Space Station to test and evaluate the capability of optical instruments to conduct data communication and spacecraft navigation for deep-space missions. Techniques for effective data communication, precision spacecraft ranging, and accurate angular measurements will be developed and evaluated in a spaceborne environment.

  6. Overview of Experimental Capabilities - Supersonics

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.

    2007-01-01

    This viewgraph presentation gives an overview of experimental capabilities applicable to the area of supersonic research. The contents include: 1) EC Objectives; 2) SUP.11: Elements; 3) NRA; 4) Advanced Flight Simulator Flexible Aircraft Simulation Studies; 5) Advanced Flight Simulator Flying Qualities Guideline Development for Flexible Supersonic Transport Aircraft; 6) Advanced Flight Simulator Rigid/Flex Flight Control; 7) Advanced Flight Simulator Rapid Sim Model Exchange; 8) Flight Test Capabilities Advanced In-Flight Infrared (IR) Thermography; 9) Flight Test Capabilities In-Flight Schlieren; 10) Flight Test Capabilities CLIP Flow Calibration; 11) Flight Test Capabilities PFTF Flowfield Survey; 12) Ground Test Capabilities Laser-Induced Thermal Acoustics (LITA); 13) Ground Test Capabilities Doppler Global Velocimetry (DGV); 14) Ground Test Capabilities Doppler Global Velocimetry (DGV); and 15) Ground Test Capabilities EDL Optical Measurement Capability (PIV) for Rigid/Flexible Decelerator Models.

  7. Artificial Neuron Based on Integrated Semiconductor Quantum Dot Mode-Locked Lasers

    NASA Astrophysics Data System (ADS)

    Mesaritakis, Charis; Kapsalis, Alexandros; Bogris, Adonis; Syvridis, Dimitris

    2016-12-01

    Neuro-inspired implementations have attracted strong interest as a power efficient and robust alternative to the digital model of computation with a broad range of applications. Especially, neuro-mimetic systems able to produce and process spike-encoding schemes can offer merits like high noise-resiliency and increased computational efficiency. Towards this direction, integrated photonics can be an auspicious platform due to its multi-GHz bandwidth, its high wall-plug efficiency and the strong similarity of its dynamics under excitation with biological spiking neurons. Here, we propose an integrated all-optical neuron based on an InAs/InGaAs semiconductor quantum-dot passively mode-locked laser. The multi-band emission capabilities of these lasers allows, through waveband switching, the emulation of the excitation and inhibition modes of operation. Frequency-response effects, similar to biological neural circuits, are observed just as in a typical two-section excitable laser. The demonstrated optical building block can pave the way for high-speed photonic integrated systems able to address tasks ranging from pattern recognition to cognitive spectrum management and multi-sensory data processing.

  8. Artificial Neuron Based on Integrated Semiconductor Quantum Dot Mode-Locked Lasers

    PubMed Central

    Mesaritakis, Charis; Kapsalis, Alexandros; Bogris, Adonis; Syvridis, Dimitris

    2016-01-01

    Neuro-inspired implementations have attracted strong interest as a power efficient and robust alternative to the digital model of computation with a broad range of applications. Especially, neuro-mimetic systems able to produce and process spike-encoding schemes can offer merits like high noise-resiliency and increased computational efficiency. Towards this direction, integrated photonics can be an auspicious platform due to its multi-GHz bandwidth, its high wall-plug efficiency and the strong similarity of its dynamics under excitation with biological spiking neurons. Here, we propose an integrated all-optical neuron based on an InAs/InGaAs semiconductor quantum-dot passively mode-locked laser. The multi-band emission capabilities of these lasers allows, through waveband switching, the emulation of the excitation and inhibition modes of operation. Frequency-response effects, similar to biological neural circuits, are observed just as in a typical two-section excitable laser. The demonstrated optical building block can pave the way for high-speed photonic integrated systems able to address tasks ranging from pattern recognition to cognitive spectrum management and multi-sensory data processing. PMID:27991574

  9. Extending the imaging volume for biometric iris recognition.

    PubMed

    Narayanswamy, Ramkumar; Johnson, Gregory E; Silveira, Paulo E X; Wach, Hans B

    2005-02-10

    The use of the human iris as a biometric has recently attracted significant interest in the area of security applications. The need to capture an iris without active user cooperation places demands on the optical system. Unlike a traditional optical design, in which a large imaging volume is traded off for diminished imaging resolution and capacity for collecting light, Wavefront Coded imaging is a computational imaging technology capable of expanding the imaging volume while maintaining an accurate and robust iris identification capability. We apply Wavefront Coded imaging to extend the imaging volume of the iris recognition application.

  10. High data density temperature measurement for quasi steady-state flows

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Rashidnia, Nasser; Creath, Katherine

    1995-01-01

    A new optical instrument, the liquid crystal point diffraction interferometer (LCPDI), is used to measure the temperature distribution across a heated chamber filled with silicone oil. Data taken using the LCPDI are compared to equivalent measurements made with a traversing thermocouple and the two data sets show excellent agreement This instrument maintains the compact, robust design of Linnik's point diffraction interferometer and adds to it phase stepping capability for quantitative interferogram analysis. The result is a compact, simple to align, environmentally insensitive interferometer capable of accurately measuring optical wavefronts with very high data density and with automated data reduction.

  11. High Data Density Temperature Measurement for Quasi Steady-State Flows

    NASA Technical Reports Server (NTRS)

    Mercer, C. R.; Rashidnia, N.; Creath, K.

    1996-01-01

    A new optical instrument, the liquid crystal point diffraction interferometer (LCPDI), is used to measure the temperature distribution across a heated chamber filled with silicone oil. Data taken using the LCPDI are compared to equivalent measurements made with a traversing thermo-couple and the two data sets show excellent agreement. This instrument maintains the compact, robust design of Linniks point diffraction interferometer and adds to it phase stepping capability for quantitative interferogram analysis. The result is a compact, simple to align, environmentally insensitive interferometer capable of accurately measuring optical wave-fronts with very high data density and with automated data reduction.

  12. Nano-scale optical circuits and self-organized lightwave network (SOLNET) fabricated using sol-gel materials with photo-induced refractive index increase

    NASA Astrophysics Data System (ADS)

    Ono, Shigeru; Yoshimura, Tetsuzo; Sato, Tetsuo; Oshima, Juro

    2009-02-01

    Recently, Nissan Chemical Industries, LTD, developed the photo-induced refractive index variation sol-gel materials, in which the refractive index increases from 1.65 to 1.85 by ultra-violet (UV) light exposure and baking. The materials enable us to fabricate high-index-contract waveguides without developing/etching processes and strong-lightconfinement self-organized lightwave network (SOLNET). Therefore, the materials are expected promising for nanoscale optical circuits with self-alignment capability. Nano-scale optical circuits with core thickness of ~230 nm and core width of ~1 μm were fabricated. Propagation loss was 1.86 dB/cm for TE mode and 1.89 dB/cm for TM mode at 633 nm in wavelength, indicating that there were small polarization dependences. Spot sizes of guided beams along core width direction and along core thickness direction were respectively 0.6 μm and 0.3 μm for both TE and TM mode. Bending loss of S-bending waveguides was reduced from 0.44 dB to 0.24 dB for TE mode with increasing the bending curvature radius from 5 μm to 60 μm. Difference in bending loss between TM and TE mode was less than 10%. Branching loss of Y-branching waveguides was reduced from 1.33 dB to 0.08 dB for TE mode, and from 1.34 dB to 0.12 dB for TM mode with decreasing the branching angle from 80° to 20°. These results indicate that the photoinduced refractive index variation sol-gel materials can realize miniaturized optical circuits with sizes of several tens μm and guided beam confinement within a cross-section area less than 1.0 μm2 with small polarization dependences, suggesting potential applications to intra-chip optical interconnects. In addtion, we fabricated self-organized lightwave network (SOLNET) using the photo-induced refractive index variation sol-gel materials. When write beams of 405 nm in wavelength were introduced into the sol-gel thin film under baking at 200°C, self-focusing was induced, and SOLNET was formed. SOLNET fabricated by low write beam intensity exhibited strong light confinement. Furthermore, SOLNET was found to be drawn automatically to reflective portion such as a defect and a silver paste droplet in the sol-gel thin film during SOLNET formation, indicating that reflective SOLNET is formed. The results suggest that the photo-induced refractive index variation sol-gel materials can provide self-alignment capability to the nano-scale optical circuits.

  13. CHARA/FLUOR updates and performance

    NASA Astrophysics Data System (ADS)

    Mérand, Antoine; Coudé du Foresto, Vincent; Kellerer, Aglaé; ten Brummelaar, Theo; Reess, Jean-Michel; Ziegler, Denis

    2006-06-01

    In 2002, the Fiber Linked Unit for Optical Recombination (FLUOR) has been moved from the Infrared Optical Telescope Array (IOTA) to the CHARA Array. We present here the main upgrades that followed the installation, the new features installed, including spectral dispersion, and the current capabilities of the instrument.

  14. Evaluation and correction for optical scattering variations in laser speckle rheology of biological fluids.

    PubMed

    Hajjarian, Zeinab; Nadkarni, Seemantini K

    2013-01-01

    Biological fluids fulfill key functionalities such as hydrating, protecting, and nourishing cells and tissues in various organ systems. They are capable of these versatile tasks owing to their distinct structural and viscoelastic properties. Characterizing the viscoelastic properties of bio-fluids is of pivotal importance for monitoring the development of certain pathologies as well as engineering synthetic replacements. Laser Speckle Rheology (LSR) is a novel optical technology that enables mechanical evaluation of tissue. In LSR, a coherent laser beam illuminates the tissue and temporal speckle intensity fluctuations are analyzed to evaluate mechanical properties. The rate of temporal speckle fluctuations is, however, influenced by both optical and mechanical properties of tissue. Therefore, in this paper, we develop and validate an approach to estimate and compensate for the contributions of light scattering to speckle dynamics and demonstrate the capability of LSR for the accurate extraction of viscoelastic moduli in phantom samples and biological fluids of varying optical and mechanical properties.

  15. Artificial neural network techniques to improve the ability of optical coherence tomography to detect optic neuritis.

    PubMed

    Garcia-Martin, Elena; Herrero, Raquel; Bambo, Maria P; Ara, Jose R; Martin, Jesus; Polo, Vicente; Larrosa, Jose M; Garcia-Feijoo, Julian; Pablo, Luis E

    2015-01-01

    To analyze the ability of Spectralis optical coherence tomography (OCT) to detect multiple sclerosis (MS) and to distinguish MS eyes with antecedent optic neuritis (ON). To analyze the capability of artificial neural network (ANN) techniques to improve the diagnostic precision. MS patients and controls were enrolled (n = 217). OCT was used to determine the 768 retinal nerve fiber layer thicknesses. Sensitivity and specificity were evaluated to test the ability of OCT to discriminate between MS and healthy eyes, and between MS with and without antecedent ON using ANN. Using ANN technique multilayer perceptrons, OCT could detect MS with a sensitivity of 89.3%, a specificity of 87.6%, and a diagnostic precision of 88.5%. Compared with the OCT-provided parameters, the ANN had a better sensitivity-specificity balance. ANN technique improves the capability of Spectralis OCT to detect MS disease and to distinguish MS eyes with or without antecedent ON.

  16. Evaluation and Correction for Optical Scattering Variations in Laser Speckle Rheology of Biological Fluids

    PubMed Central

    Hajjarian, Zeinab; Nadkarni, Seemantini K.

    2013-01-01

    Biological fluids fulfill key functionalities such as hydrating, protecting, and nourishing cells and tissues in various organ systems. They are capable of these versatile tasks owing to their distinct structural and viscoelastic properties. Characterizing the viscoelastic properties of bio-fluids is of pivotal importance for monitoring the development of certain pathologies as well as engineering synthetic replacements. Laser Speckle Rheology (LSR) is a novel optical technology that enables mechanical evaluation of tissue. In LSR, a coherent laser beam illuminates the tissue and temporal speckle intensity fluctuations are analyzed to evaluate mechanical properties. The rate of temporal speckle fluctuations is, however, influenced by both optical and mechanical properties of tissue. Therefore, in this paper, we develop and validate an approach to estimate and compensate for the contributions of light scattering to speckle dynamics and demonstrate the capability of LSR for the accurate extraction of viscoelastic moduli in phantom samples and biological fluids of varying optical and mechanical properties. PMID:23705028

  17. Electronics design of a multi-rate DPSK modem for free-space optical communications

    NASA Astrophysics Data System (ADS)

    Rao, H. G.; Browne, C. A.; Caplan, D. O.; Carney, J. J.; Chavez, M. L.; Fletcher, A. S.; Fitzgerald, J. J.; Kaminsky, R. D.; Lund, G.; Hamilton, S. A.; Magliocco, R. J.; Mikulina, O. V.; Murphy, R. J.; Seaver, M. M.; Scheinbart, M. S.; Spellmeyer, N. W.; Wang, J. P.

    2014-03-01

    We have designed and experimentally demonstrated a radiation-hardened modem suitable for NASA's Laser Communications Relay Demonstration. The modem supports free-space DPSK communication over a wide range of channel rates, from 72 Mb/s up to 2.88 Gb/s. The modem transmitter electronics generate a bursty DPSK waveform, such that only one optical modulator is required. The receiver clock recovery is capable of operating over all channel rates at average optical signal levels below -70 dBm. The modem incorporates a radiation-hardened Xilinx Virtex 5 FPGA and a radiation-hardened Aeroflex UT699 CPU. The design leverages unique capabilities of each device, such as the FPGA's multi-gigabit transceivers. The modem scrubs itself against radiation events, but does not require pervasive triple-mode redundant logic. The modem electronics include automatic stabilization functions for its optical components, and software to control its initialization and operation. The design allows the modem to be put into a low-power standby mode.

  18. The Future of Operational Space Weather Observations

    NASA Astrophysics Data System (ADS)

    Berger, T. E.

    2015-12-01

    We review the current state of operational space weather observations, the requirements for new or evolved space weather forecasting capablities, and the relevant sections of the new National strategy for space weather developed by the Space Weather Operations, Research, and Mitigation (SWORM) Task Force chartered by the Office of Science and Technology Policy of the White House. Based on this foundation, we discuss future space missions such as the NOAA space weather mission to the L1 Lagrangian point planned for the 2021 time frame and its synergy with an L5 mission planned for the same period; the space weather capabilities of the upcoming GOES-R mission, as well as GOES-Next possiblities; and the upcoming COSMIC-2 mission for ionospheric observations. We also discuss the needs for ground-based operational networks to supply mission critical and/or backup space weather observations including the NSF GONG solar optical observing network, the USAF SEON solar radio observing network, the USGS real-time magnetometer network, the USCG CORS network of GPS receivers, and the possibility of operationalizing the world-wide network of neutron monitors for real-time alerts of ground-level radiation events.

  19. High-speed optical links for UAV applications

    NASA Astrophysics Data System (ADS)

    Chen, C.; Grier, A.; Malfa, M.; Booen, E.; Harding, H.; Xia, C.; Hunwardsen, M.; Demers, J.; Kudinov, K.; Mak, G.; Smith, B.; Sahasrabudhe, A.; Patawaran, F.; Wang, T.; Wang, A.; Zhao, C.; Leang, D.; Gin, J.; Lewis, M.; Nguyen, D.; Quirk, K.

    2017-02-01

    High speed optical backbone links between a fleet of UAVs is an integral part of the Facebook connectivity architecture. To support the architecture, the optical terminals need to provide high throughput rates (in excess of tens of Gbps) while achieving low weight and power consumption. The initial effort is to develop and demonstrate an optical terminal capable of meeting the data rate requirements and demonstrate its functions for both air-air and air-ground engagements. This paper is a summary of the effort to date.

  20. Fiber-optical analog of the event horizon.

    PubMed

    Philbin, Thomas G; Kuklewicz, Chris; Robertson, Scott; Hill, Stephen; König, Friedrich; Leonhardt, Ulf

    2008-03-07

    The physics at the event horizon resembles the behavior of waves in moving media. Horizons are formed where the local speed of the medium exceeds the wave velocity. We used ultrashort pulses in microstructured optical fibers to demonstrate the formation of an artificial event horizon in optics. We observed a classical optical effect: the blue-shifting of light at a white-hole horizon. We also showed by theoretical calculations that such a system is capable of probing the quantum effects of horizons, in particular Hawking radiation.

  1. Integrated Modeling of Optical Systems (IMOS): An Assessment and Future Directions

    NASA Technical Reports Server (NTRS)

    Moore, Gregory; Broduer, Steve (Technical Monitor)

    2001-01-01

    Integrated Modeling of Optical Systems (IMOS) is a finite element-based code combining structural, thermal, and optical ray-tracing capabilities in a single environment for analysis of space-based optical systems. We'll present some recent examples of IMOS usage and discuss future development directions. Due to increasing model sizes and a greater emphasis on multidisciplinary analysis and design, much of the anticipated future work will be in the areas of improved architecture, numerics, and overall performance and analysis integration.

  2. Fluorescent fluid interface position sensor

    DOEpatents

    Weiss, Jonathan D.

    2004-02-17

    A new fluid interface position sensor has been developed, which is capable of optically determining the location of an interface between an upper fluid and a lower fluid, the upper fluid having a larger refractive index than a lower fluid. The sensor functions by measurement, of fluorescence excited by an optical pump beam which is confined within a fluorescent waveguide where that waveguide is in optical contact with the lower fluid, but escapes from the fluorescent waveguide where that waveguide is in optical contact with the upper fluid.

  3. Coherent perfect rotation

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Dawson, Nathan J.; Andrews, James H.

    2012-09-01

    Two classes of conservative, linear, optical rotary effects (optical activity and Faraday rotation) are distinguished by their behavior under time reversal. Faraday rotation, but not optical activity, is capable of coherent perfect rotation, by which we mean the complete transfer of counterpropagating coherent light fields into their orthogonal polarization. Unlike coherent perfect absorption, however, this process is explicitly energy conserving and reversible. Our study highlights the necessity of time-reversal-odd processes (not just absorption) and coherence in perfect mode conversion and thus informs the optimization of active multiport optical devices.

  4. Hyperspectral Remote Sensing of the Coastal Ocean: Adaptive Sampling and Forecasting of In situ Optical Properties

    DTIC Science & Technology

    2003-09-30

    We are developing an integrated rapid environmental assessment capability that will be used to feed an ocean nowcast/forecast system. The goal is to develop a capacity for predicting the dynamics in inherent optical properties in coastal waters. This is being accomplished by developing an integrated observation system that is being coupled to a data assimilative hydrodynamic bio-optical ecosystem model. The system was used adaptively to calibrate hyperspectral remote sensing sensors in optically complex nearshore coastal waters.

  5. Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection.

    PubMed

    Mertz, Jerome; Kim, Jinhyun

    2010-01-01

    It is well known that light-sheet illumination can enable optically sectioned wide-field imaging of macroscopic samples. However, the optical sectioning capacity of a light-sheet macroscope is undermined by sample-induced scattering or aberrations that broaden the thickness of the sheet illumination. We present a technique to enhance the optical sectioning capacity of a scanning light-sheet microscope by out-of-focus background rejection. The technique, called HiLo microscopy, makes use of two images sequentially acquired with uniform and structured sheet illumination. An optically sectioned image is then synthesized by fusing high and low spatial frequency information from both images. The benefits of combining light-sheet macroscopy and HiLo background rejection are demonstrated in optically cleared whole mouse brain samples, using both green fluorescent protein (GFP)-fluorescence and dark-field scattered light contrast.

  6. Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection

    NASA Astrophysics Data System (ADS)

    Mertz, Jerome; Kim, Jinhyun

    2010-01-01

    It is well known that light-sheet illumination can enable optically sectioned wide-field imaging of macroscopic samples. However, the optical sectioning capacity of a light-sheet macroscope is undermined by sample-induced scattering or aberrations that broaden the thickness of the sheet illumination. We present a technique to enhance the optical sectioning capacity of a scanning light-sheet microscope by out-of-focus background rejection. The technique, called HiLo microscopy, makes use of two images sequentially acquired with uniform and structured sheet illumination. An optically sectioned image is then synthesized by fusing high and low spatial frequency information from both images. The benefits of combining light-sheet macroscopy and HiLo background rejection are demonstrated in optically cleared whole mouse brain samples, using both green fluorescent protein (GFP)-fluorescence and dark-field scattered light contrast.

  7. The measurement capabilities of cross-sectional profile of Nanoimprint template pattern using small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Yamanaka, Eiji; Taniguchi, Rikiya; Itoh, Masamitsu; Omote, Kazuhiko; Ito, Yoshiyasu; Ogata, Kiyoshi; Hayashi, Naoya

    2016-05-01

    Nanoimprint lithography (NIL) is one of the most potential candidates for the next generation lithography for semiconductor. It will achieve the lithography with high resolution and low cost. High resolution of NIL will be determined by a high definition template. Nanoimprint lithography will faithfully transfer the pattern of NIL template to the wafer. Cross-sectional profile of the template pattern will greatly affect the resist profile on the wafer. Therefore, the management of the cross-sectional profile is essential. Grazing incidence small angle x-ray scattering (GI-SAXS) technique has been proposed as one of the method for measuring cross-sectional profile of periodic nanostructure pattern. Incident x-rays are irradiated to the sample surface with very low glancing angle. It is close to the critical angle of the total reflection of the x-ray. The scattered x-rays from the surface structure are detected on a two-dimensional detector. The observed intensity is discrete in the horizontal (2θ) direction. It is due to the periodicity of the structure, and diffraction is observed only when the diffraction condition is satisfied. In the vertical (β) direction, the diffraction intensity pattern shows interference fringes reflected to height and shape of the structure. Features of the measurement using x-ray are that the optical constant for the materials are well known, and it is possible to calculate a specific diffraction intensity pattern based on a certain model of the cross-sectional profile. The surface structure is estimated by to collate the calculated diffraction intensity pattern that sequentially while changing the model parameters with the measured diffraction intensity pattern. Furthermore, GI-SAXS technique can be measured an object in a non-destructive. It suggests the potential to be an effective tool for product quality assurance. We have developed a cross-sectional profile measurement of quartz template pattern using GI-SAXS technique. In this report, we will report the measurement capabilities of GI-SAXS technique as a cross-sectional profile measurement tool of NIL quartz template pattern.

  8. Fast optically sectioned fluorescence HiLo endomicroscopy

    PubMed Central

    Lim, Daryl; Mertz, Jerome

    2012-01-01

    Abstract. We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies. PMID:22463023

  9. Implementation of Fiber Optic Sensing System on Sandwich Composite Cylinder Buckling Test

    NASA Technical Reports Server (NTRS)

    Pena, Francisco; Richards, W. Lance; Parker, Allen R.; Piazza, Anthony; Schultz, Marc R.; Rudd, Michelle T.; Gardner, Nathaniel W.; Hilburger, Mark W.

    2018-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center Shell Buckling Knockdown Factor Project is a multicenter project tasked with developing new analysis-based shell buckling design guidelines and design factors (i.e., knockdown factors) through high-fidelity buckling simulations and advanced test technologies. To validate these new buckling knockdown factors for future launch vehicles, the Shell Buckling Knockdown Factor Project is carrying out structural testing on a series of large-scale metallic and composite cylindrical shells at the NASA Marshall Space Flight Center (Marshall Space Flight Center, Alabama). A fiber optic sensor system was used to measure strain on a large-scale sandwich composite cylinder that was tested under multiple axial compressive loads up to more than 850,000 lb, and equivalent bending loads over 22 million in-lb. During the structural testing of the composite cylinder, strain data were collected from optical cables containing distributed fiber Bragg gratings using a custom fiber optic sensor system interrogator developed at the NASA Armstrong Flight Research Center. A total of 16 fiber-optic strands, each containing nearly 1,000 fiber Bragg gratings, measuring strain, were installed on the inner and outer cylinder surfaces to monitor the test article global structural response through high-density real-time and post test strain measurements. The distributed sensing system provided evidence of local epoxy failure at the attachment-ring-to-barrel interface that would not have been detected with conventional instrumentation. Results from the fiber optic sensor system were used to further refine and validate structural models for buckling of the large-scale composite structures. This paper discusses the techniques employed for real-time structural monitoring of the composite cylinder for structural load introduction and distributed bending-strain measurements over a large section of the cylinder by utilizing unique sensing capabilities of fiber optic sensors.

  10. MEMS tracking mirror system for a bidirectional free-space optical link.

    PubMed

    Jeon, Sungho; Toshiyoshi, Hiroshi

    2017-08-20

    We report on a bidirectional free-space optical system that is capable of automatic connection and tracking of an optical link between two nodes. A piezoelectric micro-electro-mechanical systems (MEMS) optical scanner is used to steer a laser beam of two wavelengths superposed to visually present a communication zone, to search for the position of the remote node by means of the retro-reflector optics, and to transmit the data between the nodes. A feedback system is developed to control the MEMS scanner to dynamically establish the optical link within a 10-ms transition time and to keep track of the moving node.

  11. Scalar wave-optical reconstruction of plenoptic camera images.

    PubMed

    Junker, André; Stenau, Tim; Brenner, Karl-Heinz

    2014-09-01

    We investigate the reconstruction of plenoptic camera images in a scalar wave-optical framework. Previous publications relating to this topic numerically simulate light propagation on the basis of ray tracing. However, due to continuing miniaturization of hardware components it can be assumed that in combination with low-aperture optical systems this technique may not be generally valid. Therefore, we study the differences between ray- and wave-optical object reconstructions of true plenoptic camera images. For this purpose we present a wave-optical reconstruction algorithm, which can be run on a regular computer. Our findings show that a wave-optical treatment is capable of increasing the detail resolution of reconstructed objects.

  12. Self-aligned spatial filtering using laser optical tweezers.

    PubMed

    Birkbeck, Aaron L; Zlatanovic, Sanja; Esener, Sadik C

    2006-09-01

    We present an optical spatial filtering device that has been integrated into a microfluidic system and whose motion and alignment is controlled using a laser optical tweezer. The lithographically patterned micro-optical spatial filter device filters out higher frequency additive noise components by automatically aligning itself in three dimensions to the focus of the laser beam. This self-alignment capability is achieved through the attachment of a refractive optical element directly over the circular aperture or pinhole of the spatial filter. A discussion of two different spatial filter designs is presented along with experimental results that demonstrate the effectiveness of the self-aligned micro-optic spatial filter.

  13. Fabry-Perot confocal resonator optical associative memory

    NASA Astrophysics Data System (ADS)

    Burns, Thomas J.; Rogers, Steven K.; Vogel, George A.

    1993-03-01

    A unique optical associative memory architecture is presented that combines the optical processing environment of a Fabry-Perot confocal resonator with the dynamic storage and recall properties of volume holograms. The confocal resonator reduces the size and complexity of previous associative memory architectures by folding a large number of discrete optical components into an integrated, compact optical processing environment. Experimental results demonstrate the system is capable of recalling a complete object from memory when presented with partial information about the object. A Fourier optics model of the system's operation shows it implements a spatially continuous version of a discrete, binary Hopfield neural network associative memory.

  14. Airborne Electro-Optical Sensor Simulation System. Final Report.

    ERIC Educational Resources Information Center

    Hayworth, Don

    The total system capability, including all the special purpose and general purpose hardware comprising the Airborne Electro-Optical Sensor Simulation (AEOSS) System, is described. The functional relationship between hardware portions is described together with interface to the software portion of the computer image generation. Supporting rationale…

  15. Imaging optical sensor arrays.

    PubMed

    Walt, David R

    2002-10-01

    Imaging optical fibres have been etched to prepare microwell arrays. These microwells have been loaded with sensing materials such as bead-based sensors and living cells to create high-density sensor arrays. The extremely small sizes and volumes of the wells enable high sensitivity and high information content sensing capabilities.

  16. Optical memories in digital computing

    NASA Technical Reports Server (NTRS)

    Alford, C. O.; Gaylord, T. K.

    1979-01-01

    High capacity optical memories with relatively-high data-transfer rate and multiport simultaneous access capability may serve as basis for new computer architectures. Several computer structures that might profitably use memories are: a) simultaneous record-access system, b) simultaneously-shared memory computer system, and c) parallel digital processing structure.

  17. Accurate Rapid Lifetime Determination on Time-Gated FLIM Microscopy with Optical Sectioning

    PubMed Central

    Silva, Susana F.; Domingues, José Paulo

    2018-01-01

    Time-gated fluorescence lifetime imaging microscopy (FLIM) is a powerful technique to assess the biochemistry of cells and tissues. When applied to living thick samples, it is hampered by the lack of optical sectioning and the need of acquiring many images for an accurate measurement of fluorescence lifetimes. Here, we report on the use of processing techniques to overcome these limitations, minimizing the acquisition time, while providing optical sectioning. We evaluated the application of the HiLo and the rapid lifetime determination (RLD) techniques for accurate measurement of fluorescence lifetimes with optical sectioning. HiLo provides optical sectioning by combining the high-frequency content from a standard image, obtained with uniform illumination, with the low-frequency content of a second image, acquired using structured illumination. Our results show that HiLo produces optical sectioning on thick samples without degrading the accuracy of the measured lifetimes. We also show that instrument response function (IRF) deconvolution can be applied with the RLD technique on HiLo images, improving greatly the accuracy of the measured lifetimes. These results open the possibility of using the RLD technique with pulsed diode laser sources to determine accurately fluorescence lifetimes in the subnanosecond range on thick multilayer samples, providing that offline processing is allowed. PMID:29599938

  18. Accurate Rapid Lifetime Determination on Time-Gated FLIM Microscopy with Optical Sectioning.

    PubMed

    Silva, Susana F; Domingues, José Paulo; Morgado, António Miguel

    2018-01-01

    Time-gated fluorescence lifetime imaging microscopy (FLIM) is a powerful technique to assess the biochemistry of cells and tissues. When applied to living thick samples, it is hampered by the lack of optical sectioning and the need of acquiring many images for an accurate measurement of fluorescence lifetimes. Here, we report on the use of processing techniques to overcome these limitations, minimizing the acquisition time, while providing optical sectioning. We evaluated the application of the HiLo and the rapid lifetime determination (RLD) techniques for accurate measurement of fluorescence lifetimes with optical sectioning. HiLo provides optical sectioning by combining the high-frequency content from a standard image, obtained with uniform illumination, with the low-frequency content of a second image, acquired using structured illumination. Our results show that HiLo produces optical sectioning on thick samples without degrading the accuracy of the measured lifetimes. We also show that instrument response function (IRF) deconvolution can be applied with the RLD technique on HiLo images, improving greatly the accuracy of the measured lifetimes. These results open the possibility of using the RLD technique with pulsed diode laser sources to determine accurately fluorescence lifetimes in the subnanosecond range on thick multilayer samples, providing that offline processing is allowed.

  19. Confidence range estimate of extended source imagery acquisition algorithms via computer simulations. [in optical communication systems

    NASA Technical Reports Server (NTRS)

    Chen, CHIEN-C.; Hui, Elliot; Okamoto, Garret

    1992-01-01

    Spatial acquisition using the sun-lit Earth as a beacon source provides several advantages over active beacon-based systems for deep-space optical communication systems. However, since the angular extend of the Earth image is large compared to the laser beam divergence, the acquisition subsystem must be capable of resolving the image to derive the proper pointing orientation. The algorithms used must be capable of deducing the receiver location given the blurring introduced by the imaging optics and the large Earth albedo fluctuation. Furthermore, because of the complexity of modelling the Earth and the tracking algorithms, an accurate estimate of the algorithm accuracy can only be made via simulation using realistic Earth images. An image simulator was constructed for this purpose, and the results of the simulation runs are reported.

  20. Statistical and temporal irradiance fluctuations modeling for a ground-to-geostationary satellite optical link.

    PubMed

    Camboulives, A-R; Velluet, M-T; Poulenard, S; Saint-Antonin, L; Michau, V

    2018-02-01

    An optical communication link performance between the ground and a geostationary satellite can be impaired by scintillation, beam wandering, and beam spreading due to its propagation through atmospheric turbulence. These effects on the link performance can be mitigated by tracking and error correction codes coupled with interleaving. Precise numerical tools capable of describing the irradiance fluctuations statistically and of creating an irradiance time series are needed to characterize the benefits of these techniques and optimize them. The wave optics propagation methods have proven their capability of modeling the effects of atmospheric turbulence on a beam, but these are known to be computationally intensive. We present an analytical-numerical model which provides good results on the probability density functions of irradiance fluctuations as well as a time series with an important saving of time and computational resources.

  1. Line width measurement below 60 nm using an optical interferometer and artificial neural network

    NASA Astrophysics Data System (ADS)

    See, Chung W.; Smith, Richard J.; Somekh, Michael G.; Yacoot, Andrew

    2007-03-01

    We have recently described a technique for optical line-width measurements. The system currently is capable of measuring line-width down to 60 nm with a precision of 2 nm, and potentially should be able to measure down to 10nm. The system consists of an ultra-stable interferometer and artificial neural networks (ANNs). The former is used to generate optical profiles which are input to the ANNs. The outputs of the ANNs are the desired sample parameters. Different types of samples have been tested with equally impressive results. In this paper we will discuss the factors that are essential to extend the application of the technique. Two of the factors are signal conditioning and sample classification. Methods, including principal component analysis, that are capable of performing these tasks will be considered.

  2. Remotely Monitored Sealing Array Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-09-12

    The Remotely Monitored Sealing Array (RMSA) utilizes the Secure Sensor Platform (SSP) framework to establish the fundamental operating capabilities for communication, security, power management, and cryptography. In addition to the SSP framework the RMSA software has unique capabilities to support monitoring a fiber optic seal. Fiber monitoring includes open and closed as well as parametric monitoring to detect tampering attacks. The fiber monitoring techniques, using the SSP power management processes, allow the seals to last for years while maintaining the security requirements of the monitoring application. The seal is enclosed in a tamper resistant housing with software to support activemore » tamper monitoring. New features include LED notification of fiber closure, the ability to retrieve the entire fiber optic history via translator command, separate memory storage for fiber optic events, and a more robust method for tracking and resending failed messages.« less

  3. RF and Optical Communications: A Comparison of High Data Rate Returns From Deep Space in the 2020 Timeframe

    NASA Technical Reports Server (NTRS)

    Williams, W. Dan; Collins, Michael; Boroson, Don M.; Lesh, James; Biswas, Abihijit; Orr, Richard; Schuchman, Leonard; Sands, O. Scott

    2007-01-01

    As NASA proceeds with plans for increased science data return and higher data transfer capacity for science missions, both RF and optical communications are viable candidates for significantly higher-rate communications from deep space to Earth. With the inherent advantages, smaller apertures and larger bandwidths, of optical communications, it is reasonable to expect that at some point in time and combination of increasing distance and data rate, the rapidly emerging optical capabilities would become more advantageous than the more mature and evolving RF techniques. This paper presents a comparison of the burden to a spacecraft by both RF and optical communications systems for data rates of 10, 100, and 1000 Mbps and large distances. Advanced technology for RF and optical communication systems have been considered for projecting capabilities in the 2020 timeframe. For the comparisons drawn, the optical and RF ground terminals were selected to be similar in cost. The RF system selected is composed of forty-five 12-meter antennas, whereas the selected optical system is equivalent to a 10-meter optical telescope. Potential differences in availability are disregarded since the focus of this study is on spacecraft mass and power burden for high-rate mission data, under the assumption that essential communications will be provided by low-rate, high availability RF. For both the RF and optical systems, the required EIRP, for a given data rate and a given distance, was achieved by a design that realized the lowest possible communications subsystem mass (power + aperture) consistent with achieving the lowest technology risk. A key conclusion of this paper is that optical communications has great potential for high data rates and distances of 2.67 AU and beyond, but requires R&D and flight demonstrations to prove out technologies.

  4. Advanced optical components for next-generation photonic networks

    NASA Astrophysics Data System (ADS)

    Yoo, S. J. B.

    2003-08-01

    Future networks will require very high throughput, carrying dominantly data-centric traffic. The role of Photonic Networks employing all-optical systems will become increasingly important in providing scalable bandwidth, agile reconfigurability, and low-power consumptions in the future. In particular, the self-similar nature of data traffic indicates that packet switching and burst switching will be beneficial in the Next Generation Photonic Networks. While the natural conclusion is to pursue Photonic Packet Switching and Photonic Burst Switching systems, there are significant challenges in realizing such a system due to practical limitations in optical component technologies. Lack of a viable all-optical memory technology will continue to drive us towards exploring rapid reconfigurability in the wavelength domain. We will introduce and discuss the advanced optical component technologies behind the Photonic Packet Routing system designed and demonstrated at UC Davis. The system is capable of packet switching and burst switching, as well as circuit switching with 600 psec switching speed and scalability to 42 petabit/sec aggregated switching capacity. By utilizing a combination of rapidly tunable wavelength conversion and a uniform-loss cyclic frequency (ULCF) arrayed waveguide grating router (AWGR), the system is capable of rapidly switching the packets in wavelength, time, and space domains. The label swapping module inside the Photonic Packet Routing system containing a Mach-Zehnder wavelength converter and a narrow-band fiber Bragg-grating achieves all-optical label swapping with optical 2R (potentially 3R) regeneration while maintaining optical transparency for the data payload. By utilizing the advanced optical component technologies, the Photonic Packet Routing system successfully demonstrated error-free, cascaded, multi-hop photonic packet switching and routing with optical-label swapping. This paper will review the advanced optical component technologies and their role in the Next Generation Photonic Networks.

  5. Laser figuring for the generation of analog micro-optics and kineform surfaces

    NASA Technical Reports Server (NTRS)

    Gratrix, Edward J.

    1993-01-01

    To date, there have been many techniques used to generate micro-optic structures in glass or other materials. Using methods common to the lithographic industry, the manufacturing technique known as 'binary optics,' has demonstrated the use of diffractive optics in a variety of micro-optic applications. It is well established that diffractive structures have limited capability when applied in a design more suited for a refractive element. For applications that demand fast, highly efficient, broadband designs, we have developed a technique which uses laser figuring to generate the refractive micro-optical surface. This paper describes the technique used to fabricate refractive micro-optics. Recent results of micro-optics in CdZnTe focal planes are shown.

  6. Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry.

    PubMed

    Huang, Jie; Lan, Xinwei; Luo, Ming; Xiao, Hai

    2014-07-28

    This paper reports a spatially continuous distributed fiber optic sensing technique using optical carrier based microwave interferometry (OCMI), in which many optical interferometers with the same or different optical path differences are interrogated in the microwave domain and their locations can be unambiguously determined. The concept is demonstrated using cascaded weak optical reflectors along a single optical fiber, where any two arbitrary reflectors are paired to define a low-finesse Fabry-Perot interferometer. While spatially continuous (i.e., no dark zone), fully distributed strain measurement was used as an example to demonstrate the capability, the proposed concept may also be implemented on other types of waveguide or free-space interferometers and used for distributed measurement of various physical, chemical and biological quantities.

  7. The GMT-Consortium Large Earth Finder (G-CLEF) : An Optical Echelle Spectrograph for the Giant Magellan Telescope (GMT) with Multi-Object Spectroscopy (MOS) Capability

    NASA Astrophysics Data System (ADS)

    Szentgyorgyi, Andrew

    2017-09-01

    "The GMT-Consortium Large Earth Finder (G-CLEF) is an optical band echelle spectrograph that has been selected as the first light instrument for the Giant Magellan Telescope (GMT). G-CLEF is a general purpose, high dispersion instrument that is fiber fed and capable of extremely precise radial velocity (PRV) measurements. G-CLEF will have a novel multi-object spectroscopy (MOS) capability that will be useful for a number of exoplanet science programs. I describe the general properties of G-CLEF and the systems engineering analyses, especially for PRV, that drove the current G-CLEF design. The requirements for calibration of the MOS channel are presented along with several novel approaches for achieving moderate radial velocity precision in the MOS mode."

  8. Novel high-NA MRF toolpath supports production of concave hemispheres

    NASA Astrophysics Data System (ADS)

    Maloney, Chris; Supranowitz, Chris; Dumas, Paul

    2017-10-01

    Many optical system designs rely on high numerical aperture (NA) optics, including lithography and defense systems. Lithography systems require high-NA optics to image the fine patterns from a photomask, and many defense systems require the use of domes. The methods for manufacturing such optics with large half angles have often been treated as proprietary by most manufacturers due to the challenges involved. In the past, many high-NA concave surfaces could not be polished by magnetorheological finishing (MRF) due to collisions with the hardware underneath the polishing head. By leveraging concepts that were developed to enable freeform raster MRF capabilities, QED Technologies has implemented a novel toolpath to facilitate a new high-NA rotational MRF mode. This concept involves the use of the B-axis (rotational axis) in combination with a "virtual-axis" that utilizes the geometry of the polishing head. Hardware collisions that previously restricted the concave half angle limit can now be avoided and the new functionality has been seamlessly integrated into the software. This new MRF mode overcomes past limitations for polishing concave surfaces to now accommodate full concave hemispheres as well as extend the capabilities for full convex hemispheres. We discuss some of the previous limitations, and demonstrate the extended capabilities using this novel toolpath. Polishing results are used to qualify the new toolpath to ensure similar results to the "standard" rotational MRF mode.

  9. Construction of Prototype Lightweight Mirrors

    NASA Technical Reports Server (NTRS)

    Robinson, William G.

    1997-01-01

    This contract and the work described was in support of a Seven Segment Demonstrator (SSD) and demonstration of a different technology for construction of lightweight mirrors. The objectives of the SSD were to demonstrate functionality and performance of a seven segment prototype array of hexagonal mirrors and supporting electromechanical components which address design issues critical to space optics deployed in large space based telescopes for astronomy and for optics used in spaced based optical communications systems. The SSD was intended to demonstrate technologies which can support the following capabilities; Transportation in dense packaging to existing launcher payload envelopes, then deployable on orbit to form space telescope with large aperture. Provide very large (less than 10 meters) primary reflectors of low mass and cost. Demonstrate the capability to form a segmented primary or quaternary mirror into a quasi-continuous surface with individual subapertures phased so that near diffraction limited imaging in the visible wavelength region is achieved. Continuous compensation of optical wavefront due to perturbations caused by imperfections, natural disturbances, and equipment induced vibrations/deflections to provide near diffraction limited imaging performance in the visible wavelength region. Demonstrate the feasibility of fabricating such systems with reduced mass and cost compared to past approaches. While the SSD could not be expected to satisfy all of the above capabilities, the intent was to start identifying and understanding new technologies that might be applicable to these goals.

  10. Lensless, ultra-wideband fiber optic rotary joint for biomedical applications.

    PubMed

    Kim, Wihan; Chen, Xi; Jo, Javier A; Applegate, Brian E

    2016-05-01

    The demands of optical fiber-based biomedical applications can, in many cases, outstrip the capabilities of lens-based commercially available fiber optic rotary joints. In some circumstances, it is necessary to use very broad spectral bandwidths (near UV to short-wave IR) and specialized optical fibers, such as double-clad fiber, and have the capacity to accommodate high rotational velocities. The broad spectrum, stretching down into the UV, presents two problems: (1) adequate chromatic correction in the lenses across the entire bandwidth and (2) strong UV absorption by the fluids used to lubricate the rotary joint. To accommodate these types of applications, we have developed an ultra-wideband lensless fiber optic rotary joint based on the principle that when two optical fibers are coaligned and placed in contact (or very close), the optical losses at the junction are very low. The advances demonstrated here enable excellent performance (<0.2  dB insertion loss), even down into the UV and spanning a wavelength range of at least 355-1360 nm with single-mode, multimode, and double-clad fibers. We also demonstrate excellent performance, ∼0.38  dB insertion loss, at rotational velocities up to 8800 rpm (146 Hz). To the best of our knowledge, this is the first demonstration of this type of rotary joint capable of such a wide bandwidth and high rotational velocities.

  11. Application and Miniaturization of Linear and Nonlinear Raman Microscopy for Biomedical Imaging

    NASA Astrophysics Data System (ADS)

    Mittal, Richa

    Current diagnostics for several disorders rely on surgical biopsy or evaluation of ex vivo bodily fluids, which have numerous drawbacks. We evaluated the potential for vibrational techniques (both linear and nonlinear Raman) as a reliable and noninvasive diagnostic tool. Raman spectroscopy is an optical technique for molecular analysis that has been used extensively in various biomedical applications. Based on demonstrated capabilities of Raman spectroscopy we evaluated the potential of the technique for providing a noninvasive diagnosis of mucopolysaccharidosis (MPS). These studies show that Raman spectroscopy can detect subtle changes in tissue biochemistry. In applications where sub-micrometer visualization of tissue compositional change is required, a transition from spectroscopy to high quality imaging is necessary. Nonlinear vibrational microscopy is sensitive to the same molecular vibrations as linear Raman, but features fast imaging capabilities. Coherent Raman scattering when combined with other nonlinear optical (NLO) techniques (like two-photon excited fluorescence and second harmonic generation) forms a collection of advanced optical techniques that provide noninvasive chemical contrast at submicron resolution. This capability to examine tissues without external molecular agents is driving the NLO approach towards clinical applications. However, the unique imaging capabilities of NLO microscopy are accompanied by complex instrument requirements. Clinical examination requires portable imaging systems for rapid inspection of tissues. Optical components utilized in NLO microscopy would then need substantial miniaturization and optimization to enable in vivo use. The challenges in designing compact microscope objective lenses and laser beam scanning mechanisms are discussed. The development of multimodal NLO probes for imaging oral cavity tissue is presented. Our prototype has been examined for ex vivo tissue imaging based on intrinsic fluorescence and SHG contrast. These studies show a potential for multiphoton compact probes to be used for real time imaging in the clinic.

  12. OPTICAL PROCESSING OF INFORMATION: Potential applications of quasi-cw partially coherent radiation in optical data recording and processing

    NASA Astrophysics Data System (ADS)

    Volkov, L. V.; Larkin, A. I.

    1994-04-01

    Theoretical and experimental investigations are reported of the potential applications of quasi-cw partially coherent radiation in optical systems based on diffraction—interference principles. It is shown that the spectral characteristics of quasi-cw radiation influence the data-handling capabilities of a holographic correlator and of a partially coherent holographic system for data acquisition. Relevant experimental results are reported.

  13. Triggered and Untriggered Searches for GRB Optical Bursts with ROTSE

    NASA Astrophysics Data System (ADS)

    Kehoe, R.; Akerlof, C.; Lee, B.; McKay, T.; Rykoff, E.; Marshall, S.; Bloch, J.; Casperson, D.; Gisler, G.; Szymanski, J.; Wren, J.

    2000-12-01

    The ROTSE project is dedicated to the observation of early optical emission from gamma-ray bursts. We have pursued this goal both by analysis of data taken from satellite-derived triggers via GCN, as well as through the study of untriggered data. Recent work now permits us to analyze much larger fields than previously possible. We will discuss our searches for GRB optical bursts which utilize this capability.

  14. Integrated Optical Design Analysis (IODA): New Test Data and Modeling Features

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Troy, Ed; Patrick, Brian

    2003-01-01

    A general overview of the capabilities of the IODA ("Integrated Optical Design Analysis") exchange of data and modeling results between thermal, structures, optical design, and testing engineering disciplines. This presentation focuses on new features added to the software that allow measured test data to be imported into the IODA environment for post processing or comparisons with pretest model predictions. software is presented. IODA promotes efficient

  15. Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media

    PubMed Central

    Borycki, Dawid; Kholiqov, Oybek; Chong, Shau Poh; Srinivasan, Vivek J.

    2016-01-01

    We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts optical and dynamical properties of turbid media through analysis of a spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency-swept narrow linewidth laser. Fourier analysis of the detected signal is used to determine time-of-flight (TOF)-resolved intensity, which is then analyzed over time to yield TOF-resolved intensity autocorrelations. This approach enables quantification of optical properties, which is not possible in conventional, continuous-wave near-infrared spectroscopy (NIRS). Furthermore, iNIRS quantifies scatterer motion based on TOF-resolved autocorrelations, which is a feature inaccessible by well-established diffuse correlation spectroscopy (DCS) techniques. We prove this by determining TOF-resolved intensity and temporal autocorrelations for light transmitted through diffusive fluid phantoms with optical thicknesses of up to 55 reduced mean free paths (approximately 120 scattering events). The TOF-resolved intensity is used to determine optical properties with time-resolved diffusion theory, while the TOF-resolved intensity autocorrelations are used to determine dynamics with diffusing wave spectroscopy. iNIRS advances the capabilities of diffuse optical methods and is suitable for in vivo tissue characterization. Moreover, iNIRS combines NIRS and DCS capabilities into a single modality. PMID:26832264

  16. The role of local interaction mechanics in fiber optic smart structures

    NASA Astrophysics Data System (ADS)

    Sirkis, J. S.; Dasgupta, A.

    1993-04-01

    The concept of using 'smart' composite materials/structures with built-in self-diagnostic capabilities for health monitoring involves embedding discrete and/or distributed sensory networks in the host composite material, along with a central and/or distributed artificial intelligence capability for signal processing, data collection, interpretation and diagnostic evaluations. This article concentrates on the sensory functions in 'smart' structure applications and concentrates in particular on optical fiber sensors. Specifically, we present an overview of recent research dealing with the basic mechanics of local interactions between the embedded optical fiber sensors and the surrounding host composite. The term 'local' is defined by length scales on the order of several optical fiber diameters. We examine some generic issues, such as the 'calibration' and 'obtrusivity' of the sensor, and the inherent damage caused by the sensor inclusions to the surrounding host and vice-versa under internal and/or external applied loads. Analytical, numerical and experimental results are presented regarding the influence of local strain concentrations caused by the sensory inclusions on sensor and host performance. The important issues examined are the local mechanistic effects of optical fiber coatings on the behavior of the sensor and the host, and mechanical survivability of optical fibers experiencing quasi-static and time-varying thermomechanical loading.

  17. Towards roll-to-roll fabrication of electronics, optics, and optoelectronics for smart and intelligent packaging

    NASA Astrophysics Data System (ADS)

    Kololuoma, Terho K.; Tuomikoski, Markus; Makela, Tapio; Heilmann, Jali; Haring, Tomi; Kallioinen, Jani; Hagberg, Juha; Kettunen, Ilkka; Kopola, Harri K.

    2004-06-01

    Embedding of optoelectrical, optical, and electrical functionalities into low-cost products like packages and printed matter can be used to increase their information content. These functionalities make also possible the realization of new type of entertaining, impressive or guiding effects on the product packages and printed matter. For these purposes, components like displays, photodetectors, light sources, solar cells, battery elements, diffractive optical elements, lightguides, electrical conductors, resistors, transistors, switching elements etc. and their integration to functional modules are required. Additionally, the price of the components for low-end products has to be in cent scale or preferably below that. Therefore, new, cost-effective, and volume scale capable manufacturing techniques are required. Recent developments of liquid-phase processable electrical and optical polymeric, inorganic, and hybrid materials - inks - have made it possible to fabricate functional electrical, optical and optoelectrical components by conventional roll-to-roll techniques such as gravure printing, embossing, digital printing, offset, and screen printing on flexible paper and plastic like substrates. In this paper, we show our current achievements in the field of roll-to-roll fabricated, optics, electronics and optoelectronics. With few examples, we also demonstrate the printing and hot-embossing capabilities of table scale printing machines and VTT Electronic's 'PICO' roll-to-roll pilot production facility.

  18. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Realisation of video-frequency filters on the basis of a new mode of operation of an acousto-optical correlator with spatial integration

    NASA Astrophysics Data System (ADS)

    Ushakov, V. N.

    1995-10-01

    A video-frequency acousto-optical correlator with spatial integration, which widens the functional capabilities of correlation-type acousto-optical processors, is described. The correlator is based on a two-dimensional reference transparency and it can filter arbitrary video signals of spectral width limited by the pass band of an acousto-optical modulator. The calculated pulse characteristic is governed by the structure of the reference transparency. A procedure for the synthesis of this transparency is considered and experimental results are reported.

  19. An approach to control tuning range and speed in 1D ternary photonic band gap material nano-layered optical filter structures electro-optically

    NASA Astrophysics Data System (ADS)

    Zia, Shahneel; Banerjee, Anirudh

    2016-05-01

    This paper demonstrates a way to control spectrum tuning capability in one-dimensional (1D) ternary photonic band gap (PBG) material nano-layered structures electro-optically. It is shown that not only tuning range, but also tuning speed of tunable optical filters based on 1D ternary PBG structures can be controlled Electro-optically. This approach finds application in tuning range enhancement of 1D Ternary PBG structures and compensating temperature sensitive transmission spectrum shift in 1D Ternary PBG structures.

  20. A technique for the optical analysis of deformed telescope mirrors

    NASA Technical Reports Server (NTRS)

    Bolton, John F.

    1986-01-01

    The NASTRAN-ACCOS V programs' interface merges structural and optical analysis capabilities in order to characterize the performance of the NASA Goddard Space Flight Center's Solar Optical Telescope primary mirror, which has a large diameter/thickness ratio. The first step in the optical analysis is to use NASTRAN's FEM to model the primary mirror, simulating any distortions due to gravitation, thermal gradients, and coefficient of thermal expansion nonuniformities. NASTRAN outputs are then converted into an ACCOS V-acceptable form; ACCOS V generates the deformed optical surface on the basis of these inputs, and imaging qualities can be determined.

  1. New technique for simulation of optical fiber amplifiers control schemes in dynamic WDM systems

    NASA Astrophysics Data System (ADS)

    Freitas, Marcio; Klein, Jackson; Givigi, Sidney, Jr.; Calmon, Luiz C.

    2005-04-01

    One topic that has attracted attention is related to the behavior of the optical amplifiers under dynamic conditions, specifically because amplifiers working in a saturated condition produce power transients in all-optical reconfigurable WDM networks, e.g. adding/dropping channels. The goal of this work is to introduce the multiwavelength time-driven simulations technique, capable of simulation and analysis of transient effects in all-optical WDM networks with optical amplifiers, and allow the use of control schemes to avoid or minimize the impacts of transient effects in the system performance.

  2. An approach to control tuning range and speed in 1D ternary photonic band gap material nano-layered optical filter structures electro-optically

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zia, Shahneel, E-mail: shahneelzia@gmail.com; Banerjee, Anirudh, E-mail: abanerjee@amity.edu

    2016-05-06

    This paper demonstrates a way to control spectrum tuning capability in one-dimensional (1D) ternary photonic band gap (PBG) material nano-layered structures electro-optically. It is shown that not only tuning range, but also tuning speed of tunable optical filters based on 1D ternary PBG structures can be controlled Electro-optically. This approach finds application in tuning range enhancement of 1D Ternary PBG structures and compensating temperature sensitive transmission spectrum shift in 1D Ternary PBG structures.

  3. OCCIMA: Optical Channel Characterization in Maritime Atmospheres

    NASA Astrophysics Data System (ADS)

    Hammel, Steve; Tsintikidis, Dimitri; deGrassie, John; Reinhardt, Colin; McBryde, Kevin; Hallenborg, Eric; Wayne, David; Gibson, Kristofor; Cauble, Galen; Ascencio, Ana; Rudiger, Joshua

    2015-05-01

    The Navy is actively developing diverse optical application areas, including high-energy laser weapons and free- space optical communications, which depend on an accurate and timely knowledge of the state of the atmospheric channel. The Optical Channel Characterization in Maritime Atmospheres (OCCIMA) project is a comprehensive program to coalesce and extend the current capability to characterize the maritime atmosphere for all optical and infrared wavelengths. The program goal is the development of a unified and validated analysis toolbox. The foundational design for this program coordinates the development of sensors, measurement protocols, analytical models, and basic physics necessary to fulfill this goal.

  4. Optical Distance Measurement Device And Method Thereof

    DOEpatents

    Bowers, Mark W.

    2004-06-15

    A system and method of efficiently obtaining distance measurements of a target by scanning the target. An optical beam is provided by a light source and modulated by a frequency source. The modulated optical beam is transmitted to an acousto-optical deflector capable of changing the angle of the optical beam in a predetermined manner to produce an output for scanning the target. In operation, reflected or diffused light from the target may be received by a detector and transmitted to a controller configured to calculate the distance to the target as well as the measurement uncertainty in calculating the distance to the target.

  5. Full optical model of micro-endoscope with optical coherence microscopy, multiphoton microscopy and visible capabilities

    NASA Astrophysics Data System (ADS)

    Vega, David; Kiekens, Kelli C.; Syson, Nikolas C.; Romano, Gabriella; Baker, Tressa; Barton, Jennifer K.

    2018-02-01

    While Optical Coherence Microscopy (OCM), Multiphoton Microscopy (MPM), and narrowband imaging are powerful imaging techniques that can be used to detect cancer, each imaging technique has limitations when used by itself. Combining them into an endoscope to work in synergy can help achieve high sensitivity and specificity for diagnosis at the point of care. Such complex endoscopes have an elevated risk of failure, and performing proper modelling ensures functionality and minimizes risk. We present full 2D and 3D models of a multimodality optical micro-endoscope to provide real-time detection of carcinomas, called a salpingoscope. The models evaluate the endoscope illumination and light collection capabilities of various modalities. The design features two optical paths with different numerical apertures (NA) through a single lens system with a scanning optical fiber. The dual path is achieved using dichroic coatings embedded in a triplet. A high NA optical path is designed to perform OCM and MPM while a low NA optical path is designed for the visible spectrum to navigate the endoscope to areas of interest and narrowband imaging. Different tests such as the reflectance profile of homogeneous epithelial tissue were performed to adjust the models properly. Light collection models for the different modalities were created and tested for efficiency. While it is challenging to evaluate the efficiency of multimodality endoscopes, the models ensure that the system is design for the expected light collection levels to provide detectable signal to work for the intended imaging.

  6. Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection

    PubMed Central

    Mertz, Jerome; Kim, Jinhyun

    2010-01-01

    It is well known that light-sheet illumination can enable optically sectioned wide-field imaging of macroscopic samples. However, the optical sectioning capacity of a light-sheet macroscope is undermined by sample-induced scattering or aberrations that broaden the thickness of the sheet illumination. We present a technique to enhance the optical sectioning capacity of a scanning light-sheet microscope by out-of-focus background rejection. The technique, called HiLo microscopy, makes use of two images sequentially acquired with uniform and structured sheet illumination. An optically sectioned image is then synthesized by fusing high and low spatial frequency information from both images. The benefits of combining light-sheet macroscopy and HiLo background rejection are demonstrated in optically cleared whole mouse brain samples, using both green fluorescent protein (GFP)-fluorescence and dark-field scattered light contrast. PMID:20210471

  7. Swept-source anatomic optical coherence elastography of porcine trachea

    NASA Astrophysics Data System (ADS)

    Bu, Ruofei; Price, Hillel; Mitran, Sorin; Zdanski, Carlton; Oldenburg, Amy L.

    2016-02-01

    Quantitative endoscopic imaging is at the vanguard of novel techniques in the assessment upper airway obstruction. Anatomic optical coherence tomography (aOCT) has the potential to provide the geometry of the airway lumen with high-resolution and in 4 dimensions. By coupling aOCT with measurements of pressure, optical coherence elastography (OCE) can be performed to characterize airway wall stiffness. This can aid in identifying regions of dynamic collapse as well as informing computational fluid dynamics modeling to aid in surgical decision-making. Toward this end, here we report on an anatomic optical coherence tomography (aOCT) system powered by a wavelength-swept laser source. The system employs a fiber-optic catheter with outer diameter of 0.82 mm deployed via the bore of a commercial, flexible bronchoscope. Helical scans are performed to measure the airway geometry and to quantify the cross-sectional-area (CSA) of the airway. We report on a preliminary validation of aOCT for elastography, in which aOCT-derived CSA was obtained as a function of pressure to estimate airway wall compliance. Experiments performed on a Latex rubber tube resulted in a compliance measurement of 0.68+/-0.02 mm2/cmH2O, with R2=0.98 over the pressure range from 10 to 40 cmH2O. Next, ex vivo porcine trachea was studied, resulting in a measured compliance from 1.06+/-0.12 to 3.34+/-0.44 mm2/cmH2O, (R2>0.81). The linearity of the data confirms the elastic nature of the airway. The compliance values are within the same order-of-magnitude as previous measurements of human upper airways, suggesting that this system is capable of assessing airway wall compliance in future human studies.

  8. Essentials of LIDAR multiangle data processing methodology for smoke polluted atmospheres

    Treesearch

    V. A. Kovalev; A. Petkov; C. Wold; S. Urbanski; W. M. Hao

    2009-01-01

    Mobile scanning lidar is the most appropriate tool for monitoring wildfire smoke-plume dynamics and optical properties. Lidar is the only remote sensing instrument capable of obtaining detailed three-dimensional range-resolved information for smoke distributions and optical properties over ranges of 10+ km at different wavelengths simultaneously.

  9. Teaching through Fiber-Optics Telecommunications Technology: Possibilities and Priorities for Agriculture.

    ERIC Educational Resources Information Center

    Miller, Greg; Doerfert, David L.

    The purpose of this descriptive study was to investigate the usefulness of an interactive communications network for agricultural education at the secondary level. The Iowa Communications Network (ICN) is a two-way full motion fiber optics telecommunications system capable of linking secondary agricultural departments throughout Iowa. The…

  10. Use of capillary optics as a beam intensifier for a Compton x-ray source.

    PubMed

    Tompkins, P A; Abreu, C C; Carroll, F E; Xiao, Q F; MacDonald, C A

    1994-11-01

    The use of Kumakhov capillary optics will significantly enhance the performance of near-monochromatic, Compton backscattered x-ray programs. The Vanderbilt University Medical Free-Electron Laser Center is developing the capability to create these tunable x rays for medical imaging. The present transport has only reflection optics, and the beam is quite large in diameter at the laboratory. Low loss collimation of this beam would allow higher x-ray intensities after transport. This article describes experimental and computer simulation results which predict the expected performance for a multifiber Kumakhov collimator for use in the x-ray beam transport. Estimates from our research are that a multifiber optic formed of individual polycapillary fibers could be used to capture the full 7 mrad of the Vanderbilt x-ray beam and collimate it to a 1-2 mrad divergence with approximately 40%-50% transmission efficiency. This optic should increase the x-ray intensity at the laboratory level by a factor of > or = 5 by decreasing the beam divergence and subsequent spot size. Additionally, analysis of monolithic optics of fused multicapillary fibers predicts an increase in the intensity of the x rays at the laboratory by a factor of 55. These optics can have tapered channels that greatly decrease their exit divergence. This will greatly enhance the capabilities of this unique x-ray source. This article reports the initial results from a collaboration between Vanderbilt, The Center for X-Ray Optics at University at Albany, SUNY, and X-Ray Optical Systems in Albany, NY.

  11. Diagnostic Capability of Spectral Domain Optical Coherence Tomography for Glaucoma

    PubMed Central

    Wu, Huijuan; de Boer, Johannes F.; Chen, Teresa C.

    2012-01-01

    Purpose To determine the diagnostic capability of spectral domain optical coherence tomography (OCT) in glaucoma patients with visual field (VF) defects. Design Prospective, cross-sectional study. Methods Setting Participants were recruited from a university hospital clinic. Study Population One eye of 85 normal subjects and 61 glaucoma patients [with average VF mean deviation (MD) of -9.61 ± 8.76 dB] were randomly selected for the study. A subgroup of the glaucoma patients with early VF defects was calculated separately. Observation Procedures Spectralis OCT circular scans were performed to obtain peripapillary retinal nerve fiber layer (RNFL) thicknesses. The RNFL diagnostic parameters based on the normative database were used alone or in combination for identifying glaucomatous RNFL thinning. Main Outcome Measures To evaluate diagnostic performance, calculations included areas under the receiver operating characteristic curve (AROC), sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio. Results Overall RNFL thickness had the highest AROC value (0.952 for all patients, 0.895 for the early glaucoma subgroup). For all patients, the highest sensitivity (98.4%, CI 96.3-100%) was achieved by using two criteria: ≥1 RNFL sectors being abnormal at the < 5% level, and overall classification of borderline or outside normal limits, with specificities of 88.9% (CI 84.0-94.0%) and 87.1% (CI 81.6-92.5%) respectively for these two criteria. Conclusions Statistical parameters for evaluating the diagnostic performance of the Spectralis spectral domain OCT were good for early perimetric glaucoma and excellent for moderately-advanced perimetric glaucoma. PMID:22265147

  12. Advanced Telescopes and Observatories Capability Roadmap Presentation to the NRC

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This viewgraph presentation provides an overview of the NASA Advanced Planning and Integration Office (APIO) roadmap for developing technological capabilities for telescopes and observatories in the following areas: Optics; Wavefront Sensing and Control and Interferometry; Distributed and Advanced Spacecraft; Large Precision Structures; Cryogenic and Thermal Control Systems; Infrastructure.

  13. Housing And Mounting Structure

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Baca, Johnny R.F.; Bryan, Robert P.; Carson, Richard F.; Duckett, III, Edwin B.; McCormick, Frederick B.; Miller, Gregory V.; Peterson, David W.; Smith, Terrance T.

    2005-03-08

    This invention relates to an optical transmitter, receiver or transceiver module, and more particularly, to an apparatus for connecting a first optical connector to a second optical connector. The apparatus comprises: (1) a housing having at least a first end and at least a second end, the first end of the housing capable of receiving the first optical connector, and the second end of the housing capable of receiving the second optical connector; (2) a longitudinal cavity extending from the first end of the housing to the second end of the housing; and (3) an electromagnetic shield comprising at least a portion of the housing. This invention also relates to an apparatus for housing a flexible printed circuit board, and this apparatus comprises: (1) a mounting structure having at least a first surface and a second surface; (2) alignment ridges along the first and second surfaces of the mounting structure, the alignment ridges functioning to align and secure a flexible printed circuit board that is wrapped around and attached to the first and second surfaces of the mounting structure; and (3) a series of heat sink ridges adapted to the mounting structure, the heat sink ridges functioning to dissipate heat that is generated from the flexible printed circuit board.

  14. Firefly: an optical lithographic system for the fabrication of holographic security labels

    NASA Astrophysics Data System (ADS)

    Calderón, Jorge; Rincón, Oscar; Amézquita, Ricardo; Pulido, Iván.; Amézquita, Sebastián.; Bernal, Andrés.; Romero, Luis; Agudelo, Viviana

    2016-03-01

    This paper introduces Firefly, an optical lithography origination system that has been developed to produce holographic masters of high quality. This mask-less lithography system has a resolution of 418 nm half-pitch, and generates holographic masters with the optical characteristics required for security applications of level 1 (visual verification), level 2 (pocket reader verification) and level 3 (forensic verification). The holographic master constitutes the main core of the manufacturing process of security holographic labels used for the authentication of products and documents worldwide. Additionally, the Firefly is equipped with a software tool that allows for the hologram design from graphic formats stored in bitmaps. The software is capable of generating and configuring basic optical effects such as animation and color, as well as effects of high complexity such as Fresnel lenses, engraves and encrypted images, among others. The Firefly technology gathers together optical lithography, digital image processing and the most advanced control systems, making possible a competitive equipment that challenges the best technologies in the industry of holographic generation around the world. In this paper, a general description of the origination system is provided as well as some examples of its capabilities.

  15. Establishment of Imaging Spectroscopy of Nuclear Gamma-Rays based on Geometrical Optics

    PubMed Central

    Tanimori, Toru; Mizumura, Yoshitaka; Takada, Atsushi; Miyamoto, Shohei; Takemura, Taito; Kishimoto, Tetsuro; Komura, Shotaro; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nakamasu, Yuma; Nakamura, Kiseki; Parker, Joseph D.; Sawano, Tatsuya; Sonoda, Shinya; Tomono, Dai; Yoshikawa, Kei

    2017-01-01

    Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. Recently we have revealed that “Electron Tracking Compton Camera” (ETCC) provides a well-defined Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results mark the first proper imaging of nuclear gammas based on the genuine geometrical optics. PMID:28155870

  16. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography

    PubMed Central

    Eom, Jonghyun; Shin, Jun Geun; Park, Soongho; Rim, Sunghwan; Lee, Byeong Ha

    2016-01-01

    We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF) and a large-core multimode fiber (MMF). The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging. PMID:27213392

  17. Establishment of Imaging Spectroscopy of Nuclear Gamma-Rays based on Geometrical Optics.

    PubMed

    Tanimori, Toru; Mizumura, Yoshitaka; Takada, Atsushi; Miyamoto, Shohei; Takemura, Taito; Kishimoto, Tetsuro; Komura, Shotaro; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nakamasu, Yuma; Nakamura, Kiseki; Parker, Joseph D; Sawano, Tatsuya; Sonoda, Shinya; Tomono, Dai; Yoshikawa, Kei

    2017-02-03

    Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. Recently we have revealed that "Electron Tracking Compton Camera" (ETCC) provides a well-defined Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results mark the first proper imaging of nuclear gammas based on the genuine geometrical optics.

  18. An adaptive optics approach for laser beam correction in turbulence utilizing a modified plenoptic camera

    NASA Astrophysics Data System (ADS)

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2015-09-01

    Adaptive optics has been widely used in the field of astronomy to correct for atmospheric turbulence while viewing images of celestial bodies. The slightly distorted incoming wavefronts are typically sensed with a Shack-Hartmann sensor and then corrected with a deformable mirror. Although this approach has proven to be effective for astronomical purposes, a new approach must be developed when correcting for the deep turbulence experienced in ground to ground based optical systems. We propose the use of a modified plenoptic camera as a wavefront sensor capable of accurately representing an incoming wavefront that has been significantly distorted by strong turbulence conditions (C2n <10-13 m- 2/3). An intelligent correction algorithm can then be developed to reconstruct the perturbed wavefront and use this information to drive a deformable mirror capable of correcting the major distortions. After the large distortions have been corrected, a secondary mode utilizing more traditional adaptive optics algorithms can take over to fine tune the wavefront correction. This two-stage algorithm can find use in free space optical communication systems, in directed energy applications, as well as for image correction purposes.

  19. Using the ISS as a Testbed to Prepare for the Next Generation of Space-Based Telescopes

    NASA Technical Reports Server (NTRS)

    Ess, Kim; Thronson, Harley; Boyles, Mark; Sparks, William; Postman, Marc; Carpenter, Kenneth

    2012-01-01

    The ISS provides a unique opportunity to develop the technologies and operational capabilities necessary to assemble future large space telescopes that may be used to investigate planetary systems around neighboring stars. Assembling telescopes in space is a paradigm-shifting approach to space astronomy. Using the ISS as a testbed will reduce the technical risks of implementing this major scientific facility, such as laser metrology and wavefront sensing and control (WFSC). The Optical Testbed and Integration on ISS eXperiment (OpTIIX) will demonstrate the robotic assembly of major components, including the primary and secondary mirrors, to mechanical tolerances using existing ISS infrastructure, and the alignment of the optical elements to a diffraction-limited optical system in space. Assembling the optical system and removing and replacing components via existing ISS capabilities, such as the Special Purpose Dexterous Manipulator (SPDM) or the ISS flight crew, allows for future experimentation and repair, if necessary. First flight on ISS for OpTIIX, a small 1.5 meter optical telescope, is planned for 2015. In addition to demonstration of key risk-retiring technologies, the OpTIIX program includes a public outreach program to show the broad value of ISS utilization.

  20. Numerical aperture limits on efficient ball lens coupling of laser diodes to single-mode fibers with defocus to balance spherical aberration

    NASA Technical Reports Server (NTRS)

    Wilson, R. Gale

    1994-01-01

    The potential capabilities and limitations of single ball lenses for coupling laser diode radiation to single-mode optical fibers have been analyzed; parameters important to optical communications were specifically considered. These parameters included coupling efficiency, effective numerical apertures, lens radius, lens refractive index, wavelength, magnification in imaging the laser diode on the fiber, and defocus to counterbalance spherical aberration of the lens. Limiting numerical apertures in object and image space were determined under the constraint that the lens perform to the Rayleigh criterion of 0.25-wavelength (Strehl ratio = 0.80). The spherical aberration-defocus balance to provide an optical path difference of 0.25 wavelength units was shown to define a constant coupling efficiency (i.e., 0.56). The relative numerical aperture capabilities of the ball lens were determined for a set of wavelengths and associated fiber-core diameters of particular interest for single-mode fiber-optic communication. The results support general continuing efforts in the optical fiber communications industry to improve coupling links within such systems with emphasis on manufacturing simplicity, system packaging flexibility, relaxation of assembly alignment tolerances, cost reduction of opto-electronic components and long term reliability and stability.

  1. Coherent Raman detected electron spin resonance spectroscopy of metalloproteins: linking electron spin resonance and magnetic circular dichroism.

    PubMed

    Bingham, Stephen J; Wolverson, Daniel; Thomson, Andrew J

    2008-12-01

    The simultaneous excitation of paramagnetic molecules with optical (laser) and microwave radiation in the presence of a magnetic field can cause an amplitude, or phase, modulation of the transmitted light at the microwave frequency. The detection of this modulation indicates the presence of coupled optical and ESR transitions. The phenomenon can be viewed as a coherent Raman effect or, in most cases, as a microwave frequency modulation of the magnetic circular dichroism by the precessing magnetization. By allowing the optical and magnetic properties of a transition metal ion centre to be correlated, it becomes possible to deconvolute the overlapping optical or ESR spectra of multiple centres in a protein or of multiple chemical forms of a particular centre. The same correlation capability also allows the relative orientation of the magnetic and optical anisotropies of each species to be measured, even when the species cannot be obtained in a crystalline form. Such measurements provide constraints on electronic structure calculations. The capabilities of the method are illustrated by data from the dimeric mixed-valence Cu(A) centre of nitrous oxide reductase (N(2)OR) from Paracoccus pantotrophus.

  2. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography.

    PubMed

    Eom, Jonghyun; Shin, Jun Geun; Park, Soongho; Rim, Sunghwan; Lee, Byeong Ha

    2016-05-20

    We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF) and a large-core multimode fiber (MMF). The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging.

  3. Liquid sensing capability of rolled-up tubular optical microcavities: a theoretical study.

    PubMed

    Zhao, Fangyuan; Zhan, Tianrong; Huang, Gaoshan; Mei, Yongfeng; Hu, Xinhua

    2012-10-07

    Rolled-up tubular optical microcavities are a novel type of optical sensor for identifying different liquids and monitoring single cells. Based on a Mie scattering method, we systematically study the optical resonances and liquid sensing capability of microtubes. Analytical formulas are presented to calculate the resonant wavelengths λ(r), Q factors, sensitivities S and figures of merit QS. Both ideal and rolled-up microtubes are considered for different optical materials in tube walls (refractive indices ranging from 1.5 to 2.5) and for three setups: tube-in-liquid, hollow-tube-in-liquid and liquid-in-tube. It is found that for rolled-up microtubes, the highest QS can be achieved by using the liquid-in-tube setup and very thin wall thicknesses. A maximal sensitivity is found in the case of the liquid cylinder. Our theory well explains a recent experiment under the setup of tube-in-liquid. It is also found that, although it describes the case of tube-in-liquid well, the waveguide approximation approach is not suitable for the case of liquid-in-tube. The results could be useful to design better optofluidic devices based on rolled-up microtubes.

  4. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation.

    PubMed

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing

    2015-05-29

    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system.

  5. NASA GRC's High Pressure Burner Rig Facility and Materials Test Capabilities

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig

    1999-01-01

    The High Pressure Burner Rig (HPBR) at NASA Glenn Research Center is a high-velocity. pressurized combustion test rig used for high-temperature environmental durability studies of advanced materials and components. The facility burns jet fuel and air in controlled ratios, simulating combustion gas chemistries and temperatures that are realistic to those in gas turbine engines. In addition, the test section is capable of simulating the pressures and gas velocities representative of today's aircraft. The HPBR provides a relatively inexpensive. yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials. The facility has the unique capability of operating under both fuel-lean and fuel-rich gas mixtures. using a fume incinerator to eliminate any harmful byproduct emissions (CO, H2S) of rich-burn operation. Test samples are easily accessible for ongoing inspection and documentation of weight change, thickness, cracking, and other metrics. Temperature measurement is available in the form of both thermocouples and optical pyrometery. and the facility is equipped with quartz windows for observation and video taping. Operating conditions include: (1) 1.0 kg/sec (2.0 lbm/sec) combustion and secondary cooling airflow capability: (2) Equivalence ratios of 0.5- 1.0 (lean) to 1.5-2.0 (rich), with typically 10% H2O vapor pressure: (3) Gas temperatures ranging 700-1650 C (1300-3000 F): (4) Test pressures ranging 4-12 atmospheres: (5) Gas flow velocities ranging 10-30 m/s (50-100) ft/sec.: and (6) Cyclic and steady-state exposure capabilities. The facility has historically been used to test coupon-size materials. including metals and ceramics. However complex-shaped components have also been tested including cylinders, airfoils, and film-cooled end walls. The facility has also been used to develop thin-film temperature measurement sensors.

  6. High-resolution Episcopic Microscopy (HREM) - Simple and Robust Protocols for Processing and Visualizing Organic Materials

    PubMed Central

    Geyer, Stefan H.; Maurer-Gesek, Barbara; Reissig, Lukas F.; Weninger, Wolfgang J.

    2017-01-01

    We provide simple protocols for generating digital volume data with the high-resolution episcopic microscopy (HREM) method. HREM is capable of imaging organic materials with volumes up to 5 x 5 x 7 mm3 in typical numeric resolutions between 1 x 1 x 1 and 5 x 5 x 5 µm3. Specimens are embedded in methacrylate resin and sectioned on a microtome. After each section an image of the block surface is captured with a digital video camera that sits on the phototube connected to the compound microscope head. The optical axis passes through a green fluorescent protein (GFP) filter cube and is aligned with a position, at which the bock holder arm comes to rest after each section. In this way, a series of inherently aligned digital images, displaying subsequent block surfaces are produced. Loading such an image series in three-dimensional (3D) visualization software facilitates the immediate conversion to digital volume data, which permit virtual sectioning in various orthogonal and oblique planes and the creation of volume and surface rendered computer models. We present three simple, tissue specific protocols for processing various groups of organic specimens, including mouse, chick, quail, frog and zebra fish embryos, human biopsy material, uncoated paper and skin replacement material. PMID:28715372

  7. High-resolution Episcopic Microscopy (HREM) - Simple and Robust Protocols for Processing and Visualizing Organic Materials.

    PubMed

    Geyer, Stefan H; Maurer-Gesek, Barbara; Reissig, Lukas F; Weninger, Wolfgang J

    2017-07-07

    We provide simple protocols for generating digital volume data with the high-resolution episcopic microscopy (HREM) method. HREM is capable of imaging organic materials with volumes up to 5 x 5 x 7 mm 3 in typical numeric resolutions between 1 x 1 x 1 and 5 x 5 x 5 µm 3 . Specimens are embedded in methacrylate resin and sectioned on a microtome. After each section an image of the block surface is captured with a digital video camera that sits on the phototube connected to the compound microscope head. The optical axis passes through a green fluorescent protein (GFP) filter cube and is aligned with a position, at which the bock holder arm comes to rest after each section. In this way, a series of inherently aligned digital images, displaying subsequent block surfaces are produced. Loading such an image series in three-dimensional (3D) visualization software facilitates the immediate conversion to digital volume data, which permit virtual sectioning in various orthogonal and oblique planes and the creation of volume and surface rendered computer models. We present three simple, tissue specific protocols for processing various groups of organic specimens, including mouse, chick, quail, frog and zebra fish embryos, human biopsy material, uncoated paper and skin replacement material.

  8. Evidence Based Medicine in Space Flight: Evaluation of Inflight Vision Data for Operational Decision-Making

    NASA Technical Reports Server (NTRS)

    Van Baalen, Mary; Mason, Sara; Foy, Millennia; Wear, Mary; Taiym, Wafa; Moynihan, Shannan; Alexander, David; Hart, Steve; Tarver, William

    2015-01-01

    Due to recently identified vision changes associated with space flight, JSC Space and Clinical Operations (SCO) implemented broad mission-related vision testing starting in 2009. Optical Coherence Tomography (OCT), 3 Tesla Brain and Orbit MRIs, Optical Biometry were implemented terrestrially for clinical monitoring. While no inflight vision testing was in place, already available onorbit technology was leveraged to facilitate in-flight clinical monitoring, including visual acuity, Amsler grid, tonometry, and ultrasonography. In 2013, on-orbit testing capabilities were expanded to include contrast sensitivity testing and OCT. As these additional testing capabilities have been added, resource prioritization, particularly crew time, is under evaluation.

  9. Advances in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft; Lewis, Hilton; Martin, Chris; McLean, Ian S.; Rockosi, Constance; Wizinowich, Peter

    2010-07-01

    In this paper we describe both recently completed instrumentation projects and our current development efforts in the context of the Observatory's science driven strategic plan which seeks to address key questions in observational astronomy for extra-galactic, Galactic, and planetary science with both seeing limited capabilities and high angular resolution adaptive optics capabilities. This paper will review recently completed projects as well as new instruments in development including MOSFIRE, a near IR multi-object spectrograph nearing completion, a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, and the Keck Next Generation Adaptive Optics facility and its first light science instrument DAVINCI.

  10. Optical frequency standards for gravitational wave detection using satellite velocimetry

    NASA Astrophysics Data System (ADS)

    Vutha, Amar

    2015-04-01

    Satellite Doppler velocimetry, building on the work of Kaufmann and Estabrook and Wahlquist, is a complementary technique to interferometric methods of gravitational wave detection. This method is based on the fact that the gravitational wave amplitude appears in the apparent Doppler shift of photons propagating from an emitter to a receiver. This apparent Doppler shift can be resolved provided that a frequency standard, capable of quickly averaging down to a high stability, is available. We present a design for a space-capable optical atomic frequency standard, and analyze the sensitivity of satellite Doppler velocimetry for gravitational wave astronomy in the milli-hertz frequency band.

  11. End-to-End Assessment of a Large Aperture Segmented Ultraviolet Optical Infrared (UVOIR) Telescope Architecture

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Bolcar, Matt; Liu, Alice; Guyon, Olivier; Stark,Chris; Arenberg, Jon

    2016-01-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance.

  12. Preliminary results of real-time in-vitro electronic speckle pattern interferometry (ESPI) measurements in otolaryngology

    NASA Astrophysics Data System (ADS)

    Conerty, Michelle D.; Castracane, James; Cacace, Anthony T.; Parnes, Steven M.; Gardner, Glendon M.; Miller, Mitchell B.

    1995-05-01

    Electronic Speckle Pattern Interferometry (ESPI) is a nondestructive optical evaluation technique that is capable of determining surface and subsurface integrity through the quantitative evaluation of static or vibratory motion. By utilizing state of the art developments in the areas of lasers, fiber optics and solid state detector technology, this technique has become applicable in medical research and diagnostics. Based on initial support from NIDCD and continued support from InterScience, Inc., we have been developing a range of instruments for improved diagnostic evaluation in otolaryngological applications based on the technique of ESPI. These compact fiber optic instruments are capable of making real time interferometric measurements of the target tissue. Ongoing development of image post- processing software is currently capable of extracting the desired quantitative results from the acquired interferometric images. The goal of the research is to develop a fully automated system in which the image processing and quantification will be performed in hardware in near real-time. Subsurface details of both the tympanic membrane and vocal cord dynamics could speed the diagnosis of otosclerosis, laryngeal tumors, and aid in the evaluation of surgical procedures.

  13. Optical information processing for NASA's space exploration

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Ochoa, Ellen; Juday, Richard

    1990-01-01

    The development status of optical processing techniques under development at NASA-JPL, NASA-Ames, and NASA-Johnson, is evaluated with a view to their potential applications in future NASA planetary exploration missions. It is projected that such optical processing systems can yield major reductions in mass, volume, and power requirements relative to exclusively electronic systems of comparable processing capabilities. Attention is given to high-order neural networks for distortion-invariant classification and pattern recognition, multispectral imaging using an acoustooptic tunable filter, and an optical matrix processor for control problems.

  14. Soliton all-optical logic AND gate with semiconductor optical amplifier-assisted Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Kotb, Amer; Zoiros, Kyriakos E.

    2016-08-01

    The concept of soliton provides a line in research in telecommunications systems. In the present study, a soliton all-optical logic AND gate with semiconductor optical amplifier (SOA)-assisted Mach-Zehnder interferometer has been numerically simulated and investigated. The dependence of the output quality factor (Q-factor) on the soliton characteristics and SOA parameters has been examined and assessed. The obtained results demonstrate that the soliton AND gate is capable of operating at a data rate of 80 Gb/s with logical correctness and high-output Q-factor.

  15. High-temperature fiber optic pressure sensor

    NASA Technical Reports Server (NTRS)

    Berthold, J. W.

    1984-01-01

    Attention is given to a program to develop fiber optic methods to measure diaphragm deflection. The end application is intended for pressure transducers capable of operating to 540 C. In this paper are reported the results of a laboratory study to characterize the performance of the fiber-optic microbend sensor. The data presented include sensitivity and spring constant. The advantages and limitations of the microbend sensor for static pressure measurement applications are described. A proposed design is presented for a 540 C pressure transducer using the fiber optic microbend sensor.

  16. Coherent Atom Optics with Optical Potentials: A Summary of New Phenomena with Bose-Einstein Condensates at the University of Arizona

    DTIC Science & Technology

    2009-10-08

    differentially pumped two-cell vacuum system. A gas of Rb atoms, provided by SAES dispensers, fills a glass cell where laser cooling and magneto - optic ...mask [Fig. 1(b)] that was imaged onto the center of the trap . The sum of the magnetic and optical potentials created a triple-well trap , with three... Simulations of BEC growth in a toroidal trap show vortices (as in (b),(c)) and persistent currents. 4 The merging of experimental capabilities. [ongoing work

  17. Optical to optical interface device

    NASA Technical Reports Server (NTRS)

    Oliver, D. S.; Vohl, P.; Nisenson, P.

    1972-01-01

    The development, fabrication, and testing of a preliminary model of an optical-to-optical (noncoherent-to-coherent) interface device for use in coherent optical parallel processing systems are described. The developed device demonstrates a capability for accepting as an input a scene illuminated by a noncoherent radiation source and providing as an output a coherent light beam spatially modulated to represent the original noncoherent scene. The converter device developed under this contract employs a Pockels readout optical modulator (PROM). This is a photosensitive electro-optic element which can sense and electrostatically store optical images. The stored images can be simultaneously or subsequently readout optically by utilizing the electrostatic storage pattern to control an electro-optic light modulating property of the PROM. The readout process is parallel as no scanning mechanism is required. The PROM provides the functions of optical image sensing, modulation, and storage in a single active material.

  18. COSMO-SkyMed Interoperability, Expandability and Multi-Sensor Capabilities: The Keys for Full Multi-Mission Spectrum Operations

    DTIC Science & Technology

    2006-08-01

    constellation, SAR Bistatic for interferometry, L-band SAR data from Argentinean SAOCOM satellites, and optical imaging data from the French ‘ Pleiades ...a services federation (e.g. COSMO-SkyMed (SAR) and Pleiades (optical) constellation). Its main purpose is the elaboration of Programming Requests...on catalogue interoperability or on a federation of services (i.e. with French Pleiades optical satellites). The multi-mission objectives are

  19. Microscanners for optical endomicroscopic applications

    NASA Astrophysics Data System (ADS)

    Hwang, Kyungmin; Seo, Yeong-Hyeon; Jeong, Ki-Hun

    2017-12-01

    MEMS laser scanning enables the miniaturization of endoscopic catheters for advanced endomicroscopy such as confocal microscopy, multiphoton microscopy, optical coherence tomography, and many other laser scanning microscopy. These advanced biomedical imaging modalities open a great potential for in vivo optical biopsy without surgical excision. They have huge capabilities for detecting on-demand early stage cancer with non-invasiveness. In this article, the scanning arrangement, trajectory, and actuation mechanism of endoscopic microscanners and their endomicroscopic applications will be overviewed.

  20. Optical injection locking-based amplification in phase-coherent transfer of optical frequencies.

    PubMed

    Kim, Joonyoung; Schnatz, Harald; Wu, David S; Marra, Giuseppe; Richardson, David J; Slavík, Radan

    2015-09-15

    We demonstrate the use of an optical injection phase locked loop (OIPLL) as a regenerative amplifier for optical frequency transfer applications. The optical injection locking provides high gain within a narrow bandwidth (<100  MHz) and is capable of preserving the fractional frequency stability of the incoming carrier to better than 10(-18) at 1000 s. The OIPLL was tested in the field as a mid-span amplifier for the transfer of an ultrastable optical carrier, stabilized to an optical frequency standard, over a 292 km long installed dark fiber link. The transferred frequency at the remote end reached a fractional frequency instability of less than 1×10(-19) at averaging time of 3200 s.

Top