Science.gov

Sample records for optical spin-1 chain

  1. Emergent incommensurate correlations in frustrated ferromagnetic spin-1 chains

    NASA Astrophysics Data System (ADS)

    Lee, Hyeong Jun; Choi, MooYoung; Jeon, Gun Sang

    2017-01-01

    We study frustrated ferromagnetic spin-1 chains, where the ferromagnetic nearest-neighbor coupling competes with the antiferromagnetic next-nearest-neighbor coupling. We use the density-matrix renormalization group to obtain the ground states. Through the analysis of spin-spin correlations we identify the double Haldane phase as well as the ferromagnetic phase. It is shown that the ferromagnetic coupling leads to incommensurate correlations in the double Haldane phase. Such short-range correlations transform continuously into the ferromagnetic instability at the transition to the ferromagnetic phase. We also compare the results with the spin-1/2 and classical spin systems and discuss the string orders in the system.

  2. Criticality without frustration for quantum spin-1 chains.

    PubMed

    Bravyi, Sergey; Caha, Libor; Movassagh, Ramis; Nagaj, Daniel; Shor, Peter W

    2012-11-16

    Frustration-free (FF) spin chains have a property that their ground state minimizes all individual terms in the chain Hamiltonian. We ask how entangled the ground state of a FF quantum spin-s chain with nearest-neighbor interactions can be for small values of s. While FF spin-1/2 chains are known to have unentangled ground states, the case s=1 remains less explored. We propose the first example of a FF translation-invariant spin-1 chain that has a unique highly entangled ground state and exhibits some signatures of a critical behavior. The ground state can be viewed as the uniform superposition of balanced strings of left and right brackets separated by empty spaces. Entanglement entropy of one half of the chain scales as 1/2 log n+O(1), where n is the number of spins. We prove that the energy gap above the ground state is polynomial in 1/n. The proof relies on a new result concerning statistics of Dyck paths which might be of independent interest.

  3. Spin-1/2 Optical Lattice Clock

    NASA Astrophysics Data System (ADS)

    Lemke, N. D.; Ludlow, A. D.; Barber, Z. W.; Fortier, T. M.; Diddams, S. A.; Jiang, Y.; Jefferts, S. R.; Heavner, T. P.; Parker, T. E.; Oates, C. W.

    2009-08-01

    We experimentally investigate an optical clock based on Yb171 (I=1/2) atoms confined in an optical lattice. We have evaluated all known frequency shifts to the clock transition, including a density-dependent collision shift, with a fractional uncertainty of 3.4×10-16, limited principally by uncertainty in the blackbody radiation Stark shift. We measured the absolute clock transition frequency relative to the NIST-F1 Cs fountain clock and find the frequency to be 518 295 836 590 865.2(0.7) Hz.

  4. Quantum phase transition in dimerised spin-1/2 chains

    NASA Astrophysics Data System (ADS)

    Das, Aparajita; Bhadra, Sreeparna; Saha, Sonali

    2015-11-01

    Quantum phase transition in dimerised antiferromagnetic Heisenberg spin chain has been studied. A staircase structure in the variation of concurrence within strongly coupled pairs with that of external magnetic field has been observed indicating multiple critical (or critical like) points. Emergence of entanglement due to external magnetic field or magnetic entanglement is observed for weakly coupled spin pairs too in the same dimer chain. Though closed dimerised isotropic XXX Heisenberg chains with different dimer strengths were mainly explored, analogous studies on open chains as well as closed anisotropic (XX interaction) chains with tilted external magnetic field have also been studied.

  5. Subspace controllability of spin-1/2 chains with symmetries

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoting; Burgarth, Daniel; Schirmer, S.

    2016-11-01

    We develop a technique to prove simultaneous subspace controllability on multiple invariant subspaces, which specifically enables us study the controllability properties of spin systems that are not amenable to standard controllability arguments based on energy level connectivity graphs or simple induction arguments on the length of the chain. The technique is applied to establish simultaneous subspace controllability for Heisenberg spin chains subject to limited local controls. This model is theoretically important and the controllability result shows that a single control can be sufficient for complete controllability of an exponentially large subspace and universal quantum computation in the exponentially large subspace. The controllability results are extended to prove subspace controllability in the presence of control field leakage and discuss minimal control resources required to achieve controllability over the entire spin chain space.

  6. Analytical and numerical studies of disordered spin-1 Heisenberg chains with aperiodic couplings

    NASA Astrophysics Data System (ADS)

    Casa Grande, H. L.; Laflorencie, N.; Alet, F.; Vieira, A. P.

    2014-04-01

    We investigate the low-temperature properties of the one-dimensional spin-1 Heisenberg model with geometric fluctuations induced by aperiodic but deterministic coupling distributions, involving two parameters. We focus on two aperiodic sequences, the Fibonacci sequence and the 6-3 sequence. Our goal is to understand how these geometric fluctuations modify the physics of the (gapped) Haldane phase, which corresponds to the ground state of the uniform spin-1 chain. We make use of different adaptations of the strong-disorder renormalization-group (SDRG) scheme of Ma, Dasgupta, and Hu, widely employed in the study of random spin chains, supplemented by quantum Monte Carlo and density-matrix renormalization-group numerical calculations, to study the nature of the ground state as the coupling modulation is increased. We find no phase transition for the Fibonacci chain, while we show that the 6-3 chain exhibits a phase transition to a gapless, aperiodicity-dominated phase similar to the one found for the aperiodic spin-1/2 XXZ chain. Contrary to what is verified for random spin-1 chains, we show that different adaptations of the SDRG scheme may lead to different qualitative conclusions about the nature of the ground state in the presence of aperiodic coupling modulations.

  7. Dynamic properties of spin-1/2 XY chains (in English)

    NASA Astrophysics Data System (ADS)

    Derzhko, O.; Krokhmalskii, T.

    We have considered a numerical scheme for the calculation of the equilibrium properties of spin-{1/2} XY chains. Within its frames it is necessary to solve in the last resort only the 2N× 2N eigenvalue and eigenvector problem but not the 2^N× 2^N one as for an arbitrary system consisting of N spins {1/2}. To illustrate the approach we have presented some new results. Namely, the xx dynamic structure factor for the Ising model in transverse field, the density of states for the isotropic chain with random intersite couplings and transverse fields that linearly depend on the surrounding couplings, and the zz dynamic structure factor for the Ising model in the random transverse field. The results obtained are hoped to be useful for an interpretation of observable data for one-dimensional spin-{1/2} XY substances.

  8. Spinon excitations in the spin-1 XXZ chain and hidden supersymmetry

    NASA Astrophysics Data System (ADS)

    Matsui, Chihiro

    2016-12-01

    We study spinon excitations of the integrable spin-1 (Fateev-Zamolodchikov; FZ) chain and their relation to the hidden supersymmetry. Using the notion of the supercharges earlier introduced to the spin chains, which change the system length by one, we found that they nontrivially act on one of two kinds of the degrees of freedom for the FZ chain. Their actions were obtained to be the same as those of the supercharges defined on the supersymmetric sine-Gordon model, the low-energy effective field theory of the FZ chain. Moreover, we construct the eigenstates which are invariant under the supersymmetric Hamiltonian given as the anti-commutator of the supercharges.

  9. Effects of Quantum Spin-1 /2 Impurities on the Magnetic Properties of Zigzag Spin Chains

    NASA Astrophysics Data System (ADS)

    Karmakar, Koushik; Skoulatos, Markos; Prando, Giacomo; Roessli, Bertran; Stuhr, Uwe; Hammerath, Franziska; Rüegg, Christian; Singh, Surjeet

    2017-03-01

    We investigate the effect of Co2 + (spin-1 /2 ) impurities on the magnetic ground state and low-lying spin excitations of the quasione-dimensional spin-1 /2 antiferromagnet SrCuO2 by means of neutron scattering, muon spin spectroscopy, and bulk (ac and dc) magnetic susceptibilities. We found that dilute Co doping induces an Ising-like anisotropy and enhances the magnetic ordering temperature rather significantly, but preserves the gapless nature of the spin excitations. These results are in apparent contradiction with the recent studies of Ni (spin-1) doped SrCuO2 . Low-temperature magnetic behavior of the Co-doped zigzag chains in SrCuO2 reveals the presence of a weak geometrical spin frustration.

  10. Effects of Quantum Spin-1/2 Impurities on the Magnetic Properties of Zigzag Spin Chains.

    PubMed

    Karmakar, Koushik; Skoulatos, Markos; Prando, Giacomo; Roessli, Bertran; Stuhr, Uwe; Hammerath, Franziska; Rüegg, Christian; Singh, Surjeet

    2017-03-10

    We investigate the effect of Co^{2+} (spin-1/2) impurities on the magnetic ground state and low-lying spin excitations of the quasione-dimensional spin-1/2 antiferromagnet SrCuO_{2} by means of neutron scattering, muon spin spectroscopy, and bulk (ac and dc) magnetic susceptibilities. We found that dilute Co doping induces an Ising-like anisotropy and enhances the magnetic ordering temperature rather significantly, but preserves the gapless nature of the spin excitations. These results are in apparent contradiction with the recent studies of Ni (spin-1) doped SrCuO_{2}. Low-temperature magnetic behavior of the Co-doped zigzag chains in SrCuO_{2} reveals the presence of a weak geometrical spin frustration.

  11. Ground-State Phases of Anisotropic Mixed Diamond Chains with Spins 1 and 1/2

    NASA Astrophysics Data System (ADS)

    Hida, Kazuo

    2014-11-01

    The ground-state phases of anisotropic mixed diamond chains with spins 1 and 1/2 are investigated. Both single-site and exchange anisotropies are considered. We find the phases consisting of an array of uncorrelated spin-1 clusters separated by singlet dimers. Except in the simplest case where the cluster consists of a single S = 1 spin, this type of ground state breaks the translational symmetry spontaneously. Although the mechanism leading to this type of ground state is the same as that in the isotropic case, it is nonmagnetic or paramagnetic depending on the competition between two types of anisotropy. We also find the Néel, period-doubled Néel, Haldane, and large-D phases, where the ground state is a single spin cluster of infinite size equivalent to the spin-1 Heisenberg chain with alternating anisotropies. The ground-state phase diagrams are determined for typical sets of parameters by numerical analysis. In various limiting cases, the ground-state phase diagrams are determined analytically. The low-temperature behaviors of magnetic susceptibility and entropy are investigated to distinguish each phase by observable quantities. The relationship of the present model with the anisotropic rung-alternating ladder with spin-1/2 is also discussed.

  12. Exact and numerical results for a dimerized coupled spin- 1/2 chain

    PubMed

    Martins; Nienhuis

    2000-12-04

    We establish exact results for coupled spin-1/2 chains for special values of the four-spin interaction V and dimerization parameter delta. The first exact result is at delta = 1/2 and V = -2. Because we find a very small but finite gap in this dimerized chain, this can serve as a very strong test case for numerical and approximate analytical techniques. The second result is for the homogeneous chain with V = -4 and gives evidence that the system has a spontaneously dimerized ground state. Numerical diagonalization and bosonization techniques indicate that the interplay between dimerization and interaction could result in gapless phases in the regime 0

  13. Heisenberg antiferromagnetic chain with multiple spin 1/2 particles of different flavors per site

    NASA Astrophysics Data System (ADS)

    Duki, Solomon F.; Yu, Yi-Kuo

    Motivated by the discoveries of quasi-1D magnetic systems, we studied a quantum mechanical spin lattice system consisting of a one-dimensional antiferromagnetic Heisenberg chain. In this system we considered M spin 1/2 particles of different flavors per site, and the low-lying states, ground state included, of the Hamiltonian was solved numerically using the exact diagonalization method for finite cluster sizes. We have also obtained the corresponding solutions for systems of the same chain length but with one spin M/2 particle per site. The low energy spectra of both systems are then compared. For M = 2 and M =3, our result shows that the two spin chain systems (one spin M/2 per site vs. M spin 1/2 of different flavors per site) have the same excitation spectra at low energy and the number of overlapped states increases as the size of the cluster increases. The observed overlap also indicates that low energy excitations of the M flavored spin 1/2 chain system selects the high spin states, effectively satisfying the Hund's Rule even though the system does not possess the orbital angular momentum. This work was supported by the Intramural Research Program of the National Library of Medicine at the National Institutes of Health.

  14. Finite Temperature Properties of Mixed Diamond Chain with Spins 1 and 1/2

    NASA Astrophysics Data System (ADS)

    Hida, Kazuo; Takano, Ken'ichi; Suzuki, Hidenori

    2009-08-01

    We formulate statistical mechanics for a mixed diamond chain with spins 1 and 1/2. Owing to a series of conservation laws, any eigenstate of this system is decomposed into eigenstates of finite odd-length spin-1 chains. The ground state undergoes five quantum phase transitions with varying λ, a parameter that controls frustration. We evaluated the residual entropy and Curie constant which characterize each phase and phase boundary at low temperatures. We further find various characteristic finite-temperature properties such as the nonmonotonic temperature dependence of magnetic susceptibility, the multipeak structure in the λ-dependence of entropy, the plateau-like temperature dependence of entropy and the multipeak structure of specific heat.

  15. Magnetism-driven ferroelectricity in spin-1/2 X Y chains

    NASA Astrophysics Data System (ADS)

    Menchyshyn, Oleg; Ohanyan, Vadim; Verkholyak, Taras; Krokhmalskii, Taras; Derzhko, Oleg

    2015-11-01

    We illustrate the magnetoelectric effect conditioned by the Katsura-Nagaosa-Balatsky (KNB) mechanism within the frames of exactly solvable spin-1 /2 X Y chains. Due to three-spin interactions which are present in our consideration, the magnetization (polarization) is influenced by the electric (magnetic) field even in the absence of the magnetic (electric) field. We also discuss a magnetoelectrocaloric effect examining the entropy changes under the isothermal varying of the magnetic and/or electric field.

  16. An Optical Lattice Clock with Spin 1/2 Atoms

    DTIC Science & Technology

    2012-01-01

    89 4.4 Vector Stark shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90...ytterbium atoms The first proposal for an optical lattice clock called for spectroscopy of a narrow optical tran- sition in ultracold strontium atoms [40...Since then, experimental groups have begun researching not only strontium (Sr) [70, 71, 72, 73, 74], but also ytterbium (Yb) [75, 76, 77, 78, 79] and

  17. Non-Markovian dynamics in the extended cluster spin-1/2 XX chain

    NASA Astrophysics Data System (ADS)

    Mahmoudi, M.; Mahdavifar, S.; Zadeh, T. Mohammad Ali; Soltani, M. R.

    2017-01-01

    We study the dynamics of entanglement, mutual information, and quantum discord in the extended cluster spin-1/2 XX chain, equivalent to a one-dimensional spin-1/2 XX model with three-spin interaction (TSI). Selecting the nearest neighbor pair spins as an open quantum system, the rest of the chain plays the role of the environment. The two-point Heisenberg and the TSI are responsible for coupling between the system and the environment. Although the revival phenomenon of quantum correlations as an indication of non-Markovian dynamics is observed for TSI stronger than the Heisenberg interaction, the study of the trace distance has proven that the dynamical phase transition from the Markovian to the non-Markovian regime happens at a critical value where the TSI is equal to half of the Heisenberg interaction. By focusing on the nearest neighbor pair spins of the environment, we have also shown that the dynamics of quantum correlation in the environment is sensitive to Markovian and non-Markovian regions.

  18. Exact steady state manifold of a boundary driven spin-1 Lai-Sutherland chain

    NASA Astrophysics Data System (ADS)

    Ilievski, Enej; Prosen, Tomaž

    2014-05-01

    We present an explicit construction of a family of steady state density matrices for an open integrable spin-1 chain with bilinear and biquadratic interactions, also known as the Lai-Sutherland model, driven far from equilibrium by means of two oppositely polarizing Markovian dissipation channels localized at the boundary. The steady state solution exhibits n+1 fold degeneracy, for a chain of length n, due to existence of (strong) Liouvillian U(1) symmetry. The latter can be exploited to introduce a chemical potential and define a grand canonical nonequilibrium steady state ensemble. The matrix product form of the solution entails an infinitely-dimensional representation of a non-trivial Lie algebra (semidirect product of sl2 and a non-nilpotent radical) and hints to a novel Yang-Baxter integrability structure.

  19. Thermodynamics of a spin-1/2 XYZ Heisenberg chain with a Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Xi, Bin; Hu, Shijie; Luo, Qiang; Zhao, Jize; Wang, Xiaoqun

    2017-01-01

    We study the thermodynamics of a spin-1/2 XYZ Heisenberg chain with a Dzyaloshinskii-Moriya interaction. This model describes the low-energy behaviors of a one-dimensional two-component bosonic model with a synthetic spin-orbit coupling in the deep insulating region. In the limit U'/U →∞ , where U is the strength of the onsite intracomponent repulsion and U' is the intercomponent one, we solve our model exactly by Jordan-Wigner transformation, and thus provide a benchmark for our following numerical approach. In other cases, we calculate the entropy and the specific heat numerically by the transfer-matrix renormalization-group method. Their low-temperature behaviors depend crucially on the properties of the zero-temperature phases. A refined ground-state phase diagram is then deduced from their low-temperature behaviors. Our findings offer an alternative way to detect those distinguishable phases experimentally.

  20. Temperature dependence of the NMR spin-lattice relaxation rate for spin-1/2 chains

    NASA Astrophysics Data System (ADS)

    Coira, E.; Barmettler, P.; Giamarchi, T.; Kollath, C.

    2016-10-01

    We use recent developments in the framework of a time-dependent matrix product state method to compute the nuclear magnetic resonance relaxation rate 1 /T1 for spin-1/2 chains under magnetic field and for different Hamiltonians (XXX, XXZ, isotropically dimerized). We compute numerically the temperature dependence of the 1 /T1 . We consider both gapped and gapless phases, and also the proximity of quantum critical points. At temperatures much lower than the typical exchange energy scale, our results are in excellent agreement with analytical results, such as the ones derived from the Tomonaga-Luttinger liquid (TLL) theory and bosonization, which are valid in this regime. We also cover the regime for which the temperature T is comparable to the exchange coupling. In this case analytical theories are not appropriate, but this regime is relevant for various new compounds with exchange couplings in the range of tens of Kelvin. For the gapped phases, either the fully polarized phase for spin chains or the low-magnetic-field phase for the dimerized systems, we find an exponential decrease in Δ /(kBT ) of the relaxation time and can compute the gap Δ . Close to the quantum critical point our results are in good agreement with the scaling behavior based on the existence of free excitations.

  1. Effects of Single-site Anisotropy on Mixed Diamond Chains with Spins 1 and 1/2

    NASA Astrophysics Data System (ADS)

    Hida, Kazuo; Takano, Ken'ichi

    2011-10-01

    Effects of single-site anisotropy on mixed diamond chains with spins 1 and 1/2 are investigated in the ground states and at finite temperatures. There are phases where the ground state is a spin cluster solid, i.e., an array of uncorrelated spin-1 clusters separated by singlet dimers. The ground state is nonmagnetic for the easy-plane anisotropy, while it is paramagnetic for the easy-axis anisotropy. Also, there are the Néel, Haldane, and large-D phases, where the ground state is a single spin cluster of infinite size and the system is equivalent to the spin-1 Heisenberg chain with alternating anisotropy. The longitudinal and transverse susceptibilities and entropy are calculated at finite temperatures in the spin-cluster-solid phases. Their low-temperature behaviors are sensitive to anisotropy.

  2. Spin-stripe phase in a frustrated zigzag spin-1/2 chain

    PubMed Central

    Pregelj, M.; Zorko, A.; Zaharko, O.; Nojiri, H.; Berger, H.; Chapon, L. C.; Arčon, D.

    2015-01-01

    Motifs of periodic modulations are encountered in a variety of natural systems, where at least two rival states are present. In strongly correlated electron systems, such behaviour has typically been associated with competition between short- and long-range interactions, for example, between exchange and dipole–dipole interactions in the case of ferromagnetic thin films. Here we show that spin-stripe textures may develop also in antiferromagnets, where long-range dipole–dipole magnetic interactions are absent. A comprehensive analysis of magnetic susceptibility, high-field magnetization, specific heat and neutron diffraction measurements unveils β-TeVO4 as a nearly perfect realization of a frustrated (zigzag) ferromagnetic spin-1/2 chain. Notably, a narrow spin-stripe phase develops at elevated magnetic fields due to weak frustrated short-range interchain exchange interactions, possibly assisted by the symmetry-allowed electric polarization. This concept provides an alternative route for the stripe formation in strongly correlated electron systems and may help understanding of other widespread, yet still elusive, stripe-related phenomena. PMID:26068618

  3. Characterization of Topological Phases of Spin-1/2 Frustrated Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chains by Entanglement Spectrum

    NASA Astrophysics Data System (ADS)

    Hida, Kazuo

    2016-02-01

    The topological classification of a series of frustration-induced spin-gap phases in the spin-1/2 ferromagnetic-antiferromagnetic alternating Heisenberg chain with next-nearest-neighbour interaction reported in J. Phys. Soc. Jpn. 82, 064703 (2013) is confirmed using two kinds of entanglement spectra defined by different divisions of the whole chain. For the numerical calculation, the iDMRG method is used. The results are consistent with the valence bond solid picture proposed in the previous paper.

  4. Zero-Temperature Study of a Tetrameric Spin-1/2 Chain in a Transverse Magnetic Field

    NASA Astrophysics Data System (ADS)

    Vahedi, J.; Arbousara, M. Shabani; Mahdavifar, S.

    2017-02-01

    We consider an alternating Heisenberg spin-1/2 antiferromagnetic-ferromagnetic chain with the space-modulated dominant antiferromagnetic exchange and anisotropic ferromagnetic coupling (tetrameric spin-1/2 chain). The zero-temperature effect of a symmetry breaking transverse magnetic field on the model is studied numerically. It is found that the anisotropy effect on the ferromagnetic coupling induces two new gapped phases. We identified their orderings as a kind of the stripe antiferromagnetic phase. As a result, the magnetic phase diagram of the tetrameric chain shows five gapped quantum phases, and the system is characterized by four critical fields which mark quantum phase transitions in the ground state of the system with the changing transverse magnetic field. We have also exploited the well-known bipartite entanglement (name as concurrence) and global entanglement tools to verify the occurrence of quantum phase transitions and the corresponding critical points.

  5. Spin-(1)/(2) XXZ Chain System Cs2CoCl4 in a Transverse Magnetic Field

    NASA Astrophysics Data System (ADS)

    Breunig, O.; Garst, M.; Sela, E.; Buldmann, B.; Becker, P.; Bohatý, L.; Müller, R.; Lorenz, T.

    2013-11-01

    Comparing high-resolution specific heat and thermal expansion measurements to exact finite-size diagonalization, we demonstrate that Cs2CoCl4 for a magnetic field along the crystallographic b axis realizes the spin-(1)/(2) XXZ chain in a transverse field. Exploiting both thermal as well as virtual excitations of higher crystal-field states, we find that the spin chain is in the XY limit with an anisotropy Jz/J⊥≈0.12, substantially smaller than previously believed. A spin-flop Ising quantum phase transition occurs at a critical field of μ0Hbcr≈2T before around 3.5 T the description in terms of an effective spin-(1)/(2) chain becomes inapplicable.

  6. Spin-1/2 XXZ chain system Cs2CoCl4 in a transverse magnetic field.

    PubMed

    Breunig, O; Garst, M; Sela, E; Buldmann, B; Becker, P; Bohatý, L; Müller, R; Lorenz, T

    2013-11-01

    Comparing high-resolution specific heat and thermal expansion measurements to exact finite-size diagonalization, we demonstrate that Cs(2)CoCl(4) for a magnetic field along the crystallographic b axis realizes the spin-1/2 XXZ chain in a transverse field. Exploiting both thermal as well as virtual excitations of higher crystal-field states, we find that the spin chain is in the XY limit with an anisotropy J(z)/J[perpindicular] ≈ 0.12, substantially smaller than previously believed. A spin-flop Ising quantum phase transition occurs at a critical field of μ(0)H(b)(cr) ≈ 2 T before around 3.5 T the description in terms of an effective spin-1/2 chain becomes inapplicable.

  7. Vector-spin-chirality order in a dimerized frustrated spin-1/2 chain

    NASA Astrophysics Data System (ADS)

    Ueda, Hiroshi; Onoda, Shigeki

    2014-01-01

    A frustrated spin-1/2 XXZ chain model comprising a ferromagnetic nearest-neighbor coupling with the bond alternation, J1(1±δ)<0, and an antiferromagnetic second-neighbor exchange coupling J2>0 is studied at zero and weak magnetic fields by means of density-matrix renormalization-group calculations of order parameters, correlation functions, and the entanglement entropy, as well as an Abelian bosonization analysis. At zero magnetic field, the bond alternation δ >0 suppresses the gapless phase characterized by a vector-chiral (VC) long-range order (LRO) and a quasi-LRO of an incommensurate spin spiral, whereas this phase occupies a large region in the space of J1/J2 and the easy-plane exchange anisotropy for δ =0 [S. Furukawa et al., Phys. Rev. Lett. 105, 257205 (2010), 10.1103/PhysRevLett.105.257205]. Then, four gapped phases are found to appear as the exchange anisotropy varies from the SU(2)-symmetric case to the U(1)-symmetric case: the Haldane dimer (D+) phase with the same sign of the x ,y- and z-component dimer order parameters, two VC dimer (VCD+/VCD-) phases with the sign of the z-component dimer order parameter being unaltered/reversed, and the even-parity dimer (D-) phase. At small magnetic fields, a field-induced ring-exchange interaction, which is proportional to a staggered scalar chirality and a magnetic flux penetrating the associated triangle, drives a transition from the D- phase into a VC-Neel-dimer (VCND) phase, but not from the D+ phase. This VCND phase is stable up to the large magnetic field at which the Zeeman term closes the spin gap. A possible relevance to Rb2Cu2Mo3O12 is discussed.

  8. Quantum Correlations of Two SPIN-1 Particles in the Optical Lattice

    NASA Astrophysics Data System (ADS)

    Shi, Jia-Dong; Wu, Tao; Song, Xue-Ke; Ye, Liu

    2014-01-01

    In this paper, we investigate the dynamical behaviors of quantum correlations witnessed by geometric discord and negativity when two three-level spin-1 atoms exist in the optical lattice. The results show that the GD can detect the critical point K = J at finite temperature associated with the quantum phase transition which separates the superfluid phase from the Mott insulator phase, while the negativity cannot. In addition, the system undergoes an entanglement sudden death (ESD), but the GD always exists, meanwhile, the GD is more robust than negativity against temperature T.

  9. Spin-1 atoms in optical superlattices: Single-atom tunneling and entanglement

    SciTech Connect

    Wagner, Andreas; Bruder, Christoph; Demler, Eugene

    2011-12-15

    We examine spinor Bose-Einstein condensates in optical superlattices theoretically using a Bose-Hubbard Hamiltonian that takes spin effects into account. Assuming that a small number of spin-1 bosons is loaded in an optical potential, we study single-particle tunneling that occurs when one lattice site is ramped up relative to a neighboring site. Spin-dependent effects modify the tunneling events in a qualitative and quantitative way. Depending on the asymmetry of the double well, different types of magnetic order occur, making the system of spin-1 bosons in an optical superlattice a model for mesoscopic magnetism. We use a double-well potential as a unit cell for a one-dimensional superlattice. Homogeneous and inhomogeneous magnetic fields are applied, and the effects of the linear and the quadratic Zeeman shifts are examined. We also investigate the bipartite entanglement between the sites and construct states of maximal entanglement. The entanglement in our system is due to both orbital and spin degrees of freedom. We calculate the contribution of orbital and spin entanglements and show that the sum of these two terms gives a lower bound for the total entanglement.

  10. Spontaneous dimerization, critical lines, and short-range correlations in a frustrated spin-1 chain

    NASA Astrophysics Data System (ADS)

    Chepiga, Natalia; Affleck, Ian; Mila, Frédéric

    2016-11-01

    We report on a detailed investigation of the spin-1 J1-J2-J3 Heisenberg model, a frustrated model with nearest-neighbor coupling J1, next-nearest neighbor coupling J2, and a three-site interaction J3[(Si -1.Si) (Si.Si +1) +H .c . ] previously studied in [Phys. Rev. B 93, 241108(R) (2016), 10.1103/PhysRevB.93.241108]. Using density matrix renormalization group (DMRG) and exact diagonalizations, we show that the phase boundaries between the Haldane phase, the next-nearest neighbor Haldane phase, and the dimerized phase can be very accurately determined by combining the information deduced from the dimerization, the ground-state energy, the entanglement spectrum and the Berry phase. By a careful investigation of the finite-size spectrum, we also show that the transition between the next-nearest neighbor Haldane phase and the dimerized phase is in the Ising universality class all along the critical line. Furthermore, we justify the conformal embedding of the SU (2) 2 Wess-Zumino-Witten conformal field theory in terms of a boson and an Ising field, and we explicitly derive a number of consequences of this embedding for the spectrum along the SU (2) 2 transition line between the Haldane phase and the dimerized phase. We also show that the solitons along the first-order transition line between the Haldane phase and the dimerized phase carry a spin-1/2, while the domain walls between different dimerization domains inside the dimerized phase carry a spin 1. Finally, we show that short-range correlations change character in the Haldane and dimerized phases through disorder and Lifshitz lines, as well as through the development of short-range dimer correlations in the Haldane phase, leading to a remarkably rich phase diagram.

  11. Quantum Phase Transitions in Alternating-Bond Mixed Diamond Chains with Spins 1 and 1/2

    NASA Astrophysics Data System (ADS)

    Hida, Kazuo; Takano, Ken'ichi; Suzuki, Hidenori

    2010-04-01

    We investigate the mixed diamond chain composed of spins 1 and 1/2 when the exchange interaction is alternatingly distorted. Depending on the strengths of frustration and distortion, this system has various ground states. Each ground state consists of an array of spin clusters separated by singlet dimers by virtue of an infinite number of local conservation laws. We determine the ground-state phase diagram by numerically analyzing each spin cluster. In particular, for strong distortions, we find an infinite series of quantum phase transitions using the cluster expansion method and conformal field theory. This leads to an infinite series of steps in the behavior of Curie constant and residual entropy.

  12. Topological Basis Method for Four-Qubit Spin-1/2 XXZ Heisenberg Chain with Dzyaloshinskii-Moriya Interaction

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Xue, Kang; Wang, Gangcheng

    2017-03-01

    In this paper, we investigate the four-qubit spin-1/2 XXZ Heisenberg chain with Dzyaloshinskii-Moriya interaction by topological basis method, and research the relationship between the topological basis states and the ground states. In order to study the Hamiltonian system beyond XXZ model, we introduce two Temperley-Lieb algebra generators and two other generalized generators. Then we investigate the relationship between topological basis and Heisenberg XXZ model with Dzyaloshinskii-Moriya interaction. The results show that the ground state of this model falls on the topological basis state for anti-ferromagnetic case and gapless phase case.

  13. Explicit solution of the Lindblad equation for nearly isotropic boundary driven XY spin 1/2 chain

    NASA Astrophysics Data System (ADS)

    Žunkovič, Bojan; Prosen, Tomaž

    2010-08-01

    Explicit solution for the two-point correlation function in a non-equilibrium steady state of a nearly isotropic boundary driven open XY spin 1/2 chain in the Lindblad formulation is provided. A non-equilibrium quantum phase transition from exponentially decaying correlations to long range order is discussed analytically. In the regime of long range order a new phenomenon of correlation resonances is reported, where the correlation response of the system is unusually high for certain discrete values of the external bulk parameter, e.g. the magnetic field.

  14. Renormalized entanglement in Heisenberg-Ising spin-1/2 chain with Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Khan, Salman; Khan, Kalimullah

    2016-06-01

    The influence of the Dzyaloshinsky-Moriya (DM) interaction on entanglement in the one-dimensional spin-1/2 Heisenberg-Ising model is investigated via concurrence. The existence of two states, different in quantum properties and linked through a critical point by quantum phase transition, in the thermodynamic limit, are identified. The strong DM interaction delays quantum phase transition and hence shifts the boundary between the two phases to the region of the strong coupling constant. The increasing strength of the DM interaction strongly restores entanglement against its degradation arising from the increasing size of the system. The first derivative of the entanglement quantifier diverges to the critical point and is related directly to the divergence of the correlation length. The scaling behavior in the vicinity of the quantum critical point is also discussed.

  15. Gaussian phase transition and critical exponents in spin-1 bond-alternative Heisenberg chains

    NASA Astrophysics Data System (ADS)

    Su, Yao Heng; Chen, Ai Min; Xiang, Chunhuan; Wang, Honglei; Xia, Cai-Juan; Wang, Jun

    2016-12-01

    The quantum Gaussian phase transition is investigated for the infinite spin-1 bond-alternative Heisenberg model in one spatial dimension. By using a tensor network representation with an infinite matrix product state approach, the ground state energy, bipartite entanglement entropy, non-local string order, and fidelity per lattice site are calculated to characterize the phase transition. At the quantum phase transition point, the scaling behavior of various physical observables with respect to the finite truncation dimension are discussed for the ground state wavefunctions. In addition, the central charge is extracted from the finite entanglement entropies and the finite correlation lengths. Furthermore, the various critical exponents of the string order are calculated. The characteristic critical exponents and the central charge determine the universality class of the phase transition.

  16. Magnetic properties, Lyapunov exponent and superstability of the spin-{1}/{2} Ising-Heisenberg model on a diamond chain

    NASA Astrophysics Data System (ADS)

    Ananikian, N.; Hovhannisyan, V.

    2013-05-01

    The exactly solvable spin-{1}/{2} Ising-Heisenberg model on a diamond chain has been considered. We have found the exact results for the magnetization using the recursion relation method. The existence of the magnetization plateau has been observed at one third of the saturation magnetization in the antiferromagnetic case. Some ground-state properties of the model are examined. At low temperatures, the system has two ferrimagnetic (FRI1 and FRI2) phases and one paramagnetic (PRM) phase. Lyapunov exponents for the various values of the exchange parameters and temperatures have been analyzed. It has also been shown that the maximal Lyapunov exponent exhibits plateau. Lyapunov exponents exhibit different behavior for two ferrimagnetic phases. We have found the existence of the supercritical point for the multi-dimensional rational mapping of the spin-{1}/{2} Ising-Heisenberg model on a diamond chain for the first time in the absence of the external magnetic field and T→0 in the antiferromagnetic case.

  17. Low-temperature ordered phases of the spin-1/2 XXZ chain system Cs2CoCl4

    NASA Astrophysics Data System (ADS)

    Breunig, O.; Garst, M.; Rosch, A.; Sela, E.; Buldmann, B.; Becker, P.; Bohatý, L.; Müller, R.; Lorenz, T.

    2015-01-01

    In this study the magnetic order of the spin-1/2 XXZ chain system Cs2CoCl4 in a temperature range from 50 mK to 0.5 K and in applied magnetic fields up to 3.5 T is investigated by high-resolution measurements of the thermal expansion and the specific heat. Applying magnetic fields along a or c suppresses TN completely at about 2.1 T. In addition, we find an adjacent intermediate phase before the magnetization saturates close to 2.5 T. For magnetic fields applied along b , a surprisingly rich phase diagram arises. Two additional transitions are observed at critical fields μ0HS F 1≃0.25 T and μ0HS F 2≃0.7 T , which we propose to arise from a two-stage spin-flop transition.

  18. Magnetic Signatures of Quantum Critical Points of the Ferrimagnetic Mixed Spin-(1/2, S) Heisenberg Chains at Finite Temperatures

    NASA Astrophysics Data System (ADS)

    Strečka, Jozef; Verkholyak, Taras

    2016-10-01

    Magnetic properties of the ferrimagnetic mixed spin-(1/2,S) Heisenberg chains are examined using quantum Monte Carlo simulations for two different quantum spin numbers S=1 and 3/2. The calculated magnetization curves at finite temperatures are confronted with zero-temperature magnetization data obtained within the density matrix renormalization group method, which imply an existence of two quantum critical points determining a breakdown of the gapped Lieb-Mattis ferrimagnetic phase and Tomonaga-Luttinger spin-liquid phase, respectively. While a square root behavior of the magnetization accompanying each quantum critical point is gradually smoothed upon rising temperature, the susceptibility and isothermal entropy change data at low temperatures provide a stronger evidence of the zero-temperature quantum critical points through marked local maxima and minima, respectively.

  19. Relaxation of antiferromagnetic order in spin-1/2 chains following a quantum quench.

    PubMed

    Barmettler, Peter; Punk, Matthias; Gritsev, Vladimir; Demler, Eugene; Altman, Ehud

    2009-04-03

    We study the unitary time evolution of antiferromagnetic order in anisotropic Heisenberg chains that are initially prepared in a pure quantum state far from equilibrium. Our analysis indicates that the antiferromagnetic order imprinted in the initial state vanishes exponentially. Depending on the anisotropy parameter, oscillatory or nonoscillatory relaxation dynamics is observed. Furthermore, the corresponding relaxation time exhibits a minimum at the critical point, in contrast to the usual notion of critical slowing down, from which a maximum is expected.

  20. Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Sacramento, P. D.; Machado, J. D. P.; Campbell, D. K.

    2015-10-01

    We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents {{\\zeta}τ}(k) controlling the singularities for both the longitudinal ≤ft(τ =l\\right) and transverse ≤ft(τ =t\\right) dynamical structure factors for the whole momentum range k\\in ]0,π[ , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.

  1. Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field.

    PubMed

    Carmelo, J M P; Sacramento, P D; Machado, J D P; Campbell, D K

    2015-10-14

    We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the 'pseudofermion dynamical theory' (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents ζ(τ)(k) controlling the singularities for both the longitudinal (τ = l) and transverse (τ = t) dynamical structure factors for the whole momentum range k ∈ ]0,π[, in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.

  2. Topological Phases of Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chains with Alternating Next-Nearest-Neighbour Interaction

    NASA Astrophysics Data System (ADS)

    Hida, Kazuo

    2016-12-01

    A series of symmetry-protected topological (SPT) and trivial spin-gap phases in the spin-1/2 ferromagnetic-antiferromagnetic alternating Heisenberg chain with alternating next-nearest-neighbour interaction are investigated using two kinds of entanglement spectra defined by different divisions of the whole chain. In case one of the next-nearest-neighbor interactions vanishes, the model reduces to the Δ-chain in which a series of spin-gap phases are found, as shown in J. Phys. Soc. Jpn. 77, 044707 (2008). From the degeneracy of the entanglement spectra, these phases are identified as the SPT and trivial phases. It is found that the ground-state phase boundaries are insensitive to the strength of the alternation in the next-nearest-neighbor interaction. These results are consistent with the analysis based on the nonlinear σ model and exact solution on the ferromagnetic-nonmagnetic phase boundary.

  3. Fractional magnetization plateaus of the spin-1/2 Heisenberg orthogonal-dimer chain: Strong-coupling approach developed from the exactly solved Ising-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Verkholyak, Taras; Strečka, Jozef

    2016-10-01

    The spin-1/2 Heisenberg orthogonal-dimer chain is considered within the perturbative strong-coupling approach, which is developed from the exactly solved spin-1/2 Ising-Heisenberg orthogonal-dimer chain with the Heisenberg intradimer and the Ising interdimer couplings. Although the spin-1/2 Ising-Heisenberg orthogonal-dimer chain exhibits just intermediate plateaus at zero, one-quarter, and one-half of the saturation magnetization, the perturbative treatment up to second order stemming from this exactly solvable model additionally corroborates the fractional one-third plateau as well as the gapless Luttinger spin-liquid phase. It is evidenced that the approximate results obtained from the strong-coupling approach are in an excellent agreement with the state-of-the-art numerical data obtained for the spin-1/2 Heisenberg orthogonal-dimer chain within the exact diagonalization and density-matrix renormalization group method. The nature of individual quantum ground states is comprehensively studied within the developed perturbation theory.

  4. Thermal entanglement of a spin-1/2 Ising-Heisenberg model on a symmetrical diamond chain.

    PubMed

    Ananikian, N S; Ananikyan, L N; Chakhmakhchyan, L A; Rojas, Onofre

    2012-06-27

    The entanglement quantum properties of a spin-1/2 Ising-Heisenberg model on a symmetrical diamond chain were analyzed. Due to the separable nature of the Ising-type exchange interactions between neighboring Heisenberg dimers, calculation of the entanglement can be performed exactly for each individual dimer. Pairwise thermal entanglement was studied in terms of the isotropic Ising-Heisenberg model and analytical expressions for the concurrence (as a measure of bipartite entanglement) were obtained. The effects of external magnetic field H and next-nearest neighbor interaction J(m) between nodal Ising sites were considered. The ground state structure and entanglement properties of the system were studied in a wide range of coupling constant values. Various regimes with different values of ground state entanglement were revealed, depending on the relation between competing interaction strengths. Finally, some novel effects, such as the two-peak behavior of concurrence versus temperature and coexistence of phases with different values of magnetic entanglement, were observed.

  5. Magnetoelectric effects in the spin 1/2 XX chain with three spin interactions and Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Durganandini, P.

    We consider the spin 1/2 XX chain with three spin interactions of the XZX+YXY and XZY-YZX types in an external magnetic field and with Dzyaloshinskii-Moriya (D-M) interaction. Interpreting the D-M interaction as a local electric polarization, we study the magnetoelectric effects in the system by using the exact solution of the problem. We obtain the ground state phase diagram by calculating the electric polarization, magnetization and isentropes. There are various regimes of magnetic and electric polarization depending on the relative strengths of the three spin interaction as well as that of the external fields. For a certain range of three spin interaction strengths, the system shows the existence of finite magnetization and electric polarization even in the absence of any external fields. The external electric and magnetic fields modify the ground state phases and can be used to tune the various regimes. We also calculate the entropy and analyze the electrocaloric and magnetocaloric effects. We show that the electrocaloric and magnetocaloric effects can be used to obtain information about the magnetoelectric effects in the system. I thank DST, India for financial support through research grant.

  6. Absence of high-temperature ballistic transport in the spin-1/2 XXX chain within the grand-canonical ensemble

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Prosen, T.

    2017-01-01

    Whether in the thermodynamic limit, vanishing magnetic field h → 0, and nonzero temperature the spin stiffness of the spin-1/2 XXX Heisenberg chain is finite or vanishes within the grand-canonical ensemble remains an unsolved and controversial issue, as different approaches yield contradictory results. Here we provide an upper bound on the stiffness and show that within that ensemble it vanishes for h → 0 in the thermodynamic limit of chain length L → ∞, at high temperatures T → ∞. Our approach uses a representation in terms of the L physical spins 1/2. For all configurations that generate the exact spin-S energy and momentum eigenstates such a configuration involves a number 2S of unpaired spins 1/2 in multiplet configurations and L - 2 S spins 1/2 that are paired within Msp = L / 2 - S spin-singlet pairs. The Bethe-ansatz strings of length n = 1 and n > 1 describe a single unbound spin-singlet pair and a configuration within which n pairs are bound, respectively. In the case of n > 1 pairs this holds both for ideal and deformed strings associated with n complex rapidities with the same real part. The use of such a spin 1/2 representation provides useful physical information on the problem under investigation in contrast to often less controllable numerical studies. Our results provide strong evidence for the absence of ballistic transport in the spin-1/2 XXX Heisenberg chain in the thermodynamic limit, for high temperatures T → ∞, vanishing magnetic field h → 0 and within the grand-canonical ensemble.

  7. Emerging bosons with three-body interactions from spin-1 atoms in optical lattices

    SciTech Connect

    Mazza, L.; Rizzi, M.; Cirac, J. I.; Lewenstein, M.

    2010-10-15

    We study two many-body systems of bosons interacting via an infinite three-body contact repulsion in a lattice: a pairs quasicondensate induced by correlated hopping and the discrete version of the Pfaffian wave function. We propose to experimentally realize systems characterized by such interaction by means of a proper spin-1 lattice Hamiltonian: spin degrees of freedom are locally mapped into occupation numbers of emerging bosons, in a fashion similar to spin-1/2 and hardcore bosons. Such a system can be realized with ultracold spin-1 atoms in a Mott insulator with a filling factor of 1. The high versatility of these setups allows us to engineer spin-hopping operators breaking the SU(2) symmetry, as needed to approximate interesting bosonic Hamiltonians with three-body hardcore constraint. For this purpose we combine bichromatic spin-independent superlattices and Raman transitions to induce a different hopping rate for each spin orientation. Finally, we illustrate how our setup could be used to experimentally realize the first setup, that is, the transition to a pairs quasicondensed phase of the emerging bosons. We also report on a route toward the realization of a discrete bosonic Pfaffian wave function and list some open problems for reaching this goal.

  8. Haldane Phases and Ferrimagnetic Phases with Spontaneous Translational Symmetry Breakdown in Distorted Mixed Diamond Chains with Spins 1 and 1/2

    NASA Astrophysics Data System (ADS)

    Hida, Kazuo; Takano, Ken'ichi; Suzuki, Hidenori

    2010-11-01

    The ground states of two types of distorted mixed diamond chains with spins 1 and 1/2 are investigated using exact diagonalization, DMRG, and mapping onto low-energy effective models. In the undistorted case, the ground state consists of an array of independent spin-1 clusters separated by singlet dimers. The lattice distortion induces an effective interaction between cluster spins. When this effective interaction is antiferromagnetic, several Haldane phases appear with or without spontaneous translational symmetry breakdown (STSB). The transition between the Haldane phase without STSB and that with (n+1)-fold STSB (n=1, 2, and 3) belongs to the same universality class as the (n+1)-clock model. In contrast, when the effective interaction is ferromagnetic, the quantized and partial ferrimagnetic phases appear with or without STSB. An effective low-energy theory for the partial ferrimagnetic phase is presented.

  9. Exact quantum numbers of collapsed and non-collapsed two-string solutions in the spin-1/2 Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Deguchi, Tetsuo; Ranjan Giri, Pulak

    2016-04-01

    Every solution of the Bethe-ansatz equations (BAEs) is characterized by a set of quantum numbers, by which we can evaluate it numerically. However, no general rule is known how to give quantum numbers for the physical solutions of BAE. For the spin-1/2 XXX chain we rigorously derive all the quantum numbers for the complete set of the Bethe-ansatz eigenvectors in the two down-spin sector with any chain length N. Here we obtain them both for real and complex solutions. We also show that all the solutions associated with them are distinct. Consequently, we prove the completeness of the Bethe ansatz and give an exact expression for the number of real solutions which correspond to collapsed bound-state solutions (i.e., two-string solutions) in the sector: 2[(N-1)/2-(N/π ){{tan}}-1(\\sqrt{N-1})] in terms of Gauss’ symbol. Moreover, we prove in the sector the scheme conjectured by Takahashi for solving BAE systematically. We also suggest that by applying the present method we can derive the quantum numbers for the spin-1/2 XXZ chain.

  10. Field-induced quantum criticality and universal temperature dependence of the magnetization of a spin-1/2 heisenberg chain.

    PubMed

    Kono, Y; Sakakibara, T; Aoyama, C P; Hotta, C; Turnbull, M M; Landee, C P; Takano, Y

    2015-01-23

    High-precision dc magnetization measurements have been made on Cu(C4H4N2) (NO3)2 in magnetic fields up to 14.7 T, slightly above the saturation field Hs=13.97  T, in the temperature range from 0.08 to 15 K. The magnetization curve and differential susceptibility at the lowest temperature show excellent agreement with exact theoretical results for the spin-1/2 Heisenberg antiferromagnet in one dimension. A broad peak is observed in magnetization measured as a function of temperature, signaling a crossover to a low-temperature Tomonaga-Luttinger-liquid regime. With an increasing field, the peak moves gradually to lower temperatures, compressing the regime, and, at Hs, the magnetization exhibits a strong upturn. This quantum critical behavior of the magnetization and that of the specific heat withstand quantitative tests against theory, demonstrating that the material is a practically perfect one-dimensional spin-1/2 Heisenberg antiferromagnet.

  11. Magnetization process, bipartite entanglement, and enhanced magnetocaloric effect of the exactly solved spin-1/2 Ising-Heisenberg tetrahedral chain.

    PubMed

    Strečka, Jozef; Rojas, Onofre; Verkholyak, Taras; Lyra, Marcelo L

    2014-02-01

    The frustrated spin-1/2 Ising-Heisenberg ladder with Heisenberg intra-rung and Ising inter-rung interactions is exactly solved in a longitudinal magnetic field by taking advantage of the local conservation of the total spin on each rung and the transfer-matrix method. We have rigorously calculated the ground-state phase diagram, magnetization process, magnetocaloric effect, and basic thermodynamic quantities for the model, which can be alternatively viewed as an Ising-Heisenberg tetrahedral chain. It is demonstrated that a stepwise magnetization curve with an intermediate plateau at half of the saturation magnetization is also reflected in respective stepwise changes of the concurrence serving as a measure of bipartite entanglement. The ground-state phase diagram and zero-temperature magnetization curves of the Ising-Heisenberg tetrahedral chain are contrasted with the analogous results of the purely quantum Heisenberg tetrahedral chain, which have been obtained through density-matrix renormalization group (DMRG) calculations. While both ground-state phase diagrams fully coincide in the regime of weak inter-rung interaction, the purely quantum Heisenberg tetrahedral chain develops Luttinger spin-liquid and Haldane phases for strongly coupled rungs, which are absent in the Ising-Heisenberg counterpart model.

  12. Ground-state fidelity of the spin-1 Heisenberg chain with single ion anisotropy: quantum renormalization group and exact diagonalization approaches.

    PubMed

    Langari, A; Pollmann, F; Siahatgar, M

    2013-10-09

    We study the phase diagram of the anisotropic spin-1 Heisenberg chain with single ion anisotropy (D) using a ground-state fidelity approach. The ground-state fidelity and its corresponding susceptibility are calculated within the quantum renormalization group scheme where we obtained the renormalization of fidelity preventing calculation of the ground state. Using this approach, the phase boundaries between the antiferromagnetic Néel, Haldane and large-D phases are obtained for the whole phase diagram, which justifies the application of quantum renormalization group to trace the symmetry-protected topological phases. In addition, we present numerical exact diagonalization (Lanczos) results in which we employ a recently introduced non-local order parameter to locate the transition from Haldane to large-D phase accurately.

  13. Topological Phases of the Spin-1/2 Ferromagnetic--Antiferromagnetic Alternating Heisenberg Chain with Frustrated Next-Nearest-Neighbour Interaction

    NASA Astrophysics Data System (ADS)

    Hida, Kazuo; Takano, Ken'ichi; Suzuki, Hidenori

    2013-06-01

    The spin-1/2 ferromagnetic--antiferromagnetic alternating Heisenberg chain with ferromagnetic next-nearest-neighbour (NNN) interaction is investigated. The ground state is the Haldane phase for weak NNN interaction, and is the ferromagnetic phase for weak antiferromagnetic interaction. We find a series of topologically distinct spin-gap phases with various magnitudes of edge spins for strong NNN interaction. The phase boundaries between these phases are determined on the basis of the DMRG calculation with additional spins that compensate the edge spins. It is found that each of the exact solutions with short-range antiferromagnetic correlation on the ferromagnetic--nonmagnetic phase boundary is representative of each spin gap phase.

  14. Level crossing, spin structure factor and quantum phases of the frustrated spin-1/2 chain with first and second neighbor exchange.

    PubMed

    Kumar, Manoranjan; Parvej, Aslam; Soos, Zoltán G

    2015-08-12

    The spin-1/2 chain with isotropic Heisenberg exchange J1, J2  >  0 between first and second neighbors is frustrated for either sign of J1. Its quantum phase diagram has critical points at fixed J1/J2 between gapless phases with nondegenerate ground state (GS) and quasi-long-range order (QLRO) and gapped phases with doubly degenerate GS and spin correlation functions of finite range. In finite chains, exact diagonalization (ED) estimates critical points as level crossing of excited states. GS spin correlations enter in the spin structure factor S(q) that diverges at wave vector qm in QLRO(q(m)) phases with periodicity 2π/q(m) but remains finite in gapped phases. S(q(m)) is evaluated using ED and density matrix renormalization group (DMRG) calculations. Level crossing and the magnitude of S(q(m)) are independent and complementary probes of quantum phases, based respectively on excited and ground states. Both indicate a gapless QLRO(π/2) phase between  -1.2  <  J1/|J2|  <  0.45. Numerical results and field theory agree well for quantum critical points at small frustration J2 but disagree in the sector of weak exchange J1 between Heisenberg antiferromagnetic chains on sublattices of odd and even-numbered sites.

  15. Magnetic Field versus Temperature Phase Diagram of the Spin-1/2 Alternating-Bond Chain Compound F5PNN

    NASA Astrophysics Data System (ADS)

    Yoshida, Yasuo; Kawae, Tatsuya; Hosokoshi, Yuko; Inoue, Katsuya; Maeshima, Nobuya; Okunishi, Kouichi; Okamoto, Kiyomi; Sakai, Toru

    2009-07-01

    We have measured the specific heat of the S = 1/2 alternating-bond Heisenberg antiferromagnetic chain compound pentafluorophenyl nitronyl nitroxide in magnetic fields using a single crystal and powder. A sharp peak due to field-induced magnetic ordering (FIMO) is observed in both samples. The H-T phase boundary of the FIMO of the single crystal is symmetric with respect to the central field of the gapless field region HC1≤ H≤ HC2, whereas it is distorted for the powder whose ordering temperatures are lower. We discuss possibility that an effective pressure caused by mixing the powder with grease, which is reported for various organic compounds, plays an important role for the distorted phase boundary. An analysis employing calculations based on the finite temperature density matrix renormalization group suggests that the pressure-induced frustration enhances incommensurate spin correlation leading to the distorted phase boundary for the powder.

  16. Up-up-down-down magnetic chain structure of the spin-1/2 tetragonally distorted spinel GeC u2O4

    NASA Astrophysics Data System (ADS)

    Zou, T.; Cai, Y.-Q.; dela Cruz, C. R.; Garlea, V. O.; Mahanti, S. D.; Cheng, J.-G.; Ke, X.

    2016-12-01

    GeC u2O4 spinel exhibits a tetragonal structure due to the strong Jahn-Teller distortion associated with C u2 + ions. We show that its magnetic structure can be described as slabs composed of a pair of layers with orthogonally oriented spin-1/2 Cu chains in the basal a b plane. The spins between the two layers within a slab are collinearly aligned while the spin directions of neighboring slabs are perpendicular to each other. Interestingly, we find that spins along each chain form an unusual up-up-down-down (UUDD) pattern, suggesting a non-negligible nearest-neighbor biquadratic exchange interaction in the effective classical spin Hamiltonian. We hypothesize that spin-orbit coupling and orbital mixing of C u2 + ions in this system are non-negligible, which calls for future calculations using perturbation theory with extended Hilbert (spin and orbital) space and calculations based on density functional theory including spin-orbit coupling and looking at the global stability of the UUDD state.

  17. Quantum phase transitions and string orders in the spin-1/2 Heisenberg-Ising alternating chain with Dzyaloshinskii-Moriya interaction.

    PubMed

    Liu, Guang-Hua; You, Wen-Long; Li, Wei; Su, Gang

    2015-04-29

    Quantum phase transitions (QPTs) and the ground-state phase diagram of the spin-1/2 Heisenberg-Ising alternating chain (HIAC) with uniform Dzyaloshinskii-Moriya (DM) interaction are investigated by a matrix-product-state (MPS) method. By calculating the odd- and even-string order parameters, we recognize two kinds of Haldane phases, i.e. the odd- and even-Haldane phases. Furthermore, doubly degenerate entanglement spectra on odd and even bonds are observed in odd- and even-Haldane phases, respectively. A rich phase diagram including four different phases, i.e. an antiferromagnetic (AF), AF stripe, odd- and even-Haldane phases, is obtained. These phases are found to be separated by continuous QPTs: the topological QPT between the odd- and even-Haldane phases is verified to be continuous and corresponds to conformal field theory with central charge c = 1; while the rest of the phase transitions in the phase diagram are found to be c = 1/2. We also revisit, with our MPS method, the exactly solvable case of HIAC model with DM interactions only on odd bonds and find that the even-Haldane phase disappears, but the other three phases, i.e. the AF, AF stripe and odd-Haldane phases, still remain in the phase diagram. We exhibit the evolution of the even-Haldane phase by tuning the DM interactions on the even bonds gradually.

  18. Numerical study of incommensurate and decoupled phases of spin-1/2 chains with isotropic exchange J1, J2 between first and second neighbors.

    PubMed

    Soos, Zoltán G; Parvej, Aslam; Kumar, Manoranjan

    2016-05-05

    The spin-1/2 chain with isotropic exchange J1, J2 > 0 between first and second neighbors is frustrated for either sign of J1 and has a singlet ground state (GS) for J1/J2 ⩾ -4. Its rich quantum phase diagram supports gapless, gapped, commensurate (C), incommensurate (IC) and other phases. Critical points J1/J2 are evaluated using exact diagonalization and density matrix renormalization group calculations. The wave vector qG of spin correlations is related to GS degeneracy and obtained as the peak of the spin structure factor S(q). Variable qG indicates IC phases in two J1/J2 intervals, [-4, - 1.24] and [0.44, 2], and a C-IC point at J1/J2 = 2. The decoupled C phase in [-1.24, 0.44] has constant qG = π/2, nondegenerate GS, and a lowest triplet state with broken spin density on sublattices of odd and even numbered sites. The lowest triplet and singlet excitations, E m and Eσ, are degenerate in finite systems at specific frustration J1/J2. Level crossing extrapolates in the thermodynamic limit to the same critical points as qG. The S(q) peak diverges at qG = π in the gapless phase with J1/J2 > 4.148 and quasi-long-range order (QLRO(π)). S(q) diverges at ±π/2 in the decoupled phase with QLRO(π/2), but is finite in gapped phases with finite-range correlations. Numerical results and field theory agree at small J2/J1 but disagree for the decoupled phase with weak exchange J1 between sublattices. Two related models are summarized: one has an exact gapless decoupled phase with QLRO(π/2) and no IC phases; the other has a single IC phase without a decoupled phase in between.

  19. Spin-1 quantum walks

    NASA Astrophysics Data System (ADS)

    Morita, Daichi; Kubo, Toshihiro; Tokura, Yasuhiro; Yamashita, Makoto

    2016-06-01

    We study the quantum walks of two interacting spin-1 bosons. We derive an exact solution for the time-dependent wave function, which describes the two-particle dynamics governed by the one-dimensional spin-1 Bose-Hubbard model. We show that propagation dynamics in real space and mixing dynamics in spin space are correlated via the spin-dependent interaction in this system. The spin-mixing dynamics has two characteristic frequencies in the limit of large spin-dependent interactions. One of the characteristic frequencies is determined by the energy difference between two bound states, and the other frequency relates to the cotunneling process of a pair of spin-1 bosons. Furthermore, we numerically analyze the growth of the spin correlations in quantum walks. We find that long-range spin correlations emerge showing a clear dependence on the sign of the spin-dependent interaction and the initial state.

  20. Hybrid ion chains inside an optical cavity

    NASA Astrophysics Data System (ADS)

    Zhou, Zichao; Siverns, James; Quraishi, Qudsia

    2016-05-01

    Trapped ions remain a leading candidate for the implementation of large-scale quantum networks. These networks require nodes that can store and process quantum information as well as communicate with each other though photonic flying qubits. We propose to use hybrid ion chains of barium, for communication, and ytterbium, for quantum information processing. We report on progress in setting up a hybrid ion chain in a versatile four-blade trap using high numerical aperture collection optics. Although the visible photons produced from barium ions are more favorable as they are not suitable for long distance fiber communication. With this in mind, we intend to implement frequency conversion to overcome this issue. Also, with the view toward increasing the flying-qubit production rate, we propose a cavity-based system to enhance interactions between the ions and photons. The cavity axis is to be placed along the axial direction of the trap allowing a chain of multiple ions to interact with the cavity at the same time. With this configuration the atom-photon coupling strength can be improved by sqrt(N), where N is the number of ions. Experiments will focus on exploring the dynamics of hybrid ion chain, dual species quantum information processing, two-colour entanglement and phase gates assisted by the ion-cavity coupling are to be explored.

  1. Effects of interference in the dynamics of a spin- 1/2 transverse XY chain driven periodically through quantum critical points

    NASA Astrophysics Data System (ADS)

    Mukherjee, Victor; Dutta, Amit

    2009-05-01

    We study the effects of interference on the quenching dynamics of a one-dimensional spin 1/2 XY model in the presence of a transverse field (h(t)) which varies sinusoidally with time as h = h0cosωt, with |t|<=tf = π/ω. We have explicitly shown that the finite values of tf make the dynamics inherently dependent on the phases of probability amplitudes, which had been hitherto unseen in all cases of linear quenching with large initial and final times. In contrast, we also consider the situation where the magnetic field consists of an oscillatory as well as a linearly varying component, i.e., h(t) = h0cosωt+t/τ, where the interference effects lose importance in the limit of large τ. Our purpose is to estimate the defect density and the local entropy density in the final state if the system is initially prepared in its ground state. For a single crossing through the quantum critical point with h = h0cosωt, the density of defects in the final state is calculated by mapping the dynamics to an equivalent Landau-Zener problem by linearizing near the crossing point, and is found to vary as \\sqrt {\\omega } in the limit of small ω. On the other hand, the local entropy density is found to attain a maximum as a function of ω near a characteristic scale ω0. Extending to the situation of multiple crossings, we show that the role of finite initial and final times of quenching are manifested non-trivially in the interference effects of certain resonance modes which solely contribute to the production of defects. Kink density as well as the diagonal entropy density show oscillatory dependence on the number of full cycles of oscillation. Finally, the inclusion of a linear term in the transverse field on top of the oscillatory component results in a kink density which decreases continuously with τ while it increases monotonically with ω. The entropy density also shows monotonic change with the parameters, increasing with τ and decreasing with ω, in sharp contrast to the

  2. Spin Gap in the Zigzag Spin-1/2 Chain Cuprate Sr0.9Ca0.1CuO2

    NASA Astrophysics Data System (ADS)

    Hammerath, F.; Nishimoto, S.; Grafe, H.-J.; Wolter, A. U. B.; Kataev, V.; Ribeiro, P.; Hess, C.; Drechsler, S.-L.; Büchner, B.

    2011-07-01

    We report a comparative study of Cu63 nuclear magnetic resonance spin lattice relaxation rates T1-1 on undoped SrCuO2 and Ca-doped Sr0.9Ca0.1CuO2 spin chain compounds. A temperature independent T1-1 is observed for SrCuO2 as expected for an S=1/2 Heisenberg chain. Surprisingly, we observe an exponential decrease of T1-1 for T<90K in the Ca-doped sample evidencing the opening of a spin gap. The data analysis within the J1-J2 Heisenberg model employing density-matrix renormalization group calculations suggests an impurity driven small alternation of the J2-exchange coupling as a possible cause of the spin gap.

  3. Muon-spin relaxation measurements on the dimerized spin- 1/2 chains NaTiSi2O6 and TiOCl

    NASA Astrophysics Data System (ADS)

    Baker, P. J.; Blundell, S. J.; Pratt, F. L.; Lancaster, T.; Brooks, M. L.; Hayes, W.; Isobe, M.; Ueda, Y.; Hoinkis, M.; Sing, M.; Klemm, M.; Horn, S.; Claessen, R.

    2007-03-01

    We report muon spin relaxation (μSR) and magnetic susceptibility investigations of two Ti3+(S=1/2) chain compounds, NaTiSi2O6 and TiOCl, each of which exhibits a spin gap at low temperature. From these we conclude that the spin gap in NaTiSi2O6 , which arises from orbital ordering at TOO=210K , is temperature independent below TOO , with a value of 2Δ=700(100)K . In TiOCl, we find thermally activated spin fluctuations corresponding to a spin gap 2Δ=440(60)K below Tc1=67K . We can describe both the μSR and susceptibility data in terms of a model based on the dimerization of the Ti3+ chains. We also compare the methods used to extract the spin gap and the concentration of free spins within the samples from μSR and magnetic susceptibility data.

  4. Spin-1 Dirac-Weyl fermions protected by bipartite symmetry

    SciTech Connect

    Lin, Zeren; Liu, Zhirong

    2015-12-07

    We propose that bipartite symmetry allows spin-1 Dirac-Weyl points, a generalization of the spin-1/2 Dirac points in graphene, to appear as topologically protected at the Fermi level. In this spirit, we provide methodology to construct spin-1 Dirac-Weyl points of this kind in a given 2D space group and get the classification of the known spin-1 systems in the literature. We also apply the workflow to predict two new systems, P3m1-9 and P31m-15, to possess spin-1 at K/K′ in the Brillouin zone of hexagonal lattice. Their stability under various strains is investigated and compared with that of T{sub 3}, an extensively studied model of ultracold atoms trapped in optical lattice with spin-1 also at K/K′.

  5. Substitution effects on the temperature versus magnetic field phase diagrams of the quasi-one-dimensional effective Ising spin-1/2 chain system BaCo2V2O8

    NASA Astrophysics Data System (ADS)

    Niesen, S. K.; Breunig, O.; Salm, S.; Seher, M.; Valldor, M.; Warzanowski, P.; Lorenz, T.

    2014-09-01

    BaCo2V2O8 is a quasi-one-dimensional antiferromagnetic spin-1/2 chain system with pronounced Ising anisotropy of the magnetic exchange. Due to finite interchain interactions, long-range antiferromagnetic order develops below TN≃5.5K, which is accompanied by a structural distortion in order to lift magnetic frustration effects. The corresponding temperature versus magnetic-field phase diagram is highly anisotropic with respect to the magnetic-field direction and various details are still under vivid discussion. Here, we report the influence of several substitutions on the magnetic properties and the phase diagrams of BaCo2V2O8. We investigate the substitution series Ba1-xSrxCo2V2O8 over the full range 0≤x≤1 as well as the influence of a partial substitution of the magnetic Co2+ by small amounts of other magnetic transition metals or by nonmagnetic magnesium. In all cases, the phase diagrams were obtained on single crystals from magnetization data and/or high-resolution studies of the thermal expansion and magnetostriction.

  6. Tangled nonlinear driven chain reactions of all optical singularities

    NASA Astrophysics Data System (ADS)

    Vasil'ev, V. I.; Soskin, M. S.

    2012-03-01

    Dynamics of polarization optical singularities chain reactions in generic elliptically polarized speckle fields created in photorefractive crystal LiNbO3 was investigated in details Induced speckle field develops in the tens of minutes scale due to photorefractive 'optical damage effect' induced by incident beam of He-Ne laser. It was shown that polarization singularities develop through topological chain reactions of developing speckle fields driven by photorefractive nonlinearities induced by incident laser beam. All optical singularities (C points, optical vortices, optical diabolos,) are defined by instantaneous topological structure of the output wavefront and are tangled by singular optics lows. Therefore, they have develop in tangled way by six topological chain reactions driven by nonlinear processes in used nonlinear medium (photorefractive LiNbO3:Fe in our case): C-points and optical diabolos for right (left) polarized components domains with orthogonally left (right) polarized optical vortices underlying them. All elements of chain reactions consist from loop and chain links when nucleated singularities annihilated directly or with alien singularities in 1:9 ratio. The topological reason of statistics was established by low probability of far enough separation of born singularities pair from existing neighbor singularities during loop trajectories. Topology of developing speckle field was measured and analyzed by dynamic stokes polarimetry with few seconds' resolution. The hierarchy of singularities govern scenario of tangled chain reactions was defined. The useful space-time data about peculiarities of optical damage evolution were obtained from existence and parameters of 'islands of stability' in developing speckle fields.

  7. Topological defect formation in 1D and 2D spin chains realized by network of optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Hamerly, Ryan; Inaba, Kensuke; Inagaki, Takahiro; Takesue, Hiroki; Yamamoto, Yoshihisa; Mabuchi, Hideo

    2016-09-01

    A network of optical parametric oscillators (OPOs) is used to simulate classical Ising and XY spin chains. The collective nonlinear dynamics of this network, driven by quantum noise rather than thermal fluctuations, seeks out the Ising/XY ground state as the system transitions from below to above the lasing threshold. We study the behavior of this “Ising machine” for three canonical problems: a 1D ferromagnetic spin chain, a 2D square lattice and problems where next-nearest-neighbor couplings give rise to frustration. If the pump turn-on time is finite, topological defects form (domain walls for the Ising model, winding number and vortices for XY) and their density can be predicted from a numerical model involving a linear “growth stage” and a nonlinear “saturation stage”. These predictions are compared against recent data for a 10,000-spin 1D Ising machine.

  8. Quantumness of spin-1 states

    NASA Astrophysics Data System (ADS)

    Bohnet-Waldraff, Fabian; Braun, D.; Giraud, O.

    2016-01-01

    We investigate quantumness of spin-1 states, defined as the Hilbert-Schmidt distance to the convex hull of spin coherent states. We derive its analytic expression in the case of pure states as a function of the smallest eigenvalue of the Bloch matrix and give explicitly the closest classical state for an arbitrary pure state. Numerical evidence is given that the exact formula for pure states provides an upper bound on the quantumness of mixed states. Due to the connection between quantumness and entanglement we obtain new insights into the geometry of symmetric entangled states.

  9. Dynamical entanglement purification using chains of atoms and optical cavities

    SciTech Connect

    Gonta, Denis; Loock, Peter van

    2011-10-15

    In the framework of cavity QED, we propose a practical scheme to purify dynamically a bipartite entangled state using short chains of atoms coupled to high-finesse optical cavities. In contrast to conventional entanglement purification protocols, we avoid controlled-not gates, thus reducing complicated pulse sequences and superfluous qubit operations. Our interaction scheme works in a deterministic way and, together with entanglement distribution and swapping, opens a route toward efficient quantum repeaters for long-distance quantum communication.

  10. Cloaking spin-(1/2) matter waves

    SciTech Connect

    Lin, De-Hone

    2010-06-15

    A physical construct for the cloaking of relativistic spin-(1/2) matter waves is proposed. It is shown that when the effective energy and mass of relativistic spin-(1/2) particles moving in an effective vector field in a spherical shell are controlled, their matter waves can be perfectly guided through the shell without any distortion or loss; that is, the construct provides a three-dimensional cloaking shell for relativistic spin-(1/2) matter waves. The proposal serves as the basis for some interesting applications such as providing a method to guide the matter waves of spin particles and an ideal setup to exhibit spin-spin interactions as well as perfect quantum interferences of some global effects in spin-(1/2) matter waves.

  11. Coulomb interaction on spin-1 particles

    NASA Astrophysics Data System (ADS)

    Owen, D. A.; Barrett, R. C.

    2003-11-01

    Using the electro-weak theory, we find the lowest order perturbative correction to a spin-1 particle in an external Coulomb field. We show this leads to a correction of order (Zα)4 and is independent of the mass of the external field. Previous work with Duffin-Kemmer-Petiau (see Nedjadi and Barrett [J. Math. Phys. 35 (1994) 4517]) and the Proca equation has failed to produce this correction.

  12. Plasmonic nanowires arranged in Fibonacci number chain: Excitation angle-dependent optical properties

    NASA Astrophysics Data System (ADS)

    Raghuwanshi, Mohit; Kumar, G. V. Pavan

    2013-02-01

    Herein we numerically study the excitation angle-dependant far-field and near-field optical properties of vertical plasmonic nanowires arranged in an unconventional linear geometry: Fibonacci number chain. The first five numbers in the Fibonacci series (1, 1, 2, 3, 5) were mapped to the size of gold nanowires, and arranged in a linear chain to study their optical interactions, and compared them to conventional chain of vertical gold nanowires. By harnessing the radiative and evanescent coupling regimes in the geometry, we found a systematic variation in the far-field extinction and near-field confinement in the geometries. Our simulation studies revealed enhanced backscattered intensity in the far-field radiation pattern at excitation angles along the chain-length of Fibonacci geometry, which was otherwise absent for conventional chain of plasmonic nanowires. Such angular reconfiguration of optical fields in unconventional linear geometries can be harnessed for tunable on-chip plasmonics.

  13. Dimerized ground state in the one-dimensional spin-1 boson Hubbard model

    SciTech Connect

    Apaja, Vesa; Syljuaasen, Olav F.

    2006-09-15

    We have investigated the one-dimensional spin-1 boson Hubbard model with antiferromagnetic interactions using quantum Monte Carlo methods. We obtain the shapes of the two lowest Mott lobes and show that the ground state within the lowest Mott lobe is dimerized. The results presented here are relevant for optically trapped antiferromagnetic spin-1 bosons. An experimental signature of the dimerized ground state is modulated Bragg peaks in the noise distribution of the atomic cloud obtained after switching off the trap. These Bragg peaks are located at wave vectors corresponding to half-integer multiples of the reciprocal wave vector of the optical lattice.

  14. Radiation-enhanced optical antenna based on nonperiodic metallic nanoparticle dimer chain

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolin; Yu, Wenhai; Yue, Wencheng; Yao, Peijun; Liu, Wen

    2015-07-01

    With the aid of multi-sphere dyadic Green's function, we present a design of optical nanoantenna which is composed of a nonperiodic nanoparticle dimer chain. By breaking the periodicity of the dimer chain, the radiative emission of the dimer chain is significantly enhanced because the strong coupling which limits radiation enhancement is inhibited when the separations between dimers are reduced. Our work clearly shows the crucial role of nonperiodicity in the design of the Yagi-Uda nanoantenna.

  15. Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres

    NASA Astrophysics Data System (ADS)

    Chen, Zhigang; Taflove, Allen; Backman, Vadim

    2006-02-01

    Using the generalized multiparticle Mie theory, we investigate optical coupling and transport through chains of dielectric microspheres. We identify two distinct coupling mechanisms of optical transport in terms of the coupling efficiency between neighboring microspheres, namely, evanescent coupling and nanojet coupling. We demonstrate that perfect whispering gallery mode propagation through a chain of evanescently coupled microspheres can be achieved. However, optical coupling and transport through a chain of nanojet-inducing microspheres is less efficient due to the radiative nature of photonic nanojets. Understanding these two optical coupling mechanisms is critical for selecting appropriate microspheres to build coupled resonator optical waveguides and other photon-manipulation devices for effective and low-loss guiding of photons.

  16. Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres.

    PubMed

    Chen, Zhigang; Taflove, Allen; Backman, Vadim

    2006-02-01

    Using the generalized multiparticle Mie theory, we investigate optical coupling and transport through chains of dielectric microspheres. We identify two distinct coupling mechanisms of optical transport in terms of the coupling efficiency between neighboring microspheres, namely, evanescent coupling and nanojet coupling. We demonstrate that perfect whispering gallery mode propagation through a chain of evanescently coupled microspheres can be achieved. However, optical coupling and transport through a chain of nanojet-inducing microspheres is less efficient due to the radiative nature of photonic nanojets. Understanding these two optical coupling mechanisms is critical for selecting appropriate microspheres to build coupled resonator optical waveguides and other photon-manipulation devices for effective and low-loss guiding of photons.

  17. Plasmonic nanoparticle chain in a light field: a resonant optical sail.

    PubMed

    Albaladejo, Silvia; Sáenz, Juan José; Marqués, Manuel I

    2011-11-09

    Optical trapping and driving of small objects has become a topic of increasing interest in multidisciplinary sciences. We propose to use a chain made of metallic nanoparticles as a resonant light sail, attached by one end point to a transparent object and propelling it by the use of electromagnetic radiation. Driving forces exerted on the chain are theoretically studied as a function of radiation's wavelength and chain's alignments with respect to the direction of radiation. Interestingly, there is a window in the frequency spectrum in which null-torque equilibrium configuration, with minimum geometric cross section, corresponds to a maximum in the driving force.

  18. Structural and optical properties of self-assembled chains of plasmonic nanocubes

    SciTech Connect

    Klinkova, Anna; Gang, Oleg; Therien-Aubin, Heloise; Ahmed, Aftab; Nykypanchuk, Dmytro; Choueiri, Rachelle M.; Gagnon, Brandon; Muntyanu, Anastasiya; Walker, Gilbert C.; Kumacheva, Eugenia

    2014-10-10

    Solution-based linear self-assembly of metal nanoparticles offers a powerful strategy for creating plasmonic polymers, which, so far, have been formed from spherical nanoparticles and nanorods. Here, we report linear solution-based self-assembly of metal nanocubes (NCs), examine the structural characteristics of the NC chains and demonstrate their advanced optical characteristics. Predominant face-to-face assembly of large NCs coated with short polymer ligands led to a larger volume of hot spots in the chains, a nearly uniform E-field enhancement in the gaps between co-linear NCs and a new coupling mode for NC chains, in comparison with chains of nanospheres with similar dimensions, composition and surface chemistry. The NC chains exhibited a stronger surface enhanced Raman scattering (SERS) signal, in comparison with linear assemblies of nanospheres. The experimental results were in agreement with finite difference time domain (FDTD) simulations.

  19. Structural and optical properties of self-assembled chains of plasmonic nanocubes

    DOE PAGES

    Klinkova, Anna; Gang, Oleg; Therien-Aubin, Heloise; ...

    2014-10-10

    Solution-based linear self-assembly of metal nanoparticles offers a powerful strategy for creating plasmonic polymers, which, so far, have been formed from spherical nanoparticles and nanorods. Here, we report linear solution-based self-assembly of metal nanocubes (NCs), examine the structural characteristics of the NC chains and demonstrate their advanced optical characteristics. Predominant face-to-face assembly of large NCs coated with short polymer ligands led to a larger volume of hot spots in the chains, a nearly uniform E-field enhancement in the gaps between co-linear NCs and a new coupling mode for NC chains, in comparison with chains of nanospheres with similar dimensions, compositionmore » and surface chemistry. The NC chains exhibited a stronger surface enhanced Raman scattering (SERS) signal, in comparison with linear assemblies of nanospheres. The experimental results were in agreement with finite difference time domain (FDTD) simulations.« less

  20. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1993-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  1. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1992-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  2. Tricritical behaviour in diluted mixed spin-1 and spin- {1}/{2} on square lattice

    NASA Astrophysics Data System (ADS)

    Benyoussef, A.; El Kenz, A.; Kaneyoshi, T.

    1994-03-01

    An effective-field theory with correlations is developed for a diluted mixed sping- {1}/{2} and spin-1 Ising ferromagnetic system with a crystal-field interaction D in a square lattice ( Z = 4). The phase diagrams in temperature-concentration of magnetic atoms ( p) and in temperature-crystal field interaction planes exhibit a variety of interesting phenomena such as second order phase transitions, tricritical points and first order phase transitions. The reentrant phenomena are also observed.

  3. Development of a laser-based process chain for manufacturing free form optics

    NASA Astrophysics Data System (ADS)

    Heidrich, S.; Richmann, A.; Willenborg, E.

    2012-06-01

    This paper presents the development of a laser based process chain for manufacturing fused silica optics. Due to disadvantages of conventional methods concerning costs and time when manufacturing optics with nonspherical shape, this process chain focuses on aspherical and free form surface geometries, but it is also capable of producing spherical optics. It consists of three laser based processing steps, which in combination produce the optics. In a first step, fused silica is ablated with laser radiation to produce the geometry of the optics. A subsequent laser polishing step reduces the surface roughness and a third step uses laser micro ablation to remove the last remaining redundant material. Most of the conducted experiments are carried out using CO2 laser radiation, but it is also possible to ablate material with ultra short pulse laser radiation. Besides describing the experimental setup and the mechanisms of the ablation and polishing step, the paper presents and discusses results achieved to date. Although the process chain is still under development, the single process steps already reach promising results for themselves and moreover, first elements are manufactured using the first two process steps together.

  4. Frustrated mixed spin-1/2 and spin-1 Ising ferrimagnets on a triangular lattice

    NASA Astrophysics Data System (ADS)

    Žukovič, M.; Bobák, A.

    2015-05-01

    Mixed spin-1/2 and spin-1 Ising ferrimagnets on a triangular lattice with sublattices A, B, and C are studied for two spin-value distributions (SA,SB,SC) =(1 /2 ,1 /2 ,1 ) and (1 /2 ,1 ,1 ) by Monte Carlo simulations. The nonbipartite character of the lattice induces geometrical frustration in both systems, which leads to the critical behavior rather different from their ferromagnetic counterparts. We confirm second-order phase transitions belonging to the standard Ising universality class occurring at higher temperatures, however, in both models these change at tricritical points (TCP) to first-order transitions at lower temperatures. In the model (1 /2 ,1 /2 ,1 ) , TCP occurs on the boundary between paramagnetic and ferrimagnetic (±1 /2 ,±1 /2 ,∓1 ) phases. The boundary between two ferrimagnetic phases (±1 /2 ,±1 /2 ,∓1 ) and (±1 /2 ,∓1 /2 ,0 ) at lower temperatures is always first order and it is joined by a line of second-order phase transitions between the paramagnetic and the ferrimagnetic (±1 /2 ,∓1 /2 ,0 ) phases at a critical endpoint. The tricritical behavior is also confirmed in the model (1 /2 ,1 ,1 ) on the boundary between the paramagnetic and ferrimagnetic (0 ,±1 ,∓1 ) phases.

  5. Evolution Equation for a Joint Tomographic Probability Distribution of Spin-1 Particles

    NASA Astrophysics Data System (ADS)

    Korennoy, Ya. A.; Man'ko, V. I.

    2016-11-01

    The nine-component positive vector optical tomographic probability portrait of quantum state of spin-1 particles containing full spatial and spin information about the state without redundancy is constructed. Also the suggested approach is expanded to symplectic tomography representation and to representations with quasidistributions like Wigner function, Husimi Q-function, and Glauber-Sudarshan P-function. The evolution equations for constructed vector optical and symplectic tomograms and vector quasidistributions for arbitrary Hamiltonian are found. The evolution equations are also obtained in special case of the quantum system of charged spin-1 particle in arbitrary electro-magnetic field, which are analogs of non-relativistic Proca equation in appropriate representations. The generalization of proposed approach to the cases of arbitrary spin is discussed. The possibility of formulation of quantum mechanics of the systems with spins in terms of joint probability distributions without the use of wave functions or density matrices is explicitly demonstrated.

  6. An all-optical poling investigation of low absorbing azobenzene side-chain polymer films

    NASA Astrophysics Data System (ADS)

    Jia, Yajie; Wang, Gongming; Guo, Bin; Su, Wei; Zhang, Qijin

    2004-09-01

    All optical poling (AOP) processes of both the typical AOP material disperse red 1 (DR1) copolymer and a low absorbing side-chain poly(2-[4-(4-cyanophenylazo)phenoxy] hexyl methacrylate), called PCN6, were examined and compared. The trade-off between the optical seeding efficiency and the transparency of the nonlinear polymer was considered. Quasi-phase matched (QPM) second harmonic generation (SHG) in PCN6 films was demonstrated. A relaxation retardation effect of the photo-induced khgr(2) was also observed in thick PCN6 films.

  7. The Optical Spectrum of the Silicon Terminated Carbon Chains SiCnH

    NASA Astrophysics Data System (ADS)

    Kokkin, D. L.; Reilly, N. J.; McCarthy, M. C.; Fortenberry, R. C.; Crawford, T. D.

    2012-06-01

    The gas phase optical spectra of the silicon terminated carbon chains, SiC_nH (n=3-5) formed in a silane acetylene discharge, have been investigated by R2C2PI and LIF/DF and will be reported here for the first time. Complementary to the experimental work, a theoretical investigation was undertaken with coupled cluster methods to garner a comprehensive understanding of the molecular structures and electronic properties of these systems. For the linear chains where there is an odd number of carbon atoms (SiC_3H and SiC_5H), the observed transitions are primarily from a ^2π ground state to a ^2Σ state, but as in the case of isovalent carbon chains there are some Herzberg-Teller active modes from an excited ^2π state. While a strong π-π transition is predicted for SiC_4H, the spectrum is dominated by relatively dark sigma state which is vibronically coupled to the bright ^2π state. In contrast to the odd carbon chains, which exhibit relatively sharp spectral features and lifetimes in the 10-100 ns regime, SiC_4H shows broadened spectral features consistent with a ca. 10 ps lifetime, and a subsequent long-lived decay (>30 microseconds) which we tentatively interpret in terms of mixing with a nearby quartet state arising from the same electronic configuration, a process unavailable for the odd chains.

  8. Visualization of an entangled channel spin-1 system

    SciTech Connect

    Sirsi, Swarnamala; Adiga, Veena

    2010-08-15

    Covariance matrix formalism gives powerful entanglement criteria for continuous as well as finite dimensional systems. We use this formalism to study a mixed channel spin-1 system which is well known in nuclear reactions. A spin-j state can be visualized as being made up of 2j spinors which are represented by a constellation of 2j points on a Bloch sphere using Majorana construction. We extend this formalism to visualize an entangled mixed spin-1 system.

  9. Development of standard measurement chain for full-field optical strain measurement methods

    NASA Astrophysics Data System (ADS)

    Salbut, Leszek; Kujawinska, Malgorzata; Patterson, Eann; Hack, Erwin; Burguete, Richard; Whelan, Maurice P.; Mendels, David A.

    2004-08-01

    Optical techniques for full-field displacement/strain measurement are a powerful set of tools for use in defining the performance, design optimization, reliability and safety of various types of components, products and machines. The quality of the measurement data generated by optical techniques is strongly dependent on the instrumentation and procedures. Thus, there is a significant need to develop standardized tests that are applicable across the spectrum of optical techniques of strain measurement. This requires the description of a common standard measurement chain including: (1) definition of standard physical and virtual materials; (2) gathering experimental or simulated primary data (fringe/image map); (3) deconvolution phase maps from these data (numerical procedures); (4) calculation of required physical quantities from phase maps (numerical procedures including data scaling). This scheme supports a calibration process for both instrumentation and procedures. Validation of this general methodology was performed using an example of displacement data gathered by grating interferometry followed by data processing scheme.

  10. Optical Nanofluidic Piston: Assay for Dynamic Force-Compression of Single Confined Polymer Chains

    NASA Astrophysics Data System (ADS)

    Khorshid, Ahmed; Zimny, Philip; Macos, Patrick; Massarelli, Geremia; Tétreault-La Roche, David; Reisner, Walter

    2014-03-01

    While single-molecule approaches now have a long-history in polymer physics, past methodology has a key limitation : it is not currently possible to apply well-defined forces to a precise number of chains in a well-defined volume. To this end,we have developed a nanofluidic assay for the study of DNA compression in vitro, the optical nanofluidic piston. The optical nanofluidic piston is a nanofluidic analog of a macroscopic piston-cylinder apparatus based on a nanosphere (``the piston'') optically trapped inside a 200-400nm nanochannel with embedded barrier (the ``cylinder''). The nanofluidic piston enables quantification of force required to compress single or multiple chains within a defined volume. We present combined fluorescence and force-measurements for the compression of T4 DNA under a variety of compression rates. Surprisingly, we find that compression occurs on a force-scale roughly 100x higher than that predicted by equilibrium theories, suggesting that the DNA is present in highly entangled states during the compression. Moreover, we observe that compression at high rates induces a ``shock-wave'' of high-polymer concentration near the bead, suggesting that our setup can quantitatively access novel non-equilibrium polymer phenomena.

  11. Optical implementation of cipher block chaining mode algorithm using phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Jeon, Seok-Hee; Gil, Sang-Keun

    2016-12-01

    We propose an optical design of cipher block chaining (CBC) encryption mode using digital holography, which is implemented by the two-step quadrature phase-shifting digital holographic encryption technique using orthogonal polarization. A block of plain text is encrypted with the encryption key by applying the two-step phase-shifting digital holographic method; then, it is changed into cipher text blocks which are digital holograms. Optically, these digital holograms with the encrypted information are Fourier transform holograms and are recorded onto charge-coupled devices with 256 quantization gray levels. This means that the proposed optical CBC encryption is a scheme that has an analog-type of pseudorandom pattern information in the cipher text, while the conventional electronic CBC encryption is a kind of bitwise block message encryption processed by digital bits. Also, the proposed method enables the cryptosystem to have higher security strength and faster processing than the conventional electronic method because of the large two-dimensional (2-D) array key space and parallel processing. The results of computer simulations verify that the proposed optical CBC encryption design is very effective in CBC mode due to fast and secure optical encryption of 2-D data and shows the feasibility for the CBC encryption mode.

  12. Optimization design method of satellite imaging chain related with optical axis jitter

    NASA Astrophysics Data System (ADS)

    Sun, Xiaofeng; Wang, Humei; Wang, Shitao

    2014-11-01

    As the improvement of imaging resolution of earth observation satellite, the optical axis disturbance (referred as LOS jitter) introduced by satellite moving components, such as reaction wheel, CMG, cryocooler etc., become one of the important factors that limits the imaging quality. So far as we know, there are several methods to control the frequency and amplitude of LOS jitter, such as satellite attitude control system (ACS), vibration isolator, image stabilization system etc. Each method has its own application range: ACS can only response to low frequency disturbance to about one tenth Hz, but it can deal with large amplitude disturbance; vibration isolator usually attenuates LOS jitter amplitude in high frequency, but may magnify jitter in low frequency; image stabilization can stabilize the LOS jitter in low-mid frequency, but limited to small amplitude. So it is necessary to use several methods together to insure the imaging quality. Here comes the question, how to design and allocate the system specification reasonably to satisfy the requirement of imaging and to make it possible for these methods to realize. This paper presents a new optimization method based on the frequency domain for the satellite imaging chain related with optical axis jitter. First describe the performance of each link of the imaging chain in the frequency domain, then through the calculation of image MTF using LOS jitter PSD, build up the relation between the imaging quality and the frequency performance of mixed links, then combine the frequency performance and the spectral decomposition method, the relation between each link and system imaging quality can be built. Then Based on this method, the requirement of imaging quality related to each link can be allocate and optimize quantitatively, which is essential for the design of imaging chain related with optical axis jitter.

  13. Optical design of cipher block chaining (CBC) encryption mode by using digital holography

    NASA Astrophysics Data System (ADS)

    Gil, Sang Keun; Jeon, Seok Hee; Jung, Jong Rae; Kim, Nam

    2016-03-01

    We propose an optical design of cipher block chaining (CBC) encryption by using digital holographic technique, which has higher security than the conventional electronic method because of the analog-type randomized cipher text with 2-D array. In this paper, an optical design of CBC encryption mode is implemented by 2-step quadrature phase-shifting digital holographic encryption technique using orthogonal polarization. A block of plain text is encrypted with the encryption key by applying 2-step phase-shifting digital holography, and it is changed into cipher text blocks which are digital holograms. These ciphered digital holograms with the encrypted information are Fourier transform holograms and are recorded on CCDs with 256 gray levels quantized intensities. The decryption is computed by these encrypted digital holograms of cipher texts, the same encryption key and the previous cipher text. Results of computer simulations are presented to verify that the proposed method shows the feasibility in the high secure CBC encryption system.

  14. Interaction-driven exotic quantum phases in spin-orbit-coupled spin-1 bosons

    NASA Astrophysics Data System (ADS)

    Pixley, J. H.; Natu, Stefan S.; Spielman, I. B.; Das Sarma, S.

    2016-02-01

    We study the interplay between large-spin, spin-orbit coupling, and superfluidity for bosons in a two-dimensional optical lattice, focusing on the spin-1 spin-orbit-coupled system recently realized at the Joint Quantum Institute [Campbell et al., arXiv:1501.05984]. We find a rich quantum phase diagram where, in addition to the conventional phases—superfluid and insulator—contained in the spin-1 Bose-Hubbard model, there are new lattice symmetry breaking phases. For weak interactions, the interplay between two length scales, the lattice momentum and the spin-orbit wave vector, induce a phase transition from a uniform superfluid to a phase where bosons simultaneously condense at the center and edge of the Brillouin zone at a nonzero spin-orbit strength. This state is characterized by spin-density-wave order, which arises from the spin-1 nature of the system. Interactions suppress spin-density-wave order, and favor a superfluid only at the Brillouin zone edge. This state has spatially oscillating mean-field order parameters, but a homogeneous density. We show that the spin-density-wave superfluid phase survives in a two-dimensional harmonic trap, and thus establish that our results are directly applicable to experiments on 87Rb,7Li, and 41K.

  15. Interaction driven quantum phases in spin-orbit-coupled spin-1 bosons

    NASA Astrophysics Data System (ADS)

    Pixley, Jedediah; Natu, Stefan; Cole, William; Rizzi, Matteo; Spielman, Ian

    2016-05-01

    We study the interplay of spin orbit coupling and strong correlations present for ultra cold spin-1 bosons on a square optical lattice. In addition to the conventional spinful Mott and superfluid phases contained in the spin-1 Bose-Hubbard model, we find new lattice symmetry breaking phases. For weak interactions, the interplay between the lattice momentum and the spin-orbit wave-vector induces a phase transition from a uniform superfluid to a phase where bosons simultaneously condense at the center and edge of the Brillouin zone. This state is characterized by spin density wave order, which arises from the spin-1 nature of the system. Interactions suppress this spin density wave order, and for sufficiently strong interactions the system becomes a Mott insulator. Inside the Mott lobes with an odd-integer filling we derive the effective low energy magnetic Hamiltonian. Focusing on the quasi-one-dimensional limit we solve the strongly coupled magnetic model in three ways: in its classical limit, with a spin-wave analysis, and using the density matrix renormalization group.

  16. On properties of low-lying spin-1 hadron resonances

    NASA Astrophysics Data System (ADS)

    Chizhov, M. V.

    2017-03-01

    Properties of low-lying spin-1 hadron resonances are described in the review. It is shown how the Nambu-Jona-Lasinio model can be extended in the chiral invariant way by new tensor interactions. New mass formulas are obtained, which are not based on unitary symmetry groups but involve particles from different multiplets even with opposite parity. They all are in good agreement with experimental data. Dynamic properties of spin-1 mesons confirmed by the calculations performed using the QCD sum rule technique and the lattice calculations are understood and explained.

  17. Characterization of novel microsphere chain fiber optic tips for potential use in ophthalmic laser surgery.

    PubMed

    Hutchens, Thomas C; Darafsheh, Arash; Fardad, Amir; Antoszyk, Andrew N; Ying, Howard S; Astratov, Vasily N; Fried, Nathaniel M

    2012-06-01

    Ophthalmic surgery may benefit from use of more precise fiber delivery systems during laser surgery. Some current ophthalmic surgical techniques rely on tedious mechanical dissection of tissue layers. In this study, chains of sapphire microspheres integrated into a hollow waveguide distal tip are used for erbium:YAG laser ablation studies in contact mode with ophthalmic tissues, ex vivo. The laser's short optical penetration depth combined with the small spot diameters achieved with this fiber probe may provide more precise tissue removal. One-, three-, and five-microsphere chain structures were characterized, resulting in FWHM diameters of 67, 32, and 30 μm in air, respectively, with beam profiles comparable to simulations. Single Er:YAG pulses of 0.1 mJ and 75-μs duration produced ablation craters with average diameters of 44, 30, and 17 μm and depths of 26, 10, and 8 μm, for one-, three-, and five-sphere structures, respectively. Microsphere chains produced spatial filtering of the multimode Er:YAG laser beam and fiber, providing spot diameters not otherwise available with conventional fiber systems. Because of the extremely shallow treatment depth, compact focused beam, and contact mode operation, this probe may have potential for use in dissecting epiretinal membranes and other ophthalmic tissues without damaging adjacent retinal tissue.

  18. Characterization of novel microsphere chain fiber optic tips for potential use in ophthalmic laser surgery

    PubMed Central

    Hutchens, Thomas C.; Darafsheh, Arash; Fardad, Amir; Antoszyk, Andrew N.; Ying, Howard S.; Astratov, Vasily N.

    2012-01-01

    Abstract. Ophthalmic surgery may benefit from use of more precise fiber delivery systems during laser surgery. Some current ophthalmic surgical techniques rely on tedious mechanical dissection of tissue layers. In this study, chains of sapphire microspheres integrated into a hollow waveguide distal tip are used for erbium:YAG laser ablation studies in contact mode with ophthalmic tissues, ex vivo. The laser’s short optical penetration depth combined with the small spot diameters achieved with this fiber probe may provide more precise tissue removal. One-, three-, and five-microsphere chain structures were characterized, resulting in FWHM diameters of 67, 32, and 30 μm in air, respectively, with beam profiles comparable to simulations. Single Er:YAG pulses of 0.1 mJ and 75-μs duration produced ablation craters with average diameters of 44, 30, and 17 μm and depths of 26, 10, and 8 μm, for one-, three-, and five-sphere structures, respectively. Microsphere chains produced spatial filtering of the multimode Er:YAG laser beam and fiber, providing spot diameters not otherwise available with conventional fiber systems. Because of the extremely shallow treatment depth, compact focused beam, and contact mode operation, this probe may have potential for use in dissecting epiretinal membranes and other ophthalmic tissues without damaging adjacent retinal tissue. PMID:22734790

  19. Characterization of novel microsphere chain fiber optic tips for potential use in ophthalmic laser surgery

    NASA Astrophysics Data System (ADS)

    Hutchens, Thomas C.; Darafsheh, Arash; Fardad, Amir; Antoszyk, Andrew N.; Ying, Howard S.; Astratov, Vasily N.; Fried, Nathaniel M.

    2012-06-01

    Ophthalmic surgery may benefit from use of more precise fiber delivery systems during laser surgery. Some current ophthalmic surgical techniques rely on tedious mechanical dissection of tissue layers. In this study, chains of sapphire microspheres integrated into a hollow waveguide distal tip are used for erbium:YAG laser ablation studies in contact mode with ophthalmic tissues, ex vivo. The laser's short optical penetration depth combined with the small spot diameters achieved with this fiber probe may provide more precise tissue removal. One-, three-, and five-microsphere chain structures were characterized, resulting in FWHM diameters of 67, 32, and 30 μm in air, respectively, with beam profiles comparable to simulations. Single Er:YAG pulses of 0.1 mJ and 75-μs duration produced ablation craters with average diameters of 44, 30, and 17 μm and depths of 26, 10, and 8 μm, for one-, three-, and five-sphere structures, respectively. Microsphere chains produced spatial filtering of the multimode Er:YAG laser beam and fiber, providing spot diameters not otherwise available with conventional fiber systems. Because of the extremely shallow treatment depth, compact focused beam, and contact mode operation, this probe may have potential for use in dissecting epiretinal membranes and other ophthalmic tissues without damaging adjacent retinal tissue.

  20. Selenium dimers and linear chains in one-dimensional cancrinite nanochannels: Structure, dynamics, and optical properties

    NASA Astrophysics Data System (ADS)

    Poborchii, Vladimir V.; Lindner, Gottlieb-Georg; Sato, Mitsuo

    2002-02-01

    Cancrinite crystals possessing parallel nanochannels are attractive for incorporation of guest materials and preparation of one-dimensional structures. In this work, we study variety of cancrinite crystals synthesized with Se inside their channels. Single crystal x-ray diffraction, polarized Raman, optical absorption, and luminescence spectra are investigated. It is shown that Se is stabilized in the form of Se22- and Se2- dimers located in the center of the channel and oriented along the channel. Different absolute and relative concentrations of Se22- and Se2- are obtained for different samples. The Se22- dimers at high concentration show tendency to organize linear chains. At low temperatures, quite strong interdimer bonding for both Se22- and Se2- is observed. Another important low-temperature effect is appearance of additional Raman bands, which are attributed to the vibrations of linear Se22- chains distorted by the incommensurate potential of cancrinite. Strong near-infrared polarized luminescence is observed for all samples. Photoionization of dimers is shown to be important step in the mechanism of the luminescence.

  1. Nanostructured biochip for label-free and real-time optical detection of polymerase chain reaction.

    PubMed

    Hiep, Ha Minh; Kerman, Kagan; Endo, Tatsuro; Saito, Masato; Tamiya, Eiichi

    2010-02-19

    In this report, Au-coated nanostructured biochip with functionalized thiolated primers on its surface is developed for label-free and real-time optical detection of polymerase chain reaction (PCR). A PCR chamber of 150 microm in thickness containing Au-coated nanostructured substrate in the bottom layer was bordered with SU-8 100 walls. After immobilization of 5'-thiolated primers on the surface, simultaneous DNA amplification and detection were performed without any labeled molecules via the relative reflected intensity (RRI) of Au-coated nanostructured substrate. When human genomic DNA at several concentrations of 0.2, 0.5 and 1 ng microL(-1) was included in the initial DNA samples, the increases in the RRI peak values were clearly observed with the increasing PCR cycle numbers. We found that the starting point of the optical signal, which was divergent from the background in our PCR biochip, was around 3-4 cycles, much lower than that of the fluorescent real-time PCR analysis (around 23-25 cycles). Our proposed PCR device using Au-coated nanostructured substrate holds noteworthy promise for rapid, label-free and real-time DNA detection for point-of-care testing (POCT) applications.

  2. Emergent infinite-randomness fixed points from the extensive random bipartitions of the spin-1 Affleck-Kennedy-Lieb-Tasaki topological state

    NASA Astrophysics Data System (ADS)

    Lu, Min; Rao, Wen-Jia; Narayanan, Rajesh; Wan, Xin; Zhang, Guang-Ming

    2016-12-01

    Quantum entanglement under an extensive bipartition can reveal the critical boundary theory of a topological phase in a parameter space. In this study we demonstrate that the infinite-randomness fixed point for spin-1/2 degrees of freedom can emerge from an extensive random bipartition of the spin-1 Affleck-Kennedy-Lieb-Tasaki chain. The nested entanglement entropy of the ground state of the reduced density matrix exhibits a logarithmic scaling with an effective central charge c ˜=0.72 ±0.02 ≈ln2 . We further discuss, in the language of bulk quantum entanglement, how to understand all phase boundaries and the surrounding Griffiths phases for the antiferromagnetic Heisenberg spin-1 chain with quenched disorder and dimerization.

  3. Wheeler-Feynman dynamics of spin-1/2 particles

    NASA Astrophysics Data System (ADS)

    van Alstine, Peter; Crater, Horace W.

    1986-02-01

    By combining a supersymmetric description of a spinning particle in an external field with an appropriate modification of the ``adjunct field'' of Wheeler and Feynman, we construct a many-time relativistic dynamics for arbitrary numbers of spin-(1/2) and spinless particles in mutual scalar or vector interaction. Quantization of the slow-motion approximation to the dynamics of two spinning particles reproduces the corresponding field-theoretic (Bethe-Salpeter) dynamics through order α4.

  4. Coherent spin mixing dynamics in a spin-1 atomic condensate

    SciTech Connect

    Zhang Wenxian; Chang, M.-S.; Chapman, M.S.; Zhou, D.L.; You, L.

    2005-07-15

    We study the coherent off-equilibrium spin mixing inside an atomic condensate. Using mean-field theory and adopting the single-spatial-mode approximation, the condensate spin dynamics is found to be well described by that of a nonrigid pendulum and displays a variety of periodic oscillations in an external magnetic field. Our results illuminate several recent experimental observations and provide critical insights into the observation of coherent interaction-driven oscillations in a spin-1 condensate.

  5. Impact of mass generation for spin-1 mediator simplified models

    NASA Astrophysics Data System (ADS)

    Bell, Nicole F.; Cai, Yi; Leane, Rebecca K.

    2017-01-01

    In the simplified dark matter models commonly studied, the mass generation mechanism for the dark fields is not typically specified. We demonstrate that the dark matter interaction types, and hence the annihilation processes relevant for relic density and indirect detection, are strongly dictated by the mass generation mechanism chosen for the dark sector particles, and the requirement of gauge invariance. We focus on the class of models in which fermionic dark matter couples to a spin-1 vector or axial-vector mediator. However, in order to generate dark sector mass terms, it is necessary in most cases to introduce a dark Higgs field and thus a spin-0 scalar mediator will also be present. In the case that all the dark sector fields gain masses via coupling to a single dark sector Higgs field, it is mandatory that the axial-vector coupling of the spin-1 mediator to the dark matter is non-zero; the vector coupling may also be present depending on the charge assignments. For all other mass generation options, only pure vector couplings between the spin-1 mediator and the dark matter are allowed. If these coupling restrictions are not obeyed, unphysical results may be obtained such as a violation of unitarity at high energies. These two-mediator scenarios lead to important phenomenology that does not arise in single mediator models. We survey two-mediator dark matter models which contain both vector and scalar mediators, and explore their relic density and indirect detection phenomenology.

  6. Magnetoelectric effects in the spin-1/2 XXZ model with Dzyaloshinskii-Moriya interaction

    SciTech Connect

    Thakur, Pradeep; Durganandini, P.

    2015-06-24

    We study the 1D spin-1/2 XXZ chain in the presence of the Dzyaloshinskii-Moriya (D-M) interaction and with longitudinal and transverse magnetic fields. We assume the spin-current mechanism of Katsura-Nagaosa-Balatsky at play and interpret the D-M interaction as a coupling between the local electric polarization and an external electric field. We study the interplay of electric and magnetic order in the ground state using the numerical density matrix renormalization group(DMRG) method. Specifically, we investigate the dependences of the magnetization and electric polarization on the external electric and magnetic fields. We find that for transverse magnetic fields, there are two different regimes of polarization while for longitudinal magnetic fields, there are three different regimes of polarization. The different regimes can be tuned by the external magnetic fields.

  7. Spin-1/2 Heisenberg Antiferromagnet on the Spatially Anisotropic Kagome Lattice

    NASA Astrophysics Data System (ADS)

    Schnyder, Andreas; Starykh, Oleg; Balents, Leon

    2008-03-01

    We study the quasi-one-dimensional limit of the Spin-1/2 quantum antiferromagnet on the Kagome lattice, a model Hamiltonian that might be of relevance for the mineral volborthite [1,2]. The lattice is divided into antiferromagnetic spin-chains (exchange J) that are weakly coupled via intermediate ``dangling'' spins (exchange J'). Using bosonization, renormalization group methods, and current algebra techniques we determine the ground state as a function of J'/J. The case of a strictly one-dimensional Kagome strip is also discussed. [1] Z. Hiroi, M. Hanawa, N. Kobayashi, M. Nohara, Hidenori Takagi, Y. Kato, and M. Takigawa, J. Phys. Soc. Japan 70, 3377 (2001). [2] F. Bert, D. Bono, P. Mendels, F. Ladieu, F. Duc, J.-C. Trumbe, and P. Millet, Phys. Rev. Lett. 95, 087203 (2005).

  8. Solvent Polarity Effect on Chain Conformation, Film Morphology, and Optical Properties of a Water-Soluble Conjugated Polymer

    SciTech Connect

    Xu, Zhihua; Tsai, Hsinhan; Wang, Hsing-Lin; Cotlet, Mircea

    2010-09-16

    The solvent polarity effect on chain conformation, film morphology, and photophysical properties of a nonionic water-soluble conjugated polymer (WSCP), poly[2,5-bis(diethylaminetetraethylene glycol)phenylene vinylene] (DEATG-PPV) is investigated in detail. The combination of stationary absorption and photoluminescence (PL) spectroscopy, time-resolved PL spectroscopy, and fluorescence correlation spectroscopy methods enables us to probe the chain conformation of DEATG-PPV, down to the level of a single chain when working with extremely diluted solutions. The use of correlated atomic force microscopy and confocal fluorescence lifetime imaging microscopy measurements of drop-casted DEATG-PPV films reveals the intrinsic relationship between chain conformation, film morphology, and optical properties. Depending on solvent polarity, DEATG-PPV presents extended, coiled, and collapsed chain conformations in solutions, which lead to distinct morphology and optical properties in solid films. Our work presents a pathway to control and characterize the film morphologies of WSCPs toward the optimal performance of various optoelectronic devices.

  9. Magneto-optical biosensing platform based on light scattering from self-assembled chains of functionalized rotating magnetic beads.

    PubMed

    Park, Sang Yoon; Handa, Hiroshi; Sandhu, Adarsh

    2010-02-10

    We describe a simple protocol for the rapid, highly sensitive, and quantitative measurement of the concentration of biomolecules in a solution by monitoring light scattered by self-assembled chains of functionalized superparamagnetic beads (SBs) rotating in the solution. A rotating external field (H(ex)) applied to an aqueous solution containing 250 nm diameter biotinylated SBs produced linear chains of SBs rotating in phase with Hex due to magnetically induced self-assembly. At constant Hex, the addition of avidin to the solution led to the formation of longer SB-chains than without the presence of avidin. The generation of longer SB-chains was revealed by increases in the amplitude of the oscillating optical transmittance signal of the magnetic colloid solution. Monitoring changes in the amplitude of the optical transmittance of the solution enabled quantitative determination of the concentration of avidin added to the solution with a sensitivity of 100 pM (6.7 ng/mL) and a dynamic range of at least 3 orders of magnitude. The rotating chains acted as biomolecule probes and micromagnetic mixers, enabling detection of biomolecular recognition in less than 30 s. This approach offers a rapid, highly sensitive, inexpensive, and homogeneous means for detecting biorecognition processes.

  10. Production of spin-1/2 particles in inhomogeneous cosmologies

    NASA Astrophysics Data System (ADS)

    Campos, A.; Verdaguer, E.

    1992-06-01

    The production of spin-1/2 particles by small gravitational inhomogeneities is discussed by using a perturbative approach based on the evaluation of the scattering matrix. We compute the production of massive and massless particles by linear gravitational inhomogeneities in flat spacetime and the production of massless particles in an expanding universe described by the spatially flat Friedmann-Robertson-Walker models with small inhomogeneities. As in the case of scalar particles the total pair-creation probability is given in terms of geometric invariants of the spacetime.

  11. Weak value distributions for spin 1/2

    NASA Astrophysics Data System (ADS)

    Berry, M. V.; Dennis, M. R.; McRoberts, B.; Shukla, P.

    2011-05-01

    The simplest weak measurement is of a component of spin 1/2. For this observable, the probability distributions of the real and imaginary parts of the weak value, and their joint probability distribution, are calculated exactly for pre- and postselected states uniformly distributed over the surface of the Poincaré-Bloch sphere. The superweak probability, that the real part of the weak value lies outside the spectral range, is 1/3. This case, with just two eigenvalues, complements our previous calculation (Berry and Shukla 2010 J. Phys. A: Math. Theor. 43 354024) of the universal form of the weak value probability distribution for an operator with many eigenvalues.

  12. EARLINET Single Calculus Chain - technical - Part 2: Calculation of optical products

    NASA Astrophysics Data System (ADS)

    Mattis, Ina; D'Amico, Giuseppe; Baars, Holger; Amodeo, Aldo; Madonna, Fabio; Iarlori, Marco

    2016-07-01

    In this paper we present the automated software tool ELDA (EARLINET Lidar Data Analyzer) for the retrieval of profiles of optical particle properties from lidar signals. This tool is one of the calculus modules of the EARLINET Single Calculus Chain (SCC) which allows for the analysis of the data of many different lidar systems of EARLINET in an automated, unsupervised way. ELDA delivers profiles of particle extinction coefficients from Raman signals as well as profiles of particle backscatter coefficients from combinations of Raman and elastic signals or from elastic signals only. Those analyses start from pre-processed signals which have already been corrected for background, range dependency and hardware specific effects. An expert group reviewed all algorithms and solutions for critical calculus subsystems which are used within EARLINET with respect to their applicability for automated retrievals. Those methods have been implemented in ELDA. Since the software was designed in a modular way, it is possible to add new or alternative methods in future. Most of the implemented algorithms are well known and well documented, but some methods have especially been developed for ELDA, e.g., automated vertical smoothing and temporal averaging or the handling of effective vertical resolution in the case of lidar ratio retrievals, or the merging of near-range and far-range products. The accuracy of the retrieved profiles was tested following the procedure of the EARLINET-ASOS algorithm inter-comparison exercise which is based on the analysis of synthetic signals. Mean deviations, mean relative deviations, and normalized root-mean-square deviations were calculated for all possible products and three height layers. In all cases, the deviations were clearly below the maximum allowed values according to the EARLINET quality requirements.

  13. Mott lobes evolution of the spin-1 Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Hincapie-F, A. F.; Franco, R.; Silva-Valencia, J.

    2016-02-01

    We study spin-1 bosons confined in a one-dimensional optical lattice, taking into consideration both ferromagnetic and antiferromagnetic interaction. Using the density matrix renormalization group, we determine the phase diagram for the two firsts lobes and report the evolution of the first and second Mott lobes with respect to the spin-exchange interaction parameter (U 2). We determine that for the antiferromagnetic case, the first lobe is suppressed while the second grows as |U 2| increases. For the ferromagnetic case, the first and second Mott lobes are suppressed by the spin-exchange interaction parameter. We propose an expresion to describe the evolution of the critical point with the increase in |U 2| for both cases.

  14. PDGF A chain homodimers drive proliferation of bipotential (O-2A) glial progenitor cells in the developing rat optic nerve.

    PubMed Central

    Pringle, N; Collarini, E J; Mosley, M J; Heldin, C H; Westermark, B; Richardson, W D

    1989-01-01

    The bipotential glial progenitor cells (O-2A progenitors), which during development of the rat optic nerve give rise to oligodendrocytes and type 2 astrocytes, are stimulated to divide in culture by platelet-derived growth factor (PDGF), and there is evidence that PDGF is important for development of the O-2A cell lineage in vivo. We have visualized PDGF mRNA in the rat optic nerve by in situ hybridization, and its spatial distribution is compatible with the idea that type 1 astrocytes are the major source of PDGF in the nerve. We can detect mRNA encoding the A chain, but not the B chain of PDGF in the brain and optic nerve, suggesting that the major form of PDGF in the central nervous system is a homodimer of A chains (PDGF-AA). PDGF-AA is a more potent mitogen for O-2A progenitor cells than is PDGF-BB, while the reverse is true for human or rat fibroblasts. Fibroblasts display two types of PDGF receptors, type A receptors which bind to all three dimeric isoforms of PDGF, and type B receptors which bind PDGF-BB and PDGF-AB, but have low affinity for PDGF-AA. Our results suggest that O-2A progenitor cells possess predominantly type A receptors, and proliferate during development in response to PDGF-AA secreted by type 1 astrocytes. Images PMID:2545439

  15. PDGF A chain homodimers drive proliferation of bipotential (O-2A) glial progenitor cells in the developing rat optic nerve.

    PubMed

    Pringle, N; Collarini, E J; Mosley, M J; Heldin, C H; Westermark, B; Richardson, W D

    1989-04-01

    The bipotential glial progenitor cells (O-2A progenitors), which during development of the rat optic nerve give rise to oligodendrocytes and type 2 astrocytes, are stimulated to divide in culture by platelet-derived growth factor (PDGF), and there is evidence that PDGF is important for development of the O-2A cell lineage in vivo. We have visualized PDGF mRNA in the rat optic nerve by in situ hybridization, and its spatial distribution is compatible with the idea that type 1 astrocytes are the major source of PDGF in the nerve. We can detect mRNA encoding the A chain, but not the B chain of PDGF in the brain and optic nerve, suggesting that the major form of PDGF in the central nervous system is a homodimer of A chains (PDGF-AA). PDGF-AA is a more potent mitogen for O-2A progenitor cells than is PDGF-BB, while the reverse is true for human or rat fibroblasts. Fibroblasts display two types of PDGF receptors, type A receptors which bind to all three dimeric isoforms of PDGF, and type B receptors which bind PDGF-BB and PDGF-AB, but have low affinity for PDGF-AA. Our results suggest that O-2A progenitor cells possess predominantly type A receptors, and proliferate during development in response to PDGF-AA secreted by type 1 astrocytes.

  16. Phase ordering dynamics in spin-1 ferromagnetic condensates

    NASA Astrophysics Data System (ADS)

    Williamson, Lewis; Blakie, Peter

    2016-05-01

    Spinor Bose-Einstein condensates present rich phase diagrams for exploring phase transitions between states with different symmetry properties. In this work we simulate the approach to equilibrium of a spin-1 condensate quenched from an unmagnetised phase to three different ferromagnetic phases. The three ferromagnetic phases have Z2, SO(2) and SO(3) symmetries respectively and possess different conservation laws. Following the quench, domains of magnetization form, with each domain making an independent choice of the symmetry breaking order parameter. These domains grow and compete for the global equilibrium state. We find that this growth follows universal scaling laws and identify the dynamic universality class for each of the three quenches. Polar-core spin-vortices play a crucial role in the phase ordering of the SO(2) system and we identify fractal structures in the domain patterns of the SO(2) and SO(3) systems. We acknowledge support from the Marsden Fund of New Zealand.

  17. Kibble-Zurek Mechanism in a Spin-1 Ferromagnetic BEC

    NASA Astrophysics Data System (ADS)

    Anquez, Martin; Robbins, Bryce; Bharath, H. M.; Boguslawski, Matthew; Hoang, Thai; Chapman, Michael

    2015-05-01

    A ferromagnetic spin-1 87Rb BEC exhibits a second-order gapless quantum phase transition due to the competition between magnetic and collisional spin interaction energies. In such a system, we expect to observe universal Kibble-Zurek power-law scaling of the excitations for slow quenches through the critical point. In spatially extended systems, the Kibble-Zurek mechanism is manifest in topological defects. In our small spin condensates, the excitations appear in the temporal evolution of the spin populations. In this poster, we present our experimental investigation of the spin excitations as a function of the quench speed when the system is driven from the polar to ferromagnetic phase. Our results are quantitatively compared with quantum simulations.

  18. Quantum critical behavior of low-dimensional spin 1/2 Heisenberg antiferromagnets

    NASA Astrophysics Data System (ADS)

    Stone, Matthew Brandon

    In this dissertation, experiments on four different insulating antiferromagnetic spin 1/2 Heisenberg systems are presented and described. Copper pyrazine dinitrate is a linear chain spin 1/2 (S = 1/2) Heisenberg antiferromagnet. In an applied magnetic field, the continuum splits into multiple continua including incommensurate gapless excitations. The inelastic neutron scattering measurements presented represent the first complete experimental study of the S = 1/2 linear chain excitation spectrum in an applied magnetic field. Copper nitrate is a S = 1/2 alternating chain Heisenberg antiferromagnet. This system is near the isolated dimer limit, such that perturbation theory based on weakly coupled spin pairs accurately describes the excitation spectrum. Inelastic neutron scattering measurements were performed as a function of applied magnetic field. The data presented here represent the first such measure in all portions of the magnetic phase diagram of a gapped quantum magnet. Piperazinium hexachlorodicuprate is a two-dimensional S = 1/2 Heisenberg antiferromagnet. It is shown in this work that the structure consists of a collection of coupled spins in the crystalline ac plane. Multiple spin-spin interactions are important in this material. This has consequences for the nature of the dominant interactions and causes there to be significant spin frustration in this system. The spectrum consists of coherent dispersive singlet-triplet excitations describable in terms of multiple significant exchange interactions with geometrical frustration. Thermodynamic and inelastic neutron scattering measurements are presented which characterize the magnetic excitations as a function of temperature and applied magnetic field. In addition, the full magnetic phase diagram including a gapless disordered phase and a reentrant phase transition is presented. Cu2(1,4-diazacycloheptane)2Cl4 was widely believed to be a S = 1/2 Heisenberg spin-ladder material. Neutron scattering measurements

  19. Symmetry restoring and ancilla-driven entanglement for ultra-cold spin-1 atoms in a three-site ring

    NASA Astrophysics Data System (ADS)

    Barasiński, Artur; Leoński, Wiesław

    2017-01-01

    The spin-change dynamics of a model with ultra-cold hyperfine-spin-1 atoms confined in an optical superlattice is discussed. First, the disturbance of the two-site dynamics by coupling the dimer to a spin-1 ancilla is analyzed. When the dimer is coupled to the ancilla, even by a weak coupling, the significant changes in the system's time-evolution processes are observed. Next, we show that for the two-particle case the total hyperfine-spin-singlet state is generated by exploiting a quadratic Zeeman shift with realistic values of the strength of external magnetic field and evolution period of time. Moreover, even in a weak coupling regime, the proper choice of the additional ancilla-dimer interaction results in generating the wave function which is characteristic of the homogeneous three-site ring. In consequence, such wave function exhibits translational invariance symmetry despite the strong asymmetry of the lattice. Furthermore, we present our proposal for extracting various kinds of maximally entangled states (MES) for three-site spin-1 systems, starting from initial product states. In particular, we show that the type of generated MES can be unambiguously recognized by the measurement performed on the ancilla.

  20. Development of a polarized 31Mg+ beam as a spin-1/2 probe for BNMR

    NASA Astrophysics Data System (ADS)

    Levy, C. D. P.; Pearson, M. R.; Dehn, M. H.; Karner, V. L.; Kiefl, R. F.; Lassen, J.; Li, R.; MacFarlane, W. A.; McFadden, R. M. L.; Morris, G. D.; Stachura, M.; Teigelhöfer, A.; Voss, A.

    2016-12-01

    A 28 keV beam of 31Mg+ ions was extracted from a uranium carbide, proton-beam-irradiated target coupled to a laser ion source. The ion beam was nuclear-spin polarized by collinear optical pumping on the 2it {S}_{1/2}-2it {P}_{1/2} transition at 280 nm. The polarization was preserved by an extended 1 mT guide field as the beam was transported via electrostatic bends into a 2.5 T longitudinal magnetic field. There the beam was implanted into a single crystal MgO target and the beta decay asymmetry was measured. Both hyperfine ground states were optically pumped with a single frequency light source, using segmentation of the beam energy, which boosted the polarization by approximately 50 % compared to pumping a single ground state. The total decay asymmetry of 0.06 and beam intensity were sufficient to provide a useful spin-1/2 beam for future BNMR experiments. A variant of the method was used previously to optically pump the full Doppler-broadened absorption profile of a beam of 11Be+ with a single-frequency light source.

  1. Investigation on ultrafast third-order nonlinear optical properties of benzothiadiazole copolymer with triphenylamine derivative side chain

    NASA Astrophysics Data System (ADS)

    Gong, Weixiang; Yang, Junyi; Qin, Yuan-cheng; Wu, Xing-zhi; Jin, Xiao; Song, Yinglin

    2016-10-01

    The third-order nonlinear optical properties of benzothiadiazole copolymer with triphenylamine derivative side chain (BCT) dissolved in chloroform are investigated by top-hat Z-scan and time-resolved pump-probe techniques with a picoseconds pulses laser at wavelength of 532nm. Organic polymers of triphenylamine have been widely applied to optoelectronic devices owing to its outstanding physics and chemistry characteristic. So its nonlinear optical characteristic is worth studying. The sample's excited-state dynamics can be detected by the pump-probe with phase object device with/without an aperture in the far field. We can determine the sample's nonlinear absorptive and refractive coefficient by the top-hot Z-scan device with/without an aperture in the far field. The experimental results show that the BCT has a good reverse saturation absorption and negative refraction. At the same time, the BCT showed up long excited-state lifetimes. By means of a five-level model and analyzing the experimental curves, all nonlinear optical parameters are obtained. With the proper lifetime and intersystem crossing time, this sample can be a candidate for optical limiting.

  2. The histone code reader SPIN1 controls RET signaling in liposarcoma

    PubMed Central

    Franz, Henriette; Greschik, Holger; Willmann, Dominica; Ozretić, Luka; Jilg, Cordula Annette; Wardelmann, Eva; Jung, Manfred; Buettner, Reinhard; Schüle, Roland

    2015-01-01

    The histone code reader Spindlin1 (SPIN1) has been implicated in tumorigenesis and tumor growth, but the underlying molecular mechanisms remain poorly understood. Here, we show that reducing SPIN1 levels strongly impairs proliferation and increases apoptosis of liposarcoma cells in vitro and in xenograft mouse models. Combining signaling pathway, genome-wide chromatin binding, and transcriptome analyses, we found that SPIN1 directly enhances expression of GDNF, an activator of the RET signaling pathway, in cooperation with the transcription factor MAZ. Accordingly, knockdown of SPIN1 or MAZ results in reduced levels of GDNF and activated RET explaining diminished liposarcoma cell proliferation and survival. In line with these observations, levels of SPIN1, GDNF, activated RET, and MAZ are increased in human liposarcoma compared to normal adipose tissue or lipoma. Importantly, a mutation of SPIN1 within the reader domain interfering with chromatin binding reduces liposarcoma cell proliferation and survival. Together, our data describe a molecular mechanism for SPIN1 function in liposarcoma and suggest that targeting SPIN1 chromatin association with small molecule inhibitors may represent a novel therapeutic strategy. PMID:25749382

  3. Spin-Thermodynamics of Ultra-Cold Spin-1 Atoms

    NASA Astrophysics Data System (ADS)

    Li, Z. B.; Yao, D. X.; Bao, C. G.

    2015-08-01

    The spin-thermodynamics of a -body spin-1 condensate containing only the spin-degrees of freedom is studied via a theory in which , the total spin and its Z-component are exactly conserved. The magnetic field is considered as zero at first. Then the effect of a residual is evaluated. A temperature is defined as below that all the spatial degrees of freedom can be considered as being frozen and, accordingly, a pure spin-system will emerge. Effort is made to evaluate . When goes up from zero, the internal energy and the entropy experience sharp changes in two narrow domains of surrounding two turning temperatures and , the latter is higher. When or , and remain unchanged. Whereas when , and . It was found that and originate from the gap (the energy difference between the ground state (g.s.) and the first excited state) and the width (the energy difference between the g.s. and the highest state without spatial excitation) of the spectra, respectively. Thus their appearance is a common feature in spin-thermodynamics. In fact, marks the lowest excitation of the spin-modes, while marks the maximization of the entropy in the spin-space. In particular, the T-dependent population density is defined so that the theory can be checked by experimental data. Two kinds of condensates are notable: (i) the strongly trapped systems with a very small , they can work as pure spin-systems at relatively higher temperature; (ii) the systems with a high magnetization (say, ), the dimensions of their spin-spaces are very low. Furthermore, a larger together with a large N (for Rb) or a large (for Na) will lead to a sufficiently large so that a real g.s. can be experimentally created at a higher temperature. The spin-thermodynamics would remain valid whenever the spatial modes decouple from the spin-modes. This can occur at a higher temperature as demonstrated in Pechkis et al. (Phys Rev Lett 111:025301, 2013).

  4. Structure functions in the polarized Drell-Yan processes with spin-1/2 and spin-1 hadrons. I. General formalism

    NASA Astrophysics Data System (ADS)

    Hino, S.; Kumano, S.

    1999-05-01

    We discuss a general formalism for the structure functions which can be investigated in the polarized Drell-Yan processes with spin-1/2 and spin-1 hadrons. To be specific, the formalism can be applied to the proton-deuteron Drell-Yan processes. Because of the spin-1 nature, there are new structure functions which cannot be studied in the proton-proton reactions. Imposing Hermiticity, parity conservation, and time-reversal invariance, we find that 108 structure functions exist in the Drell-Yan processes. However, the number reduces to 22 after integrating the cross section over the virtual-photon transverse momentum Q-->T or after taking the limit QT-->0. There are 11 new structure functions in addition to the 11 in the Drell-Yan processes of spin-1/2 hadrons. The additional structure functions are associated with the tensor structure of the spin-1 hadron, and they could be measured by quadrupole spin asymmetries. For example, the structure functions exist for ``intermediate'' polarization although their contributions vanish in the longitudinal and transverse polarization reactions. We show a number of spin asymmetries for extracting the polarized structure functions. The proton-deuteron reaction may be realized in the RHIC-SPIN project and other future ones, and it could be a new direction of next generation high-energy spin physics.

  5. Enantioselective cyclopolymerization of 1,5-hexadiene catalyzed by chiral zirconocenes: A novel strategy for the synthesis of optically active polymers with chirality in the main chain

    SciTech Connect

    Coates, G.W.; Waymouth, R.M. )

    1993-01-13

    Enantioselective cyclopolymerization represents a novel strategy for the synthesis of optically active main-chain chiral polymers. Cyclopolymerization of 1,5-hexadiene using the optically active catalyst precursor, (R,R)-(EBTHI)ZrBINOL ((R,R)-1) [EBTHI = ethylene-1,2-bis([eta][sup 5]-4,5,6,7-tetrahydro-1-indenyl); BINOL = 1,1[prime]-bi-2-naphtholate], yields optically active poly(methylene-1,3-cyclopentane) (PMCP) with a molar optical rotation of [[Phi

  6. The Role of Morphology and Electronic Chain Aggregation on the Optical Gain Properties of Semiconducting Conjugated Polymers

    NASA Astrophysics Data System (ADS)

    Lampert, Zachary Evan

    Conjugated polymers (CPs) are a novel class of materials that exhibit the optical and electrical properties of semiconductors while still retaining the durability and processability of plastics. CPs are also intrinsically 4-level systems with high luminescence quantum efficiencies making them particularly attractive as organic gain media for solid-state laser applications. However, before CPs can emerge as a commercially available laser technology, a more comprehensive understanding of the morphological dependence of the photophysics is required. In this thesis, the morphology and chain conformation dependence of amplified spontaneous emission (ASE) and optical gain in thin films of poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) was investigated. By changing the chemical nature of the solvent from which films were cast, as well as the temperature at which films were annealed, CP films with different morphologies, and hence different degrees of interchain interactions were achieved. Contrary to the common perception that polymer morphology plays a decisive role in determining the ASE behavior of thin CP films, we found that chromophore aggregation and degree of conformational order have minimal impact on optical gain. In fact, experimental results indicated that an extremely large fraction of interchain aggregate species and/or exciton dissociating defects are required to significantly alter the optical properties and suppress stimulated emission. These results are pertinent to the fabrication and optimization of an electrically pumped laser device, as improvements in charge carrier mobility through controlled increases in chain aggregation may provide a viable means of optimizing injection efficiency without significantly degrading optical gain. To offset charge-induced absorption losses under electrical pumping, and to enable the use of more compact and economical sources under optical pumping, conjugated polymers exhibiting low lasing

  7. Real-space mean-field theory of a spin-1 Bose gas in synthetic dimensions

    NASA Astrophysics Data System (ADS)

    Hurst, Hilary M.; Wilson, Justin H.; Pixley, J. H.; Spielman, I. B.; Natu, Stefan S.

    2016-12-01

    The internal degrees of freedom provided by ultracold atoms provide a route for realizing higher dimensional physics in systems with limited spatial dimensions. Nonspatial degrees of freedom in these systems are dubbed "synthetic dimensions." This connection is useful from an experimental standpoint but complicated by the fact that interactions alter the condensate ground state. Here we use the Gross-Pitaevskii equation to study the ground-state properties of a spin-1 Bose gas under the combined influence of an optical lattice, spatially varying spin-orbit coupling, and interactions at the mean-field level. The associated phases depend on the sign of the spin-dependent interaction parameter and the strength of the spin-orbit field. We find "charge"- and spin-density-wave phases which are directly related to helical spin order in real space and affect the behavior of edge currents in the synthetic dimension. We determine the resulting phase diagram as a function of the spin-orbit coupling and spin-dependent interaction strength, considering both attractive (ferromagnetic) and repulsive (polar) spin-dependent interactions, and we provide a direct comparison of our results with the noninteracting case. Our findings are applicable to current and future experiments, specifically with 87Rb, 7Li, 41K, and 23Na.

  8. Transverse magnetization transfer under planar mixing conditions in spin systems consisting of three coupled spins 1/2.

    PubMed

    Luy, Burkhard; Glaser, Steffen J

    2003-10-01

    Polarization transfer under planar mixing conditions is a widely used tool in modern NMR-experiments. In the case of two coupled spins 1/2 or a chain of three or more spins 1/2 with only nearest neighbor couplings, it is only possible to transfer a single magnetization component (longitudinal magnetization in the principle axis system of the planar coupling tensors). However, if all couplings in a three-spin system are non-zero, it turns out that all magnetization components can be efficiently transferred even under strictly planar mixing conditions. In this article a detailed theoretical analysis is presented based on analytical transverse coherence transfer functions and on the underlying commutator algebra. In addition, transverse magnetization transfer is demonstrated experimentally. The results show that in highly coupled spin systems, as for example in the case of partially aligned samples with many residual dipolar couplings, special care has to be taken to avoid phase distortions if planar mixing steps are used.

  9. Violation of local realism by a system with N spin-(1/2) particles

    SciTech Connect

    Wu, Xiao-Hua; Zong, Hong-Shi

    2003-09-01

    Recently, it was found that Mermin's inequalities may not always be optimal for the refutation of a local realistic description [Phys. Rev. Lett. 88, 210402 (2002)]. To complete this work, we derive an inequality for the Greenberger-Horne-Zeilinger-type pure state for a system with N spin-(1/2) particles and the violation of the inequality can be shown for all the non product pure states. Mermin's inequality for a system of N spin-(1/2) particles and Gisin's theorem for a system of two spin-(1/2) particles are both included in our inequality.

  10. Polarized optical spectroscopy applied to investigate two poly(phenylene-vinylene) polymers with different side chain structures

    NASA Astrophysics Data System (ADS)

    Pâlsson, Lars-Olof; Vaughan, Helen L.; Monkman, Andrew P.

    2006-10-01

    Two related poly(phenylene-vinylene) (PPV) light-emitting polymers have been investigated by means of polarized optical spectroscopy. The purpose of the investigation was to investigate the nature of the interactions in thin films and to examine what impact the difference in side chain structure and molecular weight in poly(2'-methoxy-5-2-ethyl-hexoxy)-1,4-phenylene vinylene (MEH-PPV) and poly(2-(3',7'-dimethyloctyloxy)-5-methoxy-1,4-phenylene-vinylene) (OC1C10-PPV) has on the electronic and optical properties of the two polymers. Aligning the polymers by dispersing them in anisotropic solvents and stretched films shows that the side chains have an impact on the relative orientations of the transition dipole moments. In anisotropic solvents the linear dichroism is larger for MEH-PPV than for the related polymer OC1C10-PPV, while in stretched films the opposite situation prevails. A lower polarization of the luminescence from OC1C10-PPV, relative to MEH-PPV, was also obtained independent of alignment medium used. The data therefore suggest that while mechanical stretching may align the OC1C10-PPV to a greater degree, the emitting species is distinct from the absorbing species. The circular dichroism (CD) spectra of both polymers undergo dramatic changes when the liquid phase and the solid state (film) are compared. The solution CD spectra shows no evidence of interchain interactions; instead the spectra of both systems indicate a helical conformation of the polymers. The CD spectra of films are dramatically different with the strong Cotton effect being observed. This points to the formation of an aggregate in the film, with an associated ground state interaction, an interchain species such as a physical dimer, or a more complex higher aggregate.

  11. Disordered ground states in a quantum frustrated spin chain with side chains

    NASA Astrophysics Data System (ADS)

    Takano, Ken'Ichi; Hida, Kazuo

    2008-04-01

    We study a frustrated mixed spin chain with side chains, where the spin species and the exchange interactions are spatially varied. A nonlinear σ model method is formulated for this model, and a phase diagram with two disordered spin-gap phases is obtained for typical cases. Among them, we examine the case with a main chain, which consists of an alternating array of spin-1 and spin- (1)/(2) sites, and side chains, each of which consists of a single spin- (1)/(2) site, in great detail. Based on numerical, perturbational, and variational approaches, we propose a singlet cluster solid picture for each phase, where the ground state is expressed as a tensor product of local singlet states.

  12. Adiabatic demagnetization of the antiferromagnetic spin-1/2 Heisenberg hexagonal cluster

    NASA Astrophysics Data System (ADS)

    Deb, Moumita; Ghosh, Asim Kumar

    2016-05-01

    Exact analytic expressions of eigenvalues of the antiferromagnetic spin-1/2 Heisenberg hexagon in the presence of uniform magnetic field have been obtained. Magnetization process, nature of isentrops and properties of magneto caloric effect in terms of adiabatic demagnetization have been investigated. Theoretical results have been used to study the magneto caloric effect of the spin-1/2 Heisenberg hexagonal compound Cu3WO6.

  13. Reflective and antireflective coatings for the optical chain of the ASTRI SST-2M prototype

    NASA Astrophysics Data System (ADS)

    Bonnoli, Giacomo; Canestrari, Rodolfo; Catalano, Osvaldo; Pareschi, Giovanni; Perri, Luca; Stringhetti, Luca

    2013-09-01

    ASTRI is a Flagship Project of the Italian Ministry of Education, University and Research, led by the Italian National Institute of Astrophysics, INAF. One of the main aims of the ASTRI Project is the design, construction and on-field verification of a dual mirror (2M) end-to-end prototype for the Small Size Telescope (SST) envisaged to become part of the Cherenkov Telescope Array. The ASTRI SST-2M prototype is designed according to the Schwarzschild-Couder optical scheme, and adopts a camera based on Silicon Photo Multipliers (SiPM); it will be assembled at the INAF astronomical site of Serra La Nave on mount Etna (Catania, Italy) in the second half of 2014, and will start scientific validation phase soon after. With its 4m wide primary dish, the telescope will be sensitive to multi-TeV Very High Energy (VHE) gamma rays up to 100 TeV and above, with a point spread function of ~2 arcminutes and a wide (semiaperture 4.8°) corrected field of view. The peculiarities of the optical design and of the SiPM bandpass pushed towards specifically optimized choices in terms of reflective coatings for both the primary and the secondary mirror. Fully dielectric multi-layer coatings have been developed and tested as an option for the primary mirror, aiming to filter out the large Night Sky Background contamination at wavelengths λ>~700 nm. On the other hand, for the large monolithic secondary mirror a simpler design with quartz-overcoated aluminium has been optimized for incidences far from normality. The conformation of the ASTRI camera in turn pushed towards the design of a reimaging system based on thin pyramidal light guides, that could be optionally integrated in the focal surface, aiming to increase the fill factor. An anti-reflective coating optimized for a wide range of incident angles faraway from normality was specifically developed to enhance the UV-optical transparency of these elements. The issues, strategy, simulations and experimental results are thoroughly

  14. Optical properties of organic conductor and semiconductor crystals: Model for a half-filled dimerized chain

    SciTech Connect

    Meneghetti, M. )

    1991-10-15

    The interpretation of the charge transfer and vibronic optical spectra of molecular organic half-filled crystals is shown to be possible on the basis of a periodic cluster model made up of four sites. The results obtained by using this model, which considers an extended Hubbard Hamiltonian and the interaction of {ital intramolecular} vibrations with the electronic system, are reported in detail to show the dependence of the various calculated excitations on the {ital intermolecular} dimerization, a structural distortion characteristic of the compounds on which attention is focused. The effect of including off-diagonal Coulomb interaction is also considered. The available experimental spectra of a well-known half-filled compound like K-TCNQ (where TCNQ is tetracyanoquinodimethane) are satisfactorily fitted and the values of the parameters obtained by the fittings are used to suggest an interpretation of the phase transition of this compound. Some parallel observations for half-filled polymers are also reported.

  15. Collective spin 1 singlet phase in high-pressure oxygen

    PubMed Central

    Crespo, Yanier; Fabrizio, Michele; Scandolo, Sandro; Tosatti, Erio

    2014-01-01

    Oxygen, one of the most common and important elements in nature, has an exceedingly well-explored phase diagram under pressure, up to and beyond 100 GPa. At low temperatures, the low-pressure antiferromagnetic phases below 8 GPa where O2 molecules have spin S = 1 are followed by the broad apparently nonmagnetic ε phase from about 8 to 96 GPa. In this phase, which is our focus, molecules group structurally together to form quartets while switching, as believed by most, to spin S = 0. Here we present theoretical results strongly connecting with existing vibrational and optical evidence, showing that this is true only above 20 GPa, whereas the S = 1 molecular state survives up to about 20 GPa. The ε phase thus breaks up into two: a spinless ε0 (20−96 GPa), and another ε1 (8−20 GPa) where the molecules have S = 1 but possess only short-range antiferromagnetic correlations. A local spin liquid-like singlet ground state akin to some earlier proposals, and whose optical signature we identify in existing data, is proposed for this phase. Our proposed phase diagram thus has a first-order phase transition just above 20 GPa, extending at finite temperature and most likely terminating into a crossover with a critical point near 30 GPa and 200 K. PMID:25002513

  16. Numerical methods for computing the ground state of spin-1 Bose-Einstein condensates in a uniform magnetic field.

    PubMed

    Lim, Fong Yin; Bao, Weizhu

    2008-12-01

    We propose efficient and accurate numerical methods for computing the ground-state solution of spin-1 Bose-Einstein condensates subjected to a uniform magnetic field. The key idea in designing the numerical method is based on the normalized gradient flow with the introduction of a third normalization condition, together with two physical constraints on the conservation of total mass and conservation of total magnetization. Different treatments of the Zeeman energy terms are found to yield different numerical accuracies and stabilities. Numerical comparison between different numerical schemes is made, and the best scheme is identified. The numerical scheme is then applied to compute the condensate ground state in a harmonic plus optical lattice potential, and the effect of the periodic potential, in particular to the relative population of each hyperfine component, is investigated through comparison to the condensate ground state in a pure harmonic trap.

  17. T- and Y-splitters based on an Au/SiO2 nanoring chain at an optical communication band.

    PubMed

    Ahmadivand, A; Golmohammadi, S; Rostami, A

    2012-05-20

    In this paper, we have utilized Au nanoring chains in an SiO2 host to design certain T-and Y-structures, and expanded it to transport and split the electromagnetic energy in integrated nanophotonic devices operating at an optical communication band (λ≈1550 nm). We compared two structures and tried to choose the best one, with lower losses and higher efficiency at the output branches, in order to split and transport the optical energy. Comparing the different types of nanoparticles corroborates that nanorings have an extra degree of tunability in their geometrical components. Meanwhile, nanorings show strong confinement in near-field coupling, less extinction coefficient, and also lower scattering into the far field during energy transportation at the C-band spectrum. Due to the nanoring's particular properties, transportation losses would be lower than in other nanoparticle-based structures like nanospheres, nanorods, and nanodisks. We demonstrate that Au nanorings surrounded by an SiO2 host yield suitable conditions to excite surface Plasmons inside the metal. Comparison between Y-and T-splitters shows that the Y-splitter is a more suitable alternative than the T-splitter, with higher transmission efficiency and lower losses. In the Y-structure, the power ratio (time-averaged power across the surface) is 24.7%, and electromagnetic energy transportation takes place at group velocities in the vicinity of 30% of the velocity of light; transmission losses are γT=3 dB/655 nm and γT=3 dB/443 nm. In this work, we have applied the finite-difference time-domain method (FDTD) to simulate and indicate the properties of structures.

  18. Rabi and Larmor nuclear quadrupole double resonance of spin-1 nuclei

    NASA Astrophysics Data System (ADS)

    Prescott, D. W.; Malone, M. W.; Douglass, S. P.; Sauer, K. L.

    2012-12-01

    We demonstrate the creation of two novel double-resonance conditions between spin-1 and spin-1/2 nuclei in a crystalline solid. Using a magnetic field oscillating at the spin-1/2 Larmor frequency, the nuclear quadrupole resonance (NQR) frequency is matched to the Rabi or Rabi plus Larmor frequency, as opposed to the Larmor frequency as is conventionally done. We derive expressions for the cross-polarization rate for all three conditions in terms of the relevant secular dipolar Hamiltonian, and demonstrate with these expressions how to measure the strength of the heterogenous dipolar coupling using only low magnetic fields. In addition, the combination of different resonance conditions permits the measurement of the spin-1/2 angular momentum vector using spin-1 NQR, opening up an alternate modality for the monitoring of low-field nuclear magnetic resonance. We use ammonium nitrate to explore these resonance conditions, and furthermore use the oscillating field to increase the signal-to-noise ratio per time by a factor of 3.5 for NQR detection of this substance.

  19. Structure functions in the polarized Drell-Yan processes with spin-1/2 and spin-1 hadrons. II. Parton model

    NASA Astrophysics Data System (ADS)

    Hino, S.; Kumano, S.

    1999-09-01

    We analyze the polarized Drell-Yan processes with spin-1/2 and spin-1 hadrons in a parton model. Quark and antiquark correlation functions are expressed in terms of possible combinations of Lorentz vectors and pseudovectors with the constrains of Hermiticity, parity conservation, and time-reversal invariance. Then, we find tensor-polarized distributions for a spin-1 hadron. The naive parton model predicts that there exist 19 structure functions. However, there are only four or five nonvanishing structure functions, depending on whether the cross section is integrated over the virtual-photon transverse momentum Q-->T or the limit QT-->0 is taken. One of the finite structure functions is related to the tensor-polarized distribution b1, and it does not exist in the proton-proton reactions. The vanishing structure functions should be associated with higher-twist physics. The tensor distributions can be measured by the quadrupole polarization measurements. The Drell-Yan process has an advantage over the lepton reaction in the sense that the antiquark tensor polarization could be extracted rather easily.

  20. The Effect of Side-Chain Length on the Solid-State Structure and Optical Properties of F8BT: A DFT Study

    NASA Astrophysics Data System (ADS)

    Javad Eslamibidgoli, Mohammad; Lagowski, Jolanta B.

    2012-02-01

    Using the long-range corrected hybrid density functional theory (DFT/B97D) approach, we have performed bulk solid state calculations to investigate the influence of side-chain length on the molecular packing and optical properties of poly (9,9-di-n-octylfluorene-alt-benzothiadiazole) or F8BT. Two different packing structures, the lamellar and nearly hexagonal, were obtained corresponding to longer and shorter side-chains respectively. This behavior can be attributed to the micro-phase separations between the flexible side-chains and the rigid backbones and is in agreement with previous investigations for other hairy-rod polymers. In addition, as a result of the efficient inter-chain interactions for the lamellar structure, the dihedral angle between the F8 and BT units is reduced providing a more planar configuration for the backbone which leads to the decreased band gap (by 0.2-0.3 eV) in comparison to the hexagonal phase and the gas phase with no side-chain. Time-dependent DFT (TDDFT/B3LYP) was also used to study the excited states of the monomer of F8BT optimized in solid-state structures with different side-chain lengths. It is found that the absorption spectrum is red shifted for the polymers with lamellar structure relative to the polymers in hexagonal and gas phases.

  1. Analytical solutions for the spin-1 Bose-Einstein condensate in a harmonic trap

    NASA Astrophysics Data System (ADS)

    Shi, Yu-Ren; Wang, Xue-Ling; Wang, Guang-Hui; Liu, Cong-Bo; Zhou, Zhi-Gang; Yang, Hong-Juan

    2013-06-01

    The homotopy analysis method and Galerkin spectral method are applied to find the analytical solutions for the Gross-Pitaevskii equations, a set of nonlinear Schrödinger equation used in simulation of spin-1 Bose-Einstein condensates trapped in a harmonic potential. We investigate the one-dimensional case and get the approximate analytical solutions successfully. Comparisons between the analytical solutions and the numerical solutions have been made. The results indicate that they are in agreement well with each other when the atomic interaction is weakly. We also find a class of exact solutions for the stationary states of the spin-1 system with harmonic potential for a special case.

  2. Low half-wave voltage Y-branch electro-optic polymer modulator based on side-chain polyurethane-imide

    NASA Astrophysics Data System (ADS)

    Tang, Jie; Wang, Long-De; Li, Ruo-Zhou; Zhang, Qiang; Zhang, Tong

    2016-06-01

    A Y-branch electro-optic (EO) polymer modulator has been designed and fabricated. High performance side-chain polyurethane-imide (PUI) with a high EO coefficient of larger than 50 pm/V and a moderate glass-transition temperature (Tg) of 206∘C is used as EO polymer core layer of the modulator. The fabricated phase modulator exhibits a low half-wave voltage of 1.94 V at 1550 nm in single arm modulation with 1 cm EO interaction length and 2 cm total length. The results show that the modulator fabricated by side-chain PUI EO materials possesses potential applications in low driving voltage and low cost optical systems.

  3. Transferring information through a mixed-five-spin chain channel

    NASA Astrophysics Data System (ADS)

    Arian Zad, Hamid; Movahhedian, Hossein

    2016-08-01

    We initially introduce one-dimensional mixed-five-spin chain with Ising-XY model which includes mixture of spins-1/2 and spins-1. Here, it is considered that nearest spins (1,1/2) have Ising-type interaction and nearest spins (1/2,1/2) have both XY-type and Dzyaloshinskii-Moriya (DM) interactions together. Nearest spins (1,1) have XX Heisenberg interaction. This system is in the vicinity of an external homogeneous magnetic field B in thermal equilibrium state. We promote the quantum information transmitting protocol verified for a normal spin chain with simple model (refer to Rossini D, Giovannetti V and Fazio R 2007 Int. J. Quantum Infor. 5 439) (widely in reference: Giovannetti V and Fazio R 2005 Phys. Rev. A 71 032314) by means of considering the suggested mixed-five-spin chain as a quantum communication channel for transmitting both qubits and qutrits ideally. Hence, we investigate some useful quantities such as quantum capacity and quantum information transmission rate for the system. Finally, we conclude that, when the DM interaction between spins (1/2,1/2) increases the system is a more ideal channel for transmitting information.

  4. On the uniqueness of paths for spin-0 and spin-1 quantum mechanics

    NASA Astrophysics Data System (ADS)

    Struyve, W.; De Baere, W.; De Neve, J.; De Weirdt, S.

    2004-02-01

    The uniqueness of the Bohmian particle interpretation of the Kemmer equation, which describes massive spin-0 and spin-1 particles, is discussed. Recently the same problem for spin-(1/2) was dealt with by Holland. It appears that the uniqueness of boson paths can be enforced under well determined conditions. This in turn fixes the nonrelativistic particle equations of the nonrelativistic Schrödinger equation, which appear to correspond with the original definitions given by de Broglie and Bohm only in the spin-0 case. Similar to the spin-(1/2) case, there appears an additional spin-dependent term in the guidance equation in the spin-1 case. We also discuss the ambiguity associated with the introduction of an electromagnetic coupling in the Kemmer theory. We argue that when the minimal coupling is correctly introduced, then the current constructed from the energy-momentum tensor is no longer conserved. Hence this current cannot serve as a particle probability four-vector.

  5. Realization of a Quantum Integer-Spin Chain with Controllable Interactions

    DTIC Science & Technology

    2015-06-17

    Areas: Atomic and Molecular Physics, Condensed Matter Physics, Quantum Physics I. INTRODUCTION Amajor area of current research is devoted to developing...protocols or for simulating lattice spin models. In this paper, we use trapped atomic ions to simulate a chain of spin-1 particles with tunable, long- range...IMPLEMENTATION The spin-1 chain is represented by a string of 171Ybþ atoms held in a linear Paul trap. Three hyperfine levels in the 2S1=2 ground

  6. Chiral phase from three-spin interactions in an optical lattice

    SciTech Connect

    D'Cruz, Christian; Pachos, Jiannis K.

    2005-10-15

    A spin-1/2 chain model that includes three-spin interactions can effectively describe the dynamics of two species of bosons trapped in an optical lattice with a triangular-ladder configuration. A perturbative theoretical approach and numerical study of its ground state is performed that reveals a rich variety of phases and criticalities. We identify phases with periodicity one, two, or three, as well as critical points that belong in the same universality class as the Ising or the three-state Potts model. We establish a range of parameters, corresponding to a large degeneracy present between phases with period 2 and 3, that nests a gapless incommensurate chiral phase.

  7. Comparison of the exact thermodynamics of the AF Blume-Emery-Grifiths and of the spin-1 ferromagnetic Ising models

    NASA Astrophysics Data System (ADS)

    Corrêa Silva, E. V.; Thomaz, M. T.

    2016-11-01

    We study in detail the thermodynamics of the anti-ferromagnetic Blume-Emery-Griffiths (AF BEG) model in the presence of a longitudinal magnetic field. Its thermodynamics is derived from the exact Helmholtz free energy (HFE) of the model, valid for T > 0. Numerical simulations of this model on a periodic space chain with 10 sites (N=10) yield the energy spectra of the model at K/J = 2 for D/J = 1 and D/J = 2, thus helping us compare, for a broad range of temperature, how some (per site) thermodynamic functions with the same value of K/J but distinct values of D/J behave, namely: the z-component of the magnetization, the specific heat and the entropy. These thermodynamic functions of the AF BEG model at K/|J| = 2 are compared to those of the spin-1 ferromagnetic Ising model with D/|J| > 1.5, for which the T=0 phase diagrams of both models are identical. This comparison is done in a large interval of temperature.

  8. Dynamics of polar-core spin vortices in a ferromagnetic spin-1 Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Williamson, Lewis A.; Blakie, P. B.

    2016-12-01

    A ferromagnetic spin-1 condensate supports polar-core spin vortices (PCVs) in the easy plane phase. We derive a model for the dynamics of these PCVs using a variational Lagrangian approach. The PCVs behave as massive charged particles interacting under the two-dimensional Coulomb interaction, with the mass arising from interaction effects within the vortex core. We compare this model to numerical simulations of the spin-1 Gross-Pitaevskii equations and find semiquantitative agreement. In addition, the numerical results suggest that the PCV core couples to spin waves, and this affects the PCV dynamics even far from the core. We identify areas of further research that could extend the model of PCV dynamics presented here.

  9. Violation of Bell’s inequality in a spin 1/2 quantum magnet

    SciTech Connect

    Chakraborty, Tanmoy Singh, Harkirat Mitra, Chiranjib

    2014-04-24

    Violation of Bell’s inequality test has been established as an efficient tool to determine the presence of entanglement in quantum spin 1/2 magnets. Herein, macroscopic thermodynamic quantities, namely, magnetic susceptibility and specific heat have been employed to perform Bell’s inequality test for [NH{sub 4}CuPO{sub 4}, H{sub 2}O], a spin 1/2 antiferromagnet with nearest neighbor interactions. The mean value of the Bell operator is quantified and plotted as a function of temperature. The threshold temperature is determined above which the Bell’s inequality is not violated and a good consistency is found between the analyses done on magnetic and thermal data.

  10. Random crystal field effect on the magnetic and hysteresis behaviors of a spin-1 cylindrical nanowire

    NASA Astrophysics Data System (ADS)

    Zaim, N.; Zaim, A.; Kerouad, M.

    2017-02-01

    In this work, the magnetic behavior of the cylindrical nanowire, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms is studied in the presence of a random crystal field interaction. Based on Metropolis algorithm, the Monte Carlo simulation has been used to investigate the effects of the concentration of the random crystal field p, the crystal field D and the shell exchange interaction Js on the phase diagrams and the hysteresis behavior of the system. Some characteristic behaviors have been found, such as the first and second-order phase transitions joined by tricritical point for appropriate values of the system parameters, triple and isolated critical points can be also found. Depending on the Hamiltonian parameters, single, double and para hysteresis regions are explicitly determined.

  11. Power conversion efficiency enhancement in OPV devices using spin 1/2 molecular additives

    NASA Astrophysics Data System (ADS)

    Basel, Tek; Vardeny, Valy; Yu, Luping

    2014-03-01

    We investigated the power conversion efficiency of bulk heterojunction OPV cells based on the low bandgap polymer PTB7, blend with C61-PCBM. We also employed the technique of photo-induced absorption, PA; electrical and magneto-PA (MPA) techniques to understand the details of the photocurrent generation process in this blend. We found that spin 1/2 molecular additives, such as Galvinoxyl (Gxl) radicals dramatically enhance the cell efficiency; we obtained 20% increase in photocurrent upon Gxl doping with 2% weight. We explain our finding by the ability of the spin 1/2 radicals to interfere with the known major loss mechanism in the cell due to recombination of charge transfer exciton at the D-A interface via triplet excitons in the polymer donors. Supported by National Science Foundation-Material Science & Engineering Center (NSF-MRSEC), University of Utah.

  12. Topological basis associated with B-M-W algebra: Two-spin-1/2 realization

    NASA Astrophysics Data System (ADS)

    Wang, Gangcheng; Sun, Chunfang; Liu, Bo; Liu, Ying; Zhang, Yan; Xue, Kang

    2015-01-01

    In this letter, we study the two-spin-1/2 realization for the Birman-Murakami-Wenzl (B-M-W) algebra and the corresponding Yang-Baxter R ˘ (θ , ϕ) matrix. Based on the two-spin-1/2 realization for the B-M-W algebra, the three-dimensional topological space, which is spanned by topological basis, is investigated. By means of such topological basis realization, the four-dimensional Yang-Baxter R ˘ (θ , ϕ) can be reduced to Wigner DJ function with J = 1. The entanglement and Berry phase in the spectral parameter space are also explored. The results show that one can obtain a set of entangled basis via Yang-Baxter R ˘ (θ , ϕ) matrix acting on the standard basis, and the entanglement degree is maximum when the R˘i (θ , ϕ) turns to the braiding operator.

  13. Spin-incoherent one-dimensional spin-1 Bose Luttinger liquid

    NASA Astrophysics Data System (ADS)

    Jen, H. H.; Yip, S.-K.

    2016-09-01

    We investigate spin-incoherent Luttinger liquid of a one-dimensional spin-1 Bose gas in a harmonic trap. In this regime highly degenerate spin configurations emerge since the energy splitting between different spin states is much less than the thermal energy of the system, while the temperature is low enough that the lowest energetic orbitals are occupied. As an example we numerically study the momentum distribution of a one-dimensional spin-1 Bose gas in Tonks-Girardeau gas limit and in the sector of zero magnetization. We find that the momentum distributions broaden as the number of atoms increase due to the averaging of spin function overlaps. Large momentum (p ) asymptotic is analytically derived, showing the universal 1 /p4 dependence. We demonstrate that the spin-incoherent Luttinger liquid has a momentum distribution also distinct from spinless bosons at finite temperature.

  14. Next-to-leading order gravitational spin1-spin2 coupling with Kaluza-Klein reduction

    SciTech Connect

    Levi, Michele

    2010-09-15

    We use the recently proposed Kaluza-Klein (KK) reduction over the time dimension, within an effective field theory (EFT) approach, to calculate the next-to-leading order gravitational spin1-spin2 interaction between two spinning compact objects. It is shown here that to next-to-leading order in the spin1-spin2 interaction, the reduced KK action within the stationary approximation is sufficient to describe the gravitational interaction, and that it simplifies calculation substantially. We also find here that the gravitomagnetic vector field defined within the KK decomposition of the metric mostly dominates the mediation of the interaction. Our results coincide with those calculated in the Arnowitt-Deser-Misner Hamiltonian formalism, and we provide another explanation for the discrepancy with the result previously derived within the EFT approach, thus demonstrating clearly the equivalence of the Arnowitt-Deser-Misner Hamiltonian formalism and the EFT action approach.

  15. Spin-superflow turbulence in spin-1 ferromagnetic spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Fujimoto, Kazuya; Tsubota, Makoto

    2014-07-01

    Spin-superflow turbulence (SST) in spin-1 ferromagnetic spinor Bose-Einstein condensates is theoretically and numerically studied by using the spin-1 spinor Gross-Pitaevskii (GP) equations. SST is turbulence in which the disturbed spin and superfluid velocity fields are coupled. Applying the Kolmogorov-type dimensional scaling analysis to the hydrodynamic equations of spin and velocity fields, we theoretically find that the -5/3 and -7/3 power laws can appear in spectra of the superflow kinetic and the spin-dependent interaction energies, respectively. Our numerical calculation of the GP equations with a phenomenological small-scale energy dissipation confirms SST with the coexistence of disturbed spin and superfluid velocity field with two power laws.

  16. SU(3) quantum critical model emerging from a spin-1 topological phase

    NASA Astrophysics Data System (ADS)

    Rao, Wen-Jia; Zhu, Guo-Yi; Zhang, Guang-Ming

    2016-04-01

    Different from the spin-1 Haldane gapped phase, we propose an SO(3) spin-1 matrix product state (MPS), whose parent Hamiltonian includes three-site spin interactions. From the entanglement spectrum of a single block with l sites, an enlarged SU(3) symmetry is identified in the edge states, which are conjugate to each other for the l =even block but identical for the l =odd block. By blocking this state, the blocked MPS explicitly displays the SU(3) symmetry with two distinct structures. Under a symmetric bulk bipartition with a sufficient large block length l =even , the entanglement Hamiltonian (EH) of the reduced system characterizes a spontaneous dimerized phase with twofold degeneracy. However, for the block length l =odd , the corresponding EH represents an SU(3) quantum critical point with delocalized edge quasiparticles, and the critical field theory is described by the SU(3) level-1 Wess-Zumino-Witten conformal field theory.

  17. Distinct spin liquids and their transitions in spin-1/2 XXZ kagome antiferromagnets.

    PubMed

    He, Yin-Chen; Chen, Yan

    2015-01-23

    By using the density matrix renormalization group approach, we study spin-liquid phases of spin-1/2 XXZ kagome antiferromagnets. We find that the emergence of the spin-liquid phase is independent of the anisotropy of the XXZ interaction. In particular, the two extreme limits-the Ising (a strong S^{z} interaction) and the XY (zero S^{z} interaction)-host the same spin-liquid phases as the isotropic Heisenberg model. Both a time-reversal-invariant spin liquid and a chiral spin liquid with spontaneous time-reversal symmetry breaking are obtained. We show that they evolve continuously into each other by tuning the second- and the third-neighbor interactions. And last, we discuss possible implications of our results for the nature of spin liquid in nearest-neighbor XXZ kagome antiferromagnets, including the nearest-neighbor spin-1/2 kagome antiferromagnetic Heisenberg model.

  18. Hawking radiation of spin-1 particles from a three-dimensional rotating hairy black hole

    SciTech Connect

    Sakalli, I.; Ovgun, A.

    2015-09-15

    We study the Hawking radiation of spin-1 particles (so-called vector particles) from a three-dimensional rotating black hole with scalar hair using a Hamilton–Jacobi ansatz. Using the Proca equation in the WKB approximation, we obtain the tunneling spectrum of vector particles. We recover the standard Hawking temperature corresponding to the emission of these particles from a rotating black hole with scalar hair.

  19. Student understanding of the time dependence of spin-1/2 systems

    NASA Astrophysics Data System (ADS)

    Passante, Gina

    2016-03-01

    Time dependence is one of the most difficult concepts in quantum mechanics and one that is relevant throughout instruction. In this talk I will explore student responses to written questions regarding the time dependence for spin-1/2 systems after lecture instruction and again after a tutorial on the topic. These questions were asked in a junior-level quantum mechanics course that is taught using a spins-first curriculum.

  20. Metastability in the Spin-1 Blume–Emery–Griffiths Model within Constant Coupling Approximation

    NASA Astrophysics Data System (ADS)

    Ekiz, C.

    2017-02-01

    In this paper, the equilibrium properties of spin-1 Blume–Emery–Griffiths model are studied by using constant-coupling approximation. The dipolar and quadrupolar order parameters, the stable, metastable and unstable states and free energy of the model are investigated. The states are defined in terms of local minima of the free energy of system. The numerical calculations are presented for several values of exchange interactions on the simple cubic lattice with q = 6.

  1. Thermodynamic quantities and phase diagrams of spin-1 Blume-Capel bilayer Ising model

    NASA Astrophysics Data System (ADS)

    Kantar, Ersin; Ertaş, Mehmet

    2015-06-01

    An effective field theory with correlations has been used to study the critical behavior of the spin-1 Blume-Capel bilayer Ising model on a square lattice. The effects of the Hamiltonian parameters on thermodynamic quantities and phase diagrams are investigated in detail. We found that the system exhibits the first and the second order transitions as well as tricritical point. Furthermore, we have observed that the change of tricritical point values depends on interaction parameters.

  2. The paramagnetic properties of one-dimensional spin-1 single-ion anisotropic ferromagnet

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Jun; Chen, Yuan; Fu, Liang-Jie; Lin, Rui-Na; Song, Chuang-Chuang

    2009-06-01

    One-dimensional single-ion anisotropic ferromagnet with spin-1 is investigated by means of Green's function treatment in this paper. The model Hamiltonian includes a Heisenberg ferromagnetic term, an external magnetic field, and a second-order single-ion anisotropy. The magnetic properties of the system are treated by the random phase approximation for the exchange interaction term and the Anderson-Callen approximation for the anisotropy term. Our paramagnetic results are in agreement with the other theoretical results.

  3. Green's function study of a mixed spin-1 and spin-3/2 Heisenberg ferrimagnetic system

    NASA Astrophysics Data System (ADS)

    Mert, Gülistan

    2012-09-01

    The magnetic properties of a mixed spin-1 and spin-3/2 Heisenberg ferrimagnetic system on a square lattice are investigated by using the double-time temperature-dependent Green's function technique. In order to decouple the higher order Green's functions, Anderson and Callen's decoupling and random phase approximations have been used. The nearest- and next-nearest-neighbor interactions and the single-ion anisotropies are considered and their effects on compensation and critical temperature are studied.

  4. What did we learn from the Aharonov-Bohm effect? Is spin 1/2 different?

    SciTech Connect

    Peshkin, M.

    1994-06-01

    I review what has been learned about fundamental issues in quantum mechanics from the Aharonov-Bohm effect. Following that, I consider the Aharonov-Casher effect and the Scalar Aharonov-Bohm effect, in both of which a spin-1/2 particle interacts with a local electromagnetic field through its magnetic moment, and conclude that those effects can be described as observable effects of local torques.

  5. Performance of an irreversible quantum Carnot engine with spin 1/2

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Chen, Lingen; Wu, Shuang; Sun, Fengrui; Wu, Chih

    2006-06-01

    The purpose of this paper is to investigate the effect of quantum properties of the working medium on the performance of an irreversible Carnot cycle with spin 1/2. The optimal relationship between the dimensionless power output P* versus the efficiency η for the irreversible quantum Carnot engine with heat leakage and other irreversible losses is derived. Especially, the performances of the engine at low temperature limit and at high temperature limit are discussed.

  6. Classification of trivial spin-1 tensor network states on a square lattice

    NASA Astrophysics Data System (ADS)

    Lee, Hyunyong; Han, Jung Hoon

    2016-09-01

    Classification of possible quantum spin liquid (QSL) states of interacting spin-1/2's in two dimensions has been a fascinating topic of condensed matter for decades, resulting in enormous progress in our understanding of low-dimensional quantum matter. By contrast, relatively little work exists on the identification, let alone classification, of QSL phases for spin-1 systems in dimensions higher than one. Employing the powerful ideas of tensor network theory and its classification, we develop general methods for writing QSL wave functions of spin-1 respecting all the lattice symmetries, spin rotation, and time reversal with trivial gauge structure on the square lattice. We find 25 distinct classes characterized by five binary quantum numbers. Several explicit constructions of such wave functions are given for bond dimensions D ranging from two to four, along with thorough numerical analyses to identify their physical characters. Both gapless and gapped states are found. The topological entanglement entropy of the gapped states is close to zero, indicative of topologically trivial states. In D =4 , several different tensors can be linearly combined to produce a family of states within the same symmetry class. A rich "phase diagram" can be worked out among the phases of these tensors, as well as the phase transitions among them. Among the states we identified in this putative phase diagram is the plaquette-ordered phase, gapped resonating valence bond phase, and a critical phase. A continuous transition separates the plaquette-ordered phase from the resonating valence bond phase.

  7. Interacting spin-orbit-coupled spin-1 Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Sun, Kuei; Qu, Chunlei; Xu, Yong; Zhang, Yongping; Zhang, Chuanwei

    2016-02-01

    The recent experimental realization of spin-orbit (SO) coupling for spin-1 ultracold atoms opens an interesting avenue for exploring SO-coupling-related physics in large-spin systems, which is generally unattainable in electronic materials. In this paper, we study the effects of interactions between atoms on the ground states and collective excitations of SO-coupled spin-1 Bose-Einstein condensates (BECs) in the presence of a spin-tensor potential. We find that ferromagnetic interaction between atoms can induce a stripe phase exhibiting in-phase or out-of-phase modulating patterns between spin-tensor and zero-spin-component density waves. We characterize the phase transitions between different phases using the spin-tensor density as well as the collective dipole motion of the BEC. We show that there exists a double maxon-roton structure in the Bogoliubov-excitation spectrum, attributed to the three band minima of the SO-coupled spin-1 BEC.

  8. Spin-1 Ising model: exact damage-spreading relations and numerical simulations.

    PubMed

    Anjos, A S; Mariz, A M; Nobre, F D; Araujo, I G

    2008-09-01

    The nearest-neighbor-interaction spin-1 Ising model is investigated within the damage-spreading approach. Exact relations involving quantities computable through damage-spreading simulations and thermodynamic properties are derived for such a model, defined in terms of a very general Hamiltonian that covers several spin-1 models of interest in the literature. Such relations presuppose translational invariance and hold for any ergodic dynamical procedure, leading to an efficient tool for obtaining thermodynamic properties. The implementation of the method is illustrated through damage-spreading simulations for the ferromagnetic spin-1 Ising model on a square lattice. The two-spin correlation function and the magnetization are obtained, with precise estimates of their associated critical exponents and of the critical temperature of the model, in spite of the small lattice sizes considered. These results are in good agreement with the universality hypothesis, with critical exponents in the same universality class of the spin- 12 Ising model. The advantage of the present method is shown through a significant reduction of finite-size effects by comparing its results with those obtained from standard Monte Carlo simulations.

  9. Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl3 Nanosheets.

    PubMed

    Weber, Daniel; Schoop, Leslie M; Duppel, Viola; Lippmann, Judith M; Nuss, Jürgen; Lotsch, Bettina V

    2016-06-08

    Spin 1/2 honeycomb materials have gained substantial interest due to their exotic magnetism and possible application in quantum computing. However, in all current materials out-of-plane interactions are interfering with the in-plane order, hence a true 2D magnetic honeycomb system is still in demand. Here, we report the exfoliation of the magnetic semiconductor α-RuCl3 into the first halide monolayers and the magnetic characterization of the spin 1/2 honeycomb arrangement of turbostratically stacked RuCl3 monolayers. The exfoliation is based on a reductive lithiation/hydration approach, which gives rise to a loss of cooperative magnetism due to the disruption of the spin 1/2 state by electron injection into the layers. The restacked, macroscopic pellets of RuCl3 layers lack symmetry along the stacking direction. After an oxidative treatment, cooperative magnetism similar to the bulk is restored. The oxidized pellets of restacked single layers feature a magnetic transition at TN = 7 K if the field is aligned parallel to the ab-plane, while the magnetic properties differ from bulk α-RuCl3 if the field is aligned perpendicular to the ab-plane. The deliberate introduction of turbostratic disorder to manipulate the magnetic properties of RuCl3 is of interest for research in frustrated magnetism and complex magnetic order as predicted by the Kitaev-Heisenberg model.

  10. Renormalization and additional degrees of freedom within the chiral effective theory for spin-1 resonances

    SciTech Connect

    Kampf, Karol; Novotny, Jiri; Trnka, Jaroslav

    2010-06-01

    We study in detail various aspects of the renormalization of the spin-1 resonance propagator in the effective field theory framework. First, we briefly review the formalisms for the description of spin-1 resonances in the path integral formulation with the stress on the issue of propagating degrees of freedom. Then we calculate the one-loop 1{sup --} meson self-energy within the resonance chiral theory in the chiral limit using different methods for the description of spin-1 particles, namely, the Proca field, antisymmetric tensor field, and the first-order formalisms. We discuss in detail technical aspects of the renormalization procedure which are inherent to the power-counting nonrenormalizable theory and give a formal prescription for the organization of both the counterterms and one-particle irreducible graphs. We also construct the corresponding propagators and investigate their properties. We show that the additional poles corresponding to the additional one-particle states are generated by loop corrections, some of which are negative norm ghosts or tachyons. We count the number of such additional poles and briefly discuss their physical meaning.

  11. Decorated Shastry-Sutherland lattice in the spin-(1)/(2) magnet CdCu2(BO3)2

    NASA Astrophysics Data System (ADS)

    Janson, O.; Rousochatzakis, I.; Tsirlin, A. A.; Richter, J.; Skourski, Yu.; Rosner, H.

    2012-02-01

    We report the microscopic magnetic model for the spin-1/2 Heisenberg system CdCu2(BO3)2, one of the few quantum magnets showing the 1/2-magnetization plateau. Recent neutron diffraction experiments on this compound [M. Hase , Phys. Rev. BPLRBAQ0556-280510.1103/PhysRevB.80.104405 80, 104405 (2009)] evidenced long-range magnetic order, inconsistent with the previously suggested phenomenological magnetic model of isolated dimers and spin chains. Based on extensive density functional theory band structure calculations, exact diagonalizations, quantum Monte Carlo simulations, third-order perturbation theory as well as high-field magnetization measurements, we find that the magnetic properties of CdCu2(BO3)2 are accounted for by a frustrated quasi-2D magnetic model featuring four inequivalent exchange couplings: the leading antiferromagnetic coupling Jd within the structural Cu2O6 dimers, two interdimer couplings Jt1 and Jt2, forming magnetic tetramers, and a ferromagnetic coupling Jit between the tetramers. Based on comparison to the experimental data, we evaluate the ratios of the leading couplings Jd : Jt1 : Jt2 : Jit = 1 : 0.20 : 0.45 : -0.30, with Jd of about 178 K. The inequivalence of Jt1 and Jt2 largely lifts the frustration and triggers long-range antiferromagnetic ordering. The proposed model accounts correctly for the different magnetic moments localized on structurally inequivalent Cu atoms in the ground-state magnetic configuration. We extensively analyze the magnetic properties of this model, including a detailed description of the magnetically ordered ground state and its evolution in magnetic field with particular emphasis on the 1/2-magnetization plateau. Our results establish remarkable analogies to the Shastry-Sutherland model of SrCu2(BO3)2, and characterize the closely related CdCu2(BO3)2 as a material realization for the spin-1/2 decorated anisotropic Shastry-Sutherland lattice.

  12. Stability analysis for bad cavity lasers using inhomogeneously broadened spin-1/2 atoms as a gain medium

    NASA Astrophysics Data System (ADS)

    Kazakov, G. A.; Schumm, T.

    2017-02-01

    Bad cavity lasers are experiencing renewed interest in the context of active optical frequency standards, due to their enhanced robustness against fluctuations of the laser cavity. The gain medium would consist of narrow-linewidth atoms, either trapped inside the cavity or intersecting the cavity mode dynamically. A series of effects like the atoms finite velocity distribution, atomic interactions, or interactions of realistic multilevel atoms with auxiliary or stray fields can lead to an inhomogeneous broadening of the atomic gain profile. This causes the emergence of unstable regimes of laser operation, characterized by complex temporal patterns of the field amplitude. We study the steady-state solutions and their stability for the metrology-relevant case of a bad cavity laser with spin-1/2 atoms, such as 171Yb, interacting with an external magnetic field. For the stability analysis, we present an efficient method, which can be applied to a broad class of single-mode bad cavity lasers with inhomogeneously broadened multilevel atoms acting as a gain medium.

  13. High-temperature series expansion for spin-1/2 Heisenberg models

    NASA Astrophysics Data System (ADS)

    Hehn, Andreas; van Well, Natalija; Troyer, Matthias

    2017-03-01

    We present a high-temperature series expansion code for spin-1/2 Heisenberg models on arbitrary lattices. As an example we demonstrate how to use the application for an anisotropic triangular lattice with two independent couplings J1 and J2 and calculate the high-temperature series of the magnetic susceptibility and the static structure factor up to 12th and 10th order, respectively. We show how to extract effective coupling constants for the triangular Heisenberg model from experimental data on Cs2CuBr4.

  14. Quantum Kibble-Zurek Mechanism in a Spin-1 Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Anquez, M.; Robbins, B. A.; Bharath, H. M.; Boguslawski, M.; Hoang, T. M.; Chapman, M. S.

    2016-04-01

    The dynamics of a quantum phase transition are explored using slow quenches from the polar to the broken-axisymmetry phases in a small spin-1 ferromagnetic Bose-Einstein condensate. Measurements of the evolution of the spin populations reveal a power-law scaling of the temporal onset of excitations versus quench speed as predicted from quantum extensions of the Kibble-Zurek mechanism. The satisfactory agreement of the measured scaling exponent with the analytical theory and numerical simulations provides experimental confirmation of the quantum Kibble-Zurek model.

  15. Exotic Ground State Phases of S=1/2 Heisenberg Δ-Chain with Ferromagnetic Main Chain

    NASA Astrophysics Data System (ADS)

    Hida, Kazuo

    2008-04-01

    The ground state phase diagram of the spin-1/2 Heisenberg frustrated Δ-chain with a ferromagnetic main chain is investigated. In addition to the ferromagnetic phase, various nonmagnetic ground states are found. If the ferromagnetic coupling between apical spins and the main chain is strong, this model is approximated by a spin-1 bilinear-biquadratic chain and the spin quadrupolar phase with spin-2 gapless excitation is realized in addition to the Haldane and ferromagnetic phases. In the regime where the coupling between the apical spins and the main chain is weak, the numerical results which suggest the possibility of a series of phase transitions among different nonmagnetic phases are obtained. Physical pictures of these phases are discussed based on the numerical results.

  16. Relativistic solutions for the spin-1 particles in the two-dimensional Smorodinsky–Winternitz potential

    SciTech Connect

    Bahar, M.K.; Yasuk, F.

    2014-05-15

    In this study, we investigate relativistic spin-1 particles in the V(x,y)=(ω{sub 0}{sup 2}/2)(x{sup 2}+y{sup 2})+k{sub 1}/x{sup 2}+k{sub 2}/y{sup 2} type of Smorodinsky–Winternitz potentials. In the first case, since this Smorodinsky–Winternitz potential has two dimensions, the system was transformed into polar coordinates from Cartesian coordinates. By using Duffin–Kemmer–Petiau formalism with the non-central Smorodinsky–Winternitz potential in two dimensions, the exact bound state energy eigenvalues and corresponding eigenfunctions were determined within the framework of the asymptotic iteration method. Bound state eigenfunctions were obtained in terms of confluent hypergeometric functions. -- Highlights: •We introduce formalism of the DKP equation in two dimensions. •The DKP equation with S–W potential is considered for spin-1 particles. •In order to solve the DKP equation, we explain the asymptotic iteration method (AIM). •Bound state energy eigenvalues and eigenfunctions are obtained by using AIM.

  17. Quantum spin-1 anisotropic ferromagnetic Heisenberg model in a crystal field: a variational approach.

    PubMed

    Carvalho, D C; Plascak, J A; Castro, L M

    2013-09-01

    A variational approach based on Bogoliubov inequality for the free energy is employed in order to treat the quantum spin-1 anisotropic ferromagnetic Heisenberg model in the presence of a crystal field. Within the Bogoliubov scheme an improved pair approximation has been used. The temperature-dependent thermodynamic functions have been obtained and provide much better results than the previous simple mean-field scheme. In one dimension, which is still nonintegrable for quantum spin-1, we get the exact results in the classical limit, or near-exact results in the quantum case, for the free energy, magnetization, and quadrupole moment, as well for the transition temperature. In two and three dimensions the corresponding global phase diagrams have been obtained as a function of the parameters of the Hamiltonian. First-order transition lines, second-order transition lines, tricritical and tetracritical points, and critical endpoints have been located through the analysis of the minimum of the Helmholtz free energy and a Landau-like expansion in the approximated free energy. Only first-order quantum transitions have been found at zero temperature. Limiting cases, such as isotropic Heisenberg, Blume-Capel, and Ising models, have been analyzed and compared to previous results obtained from other analytical approaches as well as from Monte Carlo simulations.

  18. Effects of nongauge potentials on the spin-1/2 Aharonov-Bohm problem

    SciTech Connect

    Hagen, C.R. )

    1993-12-15

    Some recent work has attempted to show that the singular solutions which are known to occur in the Dirac description of spin-1/2 Aharonov-Bohm scattering can be eliminated by the inclusion of strongly repulsive potentials inside the flux tube. It is shown here that these calculations are generally unreliable since they necessarily require potentials which lead to the occurrence of Klein's paradox. To avoid that difficulty the problem is solved within the framework of the Galilean spin-1/2 wave equation which is free of that particular complication. It is then found that the singular solutions can be eliminated provided that the nongauge potential is made energy dependent. The effect of the inclusion of a Coulomb potential is also considered with the result being that the range of flux parameter for which singular solutions are allowed is only one-half as great as in the pure Aharonov-Bohm limit. Expressions are also obtained for the binding energies which can occur in the combined Aharonov-Bohm-Coulomb system.

  19. Exploring ground states and excited states of spin-1 Bose-Einstein condensates by continuation methods

    SciTech Connect

    Chen, Jen-Hao; Chern, I-Liang; Wang Weichung

    2011-03-20

    A pseudo-arclength continuation method (PACM) is employed to compute the ground state and excited state solutions of spin-1 Bose-Einstein condensates (BEC). The BEC is governed by the time-independent coupled Gross-Pitaevskii equations (GPE) under the conservations of the mass and magnetization. The coupling constants that characterize the spin-independent and spin-exchange interactions are chosen as the continuation parameters. The continuation curve starts from a ground state or an excited state with very small coupling parameters. The proposed numerical schemes allow us to investigate the effect of the coupling constants and study the bifurcation diagrams of the time-independent coupled GPE. Numerical results on the wave functions and their corresponding energies of spin-1 BEC with repulsive/attractive and ferromagnetic/antiferromagnetic interactions are presented. Furthermore, we reveal that the component separation and population transfer between the different hyperfine states can only occur in excited states due to the spin-exchange interactions.

  20. Quantum simulation of Abelian Wu–Yang monopoles in spin-1/2 systems

    NASA Astrophysics Data System (ADS)

    Zhang, Ze-Lin; Chen, Ming-Feng; Wu, Huai-Zhi; Yang, Zhen-Biao

    2017-04-01

    With the help of the Berry curvature and the first Chern number (C 1), we both analytically and numerically investigate and thus simulate artificial magnetic monopoles formed in parameter space of the Hamiltonian of a driven superconducting qubit. The topological structure of a spin-1/2 system (qubit) can be captured by the distribution of Berry curvature, which describes the geometry of eigenstates of the Hamiltonian. Degenerate points in parameter space act as sources (C 1  =  1, represented by quantum ground state manifold) or sinks (C 1  =  ‑1, represented by quantum excited state manifold) of the magnetic field. We note that the strength of the magnetic field (described by Berry curvature) has an apparent impact on the quantum states during the process of topological transition. It exhibits an unusual property that the transition of the quantum states is asymmetric when the degenerate point passes from outside to inside and again outside the manifold spanned by system parameters. Our results also pave the way to explore intriguing properties of Abelian Wu–Yang monopoles in other spin-1/2 systems.

  1. Explicit expressions of quantum mechanical rotation operators for spins 1 to 2

    NASA Astrophysics Data System (ADS)

    Kocakoç, Mehpeyker; Tapramaz, Recep

    2016-03-01

    Quantum mechanical rotation operators are the subject of quantum mechanics, mathematics and pulsed magnetic resonance spectroscopies, namely NMR, EPR and ENDOR. They are also necessary for spin based quantum information systems. The rotation operators of spin 1/2 are well known and can be found in related textbooks. But rotation operators of other spins greater than 1/2 can be found numerically by evaluating the series expansions of exponential operator obtained from Schrödinger equation, or by evaluating Wigner-d formula or by evaluating recently established expressions in polynomial forms discussed in the text. In this work, explicit symbolic expressions of x, y and z components of rotation operators for spins 1 to 2 are worked out by evaluating series expansion of exponential operator for each element of operators and utilizing linear curve fitting process. The procedures gave out exact expressions of each element of the rotation operators. The operators of spins greater than 2 are under study and will be published in a separate paper.

  2. Second order formalism for spin (1/2) fermions and Compton scattering

    SciTech Connect

    Delgado-Acosta, E. G.; Napsuciale, Mauro; Rodriguez, Simon

    2011-04-01

    We develop a second order formalism for massive spin 1/2 fermions based on the projection over Poincare invariant subspaces in the ((1/2),0)+(0,(1/2)) representation of the homogeneous Lorentz group. Using the U(1){sub em} gauge principle we obtain a second order description for the electromagnetic interactions of a spin 1/2 fermion with two free parameters, the gyromagnetic factor g and a parameter {xi} related to odd-parity Lorentz structures. We calculate Compton scattering in this formalism. In the particular case g=2, {xi}=0, and for states with well-defined parity, we recover Dirac results. In general, we find the correct classical limit and a finite value r{sub c}{sup 2} for the forward differential cross section, independent of the photon energy and of the value of the parameters g and {xi}. The differential cross section vanishes at high energies for all g, {xi} except in the forward direction. The total cross section at high energies vanishes only for g=2, {xi}=0. We argue that this formalism is more convenient than Dirac theory in the description of low energy electromagnetic properties of baryons and illustrate the point with the proton case.

  3. Functionalization of boron diiminates with unique optical properties: multicolor tuning of crystallization-induced emission and introduction into the main chain of conjugated polymers.

    PubMed

    Yoshii, Ryousuke; Hirose, Amane; Tanaka, Kazuo; Chujo, Yoshiki

    2014-12-31

    In this article, we report the unique optical characteristics of boron diiminates in the solid states. We synthesized the boron diiminates exhibiting aggregation-induced emission (AIE). From the series of optical measurements, it was revealed that the optical properties in the solid state should be originated from the suppression of the molecular motions of the boron diiminate units. The emission colors were modulated by the substitution effects (λ(PL,crystal) = 448-602 nm, λ(PL,amorphous) = 478-645 nm). Strong phosphorescence was observed from some boron diiminates deriving from the effects of two imine groups. Notably, we found some of boron diiminates showed crystallization-induced emission (CIE) properties derived from the packing differences from crystalline to amorphous states. The 15-fold emission enhancement was observed by the crystallization (Φ(PL,crystal) = 0.59, Φ(PL,amorphous) = 0.04). Next, we conjugated boron diiminates with fluorene. The synthesized polymers showed good solubility in the common solvents, film formability, and thermal stability. In addition, because of the expansion of main-chain conjugation, the peak shifts to longer wavelength regions were observed in the absorption/emission spectra of the polymers comparing to those of the corresponding boron diiminate monomers (λ(abs) = 374-407 nm, λ(PL) = 509-628 nm). Furthermore, the absorption and the emission intensities were enhanced via the light-harvesting effect by the conjugation with fluorene. Finally, we also demonstrated the dynamic reversible alterations of the optical properties of the polymer thin films by exposing to acidic or basic vapors.

  4. The magnetization curve of spin chains with superlattice structure

    NASA Astrophysics Data System (ADS)

    Silva-Valencia, J.; Franco, R.

    2006-10-01

    The magnetization curve of the spin superlattices composed of repeat pattern of two spin- {1}/{2} XXZ chains with different anisotropy parameters was calculated using density matrix renormalization group. We observe a nontrivial plateau with magnetization value given by the relative sizes of the subchains.

  5. Screened spin-1 and -1/2 Kondo effect in a triangular quantum dot system with interdot Coulomb repulsion

    NASA Astrophysics Data System (ADS)

    Xiong, Yong-Chen; Wang, Wei-Zhong; Luo, Shi-Jun; Yang, Jun-Tao; Huang, Hai-Ming

    2017-03-01

    By means of the numerical renormalization group (NRG) technique, we study the low temperature transport property and the phase transition for a triangular triple quantum dot system, including two centered dots (dot 1 and 2) and one side dot (dot 3). We focus on the effect of interdot repulsion V between two centered dots in a wide range of the interdot hopping tij (i,j = 1,2,3). When the hoppings between the centered dot and the side dot are symmetric, i.e., t13 = t23, and that between two centered dots t12 is small, two centered dots form a spin triplet when V is absent, and a totally screened spin-1 Kondo effect is observed. In this case, one has a spin 1 that is partially screened by the leads as in the usual spin-1 Kondo model, and the remaining spin 1/2 degree of freedom forms a singlet with the side dot. As V is large enough, one of the centered dots is singly occupied, while the other one is empty. The spin-1/2 Kondo effect is found when t13 is small. For large t12, two centered dots form a spin singlet when V = 0, leading to zero conductance. As V is large enough, the spin-1/2 Kondo effect is recovered in the case of small t13. For asymmetric t13≠t23 and small t12, a crossover is found as V increases in comparison with a first order quantum phase transition for the symmetric case. In the regime of large V, the spin-1/2 Kondo effect could also be found when both t13 and t23 are small. We demonstrate the present model is similar to the side-coupled double dot system in some appropriate regimes, and it appears as a possible realization of side-controllable molecular electronics and spintronics devices.

  6. Space-time design of the tangled C-points and optical vortex chain and loop reactions in paraxial dynamic elliptic speckle fields

    NASA Astrophysics Data System (ADS)

    Soskin, Marat S.; Vasil'ev, Vasil I.

    2013-04-01

    The unique effect of ‘optical damage’ in photorefractive LiNbO3:Fe crystals produces a developing speckle field in the propagating beam of a He-Ne laser (0.63 μm). Elliptic developing speckle fields were created and investigated thoroughly by means of the Stokes polarimetry and monstardom (Dennis 2008 Opt. Lett. 33 2572). The ergodicity of elliptic speckle fields under the index (star, monstar, lemon) and contour (elliptic, hyperbolic) classifications was revealed experimentally by our measurements for developing speckle fields, measurements for static elliptic speckle fields, as well as theory (Flossmann et al 2008 Phys. Rev. Lett. 100 203902). Both hyperbolic (H) and elliptic (E) diabolos were fixed. All the probable topological structures for the neighbour diabolos in the developing elliptic speckle field were measured. All the measured nucleation/annihilation events occur as H(S)+H(M) reactions. The evolution of the singularities occurs separately in the speckle-field areas with fixed handedness and is realized through minimizing the changes needed for the developing speckle fields at each moment. The general regularities of the elliptic speckle-field development were revealed and confirmed. They occur through the time-limited loop and continuous chain reactions in both single and multiple speckles in 1:4 proportion. Strict morphological scenarios for their evolution were found. Applications of the methods of dynamical singular optics are discussed.

  7. Analogies between solitonic bio-energy transport along polypeptide chains and nonautonomous optical solitons in structurated nonuniform fibers

    NASA Astrophysics Data System (ADS)

    Morales-Lara, L.; Peña-Moreno, R.; Mena-Contla, A.; Serkin, V. N.; Belyaeva, T. L.

    2015-01-01

    The interpenetration of the main ideas and methods being used in different fields of science and technology has become one of the decisive factors in the progress of science as a whole. Mathematical analogies between different physical systems can be extremely fruitful in understanding the novel physical concepts. Accordingly to the new theory of bio-energy transport along protein molecules in living systems and modified Davydov molecular soliton theory, we propose a nonautonomous model that can be considered as a candidate of the bio-energy transport mechanism in protein molecules. Based on the generalized nonlinear Schrödinger equation model with varying-intime harmonic oscillator potential, we show that conditions of its exact integrability in one-dimensional case indicate conclusively the way for solitonlike pulse generation in polypeptide molecular systems. The most important properties of this soliton transport of bio-energy are related with periodically changed energy-release conditions and the influences of structure nonuniformity in protein molecules. By analogy with the corresponding optical phenomena in inhomogeneous optical fibers with varying properties along the length, we study the main features of modified Davydov soliton on the basis of the unified nonautonomous nonlinear Schrodinger model in the parameters region of the exact integrability of the model under consideration.

  8. Magnetization Process and Magnetocaloric Effect of the Spin-1/2 XXZ Heisenberg Cuboctahedron

    NASA Astrophysics Data System (ADS)

    Karľová, Katarína; Strečka, Jozef

    2016-10-01

    Magnetic properties of the spin-1/2 XXZ Heisenberg cuboctahedron are examined using exact numerical diagonalization depending on a relative strength of the exchange anisotropy. While the Ising cuboctahedron exhibits in a low-temperature magnetization curve only one-third magnetization plateau, the XXZ Heisenberg cuboctahedron displays another four intermediate plateaux at zero, one-sixth, one-half and two-thirds of the saturation magnetization. The novel magnetization plateaux generally extend over a wider range of magnetic fields with increasing of a quantum (xy) part of the XXZ exchange interaction. It is shown that the XXZ Heisenberg cuboctahedron exhibits in the vicinity of all magnetization jumps anomalous thermodynamic behavior accompanied by an enhanced magnetocaloric effect.

  9. Interspecies singlet pairing in a mixture of two spin-1 Bose condensates

    SciTech Connect

    Zhang Jie; Li Tiantian; Zhang Yunbo

    2011-02-15

    We study the ground-state properties of a mixture formed by two spin-1 condensates in the absence of an external magnetic field. As the collisional symmetry between interspecies bosonic atoms is broken, the interspecies coupling interaction ({beta}) and interspecies singlet-pairing interaction ({gamma}) arise. The ground state can be calculated using the angular momentum theory analytically for {gamma}=0. The full quantum approach of exact diagonalization is adopted numerically to consider the more general case as {gamma}{ne}0. We illustrate the competition between the two interspecies interactions and find that as singlet-pairing interaction dominates (or the total spin vanishes), there are still different types of singlet formations which are well determined by {beta}.

  10. Adiabatic and Non-adiabatic quenches in a Spin-1 Bose Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Boguslawski, Matthew; Hebbe Madhusudhana, Bharath; Anquez, Martin; Robbins, Bryce; Barrios, Maryrose; Hoang, Thai; Chapman, Michael

    2016-05-01

    A quantum phase transition (QPT) is observed in a wide range of phenomena. We have studied the dynamics of a spin-1 ferromagnetic Bose-Einstein condensate for both adiabatic and non-adiabatic quenches through a QPT. At the quantum critical point (QCP), finite size effects lead to a non-zero gap, which makes an adiabatic quench possible through the QPT. We experimentally demonstrate such a quench, which is forbidden at the mean field level. For faster quenches through the QCP, the vanishing energy gap causes the reaction timescale of the system to diverge, preventing the system from adiabatically following the ground state. We measure the temporal evolution of the spin populations for different quench speeds and determine the exponents characterizing the scaling of the onset of excitations, which are in good agreement with the predictions of Kibble-Zurek mechanism.

  11. Generalized parton correlation functions for a spin-1/2 hadron

    SciTech Connect

    Stephan Meissner, Andreas Metz, Marc Schlegel

    2009-08-01

    The fully unintegrated, off-diagonal quark-quark correlator for a spin-1/2 hadron is parameterized in terms of so-called generalized parton correlation functions. Such objects, in particular, can be considered as mother distributions of generalized parton distributions on the one hand and transverse momentum dependent parton distributions on the other. Therefore, our study provides new, model-independent insights into the recently proposed nontrivial relations between generalized and transverse momentum dependent parton distributions. We find that none of these relations can be promoted to a model-independent status. As a by-product we obtain the first complete classification of generalized parton distributions beyond leading twist. The present paper is a natural extension of our previous corresponding analysis for spin-0 hadrons.

  12. Magnetic and Superfluid Transitions in the One-Dimensional Spin-1 Boson Hubbard Model

    SciTech Connect

    Batrouni, G. G.; Rousseau, V. G.; Scalettar, R. T.

    2009-04-10

    Recent progress in experiments on trapped ultracold atoms has made it possible to study the interplay between magnetism and superfluid-insulator transitions in the boson Hubbard model. We report on quantum Monte Carlo simulations of the spin-1 boson Hubbard model in the ground state. For antiferromagnetic interactions favoring singlets, we present exact numerical evidence that the superfluid-insulator transition is first (second) order for even (odd) Mott lobes. Inside even lobes, we search for nematic-to-singlet first order transitions. In the ferromagnetic case where transitions are all continuous, we map the phase diagram and show the superfluid to be ferromagnetic. We compare the quantum Monte Carlo phase diagram with a third order perturbation calculation.

  13. Evolution of an isolated monopole in a spin-1 Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Tiurev, Konstantin; Kuopanportti, Pekko; Gunyhó, András Márton; Ueda, Masahito; Möttönen, Mikko

    2016-11-01

    We simulate the decay dynamics of an isolated monopole defect in the nematic vector of a spin-1 Bose-Einstein condensate during the polar-to-ferromagnetic phase transition of the system. Importantly, the decay of the monopole occurs in the absence of external magnetic fields and is driven principally by the dynamical instability due to the ferromagnetic spin-exchange interactions. An initial isolated monopole is observed to relax into a polar-core spin vortex, thus demonstrating the spontaneous transformation of a point defect of the polar order parameter manifold to a line defect of the ferromagnetic manifold. We also investigate the dynamics of an isolated monopole pierced by a quantum vortex line with winding number κ . It is shown to decay into a coreless Anderson-Toulouse vortex if κ =1 and into a singular vortex with an empty core if κ =2 . In both cases, the resulting vortex is also encircled by a polar-core vortex ring.

  14. Quantum control of spin-nematic squeezing in a dipolar spin-1 condensate.

    PubMed

    Huang, Yixiao; Xiong, Heng-Na; Yang, Yang; Hu, Zheng-Da; Xi, Zhengjun

    2017-02-24

    Versatile controllability of interactions and magnetic field in ultracold atomic gases ha now reached an era where spin mixing dynamics and spin-nematic squeezing can be studied. Recent experiments have realized spin-nematic squeezed vacuum and dynamic stabilization following a quench through a quantum phase transition. Here we propose a scheme for storage of maximal spin-nematic squeezing, with its squeezing angle maintained in a fixed direction, in a dipolar spin-1 condensate by applying a microwave pulse at a time that maximal squeezing occurs. The dynamic stabilization of the system is achieved by manipulating the external periodic microwave pulses. The stability diagram for the range of pulse periods and phase shifts that stabilize the dynamics is numerical simulated and agrees with a stability analysis. Moreover, the stability range coincides well with the spin-nematic vacuum squeezed region which indicates that the spin-nematic squeezed vacuum will never disappear as long as the spin dynamics are stabilized.

  15. Compression of Hamiltonian matrix: Application to spin-1/2 Heisenberg square lattice

    NASA Astrophysics Data System (ADS)

    Choi, Seongsoo; Kim, Woohyun; Kim, Jongho

    2016-09-01

    We introduce a simple algorithm providing a compressed representation (∈ℝNorbits×Norbits×ℕNorbits ) of an irreducible Hamiltonian matrix (number of magnons M constrained, dimension: N/spins!M ! (N spins-M ) ! >Norbits ) of the spin-1/2 Heisenberg antiferromagnet on the L ×L non-periodic lattice, not looking for a good basis. As L increases, the ratio of the matrix dimension to Norbits converges to 8 (order of the symmetry group of square) for the exact ground state computation. The sparsity of the Hamiltonian is retained in the compressed representation. Thus, the computational time and memory consumptions are reduced in proportion to the ratio.

  16. Magnetic properties of spin-1/2 Fermi gases with ferromagnetic interaction

    NASA Astrophysics Data System (ADS)

    Wang, Baobao; Qin, Jihong; Guo, Huaiming

    2015-10-01

    We investigate the magnetic properties of spin-1/2 charged Fermi gases with ferromagnetic coupling via mean-field theory, and find the interplay among the paramagnetism, diamagnetism and ferromagnetism. Paramagnetism and diamagnetism compete with each other. When increasing the ferromagnetic coupling the spontaneous magnetization occurs in a weak magnetic field. The critical ferromagnetic coupling constant of the paramagnetic phase to ferromagnetic phase transition increases linearly with the temperature. Both the paramagnetism and diamagnetism increase when the magnetic field increases. It reveals the magnetization density bar M increases firstly as the temperature increases, and then reaches a maximum. Finally the magnetization density bar M decreases smoothly in the high temperature region. The domed shape of the magnetization density bar M variation is different from the behavior of Bose gas with ferromagnetic coupling. We also find the curve of susceptibility follows the Curie-Weiss law, and for a given temperature the susceptibility is directly proportional to the Landé factor.

  17. Magnetic phases of spin-1 spin–orbit-coupled Bose gases

    PubMed Central

    Campbell, D. L.; Price, R. M.; Putra, A.; Valdés-Curiel, A.; Trypogeorgos, D.; Spielman, I. B.

    2016-01-01

    Phases of matter are characterized by order parameters describing the type and degree of order in a system. Here we experimentally explore the magnetic phases present in a near-zero temperature spin-1 spin–orbit-coupled atomic Bose gas and the quantum phase transitions between these phases. We observe ferromagnetic and unpolarized phases, which are stabilized by spin–orbit coupling's explicit locking between spin and motion. These phases are separated by a critical curve containing both first- and second-order transitions joined at a tricritical point. The first-order transition, with observed width as small as h × 4 Hz, gives rise to long-lived metastable states. These measurements are all in agreement with theory. PMID:27025562

  18. Complete positivity of a spin-1/2 master equation with memory

    SciTech Connect

    Maniscalco, Sabrina

    2007-06-15

    We study a non-Markovian spin-1/2 master equation with exponential memory. We derive the conditions under which the dynamical map describing the reduced system dynamics is completely positive, i.e., the nonunitary evolution of the system is compatible with a description in terms of a closed total spin-reservoir system. Our results show that for a zero-T reservoir, the dynamical map of the model here considered is never completely positive. For moderate- and high-T reservoirs, on the contrary, positivity is a necessary and sufficient condition for complete positivity. We also consider the Shabani-Lidar master equation recently introduced [A. Shabani and D.A. Lidar, Phys. Rev. A 71, 020101(R) (2005)] and we demonstrate that such a master equation is always completely positive.

  19. First-order transition and tricritical behavior of the transverse crystal field spin-1 Ising model

    NASA Astrophysics Data System (ADS)

    Costabile, Emanuel; Viana, J. Roberto; de Sousa, J. Ricardo; de Arruda, Alberto S.

    2015-06-01

    The phase diagram of the spin-1 Ising model in the presence of a transverse crystal-field anisotropy (Dx) is studied within the framework of an effective-field theory with correlation. The effect of the coordination number (z) on the phase diagram in the T -Dx plane is investigated. We observe only second-order transitions for coordination number z < 7, while that for z ≥ 7 we have first- and second-order transitions, with the presence of two tricritical points. The lower tricritical temperature (Tt) decreases monotonically with the increasing value of z, and in the limit of z → ∞ we found Tt = 0, corresponding to the mean-field solution [Ricardo de Sousa and Branco, Phys. Rev. E 77 (2008) 012104] with a single tricritical point in the phase diagram.

  20. Ecological optimization of an irreversible quantum Carnot heat engine with spin-1/2 systems

    NASA Astrophysics Data System (ADS)

    Liu, Xiaowei; Chen, Lingen; Wu, Feng; Sun, Fengrui

    2010-02-01

    A model of a quantum heat engine with heat resistance, internal irreversibility and heat leakage and many non-interacting spin-1/2 systems is established in this paper. The quantum heat engine cycle is composed of two isothermal processes and two irreversible adiabatic processes and is referred to as a spin quantum Carnot heat engine. Based on the quantum master equation and the semi-group approach, equations of some important performance parameters, such as power output, efficiency, entropy generation rate and ecological function (a criterion representing the optimal compromise between exergy output rate and exergy loss rate), for the irreversible spin quantum Carnot heat engine are derived. The optimal ecological performance of the heat engine in the classical limit is analyzed with numerical examples. The effects of internal irreversibility and heat leakage on ecological performance are discussed in detail.

  1. Theory of the spin-1 bosonic liquid metal - Equilibrium properties of liquid metallic deuterium

    NASA Technical Reports Server (NTRS)

    Oliva, J.; Ashcroft, N. W.

    1984-01-01

    The theory of a two-component quantum fluid comprised of spin-1/2 fermions and nonzero spin bosons is examined. This system is of interest because it embodies a possible quantum liquid metallic phase of highly compressed deuterium. Bose condensation is assumed present and the two cases of nuclear-spin-polarized and -unpolarized systems are considered. A significant feature in the unpolarized case is the presence of a nonmagnetic mode with quadratic dispersion owing its existence to nonzero boson spin. The physical character of this mode is examined in detail within a Bogoliubov approach. The specific heat, bulk modulus, spin susceptibility, and thermal expansion are all determined. Striking contrasts in the specific heats and thermal-expansion coefficients of the liquid and corresponding normal solid metallic phase are predicted.

  2. Multifrequency resonances in multiple-pulse NMR on a spin-1/2 system

    SciTech Connect

    Furman, G.B.; Goren, S.D.; Meerovich, V.M.; Sokolovsky, V.L.; Kibrik, G.E.; Polyakov, A.Yu.

    2003-12-01

    We have observed multifrequency resonances in a system with a spin 1/2 located in dc magnetic field and irradiated simultaneously by a multiple-pulse radio frequency sequence and a low-frequency field swept in the range 0-80 kHz. The used excitation scheme allowed us to measure the effective field of the radio frequency sequence. A peculiarity of this scheme is that the intensity of the resonance lines decreases slowly with the mode number. The theoretical description of the effect is presented using both the rotating frame approximation and the Floquet theory. Both approaches give identical results at the calculation of the resonance frequencies, transition probabilities, and shifts of resonance frequency. The calculated magnetization vs the frequency of the low-frequency field agrees well with the obtained experimental data. The multifrequency spectra give a way for studying slow atomic motion in solids.

  3. Face-to-face interaction of multisolitons in spin-1/2 quantum plasma

    NASA Astrophysics Data System (ADS)

    Roy, Kaushik; Choudhury, Sourav; Chatterjee, Prasanta; Wong, C. S.

    2017-01-01

    We investigate the face-to-face collision between multisolitons in spin-1/2 quantum plasma. It is studied in the framework of the model proposed by Marklund et al in Phys. Rev. E 76, 067401 (2007). This study is done with the help of the extended Poincare-Lighthill-Kno (PLK) method. The extended PLK method is also used to obtain two Korteweg-de Vries (KdV) equations and the phase shifts and trajectories during the head-on collision of multisolitons. The collision-induced phase shifts (trajectory changes) are also obtained. The effects of the Zeeman energy, total mass density of the charged plasma particles, speed of the wave and the ratio of the sound speed to Alfvén speed on the phase shifts are studied. It is observed that the phase shifts are significantly affected by all these parameters.

  4. Quantum refrigeration cycles using spin-1/2 systems as the working substance.

    PubMed

    He, Jizhou; Chen, Jincan; Hua, Ben

    2002-03-01

    The cycle model of a quantum refrigerator composed of two isothermal and two isomagnetic field processes is established. The working substance in the cycle consists of many noninteracting spin-1/2 systems. The performance of the cycle is investigated, based on the quantum master equation and semigroup approach. The general expressions of several important performance parameters, such as the coefficient of performance, cooling rate, and power input, are given. Especially, the case at high temperatures is analyzed in detail. The results obtained are further generalized and discussed, so that they may be directly used to describe the performance of the quantum refrigerator using spin-J systems as the working substance. Finally, the optimum characteristics of the quantum Carnot refrigerator are derived simply.

  5. CP-Violation from Spin-1 Resonances in a Left-Right Dynamical Higgs Context

    NASA Astrophysics Data System (ADS)

    Ruan, Kun-Ming; Shu, Jing; Yepes, Juan

    2016-07-01

    New physics field content in the nature, more specifically, from spin-1 resonances sourced by the extension of the SM local gauge symmetry to the larger local group SU(2)L ⊗ SU(2)R ⊗ U(1)B-L, may induce CP-violation signalling NP effects from higher energy regimes. In this work we completely list and study all the CP-violating operators up to the p4-order in the Lagrangian expansion, for a non-linear left-right electroweak chiral context and coupled to a light dynamical Higgs. Heavy right handed fields can be integrated out from the physical spectrum, inducing thus a physical impact in the effective gauge couplings, fermionic electric dipole moment, and CP-violation in the decay h → ZZ* → 4l that are briefly analysed. The final relevant set of effective operators have also been identified at low energies. Supported by KITPC financial during the completion of this work

  6. Enhanced magnetocaloric effect in the proximity of magnetization steps and jumps of spin-1/2 XXZ Heisenberg regular polyhedra

    NASA Astrophysics Data System (ADS)

    KarǏová, Katarína; Strečka, Jozef; Richter, Johannes

    2017-03-01

    The magnetization process and adiabatic demagnetization of antiferromagnetic spin-1/2 XXZ Heisenberg clusters in the shape of regular polyhedra (tetrahedron, octahedron, cube, icosahedron and dodecahedron) are examined using the exact diagonalization method. It is demonstrated that a quantum (xy) part of the XXZ exchange interaction is a primary cause for the presence of additional intermediate magnetization plateaux and steps, which are totally absent in the limiting Ising case. The only exception to this rule is the spin-1/2 XXZ Heisenberg tetrahedron, which shows just a quantitative shift of the level-crossing fields related to two magnetization steps. It is shown that spin-1/2 XXZ Heisenberg regular polyhedra exhibit an enhanced magnetocaloric effect in the proximity of magnetization steps and jumps, which are accompanied with a rapid drop (rise) of temperature just above (below) the level-crossing field when the magnetic field is removed adiabatically.

  7. Enhanced magnetocaloric effect in the proximity of magnetization steps and jumps of spin-1/2 XXZ Heisenberg regular polyhedra.

    PubMed

    KarǏová, Katarína; Strečka, Jozef; Richter, Johannes

    2017-03-29

    The magnetization process and adiabatic demagnetization of antiferromagnetic spin-1/2 XXZ Heisenberg clusters in the shape of regular polyhedra (tetrahedron, octahedron, cube, icosahedron and dodecahedron) are examined using the exact diagonalization method. It is demonstrated that a quantum (xy) part of the XXZ exchange interaction is a primary cause for the presence of additional intermediate magnetization plateaux and steps, which are totally absent in the limiting Ising case. The only exception to this rule is the spin-1/2 XXZ Heisenberg tetrahedron, which shows just a quantitative shift of the level-crossing fields related to two magnetization steps. It is shown that spin-1/2 XXZ Heisenberg regular polyhedra exhibit an enhanced magnetocaloric effect in the proximity of magnetization steps and jumps, which are accompanied with a rapid drop (rise) of temperature just above (below) the level-crossing field when the magnetic field is removed adiabatically.

  8. Core-shell structured square mixed-spin 1 and 1/2 Ising nanowire on the Bethe lattice

    NASA Astrophysics Data System (ADS)

    Albayrak, Erhan

    2016-03-01

    The square Ising nanowire is constructed by adding square nanoparticles consisting of one spin-1 at the center and four spin-1/2 at the corners along a straight line in both directions. Therefore, this system may be taken to be equivalent to Bethe lattice of coordination number two and can be solved in terms of the exact recursion relations. This core-shell structured model is studied by using ferromagnetic exchange interactions between surface spins (Js), between core spins (Jc) and between surface and core spins (Jsc) and crystal field interaction (D) at the sites of spin-1. The phase diagrams of the model are obtained in terms of these parameters by varying the temperature on the possible planes. It is found that the model presents both second- and first-order phase transitions and tricritical points for the appropriate values of these parameters.

  9. Comparative study of serine-plasmalogens in human retina and optic nerve: identification of atypical species with odd carbon chains

    PubMed Central

    Nagy, Kornél; Brahmbhatt, Viral Vishnuprasad; Berdeaux, Olivier; Bretillon, Lionel; Destaillats, Frédéric; Acar, Niyazi

    2012-01-01

    The objective of this work was to detect and identify phosphatidylserine plasmalogen species in human ocular neurons represented by the retina and the optic nerve. Plasmalogens (vinyl-ether bearing phospholipids) are commonly found in the forms of phosphatidylcholine and phosphatidylethanolamine in numerous mammalian cell types, including the retina. Although their biological functions are unclear, the alteration of cellular plasmalogen content has been associated with several human disorders such as rhizomelic chondrodysplasia punctata Type 2 and primary open-angle glaucoma. By using liquid chromatography coupled to high-resolution and tandem mass spectrometry, we have identified for the first time several species of phosphatidylserine plasmalogens, including atypical forms having moieties with odd numbers of carbons and unsaturation in sn-2 position. Structural elucidation of the potential phosphatidylserine ether linked species was pursued by performing MS3 experiments, and three fragments are proposed as marker ions to deduce which fatty acid is linked as ether or ester on the glycerol backbone. Interpretation of the fragmentation patterns based on this scheme enabled the assignment of structures to the m/z values, thereby identifying the phosphatidylserine plasmalogens. PMID:22266369

  10. Critical behavior of the spin-1 and spin-3/2 Baxter-Wu model in a crystal field.

    PubMed

    Dias, D A; Xavier, J C; Plascak, J A

    2017-01-01

    The phase diagram and the critical behavior of the spin-1 and the spin-3/2 two-dimensional Baxter-Wu model in a crystal field are studied by conventional finite-size scaling and conformal invariance theory. The phase diagram of this model, for the spin-1 case, is qualitatively the same as those of the diluted 4-states Potts model and the spin-1 Blume-Capel model. However, for the present case, instead of a tricritical point one has a pentacritical point for a finite value of the crystal field, in disagreement with previous work based on finite-size calculations. On the other hand, for the spin-3/2 case, the phase diagram is much richer and can present, besides a pentacritical point, an additional multicritical end point. Our results also support that the universality class of the critical behavior of the spin-1 and spin-3/2 Baxter-Wu model in a crystal field is the same as the pure Baxter-Wu model, even at the multicritical points.

  11. Coordinate Bethe ansatz computation for low temperature behavior of a triangular lattice of a spin-1 Heisenberg antiferromagnet

    SciTech Connect

    Shuaibu, A.; Rahman, M. M.

    2014-03-05

    We study the low temperature behavior of a triangular lattice quantum spin-1 Heisenberg antiferromagnet with single-site anisotropy by using coordinate Bethe ansatz method. We compute the standard two-particle Hermitian Hamiltonian, and obtain the eigenfunctions and eigenvalue of the system. The obtained results show a number of advantages in comparison with many results.

  12. A two-parameter continuation method for computing numerical solutions of spin-1 Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Wang, Y.-S.; Chien, C.-S.

    2014-01-01

    We describe a novel two-parameter continuation method combined with a spectral-collocation method (SCM) for computing the ground state and excited-state solutions of spin-1 Bose-Einstein condensates (BEC), where the second kind Chebyshev polynomials are used as the basis functions for the trial function space. To compute the ground state solution of spin-1 BEC, we implement the single parameter continuation algorithm with the chemical potential μ as the continuation parameter, and trace the first solution branch of the Gross-Pitaevskii equations (GPEs). When the curve-tracing is close enough to the target point, where the normalization condition of the wave function is going to be satisfied, we add the magnetic potential λ as the second continuation parameter with the magnetization M as the additional constraint condition. Then we implement the two-parameter continuation algorithm until the target point is reached, and the ground state solution of the GPEs is obtained. The excited state solutions of the GPEs can be treated in a similar way. Some numerical experiments on Na23 and Rb87 are reported. The numerical results on the spin-1 BEC are the same as those reported in [10]. Further numerical experiments on excited-state solutions of spin-1 BEC suffice to show the robustness and efficiency of the proposed two-parameter continuation algorithm.

  13. Critical behavior of the spin-1 and spin-3/2 Baxter-Wu model in a crystal field

    NASA Astrophysics Data System (ADS)

    Dias, D. A.; Xavier, J. C.; Plascak, J. A.

    2017-01-01

    The phase diagram and the critical behavior of the spin-1 and the spin-3/2 two-dimensional Baxter-Wu model in a crystal field are studied by conventional finite-size scaling and conformal invariance theory. The phase diagram of this model, for the spin-1 case, is qualitatively the same as those of the diluted 4-states Potts model and the spin-1 Blume-Capel model. However, for the present case, instead of a tricritical point one has a pentacritical point for a finite value of the crystal field, in disagreement with previous work based on finite-size calculations. On the other hand, for the spin-3/2 case, the phase diagram is much richer and can present, besides a pentacritical point, an additional multicritical end point. Our results also support that the universality class of the critical behavior of the spin-1 and spin-3/2 Baxter-Wu model in a crystal field is the same as the pure Baxter-Wu model, even at the multicritical points.

  14. Ground-State Phase Diagram of S = 1 Diamond Chains

    NASA Astrophysics Data System (ADS)

    Hida, Kazuo; Takano, Ken'ichi

    2017-03-01

    We investigate the ground-state phase diagram of a spin-1 diamond chain. Owing to a series of conservation laws, any eigenstate of this system can be expressed using the eigenstates of finite odd-length chains or infinite chains with spins 1 and 2. The ground state undergoes quantum phase transitions with varying λ, a parameter that controls frustration. Exact upper and lower bounds for the phase boundaries between these phases are obtained. The phase boundaries are determined numerically in the region not explored in a previous work [Takano et al., J. Phys.: Condens. Matter 8, 6405 (1996)].

  15. Raman spectroscopic study of the frustrated spin 1/2 antiferromagnet clinoatacamite

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Dong; Zheng, Xu-Guang; Meng, Dong-Dong; Xu, Xing-Liang; Guo, Qi-Xin

    2013-06-01

    Raman spectroscopy is a valuable and complementary tool for studying geometrically frustrated magnetic systems due to the intrinsic spin-phonon coupling. Here, we report on a Raman spectroscopic study of the geometrically frustrated spin 1/2 antiferromagnet microcrystalline clinoatacamite Cu2(OH)3Cl, focusing on the anomalous transition into the intermediate phase at Tc1 = 18.1 K. By measuring the temperature-dependent (295-4 K) full spectral profiles and main representative modes in spectral regions from 4000 to 95 cm-1, we observed probable signatures of successive magnetic transitions near Tc1 = 18 K and Tc2 = 6.4 K in the Raman band frequencies and peak widths of the representative modes. Further, we observed a pronounced Raman spectroscopy background featuring a broad continuum at all temperatures. A quantitative analysis reveals that spin fluctuations may exist on a picosecond time scale in the intermediate phase. The short time scale falls out of the μSR time window; therefore, in the intermediate phase, the μSR study as reported in (2005 Phys. Rev. Lett. 95 057201) apparently only probed the local field of the ordered spins but overlooked the quickly fluctuating ones. This is likely to give a reasonable explanation of the fact that only a small entropy release occurs at Tc1 = 18 K although a long-range order is formed.

  16. Characterizing the ``Higgs'' amplitude mode in a Spin-1 Bose Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Hebbe Madhusudhana, Bharath; Boguslawski, Matthew; Anquez, Martin; Robbins, Bryce; Barrios, Maryrose; Hoang, Thai; Chapman, Michael

    2016-05-01

    Spontaneous symmetry breaking in a physical system is often characterized by massless Nambu-Goldstone modes and massive Anderson-Higgs modes. It occurs when a system crosses a quantum critical point (QCP) reaching a state does not share the symmetry of the underlying Hamiltonian. In a spin-1 Bose Einstein condensate, the transverse spin component can be considered as an order parameter. A quantum phase transition (QPT) of this system results in breaking of the symmetry group U(1) × SO(2) shared by the Hamiltonian. As a result, two massless coupled phonon-magnon modes are produced along with a single massive mode or a Higgs-like mode, in the form of amplitude excitations of the order parameter. Here we characterize the amplitude excitations experimentally by inducing coherent oscillation in the spin population. We further use the amplitude oscillations to measure the energy gap for different phases of the QPT. At the QCP, finite size effects lead to a non-zero gap, and our measurements are consistent with this prediction.

  17. Anomalous Curie response of an impurity in a quantum critical spin-1/2 Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Höglund, Kaj; Sandvik, Anders

    2007-03-01

    There is a disagreement concerning the low-temperature (T) magnetic susceptibility χ^zimp˜C/T of a spin-S impurity in a nearly quantum critical antiferromagnetic host. Field-theoretical work [1] predicted an anomalous Curie constant S^2/30 quantum Monte Carlo simulations in order to resolve the controversy. Our main result is for a vacancy in a quantum critical spin-1/2 Heisenberg antiferromagnet on a bilayer lattice. In our susceptibility data for the S=1/2 impurity we observe a Curie constant C=0.262(2). Although the value falls outside the predicted range, it should correspond to an anomalous impurity response, as proposed in Ref. [1]. [1] S. Sachdev, C. Buragohain, and M. Vojta, Science 286, 2479 (1999); M. Vojta, C. Buragohain, and S. Sachdev, Phys. Rev. B 61, 15152 (2000). [2] O. P. Sushkov, Phys. Rev. B 62, 12135 (2000). [3] M. Troyer, Prog. Theor. Phys. Supp. 145, 326 (2002).

  18. Enhancement of spin coherence in a spin-1 Bose-Einstein condensate by dynamical decoupling approaches

    SciTech Connect

    Ning Boyuan; Zhuang Jun; Zhang Wenxian; You, J. Q.

    2011-07-15

    We study the enhancement of spin coherence with periodic, concatenated, or Uhrig dynamical decoupling N-pulse sequences in a spin-1 Bose-Einstein condensate, where the intrinsic dynamical instability in such a ferromagnetically interacting condensate causes spin decoherence and eventually leads to a multiple spatial-domain structure or a spin texture. Our results show that all three sequences successfully enhance the spin coherence by pushing the wave vector of the most unstable mode in the condensate to a larger value. Among the three sequences with the same number of pulses, the concatenated one shows the best performance in preserving the spin coherence. More interestingly, we find that all three sequences exactly follow the same enhancement law, k{sub -}T{sup 1/2}=c, with k{sub -} the wave vector of the most unstable mode, T the sequence period, and c a sequence-dependent constant. Such a law between k{sub -} and T is also derived analytically for an attractive scalar Bose-Einstein condensate subjected to a periodic dynamical decoupling sequence.

  19. Keldysh effective action theory for universal physics in spin-(1)/(2) Kondo dots

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey; Grifoni, Milena

    2013-03-01

    We present a theory for the Kondo spin-(1)/(2) effect in strongly correlated quantum dots. The theory is applicable at any temperature and voltage. It is based on a quadratic Keldysh effective action parametrized by a universal function. We provide a general analytical form for the tunneling density of states through this universal function for which we propose a simple microscopic model. We apply our theory to the highly asymmetric Anderson model with U=∞ and describe its strong-coupling limit, weak-coupling limit, and crossover region within a single analytical expression. We compare our results with a numerical renormalization group in equilibrium and with a real-time renormalization group out of equilibrium and show that the universal shapes of the linear and differential conductance obtained in our theory and in these theories are very close to each other in a wide range of temperatures and voltages. In particular, as in the real-time renormalization group, we predict that at the Kondo voltage the differential conductance is equal to 2/3 of its maximum.

  20. Coarsening and thermalization properties of a quenched ferromagnetic spin-1 condensate

    NASA Astrophysics Data System (ADS)

    Williamson, Lewis A.; Blakie, P. B.

    2016-08-01

    We examine the dynamics of a quasi-two-dimensional spin-1 condensate in which the quadratic Zeeman energy q is suddenly quenched to a value where the system has a ferromagnetic ground state. There are two distinct types of ferromagnetic phases, i.e., a range of q values where the magnetization prefers to be in the direction of the external field (easy axis) and a range of q values where it prefers to be transverse to the field (easy plane). We study the quench dynamics for a variety of q values and show that there is a single dynamic critical exponent to characterize the scale-invariant domain growth for each ferromagnetic phase. For both quenches we give simple analytic models that capture the essential scale-invariant dynamics and correctly predict the exponents. Because the order parameter for each phase is different, the natures of the domains and the relevant topological defects in each type of coarsening are also different. To explore these differences we characterize the fractal dimension of the domain walls and the relationship of polar-core spin vortices to the domains in the easy-plane phase. Finally, we consider how the energy liberated from the quench thermalizes in the easy-axis quench. We show that local equilibrium is established in the spin waves on moderate time scales, but continues to evolve as the domains anneal.

  1. Using the ground state of an antiferromagnetic spin-1 atomic condensate for Heisenberg-limited metrology

    NASA Astrophysics Data System (ADS)

    Wu, Ling-Na; You, L.

    2016-03-01

    We show that the ground state of a spin-1 atomic condensate with antiferromagnetic interactions constitutes a useful resource for quantum metrology upon approaching the Heisenberg limit. Unlike a ferromagnetic condensate state where individual atomic spins are aligned in the same direction, the antiferromagnetic ground-state condensate is a condensate of spin-singlet atom pairs. The inherent correlation between paired atoms allows for parameter estimation at precisions beyond the standard quantum limit (SQL) for uncorrelated atoms. The degree of improvement over the SQL is measured by the scaled quantum Fisher information (QFI), whose dependence on the ratio of linear Zeeman shift p to spin-dependent atomic interaction c is studied. At a typical value of p =0.4 c , which corresponds to a magnetic field of 28.6 μ G for c =50 h Hz (for 23Na atom condensate in the F =1 state at a typical density of ˜1014cm-3 ), the scaled QFI can reach ˜0.48 N , which approaches the limit of 0.5 N for the twin-Fock state |N/2 > +|N/2 > - . Our work encourages experimental efforts to reach the ground state of an antiferromagnetic condensate at a extremely low magnetic field.

  2. The ground state of a spin-1 anti-ferromagnetic atomic condensate for Heisenberg limited metrology

    NASA Astrophysics Data System (ADS)

    Wu, Ling-Na; You, Li

    2016-05-01

    The ground state of a spin-1 atomic condensate with anti-ferromagnetic interaction can be applied to quantum metrology approaching the Heisenberg limit. Unlike a ferromagnetic condensate state where individual atomic spins are aligned in the same direction, atoms in an anti-ferromagnetic ground state condensate exist as spin singlet pairs, whose inherent correlation promises metrological precisions beyond the standard quantum limit (SQL) for uncorrelated atoms. The degree of improvement over the SQL is measured by quantum Fisher information (QFI), whose dependence on the ratio of linear Zeeman shift p to spin-dependent atomic interaction c is studied. At a typical value of p = 0 . 4 c corresponding to a magnetic field of 28 . 6 μ G with c = h × 50 Hz (for 23 Na atom condensate in the F = 1 state at a typical density of ~1014cm-3), the scaled QFI can reach ~ 0 . 48 N , which is close to the limits of N for NooN state, or 0 . 5 N for twin-Fock state. We hope our work will stimulate experimental efforts towards reaching the anti-ferromagnetic condensate ground state at extremely low magnetic fields.

  3. Supersymmetries of the spin-1/2 particle in the field of magnetic vortex, and anyons

    SciTech Connect

    Correa, Francisco; Falomir, Horacio; Plyushchay, Mikhail S.

    2010-12-15

    The quantum non-relativistic spin-1/2 planar systems in the presence of a perpendicular magnetic field are known to possess the N = 2 supersymmetry. We consider such a system in the field of a magnetic vortex, and find that there are just two self-adjoint extensions of the Hamiltonian that are compatible with the standard N = 2 supersymmetry. We show that only in these two cases one of the subsystems coincides with the original spinless Aharonov-Bohm model and comes accompanied by the super-partner Hamiltonian which allows a singular behavior of the wave functions. We find a family of additional, nonlocal integrals of motion and treat them together with local supercharges in the unifying framework of the tri-supersymmetry. The inclusion of the dynamical conformal symmetries leads to an infinitely generated superalgebra, that contains several representations of the superconformal osp(2 vertical bar 2) symmetry. We present the application of the results in the framework of the two-body model of identical anyons. The nontrivial contact interaction and the emerging N = 2 linear and nonlinear supersymmetries of the anyons are discussed.

  4. Nonautonomous matter waves in a spin-1 Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Shen, Yu-Jia; Gao, Yi-Tian; Zuo, Da-Wei; Sun, Yu-Hao; Feng, Yu-Jie; Xue, Long

    2014-06-01

    To investigate nonautonomous matter waves with time-dependent modulation in a one-dimensional trapped spin-1 Bose-Einstein condensate, we hereby work on the generalized three-coupled Gross-Pitaevskii equations by means of the Hirota bilinear method. By modulating the external trap potential, atom gain or loss, and coupling coefficients, we can obtain several nonautonomous matter-wave solitons and rogue waves including "bright" and "dark" shapes and arrive at the following conclusions: (i) the external trap potential and atom gain or loss can influence the propagation of matter-wave solitons and the duration and frequency of bound solitonic interaction, but they have little effect on the head-on solitonic interaction; (ii) through numerical simulation, stable evolution of the matter-wave solitons is realized with a perturbation of 5% initial random noise, and the spin-exchange interaction of atoms can be affected by the time-dependent modulation; (iii) under the influence of a periodically modulated trap potential and periodic atom gain or loss, rogue waves can emerge in the superposition of localized character and periodic oscillating properties.

  5. Nonautonomous matter waves in a spin-1 Bose-Einstein condensate.

    PubMed

    Shen, Yu-Jia; Gao, Yi-Tian; Zuo, Da-Wei; Sun, Yu-Hao; Feng, Yu-Jie; Xue, Long

    2014-06-01

    To investigate nonautonomous matter waves with time-dependent modulation in a one-dimensional trapped spin-1 Bose-Einstein condensate, we hereby work on the generalized three-coupled Gross-Pitaevskii equations by means of the Hirota bilinear method. By modulating the external trap potential, atom gain or loss, and coupling coefficients, we can obtain several nonautonomous matter-wave solitons and rogue waves including "bright" and "dark" shapes and arrive at the following conclusions: (i) the external trap potential and atom gain or loss can influence the propagation of matter-wave solitons and the duration and frequency of bound solitonic interaction, but they have little effect on the head-on solitonic interaction; (ii) through numerical simulation, stable evolution of the matter-wave solitons is realized with a perturbation of 5% initial random noise, and the spin-exchange interaction of atoms can be affected by the time-dependent modulation; (iii) under the influence of a periodically modulated trap potential and periodic atom gain or loss, rogue waves can emerge in the superposition of localized character and periodic oscillating properties.

  6. Low-lying {Lambda} baryons with spin 1/2 in two-flavor lattice QCD

    SciTech Connect

    Takahashi, Toru T.; Oka, Makoto

    2010-02-01

    Low-lying {Lambda} baryons with spin 1/2 are analyzed in full (unquenched) lattice QCD. We construct 2x2 cross correlators from flavor SU(3) octet and singlet baryon operators, and diagonalize them so as to extract information of two low-lying states for each parity. The two-flavor CP-PACS gauge configurations are used, which are generated in the renormalization-group improved gauge action and the O(a)-improved quark action. Three different {beta}'s, {beta}=1.80, 1.95, and 2.10, are employed, whose corresponding lattice spacings are a=0.2150, 0.1555, and 0.1076 fm. For each cutoff, we use four hopping parameters, ({kappa}{sub val},{kappa}{sub sea}), which correspond to the pion masses ranging about from 500 MeV to 1.1 GeV. Results indicate that there are two negative-parity {Lambda} states nearly degenerate at around 1.6 GeV, while no state as low as {Lambda}(1405) is observed. By decomposing the flavor components of each state, we find that the lowest (1st-excited) negative-parity state is dominated by flavor-singlet (flavor-octet) component. We also discuss meson-baryon components of each state, which has drawn considerable attention in the context of multiquark pictures of {Lambda}(1405).

  7. Vortex-bright solitons in a spin-orbit-coupled spin-1 condensate

    NASA Astrophysics Data System (ADS)

    Gautam, Sandeep; Adhikari, S. K.

    2017-01-01

    We study the vortex-bright solitons in a quasi-two-dimensional spin-orbit-coupled (SO-coupled) hyperfine spin-1 three-component Bose-Einstein condensate using variational method and numerical solution of a mean-field model. The ground state of these vortex-bright solitons is radially symmetric for weak ferromagnetic and polar interactions. For a sufficiently strong ferromagnetic interaction, we observe the emergence of an asymmetric vortex-bright soliton as the ground state. We also numerically investigate stable moving solitons and binary collision between them. The present mean-field model is not Galilean invariant, and we use a Galilean-transformed model for generating the moving solitons. At low velocities, the head-on collision between two in-phase solitons results either in collapse or fusion of the soliton pair. On the other hand, in head-on collision, the two out-of-phase solitons strongly repel each other and trace back their trajectories before the actual collision. At low velocities, in a collision with an impact parameter, the out-of-phase solitons get deflected from their original trajectory like two rigid classical disks. These out-of-phase solitons behave like classical disks, and their collision dynamics is governed by classical laws of motion. However, at large velocities two SO-coupled spinor solitons, irrespective of phase difference, can pass through each other in a head-on collision like two quantum solitons.

  8. Quantum control of spin-nematic squeezing in a dipolar spin-1 condensate

    PubMed Central

    Huang, Yixiao; Xiong, Heng-Na; Yang, Yang; Hu, Zheng-Da; Xi, Zhengjun

    2017-01-01

    Versatile controllability of interactions and magnetic field in ultracold atomic gases ha now reached an era where spin mixing dynamics and spin-nematic squeezing can be studied. Recent experiments have realized spin-nematic squeezed vacuum and dynamic stabilization following a quench through a quantum phase transition. Here we propose a scheme for storage of maximal spin-nematic squeezing, with its squeezing angle maintained in a fixed direction, in a dipolar spin-1 condensate by applying a microwave pulse at a time that maximal squeezing occurs. The dynamic stabilization of the system is achieved by manipulating the external periodic microwave pulses. The stability diagram for the range of pulse periods and phase shifts that stabilize the dynamics is numerical simulated and agrees with a stability analysis. Moreover, the stability range coincides well with the spin-nematic vacuum squeezed region which indicates that the spin-nematic squeezed vacuum will never disappear as long as the spin dynamics are stabilized. PMID:28233786

  9. Barlowite: A Spin-1/2 Antiferromagnet with a Geometrically Perfect Kagome Motif.

    PubMed

    Han, Tian-Heng; Singleton, John; Schlueter, John A

    2014-11-28

    We present thermodynamic studies of a new spin-1/2 antiferromagnet containing undistorted kagome lattices-barlowite Cu_{4}(OH)_{6}FBr. Magnetic susceptibility gives θ_{CW}=-136  K, while long-range order does not happen until T_{N}=15  K with a weak ferromagnetic moment μ<0.1μ_{B}/Cu. A 60 T magnetic field induces a moment less than 0.5μ_{B}/Cu at T=0.6  K. Specific-heat measurements have observed multiple phase transitions at T≪∣θ_{CW}∣. The magnetic entropy of these transitions is merely 18% of k_{B}ln2 per Cu spin. These observations suggest that nontrivial spin textures are realized in barlowite with magnetic frustration. Comparing with the leading spin-liquid candidate herbertsmithite, the superior interkagome environment of barlowite sheds light on new spin-liquid compounds with minimum disorder. The robust perfect geometry of the kagome lattice makes charge doping promising.

  10. Lepton electric and magnetic dipole moments via lepton flavor-violating spin-1 unparticle interactions

    SciTech Connect

    Moyotl, A.; Rosado, A.; Tavares-Velasco, G.

    2011-10-01

    The magnetic dipole moment and the electric dipole moment of leptons are calculated under the assumption of lepton flavor violation (LFV) induced by spin-1 unparticles with both vector and axial-vector couplings to leptons, including a CP-violating phase. The experimental limits on the muon magnetic dipole moment and LFV process, such as the decay l{sub i}{sup -}{yields}l{sub j}{sup -}l{sub k}{sup -}l{sub k}{sup +}, are then used to constrain the LFV couplings for particular values of the unparticle operator dimension d{sub U} and the unparticle scale {Lambda}{sub U}, assuming that LFV transitions between the tau and muon leptons are dominant. It is found that the current experimental constraints favor a scenario with dominance of the vector couplings over the axial-vector couplings. We also obtain estimates for the electric dipole moments of the electron and the muon, which are well below the experimental values.

  11. Photoinduced dichroism and optical anisotropy in a liquid-crystalline azobenzene side chain polymer caused by anisotropic angular distribution of trans and cis isomers

    NASA Astrophysics Data System (ADS)

    Blinov, Lev M.; Kozlovsky, Mikhail V.; Ozaki, Masanori; Skarp, Kent; Yoshino, Katsumi

    1998-10-01

    Photochromism has been studied for two comb-like liquid-crystalline copolymers (I) and (II) containing azobenzene chromophores in their side chains. In a smectic glass phase of both copolymers, upon short-time irradiation by UV light, long-living cis isomers are observed. Both copolymers manifest the photoinduced anisotropy, the physical mechanisms of which seem to be quite different. In spin-coated films of polymer (II), the origin of the anisotropy is a strong stable dichroism, which is due to an enrichment and depletion of the chosen angular direction, correspondingly, with trans and cis isomers of the azobenzene chromophores. Polymer (I) manifests no dichroism at all, and its induced optical anisotropy may be accounted for by a rather slow chromophore reorientation. In copolymer (II) a considerable reorientation of the mesogenic groups also occurs as a secondary phenomenon at the stage of the cis isomer formation only. This observation shed more light on the general process of the light-induced molecular reorientation in polymers, liquid crystals, and Langmuir-Blodgett films, which is of great importance for holographic information recording.

  12. Fast capillary electrophoresis-laser induced fluorescence analysis of ligase chain reaction products: human mitochondrial DNA point mutations causing Leber's hereditary optic neuropathy.

    PubMed

    Muth, J; Williams, P M; Williams, S J; Brown, M D; Wallace, D C; Karger, B L

    1996-12-01

    High speed capillary electrophoresis-laser-induced fluorescence (CE-LIF) has been used to separate and detect point mutations using the ligase chain reaction (LCR). The method utilizes short capillary columns (7.5 cm effective length) and fields of 400 V/cm to analyze DNA-ethidium bromide complexes using an He/Ne laser. The method was first demonstrated with a commercially available kit for LCR based on a lacI gene fragment inserted in a Bluescript II phagemid. LCR-CE-LIF was then applied to detect point mutations in human mitochondrial DNA, resulting in Leber's hereditary optic neuropathy (LHON). Three severe mutations were analyzed in which the original base is substituted by a thymidine base at positions 3460, 11778 and 14459. Appropriate primers were designed with polyT tails for length discrimination of pooled samples. Successful detection of mutated samples was achieved, with appropriate correction for small amounts of nonspecific ligated product. The method is rapid, easy to implement, and automatable.

  13. Randomness-driven Quantum Phase Transition in Bond-alternating Haldane Chain

    NASA Astrophysics Data System (ADS)

    Arakawa, Takayuki; Todo, Synge; Takayama, Hajime

    2005-04-01

    The effect of bond randomness on the spin-gapped ground state of the spin-1 bond-alternating antiferromagnetic Heisenberg chain is discussed. By using the loop cluster quantum Monte Carlo method, we investigate the stability of topological order in terms of the recently proposed twist order parameter [M. Nakamura and S. Todo: Phys. Rev. Lett. 89 (2002) 077204]. It is observed that the dimer phases as well as the Haldane phase of the spin-1 Heisenberg chain are robust against a weak randomness, though the valence-bond-solid-like topological order in the latter phase is destroyed by introducing a disorder stronger than the critical value.

  14. Determining the exchange parameters of spin-1 metal-organic molecular magnets in pulsed magnetic fields

    SciTech Connect

    Mcdonald, Ross D; Singleton, John; Lancaster, Tom; Goddard, Paul; Manson, Jamie

    2011-01-14

    We nave measured the high-field magnetization of a number of Ni-based metal-organic molecular magnets. These materials are self-assembly coordination polymers formed from transition metal ions and organic ligands. The chemistry of the compounds is versatile allowing many structures with different magnetic properties to be formed. These studies follow on from previous measurements of the Cu-based analogues in which we showed it was possible to extract the exchange parameters of low-dimensional magnets using pulsed magnetic fields. In our recent experiments we have investigated the compound (Ni(HF{sub 2})(pyz){sub 2})PF{sub 6}, where pyz = pyrazine, and the Ni-ions are linked in a quasi-two-dimensional (Q2D) square lattice via the pyrazine molecules, with the layers held together by HF{sub 2} ligands. We also investigated Ni(NCS){sub 2}(pyzdo){sub 2}, where pyzdo = pyrazine dioxide. The samples are grown at Eastern Washington University using techniques described elsewhere. Measurements are performed at the pulsed magnetic field laboratory in Los Alamos. The magnetization of powdered samples is determined using a compensated coil magnetometer in a 65 T short pulse magnet. Temperatures as low as 500 mK are achievable using a {sup 3}He cryostat. The main figure shows the magnetization of the spin-1 [Ni(HF{sub 2})(pyz){sub 2}]PF{sub 6} compound at 1.43 K. The magnetization rises slowly at first, achieving a rounded saturation whose midpoint is around 19 T. A small anomaly is also seen in the susceptibility at low fields ({approx}3 T), which might be attributed to a spin-flop transition. In contrast, the spin-1/2 [Cu(HF{sub 2})(pyz){sub 2}]PF{sub 6} measured previously has a saturation magnetization of 35.5 T and a strongly concave form of M(B) below this field. This latter compound was shown to be a good example of a Q2D Heisenberg antiferromagnet with the strong exchange coupling (J{sub 2D} = 12.4 K, J{sub {perpendicular}}/J{sub 2D} {approx} 10{sup -2}) directed along

  15. Triple quantum filtered spectroscopy of homonuclear three spin-1/2 systems employing isotropic mixing

    NASA Astrophysics Data System (ADS)

    Kirwai, Amey; Chandrakumar, N.

    2016-08-01

    We report the design and performance evaluation of novel pulse sequences for triple quantum filtered spectroscopy in homonuclear three spin-1/2 systems, employing isotropic mixing (IM) to excite triple quantum coherence (TQC). Our approach involves the generation of combination single quantum coherences (cSQC) from antisymmetric longitudinal or transverse magnetization components employing isotropic mixing (IM). cSQC's are then converted to TQC by a selective 180° pulse on one of the spins. As IM ideally causes magnetization to evolve under the influence of the spin coupling Hamiltonian alone, TQC is generated at a faster rate compared to sequences involving free precession. This is expected to be significant when the spins have large relaxation rates. Our approach is demonstrated experimentally by TQC filtered 1D spectroscopy on a 1H AX2 system (propargyl bromide in the presence of a paramagnetic additive), as well as a 31P linear AMX system (ATP in agar gel). The performance of the IM-based sequences for TQC excitation are compared against the standard three pulse sequence (Ernst et al., 1987) and an AX2 spin pattern recognition sequence (Levitt and Ernst, 1983). The latter reaches the unitary bound on TQC preparation efficiency starting from thermal equilibrium in AX2 systems, not considering relaxation. It is shown that in systems where spins relax rapidly, the new IM-based sequences indeed perform significantly better than the above two known TQC excitation sequences, the sensitivity enhancement being especially pronounced in the case of the proton system investigated. An overview of the differences in relaxation behavior is presented for the different approaches. Applications are envisaged to Overhauser DNP experiments and to in vivo NMR.

  16. Spin-1 diquark contributing to the formation of tetraquarks in light mesons

    NASA Astrophysics Data System (ADS)

    Kim, Hungchong; Cheoun, Myung-Ki; Kim, K. S.

    2017-03-01

    We apply a mixing framework to the light-meson systems and examine tetraquark possibility in the scalar channel. In the diquark-antidiquark model, a scalar diquark is a compact object when its color and flavor structures are in (\\bar{3}_c, \\bar{3}_f). Assuming that all the quarks are in an S-wave, the spin-0 tetraquark formed out of this scalar diquark has only one spin configuration, |J,J_{12},J_{34}\\rangle =|000\\rangle , where J is the spin of the tetraquark, J_{12} the diquark spin, J_{34} the antidiquark spin. In this construction of the scalar tetraquark, we notice that another compact diquark with spin-1 in (6_c, \\bar{3}_f) can be used although it is less compact than the scalar diquark. The spin-0 tetraquark constructed from this vector diquark leads to the spin configuration |J,J_{12},J_{34}\\rangle =|011\\rangle . The two configurations, |000\\rangle and |011\\rangle , are found to mix strongly through the color-spin interaction. The physical states can be identified with certain mixtures of the two configurations which diagonalize the hyperfine masses of the color-spin interaction. Matching these states to two scalar resonances a_0(980), a_0(1450) or to K^*_0(800), K^*_0(1430) depending on the isospin channel, we find that their mass splittings are qualitatively consistent with the hyperfine mass splittings, which can support their tetraquark structure. To test our mixing scheme further, we also construct the tetraquarks for J=1,J=2 with the spin configurations |111\\rangle and |211\\rangle , and we discuss possible candidates in the physical spectrum.

  17. Time minimal trajectories for a spin 1/2 particle in a magnetic field

    NASA Astrophysics Data System (ADS)

    Boscain, Ugo; Mason, Paolo

    2006-06-01

    In this paper we consider the minimum time population transfer problem for the z component of the spin of a (spin 1/2) particle, driven by a magnetic field, that is constant along the z axis and controlled along the x axis, with bounded amplitude. On the Bloch sphere (i.e., after a suitable Hopf projection), this problem can be attacked with techniques of optimal syntheses on two-dimensional (2-D) manifolds. Let (-E,E) be the two energy levels, and ∣Ω(t)∣≤M the bound on the field amplitude. For each couple of values E and M, we determine the time optimal synthesis starting from the level -E, and we provide the explicit expression of the time optimal trajectories, steering the state one to the state two, in terms of a parameter that can be computed solving numerically a suitable equation. For M /E≪1, every time optimal trajectory is bang-bang and, in particular, the corresponding control is periodic with frequency of the order of the resonance frequency ωR=2E. On the other side, for M /E>1, the time optimal trajectory steering the state one to the state two is bang-bang with exactly one switching. For fixed E, we also prove that for M →∞ the time needed to reach the state two tends to zero. In the case M /E>1 there are time optimal trajectories containing a singular arc. Finally, we compare these results with some known results of Khaneja, Brockett, and Glaser and with those obtained by controlling the magnetic field both on the x and y directions (or with one external field, but in the rotating wave approximation). As a byproduct we prove that the qualitative shape of the time optimal synthesis presents different patterns that cyclically alternate as M /E→0, giving a partial proof of a conjecture formulated in a previous paper.

  18. Polymerase chain reaction system

    DOEpatents

    Benett, William J.; Richards, James B.; Stratton, Paul L.; Hadley, Dean R.; Milanovich, Fred P.; Belgrader, Phil; Meyer, Peter L.

    2004-03-02

    A portable polymerase chain reaction DNA amplification and detection system includes one or more chamber modules. Each module supports a duplex assay of a biological sample. Each module has two parallel interrogation ports with a linear optical system. The system is capable of being handheld.

  19. Preserving coherent spin and squeezed spin states of a spin-1 Bose-Einstein condensate with rotary echoes

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Han, Yingying; Xu, Peng; Zhang, Wenxian

    2016-11-01

    A challenge in precision measurement with squeezed spin state arises from the spin dephasing due to stray magnetic fields. To suppress such environmental noises, we employ a continuous driving protocol, rotary echo, to enhance the spin coherence of a spin-1 Bose-Einstein condensate in stray magnetic fields. Our analytical and numerical results show that the coherent and the squeezed spin states are preserved for a significantly long time, compared to the free induction decay time, if the condition h τ =m π is met with h the pulse amplitude and τ pulse width. In particular, both the spin average and the spin squeezing, including the direction and the amplitude, are simultaneously fixed for a squeezed spin state. Our results point out a practical way to implement quantum measurements based on a spin-1 condensate beyond the standard quantum limit.

  20. Origin of the positive spin-1/2 photoluminescence-detected magnetic resonance in π-conjugated materials and devices

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Cai, Min; Hellerich, Emily; Shinar, Ruth; Shinar, Joseph

    2015-09-01

    The spin-1 /2 single-modulation (SM) and double-modulation (DM) photoluminescence (PL) detected magnetic resonance (PLDMR) in poly(2-methoxy-5-(2'-ethyl)-hexoxy-1,4- phenylene vinylene) (MEH-PPV) films and poly(3-hexylthiophene) (P3HT) films is described, analyzed, and discussed. In particular, the models based on spin-dependent recombination of charge pairs (SDR) and triplet-polaron quenching (TPQ) are evaluated. By analyzing the dependence of the resonance amplitude on the microwave chopping (modulation) frequency using rate equations, it is demonstrated that the TPQ model can well explain the observed resonance behavior, while SDR model cannot reproduce the results of the observed DM-PLDMR. Thus the observed spin-1 /2 PLDMR is assigned to TPQ rather than SDR, even though the latter may also be present.

  1. Scattering of spin 1/2 particles by the 2+1 dimensional noncommutative Aharonov-Bohm potential

    SciTech Connect

    Ferrari, A. F.; Gomes, M.; Stechhahn, C. A.

    2007-10-15

    In this work we study modifications in the Aharonov-Bohm effect for relativistic spin 1/2 particles due to the noncommutativity of spacetime in 2+1 dimensions. The noncommutativity gives rise to a correction to the Aharonov-Bohm potential which is highly singular at the origin, producing divergences in a perturbative expansion around the usual solution of the free Dirac equation. This problem is surmounted by using a perturbative expansion around the exact solution of the commutative Aharonov-Bohm problem. We calculate, in this setting, the scattering amplitude and the corrections to the differential and total cross sections for a spin 1/2 particle, in the small-flux limit.

  2. One-dimensional spin-1 ferromagnetic Heisenberg model with exchange anisotropy and single-ion anisotropy under external magnetic field

    NASA Astrophysics Data System (ADS)

    Song, Chuang-Chuang; Chen, Yuan; Liu, Ming-Wei

    2010-01-01

    The magnetic properties of the one-dimensional spin-1 ferromagnetic Heisenberg model are investigated by Green's function method. The magnetic properties of the system are treated by the random phase approximation for the exchange interaction term, and the Anderson-Callen approximation for the single-ion anisotropy term. The critical temperature, magnetization, and susceptibility are found to be dependent of the anisotropies. Our results are in agreement with the other theoretical results.

  3. The effective action of a spin 1/2 field in the background of a nontopological soliton

    NASA Astrophysics Data System (ADS)

    Baacke, J.

    1990-12-01

    We generalize a new method of calculating the effective action for fields in a spherically symmetric background to the case of a spin 1/2 field whose mass is a function of r=| x|, as it is the case in the nontopological soliton model of Friedberg and Lee. The quantum corrections to the soliton energy are sizeable, of the same order as the bound state energies that stabilize the soliton.

  4. Quantum amplitudes in black-hole evaporation: Spins 1 and 2

    NASA Astrophysics Data System (ADS)

    Farley, A. N. St. J.; D'Eath, P. D.

    2006-06-01

    Quantum amplitudes for s = 1 Maxwell fields and for s = 2 linearised gravitational-wave perturbations of a spherically symmetric Einstein/massless scalar background, describing gravitational collapse to a black hole, are treated by analogy with the previous treatment of s = 0 scalar-field perturbations of gravitational collapse at late times. Both the spin-1 and the spin-2 perturbations split into parts with odd and even parity. Their detailed angular behaviour is analysed, as well as their behaviour under infinitesimal coordinate transformations and their linearised field equations. In general, we work in the Regge-Wheeler gauge, except that, at a certain point, it becomes necessary to make a gauge transformation to an asymptotically flat gauge, such that the metric perturbations have the expected fall-off behaviour at large radii. In both the s = 1 and s = 2 cases, we isolate suitable 'coordinate' variables which can be taken as boundary data on a final space-like hypersurface ΣF. (For simplicity of exposition, we take the data on the initial surface ΣI to be exactly spherically symmetric.) The (large) Lorentzian proper-time interval between ΣI and ΣF, measured at spatial infinity, is denoted by T. We then consider the classical boundary-value problem and calculate the second-variation classical Lorentzian action Sclass(2), on the assumption that the time interval T has been rotated into the complex: T → | T| exp (-i θ), for 0 < θ ⩽ π/2. This complexified classical boundary-value problem is expected to be well-posed, in contrast to the boundary-value problem in the Lorentzian-signature case ( θ = 0), which is badly posed, since it refers to hyperbolic or wave-like field equations. Following Feynman, we recover the Lorentzian quantum amplitude by taking the limit as θ → 0 + of the semi-classical amplitude exp(iSclass(2)). The boundary data for s = 1 involve the (Maxwell) magnetic field, while the data for s = 2 involve the magnetic part of the Weyl

  5. Stripe phase and double-roton excitations in interacting spin-orbit-coupled spin-1 Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Sun, Kuei; Qu, Chunlei; Xu, Yong; Zhang, Yongping; Zhang, Chuanwei

    Spin-orbit (SO) coupling plays a major role in many important phenomena in condensed matter physics. However, the SO coupling physics in high-spin systems, especially with superfluids, has not been well explored because of the spin half of electrons in solids. In this context, the recent experimental realization of spin-orbit coupling in spin-1 Bose-Einstein condensates (BECs) has opened a completely new avenue for exploring SO-coupled high-spin superfluids. Nevertheless, the experiment has only revealed the single-particle physics of the system. Here, we study the effects of interactions between atoms on the ground states and collective excitations of SO-coupled spin-1 BECs in the presence of a spin-tensor potential. We find that ferromagnetic interaction between atoms can induce a stripe phase exhibiting two modulating patterns. We characterize the phase transitions between different phases using the spin-tensor density as well as the collective dipole motion of the BEC. We show that there exists a new type of double maxon-roton structure in the Bogoliubov-excitation spectrum, attributing to the three band minima of the SO-coupled spin-1 BEC. Our work could motivate further theoretical and experimental study along this direction.

  6. On the spin- 1/2 Aharonov–Bohm problem in conical space: Bound states, scattering and helicity nonconservation

    SciTech Connect

    Andrade, F.M.; Silva, E.O.; Pereira, M.

    2013-12-15

    In this work the bound state and scattering problems for a spin- 1/2 particle undergone to an Aharonov–Bohm potential in a conical space in the nonrelativistic limit are considered. The presence of a δ-function singularity, which comes from the Zeeman spin interaction with the magnetic flux tube, is addressed by the self-adjoint extension method. One of the advantages of the present approach is the determination of the self-adjoint extension parameter in terms of physics of the problem. Expressions for the energy bound states, phase-shift and S matrix are determined in terms of the self-adjoint extension parameter, which is explicitly determined in terms of the parameters of the problem. The relation between the bound state and zero modes and the failure of helicity conservation in the scattering problem and its relation with the gyromagnetic ratio g are discussed. Also, as an application, we consider the spin- 1/2 Aharonov–Bohm problem in conical space plus a two-dimensional isotropic harmonic oscillator. -- Highlights: •Planar dynamics of a spin- 1/2 neutral particle. •Bound state for Aharonov–Bohm systems. •Aharonov–Bohm scattering. •Helicity nonconservation. •Determination of the self-adjoint extension parameter.

  7. Falling chains

    NASA Astrophysics Data System (ADS)

    Wong, Chun Wa; Yasui, Kosuke

    2006-06-01

    The one-dimensional fall of a folded chain with one end suspended from a rigid support and a chain falling from a resting heap on a table is studied. Because their Lagrangians contain no explicit time dependence, the falling chains are conservative systems. Their equations of motion are shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is incorrect because it neglects the energy gained when a link leaves a subchain. The maximum chain tension measured by Calkin and March for the falling folded chain is given a simple if rough interpretation. Other aspects of the falling folded chain are briefly discussed.

  8. Thermal entanglement and sharp specific-heat peak in an exactly solved spin-1/2 Ising-Heisenberg ladder with alternating Ising and Heisenberg inter-leg couplings

    NASA Astrophysics Data System (ADS)

    Rojas, Onofre; Strečka, J.; de Souza, S. M.

    2016-11-01

    The spin-1/2 Ising-Heisenberg two-leg ladder accounting for alternating Ising and Heisenberg inter-leg couplings in addition to the Ising intra-leg coupling is rigorously mapped onto to a mixed spin-(3/2,1/2) Ising-Heisenberg diamond chain with the nodal Ising spins S = 3 / 2 and the interstitial spin-1/2 Heisenberg dimers. The latter effective model with higher-order interactions between the nodal and interstitial spins is subsequently exactly solved within the transfer-matrix method. The model under investigation exhibits five different ground states: ferromagnetic, antiferromagnetic, superantiferromagnetic and two types of frustrated ground states with a non-zero residual entropy. A detailed study of thermodynamic properties reveals an anomalous specific-heat peak at low enough temperatures, which is strongly reminiscent because of its extraordinary height and sharpness to an anomaly accompanying a phase transition. It is convincingly evidenced, however, that the anomalous peak in the specific heat is finite and it comes from vigorous thermal excitations from a two-fold degenerate ground state towards a macroscopically degenerate excited state. Thermal entanglement between the nearest-neighbor Heisenberg spins is also comprehensively explored by taking advantage of the concurrence. The threshold temperature delimiting a boundary between the entangled and disentangled parameter space may show presence of a peculiar temperature reentrance.

  9. Research and investigation of a communication chain on optical fiber with a Fabry-Perot power diode for the automotive industry

    NASA Astrophysics Data System (ADS)

    Bacis, Irina Bristena; Vasile, Alexandru; Ionescu, Ciprian; Marghescu, Cristina

    2016-12-01

    The purpose of this paper is to analyze different power devices - emitters of optical flow, from the point of view of optical coupling, emitted optical powers, optical fiber losses and receiver. The research and characterization of the transmission through a power optical system is done using a computer system specialized for the automotive industry. This system/platform can deliver current pulses that are controlled by a computer through a software (it is possible to set different parameters such as pulse repetition frequency, duty cycle, and current intensity). For the experiments a power Fabry Perot 1035 laser diode operating in pulse with μφ 1055 nm, Ith = 40 mA, and Iop =750 mA was used with a single-mode SFM 128 optical fiber and an EM type optical coupler connected through alignment. Two types of measurements were conducted to demonstrate the usefulness of the experimental structure. In the first case the amplitude of the voltage pulses was measured at the output of an optical detector with receiving diode in a built-in amplifier with a 50 kΩ load resistance. In the second stage measurements were conducted to determine the optical power injected in the optical fiber and received at the reception cell of a power meter. Another parameter of optical coupling that can be measured using the experimental structure is irradiation. This parameter is very important to determine the optimum cutting angle of the fiber for continuity welding.

  10. Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy

    1989-01-01

    A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.

  11. Numerical study of magnetization plateaus in the spin-1/2 Heisenberg antiferromagnet on the checkerboard lattice

    NASA Astrophysics Data System (ADS)

    Capponi, Sylvain

    2017-01-01

    We present numerical evidence that the spin-1/2 Heisenberg model on the two-dimensional checkerboard lattice exhibits several magnetization plateaus for m =0 , 1 /4 , 1 /2 , and 3 /4 , where m is the magnetization normalized by its saturation value. These incompressible states correspond to somewhat similar valence-bond crystal phases that break lattice symmetries, though they are different from the already established plaquette phase for m =0 . Our results are based on exact diagonalization as well as density-matrix renormalization-group large-scale simulations and interpreted in terms of simple parameter-free trial wave functions.

  12. The effective action of a spin 1/2 field in the background of a chiral soliton

    NASA Astrophysics Data System (ADS)

    Baacke, J.

    1992-09-01

    We use a recently developed numerical technique in order to evaluate the renormalized effective action of a spin 1/2 field with a chiral mass term, the chiral angle being given by a static hedgehog configuration. The method is based on the use of Euclidean Green's functions. The divergent parts are regularized and renormalized analytically. For the sum over all convergent contributions we obtain an exact expression that can be evaluated numerically. A precarious numerical subtraction of the divergent parts is avoided by making use of integral equations for the partial waves.

  13. Modified Spin Wave Analysis of Low Temperature Properties of the Spin-1/2 Frustrated Ferromagnetic Ladder

    NASA Astrophysics Data System (ADS)

    Hida, Kazuo; Iino, Takashi

    2012-03-01

    Low temperature properties of the spin-1/2 frustrated ladder with ferromagnetic rungs and legs, and two different antiferromagnetic next nearest neighbor interactions are investigated using the modified spin wave approximation in the region with ferromagnetic ground states. The temperature dependence of the magnetic susceptibility and magnetic structure factors is calculated. The results are consistent with the numerical exact diagonalization results in the intermediate temperature range. Below this temperature range, the finite size effect is significant in the numerical diagonalization results, while the modified spin wave approximation gives more reliable results. The low temperature properties near the limit of the stability of the ferromagnetic ground state are also discussed.

  14. Studies of heteronuclear dipolar interactions between spin-1/2 and quadrupolar nuclei by using REDOR during multiple quantum evolution

    NASA Astrophysics Data System (ADS)

    Pruski, M.; Bailly, A.; Lang, D. P.; Amoureux, J.-P.; Fernandez, C.

    1999-06-01

    A new technique for measurements of dipolar interactions in rotating solids is presented that combines the capabilities of multiple quantum magic angle spinning (MQMAS) with the rotational echo double resonance (REDOR). It employs the dipolar recoupling between spin-1/2 ( I) and quadrupolar ( S) nuclei by applying a series of π pulses to the I spins. In contrast to the previously reported MQ-REDOR method, the recoupling sequence is applied during the triple quantum, rather than single quantum evolution. As the dipolar effect is enhanced by the MQ coherence order, this new technique exhibits improved sensitivity toward weak dipolar interactions.

  15. Time-optimal control of spin 1/2 particles in the presence of radiation damping and relaxation.

    PubMed

    Zhang, Y; Lapert, M; Sugny, D; Braun, M; Glaser, S J

    2011-02-07

    We consider the time-optimal control of an ensemble of uncoupled spin 1/2 particles in the presence of relaxation and radiation damping effects, whose dynamics is governed by nonlinear equations generalizing the standard linear Bloch equations. For a single spin, the optimal control strategy can be fully characterized analytically. However, in order to take into account the inhomogeneity of the static magnetic field, an ensemble of isochromats at different frequencies must be considered. For this case, numerically optimized pulse sequences are computed and the dynamics under the corresponding optimal field is experimentally demonstrated using nuclear magnetic resonance techniques.

  16. Metastable spin textures and Nambu-Goldstone modes of a ferromagnetic spin-1 Bose-Einstein condensate confined in a ring trap

    NASA Astrophysics Data System (ADS)

    Kunimi, Masaya

    2014-12-01

    We investigate the metastability of a ferromagnetic spin-1 Bose-Einstein condensate confined in a quasi-one-dimensional rotating ring trap by solving the spin-1 Gross-Pitaevskii equation. We find analytical solutions that exhibit spin textures. By performing linear stability analysis, it is shown that the solutions can become metastable states. We also find that the number of Nambu-Goldstone modes changes at a certain rotation velocity without changing the continuous symmetry of the order parameter.

  17. Exact asymptotics of the current in boundary-driven dissipative quantum chains in large external fields

    NASA Astrophysics Data System (ADS)

    Lenarčič, Zala; Prosen, Tomaž

    2015-03-01

    A boundary-driven quantum master equation for a general inhomogeneous (nonintegrable) anisotropic Heisenberg spin-1 /2 chain, or an equivalent nearest neighbor interacting spinless fermion chain, is considered in the presence of a strong external field f . We present an exact closed form expression for large f asymptotics of the current in the presence of a pure incoherent source and sink dissipation at the boundaries. In application, we demonstrate an arbitrary large current rectification in the presence of the interaction.

  18. Preparation of Main-Chain Polymers Based on Novel Monomers with D-π-A Structure for Application in Organic Second-Order Nonlinear Optical Materials with Good Long-Term Stability.

    PubMed

    Ouyang, Canbin; Liu, Jialei; Liu, Qi; Li, Yuan; Yan, Dongdong; Wang, Qiuxia; Guo, Meixia; Cao, Aocheng

    2017-03-29

    Main-chain nonlinear optical polymers based on novel chromophores with special structures presented good solubility in most of the organic solvents. Polymers PE-1 and PE-2 attained the thermal decomposition temperatures of 305 and 223 °C and glass transition temperatures of 113 and 108 °C, and exhibited only negligible decay in the SHG signal baked at 85 °C over hundreds of hours, respectively. The SHG coefficients of poled films from polymers PE-1 and PE-2 were 26.3 and 35.8 pm/V, respectively. These results indicated that this class of polymers can be used in the preparation of organic electro-optic devices.

  19. Magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs2CuBr4

    DOE PAGES

    Zvyagin, S. A.; Ozerov, M.; Kamenskyi, D.; ...

    2015-11-27

    We present on high- field electron spin resonance (ESR) studies of magnetic excitations in the spin- 1/2 triangular-lattice antiferromagnet Cs2CuBr4. Frequency- field diagrams of ESR excitations are measured for different orientations of magnetic fields up to 25 T. We show that the substantial zero- field energy gap, Δ ≈ 9.5 K, observed in the low-temperature excitation spectrum of Cs2CuBr4 [Zvyagin et al:, Phys. Rev. Lett. 112, 077206 (2014)], is present well above TN. Noticeably, the transition into the long-range magnetically ordered phase does not significantly affect the size of the gap, suggesting that even below TN the high-energy spin dynamicsmore » in Cs2CuBr4 is determined by short-range-order spin correlations. The experimental data are compared with results of model spin-wave-theory calculations for spin-1/2 triangle-lattice antiferromagnet.« less

  20. Comparison of the ferromagnetic Blume-Emery-Griffiths model and the AF spin-1 longitudinal Ising model at low temperature

    NASA Astrophysics Data System (ADS)

    Thomaz, M. T.; Corrêa Silva, E. V.

    2016-03-01

    We derive the exact Helmholtz free energy (HFE) of the standard and staggered one-dimensional Blume-Emery-Griffiths (BEG) model in the presence of an external longitudinal magnetic field. We discuss in detail the thermodynamic behavior of the ferromagnetic version of the model, which exhibits magnetic field-dependent plateaux in the z-component of its magnetization at low temperatures. We also study the behavior of its specific heat and entropy, both per site, at finite temperature. The degeneracy of the ground state, at T=0, along the lines that separate distinct phases in the phase diagram of the ferromagnetic BEG model is calculated, extending the study of the phase diagram of the spin-1 antiferromagnetic (AF) Ising model in S.M. de Souza and M.T. Thomaz, J. Magn. and Magn. Mater. 354 (2014) 205 [5]. We explore the implications of the equality of phase diagrams, at T=0, of the ferromagnetic BEG model with K/|J| = - 2 and of the spin-1 AF Ising model for D/|J| > 1/2.

  1. The route to magnetic order in the spin-1/2 kagome Heisenberg antiferromagnet: The role of interlayer coupling

    NASA Astrophysics Data System (ADS)

    Götze, Oliver; Richter, Johannes

    2016-06-01

    While the existence of a spin-liquid ground state of the spin-1/2 kagome Heisenberg antiferromagnet (KHAF) is well established, the discussion of the effect of an interlayer coupling (ILC) by controlled theoretical approaches is still lacking. Here we study this problem by using the coupled-cluster method to high orders of approximation. We consider a stacked KHAF with a perpendicular ILC J_\\perp , where we study ferro- as well as antiferromagnetic J_\\perp . We find that the spin-liquid ground state (GS) persists until relatively large strengths of the ILC. Only if the strength of the ILC exceeds about 15% of the intralayer coupling the spin-liquid phase gives way for q = 0 magnetic long-range order, where the transition between both phases is continuous and the critical strength of the ILC, |J^c_\\perp| , is almost independent of the sign of J_\\perp . Thus, by contrast to the quantum GS selection of the strictly two-dimensional KHAF at large spin s, the ILC leads first to a selection of the q = 0 GS. Only at larger |J_\\perp| the ILC drives a first-order transition to the \\sqrt{3}×\\sqrt{3} long-range ordered GS. As a result, the stacked spin-1/2 KHAF exhibits a rich GS phase diagram with two continuous and two discontinuous transitions driven by the ILC.

  2. Prospects for spin-1 resonance search at 13 TeV LHC and the ATLAS diboson excess

    NASA Astrophysics Data System (ADS)

    Abe, Tomohiro; Kitahara, Teppei; Nojiri, Mihoko M.

    2016-02-01

    Motivated by ATLAS diboson excess around 2 TeV, we investigate a phenomenology of spin-1 resonances in a model where electroweak sector in the SM is weakly coupled to strong dynamics. The spin-1 resonances, W' and Z', are introduced as effective degrees of freedom of the dynamical sector. We explore several theoretical constraints by investigating the scalar potential of the model as well as the current bounds from the LHC and precision measurements. It is found that the main decay modes are V' → VV and V' → Vh, and the V' width is narrow enough so that the ATLAS diboson excess can be explained. In order to investigate future prospects, we also perform collider simulations at √{s}=13 TeV LHC, and obtain a model independent expected exclusion limit for σ( pp → W' → WZ → JJ). We find a parameter space where the diboson excess can be∫ explained, and are within a reach of the LHC at int dt{L}=10{fb}^{-1}} and √{s}=13 TeV.

  3. Dynamics and stability of stationary states for the spin-1 Bose-Einstein condensates in a standing light wave

    NASA Astrophysics Data System (ADS)

    Wang, Deng-Shan; Han, Wei; Shi, Yuren; Li, Zaidong; Liu, Wu-Ming

    2016-07-01

    The spin-1 Bose-Einstein condensates trapped in a standing light wave can be described by three coupled Gross-Pitaevskii equations with a periodic potential. In this paper, nine families of stationary solutions without phase structures in the form of Jacobi elliptic functions are proposed, and their stabilities are analyzed by both linear stability analysis and dynamical evolutions. Taking the ferromagnetic 87Rb atoms and antiferromagnetic (polar) 23Na atoms as examples, we investigate the stability regions of the nine stationary solutions, which are given in term of elliptic modulus k. It is shown that for the same stationary solution the stability regions of condensates with antiferromagnetic (polar) spin-dependent interactions are larger than that of the condensates with ferromagnetic ones. The dn-dn-dn stationary solution is the most stable solution among the nine families of stationary solutions. Moreover, in the same standing light wave, the spin-1 Bose-Einstein condensates are more stable than the scalar Bose-Einstein condensate.

  4. Matrix product solutions of boundary driven quantum chains

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaž

    2015-09-01

    We review recent progress on constructing non-equilibrium steady state density operators of boundary driven locally interacting quantum chains, where driving is implemented via Markovian dissipation channels attached to the chain’s ends. We discuss explicit solutions in three different classes of quantum chains, specifically, the paradigmatic (anisotropic) Heisenberg spin-1/2 chain, the Fermi-Hubbard chain, and the Lai-Sutherland spin-1 chain, and discuss universal concepts which characterize these solutions, such as matrix product ansatz and a more structured walking graph state ansatz. The central theme is the connection between the matrix product form of nonequilibrium states and the integrability structures of the bulk Hamiltonian, such as the Lax operators and the Yang-Baxter equation. However, there is a remarkable distinction with respect to the conventional quantum inverse scattering method, namely addressing nonequilibrium steady state density operators requires non-unitary irreducible representations of Yang-Baxter algebra which are typically of infinite dimensionality. Such constructions result in non-Hermitian, and often also non-diagonalisable families of commuting transfer operators which in turn result in novel conservation laws of the integrable bulk Hamiltonians. For example, in the case of the anisotropic Heisenberg model, quasi-local conserved operators which are odd under spin reversal (or spin flip) can be constructed, whereas the conserved operators stemming from orthodox Hermitian transfer operators (via logarithmic differentiation) are all even under spin reversal.

  5. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Plasma behind the front of a damage wave and the mechanism of laser-induced production of a chain of caverns in an optical fibre

    NASA Astrophysics Data System (ADS)

    Yakovlenko, Sergei I.

    2004-08-01

    The properties of the plasma behind the front of a damage wave generated by laser radiation in an optical fibre are considered. A plasma with a low degree of ionisation but a relatively high electron density is shown to emerge. However, the high absorption coefficient of laser radiation at a temperature of the order of 2000 K cannot be attributed to the presence of bremsstrahlung. The production of a chain of uniformly spaced caverns during the laser damage of the optical fibre is qualitatively explained. It is shown that this effect cannot be explained by the capillary Rayleigh instability because of the high viscosity of the glass. It is found that the fibre core deformation by a high pressure leads to an increase of the fibre volume sufficient to account for the emergence of the caverns after cooling. It is assumed that the periodicity of caverns is caused by the instability of a new type. A high-density double electrical-charge layer is produced at the plasma—liquid interface. Due to the repulsion of similar charges, the surface tends to increase, resulting in the instability development responsible for the production of the chain of caverns.

  6. Spin-orbital exchange of strongly interacting fermions in the p band of a two-dimensional optical lattice.

    PubMed

    Zhou, Zhenyu; Zhao, Erhai; Liu, W Vincent

    2015-03-13

    Mott insulators with both spin and orbital degeneracy are pertinent to a large number of transition metal oxides. The intertwined spin and orbital fluctuations can lead to rather exotic phases such as quantum spin-orbital liquids. Here, we consider two-component (spin 1/2) fermionic atoms with strong repulsive interactions on the p band of the optical square lattice. We derive the spin-orbital exchange for quarter filling of the p band when the density fluctuations are suppressed, and show that it frustrates the development of long-range spin order. Exact diagonalization indicates a spin-disordered ground state with ferro-orbital order. The system dynamically decouples into individual Heisenberg spin chains, each realizing a Luttinger liquid accessible at higher temperatures compared to atoms confined to the s band.

  7. Spin (1/2){sup +}, spin (3/2){sup +}, and transition magnetic moments of low lying and charmed baryons

    SciTech Connect

    Sharma, Neetika; Dahiya, Harleen; Chatley, P. K.; Gupta, Manmohan

    2010-04-01

    Magnetic moments of the low lying and charmed spin (1/2){sup +} and spin (3/2){sup +} baryons have been calculated in the SU(4) chiral constituent quark model ({chi}CQM) by including the contribution from cc fluctuations. Explicit calculations have been carried out for the contribution coming from the valence quarks, ''quark sea'' polarizations and their orbital angular momentum. The implications of such a model have also been studied for magnetic moments of the low lying spin (3/2){sup +{yields}}(1/2){sup +} and (1/2){sup +{yields}}(1/2){sup +} transitions as well as the transitions involving charmed baryons. The predictions of {chi}CQM not only give a satisfactory fit for the baryons where experimental data is available but also show improvement over the other models. In particular, for the case of {mu}(p), {mu}({Sigma}{sup +}), {mu}({Xi}{sup 0}), {mu}({Lambda}), Coleman-Glashow sum rule for the low lying spin (1/2){sup +} baryons and {mu}({Delta}{sup +}), {mu}({Omega}{sup -}) for the low lying spin (3/2){sup +} baryons, we are able to achieve an excellent agreement with data. For the spin (1/2){sup +} and spin (3/2){sup +} charmed baryon magnetic moments, our results are consistent with the predictions of the QCD sum rules, light cone sum rules and spectral sum rules. For the cases where light quarks dominate in the valence structure, the sea and orbital contributions are found to be fairly significant however, they cancel in the right direction to give the correct magnitude of the total magnetic moment. On the other hand, when there is an excess of heavy quarks, the contribution of the quark sea is almost negligible, for example, {mu}({Omega}{sub c}{sup 0}), {mu}({Lambda}{sub c}{sup +}), {mu}({Xi}{sub c}{sup +}), {mu}({Xi}{sub c}{sup 0}), {mu}({Omega}{sub cc}{sup +}), {mu}({Omega}{sup -}), {mu}({Omega}{sub c}*{sup 0}), {mu}({Omega}{sub cc}*{sup +}), and {mu}({Omega}{sub ccc}*{sup ++}). The effects of configuration mixing and quark masses have also been

  8. Characterizing correlations with full counting statistics: classical Ising and quantum XY spin chains.

    PubMed

    Ivanov, Dmitri A; Abanov, Alexander G

    2013-02-01

    We propose to describe correlations in classical and quantum systems in terms of full counting statistics of a suitably chosen discrete observable. The method is illustrated with two exactly solvable examples: the classical one-dimensional Ising model and the quantum spin-1/2 XY chain. For the one-dimensional Ising model, our method results in a phase diagram with two phases distinguishable by the long-distance behavior of the Jordan-Wigner strings. For the anisotropic spin-1/2 XY chain in a transverse magnetic field, we compute the full counting statistics of the magnetization and use it to classify quantum phases of the chain. The method, in this case, reproduces the previously known phase diagram. We also discuss the relation between our approach and the Lee-Yang theory of zeros of the partition function.

  9. The open XXZ spin chain model and the topological basis realization

    NASA Astrophysics Data System (ADS)

    Wang, Qingyong; Du, Yangyang; Wu, Chunfeng; Wang, Gangcheng; Sun, Chunfang; Xue, Kang

    2016-07-01

    In this paper, it is shown that the Hamiltonian of the open spin-1 XXZ chain model can be constructed from the generators of the Birman-Murakami-Wenzl (B-M-W) algebra. Without the topological parameter d (describing the unknotted loop ◯ in topology) reducing to a fixed value, the topological basis states can be connected with the open XXZ spin chain. Then some particular properties of the topological basis states in this system have been investigated. We find that the topological basis states are the three eigenstates of a four-spin-1 XXZ chain model without boundary term. Specifically, all the spin single states of the system fall on the topological basis subspace. And the number of the spin single states of the system is equal to that of the topological basis states.

  10. Composite nonlinear structure within the magnetosonic soliton interactions in a spin-1/2 degenerate quantum plasma

    SciTech Connect

    Han, Jiu-Ning Luo, Jun-Hua; Li, Jun-Xiu; Li, Sheng-Chang; Liu, Shi-Wei; Yang, Yang; Duan, Wen-Shan; Han, Juan-Fang

    2015-06-15

    We study the basic physical properties of composite nonlinear structure induced by the head-on collision of magnetosonic solitons. Solitary waves are assumed to propagate in a quantum electron-ion magnetoplasma with spin-1/2 degenerate electrons. The main interest of the present work is to investigate the time evolution of the merged composite structure during a specific time interval of the wave interaction process. We consider three cases of colliding-situation, namely, compressive-rarefactive solitons interaction, compressive-compressive solitons interaction, and rarefactive-rarefactive solitons interaction, respectively. Compared with the last two colliding cases, the changing process of the composite structure is more complex for the first situation. Moreover, it is found that they are obviously different for the last two colliding cases.

  11. Highly Efficient Polarization of Spin-1/2 Insensitive NMR Nuclei by Adiabatic Passage through Level Anticrossings.

    PubMed

    Pravdivtsev, Andrey N; Yurkovskaya, Alexandra V; Lukzen, Nikita N; Ivanov, Konstantin L; Vieth, Hans-Martin

    2014-10-02

    A method is proposed to transfer spin order from para-hydrogen, that is, the H2 molecule in its singlet state, to spin-1/2 heteronuclei of a substrate molecule. The method is based on adiabatic passage through nuclear spin level anticrossings (LACs) in the doubly rotating frame of reference; the LAC conditions are fulfilled by applying resonant RF excitation at the NMR frequencies of protons and the heteronuclei. Efficient conversion of the para-hydrogen-induced polarization into net polarization of the heteronuclei is demonstrated; the achieved signal enhancements are about 6400 for (13)C nuclei at natural abundance. The theory behind the technique is described; advantages of the method are discussed in detail.

  12. The magnetic properties of three-dimensional spin-1 easy-axis single-ion anisotropic antiferromagnets

    NASA Astrophysics Data System (ADS)

    Hu, Ai-Yuan; Wang, Qin

    2010-05-01

    The ordered and disordered phases of spin-1 Heisenberg and Ising antiferromagnets with easy-axis single-ion anisotropy on a three-dimensional lattice are studied. By using of the double-time Green's function method within the Tyablikov decoupling for the exchange anisotropy and Callen's approximation for the single-ion anisotropy, the Néel temperature, magnetization and susceptibility are investigated. Their relations with the temperature and anisotropic parameter are analyzed over the entire range of temperature. It is found that our results agree well with spin wave theory results at low temperature, agree with the high temperature series results at high temperature, and compare reasonably well with the linked-cluster series approach and ratio method results at intermediate temperature.

  13. The magnetic properties of one-dimensional spin-1 ferromagnetic Heisenberg model in a magnetic field within Callen approximation

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Wei; Chen, Yuan; Song, Chuang-Chuang; Wu, You; Ding, Hai-Ling

    2011-03-01

    The effect of magnetic field h on the magnetic properties of the one-dimensional spin-1 ferromagnetic Heisenberg model is studied by the double-time Green's function method. The magnetization and susceptibility are obtained within the Callen approximation. The zero-field susceptibility is as a decreasing function of the temperature T. The magnetization m increases in the whole field region, but the susceptibility maximum χ(Tm) decreases. The position Tm of the susceptibility maximum is both solved analytically and fits well to be a power law Tm∼hγ at low fields and to be linear increasing at high fields. The height χ(Tm) decreases as a power law χ(Tm)∼h with h increasing. The exponents (γ,β) obtained in our results agree with the other theoretical results. Our results are roughly in agreement with the results obtained in the experiment of Ni(OH)(NO3)H2O.

  14. Phase diagrams and magnetic properties of ferrimagnetic mixed spin-1/2 and spin-3/2 Ising nanowire

    NASA Astrophysics Data System (ADS)

    Boughazi, B.; Boughrara, M.; Kerouad, M.

    2017-01-01

    A hexagonal nanowire consisting of a ferromagnetic spin-1/2 core and spin-3/2 outer shell coupled with ferrimagnetic interlayer coupling has been studied by the use of the Monte Carlo simulation based on the heat bath algorithm. Particular emphasis is given to the effects of the size, the crystal field, the shell and the interface coupling constants on the critical and the compensation phenomenon. Some interesting behaviors have been observed which include the first and second order phase transitions. The isolated critical points are also observed. We have also found that the system exhibits the compensation phenomenon for appropriate values of the system parameters. The critical exponent has also been calculated.

  15. Magnetic Raman Scattering in Two-Dimensional Spin-1/2 Heisenberg Antiferromagnets: Explanation of the Spectral Shape Anomaly

    NASA Astrophysics Data System (ADS)

    Nori, F.; Merlin, R.; Haas, S.; Sandvick, A.; Dagotto, E.

    1996-03-01

    We calculate(F. Nori, R.Merlin, S. Haas, A.W. Sandvik, and E. Dagotto, Physical Review Letters) 75, 553 (1995). the Raman spectrum of the two-dimensional (2D) spin-1/2 Heisenberg antiferromagnet by exact diagonalization and quantum Monte Carlo techniques on clusters of up to 144 sites. On a 16-site cluster, we consider the phonon-magnon interaction which leads to random fluctuations of the exchange integral. Results are in good agreement with experiments on various high-Tc precursors, such as La_2CuO4 and YBa_2Cu_3O_6.2. In particular, our calculations reproduce the broad lineshape of the two-magnon peak, the asymmetry about its maximum, the existence of spectral weight at high energies, and the observation of nominally forbidden A_1g scattering.

  16. Geometric frustration effects in the spin-1 antiferromagnetic Ising model on the kagome-like recursive lattice: exact results

    NASA Astrophysics Data System (ADS)

    Jurčišinová, E.; Jurčišin, M.

    2016-09-01

    The antiferromagnetic spin-1 Ising model is studied on the Husimi lattice constructed from elementary triangles with coordination number z  =  4. It is found that the model has a unique solution for arbitrary values of the magnetic field as well as for all temperatures. A detailed analysis of the magnetization is performed and it is shown that in addition to the standard plateau-like ground states, the model also contains well-defined single-point ground states related to definite values of the magnetic field. Exact values of the residual entropies for all ground states are found. The properties of the susceptibility and the specific heat of the model are also discussed. The existence of the Schottky-type behavior of the specific heat and the strong magnetocaloric effect for low enough temperatures and for the external magnetic field close to the values at which the single-point ground states exist are identified.

  17. Chain Dynamics in Magnetorheological Suspensions

    NASA Technical Reports Server (NTRS)

    Gast, A. P.; Furst, E. M.

    1999-01-01

    fluctuating chains of dipolar particles. Resolving this issue would contribute greatly to the understanding of these interesting and important materials. We have begun to test the predictions of the HT model by both examining the dynamics of individual chains and by measuring the forces between dipolar chains directly to accurately and quantitatively assess the interactions that they experience. To do so, we employ optical trapping techniques and video-microscopy to manipulate and observe our samples on the microscopic level. With these techniques, it is possible to observe chains that are fluctuating freely in three-dimensions, independent of interfacial effects. More importantly, we are able to controllably observe the interactions of two chains at various separations to measure the force-distance profile. The techniques also allow us to study the mechanical properties of individual chains and chain clusters. Our work to this point has focused on reversibly-formed dipolar chains due to field induced dipoles where the combination of this chaining, the dipolar forces, and the hydrodynamic interactions that dictate the rheology of the suspensions. One can envision, however, many situations where optical, electronic, or rheological behavior may be optimized with magneto-responsive anisotropic particles. Chains of polarizable particles may have the best properties as they can coil and flex in the absence of a field and stiffen and orient when a field is applied. We have recently demonstrated a synthesis of stable, permanent paramagnetic chains by both covalently and physically linking paramagnetic colloidal particles. The method employed allows us to create monodisperse chains of controlled length. We observed the stability, field-alignment, and rigidity of this new class of materials. The chains may exhibit unique rheological properties in an applied magnetic field over isotropic suspensions of paramagnetic particles. They are also useful rheological models as bead

  18. Chain Sampling

    DTIC Science & Technology

    1972-08-01

    35609 Advanced Techniques Branch Plans and Programs Analysis Division Directorate for Product Assurance U. S. Army Missile Command Redstone Arsenal...Ray Heathcock Advanced Techniques Branch Plans and Programs Analysis Division Directorate for Product Assurance U. S. Army Missile Command...for Product Assurance has established a rather unique computer program for handling a variety of chain sampling schemes and is available for

  19. Chain Gang

    NASA Technical Reports Server (NTRS)

    2006-01-01

    6 August 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a chain of clustered and battered craters. These were formed by secondary impact. That is, somewhere to the south (beyond the bottom of this image), a large impact crater formed. When this occurred, material ejected from the crater was thrown tens to hundreds of kilometers away. This material then impacted the martian surface, forming clusters and chains of smaller craters.

    Location near: 15.8oN, 35.6oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Northern Spring

  20. Generalized mutual information of quantum critical chains

    NASA Astrophysics Data System (ADS)

    Alcaraz, F. C.; Rajabpour, M. A.

    2015-04-01

    We study the generalized mutual information I˜n of the ground state of different critical quantum chains. The generalized mutual information definition that we use is based on the well established concept of the Rényi divergence. We calculate this quantity numerically for several distinct quantum chains having either discrete Z (Q ) symmetries (Q -state Potts model with Q =2 ,3 ,4 and Z (Q ) parafermionic models with Q =5 ,6 ,7 ,8 and also Ashkin-Teller model with different anisotropies) or the U (1 ) continuous symmetries (Klein-Gordon field theory, X X Z and spin-1 Fateev-Zamolodchikov quantum chains with different anisotropies). For the spin chains these calculations were done by expressing the ground-state wave functions in two special bases. Our results indicate some general behavior for particular ranges of values of the parameter n that defines I˜n. For a system, with total size L and subsystem sizes ℓ and L -ℓ , the I˜n has a logarithmic leading behavior given by c/˜n4 log[L/π sin(π/ℓ L ) ] where the coefficient c˜n is linearly dependent on the central charge c of the underlying conformal field theory describing the system's critical properties.

  1. Etude des chaines de spins par les methodes de la theorie quantique des champs

    NASA Astrophysics Data System (ADS)

    Allen, Dave

    Notre etude porte sur la chaine de spins en zigzag avec dimerisation dans le cas des spins 1/2 et 1. L'echelle de spin ordinaire et la chaine en zigzag simple en sont des cas particuliers. Dans la limite continue, ces systemes sont decrits par des modeles Wess-Zumino-Witten couples. Afin de pouvoir calculer les fonctions de correlation, nous exposons differentes equivalences quantiques permettant de simplifier les calculs. Dans le cas de chaines de spin 1/2, nous demontrons l'equivalence avec un modele de type Gross-Neveu, en fonction de fermions de Majorana; ces fermions decrivent alors les excitations elementaires du systeme. Nous exposons une vision classique de ces excitations afin de voir les mecanismes de confinement des spinons. Dans le cas de chaines de spin 1, l'etude est plus complexe. Nous pouvons decrire le systeme a l'aide de modeles sine-Gordon perturbes par de nombreuses interactions. En se limitant aux plus importantes, nous pouvons expliquer le comportement du gap en fonction du couplage interchaine observe numeriquement.

  2. Optical Implementation of Quantum Orienteering

    NASA Astrophysics Data System (ADS)

    Jeffrey, Evan R.; Altepeter, Joseph B.; Colci, Madalina; Kwiat, Paul G.

    2006-04-01

    We present results from an optical implementation of quantum orienteering, a protocol for communicating directions in space using quantum bits. We show how different types of measurements and encodings can be used to increase the communication efficiency. In particular, if Alice and Bob use two spin-1/2 particles for communication and employ joint measurements, they do better than is possible with local operations and classical communication. Furthermore, by using oppositely oriented spins, the achievable communication efficiency is further increased. Finally, we discuss the limitations of an optical approach: our results highlight the usually overlooked nonequivalence of different physical encodings of quantum bits.

  3. Measurement of <σ z> ≈ 100 for a spin- {1}/{2} particle or “polarization amplification” of <σ> ≈ 1?

    NASA Astrophysics Data System (ADS)

    Golub, R.; Gähler, R.

    1989-04-01

    We present a description of the Aharonov-Albert-Vaidman (AAV) anomaly, wherein spin- {1}/{2} particle can have apparent values of < σz> ≫ 1, in terms of a normal behaviour with < σz> = 1 followed by an amplification of the resulting precessio n angles by a “polarization amplifier” as proposed by Mezei.

  4. Magnetic behaviors of a transverse spin-1/2 Ising cubic nanowire with core/shell structure

    NASA Astrophysics Data System (ADS)

    El Hamri, M.; Bouhou, S.; Essaoudi, I.; Ainane, A.; Ahuja, R.; Dujardin, F.

    2017-02-01

    The surface shell exchange coupling effect on the magnetic properties (surface shell, core, total longitudinal and total transverse magnetizations, susceptibility, phase diagram and hysteresis loops) of a transverse spin-1/2 Ising cubic nanowire is investigated, in the present work, by employing the effective-field theory based on the probability distribution technique with correlations, for both ferro- and antiferromagnetic cases. We have found that this parameter has a strong effect on the magnetic properties in both cases. In the ferromagnetic case, the total longitudinal magnetization curves display Q- and S-type behaviors and the hysteresis loop has just one loop, whereas in the antiferromagnetic case, the N-type behavior, in which one compensation temperature appears below the critical temperature, exists in the total longitudinal magnetization curve versus reduced temperature, and triple hysteresis loops are found. The effect of applied field is also investigated on the total longitudinal magnetization for the both cases, and we have found that a large applied field value can overcome the antiferromagnetic coupling leading to a ferromagnetic-like behavior.

  5. Magnetic-field-induced quantum criticality in a spin-1 planar ferromagnet with single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Mercaldo, Maria Teresa; Rabuffo, Ileana; Decesare, Luigi; Caramicod'Auria, Alvaro

    2014-03-01

    The effects of single-ion anisotropy on field-induced quantum criticality in spin-1 planar ferromagnet is explored by means of the two-time Green's function method. We work at the Tyablikov decoupling level for exchange interactions and the Anderson-Callen decoupling level for single-ion anisotropy. In our analysis a longitudinal external magnetic field is used as the non-thermal control parameter and the phase diagram and the quantum critical properties are established for suitable values of the single-ion anisotropy parameter. We find that the single-ion anisotropy has sensible effects on the structure of the phase diagram close to the quantum critical point. Indeed, for values of the uniaxial crystal-field parameter above a positive threshold a re-entrant behavior appears for the critical line, while above this value the conventional magnetic-field-induced quantum critical scenario remains unchanged. M. T. Mercaldo, I. Rabuffo, L. De Cesare, A. Caramico D'Auria, Eur. Phys. J. B 86, 340 (2013)

  6. Symmetry and Bulk-Edge Correspondence in the Dimerized Spin-1/2 Heisenberg Ladder with External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kariyado, Toshikaze; Hatsugai, Yasuhiro

    2015-03-01

    The dimerized spin-1/2 Heisenberg ladder is topologically characterized from the viewpoints of symmetry protection and bulk-edge correspondence. Our focus is on the plateau phase at the half of the saturation induced by dimerization and magnetic field. The Berry phase associated with the twisted boundary condition is employed as a topological order parameter. The magnetic field reduces the symmetry of the system, but there is a topological phase protected by a spatial inversion symmetry that is characterized by a Berry phase quantized to 0/ π. For a Berry phase quantization, usage of a symmetry-preserving boundary, which leaves at least one inversion center after the system is cut at the boundary, is essential. As a comparison, a symmetry-breaking boundary is also analyzed. Naively, such a boundary is inadequate to make the Berry phase quantized and topological. However, for a specific type of boundary, we found a unique quantization of the Berry phase into +/- π / 2 , instead of 0/ π [1]. Further, for the case of +/- π / 2 -quantization, there appears an edge state distinct from the one for the 0/ π-quantization, which reveals new aspects of the bulk-edge correspondence for symmetry-breaking boundary.

  7. Magnetism and thermodynamics of the anisotropic frustrated spin-1 Heisenberg antiferromagnet on a body-centered cubic lattice

    NASA Astrophysics Data System (ADS)

    Mi, Bin-Zhou

    2017-02-01

    The magnetic and thermodynamic properties of anisotropic frustrated spin-1 Heisenberg antiferromagnet on a body-centered cubic lattice for Néel phase (the region of weak frustration) are systematically investigated by use of the double-time Green's function method within the random phase approximation and the Anderson and Callen's decoupling. The zero-temperature sublattice magnetization and Néel temperature increase with spin anisotropy strength and single-ion anisotropy strength, and decrease with frustration strength. This indicates that quantum fluctuation is suppressed by spin anisotropy and single-ion anisotropy, by contrast, is strengthened by frustration. It is possible to tune the quantum fluctuations by the competition of anisotropy strength and frustration strength to change the ground state properties of magnetic materials. Although we find that both the spin anisotropy and the single-ion anisotropy suppress the quantum fluctuations, but their respective effects on the thermodynamic quantities, especially the internal energy and free energy, are different at zero temperature and finite temperature. Furthermore, when these two kinds of anisotropic coexist, the effect of the spin anisotropy on the sublattice magnetization and internal energy is larger than that of the single-ion anisotropy.

  8. Magnetic properties of a mixed spin-1 and spin-2 Heisenberg ferrimagnetic system: Green’s function study

    NASA Astrophysics Data System (ADS)

    Mert, G.; Mert, H. Ş.

    2012-12-01

    The magnetic behaviors of a mixed spin-1 and spin-2 Heisenberg ferrimagnetic system on a square lattice are studied by using the double-time temperature-dependent Green’s function technique. In order to decouple the higher order Green’s functions, Anderson and Callen’s decoupling and random phase approximations have been used. The system is described in the presence of an external magnetic field. We illustrate the influences of the nearest- and next-nearest-neighbor interactions and the single-ion anisotropies with an external magnetic field on compensation and critical temperatures. We found that the system that includes only the nearest-neighbor interaction and the single-ion anisotropies does not have a compensation temperature. When the next-nearest-neighbor interactions exceed a certain minimum value, a compensation temperature begins to appear. For some negative values of single-ion anisotropies, there exist first-order phase transitions. The system has first-order phase transition properties when it is under the influence of an external magnetic field.

  9. Asymptotic correlation functions and FFLO signature for the one-dimensional attractive spin-1/2 Fermi gas

    PubMed Central

    Lee, J.Y.; Guan, X.W.

    2011-01-01

    We investigate the long distance asymptotics of various correlation functions for the one-dimensional spin-1/2 Fermi gas with attractive interactions using the dressed charge formalism. In the spin polarized phase, these correlation functions exhibit spatial oscillations with a power-law decay whereby their critical exponents are found through conformal field theory. We show that spatial oscillations of the leading terms in the pair correlation function and the spin correlation function solely depend on ΔkF and 2ΔkF, respectively. Here ΔkF=π(n↑−n↓) denotes the mismatch between the Fermi surfaces of spin-up and spin-down fermions. Such spatial modulations are characteristics of a Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state. Our key observation is that backscattering among the Fermi points of bound pairs and unpaired fermions results in a one-dimensional analog of the FFLO state and displays a microscopic origin of the FFLO nature. Furthermore, we show that the pair correlation function in momentum space has a peak at the point of mismatch between both Fermi surfaces k=ΔkF, which has recently been observed in numerous numerical studies. PMID:26594088

  10. Critical behavior of the spin-1 Blume-Capel model on two-dimensional Voronoi-Delaunay random lattices.

    PubMed

    Fernandes, F P; de Albuquerque, Douglas F; Lima, F W S; Plascak, J A

    2015-08-01

    The critical properties of the spin-1 Blume-Capel model in two dimensions is studied on Voronoi-Delaunay random lattices with quenched connectivity disorder. The system is treated by applying Monte Carlo simulations using the heat-bath update algorithm together with single histograms re-weighting techniques. We calculate the critical temperature as well as the critical exponents as a function of the crystal field Δ. It is found that this disordered system exhibits phase transitions of first- and second-order types that depend on the value of the crystal field. For values of Δ≤3, where the nearest-neighbor exchange interaction J has been set to unity, the disordered system presents a second-order phase transition. The results suggest that the corresponding exponent ratio belongs to the same universality class as the regular two-dimensional ferromagnetic model. There exists a tricritical point close to Δt=3.05(4) with different critical exponents. For Δt≤Δ<3.4 this model undergoes a first-order phase transition. Finally, for Δ≥3.4 the system is always in the paramagnetic phase.

  11. Phase shifts of magneto-acoustic solitons in spin-1/2 fermionic quantum plasma during head-on collision

    NASA Astrophysics Data System (ADS)

    Chatterjee, Prasanta; Roychoudhury, Rajkumar; Ghorui, Malay Kumar; Ghorui

    2013-06-01

    The head-on collision between two magneto-acoustic solitons in spin-1/2 fermionic quantum plasma is studied in the framework of the model proposed by Marklund et al. (Marklund, M., Eliasson, B. and Shukla, P. K. 2007 Phys. Rev. E. 76, 067401). The extended Poincare-Lighthill-Kuo method is used to obtain the phase shifts and the trajectories during the head-on collision of two solitons. The effect of the Zeeman energy for different speeds of the waves, the effect of the total mass density of the charged plasma particles for different strengths of magnetic field, the effect of the speed of the wave for different values of the Zeeman energy, and that of the ratio of the sound speed to Alfven speed for different values of Zeeman energ on the phase shift are studied. It is observed that the phase shifts are significantly affected in all the cases. The most interesting observation of this paper is that the phase shifts increase as well as decrease, and also they may be positive as well as negative depending upon the domain of the chosen parameters.

  12. Dynamics of a Single Spin-1/2 Coupled to x- and y-Spin Baths: Algorithm and Results

    NASA Astrophysics Data System (ADS)

    Novotny, M. A.; Guerra, Marta L.; De Raedt, Hans; Michielsen, Kristel; Jin, Fengping

    The real-time dynamics of a single spin-1/2 particle, called the central spin, coupled to the x(y)-components of the spins of one or more baths is simulated. The bath Hamiltonians contain interactions of x(y)-components of the bath spins only but are general otherwise. An efficient algorithm is described which allows solving the time-dependent Schr'odinger equation for the central spin, even if the x(y) baths contain hundreds of spins. The algorithm requires storage for 2 × 2 matrices only, no matter how many spins are in the baths. We calculate the expectation value of the central spin, as well as its von Neumann entropy S(t), the quantum purity P(t), and the off-diagonal elements of the quantum density matrix. In the case of coupling the central spin to both x- and y- baths the relaxation of S(t) and P(t) with time is a power law, compared to an exponential if the central spin is only coupled to an x-bath. The effect of different initial states for the central spin and bath is studied. Comparison with more general spin baths is also presented.

  13. Propagation of nonclassical correlations across a quantum spin chain

    SciTech Connect

    Campbell, S.; Apollaro, T. J. G.; Di Franco, C.; Banchi, L.; Cuccoli, A.; Vaia, R.; Plastina, F.; Paternostro, M.

    2011-11-15

    We study the transport of quantum correlations across a chain of interacting spin-1/2 particles. As a quantitative figure of merit, we choose a symmetric version of quantum discord and compare it with the transported entanglement, addressing various operating regimes of the spin medium. Discord turns out to be better transported for a wide range of working points and initial conditions of the system. We relate this behavior to the efficiency of propagation of a single excitation across the spin chain. Moreover, we point out the role played by a magnetic field in the dynamics of discord in the effective channel embodied by the chain. Our analysis can be interestingly extended to transport processes in more complex networks and the study of nonclassical correlations under general quantum channels.

  14. Comparison of optical microscopy and quantitative polymerase chain reaction for estimating parasitaemia in patients with kala-azar and modelling infectiousness to the vector Lutzomyia longipalpis

    PubMed Central

    Silva, Jailthon C; Zacarias, Danielle A; Silva, Vladimir C; Rolão, Nuno; Costa, Dorcas L; Costa, Carlos HN

    2016-01-01

    Currently, the only method for identifying infective hosts with Leishmania infantum to the vector Lutzomyia longipalpis is xenodiagnosis. More recently, quantitative polymerase chain reaction (qPCR) has been used to model human reservoir competence by assuming that detection of parasite DNA indicates the presence of viable parasites for infecting vectors. Since this assumption has not been proven, this study aimed to verify this hypothesis. The concentration of amastigotes in the peripheral blood of 30 patients with kala-azar was microscopically verified by leukoconcentration and was compared to qPCR estimates. Parasites were identified in 4.8 mL of peripheral blood from 67% of the patients, at a very low concentration (average 0.3 parasites/mL). However, qPCR showed 93% sensitivity and the estimated parasitaemia was over a thousand times greater, both in blood and plasma, with higher levels in plasma than in blood. Furthermore, the microscopic count of circulating parasites and the qPCR parasitaemia estimates were not mathematically compatible with the published proportions of infected sandflies in xenodiagnostic studies. These findings suggest that qPCR does not measure the concentration of circulating parasites, but rather measures DNA from other sites, and that blood might not be the main source of infection for vectors. PMID:27439033

  15. Q-operators for the open Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Frassek, Rouven; Szécsényi, István M.

    2015-12-01

    We construct Q-operators for the open spin-1/2 XXX Heisenberg spin chain with diagonal boundary matrices. The Q-operators are defined as traces over an infinite-dimensional auxiliary space involving novel types of reflection operators derived from the boundary Yang-Baxter equation. We argue that the Q-operators defined in this way are polynomials in the spectral parameter and show that they commute with transfer matrix. Finally, we prove that the Q-operators satisfy Baxter's TQ-equation and derive the explicit form of their eigenvalues in terms of the Bethe roots.

  16. Nonequilibrium Phase Transition in a Periodically Driven XY Spin Chain

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaž; Ilievski, Enej

    2011-08-01

    We present a general formulation of Floquet states of periodically time-dependent open Markovian quasifree fermionic many-body systems in terms of a discrete Lyapunov equation. Illustrating the technique, we analyze periodically kicked XY spin-(1)/(2) chain which is coupled to a pair of Lindblad reservoirs at its ends. A complex phase diagram is reported with reentrant phases of long range and exponentially decaying spin-spin correlations as some of the system’s parameters are varied. The structure of phase diagram is reproduced in terms of counting nontrivial stationary points of Floquet quasiparticle dispersion relation.

  17. Slavnov and Gaudin-Korepin Formulas for Models without U(1) Symmetry: the Twisted XXX Chain

    NASA Astrophysics Data System (ADS)

    Belliard, Samuel; Pimenta, Rodrigo A.

    2015-12-01

    We consider the XXX spin-1/2 Heisenberg chain on the circle with an arbitrary twist. We characterize its spectral problem using the modified algebraic Bethe anstaz and study the scalar product between the Bethe vector and its dual. We obtain modified Slavnov and Gaudin-Korepin formulas for the model. Thus we provide a first example of such formulas for quantum integrable models without U(1) symmetry characterized by an inhomogenous Baxter T-Q equation.

  18. Kinetic and optical biosensor study of adrenodoxin mutant AdxS112W displaying an enhanced interaction towards the cholesterol side chain cleavage enzyme (CYP11A1).

    PubMed

    Schiffler, Burkhard; Zöllner, Andy; Bernhardt, Rita

    2011-12-01

    In mammals, steroid hormones are synthesized from cholesterol that is metabolized by the mitochondrial CYP11A1 system leading to pregnenolone. The reduction equivalents for this reaction are provided by NADPH, via a small electron transfer chain, consisting of adrenodoxin reductase (AdR) and adrenodoxin (Adx). The reaction partners are involved in a series of transient interactions to realize the electron transfer from NADPH to CYP11A1. Here, we compared the ionic strength effect on the AdR/Adx and Adx/CYP11A1 interactions for wild-type Adx and mutant AdxS112W. Using surface plasmon resonance measurements, stopped flow kinetic investigations and analyses of the product formation, we were able to obtain new insights into the mechanism of these interactions. The replacement of serine 112 by tryptophan was demonstrated to lead to a dramatically decreased k (off) rate of the Adx/CYP11A1 complex, resulting in a four-fold decreased K (d) value and indicating a much higher stability of the complex involving the mutant. Stopped flow analysis at various ionic strengths and in different mixing modes revealed that the binding of reduced Adx to CYP11A1 seems to display the limiting step for electron transfer to CYP11A1 with pre-reduced AdxS112W being much more efficient than wild-type Adx. Finally, the dramatic increase in pregnenolone formation at higher ionic strength using the mutant demonstrates that the interaction of CYP11A1 with Adx is the rate-limiting step in substrate conversion and that hydrophobic interactions may considerably improve this interaction and the efficiency of product formation. The data are discussed using published structural data of the complexes.

  19. Kinetic analysis of spin current contribution to spectrum of electromagnetic waves in spin-1/2 plasma. II. Dispersion dependencies

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.

    2017-02-01

    The dielectric permeability tensor for spin polarized plasmas derived in terms of the spin-1/2 quantum kinetic model in six-dimensional phase space obtained in Part I of this work is applied for the study of spectra of high-frequency transverse and transverse-longitudinal waves propagating perpendicular to the external magnetic field. Cyclotron waves are studied in consideration of waves with the electric field directed parallel to the external magnetic field. It is found that the separate spin evolution modifies the spectrum of cyclotron waves. These modifications increase with the increase in spin polarization and the number of the cyclotron resonance. Spin dynamics gives a considerable modification of spectra even if the anomalous part of electron magnetic moment is not included in the model. The account of anomalous magnetic moment leads to a fine structure of each cyclotron resonance. So, each cyclotron resonance splits into three waves. Details of this spectrum and its changes with the change of spin polarization are studied for the first and second cyclotron waves. A cyclotron resonance existing at ω≈0.001 | Ωe| due to the anomalous magnetic moment is also described, where | Ωe| is the cyclotron frequency. The ordinary waves do not have any considerable modification. The electrostatic and electromagnetic Berstein modes are studied during the analysis of waves propagating perpendicular to the external magnetic field with the electric field perturbation directed perpendicular to the external field. A modification of the oscillatory structure caused by the equilibrium spin polarization is found in both regimes. Similar modification is found for the extraordinary wave spectrum.

  20. Loading an Equidistant Ion Chain in a Ring Shaped Surface Trap and Anomalous Heating Studies with a High Optical Access Trap

    SciTech Connect

    Tabakov, Boyan

    2015-07-01

    Microfabricated segmented surface ion traps are one viable avenue to scalable quantum information processing. At Sandia National Laboratories we design, fabricate, and characterize such traps. Our unique fabrication capabilities allow us to design traps that facilitate tasks beyond quantum information processing. The design and performance of a trap with a target capability of storing hundreds of equally spaced ions on a ring is described. Such a device could aid experimental studies of phenomena as diverse as Hawking radiation, quantum phase transitions, and the Aharonov - Bohm effect. The fabricated device is demonstrated to hold a ~ 400 ion circular crystal, with 9 μm average spacing between ions. The task is accomplished by first characterizing undesired electric fields in the trapping volume and then designing and applying an electric field that substantially reduces the undesired fields. In addition, experimental efforts are described to reduce the motional heating rates in a surface trap by low energy in situ argon plasma treatment that reduces the amount of surface contaminants. The experiment explores the premise that carbonaceous compounds present on the surface contribute to the anomalous heating of secular motion modes in surface traps. This is a research area of fundamental interest to the ion trapping community, as heating adversely affects coherence and thus gate fidelity. The device used provides high optical laser access, substantially reducing scatter from the surface, and thus charging that may lead to excess micromotion. Heating rates for different axial mode frequencies are compared before and after plasma treatment. The presence of a carbon source near the plasma prevents making a conclusion on the observed absence of change in heating rates.

  1. Clathrin heavy chain, light chain interactions.

    PubMed Central

    Winkler, F K; Stanley, K K

    1983-01-01

    Purified pig brain clathrin can be reversibly dissociated and separated into heavy chain trimers and light chains in the presence of non-denaturing concentrations of the chaotrope thiocyanate. The isolated heavy chain trimers reassemble into regular polygonal cage structures in the absence of light chains. The light chain fraction can be further resolved into its two components L alpha and L beta which give different one-dimensional peptide maps. Radiolabelled light chains bind with high affinity (KD < 10(-10) M) to heavy chain trimers, to heavy chain cages and to a 110,000 mol. wt. tryptic fragment of the heavy chain. Both light chains compete with each other and with light chains from other sources for the same binding sites on heavy chains and c.d. spectroscopy shows that the two pig brain light chains possess very similar structures. We conclude that light chains from different sources, despite some heterogeneity, have a highly conserved, high affinity binding site on the heavy chain but are not essential for the formation of regular cage structures. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 8. PMID:10872336

  2. Singular Atom Optics with Spinor BECs

    NASA Astrophysics Data System (ADS)

    Schultz, Justin T.; Hansen, Azure; Bigelow, Nicholas P.

    2015-05-01

    We create and study singular spin textures in pseudo-spin-1/2 BECs. A series of two-photon Raman interactions allows us to not only engineer the spinor wavefunction but also perform the equivalent of atomic polarimetry on the BEC. Adapting techniques from optical polarimetry, we can image two-dimensional maps of the atomic Stokes parameters, thereby fully reconstructing the atomic wavefunction. In a spin-1/2 system, we can represent the local spin superposition with ellipses in a Cartesian basis. The patterns that emerge from the major axes of the ellipses provide fingerprints of the singularities that enable us to classify them as lemons, stars, saddles, or spirals similar to classification schemes for singularities in singular optics, condensed matter, and liquid crystals. These techniques may facilitate the study of geometric Gouy phases in matter waves as well as provide an avenue for utilizing topological structures as quantum gates.

  3. Comment on ``Electronic structure of spin- (1)/(2) Heisenberg antiferromagnetic systems: Ba2Cu(PO4)2 and Sr2Cu(PO4)2 ''

    NASA Astrophysics Data System (ADS)

    Rosner, H.; Schmitt, M.; Kasinathan, D.; Ormeci, A.; Richter, J.; Drechsler, S.-L.; Johannes, M. D.

    2009-03-01

    Recently S. S. Salunke [Phys. Rev. B 76, 085104 (2007)] reinvestigated the electronic and magnetic properties of the low-dimensional spin-1/2 materials Sr2Cu(PO4)2 and Ba2Cu(PO4)2 . Based on a NMTO downfolding methodology their main result is a considerably reduced transfer term along the magnetic chains compared to an earlier study [M. D. Johannes , Phys. Rev. B 74, 174435 (2006)]. The discrepancy is assigned to the N th-order muffin-tin orbital mapping procedure that is suggested to be more accurate than the tight-binding approach taken by Johannes Here, we demonstrate that in contrast to the suggestion of Salunke , the discrepancy arises solely from the employment of the atomic-sphere approximation in the underlying band-structure calculation rather than from the mapping scheme used. By comparison of the bandwidths of Salunke to those obtained using three different full-potential methods we find that the full-potential methods are all in nearly exact agreement with one another and yield an about 30% larger bandwidth compared to the results in Salunke . In general, our results emphasize the need for a full-potential description especially for strongly anisotropic structures as a precondition for a subsequent accurate modeling. Furthermore, we comment on the exact diagonalization results given by Salunke .

  4. Singular eigenstates in the even(odd) length Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Ranjan Giri, Pulak; Deguchi, Tetsuo

    2015-05-01

    We study the implications of the regularization for the singular solutions on the even(odd) length spin-1/2 XXX chains in some specific down-spin sectors. In particular, the analytic expressions of the Bethe eigenstates for three down-spin sector have been obtained along with their numerical forms in some fixed length chains. For an even-length chain if the singular solutions \\{{{λ }α }\\} are invariant under the sign changes of their rapidities \\{{{λ }α }\\}=\\{-{{λ }α }\\}, then the Bethe ansatz equations are reduced to a system of (M-2)/2((M-3)/2) equations in an even (odd) down-spin sector. For an odd N length chain in the three down-spin sector, it has been analytically shown that there exist singular solutions in any finite length of the spin chain of the form N=3(2k+1) with k=1,2,3,\\cdots . It is also shown that there exist no singular solutions in the four down-spin sector for some odd-length spin-1/2 XXX chains.

  5. Three-component Gross-Pitaevskii equations in the spin-1 Bose-Einstein condensate: Spin-rotation symmetry, matter-wave solutions, and dynamics.

    PubMed

    Wen, Zichao; Yan, Zhenya

    2017-03-01

    We report new matter-wave solutions of the one-dimensional spin-1 Bose-Einstein condensate system by combining global spin-rotation states and similarity transformation. Dynamical behaviors of non-stationary global spin-rotation states derived from the SU(2) spin-rotation symmetry are discussed, which exhibit temporal periodicity. We derive generalized bright-dark mixed solitons and new rogue wave solutions and reveal the relations between Euler angles in spin-rotation symmetry and parameters in ferromagnetic and polar solitons. In the modulated spin-1 Bose-Einstein condensate system, new solutions are derived and graphically illustrated for different types of modulations. Moreover, numerical simulations are performed to investigate the stability of some obtained solutions for chosen parameters.

  6. Ba8CoNb6O24 : A spin-1/2 triangular-lattice Heisenberg antiferromagnet in the two-dimensional limit

    NASA Astrophysics Data System (ADS)

    Rawl, R.; Ge, L.; Agrawal, H.; Kamiya, Y.; Dela Cruz, C. R.; Butch, N. P.; Sun, X. F.; Lee, M.; Choi, E. S.; Oitmaa, J.; Batista, C. D.; Mourigal, M.; Zhou, H. D.; Ma, J.

    2017-02-01

    The perovskite Ba8CoNb6O24 comprises equilateral effective spin-1/2 Co2 + triangular layers separated by six nonmagnetic layers. Susceptibility, specific heat, and neutron scattering measurements combined with high-temperature series expansions and spin-wave calculations confirm that Ba8CoNb6O24 is basically a two-dimensional magnet with no detectable spin anisotropy and no long-range magnetic ordering down to 0.06 K. In other words, Ba8CoNb6O24 is very close to be a realization of the paradigmatic spin-1/2 triangular Heisenberg model, which is not expected to exhibit symmetry breaking at finite temperatures according to the Mermin and Wagner theorem.

  7. Bogoliubov theory and Lee-Huang-Yang corrections in spin-1 and spin-2 Bose-Einstein condensates in the presence of the quadratic Zeeman effect

    SciTech Connect

    Uchino, Shun; Kobayashi, Michikazu; Ueda, Masahito

    2010-06-15

    We develop Bogoliubov theory of spin-1 and spin-2 Bose-Einstein condensates (BECs) in the presence of a quadratic Zeeman effect, and derive the Lee-Huang-Yang (LHY) corrections to the ground-state energy, pressure, sound velocity, and quantum depletion. We investigate all the phases of spin-1 and spin-2 BECs that can be realized experimentally. We also examine the stability of each phase against quantum fluctuations and the quadratic Zeeman effect. Furthermore, we discuss a relationship between the number of symmetry generators that are spontaneously broken and that of Nambu-Goldstone (NG) modes. It is found that in the spin-2 nematic phase there are special Bogoliubov modes that have gapless linear dispersion relations but do not belong to the NG modes.

  8. Restrictions on the parameters of the spin-1 antigraviton and the dilaton resulting from the Casimir effect and from the Eoetvoes and Cavendish experiments

    SciTech Connect

    Mostepanenko, V.M.; Sokolov, I.Y. )

    1989-06-01

    On the basis of an analysis of experimental data, restrictions are obtained on the parameters of hypothetical long-range Yukawa-type interactions which arise from the exchange of vector and pseudo-Goldstone particles. The masses of the spin-1 antigraviton and the dilaton are estimated to be greater than 6{times}10{sup {minus}5} and 4{times}10{sup {minus}5} eV, respectively.

  9. Spin-1/2 kagome XXZ model in a field: Competition between lattice nematic and solid orders

    NASA Astrophysics Data System (ADS)

    Kshetrimayum, Augustine; Picot, Thibaut; Orús, Román; Poilblanc, Didier

    2016-12-01

    We study numerically the spin-1/2 XXZ model in a field on an infinite kagome lattice. We use different algorithms based on infinite projected entangled pair states (iPEPSs) for this, namely, (i) an approach with simplex tensors and a 9-site unit cell, and (ii) an approach based on coarse-graining three spins in the kagome lattice and mapping it to a square-lattice model with local and nearest-neighbor interactions, with the usual PEPS tensors, 6- and 12-site unit cells. Similarly to our previous calculation at the SU(2)-symmetric point (Heisenberg Hamiltonian), for any anisotropy from the Ising limit to the XY limit, we also observe the emergence of magnetization plateaus as a function of the magnetic field, at mz=1/3 using 6-, 9-, and 12-site PEPS unit cells, and at mz=1/9 ,5/9 , and 7/9 using a 9-site PEPS unit cell, the latter setup being able to accommodate √{3 }×√{3 } solid order. We also find that, at mz=1/3 , (lattice) nematic and √{3 }×√{3 } VBC-order states are degenerate within the accuracy of the nine-site simplex method, for all anisotropy. The 6- and 12-site coarse-grained PEPS methods produce almost-degenerate nematic and 1 ×2 VBC-solid orders. We also find that, within our accuracy, the six-site coarse-grained PEPS method gives slightly lower energies, which can be explained by the larger amount of entanglement this approach can handle, even in cases where the PEPS unit cell is not commensurate with the expected ground-state unit cell. Furthermore, we do not observe chiral spin liquid behaviors at and close to the XY point, as has been recently proposed. Our results are the first tensor network investigations of the XXZ model in a field and reveal the subtle competition between nearby magnetic orders in numerical simulations of frustrated quantum antiferromagnets, as well as the delicate interplay between energy optimization and symmetry in tensor network numerical simulations.

  10. Alternation of sign of magnetization current in driven XXZ chains with twisted XY boundary gradients

    NASA Astrophysics Data System (ADS)

    Popkov, V.

    2012-12-01

    We investigate an open XXZ spin 1/2 chain driven out of equilibrium by coupling with boundary reservoirs targeting different spin orientations in the XY-plane. Symmetries of the model are revealed which appear to be different for spin chains of odd and even sizes. As a result, the spin current is found to alternate with chain length, ruling out the possibility of ballistic transport. Heat transport is switched off completely by virtue of another global symmetry. Further, we investigate the model numerically and analytically. At strong coupling, we find an exact nonequilibrium steady state using perturbation theory. The state is determined by solving secular conditions which guarantee self-consistency of the perturbative expansion. We find nontrivial dependence of the magnetization current on the spin chain anisotropy Δ in the critical region |Δ| < 1, and a phenomenon of tripling of the twisting angle along the chain for narrow lacunae of Δ.

  11. Electron spin resonance shifts in S=1 antiferromagnetic chains

    NASA Astrophysics Data System (ADS)

    Furuya, Shunsuke C.; Maeda, Yoshitaka; Oshikawa, Masaki

    2013-03-01

    We discuss electron spin resonance (ESR) shifts in spin-1 Heisenberg antiferromagnetic chains with a weak single-ion anisotropy, based on several effective field theories: the O(3) nonlinear sigma model (NLSM) in the Haldane phase, free-fermion theories around the lower and the upper critical fields. In the O(3) NLSM, the single-ion anisotropy corresponds to a composite operator which creates two magnons at the same time and position. Therefore, even inside a parameter range where free magnon approximation is valid for thermodynamics, we have to take interactions among magnons into account in order to include the single-ion anisotropy as a perturbation. Although the O(3) NLSM is only valid in the Haldane phase, an appropriate translation of Faddeev-Zamolodchikov operators of the O(3) NLSM to fermion operators enables one to treat ESR shifts near the lower critical field in a similar manner to discussions in the Haldane phase. Our theory gives quantitative agreements with a numerical evaluation using quantum Monte Carlo simulation, and also with recent ESR experimental results on a spin-1 chain compound Ni(C5H14N2)2N3(PF6).

  12. Measurement backaction on the quantum spin-mixing dynamics of a spin-1 Bose-Einstein condensate

    SciTech Connect

    Zhang Keye; Zhou Lu; Zhang Weiping; Ling, Hong Y.; Pu Han

    2011-06-15

    We consider a small F=1 spinor condensate inside an optical cavity driven by an optical probe field, and subject the output of the probe to a homodyne detection, with the goal of investigating the effect of measurement backaction on the spin dynamics of the condensate. Using the stochastic master equation approach, we show that the effect of backaction is sensitive to not only the measurement strength but also the quantum fluctuation of the spinor condensate. The same method is also used to estimate the atom numbers below which the effect of backaction becomes so prominent that extracting spin dynamics from this cavity-based detection scheme is no longer practical.

  13. Qubit teleportation and transfer across antiferromagnetic spin chains.

    PubMed

    Campos Venuti, L; Degli Esposti Boschi, C; Roncaglia, M

    2007-08-10

    We explore the capability of spin-1/2 chains to act as quantum channels for both teleportation and transfer of qubits. Exploiting the emergence of long-distance entanglement in low-dimensional systems [Phys. Rev. Lett. 96, 247206 (2006)10.1103/Phys.Rev.Lett.96, 247206(2006)], here we show how to obtain high communication fidelities between distant parties. An investigation of protocols of teleportation and state transfer is presented, in the realistic situation where temperature is included. Basing our setup on antiferromagnetic rotationally invariant systems, both protocols are represented by pure depolarizing channels. We propose a scheme where channel fidelity close to 1 can be achieved on very long chains at moderately small temperature.

  14. Measurement-based teleportation along quantum spin chains.

    PubMed

    Barjaktarevic, J P; McKenzie, R H; Links, J; Milburn, G J

    2005-12-02

    We examine the teleportation of an unknown spin-1/2 quantum state along a quantum spin chain with an even number of sites. Our protocol, using a sequence of Bell measurements, may be viewed as an iterated version of the 2-qubit protocol of C. H. Bennett et al. [Phys. Rev. Lett. 70, 1895 (1993)]. A decomposition of the Hilbert space of the spin chain into 4 vector spaces, called Bell subspaces, is given. It is established that any state from a Bell subspace may be used as a channel to perform unit fidelity teleportation. The space of all spin-0 many-body states, which includes the ground states of many known antiferromagnetic systems, belongs to a common Bell subspace. A channel-dependent teleportation parameter [symbol: see text] is introduced, and a bound on the teleportation fidelity is given in terms of [symbol: see text].

  15. Local Spin Relaxation within the Random Heisenberg Chain

    NASA Astrophysics Data System (ADS)

    Herbrych, J.; Kokalj, J.; Prelovšek, P.

    2013-10-01

    Finite-temperature local dynamical spin correlations Snn(ω) are studied numerically within the random spin-1/2 antiferromagnetic Heisenberg chain. The aim is to explain measured NMR spin-lattice relaxation times in BaCu2(Si0.5Ge0.5)2O7, which is the realization of a random spin chain. In agreement with experiments we find that the distribution of relaxation times within the model shows a very large span similar to the stretched-exponential form. The distribution is strongly reduced with increasing T, but stays finite also in the high-T limit. Anomalous dynamical correlations can be associated with the random singlet concept but not directly with static quantities. Our results also reveal the crucial role of the spin anisotropy (interaction), since the behavior is in contrast with the ones for the XX model, where we do not find any significant T dependence of the distribution.

  16. "Light-cone" dynamics after quantum quenches in spin chains.

    PubMed

    Bonnes, Lars; Essler, Fabian H L; Läuchli, Andreas M

    2014-10-31

    Signal propagation in the nonequilibrium evolution after quantum quenches has recently attracted much experimental and theoretical interest. A key question arising in this context is what principles, and which of the properties of the quench, determine the characteristic propagation velocity. Here we investigate such issues for a class of quench protocols in one of the central paradigms of interacting many-particle quantum systems, the spin-1/2 Heisenberg XXZ chain. We consider quenches from a variety of initial thermal density matrices to the same final Hamiltonian using matrix product state methods. The spreading velocities are observed to vary substantially with the initial density matrix. However, we achieve a striking data collapse when the spreading velocity is considered to be a function of the excess energy. Using the fact that the XXZ chain is integrable, we present an explanation of the observed velocities in terms of "excitations" in an appropriately defined generalized Gibbs ensemble.

  17. On polarization parameters of spin-1 particles and anomalous couplings in e^+e^-→ ZZ/Zγ

    NASA Astrophysics Data System (ADS)

    Rahaman, Rafiqul; Singh, Ritesh K.

    2016-10-01

    We study the anomalous trilinear gauge couplings of Z and γ using a complete set of polarization asymmetries for the Z boson in e^+e^-→ ZZ/Zγ processes with unpolarized initial beams. We use these polarization asymmetries, along with the cross section, to obtain a simultaneous limit on all the anomalous couplings using the Markov Chain Monte Carlo (MCMC) method. For an e^+e^- collider running at 500 GeV center-of-mass energy and 100 fb^{-1} of integrated luminosity the simultaneous limits on the anomalous couplings are 1-3× 10^{-3}.

  18. Open spin chains with generic integrable boundaries: Baxter equation and Bethe ansatz completeness from separation of variables

    NASA Astrophysics Data System (ADS)

    Kitanine, N.; Maillet, J. M.; Niccoli, G.

    2014-05-01

    We solve the longstanding problem of defining a functional characterization of the spectrum of the transfer matrix associated with the most general spin-1/2 representations of the six-vertex reflection algebra for general inhomogeneous chains. The corresponding homogeneous limit reproduces the spectrum of the Hamiltonian of the spin-1/2 open XXZ and XXX quantum chains with the most general integrable boundaries. The spectrum is characterized by a second order finite difference functional equation of Baxter type with an inhomogeneous term which vanishes only for some special but yet interesting non-diagonal boundary conditions. This functional equation is shown to be equivalent to the known separation of variables (SOV) representation, hence proving that it defines a complete characterization of the transfer matrix spectrum. The polynomial form of the Q-function allows us to show that a finite system of generalized Bethe equations can also be used to describe the complete transfer matrix spectrum.

  19. Health supply chain management.

    PubMed

    Zimmerman, Rolf; Gallagher, Pat

    2010-01-01

    This chapter gives an educational overview of: * The actual application of supply chain practice and disciplines required for service delivery improvement within the current health environment. * A rationale for the application of Supply Chain Management (SCM) approaches to the Health sector. * The tools and methods available for supply chain analysis and benchmarking. * Key supply chain success factors.

  20. Lower bound for the variation of the hyperfine populations in the ground state of spin-1 condensates against a magnetic field

    NASA Astrophysics Data System (ADS)

    Xie, W. F.; He, Y. Z.; Bao, C. G.

    2015-10-01

    A simple and analytical expression for the variation of the lower bound and upper bound of the population density ρ0 of hyperfine component μ = 0 particles in the ground state of spin-1 condensates against a magnetic field B has been derived. The lower bound has a distinguished feature, namely, it will tend to the actual ρ0 when B tends to zero and infinite. This feature assures that, in the whole range of B, the lower bound can provide an effective constraint. Numerical examples are given to demonstrate the applicability of the bound.

  1. Crystallized half-skyrmions and inverted half-skyrmions in the condensation of spin-1 Bose gases with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Su, S.-W.; Liu, I.-K.; Tsai, Y.-C.; Liu, W. M.; Gou, S.-C.

    2012-08-01

    The nonequilibrium dynamics of a rapidly quenched spin-1 Bose gas with spin-orbit coupling is studied. By solving the stochastic projected Gross-Pitaevskii equation, we show that crystallization of half-skyrmions (merons), can occur in a spinor condensate of 87Rb. The stability of such a crystal structure is analyzed. Likewise, inverted half-skyrmions can be created in a spin-polarized spinor condensate of 23Na. Our studies provide a chance to explore the fundamental properties of skyrmionlike matter.

  2. Generic fixed point model for pseudo-spin-1/2 quantum dots in nonequilibrium: Spin-valve systems with compensating spin polarizations

    NASA Astrophysics Data System (ADS)

    Göttel, Stefan; Reininghaus, Frank; Schoeller, Herbert

    2015-07-01

    We study a pseudo-spin-1/2 quantum dot in the cotunneling regime close to the particle-hole symmetric point. For a generic tunneling matrix we find a fixed point with interesting nonequilibrium properties, characterized by effective reservoirs with compensating spin orientation vectors weighted by the polarizations and the tunneling rates. At large bias voltage we study the magnetic field dependence of the dot magnetization and the current. The fixed point can be clearly identified by analyzing the magnetization of the dot. We characterize the universal properties for the case of two reservoirs and discuss deviations from the fixed point model in experimentally realistic situations.

  3. Magnetic properties of the mixed spin-1 and spin-3/2 Ising system on a bilayer square lattice: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Jabar, A.; Masrour, R.; Benyoussef, A.; Hamedoun, M.

    2017-02-01

    The magnetic behavior of the mixed spin-1 and spin-3/2 Ising system on a bilayer square lattice is studied using the Monte Carlo simulations for both ferromagnetic/ferromagnetic and antiferromagnetic/ferromagnetic interactions in the presence and absence of external magnetic, crystal field and for different values of exchange interactions. The thermal variations of the magnetizations are given. The magnetic hysteresis cycles are established. The magnetic coercive field and the remanent magnetization are deduced. The coercive magnetic field, remanent magnetization and the transition temperature were not affect by the size effect.

  4. Kinetic analysis of spin current contribution to spectrum of electromagnetic waves in spin-1/2 plasma. I. Dielectric permeability tensor for magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.

    2017-02-01

    The dielectric permeability tensor for spin polarized plasmas is derived in terms of the spin-1/2 quantum kinetic model in six-dimensional phase space. Expressions for the distribution function and spin distribution function are derived in linear approximations on the path of dielectric permeability tensor derivation. The dielectric permeability tensor is derived for the spin-polarized degenerate electron gas. It is also discussed at the finite temperature regime, where the equilibrium distribution function is presented by the spin-polarized Fermi-Dirac distribution. Consideration of the spin-polarized equilibrium states opens possibilities for the kinetic modeling of the thermal spin current contribution in the plasma dynamics.

  5. Closed Circular Chains

    ERIC Educational Resources Information Center

    Caglayan, Günhan

    2016-01-01

    A Steiner chain is defined as the sequence of n circles that are all tangent to two given non-intersecting circles. A closed chain, in particular, is one in which every circle in the sequence is tangent to the previous and next circles of the chain. In a closed Steiner chain the first and the "n"th circles of the chain are also tangent…

  6. Magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs2CuBr4

    SciTech Connect

    Zvyagin, S. A.; Ozerov, M.; Kamenskyi, D.; Wosnitza, J.; Krzystek, J.; Yoshizawa, D.; Hagiwara, M.; Hu, Rongwei; Ryu, Hyejin; Petrovic, C.; Zhitomirsky, M. E.

    2015-11-27

    We present on high- field electron spin resonance (ESR) studies of magnetic excitations in the spin- 1/2 triangular-lattice antiferromagnet Cs2CuBr4. Frequency- field diagrams of ESR excitations are measured for different orientations of magnetic fields up to 25 T. We show that the substantial zero- field energy gap, Δ ≈ 9.5 K, observed in the low-temperature excitation spectrum of Cs2CuBr4 [Zvyagin et al:, Phys. Rev. Lett. 112, 077206 (2014)], is present well above TN. Noticeably, the transition into the long-range magnetically ordered phase does not significantly affect the size of the gap, suggesting that even below TN the high-energy spin dynamics in Cs2CuBr4 is determined by short-range-order spin correlations. The experimental data are compared with results of model spin-wave-theory calculations for spin-1/2 triangle-lattice antiferromagnet.

  7. Efficient polarization transfer between spin-1/2 and ¹⁴N nuclei in solid-state MAS NMR spectroscopy.

    PubMed

    Basse, Kristoffer; Jain, Sheetal Kumar; Bakharev, Oleg; Nielsen, Niels Chr

    2014-07-01

    Polarization transfer between spin-1/2 nuclei and quadrupolar spin-1 nuclei such as (14)N in solid-state NMR is severely challenged by the typical presence of large quadrupole coupling interactions. This has effectively prevented the use of the abundant (14)N spin as a probe to structural information and its use as an element in multi-dimensional solid-state NMR correlation experiments for assignment and structural characterization. In turn, this has been a contributing factor to the extensive use of isotope labeling in biological solid-state NMR, where (14)N is replaced with (15)N. The alternative strategy of using the abundant (14)N spins calls for methods enabling efficient polarization transfer between (14)N and its binding partners. This work demonstrates that the recently introduced (RESPIRATION)CP transfer method can be optimized to achieve efficient (1)H ↔(14)N polarization transfer under magic angle spinning conditions. The method is demonstrated numerically and experimentally on powder samples of NH4NO3 and L-alanine.

  8. Unconventional quantum ordered and disordered states in the highly frustrated spin-(1)/(2) Ising-Heisenberg model on triangles-in-triangles lattices

    NASA Astrophysics Data System (ADS)

    Čisárová, Jana; Strečka, Jozef

    2013-01-01

    The spin-(1)/(2) Ising-Heisenberg model on two geometrically related triangles-in-triangles lattices is exactly solved through the generalized star-triangle transformation, which establishes a rigorous mapping correspondence with the effective spin-(1)/(2) Ising model on a triangular lattice. Basic thermodynamic quantities were exactly calculated within this rigorous mapping method along with the ground-state and finite-temperature phase diagrams. Apart from the classical ferromagnetic phase, both investigated models exhibit several unconventional quantum ordered and disordered ground states. A mutual competition between two ferromagnetic interactions of basically different character generically leads to the emergence of a quantum ferromagnetic phase, in which a symmetric quantum superposition of three up-up-down states of the Heisenberg trimers accompanies a perfect alignment of all Ising spins. In the highly frustrated regime, we have either found the disordered quantum paramagnetic phase with a substantial residual entropy or a similar but spontaneously ordered phase with a nontrivial criticality at finite temperatures. The latter quantum ground state exhibits a striking coexistence of imperfect spontaneous order with partial disorder, which is evidenced by a quantum reduction of the spontaneous magnetization of Heisenberg spins that indirectly causes a small reduction of the spontaneous magnetization of otherwise classical Ising spins.

  9. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Energetics and electronic structure of a single copper atomic chain wrapped in a carbon nanotube: a first-principles study

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Min; Du, Xiu-Juan; Wang, Su-Fang; Xu, Ke-Wei

    2009-12-01

    In the generalized gradient approximation, the energy and electronic structure are investigated for a single copper atomic chain wrapped in (4, 4), (5, 5) and (6, 6) armchair carbon nanotubes by using the first-principles projector-augmented wave potential within the framework of density functional theory. The results show that the (4, 4) and (5, 5) tubes are too narrow to wrap a Cu chain, but the (6, 6) tube is nearly ideal to wrap a Cu chain on its centre axis. Wider tubes are anticipated to wrap more than one Cu chain spontaneously with forces amounting to a fraction of a nanonewton. Although the tube-chain interaction decreases with the increase of the tube diameter of (4, 4), (5, 5) and (6, 6) successively, the charge density of the Cu@(6, 6) combined system still does not show complete superposition of that of the pristine (6, 6) tube and Cu chain. Successively reducing the restrictions of (4, 4), (5, 5) and (6, 6) tubes on the Cu chain leads to a reduction in shift of the highest peak of the Cu chain towards lower energies, that is from -0.5177 eV of the isolated Cu chain to -1.36785 eV, -0.668 eV and -0.588 eV for the Cu@(4, 4), Cu@(5, 5) and Cu@(6, 6) systems, respectively. In reverse, the strong metallic character of the Cu chain also enhances the metallic character of the combined systems so that the broader pseudogaps of the pristine carbon nanotubes around the Fermi level change into the narrow pseudogaps of the combined systems.

  10. Laser amplifier chain

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain.

  11. Laser amplifier chain

    DOEpatents

    Hackel, R.P.

    1992-10-20

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain. 6 figs.

  12. Real-time dynamics of a spin chain with Dzyaloshinskii-Moriya interactions: Spiral formation and quantum spin oscillations

    NASA Astrophysics Data System (ADS)

    Solano-Carrillo, E.; Franco, R.; Silva-Valencia, J.

    2011-08-01

    We studied the nonequilibrium short-time dynamics of a spin-1/2 chain with Dzyaloshinskii-Moriya interactions after a sudden quench by a transverse field. We found that inhomogeneous spin spirals with opposite chiralities propagate from the edges toward the center of the chain. This propagation is accompanied by quantum spin oscillations which decay asymptotically with time. A theoretical description of this phenomenon is given to a good accuracy with the help of numerical calculations with the adaptive time-dependent density matrix renormalization group algorithm.

  13. Quasiclassical magnetic order and its loss in a spin-1/2 Heisenberg antiferromagnet on a triangular lattice with competing bonds

    NASA Astrophysics Data System (ADS)

    Li, P. H. Y.; Bishop, R. F.; Campbell, C. E.

    2015-01-01

    We use the coupled cluster method (CCM) to study the zero-temperature ground-state (GS) properties of a spin-1/2 J1-J2 Heisenberg antiferromagnet on a triangular lattice with competing nearest-neighbor and next-nearest-neighbor exchange couplings J1>0 and J2≡κ J1>0 , respectively, in the window 0 ≤κ <1 . The classical version of the model has a single GS phase transition at κcl=1/8 in this window from a phase with 3-sublattice antiferromagnetic (AFM) 120∘ Néel order for κ <κcl to an infinitely degenerate family of 4-sublattice AFM Néel phases for κ >κcl . This classical accidental degeneracy is lifted by quantum fluctuations, which favor a 2-sublattice AFM striped phase. For the quantum model we work directly in the thermodynamic limit of an infinite number of spins, with no consequent need for any finite-size scaling analysis of our results. We perform high-order CCM calculations within a well-controlled hierarchy of approximations, which we show how to extrapolate to the exact limit. In this way we find results for the case κ =0 of the spin-1/2 model for the GS energy per spin, E /N =-0.5521 (2 ) J1 , and the GS magnetic order parameter, M =0.198 (5 ) (in units where the classical value is Mcl=1/2), which are among the best available. For the spin-1/2 J1-J2 model we find that the classical transition at κ =κcl is split into two quantum phase transitions at κ1c=0.060 (10 ) and κ2c=0.165 (5 ) . The two quasiclassical AFM states (viz., the 120∘ Néel state and the striped state) are found to be the stable GS phases in the regime κ <κ1c and κ >κ2c , respectively, while in the intermediate regimes κ1c<κ <κ2c the stable GS phase has no evident long-range magnetic order.

  14. Typicality approach to the optical conductivity in thermal and many-body localized phases

    NASA Astrophysics Data System (ADS)

    Steinigeweg, Robin; Herbrych, Jacek; Pollmann, Frank; Brenig, Wolfram

    2016-11-01

    We study the frequency dependence of the optical conductivity Reσ (ω ) of the Heisenberg spin-1/2 chain in the thermal and near the transition to the many-body localized phase induced by the strength of a random z -directed magnetic field. Using the method of dynamical quantum typicality, we calculate the real-time dynamics of the spin-current autocorrelation function and obtain the Fourier transform Reσ (ω ) for system sizes much larger than accessible to standard exact-diagonalization approaches. We find that the low-frequency behavior of Reσ (ω ) is well described by Reσ (ω ) ≈σdc+a |ω| α , with α ≈1 in a wide range within the thermal phase and close to the transition. We particularly detail the decrease of σdc in the thermal phase as a function of increasing disorder for strong exchange anisotropies. We further find that the temperature dependence of σdc is consistent with the existence of a mobility edge.

  15. Many-body localization in infinite chains

    NASA Astrophysics Data System (ADS)

    Enss, T.; Andraschko, F.; Sirker, J.

    2017-01-01

    We investigate the phase transition between an ergodic and a many-body localized phase in infinite anisotropic spin-1 /2 Heisenberg chains with binary disorder. Starting from the Néel state, we analyze the decay of antiferromagnetic order ms(t ) and the growth of entanglement entropy Sent(t ) during unitary time evolution. Near the phase transition we find that ms(t ) decays exponentially to its asymptotic value ms(∞ ) ≠0 in the localized phase while the data are consistent with a power-law decay at long times in the ergodic phase. In the localized phase, ms(∞ ) shows an exponential sensitivity on disorder with a critical exponent ν ˜0.9 . The entanglement entropy in the ergodic phase grows subballistically, Sent(t ) ˜tα , α ≤1 , with α varying continuously as a function of disorder. Exact diagonalizations for small systems, on the other hand, do not show a clear scaling with system size and attempts to determine the phase boundary from these data seem to overestimate the extent of the ergodic phase.

  16. Static and dynamical properties of the spin-1/2 equilateral triangular-lattice antiferromagnet Ba3CoSb2O9

    DOE PAGES

    Ma, Jie; Kamiya, Yoshitomo; Hong, Tao; ...

    2016-02-24

    We present single-crystal neutron scattering measurements of the spin-1/2 equilateral triangular-lattice antiferromagnet Ba3CoSb2O9. Besides confirming that the Co2+ magnetic moments lie in the ab plane for zero magnetic field and then determining all the exchange parameters of the minimal quasi-2D spin Hamiltonian, we provide conclusive experimental evidence of magnon decay through observation of intrinsic line broadening. Through detailed comparisons with the linear and nonlinear spin-wave theories, we also point out that the large-S approximation, which is conventionally employed to predict magnon decay in noncollinear magnets, is inadequate to explain our experimental observation. Hence, our results call for a new theoreticalmore » framework for describing excitation spectra in low-dimensional frustrated magnets under strong quantum effects.« less

  17. Bimodal random crystal field distribution effects on the ferrimagnetic mixed spin-1/2 > and spin-3/2 Blume-Capel model

    NASA Astrophysics Data System (ADS)

    Yigit, Ali; Albayrak, Erhan

    2013-03-01

    The effects of bimodal random crystal field on the phase diagrams and magnetization curves of ferrimagnetic mixed spin-1/2 and spin-3/2 Blume-Capel model are examined by using the effective field theory with correlations for honeycomb lattice. The phase diagrams are obtained on the (Δ,kT/|J|), (Δ,Tcomp) and (p,kT/|J|) planes for given values of p and Δ, respectively. The model exhibits only the second-order phase transitions as in the Blume-Capel model with constant crystal fields. In addition, it was found that the model presents one or two compensation temperatures for appropriate values of random crystal field for given probability in contrast to constant crystal field case. Therefore, it is shown that the random crystal field considerably affects the thermal variations of net and sublattice magnetizations.

  18. Presence or absence of order by disorder in a highly frustrated region of the spin-1/2 Ising-Heisenberg model on triangulated Husimi lattices.

    PubMed

    Strečka, Jozef; Ekiz, Cesur

    2015-05-01

    The geometrically frustrated spin-1/2 Ising-Heisenberg model on triangulated Husimi lattices is exactly solved by combining the generalized star-triangle transformation with the method of exact recursion relations. The ground-state and finite-temperature phase diagrams are rigorously calculated along with both sublattice magnetizations of the Ising and Heisenberg spins. It is evidenced that the Ising-Heisenberg model on triangulated Husimi lattices with two or three interconnected triangles-in-triangles units displays in a highly frustrated region a quantum disorder irrespective of temperature, whereas the same model on triangulated Husimi lattices with a greater connectivity of triangles-in-triangles units exhibits at low enough temperatures an outstanding quantum order due to the order-by-disorder mechanism. The quantum reduction of both sublattice magnetizations in the peculiar quantum ordered state gradually diminishes upon increasing the coordination number of the underlying Husimi lattice.

  19. Dynamical properties of the one-dimensional spin-1/2 Bose-Hubbard model near a Mott-insulator to ferromagnetic-liquid transition.

    PubMed

    Zvonarev, M B; Cheianov, V V; Giamarchi, T

    2009-09-11

    We investigate the dynamics of the one-dimensional strongly repulsive spin-1/2 Bose-Hubbard model for filling nu

  20. Optimal control of the signal-to-noise ratio per unit time of a spin 1/2 particle: the crusher gradient and the radiation damping cases.

    PubMed

    Lapert, M; Assémat, E; Glaser, S J; Sugny, D

    2015-01-28

    We show to which extent the signal to noise ratio per unit time of a spin 1/2 particle can be maximized. We consider a cyclic repetition of experiments made of a measurement followed by a radio-frequency magnetic field excitation of the system, in the case of unbounded amplitude. In the periodic regime, the objective of the control problem is to design the initial state of the system and the pulse sequence which leads to the best signal to noise performance. We focus on two specific issues relevant in nuclear magnetic resonance, the crusher gradient and the radiation damping cases. Optimal control techniques are used to solve this non-standard control problem. We discuss the optimality of the Ernst angle solution, which is commonly applied in spectroscopic and medical imaging applications. In the radiation damping situation, we show that in some cases, the optimal solution differs from the Ernst one.

  1. Optimal control of the signal-to-noise ratio per unit time of a spin 1/2 particle: The crusher gradient and the radiation damping cases

    SciTech Connect

    Lapert, M.; Glaser, S. J.; Assémat, E.; Sugny, D.

    2015-01-28

    We show to which extent the signal to noise ratio per unit time of a spin 1/2 particle can be maximized. We consider a cyclic repetition of experiments made of a measurement followed by a radio-frequency magnetic field excitation of the system, in the case of unbounded amplitude. In the periodic regime, the objective of the control problem is to design the initial state of the system and the pulse sequence which leads to the best signal to noise performance. We focus on two specific issues relevant in nuclear magnetic resonance, the crusher gradient and the radiation damping cases. Optimal control techniques are used to solve this non-standard control problem. We discuss the optimality of the Ernst angle solution, which is commonly applied in spectroscopic and medical imaging applications. In the radiation damping situation, we show that in some cases, the optimal solution differs from the Ernst one.

  2. Quantum tunneling of spin-1 particles from a 5D Einstein-Yang-Mills-Gauss-Bonnet black hole beyond semiclassical approximation

    NASA Astrophysics Data System (ADS)

    Jusufi, K.

    2016-12-01

    In the present paper we study the Hawking radiation as a quantum tunneling effect of spin-1 particles from a five-dimensional, spherically symmetric, Einstein-Yang-Mills-Gauss-Bonnet (5D EYMGB) black hole. We solve the Proca equation (PE) by applying the WKB approximation and separation of variables via Hamilton-Jacobi (HJ) equation which results in a set of five differential equations, and reproduces, in this way, the Hawking temperature. In the second part of this paper, we extend our results beyond the semiclassical approximation. In particular, we derive the logarithmic correction to the entropy of the EYMGB black hole and show that the quantum corrected specific heat indicates the possible existence of a remnant.

  3. Variational Monte Carlo study of a gapless spin liquid in the spin-1/2 XXZ antiferromagnetic model on the kagome lattice

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Jun; Gong, Shou-Shu; Becca, Federico; Sheng, D. N.

    2015-11-01

    By using the variational Monte Carlo technique, we study the spin-1/2 XXZ antiferromagnetic model (with easy-plane anisotropy) on the kagome lattice. A class of Gutzwiller projected fermionic states with a spin Jastrow factor is considered to describe either spin liquids [with U (1 ) or Z2 symmetry] or magnetically ordered phases [with q =(0 ,0 ) or q =(4 π /3 ,0 ) ]. We find that the magnetic states are not stable in the thermodynamic limit. Moreover, there is no energy gain to break the gauge symmetry from U (1 ) to Z2 within the spin-liquid states, as previously found in the Heisenberg model. The best variational wave function is therefore the U (1 ) Dirac state, supplemented by the spin Jastrow factor. Furthermore, a vanishing S =2 spin gap is obtained at the variational level, in the whole regime from the X Y to the Heisenberg model.

  4. Effects of thermal and quantum fluctuations on the phase diagram of a spin-1 {sup 87}Rb Bose-Einstein condensate

    SciTech Connect

    Phuc, Nguyen Thanh; Kawaguchi, Yuki; Ueda, Masahito

    2011-10-15

    We investigate the effects of thermal and quantum fluctuations on the phase diagram of a spin-1 {sup 87}Rb Bose-Einstein condensate (BEC) under the quadratic Zeeman effect. Due to the large ratio of spin-independent to spin-dependent interactions of {sup 87}Rb atoms, the effect of noncondensed atoms on the condensate is much more significant than that in scalar BECs. We find that the condensate and spontaneous magnetization emerge at different temperatures when the ground state is in the broken-axisymmetry phase. In this phase, a magnetized condensate induces spin coherence of noncondensed atoms in different magnetic sublevels, resulting in temperature-dependent magnetization of the noncondensate. We also examine the effect of quantum fluctuations on the order parameter at absolute zero and find that the ground-state phase diagram is significantly altered by quantum depletion.

  5. Collinear order in the frustrated three-dimensional spin-1/2 antiferromagnet Li2CuW2O8

    NASA Astrophysics Data System (ADS)

    Ranjith, K. M.; Nath, R.; Skoulatos, M.; Keller, L.; Kasinathan, D.; Skourski, Y.; Tsirlin, A. A.

    2015-09-01

    Magnetic frustration in three dimensions (3D) manifests itself in the spin-1/2 insulator Li2CuW2O8 . Density-functional band-structure calculations reveal a peculiar spin lattice built of triangular planes with frustrated interplane couplings. The saturation field of 29 T contrasts with the susceptibility maximum at 8.5 K and a relatively low Néel temperature TN≃3.9 K . Magnetic order below TN is collinear with the propagation vector (0 ,1/2 ,0 ) and an ordered moment of 0.65(4) μB according to neutron diffraction data. This reduced ordered moment together with the low maximum of the magnetic specific heat (Cmax/R ≃0.35 ) pinpoint strong magnetic frustration in 3D. Collinear magnetic order suggests that quantum fluctuations play a crucial role in this system, where a noncollinear spiral state would be stabilized classically.

  6. Gushing metal chain

    NASA Astrophysics Data System (ADS)

    Belyaev, Alexander; Sukhanov, Alexander; Tsvetkov, Alexander

    2016-03-01

    This article addresses the problem in which a chain falls from a glass from some height. This phenomenon demonstrates a paradoxical rise of the chain over the glass. To explain this effect, an initial hypothesis and an appropriate theory are proposed for calculating the steady fall parameters of the chain. For this purpose, the modified Cayley's problem of falling chain given its rise due to the centrifugal force of upward inertia is solved. Results show that the lift caused by an increase in linear density at the part of chain where it is being bent (the upper part) is due to the convergence of the chain balls to one another. The experiments confirm the obtained estimates of the lifting chain.

  7. Distribution of NMR relaxations in a random Heisenberg chain.

    PubMed

    Shiroka, T; Casola, F; Glazkov, V; Zheludev, A; Prša, K; Ott, H-R; Mesot, J

    2011-04-01

    NMR measurements of the (29)Si spin-lattice relaxation time T(1) were used to probe the spin-1/2 random Heisenberg chain compound BaCu(2)(Si(1-x)Ge(x))(2)O(7). Remarkable differences between the pure (x=0) and the fully random (x=0.5) cases are observed, indicating that randomness generates a distribution of local magnetic relaxations. This distribution, which is reflected in a stretched exponential NMR relaxation, exhibits a progressive broadening with decreasing temperature, caused by a growing inequivalence of magnetic sites. Compelling independent evidence for the influence of randomness is also obtained from magnetization data and Monte Carlo calculations. These results suggest the formation of random-singlet states in this class of materials, as previously predicted by theory.

  8. Slave fermion formalism for the tetrahedral spin chain

    NASA Astrophysics Data System (ADS)

    Mohan, Priyanka; Rao, Sumathi

    2016-09-01

    We use the SU(2) slave fermion approach to study a tetrahedral spin 1/2 chain, which is a one-dimensional generalization of the two dimensional Kitaev honeycomb model. Using the mean field theory, coupled with a gauge fixing procedure to implement the single occupancy constraint, we obtain the phase diagram of the model. We then show that it matches the exact results obtained earlier using the Majorana fermion representation. We also compute the spin-spin correlation in the gapless phase and show that it is a spin liquid. Finally, we map the one-dimensional model in terms of the slave fermions to the model of 1D p-wave superconducting model with complex parameters and show that the parameters of our model fall in the topological trivial regime and hence does not have edge Majorana modes.

  9. Correlated Exciton Transport in Rydberg-Dressed-Atom Spin Chains.

    PubMed

    Schempp, H; Günter, G; Wüster, S; Weidemüller, M; Whitlock, S

    2015-08-28

    We investigate the transport of excitations through a chain of atoms with nonlocal dissipation introduced through coupling to additional short-lived states. The system is described by an effective spin-1/2 model where the ratio of the exchange interaction strength to the reservoir coupling strength determines the type of transport, including coherent exciton motion, incoherent hopping, and a regime in which an emergent length scale leads to a preferred hopping distance far beyond nearest neighbors. For multiple impurities, the dissipation gives rise to strong nearest-neighbor correlations and entanglement. These results highlight the importance of nontrivial dissipation, correlations, and many-body effects in recent experiments on the dipole-mediated transport of Rydberg excitations.

  10. Entropy and correlation functions of a driven quantum spin chain

    SciTech Connect

    Cherng, R. W.; Levitov, L. S.

    2006-04-15

    We present an exact solution for a quantum spin chain driven through its critical points. Our approach is based on a many-body generalization of the Landau-Zener transition theory, applied to a fermionized spin Hamiltonian. The resulting nonequilibrium state of the system, while being a pure quantum state, has local properties of a mixed state characterized by finite entropy density associated with Kibble-Zurek defects. The entropy and the finite spin correlation length are functions of the rate of sweep through the critical point. We analyze the anisotropic XY spin-1/2 model evolved with a full many-body evolution operator. With the help of Toeplitz determinant calculus, we obtain an exact form of correlation functions. The properties of the evolved system undergo an abrupt change at a certain critical sweep rate, signaling the formation of ordered domains. We link this phenomenon to the behavior of complex singularities of the Toeplitz generating function.

  11. Optical Nanodozers

    NASA Astrophysics Data System (ADS)

    Khorshid, Ahmed; Reisner, Walter; Sakaue, Takahiro

    2015-03-01

    Experiment, simulation and scaling analytics are converging on a comprehensive picture regarding the equilibrium behaviour of nanochannel confined semiflexible, self-avoiding chains. Yet, strongly non-equilibrium behaviour of confined polymers is largely unexplored from either an experimental or theoretical point of view. Combining optical trapping and nanofluidics, we have developed a ``nanodozer'' assay for quantifying confined polymer dynamics. An optical trap is used to slide a nanosphere at a fixed velocity along a nanochannel. The trapped bead acts as a permeable gasket, letting fluid escape but preventing the polymer from passing. As the sliding bead comes in contact with a nanochannel extended DNA, the molecule is dynamically compressed, undergoing transient dynamics characterized by a traveling concentration ``shockwave'' before reaching a final steady state with a ramp-like concentration profile. Remarkably, these strongly non-equilibrium measurements can be quantified via a simple nonlinear convective-diffusion formalism and yield insights into the local blob statistics, allowing us to conclude that the compressed nanochannel confined chain exhibits mean-field behaviour.

  12. Symmetry-protected intermediate trivial phases in quantum spin chains

    NASA Astrophysics Data System (ADS)

    Kshetrimayum, Augustine; Tu, Hong-Hao; Orús, Román

    2016-06-01

    Symmetry-protected trivial (SPt) phases of matter are the product-state analog of symmetry-protected topological (SPT) phases. This means, SPt phases can be adiabatically connected to a product state by some path that preserves the protecting symmetry. Moreover, SPt and SPT phases can be adiabatically connected to each other when interaction terms that break the symmetries protecting the SPT order are added in the Hamiltonian. It is also known that spin-1 SPT phases in quantum spin chains can emerge as effective intermediate phases of spin-2 Hamiltonians. In this paper we show that a similar scenario is also valid for SPt phases. More precisely, we show that for a given spin-2 quantum chain, effective intermediate spin-1 SPt phases emerge in some regions of the phase diagram, these also being adiabatically connected to nontrivial intermediate SPT phases. We characterize the phase diagram of our model by studying quantities such as the entanglement entropy, symmetry-related order parameters, and 1-site fidelities. Our numerical analysis uses matrix product states and the infinite time evolving block decimation method to approximate ground states of the system in the thermodynamic limit. Moreover, we provide a field theory description of the possible quantum phase transitions between the SPt phases. Together with the numerical results, such a description shows that the transitions may be described by conformal field theories with central charge c =1 . Our results are in agreement with, and further generalize, those of Y. Fuji, F. Pollmann, and M. Oshikawa [Phys. Rev. Lett. 114, 177204 (2015), 10.1103/PhysRevLett.114.177204].

  13. Spin transport in the XXZ chain at finite temperature and momentum.

    PubMed

    Steinigeweg, Robin; Brenig, Wolfram

    2011-12-16

    We investigate the role of momentum for the transport of magnetization in the spin-1/2 Heisenberg chain above the isotropic point at finite temperature and momentum. Using numerical and analytical approaches, we analyze the autocorrelations of density and current and observe a finite region of the Brillouin zone with diffusive dynamics below a cutoff momentum, and a diffusion constant independent of momentum and time, which scales inversely with anisotropy. Lowering the temperature over a wide range, starting from infinity, the diffusion constant is found to increase strongly while the cutoff momentum for diffusion decreases. Above the cutoff momentum diffusion breaks down completely.

  14. Exchange anisotropy as mechanism for spin-stripe formation in frustrated spin chains

    NASA Astrophysics Data System (ADS)

    Pregelj, M.; Zaharko, O.; Herak, M.; Gomilšek, M.; Zorko, A.; Chapon, L. C.; Bourdarot, F.; Berger, H.; Arčon, D.

    2016-08-01

    We investigate the spin-stripe mechanism responsible for the peculiar nanometer modulation of the incommensurate magnetic order that emerges between the vector-chiral and the spin-density-wave phase in the frustrated zigzag spin-1/2 chain compound β -TeVO4 . A combination of magnetic-torque, neutron-diffraction, and spherical-neutron-polarimetry measurements is employed to determine the complex magnetic structures of all three ordered phases. Based on these results, we develop a simple phenomenological model, which exposes the exchange anisotropy as the key ingredient for the spin-stripe formation in frustrated spin systems.

  15. Boundary energy of the open XXX chain with a non-diagonal boundary term

    NASA Astrophysics Data System (ADS)

    Nepomechie, Rafael I.; Wang, Chunguang

    2014-01-01

    We analyze the ground state of the open spin-1/2 isotropic quantum spin chain with a non-diagonal boundary term using a recently proposed Bethe ansatz solution. As the coefficient of the non-diagonal boundary term tends to zero, the Bethe roots split evenly into two sets: those that remain finite, and those that become infinite. We argue that the former satisfy conventional Bethe equations, while the latter satisfy a generalization of the Richardson-Gaudin equations. We derive an expression for the leading correction to the boundary energy in terms of the boundary parameters.

  16. Optic glioma

    MedlinePlus

    Glioma - optic; Optic nerve glioma; Juvenile pilocytic astrocytoma; Brain cancer - optic glioma ... Optic gliomas are rare. The cause of optic gliomas is unknown. Most optic gliomas are slow-growing ...

  17. Chain entanglements. I. Theory

    NASA Astrophysics Data System (ADS)

    Fixman, Marshall

    1988-09-01

    A model of concentrated polymer solution dynamics is described. The forces in a linear generalized Langevin equation for the motion of a probe chain are derived on the assumption that all relaxation of the forces is due to motion of the surrounding matrix. Vicinal chain displacements are classified as viscoelastic deformation, reptation, and minor residual fluctuations. The latter provide a torsional relaxation of the primitive path that minimizes the significance of transverse forces on the probe chain. All displacements of vicinal segments are assumed proportional to the forces that they exert on the probe chain. In response to an external force, the displacement of the probe chain relative to a laboratory frame is increased by viscoelastic deformation of the matrix, but reptative diffusion relative to the deforming matrix is slowed down. The net effect on translational diffusion is negligible if the probe and vicinal chains have the same chain length N, but the friction constant for reptative motion is increased by a factor N1-xs. xs=1/2 if Gaussian conformational statistics applies during the disengagement process, while xs =0.6 if excluded volume statistics applies. The translational friction constant is βp ˜N2, as in reptation theory, but the viscosity is η˜N4-xs . The persistence of entanglements during the translational diffusion of the probe chain across many radii of gyration is rationalized pictorially in terms of correlated reptative motion of the probe and vicinal chains.

  18. Supply chain planning classification

    NASA Astrophysics Data System (ADS)

    Hvolby, Hans-Henrik; Trienekens, Jacques; Bonde, Hans

    2001-10-01

    Industry experience a need to shift in focus from internal production planning towards planning in the supply network. In this respect customer oriented thinking becomes almost a common good amongst companies in the supply network. An increase in the use of information technology is needed to enable companies to better tune their production planning with customers and suppliers. Information technology opportunities and supply chain planning systems facilitate companies to monitor and control their supplier network. In spite if these developments, most links in today's supply chains make individual plans, because the real demand information is not available throughout the chain. The current systems and processes of the supply chains are not designed to meet the requirements now placed upon them. For long term relationships with suppliers and customers, an integrated decision-making process is needed in order to obtain a satisfactory result for all parties. Especially when customized production and short lead-time is in focus. An effective value chain makes inventory available and visible among the value chain members, minimizes response time and optimizes total inventory value held throughout the chain. In this paper a supply chain planning classification grid is presented based current manufacturing classifications and supply chain planning initiatives.

  19. Neutron scattering study in the spin-1/2 ladder system: Sr{sub 14}Cu{sub 24}O{sub 41}

    SciTech Connect

    Matsuda, M.; Katsumata, K.; Shapiro, S.M.; Shirane, G.

    1996-10-01

    Inelastic neutron scattering measurements were performed on the S=1/2 quasi-one-dimensional system Sr{sub 14}Cu{sub 24}O{sub 41}, which has both simple chains and two-leg ladders of copper ions. We have observed that both the chain and the ladder exhibit a spin gap, which originates from a dimerized state.

  20. Switching waves and dissipative structures in a chain of spasers

    SciTech Connect

    Andrianov, E S; Pukhov, A A; Dorofeenko, Aleksandr V; Vinogradov, Aleksei P; Lisyansky, Aleksandr A

    2012-09-30

    We have considered the physical mechanism of optical bistability in a spaser in the field of an external optical wave. We have studied the effect of this phenomenon on the dynamics of a 1D chain of coupled spasers. It is shown that such a chain demonstrates the behaviour typical of open nonlinear systems. In particular, for high Joule losses in a spaser, a nonlinear switching autowave propagates in the chain, thereby evolving the spasers' state from a low population inversion state into a high population inversion state or vice versa. The control parameter that determines the type of switching is the amplitude of the external optical wave. For low Joule losses there emerge quasi-periodic dissipative structures whose formation dynamics is of 'self-assembly' nature. (optical fibres, lasers and amplifiers. properties and applications)

  1. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  2. Critical Chain Exercises

    ERIC Educational Resources Information Center

    Doyle, John Kevin

    2010-01-01

    Critical Chains project management focuses on holding buffers at the project level vs. task level, and managing buffers as a project resource. A number of studies have shown that Critical Chain project management can significantly improve organizational schedule fidelity (i.e., improve the proportion of projects delivered on time) and reduce…

  3. Observation of overlapping spin-1 and spin-3 D0K- resonances at mass 2.86 GeV/c2.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, Rf; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2014-10-17

    The resonant substructure of B(s)(0) → D(0)K(-)π(+) decays is studied using a data sample corresponding to an integrated luminosity of 3.0 fb(-1) of pp collision data recorded by the LHCb detector. An excess at m(D(0)K(-))≈ 2.86 GeV/c(2) is found to be an admixture of spin-1 and spin-3 resonances. Therefore, the D(sJ)*(2860)(-) state previously observed in inclusive e(+)e(-) → D(0)K(-)X and pp → D(0)K(-)X processes consists of at least two particles. This is the first observation of a heavy flavored spin-3 resonance, and the first time that any spin-3 particle has been seen to be produced in B decays. The masses and widths of the new states and of the D(s2)*(2573)(-) meson are measured, giving the most precise determinations to date.

  4. Taurine detected using high-resolution magic angle spinning 1H nuclear magnetic resonance: A potential indicator of early myocardial infarction

    PubMed Central

    YANG, YUNLONG; YANG, LIN; ZHANG, YUE; GU, XINGHUA; XU, DANLING; FANG, FANG; SUN, AIJUN; WANG, KEQIANG; YU, YIHUA; ZUO, JI; GE, JUNBO

    2013-01-01

    Magnetic resonance spectroscopy (MRS) is a unique non-invasive method for detecting cardiac metabolic changes. However, MRS in cardiac diagnosis is limited due to insensitivity and low efficiency. Taurine (Tau) is the most abundant free amino acid in the myocardium. We hypothesized that Tau levels may indicate myocardial ischemia and early infarction. Sprague-Dawley rats were divided into seven groups according to different time points during the course of myocardial ischemia, which was induced by left anterior descending coronary artery ligation. Infarcted myocardial tissue was obtained for high-resolution magic angle spinning 1H nuclear magnetic resonance (NMR) analysis. Results were validated via high-performance liquid chromatography. The Tau levels in the ischemic myocardial tissue were reduced significantly within 5 min compared with those in the control group (relative ratio from 20.27±6.48 to 8.81±0.04, P<0.05) and were maintained for 6 h post-ischemia. Tau levels declined more markedly (56.5%) than creatine levels (48.5%) at 5 min after ligation. This suggests that Tau may have potential as an indicator in the early detection of myocardial ischemia by 1H MRS. PMID:23408155

  5. Effects of frustration and cyclic exchange on the spin-1/2 Heisenberg antiferromagnet within the self-consistent spin-wave theory

    NASA Astrophysics Data System (ADS)

    Rutonjski, Milica S.; Pavkov-Hrvojević, Milica V.; Berović, Maja B.

    2016-12-01

    The relevance of the quasi-two-dimensional spin-1/2 frustrated quantum antiferromagnet (AFM) due to its possibility of modeling the high-temperature superconducting parent compounds has resulted in numerous theoretical and experimental studies. This paper presents a detailed research of the influence of the varying exchange interactions on the model magnetic properties within the framework of self-consistent spin-wave theory based on Dyson-Maleev (DM) representation. Beside the nearest neighbor (NN) interaction within the plane, the planar frustration up to the third NNs, cyclic interaction and the interlayer coupling are taken into account. The detailed description of the elementary spin excitations, staggered magnetization, spin-wave velocity renormalization factor and ground state energy is given. The results are compared to the predictions of the linear spin-wave theory and when possible also to the second-order perturbative spin-wave expansion results. Finally, having at our disposal improved experimental results for the in-plane spin-wave dispersion in high-Tc copper oxide La2CuO4, the self-consistent spin-wave theory (SCSWT) is applied to that compound in order to correct earlier obtained set of exchange parameters and high-temperature spin-wave dispersion.

  6. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1 /2 coupled to an arbitrary spin

    NASA Astrophysics Data System (ADS)

    Altintas, Ferdi; Müstecaplıoǧlu, Ã.-zgür E.

    2015-08-01

    We investigate a quantum heat engine with a working substance of two particles, one with a spin-1 /2 and the other with an arbitrary spin (spin s ), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spins and can harvest work at higher exchange interaction strengths. The role of exchange coupling and spin s on the work output and the thermal efficiency is studied in detail. In addition, the engine operation is analyzed from the perspective of local work and efficiency. We develop a general formalism to explore local thermodynamics applicable to any coupled bipartite system. Our general framework allows for examination of local thermodynamics even when global parameters of the system are varied in thermodynamic cycles. The generalized definitions of local and cooperative work are introduced by using mean field Hamiltonians. The general conditions for which the global work is not equal to the sum of the local works are given in terms of the covariance of the subsystems. Our coupled spin quantum Otto engine is used as an example of the general formalism.

  7. SPAM-MQ-HETCOR: an improved method for heteronuclear correlation spectroscopy between quadrupolar and spin-1/2 nuclei in solid-state NMR.

    PubMed

    Wiench, Jerzy W; Tricot, Gregory; Delevoye, Laurent; Trebosc, Julien; Frye, James; Montagne, Lionel; Amoureux, Jean-Paul; Pruski, Marek

    2006-01-07

    The recently introduced concept of soft pulse added mixing (SPAM) is used in two-dimensional heteronuclear correlation (HETCOR) NMR experiments between half-integer quadrupolar and spin-1/2 nuclei. The experiments employ multiple quantum magic angle spinning (MQMAS) to remove the second order quadrupolar broadening and cross polarization (CP) or refocused INEPT for magnetization transfer. By using previously unexploited coherence pathways, the efficiency of SPAM-MQ-HETCOR NMR is increased by a factor of almost two without additional optimization. The sensitivity gain is demonstrated on a test sample, AlPO(4)-14, using CP and INEPT to correlate (27)Al and (31)P nuclei. SPAM-3Q-HETCOR is then applied to generate (27)Al-(31)P spectra of the devitrified 41Na(2)O-20.5Al(2)O(3)-38.5P(2)O(5) glass and the silicoaluminophosphate ECR-40. Finally, the method allowed the acquisition of the first high resolution solid-state correlation spectra between (27)Al and (29)Si.

  8. Equivalence of ADM Hamiltonian and Effective Field Theory approaches at next-to-next-to-leading order spin1-spin2 coupling of binary inspirals

    SciTech Connect

    Levi, Michele; Steinhoff, Jan E-mail: jan.steinhoff@ist.utl.pt

    2014-12-01

    The next-to-next-to-leading order spin1-spin2 potential for an inspiralling binary, that is essential for accuracy to fourth post-Newtonian order, if both components in the binary are spinning rapidly, has been recently derived independently via the ADM Hamiltonian and the Effective Field Theory approaches, using different gauges and variables. Here we show the complete physical equivalence of the two results, thereby we first prove the equivalence of the ADM Hamiltonian and the Effective Field Theory approaches at next-to-next-to-leading order with the inclusion of spins. The main difficulty in the spinning sectors, which also prescribes the manner in which the comparison of the two results is tackled here, is the existence of redundant unphysical spin degrees of freedom, associated with the spin gauge choice of a point within the extended spinning object for its representative worldline. After gauge fixing and eliminating the unphysical degrees of freedom of the spin and its conjugate at the level of the action, we arrive at curved spacetime generalizations of the Newton-Wigner variables in closed form, which can also be used to obtain further Hamiltonians, based on an Effective Field Theory formulation and computation. Finally, we make use of our validated result to provide gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to fourth post-Newtonian order, including all known sectors up to date.

  9. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin.

    PubMed

    Altintas, Ferdi; Müstecaplıoğlu, Özgür E

    2015-08-01

    We investigate a quantum heat engine with a working substance of two particles, one with a spin-1/2 and the other with an arbitrary spin (spin s), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spins and can harvest work at higher exchange interaction strengths. The role of exchange coupling and spin s on the work output and the thermal efficiency is studied in detail. In addition, the engine operation is analyzed from the perspective of local work and efficiency. We develop a general formalism to explore local thermodynamics applicable to any coupled bipartite system. Our general framework allows for examination of local thermodynamics even when global parameters of the system are varied in thermodynamic cycles. The generalized definitions of local and cooperative work are introduced by using mean field Hamiltonians. The general conditions for which the global work is not equal to the sum of the local works are given in terms of the covariance of the subsystems. Our coupled spin quantum Otto engine is used as an example of the general formalism.

  10. Effects of the single-ion anisotropy on magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) cylindrical Ising nanowire

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Bi, Jiang-lin; Liu, Rui-jia; Chen, Xu; Liu, Jin-ping

    2016-10-01

    Monte Carlo simulation has been performed in detail to study magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) cylindrical Ising nanowire with core-shell structure. The ground phase diagrams are obtained for different single-ion anisotropies. The system can display rich phase transitions such as the second- and first-order phase transitions, the tricritical points and the compensation points. Especially, emphasis has been given to the effects of the single-ion anisotropy and the temperate on the magnetization, the internal energy, the specific heat, the compensation points and hysteresis loops of the system as well as two sublattices. A number of characteristic phenomena such as such as various types of magnetization curves and triple, duadruple as well as quintuple hysteresis loops behaviors have been observed for certain physical parameters, originating from the competitions among the anisotropies, temperature and the longitudinal magnetic field. It is found that the single-ion anisotropy and the temperature strongly affect the coercivity and the remanence of the system. A satisfactory agreement can be achieved from comparisons between our results and previous theoretical and experimental works.

  11. The field-induced laws of thermodynamic properties in the two-dimensional spin-1 ferromagnetic Heisenberg model with the exchange and single-ion anisotropies

    NASA Astrophysics Data System (ADS)

    Pu, Qiurong; Chen, Yuan

    2013-02-01

    Green's function method is applied to investigate the two-dimensional spin-1 ferromagnetic Heisenberg model with the exchange and single-ion anisotropies. In the presence of the magnetic field, the effects of the anisotropies and field on the thermodynamic properties are obtained within the random phase approximation combining with Anderson-Callen approximation. The field-induced laws are found for the thermodynamic properties. Field dependences of heights of the susceptibility maximum and specific heat maximum fit well to power laws. The linear increase at high fields is shown for positions of the susceptibility maximum and specific heat maximum. A power law at low fields occurs for the position of the susceptibility maximum. At the positions of the maxima, the magnetization and internal energy display the power-law increase and linear decrease with the field, respectively. The exponents of the power laws are dependent of the anisotropies, as well as the slopes of the linear laws. Our results do not support the 2/3 power law which was obtained by the Landau theory.

  12. Three-dimensional quantum phase diagram of the exact ground states of a mixture of two species of spin-1 Bose gases with interspecies spin exchange

    SciTech Connect

    Shi Yu; Ge Li

    2011-01-15

    We find nearly all the exact ground states of a mixture of two species of spin-1 atoms with both interspecies and intraspecies spin exchanges in the absence of a magnetic field. The quantum phase diagram in the three-dimensional parameter space and its two-dimensional cross sections are described. The boundaries where the ground states are either continuous or discontinuous are determined, with the latter identified as where quantum phase transitions take place. The two species are always disentangled if the interspecies spin coupling is ferromagnetic or zero. Quantum phase transitions occur when the interspecies spin coupling varies between antiferromagnetic and zero or ferromagnetic while the two intraspecies spin couplings both remain ferromagnetic. On the other hand, by tuning the interspecies spin coupling from zero to antiferromagnetic and then back to zero, one can circumvent the quantum phase transition due to sign change of the intraspecies spin coupling of a single species, which is spin decoupled with the other species with ferromagnetic intraspecies spin coupling. Generally speaking, interplay among interspecies and two intraspecies spin exchanges significantly enriches quantum phases of spinor atomic gases.

  13. Relaxation Effects in a System of a Spin-1solar2 Nucleus Coupled to a Quadrupolar Spin Subjected to RF Irradiation: Evaluation of Broadband Decoupling Schemes

    NASA Astrophysics Data System (ADS)

    Smith, Scott A.; Murali, Nagarajan

    1999-01-01

    We have investigated the suitability and performance of various decoupling methods on systems in which an observed spin-1/2 nucleusI(13C or15N) is scalar-coupled to a quadrupolar spinS(2H). Simulations and experiments have been conducted by varying the strength of the irradiating radiofrequency (RF) field, RF offset, relaxation times, and decoupling schemes applied in the vicinity of theS-spin resonance. TheT1relaxation of the quadrupolar spin has previously been shown to influence the efficiency of continuous wave (CW) decoupling applied on resonance in such spin systems. Similarly, the performance of broadband decoupling sequences should also be affected by relaxation. However, virtually all of the more commonly used broadband decoupling schemes have been developed without consideration of relaxation effects. As a consequence, it is not obvious how one selects a suitable sequence for decoupling quadrupolar nuclei with exotic relaxation behavior. Herein we demonstrate that, despite its simplicity, WALTZ-16 decoupling is relatively robust under a wide range of conditions. In these systems it performs as well as the more recently developed decoupling schemes for wide bandwidth applications such as GARP-1 and CHIRP-95. It is suggested that in macromolecular motional regimes, broadband deuterium decoupling can be achieved with relatively low RF amplitudes (500-700 Hz) using WALTZ-16 multiple pulse decoupling.

  14. Gapless quantum spin liquid ground state in the two-dimensional spin-1/2 triangular antiferromagnet YbMgGaO4

    PubMed Central

    Li, Yuesheng; Liao, Haijun; Zhang, Zhen; Li, Shiyan; Jin, Feng; Ling, Langsheng; Zhang, Lei; Zou, Youming; Pi, Li; Yang, Zhaorong; Wang, Junfeng; Wu, Zhonghua; Zhang, Qingming

    2015-01-01

    Quantum spin liquid (QSL) is a novel state of matter which refuses the conventional spin freezing even at 0 K. Experimentally searching for the structurally perfect candidates is a big challenge in condensed matter physics. Here we report the successful synthesis of a new spin-1/2 triangular antiferromagnet YbMgGaO4 with symmetry. The compound with an ideal two-dimensional and spatial isotropic magnetic triangular-lattice has no site-mixing magnetic defects and no antisymmetric Dzyaloshinsky-Moriya (DM) interactions. No spin freezing down to 60 mK (despite θw ~ −4 K), the power-law temperature dependence of heat capacity and nonzero susceptibility at low temperatures suggest that YbMgGaO4 is a promising gapless (≤|θw|/100) QSL candidate. The residual spin entropy, which is accurately determined with a non-magnetic reference LuMgGaO4, approaches zero (<0.6%). This indicates that the possible QSL ground state (GS) of the frustrated spin system has been experimentally achieved at the lowest measurement temperatures. PMID:26552727

  15. Classical Analogs of a Diatomic Chain

    SciTech Connect

    Gutierrez, L.; Diaz-de-Anda, A.; Mendez-Sanchez, R. A.; Morales, A.; Flores, J.; Monsivais, G.

    2010-12-21

    Using one dimensional rods with different configurations classical analogs of quantum mechanical systems frequently used in solid state physics can be obtained. Among this analogs we have recently discussed locally periodic rods which lead to band spectra; the effect of a topological defect, and the Wannier Stark ladders. In this paper, we present an elastic analog of the diatomic chain and show how the acoustical and optical bands emerge, as well of the nature of the wave amplitudes.

  16. Structure of confined films of chain alcohols

    SciTech Connect

    Mugele, F.; Baldelli, S.; Somorjai, G.A.; Salmeron, M.

    2000-04-13

    The structure of thin films of simple chain alcohols (1-octanol and 1-undecanol) confined between two atomically smooth mica surfaces has been investigated using a surface forces apparatus. Contact angle measurements and optical sum frequency generation were used for additional characterization. In both systems, the substrate-molecule interaction leads to a strongly bound first layer on each surface. Additional liquid organizes into highly compressible bilayers, which could be expelled by applying sufficiently high pressure.

  17. Supply chain assessment methodology.

    PubMed

    Topor, E

    2000-08-01

    This article describes an assessment methodology based on the supply chain proficiency model that can be used to set realistic supply chain objectives. The assessment centers on a business model that identifies the logical stages of supply chain proficiency as measured against a comprehensive set of business characteristics. For each characteristic, an enterprise evolves from one stage to the next. The magnitude of change inherent in moving forward usually prohibits skipping stages. Although it is possible to be at different stages for each characteristic, it is usually desirable to maintain balance.

  18. Long-distance entanglement and quantum teleportation in XX spin chains

    SciTech Connect

    Campos Venuti, L.; Giampaolo, S. M.; Illuminati, F.; Zanardi, P.

    2007-11-15

    Isotropic XX models of one-dimensional spin-1/2 chains are investigated with the aim to elucidate the formal structure and the physical properties that allow these systems to act as channels for long-distance, high-fidelity quantum teleportation. We introduce two types of models: (i) open, dimerized XX chains, and (ii) open XX chains with small end bonds. For both models we obtain the exact expressions for the end-to-end correlations and the scaling of the energy gap with the length of the chain. We determine the end-to-end concurrence and show that model (i) supports true long-distance entanglement at zero temperature, while model (ii) supports 'quasi-long-distance' entanglement that slowly falls off with the size of the chain. Due to the different scalings of the gaps, respectively exponential for model (i) and algebraic in model (ii), we demonstrate that the latter allows for efficient qubit teleportation with high fidelity in sufficiently long chains even at moderately low temperatures.

  19. Atomic Chain Electronics

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Saini, Subhash (Technical Monitor)

    1998-01-01

    Adatom chains, precise structures artificially created on an atomically regulated surface, are the smallest possible candidates for future nanoelectronics. Since all the devices are created by combining adatom chains precisely prepared with atomic precision, device characteristics are predictable, and free from deviations due to accidental structural defects. In this atomic dimension, however, an analogy to the current semiconductor devices may not work. For example, Si structures are not always semiconducting. Adatom states do not always localize at the substrate surface when adatoms form chemical bonds to the substrate atoms. Transport properties are often determined for the entire system of the chain and electrodes, and not for chains only. These fundamental issues are discussed, which will be useful for future device considerations.

  20. Managing Supply Chain Disruptions

    DTIC Science & Technology

    2008-08-09

    functions within and across organizations (CSCMP, 2005). Mentzer et al. (2001) characterize SCM as a philosophy that includes a systems approach with...150 vi LIST OF TABLES Table 2.1. Prominent Supply Chain Related System Theory...process. It is not a matter of a supply chain system encountering a problem, but rather a matter of when a problematic event will occur and how severe

  1. Emulating the one-dimensional Fermi-Hubbard model by a double chain of qubits

    NASA Astrophysics Data System (ADS)

    Reiner, Jan-Michael; Marthaler, Michael; Braumüller, Jochen; Weides, Martin; Schön, Gerd

    2016-09-01

    The Jordan-Wigner transformation maps a one-dimensional (1D) spin-1 /2 system onto a fermionic model without spin degree of freedom. A double chain of quantum bits with X X and Z Z couplings of neighboring qubits along and between the chains, respectively, can be mapped on a spin-full 1D Fermi-Hubbard model. The qubit system can thus be used to emulate the quantum properties of this model. We analyze physical implementations of such analog quantum simulators, including one based on transmon qubits, where the Z Z interaction arises due to an inductive coupling and the X X interaction due to a capacitive interaction. We propose protocols to gain confidence in the results of the simulation through measurements of local operators.

  2. Effective low-energy description of almost Ising-Heisenberg diamond chain

    NASA Astrophysics Data System (ADS)

    Derzhko, Oleg; Krupnitska, Olesia; Lisnyi, Bohdan; Strečka, Jozef

    2015-11-01

    We consider a geometrically frustrated spin-(1/2) Ising-Heisenberg diamond chain, which is an exactly solvable model when assuming part of the exchange interactions as Heisenberg ones and another part as Ising ones. A small XY part is afterwards perturbatively added to the Ising couplings, which enabled us to derive an effective Hamiltonian describing the low-energy behavior of the modified but full quantum version of the initial model. The effective model is much simpler and free of frustration. It is shown that the XY part added to the originally Ising interaction gives rise to the spin-liquid phase with continuously varying magnetization, which emerges between the magnetization plateaus and is totally absent in the initial hybrid diamond-chain model. The elaborated approach can also be applied to other hybrid Ising-Heisenberg spin systems.

  3. One-way quantum deficit and quantum coherence in the anisotropic XY chain

    NASA Astrophysics Data System (ADS)

    Ye, Biao-Liang; Li, Bo; Zhao, Li-Jun; Zhang, Hai-Jun; Fei, Shao-Ming

    2017-03-01

    In this study, we investigate pairwise non-classical correlations measured using a one-way quantum deficit as well as quantum coherence in the XY spin-1/2 chain in a transverse magnetic field for both zero and finite temperatures. The analytical and numerical results of our investigations are presented. In the case when the temperature is zero, it is shown that the one-way quantum deficit can characterize quantum phase transitions as well as quantum coherence. We find that these measures have a clear critical point at λ = 1. When λ ≤ 1, the one-way quantum deficit has an analytical expression that coincides with the relative entropy of coherence. We also study an XX model and an Ising chain at the finite temperatures.

  4. Exact Nonequilibrium Steady State of a Strongly Driven Open XXZ Chain

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaž

    2011-09-01

    An exact and explicit ladder-tensor-network ansatz is presented for the nonequilibrium steady state of an anisotropic Heisenberg XXZ spin-1/2 chain which is driven far from equilibrium with a pair of Lindblad operators acting on the edges of the chain only. We show that the steady-state density operator of a finite system of size n is—apart from a normalization constant—a polynomial of degree 2n-2 in the coupling constant. Efficient computation of physical observables is facilitated in terms of a transfer operator reminiscent of a classical Markov process. In the isotropic case we find cosine spin profiles, 1/n2 scaling of the spin current, and long-range correlations in the steady state. This is a fully nonperturbative extension of a recent result [Phys. Rev. Lett. 106, 217206 (2011)PRLTAO0031-900710.1103/PhysRevLett.106.217206].

  5. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: Longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair

    NASA Astrophysics Data System (ADS)

    Chang, Zhiwei; Halle, Bertil

    2013-10-01

    In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water 1H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft

  6. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    SciTech Connect

    Andreev, Pavel A.

    2015-06-15

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.

  7. High-Resolution Magic-Angle Spinning-(1)H NMR Spectroscopy-Based Metabolic Profiling of Hippocampal Tissue in Rats with Depression-Like Symptoms.

    PubMed

    Akimoto, Hayato; Oshima, Shinji; Ohara, Kousuke; Negishi, Akio; Hiroyama, Hanako; Nemoto, Tadashi; Kobayashi, Daisuke

    2017-03-04

    Depressive disorders cause large socioeconomic effects influencing not only the patients themselves but also their family and broader community as well. To better understand the physiologic factors underlying depression, in this study, we performed metabolomics analysis, an omics technique that comprehensively analyzes small molecule metabolites in biological samples. Specifically, we utilized high-resolution magic-angle spinning-(1)H NMR (HRMAS-(1)H NMR) spectroscopy to comprehensively analyze the changes in metabolites in the hippocampal tissue of rats exposed to chronic stress (CS) via multi-step principal component analysis (multi-step PCA). The rats subjected to CS exhibited obvious depression-like behaviors. High correlations were observed between the first principal component (PC1) score in the score plot obtained using multi-step PCA and measurements from depression-like behavioral testing (body weight, sucrose preference test, and open field test). Alanine, glutamate, glutamine, and aspartate levels in the hippocampal tissue were significantly lower, whereas N-acetylaspartate, myo-inositol, and creatine were significantly higher in the CS group compared to the control (non-CS) group. As alanine, glutamate, and glutamine are known to be involved in energy metabolism, especially in the TCA cycle, chronic exogenous stress may have induced abnormalities in energy metabolism in the brains of the rats. The results suggest that N-acetylaspartate and creatine levels may have increased in order to complement the loss of energy-producing activity resulting from the development of the depression-like disorder. Multi-step PCA therefore allowed an exploration of the degree of depression-like symptoms as represented by changes in intrinsic metabolites.

  8. Quantum phase transition, universality, and scaling behaviors in the spin-1/2 Heisenberg model with ferromagnetic and antiferromagnetic competing interactions on a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Zhen; Xi, Bin; Chen, Xi; Li, Wei; Wang, Zheng-Chuan; Su, Gang

    2016-06-01

    The quantum phase transition, scaling behaviors, and thermodynamics in the spin-1/2 quantum Heisenberg model with antiferromagnetic coupling J >0 in the armchair direction and ferromagnetic interaction J'<0 in the zigzag direction on a honeycomb lattice are systematically studied using the continuous-time quantum Monte Carlo method. By calculating the Binder ratio Q2 and spin stiffness ρ in two directions for various coupling ratios α =J'/J under different lattice sizes, we found that a quantum phase transition from the dimerized phase to the stripe phase occurs at the quantum critical point αc=-0.93 . Through the finite-size scaling analysis on Q2, ρx, and ρy, we determined the critical exponent related to the correlation length ν to be 0.7212(8), implying that this transition falls into a classical Heisenberg O(3) universality. A zero magnetization plateau is observed in the dimerized phase, whose width decreases with increasing α . A phase diagram in the coupling ratio α -magnetic field h plane is obtained, where four phases, including dimerized, stripe, canted stripe, and polarized, are identified. It is also unveiled that the temperature dependence of the specific heat C (T ) for different α 's intersects precisely at one point, similar to that of liquid 3He under different pressures and several magnetic compounds under various magnetic fields. The scaling behaviors of Q2, ρ , and C (T ) are carefully analyzed. The susceptibility is compared with the experimental data to give the magnetic parameters of both compounds.

  9. Quantum phase transition, universality, and scaling behaviors in the spin-1/2 Heisenberg model with ferromagnetic and antiferromagnetic competing interactions on a honeycomb lattice.

    PubMed

    Huang, Yi-Zhen; Xi, Bin; Chen, Xi; Li, Wei; Wang, Zheng-Chuan; Su, Gang

    2016-06-01

    The quantum phase transition, scaling behaviors, and thermodynamics in the spin-1/2 quantum Heisenberg model with antiferromagnetic coupling J>0 in the armchair direction and ferromagnetic interaction J^{'}<0 in the zigzag direction on a honeycomb lattice are systematically studied using the continuous-time quantum Monte Carlo method. By calculating the Binder ratio Q_{2} and spin stiffness ρ in two directions for various coupling ratios α=J^{'}/J under different lattice sizes, we found that a quantum phase transition from the dimerized phase to the stripe phase occurs at the quantum critical point α_{c}=-0.93. Through the finite-size scaling analysis on Q_{2}, ρ_{x}, and ρ_{y}, we determined the critical exponent related to the correlation length ν to be 0.7212(8), implying that this transition falls into a classical Heisenberg O(3) universality. A zero magnetization plateau is observed in the dimerized phase, whose width decreases with increasing α. A phase diagram in the coupling ratio α-magnetic field h plane is obtained, where four phases, including dimerized, stripe, canted stripe, and polarized, are identified. It is also unveiled that the temperature dependence of the specific heat C(T) for different α's intersects precisely at one point, similar to that of liquid ^{3}He under different pressures and several magnetic compounds under various magnetic fields. The scaling behaviors of Q_{2}, ρ, and C(T) are carefully analyzed. The susceptibility is compared with the experimental data to give the magnetic parameters of both compounds.

  10. Thermodynamics of a dilute XX chain in a field

    NASA Astrophysics Data System (ADS)

    Timonin, P. N.

    2016-06-01

    Gapless phases in ground states of low-dimensional quantum spin systems are rather ubiquitous. Their peculiarity is a remarkable sensitivity to external perturbations due to permanent criticality of such phases manifested by a slow (power-low) decay of pair correlations and the divergence of the corresponding susceptibility. A strong influence of various defects on the properties of the system in such a phase can then be expected. Here, we consider the influence of vacancies on the thermodynamics of the simplest quantum model with a gapless phase, the isotropic spin-1/2 XX chain. The existence of the exact solution of this model gives a unique opportunity to describe in detail the dramatic effect of dilution on the gapless phase—the appearance of an infinite series of quantum phase transitions resulting from level crossing under the variation of a longitudinal magnetic field. We calculate the jumps in the field dependences of the ground-state longitudinal magnetization, susceptibility, entropy, and specific heat appearing at these transitions and show that they result in a highly nonlinear temperature dependence of these parameters at low T. Also, the effect of enhancement of the magnetization and longitudinal correlations in the dilute chain is established. The changes of the pair spin correlators under dilution are also analyzed. The universality of the mechanism of the quantum transition generation suggests that similar effects of dilution can also be expected in gapless phases of other low-dimensional quantum spin systems.

  11. Chiral spin liquids in arrays of spin chains

    NASA Astrophysics Data System (ADS)

    Gorohovsky, Gregory; Pereira, Rodrigo G.; Sela, Eran

    2015-06-01

    We describe a coupled-chain construction for chiral spin liquids in two-dimensional spin systems. Starting from a one-dimensional zigzag spin chain and imposing SU(2) symmetry in the framework of non-Abelian bosonization, we first show that our approach faithfully describes the low-energy physics of an exactly solvable model with a three-spin interaction. Generalizing the construction to the two-dimensional case, we obtain a theory that incorporates the universal properties of the chiral spin liquid predicted by Kalmeyer and Laughlin: charge-neutral edge states, gapped spin-1/2 bulk excitations, and ground-state degeneracy on the torus signaling the topological order of this quantum state. In addition, we show that the chiral spin liquid phase is more easily stabilized in frustrated lattices containing corner-sharing triangles, such as the extended kagome lattice, than in the triangular lattice. Our field-theoretical approach invites generalizations to more exotic chiral spin liquids and may be used to assess the existence of the chiral spin liquid as the ground state of specific lattice systems.

  12. Correlations and diagonal entropy after quantum quenches in XXZ chains

    NASA Astrophysics Data System (ADS)

    Piroli, Lorenzo; Vernier, Eric; Calabrese, Pasquale; Rigol, Marcos

    2017-02-01

    We study quantum quenches in the XXZ spin-1 /2 Heisenberg chain from families of ferromagnetic and antiferromagnetic initial states. Using Bethe ansatz techniques, we compute short-range correlators in the complete generalized Gibbs ensemble (GGE), which takes into account all local and quasilocal conservation laws. We compare our results to exact diagonalization and numerical linked cluster expansion calculations for the diagonal ensemble, finding excellent agreement and thus providing a very accurate test for the validity of the complete GGE. Furthermore, we use exact diagonalization to compute the diagonal entropy in the postquench steady state. We show that the Yang-Yang entropy for the complete GGE is consistent with twice the value of the diagonal entropy in the largest chains or the extrapolated result in the thermodynamic limit. Finally, the complete GGE is quantitatively contrasted with the GGE built using only the local conserved charges (local GGE). The predictions of the two ensembles are found to differ significantly in the case of ferromagnetic initial states. Such initial states are better suited than others considered in the literature to experimentally test the validity of the complete GGE and contrast it to the failure of the local GGE.

  13. Picosecond Optical Electronics

    DTIC Science & Technology

    1988-08-01

    tanta- late (LiTaO3) and potassium dihydrogen phosphate (KH2PO4), used for nonlinear optical devices. Centrosymmetric crystals do not exhibit the...to the gate. N Figure 33 shows a gate delay measurement on an inverter chain implemented in l m gate-length buffered -FET logic MESFETS, with Figure 34...60 ps, while the delay between curves B and C is the delay of the source-follower buffer and diodeII~level-shifter, 15 ps. Ile inverter chain from

  14. Spatial Data Supply Chains

    NASA Astrophysics Data System (ADS)

    Varadharajulu, P.; Azeem Saqiq, M.; Yu, F.; McMeekin, D. A.; West, G.; Arnold, L.; Moncrieff, S.

    2015-06-01

    This paper describes current research into the supply of spatial data to the end user in as close to real time as possible via the World Wide Web. The Spatial Data Infrastructure paradigm has been discussed since the early 1990s. The concept has evolved significantly since then but has almost always examined data from the perspective of the supplier. It has been a supplier driven focus rather than a user driven focus. The current research being conducted is making a paradigm shift and looking at the supply of spatial data as a supply chain, similar to a manufacturing supply chain in which users play a significant part. A comprehensive consultation process took place within Australia and New Zealand incorporating a large number of stakeholders. Three research projects that have arisen from this consultation process are examining Spatial Data Supply Chains within Australia and New Zealand and are discussed within this paper.

  15. Supply-Chain Optimization Template

    NASA Technical Reports Server (NTRS)

    Quiett, William F.; Sealing, Scott L.

    2009-01-01

    The Supply-Chain Optimization Template (SCOT) is an instructional guide for identifying, evaluating, and optimizing (including re-engineering) aerospace- oriented supply chains. The SCOT was derived from the Supply Chain Council s Supply-Chain Operations Reference (SCC SCOR) Model, which is more generic and more oriented toward achieving a competitive advantage in business.

  16. Solitons in Granular Chains

    SciTech Connect

    Manciu, M.; Sen, S.; Hurd, A.J.

    1999-04-12

    The authors consider a chain of elastic (Hertzian) grains that repel upon contact according to the potential V = a{delta}{sup u}, u > 2, where {delta} is the overlap between the grains. They present numerical and analytical results to show that an impulse initiated at an end of a chain of Hertzian grains in contact eventually propagates as a soliton for all n > 2 and that no solitons are possible for n {le} 2. Unlike continuous, they find that colliding solitons in discrete media initiative multiple weak solitons at the point of crossing.

  17. Exact Product Operator Evolution of Weakly Coupled Spin- {1}/{2} I mS n Systems during Arbitrary RF Irradiation of the I Spins

    NASA Astrophysics Data System (ADS)

    Skinner, Thomas E.; Bendall, M. Robin

    1999-12-01

    In this article, we consider the evolution of weakly coupled ImSn systems of spin-{1}/{2} nuclei during arbitrary RF irradiation of the I spins. Exact solutions are presented for the time dependence of the density operator in terms of its constituent product operator components for a complete set of initial states derived from polarization of either the I or the S spin. The solutions extend the range of applications that are accessible to the product operator formalism and its associated vector picture of nuclear spin evolution. This marriage of quantum mechanics and a literal vector description of spin dynamics during RF irradiation supports physical intuition and has led to simple pulses for selective coherence transfer, among other new applications. The evolution of initial states that are free of transverse S-spin components can be described by classical precession of the I-spin components about effective fields defined by the interaction between the coupling and RF fields. Although there is no analogue involving classical rotations for the evolution of initial states composed of Sx or Sy, a vector description is still possible, and the solutions completely characterize the nature of J-coupling modulation during RF pulses. We emphasize the Cartesian product operator basis in the present treatment, but the solutions are readily obtained in any other basis that might prove suitable in analyzing an experiment. For a system of N coupled spins, standard exact methods involving diagonalization and multiplication of the 2N × 2N matrices that represent the system require on the order of (2N)3 operations to calculate the system response to a general RF waveform at each point in the time domain. By contrast, the efficiency of the present method scales linearly with the number of spins. Since the formalism presented also accommodates the absence of either RF irradiation or the coupling, the solutions provide an efficient means of general pulse sequence simulation

  18. Geometric phases in electric dipole searches with trapped spin-1/2 particles in general fields and measurement cells of arbitrary shape with smooth or rough walls

    NASA Astrophysics Data System (ADS)

    Golub, R.; Kaufman, C.; Müller, G.; Steyerl, A.

    2015-12-01

    The important role of geometric phases in searches for a permanent electric dipole moment of the neutron, using Ramsey separated oscillatory field nuclear magnetic resonance, was first noted by Commins [Am. J. Phys. 59, 1077 (1991), 10.1119/1.16616] and investigated in detail by Pendlebury et al. [Phys. Rev. A 70, 032102 (2004), 10.1103/PhysRevA.70.032102]. Their analysis was based on the Bloch equations. In subsequent work using the spin-density matrix, Lamoreaux and Golub [Phys. Rev. A 71, 032104 (2005), 10.1103/PhysRevA.71.032104] showed the relation between the frequency shifts and the correlation functions of the fields seen by trapped particles in general fields (Redfield theory). More recently, we presented a solution of the Schrödinger equation for spin-1 /2 particles in circular cylindrical traps with smooth walls and exposed to arbitrary fields [A. Steyerl et al., Phys. Rev. A 89, 052129 (2014), 10.1103/PhysRevA.89.052129]. Here, we extend this work to show how the Redfield theory follows directly from the Schrödinger equation solution. This serves to highlight the conditions of validity of the Redfield theory, a subject of considerable discussion in the literature [e.g., M. P. Nicholas et al., Prog. Nucl. Magn. Reson. Spectrosc. 57, 111 (2010), 10.1016/j.pnmrs.2010.04.003]. Our results can be applied where the Redfield result no longer holds, such as observation times on the order of or shorter than the correlation time and nonstochastic systems, and thus we can illustrate the transient spin dynamics, i.e., the gradual development of the shift with increasing time subsequent to the start of the free precession. We consider systems with rough, diffuse reflecting walls, cylindrical trap geometry with arbitrary cross section, and field perturbations that do not, in the frame of the moving particles, average to zero in time. We show by direct, detailed, calculation the agreement of the results from the Schrödinger equation with the Redfield theory for the

  19. The quantum spin-1/2 J1-J2 antiferromagnet on a stacked square lattice: a study of effective-field theory in a finite cluster.

    PubMed

    Nunes, Wagner A; de Sousa, J Ricardo; Viana, J Roberto; Richter, J

    2010-04-14

    The ground state phase diagram of the quantum spin-1/2 Heisenberg antiferromagnet in the presence of nearest-neighbor (J(1)) and next-nearest-neighbor (J(2)) interactions (J(1)-J(2) model) on a stacked square lattice, where we introduce an interlayer coupling through nearest-neighbor bonds of strength J(), is studied within the framework of the differential operator technique. The Hamiltonian is solved by effective-field theory in a cluster with N=4 spins (EFT-4). We obtain the sublattice magnetization m(A) for the ordered phases: antiferromagnetic (AF) and collinear (CAF-collinear antiferromagnetic). We propose a functional for the free energy Ψ(μ)(m(μ)) (μ=A, B) to obtain the phase diagram in the λ-α plane, where λ=J()/J(1) and α=J(2)/J(1). Depending on the values of λ and α, we found different ordered states (AF and CAF) and a disordered state (quantum paramagnetic (QP)). For an intermediate region α(1c)(λ) < α < α(2c)(λ) we observe a QP phase that disappears for λ below some critical value λ(1)≈0.67. For α < α(1c)(λ) and α > α(2c)(λ), and below λ(1), we have the AF and CAF semi-classically ordered states, respectively. At α=α(1c)(λ) a second-order transition between the AF and QP states occurs and at α=α(2c)(λ) a first-order transition between the AF and CAF phases takes place. The boundaries between these ordered phases merge at the critical end point CEP≡(λ(1), α(c)), where α(c)≈0.56. Above this CEP there is again a direct first-order transition between the AF and CAF phases, with a behavior described by the point α(c) independent of λ ≥ λ(1).

  20. Heavy Chain Diseases

    MedlinePlus

    ... cells often prevents proper absorption of nutrients from food (malabsorption), resulting in severe diarrhea and weight loss. A rare form that affects the respiratory tract also exists. Blood tests are done when alpha heavy chain disease is suspected. Serum protein electrophoresis, measurement of ...

  1. Breaking the Chains

    ERIC Educational Resources Information Center

    Stanistreet, Paul

    2007-01-01

    In 1792 more than 350,000 people in Britain signed a petition calling for an end to the slave trade. It was, writes historian Adam Hochschild in his book "Bury the Chains," "the first time in history that a large number of people became outraged, and stayed outraged for many years, over someone else's rights". In 1807--after 15…

  2. Nodal-chain metals

    NASA Astrophysics Data System (ADS)

    Bzdušek, Tomáš; Wu, Quansheng; Rüegg, Andreas; Sigrist, Manfred; Soluyanov, Alexey A.

    2016-10-01

    The band theory of solids is arguably the most successful theory of condensed-matter physics, providing a description of the electronic energy levels in various materials. Electronic wavefunctions obtained from the band theory enable a topological characterization of metals for which the electronic spectrum may host robust, topologically protected, fermionic quasiparticles. Many of these quasiparticles are analogues of the elementary particles of the Standard Model, but others do not have a counterpart in relativistic high-energy theories. A complete list of possible quasiparticles in solids is lacking, even in the non-interacting case. Here we describe the possible existence of a hitherto unrecognized type of fermionic excitation in metals. This excitation forms a nodal chain—a chain of connected loops in momentum space—along which conduction and valence bands touch. We prove that the nodal chain is topologically distinct from previously reported excitations. We discuss the symmetry requirements for the appearance of this excitation and predict that it is realized in an existing material, iridium tetrafluoride (IrF4), as well as in other compounds of this class of materials. Using IrF4 as an example, we provide a discussion of the topological surface states associated with the nodal chain. We argue that the presence of the nodal-chain fermions will result in anomalous magnetotransport properties, distinct from those of materials exhibiting previously known excitations.

  3. Pursuing supply chain gains.

    PubMed

    Long, Gene

    2005-09-01

    Five hallmarks of an effective supply chain are: A strong relationship is developed with a single GPO. Physicians are involved in supply standardization. Supply contracts are routinely reviewed at time of renewal. Freight costs are understood and negotiated effectively. Products are distributed through an in-house distribution center.

  4. Atwood's Heavy Chain

    ERIC Educational Resources Information Center

    Beeken, Paul

    2011-01-01

    While perusing various websites in search of a more challenging lab for my students, I came across a number of ideas where replacing the string in an Atwood's machine with a simple ball chain like the kind found in lamp pulls created an interesting system to investigate. The replacement of the string produced a nice nonuniform acceleration, but…

  5. Exploration Supply Chain Simulation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Exploration Supply Chain Simulation project was chartered by the NASA Exploration Systems Mission Directorate to develop a software tool, with proper data, to quantitatively analyze supply chains for future program planning. This tool is a discrete-event simulation that uses the basic supply chain concepts of planning, sourcing, making, delivering, and returning. This supply chain perspective is combined with other discrete or continuous simulation factors. Discrete resource events (such as launch or delivery reviews) are represented as organizational functional units. Continuous resources (such as civil service or contractor program functions) are defined as enabling functional units. Concepts of fixed and variable costs are included in the model to allow the discrete events to interact with cost calculations. The definition file is intrinsic to the model, but a blank start can be initiated at any time. The current definition file is an Orion Ares I crew launch vehicle. Parameters stretch from Kennedy Space Center across and into other program entities (Michaud Assembly Facility, Aliant Techsystems, Stennis Space Center, Johnson Space Center, etc.) though these will only gain detail as the file continues to evolve. The Orion Ares I file definition in the tool continues to evolve, and analysis from this tool is expected in 2008. This is the first application of such business-driven modeling to a NASA/government-- aerospace contractor endeavor.

  6. Supply chain management.

    PubMed

    Palevich, R F

    1999-02-01

    This article describes how Do It Best Corp. has used technology to improve its supply chain management. Among other topics it discusses the company's use of electronic data interchange, the Internet, electronic forecasting, and warehouse management systems to gain substantial savings and increase its competitiveness.

  7. Supply chain quality.

    PubMed

    Feary, Simon

    2009-01-01

    As the development of complex manufacturing models and virtual companies become more prevalent in today's growing global markets, it is increasingly important to support the relationships between manufacturer and supplier. Utilising these relationships will ensure that supply chains operate more effectively and reduce costs, risks and time-to-market time frames, whilst maintaining product quality.

  8. Chain Saw Repair.

    ERIC Educational Resources Information Center

    Taylor, Mark; Helbling, Wayne

    This curriculum is designed to supplement the Comprehensive Small Engine Repair guide by covering in detail all aspects of chain saw repair. The publication contains materials for both teacher and student and is written in terms of student performance using measurable objectives. The course includes six units. Each unit contains some or all of the…

  9. Perioperative supply chain management.

    PubMed

    Feistritzer, N R; Keck, B R

    2000-09-01

    Faced with declining revenues and increasing operating expenses, hospitals are evaluating numerous mechanisms designed to reduce costs while simultaneously maintaining quality care. Many facilities have targeted initial cost reduction efforts in the reduction of labor expenses. Once labor expenses have been "right sized," facilities have continued to focus on service delivery improvements by the optimization of the "supply chain" process. This report presents a case study of the efforts of Vanderbilt University Medical Center in the redesign of its supply chain management process in the department of Perioperative Services. Utilizing a multidisciplinary project management structure, 3 work teams were established to complete the redesign process. To date, the project has reduced costs by $2.3 million and enhanced quality patient care by enhancing the delivery of appropriate clinical supplies during the perioperative experience.

  10. Supply Chain Interoperability Measurement

    DTIC Science & Technology

    2015-06-19

    Supply Chain Interoperability Measurement DISSERTATION June 2015 Christos E. Chalyvidis, Major, Hellenic Air ...Force AFIT-ENS-DS-15-J-001 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force...are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United

  11. The innovation value chain.

    PubMed

    Hansen, Morten T; Birkinshaw, Julian

    2007-06-01

    The challenges of coming up with fresh ideas and realizing profits from them are different for every company. One firm may excel at finding good ideas but may have weak systems for bringing them to market. Another organization may have a terrific process for funding and rolling out new products and services but a shortage of concepts to develop. In this article, Hansen and Birkinshaw caution executives against using the latest and greatest innovation approaches and tools without understanding the unique deficiencies in their companies' innovation systems. They offer a framework for evaluating innovation performance: the innovation value chain. It comprises the three main phases of innovation (idea generation, conversion, and diffusion) as well as the critical activities performed during those phases (looking for ideas inside your unit; looking for them in other units; looking for them externally; selecting ideas; funding them; and promoting and spreading ideas companywide). Using this framework, managers get an end-to-end view of their innovation efforts. They can pinpoint their weakest links and tailor innovation best practices appropriately to strengthen those links. Companies typically succumb to one of three broad "weakest-link" scenarios. They are idea poor, conversion poor, or diffusion poor. The article looks at the ways smart companies - including Intuit, P&G, Sara Lee, Shell, and Siemens- modify the best innovation practices and apply them to address those organizations' individual needs and flaws. The authors warn that adopting the chain-based view of innovation requires new measures of what can be delivered by each link in the chain. The approach also entails new roles for employees "external scouts" and "internal evangelists," for example. Indeed, in their search for new hires, companies should seek out those candidates who can help address particular weaknesses in the innovation value chain.

  12. Streamlining the supply chain.

    PubMed

    Neumann, Lydon

    2003-07-01

    Effective management of the supply chain requires attention to: Product management--formulary development and maintenance, compliance, clinical involvement, standardization, and demand-matching. Sourcing and contracting--vendor consolidation, GPO portfolio management, price leveling, content management, and direct contracting Purchasing and payment-cycle--automatic placement, web enablement, centralization, evaluated receipts settlement, and invoice matching Inventory and distribution management--"unofficial" and "official" locations, vendor-managed inventory, automatic replenishment, and freight management.

  13. Exact steady states for quantum quenches in integrable Heisenberg spin chains

    NASA Astrophysics Data System (ADS)

    Piroli, Lorenzo; Vernier, Eric; Calabrese, Pasquale

    2016-08-01

    The study of quantum quenches in integrable systems has significantly advanced with the introduction of the quench action method, a versatile analytical approach to nonequilibrium dynamics. However, its application is limited to those cases where the overlaps between the initial state and the eigenstates of the Hamiltonian governing the time evolution are known exactly. Conversely, in this work we consider physically interesting initial states for which such overlaps are still unknown. In particular, we focus on different classes of product states in spin-1 /2 and spin-1 integrable chains, such as tilted ferromagnets and antiferromagnets. We get around the missing overlaps by following a recent approach based on the knowledge of complete sets of quasilocal charges. This allows us to provide a closed-form analytical characterization of the effective stationary state reached at long times after the quench, through the Bethe ansatz distributions of particles and holes. We compute the asymptotic value of local correlations and check our predictions against numerical data.

  14. The coprime quantum chain

    NASA Astrophysics Data System (ADS)

    Mussardo, G.; Giudici, G.; Viti, J.

    2017-03-01

    In this paper we introduce and study the coprime quantum chain, i.e. a strongly correlated quantum system defined in terms of the integer eigenvalues n i of the occupation number operators at each site of a chain of length M. The n i ’s take value in the interval [2,q] and may be regarded as S z eigenvalues in the spin representation j  =  (q  ‑  2)/2. The distinctive interaction of the model is based on the coprimality matrix \\boldsymbolΦ : for the ferromagnetic case, this matrix assigns lower energy to configurations where occupation numbers n i and n i+1 of neighbouring sites share a common divisor, while for the anti-ferromagnetic case it assigns a lower energy to configurations where n i and n i+1 are coprime. The coprime chain, both in the ferro and anti-ferromagnetic cases, may present an exponential number of ground states whose values can be exactly computed by means of graph theoretical tools. In the ferromagnetic case there are generally also frustration phenomena. A fine tuning of local operators may lift the exponential ground state degeneracy and, according to which operators are switched on, the system may be driven into different classes of universality, among which the Ising or Potts universality class. The paper also contains an appendix by Don Zagier on the exact eigenvalues and eigenvectors of the coprimality matrix in the limit q\\to ∞ .

  15. Folding of polyglutamine chains

    NASA Astrophysics Data System (ADS)

    Chopra, Manan; Reddy, Allam S.; Abbott, N. L.; de Pablo, J. J.

    2008-10-01

    Long polyglutamine chains have been associated with a number of neurodegenerative diseases. These include Huntington's disease, where expanded polyglutamine (PolyQ) sequences longer than 36 residues are correlated with the onset of symptoms. In this paper we study the folding pathway of a 54-residue PolyQ chain into a β-helical structure. Transition path sampling Monte Carlo simulations are used to generate unbiased reactive pathways between unfolded configurations and the folded β-helical structure of the polyglutamine chain. The folding process is examined in both explicit water and an implicit solvent. Both models reveal that the formation of a few critical contacts is necessary and sufficient for the molecule to fold. Once the primary contacts are formed, the fate of the protein is sealed and it is largely committed to fold. We find that, consistent with emerging hypotheses about PolyQ aggregation, a stable β-helical structure could serve as the nucleus for subsequent polymerization of amyloid fibrils. Our results indicate that PolyQ sequences shorter than 36 residues cannot form that nucleus, and it is also shown that specific mutations inferred from an analysis of the simulated folding pathway exacerbate its stability.

  16. Bucket chain excavator

    SciTech Connect

    Bryan, J.F. Jr.

    1993-07-20

    A machine is described for excavating, elevating and loading material comprising: a main frame having forward and rearward ends; undercarriage means having forward and rearward movement capability for supporting said main frame; a transverse axle rigidly located with respect to said main frame at the forward end thereof; rotating means mounted on said axle so as to extend cantilever wider than any other part of said machine for excavating and for discharging excavated material rearward at an elevated position; chain drive means mounted inwardly on said axle for driving said rotating means and for digging and elevating a portion of the width of a path so that said rotating means and said chain drive means together dig a path wider than any other part of said machine; conveyor means located behind said rotating means for receiving and taking away all material excavated by said chain drive means and said rotating means and conveying said material rearwardly to a material delivery position; and adjustment means for raising and lowering said rotating means relative to said undercarriage.

  17. Measurement of Aerodynamic Shear Stress Using Side Chain Liquid Crystal Polymers

    DTIC Science & Technology

    1992-01-01

    A novel concept was proposed exploiting the optical property response of liquid crystalline materials to various external effects. This study determined the feasibility of using side chain liquid crystal polymers as aerodynamic shear sensors. A method was developed to

  18. Optic neuritis

    MedlinePlus

    ... optic neuritis is unknown. The optic nerve carries visual information from your eye to the brain. The ... brain , including special images of the optic nerve Visual acuity testing Visual field testing Examination of the ...

  19. Spinon and bound-state excitation light cones in Heisenberg XXZ chains

    NASA Astrophysics Data System (ADS)

    de Paula, A. L.; Bragança, H.; Pereira, R. G.; Drumond, R. C.; Aguiar, M. C. O.

    2017-01-01

    We investigate the out-of-equilibrium dynamics after a local quench that connects two spin-1/2 XXZ chains prepared in the ground state of the Hamiltonian in different phases, one in the ferromagnetic phase and the other in the critical phase. We analyze the time evolution of the on-site magnetization and bipartite entanglement entropy via adaptive time-dependent density matrix renormalization group. In systems with short-range interactions, such as the one we consider, the velocity of information transfer is expected to be bounded, giving rise to a light-cone effect. Interestingly, our results show that, when the anisotropy parameter of the critical chain is sufficiently close to that of the isotropic ferromagnet, the light cone is determined by the velocity of spin-wave bound states that propagate faster than single-particle ("spinon") excitations. Furthermore, we investigate how the system approaches equilibrium in the inhomogeneous ground state of the connected system, in which the ferromagnetic chain induces a nonzero magnetization in the critical chain in the vicinity of the interface.

  20. Requirements of supply chain management in differentiating European pork chains.

    PubMed

    Trienekens, Jacques; Wognum, Nel

    2013-11-01

    This paper summarizes results obtained by research into pork chain management in the EU Integrated Project Q-Porkchains. Changing demands for intrinsic and extrinsic quality attributes of pork products impact the way supply chain management should be organized from the farmer down to the consumer. The paper shows the importance of Quality Management Systems for integrating supply chains and enhancing consumer confidence. The paper also presents innovations in information system integration for aligning information exchange in the supply chain and logistics concepts based on innovative measurement technologies at the slaughterhouse stage. In the final section research challenges towards sustainable pork supply chains satisfying current consumer demands are presented.

  1. Strong plasmon coupling in self-assembled superparamagnetic nanoshell chains

    NASA Astrophysics Data System (ADS)

    Xiong, Min; Jin, Xiulong; Ye, Jian

    2016-02-01

    Construction of ordered patterns of plasmonic nanoparticles is greatly important for nanophotonics relevant applications. We have reported a facile and low-cost magnetic field induced self-assembly approach to construct plasmonic superparamagnetic nanoshell (SN) chains up to several hundred micrometers in a few seconds in a large area without templates or other assistance processes. Experimental and theoretical investigations of the near- and far-field optical properties indicate that the super- and sub-radiant modes of the SN chains continuously redshift with the increase of SN number and the Fano resonance emerges in the infinite double- and triple-line SN chains. Strong plasmon coupling effects in the SN chains result in great electric field enhancements at visible and infrared wavelengths, which indicates that these chain structures potentially can be used as a common substrate for both surface enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) application. This fabrication method also offers a general strategy alternative to top-down processing that enables the construction of nanostructures for metamaterials, electromagnetic energy transport, and optical waveguide.Construction of ordered patterns of plasmonic nanoparticles is greatly important for nanophotonics relevant applications. We have reported a facile and low-cost magnetic field induced self-assembly approach to construct plasmonic superparamagnetic nanoshell (SN) chains up to several hundred micrometers in a few seconds in a large area without templates or other assistance processes. Experimental and theoretical investigations of the near- and far-field optical properties indicate that the super- and sub-radiant modes of the SN chains continuously redshift with the increase of SN number and the Fano resonance emerges in the infinite double- and triple-line SN chains. Strong plasmon coupling effects in the SN chains result in great electric field enhancements at visible

  2. Optically Detected Magnetic Resonance Studies on π-conjugated semiconductor systems

    SciTech Connect

    Chen, Ying

    2011-01-01

    Optically Detected Magnetic Resonance (ODMR) techniques were used to investigate the dynamics of excitons and charge carriers in π-conjugated organic semiconductors. Degradation behavior of the negative spin-1/2 electroluminescence-detected magnetic resonance (ELDMR) was observed in Alq3 devices. The increase in the resonance amplitude implies an increasing bipolaron formation during degradation, which might be the result of growth of charge traps in the device. The same behavior of the negative spin-1/2 ELDMR was observed in 2wt% Rubrene doped Tris(8-hydroxyquinolinato)aluminium (Alq3) devices. However, with increasing injection current, a positive spin-1/2 ELDMR, together with positive spin 1 triplet powder patterns at ΔmS=±1 and ΔmS=±2, emerges. Due to the similarities in the frequency dependences of single and double modulated ELDMR and the photoluminescence-detected magnetic resonance (PLDMR) results in poly[2-methoxy-5-(2 -ethyl-hexyloxy)-1,4-phenyl ene vinylene] (MEH-PPV) films, the mechanism for this positive spin-1/2 ELDMR was assigned to enhanced triplet-polaron quenching under resonance conditions. The ELDMR in rubrene doped Alq3 devices provides a path to investigate charge distribution in the device under operational conditions. Combining the results of several devices with different carrier blocking properties and the results from transient EL, it was concluded trions not only exist near buffer layer but also exist in the electron transport layer. This TPQ model can also be used to explain the positive spin-1/2 PLDMR in poly(3-hexylthiophene) (P3HT) films at low temperature and in MEH-PPV films at various temperatures up to room temperature. Through quantitative analysis, TE-polaron quenching (TPQ) model is shown having the ability to explain most behaviors of the positive spin-1/2 resonance. Photocurrent detected magnetic resonance (PCDMR) studies on MEH-PPV devices revealed a novel transient resonance signal. The signal

  3. Finite-temperature scaling at the quantum critical point of the Ising chain in a transverse field

    NASA Astrophysics Data System (ADS)

    Haelg, Manuel; Huvonen, Dan; Guidi, Tatiana; Quintero-Castro, Diana Lucia; Boehm, Martin; Regnault, Louis-Pierre; Zheludev, Andrey

    2015-03-01

    Inelastic neutron scattering is used to study the finite-temperature scaling behavior of spin correlations at the quantum critical point in an experimental realization of the one-dimensional Ising model in a transverse field. The target compound is the well-characterized, anisotropic and bond-alternating Heisenberg spin-1 chain material NTENP. The validity and the limitations of the dynamic structure factor scaling are tested, discussed and compared to theoretical predictions. For this purpose neutron data have been collected on the three-axes spectrometers IN14 at ILL and FLEXX at HZB as well as on the time of flight multi-chopper spectrometer LET at ISIS. In addition to the general statement about quantum criticality and universality, present study also reveals new insight into the properties of the spin chain compound NTENP in particular.

  4. Radiology's value chain.

    PubMed

    Enzmann, Dieter R

    2012-04-01

    A diagnostic radiology value chain is constructed to define its main components, all of which are vulnerable to change, because digitization has caused disaggregation of the chain. Some components afford opportunities to improve productivity, some add value, while some face outsourcing to lower labor cost and to information technology substitutes, raising commoditization risks. Digital image information, because it can be competitive at smaller economies of scale, allows faster, differential rates of technological innovation of components, initiating a centralization-to-decentralization technology trend. Digitization, having triggered disaggregation of radiology's professional service model, may soon usher in an information business model. This means moving from a mind-set of "reading images" to an orientation of creating and organizing information for greater accuracy, faster speed, and lower cost in medical decision making. Information businesses view value chain investments differently than do small professional services. In the former model, producing a better business product will extend image interpretation beyond a radiologist's personal fund of knowledge to encompass expanding external imaging databases. A follow-on expansion with integration of image and molecular information into a report will offer new value in medical decision making. Improved interpretation plus new integration will enrich and diversify radiology's key service products, the report and consultation. A more robust, information-rich report derived from a "systems" and "computational" radiology approach will be facilitated by a transition from a professional service to an information business. Under health care reform, radiology will transition its emphasis from volume to greater value. Radiology's future brightens with the adoption of a philosophy of offering information rather than "reads" for decision making. Staunchly defending the status quo via turf wars is unlikely to constitute a

  5. Dispersion relations for circular single and double dusty plasma chains

    SciTech Connect

    Tkachenko, D. V.; Misko, V. R.; Sheridan, T. E.

    2011-10-15

    We derive dispersion relations for a system of identical particles confined in a two-dimensional annular harmonic well and which interact through a Yukawa potential, e.g., a dusty plasma ring. When the particles are in a single chain (i.e., a one-dimensional ring), we find a longitudinal acoustic mode and a transverse optical mode which show approximate agreement with the dispersion relation for a straight configuration for large radii of the ring. When the radius decreases, the dispersion relations modify: there appears an anticrossing of the modes near the crossing point resulting in a frequency gap between the lower and upper branches of the modified dispersion relations. For the double chain (i.e., a two-dimensional zigzag configuration), the dispersion relation has four branches: longitudinal acoustic and optical and transverse acoustic and optical.

  6. Monte Carlo without chains

    SciTech Connect

    Chorin, Alexandre J.

    2007-12-12

    A sampling method for spin systems is presented. The spin lattice is written as the union of a nested sequence of sublattices, all but the last with conditionally independent spins, which are sampled in succession using their marginals. The marginals are computed concurrently by a fast algorithm; errors in the evaluation of the marginals are offset by weights. There are no Markov chains and each sample is independent of the previous ones; the cost of a sample is proportional to the number of spins (but the number of samples needed for good statistics may grow with array size). The examples include the Edwards-Anderson spin glass in three dimensions.

  7. Musical Markov Chains

    NASA Astrophysics Data System (ADS)

    Volchenkov, Dima; Dawin, Jean René

    A system for using dice to compose music randomly is known as the musical dice game. The discrete time MIDI models of 804 pieces of classical music written by 29 composers have been encoded into the transition matrices and studied by Markov chains. Contrary to human languages, entropy dominates over redundancy, in the musical dice games based on the compositions of classical music. The maximum complexity is achieved on the blocks consisting of just a few notes (8 notes, for the musical dice games generated over Bach's compositions). First passage times to notes can be used to resolve tonality and feature a composer.

  8. The polymerase chain reaction.

    PubMed

    Welch, Hazel M

    2012-01-01

    The polymerase chain reaction (PCR) has had a significant impact on all aspects of the molecular biosciences, from cancer research to forensic science. The sensitivity and specificity inherent in the technique allow minute quantities of genetic material to be detected while the unique properties of thermostable DNA polymerase ensure that abundant copies are reliably reproduced to levels that can be visualized and/or used for further applications. This chapter describes applications of PCR and PCR-RT to investigate primary cancer and metastatic disease at both the DNA and mRNA expression levels.

  9. Field dependent spin transport of anisotropic Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Rezania, H.

    2016-04-01

    We have addressed the static spin conductivity and spin Drude weight of one-dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain in the finite magnetic field. We have investigated the behavior of transport properties by means of excitation spectrum in terms of a hard core bosonic representation. The effect of in-plane anisotropy on the spin transport properties has also been studied via the bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the spin conductivity and spin Drude weight in the gapped field induced spin-polarized phase for various magnetic field and anisotropy parameters. Furthermore we have studied the magnetic field dependence of static spin conductivity and Drude weight for various anisotropy parameters. Our results show the regular part of spin conductivity vanishes in isotropic case however Drude weight has a finite non-zero value and the system exhibits ballistic transport properties. We also find the peak in the static spin conductivity factor moves to higher temperature upon increasing the magnetic field at fixed anisotropy. The static spin conductivity is found to be monotonically decreasing with magnetic field due to increase of energy gap in the excitation spectrum. Furthermore we have studied the temperature dependence of spin Drude weight for different magnetic field and various anisotropy parameters.

  10. Thermal transport in disordered one-dimensional spin chains

    NASA Astrophysics Data System (ADS)

    Poboiko, Igor; Feigel'man, Mikhail

    2015-12-01

    We study a one-dimensional anisotropic XXZ Heisenberg spin-1/2 chain with weak random fields hizSiz by means of Jordan-Wigner transformation to spinless Luttinger liquid with disorder and bosonization technique. First, we reinvestigate the phase diagram of the system in terms of dimensionless disorder γ =

    /J2≪1 and anisotropy parameter Δ =Jz/Jx y , we find the range of these parameters where disorder is irrelevant in the infrared limit and spin-spin correlations are described by power laws, and compare it with previously obtained numerical and analytical results. Then we use the diagram technique in terms of plasmon excitations to study the low-temperature (T ≪J ) behavior of heat conductivity κ and spin conductivity σ in this power-law phase. The obtained Lorentz number L ≡κ /σ T differs from the value derived earlier by means of the memory function method. We argue also that in the studied region inelastic scattering is strong enough to suppress quantum interference in the low-temperature limit.

  11. Surface-mediated light transmission in metal nanoparticle chains

    NASA Astrophysics Data System (ADS)

    Compaijen, P. Jasper; Malyshev, Victor A.; Knoester, Jasper

    2013-05-01

    We study theoretically the efficiency of the transmission of optical signals through a linear chain consisting of identical and equidistantly spaced silver metal nanoparticles. Two situations are compared: the transmission efficiency through an isolated chain and through a chain in close proximity of a reflecting substrate. The Ohmic and radiative losses in each nanoparticle strongly affect the transmission efficiency of an isolated chain and suppress it to large extent. It is shown that the presence of a reflecting interface may enhance the guiding properties of the array. The reason for this is the energy exchange between the surface plasmon polaritons (SPPs) of the array and the substrate. We focus on the dependence of the transmission efficiency on the frequency and polarization of the incoming light, as well as on the influence of the array-interface spacing. Sometimes the effect of these parameters turns out to be counterintuitive, reflecting a complicated interplay of several transmission channels.

  12. Modified kagome physics in the natural spin-1/2 kagome lattice systems: kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2.

    PubMed

    Janson, O; Richter, J; Rosner, H

    2008-09-05

    The recently discovered natural minerals Cu3Zn(OH)6Cl2 and Cu3Mg(OH)6Cl2 are spin 1/2 systems with an ideal kagome geometry. Based on electronic structure calculations, we develop a realistic model which includes couplings across the kagome hexagons beyond the original kagome model that are intrinsic in real kagome materials. Exact diagonalization studies for the derived model reveal a strong impact of these couplings on the magnetic ground state. Our predictions could be compared to and supplied with neutron scattering, thermodynamic data, and NMR data.

  13. [Trophic chains in soil].

    PubMed

    Goncharov, A A; Tiunov, A V

    2013-01-01

    Trophic links of soil animals are extensively diverse but also flexible. Moreover, feeding activity of large soil saprotrophs often cascades into a range of ecosystem-level consequences via the ecological engineering. Better knowledge on the main sources of energy utilized by soil animals is needed for understanding functional structure of soil animal communities and their participation in the global carbon cycling. Using published and original data, we consider the relative importance of dead organic matter and saprotrophic microorganisms as a basal energy source in the detritus-based food chains, the feeding of endogeic macrofauna on the stabilized soil organic matter, and the role of recent photosynthate in the energy budget of soil communities. Soil food webs are spatially and functionally compartmentalized, though the separation of food chains into bacteria- and fungi-based channels seems to be an over-simplification. The regulation of the litter decomposition rates via top-down trophic interactions across more than one trophic level is only partly supported by experimental data, but mobile litter-dwelling predators play a crucial role in integrating local food webs within and across neighboring ecosystems.

  14. Characterizing gapped phases of a 1D spin chain with on-site and spatial symmetries

    NASA Astrophysics Data System (ADS)

    West, Colin; Prakash, Abhishodh; Wei, Tzu-Chieh

    We investigate the phase diagram of a spin-1 chain whose Hamiltonian is invariant under translation, lattice inversion and a global A4 symmetry in the spin degrees of freedom. The classification scheme by Chen, Gu, and Wen allows us to enumerate all possible phases under the given symmetry. Then, we determine which of these phases actually occur in the two-parameter Hamiltonian. Using numerical methods proposed by Pollmann and Turner (2012) we determine the characteristic projective parameters for the Symmetry Protected Topological (SPT) phases. In addition, we present a method for determining the projective commutation parameter in these phases. The resulting phase diagram is rich and contains at least nine different SPT phases. This work was supported in part by the National Science Foundation.

  15. Integrable spin chain for the SL(2,R)/U(1) black hole sigma model.

    PubMed

    Ikhlef, Yacine; Jacobsen, Jesper Lykke; Saleur, Hubert

    2012-02-24

    We introduce a spin chain based on finite-dimensional spin-1/2 SU(2) representations but with a non-Hermitian "Hamiltonian" and show, using mostly analytical techniques, that it is described at low energies by the SL(2,R)/U(1) Euclidian black hole conformal field theory. This identification goes beyond the appearance of a noncompact spectrum; we are also able to determine the density of states, and show that it agrees with the formulas in [J. Maldacena, H. Ooguri, and J. Son, J. Math. Phys. (N.Y.) 42, 2961 (2001)] and [A. Hanany, N. Prezas, and J. Troost, J. High Energy Phys. 04 (2002) 014], hence providing a direct "physical measurement" of the associated reflection amplitude.

  16. Optimal Control for Fast and Robust Generation of Entangled States in Anisotropic Heisenberg Chains

    NASA Astrophysics Data System (ADS)

    Zhang, Xiong-Peng; Shao, Bin; Zou, Jian

    2017-02-01

    Motivated by some recent results of the optimal control (OC) theory, we study anisotropic XXZ Heisenberg spin-1/2 chains with control fields acting on a single spin, with the aim of exploring how maximally entangled state can be prepared. To achieve the goal, we use a numerical optimization algorithm (e.g., the Krotov algorithm, which was shown to be capable of reaching the quantum speed limit) to search an optimal set of control parameters, and then obtain OC pulses corresponding to the target fidelity. We find that the minimum time for implementing our target state depending on the anisotropy parameter Δ of the model. Finally, we analyze the robustness of the obtained results for the optimal fidelities and the effectiveness of the Krotov method under some realistic conditions.

  17. Anomalous currents in a driven XXZ chain with boundary twisting at weak coupling or weak driving

    NASA Astrophysics Data System (ADS)

    Popkov, Vladislav; Salerno, Mario

    2013-02-01

    The spin 1/2 XXZ chain driven out of equilibrium by coupling with boundary reservoirs targeting perpendicular spin orientations in the XY plane is investigated. The existence of an anomaly in the nonequilibrium steady state (NESS) at the isotropic point Δ = 1 is demonstrated in both the weak coupling and weak driving limits. The nature of the anomaly is studied analytically by calculating exact NESSs for small system sizes, and investigating steady currents. The spin current at the points Δ =± 1 has a singularity which leads to a current discontinuity when either driving or coupling vanishes, and the current of energy develops a twin peak anomaly. The character of the singularity is shown to depend qualitatively on whether the system size is even or odd.

  18. Optical Frequency Synthesizer for Precision Spectroscopy

    NASA Astrophysics Data System (ADS)

    Holzwarth, R.; Udem, Th.; Hänsch, T. W.; Knight, J. C.; Wadsworth, W. J.; Russell, P. St. J.

    2000-09-01

    We have used the frequency comb generated by a femtosecond mode-locked laser and broadened to more than an optical octave in a photonic crystal fiber to realize a frequency chain that links a 10 MHz radio frequency reference phase-coherently in one step to the optical region. By comparison with a similar frequency chain we set an upper limit for the uncertainty of this new approach to 5.1×10-16. This opens the door for measurement and synthesis of virtually any optical frequency and is ready to revolutionize frequency metrology.

  19. Doping of Semiconducting Atomic Chains

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada; Kutler, Paul (Technical Monitor)

    1997-01-01

    Due to the rapid progress in atom manipulation technology, atomic chain electronics would not be a dream, where foreign atoms are placed on a substrate to form a chain, and its electronic properties are designed by controlling the lattice constant d. It has been shown theoretically that a Si atomic chain is metallic regardless of d and that a Mg atomic chain is semiconducting or insulating with a band gap modified with d. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along the chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome this dilemma, we may place a dopant atom beside the chain at every N lattice periods (N > 1). Because of the periodic arrangement of dopant atoms, we can avoid the unwanted Anderson localization. Moreover, since the dopant atoms do not constitute the chain, the overlap interaction between them is minimized, and the band structure modification can be made smallest. Some tight-binding results will be discussed to demonstrate the present idea.

  20. Optical microspectrometer

    DOEpatents

    Sweatt, William C.; Christenson, Todd R.

    2004-05-25

    An optical microspectrometer comprises a grism to disperse the spectra in a line object. A single optical microspectrometer can be used to sequentially scan a planar object, such as a dye-tagged microchip. Because the optical microspectrometer is very compact, multiple optical microspectrometers can be arrayed to provide simultaneous readout across the width of the planar object The optical microspectrometer can be fabricated with lithographic process, such as deep X-ray lithography (DXRL), with as few as two perpendicular exposures.

  1. Quantum optics of chiral spin networks

    NASA Astrophysics Data System (ADS)

    Pichler, Hannes; Ramos, Tomás; Daley, Andrew J.; Zoller, Peter

    2015-04-01

    We study the driven-dissipative dynamics of a network of spin-1/2 systems coupled to one or more chiral 1D bosonic waveguides within the framework of a Markovian master equation. We determine how the interplay between a coherent drive and collective decay processes can lead to the formation of pure multipartite entangled steady states. The key ingredient for the emergence of these many-body dark states is an asymmetric coupling of the spins to left and right propagating guided modes. Such systems are motivated by experimental possibilities with internal states of atoms coupled to optical fibers, or motional states of trapped atoms coupled to a spin-orbit coupled Bose-Einstein condensate. We discuss the characterization of the emerging multipartite entanglement in this system in terms of the Fisher information.

  2. Optically tunable optical filter

    NASA Astrophysics Data System (ADS)

    James, Robert T. B.; Wah, Christopher; Iizuka, Keigo; Shimotahira, Hiroshi

    1995-12-01

    We experimentally demonstrate an optically tunable optical filter that uses photorefractive barium titanate. With our filter we implement a spectrum analyzer at 632.8 nm with a resolution of 1.2 nm. We simulate a wavelength-division multiplexing system by separating two semiconductor laser diodes, at 1560 nm and 1578 nm, with the same filter. The filter has a bandwidth of 6.9 nm. We also use the same filter to take 2.5-nm-wide slices out of a 20-nm-wide superluminescent diode centered at 840 nm. As a result, we experimentally demonstrate a phenomenal tuning range from 632.8 to 1578 nm with a single filtering device.

  3. NNSA TRITIUM SUPPLY CHAIN

    SciTech Connect

    Wyrick, Steven; Cordaro, Joseph; Founds, Nanette; Chambellan, Curtis

    2013-08-21

    Savannah River Site plays a critical role in the Tritium Production Supply Chain for the National Nuclear Security Administration (NNSA). The entire process includes: • Production of Tritium Producing Burnable Absorber Rods (TPBARs) at the Westinghouse WesDyne Nuclear Fuels Plant in Columbia, South Carolina • Production of unobligated Low Enriched Uranium (LEU) at the United States Enrichment Corporation (USEC) in Portsmouth, Ohio • Irradiation of TPBARs with the LEU at the Tennessee Valley Authority (TVA) Watts Bar Reactor • Extraction of tritium from the irradiated TPBARs at the Tritium Extraction Facility (TEF) at Savannah River Site • Processing the tritium at the Savannah River Site, which includes removal of nonhydrogen species and separation of the hydrogen isotopes of protium, deuterium and tritium.

  4. Atwood's Heavy Chain

    NASA Astrophysics Data System (ADS)

    Beeken, Paul

    2011-11-01

    While perusing various websites in search of a more challenging lab for my students, I came across a number of ideas where replacing the string in an Atwood's machine with a simple ball chain like the kind found in lamp pulls created an interesting system to investigate. The replacement of the string produced a nice nonuniform acceleration, but one that my AP® students found difficult to analyze given their current math background. As the year progressed, we began to explore the importance of work and its utility in making predictions on systems that did not lend themselves to easy analysis using Newtonian mechanics. The effort made it apparent that the heavy rope Atwood's machine would make a perfect system for investigation using the lessons gained from work and energy.

  5. Chains, bombs, potrzebies and slugs

    NASA Astrophysics Data System (ADS)

    Jewess, Mike; McDowell, Alex; Maxfield, Stephen; Hunt, A. G.; Hicks, Bruce

    2010-03-01

    I read with pleasure Robert Crease's article on unusual units (February pp17-19). However, the article stated that an acre is 10×10 chains, when it is in fact 10×1 chains. Incidentally, a distance of 10 chains (220 yards) is known as a furlong, a word that suggests the length of a ploughed furrow and that is still used in horse-racing.

  6. DOS cones along atomic chains

    NASA Astrophysics Data System (ADS)

    Kwapiński, Tomasz

    2017-03-01

    The electron transport properties of a linear atomic chain are studied theoretically within the tight-binding Hamiltonian and the Green’s function method. Variations of the local density of states (DOS) along the chain are investigated. They are crucial in scanning tunnelling experiments and give important insight into the electron transport mechanism and charge distribution inside chains. It is found that depending on the chain parity the local DOS at the Fermi level can form cone-like structures (DOS cones) along the chain. The general condition for the local DOS oscillations is obtained and the linear behaviour of the local density function is confirmed analytically. DOS cones are characterized by a linear decay towards the chain which is in contrast to the propagation properties of charge density waves, end states and Friedel oscillations in one-dimensional systems. We find that DOS cones can appear due to non-resonant electron transport, the spin–orbit scattering or for chains fabricated on a substrate with localized electrons. It is also shown that for imperfect chains (e.g. with a reduced coupling strength between two neighboring sites) a diamond-like structure of the local DOS along the chain appears.

  7. Integrating the healthcare supply chain.

    PubMed

    Brennan, C D

    1998-01-01

    Today's integrated delivery systems (IDSs) require efficient supply chain processes to speed products to users at the lowest possible cost. Most excess costs within the supply chain are a result of inefficient and redundant processes involved in the transport and delivery of supplies from suppliers to healthcare providers. By integrating and assuming control of these supply chain processes, improving supply chain management practices, and organizing and implementing a disciplined redesign plan, IDSs can achieve substantial savings and better focus their organizations on their core patient care mission.

  8. Precision molding of advanced glass optics: innovative production technology for lens arrays and free form optics

    NASA Astrophysics Data System (ADS)

    Pongs, Guido; Bresseler, Bernd; Bergs, Thomas; Menke, Gert

    2012-10-01

    Today isothermal precision molding of imaging glass optics has become a widely applied and integrated production technology in the optical industry. Especially in consumer electronics (e.g. digital cameras, mobile phones, Blu-ray) a lot of optical systems contain rotationally symmetrical aspherical lenses produced by precision glass molding. But due to higher demands on complexity and miniaturization of optical elements the established process chain for precision glass molding is not sufficient enough. Wafer based molding processes for glass optics manufacturing become more and more interesting for mobile phone applications. Also cylindrical lens arrays can be used in high power laser systems. The usage of unsymmetrical free-form optics allows an increase of efficiency in optical laser systems. Aixtooling is working on different aspects in the fields of mold manufacturing technologies and molding processes for extremely high complex optical components. In terms of array molding technologies, Aixtooling has developed a manufacturing technology for the ultra-precision machining of carbide molds together with European partners. The development covers the machining of multi lens arrays as well as cylindrical lens arrays. The biggest challenge is the molding of complex free-form optics having no symmetrical axis. A comprehensive CAD/CAM data management along the entire process chain is essential to reach high accuracies on the molded lenses. Within a national funded project Aixtooling is working on a consistent data handling procedure in the process chain for precision molding of free-form optics.

  9. Atomic spin-chain realization of a model for quantum criticality

    NASA Astrophysics Data System (ADS)

    Toskovic, R.; van den Berg, R.; Spinelli, A.; Eliens, I. S.; van den Toorn, B.; Bryant, B.; Caux, J.-S.; Otte, A. F.

    2016-07-01

    The ability to manipulate single atoms has opened up the door to constructing interesting and useful quantum structures from the ground up. On the one hand, nanoscale arrangements of magnetic atoms are at the heart of future quantum computing and spintronic devices; on the other hand, they can be used as fundamental building blocks for the realization of textbook many-body quantum models, illustrating key concepts such as quantum phase transitions, topological order or frustration as a function of system size. Here, we use low-temperature scanning tunnelling microscopy to construct arrays of magnetic atoms on a surface, designed to behave like spin-1/2 XXZ Heisenberg chains in a transverse field, for which a quantum phase transition from an antiferromagnetic to a paramagnetic phase is predicted in the thermodynamic limit. Site-resolved measurements on these finite-size realizations reveal a number of sudden ground state changes when the field approaches the critical value, each corresponding to a new domain wall entering the chains. We observe that these state crossings become closer for longer chains, suggesting the onset of critical behaviour. Our results present opportunities for further studies on quantum behaviour of many-body systems, as a function of their size and structural complexity.

  10. Transport in Out-of-Equilibrium X X Z Chains: Exact Profiles of Charges and Currents

    NASA Astrophysics Data System (ADS)

    Bertini, Bruno; Collura, Mario; De Nardis, Jacopo; Fagotti, Maurizio

    2016-11-01

    We consider the nonequilibrium time evolution of piecewise homogeneous states in the X X Z spin-1 /2 chain, a paradigmatic example of an interacting integrable model. The initial state can be thought of as the result of joining chains with different global properties. Through dephasing, at late times, the state becomes locally equivalent to a stationary state which explicitly depends on position and time. We propose a kinetic theory of elementary excitations and derive a continuity equation which fully characterizes the thermodynamics of the model. We restrict ourselves to the gapless phase and consider cases where the chains are prepared: (1) at different temperatures, (2) in the ground state of two different models, and (3) in the "domain wall" state. We find excellent agreement (any discrepancy is within the numerical error) between theoretical predictions and numerical simulations of time evolution based on time-evolving block decimation algorithms. As a corollary, we unveil an exact expression for the expectation values of the charge currents in a generic stationary state.

  11. Chain Reacting System

    NASA Astrophysics Data System (ADS)

    Fermi, Enrico; Leverett, Miles C.

    This Patent focuses mainly on the description of an automatic system for the control rods in a nuclear reactor (in the present case made of natural uranium and graphite) reporting, aside from several related theoretical points (already considered in previous Patents), a detailed description of it. Since the reproduction ratio of a lattice structure is reduced by the presence of neutron absorbing impurities, such impurities can be introduced in the lattice in the form of control rods, made of a material such as boron or cadmium, which will absorb large amounts of neutrons. The control procedure is based on the fact that the depth to which the control rod penetrates into the lattice will determine the value of the neutron density in the system. This relatively simple task faces the fact that the reproduction ratio of the structure can change due to changes in temperature and pressure in the system. So, a connection of the control rods with an ionization chamber, measuring neutron density, can give an automatic control of the stability of the chain reaction. Moreover, an emergency circuit for operating the safety rods is illustrated in this Patent, and, in case of failure of both the control and emergency circuits, a third automatic circuit is depicted which causes the dump of a portion of the lattice structure for interrupting the neutron density rise. In a system of the type considered, about 92 percent of the total heat generated originates in the uranium toward the center of the lattice, about 6 percent originates in the graphite used as slowing medium, and the remaining 2 percent is generated in the structures surrounding the pile. Accordingly, the permissible power output of the reactor is limited by the rate of heat removal, so that, to prevent the accumulation of heat in the chain reaction pile, a coolant into contact with the uranium must be employed. However, the corrosive effect on uranium of the possible coolants has to be taken into account, because the

  12. Respiratory chain proteins.

    PubMed

    Kadenbach, B; Schneyder, B; Mell, O; Stroh, S; Reimann, A

    1991-01-01

    Mammalian mitochondrial DNA codes for 13 proteins, which are all components of energy transducing enzyme complexes of the respiratory chain, i.e. the complexes which translocate protons across the inner mitochondrial membrane. The number of subunits of these enzyme complexes increase with increasing evolutionary stage of the organism. The additional nuclear coded subunits of the enzyme complexes from higher organisms are involved in the regulation of respiration, as demonstrated by the influence of intraliposomal ATP and ADP on the reconstituted cytochrome c oxidase (COX) from bovine heart. This regulation is not found with the reconstituted enzyme from P. denitrificans, which lacks the nuclear coded subunits. Some of the nuclear coded subunits occur in tissue-specific isoforms, as reported for COX and NADH dehydrogenase. Tissue-specific regulation of COX activity is also demonstrated by the differential effects of intraliposomal ADP on the kinetics of reconstituted COX from bovine liver and heart, which differ in subunits VIa, VIIa and VIII. At least 3 different COX isozymes occur in bovine liver, heart or skeletal muscle and smooth muscle. An evolutionary relationship between COX subunits VIa and VIc and between VIIa and VIIb is suggested based on the crossreactivity of monoclonal antibodies, amino acid sequence homology and hybridization at low stringency of PCR-amplified cDNAs for subunits VIa-1, VIa-h and VIc from the rat.

  13. Optical Solitons

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    2005-08-01

    1. Optical solitons in fibres: theoretical review A. Hasegawa; 2. Solitons in optical fibres: an experimental account L. F. Mollenauer; 3. All-optical long-distance soliton-based transmission systems K. Smith and L. F. Mollenauer; 4. Nonlinear propagation effects in optical fibres: numerical studies K. J. Blow and N. J. Doran; 5. Soliton-soliton interactions C. Desem and P. L. Chu; 6. Soliton amplification in erbium-doped fibre amplifiers and its application to soliton communication M. Nakazawa; 7. Nonlinear transformation of laser radiation and generation of Raman solitons in optical fibres E. M. Dianov, A. B. Grudinin, A. M. Prokhorov and V. N. Serkin; 8. Generation and compression of femtosecond solitons in optical fibers P. V. Mamyshev; 9. Optical fibre solitons in the presence of higher order dispersion and birefringence C. R. Menyuk and Ping-Kong A. Wai; 10. Dark optical solitons A. M. Weiner; 11. Soliton Raman effects J. R. Taylor; Bibliography; Index.

  14. Optical Solitons

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    1992-04-01

    1. Optical solitons in fibres: theoretical review A. Hasegawa; 2. Solitons in optical fibres: an experimental account L. F. Mollenauer; 3. All-optical long-distance soliton-based transmission systems K. Smith and L. F. Mollenauer; 4. Nonlinear propagation effects in optical fibres: numerical studies K. J. Blow and N. J. Doran; 5. Soliton-soliton interactions C. Desem and P. L. Chu; 6. Soliton amplification in erbium-doped fibre amplifiers and its application to soliton communication M. Nakazawa; 7. Nonlinear transformation of laser radiation and generation of Raman solitons in optical fibres E. M. Dianov, A. B. Grudinin, A. M. Prokhorov and V. N. Serkin; 8. Generation and compression of femtosecond solitons in optical fibers P. V. Mamyshev; 9. Optical fibre solitons in the presence of higher order dispersion and birefringence C. R. Menyuk and Ping-Kong A. Wai; 10. Dark optical solitons A. M. Weiner; 11. Soliton Raman effects J. R. Taylor; Bibliography; Index.

  15. Optical probe

    DOEpatents

    Hencken, Kenneth; Flower, William L.

    1999-01-01

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  16. Building an efficient supply chain.

    PubMed

    Scalise, Dagmara

    2005-08-01

    Realizing at last that supply chain management can produce efficiencies and save costs, hospitals are beginning to adopt practices from other industries, such as the concept of extended supply chains, to improve product flow. They're also investing in enterprise planning resource software, radio frequency identification and other technologies, using quality data to drive standardization and streamlining processes.

  17. Verifying the Hanging Chain Model

    ERIC Educational Resources Information Center

    Karls, Michael A.

    2013-01-01

    The wave equation with variable tension is a classic partial differential equation that can be used to describe the horizontal displacements of a vertical hanging chain with one end fixed and the other end free to move. Using a web camera and TRACKER software to record displacement data from a vibrating hanging chain, we verify a modified version…

  18. Optical keyboard

    DOEpatents

    Veligdan, James T.; Feichtner, John D.; Phillips, Thomas E.

    2001-01-01

    An optical keyboard includes an optical panel having optical waveguides stacked together. First ends of the waveguides define an inlet face, and opposite ends thereof define a screen. A projector transmits a light beam outbound through the waveguides for display on the screen as a keyboard image. A light sensor is optically aligned with the inlet face for sensing an inbound light beam channeled through the waveguides from the screen upon covering one key of the keyboard image.

  19. Bloch FDTD simulation of slow optical wave resonance cavity in optical storage technology

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Lin, Zhaohua; Cai, Lihua

    2013-08-01

    Long chain series resonance cavity is suitable for transferring slow optical wave, which can be served as the basic device for optical storage technology. Micro-ring resonator is one kind of such a long chain structure, which is considered to be the basic component of optical integrated circuit and optical computer in the future. The discrete energy level has the potential to distinguish digital optical data. The optical delay characteristics make such a device possible to store the information for some time. The advantage of this device is that it has the potential to construct an optical storage device in small geometrical dimension and could use mature semiconductor manufacture capability to lower the design and manufacturing expenses. Many experimental results have proved a lot of material and geometrical coefficients are very important for such an optical delay device. New theory method is needed to calculate the periodical energy transfer and time delay characteristics, which can be compared with experimental result. The Bloch FDTD is presented for analysis of such a new optical device, based on the optical Bloch energy band theory. The energy band characteristics of micro-ring periodical optical waveguide device is discussed used that analytical method. This precise calculated method could be served as a useful tool for design the structure of such resonance cavity to achieve desired slow optical wave transfer performance.

  20. Developing sustainable food supply chains.

    PubMed

    Smith, B Gail

    2008-02-27

    This paper reviews the opportunities available for food businesses to encourage consumers to eat healthier and more nutritious diets, to invest in more sustainable manufacturing and distribution systems and to develop procurement systems based on more sustainable forms of agriculture. The important factors in developing more sustainable supply chains are identified as the type of supply chain involved and the individual business attitude to extending responsibility for product quality into social and environmental performance within their own supply chains. Interpersonal trust and working to standards are both important to build more sustainable local and many conserved food supply chains, but inadequate to transform mainstream agriculture and raw material supplies to the manufactured and commodity food markets. Cooperation among food manufacturers, retailers, NGOs, governmental and farmers' organizations is vital in order to raise standards for some supply chains and to enable farmers to adopt more sustainable agricultural practices.

  1. Avoiding bandwidth collapse in long chains of coupled optical microresonators.

    PubMed

    Mookherjea, Shayan; Schneider, Mark A

    2011-12-01

    Coupled photonic oscillators and resonators are sensitive to unavoidable nanoscale disorder, and localization in periodic structures induced by disorder leads eventually to a complete collapse of the bandwidth, which is generally considered problematic for device applications. Here, we investigate the dependence of bandwidth collapse on the interresonator coupling coefficient, a parameter controllable by lithography or device operation.

  2. Catenary optics for achromatic generation of perfect optical angular momentum

    PubMed Central

    Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Zhao, Zeyu; Wang, Changtao; Hu, Chenggang; Gao, Ping; Huang, Cheng; Ren, Haoran; Li, Xiangping; Qin, Fei; Yang, Jing; Gu, Min; Hong, Minghui; Luo, Xiangang

    2015-01-01

    The catenary is the curve that a free-hanging chain assumes under its own weight, and thought to be a “true mathematical and mechanical form” in architecture by Robert Hooke in the 1670s, with nevertheless no significant phenomena observed in optics. We show that the optical catenary can serve as a unique building block of metasurfaces to produce continuous and linear phase shift covering [0, 2π], a mission that is extremely difficult if not impossible for state-of-the-art technology. Via catenary arrays, planar optical devices are designed and experimentally characterized to generate various kinds of beams carrying orbital angular momentum (OAM). These devices can operate in an ultra-broadband spectrum because the anisotropic modes associated with the spin-orbit interaction are almost independent of the incident light frequency. By combining the optical and topological characteristics, our approach would allow the complete control of photons within a single nanometric layer. PMID:26601283

  3. Robust signatures detection of Majorana fermions in superconducting iron chains

    PubMed Central

    Chen, Hua-Jun; Fang, Xian-Wen; Chen, Chang-Zhao; Li, Yang; Tang, Xu-Dong

    2016-01-01

    We theoretically propose an optical means to detect Majorana fermions in superconducting iron (Fe) chains with a hybrid quantum dot-nanomechanical resonator system driven by two-tone fields, which is very different from the current tunneling spectroscopy experiments with electrical means. Based on the scheme, the phenomenon of Majorana modes induced transparency is demonstrated and a straightforward method to determine the quantum dot-Majorana fermions coupling strength is also presented. We further investigate the role of the nanomechanical resonator, and the resonator behaving as a phonon cavity enhances the exciton resonance spectrum, which is robust for detecting of Majorana fermions. The coherent optical spectrum affords a potential supplement to detecte Majorana fermions and supports Majorana fermions-based topological quantum computation in superconducting iron chains. PMID:27857149

  4. Robust signatures detection of Majorana fermions in superconducting iron chains

    NASA Astrophysics Data System (ADS)

    Chen, Hua-Jun; Fang, Xian-Wen; Chen, Chang-Zhao; Li, Yang; Tang, Xu-Dong

    2016-11-01

    We theoretically propose an optical means to detect Majorana fermions in superconducting iron (Fe) chains with a hybrid quantum dot-nanomechanical resonator system driven by two-tone fields, which is very different from the current tunneling spectroscopy experiments with electrical means. Based on the scheme, the phenomenon of Majorana modes induced transparency is demonstrated and a straightforward method to determine the quantum dot-Majorana fermions coupling strength is also presented. We further investigate the role of the nanomechanical resonator, and the resonator behaving as a phonon cavity enhances the exciton resonance spectrum, which is robust for detecting of Majorana fermions. The coherent optical spectrum affords a potential supplement to detecte Majorana fermions and supports Majorana fermions-based topological quantum computation in superconducting iron chains.

  5. Optical Micromachining

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under an SBIR (Small Business Innovative Research) with Marshall Space Flight Center, Potomac Photonics, Inc., constructed and demonstrated a unique tool that fills a need in the area of diffractive and refractive micro-optics. It is an integrated computer-aided design and computer-aided micro-machining workstation that will extend the benefits of diffractive and micro-optic technology to optical designers. Applications of diffractive optics include sensors and monitoring equipment, analytical instruments, and fiber optic distribution and communication. The company has been making diffractive elements with the system as a commercial service for the last year.

  6. Fluidic optics

    NASA Astrophysics Data System (ADS)

    Whitesides, George M.; Tang, Sindy K. Y.

    2006-09-01

    Fluidic optics is a new class of optical system with real-time tunability and reconfigurability enabled by the introduction of fluidic components into the optical path. We describe the design, fabrication, operation of a number of fluidic optical systems, and focus on three devices, liquid-core/liquid-cladding (L2) waveguides, microfluidic dye lasers, and diffraction gratings based on flowing, crystalline lattices of bubbles, to demonstrate the integration of microfluidics and optics. We fabricate these devices in poly(dimethylsiloxane) (PDMS) with soft-lithographic techniques. They are simple to construct, and readily integrable with microanalytical or lab-on-a-chip systems.

  7. Static and dynamical properties of the spin-1/2 equilateral triangular-lattice antiferromagnet Ba3CoSb2O9

    SciTech Connect

    Ma, Jie; Kamiya, Yoshitomo; Hong, Tao; Cao, H. B.; Ehlers, Georg; Tian, Wei; Batista, C. D.; Dun, Z. L.; Zhou, H. D.; Matsuda, Masaaki

    2016-02-24

    We present single-crystal neutron scattering measurements of the spin-1/2 equilateral triangular-lattice antiferromagnet Ba3CoSb2O9. Besides confirming that the Co2+ magnetic moments lie in the ab plane for zero magnetic field and then determining all the exchange parameters of the minimal quasi-2D spin Hamiltonian, we provide conclusive experimental evidence of magnon decay through observation of intrinsic line broadening. Through detailed comparisons with the linear and nonlinear spin-wave theories, we also point out that the large-S approximation, which is conventionally employed to predict magnon decay in noncollinear magnets, is inadequate to explain our experimental observation. Hence, our results call for a new theoretical framework for describing excitation spectra in low-dimensional frustrated magnets under strong quantum effects.

  8. Spin-1/2 Ising-Heisenberg model with the pair XYZ Heisenberg interaction and quartic Ising interactions as the exactly soluble zero-field eight-vertex model.

    PubMed

    Strecka, Jozef; Canová, Lucia; Minami, Kazuhiko

    2009-05-01

    The spin-1/2 Ising-Heisenberg model with the pair XYZ Heisenberg interaction and quartic Ising interactions is exactly solved by establishing a precise mapping relationship with the corresponding zero-field (symmetric) eight-vertex model. It is shown that the Ising-Heisenberg model with the ferromagnetic Heisenberg interaction exhibits a striking critical behavior, which manifests itself through re-entrant phase transitions as well as continuously varying critical exponents. The changes in critical exponents are in accordance with the weak universality hypothesis in spite of a peculiar singular behavior that emerges at a quantum critical point of the infinite order, which occurs at the isotropic limit of the Heisenberg interaction. On the other hand, the Ising-Heisenberg model with the antiferromagnetic Heisenberg interaction surprisingly exhibits less significant changes in both critical temperatures and critical exponents upon varying the strength of the exchange anisotropy in the Heisenberg interaction.

  9. Magnetic properties of a ferrimagnetic mixed (1,3/2) spin chain with inhomogeneous crystal-field anisotropy

    NASA Astrophysics Data System (ADS)

    Solano-Carrillo, E.; Franco, R.; Silva-Valencia, J.

    2010-07-01

    Using molecular-field theory and density-matrix renormalization group calculations we investigated the magnetic properties of a ferrimagnetic mixed (1,3/2) Ising spin chain with inhomogeneous crystal-field anisotropy. Our analysis introduces a clear physical mechanism for the appearance of the magnetic plateaus in the system and for the quantum phase transitions which are present. We consider two cases of interest: when the crystal field anisotropy D1 is present only on the spin-1 ions, and when D is present only on the spin-3/2 ions. This latter case turns out to be the more interesting one since a plateau at {1}/{5} of the saturation magnetization is formed by means of two physically distinct mechanisms. The magnetic change between these two phases is gradual, varying over the region 1/2spin-1 ions is favorable since the overall free energy of the system is lower.

  10. Optic Nerve.

    PubMed

    Gordon, Lynn K

    2016-10-28

    Optic nerve diseases arise from many different etiologies including inflammatory, neoplastic, genetic, infectious, ischemic, and idiopathic. Understanding some of the characteristics of the most common optic neuropathies along with therapeutic approaches to these diseases is helpful in designing recommendations for individual patients. Although many optic neuropathies have no specific treatment, some do, and it is those potentially treatable or preventable conditions which need to be recognized in order to help patients regain their sight or develop a better understanding of their own prognosis. In this chapter several diseases are discussed including idiopathic intracranial hypertension, optic neuritis, ischemic optic neuropathies, hereditary optic neuropathies, trauma, and primary tumors of the optic nerve. For each condition there is a presentation of the signs and symptoms of the disease, in some conditions the evaluation and diagnostic criteria are highlighted, and where possible, current therapy or past trials are discussed.

  11. Stability of vertical magnetic chains

    PubMed Central

    2017-01-01

    A linear stability analysis is performed for a pair of coaxial vertical chains made from permanently magnetized balls under the influence of gravity. While one chain rises from the ground, the other hangs from above, with the remaining ends separated by a gap of prescribed length. Various boundary conditions are considered, as are situations in which the magnetic dipole moments in the two chains are parallel or antiparallel. The case of a single chain attached to the ground is also discussed. The stability of the system is examined with respect to three quantities: the number of balls in each chain, the length of the gap between the chains, and a single dimensionless parameter which embodies the competition between magnetic and gravitational forces. Asymptotic scaling laws involving these parameters are provided. The Hessian matrix is computed in exact form, allowing the critical parameter values at which the system loses stability and the respective eigenmodes to be determined up to machine precision. A comparison with simple experiments for a single chain attached to the ground shows good agreement. PMID:28293135

  12. Stability of vertical magnetic chains

    NASA Astrophysics Data System (ADS)

    Schönke, Johannes; Fried, Eliot

    2017-02-01

    A linear stability analysis is performed for a pair of coaxial vertical chains made from permanently magnetized balls under the influence of gravity. While one chain rises from the ground, the other hangs from above, with the remaining ends separated by a gap of prescribed length. Various boundary conditions are considered, as are situations in which the magnetic dipole moments in the two chains are parallel or antiparallel. The case of a single chain attached to the ground is also discussed. The stability of the system is examined with respect to three quantities: the number of balls in each chain, the length of the gap between the chains, and a single dimensionless parameter which embodies the competition between magnetic and gravitational forces. Asymptotic scaling laws involving these parameters are provided. The Hessian matrix is computed in exact form, allowing the critical parameter values at which the system loses stability and the respective eigenmodes to be determined up to machine precision. A comparison with simple experiments for a single chain attached to the ground shows good agreement.

  13. How to maintain chain drives

    SciTech Connect

    Wright, J.L. )

    1992-06-18

    Properly selected and maintained chain drives can be expected to give thousands of hours of reliable service. Selection is usually done just once. This paper reports on good maintenance which must be done regularly to keep the drive operating. An effective maintenance program for roller chain should include correct type and adequate amounts of lubrication, replacement of worn chains and sprockets, and elimination of drive interferences. It is important to set u a lubrication and inspection/correction schedule to ensure that all required maintenance is carried out.

  14. Scaling of the decoherence factor of a qubit coupled to a spin chain driven across quantum critical points

    NASA Astrophysics Data System (ADS)

    Nag, Tanay; Divakaran, Uma; Dutta, Amit

    2012-07-01

    We study the scaling of the decoherence factor of a qubit (spin-1/2) using the central spin model in which the central spin (qubit) is globally coupled to a transverse XY spin chain. The aim here is to study the nonequilibrium generation of decoherence when the spin chain is driven across (along) quantum critical points (lines) and derive the scaling of the decoherence factor in terms of the driving rate and some of the exponents associated with the quantum critical points. Our studies show that the scaling of the logarithm of the decoherence factor is identical to that of the defect density in the final state of the spin chain following a quench across isolated quantum critical points for both linear and nonlinear variations of a parameter, even if the defect density may not satisfy the standard Kibble-Zurek scaling. However, one finds an interesting deviation when the spin chain is driven along a critical line. Our analytical predictions are in complete agreement with numerical results. Our study, though limited to integrable two-level systems, points to the existence of a universality in the scaling of the decoherence factor which is not necessarily identical to the scaling of the defect density.

  15. Markov Chains and Chemical Processes

    ERIC Educational Resources Information Center

    Miller, P. J.

    1972-01-01

    Views as important the relating of abstract ideas of modern mathematics now being taught in the schools to situations encountered in the sciences. Describes use of matrices and Markov chains to study first-order processes. (Author/DF)

  16. Force cycles and force chains.

    PubMed

    Tordesillas, Antoinette; Walker, David M; Lin, Qun

    2010-01-01

    We examine the coevolution of N cycles and force chains as part of a broader study which is designed to quantitatively characterize the role of the laterally supporting contact network to the evolution of force chains. Here, we elucidate the rheological function of these coexisting structures, especially in the lead up to failure. In analogy to force chains, we introduce the concept of force cycles: N cycles whose contacts each bear above average force. We examine their evolution around force chains in a discrete element simulation of a dense granular material under quasistatic biaxial loading. Three-force cycles are shown to be stabilizing structures that inhibit relative particle rotations and provide strong lateral support to force chains. These exhibit distinct behavior from other cycles. Their population decreases rapidly during the initial stages of the strain-hardening regime-a trend that is suddenly interrupted and reversed upon commencement of force chain buckling prior to peak shear stress. Results suggest that the three-force cycles are called upon for reinforcements to ward off failure via shear banding. Ultimately though, the resistance to buckling proves futile; buckling wins under the combined effects of dilatation and increasing compressive load. The sudden increase in three-force cycles may thus be viewed as an indicator of imminent failure via shear bands.

  17. Reinforcement learning in supply chains.

    PubMed

    Valluri, Annapurna; North, Michael J; Macal, Charles M

    2009-10-01

    Effective management of supply chains creates value and can strategically position companies. In practice, human beings have been found to be both surprisingly successful and disappointingly inept at managing supply chains. The related fields of cognitive psychology and artificial intelligence have postulated a variety of potential mechanisms to explain this behavior. One of the leading candidates is reinforcement learning. This paper applies agent-based modeling to investigate the comparative behavioral consequences of three simple reinforcement learning algorithms in a multi-stage supply chain. For the first time, our findings show that the specific algorithm that is employed can have dramatic effects on the results obtained. Reinforcement learning is found to be valuable in multi-stage supply chains with several learning agents, as independent agents can learn to coordinate their behavior. However, learning in multi-stage supply chains using these postulated approaches from cognitive psychology and artificial intelligence take extremely long time periods to achieve stability which raises questions about their ability to explain behavior in real supply chains. The fact that it takes thousands of periods for agents to learn in this simple multi-agent setting provides new evidence that real world decision makers are unlikely to be using strict reinforcement learning in practice.

  18. Optical design of a high power fiber optic coupler

    SciTech Connect

    English, R.E. Jr.; Halpin, J.M.; House, F.A.; Paris, R.D.

    1991-06-19

    Fiber optic beam delivery systems are replacing conventional mirror delivery systems for many reasons (e.g., system flexibility and redundancy, stability, and ease of alignment). Commercial products are available that use of fiber optic delivery for laser surgery and materials processing. Also, pump light of dye lasers can be delivered by optical fibers. Many laser wavelengths have been transported via optical fibers; high power delivery has been reported for argon, Nd:YAG, and excimer. We have been developing fiber optic beam delivery systems for copper vapor laser light; many of the fundamental properties of these systems are applicable to other high power delivery applications. A key element of fiber optic beam delivery systems is the coupling of laser light into the optical fiber. For our application this optical coupler must be robust to a range of operating parameters and laser characteristics. We have access to a high power copper vapor laser beam that is generated by a master oscillator/power amplifier (MOPA) chain comprised of three amplifiers. The light has a pulse width of 40--50 nsec with a repetition rate of about 4 kHz. The average power (nominal) to be injected into a fiber is 200 W. (We will refer to average power in this paper.) In practice, the laser beam's direction and collimation change with time. These characteristics plus other mechanical and operational constraints make it difficult for our coupler to be opto-mechanically referenced to the laser beam. We describe specifications, design, and operation of an optical system that couples a high-power copper vapor laser beam into a large core, multimode fiber. The approach used and observations reported are applicable to fiber optic delivery applications. 6 refs., 6 figs.

  19. Optical Metacages

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.

    2015-11-01

    We suggest a novel strategy for spectrally selective optical shielding of arbitrary shaped volumes by arranging specifically designed two- or three-layer nanowires around an area that needs to be protected. We show that such nanowire shields preserve their functionality for almost arbitrary geometry, and we term such structures optical metacages. We analyze several designs of such optical metacages made from either metallic or dielectric materials with experimentally measured parameters. We employ a semianalytical approach and also verify our results by numerical simulations. We further study optical properties of the introduced metacages in both near- and far-field regions, as well as analyze their frequency selectivity and the vanishing backscattering regime.

  20. Optical engineering

    SciTech Connect

    Saito, T T

    1998-01-01

    The Optical Engineering thrust area at Lawrence Livermore National Laboratory (LLNL) was created in the summer of 1996 with the following main objectives: (1) to foster and stimulate leading edge optical engineering research and efforts key to carrying out LLNL's mission and enabling major new programs; (2) to bring together LLNL's broad spectrum of high level optical engineering expertise to support its programs. Optical engineering has become a pervasive and key discipline, with applications across an extremely wide range of technologies, spanning the initial conception through the engineering refinements to enhance revolutionary application. It overlaps other technologies and LLNL engineering thrust areas.

  1. Optical trapping

    PubMed Central

    Neuman, Keir C.; Block, Steven M.

    2006-01-01

    Since their invention just over 20 years ago, optical traps have emerged as a powerful tool with broad-reaching applications in biology and physics. Capabilities have evolved from simple manipulation to the application of calibrated forces on—and the measurement of nanometer-level displacements of—optically trapped objects. We review progress in the development of optical trapping apparatus, including instrument design considerations, position detection schemes and calibration techniques, with an emphasis on recent advances. We conclude with a brief summary of innovative optical trapping configurations and applications. PMID:16878180

  2. Optical computing.

    NASA Technical Reports Server (NTRS)

    Stroke, G. W.

    1972-01-01

    Applications of the optical computer include an approach for increasing the sharpness of images obtained from the most powerful electron microscopes and fingerprint/credit card identification. The information-handling capability of the various optical computing processes is very great. Modern synthetic-aperture radars scan upward of 100,000 resolvable elements per second. Fields which have assumed major importance on the basis of optical computing principles are optical image deblurring, coherent side-looking synthetic-aperture radar, and correlative pattern recognition. Some examples of the most dramatic image deblurring results are shown.

  3. Mechanics of semiflexible chains formed by poly(ethylene glycol)-linked paramagnetic particles.

    PubMed

    Biswal, Sibani Lisa; Gast, Alice P

    2003-08-01

    Magnetorheological particles, permanently linked into chains, provide a magnetically actuated means to manipulate microscopic fluid flow. Paramagnetic colloidal particles form reversible chains by acquiring dipole moments in the presence of an external magnetic field. By chemically connecting paramagnetic colloidal particles, flexible magnetoresponsive chains can be created. We link the paramagnetic microspheres using streptavidin-biotin binding. Streptavidin coated microspheres are placed in a flow cell and a magnetic field is applied, causing the particles to form chains. Then a solution of polymeric linkers of bis-biotin-poly(ethylene glycol) molecules is added in the presence of the field. These linked chains remain responsive to a magnetic field; however, in the absence of an external magnetic field these chains bend and flex due to thermal motion. The chain flexibility is determined by the length of the spacer molecule between particles and is quantified by the flexural rigidity or bending stiffness. To understand the mechanical properties of the chains, we use a variety of optical trapping experiments to measure the flexural rigidity. Increasing the length of the poly(ethylene glycol) chain in the linker increases the flexibility of the chains.

  4. Linear Chains of Magnetic Ions Stacked with Variable Distance: Ferromagnetic Ordering with a Curie Temperature above 20 K.

    PubMed

    Friedländer, Stefan; Liu, Jinxuan; Addicoat, Matt; Petkov, Petko; Vankova, Nina; Rüger, Robert; Kuc, Agnieszka; Guo, Wei; Zhou, Wencai; Lukose, Binit; Wang, Zhengbang; Weidler, Peter G; Pöppl, Andreas; Ziese, Michael; Heine, Thomas; Wöll, Christof

    2016-10-04

    We have studied the magnetic properties of the SURMOF-2 series of metal-organic frameworks (MOFs). Contrary to bulk MOF-2 crystals, where Cu(2+) ions form paddlewheels and are antiferromagnetically coupled, in this case the Cu(2+) ions are connected via carboxylate groups in a zipper-like fashion. This unusual coupling of the spin 1/2 ions within the resulting one-dimensional chains is found to stabilize a low-temperature, ferromagnetic (FM) phase. In contrast to other ordered 1D systems, no strong magnetic fields are needed to induce the ferromagnetism. The magnetic coupling constants describing the interaction between the individual metal ions have been determined in SQUID experiments. They are fully consistent with the results of ab initio DFT electronic structure calculations. The theoretical results allow the unusual magnetic behavior of this exotic, yet easy-to-fabricate, material to be described in a detailed fashion.

  5. Quantum phase transitions in a chain with two- and four-spin interactions in a transverse field

    NASA Astrophysics Data System (ADS)

    de Alcantara Bonfim, O. F.; Saguia, A.; Boechat, B.; Florencio, J.

    2014-09-01

    We use entanglement entropy and finite-size scaling methods to investigate the ground-state properties of a spin-1/2 Ising chain with two-spin (J2) and four-spin (J4) interactions in a transverse magnetic field (B ). We concentrate our study on the unexplored critical region B =1 and obtain the phase diagram of the model in the (J4-J2) plane. The phases found include ferromagnetic (F), antiferromagnetic (AF), as well as more complex phases involving spin configurations with multiple periodicity. The system presents both first- and second-order transitions separated by tricritical points. We find an unusual phase boundary on the semi-infinite segment (J4<-1,J2=0) separating the F and AF phases.

  6. Critical behavior of a quantum chain with four-spin interactions in the presence of longitudinal and transverse magnetic fields

    NASA Astrophysics Data System (ADS)

    Boechat, B.; Florencio, J.; Saguia, A.; de Alcantara Bonfim, O. F.

    2014-03-01

    We study the ground-state properties of a spin-1/2 model on a chain containing four-spin Ising-like interactions in the presence of both transverse and longitudinal magnetic fields. We use entanglement entropy and finite-size scaling methods to obtain the phase diagrams of the model. Our numerical calculations reveal a rich variety of phases and the existence of multicritical points in the system. We identify phases with both ferromagnetic and antiferromagnetic orderings. We also find periodically modulated orderings formed by a cluster of like spins followed by another cluster of opposite like spins. The quantum phases in the model are found to be separated by either first- or second-order transition lines.

  7. Quantum criticality in a magnetic chain with two- and four-spin interactions in a transverse field

    NASA Astrophysics Data System (ADS)

    de Alcantara Bonfim, O. F.; Saguia, A.; Boechat, B.; Florencio, J.

    2015-03-01

    We use entanglement entropy and finite-size scaling methods to investigate the ground-state properties of a spin - 1 / 2 Ising chain with two-spin (J2) and four-spin (J4) interactions in a transverse magnetic field (B). We concentrate our study on the unexplored critical region B = 1 and obtain the phase diagram of the model in the (J4-J2) plane. The phases found include ferromagnetic (F), antiferromagnetic (AF), as well as more complex phases involving spin configurations with multiple periodicity. The system presents both first and second order transitions separated by tricritical points. We find an unusual phase boundary on the semi-infinite segment (J4 < - 1 , J2 =0) separating the F and AF phases.

  8. Phase transitions of a quantum chain with four-spin interactions in longitudinal and transverse magnetic fields

    NASA Astrophysics Data System (ADS)

    Boechat, B.; Florencio, J.; Saguia, A.; de Alcantara Bonfim, O. F.

    2015-03-01

    We study the ground-state properties of a spin-1/2 model on a chain containing four-spin Ising-like interactions in the presence of both transverse and longitudinal magnetic fields. We use entanglement entropy and finite-size scaling methods to obtain the phase diagrams of the model. Our numerical calculations reveal a rich variety of phases and the existence of multi-critical points in the system. We identify phases with both ferromagnetic and anti-ferromagnetic orderings. We also find periodically modulated orderings formed by a cluster of like-spins followed by another cluster of opposite like-spins. The quantum phases in the model are found to be separated by either first or second order transition lines.

  9. Optically controlled integrated optical switch

    NASA Astrophysics Data System (ADS)

    Soref, R. A.

    1986-02-01

    This invention relates to an optically controlled integrated optical switch having a body made up of entirely crystalline silicon. More specifically, the body has a pair of channel waveguides intersecting at an X-like configuration forming therein an intersection crossover region. An electrically controlled optical source is positioned over the crossover region to shine intense, short-wave light on the crossover region in order to generate numerous electron-hole pairs in the waveguide material. These charge carriers alter the refractive index of the intersection region. A controllable current source is used to adjust the optical output power of the optical source. This, in turn, changes the amount of optical cross coupling of light between the intersecting waveguides.

  10. Derivation of matrix product states for the Heisenberg spin chain with open boundary conditions

    NASA Astrophysics Data System (ADS)

    Mei, Zhongtao; Bolech, C. J.

    2017-03-01

    Using the algebraic Bethe Ansatz, we derive a matrix product representation of the exact Bethe-Ansatz states of the six-vertex Heisenberg chain (either X X X or X X Z and spin-1/2 ) with open boundary conditions. In this representation, the components of the Bethe eigenstates are expressed as traces of products of matrices that act on a tensor product of auxiliary spaces. As compared to the matrix product states of the same Heisenberg chain but with periodic boundary conditions, the dimension of the exact auxiliary matrices is enlarged as if the conserved number of spin-flips considered would have been doubled. This result is generic for any non-nested integrable model, as is clear from our derivation, and we further show this by providing an additional example of the same matrix product state construction for a well-known model of a gas of interacting bosons. Counterintuitively, the matrices do not depend on the spatial coordinate despite the open boundaries, and thus they suggest generic ways of exploiting (emergent) translational invariance both for finite size and in the thermodynamic limit.

  11. Ultra-high transmission of photonic nanojet induced modes in chains of core-shell microcylinders

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang

    2012-10-01

    The ultra-high transmission of photonic nanojet induced modes in chains of core-shell microcylinders illuminated by a plane wave is reported. Using high resolution finite-difference time-domain simulation, the periodical focusing of lightwave in straight chains of touching core-shell microcylinders is characterized with the periodicity of photonic nanojets corresponding to the diameter of two microcylinders. The core-shell microcylinders are efficiently coupled to the collimated incident lightwaves. We observe the lightwave with high optical transport of 3 dB in the maxima of transmission spectra for a chain of core-shell microcylinders. The chains of core-shell microcylinders can be assembled inside hollow waveguide and used in a variety of microscopy techniques, biomedical applications, and optical microprobes with subwavelength spatial resolution.

  12. Aligning incentives in supply chains.

    PubMed

    Narayanan, V G; Raman, Ananth

    2004-11-01

    Most companies don't worry about the behavior of their supply chain partners. Instead, they expect the supply chain to work efficiently without interference, as if guided by Adam Smith's famed invisible hand. In their study of more than 50 supply networks, V.G. Narayanan and Ananth Raman found that companies often looked out for their own interests and ignored those of their network partners. Consequently, supply chains performed poorly. Those results aren't shocking when you consider that supply chains extend across several functions and many companies, each with its own priorities and goals. Yet all those functions and firms must pull in the same direction for a chain to deliver goods and services to consumers quickly and cost-effectively. According to the authors, a supply chain works well only if the risks, costs, and rewards of doing business are distributed fairly across the network. In fact, misaligned incentives are often the cause of excess inventory, stock-outs, incorrect forecasts, inadequate sales efforts, and even poor customer service. The fates of all supply chain partners are interlinked: If the firms work together to serve consumers, they will all win. However, they can do that only if incentives are aligned. Companies must acknowledge that the problem of incentive misalignment exists and then determine its root cause and align or redesign incentives. They can improve alignment by, for instance, adopting revenue-sharing contracts, using technology to track previously hidden information, or working with intermediaries to build trust among network partners. It's also important to periodically reassess incentives, because even top-performing networks find that changes in technology or business conditions alter the alignment of incentives.

  13. Optical interconnection of optical modules

    NASA Astrophysics Data System (ADS)

    Schamschula, Marius P.; Caulfield, H. J.; Shamir, Joseph

    1990-12-01

    The most plausible possible uses of nonlinear optics as the bases for interconnections among complex optical modules are evaluated, with a view to such applications as neural networks that entail large numbers of interconnections and numerous stages. Optical interconnection allows such a system to be composed of many modules as well as to incorporate switching- and amplification-function optical nonlinearities. While it is possible to achieve a pixel-by-pixel, diffraction-limited flat-field relay with nonlinearity, where the interconnect allows for cascadability, the wave-particle duality is destroyed between stages.

  14. Optical testing

    NASA Technical Reports Server (NTRS)

    Wyant, James; Hochberg, Eric; Breault, Robert; Greivenkamp, John; Hunt, Gary; Mason, Pete; Mcguire, James; Meinel, Aden; Morris, Mike; Scherr, Larry

    1992-01-01

    Optical testing is one of the most vital elements in the process of preparing an optical instrument for launch. Without well understood, well controlled, and well documented test procedures, current and future mission goals will be jeopardized. We should keep in mind that the reason we test is to provide an opportunity to catch errors, oversights, and problems on the ground, where solutions are possible and difficulties can be rectified. Consequently, it is necessary to create tractable test procedures that truly provide a measure of the performance of all optical elements and systems under conditions which are close to those expected in space. Where testing is not feasible, accurate experiments are required in order to perfect models that can exactly predict the optical performance. As we stretch the boundaries of technology to perform more complex space and planetary investigations, we must expand the technology required to test the optical components and systems which we send into space. As we expand the observational wavelength ranges, so must we expand our range of optical sources and detectors. As we increase resolution and sensitivity, our understanding of optical surfaces to accommodate more stringent figure and scatter requirements must expand. Only with research and development in these areas can we hope to achieve success in the ever increasing demands made on optical testing by the highly sophisticated missions anticipated over the next two decades. Technology assessment and development plan for surface figure, surface roughness, alignment, image quality, radiometric quantities, and stray light measurement are presented.

  15. Camera Optics.

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    1982-01-01

    The camera presents an excellent way to illustrate principles of geometrical optics. Basic camera optics of the single-lens reflex camera are discussed, including interchangeable lenses and accessories available to most owners. Several experiments are described and results compared with theoretical predictions or manufacturer specifications.…

  16. Optical biosensors

    PubMed Central

    Damborský, Pavel; Švitel, Juraj

    2016-01-01

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. PMID:27365039

  17. Cold-collision-shift Cancellation and Inelastic Scattering in a Yb Optical Lattice Clock

    DTIC Science & Technology

    2011-08-10

    inelastic two-body loss rates for 3P0-3PO and 1S0-3PO scattering. VVe also measm e interaction shifts in an unpolarized atomic sample. Collision...SUBJECT TERMS atomic frequency standards, atom collisions, optical atomic clocks 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a. REPORT b...rates for 3P0-3P0 and 1S0-3P0 scattering. We also measure interaction shifts in an unpolarized atomic sample. Collision measurements for this spin-1/2

  18. Semiflexible chains in confined spaces

    NASA Astrophysics Data System (ADS)

    Morrison, Greg; Thirumalai, D.

    2009-01-01

    We develop an analytical method for studying the properties of a noninteracting wormlike chain (WLC) in confined geometries. The mean-field-like theory replaces the rigid constraints of confinement with average constraints, thus allowing us to develop a tractable method for treating a WLC wrapped on the surface of a sphere, and fully encapsulated within it. The efficacy of the theory is established by reproducing the exact correlation functions for a WLC confined to the surface of a sphere. In addition, the coefficients in the free energy are exactly calculated. We also describe the behavior of a surface-confined chain under external tension that is relevant for single molecule experiments on histone-DNA complexes. The force-extension curves display spatial oscillations, and the extension of the chain, whose maximum value is bounded by the sphere diameter, scales as f-1 at large forces, in contrast to the unconfined chain that approaches the contour length as f-1/2 . A WLC encapsulated in a sphere, that is relevant for the study of the viral encapsulation of DNA, can also be treated using the mean-field approach. The predictions of the theory for various correlation functions are in excellent agreement with Langevin simulations. We find that strongly confined chains are highly structured by examining the correlations using a local winding axis. The predicted pressure of the system is in excellent agreement with simulations but, as is known, is significantly lower than the pressures seen for DNA packaged in viral capsids.

  19. Data-driven backward chaining

    NASA Technical Reports Server (NTRS)

    Haley, Paul

    1991-01-01

    The C Language Integrated Production System (CLIPS) cannot effectively perform sound and complete logical inference in most real-world contexts. The problem facing CLIPS is its lack of goal generation. Without automatic goal generation and maintenance, forward chaining can only deduce all instances of a relationship. Backward chaining, which requires goal generation, allows deduction of only that subset of what is logically true which is also relevant to ongoing problem solving. Goal generation can be mimicked in simple cases using forward chaining. However, such mimicry requires manual coding of additional rules which can assert an inadequate goal representation for every condition in every rule that can have corresponding facts derived by backward chaining. In general, for N rules with an average of M conditions per rule the number of goal generation rules required is on the order of N*M. This is clearly intractable from a program maintenance perspective. We describe the support in Eclipse for backward chaining which it automatically asserts as it checks rule conditions. Important characteristics of this extension are that it does not assert goals which cannot match any rule conditions, that 2 equivalent goals are never asserted, and that goals persist as long as, but no longer than, they remain relevant.

  20. GREAT optics

    NASA Astrophysics Data System (ADS)

    Wagner-Gentner, Armin; Graf, Urs U.; Philipp, Martin; Rabanus, David; Stutzki, Jürgen

    2004-10-01

    The German REceiver for Astronomy at Terahertz frequencies (GREAT) is a first generation PI instrument for the SOFIA telescope, developed by a collaboration between the MPIfR, KOSMA, DLR, and the MPAe. The first three institutes each contribute one heterodyne receiver channel to operate at 1.9, 2.7 and 4.7 THz, respectively. A later addition of a e.g. 1.4 THz channel is planned. The GREAT instrument is developed to carry two cryostats at once. That means that any two of the three frequencies can be observed simultaneously. Therefore, we need to be able to quickly exchange the optics benches, the local oscillator (LO) subsystems, and the cryostats containing the mixer devices. This demands a high modularity and flexibility of our receiver concept. Our aim is to avoid the need for realignment when swapping receiver channels. After an overview of the common GREAT optics, a detailed description of several parts (optics benches, calibration units, diplexer, focal plane imager) is given. Special emphasis is given to the LO optics of the KOSMA 1.9 THz channel, because its backward wave oscillator has an astigmatic output beam profile, which has to be corrected for. We developed astigmatic off-axis mirrors to compensate this astigmatism. The mirrors are manufactured in-house on a 5 axis CNC milling machine. We use this milling machine to obtain optical components with highest surface accuracy (about 5 microns) appropriate for these wavelengths. Based on the CNC machining capabilities we present our concept of integrated optics, which means to manufacture optical subsystems monolithically. The optics benches are located on three point mounts, which in conjunction with the integrated optics concept ensure the required adjustment free optics setup.