Science.gov

Sample records for optical sensing technique

  1. Gamma radiation influence on silica optical fibers measured by optical backscatter reflectometry and Brillouin sensing technique

    NASA Astrophysics Data System (ADS)

    Wosniok, A.; Sporea, D.; Neguţ, D.; Krebber, K.

    2016-05-01

    We have studied the influence of gamma rays on physical properties of different commercially available silica optical fibers stepwise irradiated up to a total dose of 100 kGy. The detection of radiation-induced changes in silica glass offers the possibility of using selected optical fibers as distributed radiation sensors. The measurements performed by us were based on optical backscatter reflectometry and Brillouin distributed sensing. The measurement methods enable an analysis of radiation-induced modification of the group refractive index and density of the optical fibers. The most distinct physical effect observed by us concerns the increase of the optical attenuation with rising total radiation doses. Quantitative measurement results indicate a crucial impact of fiber dopants on radiation-induced physical and sensory characteristics of silica optical fibers affected by differences in fiber fabrication techniques. Based on the obtained results, the suitability of distributed Brillouin sensing for dosimetry applications seems to be improved by modifying the refractive index profile of the fiber core.

  2. Frequency-Shifted Interferometry — A Versatile Fiber-Optic Sensing Technique

    PubMed Central

    Ye, Fei; Zhang, Yiwei; Qi, Bing; Qian, Li

    2014-01-01

    Fiber-optic sensing is a field that is developing at a fast pace. Novel fiber-optic sensor designs and sensing principles constantly open doors for new opportunities. In this paper, we review a fiber-optic sensing technique developed in our research group called frequency-shifted interferometry (FSI). This technique uses a continuous-wave light source, an optical frequency shifter, and a slow detector. We discuss the operation principles of several FSI implementations and show their applications in fiber length and dispersion measurement, locating weak reflections along a fiber link, fiber-optic sensor multiplexing, and high-sensitivity cavity ring-down measurement. Detailed analysis of FSI system parameters is also presented. PMID:24955943

  3. Remote sensing of stress using electro-optics imaging technique

    NASA Astrophysics Data System (ADS)

    Chen, Tong; Yuen, Peter; Hong, Kan; Tsitiridis, Aristeidis; Kam, Firmin; Jackman, James; James, David; Richardson, Mark; Oxford, William; Piper, Jonathan; Thomas, Francis; Lightman, Stafford

    2009-09-01

    Emotional or physical stresses induce a surge of adrenaline in the blood stream under the command of the sympathetic nerve system, which, cannot be suppressed by training. The onset of this alleviated level of adrenaline triggers a number of physiological chain reactions in the body, such as dilation of pupil and an increased feed of blood to muscles etc. This paper reports for the first time how Electro-Optics (EO) technologies such as hyperspectral [1,2] and thermal imaging[3] methods can be used for the detection of stress remotely. Preliminary result using hyperspectral imaging technique has shown a positive identification of stress through an elevation of haemoglobin oxygenation saturation level in the facial region, and the effect is seen more prominently for the physical stressor than the emotional one. However, all results presented so far in this work have been interpreted together with the base line information as the reference point, and that really has limited the overall usefulness of the developing technology. The present result has highlighted this drawback and it prompts for the need of a quantitative assessment of the oxygenation saturation and to correlate it directly with the stress level as the top priority of the next stage of research.

  4. Development of fiber-optic current sensing technique and its applications in electric power systems

    NASA Astrophysics Data System (ADS)

    Kurosawa, Kiyoshi

    2014-03-01

    This paper describes the development and applications of a fiber-optic electric current sensing technique with the stable properties and compact, simple, and flexible structure of the sensing device. The special characteristics of the sensors were achieved by use of the special low birefringence fiber as the Faraday-effect sensing element and were also achieved with creation of sensing schemes which matched with the features of the fiber. Making use of the excellent features of the sensing technique, various current monitoring devices and systems were developed and applied practically for the control and maintenance in the electric power facility. In this paper, the design and performance of the sensing devices are introduced first. After that, examples of the application systems practically applied are also introduced, including fault section/point location systems for power transmission cable lines.

  5. Advanced materials and techniques for fibre-optic sensing

    NASA Astrophysics Data System (ADS)

    Henderson, Philip J.

    2014-06-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.

  6. Laser remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1987-01-01

    The properties and advantages of remote sensing lasers are discussed. The theory of nonresonant techniques, which is based on the lidar equation and elastic backscatter, and their applications to aerosol and meteorological parameters are examined. The characteristics and applications of the differential absorption lidar technique, the fluorescence technique, and Raman scattering are described. The use of a laser heterodyne radiometer and fiber optics for remote sensing is studied. Future developments in the field of remote sensing, in particular the improvement of laser sources, the fabrication of compact remote sensing instruments, and space-borne applications for lidar, are considered.

  7. Optical technique for photovoltaic spatial current response measurements using compressive sensing and random binary projections

    NASA Astrophysics Data System (ADS)

    Cashmore, Matt. T.; Koutsourakis, George; Gottschalg, Ralph; Hall, Simon. R. G.

    2016-04-01

    Compressive sensing has been widely used in image compression and signal recovery techniques in recent years; however, it has received limited attention in the field of optical measurement. This paper describes the use of compressive sensing for measurements of photovoltaic (PV) solar cells, using fully random sensing matrices, rather than mapping an orthogonal basis set directly. Existing compressive sensing systems optically image the surface of the object under test, this contrasts with the method described, where illumination patterns defined by precalculated sensing matrices, probe PV devices. We discuss the use of spatially modulated light fields to probe a PV sample to produce a photocurrent map of the optical response. This allows for faster measurements than would be possible using traditional translational laser beam induced current techniques. Results produced to a 90% correlation to raster scanned measurements, which can be achieved with under 25% of the conventionally required number of data points. In addition, both crack and spot type defects are detected at resolutions comparable to electroluminescence techniques, with 50% of the number of measurements required for a conventional scan.

  8. Demodulation technique based on diffraction optical elements for fiber Bragg grating sensing system

    NASA Astrophysics Data System (ADS)

    Feng, Zhongwei; Zhang, Li

    2010-11-01

    A new demodulation technique based on diffraction grating is proposed for high speed application. Compared with tunable filter method, the diffraction grating method has the advantages of potential high interrogation speed, high energy efficiency, no sweeping movements, which makes it a competitive interrogation method in certain field such as dynamic strain monitoring. The optical layout is crucial to guarantee the required performance of the interrogator. A structure which consists of two diffraction gratings, a fiber collimator, a reflection mirror, and a detector is adopted in the consideration of spectrum resolution, optical aberration, and geometrical size. The initial parameters for the structure are figured out by the optical path calculation involving the coefficient of the employed optical elements. The optimized procedure is following sequentially in order to minimize the aberration and obtain the pre-defined specifications theoretically. As the central wavelength for the interrogator is 1550nm, the InGaAs linear array sensor is introduced as the photoelectrical detector. Experiment of demodulation for FBG sensing system is carried out to verify the feasibility of this technique. The wavelength resolution for the interrogator is 1pm, and the demodulation speed is about 2kHz.

  9. Ultra precision machining technique of off-axis optics for coastal water remote sensing

    NASA Astrophysics Data System (ADS)

    Jeon, Min-Woo; Hyun, Sang-Won; Han, Jeong-Yeol; Kim, Geon-Hee

    2015-10-01

    An off-axis optical system can effectively avoid some problems, such as aberrations, shielded area created by the secondary mirror and a narrow field of view (FOV), while an on-axis optical system has the problems. Inspired by the consideration, the off-axis optical system is generally used for hyperspectral sensors and telescopes. However, there are several obstacles limiting the productivity of the off-axis optics in fabrication and measurement processes. In this study, to overcome this weakness, we suggests a new fabrication technique using a customized jig, not separated from the work-piece. A convex aspheric mirror and the off-axis mirror are fabricated by Single Point Diamond Turning Machine (SPDTM) for comparison analysis of surface state. The mirrors are made from aluminum (Al6061-T6) and used for the reflectors of a coastal water remote sensing system. We show fast machining and simple measurement in comparison with traditional off-axis single machining and measurement, provide performance results, such as form accuracy and surface roughness measured by both contact 3D profilometer (UA3P) and non-contact 3D profiler (CCI-Optics). The customized ultra-precision machining process can be effectively used for complex off-axis mirror fabricating.

  10. Raman-lidar technique for tropospheric and stratospheric sensing of aerosol optical and microphysical properties

    SciTech Connect

    Wandinger, U.

    1995-01-01

    Tropospheric and stratospheric aerosols and clouds are known to influence the earth`s radiation budget as well as chemical processes of the atmosphere. Thus, remote sensing of optical and microphysical properties of atmospheric particles has important applications in weather and climate research, pollution monitoring, and atmospheric chemistry. During the last few years Raman lidars have become very important tools in this field of research. The development of powerful light sources such as Nd:YAG and excimer lasers, of interference filters with narrow bandwidth and high transmission, and of low-noise photomultiplier tubes and counting systems has improved the Raman-lidar technique during the past decade significantly. The technique is based on the detection of two signals resulting from elastic backscattering by air molecules and particles and inelastic (Raman) backscattering by a gas of known number density, i.e., nitrogen or oxygen. The technique has been successfully applied to cirrus-cloud studies. In this presentation, the capability of the Raman-lidar technique for tropospheric and stratospheric profiling of aerosol and cloud properties will be discussed on the basis of measurement examples.

  11. Path integrated optical remote sensing technique to estimate ammonia and methane gas emissions from CAFOs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. EPA recently demonstrated the open-path optical remote sensing technology to identify hot spots and estimate mass flux of fugitive gases from closed landfill. The objective of this research is to validate this technology for estimating ammonia and methane emission from concentrated animal f...

  12. Comparison of the pulsed photoacoustic technique and the optical coherence tomography from the viewpoint of biomedical sensing

    NASA Astrophysics Data System (ADS)

    Kinnunen, Matti; Zhao, Zuomin; Myllyla, Risto

    2005-08-01

    Laser photoacoustics (PA) and optical coherence tomography (OCT) are versatile and sensitive techniques for biomedical diagnostics, imaging, and measurements. In this paper, the hdamentals of PA and OCT are considered and the applications in biomedicine reviewed. The properties of the two techniques are compared to find the proper technique for a specific application. The problems and restrictions, dependent on the factors of the human body, which have to be reduced before the clinical utilization of the techniques, are pointed out. The PA technique is more suitable for measuring or imaging the objects located in deep tissue or organs and for sensing the physiological changes caused by compositions with larger absorption variation, such as hemoglobin, blood oxygenation, and melanin. OCT is more suitable for imaging tissue surface and subsurface structures and fine structures and for sensing the physiological changes caused by compositions with larger scattering and refractive index variation, such as skin water, tissue glucose, and sweat.

  13. A streak camera based fiber optic pulsed polarimetry technique for magnetic sensing to sub-mm resolution

    NASA Astrophysics Data System (ADS)

    Smith, R. J.; Weber, T. E.

    2016-11-01

    The technique of fiber optic pulsed polarimetry, which provides a distributed (local) measurement of the magnetic field along an optical fiber, has been improved to the point where, for the first time, photocathode based optical detection of backscatter is possible with sub-mm spatial resolutions. This has been realized through the writing of an array of deterministic fiber Bragg gratings along the fiber, a so-called backscatter-tailored optical fiber, producing a 34 000-fold increase in backscatter levels over Rayleigh. With such high backscatter levels, high repetition rate lasers are now sufficiently bright to allow near continuous field sensing in both space and time with field resolutions as low as 0.005 T and as high as 170 T over a ˜mm interval given available fiber materials.

  14. Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique.

    PubMed

    Wada, Daichi; Igawa, Hirotaka; Kasai, Tokio

    2016-09-01

    We demonstrate a dynamic distributed monitoring technique using a long-length fiber Bragg grating (FBG) interrogated by optical frequency domain reflectometry (OFDR) that measures strain at a speed of 150 Hz, spatial resolution of 1 mm, and measurement range of 20 m. A 5 m FBG is bonded to a 5.5 m helicopter blade model, and vibration is applied by the step relaxation method. The time domain responses of the strain distributions are measured, and the blade deflections are calculated based on the strain distributions. Frequency response functions are obtained using the time domain responses of the calculated deflection induced by the preload release, and the modal parameters are retrieved. Experimental results demonstrated the dynamic monitoring performances and the applicability to the modal analysis of the OFDR-FBG technique. PMID:27607270

  15. Coating-free reflection technique for fiber-optic sensors based on multimode interference: A temperature sensing study

    NASA Astrophysics Data System (ADS)

    Taue, Shuji; Takahashi, Tsuyoshi; Fukano, Hideki

    2016-08-01

    A novel reflection technique for use in fiber-optic sensors is investigated and applied to a multimode interference structure. The reflectivity at a fiber end face is increased with two operations. Firstly, the light intensity is increased toward the periphery of the end-face by adjusting the fiber length, which is determined theoretically. Secondly, the fiber end-face is deformed into an ellipsoid by heating it with a gas torch. The deformed shape is characterized from microscopic images. The reflected light intensity is increased by more than 10 dB as a result of controlling the fiber length and deforming its end-face. Temperature sensing was performed using the reflection-type multimode interference structure immersed in temperature-controlled silicone oil. The resulting sensitivity was 0.028 °C for a 29.60 mm sensing region, achieved without using any reflection coating.

  16. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    PubMed

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  17. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    SciTech Connect

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-15

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed

  18. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    NASA Astrophysics Data System (ADS)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the

  19. Yangon River Geomorphology Identification and its Enviromental Imapacts Analsysi by Optical and Radar Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Lwin, A.; Khaing, M. M.

    2012-07-01

    The Yangon river, also known as the Rangoon river, is about 40 km long (25miles), and flows from southern Myanmar as an outlet of the Irrawaddy (Ayeyarwady) river into the Ayeyarwady delta. The Yangon river drains the Pegu Mountains; both the Yangon and the Pathein rivers enter the Ayeyarwady at the delta. Fluvial geomorphology is based primarily on rivers of manageable dimensions. The emphasis is on geomorphology, sedimentology of Yangon river and techniques for their identification and management. Present techniques such as remote sensing have made it easier to investigate and interpret in details analysis of river geomorphology. In this paper, attempt has been made the complicated issues of geomorphology, sedimentation patterns and management of river system and evolution studied. The analysis was carried out for the impact of land use/ land cover (LULC) changes on stream flow patterns. The hydrologic response to intense, flood producing rainfall events bears the signatures of the geomorphic structure of the channel network and of the characteristic slope lengths defining the drainage density of the basin. The interpretation of the hydrologic response as the travel time distribution of a water particle randomly injected in a distributed manner across the landscape inspired many geomorphic insights. In 2008, Cyclone Nargis was seriously damaged to mangrove area and its biodiversity system in and around of Yangon river terraces. A combination of digital image processing techniques was employed for enhancement and classification process. It is observed from the study that middle infra red band (0.77mm - 0.86mm) is highly suitable for mapping mangroves. Two major classes of mangroves, dense and open mangroves were delineated from the digital data.

  20. Spectrum sensing of trace C(2)H(2) detection in differential optical absorption spectroscopy technique.

    PubMed

    Chen, Xi; Dong, Xiaopeng

    2014-09-10

    An improved algorithm for trace C(2)H(2) detection is presented in this paper. The trace concentration is accurately calculated by focusing on the absorption spectrum from the frequency domain perspective. The advantage of the absorption spectroscopy frequency domain algorithm is its anti-interference capability. First, the influence of the background noise on the minimum detectable concentration is greatly reduced. Second, the time-consuming preprocess of spectra calibration in the differential optical absorption spectroscopy technique is skipped. Experimental results showed the detection limit of 50 ppm is achieved at a lightpath length of 0.2 m. This algorithm can be used in real-time spectrum analysis with high accuracy.

  1. Nanostructured Substrates for Optical Sensing

    PubMed Central

    Kemling, Jonathan W.; Qavi, Abraham J.; Bailey, Ryan C.

    2011-01-01

    Sensors that change color have the advantages of versatility, ease of use, high sensitivity, and low cost. The recent development of optically based chemical sensing platforms has increasingly employed substrates manufactured with advanced processing or fabrication techniques to provide precise control over shape and morphology of the sensor micro- and nano-structure. New sensors have resulted with improved capabilities for a number of sensing applications, including the detection of biomolecules and environmental monitoring. This perspective focuses on recent optical sensor devices that utilize nanostructured substrates. PMID:22174955

  2. Multichannel optical sensing device

    DOEpatents

    Selkowitz, Stephen E.

    1990-01-01

    A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  3. Multichannel optical sensing device

    DOEpatents

    Selkowitz, S.E.

    1985-08-16

    A multichannel optical sensing device is disclosed, for measuring the outdoor sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optical elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  4. Fiber Loop Ringdown — a Time-Domain Sensing Technique for Multi-Function Fiber Optic Sensor Platforms: Current Status and Design Perspectives

    PubMed Central

    Wang, Chuji

    2009-01-01

    Fiber loop ringdown (FLRD) utilizes an inexpensive telecommunications light source, a photodiode, and a section of single-mode fiber to form a uniform fiber optic sensor platform for sensing various quantities, such as pressure, temperature, strain, refractive index, chemical species, biological cells, and small volume of fluids. In FLRD, optical losses of a light pulse in a fiber loop induced by changes in a quantity are measured by the light decay time constants. FLRD measures time to detect a quantity; thus, FLRD is referred to as a time-domain sensing technique. FLRD sensors have near real-time response, multi-pass enhanced high-sensitivity, and relatively low cost (i.e., without using an optical spectral analyzer). During the last eight years since the introduction of the original form of fiber ringdown spectroscopy, there has been increasing interest in the FLRD technique in fiber optic sensor developments, and new application potential is being explored. This paper first discusses the challenging issues in development of multi-function, fiber optic sensors or sensor networks using current fiber optic sensor sensing schemes, and then gives a review on current fiber optic sensor development using FLRD technique. Finally, design perspectives on new generation, multi-function, fiber optic sensor platforms using FLRD technique are particularly presented. PMID:22408471

  5. Fiber-Optic Sensing Technology

    SciTech Connect

    Milnes, M.; Baylor, L.C.; Bave, S.

    1996-10-24

    This article offers a basic review of fiber-optic sensing technology, or more specifically, fiber-optic sensing technology as applied to the qualitative or quantitative identification of a chemical sample, and how it works,

  6. Optical techniques for sensing and measurement in hostile environments; Proceedings of the Meeting, Orlando, FL, May 21, 22, 1987

    NASA Astrophysics Data System (ADS)

    Gillespie, Calvin H.; Greenwell, Roger A.

    1987-01-01

    Papers are presented on referencing in fiber optic sensing systems, optical fiber chemical sensing networks, and the radiation response of new pure silica fibers. Also considered are a comparison of gamma, neutron, and proton irradiations of multimode fibers, a pinhole camera for hot environment viewing of electron beam materials processing, and the utilization of optical image data from the advanced test accelerator. Other topics include the application of an interferometer spectrometer aboard the Space Shuttle with a payload specialist in the control loop, hydrogen chloride measurements in launch-vehicle exhaust clouds, and a rocket-borne telescoped Fourier transform spectrometer operating at 10 K.

  7. Femtosecond laser fabricated multimode fiber sensors interrogated by optical-carrier-based microwave interferometry technique for distributed strain sensing

    NASA Astrophysics Data System (ADS)

    Hua, Liwei; Song, Yang; Huang, Jie; Cheng, Baokai; Zhu, Wenge; Xiao, Hai

    2016-03-01

    A multimode fiber (MMF) based cascaded intrinsic Fabry-Perot interferometers (IFPIs) system is presented and the distributed strain sensing has been experimentally demonstrated by using such system. The proposed 13 cascaded IFPIs have been formed by 14 cascaded reflectors that have been fabricated on a grade index MMF. Each reflector has been made by drawing a line on the center of the cross-section of the MMF through a femtosecond laser. The distance between any two adjacent reflectors is around 100 cm. The optical carrier based microwave interferometry (OCMI) technique has been used to interrogate the MMF based cascaded FPIs system by reading the optical interference information in the microwave domain. The location along with the shift of the interference fringe pattern for each FPI can be resolved though signal processing based on the microwave domain information. The multimode interference showed very little influence to the microwave domain signals. By using such system the strain of 10-4 for each FPI sensor and the spatial resolution of less than 5 cm for the system can be easily achieved.

  8. Discriminative sensing techniques

    NASA Astrophysics Data System (ADS)

    Lewis, Keith

    2008-10-01

    The typical human vision system is able to discriminate between a million or so different colours, yet is able to do this with a chromatic sensor array that is fundamentally based on three different receptors, sensitive to light in the blue, green and red portions of the visible spectrum. Some biological organisms have extended capabilities, providing vision in the ultra-violet, whilst others, such as some species of mantis shrimp reportedly have sixteen different types of photo-receptors. In general the biological imaging sensor takes a minimalist approach to sensing its environment, whereas current optical engineering approaches follow a 'brute' force solution where the challenge of hyperspectral imaging is addressed by various schemes for spatial and spectral dispersion of radiation across existing detector arrays. This results in a problem for others to solve in the processing and communication of the generated hypercube of data. This paper explores the parallels between some of those biological systems and the various design concepts being developed for discriminative imaging, drawing on activity supported by the UK Electro-Magnetic Remote Sensing Defence Technology Centre (EMRS DTC).

  9. Sensing interrogation technique for fiber-optic interferometer type of sensors based on a single-passband RF filter.

    PubMed

    Chen, Hao; Zhang, Shiwei; Fu, Hongyan; Zhou, Bin; Chen, Nan

    2016-02-01

    In this paper, a sensing interrogation system for fiber-optic interferometer type of sensors by using a single-passband radio-frequency (RF) filter has been proposed and experimentally demonstrated. The fiber-optic interferometer based sensors can give continuous optical sampling, and along with dispersive medium a single-passband RF frequency response can be achieved. The sensing parameter variation on the fiber-optic interferometer type of sensors will affect their free spectrum range, and thus the peak frequency of the RF filter. By tracking the central frequency of the passband the sensing parameter can be demodulated. As a demonstration, in our experiment a fiber Mach-Zehnder interferometer (FMZI) based temperature sensor has been interrogated. By tracking the peak frequency of the passband the temperature variation can be monitored. In our experiment, the sensing responsivity of 10.5 MHz/°C, 20.0 MHz/°C and 41.2 MHz/°C, when the lengths of sensing fiber are 1 m, 2 m and 4 m have been achieved.

  10. Project OPTEX: Field study at a petrochemical facility to assess optical remote sensing and dispersion modeling techniques

    SciTech Connect

    Paien, R.J.; Zwicker, J.O.; Feldman, H.

    1997-12-31

    The American Petroleum Inst. has conducted a field study at a petrochemical facility for the purpose of (1) testing the ability of optical remote sensing (ORS) techniques to characterize fugitive emissions, and (2) assembling ambient and tracer sampler data for evaluating air dispersion models. The study, referred to as the OPTEX (Operational Petrochemical Tracer Experiment) Project, took place during October 1996 at a Texas petrochemical facility. This paper reports on the design of the field study and summarizes the measurements that were obtained in the field. Several aspects of the field study are described in the paper: the types and locations of the emission releases and tracer gases that were used, the deployment of tracer samplers at various downwind distances, the use of open-path FTIR (OP-FTIR) equipment at the site to quantify tracer gas emissions, special short-term tracer gas emissions designed to test the ability of the ORS systems to detect accidental releases, and the use of a Doppler sodar to evaluate vertical profiles of wind and turbulence upwind and downwind of the facility. The data base for this study, as well as that from an earlier field study that took place at the Duke Forest green field site in North Carolina, will be used for evaluating air dispersion model performance and the ability of ORS measurements to quantify fugitive emissions.

  11. Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer

    PubMed Central

    Coda, Sergio; Siersema, Peter D.; Stamp, Gordon W. H.; Thillainayagam, Andrew V.

    2015-01-01

    Detection, characterization, and staging constitute the fundamental elements in the endoscopic diagnosis of gastrointestinal diseases, but histology still remains the diagnostic gold standard. New developments in endoscopic techniques may challenge histopathology in the near future. An ideal endoscopic technique should combine a wide-field, “red flag” screening technique with an optical contrast or microscopy method for characterization and staging, all simultaneously available during the procedure. In theory, biophotonic advances have the potential to unite these elements to allow in vivo “optical biopsy.” These techniques may ultimately offer the potential to increase the rates of detection of high risk lesions and the ability to target biopsies and resections, and so reduce the need for biopsy, costs, and uncertainty for patients. However, their utility and sensitivity in clinical practice must be evaluated against those of conventional histopathology. This review describes some of the most recent applications of biophotonics in endoscopic optical imaging and metrology, along with their fundamental principles and the clinical experience that has been acquired in their deployment as tools for the endoscopist. Particular emphasis has been placed on translational label-free optical techniques, such as fluorescence spectroscopy, fluorescence lifetime imaging microscopy (FLIM), two-photon and multi-photon microscopy, second harmonic generation (SHG) and third harmonic generation (THG) imaging, optical coherence tomography (OCT), diffuse reflectance, Raman spectroscopy, and molecular imaging. PMID:26528489

  12. Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer.

    PubMed

    Coda, Sergio; Siersema, Peter D; Stamp, Gordon W H; Thillainayagam, Andrew V

    2015-10-01

    Detection, characterization, and staging constitute the fundamental elements in the endoscopic diagnosis of gastrointestinal diseases, but histology still remains the diagnostic gold standard. New developments in endoscopic techniques may challenge histopathology in the near future. An ideal endoscopic technique should combine a wide-field, "red flag" screening technique with an optical contrast or microscopy method for characterization and staging, all simultaneously available during the procedure. In theory, biophotonic advances have the potential to unite these elements to allow in vivo "optical biopsy." These techniques may ultimately offer the potential to increase the rates of detection of high risk lesions and the ability to target biopsies and resections, and so reduce the need for biopsy, costs, and uncertainty for patients. However, their utility and sensitivity in clinical practice must be evaluated against those of conventional histopathology. This review describes some of the most recent applications of biophotonics in endoscopic optical imaging and metrology, along with their fundamental principles and the clinical experience that has been acquired in their deployment as tools for the endoscopist. Particular emphasis has been placed on translational label-free optical techniques, such as fluorescence spectroscopy, fluorescence lifetime imaging microscopy (FLIM), two-photon and multi-photon microscopy, second harmonic generation (SHG) and third harmonic generation (THG) imaging, optical coherence tomography (OCT), diffuse reflectance, Raman spectroscopy, and molecular imaging.

  13. Remote hydrogen sensing techniques

    NASA Technical Reports Server (NTRS)

    Perry, Cortes L.

    1992-01-01

    The objective of this project is to evaluate remote hydrogen sensing methodologies utilizing metal oxide semi-conductor field effect transistors (MOS-FET) and mass spectrometric (MS) technologies and combinations thereof.

  14. New optical sensing technique of tissue viability and blood flow based on nanophotonic iterative multi-plane reflectance measurements

    PubMed Central

    Yariv, Inbar; Haddad, Menashe; Duadi, Hamootal; Motiei, Menachem; Fixler, Dror

    2016-01-01

    Physiological substances pose a challenge for researchers since their optical properties change constantly according to their physiological state. Examination of those substances noninvasively can be achieved by different optical methods with high sensitivity. Our research suggests the application of a novel noninvasive nanophotonics technique, ie, iterative multi-plane optical property extraction (IMOPE) based on reflectance measurements, for tissue viability examination and gold nanorods (GNRs) and blood flow detection. The IMOPE model combines an experimental setup designed for recording light intensity images with the multi-plane iterative Gerchberg-Saxton algorithm for reconstructing the reemitted light phase and calculating its standard deviation (STD). Changes in tissue composition affect its optical properties which results in changes in the light phase that can be measured by its STD. We have demonstrated this new concept of correlating the light phase STD and the optical properties of a substance, using transmission measurements only. This paper presents, for the first time, reflectance based IMOPE tissue viability examination, producing a decrease in the computed STD for older tissues, as well as investigating their organic material absorption capability. Finally, differentiation of the femoral vein from adjacent tissues using GNRs and the detection of their presence within blood circulation and tissues are also presented with high sensitivity (better than computed tomography) to low quantities of GNRs (<3 mg). PMID:27785024

  15. Optical property dimensionality reduction techniques for accelerated radiative transfer performance: Application to remote sensing total ozone retrievals

    NASA Astrophysics Data System (ADS)

    Efremenko, Dmitry; Doicu, Adrian; Loyola, Diego; Trautmann, Thomas

    2014-01-01

    In this paper, we introduce several dimensionality reduction techniques for optical parameters. We consider the principal component analysis, the local linear embedding methods (locality pursuit embedding, locality preserving projection, locally embedded analysis), and discrete orthogonal transforms (cosine, Legendre, wavelet). The principle component analysis has already been shown to be an effective and accurate method of enhancing radiative transfer performance for simulations in an absorbing and a scattering atmosphere. By linearizing the corresponding radiative transfer model, we analyze the applicability of the proposed methods to a practical problem of total ozone column retrieval from UV-backscatter measurements.

  16. Optically based technique for producing merged spectra of water-leaving radiances from ocean color remote sensing.

    PubMed

    Mélin, Frédéric; Zibordi, Giuseppe

    2007-06-20

    An optically based technique is presented that produces merged spectra of normalized water-leaving radiances L(WN) by combining spectral data provided by independent satellite ocean color missions. The assessment of the merging technique is based on a four-year field data series collected by an autonomous above-water radiometer located on the Acqua Alta Oceanographic Tower in the Adriatic Sea. The uncertainties associated with the merged L(WN) obtained from the Sea-viewing Wide Field-of-view Sensor and the Moderate Resolution Imaging Spectroradiometer are consistent with the validation statistics of the individual sensor products. The merging including the third mission Medium Resolution Imaging Spectrometer is also addressed for a reduced ensemble of matchups.

  17. Optical Fiber Sensing Using Quantum Dots

    PubMed Central

    Jorge, Pedro; Martins, Manuel António; Trindade, Tito; Santos, José Luís; Farahi, Faramarz

    2007-01-01

    Recent advances in the application of semiconductor nanocrystals, or quantum dots, as biochemical sensors are reviewed. Quantum dots have unique optical properties that make them promising alternatives to traditional dyes in many luminescence based bioanalytical techniques. An overview of the more relevant progresses in the application of quantum dots as biochemical probes is addressed. Special focus will be given to configurations where the sensing dots are incorporated in solid membranes and immobilized in optical fibers or planar waveguide platforms.

  18. Emerging optical nanoscopy techniques

    PubMed Central

    Montgomery, Paul C; Leong-Hoi, Audrey

    2015-01-01

    To face the challenges of modern health care, new imaging techniques with subcellular resolution or detection over wide fields are required. Far field optical nanoscopy presents many new solutions, providing high resolution or detection at high speed. We present a new classification scheme to help appreciate the growing number of optical nanoscopy techniques. We underline an important distinction between superresolution techniques that provide improved resolving power and nanodetection techniques for characterizing unresolved nanostructures. Some of the emerging techniques within these two categories are highlighted with applications in biophysics and medicine. Recent techniques employing wider angle imaging by digital holography and scattering lens microscopy allow superresolution to be achieved for subcellular and even in vivo, imaging without labeling. Nanodetection techniques are divided into four subcategories using contrast, phase, deconvolution, and nanomarkers. Contrast enhancement is illustrated by means of a polarized light-based technique and with strobed phase-contrast microscopy to reveal nanostructures. Very high sensitivity phase measurement using interference microscopy is shown to provide nanometric surface roughness measurement or to reveal internal nanometric structures. Finally, the use of nanomarkers is illustrated with stochastic fluorescence microscopy for mapping intracellular structures. We also present some of the future perspectives of optical nanoscopy. PMID:26491270

  19. Fiber optic sensing system

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory (Inventor)

    1991-01-01

    A fiber optic interferometer utilizes a low coherence light emitting diode (LED) laser as a light source which is filtered and driven at two RF frequencies, high and low, that are specific to the initial length of the resonator chamber. A displacement of a reflecting mirror changes the length traveled by the nonreferencing signal. The low frequency light undergoes destructive interference which reduces the average intensity of the wave while the high frequency light undergoes constructive interference which increases the average intensity of the wave. The ratio of these two intensity measurements is proportional to the displacement incurred.

  20. A Geostatistical Data Fusion Technique for Merging Remote Sensing and Ground-Based Observations of Aerosol Optical Thickness

    NASA Technical Reports Server (NTRS)

    Chatterjee, Abhishek; Michalak, Anna M.; Kahn, Ralph A.; Paradise, Susan R.; Braverman, Amy J.; Miller, Charles E.

    2010-01-01

    Particles in the atmosphere reflect incoming sunlight, tending to cool the Earth below. Some particles, such as soot, also absorb sunlight, which tens to warm the ambient atmosphere. Aerosol optical depth (AOD) is a measure of the amount of particulate matter in the atmosphere, and is a key input to computer models that simulate and predict Earth's changing climate. The global AOD products from the Multi-angle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS), both of which fly on the NASA Earth Observing System's Terra satellite, provide complementary views of the particles in the atmosphere. Whereas MODIS offers global coverage about four times as frequent as MISR, the multi-angle data makes it possible to separate the surface and atmospheric contributions to the observed top-of-atmosphere radiances, and also to more effectively discriminate particle type. Surface-based AERONET sun photometers retrieve AOD with smaller uncertainties than the satellite instruments, but only at a few fixed locations. So there are clear reasons to combine these data sets in a way that takes advantage of their respective strengths. This paper represents an effort at combining MISR, MODIS and AERONET AOD products over the continental US, using a common spatial statistical technique called kriging. The technique uses the correlation between the satellite data and the "ground-truth" sun photometer observations to assign uncertainty to the satellite data on a region-by-region basis. The larger fraction of the sun photometer variance that is duplicated by the satellite data, the higher the confidence assigned to the satellite data in that region. In the Western and Central US, MISR AOD correlation with AERONET are significantly higher than those with MODIS, likely due to bright surfaces in these regions, which pose greater challenges for the single-view MODIS retrievals. In the east, MODIS correlations are higher, due to more frequent sampling

  1. Optical transmission techniques

    NASA Astrophysics Data System (ADS)

    Vasile, Irina B.; Filip, Luminita E.; Vasile, Alexandru

    2005-08-01

    An optical transmission system is a method of transferring information in the shape of bits or symbols for the case of digital systems, and of analogue waves for the case of analogue systems, between fixed points located on a fiber optics cable. Today and in the near future there are numerous such transmission techniques available. The increase of demands for data transfer from phone subscribers can be met only by means of digital techniques applied in the local network, in addition to the use of digital telephone exchange and of the digital transmission systems in the trees network. In order to increase the quantity of information transferred through one fiber, optical multiplexing techniques have been conceived and tested. The optical multiplexing is additional to the electrical signal multiplexing. The requests for the access network will become more and more complex, a larger flexibility and a wider band being needed. For the purpose of complying with these requests, the coherent simultaneous or alternative transmission towards the optical amplifiers represents a factor of technical progress. The multiplexing with wave length division allows for more channels to be transported through the same fiber with different wave lengths, in one or both directions.

  2. Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers.

    PubMed

    Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting

    2015-04-01

    Recently there is a growing interest in developing few-mode fiber (FMF) based distributed sensors, which can attain higher spatial resolution and sensitivity compared with the conventional single-mode approaches. However, current techniques require two lightwaves injected into both ends of FMF, resulting in their complicated setup and high cost, which causes a big issue for geotechnical and petroleum applications. In this paper, we present a single-end FMF-based distributed sensing system that allows simultaneous temperature and strain measurement by Brillouin optical time-domain reflectometry (BOTDR) and heterodyne detection. Theoretical analysis and experimental assessment of multi-parameter discriminative measurement techniques applied to distributed FMF sensors are presented. Experimental results confirm that FM-BOTDR has similar performance with two-end methods such as FM-BOTDA, but with simpler setup and lower cost. The temperature-induced expansion strain (TIES) in response to different modes is discussed as well. Furthermore, we optimized the FMF design by exploiting modal profile and doping concentration, which indicates up to fivefold enhancement in measurement accuracy. This novel distributed FM-sensing system endows with good sensitivity characteristics and can prevent catastrophic failure in many applications. PMID:25968738

  3. Optical sensing: recognition elements and devices

    NASA Astrophysics Data System (ADS)

    Gauglitz, Guenter G.

    2012-09-01

    The requirements in chemical and biochemical sensing with respect to recognition elements, avoiding non-specific interactions, and high loading of the surface for detection of low concentrations as well as optimized detection systems are discussed. Among the many detection principles the optical techniques are classified. Methods using labeled compounds like Total Internal Reflection Fluorescence (TIRF) and direct optical methods like micro reflectometry or refractometry are discussed in comparison. Reflectometric Interference Spectroscopy (RIfS) is presented as a robust simple method for biosensing. As applications, trace analysis of endocrine disruptors in water, hormones in food, detection of viruses and bacteria in food and clinical diagnostics are discussed.

  4. Fiber-Optic Sensing for In-Space Inspection

    NASA Technical Reports Server (NTRS)

    Pena, Francisco; Richards, W. Lance; Piazza, Anthony; Parker, Allen R.; Hudson, Larry D.

    2014-01-01

    This presentation provides examples of fiber optic sensing technology development activities performed at NASA Armstrong. Examples of current and previous work that support in-space inspection techniques and methodologies are highlighted.

  5. Optical display for radar sensing

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Hsu, Charles; Willey, Jefferson; Landa, Joseph; Hsieh, Minder; Larsen, Louis V.; Krzywicki, Alan T.; Tran, Binh Q.; Hoekstra, Philip; Dillard, John T.; Krapels, Keith A.; Wardlaw, Michael; Chu, Kai-Dee

    2015-05-01

    Boltzmann headstone S = kB Log W turns out to be the Rosette stone for Greek physics translation optical display of the microwave sensing hieroglyphics. The LHS is the molecular entropy S measuring the degree of uniformity scattering off the sensing cross sections. The RHS is the inverse relationship (equation) predicting the Planck radiation spectral distribution parameterized by the Kelvin temperature T. Use is made of the conservation energy law of the heat capacity of Reservoir (RV) change T Δ S = -ΔE equals to the internal energy change of black box (bb) subsystem. Moreover, an irreversible thermodynamics Δ S > 0 for collision mixing toward totally larger uniformity of heat death, asserted by Boltzmann, that derived the so-called Maxwell-Boltzmann canonical probability. Given the zero boundary condition black box, Planck solved a discrete standing wave eigenstates (equation). Together with the canonical partition function (equation) an average ensemble average of all possible internal energy yielded the celebrated Planck radiation spectral (equation) where the density of states (equation). In summary, given the multispectral sensing data (equation), we applied Lagrange Constraint Neural Network (LCNN) to solve the Blind Sources Separation (BSS) for a set of equivalent bb target temperatures. From the measurements of specific value, slopes and shapes we can fit a set of Kelvin temperatures T's for each bb targets. As a result, we could apply the analytical continuation for each entropy sources along the temperature-unique Planck spectral curves always toward the RGB color temperature display for any sensing probing frequency.

  6. Fiber optic sensing systems using high frequency resonant sensing heads with intensity sensors

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Maitland, Duncan J., IV

    1988-01-01

    Optical fibers have an inherent capability of transmitting high bandwidth analog and digital signals. To apply this property of fiber optics to remote sensing, special sensing heads as well as signal processing electronics have to be developed. In systems employing intensity modulating sensors, there is also a need for a referencing technique to compensate for changes in the transmission of the connecting fibers and light source intensity. Fiber optic sensing systems incorporated in sensing heads of a special configuration are discussed. Different modes of operation as well as resonant conditions are explained. Theoretical and experimental analyses are also given.

  7. Optical Techniques in Optogenetics

    PubMed Central

    Mohanty, Samarendra K.; Lakshminarayananan, Vasudevan

    2015-01-01

    Optogenetics is an innovative technique for optical control of cells. This field has exploded over the past decade or so and has given rise to great advances in neuroscience. A variety of applications both from the basic and applied research have emerged, turning the early ideas into a powerful paradigm for cell biology, neuroscience and medical research. This review aims at highlighting the basic concepts that are essential for a comprehensive understanding of optogenetics and some important biological/biomedical applications. Further, emphasis is placed on advancement in optogenetics-associated light-based methods for controlling gene expression, spatially-controlled optogenetic stimulation and detection of cellular activities. PMID:26412943

  8. Optical techniques in optogenetics

    NASA Astrophysics Data System (ADS)

    Mohanty, Samarendra K.; Lakshminarayananan, Vasudevan

    2015-07-01

    Optogenetics is an innovative technique for optical control of cells. This field has exploded over the past decade or so and has given rise to great advances in neuroscience. A variety of applications both from the basic and applied research have emerged, turning the early ideas into a powerful paradigm for cell biology, neuroscience, and medical research. This review aims at highlighting the basic concepts that are essential for a comprehensive understanding of optogenetics and some important biological/biomedical applications. Further, emphasis is placed on advancement in optogenetics-associated light-based methods for controlling gene expression, spatially controlled optogenetic stimulation and detection of cellular activities.

  9. Microfluidic sensing: state of the art fabrication and detection techniques

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Gu, Min

    2011-08-01

    Here we introduce the existing fabrication techniques, detection methods, and related techniques for microfluidic sensing, with an emphasis on the detection techniques. A general survey and comparison of the fabrication techniques were given, including prototyping (hot embossing, inject molding, and soft lithography) and direct fabrication (laser micromachining, photolithography, lithography, and x-ray lithography) techniques. This is followed by an in-depth look at detection techniques: optical, electrochemical, mass spectrometry, as well as nuclear magnetic resonance spectroscopy-based sensing approaches and related techniques. In the end, we highlight several of the most important issues for future work on microfluidic sensing. This article aims at providing a tutorial review with both introductory materials and inspiring information on microfluidic fabrication and sensing for nonspecialists.

  10. Hall Effect and Magneto Optical MFL Sensing

    NASA Astrophysics Data System (ADS)

    Jallouli, Wissem

    The need for a reliable sensing tool has stimulated countless researchers to develop techniques trying to extract maximum information. In the field of nondestructive testing (NDT), various sensors have been established to fulfill that function. Examples include the ultrasonic, eddy current, and magnetic flux leakage (MFL) based techniques. Because they are extremely reliable, MFL based techniques represent one of the best inspection technologies. These technologies have numerous applications in diverse domains, including petroleum pipeline and tank inspections, airplane inspections, and production quality control. In this work, we will present two technologies based on MFL technique. The first is the Hall Effect sensor. This device has been extensively developed during the last century, especially after the use of integrated circuit technology. Its reliable results even under extreme conditions made it an extremely useful tool. The second technology is Magneto Optical Imaging. This technique rose very recently, and scientists hold high expectations about its performance once proper techniques are developed. The study of these two sensing devices gives a better understanding of the MFL technique by allowing us to investigate the potential of each technology, experience each in studied conditions to derive its characteristics, and discuss its performance.

  11. Fiber optic nanoprobes for biological sensing

    NASA Astrophysics Data System (ADS)

    Barucci, Andrea; Berneschi, Simone; Cosi, Franco; Nunzi Conti, Gualtiero; Pelli, Stefano; Quercioli, Franco; Soria, Silvia; Righini, Giancarlo C.

    2011-08-01

    Optical sensors have a large impact in the fields of life science research, drug discovery and medical diagnostics. The recent advances in nanotechnology and photonics have led to a new generation of nanotools, capable of probing even the single cell: it has already been demonstrated that nanobiosensors can detect biochemical targets and proteins inside living single cells. Here we provide a brief overview of the field of nanoprobes consisting of tapered, metal-coated optical fibers having nanosize tips, such as those which were originally developed for use in near-field optical microscopy. Moreover we present some preliminary results concerning the characterization of the experimental sensing system which exploits such nanoprobes for intracellular biomedical diagnostics. The feasibility of using the Fluorescence Lifetime Imaging Microscopy (FLIM) technique as a dynamic diagnostics tool with these nanoprobes has been demonstrated.

  12. Uncertainties associated with the use of optical remote sensing technique to estimate surface emissions in landfill applications.

    PubMed

    Abichou, Tarek; Clark, Jeremy; Tan, Sze; Chanton, Jeffery; Hater, Gary; Green, Roger; Goldsmith, Doug; Barlaz, Morton A; Swan, Nathan

    2010-04-01

    Landfills represent a source of distributed emissions source over an irregular and heterogeneous surface. In the method termed "Other Test Method-10" (OTM-10), the U.S. Environmental Protection Agency (EPA) has proposed a method to quantify emissions from such sources by the use of vertical radial plume mapping (VRPM) techniques combined with measurement of wind speed to determine the average emission flux per unit area per time from nonpoint sources. In such application, the VRPM is used as a tool to estimate the mass of the gas of interest crossing a vertical plane. This estimation is done by fitting the field-measured concentration spatial data to a Gaussian or some other distribution to define a plume crossing the vertical plane. When this technique is applied to landfill surfaces, the VRPM plane may be within the emitting source area itself. The objective of this study was to investigate uncertainties associated with using OTM-10 for landfills. The spatial variability of emission in the emitting domain can lead to uncertainties of -34 to 190% in the measured flux value when idealistic scenarios were simulated. The level of uncertainty might be higher when the number and locations of emitting sources are not known (typical field conditions). The level of uncertainty can be reduced by improving the layout of the VRPM plane in the field in accordance with an initial survey of the emission patterns. The change in wind direction during an OTM-10 testing setup can introduce an uncertainty of 20% of the measured flux value. This study also provides estimates of the area contributing to flux (ACF) to be used in conjunction with OTM-10 procedures. The estimate of ACF is a function of the atmospheric stability class and has an uncertainty of 10-30%. PMID:20437781

  13. Quantum limited particle sensing in optical tweezers

    SciTech Connect

    Tay, J.W.; Hsu, Magnus T. L.; Bowen, Warwick P.

    2009-12-15

    Particle sensing in optical tweezers systems provides information on the position, velocity, and force of the specimen particles. The conventional quadrant detection scheme is applied ubiquitously in optical tweezers experiments to quantify these parameters. In this paper, we show that quadrant detection is nonoptimal for particle sensing in optical tweezers and propose an alternative optimal particle sensing scheme based on spatial homodyne detection. A formalism for particle sensing in terms of transverse spatial modes is developed and numerical simulations of the efficacies of both quadrant and spatial homodyne detection are shown. We demonstrate that 1 order of magnitude improvement in particle sensing sensitivity can be achieved using spatial homodyne over quadrant detection.

  14. Adaptive holography for optical sensing applications

    NASA Astrophysics Data System (ADS)

    Residori, S.; Bortolozzo, U.; Peigné, A.; Molin, S.; Nouchi, P.; Dolfi, D.; Huignard, J. P.

    2016-03-01

    Adaptive holography is a promising method for high sensitivity phase modulation measurements in the presence of slow perturbations from the environment. The technique is based on the use of a nonlinear recombining medium, here an optically addressed spatial light modulator specifically realized to operate at 1.55 μm. Owing to the physical mechanisms involved, the interferometer adapts to slow phase variations within a range of 5-10 Hz, thus filtering out low frequency noise while transmitting higher frequency phase modulations. We present the basic principles of the adaptive interferometer and show that it can be used in association with a sensing fiber in order to detect phase modulations. Finally, a phase-OTDR architecture using the adaptive holographic interferometer is presented and shown to allows the detection of localized perturbations along the sensing fiber.

  15. Combinatorial Chemistry for Optical Sensing Applications

    NASA Astrophysics Data System (ADS)

    Díaz-García, M. E.; Luis, G. Pina; Rivero-Espejel, I. A.

    The recent interest in combinatorial chemistry for the synthesis of selective recognition materials for optical sensing applications is presented. The preparation, screening, and applications of libraries of ligands and chemosensors against molecular species and metal ions are first considered. Included in this chapter are also the developments involving applications of combinatorial approaches to the discovery of sol-gel and acrylic-based imprinted materials for optical sensing of antibiotics and pesticides, as well as libraries of doped sol-gels for high-throughput optical sensing of oxygen. The potential of combinatorial chemistry applied to the discovery of new sensing materials is highlighted.

  16. Optical interconnection techniques for Hypercube

    NASA Technical Reports Server (NTRS)

    Johnston, A. R.; Bergman, L. A.; Wu, W. H.

    1988-01-01

    Direct free-space optical interconnection techniques are described for the Hypercube concurrent processor machine using a holographic optical element. Computational requirements and optical constraints on implementation are briefly summarized with regard to topology, power consumption, and available technologies. A hybrid lens/HOE approach is described that can support an eight-dimensional cube of 256 nodes.

  17. Development of sensing techniques for weaponry health monitoring

    NASA Astrophysics Data System (ADS)

    Edwards, Eugene; Ruffin, Paul B.; Walker, Ebonee A.; Brantley, Christina L.

    2013-04-01

    Due to the costliness of destructive evaluation methods for assessing the aging and shelf-life of missile and rocket components, the identification of nondestructive evaluation methods has become increasingly important to the Army. Verifying that there is a sufficient concentration of stabilizer is a dependable indicator that the missile's double-based solid propellant is viable. The research outlined in this paper summarizes the Army Aviation and Missile Research, Development, and Engineering Center's (AMRDEC's) comparative use of nanoporous membranes, carbon nanotubes, and optical spectroscopic configured sensing techniques for detecting degradation in rocket motor propellant. The first sensing technique utilizes a gas collecting chamber consisting of nanoporous structures that trap the smaller solid propellant particles for measurement by a gas analysis device. In collaboration with NASA-Ames, sensing methods are developed that utilize functionalized single-walled carbon nanotubes as the key sensing element. The optical spectroscopic sensing method is based on a unique light collecting optical fiber system designed to detect the concentration of the propellant stabilizer. Experimental setups, laboratory results, and overall effectiveness of each technique are presented in this paper. Expectations are for the three sensing mechanisms to provide nondestructive evaluation methods that will offer cost-savings and improved weaponry health monitoring.

  18. Fiber Optic-Based Refractive Index Sensing at INESC Porto

    PubMed Central

    Jorge, Pedro A. S.; Silva, Susana O.; Gouveia, Carlos; Tafulo, Paula; Coelho, Luis; Caldas, Paulo; Viegas, Diana; Rego, Gaspar; Baptista, José M.; Santos, José L.; Frazão, Orlando

    2012-01-01

    A review of refractive index measurement based on different types of optical fiber sensor configurations and techniques is presented. It addresses the main developments in the area, with particular focus on results obtained at INESC Porto, Portugal. The optical fiber sensing structures studied include those based on Bragg and long period gratings, on micro-interferometers, on plasmonic effects in fibers and on multimode interference in a large spectrum of standard and microstructured optical fibers. PMID:22969405

  19. OPEN PATH OPTICAL SENSING OF PARTICULATE MATTER

    EPA Science Inventory

    The paper discusses the concepts behind recent developments in optical remote sensing (ORS) and the results from experiments. Airborne fugitive and fine particulate matter (PM) from various sources contribute to exceedances of state and federal PM and visibility standards. Recent...

  20. Coherent optical adaptive techniques.

    PubMed

    Bridges, W B; Brunner, P T; Lazzara, S P; Nussmeier, T A; O'Meara, T R; Sanguinet, J A; Brown, W P

    1974-02-01

    The theory of multidither adaptive optical radar phased arrays is briefly reviewed as an introduction to the experimental results obtained with seven-element linear and three-element triangular array systems operating at 0.6328 microm. Atmospheric turbulence compensation and adaptive tracking capabilities are demonstrated.

  1. Optical digital techniques

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Optical interface losses between transmitter-to-fiber interface, connector-to-connector interface, and fiber-to-receiver interface were studied. System effects such as pulse dispersion, risetimes of the sources and detectors, type of fibers used, output power of the sources, and detector sensitivity were considered. Data bus systems such as TEE, Star, and Hybrid were analyzed. The matter of single fiber versus bundle technologies for future avionics systems was considered. The existing data bus system on Space Shuttle was examined and an optical analog was derived for a fiber bundle system, along with the associated power margin. System tests were performed on a feasibility model of a 9-port Star data bus system including BER, star losses, connector losses, etc. The same system was subjected to EMI between the range of 200 Hz to 10 GHz at 20V/m levels. A lightning test was also performed which simulated the conditions similar to those on Space Shuttle. The data bus system was found to be EMI and lightning hard. It is concluded that an optical data bus system is feasible for shuttle orbiter type vehicles.

  2. Image Formation in Bio-optical Sensing

    NASA Astrophysics Data System (ADS)

    Miller, Eric

    2012-02-01

    Over the past two decades a number of optical sensing methods have emerged with potential to provide complementary information to traditional medical imaging modalities in application areas ranging from basic science to disease diagnosis and treatment monitoring. Though still largely in the research and development stage, modalities including diffuse optical tomography (DOT), fluorescence molecular tomography (FMT), photo-acoustic tomography (PAT), and bio-luminescence tomography (BLT) have excited much interest due to their natural functional imaging capability, their relatively low cost, and the fact that none required the use of ionizing radiation. These advantages however are tempered by a number of challenges associated with the processing of these data. Specifically, these data types all rely in one way or another on the interaction of light with tissue. The diffusive nature of this interaction inherently limits the spatial resolution of these modalities. As a result the process of forming an image is a far more delicate task than is the case with more standard imaging modalities such as X-ray computed tomography (CT). Two basic methods have been explored to address the ill-posedness of these problems in order to improve the information content in the resulting images. The optical data may be augmented either through the use of spectral diversity or by attempting to integrate optical data types with information from other modalities such as CT or MRI. Alternatively, a mathematical technique known as regularization can be used to impose physically-based constraints on the reconstruction. In this talk, I shall provide an overview of the work in my group in optical image formation within the contexts of DOT for breast cancer imaging and FMT for small animal imaging. The focus of the talk will be on methods that integrate data augmentation and mathematical regularization. In the case of FMT, we shall discuss our work in combining the optical data with information

  3. Laser Remote Sensing: Velocimetry Based Techniques

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl; Steinvall, Ove

    Laser-based velocity measurement is an area of the field of remote sensing where the coherent properties of laser radiation are the most exposed. Much of the published literature deals with the theory and techniques of remote sensing. We restrict our discussion to current trends in this area, gathered from recent conferences and professional journals. Remote wind sensing and vibrometry are promising in their new scientific, industrial, military, and biomedical applications, including improving flight safety, precise weapon correction, non-contact mine detection, optimization of wind farm operation, object identification based on its vibration signature, fluid flow studies, and vibrometry-associated diagnosis.

  4. Advanced remote sensing techniques for forestry applications: an application case in Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Nezry, Edmond; Yakam-Simen, Francis; Romeijn, Paul P.; Supit, Iwan; Demargne, Louis

    2001-02-01

    12 This paper reports the operational implementation of new techniques for the exploitation of remote sensing data (SAR and optical) in the framework of forestry applications. In particular, we present a new technique for standing timber volume estimation. This technique is based on remote sensing knowledge (SAR and optical synergy) and forestry knowledge (forest structure models), proved fairly accurate. To illustrate the application of these techniques, an operational commercial case study regarding forest concessions in Sarawak is presented. Validation of this technique by comparison of the remote sensing results and the database of the customer has shown that this technique is fairly accurate.

  5. Fiber optic pressure sensing with conforming elastomers.

    PubMed

    Shao, Li-Yang; Jiang, Qi; Albert, Jacques

    2010-12-10

    A novel pressure sensing scheme based on the effect of a conforming elastomer material on the transmission spectrum of tilted fiber Bragg gratings is presented. Lateral pressure on the elastomer increases its contact angle around the circumference of the fiber and strongly perturbs the optical transmission of the grating. Using an elastomer with a Young's modulus of 20 MPa, a Poisson ratio of 0.48, and a refractive index of 1.42, the sensor reacts monotonically to pressures from 0 to 50 kPa (and linearly from 0 to 15 kPa), with a standard deviation of 0.25 kPa and maximum error of 0.5 kPa. The data are extracted from the optical transmission spectrum using Fourier analysis and we show that this technique makes the response of the sensor independent of temperature, with a maximum error of 2% between 25°C and 75°C. Finally, other pressure ranges can be reached by using conforming materials with different modulii or applying the pressure at different orientations.

  6. Optical frequency comb interference profilometry using compressive sensing.

    PubMed

    Pham, Quang Duc; Hayasaki, Yoshio

    2013-08-12

    We describe a new optical system using an ultra-stable mode-locked frequency comb femtosecond laser and compressive sensing to measure an object's surface profile. The ultra-stable frequency comb laser was used to precisely measure an object with a large depth, over a wide dynamic range. The compressive sensing technique was able to obtain the spatial information of the object with two single-pixel fast photo-receivers, with no mechanical scanning and fewer measurements than the number of sampling points. An optical experiment was performed to verify the advantages of the proposed method.

  7. Fiber Optic Wing Shape Sensing on NASA's Ikhana UAV

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    This document discusses the development of fiber optic wing shape sensing on NASA's Ikhana vehicle. The Dryden Flight Research Center's Aerostructures Branch initiated fiber-optic instrumentation development efforts in the mid-1990s. Motivated by a failure to control wing dihedral resulting in a mishap with the Helios aircraft, new wing displacement techniques were developed. Research objectives for Ikhana included validating fiber optic sensor measurements and real-time wing shape sensing predictions; the validation of fiber optic mathematical models and design tools; assessing technical viability and, if applicable, developing methodology and approaches to incorporate wing shape measurements within the vehicle flight control system; and, developing and flight validating approaches to perform active wing shape control using conventional control surfaces and active material concepts.

  8. Novel optical microresonators for sensing applications

    NASA Astrophysics Data System (ADS)

    Wang, Hanzheng

    Optical microresonators have been proven as an effective means for sensing applications. The high quality (Q) optical whispering gallery modes (WGMs) circulating around the rotationally symmetric structures can interact with the local environment through the evanescent field. The high sensitivity in detection was achieved by the long photon lifetime of the high-Q resonator (thus the long light-environment interaction path). The environmental variation near the resonator surface leads to the effective refractive index change and thus a shift at the resonance wavelength. In this dissertation, we present our recent research on the development of new optical microresonators for sensing applications. Different structures and materials are used to develop optical resonator for broad sensing applications. Specifically, a new coupling method is designed and demonstrated for efficient excitation of microsphere resonators. The new coupler is made by fusion splicing an optical fiber with a capillary tube and consequently etching the capillary wall to a thickness of a few microns. Light is coupled through the peripheral contact between inserted microsphere and the etched capillary wall. Operating in the reflection mode and providing a robust mechanical support to the microresonator, the integrated structure has been experimentally proven as a convenient probe for sensing applications. Microspheres made of different materials (e.g., PMMA, porous glass, hollow core porous, and glass solid borosilicate glass) were successfully demonstrated for different sensing purposes, including temperature, chemical vapor concentration, and glucose concentration in aqueous solutions. In addition, the alignment free, integrated microresonator structure may also find other applications such as optical filters and microcavity lasers.

  9. Remote sensing as a mineral prospecting technique

    NASA Technical Reports Server (NTRS)

    Meneses, P. R. (Principal Investigator)

    1984-01-01

    Remote sensing and its application as an alternative technique to mineral resource exploration are reviewed. Emphasis is given here to the analysis of the three basic attributes of remote sensing, i.e., spatial attributes related to regional structural mapping, spectral attributes related to rock discrimination and seasonal attributes related to geobotanic anomalies mapping, all of which are employed in mineral exploration. Special emphasis is given to new developments of the Thematic Mapper of the LANDSAT-5, principally with reference to the application of the bands 1.6 and 2.2 microns to map hydrothermally altered rocks and the band of red and blue shift to geobotanical anomalies mapping.

  10. Recent network sensing based on a combination of single mode fiber optics and semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Watanabe, Kazuhiro

    2007-05-01

    This paper describes the overview of the past decade's progress of network sensing supported by the use of single mode fiber optics in which glass fiber material itself exhibits sensing function, comparing with conventional FBG/BOTDR techniques, and newly developed hetero-core techniques. The hetero-core fiber optic sensor has been highlighted in terms of the fabrication process, the sensing mechanism and characteristics, and a road map toward commercialization to the variety of industrial applications.

  11. OPTICAL REMOTE SENSING FOR AIR QUALITY MONITORING

    EPA Science Inventory

    The paper outlines recent developments in using optical remote sensing (ORS) instruments for air quality monitoring both for gaseous pollutants and airborne particulate matter (PM). The U.S. Environmental Protection Agency (EPA) has been using open-path Fourier transform infrared...

  12. Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing.

    PubMed

    Huang, Jie; Hua, Lei; Lan, Xinwei; Wei, Tao; Xiao, Hai

    2013-07-29

    This paper reports a distributed fiber optic sensing technique through microwave assisted separation and reconstruction of optical interferograms in spectrum domain. The approach involves sending a microwave-modulated optical signal through cascaded fiber optic interferometers. The microwave signal was used to resolve the position and reflectivity of each sensor along the optical fiber. By sweeping the optical wavelength and detecting the modulation signal, the optical spectrum of each sensor can be reconstructed. Three cascaded fiber optic extrinsic Fabry-Perot interferometric sensors were used to prove the concept. Their microwave-reconstructed interferogram matched well with those recorded individually using an optical spectrum analyzer. The application in distributed strain measurement has also been demonstrated. PMID:23938685

  13. Optical remote sensing of atmospheric compounds

    NASA Astrophysics Data System (ADS)

    Vazquez, Gabriel J.

    1996-02-01

    Human activities are altering the earth system at the local, regional, and global scales. It is therefore of the utmost importance to track the workings of mother earth in order to detect any changes at their early stages so that appropriate actions are taken to understand, assess, control or prevent the adverse effects. A number of deleterious effects to the environment can, at least in part, be ascribed to air pollution, namely, the thinning of the ozone layer, the related increase in the occurrence of skin cancer, the warming of the earth system, photochemical smog, acid rain/fog, acidification of soils and waters, forest decline, etc. It is therefore necessary to monitor the most relevant processes of the earth's atmosphere, namely, the energy input, the dynamics and the chemistry. In this contribution I mainly focus on the latter, specifically, on the measurement/monitoring of atmospheric compounds. To understand atmospheric chemistry and air pollution it is necessary to have reliable and accurate values of the mixing ratios of the numerous atmospheric gases and of their diurnal/seasonal variations and long-term trends. In this contribution I present an overview of the most relevant optical remote sensing techniques that are rapidly becoming the methods of choice to probe the chemical composition and physical state of the atmosphere, especially when high selectivity, sensitivity and fast-time response are required.

  14. Strain sensing using optical fibers

    NASA Technical Reports Server (NTRS)

    Houghton, Richard; Hiles, Steven

    1994-01-01

    The main source of attenuation which will be studied is the optical fiber's sensitivity to bending at radii that are much larger than the radius of the fiber. This type of environmental attenuation causes losses that are a function of the severity of the bend. The average attenuation caused by bending varies exponentially with the bend radius. There are many different fibers, sources, and testing equipment available. This thesis describes tests that were performed to evaluate the variables that effect bending related attenuation and will discuss the consistency of the results. Descriptions and comparisons will be made between single mode and multimode fibers as well as instrumentation comparisons between detection equipment. Detailed analysis of the effects of the whispering gallery mode will be performed along with theorized methods for characterization of these modes.

  15. Nanopaper as an Optical Sensing Platform.

    PubMed

    Morales-Narváez, Eden; Golmohammadi, Hamed; Naghdi, Tina; Yousefi, Hossein; Kostiv, Uliana; Horák, Daniel; Pourreza, Nahid; Merkoçi, Arben

    2015-07-28

    Bacterial cellulose nanopaper (BC) is a multifunctional material known for numerous desirable properties: sustainability, biocompatibility, biodegradability, optical transparency, thermal properties, flexibility, high mechanical strength, hydrophilicity, high porosity, broad chemical-modification capabilities and high surface area. Herein, we report various nanopaper-based optical sensing platforms and describe how they can be tuned, using nanomaterials, to exhibit plasmonic or photoluminescent properties that can be exploited for sensing applications. We also describe several nanopaper configurations, including cuvettes, plates and spots that we printed or punched on BC. The platforms include a colorimetric-based sensor based on nanopaper containing embedded silver and gold nanoparticles; a photoluminescent-based sensor, comprising CdSe@ZnS quantum dots conjugated to nanopaper; and a potential up-conversion sensing platform constructed from nanopaper functionalized with NaYF4:Yb(3+)@Er(3+)&SiO2 nanoparticles. We have explored modulation of the plasmonic or photoluminescent properties of these platforms using various model biologically relevant analytes. Moreover, we prove that BC is and advantageous preconcentration platform that facilitates the analysis of small volumes of optically active materials (∼4 μL). We are confident that these platforms will pave the way to optical (bio)sensors or theranostic devices that are simple, transparent, flexible, disposable, lightweight, miniaturized and perhaps wearable.

  16. Information hiding technique using optical correlators

    NASA Astrophysics Data System (ADS)

    Kim, Kyu-Tae; Kim, Jung-Jin; Kim, Eun-Soo

    2001-08-01

    During the past few years a variety of techniques have emerged to hide specific information within multimedia data for copyright protection, tamper-proofing and secret communication. The schemes for information hiding that have been proposed so far used either digital signal processing software or hardware. So they inevitably have a problem in some applications like automatic copyright control system, which need fast data-extracting scheme. In this paper, we show that the newly proposed optical correlator-based information hiding system has an advantage in that sense. In this scheme it is possible to simultaneously extract all the data hidden in one stego image and furthermore it is also possible to simultaneously extract all the data hidden in several stego images using optical correlators such as matched spatial filter and joint transform correlator.

  17. Optical sensing in high voltage transmission lines using power over fiber and free space optics

    NASA Astrophysics Data System (ADS)

    Rosolem, João Batista; Bassan, Fabio Renato; Penze, Rivael Strobel; Leonardi, Ariovaldo Antonio; Fracarolli, João Paulo Vicentini; Floridia, Claudio

    2015-12-01

    In this work we propose the use of power over fiber (PoF) and free space optics (FSO) techniques to powering and receive signals from an electrical current sensor placed at high voltage potential using a pair of optical collimators. The technique evaluation was performed in a laboratorial prototype using 62.5/125 μm multimode fiber to study the sensitivity of the optical alignment and the influence of the collimation process in the sensing system wavelengths: data communication (1310 nm) and powering (830 nm). The collimators were installed in a rigid electric insulator in order to maintain the stability of transmission.

  18. Introduction to the physics and techniques of remote sensing

    NASA Technical Reports Server (NTRS)

    Elachi, Charles

    1987-01-01

    This book presents a comprehensive overview of the basics behind remote-sensing physics, techniques, and technology. The physics of wave/matter interactions, techniques of remote sensing across the electromagnetic spectrum, and the concepts behind remote sensing techniques now established and future ones under development are discussed. Applications of remote sensing are described for a wide variety of earth and planetary atmosphere and surface sciences. Solid surface sensing across the electromagnetic spectrum, ocean surface sensing, basic principles of atmospheric sensing and radiative transfer, and atmospheric remote sensing in the microwave, millimeter, submillimeter, and infrared regions are examined.

  19. Optical manipulation and sensing with silicon photonics

    NASA Astrophysics Data System (ADS)

    Lin, Shiyun

    Optical trapping enables the non-contact manipulation of micro and nanoparticles with extremely high precision. Recent research on integrated optical trapping using the evanescent fields of photonic devices has opened up new opportunities for the manipulation of nano- and microparticles in lab-on-a-chip devices. Considerable interest has emerged for the use of optical microcavities as "sensors-on-a-chip", due to the possibility for the label-free detection of nanoparticles and molecules with high sensitivity. This dissertation focuses on the demonstration of an on-chip optical manipulation system with multiple functionalities, including trapping, buffering, sorting, and sensing. We demonstrate the optically trapping of polystyrene particles with diameters from 110 nm to 5.6 microm using silicon microrings and photonic crystal cavities. By integrating multiple microrings with different resonant wavelengths, we show that tuning the laser wavelength to the resonance wavelengths of different rings enables trapped particles to be transferred back and forth between the rings in a controllable manner. We term this functionality "buffering". We furthermore demonstrate an integrated microparticle passive sorting system based on the near-field optical forces exerted by a 3-dB optical power splitter that consists of a slot waveguide and a conventional channel waveguide. In related work, we demonstrate an ultra-compact polarization splitter design leveraging the giant birefringence of silicon-on-insulator slot waveguides to achieve a high extinction ratio over the entire C band. We demonstrate trapping-assisted particle sensing, using the shift in the microcavity resonance induced by the trapped particle. We show that this permits the sensing of proteins via a binding assay approach, in which the presence of green fluorescent protein causes the particles to bind. By detecting the size distribution of particles clusters using the microcavity, we quantitatively detect the GFP

  20. Ultra Small Integrated Optical Fiber Sensing System

    PubMed Central

    Van Hoe, Bram; Lee, Graham; Bosman, Erwin; Missinne, Jeroen; Kalathimekkad, Sandeep; Maskery, Oliver; Webb, David J.; Sugden, Kate; Van Daele, Peter; Van Steenberge, Geert

    2012-01-01

    This paper introduces a revolutionary way to interrogate optical fiber sensors based on fiber Bragg gratings (FBGs) and to integrate the necessary driving optoelectronic components with the sensor elements. Low-cost optoelectronic chips are used to interrogate the optical fibers, creating a portable dynamic sensing system as an alternative for the traditionally bulky and expensive fiber sensor interrogation units. The possibility to embed these laser and detector chips is demonstrated resulting in an ultra thin flexible optoelectronic package of only 40 μm, provided with an integrated planar fiber pigtail. The result is a fully embedded flexible sensing system with a thickness of only 1 mm, based on a single Vertical-Cavity Surface-Emitting Laser (VCSEL), fiber sensor and photodetector chip. Temperature, strain and electrodynamic shaking tests have been performed on our system, not limited to static read-out measurements but dynamically reconstructing full spectral information datasets.

  1. Optical apparatus and method for sensing uranyl

    DOEpatents

    Baylor, L.C.; Buchanan, B.R.

    1994-01-01

    An optical sensing device for uranyl and other substances, a method for making an optical sensing device and a method for chemically binding uranyl and other indicators to glass, quartz, cellulose and similar substrates. The indicator, such as arsenazo III, is immobilized on the substrate using a chemical binding process. The immobilized arsenazo III causes uranyl from a fluid sample to bind irreversibly to the substrate at its active sites, thus causing absorption of a portion of light transmitted through the substrate. Determination of the amount of light absorbed, using conventional means, yields the concentration of uranyl present in the sample fluid. The binding of uranyl on the substrate can be reversed by subsequent exposure of the substrate to a solution of 2,6-pyridinedicarboxylic acid. The chemical binding process is suitable for similarly binding other indicators, such as bromocresol green.

  2. Computational intelligence techniques for tactile sensing systems.

    PubMed

    Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo

    2014-01-01

    Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach.

  3. Multisensor image fusion techniques in remote sensing

    NASA Astrophysics Data System (ADS)

    Ehlers, Manfred

    Current and future remote sensing programs such as Landsat, SPOT, MOS, ERS, JERS, and the space platform's Earth Observing System (Eos) are based on a variety of imaging sensors that will provide timely and repetitive multisensor earth observation data on a global scale. Visible, infrared and microwave images of high spatial and spectral resolution will eventually be available for all parts of the earth. It is essential that efficient processing techniques be developed to cope with the large multisensor data volumes. This paper discusses data fusion techniques that have proved successful for synergistic merging of SPOT HRV, Landsat TM and SIR-B images. It is demonstrated that these techniques can be used to improve rectification accuracies, to depicit greater cartographic detail, and to enhance spatial resolution in multisensor image data sets.

  4. Gaussian-optics-based optical modeling and characterization of a Fabry-Perot microcavity for sensing applications.

    PubMed

    Guo, Dagang; Lin, Rongming; Wang, Weijun

    2005-08-01

    A generalized study has been carried out on the modeling of a Fabry-Perot microcavity for sensing applications. Different analytical models on transmission characteristics of a Fabry-Perot microcavity are established by using plane-wave-based techniques, such as the Macleod characteristic matrix technique, the transfer matrix technique, and Smith's technique. A novel Gaussian-optics-based model for a Fabry-Perot microcavity illuminated by a laser beam is then developed and validated. The influence of laser beam waist on microcavity optical response is investigated, and the required minimal beam waist size is explored to ensure a useful optical response for sensing applications that can be accurately predicted by plane-wave optics. Also, the perturbations of microcavity performance induced by different types of microcavity mirror imperfections are discussed, based on the novel optical model. The prototype of the proposed Fabry-Perot microcavity for sensing applications has been successfully fabricated and characterized.

  5. Industrial applications of fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Desforges, Francois X.; Blocksidge, Robert

    1996-08-01

    Thanks to the growth of the fiber optics telecommunication industry, fiber optic components have become less expensive, more reliable and well known by potential fiber optic sensor users. LEDs, optical fibers, couplers and connectors are now widely distributed and are the building blocks for the fiber optic sensor manufacturer. Additionally, the huge demand in consumer electronics of the past 10 years has provided the manufacturer with cheap and powerful programmable logic components which reduce the development time as well as the cost of the associated instrumentation. This market trend has allowed Photonetics to develop, manufacture and sell fiber optic sensors for the last 10 years. The company contribution in the fields of fiber optic gyros (4 licenses sold world wide), white light interferometry and fiber optic sensor networks is widely recognized. Moreover, its 1992 acquisition of some of the assets of Metricor Inc., greatly reinforced its position and allowed it to pursue new markets. Over the past four years, Photonetics has done an important marketing effort to better understand the need of its customers. The result of this research has fed R&D efforts towards a new generation instrument, the Metricor 2000, better adapted to the expectations of fiber optic sensors users, thanks to its unique features: (1) universality -- the system can accept more than 20 different sensors (T, P, RI, . . .). (2) scalability -- depending on the customer needs, the system can be used with 1 to 64 sensors. (3) performance -- because of its improved design, overall accuracies of 0.01% FS can be reached. (4) versatility -- its modular design enables a fast and easy custom design for specific applications. This paper presents briefly the Metricor 2000 and its family of FO probes. Then, it describes two fiber optic sensing (FOS) applications/markets where FOS have proven to be very useful.

  6. Distributed Fiber Optic Gas Sensing for Harsh Environment

    SciTech Connect

    Juntao Wu

    2008-03-14

    This report summarizes work to develop a novel distributed fiber-optic micro-sensor that is capable of detecting common fossil fuel gases in harsh environments. During the 32-month research and development (R&D) program, GE Global Research successfully synthesized sensing materials using two techniques: sol-gel based fiber surface coating and magnetron sputtering based fiber micro-sensor integration. Palladium nanocrystalline embedded silica matrix material (nc-Pd/Silica), nanocrystalline palladium oxides (nc-PdO{sub x}) and palladium alloy (nc-PdAuN{sub 1}), and nanocrystalline tungsten (nc-WO{sub x}) sensing materials were identified to have high sensitivity and selectivity to hydrogen; while the palladium doped and un-doped nanocrystalline tin oxide (nc-PdSnO{sub 2} and nc-SnO{sub 2}) materials were verified to have high sensitivity and selectivity to carbon monoxide. The fiber micro-sensor comprises an apodized long-period grating in a single-mode fiber, and the fiber grating cladding surface was functionalized by above sensing materials with a typical thickness ranging from a few tens of nanometers to a few hundred nanometers. GE found that the morphologies of such sensing nanomaterials are either nanoparticle film or nanoporous film with a typical size distribution from 5-10 nanometers. nc-PdO{sub x} and alloy sensing materials were found to be highly sensitive to hydrogen gas within the temperature range from ambient to 150 C, while nc-Pd/Silica and nc-WO{sub x} sensing materials were found to be suitable to be operated from 150 C to 500 C for hydrogen gas detection. The palladium doped and un-doped nc-SnO{sub 2} materials also demonstrated sensitivity to carbon monoxide gas at approximately 500 C. The prototyped fiber gas sensing system developed in this R&D program is based on wavelength-division-multiplexing technology in which each fiber sensor is identified according to its transmission spectra features within the guiding mode and cladding modes. The

  7. Soil moisture sensing with microwave techniques

    NASA Technical Reports Server (NTRS)

    Schmugge, T.

    1980-01-01

    Microwave approaches for the remote sensing of soil moisture are discussed, with the advantages described as follows: (1) the all-weather capability, (2) the greater penetration depth into the soil and through vegetation than with optical or infrared sensors, and (3) the large changes in the dielectric properties of soil produced by changes in water content. Both active and passive microwave approaches are discussed. The dependence of the relationship between microwave response and soil moisture on such things as soil texture, surface roughness, vegetative cover and nonuniform moisture and temperature profiles is analyzed from both the experimental and theoretical viewpoints. The dielectric properties of the soil are analyzed quantitatively, as these control the reflective and emissive properties of the soil surface, and a model for estimating a soil's dielectric properties from its texture and moisture content is also presented. Emissivity is calculated using the Fresnel equation of electromagnetic theory, and reflectivity is shown to be decreased by surface roughness, while the backscatter coefficient increases. It is demonstrated, that microwave radiometers are sensitive to soil moisture for a wide range of surface conditions, and that the longer wavelengths are best for soil moisture sensing.

  8. Conjugated amplifying polymers for optical sensing applications.

    PubMed

    Rochat, Sébastien; Swager, Timothy M

    2013-06-12

    Thanks to their unique optical and electrochemical properties, conjugated polymers have attracted considerable attention over the last two decades and resulted in numerous technological innovations. In particular, their implementation in sensing schemes and devices was widely investigated and produced a multitude of sensory systems and transduction mechanisms. Conjugated polymers possess numerous attractive features that make them particularly suitable for a broad variety of sensing tasks. They display sensory signal amplification (compared to their small-molecule counterparts) and their structures can easily be tailored to adjust solubility, absorption/emission wavelengths, energy offsets for excited state electron transfer, and/or for use in solution or in the solid state. This versatility has made conjugated polymers a fluorescence sensory platform of choice in the recent years. In this review, we highlight a variety of conjugated polymer-based sensory mechanisms together with selected examples from the recent literature.

  9. Instrumentation for remote sensing over fiber optics

    NASA Astrophysics Data System (ADS)

    Hirschfeld, T.; Haugen, G.; Milanovich, F. P.

    1983-09-01

    The sensing and analytical abilities of the laser-fluorescence spectrometer was extended beyond the physical confines of the laboratory by means of communications-grade optical fibers. These fiber probes are extremely rugged, compared with sensitive laboratory equipment, and also extremely inexpensive. Sensitive chemical analyses may be performed in hostile environments without risking damage to the laser and the spectrometer. Special-purpose optrodes that are sensitive to selected chemicals were produced. With multiplexing, a number of fibers whose terminals are at widely scattered locations, gathering information in one central instrument without the expense and delay involved in manual sample gathering are scanned. A remote analyzer for monitoring rare earth ion migration in a nuclear-waste repository, an environment too hostile for any previous remote sensing device is being developed. Optrodes sensitive to a wide variety of non-chemical stimuli are being developed.

  10. Study of 3D remote sensing system based on optical scanning holography

    NASA Astrophysics Data System (ADS)

    Zhao, Shihu; Yan, Lei

    2009-06-01

    High-precision and real-time remote sensing imaging system is an important part of remote sensing development. Holography is a method of wave front record and recovery which was presented by Dennis Gabor. As a new kind of holography techniques, Optical scanning holography (OSH) and remote sensing imaging are intended to be combined together and applied in acquisition and interference measurement of remote sensing. The key principles and applicability of OSH are studied and the mathematic relation between Fresnel Zone Plate number, numerical aperture and object distance was deduced, which are proved to be feasible for OSH to apply in large scale remote sensing. At last, a new three-dimensional reflected OSH remote sensing imaging system is designed with the combination of scanning technique to record hologram patterns of large scale remote sensing scenes. This scheme is helpful for expanding OSH technique to remote sensing in future.

  11. Distributed fiber optic moisture intrusion sensing system

    DOEpatents

    Weiss, Jonathan D.

    2003-06-24

    Method and system for monitoring and identifying moisture intrusion in soil such as is contained in landfills housing radioactive and/or hazardous waste. The invention utilizes the principle that moist or wet soil has a higher thermal conductance than dry soil. The invention employs optical time delay reflectometry in connection with a distributed temperature sensing system together with heating means in order to identify discrete areas within a volume of soil wherein temperature is lower. According to the invention an optical element and, optionally, a heating element may be included in a cable or other similar structure and arranged in a serpentine fashion within a volume of soil to achieve efficient temperature detection across a large area or three dimensional volume of soil. Remediation, moisture countermeasures, or other responsive action may then be coordinated based on the assumption that cooler regions within a soil volume may signal moisture intrusion where those regions are located.

  12. Multivariate image processing technique for noninvasive glucose sensing

    NASA Astrophysics Data System (ADS)

    Webb, Anthony J.; Cameron, Brent D.

    2010-02-01

    A potential noninvasive glucose sensing technique was investigated for application towards in vivo glucose monitoring for individuals afflicted with diabetes mellitus. Three dimensional ray tracing simulations using a realistic iris pattern integrated into an advanced human eye model are reported for physiological glucose concentrations ranging between 0 to 500 mg/dL. The anterior chamber of the human eye contains a clear fluid known as the aqueous humor. The optical refractive index of the aqueous humor varies on the order of 1.5x10-4 for a change in glucose concentration of 100 mg/dL. The simulation data was analyzed with a developed multivariate chemometrics procedure that utilizes iris-based images to form a calibration model. Results from these simulations show considerable potential for use of the developed method in the prediction of glucose. For further demonstration, an in vitro eye model was developed to validate the computer based modeling technique. In these experiments, a realistic iris pattern was placed in an analog eye model in which the glucose concentration within the fluid representing the aqueous humor was varied. A series of high resolution digital images were acquired using an optical imaging system. These images were then used to form an in vitro calibration model utilizing the same multivariate chemometric technique demonstrated in the 3-D optical simulations. In general, the developed method exhibits considerable applicability towards its use as an in vivo platform for the noninvasive monitoring of physiological glucose concentration.

  13. Fiber optic corrosion sensing for bridges and roadway surfaces

    NASA Astrophysics Data System (ADS)

    Fuhr, Peter L.; Ambrose, Timothy P.; Huston, Dryver R.; McPadden, Adam P.

    1995-04-01

    In this paper we report the development of a fiber optic corrosion sensing system that complements and/or surpasses the capabilities of conventional corrosion sensing techniques. The sensing system is based on evanescent wave phenomena and in the configured sensor allows for the detection of general corrosion on and within materials. Based on the authors' experience installing may kilometers of fiberoptic sensors into large civil structures such as multistory buildings, hydroelectric dams, and railway/roadway bridges, we are (currently) embedding these sensors into bridge test members -- limited structures that are being subjected to accelerated corrosion testing conditions. Three Vermont Agency of Transportation bridges, one in a low salt use region, one in a medium salt use region, and the third in a high salt use region, are being selected and will be instrumented with these embedded fiber optic corrosion sensors. Monitoring of chloride penetration and rebar corrosion status will be measured during the course of a longitudinal study. The specific sensing mechanism and design for robustness (to allow survival of the embedding process during repaving of the bridges) are discussed and laboratory and initial field results are presented.

  14. Compressive sensing in a photonic link with optical integration.

    PubMed

    Chen, Ying; Yu, Xianbin; Chi, Hao; Jin, Xiaofeng; Zhang, Xianmin; Zheng, Shilie; Galili, Michael

    2014-04-15

    In this Letter, we present a novel structure to realize photonics-assisted compressive sensing (CS) with optical integration. In the system, a spectrally sparse signal modulates a multiwavelength continuous-wave light and then is mixed with a random sequence in optical domain. The optical signal passes through a length of dispersive fiber, the dispersion amount of which is set to ensure that the group delay between the adjacent wavelength channels is equal to the bit duration of the applied random sequence. As a result, the detected signal is a delay-and-sum version of the randomly mixed signal, which is equivalent to the function of integration required in CS. A proof-of-concept experiment with four wavelengths, corresponding to a compression factor of 4, is demonstrated. More simulation results are also given to show the potential of the technique.

  15. Electro-optical and Magneto-optical Sensing Apparatus and Method for Characterizing Free-space Electromagnetic Radiation

    DOEpatents

    Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo

    2000-08-29

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.

  16. Application of Spectral Analysis Techniques in the Intercomparison of Aerosol Data: 1. an EOF Approach to the Spatial-Temporal Variability of Aerosol Optical Depth Using Multiple Remote Sensing Data Sets

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2013-01-01

    Many remote sensing techniques and passive sensors have been developed to measure global aerosol properties. While instantaneous comparisons between pixel-level data often reveal quantitative differences, here we use Empirical Orthogonal Function (EOF) analysis, also known as Principal Component Analysis, to demonstrate that satellite-derived aerosol optical depth (AOD) data sets exhibit essentially the same spatial and temporal variability and are thus suitable for large-scale studies. Analysis results show that the first four EOF modes of AOD account for the bulk of the variance and agree well across the four data sets used in this study (i.e., Aqua MODIS, Terra MODIS, MISR, and SeaWiFS). Only SeaWiFS data over land have slightly different EOF patterns. Globally, the first two EOF modes show annual cycles and are mainly related to Sahara dust in the northern hemisphere and biomass burning in the southern hemisphere, respectively. After removing the mean seasonal cycle from the data, major aerosol sources, including biomass burning in South America and dust in West Africa, are revealed in the dominant modes due to the different interannual variability of aerosol emissions. The enhancement of biomass burning associated with El Niño over Indonesia and central South America is also captured with the EOF technique.

  17. Optically powered active sensing system for Internet Of Things

    NASA Astrophysics Data System (ADS)

    Gao, Chen; Wang, Jin; Yin, Long; Yang, Jing; Jiang, Jian; Wan, Hongdan

    2014-10-01

    Internet Of Things (IOT) drives a significant increase in the extent and type of sensing technology and equipment. Sensors, instrumentation, control electronics, data logging and transmission units comprising such sensing systems will all require to be powered. Conventionally, electrical powering is supplied by batteries or/and electric power cables. The power supply by batteries usually has a limited lifetime, while the electric power cables are susceptible to electromagnetic interference. In fact, the electromagnetic interference is the key issue limiting the power supply in the strong electromagnetic radiation area and other extreme environments. The novel alternative method of power supply is power over fiber (PoF) technique. As fibers are used as power supply lines instead, the delivery of the power is inherently immune to electromagnetic radiation, and avoids cumbersome shielding of power lines. Such a safer power supply mode would be a promising candidate for applications in IOT. In this work, we built up optically powered active sensing system, supplying uninterrupted power for the remote active sensors and communication modules. Also, we proposed a novel maximum power point tracking technique for photovoltaic power convertors. In our system, the actual output efficiency greater than 40% within 1W laser power. After 1km fiber transmission and opto-electric power conversion, a stable electric power of 210mW was obtained, which is sufficient for operating an active sensing system.

  18. Fiber optic sensing of cyanides in solutions

    SciTech Connect

    Park, S.S.; Mackenzie, J.D.; Li, C.Y.; Guerreiro, P.; Peyghambarian, N.

    1996-12-31

    A novel sol-gel technique was used to immobilize malachite green ions (MG{sup +}) in stable, optically transparent, porous silica gel films. A simple and sensitive method was developed for the detection of cyanides in solutions using spectrophotometry to measure changes caused by cyanide ions (CN{sup {minus}}) in the absorption spectra of the green-colored silica gel films. After reaction with cyanide ions, the absorption spectra of the films changed with a typical decrease in absorbance at 620 nm. On the basis of the absorption spectra of the films, a portable and easy to use fiber optic cyanide film sensor was fabricated. Decolorization undergone by the green-colored gel films, as they were exposed to cyanide ions, was detected through a fiber. Preliminary results indicate concentrations on the order of a few ppm are detected using the fiber optic sensor.

  19. Tamper-indicating Quantum Optical Sensing

    NASA Astrophysics Data System (ADS)

    Humble, Travis; Earl, Duncan; Grice, Warren

    2011-05-01

    Monitoring systems based on fiber-optic seals actively monitor inventories of closed containers for tampering. However, the physics underlying these tamper-indicating optical systems make them susceptible to deception. The basis for this deception lies in the description of the electromagnetic field transmitted through the fiber. Within classical physics, knowledge of the light source, e.g., carrier frequency and pseudo-random modulation, can be used by an intruder to replicate the transmission. Once a replicated field is injected into the fiber, the downstream detector cannot discriminate it from the original transmission. Motivated by this context, we demonstrate a quantum optical, tamper-indicating device inherently immune to replication. We use time-bin entanglement (TBE) distributed through a pair of fibers, where each fiber couples to a Mach-Zehnder interferometer (MZI) detector. We monitor coincident detection as a function of the combined MZI phase φ =φ1 +φ2 to statistically quantify entanglement in terms of TBE visibility. The presence or absence of the expected interference consequently serves as a test for tampering, and we quantity the probability of detection and false alarm using this statistic. We anticipate this form of quantum-based sensing to support future intrusion detection technologies.

  20. Remote Sensing Techniques for Monitoring Aquatic Vegetation

    NASA Astrophysics Data System (ADS)

    Blanco, Alfonso

    Hydrilla is an important submerged aquatic vegetation because it has a large capacity to absorb pollutants and it is an indicator of the eutrophic status of a waterbody. Monitoring and restoration of submerged aquatic vegetation is key for the preservation and restoration of the Chesapeake Bay. Remote sensing techniques have been used for assessing wetlands and non-invasive aquatic species, but there is limited studies of hydrilla monitoring combined with space-borne, airborne and in-situ remote sensing measurements for detecting and mapping hydrilla infestation. The first objective of this research was to establish a database of hydrilla spectral signatures from an experimental tank and from a field setting using a handheld spectrometer. The spectral signatures collected will be used to identify the optimal spectral and spatial characteristics that are required to identify and classify the distribution of hydrilla canopies in water bodies. The second objective is to process and analyze two hyperspectral images from a space-borne (Hyperion) and airborne (AISA) sensors with ENVI for detecting and mapping the infestation of hydrilla vertillicata in a coastal estuary in Chesapeake Bay. The third objective was to validate the satellite and airborne hyperspectral images with the spectral signatures collected with the in-situ field measurements. In addition, the Hyperion and AISA imaging results were compared with ground surveys and aerial photos collected by the Maryland Department of Natural Resources and the Virginia Institute of Marine Sciences for verifying the extent and the location of the hydrilla canopies. The hyperspectral analysis of both sensors provided for a dual results, one is the identification and classification of hydrilla from hyperspectral imaging sensors and secondly the identification of algae blooms in very productive waters. A hydrilla spectral signature database was established and housed in GMU's EastFIRE Lab of Environmental Science and

  1. Optical sample-position sensing for electrostatic levitation

    NASA Technical Reports Server (NTRS)

    Sridharan, G.; Chung, S.; Elleman, D.; Whim, W. K.

    1989-01-01

    A comparative study is conducted for optical position-sensing techniques applicable to micro-G conditions sample-levitation systems. CCD sensors are compared with one- and two-dimensional position detectors used in electrostatic particle levitation. In principle, the CCD camera method can be improved from current resolution levels of 200 microns through the incorporation of a higher-pixel device and more complex digital signal processor interface. Nevertheless, the one-dimensional position detectors exhibited superior, better-than-one-micron resolution.

  2. Enabling aspects of fiber optic acoustic sensing in harsh environments

    NASA Astrophysics Data System (ADS)

    Saxena, Indu F.

    2013-05-01

    The advantages of optical fiber sensing in harsh electromagnetic as well as physical stress environments make them uniquely suited for structural health monitoring and non-destructive testing. In addition to aerospace applications they are making a strong footprint in geophysical monitoring and exploration applications for higher temperature and pressure environments, due to the high temperature resilience of fused silica glass sensors. Deeper oil searches and geothermal exploration and harvesting are possible with these novel capabilities. Progress in components and technologies that are enabling these systems to be fieldworthy are reviewed and emerging techniques summarized that could leapfrog the system performance and reliability.

  3. Military reconnaissance application of high-resolution optical satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Wang, Zheng-gang; Kang, Qing; Xun, Yi-jia; Shen, Zhi-qiang; Cui, Chang-bin

    2014-11-01

    As the remote sensing technology transformation from military use to civil use becomes deeper and faster, the resolution is better and better, and the relative techniques of the civil optical remote sensing satellite are richer and richer. So, modes such as civil use replacing military use, civil use covering military use, and civil use supporting military use are the real portraiture of high-resolution optical satellite remote sensing development currently. Taking the situations of the Taiwan authorities buying commercial remote sensing image to military reconnaissance, and the so-called military establishments exposed by media using satellite image as an example, the military reconnaissance application of civil high-resolution optical satellite remote sensing is discussed. Then, the actuality and reasons of huge measure engineering and ruled configuring, environment and signs of military area, equipment and exercitation establishments and three-dimension information of engineering and equipment which can be detected easily by remote sensing are analyzed.

  4. Optical temperature sensing on flexible polymer foils

    NASA Astrophysics Data System (ADS)

    Sherman, Stanislav; Xiao, Yanfen; Hofmann, Meike; Schmidt, Thomas; Gleissner, Uwe; Zappe, Hans

    2016-04-01

    In contrast to established semiconductor waveguide-based or glass fiber-based integrated optical sensors, polymerbased optical systems offer tunable material properties, such as refractive index or viscosity, and thus provide additional degrees of freedom for sensor design and fabrication. Of particular interest in sensing applications are fully-integrated optical waveguide-based temperature sensors. These typically rely on Bragg gratings which induce a periodic refractive index variation in the waveguide so that a resonant wavelength of the structure is reflected.1,2 With broad-band excitation, a dip in the spectral output of the waveguide is thus generated at a precisely-defined wavelength. This resonant wavelength depends on the refractive index of the waveguide and the grating period, yet both of these quantities are temperature dependent by means of the thermo-optic effect (change in refractive index with temperature) and thermal expansion (change of the grating period with temperature). We show the design and fabrication of polymer waveguide-integrated temperature sensors based on Bragggratings, fabricated by replication technology on flexible PMMA foil substrates. The 175 μm thick foil serves as lower cladding for a polymeric waveguide fabricated from a custom-made UV-crosslinkable co-monomer composition. The fabrication of the grating structure includes a second replication step into a separate PMMA-foil. The dimensions of the Bragg-gratings are determined by simulations to set the bias point into the near infrared wavelength range, which allows Si-based detectors to be used. We present design considerations and performance data for the developed structures. The resulting sensor's signal is linear to temperature changes and shows a sensitivity of -306 nm/K, allowing high resolution temperature measurements.

  5. Spectral sensing technique for water constituents

    NASA Astrophysics Data System (ADS)

    Zhou, Jing

    Spectral measurements of optical properties of water were conducted throughout the Chesapeake Bay area during the 2005 summer cruise campaign. This included reflectance, absorption, attenuation and backscattering spectra. The analysis of the data illustrates the diversity and complexity of constituents that shape spectral features of the coastal water. A novel technique is proposed to separate the chlorophyll fluorescence component from the reflectance spectra of algae contained water. This approach utilizes of polarization properties of elastically scattered light and the unpolarized nature of fluorescence and was successfully applied to measurements of various algae species first in lab and later in field measurements. The efficiency and limitation of this approach has been further examined under various conditions as well as through vector radiative transfer modeling. Finally Twomey Iterative Method (TIM) has been applied to the retrieval of hydrosol microphysical properties for the first time. Assuming a known refractive index, both single and multi-mode distributions were successfully retrieved from both simulation and experiments through the introduction of an initial distribution biased towards larger particles. In addition, the technique is extended to the retrieval of an unknown refractive index, which is also validated using both simulation and experimental results.

  6. Optical frequency domain reflectometry: principles and applications in fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Kreger, Stephen T.; Rahim, Nur Aida Abdul; Garg, Naman; Klute, Sandra M.; Metrey, Daniel R.; Beaty, Noah; Jeans, James W.; Gamber, Robert

    2016-05-01

    Optical Frequency Domain Reflectometry (OFDR) is the basis of an emerging high-definition distributed fiber optic sensing (HD-FOS) technique that provides an unprecedented combination of resolution and sensitivity. OFDR employs swept laser interferometry to produce strain or temperature vs. sensor length with fiber Bragg gratings (FBGs) or Rayleigh scatter as the source signal. We look at the influence of HD-FOS on design and test of new, lighter weight, stronger and more fuel efficient vehicles. Examples include defect detection, model verification and structural health monitoring of composites, and temperature distribution monitoring of battery packs and inverters in hybrid and electric powertrains.

  7. Wavefront Sensing for WFIRST with a Linear Optical Model

    NASA Technical Reports Server (NTRS)

    Jurling, Alden S.; Content, David A.

    2012-01-01

    In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.

  8. Bridge SHM system based on fiber optical sensing technology

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Fan, Dian; Fu, Jiang-hua; Huang, Xing; Jiang, De-sheng

    2015-09-01

    The latest progress of our lab in recent 10 years on the area of bridge structural health monitoring (SHM) based on optical fiber sensing technology is introduced. Firstly, in the part of sensing technology, optical fiber force test-ring, optical fiber vibration sensor, optical fiber smart cable, optical fiber prestressing loss monitoring method and optical fiber continuous curve mode inspection system are developed, which not only rich the sensor types, but also provides new monitoring means that are needed for the bridge health monitoring system. Secondly, in the optical fiber sensing network and computer system platform, the monitoring system architecture model is designed to effectively meet the integration scale and effect requirement of engineering application, especially the bridge expert system proposed integration of sensing information and informatization manual inspection to realize the mode of multi index intelligence and practical monitoring, diagnosis and evaluation. Finally, the Jingyue bridge monitoring system as the representative, the research on the technology of engineering applications are given.

  9. Contributed Review: Distributed optical fibre dynamic strain sensing

    NASA Astrophysics Data System (ADS)

    Masoudi, Ali; Newson, Trevor P.

    2016-01-01

    Extensive research on Brillouin- and Raman-based distributed optical fibre sensors over the past two decades has resulted in the commercialization of distributed sensors capable of measuring static and quasi-static phenomena such as temperature and strain. Recently, the focus has been shifted towards developing distributed sensors for measurement of dynamic phenomena such as dynamic strain and sound waves. This article reviews the current state of the art distributed optical fibre sensors capable of quantifying dynamic vibrations. The most important aspect of Rayleigh and Brillouin scattering processes which have been used for distributed dynamic measurement are studied. The principle of the sensing techniques used to measure dynamic perturbations are analyzed followed by a case study of the most recent advances in this field. It is shown that the Rayleigh-based sensors have longer sensing range and higher frequency range, but their spatial resolution is limited to 1 m. On the other hand, the Brillouin-based sensors have shown a higher spatial resolution, but relatively lower frequency and sensing ranges.

  10. Contributed Review: Distributed optical fibre dynamic strain sensing.

    PubMed

    Masoudi, Ali; Newson, Trevor P

    2016-01-01

    Extensive research on Brillouin- and Raman-based distributed optical fibre sensors over the past two decades has resulted in the commercialization of distributed sensors capable of measuring static and quasi-static phenomena such as temperature and strain. Recently, the focus has been shifted towards developing distributed sensors for measurement of dynamic phenomena such as dynamic strain and sound waves. This article reviews the current state of the art distributed optical fibre sensors capable of quantifying dynamic vibrations. The most important aspect of Rayleigh and Brillouin scattering processes which have been used for distributed dynamic measurement are studied. The principle of the sensing techniques used to measure dynamic perturbations are analyzed followed by a case study of the most recent advances in this field. It is shown that the Rayleigh-based sensors have longer sensing range and higher frequency range, but their spatial resolution is limited to 1 m. On the other hand, the Brillouin-based sensors have shown a higher spatial resolution, but relatively lower frequency and sensing ranges. PMID:26827302

  11. An integrated sensing technique for smart monitoring of water pipelines

    NASA Astrophysics Data System (ADS)

    Bernini, Romeo; Catapano, Ilaria; Soldovieri, Francesco; Crocco, Lorenzo

    2014-05-01

    Lowering the rate of water leakage from the network of underground pipes is one of the requirements that "smart" cities have to comply with. In fact, losses in the water supply infrastructure have a remarkable social, environmental and economic impact, which obviously conflicts with the expected efficiency and sustainability of a smart city. As a consequence, there is a huge interest in developing prevention policies based on state-of-art sensing techniques and possibly their integration, as well as in envisaging ad hoc technical solutions designed for the application at hand. As a contribution to this framework, in this communication we present an approach aimed to pursue a thorough non-invasive monitoring of water pipelines, with both high spatial and temporal resolution. This goal is necessary to guarantee that maintenance operations are performed timely, so to reduce the extent of the leakage and its possible side effects, and precisely, so to minimize the cost and the discomfort resulting from operating on the water supply network. The proposed approach integrates two sensing techniques that work at different spatial and temporal scales. The first one is meant to provide a continuous (in both space and time) monitoring of the pipeline and exploits a distributed optic fiber sensor based on the Brillouin scattering phenomenon. This technique provides the "low" spatial resolution information (at meter scale) needed to reveal the presence of a leak and call for interventions [1]. The second technique is based on the use of Ground Penetrating Radar (GPR) and is meant to provide detailed images of area where the damage has been detected. GPR systems equipped with suitable data processing strategies [2,3] are indeed capable of providing images of the shallow underground, where the pipes would be buried, characterized by a spatial resolution in the order of a few centimeters. This capability is crucial to address in the most proper way maintenance operations, by for

  12. Optical Omega network: a compact implementation technique

    NASA Astrophysics Data System (ADS)

    Wong, K. W.; Cheng, L. M.

    1995-10-01

    We propose a technique for the compact implementation of an optical Omega network. This technique utilizes the concept that both the perfect-shuffle interconnection and the switching stages can be realized by the same procedures, i.e., duplicate, shift, superimpose, and mask. As a result, a single set of optics is sufficient to realize the whole Omega network in a time-multiplexed recursive manner. Optical setups were designed and a proof-of-principle experiment was performed.

  13. Liquid seal for temperature sensing with fiber-optic refractometers.

    PubMed

    Xu, Ben; Li, Jianqing; Li, Yi; Xie, Jianglei; Dong, Xinyong

    2014-08-13

    Liquid sealing is an effective method to convert a fiber-optic refractometer into a simple and highly sensitive temperature sensor. A refractometer based on the thin-core fiber modal interferometer is sealed in a capillary tube filled with Cargille oil. Due to the thermo-optic effect of the sealing liquid, the high refractive-index sensitivity refractometer is subsequently sensitive to the ambient temperature. It is found that the liquid-sealed sensor produces a highest sensitivity of -2.30 nm/°C, which is over 250 times higher than its intrinsic sensitivity before sealing and significantly higher than that of a grating-based fiber sensors. The sensing mechanisms, including the incidental temperature-induced strain effect, are analyzed in detail both theoretically and experimentally. The liquid sealing technique is easy and low cost, and makes the sensor robust and insensitive to the surrounding refractive index. It can be applied to other fiber-optic refractometers for temperature sensing.

  14. Brief history of fiber optic sensing in the oil field industry

    NASA Astrophysics Data System (ADS)

    Baldwin, Christopher S.

    2014-06-01

    The use of fiber optic sensing in the oil and gas industry has greatly expanded over the past two decades. Since the first optical fiber-based pressure sensor was installed in a well in 1993, the industry has sought to use fiber sensing technology to monitor in-well parameters. Through the years, optical fiber sensing has been used in an increasing number of applications as technical advances have opened the door for new measurements. Today, fiber optic sensors are used routinely to measure temperature throughout the wellbore. Optical sensors also provide pressure measurements at key locations within the well. These measurements are used to verify the integrity of the well, provide feedback during well completion operations, including the actuation of downhole valves, and to monitor the production or injection process. Other sensors, such as seismic monitors and flowmeters, use fiber sensing technology to make in-well measurements. Various optical sensing techniques are used to make these measurements, including Bragg grating, Raman scattering, and coherent Rayleigh scattering. These measurements are made in harsh environments, which require rugged designs for optical cable systems and instrumentation systems. Some of these applications have operating temperatures of 572°F (300°C), and other applications can have pressures in excess of 20,000 psi (1,379 bar). This paper provides a historical perspective on the use of fiber optic sensing in the oil and gas industry from industry firsts to current applications.

  15. Optical accelerometer based on grating interferometer with phase modulation technique.

    PubMed

    Zhao, Shuangshuang; Zhang, Juan; Hou, Changlun; Bai, Jian; Yang, Guoguang

    2012-10-10

    In this paper, an optical accelerometer based on grating interferometer with phase modulation technique is proposed. This device architecture consists of a laser diode, a sensing chip and an optoelectronic processing circuit. The sensing chip is a sandwich structure, which is composed of a grating, a piezoelectric translator and a micromachined silicon structure consisting of a proof mass and four cantilevers. The detected signal is intensity-modulated with phase modulation technique and processed with a lock-in amplifier for demodulation. Experimental results show that this optical accelerometer has acceleration sensitivity of 619 V/g and high-resolution acceleration detection of 3 μg in the linear region. PMID:23052079

  16. Characterization of SU-8 optical multimode waveguides for integrated optics and sensing on microchip devices

    NASA Astrophysics Data System (ADS)

    Piruska, A.; Bhagat, A. A. S.; Zhou, K.; Peterson, E. T. K.; Papautsky, I.; Seliskar, C. J.

    2006-01-01

    Our research group is interested in environmental sensing of heavy metals that are involved in pollution of aqueous environments. As a result, we are developing chemical sensors within integrated microfluidic systems for sensitive and selective detection of these pollutants. Our approach is to combine established chemical sensing strategies with microfluidic structures, especially in plastic devices, to achieve a total heavy metal analysis system. In this regard, the combination of three complementary techniques - optical waveguide spectroscopy, electrochemistry and chemical partitioning offers the required selectivity and sensitivity essential for many environmental samples. On-chip optical waveguide spectroscopy promises to yield the necessary high sensitivity but relies on fabrication of optical structures with a material of appropriate refractive index, optical quality, and chemical stability by methods consistent with established fabrication methods. SU-8, the epoxy-based negative photoresist, appears to satisfy these requirements and, thus, has become one of our candidate materials for waveguide fabrication on plastic microchips. Although the SU-8 has been previously used for waveguide fabrication, its optical properties and more specifically the influence of processing conditions on resultant optical properties have not been thoroughly characterized. This work presents an evaluation of SU-8-based multimode waveguides on glass and plastic substrates. Optical constants of waveguides have been characterized by spectroscopic ellipsometric and prism coupling techniques. Additionally, using the latter method, evaluation of propagation losses of various structures with different thicknesses has been made. Ellipsometric and prism coupling measurements gave comparable refractive indices for variously cured SU-8 waveguide materials. Prism coupling analyses proved to be more useful for analysis of the many SU-8 waveguide structures fabricated in the thickness range of

  17. Stitching Techniques Advance Optics Manufacturing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Because NASA depends on the fabrication and testing of large, high-quality aspheric (nonspherical) optics for applications like the James Webb Space Telescope, it sought an improved method for measuring large aspheres. Through Small Business Innovation Research (SBIR) awards from Goddard Space Flight Center, QED Technologies, of Rochester, New York, upgraded and enhanced its stitching technology for aspheres. QED developed the SSI-A, which earned the company an R&D 100 award, and also developed a breakthrough machine tool called the aspheric stitching interferometer. The equipment is applied to advanced optics in telescopes, microscopes, cameras, medical scopes, binoculars, and photolithography."

  18. Intensity-based fibre-optic sensing system using contrast modulation of subcarrier interference pattern

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Sherer, T. N.; Maitland, D. J.

    1989-01-01

    A novel technique to compensate for unwanted intensity losses in a fiber-optic sensing system is described. The technique involves a continuous sinusoidal modulation of the light source intensity at radio frequencies and an intensity sensor placed in an unbalanced interferometer. The system shows high sensitivity and stability.

  19. Recent progress on mid-IR sensing with optical fibers

    NASA Astrophysics Data System (ADS)

    Kellner, Robert A.; Gobel, R.; Goetz, R.; Lendl, B.; Edl-Mizaikoff, B.; Tacke, Maurus; Katzir, Abraham

    1995-09-01

    Chemical sensors are analytical systems for the evaluation of compound- or ion-specific or - selective signals produced by specific or selective chemical reactions taking place at the interface between the chemically modified sensor surface and the substrate. The well known electrochemical sensing schemes have greatly contributed that sensors are considered now as the 'third supporting pillar of analytical chemistry' besides chromatography and spectroscopy. The aim of this paper is to describe the novel capabilities of chemical modified IR-transparent fibers as chemical IR-sensors for the on-line analysis of chlorinated hydrocarbons and organic compounds in aqueous solutions and gaseous mixtures, glucose, and sucrose in aqueous solution as developed in our laboratory. Moreover, the relative merits of this new method wil be depicted in comparison to other sensing techniques. Optical fiber sensors are novel analysis systems, based on molecular spectroscopy in the UV/VIS/IR-range. They benefit from the tremendous development in the field of optical fibers, an offspring of the telecommunication industry and the electronic revolution during the last few years. With the development of new materials besides the well known quartz fibers for the UV/VIS/NIR-range the optical window for fiber optic sensors was enlarged from 0,2 to 20 micrometers recently. The fiber length was increased recently to up to 2 meters for silver halides and approximately 10 meters for chalcogenides. New applications for environmental, food, and clinical sensing as well as process analysis are the driving force for modern research in IR-optical fiber sensors using mainly sapphire (Al2O3), chalcogenide (As-Se-Te) and silver halide (AgBr/AgCl) fibers and flow injection analysis (FIA) systems. Few representative examples for each of the various optical sensor types will be presented. Particular attention will be given to the use of silver halide fibers for the simultaneous determination of traces of

  20. Instrumentation for optical ocean remote sensing

    NASA Technical Reports Server (NTRS)

    Esaias, W. E.

    1991-01-01

    Instruments used in ocean color remote sensing algorithm development, validation, and data acquisition which have the potential for further commercial development and marketing are discussed. The Ocean Data Acquisition System (ODAS) is an aircraft-borne radiometer system suitable for light aircraft, which has applications for rapid measurement of chlorophyll pigment concentrations along the flight line. The instrument package includes a three channel radiometer system for upwelling radiance, an infrared temperature sensor, a three-channel downwelling irradiance sensor, and Loran-C navigation. Data are stored on a PC and processed to transects or interpolated 'images' on the ground. The instrument has been in operational use for two and one half years. The accuracy of pigment concentrations from the instrument is quite good, even in complex Chesapeake Bay waters. To help meet the requirement for validation of future satellite missions, a prototype air-deployable drifting buoy for measurement of near-surface upwelled radiance in multiple channnels is undergoing test deployment. The optical drifter burst samples radiance, stores and processes the data, and uses the Argos system as a data link. Studies are underway to explore the limits to useful lifetime with respect to power and fouling.

  1. Optical tweezers technique and its applications

    NASA Astrophysics Data System (ADS)

    Guo, HongLian; Li, ZhiYuan

    2013-12-01

    Since their advent in the 1980s, optical tweezers have attracted more and more attention due to their unique non-contact and non-invasion characteristics and their wide applications in physics, biology, chemistry, medical science and nanoscience. In this paper, we introduce the basic principle, the history and typical applications of optical tweezers and review our recent experimental works on the development and application of optical tweezers technique. We will discuss in detail several technological issues, including high precision displacement and force measurement in single-trap and dual-trap optical tweezers, multi-trap optical tweezers with each trap independently and freely controlled by means of space light modulator, and incorporation of cylindrical vector optical beams to build diversified optical tweezers beyond the conventional Gaussian-beam optical tweezers. We will address the application of these optical tweezers techniques to study biophysical problems such as mechanical deformation of cell membrane and binding energy between plant microtubule and microtubule associated proteins. Finally we present application of the optical tweezers technique for trapping, transporting, and patterning of metallic nanoparticles, which can be harnessed to manipulate surface plasmon resonance properties of these nanoparticles.

  2. Optical Sensing of Microbial Life on Surfaces

    PubMed Central

    Triggs, G. J.; Krauss, T. F.

    2015-01-01

    The label-free detection of microbial cells attached to a surface is an active field of research. The field is driven by the need to understand and control the growth of biofilms in a number of applications, including basic research in natural environments, industrial facilities, and clinical devices, to name a few. Despite significant progress in the ability to monitor the growth of biofilms and related living cells, the sensitivity and selectivity of such sensors are still a challenge. We believe that among the many different technologies available for monitoring biofilm growth, optical techniques are the most promising, as they afford direct imaging and offer high sensitivity and specificity. Furthermore, as each technique offers different insights into the biofilm growth mechanism, our analysis allows us to provide an overview of the biological processes at play. In addition, we use a set of key parameters to compare state-of-the-art techniques in the field, including a critical assessment of each method, to identify the most promising types of sensors. We highlight the challenges that need to be overcome to improve the characteristics of current biofilm sensor technologies and indicate where further developments are required. In addition, we provide guidelines for selecting a suitable sensor for detecting microbial cells on a surface. PMID:26637605

  3. Optics and photonics research in the Lasers, Optics and Remote Sensing Department at Sandia National Laboratories

    SciTech Connect

    Simmons-Potter, K.; Meister, D.C.

    1997-04-01

    Photonic system and device technologies have claimed a significant share of the current high-tech market. In particular, laser systems and optical devices impact a broad range of technological areas including telecommunications, optical computing, optical data storage, integrated photonics, remote environmental sensing and biomedical applications. Below we present an overview of photonics research being conducted within the Lasers, Optics and Remote Sensing department of the Physical and Chemical Sciences Center at Sandia National Laboratories. Recent results in the fields of photosensitive materials and devices, binary optics device applications, wavelength generation using optical parametric oscillators, and remote sensing are highlighted. 11 refs., 6 figs.

  4. Live Cell Optical Sensing for High Throughput Applications

    NASA Astrophysics Data System (ADS)

    Fang, Ye

    Live cell optical sensing employs label-free optical biosensors to non-invasively measure stimulus-induced dynamic mass redistribution (DMR) in live cells within the sensing volume of the biosensor. The resultant DMR signal is an integrated cellular response, and reflects cell signaling mediated through the cellular target(s) with which the stimulus intervenes. This article describes the uses of live cell optical sensing for probing cell biology and ligand pharmacology, with an emphasis of resonant waveguide grating biosensor cellular assays for high throughput applications.

  5. Short arc optical survey techniques

    NASA Technical Reports Server (NTRS)

    Berbert, J. H.; Loveless, F. M.

    1971-01-01

    The effect of the gravity parameter, mu, the choice and local survey of the fixed origin station, and the choice of initial datum on the results of short arc satellite survey adjustments were investigated using GEOS 1 MOTS optical observations from 13 stations. It is concluded that each of these parameters has an effect on derived network scale on the order of 0.000002 for the nominal variations used. A particular solution using assumed best available values for these parameters is recommended.

  6. Estimation of Insulator Contaminations by Means of Remote Sensing Technique

    NASA Astrophysics Data System (ADS)

    Han, Ge; Gong, Wei; Cui, Xiaohui; Zhang, Miao; Chen, Jun

    2016-06-01

    The accurate estimation of deposits adhering on insulators is critical to prevent pollution flashovers which cause huge costs worldwide. The traditional evaluation method of insulator contaminations (IC) is based sparse manual in-situ measurements, resulting in insufficient spatial representativeness and poor timeliness. Filling that gap, we proposed a novel evaluation framework of IC based on remote sensing and data mining. Varieties of products derived from satellite data, such as aerosol optical depth (AOD), digital elevation model (DEM), land use and land cover and normalized difference vegetation index were obtained to estimate the severity of IC along with the necessary field investigation inventory (pollution sources, ambient atmosphere and meteorological data). Rough set theory was utilized to minimize input sets under the prerequisite that the resultant set is equivalent to the full sets in terms of the decision ability to distinguish severity levels of IC. We found that AOD, the strength of pollution source and the precipitation are the top 3 decisive factors to estimate insulator contaminations. On that basis, different classification algorithm such as mahalanobis minimum distance, support vector machine (SVM) and maximum likelihood method were utilized to estimate severity levels of IC. 10-fold cross-validation was carried out to evaluate the performances of different methods. SVM yielded the best overall accuracy among three algorithms. An overall accuracy of more than 70% was witnessed, suggesting a promising application of remote sensing in power maintenance. To our knowledge, this is the first trial to introduce remote sensing and relevant data analysis technique into the estimation of electrical insulator contaminations.

  7. Optical signature utilization of remote sensing of nearshore waters

    SciTech Connect

    Bagheri, S.; Dios, R.A.; Pan, Zhengxiang

    1997-08-01

    Existing satellite sensors lack the spectral capabilities to discriminate phytoplankton pigments in water bodies. New satellite sensors (EOS planned for 1998 and SeaWIFS forthcoming) with narrow bandwidths can provide detailed spectral resolution necessary to distinguish optical properties of nearshore waters provided calibrated seatruth data are available. This will facilitate utility of spaceborne water color sensors for discrimination of bloom forming phytoplankton species and support oceanographic/coastal zone remote sensing missions of NASA, Navy and other agencies. The objective of the research was to develop a library of absorption spectra for the most common phytoplankton found locally within the Hudson/Raritan Estuary. Both culture grown and field samples of phytoplankton were concentrated and analyzed using standard techniques. Chlorophyll-a and phaeopigment concentrations were determined based on spectrometric analysis, producing characteristic absorption spectra. To further refine and discriminate pigment compositions which affect remote color sensing recorded by sensors, spectral derivative and polynomial regression analysis were applied to the absorption spectra. Using these models, it was possible to identify optimum wavelengths characterizing pigment compositions of phytoplankton species in the estuary. Future work will integrate the spectral library into GenIsis--hyperspectral image processing to establish correlation with remotely sensed data.

  8. Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation

    DOEpatents

    Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

    1999-09-14

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

  9. INTERCOMPARISON OF OPTICAL REMOTE SENSING SYSTEMS FOR ROADSIDE MEASUREMENTS

    EPA Science Inventory

    The presentation describes results of an intercomparison of three optical remote sensing systems for measurements of nitric oxide emitted from passenger cars and light-duty trucks. The intercomparison included a standards comparison to establish comparability of standards, follo...

  10. A comparison of force sensing techniques for planetary manipulation

    NASA Technical Reports Server (NTRS)

    Helmick, Daniel; Okon, Avi; DiCicco, Matt

    2006-01-01

    Five techniques for sensing forces with a manipulator are compared analytically and experimentally. The techniques compared are: a six-axis wrist force/torque sensor, joint torque sensors, link strain gauges, motor current sensors, and flexibility modeling. The accuracy and repeatability fo each technique is quantified and compared.

  11. Optical multiple object tracking techniques

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Chao, Tien-Hsin

    1989-01-01

    Two multichannel multiple-object tracking techniques are reviewed. In the diffraction grating technique, the input scene is picked up by a TV camera and imaged onto a liquid-crystal light valve (LCLV), and the output side of the light valve is illuminated with a suitably polarized and collimated coherent laser beam to yield a reflected beam with polarization modulated according to the intensity of the incoherent input. This reflected beam passes through a beam splitter cube and an analyzer, resulting in an intensity modulated coherent image. An array of spectrum islands containing the information of the input appears after crossing a contact screen/lens combination. In the multiple-focus hololens technique, the scene of moving objects is sent into the LCTVSLM through a camera; a collimated laser beam is incident upon the LCTV screen; a low-pass filter is inserted between the LCTVSLM and the hololens for the removal of the high order diffractions due to the grid structure of the LCTV. The feasibility of the LCTVSLM and multiple-focus hololens technique is demonstrated.

  12. Laser And Nonlinear Optical Materials For Laser Remote Sensing

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    2005-01-01

    NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.

  13. Recent advancement in optical fiber sensing for aerospace composite structures

    NASA Astrophysics Data System (ADS)

    Minakuchi, Shu; Takeda, Nobuo

    2013-12-01

    Optical fiber sensors have attracted considerable attention in health monitoring of aerospace composite structures. This paper briefly reviews our recent advancement mainly in Brillouin-based distributed sensing. Damage detection, life cycle monitoring and shape reconstruction systems applicable to large-scale composite structures are presented, and new technical concepts, "smart crack arrester" and "hierarchical sensing system", are described as well, highlighting the great potential of optical fiber sensors for the structural health monitoring (SHM) field.

  14. Evaluation of reforestation using remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Filho, P. H.; Shimabukuro, Y. E.; Dossantos, J. R.

    1982-01-01

    The utilization of remotely sensed orbital data for forestry inventory. The study area (approximately 491,100 ha) encompasses the municipalities of Ribeirao Preto, Altinopolis, Cravinhos, Serra Azul, Luis Antonio, Sao Simao, Sant Rita do Passa Quatro and Santa Rosa do Viterbo (Sao Paulo State). Materials used were LANDSAT data from channels 5 and 7 (scale 1:250,000) and CCT's. Visual interpretation of the imagery showed that for 1977 a total of 37,766.00 ha and for 1979 38,003.75 ha were reforested with Pinus and Eucalyptus within the area under study. The results obtained show that LANDSAT data can be used efficiently in forestry inventory studies.

  15. Large-area multiplexed sensing using MEMS and fiber optics

    NASA Astrophysics Data System (ADS)

    Miller, Michael B.; Clark, Richard L., Jr.; Bell, Clifton R.; Russler, Patrick M.

    2000-06-01

    Micro-electro-mechanical (MEMS) technology offers the ability to implement local and independent sensing and actuation functions through the coordinated response of discrete micro-electro-mechanical 'basis function' elements. The small size of micromechanical components coupled with the ability to reduce costs using volume manufacturing techniques opens up significant potential not only in military applications such as flight and engine monitoring and control, but in autonomous vehicle control, smart munitions, airborne reconnaissance, LADAR, missile guidance, and even in intelligent transportation systems and automotive guidance applications. In this program, Luna Innovations is developing a flexible, programmable interface which can be integrated direction with different types of MEMS sensors, and then used to multiplex many sensors ona single optical fiber to provide a unique combination of functions that will allow larger quantities of sensory input with better resolution than ever before possible.

  16. Optical source and apparatus for remote sensing

    NASA Technical Reports Server (NTRS)

    Coyle, Donald Barry (Inventor)

    2011-01-01

    An optical amplifier is configured to amplify an injected seed optical pulse. The optical amplifier may include two or more gain sections coupled to form a continuous solid waveguide along a primary optical path. Each gain section may include: (i) an optical isolator forming an input to that gain section; (ii) a doped optical fiber having a first end coupled to the optical isolator and having a second end; (iii) a plurality of pump laser diodes; (iv) a controller providing drive signals to each of the plurality, the controller being configured to provide at least pulsed drive signals; and (v) an optical coupler having a first input port coupled to the second end, and a second input port coupled to the plurality and an output port.

  17. Remote sensing techniques for mining waste characterization

    NASA Astrophysics Data System (ADS)

    Zoran, M. A.; Savastru, R. S.; Savastru, D. M.; Miclos, S. I.; Tautan, M. N. M.

    2009-09-01

    Environmental monitoring is essential information routinely required by the mining industry and regulators to demonstrate that the environment is not adversely impacted by exploration and mining. New mining technologies can not only exploit low-grade ores but also produce high volumes of tailings as mining wastes. Satellite remote sensing imagery provided by Landsat TM and ETM sensors is an important investigation tool of mining waste cover screening, mapping and monitoring at local and regional scales of areas containing multiple sources of mining-related heavy metals. By this, satellite remote sensing data can help to rapidly assess the dimension of mining waste risk and therefore better manage such a geohazard as well as for remediation programs. Based on Landsat TM, ETM satellite data over 1989-2007 period, was possible to be achieved a discrimination between weathered materials and other prone to acidification as well as to perform a spatio temporal landcover change detection analysis in some mining waste areas in Maramures County, Romania. Accuracy of image processing results (mineralogical classification) was confirmed through ground sampling and analysis of reflectance spectra with portable GER 2600 spectroradiometer.

  18. Optical microcavity: sensing down to single molecules and atoms.

    PubMed

    Yoshie, Tomoyuki; Tang, Lingling; Su, Shu-Yu

    2011-01-01

    This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q) factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments), microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED) would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  19. Remote sensing techniques for soil moisture and agricultural drought monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Lingli

    Drought is the most complex and least understood of all natural hazards, affecting more people than any other hazard. Soil moisture is a primary indicator for agricultural drought. This dissertation is aimed at evaluating and investigating soil moisture and drought monitoring using remote sensing techniques. Recent technological advances in remote sensing have shown that soil moisture can be measured by a variety of remote sensing techniques, each with its own strengths and weaknesses. This research is designed to combine the strengths of optical/infrared as well as microwave remote sensing approaches for soil moisture estimation. A soil moisture estimation algorithm at moderate resolution was developed based on the well known 'Universal Triangle' relation by using MODIS land parameters as well as ground measured soil moisture. Though lower in spatial resolution, AMSR-E microwave measurements provides daily global soil moisture of the top soil layer, which are typically less affected by clouds, making them complementary to MODIS measurements over regions of clouds. Considering that the 'Universal Triangle' approach for soil moisture estimation is based on empirical relations which lack solid physical basis, a new physics based drought index, the Normalized Multi-band Drought Index (NMDI) was proposed for monitoring soil and vegetation moisture from space by using one near-infrared (NIR) and two shortwave infrared (SWIR) channels. Typical soil reflectance spectra and satellite acquired canopy reflectances are used to validate the usefulness of NMDI. Its ability for active fire detection has also been investigated using forest fires burning in southern Georgia, USA and southern Greece in 2007. Combining information from multiple NIR and SWIR channels makes NMDI a most promising indicator for drought monitoring and active fire detecting. Given the current technology, satellite remote sensing can only provide soil moisture measurements for the top soil profile, and

  20. RF modulated fiber optic sensing systems and their applications

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Eustace, John G.

    1992-01-01

    A fiber optic sensing system with an intensity sensor and a Radio Frequency (RF) modulated source was shown to have sensitivity and resolution much higher than a comparable system employing low modulating frequencies or DC mode of operation. Also the RF modulation with an appropriate configuration of the sensing system provides compensation for the unwanted intensity losses. The basic principles and applications of a fiber optic sensing system employing an RF modulated source are described. In addition the paper discusses various configurations of the system itself, its components, and modulation and detection schemes. Experimental data are also presented.

  1. Optical design for LED dental lighting with imaging optic technique

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Hoon; Bae, Seung-Chul; Lim, Hae-Ryong; Jang, Ja-Soon

    2011-10-01

    We did a research as follows. First of all, selected optimum LEDs and mixed it for higher CRI, target CCT and illuminance. The following step is optical module design. Light directional characteristics of dental lighting must be concentrated to illuminate a part. Because This part is oral cavity, The feature of illumination pattern is rectangular. For uniformity of illuminance and clearer pattern boundary at reference distance, we designed it as direct type (no use reflector) by imaging optic technique. First, Image is rectangular feature, so object must be the same feature with magnification in general imaging optics. But the emitting surface feature of LED (1W grade) is square or circular generally. For that reason, made object as rectangular source with rectangular lightguide. This optical component was designed for higher efficiency by illumination optic technique. Next, we designed optical lenses based on imaging optic technique for image object feature using Code V. set to high NA for light efficiency in this design. Fundamentally, Finally, This product is luminaire so illumination simulation and result analysis were executed by LightTools as illumination design software.

  2. Frequency-shifted interferometry for fiber-optic sensing

    NASA Astrophysics Data System (ADS)

    Ye, Fei

    This thesis studies frequency-shifted interferometry (FSI), a useful and versatile technique for fiber-optic sensing. I first present FSI theory by describing practical FSI configurations and discussing the parameters that affect system performance. Then, I demonstrate the capabilities of FSI in fiber-optic sensor multiplexing and high sensitivity chemical analysis. We implemented a cryogenic liquid level sensing system in which an array of 3 fiber Bragg grating (FBG) based sensors was interrogated by FSI. Despite sensors' spectral overlap, FSI is able to separate sensor signals according to their spatial locations and to measure their spectra, from which whether a sensor is in liquid or air can be unambiguously determined. I showed that a broadband source paired with a fast tunable filter can be used in FSI systems as the light source. An array of 9 spectrally overlapping FBGs was successfully measured by such a system, indicating the potential of system cost reduction as well as measurement speed improvement. I invented the the FSI-CRD technique, a highly sensitive FSI-based fiber cavity ring-down (CRD) method capable of deducing minuscule loss change in a fiber cavity from the intensity decay rate of continuous-wave light circulating in the cavity. As a proof-of-principle experiment, I successfully measured the fiber bend loss introduced in the fiber cavity with FSI-CRD, which was found to be 0.172 dB/m at a bend radius of 12.5 mm. We then applied FSI-CRD to evanescent-field sensing. We incorporated fiber tapers as the sensor head in the system and measured the concentration of 1-octyne solutions. A minimum detectable 1-octyne concentration of 0.29% was achieved with measurement sensitivity of 0.0094 dB/% 1-octyne. The same system also accurately detected the concentration change of sodium chloride (NaCl) and glucose solutions. Refractive index sensitivity of 1 dB/RIU with a measurement error of 1x10-4 dB was attined for NaCl solutions. Finally, I proposed a

  3. Techniques for Solution- Assisted Optical Contacting

    NASA Technical Reports Server (NTRS)

    DeVine, Glenn; Ware, Brent; Wuchenich, Danielle M.; Spero, Robert E.; Klipstein, William M.; McKenzie, Kirk

    2012-01-01

    A document discusses a solution-assisted contacting technique for optical contacting. An optic of surface flatness Lambda/20 was successfully contacted with one of moderate surface quality, or Lambda/4. Optics used were both ultra-low expansion (ULE) glass (Lambda/4 and Lambda/20) and fused silica (Lambda/20). A stainless steel template of the intended interferometer layout was designed and constructed with three contact points per optic. The contact points were all on a common side of the template. The entire contacting jig was tilted at about 30 . Thus, when the isopropanol was applied, each optic slid due to gravity, resting on the contact points. All of the contacting was performed in a relatively dusty laboratory. A number of successful contacts were achieved where up to two or three visible pieces of dust could be seen. These were clearly visible due to refraction patterns between the optic and bench. On a number of optics, the final step of dropping isopropyl between the surfaces was repeated until a successful contact was achieved. The new procedures realized in this work represent a simplification for optical contacting in the laboratory. They will both save time and money spent during the contacting process, and research and development phases. The techniques outlined are suitable for laboratory experiments, research, and initial development stages.

  4. Layered classification techniques for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Swain, P. H.; Wu, C. L.; Landgrebe, D. A.; Hauska, H.

    1975-01-01

    The single-stage method of pattern classification utilizes all available features in a single test which assigns the unknown to a category according to a specific decision strategy (such as the maximum likelihood strategy). The layered classifier classifies the unknown through a sequence of tests, each of which may be dependent on the outcome of previous tests. Although the layered classifier was originally investigated as a means of improving classification accuracy and efficiency, it was found that in the context of remote sensing data analysis, other advantages also accrue due to many of the special characteristics of both the data and the applications pursued. The layered classifier method and several of the diverse applications of this approach are discussed.

  5. Wavefront Sensing Analysis of Grazing Incidence Optical Systems

    NASA Technical Reports Server (NTRS)

    Rohrbach, Scott; Saha, Timo

    2012-01-01

    Wavefront sensing is a process by which optical system errors are deduced from the aberrations in the image of an ideal source. The method has been used successfully in near-normal incidence, but not for grazing incidence systems. This innovation highlights the ability to examine out-of-focus images from grazing incidence telescopes (typically operating in the x-ray wavelengths, but integrated using optical wavelengths) and determine the lower-order deformations. This is important because as a metrology tool, this method would allow the integration of high angular resolution optics without the use of normal incidence interferometry, which requires direct access to the front surface of each mirror. Measuring the surface figure of mirror segments in a highly nested x-ray telescope mirror assembly is difficult due to the tight packing of elements and blockage of all but the innermost elements to normal incidence light. While this can be done on an individual basis in a metrology mount, once the element is installed and permanently bonded into the assembly, it is impossible to verify the figure of each element and ensure that the necessary imaging quality will be maintained. By examining on-axis images of an ideal point source, one can gauge the low-order figure errors of individual elements, even when integrated into an assembly. This technique is known as wavefront sensing (WFS). By shining collimated light down the optical axis of the telescope and looking at out-of-focus images, the blur due to low-order figure errors of individual elements can be seen, and the figure error necessary to produce that blur can be calculated. The method avoids the problem of requiring normal incidence access to the surface of each mirror segment. Mirror figure errors span a wide range of spatial frequencies, from the lowest-order bending to the highest order micro-roughness. While all of these can be measured in normal incidence, only the lowest-order contributors can be determined

  6. Magneto-optical media for thermal sensing

    NASA Astrophysics Data System (ADS)

    Chervonenkis, Andrey Y.; Kirykhin, Nikolay N.; Randoshkin, Vladimir V.

    1990-10-01

    Several types of magnetooptical (MO) media, possessing "memory" effect are discussed for the purpose of thermal sensing. These are high coercive garnet films, trad.itionaly used. for therrnoxnagnetic re- cording, films with configurational phase transitions between dife- rent types of the domain structure produced by local heating and films with artifially formed pixel arrays. It's shown that structures of the latter type are most suitable for thermal sensing.

  7. Offshore winds using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Peña, Alfredo; Bay Hasager, Charlotte; Gryning, Sven-Erik; Courtney, Michael; Antoniou, Ioannis; Mikkelsen, Torben; Sørensen, Paul

    2007-07-01

    Ground-based remote sensing instruments can observe winds at different levels in the atmosphere where the wind characteristics change with height: the range of heights where modern turbine rotors are operating. A six-month wind assessment campaign has been made with a LiDAR (Light Detection And Ranging) and a SoDAR (Sound Detection and Ranging) on the transformer/platform of the world's largest offshore wind farm located at the West coast of Denmark to evaluate their ability to observe offshore winds. The high homogeneity and low turbulence levels registered allow the comparison of LiDAR and SoDAR with measurements from cups on masts surrounding the wind farm showing good agreement for both the mean wind speed and the longitudinal component of turbulence. An extension of mean wind speed profiles from cup measurements on masts with LiDAR observations results in a good match for the free sectors at different wind speeds. The log-linear profile is fitted to the extended profiles (averaged over all stabilities and roughness lengths) and the deviations are small. Extended profiles of turbulence intensity are also shown for different wind speeds up to 161 m. Friction velocities and roughness lengths calculated from the fitted log-linear profile are compared with the Charnock model which seems to overestimate the sea roughness for the free sectors.

  8. Bioactive "self-sensing" optical systems.

    PubMed

    Domachuk, Peter; Perry, Hannah; Amsden, Jason J; Kaplan, David L; Omenetto, Fiorenzo G

    2009-12-21

    Free-standing silk films are useful materials to manufacture nanopatterned optical elements and to immobilize bio-dopants such as enzymes while maintaining their biological activity. These traits were combined by incorporating hemoglobin into free-standing silk diffraction gratings to fabricate chemically responsive optofluidic devices responsive to ambient gas conditions, constituting a simple oxygen sensor. This type of self-analyzing optical system is enabled by the unique ability to reproduce high-fidelity optical structures in silk while maintaining the activity of entrapped proteins such as hemoglobin. These bioactive optical devices offer a direct readout capability, adding utility into the bioresponsive material arena. PMID:20087427

  9. Fiber-Optic Sensing System: Overview, Development and Deployment in Flight at NASA

    NASA Technical Reports Server (NTRS)

    Chan, Hon Man; Parker, Allen R.; Piazza, Anthony; Richards, W. Lance

    2015-01-01

    An overview of the research and technological development of the fiber-optic sensing system (FOSS) at the National Aeronautics and Space Administration Armstrong Flight Research Center (NASA AFRC) is presented. Theory behind fiber Bragg grating (FBG) sensors, as well as interrogation technique based on optical frequency domain reflectometry (OFDR) is discussed. Assessment and validation of FOSS as an accurate measurement tool for structural health monitoring is realized in the laboratory environment as well as large-scale flight deployment.

  10. The study of optical fiber communication technology for space optical remote sensing

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Yu, Sheng-quan; Zhang, Xiao-hong; Zhang, Rong-hui; Ma, Jian-hua

    2012-11-01

    The latest trends of Space Optical Remote Sensing are high-resolution, multispectral, and wide swath detecting. High-speed digital image data transmission will be more important for remote sensing. At present, the data output interface of Space Optical Remote Sensing, after performing the image data compression and formatting, transfers the image data to data storage unit of the Spacecraft through LVDS circuit cables. But this method is not recommended for high-speed digital image data transmission. This type of image data transmission, called source synchronization, has the low performance for high-speed digital signal. Besides, it is difficult for cable installing and system testing in limited space of vehicle. To resolve these issues as above, this paper describes a high-speed interconnection device for Space Optical Remote Sensing with Spacecraft. To meet its objectives, this device is comprised of Virtex-5 FPGA with embedded high-speed series and power-efficient transceiver, fiber-optic transceiver module, the unit of fiber-optic connection and single mode optical fiber. The special communication protocol is performed for image data transferring system. The unit of fiber-optic connection with high reliability and flexibility is provided for transferring high-speed serial data with optical fiber. It is evident that this method provides many advantages for Space Optical Remote Sensing: 1. Improving the speed of image data transferring of Space Optical Remote Sensing; 2. Enhancing the reliability and safety of image data transferring; 3. Space Optical Remote Sensing will be reduced significantly in size and in weight; 4. System installing and system testing for Space Optical Remote Sensing will become easier.

  11. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure

    PubMed Central

    Tang, Yongsheng; Wu, Zhishen

    2016-01-01

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures. PMID:26927110

  12. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure.

    PubMed

    Tang, Yongsheng; Wu, Zhishen

    2016-02-25

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures.

  13. Packaged optofluidic microbubble resonators for optical sensing.

    PubMed

    Tang, Ting; Wu, Xiang; Liu, Liying; Xu, Lei

    2016-01-10

    A microbubble resonator (MBR) coupled with a fiber taper is packaged with low-index polymer. The cladding polymer serves as a protective matrix for the coupling system to avoid environmental disturbance. The packaged structure is portable and provides good performance to maintain high Q factors for a long working period. The hollow structure of the MBR makes the packaged system useful for practical chemical and biomedical sensing applications. To evaluate the performance of the packaged MBRs-based sensor, we carry out bulk refractive index and surface-sensing measurements with achieved sensitivities of 18.8 nm/RIU and 31.29 pm/nm, respectively. PMID:26835777

  14. Non-iterative adaptive optical microscopy using wavefront sensing

    NASA Astrophysics Data System (ADS)

    Tao, X.; Azucena, O.; Kubby, J.

    2016-03-01

    This paper will review the development of wide-field and confocal microscopes with wavefront sensing and adaptive optics for correcting refractive aberrations and compensating scattering when imaging through thick tissues (Drosophila embryos and mouse brain tissue). To make wavefront measurements in biological specimens we have modified the laser guide-star techniques used in astronomy for measuring wavefront aberrations that occur as star light passes through Earth's turbulent atmosphere. Here sodium atoms in Earth's mesosphere, at an altitude of 95 km, are excited to fluoresce at resonance by a high-power sodium laser. The fluorescent light creates a guide-star reference beacon at the top of the atmosphere that can be used for measuring wavefront aberrations that occur as the light passes through the atmosphere. We have developed a related approach for making wavefront measurements in biological specimens using cellular structures labeled with fluorescent proteins as laser guide-stars. An example is a fluorescently labeled centrosome in a fruit fly embryo or neurons and dendrites in mouse brains. Using adaptive optical microscopy we show that the Strehl ratio, the ratio of the peak intensity of an aberrated point source relative to the diffraction limited image, can be improved by an order of magnitude when imaging deeply into live dynamic specimens, enabling near diffraction limited deep tissue imaging.

  15. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    PubMed

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-01-01

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges. PMID:27275822

  16. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    PubMed

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-06-06

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  17. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System

    PubMed Central

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W.; Dong, Fengzhong

    2016-01-01

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges. PMID:27275822

  18. Optical Sensing and Trapping Based on Localized Surface Plasmons

    NASA Astrophysics Data System (ADS)

    Kang, Zhiwen

    This project involves the study of novel plasmonic nanodevices that provide unique functionality in optical sensing, surface-enhanced Raman scattering (SERS), and optical trapping. The first design is based on a coupling system involving double-layered metal nano-strips arrays. This system has the advantages of simple geometry and direct integration with microfluidic chips. The intense optical localization due to field coupling within the system can enhance detection sensitivity of target molecules, especially by virtue of the optical trapping of plasmonic nanoparticles. The optical resonant condition is obtained theoretically through analyzing the SPs modes. Numerical modeling based on two-dimensional (2D) finite-difference time-domain (FDTD) is consistent with the theoretical analysis and demonstrates the feasibility of using this system for optical sensing and trapping. In the second design, a gold nano-ring structure is demonstrated to be an effective approach for plasmonic nano-optical tweezers (PNOTs) for trapping metallic nanoparticles. In our demonstration example, we have optimized a device for SERS operation at the wavelength of 785 nm. Three-dimensional (3D) FDTD techniques have been employed to calculate the optical response, and the optical force distribution have been derived using the Maxwell stress tensor (MST) method. Simulation results indicate that the nano-ring produces a maximum trapping potential well of ~32 kBT on a 20 nm gold nanoparticle. The existence of multiple potential well results in a very large active trapping volume of ~106 nm3 for the target particles. Furthermore, the trapped gold nanoparticles further lead to the formation of nano-gaps that offer a near-field enhancement of ~160 times, resulting in an achievable EF of 108 for SERS. In the third design, we propose a concept of all-optical nano-manipulation. We show that target molecules, after being trapped, can be transferred between the trapping sites within a linear array of

  19. Electro-optical techniques for signal conditioning

    NASA Astrophysics Data System (ADS)

    Helfrich, R. W.

    1981-01-01

    Electro-optical (EO) processing is discussed as a potential alternative to the all-digital approach to signal processing. Nonuniformity compensation can be done by normalizing all the single element detectors outputs in a staring array for both gain and level. Distortion correction can be accomplished with blackbodies, scene statistics or defocused optics. An algorithm used in digital signal conditioning that can be closely approximated by EO techniques is Local Area Brightness Control (LABC). In a digital processor, LABC is performed on a pixel-by-pixel basis, resulting in an enormous amount of calculation. A partially defocused optical system can be used in an EO analog to the digital system. For both nonuniformity compensation and LABC, the EO technique can result in great simplification.

  20. Nonlinear optical techniques for surface studies. [Monolayers

    SciTech Connect

    Shen, Y.R.

    1981-09-01

    Recent effort in developing nonlinear optical techniques for surface studies is reviewed. Emphasis is on monolayer detection of adsorbed molecules on surfaces. It is shown that surface coherent antiStokes Raman scattering (CARS) with picosecond pulses has the sensitivity of detecting submonolayer of molecules. On the other hand, second harmonic or sum-frequency generation is also sensitive enough to detect molecular monolayers. Surface-enhanced nonlinear optical effects on some rough metal surfaces have been observed. This facilitates the detection of molecular monolayers on such surfaces, and makes the study of molecular adsorption at a liquid-metal interface feasible. Advantages and disadvantages of the nonlinear optical techniques for surface studies are discussed.

  1. Dental diagnostics using optical coherence techniques

    SciTech Connect

    Nathel, H.; Colston, B.; Armitage, G.

    1994-11-15

    Optical radiation can be used for diagnostic purposes in oral medicine. However, due to the turbid, amorphous, and inhomogeneous nature of dental tissue conventional techniques used to transilluminate materials are not well suited to dental tissues. Optical coherence techniques either in the time- of frequency-domain offer the capabilities of discriminating scattered from unscattered light, thus allowing for imaging through turbid tissue. Currently, using optical time-domain reflectometry we are able to discriminate specular from diffuse reflections occurring at tissue boundaries. We have determined the specular reflectivity of enamel and dentin to be approximately 6.6 x 10{sup -5} and 1.3 x 10{sup -6}, respectively. Implications to periodontal imaging will be discussed.

  2. Optical fiber sensing of human skin emanations

    NASA Astrophysics Data System (ADS)

    Lee, S.-W.; Wang, T.; Selyanchyn, R.; Korposh, S.; James, S. W.

    2015-07-01

    An evanescent-wave optical fibre sensor modified with tetrakis(4-sulfophenyl)porphine (TSPP) and poly(allylamine hydrochloride) (PAH) bilayers using an layer-by-layer (LbL) approach was tested to measure the gas emitted from human skin. Optical intensity changes at different wavelengths in the transmission spectrum of the porphyrin-based film were induced by the human skin gas and measured as sensor response. Influence of relative humidity, which can be a major interference to sensor response, was significantly different when compared to the influence of skin emanations. Responses of the current optical sensor system could be considered as composite sensor array, where different optical wavelengths act as channels that have selective response to specific volatile compounds. Data obtained from the sensor system was analyzed through principal component analysis (PCA). This approach enabled to distinguish skin odors of different people and their altered physiological conditions after alcohol consumption.

  3. Spatially-resolved spectroscopic technique for measuring optical properties of food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantification of optical properties is important to understand light interaction with biological materials, and to develop effective optical sensing techniques for property characterization and quality measurement of food products. This chapter reviews spatially-resolved method, with the focus on f...

  4. Monitoring asphalt pavement damages using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Mettas, Christodoulos; Themistocleous, Kyriacos; Neocleous, Kyriacos; Christofe, Andreas; Pilakoutas, Kypros; Hadjimitsis, Diofantos

    2015-06-01

    One of the main issues in the maintenance plans of road agencies or governmental organizations is the early detection of damaged asphalt pavements. The development of a smart and non-destructive systematic technique for monitoring damaged asphalt pavements is considered a main priority to fill this gap. During the 1970's, remote sensing was used to map road surface distress, while during the last decade, remote sensing became more advanced, thereby assisting in the evolution of the identification and mapping of roads. Various techniques were used in order to explore condition, age, weaknesses and imperfections of asphalted pavements. These methods were fairly successful in the classification of asphalted surfaces and in the detection of some of their characteristics. This paper explores the state of the art of using remote sensing techniques for monitoring damaged pavements and some typical spectral profiles of various asphalt pavements in Cyprus area acquired using the SVC1024 field spectroradiometer.

  5. Research on spectral resource optimization and self-healing technology of hybrid optical fiber sensing network

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Sang, Mei; Ge, Chunfeng; Chen, Guanghui; Liu, Tiegen

    2015-08-01

    We propose an optical-fiber-sensing-network (OFSN) to allow hybrid fiber sensors working in the same network and it achieves self-healing function. The discrete and distributed optical fiber sensors can be connected in sub-layers of the network. WDM-OTDM technique is introduced to convert multi-wavelengths of light source into a specific arranged wavelength in each sub-layer. Thus every sub-layer can share the system spectrum resources, and sensing signals of each sub-layer are transmitted together in the backbone network. To achieve self-healing function, double-ring structure is adopted in the backbone network. Node microprocessor program is designed to make switching to the protect fiber when working fiber is broken. The experimental backbone setup of the network demonstrates the practical reliability and intelligence of the optical sensing network.

  6. Scanning Techniques For Optical Data Storage

    NASA Astrophysics Data System (ADS)

    Towner, David K.

    1987-01-01

    It seems almost paradoxical that beams of light can be moved and steered at very high speeds using a variety of scanning methods, yet the optical disk drives now being designed and marketed for data storage applications have comparatively long access times. Knowing that optical data storage has unrealized potential is of interest, but of more immediate concern is the recognition that poor access performance is a serious design issue. Magnetic disk drives offer average seek times in the 15-25ms range, compared to about 80-500ms (or more, for CD ROMS) for current optical drives. This performance disparity exists, in part, because the relatively massive "optical heads" in use today cannot be transported across the radius of a disk as quickly as a stack of much lighter magnetic heads. Any potential distance advantage that the optical drive might have, due to its substantially higher track density, is offset by the magnetic drive's use of a multi-disk stack. As a result, the drive must achieve similar radial accelerations during seeks if it is to have similar average access times. The inability of current optical drives to approach the access speeds of comparable magnetic drives significantly reduces the competitiveness of optical products in major segments of the very large data storage market. This shortcoming is especially disturbing when we know that opto-mechanical scanners typically operate in the 1-10ms range and that non-mechanical scanning techniques can be substantially faster than that.

  7. Measuring artificial recharge with fiber optic distributed temperature sensing.

    PubMed

    Becker, Matthew W; Bauer, Brian; Hutchinson, Adam

    2013-01-01

    Heat was used as a tracer to measure infiltration rates from a recharge basin. The propagation of diurnal oscillation of surface water temperature into the basin bed was monitored along a transect using Fiber Optic Distributed Temperature Sensing (FODTS). The propagation rate was related to downward specific discharge using standard theory of heat advection and dispersion in saturated porous media. An estimate of the temporal variation of heat propagation was achieved using a wavelet transform to find the phase lag between the surface temperature diurnal oscillation and the correlated oscillation at 0.33 and 0.98 m below the bed surface. The wavelet results compared well to a constant velocity model of thermal advection and dispersion during periods of relatively constant discharge rates. The apparent dispersion of heat was found to be due primarily to hydrodynamic mechanisms rather than thermal diffusion. Specific discharge estimates using the FODTS technique also compared well to water balance estimates over a four month period, although there were occasional deviations that have yet to be adequately explained. The FODTS technique is superior to water balance in that it produces estimates of infiltration rate every meter along the cable transect, every half hour. These high resolution measurements highlighted areas of low infiltration and demonstrated the degradation of basin efficiency due to source waters of high suspended solids. FODTS monitoring promises to be a useful tool for diagnosing basin performance in an era of increasing groundwater demand.

  8. Macrobend optical sensing for pose measurement in soft robot arms

    NASA Astrophysics Data System (ADS)

    Sareh, Sina; Noh, Yohan; Li, Min; Ranzani, Tommaso; Liu, Hongbin; Althoefer, Kaspar

    2015-12-01

    This paper introduces a pose-sensing system for soft robot arms integrating a set of macrobend stretch sensors. The macrobend sensory design in this study consists of optical fibres and is based on the notion that bending an optical fibre modulates the intensity of the light transmitted through the fibre. This sensing method is capable of measuring bending, elongation and compression in soft continuum robots and is also applicable to wearable sensing technologies, e.g. pose sensing in the wrist joint of a human hand. In our arrangement, applied to a cylindrical soft robot arm, the optical fibres for macrobend sensing originate from the base, extend to the tip of the arm, and then loop back to the base. The connectors that link the fibres to the necessary opto-electronics are all placed at the base of the arm, resulting in a simplified overall design. The ability of this custom macrobend stretch sensor to flexibly adapt its configuration allows preserving the inherent softness and compliance of the robot which it is installed on. The macrobend sensing system is immune to electrical noise and magnetic fields, is safe (because no electricity is needed at the sensing site), and is suitable for modular implementation in multi-link soft continuum robotic arms. The measurable light outputs of the proposed stretch sensor vary due to bend-induced light attenuation (macrobend loss), which is a function of the fibre bend radius as well as the number of repeated turns. The experimental study conducted as part of this research revealed that the chosen bend radius has a far greater impact on the measured light intensity values than the number of turns (if greater than five). Taking into account that the bend radius is the only significantly influencing design parameter, the macrobend stretch sensors were developed to create a practical solution to the pose sensing in soft continuum robot arms. Henceforward, the proposed sensing design was benchmarked against an electromagnetic

  9. Nanocomposite thin films for optical gas sensing

    DOEpatents

    Ohodnicki, Paul R; Brown, Thomas D

    2014-06-03

    The disclosure relates to a plasmon resonance-based method for gas sensing in a gas stream utilizing a gas sensing material. In an embodiment the gas stream has a temperature greater than about 500.degree. C. The gas sensing material is comprised of gold nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10.sup.-7 S/cm at a temperature of 700.degree. C. Exemplary inert matrix materials include SiO.sub.2, Al.sub.2O.sub.3, and Si.sub.3N.sub.4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. Changes in the chemical composition of the gas stream are detected by changes in the plasmon resonance peak. The method disclosed offers significant advantage over active and reducible matrix materials typically utilized, such as yttria-stabilized zirconia (YSZ) or TiO.sub.2.

  10. Optical multichannel sensing of skin blood pulsations

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Erts, Renars; Kukulis, Indulis; Ozols, Maris; Prieditis, Karlis

    2004-09-01

    Time resolved detection and analysis of the skin back-scattered optical signals (reflection photoplethysmography or PPG) provide information on skin blood volume pulsations and can serve for cardiovascular assessment. The multi-channel PPG concept has been developed and clinically verified in this study. Portable two- and four-channel PPG monitoring devices have been designed for real-time data acquisition and processing. The multi-channel devices were successfully applied for cardiovascular fitness tests and for early detection of arterial occlusions in extremities. The optically measured heartbeat pulse wave propagation made possible to estimate relative arterial resistances for numerous patients and healthy volunteers.

  11. Fiber-Optical Temperature Sensing Onboard Geostationary Telecommunication Satellites

    NASA Astrophysics Data System (ADS)

    Putzer, Philipp; Koch, Alexander W.; Hurni, Andreas; Schweyer, Sebastian; Tiefenbeck, Christoph; Plattner, Markus

    2013-08-01

    In this paper we present a system for fiber-optical temperature sensing onboard geostationary telecommunication satellites. Fiber-optical sensing allows the replacement of many of the point-to-point wired temperature sensors which are actual state-of-the-art in European telecommunication satellites. Initially the paper indicates the problem description with viewpoint on the environmental requirements. Afterwards the principle of a fiber-optical sensor is described in detail followed by the design of the fiber-optical interrogator module (FIM). The paper closes with first measurement results to prove the presented concept. The FIM is a part of the Hybrid Sensor Bus (HSB) unit [1, 2] which will be implemented as flight demonstrator onboard the Heinrich-Hertz satellite (H2-Sat).

  12. Optical remote sensing of oil in the marine environment

    NASA Astrophysics Data System (ADS)

    Byfield, Valborg

    1998-11-01

    Remote sensing has played an increasing role in the routine monitoring of oil pollution and in support of the operational response to major oil pollution incidents. This study develops the technique of optical measurement for the detection of oil in the Marine Environment. A theoretical model is proposed, which relates upwelling radiance from surface oil to the optical properties of the oil in question, to the thickness of the oil layer, and to a number of ancillary environmental parameters. It is used to interpret the results of laboratory experiments in artificial and natural light, and ultimately as a tool in the analysis of airborne optical data of surface oil in the field, including the Sea Empress oil spill. Laboratory experiments showed that the thickness of surface oil may be determined using spectral ratios, and the results compared well with the predictions made by the theoretical model. Using the peak to near-infrared ratio, relative thickness estimates can be made from remote sensing data, without extensive data processing. Absolute thickness measurements are more complex, and require the knowledge of a number of environmental parameters. Both the laboratory and airborne data show that classification of oils into broad groups is possible using spectral analysis. However, the number of environmental parameters that must be considered makes this a complex task for field data. The model predicts that sheen detection will be most reliable in regions of the spectrum where the sub-surface signal is low, such as the violet to deep blue and the near-infrared. This is confirmed by the laboratory experiments in natural light, and by the airborne data from the field experiments. When water-leaving radiance is high in the near-infrared, sheen detection may be more difficult, although it should still be possible in the violet to deep blue. The theoretical model and the field data suggest that dispersed oil may be detected if concentrations are sufficiently high. The

  13. Optical Technologies for UV Remote Sensing Instruments

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, R. A. M.; Osantowski, J. F.; Leviton, D. B.; Saha, T. T.; Content, D. A.; Boucarut, R. A.; Gum, J. S.; Wright, G. A.; Fleetwood, C. M.; Madison, T. J.

    1993-01-01

    Over the last decade significant advances in technology have made possible development of instruments with substantially improved efficiency in the UV spectral region. In the area of optical coatings and materials, the importance of recent developments in chemical vapor deposited (CVD) silicon carbide (SiC) mirrors, SiC films, and multilayer coatings in the context of ultraviolet instrumentation design are discussed. For example, the development of chemically vapor deposited (CVD) silicon carbide (SiC) mirrors, with high ultraviolet (UV) reflectance and low scatter surfaces, provides the opportunity to extend higher spectral/spatial resolution capability into the 50-nm region. Optical coatings for normal incidence diffraction gratings are particularly important for the evolution of efficient extreme ultraviolet (EUV) spectrographs. SiC films are important for optimizing the spectrograph performance in the 90 nm spectral region. The performance evaluation of the flight optical components for the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instrument, a spectroscopic instrument to fly aboard the Solar and Heliospheric Observatory (SOHO) mission, designed to study dynamic processes, temperatures, and densities in the plasma of the upper atmosphere of the Sun in the wavelength range from 50 nm to 160 nm, is discussed. The optical components were evaluated for imaging and scatter in the UV. The performance evaluation of SOHO/CDS (Coronal Diagnostic Spectrometer) flight gratings tested for spectral resolution and scatter in the DGEF is reviewed and preliminary results on resolution and scatter testing of Space Telescope Imaging Spectrograph (STIS) technology development diffraction gratings are presented.

  14. Dynamic response of tapered optical multimode fiber coated with carbon nanotubes for ethanol sensing application.

    PubMed

    Shabaneh, Arafat; Girei, Saad; Arasu, Punitha; Mahdi, Mohd; Rashid, Suraya; Paiman, Suriati; Yaacob, Mohd

    2015-05-04

    Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%), the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s) towards ethanol.

  15. Dynamic Response of Tapered Optical Multimode Fiber Coated with Carbon Nanotubes for Ethanol Sensing Application

    PubMed Central

    Shabaneh, Arafat; Girei, Saad; Arasu, Punitha; Mahdi, Mohd; Rashid, Suraya; Paiman, Suriati; Yaacob, Mohd

    2015-01-01

    Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%), the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s) towards ethanol. PMID:25946634

  16. Remote sensing techniques for support of coastal zone resource management.

    NASA Technical Reports Server (NTRS)

    Piland, R. O.

    1973-01-01

    Description of remote sensing studies carried out for the purpose of developing and/or demonstrating techniques which can be employed for land use inventory, marsh vegetation classification, and water characteristics surveys. Attention is given to results obtained with (1) photo interpretation techniques and procedures for the development of land use information from high-altitude aircraft and satellite imagery, (2) computer based pattern recognition techniques utilizing multispectral scanner data for marsh vegetation classification, and (3) infrared and microwave techniques for the monitoring and surveying of coastal water temperature and salinity characteristics.

  17. Natural resource inventory for urban planning utilizing remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Foster, K. E.; Mackey, P. F.; Bonham, C. D.

    1972-01-01

    Remote sensing techniques were applied to the lower Pantano Wash area to acquire data for planning an ecological balance between the expanding Tucson metropolitan area and its environment. The types and distribution of vegetation are discussed along with the hydrologic aspects of the Wash.

  18. Hyperspectral remote sensing techniques for early detection of plant diseases

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora; Maneva, Svetla; Zdravev, Tomas

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications in Earth observation. Nowadays spectral remote sensing techniques allow presymptomatic monitoring of changes in the physiological state of plants with high spectral resolution. Hyperspectral leaf reflectance and chlorophyll fluorescence proved to be highly suitable for identification of growth anomalies of cultural plants that result from the environmental changes and different stress factors. Hyperspectral technologies can find place in many scientific areas, as well as for monitoring of plants status and functioning to help in making timely management decisions. This research aimed to detect a presence of viral infection in young pepper plants (Capsicum annuum L.) caused by Cucumber Mosaic Virus (CMV) by using hyperspectral reflectance and fluorescence data and to assess the effect of some growth regulators on the development of the disease. In Bulgaria CMV is one of the widest spread pathogens, causing the biggest economical losses in crop vegetable production. Leaf spectral reflectance and fluorescence data were collected by a portable fibre-optics spectrometer in the spectral ranges 450÷850 nm and 600-900 nm. Greenhouse experiment with pepper plants of two cultivars, Sivria (sensitive to CMV) and Ostrion (resistant to CMV) were used. The plants were divided into six groups. The first group consisted of healthy (control) plants. At growth stage 4-6 expanded leaf, the second group was inoculated with CMV. The other four groups were treated with growth regulators: Spermine, MEIA (beta-monomethyl ester of itaconic acid), ВТН (benzo(1,2,3)thiadiazole-7-carbothioic acid-S-methyl ester) and Phytoxin. On the next day, the pepper plants of these four groups were inoculated with CMV. The viral concentrations in the plants were determined by the serological method DAS-ELISA. Statistical, first derivative and cluster analysis were applied and several vegetation indices were

  19. Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents

    SciTech Connect

    Asher, R.B.; Cameron, S.M.; Loubriel, G.M.; Robinett, R.D.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-11-25

    In many situations, stand-off remote-sensing and hazard-interdiction techniques over realistic operational areas are often impractical "and difficult to characterize. An alternative approach is to implement an adap- tively deployable array of sensitive agent-specific devices. Our group has been studying the collective be- havior of an autonomous, multi-agent system applied to chedbio detection and related emerging threat applications, The current physics-based models we are using coordinate a sensor array for mukivanate sig- nal optimization and coverage as re,alized by a swarm of robots or mobile vehicles. These intelligent control systems integrate'glob"ally operating decision-making systems and locally cooperative learning neural net- works to enhance re+-timp operational responses to dynarnical environments examples of which include obstacle avoidance, res~onding to prevailing wind patterns, and overcoming other natural obscurants or in- terferences. Collectively',tkensor nefirons with simple properties, interacting according to basic community rules, can accomplish complex interconnecting functions such as generalization, error correction, pattern recognition, sensor fusion, and localization. Neural nets provide a greater degree of robusmess and fault tolerance than conventional systems in that minor variations or imperfections do not impair performance. The robotic platforms would be equipped with sensor devices that perform opticaI detection of biologicais in combination with multivariate chemical analysis tools based on genetic and neural network algorithms, laser-diode LIDAR analysis, ultra-wideband short-pulsed transmitting and receiving antennas, thermal im- a:ing sensors, and optical Communication technology providing robust data throughput pathways. Mission scenarios under consideration include ground penetrating radar (GPR) for detection of underground struc- tures, airborne systems, and plume migration and mitigation. We will describe our research in

  20. RF switching network: a novel technique for IR sensing

    NASA Astrophysics Data System (ADS)

    Mechtel, Deborah M.; Jenkins, R. Brian; Joyce, Peter J.; Nelson, Charles L.

    2016-05-01

    Rapid sensing of near infrared (IR) energy on a composite structure would provide information that could mitigate damage to composite structures. This paper describes a novel technique that implements photoconductive sensors in a radio frequency (RF) switching network designed to locate in real time the position and intensity of IR radiation incident on a composite structure. In the implementation described here, photoconductive sensors act as rapid response switches in a two layer RF network embedded in an FR-4 laminate. To detect radiation, phosphorous doped silicon photoconductive sensors are inserted in GHz range RF transmission lines. Photoconductive sensors use semiconductor materials that are optically sensitive at material dependent wavelengths. Incident radiation at the appropriate wavelength produces hole-electron pairs, so that the semiconductor becomes a conductor. By permitting signal propagation only when a sensor is illuminated, the RF signals are selectively routed from the lower layer transmission lines to the upper layer lines, thereby pinpointing the location and strength of incident radiation on a structure. Simulations based on a high frequency 3D planar electromagnetics model are presented and compared to experimental results. Experimental results are described for GHz range RF signal control for 300 mW and 180 mW incident energy from 975 nm and 1060 nm wavelength lasers respectively, where upon illumination, RF transmission line signal output power doubled when compared to non-illuminated results. Experimental results are reported for 100 W incident energy from a 1060 nm laser. Test results illustrate that real-time signal processing would permit a structure or vehicle to be controlled in response to incident radiation

  1. Tamper indicating and sensing optical-based smart structures

    SciTech Connect

    Sliva, P.; Anheier, N.C.; Gordon, N.R.; Simmons, K.L.; Stahl, K.A.; Undem, H.A.

    1995-05-01

    This paper has presented an overview of the type of optical-based structures that can be designed and constructed. These smart structures are capable of responding to their environment. The examples given represent a modest sampling of the complexity that can be achieved in both design and practice. Tamper-indicating containers and smart, sensing windows demonstrate just a few of the applications. We have shown that optical-based smart structures can be made multifunctional with the sensing built in. The next generation smart structure will combine the sensing functionality of these optical-based smart structures with other sensors such as piezoelectrics and electro-rheological fluids to not only be able to respond to the environment, but to adapt to it as well. An example of functionality in this regime would be a piezosensor that senses pressure changes (e.g., shock waves), which then causes an electro-rheological fluid to change viscosity. A fiber sensor located in or near the electro-rheological fluid senses the stiffness change and sends a signal through a feedback loop back to the piezosensor for additional adjustments to the electro-rheological fluid.

  2. Optical spectroscopic techniques and instrumentation for atmospheric and space research

    SciTech Connect

    Wang, J.; Hays, P.B.

    1994-12-31

    The objective of this conference was to bring together scientists and engineers involved in atmospheric science, space physics, aeronomy, remote sensing, and optical instrumentation to exchange ideas and discuss recent developments in spectroscopic techniques and instrumentation in atmospheric and space research. There is growing concern about the human environment: the atmosphere, ocean, and space. To address those concerns and understand their changing environment, increasingly complex computer models have been developed with the advent of more powerful computers. Therefore, the validation of those models against direct measurements with advanced techniques and instruments is becoming increasingly more difficult and important. Optical spectroscopic techniques and instrumentation have contributed greatly to the validation of those models and their understanding of the earth`s atmosphere and space environment. Improving techniques and instrumentation is becoming ever more important with more demanding requirements on the accuracy and resolution of atmospheric and space observations. This conference had sessions addressing current techniques and instrumentation from the ultraviolet to the infrared and microwave, and from ground-based facilities to satellite-borne missions. Separate abstracts were prepared for most of the papers in this volume.

  3. Surface Wear Measurement Using Optical Correlation Technique

    NASA Astrophysics Data System (ADS)

    Acinger, Kresimir

    1983-12-01

    The coherent optical correlation technique was applied for measuring the surface wear of a tappet (part of car engine), worn by friction with the camshaft. It was found that maximum correlation intensity decays exponentially with the number of wear cycles (i.e. camshaft revolutions). Tappets of the same make have an identical rate of correlation decay. Tappets of different makes have different rates of correlation decay which are in agreement with observed long term wear.

  4. Coherent optical data processing and remotely sensed imagery

    NASA Technical Reports Server (NTRS)

    Macdougall, E. B.

    1969-01-01

    It is shown that an automatic imaging system consisting of a combination of optical and digital computer elements is feasible and has considerable advantages over direct image scanning systems. With such a system, it is possible to process very large quantities of remotely sensed image spectra.

  5. RADIAL COMPUTED TOMOGRAPHY OF AIR CONTAMINANTS USING OPTICAL REMOTE SENSING

    EPA Science Inventory

    The paper describes the application of an optical remote-sensing (ORS) system to map air contaminants and locate fugitive emissions. Many ORD systems may utilize radial non-overlapping beam geometry and a computed tomography (CT) algorithm to map the concentrations in a plane. In...

  6. Spider silk: a novel optical fibre for biochemical sensing

    NASA Astrophysics Data System (ADS)

    Hey Tow, Kenny; Chow, Desmond M.; Vollrath, Fritz; Dicaire, Isabelle; Gheysens, Tom; Thévenaz, Luc

    2015-09-01

    Whilst being thoroughly used in the textile industry and biomedical sector, silk has not yet been exploited for fibre optics-based sensing although silk fibres directly obtained from spiders can guide light and have shown early promises to being sensitive to some solvents. In this communication, a pioneering optical fibre sensor based on spider silk is reported, demonstrating for the first time the use of spider silk as an optical fibre sensor to detect polar solvents such as water, ammonia and acetic acid.

  7. Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems

    SciTech Connect

    Challener, William A

    2014-12-04

    The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber, and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ±5°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.

  8. High-Throughput Optical Sensing Immunoassays on Smartphone.

    PubMed

    Wang, Li-Ju; Sun, Rongrong; Vasile, Tina; Chang, Yu-Chung; Li, Lei

    2016-08-16

    We present an optical sensing platform on a smartphone for high-throughput screening immunoassays. For the first time, a designed microprism array is utilized to achieve a one-time screening of 64 samples. To demonstrate the capability and the reliability of this optical sensing platform on smartphone, human interleukin 6 (IL-6) protein and six types of plant viruses are immunoassayed. The ability of quantification is shown by a sigmoidal dose-response curve fitting to analyze IL-6 protein. The accuracy in measuring the concentrations of IL-6 protein achieves 99.1%. On the other hand, to validate on-field immunoassays by our device, a total of 1030 samples are assayed using three immunoassay methods to detect six types of plant viruses. The accuracy is up to 96.2-99.9%; in addition, there is a high degree of agreement with lab instruments. The total cost for this high-throughput optical screening platform is ∼$50 USD. The reading time is only 2 s for 64 samples. The size is just as big as a portable hard drive. Our optical sensing platform on the smartphone offers a route toward in situ high-throughput screening immunoassays for viruses, pathogens, biomarkers, and toxins by decentralizing laboratory tests. With this mobile point-of-care optical platform, the spread of disease can be timely stopped within a very short turnaround time. PMID:27434250

  9. Zeptonewton force sensing with nanospheres in an optical lattice

    NASA Astrophysics Data System (ADS)

    Ranjit, Gambhir; Cunningham, Mark; Casey, Kirsten; Geraci, Andrew A.

    2016-05-01

    Optically trapped nanospheres in high vacuum experience little friction and hence are promising for ultrasensitive force detection. Here we demonstrate measurement times exceeding 105 s and zeptonewton force sensitivity with laser-cooled silica nanospheres trapped in an optical lattice. The sensitivity achieved exceeds that of conventional room-temperature solid-state force sensors by over an order of magnitude, and enables a variety of applications including electric-field sensing, inertial sensing, and gravimetry. The particle is confined at the antinodes of the optical standing wave, and by studying the motion of a particle which has been moved to an adjacent trapping site, the known spacing of the antinodes can be used to calibrate the displacement spectrum of the particle. Finally, we study the dependence of the trap stability and lifetime on the laser intensity and gas pressure, and examine the heating rate of the particle in vacuum without feedback cooling.

  10. Distributed fiber-optic sensing system with OFDR and its applications to structural health monitoring

    NASA Astrophysics Data System (ADS)

    Murayama, H.; Kageyama, K.; Uzawa, K.; Igawa, H.; Omichi, K.; Machijima, Y.

    2009-07-01

    In the field of fiber-optic sensing technology, distributed sensors that return a value of the measurand as a function of linear position along an optical fiber are regarded as a promising sensor which can be applied to structural health monitoring (SHM). We have developed a distributed strain sensing technique using long gauge fiber Bragg grating (FBG) based on optical frequency domain reflectometry (OFDR). FBGs functioning as mirrors with wavelengthselective reflectivity have been used as strain or temperature sensors. OFDR is a technique designed to measure backreflections from optical fiber networks and components. In our system, we use a longer gauge FBG whose length is ordinarily more than 100 mm and we can measure strain at an arbitrary position along the FBG. Therefore, we can obtain continuous strain data along the FBG. Furthermore, since the spatial resolution in strain measurements is less than 1 mm, it enables us to measure the strain distribution of stress concentrated area, such as welded and bonded joints, precisely. In this paper, we describe the principle of the distributed sensing technique based on OFDR and the applications to strain monitoring of a bonded joint and a wing box structure.

  11. Analytical methods for optical remote sensing

    SciTech Connect

    Spellicy, R.L.

    1997-12-31

    Optical monitoring systems are very powerful because of their ability to see many compounds simultaneously as well as their ability to report results in real time. However, these strengths also present unique problems to analysis of the resulting data and validation of observed results. Today, many FTIR and UV-DOAS systems are in use. Some of these are manned systems supporting short term tests while others are totally unmanned systems which are expected to operate without intervention for weeks or months at a time. The analytical methods needed to support both the diversity of compounds and the diversity of applications is challenging. In this paper, the fundamental concepts of spectral analysis for IR/UV systems are presented. This is followed by examples of specific field data from both short term measurement programs looking at unique sources and long-term unmanned monitoring systems looking at ambient air.

  12. Novel technique for distributed fibre sensing based on coherent Rayleigh scattering measurements of birefringence

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Soto, Marcelo A.; Thévenaz, Luc

    2016-05-01

    A novel distributed fibre sensing technique is described and experimentally validated, based on birefringence measurements using coherent Rayleigh scattering. It natively provides distributed measurements of temperature and strain with more than an order of magnitude higher sensitivity than Brillouin sensing, and requiring access to a single fibre-end. Unlike the traditional Rayleigh-based coherent optical time-domain reflectometry, this new method provides absolute measurements of the measurand and may lead to a robust discrimination between temperature and strain in combination with another technique. Since birefringence is purposely induced in the fibre by design, large degrees of freedom are offered to optimize and scale the sensitivity to a given quantity. The technique has been validated in 2 radically different types of birefringent fibres - elliptical-core and Panda polarization-maintaining fibres - with a good repeatability.

  13. Grazing Incidence Wavefront Sensing and Verification of X-Ray Optics Performance

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Rohrbach, Scott; Zhang, William W.

    2011-01-01

    Evaluation of interferometrically measured mirror metrology data and characterization of a telescope wavefront can be powerful tools in understanding of image characteristics of an x-ray optical system. In the development of soft x-ray telescope for the International X-Ray Observatory (IXO), we have developed new approaches to support the telescope development process. Interferometrically measuring the optical components over all relevant spatial frequencies can be used to evaluate and predict the performance of an x-ray telescope. Typically, the mirrors are measured using a mount that minimizes the mount and gravity induced errors. In the assembly and mounting process the shape of the mirror segments can dramatically change. We have developed wavefront sensing techniques suitable for the x-ray optical components to aid us in the characterization and evaluation of these changes. Hartmann sensing of a telescope and its components is a simple method that can be used to evaluate low order mirror surface errors and alignment errors. Phase retrieval techniques can also be used to assess and estimate the low order axial errors of the primary and secondary mirror segments. In this paper we describe the mathematical foundation of our Hartmann and phase retrieval sensing techniques. We show how these techniques can be used in the evaluation and performance prediction process of x-ray telescopes.

  14. Pattern Recognition in Optical Remote Sensing Data Processing

    NASA Astrophysics Data System (ADS)

    Kozoderov, Vladimir; Kondranin, Timofei; Dmitriev, Egor; Kamentsev, Vladimir

    Computational procedures of the land surface biophysical parameters retrieval imply that modeling techniques are available of the outgoing radiation description together with monitoring techniques of remote sensing data processing using registered radiances between the related optical sensors and the land surface objects called “patterns”. Pattern recognition techniques are a valuable approach to the processing of remote sensing data for images of the land surface - atmosphere system. Many simplified codes of the direct and inverse problems of atmospheric optics are considered applicable for the imagery processing of low and middle spatial resolution. Unless the authors are not interested in the accuracy of the final information products, they utilize these standard procedures. The emerging necessity of processing data of high spectral and spatial resolution given by imaging spectrometers puts forward the newly defined pattern recognition techniques. The proposed tools of using different types of classifiers combined with the parameter retrieval procedures for the forested environment are maintained to have much wider applications as compared with the image features and object shapes extraction, which relates to photometry and geometry in pixel-level reflectance representation of the forested land cover. The pixel fraction and reflectance of “end-members” (sunlit forest canopy, sunlit background and shaded background for a particular view and solar illumination angle) are only a part in the listed techniques. It is assumed that each pixel views collections of the individual forest trees and the pixel-level reflectance can thus be computed as a linear mixture of sunlit tree tops, sunlit background (or understory) and shadows. Instead of these photometry and geometry constraints, the improved models are developed of the functional description of outgoing spectral radiation, in which such parameters of the forest canopy like the vegetation biomass density for

  15. Optical remote sensing of aircraft emissions with the K300

    SciTech Connect

    Bittner, H.; Klein, V.; Eisenmann, T.; Engler, F.; Resch, M.; Mosebach, H.; Erhard, M.; Rippel, H. )

    1993-01-01

    The K300 Double Pendulum Interferometer is a compact high resolution Fourier Transform spectrometer designed for outdoor optical remote sensing in the infrared spectral region. Apart from the known atmospheric pollution monitoring by long-path measurements and smoke stack remote sensing at power plants, the remote diagnostic of hot aircraft engine emissions is a very interesting application of the infrared spectroscopy. First results of such measurements performed with the Kayser-Threde Double Pendulum Interferometer K300 at the DLR airport, Oberpfaffenhofen on January 15, 1992 are presented and discussed.

  16. Data acquisition and preprocessing techniques for remote sensing field research

    NASA Technical Reports Server (NTRS)

    Biehl, L. L.; Robinson, B. F.

    1983-01-01

    A crops and soils data base has been developed at Purdue University's Laboratory for Applications of Remote Sensing using spectral and agronomic measurements made by several government and university researchers. The data are being used to (1) quantitatively determine the relationships of spectral and agronomic characteristics of crops and soils, (2) define future sensor systems, and (3) develop advanced data analysis techniques. Researchers follow defined data acquisition and preprocessing techniques to provide fully annotated and calibrated sets of spectral, agronomic, and meteorological data. These procedures enable the researcher to combine his data with that acquired by other researchers for remote sensing research. The key elements or requirements for developing a field research data base of spectral data that can be transported across sites and years are appropriate experiment design, accurate spectral data calibration, defined field procedures, and through experiment documentation.

  17. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    SciTech Connect

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  18. Electrophoretic deposition as a new approach to produce optical sensing films adaptable to microdevices

    NASA Astrophysics Data System (ADS)

    Marín-Suárez, Marta; Medina-Rodríguez, Santiago; Ergeneman, Olgaç; Pané, Salvador; Fernández-Sánchez, Jorge F.; Nelson, Bradley J.; Fernández-Gutiérrez, Alberto

    2013-12-01

    We report the fabrication of optical oxygen sensor films using electrophoretic deposition (EPD) of poly(styrene-co-maleic anhydride) nanoparticles containing the oxygen-sensitive dye platinum(ii) meso-tetra(pentafluorophenyl)porphine. Compared to other deposition methods, the EPD is simple and allows easy control over deposition, which is crucial for the implementation of optical sensing films in microdevices. By optimizing the synthesis of the functional nanoparticles, anodic EPD can be performed. The amount of deposited particles can be tuned by varying either the electrical potential or the deposition time. The sensing phases were characterized using a phase-modulation technique showing a Stern-Volmer constant (kSV1) between 45 and 52 bar-1 for gas and of 20.72 bar-1 in the aqueous phase without leaching of the particles from the surface. The small thickness of the layers lead to short response times (<0.4 s). This is the first time that polymeric optical sensing films have been obtained by EPD from dispersions of oxygen sensing nanoparticles.We report the fabrication of optical oxygen sensor films using electrophoretic deposition (EPD) of poly(styrene-co-maleic anhydride) nanoparticles containing the oxygen-sensitive dye platinum(ii) meso-tetra(pentafluorophenyl)porphine. Compared to other deposition methods, the EPD is simple and allows easy control over deposition, which is crucial for the implementation of optical sensing films in microdevices. By optimizing the synthesis of the functional nanoparticles, anodic EPD can be performed. The amount of deposited particles can be tuned by varying either the electrical potential or the deposition time. The sensing phases were characterized using a phase-modulation technique showing a Stern-Volmer constant (kSV1) between 45 and 52 bar-1 for gas and of 20.72 bar-1 in the aqueous phase without leaching of the particles from the surface. The small thickness of the layers lead to short response times (<0.4 s). This is

  19. An optical fiber sensor for remote pH sensing and imaging.

    PubMed

    Wang, Jian; Wang, Lili

    2012-03-01

    A fiber-optical probe for pH sensing and real-time imaging is successfully fabricated by connecting a polymer imaging fiber and a gradient index (GRIN) lens rod which was modified with a sensing film. By employing an improved metallographic microscope, an optical system is designed to cooperate with the probe. This novel technique has high-quality imaging capabilities for observing remote samples while measuring pH. The linear range of the probe is pH 1.2-3.5. This technique overcomes the difficulty that high-quality images cannot be obtained when directly using conventional imaging bundles for pH sensing and imaging. As preliminary applications, the corrosion behavior of an iron screw and the reaction process of rust were investigated in buffer solutions of pH 2.0 and 2.9, respectively. The experiment demonstrated that the pH values of the analytes' surface were higher than that of buffer solutions due to the chemical reaction. It provides great potential for applications in optical multifunctional detection, especially in chemical sensing and biosensing. PMID:22449307

  20. Guided wave generation and sensing system using a single laser source and optical fibers

    NASA Astrophysics Data System (ADS)

    Lee, Hyeonseok; Park, Hyun-Jun; Sohn, Hoon; Kwon, Il-bum

    2010-04-01

    Structural health monitoring (SHM) techniques based on guided waves have been of great interests to many researchers. Among various SHM devices used for guided wave generation and sensing, lead zirconate titanate (PZT) transducers and fiber Bragg grating (FBG) sensors have been widely used because of their light weight, non-intrusive nature and compactness. To best take advantage of their merits, combination of PZT-based guided wave excitation and FBG-based sensing has been attempted by a few researchers. However, the PZT-based actuation and the FBG-based sensing are basically two independent systems in the past studies. This study proposes an integrated PZT/FBG system using a single laser source. Since power and data delivery is based on optical fibers, it may alleviate problems associated with conventional wire cables such as electromagnetic interference (EMI) and power/data attenuation. The experimental procedure for the proposed system is as follows. First, a tunable laser is used as the common power source for guided wave generation and sensing. The tunable laser beam is modulated and amplified to contain an arbitrary waveform. Then, it is transmitted to the PZT transducer node through an optical fiber for guided wave actuation. The transmitted laser beam is also used with the FBG sensor to measure high-speed strain changes induced by guided waves. Feasibility of the proposed technique has been experimentally demonstrated using aluminum plates. The results show that the proposed system could properly generate and sense the guided waves compared to the conventional methods.

  1. Majority fibre optic sensing devices for toxic substances in environmental

    SciTech Connect

    Smolak, A.

    1995-12-31

    The possibility has been shown of the use of the remote fluorescent sensing of organic and anorganic substances with fibre optic devices. The peculiarities of construction of fibre-optic sensors were proposed. Majority processing of excitation and radiation signals was proposed to increase analysis reproducibility and accuracy. Selection an average luminescence intensity signal is made by majority voter on the basis of a fibre-optic repeater (FOR) on M outputs and fibreoptic mixer (FOM) on M inputs. FOR serves for transmission of excitation signals from a larger generator to M sensitive layers of luminescence simultaneously. FOM translates luminescent radiation of each laser of the sensor to photodetector. The report gives the peculiarities and characteristics of the developed luminescent fibre optic sensor with triplicate majority redancy and results for detection of toxic elements (Cr, Be, Cd and etc) in water at the ppb level.

  2. Nanoimprinting on optical fiber end faces for chemical sensing

    NASA Astrophysics Data System (ADS)

    Kostovski, G.; White, D. J.; Mitchell, A.; Austin, M. W.; Stoddart, P. R.

    2008-04-01

    Optical fiber surface-enhanced Raman scattering (SERS) sensors offer a potential solution to monitoring low chemical concentrations in-situ or in remote sensing scenarios. We demonstrate the use of nanoimprint lithography to fabricate SERS-compatible nanoarrays on the end faces of standard silica optical fibers. The antireflective nanostructure found on cicada wings was used as a convenient template for the nanoarray, as high sensitivity SERS substrates have previously been demonstrated on these surfaces. Coating the high fidelity replicas with silver creates a dense array of regular nanoscale plasmonic resonators. A monolayer of thiophenol was used as a low concentration analyte, from which strong Raman spectra were collected using both direct endface illumination and through-fiber interrogation. This unique combination of nanoscale replication with optical fibers demonstrates a high-resolution, low-cost approach to fabricating high-performance optical fiber chemical sensors.

  3. Femtosecond laser induced refractive index structures in polymer optical fibre (POF) for sensing

    NASA Astrophysics Data System (ADS)

    Liang, S. J.; Scully, P. J.; Schille, J.; Vaughan, J.; Perrie, W.

    2009-10-01

    Techniques to directly write localised refractive index structures in polymer optical fibres (POF) are presented, using UV (400nm) ultrafast laser with pulse lengths of 100 fs to create in-fibre gratings for sensing. No doping is necessary for photosensitisation so commercially available POF is used. An in-fibre grating consisting of a 1.8 μm wide refractive index structure with a periodicity of 189 nm was demonstrated in single mode polymer fibre with optimised laser processing parameters.

  4. Optical Properties of Volcanic Ash: Improving Remote Sensing Observations

    NASA Astrophysics Data System (ADS)

    Whelley, P.; Colarco, P. R.; Aquila, V.; Krotkov, N. A.; Bleacher, J. E.; Garry, W. B.; Young, K. E.; Lima, A. R.; Martins, J. V.; Carn, S. A.

    2015-12-01

    Many times each year explosive volcanic eruptions loft ash into the atmosphere. Global travel and trade rely on aircraft vulnerable to encounters with airborne ash. Volcanic ash advisory centers (VAACs) rely on dispersion forecasts and satellite data to issue timely warnings. To improve ash forecasts model developers and satellite data providers need realistic information about volcanic ash microphysical and optical properties. In anticipation of future large eruptions we can study smaller events to improve our remote sensing and modeling skills so when the next Pinatubo 1991 or larger eruption occurs, ash can confidently be tracked in a quantitative way. At distances >100km from their sources, drifting ash plumes, often above meteorological clouds, are not easily detected from conventional remote sensing platforms, save deriving their quantitative characteristics, such as mass density. Quantitative interpretation of these observations depends on a priori knowledge of the spectral optical properties of the ash in UV (>0.3μm) and TIR wavelengths (>10μm). Incorrect assumptions about the optical properties result in large errors in inferred column mass loading and size distribution, which misguide operational ash forecasts. Similarly, simulating ash properties in global climate models also requires some knowledge of optical properties to improve aerosol speciation. Recent research has identified a wide range in volcanic ash optical properties among samples collected from the ground after different eruptions. The database of samples investigated remains relatively small, and measurements of optical properties at the relevant particle sizes and spectral channels are far from complete. Generalizing optical properties remains elusive, as does establishing relationships between ash composition and optical properties, which are essential for satellite retrievals. We are building a library of volcanic ash optical and microphysical properties. In this presentation we show

  5. Optical intersatellite link (OISL) for remote sensing satellites

    NASA Astrophysics Data System (ADS)

    Laxmiprasad, A. S.; Ranjith, R.; Raghubabu, P.; Kamalakar, J. A.

    2006-12-01

    Present day remote sensing satellites orbiting in low earth orbit (LEO) have increasingly sophisticated and high resolution onboard sensors. Their frequency and area of observation is also increasing. This generates large volume of data which needs to be communicated. However their visibility to ground station is limited. Free space optical communication between remote sensing satellite in LEO and communication satellite in geostationary earth orbit (GEO) can be favorable approach. Subsequently GEO satellite relays the data to ground station. To demonstrate this, a concept model operating at data rates greater than 1 Gbps is under development at LEOS. The system consisting of laser transmitter with 20cm diameter telescope and receiver with 30cm telescope is planned. It uses commercially available optical and optoelectronic components. This concept model will demonstrate and verify link margins available as against expected. Subsequent to this, it is planned to concentrate on design and other issues involved in acquisition, tracking and pointing (ATP) due to highly narrow laser beam.

  6. Optical gas sensing responses in transparent conducting oxides with large free carrier density

    NASA Astrophysics Data System (ADS)

    Ohodnicki, P. R.; Andio, M.; Wang, C.

    2014-07-01

    Inherent advantages of optical-based sensing devices motivate a need for materials with useful optical responses that can be utilized as thin film functional sensor layers. Transparent conducting metal oxides with large electrical conductivities as typified by Al-doped ZnO (AZO) display attractive properties for high temperature optical gas sensing through strong optical transduction of responses conventionally monitored through changes in measured electrical resistivity. An enhanced optical sensing response in the near-infrared and ultraviolet/visible wavelength ranges is demonstrated experimentally and linked with characteristic modifications to the dielectric constant due to a relatively high concentration of free charge carriers. The impact of light scattering on the magnitude and wavelength dependence of the sensing response is also discussed highlighting the potential for tuning the optical sensing response by controlling the surface roughness of a continuous film or the average particle size of a nanoparticle-based film. The physics underpinning the optical sensing response for AZO films on planar substrates yields significant insight into the measured sensing response for optical fiber-based evanescent wave absorption spectroscopy sensors employing an AZO sensing layer. The physics of optical gas sensing discussed here provides a pathway towards development of sensing materials for extreme temperature optical gas sensing applications. As one example, preliminary results are presented for a Nb-doped TiO2 film with sufficient stability and relatively large sensing responses at sensing temperatures greater than 500 °C.

  7. All-fiber bidirectional optical parametric oscillator for precision sensing.

    PubMed

    Gowda, R; Nguyen, N; Diels, J-C; Norwood, R A; Peyghambarian, N; Kieu, K

    2015-05-01

    We present the design and operation of an all-fiber, synchronously pumped, bidirectional optical parametric oscillator (OPO) for precision sensing applications. The fiber-based OPO (FOPO) generates two frequency combs with identical repetition rates but different carrier offset frequencies. A narrow beatnote was observed with full-width at half-maximum (FWHM) linewidth of <10  Hz when the two frequency combs were overlapped on a photodetector. The all-fiber design removes the need for free-space alignment and adjustment. In addition, an external delay line to overlap the two pulse trains in time on the detector is not needed since our unique design provides automatic delay compensation. We expect the novel FOPO to find important applications in precision measurements including rotation sensing with ultra-large sensing area and sensitivity. PMID:25927777

  8. Electronic implementation of optical burst switching techniques

    NASA Astrophysics Data System (ADS)

    Albanese, Ilijc; Darcie, Thomas E.; Ganti, Sudhakar

    2013-10-01

    Extensive research effort is ongoing in energy-efficient Internet-based communications. Optical Flow Switching (OFS) and Optical Burst Switching (OBS) offer potentially efficient alternatives to IP-router-based networks for large data transactions, but significant challenges remain. OFS requires each user to install expensive core network technology, limiting application to highly specialized nodes. OBS can achieve higher scalability but burst assembly/disassembly procedures reduce power efficiency. Finally both OFS and OBS use all-optical switching technologies for which energy efficiency and flexibility remain subject to debate. Our study aims at combining the advantages of both OBS and OFS while avoiding their shortcomings. We consider using a two-way resource reservation protocol for periodic concatenations of large (e.g. 1 Mb) packets or Media Frames (MFs). These chains of MFs (MFCs) are semi-transparent with a periodicity referred to as the "transparency degree". Each MFC is assembled and stored at an end-user machine during the resource reservation procedure and is then switched and buffered electronically along its path. The periodic configuration of each MFC enables interleaving of several chains using buffering only to align the MFs in each MFC in time, largely reducing the buffer requirements with respect to OBS. This periodicity also enables a simple scheduling algorithm to schedule large transactions with minimal control plane processing, achieving link utilization approaching 99.9%. In summary, results indicate that implementing optical burst switching techniques in the electronic domain is a compelling path forward to high-throughput power-efficient networking.

  9. Modeling the optical coupling across the anterior chamber of the eye towards polarimetric glucose sensing

    NASA Astrophysics Data System (ADS)

    Pirnstill, Casey W.; Coté, Gerard L.

    2014-02-01

    Millions of people worldwide are affected by diabetes. While glucose sensing technology has come a long way over the past several decades, the current commercially available techniques are still invasive, often leading to poor patient compliance. To minimize invasiveness, focus has been placed on optical techniques to ascertain blood glucose concentrations. Optical polarimetry has shown promise and progress as a viable technique for glucose sensing. Recent developments in polarimetric glucose sensing have been focused on overcoming time varying corneal birefringence due to motion artifacts. Beyond corneal birefringence, the next hurdle toward making this approach viable is the ability to couple polarized light across the eye's anterior chamber. The eye is ideally suited to couple light to the retina. The index mismatch between the air and cornea is partially responsible for the beam bending toward the retina and, while good for vision, it complicates our ability to couple light across the anterior chamber without using an index matching device when performing polarimetric glucose monitoring. In this report, we have designed and modeled a non-index matched coupling scheme constructed with commercially available optics. The optical ray tracing model was performed using CODE V to verify the feasibility of a reflective based non-index matched coupling scheme with respect to index of refraction and anatomical restraints. The ray tracing model was developed for a dual-wavelength system and the effect of refraction and reflection at each optical interface within the setup was evaluated. The modeling results indicate a reflective based optical coupling design could be added to existing polarimetric glucose systems thus removing the need for placing an index matched eye-coupling mechanism over the eye prior to data collection.

  10. A novel self-sensing technique for tapping-mode atomic force microscopy

    SciTech Connect

    Ruppert, Michael G.; Moheimani, S. O. Reza

    2013-12-15

    This work proposes a novel self-sensing tapping-mode atomic force microscopy operation utilizing charge measurement. A microcantilever coated with a single piezoelectric layer is simultaneously used for actuation and deflection sensing. The cantilever can be batch fabricated with existing micro electro mechanical system processes. The setup enables the omission of the optical beam deflection technique which is commonly used to measure the cantilever oscillation amplitude. Due to the high amount of capacitive feedthrough in the measured charge signal, a feedforward control technique is employed to increase the dynamic range from less than 1 dB to approximately 35 dB. Experiments show that the conditioned charge signal achieves excellent signal-to-noise ratio and can therefore be used as a feedback signal for atomic force microscopy imaging.

  11. A novel self-sensing technique for tapping-mode atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ruppert, Michael G.; Moheimani, S. O. Reza

    2013-12-01

    This work proposes a novel self-sensing tapping-mode atomic force microscopy operation utilizing charge measurement. A microcantilever coated with a single piezoelectric layer is simultaneously used for actuation and deflection sensing. The cantilever can be batch fabricated with existing micro electro mechanical system processes. The setup enables the omission of the optical beam deflection technique which is commonly used to measure the cantilever oscillation amplitude. Due to the high amount of capacitive feedthrough in the measured charge signal, a feedforward control technique is employed to increase the dynamic range from less than 1 dB to approximately 35 dB. Experiments show that the conditioned charge signal achieves excellent signal-to-noise ratio and can therefore be used as a feedback signal for atomic force microscopy imaging.

  12. Remote sensing techniques for prediction of watershed runoff

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.

    1975-01-01

    Hydrologic parameters of watersheds for use in mathematical models and as design criteria for flood detention structures are sometimes difficult to quantify using conventional measuring systems. The advent of remote sensing devices developed in the past decade offers the possibility that watershed characteristics such as vegetative cover, soils, soil moisture, etc., may be quantified rapidly and economically. Experiments with visible and near infrared data from the LANDSAT-1 multispectral scanner indicate a simple technique for calibration of runoff equation coefficients is feasible. The technique was tested on 10 watersheds in the Chickasha area and test results show more accurate runoff coefficients were obtained than with conventional methods. The technique worked equally as well using a dry fall scene. The runoff equation coefficients were then predicted for 22 subwatersheds with flood detention structures. Predicted values were again more accurate than coefficients produced by conventional methods.

  13. Optical properties of volcanic ash: improving remote sensing observations.

    NASA Astrophysics Data System (ADS)

    Whelley, Patrick; Colarco, Peter; Aquila, Valentina; Krotkov, Nickolay; Bleacher, Jake; Garry, Brent; Young, Kelsey; Rocha Lima, Adriana; Martins, Vanderlei; Carn, Simon

    2016-04-01

    Many times each year explosive volcanic eruptions loft ash into the atmosphere. Global travel and trade rely on aircraft vulnerable to encounters with airborne ash. Volcanic ash advisory centers (VAACs) rely on dispersion forecasts and satellite data to issue timely warnings. To improve ash forecasts model developers and satellite data providers need realistic information about volcanic ash microphysical and optical properties. In anticipation of future large eruptions we can study smaller events to improve our remote sensing and modeling skills so when the next Pinatubo 1991 or larger eruption occurs, ash can confidently be tracked in a quantitative way. At distances >100km from their sources, drifting ash plumes, often above meteorological clouds, are not easily detected from conventional remote sensing platforms, save deriving their quantitative characteristics, such as mass density. Quantitative interpretation of these observations depends on a priori knowledge of the spectral optical properties of the ash in UV (>0.3μm) and TIR wavelengths (>10μm). Incorrect assumptions about the optical properties result in large errors in inferred column mass loading and size distribution, which misguide operational ash forecasts. Similarly, simulating ash properties in global climate models also requires some knowledge of optical properties to improve aerosol speciation.

  14. Extrinsic fiber optic displacement sensors and displacement sensing systems

    DOEpatents

    Murphy, Kent A.; Gunther, Michael F.; Vengsarkar, Ashish M.; Claus, Richard O.

    1994-01-01

    An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer.

  15. Extrinsic fiber optic displacement sensors and displacement sensing systems

    DOEpatents

    Murphy, K.A.; Gunther, M.F.; Vengsarkar, A.M.; Claus, R.O.

    1994-04-05

    An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer. 14 figures.

  16. Bromocresol green/mesoporous silica adsorbent for ammonia gas sensing via an optical sensing instrument.

    PubMed

    Chang, Yu-Chang; Bai, Hsunling; Li, Shou-Nan; Kuo, Chun-Nan

    2011-01-01

    A meso-structured Al-MCM-41 material was impregnated with bromocresol green (BG) dye and then incorporated into a UV-Vis DRA spectroscopic instrument for the online detection of ammonia gas. The absorption response of the Al-MCM-41/BG ammonia sensing material was very sensitive at the optical absorption wavelength of 630 nm. A high linear correlation was achieved for ppmv and sub-ppmv levels of ammonia gas. The response time for the quantitative detection of ammonia gas concentrations ranging from 0.25 to 2.0 ppmv was only a few minutes. The lower detection limit achieved was 0.185 ppmv. The color change process was fully reversible during tens of cycling tests. These features together make this mesoporous Al-MCM-41 material very promising for optical sensing applications.

  17. Research on the demodulation techniques of long-period fiber gratings strain sensing with low cost

    NASA Astrophysics Data System (ADS)

    Wang, Qingwei; Liu, Yueming; Tian, Weijian; Feng, Guilan

    2012-10-01

    The working principle of LPFG(Long-Period Fiber Grating) is based on coupling effect between propagating core-mode and co-propagating cladding-modes. The effective refractive index of cladding-modes could be obviously influenced by the environmental changes resulting in LPFG more sensitive than FBG (Fiber Bragg Grating) in sensing areas, such as temperature, strain, concentration, bending and etc. LPFG should have more potential in the field of sensors compared with FBG. One of the challenges in using LPFG for environmental sensing is how to interrogate the signal from the LPFG transmission spectrum, due to the large spectral range of the resonant dip. Nowadays the application of LPFG is normally limited in signal interrogation of FBG as optical edge filter. The signal interrogation of LPFG itself needs further research. Presently research on signal interrogation of fiber grating focuses on wavelength interrogation. The aim of wavelength interrogation is to get the wavelength shift caused by environmental change. To solve these problems, a kind of strain sensing interrogation technique for LPFG with low-cost based on tunable FBGs has been developed. Comparing with the method using Fabry-Perot cavity, tunable FBGs can lower the cost with the guarantee of sensing precision. The cost is further lowered without using expensive optical instruments such as optical switch. The problem of temperature cross-sensitivity was solved by using reference gratings. An experiment was performed to demonstrate the interrogation system. And in the experiment, the sensing signal of LPFG applied 0-1300μɛ was successfully interrogated. The results of the interrogation system and OSA are similar.

  18. Recognition as a challenging label-free optical sensing system

    NASA Astrophysics Data System (ADS)

    Gauglitz, Günter

    2013-05-01

    Optical biosensors are increasingly used in application areas of environmental analysis, healthcare and food safety. The quality of the biosensor's results depends on the interaction layer, the detection principles, and evaluation strategies, not only on the biopolymer layer but also especially on recognition elements. Using label-free optical sensing, non-specific interaction between sample and transducer has to be reduced, and the selectivity of recognition elements has to be improved. For this reason, strategies to avoid non-specific interaction even in blood and milk are discussed, a variety of upcoming recognition is given. Based on the classification of direct optical detection methods, some examples for the above mentioned applications are reviewed. Trends as well as advantages of parallel multisport detection for kinetic evaluation are also part of the lecture.

  19. An investigation into Voigt wave propagation for optical sensing

    NASA Astrophysics Data System (ADS)

    Mackay, Tom G.

    2013-09-01

    In the nonsingular case of optical propagation in a linear, homogeneous, anisotropic, dielectric material, two independent plane waves, with orthogonal polarizations and different phase speeds, can propagate in a given direction. However, in certain dissipative biaxial materials there are particular directions along which these two waves coalesce to form a single plane wave. This coalescent Voigt wave represents the singular case. Most conspicuously, the amplitude of Voigt waves are linearly dependent upon propagation direction. A porous nanostructured thin film which supports Voigt wave propagation was investigated, with a view to possible optical sensing applications. The directions along which Voigt waves propagate can be highly sensitive to the refractive index of a fluid which infiltrates this porous material. Indeed, in our theoretical studies sensitivities which compare favourably to those of surface-plasmon-polariton-based optical sensors were found.

  20. A tactile sensing element based on a hetero-core optical fiber for force measurement and texture detection

    NASA Astrophysics Data System (ADS)

    Yamazaki, Hiroshi; Koyama, Yuya; Watanabe, Kazuhiro

    2014-05-01

    Tactile sensing technology can measure a given property of an object through physical contact between a sensing element and the object. Various tactile sensing techniques have been developed for several applications such as intelligent robots, tactile interface, medical support and nursing care support. A desirable tactile sensing element for supporting human daily life can be embedded in the soft material with high sensitivity and accuracy in order to prevent from damaging to human or object physically. This report describes a new tactile sensing element. Hetero-core optical fibers have high sensitivity of macro-bending at local sensor portion and temperature independency, including advantages of optical fiber itself; thin size, light weight, flexible transmission line, and immunity to electro-magnetic interference. The proposed tactile sensing element could detect textures of touched objects through the optical loss caused by the force applied to the sensing element. The characteristics of the sensing element have been evaluated, in which the sensing element has the monotonic and non-linear sensitivity against the normal force ranged from 0 to 5 N with lower accuracy than 0.25 dB. Additionally, texture detection have been successfully demonstrated in which small surface figures of 0.1 mm in height were detected with spatial resolution of 0.4 mm.

  1. Study on optical measurement conditions for noninvasive blood glucose sensing

    NASA Astrophysics Data System (ADS)

    Xu, Kexin; Chen, Wenliang; Jiang, Jingying; Qiu, Qingjun

    2004-05-01

    Utilizing Near-infrared Spectroscopy for non-invasive glucose concentration sensing has been a focusing topic in biomedical optics applications. In this paper study on measuring conditions of spectroscopy on human body is carried out and a series of experiments on glucose concentration sensing are conducted. First, Monte Carlo method is applied to simulate and calculate photons" penetration depth within skin tissues at 1600 nm. The simulation results indicate that applying our designed optical probe, the detected photons can penetrate epidermis of the palm and meet the glucose sensing requirements within the dermis. Second, we analyze the influence of the measured position variations and the contact pressure between the optical fiber probe and the measured position on the measured spectrum during spectroscopic measurement of a human body. And, a measurement conditions reproduction system is introduced to enhance the measurement repeatability. Furthermore, through a series of transmittance experiments on glucose aqueous solutions sensing from simple to complex we found that though some absorption variation information of glucose can be obtained from measurements using NIR spectroscopy, while under the same measuring conditions and with the same modeling method, choices toward measured components reduce when complication degree of components increases, and this causes a decreased prediction accuracy. Finally, OGTT experiments were performed, and a PLS (Partial Least Square) mathematical model for a single experiment was built. We can easily get a prediction expressed as RMSEP (Root Mean Square Error of Prediction) with a value of 0.5-0.8mmol/dl. But the model"s extended application and reliability need more investigation.

  2. Magneto-photonic crystals for optical sensing applications

    NASA Astrophysics Data System (ADS)

    Dissanayake, Neluka

    Among the optical structures investigated for optical sensing purpose, a significant amount of research has been conducted on photonic crystal based sensors. A particular advantage of photonic crystal based sensors is that they show superior sensitivity for ultra-small volume sensing. In this study we investigate polarization changes in response to the changes in the cover index of magneto-optic active photonic band gap structures. One-dimensional photonic-band gap structures fabricated on iron garnet materials yield large polarization rotations at the band gap edges. The enhanced polarization effects serve as an excellent tool for chemical sensing showing high degree of sensitivity for photonic crystal cover refractive index changes. The one dimensional waveguide photonic crystals are fabricated on single-layer bismuth-substituted rare earth iron garnet films ((Bi, Y, Lu)3(Fe, Ga)5O12 ) grown by liquid phase epitaxy on gadolinium gallium garnet substrates. Band gaps have been observed where Bragg scattering conditions links forward-going fundamental waveguide modes to backscattered high-order waveguide modes. Large near-band-edge polarization rotations which increase progressively with backscattered-mode order have been experimentally demonstrated for multiple samples with different composition, film thickness and fabrication parameters. Experimental findings are supported by theoretical analysis of Bloch modes polarization states showing that large near stop-band edge rotations are induced by the magneto-photonic crystal. Theoretical and experimental analysis conducted on polarization rotation sensitivity to waveguide photonic crystal cover refractive index changes shows a monotonic enhancement of the rotation with cover index. The sensor is further developed for selective chemical sensing by employing Polypyrrole as the photonic crystal cover layer. Polypyrrole is one of the extensively studied conducting polymers for selective analyte detection. Successful

  3. Compressive sensing optical coherence tomography using randomly accessible lasers

    NASA Astrophysics Data System (ADS)

    Harfouche, Mark; Satyan, Naresh; Vasilyev, Arseny; Yariv, Amnon

    2014-05-01

    We propose and demonstrate a novel a compressive sensing swept source optical coherence tomography (SSOCT) system that enables high speed images to be taken while maintaining the high resolution offered from a large bandwidth sweep. Conventional SSOCT systems sweep the optical frequency of a laser ω(t) to determine the depth of the reflectors at a given lateral location. A scatterer located at delay τ appears as a sinusoid cos (ω(t)τ ) at the photodetector. The finite optical chirp rate and the speed of analog to digital and digital to analog converters limit the acquisition rate of an axial scan. The proposed acquisition modality enables much faster image acquisition rates by interrogating the beat signal at randomly selected optical frequencies while preserving resolution and depth of field. The system utilizes a randomly accessible laser, a modulated grating Y-branch laser, to sample the interference pattern from a scene at randomly selected optical frequencies over an optical bandwidth of 5 THz , corresponding to a resolution of 30 μm in air. The depth profile is then reconstructed using an l1 minimization algorithm with a LASSO constraint. Signal-dependent noise sources, shot noise and phase noise, are analyzed and taken into consideration during the recovery. Redundant dictionaries are used to improve the reconstruction of the depth profile. A compression by a factor of 10 for sparse targets up to a depth of 15 mm in noisy environments is shown.

  4. FMCW optical ranging technique in turbid waters

    NASA Astrophysics Data System (ADS)

    Illig, David W.; Laux, Alan; Lee, Robert W.; Jemison, William D.; Mullen, Linda J.

    2015-05-01

    The performance of a frequency-modulated continuous-wave (FMCW) hybrid lidar-radar system will be presented in the context of an underwater optical ranging application. In adapting this technique from the radar community, a laser is intensity-modulated with a linear frequency ramp. A custom wideband laser source modulated by a new wideband digital synthesizer board is used to transmit an 800 MHz wide chirp into the underwater channel. The transmitted signal is mixed with a reference copy to obtain a "beat" signal representing the distance to the desired object. The expected form of the return signal is derived for turbid waters, a highly scattering environment, indicating that FMCW can detect both the desired object and the volumetric center of the backscatter "clutter" signal. This result is verified using both laboratory experiments and a realistic simulation model of the underwater optical channel. Ranging performance is explored as a function of both object position and water turbidity. Experimental and simulated results are in good agreement and performance out to ten attenuation lengths is reported, equivalent to 100 meters in open ocean or 5 meters in a turbid harbor condition.

  5. Sensing Plasmon-Resonant Nanorods in Tissue with Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Oldenburg, Amy

    2009-11-01

    Gold nanoparticles (GNPs) are of high interest for biomedical imaging and photothermal therapy due to their plasmon-resonant nature. However, their utility is limited by transport and targeting to the disease of interest after administration in the living body. Optical coherence tomography can image the distribution of GNPs on the micro- to meso-scale, leading toward a better understanding of these limiting factors. Plasmon-resonant nanorods provide strong optical absorption at near-infrared wavelengths, and are studied using an optical coherence tomography system based on a broadband laser centered at 800nm. The ability to sense GNPs against a biological tissue background is treated as a sensing problem with parameters including the nanorod volume and aspect ratio, optical detection metrics including extinction, a new backscattering albedo metric based on the ratio of backscattering to extinction, and spectroscopic analysis. A key element of this analysis is determining the native tissue optical response, optical signal noise, and spatial heterogeneity before addition of the GNPs. Experiments are performed in skin-like tissue phantoms where a sensitivity of 30ppm is found. Experiments in excised human mammary tumors reveal additional challenges for imaging in real tissues, and the results of various processing techniques are compared.

  6. Analysis of non-linearity in differential wavefront sensing technique.

    PubMed

    Duan, Hui-Zong; Liang, Yu-Rong; Yeh, Hsien-Chi

    2016-03-01

    An analytical model of a differential wavefront sensing (DWS) technique based on Gaussian Beam propagation has been derived. Compared with the result of the interference signals detected by quadrant photodiode, which is calculated by using the numerical method, the analytical model has been verified. Both the analytical model and numerical simulation show milli-radians level non-linearity effect of DWS detection. In addition, the beam clipping has strong influence on the non-linearity of DWS. The larger the beam clipping is, the smaller the non-linearity is. However, the beam walking effect hardly has influence on DWS. Thus, it can be ignored in laser interferometer. PMID:26974079

  7. Melamine sensing based on evanescent field enhanced optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Luo, Ji; Yao, Jun; Wang, Wei-min; Zhuang, Xu-ye; Ma, Wen-ying; Lin, Qiao

    2013-08-01

    Melamine is an insalubrious chemical, and has been frequently added into milk products illegally, to make the products more protein-rich. However, it can cause some various diseases, such as kidney stones and bladder cancer. In this paper, a novel optical fiber sensor with high sensitivity based on absorption of the evanescent field for melamine detection is successfully proposed and developed. Different concentrations of melamine changing from 0 to 10mg/mL have been detected using the micro/nano-sensing fiber decorated with silver nanoparticles cluster layer. As the concentration increases, the sensing fiber's output intensity gradually deceases and the absorption of the analyte becomes large. The concentration changing of 1mg/ml can cause the absorbance varying 0.664 and the limit of the melamine detectable concentration is 1ug/mL. Besides, the coupling properties between silver nanoparticles have also been analyzed by the FDTD method. Overall, this evanescent field enhanced optical fiber sensor has potential to be used in oligo-analyte detection and will promote the development of biomolecular and chemical sensing applications.

  8. Dynamic Force Sensing Using an Optically Trapped Probing System

    PubMed Central

    Huang, Yanan; Cheng, Peng; Menq, Chia-Hsiang

    2013-01-01

    This paper presents the design of an adaptive observer that is implemented to enable real-time dynamic force sensing and parameter estimation in an optically trapped probing system. According to the principle of separation of estimation and control, the design of this observer is independent of that of the feedback controller when operating within the linear range of the optical trap. Dynamic force sensing, probe steering/clamping, and Brownian motion control can, therefore, be developed separately and activated simultaneously. The adaptive observer utilizes the measured motion of the trapped probe and input control effort to recursively estimate the probe–sample interaction force in real time, along with the estimation of the probing system’s trapping bandwidth. This capability is very important to achieving accurate dynamic force sensing in a time-varying process, wherein the trapping dynamics is nonstationary due to local variations of the surrounding medium. The adaptive estimator utilizes the Kalman filter algorithm to compute the time-varying gain in real time and minimize the estimation error for force probing. A series of experiments are conducted to validate the design of and assess the performance of the adaptive observer. PMID:24382944

  9. A novel data adaptive detection scheme for distributed fiber optic acoustic sensing

    NASA Astrophysics Data System (ADS)

    Ölçer, Íbrahim; Öncü, Ahmet

    2016-05-01

    We introduce a new approach for distributed fiber optic sensing based on adaptive processing of phase sensitive optical time domain reflectometry (Φ-OTDR) signals. Instead of conventional methods which utilizes frame averaging of detected signal traces, our adaptive algorithm senses a set of noise parameters to enhance the signal-to-noise ratio (SNR) for improved detection performance. This data set is called the secondary data set from which a weight vector for the detection of a signal is computed. The signal presence is sought in the primary data set. This adaptive technique can be used for vibration detection of health monitoring of various civil structures as well as any other dynamic monitoring requirements such as pipeline and perimeter security applications.

  10. Optical inspection techniques for security instrumentation

    NASA Astrophysics Data System (ADS)

    van Renesse, Rudolf L.

    1996-03-01

    This paper reviews four optical inspection systems, in which development TNO Institute of Applied Physics was involved: (1) intaglio scanning and recognition, (2) banknote quality inspection, (3) visualization and reading of a finger pattern, and (4) 3DAS authentication. (1) Intaglio is reserved for high security printing. It renders a tactile relief that can be recognized by a laser scanning technique. This technique is applied by various national banks to detect counterfeit banknotes returning from circulation. A new system is proposed that will detect intaglio on arbitrary wrinkled banknotes. (2) A banknote fitness inspection system (BFIS) that inspects banknotes in specularly reflected light is described. As modern banknotes are provided increasingly with reflective security foils, a new system is proposed that inspects banknotes in specular and diffuse reflection, as well as in transmission. (3) An alternative visualization method for visualization of finger patterns is described, employing a reflective elastomer. A CD scanning system reads the finger patterns. (4) A nonwoven structure has two advantageous properties for card authentication: a random structure which renders each few square millimeters of the pattern uniqueness (identification) and a 3D structure which makes it virtually impossible to be counterfeited (authentication). Both properties are inspected by an extremely simple lenseless reader.

  11. Nanoporous Anodic Alumina Platforms: Engineered Surface Chemistry and Structure for Optical Sensing Applications

    PubMed Central

    Kumeria, Tushar; Santos, Abel; Losic, Dusan

    2014-01-01

    Electrochemical anodization of pure aluminum enables the growth of highly ordered nanoporous anodic alumina (NAA) structures. This has made NAA one of the most popular nanomaterials with applications including molecular separation, catalysis, photonics, optoelectronics, sensing, drug delivery, and template synthesis. Over the past decades, the ability to engineer the structure and surface chemistry of NAA and its optical properties has led to the establishment of distinctive photonic structures that can be explored for developing low-cost, portable, rapid-response and highly sensitive sensing devices in combination with surface plasmon resonance (SPR) and reflective interference spectroscopy (RIfS) techniques. This review article highlights the recent advances on fabrication, surface modification and structural engineering of NAA and its application and performance as a platform for SPR- and RIfS-based sensing and biosensing devices. PMID:25004150

  12. Fiber optic device for sensing the presence of a gas

    DOEpatents

    Benson, David K.; Bechinger, Clemens S.; Tracy, C. Edwin

    1998-01-01

    A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material's optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment.

  13. Fiber optic device for sensing the presence of a gas

    DOEpatents

    Benson, D.K.; Bechinger, C.S.; Tracy, C.E.

    1998-01-13

    A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material`s optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment. 5 figs.

  14. Integration of Field and Remote Sensing Techniques For Landslides Monitoring

    NASA Astrophysics Data System (ADS)

    Allievi, J.; Ambrosi, C.; Ceriani, M.; Colesanti, C.; Crosta, G. B.; Ferretti, A.; Fossati, D.; Menegaz, A.

    The definition of the state of activity of slope movements is of major interest both at local and at regional scale. The Geological Survey of the Regione Lombardia has re- cently started a series of projects aimed to the identification of areas subjected to slope instability and to the assessment of their state of activity. Field survey, aerial photo interpretation and advanced remote sensing techniques have been applied. Some ex- amples of large rock slope instabilities have been investigated in the Valtellina area (Lombardia, Northern Italy). In particular, we demonstrate the degree of integration of the adopted techniques for one of the largest rock slope movements actually recog- nised in the area. The remote sensing approach that has been adopted is the Perma- nent Scatterers (PS) Technique. This technique has been recently developed as a new methodology for surface deformation monitoring, using ESA ERS-SAR data. Its ap- plication to large slope movements in alpine and prealpine areas, with a relatively low urban development, has been tried for the first time in order to evaluate its potential in supporting studies for landslide hazard assessment. Previous results show that this ap- proach allows to reach an accuracy very close to the theoretical limit. This study shows the very good agreement reached for displacement velocities between historical trends and recent PS measurements. Scatterers have been identified by field surveying and some of them are located close to historically monitored benchmark for topographic measurements. Furthermore, the integration of these data with field observations al- lowed us to perform a preliminary reconstrucion of the landslide mechanism and to assess the activity of different landslide structures (scarps, etc.).

  15. Spectroelectrochemistry: The Combination of Optical and Electrochemical Techniques.

    ERIC Educational Resources Information Center

    Heineman, William R.

    1983-01-01

    Two different techniques, electrochemistry and spectroscopy, can be combined for studying the redox chemistry of inorganic, organic, and biological molecules. Several commonly used spectroelectrochemical methods and their applications are described. Includes discussions of optically transparent electrodes, optical absorption/fluorescence…

  16. Direct wavefront sensing in adaptive optical microscopy using backscattered light.

    PubMed

    Rahman, Saad A; Booth, Martin J

    2013-08-01

    Adaptive optics has been used to compensate the detrimental effects of aberrations in a range of high-resolution microscopes. We investigate how backscattered laser illumination can be used as the source for direct wavefront sensing using a pinhole-filtered Shack-Hartmann wavefront sensor. It is found that the sensor produces linear response to input aberrations for a given specimen. The gradient of this response is dependent upon experimental configuration and specimen structure. Cross sensitivity between modes is also observed. The double pass nature of the microscope system leads in general to lower sensitivity to odd-symmetry aberration modes. The results show that there is potential for use of this type of wavefront sensing in microscopes.

  17. Multiplexed optical operation of nanoelectromechanical systems (NEMS) arrays for sensing and signal-processing applications

    NASA Astrophysics Data System (ADS)

    Sampathkumar, Ashwin

    2014-06-01

    NEMS are rapidly being developed for a variety of sensing applications as well as for exploring interesting regimes in fundamental physics. In most of these endeavors, operation of a NEMS device involves actuating the device harmonically around its fundamental resonance and detecting subsequent motion while the device interacts with its environment. Even though a single NEMS resonator is exceptionally sensitive, a typical application, such as sensing or signal processing, requires the detection of signals from many resonators distributed over the surface of a chip. Therefore, one of the key technological challenges in the field of NEMS is development of multiplexed measurement techniques to detect the motion of a large number of NEMS resonators simultaneously. In this work, we address the important and difficult problem of interfacing with a large number of NEMS devices and facilitating the use of such arrays in, for example, sensing and signal processing applications. We report a versatile, all-optical technique to excite and read-out a distributed NEMS array. The NEMS array is driven by a distributed, intensity-modulated, optical pump through the photothermal effect. The ensuing vibrational response of the array is multiplexed onto a single, probe beam as a high-frequency phase modulation. The phase modulation is optically down converted to a low-frequency, intensity modulation using an adaptive full -field interferometer, and subsequently is detected using a charge-coupled device (CCD) array. Rapid and single-step mechanical characterization of approximately 60 nominally identical, high-frequency resonators is demonstrated. The technique may enable sensitivity improvements over single NEMS resonators by averaging signals coming from a multitude of devices in the array. In addition, the diffraction-limited spatial resolution may allow for position-dependent read-out of NEMS sensor chips for sensing multiple analytes or spatially inhomogeneous forces.

  18. A comprehensive review of earthquake-induced building damage detection with remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Dong, Laigen; Shan, Jie

    2013-10-01

    Earthquakes are among the most catastrophic natural disasters to affect mankind. One of the critical problems after an earthquake is building damage assessment. The area, amount, rate, and type of the damage are essential information for rescue, humanitarian and reconstruction operations in the disaster area. Remote sensing techniques play an important role in obtaining building damage information because of their non-contact, low cost, wide field of view, and fast response capacities. Now that more and diverse types of remote sensing data become available, various methods are designed and reported for building damage assessment. This paper provides a comprehensive review of these methods in two categories: multi-temporal techniques that evaluate the changes between the pre- and post-event data and mono-temporal techniques that interpret only the post-event data. Both categories of methods are discussed and evaluated in detail in terms of the type of remote sensing data utilized, including optical, LiDAR and SAR data. Performances of the methods and future efforts are drawn from this extensive evaluation.

  19. Modern fibre-optic coherent lidars for remote sensing

    NASA Astrophysics Data System (ADS)

    Hill, Chris

    2015-10-01

    This paper surveys some growth areas in optical sensing that exploit near-IR coherent laser sources and fibreoptic hardware from the telecoms industry. Advances in component availability and performance are promising benefits in several military and commercial applications. Previous work has emphasised Doppler wind speed measurements and wind / turbulence profiling for air safety, with recent sharp increases in numbers of lidar units sold and installed, and with wider recognition that different lidar / radar wavebands can and should complement each other. These advances are also enabling fields such as microDoppler measurement of sub-wavelength vibrations and acoustic waves, including non-lineof- sight acoustic sensing in challenging environments. To shed light on these different applications we review some fundamentals of coherent detection, measurement probe volume, and parameter estimation - starting with familiar similarities and differences between "radar" and "laser radar". The consequences of changing the operating wavelength by three or four orders of magnitude - from millimetric or centimetric radar to a typical fibre-optic lidar working near 1.5 μm - need regular review, partly because of continuing advances in telecoms technology and computing. Modern fibre-optic lidars tend to be less complicated, more reliable, and cheaper than their predecessors; and they more closely obey the textbook principles of easily adjusted and aligned Gaussian beams. The behaviours of noises and signals, and the appropriate processing strategies, are as expected different for the different wavelengths and applications. For example, the effective probe volumes are easily varied (e.g. by translating a fibre facet) through six or eight orders of magnitude; as the average number of contributing scatterers varies, from <<1 through ~1 to >>1, we should review any assumptions about "many" scatterers and Gaussian statistics. Finally, some much older but still relevant scientific

  20. An inexpensive active optical remote sensing instrument for assessing aerosol distributions.

    PubMed

    Barnes, John E; Sharma, Nimmi C P

    2012-02-01

    Air quality studies on a broad variety of topics from health impacts to source/sink analyses, require information on the distributions of atmospheric aerosols over both altitude and time. An inexpensive, simple to implement, ground-based optical remote sensing technique has been developed to assess aerosol distributions. The technique, called CLidar (Charge Coupled Device Camera Light Detection and Ranging), provides aerosol altitude profiles over time. In the CLidar technique a relatively low-power laser transmits light vertically into the atmosphere. The transmitted laser light scatters off of air molecules, clouds, and aerosols. The entire beam from ground to zenith is imaged using a CCD camera and wide-angle (100 degree) optics which are a few hundred meters from the laser. The CLidar technique is optimized for low altitude (boundary layer and lower troposphere) measurements where most aerosols are found and where many other profiling techniques face difficulties. Currently the technique is limited to nighttime measurements. Using the CLidar technique aerosols may be mapped over both altitude and time. The instrumentation required is portable and can easily be moved to locations of interest (e.g. downwind from factories or power plants, near highways). This paper describes the CLidar technique, implementation and data analysis and offers specifics for users wishing to apply the technique for aerosol profiles.

  1. A Remote Sensing Technique For Combustion Gas Temperature Measurement In Black Liquor Recovery Boilers

    NASA Astrophysics Data System (ADS)

    Charagundla, S. R.; Semerjian, H. G.

    1986-10-01

    A remote sensing technique, based on the principles of emission spectroscopy, is being developed for temperature measurements in black liquor recovery boilers. Several tests have been carried out, both in the laboratory and at a number of recovery boilers, to characterize the emission spectra in the wavelength range of 300 nm to 800 nm. These tests have pointed out the potential for temperature measurements using the line intensity ratio technique based on a pair of emission lines at 404.4 nm and 766.5 nm observed in the recovery boiler combustion zone; these emission lines are due to potassium, a common constituent found in all the black liquors. Accordingly, a fiber optics based four-color system has been developed. This in-situ, nonintrusive temperature measurement technique, together with some of the more recent results, is described in this paper.

  2. High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing.

    PubMed

    Sperber, Tom; Eyal, Avishay; Tur, Moshe; Thévenaz, Luc

    2010-04-12

    A novel BOTDA technique for distributed sensing of the Brillouin frequency in optical fibers with cm-order spatial resolution is proposed. The technique is based upon a simple modulation scheme, requiring only a single long pump pulse for acoustic excitation, and no subsequent interrogating pulse. Instead, the desired spatial mapping of the Brillouin response is extracted by taking the derivative of the probe signal. As a result, the spatial resolution is limited by the fall-time of the pump modulation, and the phenomena of secondary "echo" signals, typically appearing in BOTDA sensing methods based upon pre-excitation, is mitigated. Experimental demonstration of the detection of a Brillouin frequency variation significantly smaller than the natural Brillouin linewidth, with a 2cm spatial resolution, is presented.

  3. Remote sensing of atmospheric winds using speckleturbulence interaction, a CO(2) laser, and optical heterodyne detection.

    PubMed

    Holmes, J F; Amzajerdian, F; Gudimetla, R V; Hunt, J M

    1988-06-15

    Speckle-turbulence interaction can be utilized to measure the vector wind in a plane perpendicular to the line of sight from a laser transmitter to a target. A continuous wave source of around 1 W and operating at 10.6 microm, in conjunction with an optical heterodyne receiver, has been used to measure atmospheric winds along horizontal paths. A theoretical basis, the experimental apparatus, processing techniques, and experimental results are presented. The technique has been demonstrated for remote sensing of atmospheric winds along horizontal paths but also has potential for global remote sensing of atmospheric winds and for onboard wind shear detection systems for aircraft. The results show that rms accuracies of the order of 0.5 m/s are possible with averaging times as short as 2 s.

  4. New Optical Sensing Materials for Application in Marine Research

    NASA Astrophysics Data System (ADS)

    Borisov, S.; Klimant, I.

    2012-04-01

    Optical chemosensors are versatile analytical tools which find application in numerous fields of science and technology. They proved to be a promising alternative to electrochemical methods and are applied increasingly often in marine research. However, not all state-of-the- art optical chemosensors are suitable for these demanding applications since they do not fully fulfil the requirements of high luminescence brightness, high chemical- and photochemical stability or their spectral properties are not adequate. Therefore, development of new advanced sensing materials is still of utmost importance. Here we present a set of novel optical sensing materials recently developed in the Institute of Analytical Chemistry and Food Chemistry which are optimized for marine applications. Particularly, we present new NIR indicators and sensors for oxygen and pH which feature high brightness and low level of autofluorescence. The oxygen sensors rely on highly photostable metal complexes of benzoporphyrins and azabenzoporphyrins and enable several important applications such as simultaneous monitoring of oxygen and chlorophyll or ultra-fast oxygen monitoring (Eddy correlation). We also developed ulta-sensitive oxygen optodes which enable monitoring in nM range and are primary designed for investigation of oxygen minimum zones. The dynamic range of our new NIR pH indicators based on aza-BODIPY dyes is optimized for the marine environment. A highly sensitive NIR luminescent phosphor (chromium(III) doped yttrium aluminium borate) can be used for non-invasive temperature measurements. Notably, the oxygen, pH sensors and temperature sensors are fully compatible with the commercially available fiber-optic readers (Firesting from PyroScience). An optical CO2 sensor for marine applications employs novel diketopyrrolopyrrol indicators and enables ratiometric imaging using a CCD camera. Oxygen, pH and temperature sensors suitable for lifetime and ratiometric imaging of analytes

  5. Optical component of the European Airborne Remote Sensing Capabilities (EARSEC)

    NASA Astrophysics Data System (ADS)

    Carrere, Veronique; Oertel, Dieter; Verdebout, Jean; Maracci, G.; Schmuck, Guido; Sieber, Alois J.

    1995-06-01

    The European Ariborne Remote Sensing Capabilities (EARSEC) is a program of the Commission of the European Union in coordination with the European Space Agency. Its goal is to establish an independent European state-of-the-art capability in remote sensing for a wide range of applications. The core instrument of the 'Optical' component of EARSEC is an Imaging Spectrometer (the Digital Airborne Imaging Spectrometer 7915 or DIAS 7915) built by Geophysical & Environmental Research Corporation (GER) and operated by DLR, Oberpfaffenhofen, in collaboration with JRC. The 79 channel high resolution Imaging Spectrometer (IS) covers the 0.4 to 12.3 micrometers wavelength range with a spectral resolution varying from 16 to 2000 nm. Operated from a Dornier 228 aircraft, the spatial resolution can vary between 3 and 15 m. The instrument is calibrated and improved at DLR and should be operational in 1995 for campaigns over Europe. The 'Optical' component of EARSEC also includes ground facilities, mainly an electro-optical (EO) processor developed for JRC by Earth Observation Sciences Limited in the United Kingdom for DAIS 7915 data processing. This processor will generate four levels of products, from simple ingestion, to calibration into physical units of radiance, to geolocation and geocoding. Collaborations are foreseen with European groups operating other advanced optical sensors such as the Italian LARA project, operating the MIVIS (IS comparable to the DAIS), and DLR, operating the ROSIS (developed for marine applications, covering the 430-850 nm region). The EO processor could be adapted in the future to handle other IS data for a more universal use.

  6. Optical techniques for determining dynamic material properties

    SciTech Connect

    Paisley, D.L.; Stahl, D.B.

    1996-12-31

    Miniature plates are laser-launched with a 10-Joule Nd:YAG for one-dimensional (1-D) impacts on to target materials much like gas gun experiments and explosive plane wave plate launch. By making the experiments small, flyer plates (3 mm diameter x 50 micron thick) and targets (10 mm diameter x 200 micron thick), 1-D impact experiments can be performed in a standard laser-optical laboratory with minimum confinement and collateral damage. The laser-launched plates do not require the traditional sabot on gas guns nor the explosives needed for explosive planewave lenses, and as a result are much more amenable to a wide variety of materials and applications. Because of the small size very high pressure gradients can be generated with relative ease. The high pressure gradients result in very high strains and strain rates that are not easily generated by other experimental methods. The small size and short shock duration (1 - 20 ns) are ideal for dynamically measuring bond strengths of micron-thick coatings. Experimental techniques, equipment, and dynamic material results are reported.

  7. Surface diffusion studies by optical diffraction techniques

    SciTech Connect

    Xiao, X.D.

    1992-11-01

    The newly developed optical techniques have been combined with either second harmonic (SH) diffraction or linear diffraction off a monolayer adsorbate grating for surface diffusion measurement. Anisotropy of surface diffusion of CO on Ni(l10) was used as a demonstration for the second harmonic dim reaction method. The linear diffraction method, which possesses a much higher sensitivity than the SH diffraction method, was employed to study the effect of adsorbate-adsorbate interaction on CO diffusion on Ni(l10) surface. Results showed that only the short range direct CO-CO orbital overlapping interaction influences CO diffusion but not the long range dipole-dipole and CO-NI-CO interactions. Effects of impurities and defects on surface diffusion were further explored by using linear diffraction method on CO/Ni(110) system. It was found that a few percent S impurity can alter the CO diffusion barrier height to a much higher value through changing the Ni(110) surface. The point defects of Ni(l10) surface seem to speed up CO diffusion significantly. A mechanism with long jumps over multiple lattice distance initiated by CO filled vacancy is proposed to explain the observed defect effect.

  8. Genetic optical design for a compressive sensing task

    NASA Astrophysics Data System (ADS)

    Horisaki, Ryoichi; Niihara, Takahiro; Tanida, Jun

    2016-07-01

    We present a sophisticated optical design method for reducing the number of photodetectors for a specific sensing task. The chosen design parameter is the point spread function, and the selected task is object recognition. The point spread function is optimized iteratively with a genetic algorithm for object recognition based on a neural network. In the experimental demonstration, binary classification of face and non-face datasets was performed with a single measurement using two photodetectors. A spatial light modulator operating in the amplitude modulation mode was provided in the imaging optics and was used to modulate the point spread function. In each generation of the genetic algorithm, the classification accuracy with a pattern displayed on the spatial light modulator was fed-back to the next generation to find better patterns. The proposed method increased the accuracy by about 30 % compared with a conventional imaging system in which the point spread function was the delta function. This approach is practically useful for compressing the cost, size, and observation time of optical sensors in specific applications, and robust for imperfections in optical elements.

  9. Genetic optical design for a compressive sensing task

    NASA Astrophysics Data System (ADS)

    Horisaki, Ryoichi; Niihara, Takahiro; Tanida, Jun

    2016-10-01

    We present a sophisticated optical design method for reducing the number of photodetectors for a specific sensing task. The chosen design parameter is the point spread function, and the selected task is object recognition. The point spread function is optimized iteratively with a genetic algorithm for object recognition based on a neural network. In the experimental demonstration, binary classification of face and non-face datasets was performed with a single measurement using two photodetectors. A spatial light modulator operating in the amplitude modulation mode was provided in the imaging optics and was used to modulate the point spread function. In each generation of the genetic algorithm, the classification accuracy with a pattern displayed on the spatial light modulator was fed-back to the next generation to find better patterns. The proposed method increased the accuracy by about 30 % compared with a conventional imaging system in which the point spread function was the delta function. This approach is practically useful for compressing the cost, size, and observation time of optical sensors in specific applications, and robust for imperfections in optical elements.

  10. Integration of geological remote-sensing techniques in subsurface analysis

    USGS Publications Warehouse

    Taranik, James V.; Trautwein, Charles M.

    1976-01-01

    Geological remote sensing is defined as the study of the Earth utilizing electromagnetic radiation which is either reflected or emitted from its surface in wavelengths ranging from 0.3 micrometre to 3 metres. The natural surface of the Earth is composed of a diversified combination of surface cover types, and geologists must understand the characteristics of surface cover types to successfully evaluate remotely-sensed data. In some areas landscape surface cover changes throughout the year, and analysis of imagery acquired at different times of year can yield additional geological information. Integration of different scales of analysis allows landscape features to be effectively interpreted. Interpretation of the static elements displayed on imagery is referred to as an image interpretation. Image interpretation is dependent upon: (1) the geologist's understanding of the fundamental aspects of image formation, and (2.) his ability to detect, delineate, and classify image radiometric data; recognize radiometric patterns; and identify landscape surface characteristics as expressed on imagery. A geologic interpretation integrates surface characteristics of the landscape with subsurface geologic relationships. Development of a geologic interpretation from imagery is dependent upon: (1) the geologist's ability to interpret geomorphic processes from their static surface expression as landscape characteristics on imagery, (2) his ability to conceptualize the dynamic processes responsible for the evolution 6f interpreted geologic relationships (his ability to develop geologic models). The integration of geologic remote-sensing techniques in subsurface analysis is illustrated by development of an exploration model for ground water in the Tucson area of Arizona, and by the development of an exploration model for mineralization in southwest Idaho.

  11. Quantitative and qualitative sensing techniques for biogenic volatile organic compounds and their oxidation products.

    PubMed

    Kim, Saewung; Guenther, Alex; Apel, Eric

    2013-07-01

    The physiological production mechanisms of some of the organics in plants, commonly known as biogenic volatile organic compounds (BVOCs), have been known for more than a century. Some BVOCs are emitted to the atmosphere and play a significant role in tropospheric photochemistry especially in ozone and secondary organic aerosol (SOA) productions as a result of interplays between BVOCs and atmospheric radicals such as hydroxyl radical (OH), ozone (O3) and NOX (NO + NO2). These findings have been drawn from comprehensive analysis of numerous field and laboratory studies that have characterized the ambient distribution of BVOCs and their oxidation products, and reaction kinetics between BVOCs and atmospheric oxidants. These investigations are limited by the capacity for identifying and quantifying these compounds. This review highlights the major analytical techniques that have been used to observe BVOCs and their oxidation products such as gas chromatography, mass spectrometry with hard and soft ionization methods, and optical techniques from laser induced fluorescence (LIF) to remote sensing. In addition, we discuss how new analytical techniques can advance our understanding of BVOC photochemical processes. The principles, advantages, and drawbacks of the analytical techniques are discussed along with specific examples of how the techniques were applied in field and laboratory measurements. Since a number of thorough review papers for each specific analytical technique are available, readers are referred to these publications rather than providing thorough descriptions of each technique. Therefore, the aim of this review is for readers to grasp the advantages and disadvantages of various sensing techniques for BVOCs and their oxidation products and to provide guidance for choosing the optimal technique for a specific research task. PMID:23748571

  12. [Research on symmetrical optical waveguide based surface plasmon resonance sensing with spectral interrogation].

    PubMed

    Zhang, Yi-long; Liu, Le; Guo, Jun; Zhang, Peng-fei; Guo, Ji-hua; Ma, Hui; He, Yong-hong

    2015-02-01

    Surface plasmon resonance (SPR) sensors with spectral interrogation can adopt fiber to transmit light signals, thus leaving the sensing part separated, which is very convenient for miniaturization, remote-sensing and on-site analysis. Symmetrical optical waveguide (SOW) SPR has the same refractive index of the-two buffer media layers adjacent to the metal film, resulting in longer propagation distance, deeper penetration depth and better performance compared to conventional SPR In the present paper, we developed a symmetrical optical, waveguide (SOW) SPR sensor with wavelength interrogation. In the system, MgF2-Au-MgF2 film was used as SOW module for glucose sensing, and a fiber based light source and detection was used in the spectral interrogation. In the experiment, a refractive index resolution of 2.8 x 10(-7) RIU in fluid protocol was acquired. This technique provides advantages of high resolution and could have potential use in compact design, on-site analysis and remote sensing.

  13. Optical integrated chips with micro and nanostructures for refractive index and SERS-based optical label-free sensing

    NASA Astrophysics Data System (ADS)

    Liu, Liu; Jin, Mingliang; Shi, Yaocheng; Lin, Jiao; Zhang, Yuan; Jiang, Li; Zhou, Guofu; He, Sailing

    2015-11-01

    Label-free optical biosensing technologies have superior abilities of quantitative analysis, unmodified targets, and ultrasmall sample volume, compared to conventional fluorescence-label-based sensing techniques, in detecting various biomolecules. In this review article, we introduce our recent results in the field of evanescent-wavebased refractive index sensing and surface enhanced Raman scattering (SERS)-based sensing, both of which are promising platforms for label-free optical biosensors. First, silicon-on-insulator (SOI) nanowire waveguide and metallic surface plasmon resonance (SPR)-based refractive index sensing are discussed. In order to improve the detection limit, phase interrogation techniques are introduced to these types of sensors based on prism-coupled SPR and SOI microring resonators. A detection limit in the order of 10-6 refractive index unit is achieved. Detection of 16.7 pM anti-IgG is also demonstrated based on the SPR devices. Second, SERS substrates based on various nanometallic structures are discussed. Metallic nanowire arrays and inverted nanopyramids and grooves with a thin metal surface are fabricated based on anisotropic wetetching of silicon substrates. Both structures have demonstrated a Raman signal enhancement on the order of 107. In order to improve the extraction efficiency of the Raman signal at a high wave number, a nano-bowtie array substrate is fabricated, which exhibits double resonances at both the excitation wavelength and the desired Raman scattering wavelength. Experimental results have shown that this double-resonance structure can further enhance the received Raman signal, as compared to conventional SERS substrates with only one resonance at the excitation wavelength.

  14. Remote sensing techniques applied to seismic vulnerability assessment

    NASA Astrophysics Data System (ADS)

    Juan Arranz, Jose; Torres, Yolanda; Hahgi, Azade; Gaspar-Escribano, Jorge

    2016-04-01

    Advances in remote sensing and photogrammetry techniques have increased the degree of accuracy and resolution in the record of the earth's surface. This has expanded the range of possible applications of these data. In this research, we have used these data to document the construction characteristics of the urban environment of Lorca, Spain. An exposure database has been created with the gathered information to be used in seismic vulnerability assessment. To this end, we have used data from photogrammetric flights at different periods, using both orthorectified images in the visible and infrared spectrum. Furthermore, the analysis is completed using LiDAR data. From the combination of these data, it has been possible to delineate the building footprints and characterize the constructions with attributes such as the approximate date of construction, area, type of roof and even building materials. To carry out the calculation, we have developed different algorithms to compare images from different times, segment images, classify LiDAR data, and use the infrared data in order to remove vegetation or to compute roof surfaces with height value, tilt and spectral fingerprint. In addition, the accuracy of our results has been validated with ground truth data. Keywords: LiDAR, remote sensing, seismic vulnerability, Lorca

  15. Hybrid micro-/nanogels for optical sensing and intracellular imaging

    PubMed Central

    Wu, Weitai; Zhou, Shuiqin

    2010-01-01

    Hybrid micro-/nanogels are playing an increasing important part in a diverse range of applications, due to their tunable dimensions, large surface area, stable interior network structure, and a very short response time. We review recent advances and challenges in the developments of hybrid micro-/nanogels toward applications for optical sensing of pH, temperature, glucose, ions, and other species as well as for intracellular imaging. Due to their unique advantages, hybrid micro-/nanogels as optical probes are attracting substantial interests for continuous monitoring of chemical parameters in complex samples such as blood and bioreactor fluids, in chemical research and industry, and in food quality control. In particular, their intracellular probing ability enables the monitoring of the biochemistry and biophysics of live cells over time and space, thus contributing to the explanation of intricate biological processes and the development of novel diagnoses. Unlike most other probes, hybrid micro-/nanogels could also combine other multiple functions into a single probe. The rational design of hybrid micro-/nanogels will not only improve the probing applications as desirable, but also implement their applications in new arenas. With ongoing rapid advances in bionanotechnology, the well-designed hybrid micro-/nanogel probes will be able to provide simultaneous sensing, imaging diagnosis, and therapy toward clinical applications. PMID:22110866

  16. Characterization of Flexible Copolymer Optical Fibers for Force Sensing Applications

    PubMed Central

    Krehel, Marek; Rossi, René M.; Bona, Gian-Luca; Scherer, Lukas J.

    2013-01-01

    In this paper, different polymer optical fibres for applications in force sensing systems in textile fabrics are reported. The proposed method is based on the deflection of the light in fibre waveguides. Applying a force on the fibre changes the geometry and affects the wave guiding properties and hence induces light loss in the optical fibre. Fibres out of three different elastic and transparent copolymer materials were successfully produced and tested. Moreover, the influence of the diameter on the sensing properties was studied. The detectable force ranges from 0.05 N to 40 N (applied on 3 cm of fibre length), which can be regulated with the material and the diameter of the fibre. The detected signal loss varied from 0.6% to 78.3%. The fibres have attenuation parameters between 0.16–0.25 dB/cm at 652 nm. We show that the cross-sensitivies to temperature, strain and bends are low. Moreover, the high yield strength (0.0039–0.0054 GPa) and flexibility make these fibres very attractive candidates for integration into textiles to form wearable sensors, medical textiles or even computing systems. PMID:24021967

  17. Channel estimation for OFDM system in atmospheric optical communication based on compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Qingsong; Hao, Shiqi; Geng, Hongjian; Sun, Han

    2015-10-01

    Orthogonal frequency division multiplexing (OFDM) technique applied to the atmospheric optical communication can improve data transmission rate, restrain pulse interference, and reduce effect of multipath caused by atmospheric scattering. Channel estimation, as one of the important modules in OFDM, has been investigated thoroughly and widely with great progress. In atmospheric optical communication system, channel estimation methods based on pilot are common approaches, such as traditional least-squares (LS) algorithm and minimum mean square error (MMSE) algorithm. However, sensitivity of the noise effects and high complexity of computation are shortcomings of LS algorithm and MMSE algorithm, respectively. Here, a new method based on compressive sensing is proposed to estimate the channel state information of atmospheric optical communication OFDM system, especially when the condition is closely associated with turbulence. Firstly, time-varying channel model is established under the condition of turbulence. Then, in consideration of multipath effect, sparse channel model is available for compressive sensing. And, the pilot signal is reconstructed with orthogonal matching tracking (OMP) algorithm, which is used for reconstruction. By contrast, the work of channel estimation is completed by LS algorithm as well. After that, simulations are conducted respectively in two different indexes -signal error rate (SER) and mean square error (MSE). Finally, result shows that compared with LS algorithm, the application of compressive sensing can improve the performance of SER and MSE. Theoretical analysis and simulation results show that the proposed method is reasonable and efficient.

  18. Optical power transfer and communication methods for wireless implantable sensing platforms

    NASA Astrophysics Data System (ADS)

    Mujeeb-U-Rahman, Muhammad; Adalian, Dvin; Chang, Chieh-Feng; Scherer, Axel

    2015-09-01

    Ultrasmall scale implants have recently attracted focus as valuable tools for monitoring both acute and chronic diseases. Semiconductor optical technologies are the key to miniaturizing these devices to the long-sought sub-mm scale, which will enable long-term use of these devices for medical applications. This can also enable the use of multiple implantable devices concurrently to form a true body area network of sensors. We demonstrate optical power transfer techniques and methods to effectively harness this power for implantable devices. Furthermore, we also present methods for optical data transfer from such implants. Simultaneous use of these technologies can result in miniaturized sensing platforms that can allow for large-scale use of such systems in real world applications.

  19. Optical power transfer and communication methods for wireless implantable sensing platforms.

    PubMed

    Mujeeb-U-Rahman, Muhammad; Adalian, Dvin; Chang, Chieh-Feng; Scherer, Axel

    2015-09-01

    Ultrasmall scale implants have recently attracted focus as valuable tools for monitoring both acute and chronic diseases. Semiconductor optical technologies are the key to miniaturizing these devices to the long-sought sub-mm scale, which will enable long-term use of these devices for medical applications. This can also enable the use of multiple implantable devices concurrently to form a true body area network of sensors. We demonstrate optical power transfer techniques and methods to effectively harness this power for implantable devices. Furthermore, we also present methods for optical data transfer from such implants. Simultaneous use of these technologies can result in miniaturized sensing platforms that can allow for large-scale use of such systems in real world applications. PMID:26405820

  20. Optical power transfer and communication methods for wireless implantable sensing platforms.

    PubMed

    Mujeeb-U-Rahman, Muhammad; Adalian, Dvin; Chang, Chieh-Feng; Scherer, Axel

    2015-09-01

    Ultrasmall scale implants have recently attracted focus as valuable tools for monitoring both acute and chronic diseases. Semiconductor optical technologies are the key to miniaturizing these devices to the long-sought sub-mm scale, which will enable long-term use of these devices for medical applications. This can also enable the use of multiple implantable devices concurrently to form a true body area network of sensors. We demonstrate optical power transfer techniques and methods to effectively harness this power for implantable devices. Furthermore, we also present methods for optical data transfer from such implants. Simultaneous use of these technologies can result in miniaturized sensing platforms that can allow for large-scale use of such systems in real world applications.

  1. New remote sensing technique for lidar monitoring of atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Belen'kii, Mikhail S.; Gimmestad, Gary G.

    1993-09-01

    A new remote sensing technique is proposed for determining the turbulent parameters of the atmosphere using a single-ended lidar system. This technique is based on the enhanced backscattering effect and is insensitive to the scattering volume averaging effect on the intensity fluctuations of the reflected wave and the sounding beam. The corresponding measurements are independent of the turbulent scintillation spectrum and that permits the use of high power pulsed lasers with a relatively low repetition rate for determining the refractive index structure characteristic Cn2, its vertical profile Cn2(h) and inner scale of turbulence lo in the atmosphere. A theory of the method is developed, and the conditions are obtained for observing the backscattering amplification effect in the atmosphere with a laser beam scattered by aerosol. The signal-to-noise ratio and the sensitivity of the measured quantities to the inner scale of turbulence lo variations are estimated. A planned demonstration of this technique in the boundary layer of the atmosphere with an eyesafe lidar which has been developed at Georgia Tech is discussed.

  2. Radial Velocity Data Analysis with Compressed Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Hara, Nathan C.; Boué, G.; Laskar, J.; Correia, A. C. M.

    2016-09-01

    We present a novel approach for analysing radial velocity data that combines two features: all the planets are searched at once and the algorithm is fast. This is achieved by utilizing compressed sensing techniques, which are modified to be compatible with the Gaussian processes framework. The resulting tool can be used like a Lomb-Scargle periodogram and has the same aspect but with much fewer peaks due to aliasing. The method is applied to five systems with published radial velocity data sets: HD 69830, HD 10180, 55 Cnc, GJ 876 and a simulated very active star. The results are fully compatible with previous analysis, though obtained more straightforwardly. We further show that 55 Cnc e and f could have been respectively detected and suspected in early measurements from the Lick observatory and Hobby-Eberly Telescope available in 2004, and that frequencies due to dynamical interactions in GJ 876 can be seen.

  3. Fibre optic system for biochemical and microbiological sensing

    NASA Astrophysics Data System (ADS)

    Penwill, L. A.; Slater, J. H.; Hayes, N. W.; Tremlett, C. J.

    2007-07-01

    This poster will discuss state-of-the-art fibre optic sensors based on evanescent wave technology emphasising chemophotonic sensors for biochemical reactions and microbe detection. Devices based on antibody specificity and unique DNA sequences will be described. The development of simple sensor devices with disposable single use sensor probes will be illustrated with a view to providing cost effective field based or point of care analysis of major themes such as hospital acquired infections or bioterrorism events. This presentation will discuss the nature and detection thresholds required, the optical detection techniques investigated, results of sensor trials and the potential for wider commercial application.

  4. Optical sensing elements for nitrogen dioxide (NO.sub.2) gas detection, a sol-gel method for making the sensing elements and fiber optic sensors incorporating nitrogen dioxide gas optical sensing elements

    DOEpatents

    Mechery, Shelly John; Singh, Jagdish P.

    2007-07-03

    A sensing element, a method of making a sensing element, and a fiber optic sensor incorporating the sensing element are described. The sensor can be used for the quantitative detection of NO.sub.2 in a mixture of gases. The sensing element can be made by incorporating a diazotizing reagent which reacts with nitrous ions to produce a diazo compound and a coupling reagent which couples with the diazo compound to produce an azo dye into a sol and allowing the sol to form an optically transparent gel. The sensing element changes color in the presence of NO.sub.2 gas. The temporal response of the absorption spectrum at various NO.sub.2 concentrations has also been recorded and analyzed. Sensors having different design configurations are described. The sensing element can detect NO.sub.2 gas at levels of parts per billion.

  5. Optical sensing of the fatigue damage state of CFRP under realistic aeronautical load sequences.

    PubMed

    Zuluaga-Ramírez, Pablo; Arconada, Álvaro; Frövel, Malte; Belenguer, Tomás; Salazar, Félix

    2015-03-09

    We present an optical sensing methodology to estimate the fatigue damage state of structures made of carbon fiber reinforced polymer (CFRP), by measuring variations on the surface roughness. Variable amplitude loads (VAL), which represent realistic loads during aeronautical missions of fighter aircraft (FALSTAFF) have been applied to coupons until failure. Stiffness degradation and surface roughness variations have been measured during the life of the coupons obtaining a Pearson correlation of 0.75 between both variables. The data were compared with a previous study for Constant Amplitude Load (CAL) obtaining similar results. Conclusions suggest that the surface roughness measured in strategic zones is a useful technique for structural health monitoring of CFRP structures, and that it is independent of the type of load applied. Surface roughness can be measured in the field by optical techniques such as speckle, confocal perfilometers and interferometry, among others.

  6. Optical sensing of the fatigue damage state of CFRP under realistic aeronautical load sequences.

    PubMed

    Zuluaga-Ramírez, Pablo; Arconada, Álvaro; Frövel, Malte; Belenguer, Tomás; Salazar, Félix

    2015-01-01

    We present an optical sensing methodology to estimate the fatigue damage state of structures made of carbon fiber reinforced polymer (CFRP), by measuring variations on the surface roughness. Variable amplitude loads (VAL), which represent realistic loads during aeronautical missions of fighter aircraft (FALSTAFF) have been applied to coupons until failure. Stiffness degradation and surface roughness variations have been measured during the life of the coupons obtaining a Pearson correlation of 0.75 between both variables. The data were compared with a previous study for Constant Amplitude Load (CAL) obtaining similar results. Conclusions suggest that the surface roughness measured in strategic zones is a useful technique for structural health monitoring of CFRP structures, and that it is independent of the type of load applied. Surface roughness can be measured in the field by optical techniques such as speckle, confocal perfilometers and interferometry, among others. PMID:25760056

  7. Optical Sensing of the Fatigue Damage State of CFRP under Realistic Aeronautical Load Sequences

    PubMed Central

    Zuluaga-Ramírez, Pablo; Arconada, Álvaro; Frövel, Malte; Belenguer, Tomás; Salazar, Félix

    2015-01-01

    We present an optical sensing methodology to estimate the fatigue damage state of structures made of carbon fiber reinforced polymer (CFRP), by measuring variations on the surface roughness. Variable amplitude loads (VAL), which represent realistic loads during aeronautical missions of fighter aircraft (FALSTAFF) have been applied to coupons until failure. Stiffness degradation and surface roughness variations have been measured during the life of the coupons obtaining a Pearson correlation of 0.75 between both variables. The data were compared with a previous study for Constant Amplitude Load (CAL) obtaining similar results. Conclusions suggest that the surface roughness measured in strategic zones is a useful technique for structural health monitoring of CFRP structures, and that it is independent of the type of load applied. Surface roughness can be measured in the field by optical techniques such as speckle, confocal perfilometers and interferometry, among others. PMID:25760056

  8. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR.

    PubMed

    Wang, Shuai; Fan, Xinyu; Liu, Qingwen; He, Zuyuan

    2015-12-28

    A novel distributed fiber vibration sensing technique based on phase extraction from time-gated digital optical frequency domain reflectometry (TGD-OFDR) which can achieve quantitative vibration measurement with high spatial resolution and long measurement range is proposed. A 90 degree optical hybrid is used to extract phase information. By increasing frequency sweeping speed, the influence of environmental phase disturbance on TGD-OFDR is mitigated significantly, which makes phase extraction in our new scheme more reliable than that in conventional OFDR-based method, leading to the realization of long distance quantitative vibration measurement. By using the proposed technique, a distributed vibration sensor that has a measurement range of 40 km, a spatial resolution of 3.5 m, a measurable vibration frequency up to 600 Hz, and a minimal measurable vibration acceleration of 0.08g is demonstrated.

  9. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR.

    PubMed

    Wang, Shuai; Fan, Xinyu; Liu, Qingwen; He, Zuyuan

    2015-12-28

    A novel distributed fiber vibration sensing technique based on phase extraction from time-gated digital optical frequency domain reflectometry (TGD-OFDR) which can achieve quantitative vibration measurement with high spatial resolution and long measurement range is proposed. A 90 degree optical hybrid is used to extract phase information. By increasing frequency sweeping speed, the influence of environmental phase disturbance on TGD-OFDR is mitigated significantly, which makes phase extraction in our new scheme more reliable than that in conventional OFDR-based method, leading to the realization of long distance quantitative vibration measurement. By using the proposed technique, a distributed vibration sensor that has a measurement range of 40 km, a spatial resolution of 3.5 m, a measurable vibration frequency up to 600 Hz, and a minimal measurable vibration acceleration of 0.08g is demonstrated. PMID:26831995

  10. Optical addressing technique for a CMOS RAM

    NASA Technical Reports Server (NTRS)

    Wu, W. H.; Bergman, L. A.; Allen, R. A.; Johnston, A. R.

    1988-01-01

    Progress on optically addressing a CMOS RAM for a feasibility demonstration of free space optical interconnection is reported in this paper. The optical RAM chip has been fabricated and functional testing is in progress. Initial results seem promising. New design and SPICE simulation of optical gate cell (OGC) circuits have been carried out to correct the slow fall time of the 'weak pull down' OGC, which has been characterized experimentally. Methods of reducing the response times of the photodiodes and the associated circuits are discussed. Even with the current photodiode, it appears that an OGC can be designed with a performance that is compatible with a CMOS circuit such as the RAM.

  11. Optical Techniques for Low Noise Microwave Frequency Sources

    NASA Technical Reports Server (NTRS)

    Maleki, Lute

    2005-01-01

    Optical techniques and mathematical models are described for low noise microwave frequency sources. The contents include: 1) Why Optical Techniques; 2) Wavemixing: Advantages and Disadvantages; 3) Wavemixing with Feedback: The OEO; 4) Feedback in both loops: COEO; and 5) State of the Art and Future Prospects.

  12. High power compatible internally sensed optical phased array.

    PubMed

    Roberts, Lyle E; Ward, Robert L; Francis, Samuel P; Sibley, Paul G; Fleddermann, Roland; Sutton, Andrew J; Smith, Craig; McClelland, David E; Shaddock, Daniel A

    2016-06-13

    The technical embodiment of the Huygens-Fresnel principle, an optical phased array (OPA) is an arrangement of optical emitters with relative phases controlled to create a desired beam profile after propagation. One important application of an OPA is coherent beam combining (CBC), which can be used to create beams of higher power than is possible with a single laser source, especially for narrow linewidth sources. Here we present an all-fiber architecture that stabilizes the relative output phase by inferring the relative path length differences between lasers using the small fraction of light that is back-reflected into the fiber at the OPA's glass-air interface, without the need for any external sampling optics. This architecture is compatible with high power continuous wave laser sources (e.g., fiber amplifiers) up to 100 W per channel. The high-power compatible internally sensed OPA was implemented experimentally using commercial 15 W fiber amplifiers, demonstrating an output RMS phase stability of λ/194, and the ability to steer the beam at up to 10 kHz. PMID:27410363

  13. High power compatible internally sensed optical phased array.

    PubMed

    Roberts, Lyle E; Ward, Robert L; Francis, Samuel P; Sibley, Paul G; Fleddermann, Roland; Sutton, Andrew J; Smith, Craig; McClelland, David E; Shaddock, Daniel A

    2016-06-13

    The technical embodiment of the Huygens-Fresnel principle, an optical phased array (OPA) is an arrangement of optical emitters with relative phases controlled to create a desired beam profile after propagation. One important application of an OPA is coherent beam combining (CBC), which can be used to create beams of higher power than is possible with a single laser source, especially for narrow linewidth sources. Here we present an all-fiber architecture that stabilizes the relative output phase by inferring the relative path length differences between lasers using the small fraction of light that is back-reflected into the fiber at the OPA's glass-air interface, without the need for any external sampling optics. This architecture is compatible with high power continuous wave laser sources (e.g., fiber amplifiers) up to 100 W per channel. The high-power compatible internally sensed OPA was implemented experimentally using commercial 15 W fiber amplifiers, demonstrating an output RMS phase stability of λ/194, and the ability to steer the beam at up to 10 kHz.

  14. Minefield edge detection using a novel chemical vapor sensing technique

    NASA Astrophysics Data System (ADS)

    Fisher, Mark E.; Sikes, John

    2003-09-01

    Nomadics has developed a novel sensing technology that detects the chemical signature of explosives emanating from buried landmines. Canines have demonstrated the ability to detect these signatures, but use of canines for this task presents a number of logistical and physical limitations that can be overcome by use of chemical sensors. Nomadics is the exclusive licensee of novel amplifying fluorescent polymer materials developed by the Massachusetts Institute of Technology (MIT). These materials enable detection of ultra-trace concentrations of nitroaromatic compounds such as TNT, the most commonly utilized explosive in the production of landmines. When vapors of nitroaromatics are presented to the sensor, the fluorescent polymers emit light at a greatly reduced intensity, a property that enables rapid detection of trace quantities of explosives using relatively low-cost electronics and optics. Studies performed by Jenkins et al suggest that the chemical signature of a landmine is heterogeneous and can be dispersed a significant distance from the location of the mine. Because the signature is not highly localized and is not characterized by a well-defined concentration gradient, the sensor may have difficulty indicating the exact position of a mine, especially in high-density minefields. Conversely, if the chemical signature extends some distance from the mine position, the sensor may have utility in detecting the edges of minefields. In combat scenarios, this will allow commanders to select safe paths for personnel and vehicles. This paper will present the latest findings related to minefield edge detection at several test sites.

  15. Antifouling leaching technique for optical lenses

    USGS Publications Warehouse

    Strahle, William J.; Perez, C. L.; Martini, Marinna A.

    1994-01-01

    The effectiveness of optical lenses deployed in water less than 100 m deep is significantly reduced by biofouling caused by the settlement of macrofauna, such as barnacles, hydroids, and tunicates. However, machineable porous plastic rings can be used to dispense antifoulant into the water in front of the lens to retard macrofaunal growth without obstructing the light path. Unlike coatings which can degrade the optical performance, antifouling rings do not interfere with the instrument optics. The authors have designed plastic, reusable cup-like antifouling rings to slip over the optical lenses of a transmissometer. These rings have been used for several deployments on shallow moorings in Massachusetts Bay, MA and have increased the time before fouling degrades optical characteristics

  16. Optical image encryption via photon-counting imaging and compressive sensing based ptychography

    NASA Astrophysics Data System (ADS)

    Rawat, Nitin; Hwang, In-Chul; Shi, Yishi; Lee, Byung-Geun

    2015-06-01

    In this study, we investigate the integration of compressive sensing (CS) and photon-counting imaging (PCI) techniques with a ptychography-based optical image encryption system. Primarily, the plaintext real-valued image is optically encrypted and recorded via a classical ptychography technique. Further, the sparse-based representations of the original encrypted complex data can be produced by combining CS and PCI techniques with the primary encrypted image. Such a combination takes an advantage of reduced encrypted samples (i.e., linearly projected random compressive complex samples and photon-counted complex samples) that can be exploited to realize optical decryption, which inherently serves as a secret key (i.e., independent to encryption phase keys) and makes an intruder attack futile. In addition to this, recording fewer encrypted samples provides a substantial bandwidth reduction in online transmission. We demonstrate that the fewer sparse-based complex samples have adequate information to realize decryption. To the best of our knowledge, this is the first report on integrating CS and PCI with conventional ptychography-based optical image encryption.

  17. Polarization effects in optical fiber communication and distributed vibration sensing systems

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyi

    This thesis includes studies of polarization effects in two main research areas of optical fiber technology: optical fiber communication systems and optical fiber sensors. Polarization of light in optical fiber is sensitive to environmental disturbances. On the negative side, this results in complex measurement processes and errors in communication systems caused by dynamic polarization mode dispersion (PMD) and polarization dependent loss (PDL). On the positive side though, it also results in the possibility of developing a distributed optical fiber vibration sensor. For the purpose of fast polarization measurement for high bit-rate communication systems, a new PDL vector method was proposed based on the equation of motion in Stokes space. It is capable of providing accurate PDL measurements while requiring less measurement steps compared with other available techniques. We had performed a PMD field test, and found the fastest PMD change in submarine fibers under the Caribbean Sea. With long measurement duration (>24h) on one pair of fiber, correlations between polarization effects and tides were reported for the first time. A histogram of the differential group delay (DGD) data and an auto-correlation function of state of polarization (SOP) and DGD were validated by theoretical fittings. The average and fastest drift time for both SOP and DGD was found to be ˜3min and less than 15s, respectively. Polarization effects were then utilized as a sensing parameter to detect and locate external disturbances along the optical fiber. A system based on polarization optical time domain reflectometry (Polarization-OTDR) technique was developed in order to pinpoint the disturbances as well as to give events' frequency information. For the first time, a fully distributed optical fiber vibration sensor has been demonstrated in a 1km fiber link with 10m spatial resolution and 5kHz maximum detectable frequency. Moreover, by our proposed spectrum analysis, multiple simultaneous

  18. Close-Range Sensing Techniques in Alpine Terrain

    NASA Astrophysics Data System (ADS)

    Rutzinger, M.; Höfle, B.; Lindenbergh, R.; Oude Elberink, S.; Pirotti, F.; Sailer, R.; Scaioni, M.; Stötter, J.; Wujanz, D.

    2016-06-01

    Early career researchers such as PhD students are a main driving force of scientific research and are for a large part responsible for research innovation. They work on specialized topics within focused research groups that have a limited number of members, but might also have limited capacity in terms of lab equipment. This poses a serious challenge for educating such students as it is difficult to group a sufficient number of them to enable efficient knowledge transfer. To overcome this problem, the Innsbruck Summer School of Alpine Research 2015 on close-range sensing techniques in Alpine terrain was organized in Obergurgl, Austria, by an international team from several universities and research centres. Of the applicants a group of 40 early career researchers were selected with interest in about ten types of specialized surveying tools, i.e. laser scanners, a remotely piloted aircraft system, a thermal camera, a backpack mobile mapping system and different grade photogrammetric equipment. During the one-week summer school, students were grouped according to their personal preference to work with one such type of equipment under guidance of an expert lecturer. All students were required to capture and process field data on a mountain-related theme like landslides or rock glaciers. The work on the assignments lasted the whole week but was interspersed with lectures on selected topics by invited experts. The final task of the summer school participants was to present and defend their results to their peers, lecturers and other colleagues in a symposium-like setting. Here we present the framework and content of this summer school which brought together scientists from close-range sensing and environmental and geosciences.

  19. Temperature sensing in high voltage transmission lines using fiber Bragg grating and free-space-optics

    NASA Astrophysics Data System (ADS)

    Floridia, Claudio; Rosolem, Joao B.; Leonardi, Ariovaldo A.; Hortencio, Claudio A.; Fonseca, Romeu F.; Moreira, Rodrigo O. C.; Souza, Giovani C. L.; Melo, Altair L.; Nascimento, Carlos A. M.

    2013-05-01

    In this work we proposed the use of free-space-optics (FSO) to transmit and receive the optical signals from optical fiber placed in ground potential to the FBG fiber optics at high voltage potential, using a pair of optical collimators. The technique evaluation was performed in a prototype for the study of sensitivity to optical alignment and in an external environment using emulated sensing systems for both bus bar and overhead transmission line with real isolator chain. It has been shown that the FSO system allows collimators operate at distances of 500 mm to 2.000 mm. This range of distances is similar to the length of insulator's chain up to 230 kV. It was also shown that the proposed system can be used in real external environment for bus bar temperature monitoring in substations, where, even if the time out of the system is of 45%, with major interruption time of almost 15 hours, the majority of the interruption time was less than 18 minutes long. On the other hand, system has to be improved in order to be used in overhead transmission line. As tested for a real isolator chain the system shown a time out of 80.3%, with significant number of events of interruption acquisition time greater than 150 minutes. It is believed that for overhead power lines, system must be installed in rigid surge arresters or in a line post where it is expected to have similar results as in substation bus bars monitoring.

  20. A Laboratory Experiment for Demonstrating Post-Coronagraph Wave Front Sensing and Control for Extreme Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Bartos, Randall; Rao, Shanti; Samuele, Rocco; Schmidtlin, Edouard

    2006-01-01

    Direct detection of exo-planets from the ground will become a reality with the advent of a new class of extreme-adaptive optics instruments that will come on-line within the next few years. In particular, the Gemini Observatory will be developing the Gemini Planet Imager (GPI) that will be used to make direct observations of young exo-planets. One major technical challenge in reaching the requisite high contrast at small angles is the sensing and control of residual wave front errors after the starlight suppression system. This paper will discuss the nature of this problem, and our approach to the sensing and control task. We will describe a laboratory experiment whose purpose is to provide a means of validating our sensing techniques and control algorithms. The experimental demonstration of sensing and control will be described. Finally, we will comment on the applicability of this technique to other similar high-contrast instruments.

  1. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy

    SciTech Connect

    Atie, Elie M.; Xie, Zhihua; El Eter, Ali; Salut, Roland; Baida, Fadi I.; Grosjean, Thierry; Nedeljkovic, Dusan; Tannous, Tony

    2015-04-13

    Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nanometer scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e., in contact to the nanostructures. In this paper, we demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of “remote” (non contact) sensing on the nanometer scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM (Scanning Near-field Optical Microscopy) fiber tip, we introduce an ultra-compact, moveable, and background-free optical nanosensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nanometer accuracy. This work paves the way towards an alternative class of nanopositioning techniques, based on the monitoring of diffraction-free plasmon resonance, that are alternative to nanomechanical and diffraction-limited optical interference-based devices.

  2. Non-linear optical crystal vibration sensing device

    DOEpatents

    Kalibjian, Ralph

    1994-01-11

    A non-linear optical crystal vibration sensing device (10) including a photorefractive crystal (26) and a laser (12). The laser (12 ) produces a coherent light beam (14) which is split by a beam splitter (18) into a first laser beam (20) and a second laser beam (22). After passing through the crystal (26) the first laser beam (20) is counter-propagated back upon itself by a retro-mirror (32), creating a third laser beam (30). The laser beams (20, 22, 30) are modulated, due to the mixing effect within the crystal (26) by vibration of the crystal (30). In the third laser beam (30), modulation is stable and such modulation is converted by a photodetector (34) into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal (26).

  3. Non-linear optical crystal vibration sensing device

    DOEpatents

    Kalibjian, R.

    1994-08-09

    A non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser is disclosed. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam. The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam, modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal. 3 figs.

  4. Synthesis, characterization, optical and sensing property of manganese oxide nanoparticles

    SciTech Connect

    Manigandan, R.; Suresh, R.; Giribabu, K.; Narayanan, V.; Vijayalakshmi, L.; Stephen, A.

    2014-01-28

    Manganese oxide nanoparticles were prepared by thermal decomposition of manganese oxalate. Manganese oxalate was synthesized by reacting 1:1 mole ratio of manganese acetate and ammonium oxalate along with sodium dodecyl sulfate (SDS). The structural characterization of manganese oxalate and manganese oxide nanoparticles was analyzed by XRD. The XRD spectrum confirms the crystal structure of the manganese oxide and manganese oxalate. In addition, the average grain size, lattice parameter values were also calculated using XRD spectrum. Moreover, the diffraction peaks were broadened due to the smaller size of the particle. The band gap of manganese oxide was calculated from optical absorption, which was carried out by DRS UV-Visible spectroscopy. The morphology of manganese oxide nanoparticles was analyzed by SEM images. The FT-IR analysis confirms the formation of the manganese oxide from manganese oxalate nanoparticles. The electrochemical sensing behavior of manganese oxide nanoparticles were investigated using hydrogen peroxide by cyclic voltammetry.

  5. Volumetric (3D) compressive sensing spectral domain optical coherence tomography

    PubMed Central

    Xu, Daguang; Huang, Yong; Kang, Jin U.

    2014-01-01

    In this work, we proposed a novel three-dimensional compressive sensing (CS) approach for spectral domain optical coherence tomography (SD OCT) volumetric image acquisition and reconstruction. Instead of taking a spectral volume whose size is the same as that of the volumetric image, our method uses a sub set of the original spectral volume that is under-sampled in all three dimensions, which reduces the amount of spectral measurements to less than 20% of that required by the Shan-non/Nyquist theory. The 3D image is recovered from the under-sampled spectral data dimension-by-dimension using the proposed three-step CS reconstruction strategy. Experimental results show that our method can significantly reduce the sampling rate required for a volumetric SD OCT image while preserving the image quality. PMID:25426320

  6. Volumetric (3D) compressive sensing spectral domain optical coherence tomography.

    PubMed

    Xu, Daguang; Huang, Yong; Kang, Jin U

    2014-11-01

    In this work, we proposed a novel three-dimensional compressive sensing (CS) approach for spectral domain optical coherence tomography (SD OCT) volumetric image acquisition and reconstruction. Instead of taking a spectral volume whose size is the same as that of the volumetric image, our method uses a sub set of the original spectral volume that is under-sampled in all three dimensions, which reduces the amount of spectral measurements to less than 20% of that required by the Shan-non/Nyquist theory. The 3D image is recovered from the under-sampled spectral data dimension-by-dimension using the proposed three-step CS reconstruction strategy. Experimental results show that our method can significantly reduce the sampling rate required for a volumetric SD OCT image while preserving the image quality.

  7. Optical fiber sensor technique for strain measurement

    DOEpatents

    Butler, Michael A.; Ginley, David S.

    1989-01-01

    Laser light from a common source is split and conveyed through two similar optical fibers and emitted at their respective ends to form an interference pattern, one of the optical fibers having a portion thereof subjected to a strain. Changes in the strain cause changes in the optical path length of the strain fiber, and generate corresponding changes in the interference pattern. The interference pattern is received and transduced into signals representative of fringe shifts corresponding to changes in the strain experienced by the strained one of the optical fibers. These signals are then processed to evaluate strain as a function of time, typical examples of the application of the apparatus including electrodeposition of a metallic film on a conductive surface provided on the outside of the optical fiber being strained, so that strains generated in the optical fiber during the course of the electrodeposition are measurable as a function of time. In one aspect of the invention, signals relating to the fringe shift are stored for subsequent processing and analysis, whereas in another aspect of the invention the signals are processed for real-time display of the strain changes under study.

  8. Fiber Optic Distributed Temperature Sensing of Recharge Basin Percolation Dynamics

    NASA Astrophysics Data System (ADS)

    Becker, M.; Allen, E. M.; Hutchinson, A.

    2014-12-01

    Infiltration (spreading) basins are a central component of managed aquifer and recovery operations around the world. The concept is simple. Water is percolated into an aquifer where it can be withdrawn at a later date. However, managing infiltration basins can be complicated by entrapped air in sediments, strata of low permeability, clogging of the recharge surface, and biological growth, among other factors. Understanding the dynamics of percolation in light of these complicating factors provides a basis for making management decisions that increase recharge efficiency. As an aid to understanding percolation dynamics, fiber optic distribute temperature sensing (DTS) was used to track heat as a tracer of water movement in an infiltration basin. The diurnal variation of temperature in the basin was sensed at depth. The time lag between the oscillating temperature signal at the surface and at depth indicated the velocity of water percolation. DTS fiber optic cables were installed horizontally along the basin and vertically in boreholes to measure percolation behavior. The horizontal cable was installed in trenches at 0.3 and 1 m depth, and the vertical cable was installed using direct push technology. The vertical cable was tightly wound to produce a factor of 10 increase in spatial resolution of temperature measurements. Temperature was thus measured every meter across the basin and every 10 cm to a depth of 10 m. Data from the trenched cable suggested homogeneous percolation across the basin, but infiltration rates were a function of stage indicating non-ideal percolation. Vertical temperature monitoring showed significant lateral flow in sediments underlying the basin both during saturation and operation of the basin. Deflections in the vertical temperature profile corresponded with fine grained layers identified in core samples indicating a transient perched water table condition. The three-dimensional flow in this relatively homogenous surficial geology calls

  9. Relating Remotely Sensed Optical Variability to Marine Benthic Biodiversity

    PubMed Central

    Herkül, Kristjan; Kotta, Jonne; Kutser, Tiit; Vahtmäe, Ele

    2013-01-01

    Biodiversity is important in maintaining ecosystem viability, and the availability of adequate biodiversity data is a prerequisite for the sustainable management of natural resources. As such, there is a clear need to map biodiversity at high spatial resolutions across large areas. Airborne and spaceborne optical remote sensing is a potential tool to provide such biodiversity data. The spectral variation hypothesis (SVH) predicts a positive correlation between spectral variability (SV) of a remotely sensed image and biodiversity. The SVH has only been tested on a few terrestrial plant communities. Our study is the first attempt to apply the SVH in the marine environment using hyperspectral imagery recorded by Compact Airborne Spectrographic Imager (CASI). All coverage-based diversity measures of benthic macrophytes and invertebrates showed low but statistically significant positive correlations with SV whereas the relationship between biomass-based diversity measures and SV were weak or lacking. The observed relationships did not vary with spatial scale. SV had the highest independent effect among predictor variables in the statistical models of coverage-derived total benthic species richness and Shannon index. Thus, the relevance of SVH in marine benthic habitats was proved and this forms a prerequisite for the future use of SV in benthic biodiversity assessments. PMID:23405180

  10. Fiber-optic based gas sensing in the UV region

    NASA Astrophysics Data System (ADS)

    Eckhardt, H. S.; Graubner, K.; Klein, K.-F.; Sun, T.; Grattan, K. T. V.

    2006-02-01

    The precise analysis of potential hazardous components within gases and the detection of trace gases in exhaled breath for early and non invasive diagnosis of illnesses have a great influence on the well-being of human beings. Besides the existing analysis techniques, which mostly require sample preparation, costly consumables, huge space and skilled personal carrying out the measurement, a measurement system based on optical absorption in the UV wavelength region might offer alternatives to existing techniques. Within this work a feasibility study based on measurements of different test gases at lowest concentrations and requirements for trace gases in exhaled breath in respect to detection limits, signal-to-noise ratio and system drifts were analyzed. A spectral database including over 1000 UV vapor-phase spectra allows the identification of unknown compounds within a mixture, as well as expanding the use of the measurement technique into new areas of application, for example automobile application.

  11. Reflection based Extraordinary Optical Transmission Fiber Optic Probe for Refractive Index Sensing.

    PubMed

    Lan, Xinwei; Cheng, Baokai; Yang, Qingbo; Huang, Jie; Wang, Hanzheng; Ma, Yinfa; Shi, Honglan; Xiao, Hai

    2014-03-31

    Fiber optic probes for chemical sensing based on the extraordinary optical transmission (EOT) phenomenon are designed and fabricated by perforating subwavelength hole arrays on the gold film coated optical fiber endface. The device exhibits a red shift in response to the surrounding refractive index increases with high sensitivity, enabling a reflection-based refractive index sensor with a compact and simple configuration. By choosing the period of hole arrays, the sensor can be designed to operate in the near infrared telecommunication wavelength range, where the abundant source and detectors are available for easy instrumentation. The new sensor probe is demonstrated for refractive index measurement using refractive index matching fluids. The sensitivity reaches 573 nm/RIU in the 1.333~1.430 refractive index range.

  12. Analyzing Fourier Transforms for NASA DFRC's Fiber Optic Strain Sensing System

    NASA Technical Reports Server (NTRS)

    Fiechtner, Kaitlyn Leann

    2010-01-01

    This document provides a basic overview of the fiber optic technology used for sensing stress, strain, and temperature. Also, the document summarizes the research concerning speed and accuracy of the possible mathematical algorithms that can be used for NASA DFRC's Fiber Optic Strain Sensing (FOSS) system.

  13. Batch fabrication of micro-optical sensing and imaging devices

    NASA Astrophysics Data System (ADS)

    Wippermann, F. C.; Reimann, A.; Oelschläger, A.; Dannberg, P.; Blöhbaum, F.; Koburg, C.; Köhler, T.

    2013-03-01

    As demonstrated in microelectronics, the batch fabrication based on the processing of wafers can lead to a significant reduction in prize as well as in size. This concept was adapted to the fabrication of imaging optics extensively used in mobile phone cameras relying on small pixels and low resolutions such as VGA. We report on batch fabricated customer specific opto-electronical modules used in machine sensing and automotive applications relying on large pixel sizes and non-conventional sensor characteristics. We specially focus on the lens mold mastering for the subsequent UV-replication since comparatively large sag heights of 250μm are required. Two technological approaches were applied, first, based on reflow of photoresist and, second, using diamond turning for the generation of a single lens mold and a subsequent step&repeat-process for array mastering on 8" wafers. Aspects of the optical design and simulation, the batch fabrication based on 8" wafers and characterization results are provided by the example of an f/1.1 opto-electronic sensor and an objective for a global shutter imager using 550x550 pixels with 3.6μm pitch.

  14. Miniature fibre optic probe for minimally invasive photoacoustic sensing

    NASA Astrophysics Data System (ADS)

    Mathews, Sunish J.; Zhang, Edward Z.; Desjardins, Adrien E.; Beard, Paul C.

    2016-03-01

    A miniature (175 μm) all-optical photoacoustic probe has been developed for minimally invasive sensing and imaging applications. The probe comprises a single optical fibre which delivers the excitation light and a broadband 50 MHz Fabry-Pérot (F-P) ultrasound sensor at the distal end for detecting the photoacoustic waves. A graded index lens proximal to the F-P sensor is used to reduce beam walk-off and thus increase sensitivity as well as confine the excitation beam in order to increase lateral spatial resolution. The probe was evaluated in non-scattering media and found to provide lateral and axial resolutions of < 100 μm and < 150 μm respectively for distances up to 1 cm from the tip of the probe. The ability of the probe to detect a blood vessel mimicking phantom at distances up to 7 mm from the tip was demonstrated in order to illustrate its potential suitability for needle guidance applications.

  15. Magnetic Sensing with Ferrofluid and Fiber Optic Connectors

    PubMed Central

    Homa, Daniel; Pickrell, Gary

    2014-01-01

    A simple, cost effective and sensitive fiber optic magnetic sensor fabricated with ferrofluid and commercially available fiber optic components is described in this paper. The system uses a ferrofluid infiltrated extrinsic Fabry-Perot interferometer (EFPI) interrogated with an infrared wavelength spectrometer to measure magnetic flux density. The entire sensing system was developed with commercially available components so it can be easily and economically reproduced in large quantities. The device was tested with two different ferrofluid types over a range of magnetic flux densities to verify performance. The sensors readily detected magnetic flux densities in the range of 0.5 mT to 12.0 mT with measurement sensitivities in the range of 0.3 to 2.3 nm/mT depending on ferrofluid type. Assuming a conservative wavelength resolution of 0.1 nm for state of the art EFPI detection abilities, the estimated achievable measurement resolution is on the order 0.04 mT. The inherent small size and basic structure complimented with the fabrication ease make it well-suited for a wide array of research, industrial, educational and military applications. PMID:24573312

  16. Corrosion monitoring along infrastructures using distributed fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Alhandawi, Khalil B.; Vahdati, Nader; Shiryayev, Oleg; Lawand, Lydia

    2016-04-01

    Pipeline Inspection Gauges (PIGs) are used for internal corrosion inspection of oil pipelines every 3-5 years. However, between inspection intervals, rapid corrosion may occur, potentially resulting in major accidents. The motivation behind this research project was to develop a safe distributed corrosion sensor placed inside oil pipelines continuously monitoring corrosion. The intrinsically safe nature of light provided motivation for researching fiber optic sensors as a solution. The sensing fiber's cladding features polymer plastic that is chemically sensitive to hydrocarbons within crude oil mixtures. A layer of metal, used in the oil pipeline's construction, is deposited on the polymer cladding, which upon corrosion, exposes the cladding to surrounding hydrocarbons. The hydrocarbon's interaction with the cladding locally increases the cladding's refractive index in the radial direction. Light intensity of a traveling pulse is reduced due to local reduction in the modal capacity which is interrogated by Optical Time Domain Reflectometery. Backscattered light is captured in real-time while using time delay to resolve location, allowing real-time spatial monitoring of environmental internal corrosion within pipelines spanning large distances. Step index theoretical solutions were used to calculate the power loss due changes in the intensity profile. The power loss is translated into an attenuation coefficient characterizing the expected OTDR trace which was verified against similar experimental results from the literature. A laboratory scale experiment is being developed to assess the validity of the model and the practicality of the solution.

  17. Magnetic sensing with ferrofluid and fiber optic connectors.

    PubMed

    Homa, Daniel; Pickrell, Gary

    2014-01-01

    A simple, cost effective and sensitive fiber optic magnetic sensor fabricated with ferrofluid and commercially available fiber optic components is described in this paper. The system uses a ferrofluid infiltrated extrinsic Fabry-Perot interferometer (EFPI) interrogated with an infrared wavelength spectrometer to measure magnetic flux density. The entire sensing system was developed with commercially available components so it can be easily and economically reproduced in large quantities. The device was tested with two different ferrofluid types over a range of magnetic flux densities to verify performance. The sensors readily detected magnetic flux densities in the range of 0.5 mT to 12.0 mT with measurement sensitivities in the range of 0.3 to 2.3 nm/mT depending on ferrofluid type. Assuming a conservative wavelength resolution of 0.1 nm for state of the art EFPI detection abilities, the estimated achievable measurement resolution is on the order 0.04 mT. The inherent small size and basic structure complimented with the fabrication ease make it well-suited for a wide array of research, industrial, educational and military applications. PMID:24573312

  18. Noninvasive glucose sensing in scattering media using OCT, PAS, and TOF techniques

    NASA Astrophysics Data System (ADS)

    Alarousu, Erkki; Hast, Jukka T.; Kinnunen, Matti T.; Kirillin, Mikhail Y.; Myllyla, Risto A.; Plucinski, Jerzy; Popov, Alexey P.; Priezzhev, Alexander V.; Prykari, Tuukka; Saarela, Juha; Zhao, Zuomin

    2004-08-01

    In this paper, optical measurement techniques, which enable non-invasive measurement, are superimposed to glucose sensing in scattering media. Used measurement techniques are Optical Coherence Tomography (OCT), Photoacoustic spectroscopy (PAS) and laser pulse Time-of-Flight (TOF) measurement using a streak camera. In parallel with measurements, a Monte-Carlo (MC) simulation models have been developed. Experimental in vitro measurements were performed using Intralipid fat emulsion as a tissue simulating phantom for OCT and TOF measurements. In PAS measurements, a pork meat was used as a subject but also preliminary in vivo measurements were done. OCT measurement results show that the slope of the OCT signal's envelope changes as a function of glucose content in the scattering media. TOF measurements show that the laser pulse full width of half maximum (FWHM) changes a little as function of glucose content. An agreement with MC-simulations and measurements with Intralipid was also found. Measurement results of PAS technique show that changes in glucose content in the pork meat tissue can be measured. In vivo measurements with a human volunteer show that other factors such as physiological change, blood circulation and body temperature drift may interfere the PA response of glucose.

  19. Online technique for detecting state of onboard fiber optic gyroscope.

    PubMed

    Miao, Zhiyong; Xu, Dingjie; He, Kunpeng; Pang, Shuwan; Tian, Chunmiao

    2015-02-01

    Although angle random walk (ARW) of fiber optic gyroscope (FOG) has been well modeled and identified before being integrated into the high-accuracy attitude control system of satellite, aging and unexpected failures can affect the performance of FOG after launch, resulting in the variation of ARW coefficient. Therefore, the ARW coefficient can be regarded as an indicator of "state of health" for FOG diagnosis in some sense. The Allan variance method can be used to estimate ARW coefficient of FOG, however, it requires a large amount of data to be stored. Moreover, the procedure of drawing slope lines for estimation is painful. To overcome the barriers, a weighted state-space model that directly models the ARW to obtain a nonlinear state-space model was established for FOG. Then, a neural extended-Kalman filter algorithm was implemented to estimate and track the variation of ARW in real time. The results of experiment show that the proposed approach is valid to detect the state of FOG. Moreover, the proposed technique effectively avoids the storage of data.

  20. Online technique for detecting state of onboard fiber optic gyroscope

    SciTech Connect

    Miao, Zhiyong; He, Kunpeng Pang, Shuwan; Xu, Dingjie; Tian, Chunmiao

    2015-02-15

    Although angle random walk (ARW) of fiber optic gyroscope (FOG) has been well modeled and identified before being integrated into the high-accuracy attitude control system of satellite, aging and unexpected failures can affect the performance of FOG after launch, resulting in the variation of ARW coefficient. Therefore, the ARW coefficient can be regarded as an indicator of “state of health” for FOG diagnosis in some sense. The Allan variance method can be used to estimate ARW coefficient of FOG, however, it requires a large amount of data to be stored. Moreover, the procedure of drawing slope lines for estimation is painful. To overcome the barriers, a weighted state-space model that directly models the ARW to obtain a nonlinear state-space model was established for FOG. Then, a neural extended-Kalman filter algorithm was implemented to estimate and track the variation of ARW in real time. The results of experiment show that the proposed approach is valid to detect the state of FOG. Moreover, the proposed technique effectively avoids the storage of data.

  1. Online technique for detecting state of onboard fiber optic gyroscope.

    PubMed

    Miao, Zhiyong; Xu, Dingjie; He, Kunpeng; Pang, Shuwan; Tian, Chunmiao

    2015-02-01

    Although angle random walk (ARW) of fiber optic gyroscope (FOG) has been well modeled and identified before being integrated into the high-accuracy attitude control system of satellite, aging and unexpected failures can affect the performance of FOG after launch, resulting in the variation of ARW coefficient. Therefore, the ARW coefficient can be regarded as an indicator of "state of health" for FOG diagnosis in some sense. The Allan variance method can be used to estimate ARW coefficient of FOG, however, it requires a large amount of data to be stored. Moreover, the procedure of drawing slope lines for estimation is painful. To overcome the barriers, a weighted state-space model that directly models the ARW to obtain a nonlinear state-space model was established for FOG. Then, a neural extended-Kalman filter algorithm was implemented to estimate and track the variation of ARW in real time. The results of experiment show that the proposed approach is valid to detect the state of FOG. Moreover, the proposed technique effectively avoids the storage of data. PMID:25725877

  2. Monitoring techniques for the manufacture of tapered optical fibers.

    PubMed

    Mullaney, Kevin; Correia, Ricardo; Staines, Stephen E; James, Stephen W; Tatam, Ralph P

    2015-10-01

    The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 μm and with waist lengths of 20 mm using single-mode SMF-28 fiber. PMID:26479631

  3. A Study of Synchronization Techniques for Optical Communication Systems

    NASA Technical Reports Server (NTRS)

    Gagliardi, R. M.

    1975-01-01

    The study of synchronization techniques and related topics in the design of high data rate, deep space, optical communication systems was reported. Data cover: (1) effects of timing errors in narrow pulsed digital optical systems, (2) accuracy of microwave timing systems operating in low powered optical systems, (3) development of improved tracking systems for the optical channel and determination of their tracking performance, (4) development of usable photodetector mathematical models for application to analysis and performance design in communication receivers, and (5) study application of multi-level block encoding to optical transmission of digital data.

  4. Wavelength conversion technique for optical frequency dissemination applications.

    PubMed

    Kim, Joonyoung; Marra, Giuseppe; Wu, David S; Richardson, David J; Slavík, Radan

    2016-04-15

    We demonstrate coherent wavelength conversion capable of covering the entire C-band by modulating the incoming optical carrier with a compact Fabry-Perot cavity embedded phase modulator and by optical injection locking a semiconductor laser to a tone of the generated optical frequency comb. The phase noise of the converted optical carrier over 1 THz frequency interval is measured to be -40 dBc/Hz at 10 Hz offset and the frequency stability is better than 2 × 10(-17) level for averaging times >1000 s, making this technique a promising solution for comparisons of state-of-the-art optical clocks over complex fiber networks. PMID:27082327

  5. Dynamic micro-bead arrays using optical tweezers combined with intelligent control techniques.

    PubMed

    Tanaka, Yoshio; Kawada, Hiroyuki; Tsutsui, Shogo; Ishikawa, Mitsuru; Kitajima, Hiroyuki

    2009-12-21

    Dynamic micro-bead arrays offer great flexibility and potential as sensing tools in various scientific fields. Here we present a software-oriented approach for fully automated assembly of versatile dynamic micro-bead arrays using multi-beam optical tweezers combined with intelligent control techniques. Four typical examples, including the collision-free sorting of array elements by bead features, are demonstrated in real time. Control algorithms and experimental apparatus for these demonstrations are also described.

  6. Impact of dither-based Electro-Optic Modulator bias control on distributed Brillouin sensing system

    NASA Astrophysics Data System (ADS)

    Sun, Qiao; Tu, Xiaobo; Sun, Shilin; Hu, Xiaoyang; Meng, Zhou

    2015-10-01

    In most distributed Brillouin sensing systems, it is crucial to keep the long-term stability of the electro-optic modulator (EOM) operating point. The dither-tone based bias control methods are widely adopted in this kind of systems for its robustness and reliability, but the low frequency dither tone (a few kilohertz) added into the dc bias port of the EOM may have a detrimental impact on the sensing performance of the Brillouin sensing system. Experimental results show that the dither frequency should not be set around quarter of the pulse repetition rate or its multiples, and the employed dither amplitude should be in the range of 0.003Vπ to 0.015Vπ (Vπ is the RF half-wave voltage of the EOM), in order to overcome the limitation of dither tone based bias control techniques in BOTDA systems. These results will provide guidelines to improve the performance of the Brillouin sensing systems using dither-based EOM bias control method.

  7. Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing

    PubMed Central

    Klantsataya, Elizaveta; François, Alexandre; Ebendorff-Heidepriem, Heike; Hoffmann, Peter; Monro, Tanya M.

    2015-01-01

    Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR) configuration realized in an Exposed Core Microstructured Optical Fiber (ECF) capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 μm diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM) of SPR response is compared to that achieved with an unstructured bare core fiber with 140 μm core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber). Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33–1.37) suitable for biosensing applications. PMID:26426022

  8. Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing.

    PubMed

    Klantsataya, Elizaveta; François, Alexandre; Ebendorff-Heidepriem, Heike; Hoffmann, Peter; Monro, Tanya M

    2015-01-01

    Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR) configuration realized in an Exposed Core Microstructured Optical Fiber (ECF) capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 μm diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM) of SPR response is compared to that achieved with an unstructured bare core fiber with 140 μm core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber). Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33-1.37) suitable for biosensing applications. PMID:26426022

  9. New trends and applications of optical fiber sensing technologies at the NEL-FOST

    NASA Astrophysics Data System (ADS)

    Yang, Minghong; Huang, Chujia; Yuan, Yinquan; Ding, Liyun; Zhou, Ciming

    2015-07-01

    This paper reviews the recent development of optical fiber sensors at the National Engineering Laboratory for Optic Fiber Sensing Technologies (NEL-FOST) at Wuhan University of Technology. Integration of optical fiber with sensitive thin films will new possibilities for industry application, such as optical fiber hydrogen sensors based on Pt-doped WO3 coatings, fiber humidity sensors with porous oxide coating and high-temperature sapphire fiber sensors based on multilayer coating on fiber tip. Ultra-weak FBG array with thousand of FBGs with on-line draw tower technology will enable FBG sensing network with large capacity, also improved sensing performance and mechanical stability.

  10. Optical Remote Sensing Measurements of Air Pollution in Mexico City During MCMA- 2006

    NASA Astrophysics Data System (ADS)

    Galle, B.; Mellqvist, J.; Johansson, M.; Rivera, C.; Samuelsson, J.; Zhang, Y.

    2007-05-01

    During March 2006 the Optical Remote sensing group at Chalmers University of Technology participated in the MCMA-2006 field campaign in Mexico City, performing measurements of air pollution using a set of different optical remote sensing instruments. This poster gives an overview of the techniques applied and results obtained. The techniques applied were: Solar Occultation FTIR and UV spectroscopy from fixed locations throughout the MCMA area, yielding total columns of CO, CH2O, SO2 and NO2. Long Path FTIR measurements from site T0 located in the north part of central Mexico City. With this instrument line-averaged concentration measurements of CO and CO2 was obtained in parallel with DOAS measurements performed by other partners. MAX-DOAS measurements from site T0, yielding total column and spatial distributions of SO2 and NO2. Mobile DOAS scattered Sunlight measurements of total columns of SO2 and NO2 in and around the MCMA area. Mobile and stationary DOAS measurements in the vicinity of Tula and Popocatépetl in order to quantify emissions from industry and volcano.

  11. Interference cancellation technique of optical AND gate receiver using optical thyristor.

    PubMed

    Kang, Tae-Gu

    2008-09-01

    We demonstrate an interference cancellation technique of optical AND gate receiver using optical thyristor for fiber-optic code division multiple access (FO-CDMA) systems. In particular, we fabricate the optical thyristor operating as optical hard-limiter and evaluate that the optical AND gate receiver using fabricated optical thyristor excludes the peaks of side-lobe and cross-correlation result in the system performance degradation. It found that the optical AND gate receiver using optical thyristor excludes the intensity of interference signal resulting in that the peaks of side-lobe and cross-correlation can be fully eliminated for any two users. Therefore, the optical AND gate receiver using optical thyristor is shown to be effective to accommodate more simultaneous users.

  12. Optic fiber sensor-based smart bridge cable with functionality of self-sensing

    NASA Astrophysics Data System (ADS)

    He, Jianping; Zhou, Zhi; Jinping, Ou

    2013-02-01

    Bridge cables, characterized by distributed large span, serving in harsh environment and vulnerability to random damage, are the key load-sustaining components of cable-based bridges. To ensure the safety of the bridge structure, it is critical to monitor the loading conditions of these cables under lengthwise random damages. Aiming at obtaining accurate monitoring at the critical points as well as the general information of the cable force distributed along the entire cable, this paper presents a study on cable force monitoring by combining optical fiber Bragg grating (FBG) sensors and Brillouin optical time domain analysis/reflectory (BOTDA/R) sensing technique in one single optical fiber. A smart FRP-OF-FBG rebar based cable was fabricated by protruding a FRP packaged OF-FBG sensor into the bridge cable. And its sensing characteristics, stability under high stress state temperature self-compensation as well as BOTDA/R distributed data improvement by local FBG sensors have been investigated. The results show that FRP-OF-FBG rebar in the smart cable can deform consistantly along with the steel wire and the cable force obtained from the optical fiber sensors agree well with theoretical value with relative error less than ±5%. Besides, the temperature self-compensation method provides a significant cost-effective technique for the FRP-OF-FBG based cables' in situ cable force measurement. And furthermore, potential damages of the bridge cable, e.g. wire breaking and corrosion, can be characterized and symbolized by the discontinuity and fluctuation of the distributed BOTDA data thereafter accuracy improved by local FBG sensors.

  13. A Simple Technique for Visualizing Ultrasound Fields Without Schlieren Optics.

    PubMed

    Kudo, Nobuki

    2015-07-01

    A simple technique designed for visualization of ultrasound fields without Schlieren optics is introduced. An optical system of direct shadowgraphy with diverging light, which consists of a point light source and a shadow screen, constituted the basic system, but the screen was replaced by focusing optics: a camera that makes a virtual screen at its focus plane. The proposed technique visualizes displacement of light deflected by ultrasound, and the use of focusing optics enables flexible settings of the virtual screen position and optical magnification. Insufficient sensitivity of shadowgraphy was overcome by elimination of non-deflecting light using image subtraction of shadowgrams taken with and without ultrasound exposure. A 1-MHz focused transducer for ultrasound therapy and a 20-MHz miniature transducer for intravascular imaging were used for experiments, and alternate pressure change in short-pulsed ultrasound was visualized, indicating the usefulness of the proposed technique for evaluation of medical ultrasound fields.

  14. Recent flight-test results of optical airdata techniques

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.

    1993-01-01

    Optical techniques for measuring airdata parameters were demonstrated with promising results on high performance fighter aircraft. These systems can measure the airspeed vector, and some are not as dependent on special in-flight calibration processes as current systems. Optical concepts for measuring freestream static temperature and density are feasible for in-flight applications. The best feature of these concepts is that the air data measurements are obtained nonintrusively, and for the most part well into the freestream region of the flow field about the aircraft. Current requirements for measuring air data at high angle of attack, and future need to measure the same information at hypersonic flight conditions place strains on existing techniques. Optical technology advances show outstanding potential for application in future programs and promise to make common use of optical concepts a reality. Results from several flight-test programs are summarized, and the technology advances required to make optical airdata techniques practical are identified.

  15. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications.

    USGS Publications Warehouse

    Clark, R.N.; Roush, T.L.

    1984-01-01

    Several methods for the analysis of remotely sensed reflectance data are compared, including empirical methods and scattering theories, both of which are important for solving remote sensing problems. The concept of the photon mean path length and the implications for use in modeling reflectance spectra are presented.-from Authors

  16. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Georgieva, Elena M.; Heaps,William S.; Wilson, Emily L.

    2007-01-01

    A new type of remote sensing radiometer based upon the Fabry-Perot interferometric technique has been developed at NASA's Goddard Space Flight Center and tested from both ground and aircraft platform. The sensor uses direct or reflected sunlight and has channels for measuring column concentration of carbon dioxide at 1570 nm, oxygen lines sensitive to pressure and temperature at 762 and 768 nm, and water vapor (940 nm). A solid Fabry-Perot etalon is used as a tunable narrow bandpass filter to restrict the measurement to the gas of interest's absorption bands. By adjusting the temperature of the etalon, which changes the index of refraction of its material, the transmission fringes can be brought into nearly exact correspondence with absorption lines of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosphere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The technique is applicable to different chemical species. We have performed simulations and instrument design studies for CH4, "Cot isotope, and CO detection. Index Terms- Absorbing media, Atmospheric measurements, Fabry-Perot interferometers, Optical interferometry, Remote sensing.

  17. Techniques for measuring radiation induced effects of acousto optic devices

    SciTech Connect

    Taylor, E.W.

    1995-08-01

    Innovative measurement techniques for determining radiation induced changes in acousto optic devices are briefly discussed. Measurements of acousto optic operational parameters such as signal transmission efficiency, diffraction efficiency, spatial intensity and bandwidth responses during electron irradiations are described. During exposure to pulsed electrons, only transient perturbations to the acousto optic operational parameters were experienced. Examples of new measurement procedures and typical data resulting from the measurements are presented.

  18. (Optical characterization techniques applied to ceramic oxides)

    SciTech Connect

    Abraham, M.M.

    1990-10-15

    The traveler collaborated with M.J.M. Leask, J.M. Baker, B. Bleaney, and others at the Clarendon Laboratory, Oxford University, Oxford, UK, to Study Tetragonal rare-earth phosphates and vanadates by optical and magnetic spectroscopy. This work is related to similar studies that have been performed at ORNL by the Synthesis and Properties of Novel Materials Group in the Solid State Division.

  19. Optical remote sensing of sound in the ocean

    NASA Astrophysics Data System (ADS)

    Churnside, James H.; Naugolnykh, Konstantin; Marchbanks, Richard D.

    2014-05-01

    We are proposing a novel remote sensing technique to measure sound in the upper ocean. The objective is a system that can be flown on an aircraft. Conventional acoustic sensors are ineffective in this application, because almost none (~ 0.1 %) of the sound in the ocean is transmitted through the water/air interface. The technique is based on the acoustic modulation of bubbles near the sea surface. It is clear from the ideal gas law that the volume of a bubble will decrease if the pressure is increased, as long as the number of gas molecules and temperature remain constant. The pressure variations associated with the acoustic field will therefore induce proportional volume fluctuations of the insonified bubbles. The lidar return from a collection of bubbles has been shown to be proportional to the total void fraction, independent of the bubble size distribution. This implies that the lidar return from a collection of insonified bubbles will be modulated at the acoustic frequencies, independent of the bubble size distribution. Moreover, that modulation is linearly related to the sound pressure. The basic principles have been demonstrated in the laboratory, and these results will be presented. Estimates of signal-to-noise ratio suggest that the technique should work in the open ocean. Design considerations and signal-to-noise ratios will also be presented.

  20. Portable Optical Sensor Tester (POST) Calibration Technique

    NASA Astrophysics Data System (ADS)

    Levine, Michael A.; Randolph, Clyde A.

    1983-09-01

    The Portable Optical Sensor Tester (POST) is a low background, long wavelength infrared test and calibration chamber used for evaluation and calibration of developmental LWIR sensors. It is operated by Rockwell International for the Ballistic Missile Defense Advanced Technology Center (BMDATC). The POST system generates a collimated output IR beam from a working blackbody source for test and calibration of LWIR sensors. Internal scan mirrors are used to scan the output beam to simulate flight sensor scanning. The optical path has eleven reflective surfaces making a spectral calibration of the output beam necessary. This calibration is accomplished by utilizing an NBS calibrated blackbody with a calibration accuracy of 4.2% (la quadrature accuracy = 2.0%) as a reference standard. In situ calibration of the output beam is accomplished by sampling part of the output beam and comparing it spectrally, point by point, with the output from the reference blackbody. A grating cube spectroradiometer resident in POST is used to make the spectral comparison. By careful analysis of the diffraction effects at the reference blackbody source and the utilization of a single reflective optical element to direct the reference source energy to the spectroradiometer, the calibration uncertainties are minimized.

  1. Research on the design of an optical information storage sensing system using a diffractive optical element.

    PubMed

    Cheng, Xuemin; Hao, Qun; Hou, Jianbo; Li, Xiangping; Ma, Jianshe; Gu, Min

    2013-11-08

    This paper introduces a compact optical information storage sensing system. Applications of this system include longitudinal surface plasmon resonance detection of gold nanorods with a single femtosecond laser in three-dimensional space as well as data storage. A diffractive optical element (DOE) is applied in the system to separate the recording-reading beam from the servo beam. This allows us to apply a single laser and one objective lens in a single optical path for the servo beam and the recording-reading beam. The optical system has a linear region of 8 λ, which is compatible with current DVD servo modules. The wavefront error of the optical system is below 0.03 λ(rms). The minimum grating period of the DOE is 13.4 µm, and the depth of the DOE is 1.2 µm, which makes fabrication of it possible. The DOE is also designed to conveniently control the layer-selection process, as there is a linear correlation between the displacement of the DOE and the layer-selection distance. The displacement of DOE is in the range of 0-6.045 mm when the thickness of the layer-selection is 0.3 mm. Experiments were performed and the results have been verified.

  2. Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents

    SciTech Connect

    Cameron, S.M.; Loubriel, G.M.; Rbinett, R.D. III; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1999-04-01

    This paper focuses on our recent work at Sandia National Laboratories toward engineering a physics-based swarm of mobile vehicles for distributed sensing applications. Our goal is to coordinate a sensor array that optimizes sensor coverage and multivariate signal analysis by implementing artificial intelligence and evolutionary computational techniques. These intelligent control systems integrate both globally operating decision-making systems and locally cooperative information-sharing modes using genetically-trained neural networks. Once trained, neural networks have the ability to enhance real-time operational responses to dynamical environments, such as obstacle avoidance, responding to prevailing wind patterns, and overcoming other natural obscurants or interferences (jammers). The swarm realizes a collective set of sensor neurons with simple properties incorporating interactions based on basic community rules (potential fields) and complex interconnecting functions based on various neural network architectures, Therefore, the swarm is capable of redundant heterogeneous measurements which furnishes an additional degree of robustness and fault tolerance not afforded by conventional systems, while accomplishing such cognitive tasks as generalization, error correction, pattern recognition, and sensor fission. The robotic platforms could be equipped with specialized sensor devices including transmit/receive dipole antennas, chemical or biological sniffers in combination with recognition analysis tools, communication modulators, and laser diodes. Our group has been studying the collective behavior of an autonomous, multi-agent system applied to emerging threat applications. To accomplish such tasks, research in the fields of robotics, sensor technology, and swarms are being conducted within an integrated program. Mission scenarios under consideration include ground penetrating impulse radar (GPR) for detection of under-ground structures, airborne systems, and plume

  3. Remote-Sensing Reflectance and Inherent Optical Properties for Optically Deep Waters: A Revisit

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.; Du, Ke-Ping

    2001-01-01

    Remote-sensing reflectance (r(rs)) is defined as the ratio of upwelling radiance to downwelling irradiance. Relationships between remote-sensing reflectance and inherent optical properties serve as the basis for ocean-color modeling, as well as for spectral deduction of oceanic constituents through analytical/semi-analytical models of ocean color. A decade ago, a simple and concise formula based on Monte Carlo simulations was developed by relating rrs to a property u, the ratio of backscattering (b(b)) to the sum of absorption (a) and backscattering (u = b(b)/(a+b(b))). This relationship generally ignored the shape differences in phase functions between molecular scattering and particle scattering. In this study, the relationship is updated with separate parameters for molecular and particle scattering, based on the Radiative Transfer Equation through use of Hydrolight numerical solutions. The new approach fits r(rs) better than an earlier traditional formula, for both clear and turbid waters.

  4. Improved technique for retrieval of forest parameters from hyperspectral remote sensing data.

    PubMed

    Kozoderov, Vladimir V; Dmitriev, Egor V; Sokolov, Anton A

    2015-11-30

    This paper describes an approach of machine-learning pattern recognition procedures for the land surface objects using their spectral and textural features on remotely sensed hyperspectral images together with the biological parameters retrieval for the recognized classes of forests. Modified Bayesian classifier is used to improve the related procedures in spatial and spectral domains. Direct and inverse problems of atmospheric optics are solved based on modeling results of the projective cover and density of the forest canopy for the selected classes of forests of different species and ages. Applying the proposed techniques to process images of high spectral and spatial resolution, we have detected object classes including forests within their contours on a particular image and can retrieve the phytomass amount of leaves/needles as well as the relevant total biomass amount for the forest canopy. PMID:26698785

  5. Novel optical fibers for Brillouin-based distributed sensing

    NASA Astrophysics Data System (ADS)

    Dragic, Peter D.; Ballato, John; Morris, Stephanie; Evert, Alex; Rice, Robert R.; Hawkins, Thomas

    2013-05-01

    Optical fiber sensors utilizing Brillouin scattering rely on the principle that the Brillouin frequency shift is a function of the local temperature or strain. Conventional optical fibers, such as standard telecommunications single-mode fibers, have been successfully used in these applications, and most typically in the time domain, such as with BOTDR. Such conventional fibers however are susceptible simultaneously to both temperature and strain, requiring either at least two fibers or specialized cabling to distinguish the effects of a local stress from those of a local change in temperature. Recently, methods utilizing fibers possessing at least two Brillouin frequency shifts, each with different temperature or strain coefficients have been proposed. However, realizing such fibers is challenging, requiring fibers with regions of very different compositions, all of which must have substantial overlap with the optical field, posing significant manufacturing challenges. We present several new specialty optical fibers based on novel and unconventional fabrication techniques with significant potential for use in distributed fiber sensor systems. First, we describe a class of fibers fabricated from materials whose Brillouin frequency shifts are immune to either temperature or strain, with a demonstration of the former using fiber derived from sapphire crystal, and modeling and measurements predicting the latter. The `Brillouin-athermal' fiber enables the measurement of a local strain, independent of the local temperature. Second, we describe and demonstrate a novel group of longitudinally graded (chirped) fibers enabling easily-implemented frequency-domain systems; affording the potential to simplify and reduce the cost of Brillouin-based distributed sensors.

  6. Techniques for optically compressing light intensity ranges

    DOEpatents

    Rushford, M.C.

    1989-03-28

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter. 18 figs.

  7. Techniques for optically compressing light intensity ranges

    DOEpatents

    Rushford, Michael C.

    1989-01-01

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter.

  8. Up-conversion luminescence and optical temperature sensing behaviour of Yb3+/Er3+ codoped CaWO4 material

    NASA Astrophysics Data System (ADS)

    Cheng, Xuerui; Yang, Kun; Wang, Jiankun; Yang, Linfu; Cheng, Xiaoshuai

    2016-08-01

    Present article report on structural and optical properties of Er3+/Yb3+ codoped CaWO4 phosphors. Structural properties are explored using XRD and Raman technologies. The upconversion emission has been investigated with 980 nm excitation. The upconversion emission intensity is dependent on the concentrations of Yb3+ ions and reaches a maximum at 7%. Logarithmic plots of power dependencies reveal that the green and red emissions originate from a two-photon upconversion process. Based on the photon energy and the emission spectra, the possible upconversion processes and emission mechanisms are discussed. Finally, the optical temperature sensing properties has been performed using the fluorescence intensity ratio technique based on green upconversion emissions. Its temperature sensitivity is found to be above 0.0025 K-1 in the whole temperature range of 300-540 K, revealing this phosphor to be a promising optical temperature sensing material.

  9. Ratiometric optical oxygen sensing: a review in respect of material design.

    PubMed

    Feng, Yan; Cheng, Jinghui; Zhou, Li; Zhou, Xiangge; Xiang, Haifeng

    2012-11-01

    The quantitative determination of oxygen concentration is essential for a variety of applications ranging from life sciences to environmental sciences. Optical oxygen sensing allows non-invasive measurements with biological objects, parallel monitoring of multiple samples, and imaging. In general, ratiometric optical oxygen sensing is more desirable, due to its advantages of selectivity, insensitivity to ambient or scattered light, and elimination of instrumental fluctuation. Moreover, it can provide the perceived colour change, which would be useful not only for the ratiometric method of detection but also for rapid visual sensing. Mainly focusing on material design for ratiometric measurement, this review describes the overall progress made in the past ten years on ratiometric optical ground-state triplet oxygen sensing and offers a critical comparison of various methods reported in the literature. It also provides a development blueprint for ratiometric optical oxygen sensing.

  10. Tear film measurement by optical reflectometry technique.

    PubMed

    Lu, Hui; Wang, Michael R; Wang, Jianhua; Shen, Meixiao

    2014-02-01

    Evaluation of tear film is performed by an optical reflectometer system with alignment guided by a galvanometer scanner. The reflectometer system utilizes optical fibers to deliver illumination light to the tear film and collect the film reflectance as a function of wavelength. Film thickness is determined by best fitting the reflectance-wavelength curve. The spectral reflectance acquisition time is 15 ms, fast enough for detecting film thickness changes. Fast beam alignment of 1 s is achieved by the galvanometer scanner. The reflectometer was first used to evaluate artificial tear film on a model eye with and without a contact lens. The film thickness and thinning rate have been successfully quantified with the minimum measured thickness of about 0.3 μm. Tear films in human eyes, with and without a contact lens, have also been evaluated. A high-contrast spectral reflectance signal from the precontact lens tear film is clearly observed, and the thinning dynamics have been easily recorded from 3.69 to 1.31 μm with lipid layer thickness variation in the range of 41 to 67 nm. The accuracy of the measurement is better than ±0.58% of the film thickness at an estimated tear film refractive index error of ±0.001. The fiber-based reflectometer system is compact and easy to handle.

  11. Automatic inspection technique for optical surface flaws

    NASA Astrophysics Data System (ADS)

    Yang, GuoGuang; Gao, Wenliang; Cheng, Shangyi

    1991-01-01

    Industrial inspection of optical component surface flaws requires objective, high efficient and fast measurement methods and instruments. In this paper, a novel method, which is practical for on- line inspecting optical component surface flaws in manufacturing industry, is discribed. Laser beam goes through a lean- placed mirror with a slot in center onto the surface of the specimen. The imformation of surface flaws is obtained through analysing the frequency spectrum of reflective light which is detected by a photomultiplier, the specimen scanning control and signal processing are finished by a low - cost and handy single- board microcomputer. The theory that applies the scanning frequency spectrum method , the method for determining flaw size and measuring sensitivity as well as control model for various specimen are analysed in detail .A system has been built according to the idea discribed above. By using the system, several specimen are measured, the comparison and analysis between exprimental results and actual flaw conditions are given. The minimum detectable flaw is 3 micrometer, the measuring error is also given.

  12. Tear film measurement by optical reflectometry technique.

    PubMed

    Lu, Hui; Wang, Michael R; Wang, Jianhua; Shen, Meixiao

    2014-02-01

    Evaluation of tear film is performed by an optical reflectometer system with alignment guided by a galvanometer scanner. The reflectometer system utilizes optical fibers to deliver illumination light to the tear film and collect the film reflectance as a function of wavelength. Film thickness is determined by best fitting the reflectance-wavelength curve. The spectral reflectance acquisition time is 15 ms, fast enough for detecting film thickness changes. Fast beam alignment of 1 s is achieved by the galvanometer scanner. The reflectometer was first used to evaluate artificial tear film on a model eye with and without a contact lens. The film thickness and thinning rate have been successfully quantified with the minimum measured thickness of about 0.3 μm. Tear films in human eyes, with and without a contact lens, have also been evaluated. A high-contrast spectral reflectance signal from the precontact lens tear film is clearly observed, and the thinning dynamics have been easily recorded from 3.69 to 1.31 μm with lipid layer thickness variation in the range of 41 to 67 nm. The accuracy of the measurement is better than ±0.58% of the film thickness at an estimated tear film refractive index error of ±0.001. The fiber-based reflectometer system is compact and easy to handle. PMID:24500519

  13. Optical correlator techniques applied to robotic vision

    NASA Technical Reports Server (NTRS)

    Hine, Butler P., III; Reid, Max B.; Downie, John D.

    1991-01-01

    Vision processing is one of the most computationally intensive tasks required of an autonomous robot. The data flow from a single typical imaging sensor is roughly 60 Mbits/sec, which can easily overload current on-board processors. Optical correlator-based processing can be used to perform many of the functions required of a general robotic vision system, such as object recognition, tracking, and orientation determination, and can perform these functions fast enough to keep pace with the incoming sensor data. We describe a hybrid digital electronic/analog optical robotic vision processing system developed at Ames Research Center to test concepts and algorithms for autonomous construction, inspection, and maintenance of space-based habitats. We discuss the system architecture design and implementation, its performance characteristics, and our future plans. In particular, we compare the performance of the system to a more conventional all digital electronic system developed concurrently. The hybrid system consistently outperforms the digital electronic one in both speed and robustness.

  14. Real-time optical image processing techniques

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1988-01-01

    Nonlinear real-time optical processing on spatial pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-channel spatial light modulators (MSLMs). Micro-channel spatial light modulators are modified via the Fabry-Perot method to achieve the high gamma operation required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness of the thresholding and also showed the needs of higher SBP for image processing. The Hughes LCLV has been characterized and found to yield high gamma (about 1.7) when operated in low frequency and low bias mode. Cascading of two LCLVs should also provide enough gamma for nonlinear processing. In this case, the SBP of the LCLV is sufficient but the uniformity of the LCLV needs improvement. These include image correlation, computer generation of holograms, pseudo-color image encoding for image enhancement, and associative-retrieval in neural processing. The discovery of the only known optical method for dynamic range compression of an input image in real-time by using GaAs photorefractive crystals is reported. Finally, a new architecture for non-linear multiple sensory, neural processing has been suggested.

  15. Optical techniques for shock visualization and detection

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Johnson, D. K.

    1995-01-01

    While the classical methods of shadowgraph and schlieren do yield a shadow in the neighborhood of a shock, they often suffer from low power densities and the need for relatively long distances. Scanning methods may help in solving these problems. The paper describes various scanning techniques, presents experimental data obtained by mechanical scanning, and identifies conditions at which the data were taken.

  16. Realistic Instrumentation Platform for Active and Passive Optical Remote Sensing.

    PubMed

    Brydegaard, Mikkel; Merdasa, Aboma; Gebru, Alem; Jayaweera, Hiran; Svanberg, Sune

    2016-02-01

    We describe the development of a novel versatile optical platform for active and passive remote sensing of environmental parameters. Applications include assessment of vegetation status and water quality. The system is also adapted for ecological studies, such as identification of flying insects including agricultural pests. The system is based on two mid-size amateur astronomy telescopes, continuous-wave diode lasers at different wavelengths ranging from violet to the near infrared, and detector facilities including quadrant photodiodes, two-dimensional and line scan charge-coupled device cameras, and a compact digital spectrometer. Application examples include remote Ramanlaser-induced fluorescence monitoring of water quality at 120 m distance, and insect identification at kilometer ranges using the recorded wing beat frequency and its spectrum of overtones. Because of the low cost this developmental platform is very suitable for advanced research projects in developing countries and has, in fact, been multiplied during hands-on workshops and is now being used by a number of groups at African universities.

  17. A survey on object detection in optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Han, Junwei

    2016-07-01

    Object detection in optical remote sensing images, being a fundamental but challenging problem in the field of aerial and satellite image analysis, plays an important role for a wide range of applications and is receiving significant attention in recent years. While enormous methods exist, a deep review of the literature concerning generic object detection is still lacking. This paper aims to provide a review of the recent progress in this field. Different from several previously published surveys that focus on a specific object class such as building and road, we concentrate on more generic object categories including, but are not limited to, road, building, tree, vehicle, ship, airport, urban-area. Covering about 270 publications we survey (1) template matching-based object detection methods, (2) knowledge-based object detection methods, (3) object-based image analysis (OBIA)-based object detection methods, (4) machine learning-based object detection methods, and (5) five publicly available datasets and three standard evaluation metrics. We also discuss the challenges of current studies and propose two promising research directions, namely deep learning-based feature representation and weakly supervised learning-based geospatial object detection. It is our hope that this survey will be beneficial for the researchers to have better understanding of this research field.

  18. Adaptive compressed sensing for spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Chen, Xiaodong; Wang, Ting; Li, Hongxiao; Yu, Daoyin

    2014-03-01

    Spectral-domain optical coherence tomography (SD-OCT) is a non-contact and non-invasive method for measuring the change of biological tissues caused by pathological changes of body. CCD with huge number of pixels is usually used in SD-OCT to increase the detecting depth, thus enhancing the hardness of data transmission and storage. The usage of compressed sensing (CS) in SD-OCT is able to reduce the trouble of large data transfer and storage, thus eliminating the complexity of processing system. The traditional CS uses the same sampling model for SD-OCT images of different tissue, leading to reconstruction images with different quality. We proposed a CS with adaptive sampling model. The new model is based on uniform sampling model, and the interference spectral of SD-OCT is considered to adjust the local sampling ratio. Compared with traditional CS, adaptive CS can modify the sampling model for images of different tissue according to different interference spectral, getting reconstruction images with high quality without changing sampling model.

  19. Information-Theoretic Assessment of Optical Remote-Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Aiazzi, B.; Alparone, L.; Baronti, S.; Lastri, C.; Santurri, L.; Selva, M.

    2004-09-01

    This work focuses on estimating the information conveyed to a user by multi-band remotely sensed optical data, either multi-spectral or hyper-spectral. A trade-off exists between spatial and spectral resolution, due to physical constraints of sensors imaging with a prefixed SNR. Lossless data compression is exploited to measure the useful information content of the data. The bit-rate achieved by the reversible compression process takes into account both the contribution of the "observation" noise, i.e. information regarded as statistical uncertainty, whose relevance is null to a user, and the intrinsic information of hypothetically noise-free radiance data. An entropy model of the image source is defined and, once the standard deviation of the noise, assumed to be Gaussian, has been preliminary measured, such a model is inverted to yield an estimate of the information content of the noise-free source from the code rate. Results of mutual information assessment are reported and discussed on Landsat TM data and on AVIRIS data.

  20. Understanding and applying open-path optical sensing data

    NASA Astrophysics Data System (ADS)

    Virag, Peter; Kricks, Robert J.

    1999-02-01

    During the last 10 years, open-path air monitors have evolved to yield reliable and effective measurements of single and multiple compounds on a real-time basis. To many individuals within the optical remote sensing community, the attributes of open-path and its the potential uses seem unlimited. Then why has the market has been stagnant for the last few years? The reason may center on how open-path information is applied and how well the end user understands that information. We constantly try to compare open-path data to risk/health or safety levels that are based for use at a single point and for a specific averaging period often far longer than a typical open-path data point. Often this approach is perceived as putting a square peg in a round hole. This perception may be well founded, as open-path data at times may need to go through extensive data manipulation and assumptions before it can be applied. This paper will review pervious open-path monitoring programs and their success in applying the data collected. We will also look at how open-path data is being currently used, some previous pitfalls in data use, alternate methods of data interpretation, and how open-path data can be best practically applied to fit current needs.

  1. Realistic Instrumentation Platform for Active and Passive Optical Remote Sensing.

    PubMed

    Brydegaard, Mikkel; Merdasa, Aboma; Gebru, Alem; Jayaweera, Hiran; Svanberg, Sune

    2016-02-01

    We describe the development of a novel versatile optical platform for active and passive remote sensing of environmental parameters. Applications include assessment of vegetation status and water quality. The system is also adapted for ecological studies, such as identification of flying insects including agricultural pests. The system is based on two mid-size amateur astronomy telescopes, continuous-wave diode lasers at different wavelengths ranging from violet to the near infrared, and detector facilities including quadrant photodiodes, two-dimensional and line scan charge-coupled device cameras, and a compact digital spectrometer. Application examples include remote Ramanlaser-induced fluorescence monitoring of water quality at 120 m distance, and insect identification at kilometer ranges using the recorded wing beat frequency and its spectrum of overtones. Because of the low cost this developmental platform is very suitable for advanced research projects in developing countries and has, in fact, been multiplied during hands-on workshops and is now being used by a number of groups at African universities. PMID:26772187

  2. Influence of hemoglobin on non-invasive optical bilirubin sensing

    NASA Astrophysics Data System (ADS)

    Jiang, Jingying; Gong, Qiliang; Zou, Da; Xu, Kexin

    2012-03-01

    Since the abnormal metabolism of bilirubin could lead to diseases in the human body, especially the jaundice which is harmful to neonates. Traditional invasive measurements are difficult to be accepted by people because of pain and infection. Therefore, the real-time and non-invasive measurement of bilirubin is of great significance. However, the accuracy of currently transcutaneous bilirubinometry(TcB) is generally not high enough, and affected by many factors in the human skin, mostly by hemoglobin. In this talk, absorption spectra of hemoglobin and bilirubin have been collected and analyzed, then the Partial Least Squares (PLS) models have been built. By analyzing and comparing the Correlation and Root Mean Square Error of Prediction(RMSEP), the results show that the Correlation of bilirubin solution model is larger than that of the mixture solution added with hemoglobin, and its RMSEP value is smaller than that of mixture solution. Therefore, hemoglobin has influences on the non-invasive optical bilirubin sensing. In next step, it is necessary to investigate how to eliminate the influence.

  3. Empirical radiometric correction of optical remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Palubinskas, Gintautas; Mueller, Rupert M.; Reinartz, Peter H.

    2002-08-01

    We propose an empirical radiometric correction method for the effects, such as atmospheric effects and anisotropic reflection of the surface, in optical remote sensing data. These distortions are sensor viewing (scanning) angle dependent, thus they can be significant for data received from airborne sensors due to their wide field of view. The procedure is based solely on the digital image data and consists of several steps. First, the initial image region near nadir (minimal distortions) is clustered by an extended k-means algorithm, which automatically detects the clusters (surface types) in an image. Then, for each cluster an average line profile is calculated. These profiles (initially defined in a middle part of an image line) are extrapolated to the whole line of an image by a polynomial approximation. Finally, from these polynomial functions the linear regression over all clusters is build using the radiative transfer equation, which allows the radiometric correction for each viewing angle in an image relative to the reference angle, usually nadir. The procedure is iterative, that is the correction is first performed for a narrow part around the initial region. Then the procedure is initialized with this newly corrected image region and repeated until the whole image is corrected. The experiments for data acquired by airborne multispectral scanner DAEDALUS AADS 1268 ATM show the effectiveness of the proposed method especially for the mosaicking and classification applications.

  4. Integrating SAR with Optical and Thermal Remote Sensing for Operational Near Real-Time Volcano Monitoring

    NASA Astrophysics Data System (ADS)

    Meyer, F. J.; Webley, P.; Dehn, J.; Arko, S. A.; McAlpin, D. B.

    2013-12-01

    Volcanic eruptions are among the most significant hazards to human society, capable of triggering natural disasters on regional to global scales. In the last decade, remote sensing techniques have become established in operational forecasting, monitoring, and managing of volcanic hazards. Monitoring organizations, like the Alaska Volcano Observatory (AVO), are nowadays heavily relying on remote sensing data from a variety of optical and thermal sensors to provide time-critical hazard information. Despite the high utilization of these remote sensing data to detect and monitor volcanic eruptions, the presence of clouds and a dependence on solar illumination often limit their impact on decision making processes. Synthetic Aperture Radar (SAR) systems are widely believed to be superior to optical sensors in operational monitoring situations, due to the weather and illumination independence of their observations and the sensitivity of SAR to surface changes and deformation. Despite these benefits, the contributions of SAR to operational volcano monitoring have been limited in the past due to (1) high SAR data costs, (2) traditionally long data processing times, and (3) the low temporal sampling frequencies inherent to most SAR systems. In this study, we present improved data access, data processing, and data integration techniques that mitigate some of the above mentioned limitations and allow, for the first time, a meaningful integration of SAR into operational volcano monitoring systems. We will introduce a new database interface that was developed in cooperation with the Alaska Satellite Facility (ASF) and allows for rapid and seamless data access to all of ASF's SAR data holdings. We will also present processing techniques that improve the temporal frequency with which hazard-related products can be produced. These techniques take advantage of modern signal processing technology as well as new radiometric normalization schemes, both enabling the combination of

  5. Gabor-based fusion technique for Optical Coherence Microscopy.

    PubMed

    Rolland, Jannick P; Meemon, Panomsak; Murali, Supraja; Thompson, Kevin P; Lee, Kye-sung

    2010-02-15

    We recently reported on an Optical Coherence Microscopy technique, whose innovation intrinsically builds on a recently reported - 2 microm invariant lateral resolution by design throughout a 2 mm cubic full-field of view - liquid-lens-based dynamic focusing optical probe [Murali et al., Optics Letters 34, 145-147, 2009]. We shall report in this paper on the image acquisition enabled by this optical probe when combined with an automatic data fusion method developed and described here to produce an in-focus high resolution image throughout the imaging depth of the sample. An African frog tadpole (Xenopus laevis) was imaged with the novel probe and the Gabor-based fusion technique, demonstrating subcellular resolution in a 0.5 mm (lateral) x 0.5 mm (axial) without the need, for the first time, for x-y translation stages, depth scanning, high-cost adaptive optics, or manual intervention. In vivo images of human skin are also presented.

  6. Field results of antifouling techniques for optical instruments

    USGS Publications Warehouse

    Strahle, W.J.; Hotchkiss, F.S.; Martini, M.A.

    1998-01-01

    An anti-fouling technique is developed for the protection of optical instruments from biofouling which leaches a bromide compound into a sample chamber and pumps new water into the chamber prior to measurement. The primary advantage of using bromide is that it is less toxic than the metal-based antifoulants. The drawback of the bromide technique is also discussed.

  7. An integrated study of earth resources in the State of California using remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.

    1972-01-01

    Remote sensing activities for the management of California's water project are reported. Integrated efforts are based largely on airborne remote sensing data processing to inventory the various kinds of earth resources observed. Work centered on defining parameters pertinent to determine water yield and discernible through remote sensing techniques; (2) determining accuracy in measuring and mapping parameters using remote sensing data flown to various specifications; and (3) relating water yield predictions to actual water yields. Remote sensing imagery of the Perris valley shows that land developers established a number of locations to promote present agricultural land for non-agricultural land use.

  8. Combined optical coherence phase microscopy and impedance sensing measurements of differentiating adipose derived stem cells

    NASA Astrophysics Data System (ADS)

    Bagnaninchi, P. O.

    2010-02-01

    There is a growing interest in monitoring differentiating stem cells in 2D culture without the use of labelling agents. In this study we explore the feasibility of a multimodality method that combines impedance sensing (IS) and optical coherence phase microscopy (OCPM) to monitor the main biological events associated with adipose derived stem cells differentiation into different lineages. Adipose derived stem cells were cultured in Mesenpro RS medium on gold electrode arrays. The system (ECIS, Applied biophysics) is connected to a lock-in amplifier controlled by a computer, and the complex impedance is derived from the in phase and out of phase voltages. Multi-frequency measurements spanning from 500Hz to 100 kHz are recorded every 2 minutes. The Optical coherence phase microscope is build around a Thorlabs engine (930nm FWHM: 90nm) and connected to a custom build microscope probe. The IS and OCPM were successfully integrated. The electrode area (250um) was imaged with a lateral resolution of 1.5um during impedance measurements. Impedance sensing gave an average measurement of differentiation, as a change in impedance over the electrode area, whereas OCPM provides additional information on the cellular events occurring on top of the electrode. The information retrieved from OCPM will feed a mathematical model correlating cellular differentiation and impedance variation. In this study we have demonstrated the feasibility of integrating two non-invasive monitoring techniques that will be instrumental in designing stem cell based screening assays.

  9. Wing shaping and strain sensing using fiber optics

    NASA Astrophysics Data System (ADS)

    Mendoza, Sergio Licon

    Current technologies to measure strain rely on strain gauges that become heavy with increased measurement points. One significant improvement is the Fiber Bragg Gratings (FBG) which allows light to reflect through a fiber optic line in relation to the strain applied on that fiber. Significant advantages over conventional strain gauges allow for a light weight detailed view of the strain applied to any structure containing these fibers. The SPACE Center in conjunction with the AERO Institute have produced preliminary conclusions on how to implement such fibers on a wing structure and how they could be used to control the shape of a wing. Such a wing structure could be built lighter and flexible than today's wings thus enabling a lighter aircraft. Further studies show that if a feedback mechanism is encompassed, flutter suppression techniques can be accomplished with the use of these fibers thus avoiding catastrophic failure.

  10. Surface plasmon sensing of gas phase contaminants using optical fiber.

    SciTech Connect

    Thornberg, Steven Michael; White, Michael I.; Rumpf, Arthur Norman; Pfeifer, Kent Bryant

    2009-10-01

    Fiber-optic gas phase surface plasmon resonance (SPR) detection of several contaminant gases of interest to state-of-health monitoring in high-consequence sealed systems has been demonstrated. These contaminant gases include H{sub 2}, H{sub 2}S, and moisture using a single-ended optical fiber mode. Data demonstrate that results can be obtained and sensitivity is adequate in a dosimetric mode that allows periodic monitoring of system atmospheres. Modeling studies were performed to direct the design of the sensor probe for optimized dimensions and to allow simultaneous monitoring of several constituents with a single sensor fiber. Testing of the system demonstrates the ability to detect 70mTorr partial pressures of H{sub 2} using this technique and <280 {micro}Torr partial pressures of H{sub 2}S. In addition, a multiple sensor fiber has been demonstrated that allows a single fiber to measure H{sub 2}, H{sub 2}S, and H{sub 2}O without changing the fiber or the analytical system.

  11. Magnetic force and optical force sensing with ultrathin silicon resonator

    NASA Astrophysics Data System (ADS)

    Ono, Takahito; Esashi, Masayoshi

    2003-12-01

    In this article, we demonstrated magnetic and optical force measurements using an ultrathin silicon cantilever down to 20 nm or 50 nm in thickness. The cantilever was heated in an ultrahigh vacuum for enhancing the Q factor and a magnetic particle was mounted at the end of the cantilever using a manipulator. The vibration was measured by a laser Doppler vibrometer and its signal was fed to an opposed metal electrode for electrostatic self-oscillation. An application of a magnetic field with a coil exerted a force to the magnetic material, which results in the change of the resonant frequency. However, the change in the mechanical properties of the cantilever, due to mechanical instability and temperature variation, drifts the resonance peak. Force balancing between the magnetic force and an electrostatic force in the opposite phase can minimize the vibration amplitude. From the electrostatic force at the minimum point, the exerted force can be estimated. A magnetic moment of 4×10-20 J/T was measured by this method. The same technique was also applied to measure the optical force of ˜10-17 N, impinging on the cantilever by a laser diode.

  12. Advanced optical imaging techniques for neurodevelopment.

    PubMed

    Wu, Yicong; Christensen, Ryan; Colón-Ramos, Daniel; Shroff, Hari

    2013-12-01

    Over the past decade, developmental neuroscience has been transformed by the widespread application of confocal and two-photon fluorescence microscopy. Even greater progress is imminent, as recent innovations in microscopy now enable imaging with increased depth, speed, and spatial resolution; reduced phototoxicity; and in some cases without external fluorescent probes. We discuss these new techniques and emphasize their dramatic impact on neurobiology, including the ability to image neurons at depths exceeding 1mm, to observe neurodevelopment noninvasively throughout embryogenesis, and to visualize neuronal processes or structures that were previously too small or too difficult to target with conventional microscopy.

  13. Advanced Optical Imaging Techniques for Neurodevelopment

    PubMed Central

    Wu, Yicong; Christensen, Ryan; Colón-Ramos, Daniel; Shroff, Hari

    2013-01-01

    Over the past decade, developmental neuroscience has been transformed by the widespread application of confocal and two-photon fluorescence microscopy. Even greater progress is imminent, as recent innovations in microscopy now enable imaging with increased depth, speed, and spatial resolution; reduced phototoxicity; and in some cases without external fluorescent probes. We discuss these new techniques and emphasize their dramatic impact on neurobiology, including the ability to image neurons at depths exceeding 1 mm, to observe neurodevelopment noninvasively throughout embryogenesis, and to visualize neuronal processes or structures that were previously too small or too difficult to target with conventional microscopy. PMID:23831260

  14. Forest Attributes from Radar Interferometric Structure and its Fusion with Optical Remote Sensing

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.; Law, Beverly E.; Asner, Gregory P.

    2004-01-01

    The possibility of global, three-dimensional remote sensing of forest structure with interferometric synthetic aperture radar (InSAR) bears on important forest ecological processes, particularly the carbon cycle. InSAR supplements two-dimensional remote sensing with information in the vertical dimension. Its strengths in potential for global coverage complement those of lidar (light detecting and ranging), which has the potential for high-accuracy vertical profiles over small areas. InSAR derives its sensitivity to forest vertical structure from the differences in signals received by two, spatially separate radar receivers. Estimation of parameters describing vertical structure requires multiple-polarization, multiple-frequency, or multiple-baseline InSAR. Combining InSAR with complementary remote sensing techniques, such as hyperspectral optical imaging and lidar, can enhance vertical-structure estimates and consequent biophysical quantities of importance to ecologists, such as biomass. Future InSAR experiments will supplement recent airborne and spaceborne demonstrations, and together with inputs from ecologists regarding structure, they will suggest designs for future spaceborne strategies for measuring global vegetation structure.

  15. Calibration and deployment of a fiber-optic sensing system for monitoring debris flows.

    PubMed

    Huang, Ching-Jer; Chu, Chung-Ray; Tien, Tsung-Mo; Yin, Hsiao-Yuen; Chen, Ping-Sen

    2012-01-01

    This work presents a novel fiber-optic sensing system, capable of monitoring debris flows or other natural hazards that produce ground vibrations. The proposed sensing system comprises a demodulator (BraggSCOPE, FS5500), which includes a broadband light source and a data logger, a four-port coupler and four Fiber Bragg Grating (FBG) accelerometers. Based on field tests, the performance of the proposed fiber-optic sensing system is compared with that of a conventional sensing system that includes a geophone or a microphone. Following confirmation of the reliability of the proposed sensing system, the fiber-optic sensing systems are deployed along the Ai-Yu-Zi and Chu-Shui Creeks in Nautou County of central Taiwan for monitoring debris flows. Sensitivity test of the deployed fiber-optic sensing system along the creek banks is also performed. Analysis results of the seismic data recorded by the systems reveal in detail the frequency characteristics of the artificially generated ground vibrations. Results of this study demonstrate that the proposed fiber-optic sensing system is highly promising for use in monitoring natural disasters that generate ground vibrations.

  16. Calibration and Deployment of a Fiber-Optic Sensing System for Monitoring Debris Flows

    PubMed Central

    Huang, Ching-Jer; Chu, Chung-Ray; Tien, Tsung-Mo; Yin, Hsiao-Yuen; Chen, Ping-Sen

    2012-01-01

    This work presents a novel fiber-optic sensing system, capable of monitoring debris flows or other natural hazards that produce ground vibrations. The proposed sensing system comprises a demodulator (BraggSCOPE, FS5500), which includes a broadband light source and a data logger, a four-port coupler and four Fiber Bragg Grating (FBG) accelerometers. Based on field tests, the performance of the proposed fiber-optic sensing system is compared with that of a conventional sensing system that includes a geophone or a microphone. Following confirmation of the reliability of the proposed sensing system, the fiber-optic sensing systems are deployed along the Ai-Yu-Zi and Chu-Shui Creeks in Nautou County of central Taiwan for monitoring debris flows. Sensitivity test of the deployed fiber-optic sensing system along the creek banks is also performed. Analysis results of the seismic data recorded by the systems reveal in detail the frequency characteristics of the artificially generated ground vibrations. Results of this study demonstrate that the proposed fiber-optic sensing system is highly promising for use in monitoring natural disasters that generate ground vibrations. PMID:22778616

  17. Calibration and deployment of a fiber-optic sensing system for monitoring debris flows.

    PubMed

    Huang, Ching-Jer; Chu, Chung-Ray; Tien, Tsung-Mo; Yin, Hsiao-Yuen; Chen, Ping-Sen

    2012-01-01

    This work presents a novel fiber-optic sensing system, capable of monitoring debris flows or other natural hazards that produce ground vibrations. The proposed sensing system comprises a demodulator (BraggSCOPE, FS5500), which includes a broadband light source and a data logger, a four-port coupler and four Fiber Bragg Grating (FBG) accelerometers. Based on field tests, the performance of the proposed fiber-optic sensing system is compared with that of a conventional sensing system that includes a geophone or a microphone. Following confirmation of the reliability of the proposed sensing system, the fiber-optic sensing systems are deployed along the Ai-Yu-Zi and Chu-Shui Creeks in Nautou County of central Taiwan for monitoring debris flows. Sensitivity test of the deployed fiber-optic sensing system along the creek banks is also performed. Analysis results of the seismic data recorded by the systems reveal in detail the frequency characteristics of the artificially generated ground vibrations. Results of this study demonstrate that the proposed fiber-optic sensing system is highly promising for use in monitoring natural disasters that generate ground vibrations. PMID:22778616

  18. UA wavefront control lab: design overview and implementation of new wavefront sensing techniques

    NASA Astrophysics Data System (ADS)

    Miller, Kelsey; Guyon, Olivier; Codona, Johanan; Knight, Justin; Rodack, Alexander

    2015-09-01

    We present an overview of the design of a new testbed for studying coronagraphic imaging and wavefront control using a variety of pupil and coronagraph architectures. The testbed is designed to explore optimal use of starlight (including starlight rejected by the coronagraph) for wavefront control, system self-calibration, and point spread function (PSF) calibration. It is also compatible with coronagraph designs for centrally obscured and segmented apertures, and includes shaped or apodized pupils, a range of focal plane masks and Lyot stops of multiple sizes, and an optional PIAA apodizing stage. Starlight is reflected and imaged from the focal plane mask and Lyot stop for low-order wavefront sensing. Both a segmented and a continuous sheet MEMS DM are included to simulate segmented telescope pupils, apply known test phase patterns, and implement a controllable phase apodization coronagraph. The testbed is adaptable and is currently being used to investigate three different techniques: (1) the differential optical transfer function (dOTF), (2) low-order wavefront sensing (LOWFS) with a hybrid-Lyot coronagraph, and (3) linear dark field control (LDFC).

  19. Tumor margin detection using optical biopsy techniques

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; Li, Jiyou; Li, Zhongwu; Zhou, Lixin; Chen, Ke; Pu, Yang; He, Yong; Zhu, Ke; Li, Qingbo; Alfano, Robert R.

    2014-03-01

    The aim of this study is to use the Resonance Raman (RR) and fluorescence spectroscopic technique for tumor margin detection with high accuracy based on native molecular fingerprints of breast and gastrointestinal (GI) tissues. This tumor margins detection method utilizes advantages of RR spectroscopic technique in situ and in real-time to diagnose tumor changes providing powerful tools for clinical guiding intraoperative margin assessments and postoperative treatments. The tumor margin detection procedures by RR spectroscopy were taken by scanning lesion from center or around tumor region in ex-vivo to find the changes in cancerous tissues with the rim of normal tissues using the native molecular fingerprints. The specimens used to analyze tumor margins include breast and GI carcinoma and normal tissues. The sharp margin of the tumor was found by the changes of RR spectral peaks within 2 mm distance. The result was verified using fluorescence spectra with 300 nm, 320 nm and 340 nm excitation, in a typical specimen of gastric cancerous tissue within a positive margin in comparison with normal gastric tissues. This study demonstrates the potential of RR and fluorescence spectroscopy as new approaches with labeling free to determine the intraoperative margin assessment.

  20. Optical techniques for time and frequency transfer

    NASA Technical Reports Server (NTRS)

    Baumont, Francoise; Gaignebet, Jean

    1994-01-01

    Light has been used as a means for time synchronization for a long time. The flight time was supposed to be negligible. The first scientific determination of the velocity of the light was done by measuring a round trip flight time on a given distance. The well known flying clock experiment leading to Einstein's General Relativity is another example. The advent of lasers, particularly short pulse and modulated ones, as well as the improvements of the timing equipments have led to new concepts for time and frequency transfer. We describe some experiments using different techniques and configurations which have been proposed and tested in this field since the beginning of the space age. Added to that, we set out advantages, drawbacks, and performances achieved in the different cases.

  1. Evaluation of a fiber-optic technique for recording intramuscular pressure in the human leg.

    PubMed

    Nilsson, Andreas; Zhang, Qiuxia; Styf, Jorma

    2016-10-01

    To evaluate a forward-sensing fiber-optic pressure technique for recording of intramuscular pressure (IMP) in the human leg and investigate factors that may influence IMP measurements used in diagnosing compartment syndromes. IMP in the tibialis anterior muscle was recorded simultaneously by a fiber-optic technique and needle-injection technique in 12 legs of 7 healthy subjects. Both measurement catheters were placed in parallel with the muscle fibers to the same depth, as verified by sonography. IMP recordings were performed at rest before, during and after applying a model of abnormally elevated IMP (simulated compartment syndrome). IMP was elevated by venous obstruction induced by a thigh tourniquet of a casted leg. IMP was also measured during injections of 0.1 ml of saline into the muscle through the catheters. IMP at baseline was 5.1 (SD = 2.6) mmHg measured with the fiber-optic technique and 7.1 (SD = 2.5) mmHg with the needle-injection technique (p < 0.001). It increased to 48.5 (SD = 6.9) mmHg and 47.6 (SD = 6.6) mmHg respectively, during simulated compartment syndrome. IMP increased significantly following injection of 0.1 ml of saline, measured by both techniques. It remained increased 1 min after injection. The fiber-optic technique was able to record pulse-synchronous IMP oscillations. The fiber-optic technique may be used for IMP measurements in a muscle with both normal and abnormally elevated IMP. It has good dynamic properties allowing for measurement of IMP oscillations. Saline injection used with needle-injection systems to ensure catheter patency compromises IMP readings at least one minute after injection.

  2. Examples of the application of optical process and quality sensing (OPQS) to beer brewing and polyurethane foaming processes.

    PubMed

    Engelhard, Sonja; Kumke, Michael U; Löhmannsröben, Hans-Gerd

    2006-03-01

    Optical methods play an important role in process analytical technologies (PAT). Four examples of optical process and quality sensing (OPQS) are presented, which are based on three important experimental techniques: near-infrared absorption, luminescence quenching, and a novel method, photon density wave (PDW) spectroscopy. These are used to evaluate four process and quality parameters related to beer brewing and polyurethane (PU) foaming processes: the ethanol content and the oxygen (O2) content in beer, the biomass in a bioreactor, and the cellular structures of PU foam produced in a pilot production plant.

  3. Techniques for sensing methanol concentration in aqueous environments

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Valdez, Thomas I. (Inventor)

    2001-01-01

    An analyte concentration sensor that is capable of fast and reliable sensing of analyte concentration in aqueous environments with high concentrations of the analyte. Preferably, the present invention is a methanol concentration sensor device coupled to a fuel metering control system for use in a liquid direct-feed fuel cell.

  4. Optical beam forming techniques for phased array antennas

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao; Chandler, C.

    1993-01-01

    Conventional phased array antennas using waveguide or coax for signal distribution are impractical for large scale implementation on satellites or spacecraft because they exhibit prohibitively large system size, heavy weight, high attenuation loss, limited bandwidth, sensitivity to electromagnetic interference (EMI) temperature drifts and phase instability. However, optical beam forming systems are smaller, lighter, and more flexible. Three optical beam forming techniques are identified as applicable to large spaceborne phased array antennas. They are (1) the optical fiber replacement of conventional RF phased array distribution and control components, (2) spatial beam forming, and (3) optical beam splitting with integrated quasi-optical components. The optical fiber replacement and the spatial beam forming approaches were pursued by many organizations. Two new optical beam forming architectures are presented. Both architectures involve monolithic integration of the antenna radiating elements with quasi-optical grid detector arrays. The advantages of the grid detector array in the optical process are the higher power handling capability and the dynamic range. One architecture involves a modified version of the original spatial beam forming approach. The basic difference is the spatial light modulator (SLM) device for controlling the aperture field distribution. The original liquid crystal light valve SLM is replaced by an optical shuffling SLM, which was demonstrated for the 'smart pixel' technology. The advantages are the capability of generating the agile beams of a phased array antenna and to provide simultaneous transmit and receive functions. The second architecture considered is the optical beam splitting approach. This architecture involves an alternative amplitude control for each antenna element with an optical beam power divider comprised of mirrors and beam splitters. It also implements the quasi-optical grid phase shifter for phase control and grid

  5. Passive optical sensing of atmospheric polarization for GPS denied operations

    NASA Astrophysics Data System (ADS)

    Aycock, Todd; Lompado, Art; Wolz, Troy; Chenault, David

    2016-05-01

    There is a rapidly growing need for position, navigation, and timing (PNT) capability that remains effective when GPS is degraded or denied. Naturally occurring sky polarization was used as long ago as the Vikings for navigation purposes. With current polarimetric sensors, the additional polarization information measured by these sensors can be used to increase the accuracy and the availability of this technique. The Sky Polarization Azimuth Sensing System (SkyPASS) sensor measures this naturally occurring sky polarization to give absolute heading information to less than 0.1° and offers significant performance enhancement over digital compasses and sun sensors. SkyPASS has been under development for some time for terrestrial applications, but use above the atmosphere may be possible and the performance specifications and SWAP are attractive for use as an additional pose sensor on a satellite. In this paper, we will describe the phenomenology, the sensor performance, and the latest test results of terrestrial SkyPASS; we will also discuss the potential for use above the atmosphere and the expected benefits and limitations.

  6. Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements.

    PubMed

    Meng, Zhaokai; Petrov, Georgi I; Yakovlev, Vladislav V

    2015-11-01

    A novel concept of Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements is introduced for flow cytometry applications. The system affords robust, maintenance-free and high-speed elasticity-sensitive measurements. PMID:26347908

  7. NASA Armstrong Flight Research Center (AFRC) Fiber Optic Sensing System (FOSS) Technology

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Chan, Patrick; Hamory, Phil; Pena, Frank

    2014-01-01

    Attached is a power point presentation created to assist the Tech Transfer Office and the FOSS project team members in responding to inquiries from the public about the capabilities of the Fiber Optic Sensing System.

  8. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications

    NASA Astrophysics Data System (ADS)

    Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming

    2013-12-01

    Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.

  9. Low-cost fabrication of optical waveguides, interconnects and sensing structures on all-polymer-based thin foils

    NASA Astrophysics Data System (ADS)

    Rezem, Maher; Kelb, Christian; Günther, Axel; Rahlves, Maik; Reithmeier, Eduard; Roth, Bernhard

    2016-03-01

    Micro-optical sensors based on optical waveguides are widely used to measure temperature, force and strain but also to detect biological and chemical substances such as explosives or toxins. While optical micro-sensors based on silicon technology require complex and expensive process technologies, a new generation of sensors based completely on polymers offer advantages especially in terms of low-cost and fast production techniques. We have developed a process to integrate micro-optical components such as embedded waveguides and optical interconnects into polymer foils with a thickness well below one millimeter. To enable high throughput production, we employ hot embossing technology, which is capable of reel-to-reel fabrication with a surface roughness in the optical range. For the waveguide fabrication, we used the thermoplastic polymethylmethacrylate (PMMA) as cladding and several optical adhesives as core materials. The waveguides are characterized with respect to refractive indices and propagation losses. We achieved propagation losses are as low as 0.3 dB/cm. Furthermore, we demonstrate coupling structures and their fabrication especially suited to integrate various light sources such as vertical-cavity surface-emitting lasers (VCSEL) and organic light emitting diodes (OLED) into thin polymer foils. Also, we present a concept of an all-polymer and waveguide based deformation sensor based on intensity modulation, which can be fabricated by utilizing our process. For future application, we aim at a low-cost and high-throughput reel-to-reel production process enabling the fabrication of large sensor arrays or disposable single-use sensing structures, which will open optical sensing to a large variety of application fields ranging from medical diagnosis to automotive sensing.

  10. Neurovascular coupling: in vivo optical techniques for functional brain imaging

    PubMed Central

    2013-01-01

    Optical imaging techniques reflect different biochemical processes in the brain, which is closely related with neural activity. Scientists and clinicians employ a variety of optical imaging technologies to visualize and study the relationship between neurons, glial cells and blood vessels. In this paper, we present an overview of the current optical approaches used for the in vivo imaging of neurovascular coupling events in small animal models. These techniques include 2-photon microscopy, laser speckle contrast imaging (LSCI), voltage-sensitive dye imaging (VSDi), functional photoacoustic microscopy (fPAM), functional near-infrared spectroscopy imaging (fNIRS) and multimodal imaging techniques. The basic principles of each technique are described in detail, followed by examples of current applications from cutting-edge studies of cerebral neurovascular coupling functions and metabolic. Moreover, we provide a glimpse of the possible ways in which these techniques might be translated to human studies for clinical investigations of pathophysiology and disease. In vivo optical imaging techniques continue to expand and evolve, allowing us to discover fundamental basis of neurovascular coupling roles in cerebral physiology and pathophysiology. PMID:23631798

  11. Neurovascular coupling: in vivo optical techniques for functional brain imaging.

    PubMed

    Liao, Lun-De; Tsytsarev, Vassiliy; Delgado-Martínez, Ignacio; Li, Meng-Lin; Erzurumlu, Reha; Vipin, Ashwati; Orellana, Josue; Lin, Yan-Ren; Lai, Hsin-Yi; Chen, You-Yin; Thakor, Nitish V

    2013-04-30

    Optical imaging techniques reflect different biochemical processes in the brain, which is closely related with neural activity. Scientists and clinicians employ a variety of optical imaging technologies to visualize and study the relationship between neurons, glial cells and blood vessels. In this paper, we present an overview of the current optical approaches used for the in vivo imaging of neurovascular coupling events in small animal models. These techniques include 2-photon microscopy, laser speckle contrast imaging (LSCI), voltage-sensitive dye imaging (VSDi), functional photoacoustic microscopy (fPAM), functional near-infrared spectroscopy imaging (fNIRS) and multimodal imaging techniques. The basic principles of each technique are described in detail, followed by examples of current applications from cutting-edge studies of cerebral neurovascular coupling functions and metabolic. Moreover, we provide a glimpse of the possible ways in which these techniques might be translated to human studies for clinical investigations of pathophysiology and disease. In vivo optical imaging techniques continue to expand and evolve, allowing us to discover fundamental basis of neurovascular coupling roles in cerebral physiology and pathophysiology.

  12. A novel technique for an integrated optical wavelength demultiplexer

    NASA Astrophysics Data System (ADS)

    Lotfy Rabeh, M.; Mohanna, M.; Hosny, Tarek; Gabr, Mohamed I.

    2015-12-01

    In this paper we propose a new technique for optical wavelength demultiplexing (DEMUX) relaying on two phenomena: Goos-Haenchen (GH) shift and continuous refraction at a graded-index medium interface. In the first case, two light beams are totally reflected at a plane interface separating two dielectric lossless media. The reflected beams suffer different lateral shifts (GH shifts) depending on the wavelength; thus accomplishing the required spatial beam separation. In the second case, the two light beams have different "turning points" inside the graded index medium; hence, the "back-refracted" beams are spatially separated. In this paper, we optimized the conditions of operation of such demultiplexing technique. This makes possible the integration of such technique in "planar integrated-optics" structures which can be used reliably in optical fiber communication networks.

  13. Optical Image Acquisition by Vibrating KNIFE Edge Techniques

    NASA Astrophysics Data System (ADS)

    Samson, Scott A.

    Traditional optical microscopes have inherent limitations in their attainable resolution. These shortcomings are a result of non-propagating evanescent waves being created by the small details in the specimen to be imaged. These problems are circumvented in the Near-field Scanning Optical Microscope (NSOM). Previous NSOMs use physical apertures to sample the optical field created by the specimen. By scanning a sub-wavelength-sized aperture past the specimen, very minute details may be imaged. In this thesis, a new method for obtaining images of various objects is studied. The method is a derivative of scanned knife edge techniques commonly used in optical laboratories. The general setup consists of illuminating a vibrating optically-opaque knife edge placed in close proximity to the object. By detecting only the time-varying optical power and utilizing various signal processing techniques, including computer-subtraction, beat frequency detection, and tomographic reconstruction, two-dimensional images of the object may be formed. In essence, a sampler similar to the aperture NSOMs is created. Mathematics, computer simulations, and low-resolution experiments are used to verify the thesis. Various aspects associated with improving the resolution with regards to NSOM are discussed, both theoretically and practically. The vibrating knife edge as a high- resolution sampler is compared to the physically -small NSOM aperture. Finally, future uses of the vibrating knife edge techniques and further research are introduced. Applicable references and computer programs are listed in appendices.

  14. Congestion estimation technique in the optical network unit registration process.

    PubMed

    Kim, Geunyong; Yoo, Hark; Lee, Dongsoo; Kim, Youngsun; Lim, Hyuk

    2016-07-01

    We present a congestion estimation technique (CET) to estimate the optical network unit (ONU) registration success ratio for the ONU registration process in passive optical networks. An optical line terminal (OLT) estimates the number of collided ONUs via the proposed scheme during the serial number state. The OLT can obtain congestion level among ONUs to be registered such that this information may be exploited to change the size of a quiet window to decrease the collision probability. We verified the efficiency of the proposed method through simulation and experimental results.

  15. A comparative review of optical surface contamination assessment techniques

    NASA Technical Reports Server (NTRS)

    Heaney, James B.

    1987-01-01

    This paper will review the relative sensitivities and practicalities of the common surface analytical methods that are used to detect and identify unwelcome adsorbants on optical surfaces. The compared methods include visual inspection, simple reflectometry and transmissiometry, ellipsometry, infrared absorption and attenuated total reflectance spectroscopy (ATR), Auger electron spectroscopy (AES), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), and mass accretion determined by quartz crystal microbalance (QCM). The discussion is biased toward those methods that apply optical thin film analytical techniques to spacecraft optical contamination problems. Examples are cited from both ground based and in-orbit experiments.

  16. Investigation of remote sensing techniques of measuring soil moisture

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator); Blanchard, A. J.; Nieber, J. L.; Lascano, R.; Tsang, L.; Vanbavel, C. H. M.

    1981-01-01

    Major activities described include development and evaluation of theoretical models that describe both active and passive microwave sensing of soil moisture, the evaluation of these models for their applicability, the execution of a controlled field experiment during which passive microwave measurements were acquired to validate these models, and evaluation of previously acquired aircraft microwave measurements. The development of a root zone soil water and soil temperature profile model and the calibration and evaluation of gamma ray attenuation probes for measuring soil moisture profiles are considered. The analysis of spatial variability of soil information as related to remote sensing is discussed as well as the implementation of an instrumented field site for acquisition of soil moisture and meteorologic information for use in validating the soil water profile and soil temperature profile models.

  17. Diffractive Optical Analysis for Refractive Index Sensing using Transparent Phase Gratings.

    PubMed

    Kumawat, Nityanand; Pal, Parama; Varma, Manoj

    2015-01-01

    We report the implementation of a micro-patterned, glass-based photonic sensing element that is capable of label-free biosensing. The diffractive optical analyzer is based on the differential response of diffracted orders to bulk as well as surface refractive index changes. The differential read-out suppresses signal drifts and enables time-resolved determination of refractive index changes in the sample cell. A remarkable feature of this device is that under appropriate conditions, the measurement sensitivity of the sensor can be enhanced by more than two orders of magnitude due to interference between multiply reflected diffracted orders. A noise-equivalent limit of detection (LoD) of 6 × 10(-7) was achieved with this technique with scope for further improvement. PMID:26578408

  18. Diffractive Optical Analysis for Refractive Index Sensing using Transparent Phase Gratings

    PubMed Central

    Kumawat, Nityanand; Pal, Parama; Varma, Manoj

    2015-01-01

    We report the implementation of a micro-patterned, glass-based photonic sensing element that is capable of label-free biosensing. The diffractive optical analyzer is based on the differential response of diffracted orders to bulk as well as surface refractive index changes. The differential read-out suppresses signal drifts and enables time-resolved determination of refractive index changes in the sample cell. A remarkable feature of this device is that under appropriate conditions, the measurement sensitivity of the sensor can be enhanced by more than two orders of magnitude due to interference between multiply reflected diffracted orders. A noise-equivalent limit of detection (LoD) of 6 × 10−7 was achieved with this technique with scope for further improvement. PMID:26578408

  19. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review

    PubMed Central

    Ye, X. W.; Su, Y. H.; Han, J. P.

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure. PMID:25133250

  20. Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review.

    PubMed

    Ye, X W; Su, Y H; Han, J P

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure.

  1. Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review.

    PubMed

    Ye, X W; Su, Y H; Han, J P

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure. PMID:25133250

  2. High temperature fiber optic microphone having a pressure-sensing reflective membrane under tensile stress

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Cuomo, Frank W. (Inventor); Robbins, William E. (Inventor); Hopson, Purnell, Jr. (Inventor)

    1992-01-01

    A fiber optic microphone is provided for measuring fluctuating pressures. An optical fiber probe having at least one transmitting fiber for transmitting light to a pressure-sensing membrane and at least one receiving fiber for receiving light reflected from a stretched membrane is provided. The pressure-sensing membrane may be stretched for high frequency response. Further, a reflecting surface of the pressure-sensing membrane may have dimensions which substantially correspond to dimensions of a cross section of the optical fiber probe. Further, the fiber optic microphone can be made of materials for use in high temperature environments, for example greater than 1000 F. A fiber optic probe is also provided with a backplate for damping membrane motion. The backplate further provides a means for on-line calibration of the microphone.

  3. Fiber optic microphone having a pressure sensing reflective membrane and a voltage source for calibration purpose

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Cuomo, Frank W. (Inventor); Robbins, William E. (Inventor)

    1993-01-01

    A fiber optic microphone is provided for measuring fluctuating pressures. An optical fiber probe having at least one transmitting fiber for transmitting light to a pressure-sensing membrane and at least one receiving fiber for receiving light reflected from a stretched membrane is provided. The pressure-sensing membrane may be stretched for high frequency response. Further, a reflecting surface of the pressure-sensing membrane may have dimensions which substantially correspond to dimensions of a cross section of the optical fiber probe. Further, the fiber optic microphone can be made of materials for use in high temperature environments, for example greater than 1000 F. A fiber optic probe is also provided with a back plate for damping membrane motion. The back plate further provides a means for on-line calibration of the microphone.

  4. Deep-UV Based Acousto-Optic Tunable Filter for Spectral Sensing Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2006-01-01

    In this paper, recent progress made in the development of quartz and KDP crystal based acousto-optic tunable filters (AOTF) are presented. These AOTFs are developed for operation over deep-UV to near-UV wavelengths of 190 nm to 400 nm. Preliminary output performance measurements of quartz AOTF and design specifications of KDP AOTF are presented. At 355 nm, the quartz AOTF device offered approx.15% diffraction efficiency with a passband full-width-half-maximum (FWHM) of less than 0.0625 nm. Further characterization of quartz AOTF devices at deep-UV wavelengths is progressing. The hermetic packaging of KDP AOTF is nearing completion. The solid-state optical sources being used for excitation include nonlinear optics based high-energy tunable UV transmitters that operate around 320 nm and 308 nm wavelengths, and a tunable deep-UV laser operating over 193 nm to 210 nm. These AOTF devices have been developed as turn-key devices for primarily for space-based chemical and biological sensing applications using laser induced Fluorescence and resonance Raman techniques.

  5. Acousto-optic techniques for real SAR imaging

    NASA Technical Reports Server (NTRS)

    Haney, M.; Psaltis, D.

    1985-01-01

    Recent advancements in the development of the Real Time Acousto-optic SAR Processor are presented. In particular, the technique for introducing the azimuth reference function into the processor via an acousto-optic Bragg cell is discussed. This approach permits the reference function to be stored in electronic memory, thus giving the processor the flexibility needed to adapt rapidly to changes in the radar/target geometry. The architecture is described and results are presented which show the applicability of the technique to both spot-light and strip-map SAR.

  6. Laboratory insights into the detection of surface biosignatures by remote-sensing techniques

    NASA Astrophysics Data System (ADS)

    Poch, O.; Pommerol, A.; Jost, B.; Roditi, I.; Frey, J.; Thomas, N.

    2014-03-01

    With the progress of direct imaging techniques, it will be possible in the short or long-term future to retrieve more efficiently the information on the physical properties of the light reflected by rocky exoplanets (Traub et al., 2010). The search for visible-infrared absorption bands of peculiar gases (O2, CH4 etc.) in this light could give clues for the presence of life (Kaltenegger and Selsis, 2007). Even more uplifting would be the direct detection of life itself, on the surface of an exoplanet. Considering this latter possibility, what is the potential of optical remote-sensing methods to detect surface biosignatures? Reflected light from the surface of the Earth exhibits a strong surface biosignature in the form of an abrupt change of reflectance between the visible and infrared range of the spectrum (Seager et al., 2005). This spectral feature called "vegetation red-edge" is possibly the consequence of biological evolution selecting the right chemical structures enabling the plants to absorb the visible energy, while preventing them from overheating by reflecting more efficiently the infrared. Such red-edge is also found in primitive photosynthetic bacteria, cyanobacteria, that colonized the surface of the Earth ocean and continents billions of years before multicellular plants (Knacke, 2003). If life ever arose on an Earth-like exoplanet, one could hypothesize that some form of its surface-life evolves into similar photo-active organisms, also exhibiting a red-edge. In this paper, we will present our plan and preliminary results of a laboratory study aiming at precising the potentiality of remote sensing techniques in detecting such surface biosignatures. Using equipment that has been developed in our team for surface photometry studies (Pommerol 2011, Jost 2013, Pommerol 2013), we will investigate the reflectance spectra and bidirectional reflectance function of soils containing bacteria such as cyanobacteria, in various environmental conditions. We will

  7. Topical Issue on Optical Particle Characterization and Remote Sensing of the Atmosphere: Part I

    NASA Technical Reports Server (NTRS)

    Videen, Gorden; Kocifaj, Miroslav; Sun, Wenbo; Kai, Kenji; Kawamoto, Kazuaki; Horvath, Helmuth; Mishchenko, Michael

    2015-01-01

    Increasing our understanding of the Earth-atmosphere system has been a scientific and political priority for the last few decades. This system not only touches on environmental science, but it has applicability to our broader understanding of planetary atmospheres in general. While this issue focuses primarily on electromagnetics, other fundamental fields of science, including fluid and thermodynamics play major roles. In recent years, significant research efforts have led to advances in the fields of radiative transfer and electromagnetic scattering from irregularly shaped particles. Recently, several workshops and small conferences have taken place to promote the fusion of these efforts. Late in 2013, for instance, two such meetings took place. The Optical Characterization of Atmospheric Aerosols (OCAA) meeting took place in Smolenice, Slovakia to promote a better understanding of microphysical properties of aerosol particles, and the characterization of such atmospheric particles using optical techniques. A complementary conference was organized in Nagoya, Japan, the 3rd International Symposium on Atmospheric Light Scattering and Remote Sensing (ISALSaRS), whose goal is to fuse the advances achieved in particle characterization with remote-sensing techniques. While the focus of these meetings is slightly different, they represent the same aspects of this rapidly growing field. This Topical Issue is the first of two parts. Within this issue we analyze different aspects of the problem of atmospheric characterization and present a broad overview of the topical area. Research includes theory and experiment, ranging from fundamental microphysical properties of individual aerosol particles to broad characterizations of atmospheric properties. Since this is an active field, we also have encouraged the submission of ideas for new methodologies that may represent the future of the field.

  8. An integrated study of earth resources in the state of California using remote sensing techniques

    NASA Technical Reports Server (NTRS)

    1973-01-01

    University of California investigations to determine the usefulness of modern remote sensing techniques have concentrated on the water resources of the state. The studies consider in detail the supply, demand, and impact relationships.

  9. A forestry application simulation of man-machine techniques for analyzing remotely sensed data

    NASA Technical Reports Server (NTRS)

    Berkebile, J.; Russell, J.; Lube, B.

    1976-01-01

    The typical steps in the analysis of remotely sensed data for a forestry applications example are simulated. The example uses numerically-oriented pattern recognition techniques and emphasizes man-machine interaction.

  10. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting.

    PubMed

    Shrivastav, Anand M; Usha, Sruthi P; Gupta, Banshi D

    2016-05-15

    A successful approach for the fabrication and characterization of an optical fiber sensor for the detection of profenofos based on surface plasmon resonance (SPR) and molecular imprinting is introduced. Molecular imprinting technology is used for the creation of three dimensional binding sites having complementary shape and size of the specific template molecule over a polymer for the recognition of the same. Binding of template molecule with molecularly imprinted polymer (MIP) layer results in the change in the dielectric nature of the sensing surface (polymer) and is identified by SPR technique. Spectral interrogation method is used for the characterization of the sensing probe. The operating profenofos concentration range of the sensor is from 10(-4) to 10(-1)µg/L. A red shift of 18.7 nm in resonance wavelength is recorded for this profenofos concentration range. The maximum sensitivity of the sensor is 12.7 nm/log (µg/L) at 10(-4)µg/L profenofos concentration. Limit of detection (LOD) of the sensor is found to be 2.5×10(-6)µg/L. Selectivity measurements predict the probe highly selective for the profenofos molecule. Besides high sensitivity due to SPR technique and selectivity due to molecular imprinting, proposed sensor has numerous other advantages like immunity to electromagnetic interference, fast response, low cost and capability of online monitoring and remote sensing of analyte due to the fabrication of the probe on optical fiber.

  11. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting.

    PubMed

    Shrivastav, Anand M; Usha, Sruthi P; Gupta, Banshi D

    2016-05-15

    A successful approach for the fabrication and characterization of an optical fiber sensor for the detection of profenofos based on surface plasmon resonance (SPR) and molecular imprinting is introduced. Molecular imprinting technology is used for the creation of three dimensional binding sites having complementary shape and size of the specific template molecule over a polymer for the recognition of the same. Binding of template molecule with molecularly imprinted polymer (MIP) layer results in the change in the dielectric nature of the sensing surface (polymer) and is identified by SPR technique. Spectral interrogation method is used for the characterization of the sensing probe. The operating profenofos concentration range of the sensor is from 10(-4) to 10(-1)µg/L. A red shift of 18.7 nm in resonance wavelength is recorded for this profenofos concentration range. The maximum sensitivity of the sensor is 12.7 nm/log (µg/L) at 10(-4)µg/L profenofos concentration. Limit of detection (LOD) of the sensor is found to be 2.5×10(-6)µg/L. Selectivity measurements predict the probe highly selective for the profenofos molecule. Besides high sensitivity due to SPR technique and selectivity due to molecular imprinting, proposed sensor has numerous other advantages like immunity to electromagnetic interference, fast response, low cost and capability of online monitoring and remote sensing of analyte due to the fabrication of the probe on optical fiber. PMID:26706813

  12. Optical frequency upconversion technique for transmission of wireless MIMO-type signals over optical fiber.

    PubMed

    Shaddad, R Q; Mohammad, A B; Al-Gailani, S A; Al-Hetar, A M

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.

  13. Optical Frequency Upconversion Technique for Transmission of Wireless MIMO-Type Signals over Optical Fiber

    PubMed Central

    Shaddad, R. Q.; Mohammad, A. B.; Al-Gailani, S. A.; Al-Hetar, A. M.

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength. PMID:24772009

  14. Optical Remote Sensing For Prediction Of Crop Yields

    NASA Astrophysics Data System (ADS)

    Steven, M. D.

    1982-02-01

    Recent studies have determined the efficiency of crop production by relating the rate of increase of dry matter in healthy growing crops to the interception of sunlight. In addition to knowledge of the incident light, such studies require measurement of light transmission in the crop, or timely information about leaf area for light interception to be estimated. Transmission measurements are necessarily confined to small areas while traditional methods of determining leaf area are laborious and often require destructive sampling of part of the crop. Remote sensing techniques offer a cheap, non-destructive system for sampling large areas. An airborne sensor is used to detect solar radiation reflected from crops in two spectral bands: the near infra-red band (780 - 940 nm) is strongly reflected by leaves due to the porous structure of the mesophyll; the red band (600 - 660 nm) is strongly absorbed by chlorophyll in the leaves. The ratio of red/infra-red reflected fluxes decreases with the percentage cover of healthy green leaf and is largely independent of the effects of varying solar irradiance. Measurements made over sugar beet showed that during the main period of growth, spectral ratios were linearly related to leaf cover and light interception. There was some evidence of hysteresis later in the season when the spectral ratios tended to increase in spite of constant leaf cover, and this may indicate senescence of the leaves and loss of chlorophyll. These relationships are consistent for a wide variety of crops and allow the light interception by the crop to be estimated by a single spectral measurement from above. This information may be used to predict future rates of growth and ultimately, crop yields.

  15. Development of analysis techniques for remote sensing of vegetation resources

    NASA Technical Reports Server (NTRS)

    Draeger, W. C.

    1972-01-01

    Various data handling and analysis techniques are summarized for evaluation of ERTS-A and supporting high flight imagery. These evaluations are concerned with remote sensors applied to wildland and agricultural vegetation resource inventory problems. Monitoring California's annual grassland, automatic texture analysis, agricultural ground data collection techniques, and spectral measurements are included.

  16. Remote Sensing Techniques as a Tool for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Faisal, K.; AlAhmad, M.; Shaker, A.

    2012-07-01

    The disposal of the solid wastes in landfill sites should be properly monitored by analyzing samples from soil, water, and landfill gases within the landfill site. Nevertheless, ground monitoring systems require intensive efforts and cost. Furthermore, ground monitoring may be difficult to be achieved in large geographic extent. Remote sensing technology has been introduced for waste disposal management and monitoring effects of the landfill sites on the environment. In this paper, two case studies are presented in the Trail Road landfill, Ottawa, Canada and the Al-Jleeb landfill, Al-Farwanyah, Kuwait to evaluate the use of multi-temporal remote sensing images to monitor the landfill sites. The work objectives are: 1) to study the usability of multi-temporal Landsat images for landfill site monitoring by studying the land surface temperature (LST) in the Trail Road landfill, 2) to investigate the relationship between the LST and the amount of the landfill gas emitted in the Trail Road landfill, and 3) to use the multi-temporal LST images to detect the suspicious dumping areas within the Al-Jleeb landfill site. Free archive of multi-temporal Landsat images are obtained from the USGS EarthExplorer. The Landsat images are then atmospherically corrected and the LST images are derived from the thermal band of the corrected Landsat images. In the Trail Road landfill, the results reveal that the LST of the landfill site is always higher than the air temperature by 10°C in average as well as the surroundings. A correlation is also observed between the recorded emitted methane (CH4) from the ground monitoring stations and the LST derived from the Landsat images. Based on the findings in the Al-Jleeb landfill, five locations are identified as suspicious dumping areas by overlaying the highest LST contours generated from the multi-temporal LST images. The study demonstrates that the use of multi-temporal remote sensing images can provide supplementary information for

  17. Optical strain measuring techniques for high temperature tensile testing

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Hemann, John H.

    1987-01-01

    A number of optical techniques used for the analysis of in-plane displacements or strains are reviewed. The application would be for the high temperature, approximately 1430 C (2600 F), tensile testing of ceramic composites in an oxidizing atmosphere. General descriptions of the various techniques and specifics such as gauge lengths and sensitivities are noted. Also, possible problems with the use of each method in the given application are discussed.

  18. Unified microwave moisture sensing technique for grain and seed

    NASA Astrophysics Data System (ADS)

    Trabelsi, Samir; Nelson, Stuart O.

    2007-04-01

    A unified method for moisture sensing in cereal grain and oilseed from a single calibration equation, which is obtained from measurement of dielectric properties at a single microwave frequency, is presented. The method is based on a complex permittivity calibration function that is independent of both bulk density and kind of material. Performance of the method was tested for soybeans, corn, wheat, sorghum, barley and oats at 7 GHz and about 23 °C. The standard error of calibration for moisture prediction from complex permittivity measurements was 0.8%.

  19. The application of remote sensing techniques: Technical and methodological issues

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.; Wagner, T. W.

    1974-01-01

    Capabilities and limitations of modern imaging electromagnetic sensor systems are outlined, and the products of such systems are compared with those of the traditional aerial photographic system. Focus is given to the interface between the rapidly developing remote sensing technology and the information needs of operational agencies, and communication gaps are shown to retard early adoption of the technology by these agencies. An assessment is made of the current status of imaging remote sensors and their potential for the future. Public sources of remote sensor data and several cost comparisons are included.

  20. X-ray optics simulation using Gaussian superposition technique

    SciTech Connect

    Idir, M.; Cywiak, M.; Morales, A. and Modi, M.H.

    2011-09-15

    We present an efficient method to perform x-ray optics simulation with high or partially coherent x-ray sources using Gaussian superposition technique. In a previous paper, we have demonstrated that full characterization of optical systems, diffractive and geometric, is possible by using the Fresnel Gaussian Shape Invariant (FGSI) previously reported in the literature. The complex amplitude distribution in the object plane is represented by a linear superposition of complex Gaussians wavelets and then propagated through the optical system by means of the referred Gaussian invariant. This allows ray tracing through the optical system and at the same time allows calculating with high precision the complex wave-amplitude distribution at any plane of observation. This technique can be applied in a wide spectral range where the Fresnel diffraction integral applies including visible, x-rays, acoustic waves, etc. We describe the technique and include some computer simulations as illustrative examples for x-ray optical component. We show also that this method can be used to study partial or total coherence illumination problem.

  1. Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices

    PubMed Central

    O'Toole, Martina; Diamond, Dermot

    2008-01-01

    The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements.

  2. Optical Imaging Techniques for Point-of-care Diagnostics

    PubMed Central

    Zhu, Hongying; Isikman, Serhan O.; Mudanyali, Onur; Greenbaum, Alon; Ozcan, Aydogan

    2012-01-01

    Improving the access to effective and affordable healthcare has long been a global endeavor. In this quest, the development of cost-effective and easy-to-use medical testing equipment that enable rapid and accurate diagnosis is essential to reduce the time and costs associated with healthcare services. To this end, point-of-care (POC) diagnostics plays a crucial role in healthcare delivery in both the developed and developing countries by bringing medical testing to patients, or to sites near patients. As the diagnosis of a wide range of diseases, including various types of cancers and many endemics relies on optical techniques, numerous compact and cost-effective optical imaging platforms have been developed in recent years for use at the POC. Here, we review the state-of-the-art optical imaging techniques that can have significant impact on global health by facilitating effective and affordable POC diagnostics. PMID:23044793

  3. Research On Fiber Optic Sensing Systems And Their Application As Final Repository Monitoring Tools

    SciTech Connect

    Jobmann, M.; Biurrun, E.

    2003-02-24

    For several years, fiber-optic sensing devices had been used for straightforward on/off monitoring functions such as presence and position detection. Recently, they gained interest as they offer a novel, exciting technology for a multitude of sensing applications. In the deep geological environment most physical properties, and thus most parameters important to safety, can be measured with fiber-optic technology. Typical examples are displacements, strains, radiation dose and dose rate, presence of some gases, temperature, pressure, etc. Their robustness, immunity to electromagnetic interference, as well as their large bandwidths and data rates ensure high reliability and superior performance. Moreover, the networking capabilities of meanwhile available fiber-optic sensors allow for efficient management of large sensor systems. Distributed sensing with multiple sensing locations on a single fiber reduces significantly the number of cables and connecting points. Reliable, cost effective, and maintenance-free solutions can thus be implemented.

  4. Novel optical techniques for remote water column temperature measurement

    NASA Astrophysics Data System (ADS)

    Cresswell, Brian; Hodgson, Elizabeth M.; Wakefield, Clare

    1997-04-01

    This paper assesses novel optical techniques for the remote mastermind of water column temperatures, using non-linear effects such as stimulated Raman scattering. Results are presented from a modeling program to predict water flow patterns produced by an underwater heat source.

  5. Evaluation of optical reflectance techniques for imaging of alveolar structure

    NASA Astrophysics Data System (ADS)

    Unglert, Carolin I.; Namati, Eman; Warger, William C.; Liu, Linbo; Yoo, Hongki; Kang, DongKyun; Bouma, Brett E.; Tearney, Guillermo J.

    2012-07-01

    Three-dimensional (3-D) visualization of the fine structures within the lung parenchyma could advance our understanding of alveolar physiology and pathophysiology. Current knowledge has been primarily based on histology, but it is a destructive two-dimensional (2-D) technique that is limited by tissue processing artifacts. Micro-CT provides high-resolution three-dimensional (3-D) imaging within a limited sample size, but is not applicable to intact lungs from larger animals or humans. Optical reflectance techniques offer the promise to visualize alveolar regions of the large animal or human lung with sub-cellular resolution in three dimensions. Here, we present the capabilities of three optical reflectance techniques, namely optical frequency domain imaging, spectrally encoded confocal microscopy, and full field optical coherence microscopy, to visualize both gross architecture as well as cellular detail in fixed, phosphate buffered saline-immersed rat lung tissue. Images from all techniques were correlated to each other and then to corresponding histology. Spatial and temporal resolution, imaging depth, and suitability for in vivo probe development were compared to highlight the merits and limitations of each technology for studying respiratory physiology at the alveolar level.

  6. An Optical Fiber Displacement Sensor Using RF Interrogation Technique.

    PubMed

    Kim, Hyeon-Ho; Choi, Sang-Jin; Jeon, Keum Soo; Pan, Jae-Kyung

    2016-02-24

    We propose a novel non-contact optical fiber displacement sensor. It uses a radio frequency (RF) interrogation technique which is based on bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). The displacement is measured from the free spectral range (FSR) which is determined by the dip frequencies of the modulated MZ-EOM transfer function. In experiments, the proposed sensor showed a sensitivity of 456 kHz/mm or 1.043 kHz/V in a measurement range of 7 mm. The displacement resolution of the proposed sensor depends on the linewidth and the power of the optical source. Resolution better than 0.05 μm would be achieved if an optical source which has a linewidth narrower than 1.5 nm and a received power larger than -36 dBm is used. Also, the multiplexing characteristic of the proposed sensor was experimentally validated.

  7. An Optical Fiber Displacement Sensor Using RF Interrogation Technique.

    PubMed

    Kim, Hyeon-Ho; Choi, Sang-Jin; Jeon, Keum Soo; Pan, Jae-Kyung

    2016-01-01

    We propose a novel non-contact optical fiber displacement sensor. It uses a radio frequency (RF) interrogation technique which is based on bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). The displacement is measured from the free spectral range (FSR) which is determined by the dip frequencies of the modulated MZ-EOM transfer function. In experiments, the proposed sensor showed a sensitivity of 456 kHz/mm or 1.043 kHz/V in a measurement range of 7 mm. The displacement resolution of the proposed sensor depends on the linewidth and the power of the optical source. Resolution better than 0.05 μm would be achieved if an optical source which has a linewidth narrower than 1.5 nm and a received power larger than -36 dBm is used. Also, the multiplexing characteristic of the proposed sensor was experimentally validated. PMID:26927098

  8. Optical coherence tomography as film thickness measurement technique

    NASA Astrophysics Data System (ADS)

    Manallah, Aissa; Bouafia, Mohamed; Meguellati, Said

    2015-01-01

    Optical coherence tomography (OCT) is a powerful optical method, noninvasive and noncontact diagnostic method. Although it is usually used for medical examinations, particularly in ocular exploration; it can also be used in optical metrology as measure technique. In this work, we use OCT to measure thicknesses of films. In OCT, depth profiles are constructed by measuring the time delay of back reflected light by interferometry measurements. Frequency in k-space is proportional to optical path difference. Then the reflectivity profile is obtained by a Fourier transformation, and the difference between two successive peaks of the resulting spectrum gives the film thickness. Several films, food-type, of different thicknesses were investigated and the results were very accurate.

  9. An Optical Fiber Displacement Sensor Using RF Interrogation Technique

    PubMed Central

    Kim, Hyeon-Ho; Choi, Sang-Jin; Jeon, Keum Soo; Pan, Jae-Kyung

    2016-01-01

    We propose a novel non-contact optical fiber displacement sensor. It uses a radio frequency (RF) interrogation technique which is based on bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). The displacement is measured from the free spectral range (FSR) which is determined by the dip frequencies of the modulated MZ-EOM transfer function. In experiments, the proposed sensor showed a sensitivity of 456 kHz/mm or 1.043 kHz/V in a measurement range of 7 mm. The displacement resolution of the proposed sensor depends on the linewidth and the power of the optical source. Resolution better than 0.05 μm would be achieved if an optical source which has a linewidth narrower than 1.5 nm and a received power larger than −36 dBm is used. Also, the multiplexing characteristic of the proposed sensor was experimentally validated. PMID:26927098

  10. Wave Propagation Through Inhomogeneities With Applications to Novel Sensing Techniques

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Tokars, R.; Varga, D.; Floyd B.

    2008-01-01

    The paper describes phenomena observed as a result of laser pencil beam interactions with abrupt interfaces including aerodynamic shocks. Based on these phenomena, a novel flow visualization technique based on a laser scanning pencil beam is introduced. The technique reveals properties of light interaction with interfaces including aerodynamic shocks that are not seen using conventional visualization. Various configurations of scanning beam devices including those with no moving parts, as well as results of "proof-of-concept" tests, are included.

  11. Assessment of Spacecraft Operational Status Using Electro-Optical Predictive Techniques

    NASA Astrophysics Data System (ADS)

    Swann, D.; Klem, B.; McCoy, B.

    2010-09-01

    The current class of small satellite systems presents an analyst responsible for monitoring spacecraft operational status and early detection of detrimental anomalies with a broad variety of sensing and identification issues and challenges. Simple, small, cube-shaped satellites, without protruding solar panel appendages, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical sensors. This paper will describe spacecraft optical signature modeling and simulation techniques to develop sensing and identification algorithms for observing and characterizing key spacecraft features. The simulation results are based on electro-optical signatures apparent to nonimaging sensors, along with related observable features derived from multicolor and multiviewing aspect scenarios. This model and simulation analysis capability is used to support programs to monitor spacecraft performance status and identify anomalies associated with spacecraft damage/deterioration due to space debris or micrometeorite impact, thruster exhaust deposition or material aging. The development of state-of-the-art optical signature modeling tools to perform high-fidelity satellite models (such as the Air Force Academy FalconSat-5 or AFRL TacSat-3) simulations to characterize spectral radiant intensities apparent to passive, remote, nonresolved imaging sensors are described in detail. Simulations are performed for a comprehensive scenario range of natural (solar and earth) illumination and viewing conditions. Results are generated for comparing baseline, streamlined geometry models with the actual higher fidelity models that capture vehicle small-size hardware components and modifications. Output consisting of radiant intensity history apparent to ground-based sensor locations for vehicle trajectories that capture a comprehensive range of illumination conditions from the sun and underlying earth scene are presented for extensive spectral band

  12. The Challenge of Active Optical Sensing from Extreme Orbits

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    2004-01-01

    A review of the history and current state of atmospheric sensing lidar from Earth orbit was conducted and it was found that space based earth remote sensing is still in its infancy with only one limited success extended duration autonomous mission to date. An analysis of the basic requirements for some candidate geo-synchronous lidar concepts was completed and it was concluded that significant basic work is required in all areas of lidar development.

  13. Optical gas sensing properties of nanoporous Nb2O5 films.

    PubMed

    Ab Kadir, Rosmalini; Rani, Rozina Abdul; Alsaif, Manal M Y A; Ou, Jian Zhen; Wlodarski, Wojtek; O'Mullane, Anthony P; Kalantar-Zadeh, Kourosh

    2015-03-01

    Nanoporous Nb2O5 has been previously demonstrated to be a viable electrochromic material with strong intercalation characteristics. Despite showing such promising properties, its potential for optical gas sensing applications, which involves the production of ionic species such as H(+), has yet to be explored. Nanoporous Nb2O5 can accommodate a large amount of H(+) ions in a process that results in an energy bandgap change of the material which induces an optical response. Here, we demonstrate the optical hydrogen gas (H2) sensing capability of nanoporous anodic Nb2O5 with a large surface-to-volume ratio prepared via a high temperature anodization method. The large active surface area of the film provides enhanced pathways for efficient hydrogen adsorption and dissociation, which are facilitated by a thin layer of Pt catalyst. We show that the process of H2 sensing causes optical modulations that are investigated in terms of response magnitudes and dynamics. The optical modulations induced by the intercalation process and sensing properties of nanoporous anodic Nb2O5 shown in this work can potentially be used for future optical gas sensing systems. PMID:25685899

  14. A Theoretical Analysis of a New Polarimetric Optical Scheme for Glucose Sensing in the Human Eye

    NASA Technical Reports Server (NTRS)

    Rovati, Luigi L.; Boeckle, Stefan; Ansari, Rafat R.; Salzman, Jack A. (Technical Monitor)

    2002-01-01

    The challenging task of in vivo polarimetric glucose sensing is the identification and selection of a scheme to optically access the aqueous humor of the human eye. In this short communication an earlier approach of Cote et al. is theoretically compared with our new optical scheme. Simulations of the new scheme using the eye model of Navarro, suggest that the new optical geometry can overcome the limitations of the previous approach for in vivo measurements of glucose in a human eye.

  15. Remote sensing techniques from helicopter for water quality and air pollution control

    SciTech Connect

    Geraci, A.L.; Landolina, F.F.

    1996-11-01

    Aircraft remote sensing provides a number of benefits, allowing to vary the detection parameters, giving better resolution, and being little affected by weather conditions and no replaceable under emergency situations. Also as a part of projects funded by the Commission of the European Communities, through the Regional Government of Sicily, applications of remote sensing techniques were carried out from helicopter over selected study areas in Sicily, for water quality and air pollution control. In particular, remotely-sensed data were acquired, using LASER techniques and thermal infrared imagery, for the monitoring of water quality and the assessment of oil pollution. Furthermore, air quality was investigated, using LASER techniques and correlation spectroscopy. In a perspective of integration, the investigations carried out proved effective and useful, confirming the important role of the helicopter as monitoring platform for environmental remote sensing applications. 6 refs., 11 figs.

  16. New techniques for clay mineral identification by remote sensing

    SciTech Connect

    Abrams, M.J.; Goetz, A.F.H.; Lang, H.

    1983-03-01

    In the past three years there have been major advancements in our ability to identify clay minerals by remote sensing. Multispectral scanners, including NASA's Thematic Mapper Simulator (analog for Landsat-D Thematic Mapper) have had several broad-band channels in the wavelength region of 1.0 to 2.5 ..mu..m. In particular, the wavelength region 2.0 to 2.5 ..mu..m contains diagnostic spectral-absorption features for most layered silicates. Computer processing of image data obtained with these scanners has allowed the identification of the presence of clay minerals, without, however, being able to identify specific mineralogies. Studies of areas with known hydrocarbon deposits and porphyry copper deposits have demonstrated the value of this information for rock-type discrimination and recognition of hydrothermal alteration zones. Non-imaging, narrow-band radiometers and spectrometers have been used in the field, from aircraft, and from space to identify individual mineralogical constituents. This can be done because of diagnostic spectral absorption features in the 2.0 to 2.5 ..mu..m region characteristic of different clay types. Preliminary analysis of SMIRR data over Egypt showed that kaolinite, carbonate rocks, and possibly montmorillonite, could be identified directly. Plans are currently under way for development of narrow-band imaging systems which will be capable of producing maps showing the surface distribution of individual clay types. This will represent a major step in remote sensing, by allowing unique identification of minerals rather than the current ability only to discriminate among materials. Applications of this technology will provide geologists with a powerful new tool for resource exploration and general geologic mapping problems.

  17. Cardiac-induced localized thoracic motion detected by a fiber optic sensing scheme

    NASA Astrophysics Data System (ADS)

    Allsop, Thomas; Lloyd, Glynn; Bhamber, Ranjeet S.; Hadzievski, Ljupco; Halliday, Michael; Webb, David J.; Bennion, Ian

    2014-11-01

    The cardiovascular health of the human population is a major concern for medical clinicians, with cardiovascular diseases responsible for 48% of all deaths worldwide, according to the World Health Organization. The development of new diagnostic tools that are practicable and economical to scrutinize the cardiovascular health of humans is a major driver for clinicians. We offer a new technique to obtain seismocardiographic signals up to 54 Hz covering both ballistocardiography (below 20 Hz) and audible heart sounds (20 Hz upward), using a system based on curvature sensors formed from fiber optic long period gratings. This system can visualize the real-time three-dimensional (3-D) mechanical motion of the heart by using the data from the sensing array in conjunction with a bespoke 3-D shape reconstruction algorithm. Visualization is demonstrated by adhering three to four sensors on the outside of the thorax and in close proximity to the apex of the heart; the sensing scheme revealed a complex motion of the heart wall next to the apex region of the heart. The detection scheme is low-cost, portable, easily operated and has the potential for ambulatory applications.

  18. An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties

    NASA Technical Reports Server (NTRS)

    Pitts, Michael; Hostetler, Chris; Poole, Lamont; Holden, Carl; Rault, Didier

    2000-01-01

    Atmospheric remote sensing with the O2 A-band has a relatively long history, but most of these studies were attempting to estimate surface pressure or cloud-top pressure. Recent conceptual studies have demonstrated the potential of spaceborne high spectral resolution O2 A-band spectrometers for retrieval of aerosol and cloud optical properties. The physical rationale of this new approach is that information on the scattering properties of the atmosphere is embedded in the detailed line structure of the O2 A-band reflected radiance spectrum. The key to extracting this information is to measure the radiance spectrum at very high spectral resolution. Instrument performance requirement studies indicate that, in addition to high spectral resolution, the successful retrieval of aerosol and cloud properties from A-band radiance spectra will also require high radiometric accuracy, instrument stability, and high signal-to-noise measurements. To experimentally assess the capabilities of this promising new remote sensing application, the NASA Langley Research Center is developing an airborne high spectral resolution A-band spectrometer. The spectrometer uses a plane holographic grating with a folded Littrow geometry to achieve high spectral resolution (0.5 cm-1) and low stray light in a compact package. This instrument will be flown in a series of field campaigns beginning in 2001 to evaluate the overall feasibility of this new technique. Results from these campaigns should be particularly valuable for future spaceborne applications of A-band spectrometers for aerosol and cloud retrievals.

  19. Remote sensing and the optical properties of the narrow cylindrical leaves of Juncus roemerianus

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, A.

    2004-01-01

    To develop a more complete foundation for remote sensing of the marsh grass Juncus roemerianus, we measured the optical properties of its cylindrical leaves at sites of different canopy height, biomass composition and amount, and connectivity to ocean flushing. To measure the leaf optical properties, we adapted a technique used for conifer needles. After establishing the reliability and limits of the adapted technique to the wider J.roemerianus leaves, mean transmittance and reflectance spectra were compared to associated leaf diameters from two dates in 1999 and 2002 and at each site. Transmittance was inversely related to leaf diameter. Mean transmittance and reflectance generated from reoccupation of many field sites in 2002 indicated little or no difference in transmittance between years, a slight reflectance difference in the visible (<2%) and a slightly higher reflectance difference in the near infrared (NIR) (<4%). Site comparison indicated limited ability to separate leaf transmittance but not reflectance by marsh type (e.g., low, medium, high) or biomass. Excluding one outlier, we found leaf transmittances could be adequately represented as 1% ?? 0.2% in the visible and 9% ?? 1% in the NIR and leaf reflectances represented from 14% to 16% in the visible and 71% to 75% in the NIR (the reflectance ranges represent 1999 and 2002 means). Reflectance and transmittance spectra associated with the dead J. roemerianus leaves displayed a spectrally flat increase from the visible to the NIR wavelengths. In total, we documented the atypical optical properties of the cylindrical J. roemerianus leaves and showed that to a first approximation, single means could represent leaf transmittance and visible leaf reflectance across all marsh zones and, after accounting for sample standardization, possibly the NIR reflectance as well.

  20. Combining Membrane Potential Imaging with Other Optical Techniques.

    PubMed

    Jaafari, Nadia; Vogt, Kaspar E; Saggau, Peter; Leslie, Loew M; Zecevic, Dejan; Canepari, Marco

    2015-01-01

    Membrane potential imaging using voltage-sensitive dyes can be combined with other optical techniques for a variety of applications. Combining voltage imaging with Ca2+ imaging allows correlating membrane potential changes with intracellular Ca2+ signals or with Ca2+ currents. Combining voltage imaging with uncaging techniques allows analyzing electrical signals elicited by photorelease of a particular molecule. This approach is also a useful tool to calibrate the change in fluorescence intensity in terms of membrane potential changes from different sites permitting spatial mapping of electrical activity. Finally, combining voltage imaging with optogenetics, in particular with channelrhodopsin stimulation, opens the gate to novel investigations of brain circuitries by allowing measurements of synaptic signals mediated by specific sets of neurons. Here we describe in detail the methods of membrane potential imaging in combination with other optical techniques and discus some important applications.

  1. Optical measurement techniques for high Reynolds number train investigations

    NASA Astrophysics Data System (ADS)

    Loose, S.; Richard, H.; Bosbach, J.; Thimm, M.; Becker, W.; Raffel, M.

    2006-04-01

    This article reports on experimental aerodynamic investigations on a generic high-speed train configuration performed within two different wind tunnels. Both wind tunnels are specialized facilities for high Reynolds number investigations and offer low turbulence levels. The wind tunnels are the cryogenic wind tunnel located in Cologne (KKK) and in the high-pressure wind tunnel located in Göttingen (HDG). Both facilities are part of the German Dutch wind tunnel association (DNW). The adaptation and application of three optical measurement techniques for such high Reynolds number investigations is described in the article. The optical methods are: Particle Image Velocimetry for the measurement of velocity fields, Background Oriented Schlieren technique for density gradient measurements, and a white light Digital Speckle Photography technique for model deformation monitoring.

  2. Electro-optic techniques in electron beam diagnostics

    SciTech Connect

    van Tilborg, Jeroen; Toth, Csaba; Matlis, Nicholas; Plateau, Guillaume; Leemans, Wim

    2011-06-17

    Electron accelerators such as laser wakefield accelerators, linear accelerators driving free electron lasers, or femto-sliced synchrotrons, are capable of producing femtosecond-long electron bunches. Single-shot characterization of the temporal charge profile is crucial for operation, optimization, and application of such accelerators. A variety of electro-optic sampling (EOS) techniques exists for the temporal analysis. In EOS, the field profile from the electron bunch (or the field profile from its coherent radiation) will be transferred onto a laser pulse co-propagating through an electro-optic crystal. This paper will address the most common EOS schemes and will list their advantages and limitations. Strong points that all techniques share are the ultra-short time resolution (tens of femtoseconds) and the single-shot capabilities. Besides introducing the theory behind EOS, data from various research groups is presented for each technique.

  3. Computed tomography and optical remote sensing: Development for the study of indoor air pollutant transport and dispersion

    SciTech Connect

    Drescher, A.C.

    1995-06-01

    This thesis investigates the mixing and dispersion of indoor air pollutants under a variety of conditions using standard experimental methods. It also extensively tests and improves a novel technique for measuring contaminant concentrations that has the potential for more rapid, non-intrusive measurements with higher spatial resolution than previously possible. Experiments conducted in a sealed room support the hypothesis that the mixing time of an instantaneously released tracer gas is inversely proportional to the cube root of the mechanical power transferred to the room air. One table-top and several room-scale experiments are performed to test the concept of employing optical remote sensing (ORS) and computed tomography (CT) to measure steady-state gas concentrations in a horizontal plane. Various remote sensing instruments, scanning geometries and reconstruction algorithms are employed. Reconstructed concentration distributions based on existing iterative CT techniques contain a high degree of unrealistic spatial variability and do not agree well with simultaneously gathered point-sample data.

  4. High spatial resolution, dynamic, and distributed fiber optic strain sensing based on phasorial Brillouin dynamic gratings reflectometry

    NASA Astrophysics Data System (ADS)

    Bergman, A.; Langer, T.; Tur, M.

    2016-05-01

    We present a novel fiber-optic sensing technique based on the distributed measurement of Brillouin-induced phase-shift in the reflection from Brillouin dynamic gratings in polarization-maintaining fibers. Subject to signal to noise considerations, the strain sensitivity of the phase-shift in the reflection of a pulsed probe, orthogonally polarized to the gratings-generating pumps, is independent of the pulse width, suggesting the potential to achieve higher spatial resolutions than those offered by slope-assisted, phasorial Brillouin sensing techniques in standard single-mode fibers. We report the measurement of 500Hz strain vibrations (at a sampling rate of 1MHz) with a spatial resolution of 20cm.

  5. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect

    Jerry Myers

    2003-05-13

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This six-month technical report summarizes the progress for each of the proposed tasks, discusses project concerns, and outlines near-term goals. Ophir has completed a data survey of two major natural gas pipeline companies on the design requirements for an airborne, optical remote sensor. The results of this survey are disclosed in this report. A substantial amount of time was spent on modeling the expected optical signal at the receiver at different absorption wavelengths, and determining the impact of noise sources such as solar background, signal shot noise, and electronic noise on methane and ethane gas detection. Based upon the signal to noise modeling and industry input, Ophir finalized the design requirements for the airborne sensor, and released the critical sensor light source design requirements to qualified vendors. Responses from the vendors indicated that the light source was not commercially available, and will require a research and development effort to produce. Three vendors have responded positively with proposed design solutions. Ophir has decided to conduct short path optical laboratory experiments to verify the existence of methane and absorption at the specified wavelength, prior to proceeding with the light source selection. Techniques to eliminate common mode noise were also evaluated during the laboratory tests. Finally, Ophir has included a summary of the potential concerns for project success and has established future goals.

  6. Optical remote sensing of asteroid surfaces from spacecraft

    NASA Technical Reports Server (NTRS)

    Mccord, T. B.

    1978-01-01

    Reflectance spectroscopy and multispectral mapping are the techniques likely to be most useful for determining asteroid surfaces. Several other techniques should be considered for providing complementary information.

  7. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane.

    PubMed

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-07-09

    In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.

  8. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane

    PubMed Central

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2016-01-01

    In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R2 ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system. PMID:27409620

  9. Head-mounted active noise control system with virtual sensing technique

    NASA Astrophysics Data System (ADS)

    Miyazaki, Nobuhiro; Kajikawa, Yoshinobu

    2015-03-01

    In this paper, we apply a virtual sensing technique to a head-mounted active noise control (ANC) system we have already proposed. The proposed ANC system can reduce narrowband noise while improving the noise reduction ability at the desired locations. A head-mounted ANC system based on an adaptive feedback structure can reduce noise with periodicity or narrowband components. However, since quiet zones are formed only at the locations of error microphones, an adequate noise reduction cannot be achieved at the locations where error microphones cannot be placed such as near the eardrums. A solution to this problem is to apply a virtual sensing technique. A virtual sensing ANC system can achieve higher noise reduction at the desired locations by measuring the system models from physical sensors to virtual sensors, which will be used in the online operation of the virtual sensing ANC algorithm. Hence, we attempt to achieve the maximum noise reduction near the eardrums by applying the virtual sensing technique to the head-mounted ANC system. However, it is impossible to place the microphone near the eardrums. Therefore, the system models from physical sensors to virtual sensors are estimated using the Head And Torso Simulator (HATS) instead of human ears. Some simulation, experimental, and subjective assessment results demonstrate that the head-mounted ANC system with virtual sensing is superior to that without virtual sensing in terms of the noise reduction ability at the desired locations.

  10. The use of optical imaging techniques in the gastrointestinal tract

    PubMed Central

    Beg, Sabina; Wilson, Ana; Ragunath, Krish

    2016-01-01

    With significant advances in the management of gastrointestinal disease there has been a move from diagnosing advanced pathology, to detecting early lesions that are potentially amenable to curative endoscopic treatment. This has required an improvement in diagnostics, with a focus on identifying and characterising subtle mucosal changes. There is great interest in the use of optical technologies to predict histology and enable the formulation of a real-time in vivo diagnosis, a so-called ‘optical biopsy’. The aim of this review is to explore the evidence for the use of the current commercially available imaging techniques in the gastrointestinal tract. PMID:27429735

  11. Ultra-short FBG based distributed sensing using shifted optical Gaussian filters and microwave-network analysis.

    PubMed

    Cheng, Rui; Xia, Li; Sima, Chaotan; Ran, Yanli; Rohollahnejad, Jalal; Zhou, Jiaao; Wen, Yongqiang; Yu, Can

    2016-02-01

    Ultrashort fiber Bragg gratings (US-FBGs) have significant potential as weak grating sensors for distributed sensing, but the exploitation have been limited by their inherent broad spectra that are undesirable for most traditional wavelength measurements. To address this, we have recently introduced a new interrogation concept using shifted optical Gaussian filters (SOGF) which is well suitable for US-FBG measurements. Here, we apply it to demonstrate, for the first time, an US-FBG-based self-referencing distributed optical sensing technique, with the advantages of adjustable sensitivity and range, high-speed and wide-range (potentially >14000 με) intensity-based detection, and resistance to disturbance by nonuniform parameter distribution. The entire system is essentially based on a microwave network, which incorporates the SOGF with a fiber delay-line between the two arms. Differential detections of the cascaded US-FBGs are performed individually in the network time-domain response which can be obtained by analyzing its complex frequency response. Experimental results are presented and discussed using eight cascaded US-FBGs. A comprehensive numerical analysis is also conducted to assess the system performance, which shows that the use of US-FBGs instead of conventional weak FBGs could significantly improve the power budget and capacity of the distributed sensing system while maintaining the crosstalk level and intensity decay rate, providing a promising route for future sensing applications. PMID:26906822

  12. Update and review of accuracy assessment techniques for remotely sensed data

    NASA Technical Reports Server (NTRS)

    Congalton, R. G.; Heinen, J. T.; Oderwald, R. G.

    1983-01-01

    Research performed in the accuracy assessment of remotely sensed data is updated and reviewed. The use of discrete multivariate analysis techniques for the assessment of error matrices, the use of computer simulation for assessing various sampling strategies, and an investigation of spatial autocorrelation techniques are examined.

  13. Application of techniques for fault localization on optical cable

    NASA Astrophysics Data System (ADS)

    Voronkov, Andrey A.; Morochkovsky, Vladimir V.

    2007-03-01

    For fiber-optic links (FOL), the sufficient time of repairing (removing & reinstalling) fiber-optic cables (FOC) and the natural ageing of optical fibers (OF) have been stipulating and propelling the problems of safe communication. The latters used to and are nowadays resolved by mean of either reserving line, cables, fibers, digital streams or improving quality of FOC grooming. In the latter case, the implementation of a prognostic control of FOC plays sufficient role in fault prediction on maintenance stage of FOL. The prognostic control is performed by mean of Remote Test Fiber Systems (RFTS) on the basis of both direct controlling OF parameters and indirect methods of FOC monitoring, including, being applied at Volgograd City Telephone Network, RLTP Method (Rate Loss Time Prediction) designed for copper/ steel media. Thus for example a prediction method on the basis of protective sheath monitoring results of FOC. This method is very effective when applied for buried long-haul FOC and in widespread use in Russia. One of the problems ofthe method performance is how to maintenance satisfactory sheath condition ofFOC. In general, the main trouble is how to localize faults on the protective sheath. There are however some classical techniques which are similar to the applied techniques in fault localization in copper media, but when applied for FOL, the techniques have specifics. The purpose of the paper is to analyze specifics ofthe classical technique implementation for fault localization ofprotective sheath of FOC.

  14. Application of classical techniques for fault localization on optical cable

    NASA Astrophysics Data System (ADS)

    Platonov, Alexander N.

    2001-10-01

    For fiber-optic links (FOL), the sufficient time of repairing (removing & reinstalling) fiber-optic cables (FOC) and the natural aging of optical fibers (OF) have been stipulating and propelling the problems of safe communication. The latters used to and are nowadays resolved by mean of either reserving line, cables, fibers, digital streams or improving quality of FOC grooming. In the latter case, the implementation of a prognostic control of FOC plays sufficient role in fault prediction on maintenance stage of FOL. The prognostic control is performed by mean of Remote Test Fiber Systems (RFTS) on the basis of both direct controlling OF parameters and indirect methods of FOC monitoring, including, being applied at Vol-gograd City Telephone Network, RLTP Method (Rate Loss Time Prediction) designed for copper/steel media. Thus for example a prediction method on the basis of protective sheath monitoring results of FOC. This method is very effective when applied for buried long-haul FOC and in widespread use in Russia. One of the problems of the method performance is how to maintenance satisfactory sheath condition of FOC. In general, the main trouble is how to localize faults on the protective sheath. There are however some classical techniques which are similar to the applied techniques in fault localization in copper media, but when applied for FOL, the techniques have specifics. The purpose of the paper is to analyze specifics of the classical technique implementation for fault localization of protective sheath of FOC.

  15. Measurement of greenhouse gas emissions from agricultural sites using open-path optical remote sensing method.

    PubMed

    Ro, Kyoung S; Johnson, Melvin H; Varma, Ravi M; Hashmonay, Ram A; Hunt, Patrick

    2009-08-01

    Improved characterization of distributed emission sources of greenhouse gases such as methane from concentrated animal feeding operations require more accurate methods. One promising method is recently used by the USEPA. It employs a vertical radial plume mapping (VRPM) algorithm using optical remote sensing techniques. We evaluated this method to estimate emission rates from simulated distributed methane sources. A scanning open-path tunable diode laser was used to collect path-integrated concentrations (PICs) along different optical paths on a vertical plane downwind of controlled methane releases. Each cycle consists of 3 ground-level PICs and 2 above ground PICs. Three- to 10-cycle moving averages were used to reconstruct mass equivalent concentration plum maps on the vertical plane. The VRPM algorithm estimated emission rates of methane along with meteorological and PIC data collected concomitantly under different atmospheric stability conditions. The derived emission rates compared well with actual released rates irrespective of atmospheric stability conditions. The maximum error was 22 percent when 3-cycle moving average PICs were used; however, it decreased to 11% when 10-cycle moving average PICs were used. Our validation results suggest that this new VRPM method may be used for improved estimations of greenhouse gas emission from a variety of agricultural sources.

  16. Noninvasive in vivo glucose sensing using an iris based technique

    NASA Astrophysics Data System (ADS)

    Webb, Anthony J.; Cameron, Brent D.

    2011-03-01

    Physiological glucose monitoring is important aspect in the treatment of individuals afflicted with diabetes mellitus. Although invasive techniques for glucose monitoring are widely available, it would be very beneficial to make such measurements in a noninvasive manner. In this study, a New Zealand White (NZW) rabbit animal model was utilized to evaluate a developed iris-based imaging technique for the in vivo measurement of physiological glucose concentration. The animals were anesthetized with isoflurane and an insulin/dextrose protocol was used to control blood glucose concentration. To further help restrict eye movement, a developed ocular fixation device was used. During the experimental time frame, near infrared illuminated iris images were acquired along with corresponding discrete blood glucose measurements taken with a handheld glucometer. Calibration was performed using an image based Partial Least Squares (PLS) technique. Independent validation was also performed to assess model performance along with Clarke Error Grid Analysis (CEGA). Initial validation results were promising and show that a high percentage of the predicted glucose concentrations are within 20% of the reference values.

  17. Swellable polymer substrates for use in magnetochemical and optical chemical sensing

    NASA Astrophysics Data System (ADS)

    Doherty, Stephen Arnold

    2000-10-01

    Lightly cross-linked, animated polymers that swell and shrink with changing pH were prepared and evaluated. At low pHs amine sites protonate causing charge to accumulate along the polymer backbone. The polymer then swells to maximize the charge separation. The swelling of the polymer causes a change in a magnetic or optical property that can be measured and related to pH. Animated hydrogel membranes were prepared by copolymerizing dimethyl amino ethyl methacrylate(DMAEMA) with various comonomer hydrogels. Experiments were conducted to examine the effect of formulation on the ability of the hydrogel membrane to swell. Factors examined included cross-linker type, cross-linker concentration, DMAEMA concentration and comonomer hydrophilicity. Polymer microspheres were prepared using dispersion polymerization and seeded emulsion polymerization techniques. Poly-(vinyl benzyl chloride-co-2,4,5-trichloro phenyl acrylate)(VBC/TCPA) microspheres were prepared by dispersion polymerization. A factorial design experiment was carried out to examine the effect of monomer concentration, stabilizer concentration and water concentration on the size of VBC/TCPA particles stabilized with poly-acrylic acid. Microspheres were prepared using poly(vinylpyrrolidone) as the steric stabilizer. These particles were 0.6 mum in diameter and were used in optical sensing experiments. Seeded emulsion polymerization was used to produce porous particles of poly(VBC) with diameters of 1.3 mum. The pH sensitive hydrogel membranes were incorporated into two types of magnetochemical sensors; the magnetostatic coupled sensor and the magnetoelastic sensor. Both sensor designs responded to solution pH due to swelling or shrinking of the hydrogel. In addition, the magnetoelastic strip was evaluated for measuring viscosity and for monitoring polymerization processes. VBC/TCPA microspheres were used in several optical sensing methods. Poly(vinyl alcohol) membranes with VBC/TCPA microspheres were used to

  18. Biochemical sensing application based on optical fiber evanescent wave sensor

    NASA Astrophysics Data System (ADS)

    Lv, Xiaoyi; Mo, Jiaqing; Xu, Liang; Jia, Zhenhong

    2015-08-01

    We have designed a novel evanescent field fiber optic biosensors with porous silicon dioxide cladding. The pore size of porous silicon dioxide cladding is about 100 nm in diameter. Biological molecules were immobilized to the porous silicon dioxide cladding used APTES and glutaraldehyde. Refractive index of cladding used Bruggemann's effective medium theory. We carried out simulations of changing in light intensity in optical fiber before and after chemical coupling of biomolecules. This novel optical fiber evanescent wave biosensor has a great potential in clinical chemistry for rapid and convenient determination of biological molecule.

  19. Optical probes and techniques for O2 measurement in live cells and tissue.

    PubMed

    Dmitriev, Ruslan I; Papkovsky, Dmitri B

    2012-06-01

    In recent years, significant progress has been achieved in the sensing and imaging of molecular oxygen (O(2)) in biological samples containing live cells and tissue. We review recent developments in the measurement of O(2) in such samples by optical means, particularly using the phosphorescence quenching technique. The main types of soluble O(2) sensors are assessed, including small molecule, supramolecular and particle-based structures used as extracellular or intracellular probes in conjunction with different detection modalities and measurement formats. For the different O(2) sensing systems, particular attention is paid to their merits and limitations, analytical performance, general convenience and applicability in specific biological applications. The latter include measurement of O(2) consumption rate, sample oxygenation, sensing of intracellular O(2), metabolic assessment of cells, and O(2) imaging of tissue, vasculature and individual cells. Altogether, this gives the potential user a comprehensive guide for the proper selection of the appropriate optical probe(s) and detection platform to suit their particular biological applications and measurement requirements.

  20. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    SciTech Connect

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of

  1. Imaging collagen remodeling and sensing transplanted autologous fibroblast metabolism in mouse dermis using multimode nonlinear optical imaging

    NASA Astrophysics Data System (ADS)

    Zhuo, Shuangmu; Chen, Jianxin; Cao, Ning; Jiang, Xingshan; Xie, Shusen; Xiong, Shuyuan

    2008-06-01

    Collagen remodeling and transplanted autologous fibroblast metabolic states in mouse dermis after cellular injection are investigated using multimode nonlinear optical imaging. Our findings show that the technique can image the progress of collagen remodeling in mouse dermis. It can also image transplanted autologous fibroblasts in their collagen matrix environment in the dermis, because of metabolic activity. It was also found that the approach can provide two-photon ratiometric redox fluorometry based on autologous fibroblast fluorescence from reduced nicotinamide adenine dinucleotide coenzyme and oxidized flavoproteins for sensing the autologous fibroblast metabolic state. These results show that the multimode nonlinear optical imaging technique may have potential in a clinical setting as an in vivo diagnostic and monitoring system for cellular therapy in plastic surgery.

  2. Modeling, simulation, and analysis of optical remote sensing systems

    NASA Technical Reports Server (NTRS)

    Kerekes, John Paul; Landgrebe, David A.

    1989-01-01

    Remote Sensing of the Earth's resources from space-based sensors has evolved in the past 20 years from a scientific experiment to a commonly used technological tool. The scientific applications and engineering aspects of remote sensing systems have been studied extensively. However, most of these studies have been aimed at understanding individual aspects of the remote sensing process while relatively few have studied their interrelations. A motivation for studying these interrelationships has arisen with the advent of highly sophisticated configurable sensors as part of the Earth Observing System (EOS) proposed by NASA for the 1990's. Two approaches to investigating remote sensing systems are developed. In one approach, detailed models of the scene, the sensor, and the processing aspects of the system are implemented in a discrete simulation. This approach is useful in creating simulated images with desired characteristics for use in sensor or processing algorithm development. A less complete, but computationally simpler method based on a parametric model of the system is also developed. In this analytical model the various informational classes are parameterized by their spectral mean vector and covariance matrix. These class statistics are modified by models for the atmosphere, the sensor, and processing algorithms and an estimate made of the resulting classification accuracy among the informational classes. Application of these models is made to the study of the proposed High Resolution Imaging Spectrometer (HRIS). The interrelationships among observational conditions, sensor effects, and processing choices are investigated with several interesting results.

  3. Hermetic fiber optic-to-metal connection technique

    DOEpatents

    Kramer, Daniel P.

    1992-09-01

    A glass-to-glass hermetic sealing technique is disclosed which can be used to splice lengths of glass fibers together. A solid glass preform is inserted into the cavity of a metal component which is then heated to melt the glass. An end of an optical fiber is then advanced into the molten glass and the entire structure cooled to solidify the glass in sealing engagement with the optical fiber end and the metal cavity. The surface of the re-solidified glass may be machined for mating engagement with another component to make a spliced fiber optic connection. The resultant structure has a helium leak rate of less than 1.times.10.sup.-8 cm.sup.3 /sec.

  4. Common aperture techniques for imaging electro-optical sensors

    NASA Astrophysics Data System (ADS)

    1980-02-01

    A multispectral optical imaging system was designed and fabricated to demonstrate the feasibility of utilizing a pointable common optical aperture in conjunction with interchangeable day or night TV sensors and a thermal imaging sensor. Limited processing capability was incorporated to permit mixing of both visible and infrared video of common scenes for more effective all weather electrooptical capability. An optical configuration was established which will accommodate image sensors as well as illuminating and designating/ranging lasers. In the early phases of the program various techniques were evaluated for optimizing spectral separation, gating image intensifiers and minimizing degradation of sensor performance due to insertion of .723 and 1.06 micron laser radiation through the common aperture. Preliminary testing indicates that combining sensors achieves synergistic performance in targeting and identification. Edited monthly R D Status Reports detail the design, fabrication and integration aspects of the program.

  5. Mechanical characteristics of optical coatings prepared by various techniques: a comparative study.

    PubMed

    Klemberg-Sapieha, Jolanta E; Oberste-Berghaus, Jörg; Martinu, Ludvik; Blacker, Richard; Stevenson, Ian; Sadkhin, George; Morton, Dale; McEldowney, Scott; Klinger, Robert; Martin, Phil J; Court, Nadia; Dligatch, Svetlana; Gross, Mark; Netterfield, Roger P

    2004-05-01

    Good performance of optical coatings depends on the appropriate combination of optical and mechanical properties. Therefore, successful applications require good understanding of the relationship between optical microstructural and mechanical characteristics and film stability. In addition, there is a lack of standard mechanical tests that allow one to compare film properties measured in different laboratories. We give an overview of the methodology of mechanical measurements suitable for optical coatings; this includes depth-sensing indentation, scratch resistance, friction, abrasion and wear testing, and stress and adhesion evaluation. We used the techniques mentioned above in the same laboratory to systematically compare the mechanical behavior of frequently used high- and low-index materials, namely, TiO2, Ta2O5, and SiO2, prepared by different complementary techniques. They include ion-beam-assisted deposition by electron-beam evaporation, magnetron sputtering, dual-ion-beam sputtering, plasma-enhanced chemical-vapor deposition, and filtered cathodic arc deposition. The mechanical properties are correlated with the film microstructure that is inherently related to energetic conditions during film growth.

  6. Evaluation of fiber optic distributed temperature sensing in characterization of borehole fractures: a laboratory experiment

    NASA Astrophysics Data System (ADS)

    Roshan, Hamid; Queen, Gabriella; Andersen, Martin S.; Acworth, Ian R.

    2014-05-01

    Mapping of bedrock fractures in boreholes and the contribution of main fractures to groundwater flow have long been a significant challenge in the geosciences field. Advanced techniques such as formation micro-imager (FMI) are able to detect the location of downhole fractures and to characterise their properties, such as aperture and orientation. However, these techniques have not been designed to estimate flow from individual fractures and are, in many cases, economically unjustified. In recent years, Fiber Optic Distributed Temperature Sensing (DTS) has been used to detect the location of active fractures and their contribution to groundwater flow, however; the technique has not been evaluated in a controlled environment and the limitations of the technique have yet to be identified. For that reason, a fractured rock borehole with active fractures was simulated in a lab-scale experiment. A structure with two fractures was built in a cylindrical configuration around the borehole and placed inside a cylindrical reservoir. A coiled fibre optic cable was inserted in the centre of the borehole. In order to simulate groundwater interactions, water with distinct temperature was added to the reservoir. During tests, water from the borehole in the centre was pumped out of the system, while the fiber optic DTS recorded the temperature response. The location of the artificial fractures and their contribution to the flow rate were determined through analysis of the measured temperature data. The results show that for the experimental setup, the locations of the fractures are most easily detected from the early times of the temperature response. As the water with different temperature from the reservoir flows into the borehole, it changes the borehole temperature starting from around the fracture locations. With time, this anomaly disappears and the borehole temperature reaches a new steady state condition. The contribution of each fracture to the pumping flow can then be

  7. Displacement measurements in structural elements by optical techniques

    NASA Astrophysics Data System (ADS)

    González-Peña, Rolando; Cibrián-Ortiz de Anda, Rosa María.; Pino-Velazquez, Angel J.; Soler-de la Cruz, José; González-Jorge, Yhoama

    2000-08-01

    Speckle metrology and holographic interferometry (HI) have been used in several civil engineering applications. We present the results obtained by applying speckle photography (SP) to the study of two quadratic shearwalls with different boundary conditions, and the potential of the technique in the study of this kind of structures is described. The analysis of Young's fringes obtained with this technique at certain points on each shearwall provides the whole field of displacement measurements. HI has been used to measure the three components of absolute displacement, verifying that the bulging phenomenon does not affect the in-plane components when the applied load remains on the same plane as the shearwall. A qualitative analysis is carried out following an electronic speckle pattern interferometry (ESPI) technique. The results obtained by optical techniques are compared to the numerical results obtained by the finite element method (FEM), finding good correlation between them in all the cases.

  8. Techniques for nonlinear optical characterization of materials: a review.

    PubMed

    de Araújo, Cid B; Gomes, Anderson S L; Boudebs, Georges

    2016-03-01

    Various techniques to characterize the nonlinear (NL) optical response of centro-symmetric materials are presented and evaluated with emphasis on the relationship between the macroscopic measurable quantities and the microscopic properties of photonic materials. NL refraction and NL absorption of the materials are the phenomena of major interest. The dependence of the NL refraction and NL absorption coefficients on the nature of the materials was studied as well as on the laser excitation characteristics of wavelength, intensity, spatial profile, pulse duration and pulses repetition rate. Selected experimental results are discussed and illustrated. The various techniques currently available were compared and their relative advantages and drawbacks were evaluated. Critical comparisons among established techniques provided elements to evaluate their accuracies and sensitivities with respect to novel methods that present improvements with respect to the conventional techniques.

  9. Optical Fiber Technique for In-Reactor Mechanical Properties Measurement

    SciTech Connect

    Robert S. Schley; Zilong Hua; David H. Hurley; Heng Ban

    2012-07-01

    In-reactor measurement of material properties is required for a better understanding of radiation effects on materials. We present an optical fiber based technique for measuring changes in elastic properties which involves exciting and measuring flexural vibrations in a thin cantilever beam. By exciting the beam and measuring the natural frequency, changes in the modulus of elasticity can be monitored. The technique is demonstrated by monitoring the elastic property changes of a beam fabricated from copper, as the copper undergoes recrystallization at elevated temperature.

  10. Optical fiber technique for in-reactor mechanical properties measurement

    SciTech Connect

    Schley, R. S.; Hurley, D. H.; Hua, Z. A.

    2013-01-25

    In-reactor measurement of material properties is required for a better understanding of radiation effects on materials. We present an optical fiber based technique for measuring changes in elastic properties which involves exciting and measuring flexural vibrations in a thin cantilever beam. By exciting the beam and measuring the resonant frequency, changes in the modulus of elasticity can be monitored. The technique is demonstrated by monitoring the elastic property changes of a beam fabricated from copper, as the copper undergoes recrystallization at elevated temperature.

  11. Optical sensing: the last frontier for enabling intelligence in our wired up world and beyond

    NASA Astrophysics Data System (ADS)

    Canning, John

    2012-09-01

    Consigned to the shadows of telecommunications, optical sensing has often taken a back seat in a young person's mind when considering the importance of photonics, or optics, to the advancement of the society and of knowledge. Here, I touch on briefly how broad optical sensing and sensing generally has become and how and why it is becoming the catalyst for the convergence of many technologies and in the process raising significant philosophical questions about the transformation of our society and indeed ourselves. In doing so I touch on many of the complexities in real life that influence the breakthroughs we see today, including a healthy speculation and critique on our society and an awareness of the motivations to improve it that drive many of them.

  12. Predicting species cover of marine macrophyte and invertebrate species combining hyperspectral remote sensing, machine learning and regression techniques.

    PubMed

    Kotta, Jonne; Kutser, Tiit; Teeveer, Karolin; Vahtmäe, Ele; Pärnoja, Merli

    2014-01-01

    In order to understand biotic patterns and their changes in nature there is an obvious need for high-quality seamless measurements of such patterns. If remote sensing methods have been applied with reasonable success in terrestrial environment, their use in aquatic ecosystems still remained challenging. In the present study we combined hyperspectral remote sensing and boosted regression tree modelling (BTR), an ensemble method for statistical techniques and machine learning, in order to test their applicability in predicting macrophyte and invertebrate species cover in the optically complex seawater of the Baltic Sea. The BRT technique combined with remote sensing and traditional spatial modelling succeeded in identifying, constructing and testing functionality of abiotic environmental predictors on the coverage of benthic macrophyte and invertebrate species. Our models easily predicted a large quantity of macrophyte and invertebrate species cover and recaptured multitude of interactions between environment and biota indicating a strong potential of the method in the modelling of aquatic species in the large variety of ecosystems.

  13. Predicting Species Cover of Marine Macrophyte and Invertebrate Species Combining Hyperspectral Remote Sensing, Machine Learning and Regression Techniques

    PubMed Central

    Kotta, Jonne; Kutser, Tiit; Teeveer, Karolin; Vahtmäe, Ele; Pärnoja, Merli

    2013-01-01

    In order to understand biotic patterns and their changes in nature there is an obvious need for high-quality seamless measurements of such patterns. If remote sensing methods have been applied with reasonable success in terrestrial environment, their use in aquatic ecosystems still remained challenging. In the present study we combined hyperspectral remote sensing and boosted regression tree modelling (BTR), an ensemble method for statistical techniques and machine learning, in order to test their applicability in predicting macrophyte and invertebrate species cover in the optically complex seawater of the Baltic Sea. The BRT technique combined with remote sensing and traditional spatial modelling succeeded in identifying, constructing and testing functionality of abiotic environmental predictors on the coverage of benthic macrophyte and invertebrate species. Our models easily predicted a large quantity of macrophyte and invertebrate species cover and recaptured multitude of interactions between environment and biota indicating a strong potential of the method in the modelling of aquatic species in the large variety of ecosystems. PMID:23755113

  14. Optical Microscopy Techniques to Inspect for Metallic Whiskers

    NASA Technical Reports Server (NTRS)

    Brusse, Jay A.

    2006-01-01

    Metal surface finishes of tin, zinc and cadmium are often applied to electronic components, mechanical hardware and other structures. These finishes sometimes unpredictably may form metal whiskers over periods that can take from hours to months or even many years. The metal whiskers are crystalline structures commonly having uniform cross sectional area along their entire length. Typical whisker dimensions are nominally on the order of only a few microns (um) across while their lengths can extend from a few microns to several millimeters. Metal whiskers pose a reliability hazard to electronic systems primarily as an electrical shorting hazard. The extremely narrow dimensions of metal whiskers can make observation with optical techniques very challenging. The videos herein were compiled to demonstrate the complexities associated with optical microscope inspection of electronic and mechanical components and assemblies for the presence or absence of metal whiskers. The importance of magnification, light source and angle of illumination play critical roles in being able to detect metal whiskers when present. Furthermore, it is demonstrated how improper techniques can easily obscure detection. It is hoped that these videos will improve the probability of detecting metal whiskers with optical inspection techniques.

  15. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    PubMed

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-01

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  16. Extractive sampling and optical remote sensing of F100 aircraft engine emissions.

    PubMed

    Cowen, Kenneth; Goodwin, Bradley; Joseph, Darrell; Tefend, Matthew; Satola, Jan; Kagann, Robert; Hashmonay, Ram; Spicer, Chester; Holdren, Michael; Mayfield, Howard

    2009-05-01

    The Strategic Environmental Research and Development Program (SERDP) has initiated several programs to develop and evaluate techniques to characterize emissions from military aircraft to meet increasingly stringent regulatory requirements. This paper describes the results of a recent field study using extractive and optical remote sensing (ORS) techniques to measure emissions from six F-15 fighter aircraft. Testing was performed between November 14 and 16, 2006 on the trim-pad facility at Tyndall Air Force Base in Panama City, FL. Measurements were made on eight different F100 engines, and the engines were tested on-wing of in-use aircraft. A total of 39 test runs were performed at engine power levels that ranged from idle to military power. The approach adopted for these tests involved extractive sampling with collocated ORS measurements at a distance of approximately 20-25 nozzle diameters downstream of the engine exit plane. The emission indices calculated for carbon dioxide, carbon monoxide, nitric oxide, and several volatile organic compounds showed very good agreement when comparing the extractive and ORS sampling methods.

  17. Use of nondestructive inspection and fiber optic sensing for damage characterization in carbon fiber fuselage structure

    NASA Astrophysics Data System (ADS)

    Neidigk, Stephen; Le, Jacqui; Roach, Dennis; Duvall, Randy; Rice, Tom

    2014-04-01

    To investigate a variety of nondestructive inspection technologies and assess impact damage characteristics in carbon fiber aircraft structure, the FAA Airworthiness Assurance Center, operated by Sandia National Labs, fabricated and impact tested two full-scale composite fuselage sections. The panels are representative of structure seen on advanced composite transport category aircraft and measured approximately 56"x76". The structural components consisted of a 16 ply skin, co-cured hat-section stringers, fastened shear ties and frames. The material used to fabricate the panels was T800 unidirectional pre-preg (BMS 8-276) and was processed in an autoclave. Simulated hail impact testing was conducted on the panels using a high velocity gas gun with 2.4" diameter ice balls in collaboration with the University of California San Diego (UCSD). Damage was mapped onto the surface of the panels using conventional, hand deployed ultrasonic inspection techniques, as well as more advanced ultrasonic and resonance scanning techniques. In addition to the simulated hail impact testing performed on the panels, 2" diameter steel tip impacts were used to produce representative impact damage which can occur during ground maintenance operations. The extent of impact damage ranges from less than 1 in2 to 55 in2 of interply delamination in the 16 ply skin. Substructure damage on the panels includes shear tie cracking and stringer flange disbonding. It was demonstrated that the fiber optic distributed strain sensing system is capable of detecting impact damage when bonded to the backside of the fuselage.

  18. [INVITED] State of the art of Brillouin fiber-optic distributed sensing

    NASA Astrophysics Data System (ADS)

    Motil, Avi; Bergman, Arik; Tur, Moshe

    2016-04-01

    Fiber-optic distributed sensing, employing the Brillouin effect, is already a commercially available measurement technique for the accurate estimation of the static strain/temperature fields along tens of kilometers with a spatial resolution of the order of a meter. Furthermore, relentless research efforts are paving the way to even much wider usability of the technique through recently achieved enhanced performance in each of its critical dimensions: measurement range has been extended to hundreds of kilometers; spatial resolution is of the order of a centimeter or less, signal to noise ratio has been significantly improved; fast dynamic events can be captured at kHz's sampling rates; and a much better understanding of the underlying physics has been obtained, along with the formulation of figures of merit, and the preparation and early adoption of appropriate standards and guidelines. This paper describes the basics, as well as the state of the art, of the leading Brillouin interrogation methods, with emphasis on the significant progress made in the last 3 years. It also includes a short introduction to coding, which has proven instrumental in many of the recently obtained performance records.

  19. Full-Scale Prestress Loss Monitoring of Damaged RC Structures Using Distributed Optical Fiber Sensing Technology

    PubMed Central

    Lan, Chunguang; Zhou, Zhi; Ou, Jinping

    2012-01-01

    For the safety of prestressed structures, prestress loss is a critical issue that will increase with structural damage, so it is necessary to investigate prestress loss of prestressed structures under different damage scenarios. Unfortunately, to date, no qualified techniques are available due to difficulty for sensors to survive in harsh construction environments of long service life and large span. In this paper, a novel smart steel strand based on the Brillouin optical time domain analysis (BOTDA) sensing technique was designed and manufactured, and then series of tests were used to characterize properties of the smart steel strands. Based on prestress loss principle analysis of damaged structures, laboratory tests of two similar beams with different damages were used to verify the concept of full-scale prestress loss monitoring of damaged reinforced concrete (RC) beams by using the smart steel strands. The prestress losses obtained from the Brillouin sensors are compared with that from conventional sensors, which provided the evolution law of prestress losses of damaged RC beams. The monitoring results from the proposed smart strand can reveal both spatial distribution and time history of prestress losses of damaged RC beams. PMID:22778590

  20. Improved Battery State Estimation Using Novel Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Abdul Samad, Nassim

    Lithium-ion batteries have been considered a great complement or substitute for gasoline engines due to their high energy and power density capabilities among other advantages. However, these types of energy storage devices are still yet not widespread, mainly because of their relatively high cost and safety issues, especially at elevated temperatures. This thesis extends existing methods of estimating critical battery states using model-based techniques augmented by real-time measurements from novel temperature and force sensors. Typically, temperature sensors are located near the edge of the battery, and away from the hottest core cell regions, which leads to slower response times and increased errors in the prediction of core temperatures. New sensor technology allows for flexible sensor placement at the cell surface between cells in a pack. This raises questions about the optimal locations of these sensors for best observability and temperature estimation. Using a validated model, which is developed and verified using experiments in laboratory fixtures that replicate vehicle pack conditions, it is shown that optimal sensor placement can lead to better and faster temperature estimation. Another equally important state is the state of health or the capacity fading of the cell. This thesis introduces a novel method of using force measurements for capacity fade estimation. Monitoring capacity is important for defining the range of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Current capacity estimation techniques require a full discharge to monitor capacity. The proposed method can complement or replace current methods because it only requires a shallow discharge, which is especially useful in EVs and PHEVs. Using the accurate state estimation accomplished earlier, a method for downsizing a battery pack is shown to effectively reduce the number of cells in a pack without compromising safety. The influence on the battery performance (e

  1. Optical sensing of atmospheric emissions with Cubesats and Nanosats

    NASA Astrophysics Data System (ADS)

    Swenson, Gary; Thakker, Purvesh; Kamalabadi, Farzad; Frank, Mathew; Coverstone, Victoria; Voss, Hank

    2007-04-01

    Small satellites and payloads in the (1-2 kg) class called Cubesats and (20-30 kg) called Nanosats have been under development at the University of Illinois since fall, 2001. The ION1 Cubesat was a 10x10x21.5 cm 3 satellite with the experiment consisting of photometric remote sensing of mesospheric structures (near 94 km) in the O II (0,0) band airglow at 762 nm. ION1 development began in 2001 and was lost on the failed launch attempt, July 26, 2006. ION2 development began in Fall 2005, and has a remote sensing experiment to measure Hα (656.3 nm) originating in the Earth's geocorona from which column H densities can be deduced. Taylor University has led the development of a Nanosat called TEST, which was designed to study ionospheric structures. Illinois provided remote sensing payloads including a CCD camera and dual photometers. The development activity is largely implemented by a College of Engineering Interdisciplinary Design class (ENG 491), where students typically participate in the systems engineering experience for two semesters. The students (15-20 average enrollment) are responsible for the design, fabrication, and testing of the systems. This paper describes the development of these Cubesat and Nanosat systems.

  2. Cyanobacteria use micro-optics to sense light direction

    PubMed Central

    Schuergers, Nils; Lenn, Tchern; Kampmann, Ronald; Meissner, Markus V; Esteves, Tiago; Temerinac-Ott, Maja; Korvink, Jan G; Lowe, Alan R; Mullineaux, Conrad W; Wilde, Annegret

    2016-01-01

    Bacterial phototaxis was first recognized over a century ago, but the method by which such small cells can sense the direction of illumination has remained puzzling. The unicellular cyanobacterium Synechocystis sp. PCC 6803 moves with Type IV pili and measures light intensity and color with a range of photoreceptors. Here, we show that individual Synechocystis cells do not respond to a spatiotemporal gradient in light intensity, but rather they directly and accurately sense the position of a light source. We show that directional light sensing is possible because Synechocystis cells act as spherical microlenses, allowing the cell to see a light source and move towards it. A high-resolution image of the light source is focused on the edge of the cell opposite to the source, triggering movement away from the focused spot. Spherical cyanobacteria are probably the world’s smallest and oldest example of a camera eye. DOI: http://dx.doi.org/10.7554/eLife.12620.001 PMID:26858197

  3. Remote sensing techniques for conservation and management of natural vegetation ecosystems

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Verdesio, J. J.; Dossantos, J. R.

    1981-01-01

    The importance of using remote sensing techniques, in the visible and near-infrared ranges, for mapping, inventory, conservation and management of natural ecosystems is discussed. Some examples realized in Brazil or other countries are given to evaluate the products from orbital platform (MSS and RBV imagery of LANDSAT) and aerial level (photography) for ecosystems study. The maximum quantitative and qualitative information which can be obtained from each sensor, at different level, are discussed. Based on the developed experiments it is concluded that the remote sensing technique is a useful tool in mapping vegetation units, estimating biomass, forecasting and evaluation of fire damage, disease detection, deforestation mapping and change detection in land-use. In addition, remote sensing techniques can be used in controling implantation and planning natural/artificial regeneration.

  4. Optical fiber based sensing system design for the health monitoring of multi-layered pavement structure

    NASA Astrophysics Data System (ADS)

    Liu, Wanqiu; Wang, Huaping; Zhou, Zhi; Li, Shiyu; Ni, Yuanbao; Wang, Geng

    2011-11-01

    This paper introduces an optical fiber based sensing system design for multi-layered pavement structural health monitoring. The co-line and integration design of FBG (Fiber Bragg Gating) sensors and BOTDR (Brillouin Optical Time Domain Reflectometry) sensors will ensure the large scale damage monitoring and local high accurate strain measurement. The function of pavement structure multi-scale shape measurement will provide real time subgrade settlement and rutting information. The sensor packaging methodology and strain transfer problem of the system will also be discussed in this paper. Primary lab tests prove the potential and feasibility of the practical application of the sensing system.

  5. Optical fibre communications and sensing system experiments for undergraduate photonics laboratories

    NASA Astrophysics Data System (ADS)

    Wild, Graham; Swan, Geoff I.

    2011-12-01

    Experiments in photonics tend to be reserved for postgraduate laboratories, where suitable equipment and resources are available. Simple optical fibre experiments may be included in some undergraduate programs, possibly utilising polymer optical fibres with LEDs and phototransistors, or with the use of bulk optical components and glass optical fibre elements. However, real optical fibre communication systems and optical fibre sensing systems utilise more complex devices, such as optical fibre Bragg gratings. With the availability of optical components in the 850nm wavelength range, a variety of practical systems can be realised using industry standard components. We show how to mitigate a large portion of the cost associated with the implementation of experiments utilising these 850nm components. The limiting factor associated with the implementation of 1550nm based systems is the cost associated with spectral measurements in this wavelength range. Given a bench top optical spectrum analyser costs $10,000s; this is not something that can be made available to students in undergraduate laboratories in bulk. The solution was to make use of the new low cost USB based spectrometers, available from a number of manufacturers. In combination with devices such as couplers, circulators, isolators, wavelength division multiplexing filters, and Bragg gratings, all operating in the 850nm, a number of different sensing and communications systems can be realised.

  6. Integration of fiber optical shape sensing with medical visualization for minimal-invasive interventions

    NASA Astrophysics Data System (ADS)

    Paetz, Torben; Waltermann, Christian; Angelmahr, Martin; Ojdanic, Darko; Schade, Wolfgang; Witte, Michael; Hahn, Horst Karl

    2015-03-01

    We present a fiber optical shape sensing system that allows to track the shape of a standard telecom fiber with fiber Bragg grating. The shape sensing information is combined with a medical visualization platform to visualize the shape sensing information together with medical images and post-processing results like 3D models, vessel graphs, or segmentation results. The framework has a modular nature to use it for various medical applications like catheter or needle based interventions. The technology has potential in the medical area as it is MR-compatible and can easily be integrated in catheters and needles due to its small size.

  7. Micro-strain sensing using wrinkled stiff thin films on soft substrates as tunable optical grating.

    PubMed

    Ma, Teng; Liang, Hanshuang; Chen, George; Poon, Benny; Jiang, Hanqing; Yu, Hongbin

    2013-05-20

    We report a strain sensing approach that utilizes wrinkled patterns on poly (dimethylsiloxane) (PDMS) as an optical grating to measure thermally-induced strain of different materials. The mechanism for the strain sensing and the effect of PDMS grating on strain sensing are discussed. By bonding the PDMS grating onto a copper or silicon substrate, the coefficient of thermal expansion (CTE) of the substrates can be deduced by measuring the diffraction angle change due to the change in PDMS grating periodicity when thermal strain is introduced. The measured CTEs agree well with the known reference values.

  8. Demodulation System for Fiber Optic Bragg Grating Dynamic Pressure Sensing

    NASA Technical Reports Server (NTRS)

    Lekki, John D.; Adamovsky, Grigory; Floyd, Bertram

    2001-01-01

    Fiber optic Bragg gratings have been used for years to measure quasi-static phenomena. In aircraft engine applications there is a need to measure dynamic signals such as variable pressures. In order to monitor these pressures a detection system with broad dynamic range is needed. This paper describes an interferometric demodulator that was developed and optimized for this particular application. The signal to noise ratio was maximized through temporal coherence analysis. The demodulator was incorporated in a laboratory system that simulates conditions to be measured. Several pressure sensor configurations incorporating a fiber optic Bragg grating were also explored. The results of the experiments are reported in this paper.

  9. Adaptive optics confocal microscopy using direct wavefront sensing.

    PubMed

    Tao, Xiaodong; Fernandez, Bautista; Azucena, Oscar; Fu, Min; Garcia, Denise; Zuo, Yi; Chen, Diana C; Kubby, Joel

    2011-04-01

    Optical aberrations due to the inhomogeneous refractive index of tissue degrade the resolution and brightness of images in deep-tissue imaging. We introduce a confocal fluorescence microscope with adaptive optics, which can correct aberrations based on direct wavefront measurements using a Shack-Hartmann wavefront sensor with a fluorescent bead used as a point source reference beacon. The results show a 4.3× improvement in the Strehl ratio and a 240% improvement in the signal intensity for fixed mouse tissues at depths of up to 100 μm.

  10. Optical sensing of a pulsating liquid in a brain-mimicking phantom

    NASA Astrophysics Data System (ADS)

    Myllylä, Teemu; Popov, Alexey; Korhonen, Vesa; Bykov, Alexander; Kinnunen, Matti

    2013-06-01

    In study of the brain, oxygenation changes in the cerebral cortex are increasingly monitored using optical methods based on near-infrared spectroscopy (NIRS). When monitoring blood oxygenation in the cerebral cortex, at depth of approximately 15 mm - 20 mm from the skin surface, separation distance between source and detector becomes significant. Many studies show that by increasing the source-detector distance, illuminating light penetrates deeper into tissue. In this work, we use optical phantoms to determine experimentally the minimum source-detector distance between that allows sensing of the cerebral cortex, particularly the grey matter of the brain. A multilayered forehead phantom was fabricated and a silicon tube was added inside the phantom at depths of 15 mm and 19 mm, measured from the surface of the skin mimicking layer. This depth corresponds to the grey matter layer of the brain. The phantom's optical properties were specifically designed to mimic the optical properties of tissue layers of the forehead and to facilitate near-infrared sensing. Optical sensing of liquid movement within the tube was measured by varying the distance between the near-infrared light source and the detector. Based on our measurements, we can conclude that it is possible to sense pulsations from a grey matter mimicking layer of the brain using near-infrared spectroscopy at a source-detector distance of 3 - 4 cm.

  11. Application of Optical Parametric Generator for Lidar Sensing of Minor Gas Components of the Atmosphere in 3-4 μm Spectral Range

    NASA Astrophysics Data System (ADS)

    Romanovskii, O. A.; Sadovnikov, S. A.; Kharchenko, O. V.; Shumskii, V. K.; Yakovlev, S. V.

    2016-07-01

    Possibility of application of a laser system with parametric light generation based on a nonlinear KTA crystal for lidar sensing of the atmosphere in the 3-4 μm spectral range is investigated. A technique for lidar measurements of gas components in the atmosphere with the use of differential absorption lidar (DIAL) and differential optical absorption spectroscopy (DOAS) method is developed. The DIAL-DOAS technique is tested for estimating the possibility of laser sensing of minor gas components in the atmosphere.

  12. Introduction to This Special Issue on Geostatistics and Geospatial Techniques in Remote Sensing

    NASA Technical Reports Server (NTRS)

    Atkinson, Peter; Quattrochi, Dale A.; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    The germination of this special Computers & Geosciences (C&G) issue began at the Royal Geographical Society (with the Institute of British Geographers) (RGS-IBG) annual meeting in January 1997 held at the University of Exeter, UK. The snow and cold of the English winter were tempered greatly by warm and cordial discussion of how to stimulate and enhance cooperation on geostatistical and geospatial research in remote sensing 'across the big pond' between UK and US researchers. It was decided that one way forward would be to hold parallel sessions in 1998 on geostatistical and geospatial research in remote sensing at appropriate venues in both the UK and the US. Selected papers given at these sessions would be published as special issues of C&G on the UK side and Photogrammetric Engineering and Remote Sensing (PE&RS) on the US side. These issues would highlight the commonality in research on geostatistical and geospatial research in remote sensing on both sides of the Atlantic Ocean. As a consequence, a session on "Geostatistics and Geospatial Techniques for Remote Sensing of Land Surface Processes" was held at the RGS-IBG annual meeting in Guildford, Surrey, UK in January 1998, organized by the Modeling and Advanced Techniques Special Interest Group (MAT SIG) of the Remote Sensing Society (RSS). A similar session was held at the Association of American Geographers (AAG) annual meeting in Boston, Massachusetts in March 1998, sponsored by the AAG's Remote Sensing Specialty Group (RSSG). The 10 papers that make up this issue of C&G, comprise 7 papers from the UK and 3 papers from the LIS. We are both co-editors of each of the journal special issues, with the lead editor of each journal issue being from their respective side of the Atlantic. The special issue of PE&RS (vol. 65) that constitutes the other half of this co-edited journal series was published in early 1999, comprising 6 papers by US authors. We are indebted to the International Association for Mathematical

  13. The investigation of advanced remote sensing techniques for the measurement of aerosol characteristics

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Becher, J.

    1979-01-01

    Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.

  14. Rapid Damage Assessment Using High-resolution Remote Sensing Imagery: Tools and Techniques

    SciTech Connect

    Vatsavai, Raju; Tuttle, Mark A; Bhaduri, Budhendra L; Bright, Eddie A; Cheriyadat, Anil M; Chandola, Varun; Graesser, Jordan B

    2011-01-01

    Accurate damage assessment caused by major natural and anthropogenic disasters is becoming critical due to increases in human and economic loss. This increase in loss of life and severe damages can be attributed to growing population, as well as human migration to disaster prone regions of the world. Rapid damage assessment and dissemination of accurate information is critical for creating an effective emergency response. Remote sensing and geographic information systems (GIS) based techniques and tools are important in disaster damage assessment and reporting activities. In this review, we will look into the state of the art techniques in damage assessment using remote sensing and GIS.

  15. OptaSense distributed acoustic and seismic sensing using COTS fiber optic cables for infrastructure protection and counter terrorism

    NASA Astrophysics Data System (ADS)

    Duckworth, Gregory L.; Ku, Emery M.

    2013-06-01

    The OptaSense® Distributed Acoustic Sensing (DAS) technology can turn any cable with single-mode optical fiber into a very large and densely sampled acoustic/seismic sensor array—covering up to a 50 km aperture per system with "virtual" sensor separations as small as 1 meter on the unmodified cable. The system uses Rayleigh scattering from the imperfections in the fiber to return the optical signals measuring local fiber strain from seismic or air and water acoustic signals. The scalable system architecture can provide border monitoring and high-security perimeter and linear asset protection for a variety of industries—from nuclear facilities to oil and gas pipelines. This paper presents various application architectures and system performance examples for detection, localization, and classification of personnel footsteps, vehicles, digging and tunneling, gunshots, aircraft, and earthquakes. The DAS technology can provide a costeffective alternative to unattended ground sensors and geophone arrays, and a complement or alternative to imaging and radar sensors in many applications. The transduction, signal processing, and operator control and display technology will be described, and performance examples will be given from research and development testing and from operational systems on pipelines, critical infrastructure perimeters, railroads, and roadways. Potential new applications will be discussed that can take advantage of existing fiber-optic telecommunications infrastructure as "the sensor"—leading to low-cost and high-coverage systems.

  16. Optical sensing of vegetation water content: A synthesis study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetation Water Content (VWC) plays an important role in parameterizing the vegetation influence on microwave soil moisture retrieval. During the past decade, researchers have developed relationships between VWC and vegetation indices available from satellite optical sensors in order to create larg...

  17. Wavelet-Based Processing for Fiber Optic Sensing Systems

    NASA Technical Reports Server (NTRS)

    Hamory, Philip J. (Inventor); Parker, Allen R., Jr. (Inventor)

    2016-01-01

    The present invention is an improved method of processing conglomerate data. The method employs a Triband Wavelet Transform that decomposes and decimates the conglomerate signal to obtain a final result. The invention may be employed to improve performance of Optical Frequency Domain Reflectometry systems.

  18. Integrated Optical Interferometers with Micromachined Diaphragms for Pressure Sensing

    NASA Technical Reports Server (NTRS)

    DeBrabander, Gregory N.; Boyd, Joseph T.

    1996-01-01

    Optical pressure sensors have been fabricated which use an integrated optical channel waveguide that is part of an interferometer to measure the pressure-induced strain in a micromachined silicon diaphragm. A silicon substrate is etched from the back of the wafer leaving a rectangular diaphragm. On the opposite side of the wafer, ring resonator and Mach-Zehnder interferometers are formed with optical channel waveguides made from a low pressure chemical vapor deposited film of silicon oxynitride. The interferometer's phase is altered by pressure-induced stress in a channel segment positioned over the long edge of the diaphragm. The phase change in the ring resonator is monitored using a link-insensitive swept frequency laser diode, while in the Mach-Zehnder it is determined using a broad band super luminescent diode with subsequent wavelength separation. The ring resonator was found to be highly temperature sensitive, while the Mach-Zehnder, which had a smaller optical path length difference, was proportionally less so. The quasi-TM mode was more sensitive to pressure, in accord with calculations. Waveguide and sensor theory, sensitivity calculations, a fabrication sequence, and experimental results are presented.

  19. Heated fiber optic distributed temperature sensing: a tool for measuring soil water content

    NASA Astrophysics Data System (ADS)

    Rodriguez-Sinobas, Leonor; Zubelzu, Sergio; Sánchez-Calvo, Raúl; Horcajo, Daniel

    2016-04-01

    The use of Distributed Fiber Optic Temperature Measurement (DFOT) method for estimating temperature variation along a cable of fiber optic has been assessed in multiple environmental applications. Recently, the application of DFOT combined with an active heating pulses technique has been reported as a sensor to estimate soil moisture. This method applies a known amount of heat to the soil and monitors the temperature evolution, which mainly depends on the soil moisture content . This study presents the application of the Active Heated DFOT method to determine the soil water retention curve under experimental conditions. The experiment was conducted in a rectangular methacrylate box of 2.5 m x 0.25 m x 0.25 m which was introduced in a larger box 2.8 m x 0.3 m x 0.3 m of the same material. The inner box was filled with a sandy loamy soil collected from the nearest garden and dried under ambient temperature for 30 days. Care was taking to fill up the box maintaining the soil bulk density determined "in-situ". The cable was deployed along the box at 10 cm depth. At the beginning of the experiment, the box was saturated bottom-up, by filling the outer box with water, and then it kept dried for two months. The circulation of heated air at the bottom box accelerated the drying process. In addition, fast growing turf was also sowed to dry it fast. The DTS unit was a SILIXA ULTIMA SR (Silixa Ltd, UK) and has spatial and temporal resolution of 0.29 m and 5 s, respectively. In this study, heat pulses of 7 W/m for 2 1/2 min were applied uniformly along the fiber optic cable and the thermal response on an adjacent cable was monitored in different soil water status. Then, the heating and drying phase integer (called Tcum) was determined following the approach of Sayde et al., (2010). For each water status,  was measured by the gravimetric method in several soil samples collected in three box locations at the same depth that the fiber optic cable and after each heat pulse

  20. Assessing the conservation status of neotropical dry forests using geographical information systems and optical remote sensing

    NASA Astrophysics Data System (ADS)

    Portillo, Carlos Alonso

    This thesis is composed of five chapters assessing the following specific goals: (1) To estimate the extent and geographic distribution of the neotropical dry forest. (2) To evaluate the potential use of satellite-detected fires as deforestation predictors in tropical dry forest and (3) To evaluate the potential of remote sensing techniques to detect edge effects in tropical dry forest. Preliminarily, in chapter two, I present a literature review of the techniques and concepts behind remote sensing of biodiversity. Here, I stress out the necessity of integrated assessments using multiple spatial and spectral resolution sensors over a wide array of ecosystems in order to find relevant ecosystem properties that would be sensitive to taxonomic and functional biodiversity. Chapter three describes a regional scale mapping effort of the extent and geographical distribution of tropical dry forests. Our results indicate that the total extent of tropical dry forest in the Americas is 519,597 Km2 with only 4.5% being under protected areas. Results are also presented by subregions and countries. In Chapter four, we show correlations patterns between the number of MODIS Active Fires and forest cover change in four tropical dry forest landscapes in Latin America. At the Santa Cruz site (Bolivia), correlations were strong and significant while at Chamela Site (Mexico) and the Mata Seca site (Brazil) correlations were moderate but significant as well. Chapter five addresses the magnitude of disturbances near the edges of dry forest fragments (edge effects). Results in gap fraction and Fraction of Intercepted Photosynthetically Active Radiation (FiPAR) show that edge influence at tropical dry forests can extend to at least 300-m. Finally, Chapter Six shows the correlation between FiPAR changes at the forest edge and spectral vegetation indices (SVIs) computed from the hyperspectral and multiangular satellite imagery. The work contained in these five chapters address issues that

  1. The Optical Property of Core-Shell Nanosensors and Detection of Atrazine Based on Localized Surface Plasmon Resonance (LSPR) Sensing

    PubMed Central

    Yang, Shaobo; Wu, Tengfei; Zhao, Xinhua; Li, Xingfei; Tan, Wenbin

    2014-01-01

    Three different nanosensors with core-shell structures were fabricated by molecular self-assembly and evaporation techniques. Such closely packed nanoparticles exhibit fine optical properties which are useful for biochemical sensing. The refractive index sensitivity (RIS) of nanosensors was detected by varying the refractive index of the surrounding medium and the decay length of nanosensors was investigated using a layer-by-layer polyelectrolyte multilayer assembly. The results showed that the thickness of the Au shell plays an important role in determining the RIS and the decay length. A system based on localized surface plasmon resonances (LSPR) sensing was constructed in our study. The core-shell nanosensors can detect 10 ng/mL atrazine solutions and are suitable for pesticide residue detection. PMID:25057137

  2. The optical property of core-shell nanosensors and detection of atrazine based on localized surface plasmon resonance (LSPR) sensing.

    PubMed

    Yang, Shaobo; Wu, Tengfei; Zhao, Xinhua; Li, Xingfei; Tan, Wenbin

    2014-01-01

    Three different nanosensors with core-shell structures were fabricated by molecular self-assembly and evaporation techniques. Such closely packed nanoparticles exhibit fine optical properties which are useful for biochemical sensing. The refractive index sensitivity (RIS) of nanosensors was detected by varying the refractive index of the surrounding medium and the decay length of nanosensors was investigated using a layer-by-layer polyelectrolyte multilayer assembly. The results showed that the thickness of the Au shell plays an important role in determining the RIS and the decay length. A system based on localized surface plasmon resonances (LSPR) sensing was constructed in our study. The core-shell nanosensors can detect 10 ng/mL atrazine solutions and are suitable for pesticide residue detection. PMID:25057137

  3. New optical tomographic & topographic techniques for biomedical applications

    NASA Astrophysics Data System (ADS)

    Buytaert, Jan

    The mammalian middle ear contains the eardrum and the three auditory ossicles, and forms an impedance match between sound in air and pressure waves in the fluid of the inner ear. Without this intermediate system, with its unsurpassed efficiency and dynamic range, we would be practically deaf. Physics-based modeling of this extremely complex mechanical system is necessary to help our basic understanding of the functioning of hearing. Highly realistic models will make it possible to predict the outcome of surgical interventions and to optimize design of ossicle prostheses and active middle ear implants. To obtain such models and with realistic output, basic input data is still missing. In this dissertation I developed and used two new optical techniques to obtain two essential sets of data: accurate three-dimensional morphology of the middle ear structures, and elasticity parameters of the eardrum. The first technique is a new method for optical tomography of macroscopic biomedical objects, which makes it possible to measure the three-dimensional geometry of the middle ear ossicles and soft tissues which are connecting and suspending them. I made a new and high-resolution version of this orthogonal-plane fluorescence optical sectioning method, to obtain micrometer resolution in macroscopic specimens. The result is thus a complete 3-D model of the middle (and inner) ear of gerbil in unprecedented quality. On top of high-resolution morphological models of the middle ear structures, I applied the technique in other fields of research as well. The second device works according to a new optical profilometry technique which allows to measure shape and deformations of the eardrum and other membranes or objects. The approach is called projection moire profilometry, and creates moire interference fringes which contain the height information. I developed a setup which uses liquid crystal panels for grid projection and optical demodulation. Hence no moving parts are present and

  4. Development of Optical Diagnostic Techniques for Microgravity Materials Processing

    NASA Technical Reports Server (NTRS)

    Cha, Soyoung Stephen

    1999-01-01

    Materials processing including crystal growth, either under a gravity environment on ground or a microgravity environment in space, involves complicated phenomena of fluid motions in gas or liquid phases as well as interaction of various species. To obtain important physical insight, it is very necessary to provide gross-field optical diagnostics for monitoring various physical properties. Materials processing inhibits easy access by ordinary instruments and thus characterizing gross-field physical properties is very challenging. Typical properties of importance can be fluid velocity, temperature, and species concentration for fluids, and surface topology and defects for solids. Observing surface grow rate during crystal growth is also important. Material microstructures, i.e., integrity of crystal structures, is strongly influenced by the existence of thermally-induced flow as well as local nucleation of particles during solidification, which may act in many detrimental ways. In both ground-based and microgravity experiments, the nature of product property changes resulting from three-dimensional fluid or particle motions need be characterized. Gross-field diagnostics is thus required to identify their effects on product defects and process deficiencies. The quantitative visualization techniques can also be used for validation of numerical modeling. For optical nonintrusive gross-field diagnostic techniques, two approaches were developed as summer projects. One optical approach allows us to provide information of species concentration and temperature for monitoring in real time. The other approach, that is, the concept which is formulated for detection of surface topography measurement can provide unprecedented spatial resolution during crystal growth.

  5. Application of a fluorescence intensity ratio technique for the intrinsic determination of pH using an optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Thotath, Bhadra; Nguyen, T. Hien; Zhang, Weiwei; Wren, Stephen P.; Baxter, Gregory W.; Sun, Tong; Collins, Stephen F.; Grattan, Kenneth T. V.

    2015-09-01

    An intensity ratio technique has been used for characterizing fluorescence spectra from novel coumarin dyes for pH sensing, in the range of 0.5 - 6, providing results that are independent of possible fluctuations in the intensity of the excitation source, deterioration of the indicator and changes in optical coupling. The arrangement was determined to have a sensitivity of 25% per unit pH change (at a pH of 4).

  6. Chalcogenide glass fibers: Optical window tailoring and suitability for bio-chemical sensing

    NASA Astrophysics Data System (ADS)

    Lucas, Pierre; Coleman, Garrett J.; Jiang, Shibin; Luo, Tao; Yang, Zhiyong

    2015-09-01

    Glassy materials based on chalcogen elements are becoming increasingly prominent in the development of advanced infrared sensors. In particular, infrared fibers constitute a desirable sensing platform due to their high sensitivity and versatile remote collection capabilities for in-situ detection. Tailoring the transparency window of an optical material to the vibrational signature of a target molecule is important for the design of infrared sensor, and particularly for fiber evanescent wave spectroscopy. Here we review the basic principles and recent developments in the fabrication of chalcogenide glass infrared fibers for application as bio-chemical sensors. We emphasize the challenges in designing materials that combine good rheological properties with chemical stability and sufficiently wide optical windows for bio-chemical sensing. The limitation in optical transparency due to higher order overtones of the amorphous network vibrations is established for this family of glasses. It is shown that glasses with wide optical window suffer from higher order overtone absorptions. Compositional engineering with heavy elements such as iodine is shown to widen the optical window but at the cost of lower chemical stability. The optical attenuations of various families of chalcogenide glass fibers are presented and weighed for their applications as chemical sensors. It is then shown that long-wave infrared fibers can be designed to optimize the collection of selective signal from bio-molecules such as cells and tissues. Issues of toxicity and mechanical resistance in the context of bio-sensing are also discussed.

  7. Metrology Optical Power Budgeting in SIM Using Statistical Analysis Techniques

    NASA Technical Reports Server (NTRS)

    Kuan, Gary M

    2008-01-01

    The Space Interferometry Mission (SIM) is a space-based stellar interferometry instrument, consisting of up to three interferometers, which will be capable of micro-arc second resolution. Alignment knowledge of the three interferometer baselines requires a three-dimensional, 14-leg truss with each leg being monitored by an external metrology gauge. In addition, each of the three interferometers requires an internal metrology gauge to monitor the optical path length differences between the two sides. Both external and internal metrology gauges are interferometry based, operating at a wavelength of 1319 nanometers. Each gauge has fiber inputs delivering measurement and local oscillator (LO) power, split into probe-LO and reference-LO beam pairs. These beams experience power loss due to a variety of mechanisms including, but not restricted to, design efficiency, material attenuation, element misalignment, diffraction, and coupling efficiency. Since the attenuation due to these sources may degrade over time, an accounting of the range of expected attenuation is needed so an optical power margin can be book kept. A method of statistical optical power analysis and budgeting, based on a technique developed for deep space RF telecommunications, is described in this paper and provides a numerical confidence level for having sufficient optical power relative to mission metrology performance requirements.

  8. Optical properties and remote sensing of optically diverse waters in Pomeranian Region (Poland)

    NASA Astrophysics Data System (ADS)

    Ficek, Dariusz

    2015-04-01

    This work presents the large set of empirical examples of upward and downward spectral irradiance fields, along with their associated coefficients of reflectance and transmittance in the waters in Pomeranian Region. On the one hand, the light field prevailing in a water body is one of the main factors governing life in it, affecting as it does a number of processes of great significance for this ecosystem. On the other, it is an important source of information used, among other things, for the remote assessment of the state of structural characteristics, including the composition and concentration of OACs, and the changes taking place in this environment. In this age of remote sensing, be this from on board a satellite or an aircraft, the light field is a highly topical issue. The 235 optical measurements performed in Pomeranian Region enabled a range of characteristic features of the vertical spectral distributions of the downward and upward irradiance, and irradiance transmittance to be defined. Based on these measurements, spectra of the diffusional coefficient of the downward irradiance attenuation in different types of lacustrine waters were determined. The underwater irradiance fields are governed by absorption and scattering, and these processes, in turn, depend on the type and concentration of OACs contained in the water. Later in this work, I show the influence of these constituents on the spatial and spectral characteristics of underwater light fields in trophically and optically diverse waters; I also analyse the possibilities of utilizing this modified light field to determine the OAC concentration in the waters under study here. The magnitude that is used to monitor the state of the water in natural bodies using remote sensing is the reflectanceR(λ), a function of the reflection of the downward daytime irradiance. Because the spectra of this reflectance differ in shape (the positions and values of their maxima and minima), three types of spectra have

  9. Remote sensing of optical properties in continuously stratified waters

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.

    1978-01-01

    The radiative transfer equation is solved by Monte Carlo methods for natural waters in which the optical properties are distributed with depth. It is demonstrated that interpreting the reflectance of a continuously stratified ocean in terms of an equivalent homogeneous ocean yields the average of a particular combination of the water's optical properties over the dimensionless penetration depth. Although in general the dimensionless penetration depth cannot be remotely measured, a method is presented for estimating the actual penetration depth from the remote observations if the medium's absorption coefficient is known, independent of depth, and sufficiently large. The application of this to the remote measurement of the vertical distribution of suspended sediments is discussed in detail.

  10. A regression technique for evaluation and quantification for water quality parameters from remote sensing data

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Kuo, C. Y.

    1979-01-01

    The objective of this paper is to define optical physics and/or environmental conditions under which the linear multiple-regression should be applicable. An investigation of the signal-response equations is conducted and the concept is tested by application to actual remote sensing data from a laboratory experiment performed under controlled conditions. Investigation of the signal-response equations shows that the exact solution for a number of optical physics conditions is of the same form as a linearized multiple-regression equation, even if nonlinear contributions from surface reflections, atmospheric constituents, or other water pollutants are included. Limitations on achieving this type of solution are defined.

  11. Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review.

    PubMed

    Kalluri, Satya; Gilruth, Peter; Rogers, David; Szczur, Martha

    2007-10-26

    Epidemiologists are adopting new remote sensing techniques to study a variety of vector-borne diseases. Associations between satellite-derived environmental variables such as temperature, humidity, and land cover type and vector density are used to identify and characterize vector habitats. The convergence of factors such as the availability of multi-temporal satellite data and georeferenced epidemiological data, collaboration between remote sensing scientists and biologists, and the availability of sophisticated, statistical geographic information system and image processing algorithms in a desktop environment creates a fertile research environment. The use of remote sensing techniques to map vector-borne diseases has evolved significantly over the past 25 years. In this paper, we review the status of remote sensing studies of arthropod vector-borne diseases due to mosquitoes, ticks, blackflies, tsetse flies, and sandflies, which are responsible for the majority of vector-borne diseases in the world. Examples of simple image classification techniques that associate land use and land cover types with vector habitats, as well as complex statistical models that link satellite-derived multi-temporal meteorological observations with vector biology and abundance, are discussed here. Future improvements in remote sensing applications in epidemiology are also discussed.

  12. Surveillance of Arthropod Vector-Borne Infectious Diseases Using Remote Sensing Techniques: A Review

    PubMed Central

    Kalluri, Satya; Gilruth, Peter; Rogers, David; Szczur, Martha

    2007-01-01

    Epidemiologists are adopting new remote sensing techniques to study a variety of vector-borne diseases. Associations between satellite-derived environmental variables such as temperature, humidity, and land cover type and vector density are used to identify and characterize vector habitats. The convergence of factors such as the availability of multi-temporal satellite data and georeferenced epidemiological data, collaboration between remote sensing scientists and biologists, and the availability of sophisticated, statistical geographic information system and image processing algorithms in a desktop environment creates a fertile research environment. The use of remote sensing techniques to map vector-borne diseases has evolved significantly over the past 25 years. In this paper, we review the status of remote sensing studies of arthropod vector-borne diseases due to mosquitoes, ticks, blackflies, tsetse flies, and sandflies, which are responsible for the majority of vector-borne diseases in the world. Examples of simple image classification techniques that associate land use and land cover types with vector habitats, as well as complex statistical models that link satellite-derived multi-temporal meteorological observations with vector biology and abundance, are discussed here. Future improvements in remote sensing applications in epidemiology are also discussed. PMID:17967056

  13. Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review.

    PubMed

    Kalluri, Satya; Gilruth, Peter; Rogers, David; Szczur, Martha

    2007-10-26

    Epidemiologists are adopting new remote sensing techniques to study a variety of vector-borne diseases. Associations between satellite-derived environmental variables such as temperature, humidity, and land cover type and vector density are used to identify and characterize vector habitats. The convergence of factors such as the availability of multi-temporal satellite data and georeferenced epidemiological data, collaboration between remote sensing scientists and biologists, and the availability of sophisticated, statistical geographic information system and image processing algorithms in a desktop environment creates a fertile research environment. The use of remote sensing techniques to map vector-borne diseases has evolved significantly over the past 25 years. In this paper, we review the status of remote sensing studies of arthropod vector-borne diseases due to mosquitoes, ticks, blackflies, tsetse flies, and sandflies, which are responsible for the majority of vector-borne diseases in the world. Examples of simple image classification techniques that associate land use and land cover types with vector habitats, as well as complex statistical models that link satellite-derived multi-temporal meteorological observations with vector biology and abundance, are discussed here. Future improvements in remote sensing applications in epidemiology are also discussed. PMID:17967056

  14. Study on estimating the evapotranspiration cover coefficient for stream flow simulation through remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Wu, Chihda; Cheng, Chichuan; Lo, Hannchung; Chen, Yeongkeung

    2010-08-01

    This study focuses on using remote sensing techniques to estimate the evapotranspiration cover coefficient (CV) which is an important parameter for stream flow. The objective is to derive more accurate stream flow from the estimated CV. The study area is located in the Dan-Shuei watershed in northern Taiwan. The processes include the land-use classification using hybrid classification and four Landsat-5 TM images; the CV estimations based on remote sensing and traditional approaches; comparison of stream flow simulation according to the above two CV values. The result indicated that the study area was classified into seven land-use types with 88.3% classification accuracy. The simulated stream flow using remote sensing approach could represent more accurate hydrological characteristics than a traditional approach. Obviously integrating remote sensing technique and the SEBAL model is a useful approach to estimate the CV. The CV parameter estimated by remote sensing technique did improve the accuracy of the stream flow simulation. Therefore, the results can be extended to further studies such as forest water management.

  15. Integrating optical glucose sensing into a planar waveguide sensor structure

    NASA Astrophysics Data System (ADS)

    Dutta, Aradhana; Deka, Bidyut; Sahu, Partha P.

    2013-06-01

    A device for glucose monitoring in people with diabetes is a clinical and research priority in the recent years for its accurate self management. An extensive theoretical design and development of an optical sensor is carried out incorporating planar waveguide structure in an endeavor to measure slight changes of glucose concentration. The sensor is simple and highly sensitive and has the potential to be used for online monitoring of blood glucose levels for the diabetic patients in the near future.

  16. Time domain referencing in intensity modulation fiber optic sensing systems

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.

    1986-01-01

    Intensity modulation sensors are classified depending on the way in which the reference and signal channels are separated: in space, wavelength (frequency), or time domains. To implement the time domain referencing different types of fiber optic (FO) loops have been used. A pulse of short duration sent into the loop results in a series of pulses of different amplitudes. The information about the measured parameter is retrieved from the relative amplitudes of pulses in the same train.

  17. Reflectance spectroscopy - Quantitative analysis techniques for remote sensing applications. [in planetary surface geology

    NASA Technical Reports Server (NTRS)

    Clark, R. N.; Roush, T. L.

    1984-01-01

    The empirical methods and scattering theories that are important for solving remote sensing problems are among the methods for remotely sensed reflectance data analysis presently compared. In the case of the photon mean optical path length concept's implications for reflectance spectra modeling, it is shown that the mean optical path length in a particulate surface is in roughly inverse proportion to the square root of the absorption coefficient. Absorption bands, which are Gaussian in shape when plotted as true absorptance vs photon energy, are also Gaussians in apparent absorptance, although they have a smaller intensity. An apparent continuum in a reflectance spectrum is modeled as a mathematical function that is used to isolate a particular absorption feature for analysis, and it is noted that this continuum should be removed by dividing it into the reflectance spectrum.

  18. Optical Sensing with Simultaneous Electrochemical Control in Metal Nanowire Arrays

    PubMed Central

    MacKenzie, Robert; Fraschina, Corrado; Sannomiya, Takumi; Auzelyte, Vaida; Vörös, Janos

    2010-01-01

    This work explores the alternative use of noble metal nanowire systems in large-scale array configurations to exploit both the nanowires’ conductive nature and localized surface plasmon resonance (LSPR). The first known nanowire-based system has been constructed, with which optical signals are influenced by the simultaneous application of electrochemical potentials. Optical characterization of nanowire arrays was performed by measuring the bulk refractive index sensitivity and the limit of detection. The formation of an electrical double layer was controlled in NaCl solutions to study the effect of local refractive index changes on the spectral response. Resonance peak shifts of over 4 nm, a bulk refractive index sensitivity up to 115 nm/RIU and a limit of detection as low as 4.5 × 10−4 RIU were obtained for gold nanowire arrays. Simulations with the Multiple Multipole Program (MMP) confirm such bulk refractive index sensitivities. Initial experiments demonstrated successful optical biosensing using a novel form of particle-based nanowire arrays. In addition, the formation of an ionic layer (Stern-layer) upon applying an electrochemical potential was also monitored by the shift of the plasmon resonance. PMID:22163441

  19. Neurophotonics: non-invasive optical techniques for monitoring brain functions

    PubMed Central

    Torricelli, Alessandro; Contini, Davide; Mora, Alberto Dalla; Pifferi, Antonio; Re, Rebecca; Zucchelli, Lucia; Caffini, Matteo; Farina, Andrea; Spinelli, Lorenzo

    2014-01-01

    Summary The aim of this review is to present the state of the art of neurophotonics, a recently founded discipline lying at the interface between optics and neuroscience. While neurophotonics also includes invasive techniques for animal studies, in this review we focus only on the non-invasive methods that use near infrared light to probe functional activity in the brain, namely the fast optical signal, diffuse correlation spectroscopy, and functional near infrared spectroscopy methods. We also present an overview of the physical principles of light propagation in biological tissues, and of the main physiological sources of signal. Finally, we discuss the open issues in models, instrumentation, data analysis and clinical approaches. PMID:25764252

  20. Optical velocity-measurement techniques for supersonic surfaces.

    SciTech Connect

    Briggs, M,E.; Hemsing, W. F.; Shinas, M. A.

    2004-01-01

    Interferometric techniques have been used routinely for more than 20 years to measure velocities of explosive shock-fronts. Recently, structured-light measurements have been used for the same purpose. Explosions accelerate surfaces to as much as 15 km/sec in a nanosecond or less, often generating much light, large changes in reflectivity, and ejecting particles or layers at different speeds. I will describe the current performance of fiber-optic displacement-interferometers, Fabret-Perot inteferometers, velocity interferometers (VISAR), and structured light, in this interesting physical space. We have designed and used for several years a 1/4 inch OD optical probe with large depth of field that both illuminates and returns the image from a surface inside a confined geometry. We report on its design and performance. The increased information from the surface requires greater automation from the analysis software. We report our software automation and analysis improvements.