Sample records for optical stark effect

  1. Large polarization-dependent exciton optical Stark effect in lead iodide perovskites

    PubMed Central

    Yang, Ye; Yang, Mengjin; Zhu, Kai; Johnson, Justin C.; Berry, Joseph J.; van de Lagemaat, Jao; Beard, Matthew C.

    2016-01-01

    A strong interaction of a semiconductor with a below-bandgap laser pulse causes a blue-shift of the bandgap transition energy, known as the optical Stark effect. The energy shift persists only during the pulse duration with an instantaneous response time. The optical Stark effect has practical relevance for applications, including quantum information processing and communication, and passively mode-locked femtosecond lasers. Here we demonstrate that solution-processable lead-halide perovskites exhibit a large optical Stark effect that is easily resolved at room temperature resulting from the sharp excitonic feature near the bandedge. We also demonstrate that a polarized pump pulse selectively shifts one spin state producing a spin splitting of the degenerate excitonic states. Such selective spin manipulation is an important prerequisite for spintronic applications. Our result implies that such hybrid semiconductors may have great potential for optoelectronic applications beyond photovoltaics. PMID:27577007

  2. Large polarization-dependent exciton optical Stark effect in lead iodide perovskites

    DOE PAGES

    Yang, Ye; Yang, Mengjin; Zhu, Kai; ...

    2016-08-31

    A strong interaction of a semiconductor with a below-bandgap laser pulse causes a blue-shift of the bandgap transition energy, known as the optical Stark effect. The energy shift persists only during the pulse duration with an instantaneous response time. The optical Stark effect has practical relevance for applications, including quantum information processing and communication, and passively mode-locked femtosecond lasers. Here we demonstrate that solution-processable lead-halide perovskites exhibit a large optical Stark effect that is easily resolved at room temperature resulting from the sharp excitonic feature near the bandedge. We also demonstrate that a polarized pump pulse selectively shifts one spinmore » state producing a spin splitting of the degenerate excitonic states. Such selective spin manipulation is an important prerequisite for spintronic applications. Lastly, our result implies that such hybrid semiconductors may have great potential for optoelectronic applications beyond photovoltaics.« less

  3. Faraday-Shielded dc Stark-Shift-Free Optical Lattice Clock

    NASA Astrophysics Data System (ADS)

    Beloy, K.; Zhang, X.; McGrew, W. F.; Hinkley, N.; Yoon, T. H.; Nicolodi, D.; Fasano, R. J.; Schäffer, S. A.; Brown, R. C.; Ludlow, A. D.

    2018-05-01

    We demonstrate the absence of a dc Stark shift in an ytterbium optical lattice clock. Stray electric fields are suppressed through the introduction of an in-vacuum Faraday shield. Still, the effectiveness of the shielding must be experimentally assessed. Such diagnostics are accomplished by applying high voltage to six electrodes, which are grounded in normal operation to form part of the Faraday shield. Our measurements place a constraint on the dc Stark shift at the 10-20 level, in units of the clock frequency. Moreover, we discuss a potential source of error in strategies to precisely measure or cancel nonzero dc Stark shifts, attributed to field gradients coupled with the finite spatial extent of the lattice-trapped atoms. With this consideration, we find that Faraday shielding, complemented with experimental validation, provides both a practically appealing and effective solution to the problem of dc Stark shifts in optical lattice clocks.

  4. Faraday-Shielded dc Stark-Shift-Free Optical Lattice Clock.

    PubMed

    Beloy, K; Zhang, X; McGrew, W F; Hinkley, N; Yoon, T H; Nicolodi, D; Fasano, R J; Schäffer, S A; Brown, R C; Ludlow, A D

    2018-05-04

    We demonstrate the absence of a dc Stark shift in an ytterbium optical lattice clock. Stray electric fields are suppressed through the introduction of an in-vacuum Faraday shield. Still, the effectiveness of the shielding must be experimentally assessed. Such diagnostics are accomplished by applying high voltage to six electrodes, which are grounded in normal operation to form part of the Faraday shield. Our measurements place a constraint on the dc Stark shift at the 10^{-20} level, in units of the clock frequency. Moreover, we discuss a potential source of error in strategies to precisely measure or cancel nonzero dc Stark shifts, attributed to field gradients coupled with the finite spatial extent of the lattice-trapped atoms. With this consideration, we find that Faraday shielding, complemented with experimental validation, provides both a practically appealing and effective solution to the problem of dc Stark shifts in optical lattice clocks.

  5. Dielectric waveguide gas-filled stark shift modulator

    DOEpatents

    Hutchinson, Donald P.; Richards, Roger K.

    2003-07-22

    An optical modulator includes a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide. At least one Stark material is provided in the waveguide. A bias circuit generates a bias signal to produce an electrical field across the Stark material to shift at least one of the Stark absorption frequencies towards the frequency of the optical beam. A circuit for producing a time varying electric field across the Stark material modulates the optical beam. At least a portion of the bias field can be generated by an alternating bias signal, such as a square wave. A method of modulating optical signals includes the steps of providing a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide, the waveguide having at least one Stark material disposed therein, and varying an electric field imposed across the Stark material.

  6. Heterostructure Quantum Confined Stark Effect Electrooptic Modulators Operating at 938 nm

    DTIC Science & Technology

    1993-12-01

    type of modulator, suitable for use in optical interconnects, is an asymmetric Fabry-Perot reflection modulator (ARM). This type of an intensity ...calibrated spectrometer/diode array (Princeton Instruments Model ST-100) used in conjunction with an optical multichannel analyzer (OMA). The transmission...AD-A279 342 -" RL-TR-93-259 In -House Report December 1993N~I HETEROSTRUCTURE QUANTUM CONFINED STARK EFFECT ELECTRO- OPTIC MODULATORS OPERATING AT 938

  7. Phonon-Mediated Exciton Stark Effect Enhanced by a Static Electric Field

    NASA Astrophysics Data System (ADS)

    Ivanov, A. L.

    1997-03-01

    The optical properties of semiconductor QW's change in the presence of coherent pump light. The exciton (phonon-mediated, biexciton-mediated, etc.) optical Stark effect is an effective shift of the exciton level that follow dynamically the intensity I0 ~= 0.1 div 1 GW/cm^2 of the pump light. In the present work we develop a theory of a low-intensity electric-field enhanced phonon-mediated optical Stark effect in polar semiconductors and semiconductor microstructures. The main point is that the exciton - LO-phonon Fröhlich interaction can be strongly enhanced by a (quasi-) static electric field F which polarizes the exciton in the geometry F | k | p, where k and p are the wavevectors of the pump and probe light, respectively. The electric field enhancement of spontaneous Raman scattering has been already analyzed (E. Burstein et al., 1971). Even a moderate electric field F ~= 10^3 V/cm reduces the intensity of the pump light to I0 ~= 1 div 10 MW/cm^2. Moreover, the phonon-mediated Stark effect enhanced by a static electric field F allow us to realize the both red and blue dynamical shifts of the exciton level.

  8. ac Stark-mediated quantum control with femtosecond two-color laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrat, Carles

    2005-11-15

    A critical dependence of the quantum interference on the optical Stark spectral shift produced when two-color laser pulses interact with a two-level medium is observed. The four-wave mixing of two ultrashort phase-locked {omega}-3{omega} laser pulses propagating coherently in a two-level system depends on the pulses' relative phase. The phase dominating the efficiency of the coupling to the anti-Stokes Raman component is found to be determined by the sign of the total ac Stark shift induced in the system, in such a way that the phase sensitivity disappears precisely where the ac Stark effect due to both pulses is compensated. Amore » coherent control scheme based on this phenomenon can be contemplated as the basis for nonlinear optical spectroscopy techniques.« less

  9. Demonstration of an all-optical feed-forward delay line buffer using the quadratic Stark effect and two-photon absorption in an SOA.

    PubMed

    Soto, Horacio; Tong, Miriam A; Domínguez, Juan C; Muraoka, Ramón

    2017-09-04

    We have inserted into an unbiased semiconductor optical amplifier (SOA) a powerful control beam, with photon energy slightly smaller than that of the band-gap of its active region, for exciting two-photon absorption and the quadratic Stark effect. For the available SOA, we estimated these phenomena generated a nonlinear absorption coefficient β= -865 cm/GW and induced an appreciable birefringence inside the amplifier waveguide, which significantly modified the polarization-state of a probe beam. Based on these effects, we have experimentally demonstrated the operation of an all-optical buffer, using an 80 Gb/s optical pulse comb, as well as an unbiased SOA, which was therefore, devoid of amplified spontaneous emission and pattern effects.

  10. Safety factor profiles from spectral motional Stark effect for ITER applications

    NASA Astrophysics Data System (ADS)

    Ko, Jinseok; Chung, Jinil; Wi, Han Min

    2017-10-01

    Depositions on the first mirror and multiple reflections on the other mirrors in the labyrinth of the optical system in the motional Stark effect (MSE) diagnostic for ITER are regarded as one of the main obstacles to overcome. One of the alternatives to the present-day conventional photoelastic-modulation-based MSE principles is the spectroscopic analyses on the motional Stark emissions where either the ratios among individual Stark multiplets or the amount of the Stark split are measured based on precise and accurate atomic data and models to ultimately provide the critical internal constraints in the magnetic equilibrium reconstruction. Equipped with the PEM-based conventional MSE hardware since 2015, the KSTAR MSE diagnostic system is capable of investigating the feasibility of the spectroscopic MSE approach particularly via comparative studies with the PEM approach. Available atomic data and models are used to analyze the beam emission spectra with a high-spectral-resolution spectrometer with a patent-pending dispersion calibration technology. Experimental validation on the atomic data and models is discussed in association with the effect of the existence of mirrors, the Faraday rotation in the relay optics media, and the background polarized light on the measured spectra. Work supported by the Ministry of Science, ICT and Future Planning, Korea.

  11. Stark sublevels investigation in Y2WO6:Tm3+-Yb3+ phosphor for thermometry and internal temperature measurement

    NASA Astrophysics Data System (ADS)

    Soni, Abhishek Kumar

    2018-05-01

    Intensity ratio investigation in the Y2WO6:Tm3+-Yb3+ phosphors synthesized by solid state reaction method has been discussed first time under 980 nm laser diode excitation with the help of multiple peak fitting. The temperature dependent upconversion emission study has been performed for optical temperature sensing by using stark sublevels of 1G4 level of Tm3+ ion. The intensity of the two stark sublevels is varied due to the thermalization under the application of external temperature. The energy gap has been calculated about ∼427 cm‑1 of the two stark sublevels via Boltzmann’s population distribution law. The calculated sensitivity (maximum about ∼34 × 10‑4 K‑1 at 303 K) and optical heating properties prove the utility of the prepared phosphor in making optical temperature sensing probe and optical heater.

  12. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2

    NASA Astrophysics Data System (ADS)

    Sie, Edbert J.; Lui, Chun Hung; Lee, Yi-Hsien; Fu, Liang; Kong, Jing; Gedik, Nuh

    2017-03-01

    Coherent interaction with off-resonance light can be used to shift the energy levels of atoms, molecules, and solids. The dominant effect is the optical Stark shift, but there is an additional contribution from the so-called Bloch-Siegert shift that has eluded direct and exclusive observation in solids. We observed an exceptionally large Bloch-Siegert shift in monolayer tungsten disulfide (WS2) under infrared optical driving. By controlling the light helicity, we could confine the Bloch-Siegert shift to occur only at one valley, and the optical Stark shift at the other valley, because the two effects obey opposite selection rules at different valleys. Such a large and valley-exclusive Bloch-Siegert shift allows for enhanced control over the valleytronic properties of two-dimensional materials.

  13. DC Stark addressing for quantum memory in Tm:YAG

    NASA Astrophysics Data System (ADS)

    Gerasimov, Konstantin; Minnegaliev, Mansur; Urmancheev, Ravil; Moiseev, Sergey

    2017-10-01

    We observed a linear DC Stark effect for 3H6 - 3H4 optical transition of Tm3+ ions in Y3Al5O12. We observed that application of electric field pulse suppresses the two-pulse photon echo signal. If we then apply a second electric pulse of opposite polarity the echo signal is restored again, which indicates the linear nature of the observed effect. The effect is present despite the D2 symmetry of the Tm3+ sites that prohibits a linear Stark effect. Experimental data analysis shows that the observed electric field influence can be attributed to defects that break the local crystal field symmetry near Tm3+ ions. Using this effect we demonstrate selective retrieval of light pulses in two-pulse photon echo.

  14. NONLINEAR AND FIBER OPTICS: Influence of the Stark effect on the nature of stimulated Raman scattering of ultrashort adiabatic pump radiation

    NASA Astrophysics Data System (ADS)

    Kryzhanovskiĭ, B. V.

    1990-04-01

    An investigation is made of the serious limitations on the growth of the amplitude of a Stokes wave associated with the optical Stark effect and with the dispersion of the group velocities of the interacting pulses. It is shown that when the distance traversed exceeds a certain length, the gain due to stimulated Raman scattering reaches saturation whereas the spectrum of the scattered light becomes broader and acquires a line structure. Saturation of the scattering is not manifested at pump intensities sufficient to bleach the scattering medium. The gain can be optimized by altering the offset from a resonance.

  15. Measurements of the internal magnetic field using the B-Stark motional Stark effect diagnostic on DIII-D (inivited).

    PubMed

    Pablant, N A; Burrell, K H; Groebner, R J; Holcomb, C T; Kaplan, D H

    2010-10-01

    Results are presented from the B-Stark diagnostic installed on the DIII-D tokamak. This diagnostic provides measurements of the magnitude and direction of the internal magnetic field. The B-Stark system is a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of the Stark split D(α) emission from injected neutral beams. This technique may have advantages over MSE polarimetry based diagnostics in future devices, such as the ITER. The B-Stark diagnostic technique and calibration procedures are discussed. The system is shown to provide accurate measurements of B(θ)/B(T) and ∣B∣ over a range of plasma conditions. Measurements have been made with toroidal fields in the range of 1.2-2.1 T, plasma currents in the range 0.5-2.0 MA, densities between 1.7 and 9.0×10(19) m(-3), and neutral beam voltages between 50 and 81 keV. The viewing direction and polarization dependent transmission properties of the collection optics are found using an in situ beam into gas calibration. These results are compared to values found from plasma equilibrium reconstructions and the MSE polarimetry system on DIII-D.

  16. Optical Studies of the Quantum Confined Stark Effect in ALUMINUM(0.3) GALLIUM(0.7) Arsenide/gallium Arsenide Coupled Double Quantum Wells

    NASA Astrophysics Data System (ADS)

    Kuroda, Roger Tokuichi

    1992-01-01

    The development of advanced epitaxical growth techniques such as molecular beam epitaxy has led to growth of high quality III-V layers with monolayer control in thickness. This permits design of new and novel heterointerface based electronic, optical and opto-electronic devices which exploit the new and tailorable electronic states in quantum wells. One such property is the Quantum Confined Stark Effect (QCSE) which, in uncoupled multiple quantum wells (MQW), has been used for the self-electro-optic effect device(SEED). Guided by a phenomenological model of the complex dielectric function for the Coupled Double Quantum Well (CDQW), we show results for the QCSE in CDQW show underlying physics differs from the uncoupled MQW in that symmetry forbidden transitions under flat band conditions become allowed under non-flat band conditions. The transfer of oscillator strength from symmetry allowed to the symmetry forbidden transitions offers potential for application as spatial light modulator (SLM). We show the CDQW lowest exciton peak Stark shifts twice as fast as the SQW with equivalent well width, which offers the SLM device a lower operating voltage than SQW. In addition we show the CDQW absorption band edge can blue shift with increasing electric field, which offers other potential for SLM. From transmission measurements, we verify these predictions and compare them with the phenomenological model. The optical device figure of merit Deltaalpha/alpha of the CDQW is comparable with the "best" SQW, but at lower electric field. From photocurrent measurements, we find that the calculated and measured Stark shifts agree. In addition, we extract a Deltaalpha/ alpha from photocurrent which agree with transmission measurements. From electroreflectance measurements, we calculated the aluminum concentration, and the built in electric field from the Franz-Keldysh oscillations due to the Al_{0.3}Ga _{0.7}As barrier regions in the CDQW. (Copies available exclusively from Micrographics Department, Doheny Library, USC, Los Angeles, CA 90089 -0182.).

  17. Supersonic Molecular Beam Optical Stark Spectroscopy of MnH.

    NASA Astrophysics Data System (ADS)

    Gengler, Jamie; Ma, Tongmei; Harrison, Jeremy; Steimle, Timothy

    2006-03-01

    The large moment of inertia, large magnetic moment, and possible large permanent electric dipole moment of manganese monohydride, MnH, makes it a prime candidate for ultra-cold molecule production via Stark deceleration and magnetic trapping. Here we report the first molecular beam production of MnH and the analysis of the Stark effect in the (0,0) A^7 π -- X^ 7σ^+ band. The sample was prepared by laser ablation of solid Mn in an H2 supersonic expansion. The low rotational temperature (<50 K) and near natural linewidth resolution (˜50 MHz) facilitated analysis of the ^55Mn (I=5/2) and ^1H (I=1/2) hyperfine structure. A comparison of the derived field-free parameters with those obtained from sub- Doppler optical measurements will be made. Progress on the analysis of the Stark effect will be given. J.R. Bochinski, E.R. Hudson, H.J. Lewandowski, and J. Ye, Phys. Rev. A 70, 043410 (2004). S.Y.T. van de Meerakker, R.T. Jongma, H.L. Bethlem, and G. Meijer, Phys. Rev. A 64, 041401(R) (2001) report the first molecular beam production of MnH and the analysis of T.D. Varberg, J.A. Gray, R.W. Field, and A.J. Merer, J. Mol. Spec. 156, 296-318 (1992). I.E. Gordon, D.R.T. Appadoo, A. Shayesteh, K.A. Walker, and P.F. Bernath, J. Mol. Spec., 229, 145-149 (2005).

  18. Valley-selective optical Stark effect in monolayer WS2

    NASA Astrophysics Data System (ADS)

    Gedik, Nuh

    Monolayer semiconducting transition-metal dichalcogenides (TMDs) have a pair of valleys that, by time-reversal symmetry, are energetically degenerate. Lifting the valley degeneracy in these materials is of great interest because it would allow for valley specific band engineering and offer additional control in valleytronic applications. In this talk, I will show that circularly polarized light, which breaks time-reversal symmetry, can be used to lift the valley degeneracy by means of the optical Stark effect. We demonstrate that this effect is capable of raising the exciton level in monolayer TMD WS2 by as much as 18 meV in a controllable valley-selective manner. The resulting energy shift is extremely large, comparable to the shift that would be obtained using a very high magnetic field (approximately 100 Tesla). These results offer a novel way to control valley degree of freedom, and may provide a means to realize new valley-selective Floquet topological state of matter.

  19. Ferroelectric nanotraps for polar molecules

    NASA Astrophysics Data System (ADS)

    Dutta, Omjyoti; Giedke, G.

    2018-02-01

    We propose and analyze an electrostatic-optical nanoscale trap for cold diatomic polar molecules. The main ingredient of our proposal is a square array of ferroelectric nanorods with alternating polarization. We show that, in contrast to electrostatic traps using the linear Stark effect, a quadratic Stark potential supports long-lived trapped states. The molecules are kept at a fixed height from the nanorods by a standing-wave optical dipole trap. For the molecules and materials considered, we find nanotraps with trap frequency up to 1 MHz, ground-state width ˜20 nm with lattice periodicity of ˜200 nm . Analyzing the loss mechanisms due to nonadiabaticity, surface-induced radiative transitions, and laser-induced transitions, we show the existence of trapped states with lifetime ˜1 s , competitive with current traps created via optical mechanisms. As an application we extend our discussion to a one-dimensional (1D) array of nanotraps to simulate a long-range spin Hamiltonian in our structure.

  20. Stark tuning and electrical charge state control of single divacancies in silicon carbide

    NASA Astrophysics Data System (ADS)

    de las Casas, Charles F.; Christle, David J.; Ul Hassan, Jawad; Ohshima, Takeshi; Son, Nguyen T.; Awschalom, David D.

    2017-12-01

    Neutrally charged divacancies in silicon carbide (SiC) are paramagnetic color centers whose long coherence times and near-telecom operating wavelengths make them promising for scalable quantum communication technologies compatible with existing fiber optic networks. However, local strain inhomogeneity can randomly perturb their optical transition frequencies, which degrades the indistinguishability of photons emitted from separate defects and hinders their coupling to optical cavities. Here, we show that electric fields can be used to tune the optical transition frequencies of single neutral divacancy defects in 4H-SiC over a range of several GHz via the DC Stark effect. The same technique can also control the charge state of the defect on microsecond timescales, which we use to stabilize unstable or non-neutral divacancies into their neutral charge state. Using fluorescence-based charge state detection, we show that both 975 nm and 1130 nm excitation can prepare their neutral charge state with near unity efficiency.

  1. Solid state optical refrigeration using stark manifold resonances in crystals

    DOEpatents

    Seletskiy, Denis V.; Epstein, Richard; Hehlen, Markus P.; Sheik-Bahae, Mansoor

    2017-02-21

    A method and device for cooling electronics is disclosed. The device includes a doped crystal configured to resonate at a Stark manifold resonance capable of cooling the crystal to a temperature of from about 110K to about 170K. The crystal host resonates in response to input from an excitation laser tuned to exploit the Stark manifold resonance corresponding to the cooling of the crystal.

  2. Perspective and potential of smart optical materials

    NASA Astrophysics Data System (ADS)

    Choi, Sang H.; Duzik, Adam J.; Kim, Hyun-Jung; Park, Yeonjoon; Kim, Jaehwan; Ko, Hyun-U.; Kim, Hyun-Chan; Yun, Sungryul; Kyung, Ki-Uk

    2017-09-01

    The increasing requirements of hyperspectral imaging optics, electro/photo-chromic materials, negative refractive index metamaterial optics, and miniaturized optical components from micro-scale to quantum-scale optics have all contributed to new features and advancements in optics technology. Development of multifunctional capable optics has pushed the boundaries of optics into new fields that require new disciplines and materials to maximize the potential benefits. The purpose of this study is to understand and show the fundamental materials and fabrication technology for field-controlled spectrally active optics (referred to as smart optics) that are essential for future industrial, scientific, military, and space applications, such as membrane optics, filters, windows for sensors and probes, telescopes, spectroscopes, cameras, light valves, light switches, and flat-panel displays. The proposed smart optics are based on the Stark and Zeeman effects in materials tailored with quantum dot arrays and thin films made from readily polarizable materials via ferroelectricity or ferromagnetism. Bound excitonic states of organic crystals are also capable of optical adaptability, tunability, and reconfigurability. To show the benefits of smart optics, this paper reviews spectral characteristics of smart optical materials and device technology. Experiments testing the quantum-confined Stark effect, arising from rare earth element doping effects in semiconductors, and applied electric field effects on spectral and refractive index are discussed. Other bulk and dopant materials were also discovered to have the same aspect of shifts in spectrum and refractive index. Other efforts focus on materials for creating field-controlled spectrally smart active optics on a selected spectral range. Surface plasmon polariton transmission of light through apertures is also discussed, along with potential applications. New breakthroughs in micro scale multiple zone plate optics as a micro convex lens are reviewed, along with the newly discovered pseudo-focal point not predicted with conventional optics modeling. Micron-sized solid state beam scanner chips for laser waveguides are reviewed as well.

  3. Quantum carpets in a one-dimensional tilted optical lattices

    NASA Astrophysics Data System (ADS)

    Parra Murillo, Carlos Alberto; Muã+/-Oz Arias, Manuel Humberto; Madroã+/-Ero, Javier

    A unit filling Bose-Hubbard Hamiltonian embedded in a strong Stark field is studied in the off-resonant regime inhibiting single- and many-particle first-order tunneling resonances. We investigate the occurrence of coherent dipole wavelike propagation along an optical lattice by means of an effective Hamiltonian accounting for second-order tunneling processes. It is shown that dipole wave function evolution in the short-time limit is ballistic and that finite-size effects induce dynamical self-interference patterns known as quantum carpets. We also present the effects of the border right after the first reflection, showing that the wave function diffuses normally with the variance changing linearly in time. This work extends the rich physical phenomenology of tilted one-dimensional lattice systems in a scenario of many interacting quantum particles, the so-called many-body Wannier-Stark system. The authors acknownledge the finantial support of the Universidad del Valle (project CI 7996). C. A. Parra-Murillo greatfully acknowledges the financial support of COLCIENCIAS (Grant 656).

  4. Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites.

    PubMed

    Giovanni, David; Chong, Wee Kiang; Dewi, Herlina Arianita; Thirumal, Krishnamoorthy; Neogi, Ishita; Ramesh, Ramamoorthy; Mhaisalkar, Subodh; Mathews, Nripan; Sum, Tze Chien

    2016-06-01

    Ultrafast spin manipulation for opto-spin logic applications requires material systems that have strong spin-selective light-matter interaction. Conventional inorganic semiconductor nanostructures [for example, epitaxial II to VI quantum dots and III to V multiple quantum wells (MQWs)] are considered forerunners but encounter challenges such as lattice matching and cryogenic cooling requirements. Two-dimensional halide perovskite semiconductors, combining intrinsic tunable MQW structures and large oscillator strengths with facile solution processability, can offer breakthroughs in this area. We demonstrate novel room-temperature, strong ultrafast spin-selective optical Stark effect in solution-processed (C6H4FC2H4NH3)2PbI4 perovskite thin films. Exciton spin states are selectively tuned by ~6.3 meV using circularly polarized optical pulses without any external photonic cavity (that is, corresponding to a Rabi energy of ~55 meV and equivalent to applying a 70 T magnetic field), which is much larger than any conventional system. The facile halide and organic replacement in these perovskites affords control of the dielectric confinement and thus presents a straightforward strategy for tuning light-matter coupling strength.

  5. Tuning the Electronic, Optical, and Magnetic Properties of Monolayer GaSe with a Vertical Electric Field

    NASA Astrophysics Data System (ADS)

    Ke, Congming; Wu, Yaping; Guo, Guang-Yu; Lin, Wei; Wu, Zhiming; Zhou, Changjie; Kang, Junyong

    2018-04-01

    Inspired by two-dimensional material with their unique physical properties and innovative device applications, here we report a design framework on monolayer GaSe, an important member of the two-dimensional material family, in an effort to tune the electronic, optical, and magnetic properties through a vertical electric field. A transition from indirect to direct band gap in monolayer GaSe is found with an electric field of 0.09 V /Å . The giant Stark effect results in a reduction of the band gap with a Stark coefficient of 3.54 Å. Optical and dielectric properties of monolayer GaSe are dependent on the vertical electric field. A large regulation range for polarization E ∥c ^ is found for the static dielectric constant. The optical anisotropy with the dipole transition from E ∥c ^ to E ⊥c ^ is achieved. Induced by the spin-orbit coupling, spin-splitting energy at the valence band maximum increases linearly with the electric field. The effective mass of holes is highly susceptible to the vertical electric field. Switchable spin-polarization features in spin texture of monolayer GaSe are predicted. The tunable electronic, optical, and magnetic properties of monolayer GaSe hold great promise for applications in both the optoelectronic and spintronic devices.

  6. Optical manipulation of valley pseduospin in 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Ye, Ziliang

    Valley polarization associated with the occupancy in the energy degenerate but quantum mechanically distinct valleys in the momentum space closely resembles spin polarization and has been proposed as a pseudospin carrier for future quantum information technologies. Monolayers of transition metal dichalcogenide (TMDC) crystals, with broken inversion symmetry and large spin-orbital coupling, support robust valley polarization and therefore provide an important platform for studying valley-dependent physics. Besides optical excitation and photoluminescence detection, valley polarization has been electrically measured through the valley Hall effect and created through spin injection from ferromagnetic semiconductor contacts. Moreover, the energy degeneracy of the valley degree of freedom has been lifted by the optical Stark effect. Recently, we have demonstrated optical manipulation of valley coherence, i.e., of the valley pseudospin, by the optical Stark effect in monolayer WSe2. Using below-bandgap circularly polarized light, we rotated the valley pseudospin on the femtosecond time scale. Both the direction and speed of the rotation can be optically controlled by tuning the dynamic phase of excitons in opposite valleys. The pseudospin rotation was identified by changes in the polarization of the photoluminescence. In addition, by varying the time delay between the excitation and control pulses, we directly probed the lifetime of the intervalley coherence. Similar rotation levels have also been observed in static magneto-optic experiments. Our work presents an important step towards the full control of the valley degree of freedom in 2D semiconductors. The work was done in collaboration with Dr. Dezheng Sun and Prof. Tony F. Heinz.

  7. Temperature Effects on the Optical Parameters of a Passively Q-Switched Diode-Side Pumped Yb,Er-Laser

    NASA Astrophysics Data System (ADS)

    Bogdanovich, M. V.; Izyneev, A. A.; Lantsov, K. I.; Lepchenkov, K. V.; Ryabtsev, A. G.; Pavlovskii, V. N.; Sadovskii, P. I.; Svitenkov, I. E.; Shchemelev, M. A.

    2018-03-01

    Temperature effects on photoluminescence and absorption spectra of the active medium (LGS-DE erbium phosphate glass) and passive Q-switch (MgAl2O4:Co2+ crystal) of a diode-side pumped Yb,Er-laser are studied. The obtained data are applied to an analysis of the spectral and energetic characteristics of compact erbium emitters. It is established that the dominant generation channel in the temperature range 233-328 K is the optical transition between lower Stark sublevels of Er3+ states 4I13/2 and 4I15/2 (λ = 1532.0-1533.9 nm). A rate-equation system taking into account thermal population of Stark sublevels of states 4I13/2 and 4I15/2 is proposed to describe the experimental temperature dependence of the threshold absorbed power of the pumping radiation. This system and the lasing threshold enable modeling of Yb,Er-emitter output energetic and temporal characteristics.

  8. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    NASA Astrophysics Data System (ADS)

    Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-08-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  9. Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites

    PubMed Central

    Giovanni, David; Chong, Wee Kiang; Dewi, Herlina Arianita; Thirumal, Krishnamoorthy; Neogi, Ishita; Ramesh, Ramamoorthy; Mhaisalkar, Subodh; Mathews, Nripan; Sum, Tze Chien

    2016-01-01

    Ultrafast spin manipulation for opto–spin logic applications requires material systems that have strong spin-selective light-matter interaction. Conventional inorganic semiconductor nanostructures [for example, epitaxial II to VI quantum dots and III to V multiple quantum wells (MQWs)] are considered forerunners but encounter challenges such as lattice matching and cryogenic cooling requirements. Two-dimensional halide perovskite semiconductors, combining intrinsic tunable MQW structures and large oscillator strengths with facile solution processability, can offer breakthroughs in this area. We demonstrate novel room-temperature, strong ultrafast spin-selective optical Stark effect in solution-processed (C6H4FC2H4NH3)2PbI4 perovskite thin films. Exciton spin states are selectively tuned by ~6.3 meV using circularly polarized optical pulses without any external photonic cavity (that is, corresponding to a Rabi energy of ~55 meV and equivalent to applying a 70 T magnetic field), which is much larger than any conventional system. The facile halide and organic replacement in these perovskites affords control of the dielectric confinement and thus presents a straightforward strategy for tuning light-matter coupling strength. PMID:27386583

  10. Terahertz Optical Gain Based on Intersubband Transitions in Optically-Pumped Semiconductor Quantum Wells: Coherent Pumped-Probe Interactions

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Ning, Cun-Zheng

    1999-01-01

    Terahertz optical gain due to intersubband transitions in optically-pumped semiconductor quantum wells (QW's) is calculated nonperturbatively. We solve the pump- field-induced nonequilibrium distribution function for each subband of the QW system from a set of rate equations that include both intrasubband and intersubband relaxation processes. The gain arising from population inversion and stimulated Raman processes is calculated in a unified manner. We show that the coherent pump and signal wave interactions contribute significantly to the THz gain. Because of the optical Stark effect and pump-induced population redistribution, optical gain saturation at larger pump intensities is predicted.

  11. New nonlinear optical effect: self-reflection phenomenon due to exciton-biexciton-light interaction in semiconductors

    NASA Astrophysics Data System (ADS)

    Khadzhi, P. I.; Lyakhomskaya, K. D.; Nadkin, L. Y.; Markov, D. A.

    2002-05-01

    The characteristic peculiarities of the self-reflection of a strong electromagnetic wave in a system of coherent excitons and biexcitons due to the exciton-photon interaction and optical exciton-biexciton conversion in semiconductors were investigated as one of the manifestations of nonlinear optical Stark-effect. It was found that a monotonously decreasing standing wave with an exponential decreasing spatial tail is formed in the semiconductor. Under the action of the field of a strong pulse, an optically homogeneous medium is converted, into the medium with distributed feedback. The appearance of the spatially separated narrow pears of the reflective index, extinction and reflection coefficients is predicted.

  12. Spin-Based Lattice-Gas Quantum Computers in Solids Using Optical Addressing

    DTIC Science & Technology

    2007-04-30

    excitation spectra recorded while changing step wise the applied electric field from zero to 0.3 MVm 1. The resulting spectral trails give an overview of...optics (Wiley, New York, 1984). 24 to a few MVm ’, the Stark shift of the optical resonance is well fitted by linear and quadratic dependences, Av= aF+bF2...effect with a = - 6.3 GHz/ MVm n which corresponds to Ag = 1.3 D (I Debye = 3.33 1030 Cm). This value is very similar to values found in other cases

  13. Fast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate.

    PubMed

    Yan, Leilei; Zhang, Jian-Qi; Zhang, Shuo; Feng, Mang

    2015-10-12

    The efficient cooling of nanomechanical resonators is essential to exploration of quantum properties of the macroscopic or mesoscopic systems. We propose such a laser-cooling scheme for a nanomechanical cantilever, which works even for the low-frequency mechanical mode and under weak cooling lasers. The cantilever is coupled by a diamond nitrogen-vacancy center under a strong magnetic field gradient and the cooling is assisted by a dynamical Stark-shift gate. Our scheme can effectively enhance the desired cooling efficiency by avoiding the off-resonant and undesired carrier transitions, and thereby cool the cantilever down to the vicinity of the vibrational ground state in a fast fashion.

  14. Fast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate

    PubMed Central

    Yan, Leilei; Zhang, Jian-Qi; Zhang, Shuo; Feng, Mang

    2015-01-01

    The efficient cooling of nanomechanical resonators is essential to exploration of quantum properties of the macroscopic or mesoscopic systems. We propose such a laser-cooling scheme for a nanomechanical cantilever, which works even for the low-frequency mechanical mode and under weak cooling lasers. The cantilever is coupled by a diamond nitrogen-vacancy center under a strong magnetic field gradient and the cooling is assisted by a dynamical Stark-shift gate. Our scheme can effectively enhance the desired cooling efficiency by avoiding the off-resonant and undesired carrier transitions, and thereby cool the cantilever down to the vicinity of the vibrational ground state in a fast fashion. PMID:26455901

  15. The EIT- and N- joint resonance lineshape asymmetry

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Hancox, Cindy; Hohensee, Michael; Phillips, David; Walsworth, Ron

    2008-03-01

    The solution of a quantum optics model for the joint EIT- and N- resonance explains the experimentally observed two-photon lineshape asymmetry as arising from interference and AC stark effects. This solution is evaluated for various light field intensities, detunings and couplings associated with experiments performed on the D1 and D2 transition of 87Rb. Because of its contribution to clock instability, lineshape asymmetry remains perhaps the main impediment to improving all-optical time standards based on the joint resonance.

  16. A controlled ac Stark echo for quantum memories.

    PubMed

    Ham, Byoung S

    2017-08-09

    A quantum memory protocol of controlled ac Stark echoes (CASE) based on a double rephasing photon echo scheme via controlled Rabi flopping is proposed. The double rephasing scheme of photon echoes inherently satisfies the no-population inversion requirement for quantum memories, but the resultant absorptive echo remains a fundamental problem. Herein, it is reported that the first echo in the double rephasing scheme can be dynamically controlled so that it does not affect the second echo, which is accomplished by using unbalanced ac Stark shifts. Then, the second echo is coherently controlled to be emissive via controlled coherence conversion. Finally a near perfect ultralong CASE is presented using a backward echo scheme. Compared with other methods such as dc Stark echoes, the present protocol is all-optical with advantages of wavelength-selective dynamic control of quantum processing for erasing, buffering, and channel multiplexing.

  17. Multiple Temperature-Sensing Behavior of Green and Red Upconversion Emissions from Stark Sublevels of Er³⁺.

    PubMed

    Cao, Baosheng; Wu, Jinlei; Wang, Xuehan; He, Yangyang; Feng, Zhiqing; Dong, Bin

    2015-12-10

    Upconversion luminescence properties from the emissions of Stark sublevels of Er(3+) were investigated in Er(3+)-Yb(3+)-Mo(6+)-codoped TiO₂ phosphors in this study. According to the energy levels split from Er(3+), green and red emissions from the transitions of four coupled energy levels, ²H11/2(I)/²H11/2(II), ⁴S3/2(I)/⁴S3/2(II), ⁴F9/2(I)/⁴F9/2(II), and ²H11/2(I) + ²H11/2(II)/⁴S3/2(I) + ⁴S3/2(II), were observed under 976 nm laser diode excitation. By utilizing the fluorescence intensity ratio (FIR) technique, temperature-dependent upconversion emissions from these four coupled energy levels were analyzed at length. The optical temperature-sensing behaviors of sensing sensitivity, measurement error, and operating temperature for the four coupled energy levels are discussed, all of which are closely related to the energy gap of the coupled energy levels, FIR value, and luminescence intensity. Experimental results suggest that Er(3+)-Yb(3+)-Mo(6+)-codoped TiO₂ phosphor with four pairs of energy levels coupled by Stark sublevels provides a new and effective route to realize multiple optical temperature-sensing through a wide range of temperatures in an independent system.

  18. Direct measurements of safety factor profiles with motional Stark effect for KSTAR tokamak discharges with internal transport barriers

    NASA Astrophysics Data System (ADS)

    Ko, J.; Chung, J.

    2017-06-01

    The safety factor profile evolutions have been measured from the plasma discharges with the external current drive mechanism such as the multi-ion-source neutral beam injection for the Korea Superconducting Tokamak Advanced Research (KSTAR) for the first time. This measurement has been possible by the newly installed motional Stark effect (MSE) diagnostic system that utilizes the polarized Balmer-alpha emission from the energetic neutral deuterium atoms induced by the Stark effect under the Lorentz electric field. The 25-channel KSTAR MSE diagnostic is based on the conventional photoelastic modulator approach with the spatial and temporal resolutions less than 2 cm (for the most of the channels except 2 to 3 channels inside the magnetic axis) and about 10 ms, respectively. The strong Faraday rotation imposed on the optical elements in the diagnostic system is calibrated out from a separate and well-designed polarization measurement procedure using an in-vessel reference polarizer during the toroidal-field ramp-up phase before the plasma experiment starts. The combination of the non-inductive current drive during the ramp-up and shape control enables the formation of the internal transport barrier where the pitch angle profiles indicate flat or slightly hollow profiles in the safety factor.

  19. Electro-optical resonance modulation of vertical-cavity surface-emitting lasers.

    PubMed

    Germann, Tim David; Hofmann, Werner; Nadtochiy, Alexey M; Schulze, Jan-Hindrik; Mutig, Alex; Strittmatter, André; Bimberg, Dieter

    2012-02-27

    Optical and electrical investigations of vertical-cavity surface-emitting lasers (VCSEL) with a monolithically integrated electro-optical modulator (EOM) allow for a detailed physical understanding of this complex compound cavity laser system. The EOM VCSEL light output is investigated to identify optimal working points. An electro-optic resonance feature triggered by the quantum confined Stark effect is used to modulate individual VCSEL modes by more than 20 dB with an extremely small EOM voltage change of less than 100 mV. Spectral mode analysis reveals modulation of higher order modes and very low wavelength chirp of < 0.5 nm. Dynamic experiments and simulation predict an intrinsic bandwidth of the EOM VCSEL exceeding 50 GHz.

  20. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klepper, C Christopher; Martin, Elijah H; Isler, Ralph C

    2014-01-01

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (> 1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma,more » in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.« less

  1. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klepper, C. C., E-mail: kleppercc@ornl.gov; Isler, R. C.; Biewer, T. M.

    2014-11-15

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (>∼1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, inmore » front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.« less

  2. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields (invited).

    PubMed

    Klepper, C C; Martin, E H; Isler, R C; Colas, L; Goniche, M; Hillairet, J; Panayotis, S; Pegourié, B; Jacquot, J; Lotte, Ph; Colledani, G; Biewer, T M; Caughman, J B; Ekedahl, A; Green, D L; Harris, J H; Hillis, D L; Shannon, S C; Litaudon, X

    2014-11-01

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (>∼1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.

  3. Self-compensation of thermal lens in high-power diode pumped solid-state lasers

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Jun

    2010-02-01

    We present a comprehensive model to describe the optic-thermal coupling in the diode pumped solid-state lasers (DPSSL). The thermal transition of particles at the upper laser level leads the heat-generation of laser crystals to depend on shape of the laser beam, while the laser field is also influenced by the temperature because of the thermal excitation of doped particles among various Stark levels. These effects, together with the usual thermal-optic effect that induces a fluctuation of the refraction index by an inhomogeneous temperature distribution, cause a complicated coupling between the laser field and the temperature field. We show that the optic-thermal coupling plays an important role in high-power DPSSL with larger size beam. That effect may yield a self-compensation for the thermal lens and improve the beam quality.

  4. Comprehensive analysis of the optical Kerr coefficient of graphene

    DOE PAGES

    Soh, Daniel B. S.; Hamerly, Ryan; Mabuchi, Hideo

    2016-08-25

    We present a comprehensive analysis of the nonlinear optical Kerr effect in graphene. We directly solve the S-matrix element to calculate the absorption rate, utilizing the Volkov-Keldysh-type crystal wave functions. We then convert to the nonlinear refractive index coefficients through the Kramers-Kronig relation. In this formalism, the source of Kerr nonlinearity is the interplay of optical fields that cooperatively drive the transition from valence to conduction band. This formalism makes it possible to identify and compute the rates of distinct nonlinear processes that contribute to the Kerr nonlinear refractive index coefficient. The four identified mechanisms are two-photon absorption, Raman transition,more » self-coupling, and quadratic ac Stark effect. As a result, we present a comparison of our theory with recent experimental and theoretical results.« less

  5. Coherent Addressing of Individual Neutral Atoms in a 3D Optical Lattice.

    PubMed

    Wang, Yang; Zhang, Xianli; Corcovilos, Theodore A; Kumar, Aishwarya; Weiss, David S

    2015-07-24

    We demonstrate arbitrary coherent addressing of individual neutral atoms in a 5×5×5 array formed by an optical lattice. Addressing is accomplished using rapidly reconfigurable crossed laser beams to selectively ac Stark shift target atoms, so that only target atoms are resonant with state-changing microwaves. The effect of these targeted single qubit gates on the quantum information stored in nontargeted atoms is smaller than 3×10^{-3} in state fidelity. This is an important step along the path of converting the scalability promise of neutral atoms into reality.

  6. Atomic states in optical traps near a planar surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messina, Riccardo; Pelisson, Sophie; Angonin, Marie-Christine

    2011-05-15

    In this paper, we discuss the atomic states in a vertical optical lattice in proximity of a surface. We study the modifications to the ordinary Wannier-Stark states in the presence of a surface, and we characterize the energy shifts produced by the Casimir-Polder interaction between atom and mirror. In this context, we introduce an effective model describing the finite size of the atom in order to regularize the energy corrections. In addition, the modifications to the energy levels due to a hypothetical non-Newtonian gravitational potential as well as their experimental observability are investigated.

  7. Ultrasensitive Laser Spectroscopy in Solids: Statistical Fine Structure and Single-Molecule Detection

    DTIC Science & Technology

    1990-03-28

    observation, detection of the optical absorption of a single pentacene molecule in a p-terphenyl crystal, opens the door to new studies of single local ...produce appreciable quadratic Stark shifting. Such effects would greatly perturb the local field around the pentacene molecule, making detection of the...of the local surroundings of pentacene molecules with single injected charge carriers nearby may become an interesting field; however, for the

  8. Definition of Shifts of Optical Transitions Frequencies due to Pulse Perturbation Action by the Photon Echo Signal Form

    NASA Astrophysics Data System (ADS)

    Lisin, V. N.; Shegeda, A. M.; Samartsev, V. V.

    2015-09-01

    A relative phase shift between the different groups of excited dipoles, which appears as result of its frequency splitting due to action of a pulse of electric or magnetic fields, depends on a time, if the pulse overlaps in time with echo-pulse. As а consequence, the echo waveform is changed. The echo time form is modulated. The inverse modulation period well enough approximates Zeeman and pseudo-Stark splitting in the cases of magnetic and, therefore, electrical fields. Thus the g-factors of ground 4I15/2 and excited 4F9/2 optical states of Er3+ ion in LuLiF4 and YLiF4 have been measured and pseudo-Stark shift of R1 line in ruby has been determined.

  9. Controlled exciton transfer between quantum dots with acoustic phonons taken into account

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovinski, P. A., E-mail: golovinski@bk.ru

    2015-09-15

    A system of excitons in two quantum dots coupled by the dipole–dipole interaction is investigated. The excitation transfer process controlled by the optical Stark effect at nonresonant frequencies is considered and the effect of the interaction between excitons and acoustic phonons in a medium on this process is taken into account. The system evolution is described using quantum Heisenberg equations. A truncated set of equations is obtained and the transfer dynamics is numerically simulated. High-efficiency picosecond switching of the excitation transfer by a laser pulse with a rectangular envelope is demonstrated. The dependence of picosecond switching on the quantum-dot parametersmore » and optical-pulse length is presented.« less

  10. Semimetallization of dielectrics in strong optical fields

    PubMed Central

    Kwon, Ojoon; Paasch-Colberg, Tim; Apalkov, Vadym; Kim, Bum-Kyu; Kim, Ju-Jin; Stockman, Mark I.; Kim, D.

    2016-01-01

    At the heart of ever growing demands for faster signal processing is ultrafast charge transport and control by electromagnetic fields in semiconductors. Intense optical fields have opened fascinating avenues for new phenomena and applications in solids. Because the period of optical fields is on the order of a femtosecond, the current switching and its control by an optical field may pave a way to petahertz optoelectronic devices. Lately, a reversible semimetallization in fused silica on a femtosecond time scale by using a few-cycle strong field (~1 V/Å) is manifested. The strong Wannier-Stark localization and Zener-type tunneling were expected to drive this ultrafast semimetallization. Wider spread of this technology demands better understanding of whether the strong field behavior is universally similar for different dielectrics. Here we employ a carrier-envelope-phase stabilized, few-cycle strong optical field to drive the semimetallization in sapphire, calcium fluoride and quartz and to compare this phenomenon and show its remarkable similarity between them. The similarity in response of these materials, despite the distinguishable differences in their physical properties, suggests the universality of the physical picture explained by the localization of Wannier-Stark states. Our results may blaze a trail to PHz-rate optoelectronics. PMID:26888147

  11. Semimetallization of dielectrics in strong optical fields

    DOE PAGES

    Kwon, Ojoon; Paasch-Colberg, Tim; Apalkov, Vadym; ...

    2016-02-18

    At the heart of ever growing demands for faster signal processing is ultrafast charge transport and control by electromagnetic fields in semiconductors. Intense optical fields have opened fascinating avenues for new phenomena and applications in solids. Because the period of optical fields is on the order of a femtosecond, the current switching and its control by an optical field may pave a way to petahertz optoelectronic devices. Lately, a reversible semimetallization in fused silica on a femtosecond time scale by using a few-cycle strong field (~1 V/Å) is manifested. The strong Wannier-Stark localization and Zener-type tunneling were expected to drivemore » this ultrafast semimetallization. Wider spread of this technology demands better understanding of whether the strong field behavior is universally similar for different dielectrics. Here we employ a carrier-envelope-phase stabilized, few-cycle strong optical field to drive the semimetallization in sapphire, calcium fluoride and quartz and to compare this phenomenon and show its remarkable similarity between them. The similarity in response of these materials, despite the distinguishable differences in their physical properties, suggests the universality of the physical picture explained by the localization of Wannier-Stark states. Lastly, our results may blaze a trail to PHz-rate optoelectronics.« less

  12. Semimetallization of dielectrics in strong optical fields.

    PubMed

    Kwon, Ojoon; Paasch-Colberg, Tim; Apalkov, Vadym; Kim, Bum-Kyu; Kim, Ju-Jin; Stockman, Mark I; Kim, D

    2016-02-18

    At the heart of ever growing demands for faster signal processing is ultrafast charge transport and control by electromagnetic fields in semiconductors. Intense optical fields have opened fascinating avenues for new phenomena and applications in solids. Because the period of optical fields is on the order of a femtosecond, the current switching and its control by an optical field may pave a way to petahertz optoelectronic devices. Lately, a reversible semimetallization in fused silica on a femtosecond time scale by using a few-cycle strong field (~1 V/Å) is manifested. The strong Wannier-Stark localization and Zener-type tunneling were expected to drive this ultrafast semimetallization. Wider spread of this technology demands better understanding of whether the strong field behavior is universally similar for different dielectrics. Here we employ a carrier-envelope-phase stabilized, few-cycle strong optical field to drive the semimetallization in sapphire, calcium fluoride and quartz and to compare this phenomenon and show its remarkable similarity between them. The similarity in response of these materials, despite the distinguishable differences in their physical properties, suggests the universality of the physical picture explained by the localization of Wannier-Stark states. Our results may blaze a trail to PHz-rate optoelectronics.

  13. Far infrared maser communications technology

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Pao, Y. H.

    1975-01-01

    An optically pumped FIR laser was constructed and tested. Optimum operating conditions were determined with CH3OH as the lasing medium. The laser was found to operate equally well with flowing gas or in a sealed off configuration. The FIR cavity stability and pump laser stability were found to have significant problems. The absorption coefficient per unit pressure of 1-1 difluoroethylene at the P(22) and P(24) lines of the 10.4 micron CO2 band was measured. The FIR line pumped by P(22) occurs at approximately 890 microns, which may be in an atmospheric transmission window. It was found that significant Stark tuning of absorption lines of methanol and 1-1 difluoroethylene can be accomplished, even at the usual 100 to 300 mTorr operating pressures of FIR lasers. This means that the use of Stark tuning may enable more effective use of pump laser output.

  14. Effects of the Stark Shift on the Evolution of the Field Entropy and Entanglement in the Two-Photon Jaynes-Cummings Model

    NASA Technical Reports Server (NTRS)

    Fang, Mao Fa

    1996-01-01

    The evolution of the field entropy in the two-photon JCM in the presence of the Stark shift is investigated, and the effects of the dynamic Stark shift on the evolution of the field entropy and entanglement between the atom and field, are examined. The results show that the dynamic Stark shift plays an important role in the evolution of the field entropy in two-photon processes.

  15. Low-frequency, self-sustained oscillations in inductively coupled plasmas used for optical pumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffer, J.; Encalada, N.; Huang, M.

    We have investigated very low frequency, on the order of one hertz, self-pulsing in alkali-metal inductively-coupled plasmas (i.e., rf-discharge lamps). This self-pulsing has the potential to significantly vary signal-to-noise ratios and (via the ac-Stark shift) resonant frequencies in optically pumped atomic clocks and magnetometers (e.g., the atomic clocks now flying on GPS and Galileo global navigation system satellites). The phenomenon arises from a nonlinear interaction between the atomic physics of radiation trapping and the plasma's electrical nature. To explain the effect, we have developed an evaporation/condensation theory (EC theory) of the self-pulsing phenomenon.

  16. Valley- and spin-polarized oscillatory magneto-optical absorption in monolayer MoS2 quantum rings

    NASA Astrophysics Data System (ADS)

    Oliveira, D.; Villegas-Lelovsky, L.; Soler, M. A. G.; Qu, Fanyao

    2018-03-01

    Besides optical valley selectivity, strong spin-orbit interaction along with Berry curvature effects also leads to unconventional valley- and spin-polarized Landau levels in monolayer transition metal dichalcogenides (TMDCs) under a perpendicular magnetic field. We find that these unique properties are inherited to the magneto-optical absorption spectrum of the TMDC quantum rings (QRs). In addition, it is robust against variation of the magnetic flux and of the QR geometry. In stark contrast to the monolayer bulk material, the MoS2 QRs manifest themselves in both the optical valley selectivity and unprecedented size tunability of the frequency of the light absorbed. We also find that when the magnetic field setup is changed, the phase transition from Aharonov-Bohm (AB) quantum interference to aperiodic oscillation of magneto-optical absorption spectrum takes place. The exciton spectrum in a realistic finite thickness MoS2 QR is also discussed.

  17. An analysis of the rotational, fine and hyperfine effects in the (0, 0) band of the A7Π- X7Σ + transition of manganese monohydride, MnH

    NASA Astrophysics Data System (ADS)

    Gengler, Jamie J.; Steimle, Timothy C.; Harrison, Jeremy J.; Brown, John M.

    2007-02-01

    High-resolution (±0.003 cm -1), laser induced fluorescence (LIF) spectra of a supersonic molecular beam sample of manganese monohydride, MnH, have been recorded in the 17500-17800 cm -1 region of the (0, 0) band of the A7Π- X7Σ + system. The low- N branch features were modeled successfully by inclusion of the magnetic hyperfine mixings of spin components within a given low- N rotational level using a traditional 'effective' Hamiltonian approach. An improved set of spectroscopic constants has been extracted and compared with those from previous analyses. The optimum optical features for future optical Stark and Zeeman measurements are identified.

  18. Wannier-Stark localization of a strongly coupled asymmetric double-well GaAs/AlAs superlattice

    NASA Astrophysics Data System (ADS)

    Kawashima, Kenji; Matsumoto, Takeshi; Arima, Kiyotoku; Ohsumi, Takahiro; Nogami, Takamitsu; Satoh, Kazuo; Fujiwara, Kenzo

    2000-06-01

    A novel new type of superlattice (SL) structure which consists of strongly coupled asymmetric double-well (ADW) in one period have been investigated to introduce a new degree of freedom for the device funtionality. The GaAs/A1As ADS-SL contained in a p-i-n diode structure was grown by molecular beam epitaxy, and the electroabsorption properties were measured by low temperature photocurrent spectroscopy. It is found that the introduction of the confinement potential asymmetry with respect to electric field will lead to the selectivity of spatially indirect Stark-ladder transitions associated with two different types of the localized hole states, thus providing a new way of modulating the oscillator strengths. Assignment of the possible optical transitions from the miniband to the Stark-ladder regimes as a function of field strength is elucidated in detail by transfer matrix calculations.

  19. Strong optical field ionisation of solids

    NASA Astrophysics Data System (ADS)

    McDonald, C. R.; Ben Taher, A.; Brabec, T.

    2017-11-01

    Population transfer from the valence to conduction band in the presence of an intense laser field is explored theoretically in semiconductors and dielectrics. Experiments performed on dielectrics exposed to an intense laser field have divulged a population dynamics between valence and conduction band that differs from that observed in semiconductors. Our paper explores two aspects of ionisation in solids. (i) Contemporary ionisation theories do not take account of the coupling between the valence and conduction bands resulting in the absence the dynamic Stark shift. Our single-particle analysis identifies the absence of the dynamic Stark shift as a possible cause for the contrasting ionisation behaviours observed in dielectric and semiconductor materials. The dynamic Stark shift results in an increased bandgap as the laser intensity is increased. This suppresses ionisation to an extent where the main population dynamics results from virtual oscillations in the conduction band population. The dynamic Stark shift mainly affects larger bandgap materials which can be exposed to decidedly higher laser intensities. (ii) In the presence of laser dressed virtual population of the conduction band, elastic collisions potentially transmute virtual into real population resulting in ionisation. This process is explored in the context of the relaxation time approximation.

  20. On the Stark effect in open shell complexes exhibiting partially quenched electronic angular momentum: Infrared laser Stark spectroscopy of OH–C 2H 2, OH–C 2H 4, and OH–H 2O

    DOE PAGES

    Moradi, Christopher P.; Douberly, Gary E.

    2015-06-22

    The Stark effect is considered for polyatomic open shell complexes that exhibit partially quenched electronic angular momentum. Matrix elements of the Stark Hamiltonian represented in a parity conserving Hund's case (a) basis are derived for the most general case, in which the permanent dipole moment has projections on all three inertial axes of the system. Transition intensities are derived, again for the most general case, in which the laser polarization has projections onto axes parallel and perpendicular to the Stark electric field, and the transition dipole moment vector is projected onto all three inertial axes in the molecular frame. Asmore » a result, simulations derived from this model are compared to experimental rovibrational Stark spectra of OH-C 2H 2, OH-C 2H 4, and OH-H 2O complexes formed in helium nanodroplets.« less

  1. Entanglement analysis of a two-atom nonlinear Jaynes-Cummings model with nondegenerate two-photon transition, Kerr nonlinearity, and two-mode Stark shift

    NASA Astrophysics Data System (ADS)

    Baghshahi, H. R.; Tavassoly, M. K.; Faghihi, M. J.

    2014-12-01

    An entangled state, as an essential tool in quantum information processing, may be generated through the interaction between light and matter in cavity quantum electrodynamics. In this paper, we study the interaction between two two-level atoms and a two-mode field in an optical cavity enclosed by a medium with Kerr nonlinearity in the presence of a detuning parameter and Stark effect. It is assumed that the atom-field coupling and third-order susceptibility of the Kerr medium depend on the intensity of the light. In order to investigate the dynamics of the introduced system, we obtain the exact analytical form of the state vector of the considered atom-field system under initial conditions which may be prepared for the atoms (in a coherent superposition of their ground and upper states) and the fields (in a standard coherent state). Then, in order to evaluate the degree of entanglement between the subsystems, we investigate the dynamics of the entanglement by employing the entanglement of formation. Finally, we analyze in detail the influences of the Stark shift, the deformed Kerr medium, the intensity-dependent coupling, and also the detuning parameter on the behavior of this measure for different subsystems. The numerical results show that the amount of entanglement between the different subsystems can be controlled by choosing the evolved parameters appropriately.

  2. Optical absorption and emission bands of Tm 3+ ions in calcium niobium gallium garnet crystal

    NASA Astrophysics Data System (ADS)

    Tsuboi, Taiju; Tanigawa, Masayuki; Shimamura, Kiyoshi

    2000-12-01

    Absorption spectra of Tm 3+ ions in Ca 3Nb 1.6875Ga 3.1875O 12 (CNGG) crystal have been investigated at various temperatures between 15 and 296 K. Luminescence spectra in a spectral region of 400-1750 nm are investigated under excitation into various excited states of Tm 3+ and the conduction band of CNGG at room temperature. The absorption and emission bands of Tm 3+ in CNGG are observed to be broader than those observed in other Tm 3+-doped crystals such as LiNbO 3. This is due to the disordered structure of CNGG. From the temperature dependence of absorption spectra, five Stark levels are derived for the 3H 6 ground state. The highest Stark level is found to be 351 cm -1 above the ground level. It is suggested that the low efficiency of the 2.02 μm lasing at room temperature is due to the narrow splitting of the Stark levels.

  3. Control of photodissociation and photoionization of the NaI molecule by dynamic Stark effect.

    PubMed

    Han, Yong-Chang; Yuan, Kai-Jun; Hu, Wen-Hui; Cong, Shu-Lin

    2009-01-28

    The diabatic photodissociation and photoionization processes of the NaI molecule are studied theoretically using the quantum wave packet method. A pump laser pulse is used to prepare a dissociation wave packet that propagates through both the ionic channel (NaI-->Na(+)+I(-)) and the covalent channel (NaI-->Na+I). A Stark pulse is used to control the diabatic dissociation dynamics and a probe pulse is employed to ionize the products from the two channels. Based on the first order nonresonant nonperturbative dynamic Stark effect, the dissociation probabilities and the branching ratio of the products from the two channels can be controlled. Moreover the final photoelectron kinetic energy distribution can also be affected by the Stark pulse. The influences of the delay time, intensity, frequency, and carrier-envelope phase of the Stark pulse on the dissociation and ionization dynamics of the NaI molecule are discussed in detail.

  4. Utilizing the dynamic stark shift as a probe for dielectric relaxation in photosynthetic reaction centers during charge separation.

    PubMed

    Guo, Zhi; Lin, Su; Woodbury, Neal W

    2013-09-26

    In photosynthetic reaction centers, the electric field generated by light-induced charge separation produces electrochromic shifts in the transitions of reaction center pigments. The extent of this Stark shift indirectly reflects the effective field strength at a particular cofactor in the complex. The dynamics of the effective field strength near the two monomeric bacteriochlorophylls (BA and BB) in purple photosynthetic bacterial reaction centers has been explored near physiological temperature by monitoring the time-dependent Stark shift during charge separation (dynamic Stark shift). This dynamic Stark shift was determined through analysis of femtosecond time-resolved absorbance change spectra recorded in wild type reaction centers and in four mutants at position M210. In both wild type and the mutants, the kinetics of the dynamic Stark shift differ from those of electron transfer, though not in the same way. In wild type, the initial electron transfer and the increase in the effective field strength near the active-side monomer bacteriochlorophyll (BA) occur in synchrony, but the two signals diverge on the time scale of electron transfer to the quinone. In contrast, when tyrosine is replaced by aspartic acid at M210, the kinetics of the BA Stark shift and the initial electron transfer differ, but transfer to the quinone coincides with the decay of the Stark shift. This is interpreted in terms of differences in the dynamics of the local dielectric environment between the mutants and the wild type. In wild type, comparison of the Stark shifts associated with BA and BB on the two quasi-symmetric halves of the reaction center structure confirm that the effective dielectric constants near these cofactors are quite different when the reaction center is in the state P(+)QA(-), as previously determined by Steffen et al. at 1.5 K (Steffen, M. A.; et al. Science 1994, 264, 810-816). However, it is not possible to determine from static, low-temperature measurments if the difference in the effective dielectric constant between the two sides of the reaction center is manifest on the time scale of initial electron transfer. By comparing directly the Stark shift dynamics of the ground-state spectra of the two monomer bacteriochlorophylls, it is evident that there is, in fact, a large dielectric difference between protein environments of the two quasi-symmetric electron-transfer branches on the time scale of initial electron transfer and that the effective dielectric constant in the region continues to evolve on a time scale of hundreds of picoseconds.

  5. Interplay of Bias-Driven Charging and the Vibrational Stark Effect in Molecular Junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yajing; Zolotavin, Pavlo; Doak, Peter

    We observe large, reversible, bias driven changes in the vibrational energies of PCBM based on simultaneous transport and surface-enhanced Raman spectroscopy (SERS) measurements on PCBM-gold junctions. A combination of linear and quadratic shifts in vibrational energies with voltage is analyzed and compared with similar measurements involving C-60-gold junctions. A theoretical model based on density functional theory (DFT) calculations suggests that both a vibrational Stark effect and bias-induced charging of the junction contribute to the shifts in vibrational energies. In the PCBM case, a linear vibrational Stark effect is observed due to the permanent electric dipole moment of PCBM. The vibrationalmore » Stark shifts shown here for PCBM junctions are comparable to or larger than the charging effects that dominate in C-60 junctions.« less

  6. Interplay of Bias-Driven Charging and the Vibrational Stark Effect in Molecular Junctions

    DOE PAGES

    Li, Yajing; Zolotavin, Pavlo; Doak, Peter; ...

    2016-01-27

    We observe large, reversible, bias driven changes in the vibrational energies of PCBM based on simultaneous transport and surface-enhanced Raman spectroscopy (SERS) measurements on PCBM-gold junctions. A combination of linear and quadratic shifts in vibrational energies with voltage is analyzed and compared with similar measurements involving C-60-gold junctions. A theoretical model based on density functional theory (DFT) calculations suggests that both a vibrational Stark effect and bias-induced charging of the junction contribute to the shifts in vibrational energies. In the PCBM case, a linear vibrational Stark effect is observed due to the permanent electric dipole moment of PCBM. The vibrationalmore » Stark shifts shown here for PCBM junctions are comparable to or larger than the charging effects that dominate in C-60 junctions.« less

  7. Electric field tunable electron g factor and high asymmetrical Stark effect in InAs1-xNx quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, X. W.; Fan, W. J.; Li, S. S.; Xia, J. B.

    2007-04-01

    The electronic structure, electron g factor, and Stark effect of InAs1-xNx quantum dots are studied by using the ten-band k •p model. It is found that the g factor can be tuned to be zero by the shape and size of quantum dots, nitrogen (N) doping, and the electric field. The N doping has two effects on the g factor: the direct effect increases the g factor and the indirect effect decreases it. The Stark effect in quantum ellipsoids is high asymmetrical and the asymmetry factor may be 319.

  8. Optically induced excitonic electroabsorption in a periodically delta-doped InGaAs/GaAs multiple quantum well structure

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Maserjian, J.

    1991-01-01

    Large optically induced Stark shifts have been observed in a periodically delta-doped InGaAs/GaAs multiple quantum well structure. With an excitation intensity of 10 mW/sq cm, an absolute quantum well absorption change of 7000/cm was measured with a corresponding differential absorption change as high as 80 percent. The associated maximum change in the quantum well refractive index is 0.04. This material is promising for device development for all-optical computing and signal processing.

  9. The permanent electric dipole moment of chromium monoxide

    NASA Technical Reports Server (NTRS)

    Steimle, Timothy C.; Nachman, David F.; Shirley, Jeffrey E.; Bauschlicher, Charles W.; Langhoff, Stephen R.

    1989-01-01

    The permanent electric dipole moments for the X 5Pi and B 5pi states of gas-phase CrO have been experimentally determined using the sub-Doppler optical technique of intermodulated fluorescence spectroscopy in conjunction with the Stark effect. The measured values are 3.88 + or - 0.13 and 4.1 + or - 1.8 D for the X and B states, respectively. The theoretical values determined for the X state using multireference CI iterative-natural-orbital and finite-field calculations are in excellent agreement with the experimental value.

  10. The stark effect on the spectrum energy of tritium in first excited state with relativistic condition

    NASA Astrophysics Data System (ADS)

    Prastowo, S. H. B.; Supriadi, B.; Bahri, S.; Ridlo, Z. R.

    2018-04-01

    This research discussed about the correction of Stark Effect on Tritium atoms in the first excited state with relativistic conditions. The approach used to solve this Stark Effect correction was the perturbation theory which was from time independent degenerate perturbation theory to second-order correction. The Stark Effect on the excited state made the spectrum energy polarization of Tritium which was included in the isotope of hydrogen with an electron moving around the nucleus with high velocity. Hence, the relativistic correction affected the spectrum energy shift. Tritium was a radioactive material having half-time 12,3 years and relatively safe. The Tritium application was a material for the manufacture of nuclear battery. The most effective external electric field that should give to Tritium was 108 V/mith the total correction energy that was 0,97398557 × 10-21 Joule. Therefore, its effect reduced the binding energy between electron and nucleus, and increased the power of Tritium Betavoltaics Battery.

  11. Pentacyanoiron(II) as an electron donor group for nonlinear optics: medium-responsive properties and comparisons with related pentaammineruthenium(II) complexes.

    PubMed

    Coe, Benjamin J; Harries, Josephine L; Helliwell, Madeleine; Jones, Lathe A; Asselberghs, Inge; Clays, Koen; Brunschwig, Bruce S; Harris, James A; Garín, Javier; Orduna, Jesús

    2006-09-20

    In this article, we describe a series of complex salts in which electron-rich {Fe(II)(CN)(5)}(3)(-) centers are coordinated to pyridyl ligands with electron-accepting N-methyl/aryl-pyridinium substituents. These compounds have been characterized by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Molecular quadratic nonlinear optical (NLO) responses have been determined by using hyper-Rayleigh scattering (HRS) at 1064 nm, and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d --> pi* metal-to-ligand charge-transfer (MLCT) bands. The relatively large static first hyperpolarizabilities, beta(0), increase markedly on moving from aqueous to methanol solutions, accompanied by large red-shifts in the MLCT transitions. Acidification of aqueous solutions allows reversible switching of the linear and NLO properties, as shown via both HRS and Stark experiments. Time-dependent density functional theory and finite field calculations using a polarizable continuum model yield relatively good agreement with the experimental results and confirm the large decrease in beta(0) on protonation. The Stark-derived beta(0) values are generally larger for related {Ru(II)(NH(3))(5)}(2+) complexes than for their {Fe(II)(CN)(5)}(3)(-) analogues, consistent with the HRS data in water. However, the HRS data in methanol show that the stronger solvatochromism of the Fe(II) complexes causes their NLO responses to surpass those of their Ru(II) counterparts upon changing the solvent medium.

  12. Maskless Lithography Using Surface Plasmon Enhanced Illumination

    DTIC Science & Technology

    2007-04-30

    Dale Larson Figure 1. Nanohole array probes exhibiting extraordinary optical transmission of light with a high degree of collimation. Left: a bull’s...Technol. B 22, 3552-3556 (2004). 2. Stark, P., Halleck, A. E. & Larson, D. N. Short order nanohole arrays in metals for highly sensitive probing of local

  13. Direct measurement of the absolute absorption spectrum of individual semiconducting single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Blancon, Jean-Christophe; Paillet, Matthieu; Tran, Huy Nam; Than, Xuan Tinh; Guebrou, Samuel Aberra; Ayari, Anthony; Miguel, Alfonso San; Phan, Ngoc-Minh; Zahab, Ahmed-Azmi; Sauvajol, Jean-Louis; Fatti, Natalia Del; Vallée, Fabrice

    2013-09-01

    The optical properties of single-wall carbon nanotubes are very promising for developing novel opto-electronic components and sensors with applications in many fields. Despite numerous studies performed using photoluminescence or Raman and Rayleigh scattering, knowledge of their optical response is still partial. Here we determine using spatial modulation spectroscopy, over a broad optical spectral range, the spectrum and amplitude of the absorption cross-section of individual semiconducting single-wall carbon nanotubes. These quantitative measurements permit determination of the oscillator strength of the different excitonic resonances and their dependencies on the excitonic transition and type of semiconducting nanotube. A non-resonant background is also identified and its cross-section comparable to the ideal graphene optical absorbance. Furthermore, investigation of the same single-wall nanotube either free standing or lying on a substrate shows large broadening of the excitonic resonances with increase of oscillator strength, as well as stark weakening of polarization-dependent antenna effects, due to nanotube-substrate interaction.

  14. Finding a Single Molecule in a Haystack: Optical Detection and Spectroscopy of Single Absorbers in Solids

    DTIC Science & Technology

    1989-08-18

    CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Single Molecule Detection Pentacene in p...and 10 additional pentacene molecules. This may be accomplished by- a combination of laser FM spectroscopy and either Stark or ultrasonic double...6099 408-927-2426 ABSTRACT: Single-absorber optical spectroscopy in solids is described for the case of finding a single pentacene molecule in a

  15. Study of Stark Effect in n-doped 1.55 μm InN0.92yP1-1.92yBiy/InP MQWs

    NASA Astrophysics Data System (ADS)

    Bilel, C.; Chakir, K.; Rebey, A.; Alrowaili, Z. A.

    2018-05-01

    The effect of an applied electric field on electronic band structure and optical absorption properties of n-doped InN0.92y P1-1.92y Bi y /InP multiple quantum wells (MQWs) was theoretically studied using a self-consistent calculation combined with the 16-band anti-crossing model. The incorporation of N and Bi atoms into an InP host matrix leads to rapid reduction of the band gap energy covering a large infrared range. The optimization of the well parameters, such as the well/barrier widths, N/Bi compositions and doping density, allowed us to obtain InN0.92y P1-1.92y Bi y /InP MQWs operating at the wavelength 1.55 μm. Application of the electric field causes a red-shift of the fundamental transition energy T 1 accompanied by a significant change in the spatial distribution of confined electron density. The Stark effect on the absorption coefficient of n-doped InN0.92y P1-1.92y Bi y /InP MQWs was investigated. The Bi composition of these MQWs was adjusted for each electric field value in order to maintain the wavelength emission at 1.55 μm.

  16. Measurement of type-I edge localized mode pulse propagation in scrape-off layer using optical system of motional Stark effect diagnostics in JT-60U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, T.; Oyama, N.; Asakura, N.

    2010-04-15

    Propagation of plasma ejected by type-I edge localized mode (ELM) has been measured in scrape-off layer (SOL) of the JT-60U tokamak, using optical system of motional Stark effect (MSE) diagnostics as beam emission spectroscopy (BES) diagnostics through a new technique developed. This MSE/BES system measures D{alpha} emission from heating neutral beam excited by collisions with the ejected plasma, as well as background light (e.g., bremsstrahlung). While spatio-temporal change in the beam emission gives information on propagation of the ejected plasma, the background light that is observed simultaneously in all spatial channels veils the information. In order to separate the beammore » emission and the background light, a two-wavelength detector is newly introduced into the MSE/BES system. The detector observes simultaneously at the same spatial point in two distinct wavelengths using two photomultiplier tubes through two interference filters. One of the filters is adjusted to the central wavelength of the beam emission for the MSE diagnostics, and the other is outside the beam emission spectrum. Eliminating the background light, temporal change in the net beam emission in the SOL has been evaluated. Comparing conditionally averaged beam emission with respect to 594 ELMs in a discharge at five spatial channels (0.02-0.3 m outside the main plasma near equatorial plane), radial velocity of the ELM pulse propagation in SOL is evaluated to be 0.8-1.8 km/s ({approx}1.4 km/s for least-mean-squared fitting).« less

  17. Oscillator strength and quantum-confined Stark effect of excitons in a thin PbS quantum disk

    NASA Astrophysics Data System (ADS)

    Oukerroum, A.; El-Yadri, M.; El Aouami, A.; Feddi, E.; Dujardin, F.; Duque, C. A.; Sadoqi, M.; Long, G.

    2018-01-01

    In this paper, we report a study of the effect of a lateral electric field on a quantum-confined exciton in a thin PbS quantum disk. Our approach was performed in the framework of the effective mass theory and adiabatic approximation. The ground state energy and the stark shift were determined by using a variational method with an adequate trial wavefunction, by investigating a 2D oscillator strength under simultaneous consideration of the geometrical confinement and the electric field strength. Our results showed a strong dependence of the exciton binding and the Stark shift on the disk dimensions in both axial and longitudinal directions. On the other hand, our results also showed that the Stark shift’s dependence on the electric field is not purely quadratic but the linear contribution is also important and cannot be neglected, especially when the confinement gets weaker.

  18. Field-Sensitive Materials for Optical Applications

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Little, Mark

    2002-01-01

    The purpose of investigation is to develop the fundamental materials and fabrication technology for field-controlled spectrally active optics that are essential for industry, NASA, and DOD (Department of Defense) applications such as: membrane optics, filters for LIDARs (Light Detection and Ranging), windows for sensors and probes, telescopes, spectroscopes, cameras, light valves, light switches, flat-panel displays, etc. The proposed idea is based on the quantum-dots (QD) array or thin-film of field-sensitive Stark and Zeeman materials and the bound excitonic state of organic crystals that will offer optical adaptability and reconfigurability. Major tasks are the development of concept demonstration article and test data of field-controlled spectrally smart active optics (FCSAO) for optical multi-functional capabilities on a selected spectral range.

  19. Ultracold Nonreactive Molecules in an Optical Lattice: Connecting Chemistry to Many-Body Physics.

    PubMed

    Doçaj, Andris; Wall, Michael L; Mukherjee, Rick; Hazzard, Kaden R A

    2016-04-01

    We derive effective lattice models for ultracold bosonic or fermionic nonreactive molecules (NRMs) in an optical lattice, analogous to the Hubbard model that describes ultracold atoms in a lattice. In stark contrast to the Hubbard model, which is commonly assumed to accurately describe NRMs, we find that the single on-site interaction parameter U is replaced by a multichannel interaction, whose properties we elucidate. Because this arises from complex short-range collisional physics, it requires no dipolar interactions and thus occurs even in the absence of an electric field or for homonuclear molecules. We find a crossover between coherent few-channel models and fully incoherent single-channel models as the lattice depth is increased. We show that the effective model parameters can be determined in lattice modulation experiments, which, consequently, measure molecular collision dynamics with a vastly sharper energy resolution than experiments in a free-space ultracold gas.

  20. Optical properties of a-plane (Al, Ga)N/GaN multiple quantum wells grown on strain engineered Zn1-xMgxO layers by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Brault, J.; Nemoz, M.; Teisseire, M.; Vinter, B.; Leroux, M.; Chauveau, J.-M.

    2011-12-01

    Nonpolar (112¯0) Al0.2Ga0.8N/GaN multiple quantum wells (MQWs) have been grown by molecular beam epitaxy on (112¯0) Zn0.74Mg0.26O templates on r-plane sapphire substrates. The quantum wells exhibit well-resolved photoluminescence peaks in the ultra-violet region, and no sign of quantum confined Stark effect is observed in the complete multiple quantum well series. The results agree well with flat band quantum well calculations. Furthermore, we show that the MQW structures are strongly polarized along the [0001] direction. The origin of the polarization is discussed in terms of the strain anisotropy dependence of the exciton optical oscillator strengths.

  1. Unconventional High-Performance Laser Protection System Based on Dichroic Dye-Doped Cholesteric Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Wanshu; Zhang, Lanying; Liang, Xiao; Le Zhou; Xiao, Jiumei; Yu, Li; Li, Fasheng; Cao, Hui; Li, Kexuan; Yang, Zhou; Yang, Huai

    2017-02-01

    High-performance and cost-effective laser protection system is of crucial importance for the rapid advance of lasers in military and civilian fields leading to severe damages of human eyes and sensitive optical devices. However, it is crucially hindered by the angle-dependent protective effect and the complex preparation process. Here we demonstrate that angle-independence, good processibility, wavelength tunability, high optical density and good visibility can be effectuated simultaneously, by embedding dichroic anthraquinone dyes in a cholesteric liquid crystal matrix. More significantly, unconventional two-dimensional parabolic protection behavior is reported for the first time that in stark contrast to the existing protection systems, the overall parabolic protection behavior enables protective effect to increase with incident angles, hence providing omnibearing high-performance protection. The protective effect is controllable by dye concentration, LC cell thickness and CLC reflection efficiency, and the system can be made flexible enabling applications in flexible and even wearable protection devices. This research creates a promising avenue for the high-performance and cost-effective laser protection, and may foster the development of optical applications such as solar concentrators, car explosion-proof membrane, smart windows and polarizers.

  2. Vibrational Stark Effect to Probe the Electric-Double Layer of the Ionic Liquid-Metal Electrodes

    NASA Astrophysics Data System (ADS)

    Garcia Rey, Natalia; Moore, Alexander Knight; Toyouchi, Shuichi; Dlott, Dana

    2017-06-01

    Vibrational sum frequency generation (VSFG) spectroscopy is used to study the effect of room temperature ionic liquids (RTILs) in situ at the electrical double layer (EDL). RTILs have been recognized as electrolytes without solvent for applications in batteries, supercapacitors and electrodeposition^{1}. The molecular response of the RTIL in the EDL affects the performance of these devices. We use the vibrational Stark effect on CO as a probe to detect the changes in the electric field affected by the RTIL across the EDL on metal electrodes. The Stark effect is a shift in the frequency in response to an externally applied electric field and also influenced by the surrounding electrolyte and electrode^{2}. The CO Stark shift is monitored by the CO-VSFG spectra on Pt or Ag in a range of different imidazolium-based RTILs electrolytes, where their composition is tuned by exchanging the anion, the cation or the imidazolium functional group. We study the free induction decay (FID)^{3} of the CO to monitor how the RTIL structure and composition affect the vibrational relaxation of the CO. Combining the CO vibrational Stark effect and the FID allow us to understand how the RTIL electrochemical response, molecular orientation response and collective relaxation affect the potential drop of the electric field across the EDL, and, in turn, how determines the electrical capacitance or reactivity of the electrolyte/electrode interface. ^{1}Fedorov, M. V.; Kornyshev, A. A., Ionic Liquids at Electrified Interfaces. Chem. Rev. 2014, 114, 2978-3036. ^{2} (a) Lambert, D. K., Vibrational Stark Effect of Adsorbates at Electrochemical Interfaces. Electrochim. Acta 1996, 41, 623-630. (b) Oklejas, V.; Sjostrom, C.; Harris, J. M., SERS Detection of the Vibrational Stark Effect from Nitrile-Terminated SAMs to Probe Electric Fields in the Diffuse Double-Layer. J. Am. Chem. Soc. 2002, 124, 2408-2409. ^{3}Symonds, J. P. R.; Arnolds, H.; Zhang, V. L.; Fukutani, K.; King, D. A.,Broadband Femtosecond Sum-Frequency Spectroscopy of CO on Ru{1010} in the Frequency and Time Domains. J. Chem. Phys. 2004, 120, 7158-7164.

  3. Progress Toward an Neutral Yb Frequency Standard

    NASA Astrophysics Data System (ADS)

    Cramer, Claire; Hong, Tao; Nagourney, Warren; Fortson, Norval

    2004-05-01

    We report recent progress toward a direct observation of the ^1S_0^ -- ^3P0 clock transition at 578 nm in atomic Yb and review the experimental path to an optical frequency standard based on neutral Yb confined in a Stark-free optical lattice. Lamb-Dicke confinement in an optical lattice at the ``magic wavelength'' (λ _M) at which ground and excited state light shifts cancel will free the spectrum from Doppler and recoil shifts, providing an optimal environment for a clock consisting of an ensemble of cold, trapped atoms. In^171Yb the ^3P0 level has a hfs induced lifetime of 21 s. With this isotope in a Stark-free lattice at λ M ng 750 nm, perturbations to the clock energy levels can be held below the mHz level, providing an accuracy of a few parts in 10^18[1]. To observe the clock transition we use a shelving scheme that creates a leak in a MOT on the ^1S_0^ -- ^1P1 transition. A laser resonant with the clock transition drives atoms into the ^3P0 state, in which they can escape the MOT, leading to an observable decrease in MOT fluorescence. [1] S. Porsev and A. Derevianko, to be published in PRA

  4. Iii-V Compound Multiple Quantum Well Based Modulator and Switching Devices.

    NASA Astrophysics Data System (ADS)

    Hong, Songcheol

    A general formalism to study the absorption and photocurrent in multiple quantum well is provided with detailed consideration of quantum confined Stark shift, exciton binding energy, line broadening, tunneling, polarization, and strain effects. Results on variation of exciton size, binding energies and transition energies as a function electric field and well size have been presented. Inhomogeneous line broadening of exciton lines due to interface roughness, alloy disorder and well to well size fluctuation is calculated. The potential of material tailoring by introducing strain for specific optical response is discussed. Theoretical and experimental results on excitonic and band-to-band absorption spectra in strained multi-quantum well structures are shown. I also report on polarization dependent optical absorption for excitonic and interband transitions in lattice matched and strained multiquantum well structures in presence of transverse electric field. Photocurrent in a p-i(MQW)-n diode with monochromatic light is examined with respect to different temperatures and intensities. The negative resistance of I-V characteristic of the p-i-n diode is based on the quantum confined Stark effect of the heavy hole excitonic transition in a multiquantum well. This exciton based photocurrent characteristic allows efficient switching. A general purpose low power optical logic device using the controller-modulator concept bas been proposed and realized. The controller is a heterojunction phototransistor with multiquantum wells in the base-collector depletion region. This allows an amplified photocurrent controlled voltage feedback with low light intensity levels. Detailed analysis of the sensitivity of this device in various modes of operation is studied. Studies are also presented on the cascadability of the device as well as its integrating -thresholding properties. A multiquantum well heterojunction bipolar transistor (MHBT), which has N^+ -p^+-i(MQW)-N structure has been fabricated to test the concept. Gain (>30) is obtained in the MBE grown devices and efficient switching occurs due to the amplification of the exciton based photocurrent. The level shift operation of the base contacted MHBT are demonstrated.

  5. The Influence of Gas Composition in Dielectric Barrier Discharges on the Broadening of the Hydrogen H{alpha} Transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janus, H. W.

    The distribution of hydrogen atoms responsible for emission of the Balmer H{alpha} line in the region of the dielectric barrier discharges in the helium and hydrogen as well as in the argon and hydrogen mixtures, in the direction perpendicular to the electrode surfaces, has bee determined by the optical emission spectroscopy accounting for the polarization of the emitted light. The procedure of fitting the measured line profiles accounting for the Stark effect has been used for determination of the distribution of the electric field in the discharge region.

  6. Electrical and mechanical tuning of a silicon vacancy defect in SiC for quantum information technology

    NASA Astrophysics Data System (ADS)

    Soykal, Oney O.; Reinecke, Thomas L.

    We develop coherent control via Stark effect over the optical transition energies of silicon monovacancy deep center in hexagonal silicon carbide. We show that this defect's unique asymmetry properties of its piezoelectric tensor and Kramer's degenerate high-spin ground/excited state configurations can be used to create new possibilities in quantum information technology ranging from photonic networks to quantum key distribution. We also give examples of its qubit implementations via precise electric field control. This work was supported in part by ONR and by the Office of Secretary of Defense, Quantum Science and Engineering Program.

  7. Basic characteristics of high-frequency Stark-effect modulation of CO2 lasers.

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Pao, Y. H.

    1971-01-01

    The molecular Stark effect and its application to the modulation of infrared laser radiation have been investigated both theoretically and experimentally. Using a density matrix approach, a quantum mechanical description of the effect of a time-varying electric field on the absorption coefficient and refractive index of a molecular gas near an absorption line has been formulated. For modulation applications a quantity known as the ?modulation depth' is of prime importance. Theoretical expressions for the frequency dependence of the modulation depth show that the response to the frequency of a time-varying Stark field is separated into a nondispersive and a dispersive region, depending on whether the modulating frequency is less than or greater than the homogeneous absorption linewidth. Experimental results showing nondispersive modulation at frequencies to 30 MHz are presented. In addition it is shown that the response of modulation depth to Stark field amplitude is separated into linear and nonlinear regions, the field at which nonlinearities begin being determined by the absorption spectrum of the molecule being used.

  8. Reconfiguring crystal and electronic structures of MoS 2 by substitutional doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Joonki; Tan, Teck Leong; Zhao, Weijie

    Doping of traditional semiconductors has enabled technological applications in modern electronics by tailoring their chemical, optical and electronic properties. However, substitutional doping in two-dimensional semiconductors is at a comparatively early stage, and the resultant effects are less explored. In this work, we report unusual effects of degenerate doping with Nb on structural, electronic and optical characteristics of MoS 2 crystals. The doping readily induces a structural transformation from naturally occurring 2H stacking to 3R stacking. Electronically, a strong interaction of the Nb impurity states with the host valence bands drastically and nonlinearly modifies the electronic band structure with the valencemore » band maximum of multilayer MoS 2 at the Γ point pushed upward by hybridization with the Nb states. Finally, when thinned down to monolayers, in stark contrast, such significant nonlinear effect vanishes, instead resulting in strong and broadband photoluminescence via the formation of exciton complexes tightly bound to neutral acceptors.« less

  9. Reconfiguring crystal and electronic structures of MoS 2 by substitutional doping

    DOE PAGES

    Suh, Joonki; Tan, Teck Leong; Zhao, Weijie; ...

    2018-01-15

    Doping of traditional semiconductors has enabled technological applications in modern electronics by tailoring their chemical, optical and electronic properties. However, substitutional doping in two-dimensional semiconductors is at a comparatively early stage, and the resultant effects are less explored. In this work, we report unusual effects of degenerate doping with Nb on structural, electronic and optical characteristics of MoS 2 crystals. The doping readily induces a structural transformation from naturally occurring 2H stacking to 3R stacking. Electronically, a strong interaction of the Nb impurity states with the host valence bands drastically and nonlinearly modifies the electronic band structure with the valencemore » band maximum of multilayer MoS 2 at the Γ point pushed upward by hybridization with the Nb states. Finally, when thinned down to monolayers, in stark contrast, such significant nonlinear effect vanishes, instead resulting in strong and broadband photoluminescence via the formation of exciton complexes tightly bound to neutral acceptors.« less

  10. Measurement of atomic Stark parameters of many Mn I and Fe I spectral lines using GMAW process

    NASA Astrophysics Data System (ADS)

    Zielinska, S.; Pellerin, S.; Dzierzega, K.; Valensi, F.; Musiol, K.; Briand, F.

    2010-11-01

    The particular character of the welding arc working in pure argon, whose emission spectrum consists of many spectral lines strongly broadened by the Stark effect, has allowed measurement, sometimes for the first time, of the Stark parameters of 15 Mn I and 10 Fe I atomic spectral lines, and determination of the dependence on temperature of normalized Stark broadening in Ne = 1023 m-3 of the 542.4 nm atomic iron line. These results show that special properties of the MIG plasma may be useful in this domain because composition of the wire-electrode may be easily adapted to the needs of an experiment.

  11. Comparative absorption, electroabsorption and electrochemical studies of intervalence electron transfer and electronic coupling in cyanide-bridged bimetallic systems: ancillary ligand effects

    NASA Astrophysics Data System (ADS)

    Vance, Fredrick W.; Slone, Robert V.; Stern, Charlotte L.; Hupp, Joseph T.

    2000-03-01

    Electroabsorption or Stark spectroscopy has been used to evaluate the systems (NC) 5M II-CN-Ru III(NH 3) 51- and (NC) 5M II-CN-Ru III(NH 3) 4py 1-, where M II=Fe II or Ru II. When a pyridine ligand is present in the axial position on the Ru III acceptor, the effective optical electron transfer distance - as measured by the change in dipole moment, |Δ μ| - is increased by more than 35% relative to the ammine substituted counterpart. Comparison of the charge transfer distances to the crystal structure of Na[(CN) 5Fe-CN-Ru(NH 3) 4py] · 6H 2O reveals that the Stark derived distances are ˜50% to ˜90% of the geometric separation of the metal centers. The differences result in an upward revision in the Hush delocalization parameter, c b2, and of the electronic coupling matrix element, H ab, relative to those parameters obtained exclusively from electronic absorption measurements. The revised parameters are compared to those, which are obtained via electrochemical techniques and found to be in only fair agreement. We conclude that the absorption/electroabsorption analysis likely yields a more reliable set of mixing and coupling parameters.

  12. PRESSURE SHIFT AND GRAVITATIONAL REDSHIFT OF BALMER LINES IN WHITE DWARFS: REDISCUSSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halenka, Jacek; Olchawa, Wieslaw; Madej, Jerzy

    2015-08-01

    The Stark-induced shift and asymmetry, the so-called pressure shift (PS) of H{sub α} and H{sub β} Balmer lines in spectra of DA white dwarfs (WDs), have been examined in detail as masking effects in measurements of the gravitational redshift in WDs. The results are compared with our earlier ones from a quarter of a century ago. In these earlier papers, the standard, symmetrical Stark line profiles, as a dominant constituent of the Balmer line profiles but shifted as a whole by the PS effect, were applied to all spectrally active layers of the WD atmosphere. At present, in each ofmore » the WD layers, the Stark line profiles (especially of H{sub β}) are inherently asymmetrical and shifted due to the effects of strong inhomogeneity of the perturbing fields in plasma. To calculate the Stark line profiles in successive layers of the WD atmosphere we used the modified Full Computer Simulation Method, able to take adequately into account the complexity of local elementary quantum processes in plasma. In the case of the H{sub α} line, the present value of Stark-induced shift of the synthetic H{sub α} line profile is about half the previous one and it is negligible in comparison with the gravitational redshift. In the case of the H{sub β} line, the present value of Stark-induced shift of the synthetic H{sub β} line profile is about twice the previous one. The source of this extra shift is the asymmetry of H{sub β} peaks.« less

  13. Modeling of anisotropic properties of double quantum rings by the terahertz laser field.

    PubMed

    Baghramyan, Henrikh M; Barseghyan, Manuk G; Kirakosyan, Albert A; Ojeda, Judith H; Bragard, Jean; Laroze, David

    2018-04-18

    The rendering of different shapes of just a single sample of a concentric double quantum ring is demonstrated realizable with a terahertz laser field, that in turn, allows the manipulation of electronic and optical properties of a sample. It is shown that by changing the intensity or frequency of laser field, one can come to a new set of degenerated levels in double quantum rings and switch the charge distribution between the rings. In addition, depending on the direction of an additional static electric field, the linear and quadratic quantum confined Stark effects are observed. The absorption spectrum shifts and the additive absorption coefficient variations affected by laser and electric fields are discussed. Finally, anisotropic electronic and optical properties of isotropic concentric double quantum rings are modeled with the help of terahertz laser field.

  14. A comparison of the optical properties of InGaN/GaN multiple quantum well structures grown with and without Si-doped InGaN prelayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, M. J., E-mail: Matthew.Davies-2@Manchester.ac.uk; Hammersley, S.; Dawson, P.

    In this paper, we report on a detailed spectroscopic study of the optical properties of InGaN/GaN multiple quantum well structures, both with and without a Si-doped InGaN prelayer. In photoluminescence and photoluminescence excitation spectroscopy, a 2nd emission band, occurring at a higher energy, was identified in the spectrum of the multiple quantum well structure containing the InGaN prelayer, originating from the first quantum well in the stack. Band structure calculations revealed that a reduction in the resultant electric field occurred in the quantum well immediately adjacent to the InGaN prelayer, therefore leading to a reduction in the strength of themore » quantum confined Stark effect in this quantum well. The partial suppression of the quantum confined Stark effect in this quantum well led to a modified (higher) emission energy and increased radiative recombination rate. Therefore, we ascribed the origin of the high energy emission band to recombination from the 1st quantum well in the structure. Study of the temperature dependent recombination dynamics of both samples showed that the decay time measured across the spectrum was strongly influenced by the 1st quantum well in the stack (in the sample containing the prelayer) leading to a shorter average room temperature lifetime in this sample. The room temperature internal quantum efficiency of the prelayer containing sample was found to be higher than the reference sample (36% compared to 25%) which was thus attributed to the faster radiative recombination rate of the 1st quantum well providing a recombination pathway that is more competitive with non-radiative recombination processes.« less

  15. Nanophotonic rare-earth quantum memory with optically controlled retrieval

    NASA Astrophysics Data System (ADS)

    Zhong, Tian; Kindem, Jonathan M.; Bartholomew, John G.; Rochman, Jake; Craiciu, Ioana; Miyazono, Evan; Bettinelli, Marco; Cavalli, Enrico; Verma, Varun; Nam, Sae Woo; Marsili, Francesco; Shaw, Matthew D.; Beyer, Andrew D.; Faraon, Andrei

    2017-09-01

    Optical quantum memories are essential elements in quantum networks for long-distance distribution of quantum entanglement. Scalable development of quantum network nodes requires on-chip qubit storage functionality with control of the readout time. We demonstrate a high-fidelity nanophotonic quantum memory based on a mesoscopic neodymium ensemble coupled to a photonic crystal cavity. The nanocavity enables >95% spin polarization for efficient initialization of the atomic frequency comb memory and time bin-selective readout through an enhanced optical Stark shift of the comb frequencies. Our solid-state memory is integrable with other chip-scale photon source and detector devices for multiplexed quantum and classical information processing at the network nodes.

  16. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xianwei; State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062; Zhang, John Z. H.

    2015-11-14

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. Inmore » this study, quantum mechanical calculation of protein’s internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.« less

  17. Single-exciton optical gain in semiconductor nanocrystals.

    PubMed

    Klimov, Victor I; Ivanov, Sergei A; Nanda, Jagjit; Achermann, Marc; Bezel, Ilya; McGuire, John A; Piryatinski, Andrei

    2007-05-24

    Nanocrystal quantum dots have favourable light-emitting properties. They show photoluminescence with high quantum yields, and their emission colours depend on the nanocrystal size--owing to the quantum-confinement effect--and are therefore tunable. However, nanocrystals are difficult to use in optical amplification and lasing. Because of an almost exact balance between absorption and stimulated emission in nanoparticles excited with single electron-hole pairs (excitons), optical gain can only occur in nanocrystals that contain at least two excitons. A complication associated with this multiexcitonic nature of light amplification is fast optical-gain decay induced by non-radiative Auger recombination, a process in which one exciton recombines by transferring its energy to another. Here we demonstrate a practical approach for obtaining optical gain in the single-exciton regime that eliminates the problem of Auger decay. Specifically, we develop core/shell hetero-nanocrystals engineered in such a way as to spatially separate electrons and holes between the core and the shell (type-II heterostructures). The resulting imbalance between negative and positive charges produces a strong local electric field, which induces a giant ( approximately 100 meV or greater) transient Stark shift of the absorption spectrum with respect to the luminescence line of singly excited nanocrystals. This effect breaks the exact balance between absorption and stimulated emission, and allows us to demonstrate optical amplification due to single excitons.

  18. A photoelastic-modulator-based motional Stark effect polarimeter for ITER that is insensitive to polarized broadband background reflections.

    PubMed

    Thorman, A; Michael, C; De Bock, M; Howard, J

    2016-07-01

    A motional Stark effect polarimeter insensitive to polarized broadband light is proposed. Partially polarized background light is anticipated to be a significant source of systematic error for the ITER polarimeter. The proposed polarimeter is based on the standard dual photoelastic modulator approach, but with the introduction of a birefringent delay plate, it generates a sinusoidal spectral filter instead of the usual narrowband filter. The period of the filter is chosen to match the spacing of the orthogonally polarized Stark effect components, thereby increasing the effective signal level, but resulting in the destructive interference of the broadband polarized light. The theoretical response of the system to an ITER like spectrum is calculated and the broadband polarization tolerance is verified experimentally.

  19. The Stark Effect in Linear Potentials

    ERIC Educational Resources Information Center

    Robinett, R. W.

    2010-01-01

    We examine the Stark effect (the second-order shifts in the energy spectrum due to an external constant force) for two one-dimensional model quantum mechanical systems described by linear potentials, the so-called quantum bouncer (defined by V(z) = Fz for z greater than 0 and V(z) = [infinity] for z less than 0) and the symmetric linear potential…

  20. Adiabatic passage of radio-frequency-assisted Förster resonances in Rydberg atoms for two-qubit gates and the generation of Bell states

    NASA Astrophysics Data System (ADS)

    Beterov, I. I.; Hamzina, G. N.; Yakshina, E. A.; Tretyakov, D. B.; Entin, V. M.; Ryabtsev, I. I.

    2018-03-01

    High-fidelity entangled Bell states are of great interest in quantum physics. Entanglement of ultracold neutral atoms in two spatially separated optical dipole traps is promising for implementation of quantum computing and quantum simulation and for investigation of Bell states of material objects. We propose a method to entangle two atoms via long-range Rydberg-Rydberg interaction. Alternative to previous approaches, based on Rydberg blockade, we consider radio-frequency-assisted Stark-tuned Förster resonances in Rb Rydberg atoms. To reduce the sensitivity of the fidelity of Bell states to the fluctuations of interatomic distance, we propose to use the double adiabatic passage across the radio-frequency-assisted Stark-tuned Förster resonances, which results in a deterministic phase shift of the collective two-atom state.

  1. Optical manipulation of valley pseudospin

    DOE PAGES

    Ye, Ziliang; Sun, Dezheng; Heinz, Tony F.

    2016-09-19

    The coherent manipulation of spin and pseudospin underlies existing and emerging quantum technologies, including quantum communication and quantum computation. Valley polarization, associated with the occupancy of degenerate, but quantum mechanically distinct valleys in momentum space, closely resembles spin polarization and has been proposed as a pseudospin carrier for the future quantum electronics. Valley exciton polarization has been created in the transition metal dichalcogenide monolayers using excitation by circularly polarized light and has been detected both optically and electrically. In addition, the existence of coherence in the valley pseudospin has been identified experimentally. The manipulation of such valley coherence has, however,more » remained out of reach. In this paper, we demonstrate all-optical control of the valley coherence by means of the pseudomagnetic field associated with the optical Stark effect. Using below-bandgap circularly polarized light, we rotate the valley exciton pseudospin in monolayer WSe 2 on the femtosecond timescale. Both the direction and speed of the rotation can be manipulated optically by tuning the dynamic phase of excitons in opposite valleys. Finally, this study unveils the possibility of generation, manipulation, and detection of the valley pseudospin by coupling to photons.« less

  2. Lineshape-asymmetry elimination in weak atomic transitions driven by an intense standing wave field

    NASA Astrophysics Data System (ADS)

    Antypas, Dionysios; Fabricant, Anne; Budker, Dmitry

    2018-05-01

    Owing to the ac-Stark effect, the lineshape of a weak optical transition in an atomic beam can become significantly distorted, when driven by an intense standing wave field. We use an Yb atomic beam to study the lineshape of the 6s2 1S0 -> 5d6s 3D1 transition, which is excited with light circulating in a Fabry-Perot resonator. We demonstrate two methods to avoid the distortion of the transition profile. Of these, one relies on the operation of the resonator in multiple longitudinal modes, and the other in multiple transverse modes.

  3. Electric Field-Dependent Photoluminescence in Multilayer Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Stanev, T. K.; Henning, A.; Sangwan, V. K.; Speiser, N.; Stern, N. P.; Lauhon, L. J.; Hersam, M. C.; Wang, K.; Valencia, D.; Charles, J.; Kubis, T. C.

    Owing to interlayer coupling, transition metal dichalcogenides (TMDCs) such as MoS2 exhibit strong layer dependence of optical and electronic phenomena such as the band gap and trion and neutral exciton population dynamics. Here, we systematically measure the effect of layer number on the optical response of multilayer MoS2 in an external electric field, observing field and layer number dependent emission energy and photoluminescence intensity. These effects are studied in few (2-6) and bulk (11 +) layered structures at low temperatures. In MoS2\\ the observed layer dependence arises from several mechanisms, including interlayer charge transfer, band structure, Stark Effect, Fermi level changes, screening, and surface effects, so it can be challenging to isolate how these mechanisms impact the observables. Because it behaves like a stack of weakly interacting monolayers rather than multilayer or bulk, ReS2 provides a comparison to traditional TMDCs to help isolate the underlying physical mechanisms dictating the response of multilayers. This work is supported by the National Science Foundation MRSEC program (DMR-1121262), and the 2-DARE Grant (EFRI-1433510). N.P.S. is an Alfred P. Sloan Research Fellow.

  4. Excitonic Effects in Methylammonium Lead Halide Perovskites.

    PubMed

    Chen, Xihan; Lu, Haipeng; Yang, Ye; Beard, Matthew C

    2018-05-17

    The exciton binding energy in methylammonium lead iodide (MAPbI 3 ) is about 10 meV, around 1/3 of the available thermal energy ( k B T ∼ 26 meV) at room temperature. Thus, exciton populations are not stable at room temperature at moderate photoexcited carrier densities. However, excitonic resonances dominate the absorption onset. Furthermore, these resonances determine the transient absorbance and transient reflectance spectra. The exciton binding energy is a reflection of the Coulomb interaction energy between photoexcited electrons and holes. As such, it serves as a marker for the strength of electron/hole interactions and impacts a variety of phenomena, such as, absorption, radiative recombination, and Auger recombination. In this Perspective, we discuss the role of excitons and excitonic resonances in the optical properties of lead-halide perovskite semiconductors. Finally, we discuss how the strong light-matter interactions induce an optical stark effect splitting the doubly spin degenerate ground exciton states and are easily observed at room temperature.

  5. Few-cycle pulse laser induced damage threshold determination of ultra-broadband optics.

    PubMed

    Kafka, Kyle R P; Talisa, Noah; Tempea, Gabriel; Austin, Drake R; Neacsu, Catalin; Chowdhury, Enam A

    2016-12-12

    A systematic study of few-cycle pulse laser induced damage threshold (LIDT) determination was performed for commercially-available ultra-broadband optics, (i.e. chirped mirrors, silver mirrors, beamsplitters, etc.) in vacuum and in air, for single and multi-pulse regime (S-on-1). Multi-pulse damage morphology at fluences below the single-pulse LIDT was studied in order to investigate the mechanisms leading to the onset of damage. Stark morphological contrast was observed between multi-pulse damage sites formed in air versus those in vacuum. One effect of vacuum testing compared to air included suppression of laser-induced periodic surface structures (LIPSS) formation, possibly influenced by a reduced presence of damage debris. Another effect of vacuum was occasional lowering of LIDT, which appears to be due to the stress-strain performance of the coating design during laser irradiation and under the external stress of vacuum ambience. A fused silica substrate is also examined, and a non-LIPSS nanostructuring is observed on the surface. Possible mechanisms are discussed.

  6. A Comparative Study of Gold Bonding via Electronic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Ruohan

    The bonding and electrostatic properties of gold containing molecules are highly influenced by relativistic effects. To understand this facet on bonding, a series of simple diatomic AuX (X=F, Cl, O and S) molecules, where upon bond formation the Au atom donates or accepts electrons, was investigated and discussed in this thesis. First, the optical field-free, Stark, and Zeeman spectroscopic studies have been performed on AuF and AuCl. The simple polar bonds between Au and typical halogens (i.e. F and Cl) can be well characterized by the electronic structure studies and the permanent electric dipole moments, mu el. The spectroscopic parameters have been precisely determined for the [17.7]1, [17.8]0+ and X1Sigma + states of AuF, and the [17.07]1, [17.20]0+ and X1Sigma+ states of AuCl. The mu el have been determined for ground and excited states of AuF and AuCl. The results from the hyperfine analysis and Stark measurement support the assignments that the [17.7]1 and [17.8]0+ states of AuF are the components of a 3pi state. Similarly, the analysis demonstrated the [19.07]1 and [19.20]0+ states are the components of the 3pi state of AuCl. Second, my study focused on AuO and AuS because the bonding between gold and sulfur/oxygen is a key component to numerous established and emerging technologies that have applications as far ranging as medical imaging, catalysis, electronics, and material science. The high-resolution spectra were record and analyzed to obtain the geometric and electronic structural data for the ground and excited states. The electric dipole moment, muel , and the magnetic dipole moment, mum, has been the precisely measured by applying external static electric and magnetic fields. muel and mum are used to give insight into the unusual complex bonding in these molecules. In addition to direct studies on the gold-containing molecules, other studies of related molecules are included here as well. These works contain the pure rotation measurement of PtC, the hyperfine and Stark spectroscopic studies of PtF, and the Stark and Zeeman spectroscopic studies of MgH and MgD. Finally, a perspective discussion and conclusion will summarize the results of AuF, AuCl, AuO, and AuS from this work (bond lengths, dipole moment, etc.). The highly quantitative information derived from this work is the foundation of a chemical description of matter and essential for kinetic energy manipulation via Stark and Zeeman interactions. This data set also establishes a synergism with computation chemists who are developing new methodologies for treating relativistic effects and electron correlation.

  7. A single blue nanorod light emitting diode.

    PubMed

    Hou, Y; Bai, J; Smith, R; Wang, T

    2016-05-20

    We report a light emitting diode (LED) consisting of a single InGaN/GaN nanorod fabricated by a cost-effective top-down approach from a standard LED wafer. The device demonstrates high performance with a reduced quantum confined Stark effect compared with a standard planar counterpart fabricated from the same wafer, confirmed by optical and electrical characterization. Current density as high as 5414 A cm(-2) is achieved without significant damage to the device due to the high internal quantum efficiency. The efficiency droop is mainly ascribed to Auger recombination, which was studied by an ABC model. Our work provides a potential method for fabricating compact light sources for advanced photonic integrated circuits without involving expensive or time-consuming fabrication facilities.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beard, Matthew C; Chen, Xihan; Lu, Haipeng

    The exciton binding energy in methylammonium lead iodide (MAPbI3) is about 10 meV, around 1/3 of the available thermal energy (kBT ~ 26 meV) at room temperature. Thus, exciton populations are not stable at room temperature at moderate photoexcited carrier densities. However, excitonic resonances dominate the absorption onset. Furthermore, these resonances determine the transient absorbance and transient reflectance spectra. The exciton binding energy is a reflection of the Coulomb interaction energy between photoexcited electrons and holes. As such, it serves as a marker for the strength of electron/hole interactions and impacts a variety of phenomena, such as, absorption, radiative recombination,more » and Auger recombination. In this Perspective, we discuss the role of excitons and excitonic resonances in the optical properties of lead-halide perovskite semiconductors. Finally, we discuss how the strong light-matter interactions induce an optical stark effect splitting the doubly spin degenerate ground exciton states and are easily observed at room temperature.« less

  9. Semiconductor quantum well irradiated by a two-mode electromagnetic field as a terahertz emitter

    NASA Astrophysics Data System (ADS)

    Mandal, S.; Liew, T. C. H.; Kibis, O. V.

    2018-04-01

    We study theoretically the nonlinear optical properties of a semiconductor quantum well (QW) irradiated by a two-mode electromagnetic wave consisting of a strong resonant dressing field and a weak off-resonant driving field. In the considered strongly coupled electron-field system, the dressing field opens dynamic Stark gaps in the electron energy spectrum of the QW, whereas the driving field induces electron oscillations in the QW plane. Since the gapped electron spectrum restricts the amplitude of the oscillations, the emission of a frequency comb from the QW appears. Therefore, the doubly driven QW operates as a nonlinear optical element which can be used, particularly, for optically controlled generation of terahertz radiation.

  10. Selected highly charged ions as prospective candidates for optical clocks with quality factors larger than 1015

    NASA Astrophysics Data System (ADS)

    Yu, Yan-mei; Sahoo, B. K.

    2018-04-01

    The Ni12 +, Cu13 +, Pd12 +, and Ag13 + highly charged ions (HCIs) are proposed for making very accurate optical clocks with the fractional uncertainties below 10-19 level. These HCIs have simple atomic energy levels, clock transitions with quality factors larger than 1015, and optical magnetic-dipole (M 1 ) transitions that can be used for laser cooling and detecting quantum jumps on the clock transitions by the shelving method. To demonstrate the projected fractional uncertainties, we estimate orders of magnitude of the Zeeman, Stark, blackbody radiation, and electric quadrupole shifts of the clock transitions by performing calculations of the relevant atomic properties in the above HCIs.

  11. Nanometer-scale monitoring of quantum-confined Stark effect and emission efficiency droop in multiple GaN/AlN quantum disks in nanowires

    NASA Astrophysics Data System (ADS)

    Zagonel, L. F.; Tizei, L. H. G.; Vitiello, G. Z.; Jacopin, G.; Rigutti, L.; Tchernycheva, M.; Julien, F. H.; Songmuang, R.; Ostasevicius, T.; de la Peña, F.; Ducati, C.; Midgley, P. A.; Kociak, M.

    2016-05-01

    We report on a detailed study of the intensity dependent optical properties of individual GaN/AlN quantum disks (QDisks) embedded into GaN nanowires (NW). The structural and optical properties of the QDisks were probed by high spatial resolution cathodoluminescence (CL) in a scanning transmission electron microscope (STEM). By exciting the QDisks with a nanometric electron beam at currents spanning over three orders of magnitude, strong nonlinearities (energy shifts) in the light emission are observed. In particular, we find that the amount of energy shift depends on the emission rate and on the QDisk morphology (size, position along the NW and shell thickness). For thick QDisks (>4 nm), the QDisk emission energy is observed to blueshift with the increase of the emission intensity. This is interpreted as a consequence of the increase of carriers density excited by the incident electron beam inside the QDisks, which screens the internal electric field and thus reduces the quantum confined Stark effect (QCSE) present in these QDisks. For thinner QDisks (<3 nm ), the blueshift is almost absent in agreement with the negligible QCSE at such sizes. For QDisks of intermediate sizes there exists a current threshold above which the energy shifts, marking the transition from unscreened to partially screened QCSE. From the threshold value we estimate the lifetime in the unscreened regime. These observations suggest that, counterintuitively, electrons of high energy can behave ultimately as single electron-hole pair generators. In addition, when we increase the current from 1 to 10 pA the light emission efficiency drops by more than one order of magnitude. This reduction of the emission efficiency is a manifestation of the "efficiency droop" as observed in nitride-based 2D light emitting diodes, a phenomenon tentatively attributed to the Auger effect.

  12. Higher order Stark effect and transition probabilities on hyperfine structure components of hydrogen like atoms

    NASA Astrophysics Data System (ADS)

    Pal'Chikov, V. G.

    2000-08-01

    A quantum-electrodynamical (QED) perturbation theory is developed for hydrogen and hydrogen-like atomic systems with interaction between bound electrons and radiative field being treated as the perturbation. The dependence of the perturbed energy of levels on hyperfine structure (hfs) effects and on the higher-order Stark effect is investigated. Numerical results have been obtained for the transition probability between the hfs components of hydrogen-like bismuth.

  13. Prospects for quantum computing with an array of ultracold polar paramagnetic molecules.

    PubMed

    Karra, Mallikarjun; Sharma, Ketan; Friedrich, Bretislav; Kais, Sabre; Herschbach, Dudley

    2016-03-07

    Arrays of trapped ultracold molecules represent a promising platform for implementing a universal quantum computer. DeMille [Phys. Rev. Lett. 88, 067901 (2002)] has detailed a prototype design based on Stark states of polar (1)Σ molecules as qubits. Herein, we consider an array of polar (2)Σ molecules which are, in addition, inherently paramagnetic and whose Hund's case (b) free-rotor pair-eigenstates are Bell states. We show that by subjecting the array to combinations of concurrent homogeneous and inhomogeneous electric and magnetic fields, the entanglement of the array's Stark and Zeeman states can be tuned and the qubit sites addressed. Two schemes for implementing an optically controlled CNOT gate are proposed and their feasibility discussed in the face of the broadening of spectral lines due to dipole-dipole coupling and the inhomogeneity of the electric and magnetic fields.

  14. Influence of the dynamic Stark effect on long-term frequency stability of a self-oscillating magnetometer with laser-pumped alkali atoms

    NASA Astrophysics Data System (ADS)

    Baranov, A. A.; Ermak, S. V.; Kulachenkov, N. K.; Petrenko, M. V.; Sagitov, E. A.; Semenov, V. V.

    2017-11-01

    This paper presents the results of investigation Stark shift effect influence on the long-term stability of a dual scheme of quantum magnetometers. Such scheme allows suppressing Stark shift components when a certain pumping light polarization is applied. As a result, long-term stability of a quantum sensor increases. However, when low-frequency (LF) and microwave fields are attached to a single vapor cell a coherence circulation in hyperfine structure of alkali atoms takes place. Physical origin of this effect is associated with the so called “dressed” atom theory, when atom is “dressed” by LF field. It yields in multiphoton absorption and resonance frequency shift. First estimates for this shift based on density matrix evolution formalism are provided in the paper.

  15. A Simultaneous Discovery: The Case of Johannes Stark and Antonino Lo Surdo

    NASA Astrophysics Data System (ADS)

    Leone, Matteo; Paoletti, Alessandro; Robotti, Nadia

    2004-09-01

    In 1913 the German physicist Johannes Stark (1874 1957) and the Italian physicist Antonino Lo Surdo (1880 1949)discovered virtually simultaneously and independently that hydrogen spectral lines are split into components by an external electric field. Both of their discoveries ensued from studies on the same phenomenon, the Doppler effect in canal rays, but they arose in different theoretical contexts. Stark had been working within the context of the emerging quantum theory, following a research program aimed at studying the effect of an electric field on spectral lines. Lo Surdo had been working within the context of the classical theory, and his was an accidental discovery. Both discoveries, however, played important roles in the history of physics: Stark’s discovery contributed to the establishment of both the old and the new quantum theories; Lo Surdo’s discovery led Antonio Garbasso (1871 1933)to introduce research on the quantum theory into Italian physics. Ironically, soon after their discoveries, both Stark and Lo Surdo rejected developments in modern physics and allied themselves with the political and racial programs of Hitler and Mussolini.

  16. Complete pulse characterization of quantum dot mode-locked lasers suitable for optical communication up to 160 Gbit/s.

    PubMed

    Schmeckebier, H; Fiol, G; Meuer, C; Arsenijević, D; Bimberg, D

    2010-02-15

    A complete characterization of pulse shape and phase of a 1.3 microm, monolithic-two-section, quantum-dot mode-locked laser (QD-MLL) at a repetition rate of 40 GHz is presented, based on frequency resolved optical gating. We show that the pulse broadening of the QD-MLL is caused by linear chirp for all values of current and voltage investigated here. The chirp increases with the current at the gain section, whereas larger bias at the absorber section leads to less chirp and therefore to shorter pulses. Pulse broadening is observed at very high bias, likely due to the quantum confined stark effect. Passive- and hybrid-QD-MLL pulses are directly compared. Improved pulse intensity profiles are found for hybrid mode locking. Via linear chirp compensation pulse widths down to 700 fs can be achieved independent of current and bias, resulting in a significantly increased overall mode-locking range of 101 MHz. The suitability of QD-MLL chirp compensated pulse combs for optical communication up to 160 Gbit/s using optical-time-division multiplexing are demonstrated by eye diagrams and autocorrelation measurements.

  17. Spin-orbit-coupled Fermi gases of two-electron ytterbium atoms

    NASA Astrophysics Data System (ADS)

    He, Chengdong; Song, Bo; Haciyev, Elnur; Ren, Zejian; Seo, Bojeong; Zhang, Shanchao; Liu, Xiong-Jun; Jo, Gyu-Boong

    2017-04-01

    Spin-orbit coupling (SOC) has been realized in bosonic and fermionic atomic gases opening an avenue to novel physics associated with spin-momentum locking. In this talk, we will demonstrate all-optical method coupling two hyperfine ground states of 173Yb fermions through a narrow optical transition 1S0 -> 3P1. An optical AC Stark shift is applied to split the ground hyperfine levels and separate out an effective spin-1/2 subspace from other spin states for the realization of SOC. The spin dephasing dynamics and the asymmetric momentum distribution of the spin-orbit coupled Fermi gas are observed as a hallmark of SOC. The implementation of all-optical SOC for ytterbium fermions should offer a new route to a long-lived spin-orbit coupled Fermi gas and greatly expand our capability in studying novel spin-orbit physics with alkaline-earth-like atoms. Other ongoing experimental works related to SOC will be also discussed. Funded by Croucher Foundation and Research Grants Council (RGC) of Hong Kong (Project ECS26300014, GRF16300215, GRF16311516, and Croucher Innovation Grants); MOST (Grant No. 2016YFA0301604) and NSFC (No. 11574008).

  18. Effect of cantilever geometry on the optical lever sensitivities and thermal noise method of the atomic force microscope.

    PubMed

    Sader, John E; Lu, Jianing; Mulvaney, Paul

    2014-11-01

    Calibration of the optical lever sensitivities of atomic force microscope (AFM) cantilevers is especially important for determining the force in AFM measurements. These sensitivities depend critically on the cantilever mode used and are known to differ for static and dynamic measurements. Here, we calculate the ratio of the dynamic and static sensitivities for several common AFM cantilevers, whose shapes vary considerably, and experimentally verify these results. The dynamic-to-static optical lever sensitivity ratio is found to range from 1.09 to 1.41 for the cantilevers studied - in stark contrast to the constant value of 1.09 used widely in current calibration studies. This analysis shows that accuracy of the thermal noise method for the static spring constant is strongly dependent on cantilever geometry - neglect of these dynamic-to-static factors can induce errors exceeding 100%. We also discuss a simple experimental approach to non-invasively and simultaneously determine the dynamic and static spring constants and optical lever sensitivities of cantilevers of arbitrary shape, which is applicable to all AFM platforms that have the thermal noise method for spring constant calibration.

  19. Exciton self-trapping and Stark effect in the optical response of pentacene crystals from first principles

    NASA Astrophysics Data System (ADS)

    Strubbe, David A.; Sharifzadeh, Sahar; Neaton, Jeffrey B.; Louie, Steven G.

    2012-02-01

    Pentacene is a prototypical organic semiconductor with optoelectronic and photovoltaic applications. It is known that the lowest-energy singlet excitation has a Stokes shift between absorption and emission of about 0.14 eV, but the deformation associated with this self-trapped exciton remains unknown. We begin with a calculation of the optical properties via the first-principles GW/Bethe-Salpeter (BSE) theory [ML Tiago, JE Northrup, and SG Louie, Phys. Rev. B 67, 115212 (2003); S Sharifzadeh, A Biller, L Kronik, and JB Neaton, arXiv:1110.4928 (2011)]. We then study the self-trapping phenomenon via our reformulation of the Bethe-Salpeter excited-state forces approximation of Ismail-Beigi and Louie [Phys. Rev. Lett. 90, 076401 (2003)], which can describe the structural relaxation after optical excitation. Whether excitons in pentacene have charge-transfer character has been controversial in electro-absorption experiments. We use the same BSE analytic derivatives approach to calculate the changes in excitation energies due to an applied electric field to understand this experimental controversy.

  20. Long-distance delivery of multi-channel polarization signals in nuclear fusion research

    NASA Astrophysics Data System (ADS)

    Ko, Jinseok; Chung, Jinil; Lee, Kyuhang

    2017-04-01

    A polarization-preserving optical system that includes a dual photoelastic modulator (PEM) has been designed and fabricated for the motional Stark effect (MSE) diagnostic system which measures internal magnetic field structures inside the tokamak for the Korea Superconducting Tokamak Advanced Research. The collection optics located outside the vacuum window is composed of four lenses, a dielectric coated mirror, and a dichroic beam splitter in addition to the PEM and a polarizer. The fiber dissector is designed based on the focal plane that aligns 25 lines of sight, each of which constitutes a bundle of 19 600-μm fibers. The fibers run about 40 m from the front optics in the tokamak vacuum vessel to the detector in the diagnostic area remote from the tokamak hall. This takes the advantage of the fact that the polarization information is intensity-modulated once going through the PEM and the polarizer. The polarization signals measured by the MSE diagnostic successfully demonstrates its proof-of-principle physics that is critical in the stable and steady-state operation of the tokamak plasmas.

  1. Ultraviolet laser spectroscopy of neutral mercury in a one-dimensional optical lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mejri, S.; McFerran, J. J.; Yi, L.

    2011-09-15

    We present details on the ultraviolet lattice spectroscopy of the (6s{sup 2}) {sup 1}S{sub 0}{r_reversible} (6s6p) {sup 3}P{sub 0} transition in neutral mercury, specifically {sup 199}Hg. Mercury atoms are loaded into a one-dimensional vertically aligned optical lattice from a magneto-optical trap with an rms temperature of {approx}60 {mu}K. We describe aspects of the magneto-optical trapping, the lattice cavity design, and the techniques employed to trap and detect mercury in an optical lattice. The clock-line frequency dependence on lattice depth is measured at a range of lattice wavelengths. We confirm the magic wavelength to be 362.51(0.16) nm. Further observations to thosemore » reported by Yi et al.[Phys. Rev. Lett. 106, 073005 (2011)] are presented regarding the laser excitation of a Wannier-Stark ladder of states.« less

  2. Frequency metrology using highly charged ions

    NASA Astrophysics Data System (ADS)

    Crespo López-Urrutia, J. R.

    2016-06-01

    Due to the scaling laws of relativistic fine structure splitting, many forbidden optical transitions appear within the ground state configurations of highly charged ions (HCI). In some hydrogen-like ions, even the hyperfine splitting of the 1s ground state gives rise to optical transitions. Given the very low polarizability of HCI, such laser-accessible transitions are extremely impervious to external perturbations and systematics that limit optical clock performance and arise from AC and DC Stark effects, such as black-body radiation and light shifts. Moreover, AC and DC Zeeman splitting are symmetric due to the much larger relativistic spin-orbit coupling and corresponding fine-structure splitting. Appropriate choice of states or magnetic sub-states with suitable total angular momentum and magnetic quantum numbers can lead to a cancellation of residual quadrupolar shifts. All these properties are very advantageous for the proposed use of HCI forbidden lines as optical frequency standards. Extremely magnified relativistic, quantum electrodynamic, and nuclear size contributions to the binding energies of the optically active electrons make HCI ideal tools for fundamental research, as in proposed studies of a possible time variation of the fine structure constant. Beyond this, HCI that cannot be photoionized by vacuum-ultraviolet photons could also provide frequency standards for future lasers operating in that range.

  3. Oscillator strengths of the optical transitions in a semiconductor superlattice under an electric field

    NASA Astrophysics Data System (ADS)

    Tronc, P.

    1992-04-01

    The oscillator strengths of the optical transitions in a semiconductor superlattice under an electric field parallel to the growth axis can be calculated using a perturbative model with Bloch envelope functions. The applied electric field and the electron-hole interaction inducing formation of indirect excitons both induce strength asymmetry between the oblique +p and -p transitions of the Wannier-Stark ladder. Features of the photocurrent spectra recorded at low temperature can be accounted for by the present model in a very simple manner. Les forces d'oscillateur des transitions optiques dans un superréseau semiconducteur soumis à un champ électrique parallèle à la direction de croissance, peuvent être calculées à l'aide d'un modèle de perturbation avec des fonctions enveloppes de Bloch. Le champ électrique appliqué ainsi que l'interaction électron-trou, qui induit la formation d'excitons indirects, entraînent une asymétrie entre les forces d'oscillateur des transitions +p et -p dans l'échelle de Wannier-Stark. Certaines caractéristiques des spectres de photocourant enregistrés à basse température peuvent être prévues d'une manière très simple.

  4. Influence of the ac-Stark shift on GPS atomic clock timekeeping

    NASA Astrophysics Data System (ADS)

    Formichella, V.; Camparo, J.; Tavella, P.

    2017-01-01

    The ac-Stark shift (or light shift) is a fundamental aspect of the field/atom interaction arising from virtual transitions between atomic states, and as Alfred Kastler noted, it is the real-photon counterpart of the Lamb shift. In the rubidium atomic frequency standards (RAFS) flying on Global Positioning System (GPS) satellites, it plays an important role as one of the major perturbations defining the RAFS' frequency: the rf-discharge lamp in the RAFS creates an atomic signal via optical pumping and simultaneously perturbs the atoms' ground-state hyperfine splitting via the light shift. Though the significance of the light shift has been known for decades, to date there has been no concrete evidence that it limits the performance of the high-quality RAFS flying on GPS satellites. Here, we show that the long-term frequency stability of GPS RAFS is primarily determined by the light shift as a consequence of stochastic jumps in lamplight intensity. Our results suggest three paths forward for improved GPS system timekeeping: (1) reduce the light-shift coefficient of the RAFS by careful control of the lamp's spectrum; (2) operate the lamp under conditions where lamplight jumps are not so pronounced; and (3) employ a light source for optical pumping that does not suffer pronounced light jumps (e.g., a diode laser).

  5. A synthetic diagnostic for beam emission spectroscopy in the helically symmetric experiment stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobbins, T. J., E-mail: tdobbins@wisc.edu; Kumar, S. T. A.; Anderson, D. T.

    The Helically Symmetric Experiment (HSX) has a number of active spectroscopy diagnostics. Due to the relatively large beam width compared to the plasma minor radius, it is difficult to achieve good spatial resolution at the core of the HSX plasma. This is due to the fact that the optical sightline cuts through many flux surfaces with varying field vectors within the beam. In order to compare the experimental results with theoretical models it is important to accurately model the beam width effects. A synthetic diagnostic has been developed for this purpose. This synthetic diagnostic calculates the effect of spot sizemore » and beam width on the measurements of quantities of interest, including radial electric field, flow velocity, and Stark polarization.« less

  6. A synthetic diagnostic for beam emission spectroscopy in the helically symmetric experiment stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobbins, T. J.; Kumar, S. T. A.; Anderson, D. T.

    The Helically Symmetric Experiment (HSX) has a number of active spectroscopy diagnostics. Due to the relatively large beam width compared to the plasma minor radius, it is difficult to achieve good spatial resolution at the core of the HSX plasma. This is due to the fact that the optical sightline cuts through many flux surfaces with varying field vectors within the beam. It is important to accurately model the beam width effects in order to compare the experimental results with theoretical models. We've developed a synthetic diagnostic for this purpose. This synthetic diagnostic calculates the effect of spot size andmore » beam width on the measurements of quantities of interest, including radial electric field, flow velocity, and Stark polarization.« less

  7. A synthetic diagnostic for beam emission spectroscopy in the helically symmetric experiment stellarator

    DOE PAGES

    Dobbins, T. J.; Kumar, S. T. A.; Anderson, D. T.

    2016-08-03

    The Helically Symmetric Experiment (HSX) has a number of active spectroscopy diagnostics. Due to the relatively large beam width compared to the plasma minor radius, it is difficult to achieve good spatial resolution at the core of the HSX plasma. This is due to the fact that the optical sightline cuts through many flux surfaces with varying field vectors within the beam. It is important to accurately model the beam width effects in order to compare the experimental results with theoretical models. We've developed a synthetic diagnostic for this purpose. This synthetic diagnostic calculates the effect of spot size andmore » beam width on the measurements of quantities of interest, including radial electric field, flow velocity, and Stark polarization.« less

  8. Full color modulation of firefly luciferase through engineering with unified Stark effect.

    PubMed

    Cai, Duanjun; Marques, Miguel A L; Nogueira, Fernando

    2013-11-07

    The firefly luciferase has been a unique marking tool used in various bioimaging techniques. Extensive color modulation is strongly required to meet special marking demands; however, intentional and accurate wavelength tuning has yet to be achieved. Here, we demonstrate that the color shift of the firefly chromophore (OxyLH2-1) by internal and external fields can be described as a unified Stark shift. Electrostatic microenvironmental effects on fluorescent spectroscopy are modeled in vacuo through effective electric fields by using time-dependent density functional theory. A complete visible fluorescence spectrum of firefly chromophore is depicted, which enables one to control the emission in a specific color. As an application, the widely observed pH-correlated color shift is proved to be associated with the local Stark field generated by the trace water-ions (vicinal hydronium and hydroxide ions) at active sites close to the OxyLH2-1.

  9. Optical and Microwave Spectroscopy of Transient Metal-Containing Molecules

    NASA Astrophysics Data System (ADS)

    Steimle, Timothy

    2016-06-01

    Small metal containing molecules are ideal venues for testing Fundamental Physics, investigating relativistic effects, and modelling spin-orbit induced unimolecular dynamics. Electronic spectroscopy is an effective method for probing these phenomena because such spectra are readily recorded at the natural linewidth limited resolution and accuracy of 0.0001 wn. The information garnered includes fine and hyperfine interactions, magnetic and electric dipoles, and dynamics. With this in mind, three examples from our recent (unpublished) studies will be highlighted. SiHD: Long ago Duxbury et al. developed a semi-quantitative model invoking Renner-Teller and spin-orbit coupling of the tilde{a}3B{1}, tilde{X}1A1, and tilde{A}1B1, states to explain the observed local perturbations and anomalous radiative lifetimes in the visible spectrum. More recently, the tilde{a}3B1 to tilde{A}1B1 intersystem crossing has been modeled using both semi-classical transition state theory and quantum trajectory surface hopping dynamics. Here we investigate the effects of the reduced symmetry of SiHD on the spectroscopy and dynamics using 2D spectroscopy. Rotationally resolved lines in the origin tilde{X}1A'→ tilde{A}1A" band are assigned to both c-type transitions and additional axis-switching induced transitions. AuO and AuS: The observed markedly different bonding of thiols and alcohols to gold clusters should be traceable to the difference in Au-O and Au-S bonding. To investigate this difference we have used optical Stark and Zeeman spectroscopy to determine the permanent electric dipole moments and magnetic g-factors. The results are rationalized using simple m.o. correlation diagrams and compared to ab initio predictions. TaN: TaN is the best candidate to search for a T,P- violating nuclear magnetic quadrupole moment. Here we report on the optical 2D, Stark, and Zeeman spectra, and our efforts to record the pure rotational spectrum using the separated field pump/probe microwave-optical double resonance.Implications for T,P- violating experiments will be presented. G. Duxbury, A. Alijah and R. R. Trieling, J. Chem. Phys. 98, 811 (1993) R. R. Zaari and S. A. Varganov, JPCA 119 , 1332 (2015) N. J. Reilly, T. W. Schmidt and S. H. Kable, JPCA 110, 12355(2006) J. T. Hougen and J. K. G. Watson, Can. J. Phys. 43 , 298 (1965) L. V. Skripnikov, et.al. Phys. Rev. A: 92, 1 (2015)

  10. Developing Pairwise Preference-Based Personality Test and Experimental Investigation of Its Resistance to Faking Effect by Item Response Model

    ERIC Educational Resources Information Center

    Usami, Satoshi; Sakamoto, Asami; Naito, Jun; Abe, Yu

    2016-01-01

    Recent years have shown increased awareness of the importance of personality tests in educational, clinical, and occupational settings, and developing faking-resistant personality tests is a very pragmatic issue for achieving more precise measurement. Inspired by Stark (2002) and Stark, Chernyshenko, and Drasgow (2005), we develop a pairwise…

  11. Investigations on the effects of the Stark splitting on the fluorescence behaviors in Yb3+-doped silicate, tellurite, germanate, and phosphate glasses

    NASA Astrophysics Data System (ADS)

    Zhang, Liaolin; Xia, Yu; Shen, Xiao; Yang, Runlan; Wei, Wei

    2018-01-01

    In this work, we systematically studied the spectroscopic characteristics of Yb3+ doped germanate, phosphate, silicate, and tellurite glasses. The emission peak beyond 976 nm showed irregular shift from 1001 nm to 1023 nm when Yb3+ in different glass matrices. It was associated with the Stark splitting of 2F7/2 and the emission intensities ratio between the transition from the lowest Stark splitting energy level of 2F5/2 to the Stark splitting energy levels of 2F7/2, e to b and that of e to d. Larger Stark splitting of 2F7/2 results in the red-shift of the near infrared emission band at room temperature and larger ratio results in the blue-shift of emission band. The fluorescence lifetimes of Yb3+ doped germanate, phosphate, silicate, and tellurite glasses were measured to be 0.94, 0.82, 1.51, and 0.66 ms, respectively. The fluorescence lifetime was associated with the reabsorption of Yb3+, which larger absorption cross section at the emission band results in larger reabsorption, then leads to the shorter near infrared fluorescence lifetime.

  12. Orthogonal Electric Field Measurements near the Green Fluorescent Protein Fluorophore through Stark Effect Spectroscopy and pKa Shifts Provide a Unique Benchmark for Electrostatics Models.

    PubMed

    Slocum, Joshua D; First, Jeremy T; Webb, Lauren J

    2017-07-20

    Measurement of the magnitude, direction, and functional importance of electric fields in biomolecules has been a long-standing experimental challenge. pK a shifts of titratable residues have been the most widely implemented measurements of the local electrostatic environment around the labile proton, and experimental data sets of pK a shifts in a variety of systems have been used to test and refine computational prediction capabilities of protein electrostatic fields. A more direct and increasingly popular technique to measure electric fields in proteins is Stark effect spectroscopy, where the change in absorption energy of a chromophore relative to a reference state is related to the change in electric field felt by the chromophore. While there are merits to both of these methods and they are both reporters of local electrostatic environment, they are fundamentally different measurements, and to our knowledge there has been no direct comparison of these two approaches in a single protein. We have recently demonstrated that green fluorescent protein (GFP) is an ideal model system for measuring changes in electric fields in a protein interior caused by amino acid mutations using both electronic and vibrational Stark effect chromophores. Here we report the changes in pK a of the GFP fluorophore in response to the same mutations and show that they are in excellent agreement with Stark effect measurements. This agreement in the results of orthogonal experiments reinforces our confidence in the experimental results of both Stark effect and pK a measurements and provides an excellent target data set to benchmark diverse protein electrostatics calculations. We used this experimental data set to test the pK a prediction ability of the adaptive Poisson-Boltzmann solver (APBS) and found that a simple continuum dielectric model of the GFP interior is insufficient to accurately capture the measured pK a and Stark effect shifts. We discuss some of the limitations of this continuum-based model in this system and offer this experimentally self-consistent data set as a target benchmark for electrostatics models, which could allow for a more rigorous test of pK a prediction techniques due to the unique environment of the water-filled GFP barrel compared to traditional globular proteins.

  13. Hybrid integration of carbon nanotubes in silicon photonic structures

    NASA Astrophysics Data System (ADS)

    Durán-Valdeiglesias, E.; Zhang, W.; Alonso-Ramos, C.; Le Roux, X.; Serna, S.; Hoang, H. C.; Marris-Morini, D.; Cassan, E.; Intonti, F.; Sarti, F.; Caselli, N.; La China, F.; Gurioli, M.; Balestrieri, M.; Vivien, L.; Filoramo, A.

    2017-02-01

    Silicon photonics, due to its compatibility with the CMOS platform and unprecedented integration capability, has become the preferred solution for the implementation of next generation optical interconnects to accomplish high efficiency, low energy consumption, low cost and device miniaturization in one single chip. However, it is restricted by silicon itself. Silicon does not have efficient light emission or detection in the telecommunication wavelength range (1.3 μm-1.5 μm) or any electro-optic effect (i.e. Pockels effect). Hence, silicon photonic needs to be complemented with other materials for the realization of optically-active devices, including III-V for lasing and Ge for detection. The very different requirement of these materials results in complex fabrication processes that offset the cost-effectiveness of the Si photonics approach. For this purpose, carbon nanotubes (CNTs) have recently been proposed as an attractive one-dimensional light emitting material. Interestingly, semiconducting single walled CNTs (SWNTs) exhibit room-temperature photo- and electro-luminescence in the near-IR that could be exploited for the implementation of integrated nano-sources. They can also be considered for the realization of photo-detectors and optical modulators, since they rely on intrinsically fast non-linear effects, such as Stark and Kerr effect. All these properties make SWNTs ideal candidates in order to fabricate a large variety of optoelectronic devices, including near-IR sources, modulators and photodetectors on Si photonic platforms. In addition, solution processed SWNTs can be integrated on Si using spin-coating or drop-casting techniques, obviating the need of complex epitaxial growth or chip bonding approaches. Here, we report on our recent progress in the coupling of SWNTs light emission into optical resonators implemented on the silicon-on-insulator (SOI) platform. .

  14. Bandwidth-induced reversal of asymmetry in optical-double-resonance amplitudes

    NASA Astrophysics Data System (ADS)

    Nitz, D. E.; Smith, A. V.; Levenson, M. D.; Smith, S. J.

    1981-07-01

    Optical-double-resonance measurements using ionization detection have been carried out in the 3S12-3P12-4D atomic-sodium system. Asymmetries observed in production of 4D atoms from the two components of the Stark-split 3P12 state are found to be controlled by the far, very weak wings of the 17-MHz full-width-at-half-maximum laser line which is used to drive the 3S12-3P12 transition at detunings in the range 0-70 GHz. Suppression of the wings with a Fabry-Perot filter causes a pronounced reversal of the asymmetry.

  15. Laser Controlled Tunneling in a Vertical Optical Lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaufils, Q.; Tackmann, G.; Wang, X.

    2011-05-27

    Raman laser pulses are used to induce coherent tunneling between neighboring sites of a vertical 1D optical lattice. Such tunneling occurs when the detuning of a probe laser from the atomic transition frequency matches multiples of the Bloch frequency, allowing for a spectroscopic control of the coupling between Wannier-Stark (WS) states. In particular, we prepare coherent superpositions of WS states of adjacent sites, and investigate the coherence time of these superpositions by realizing a spatial interferometer. This scheme provides a powerful tool for coherent manipulation of external degrees of freedom of cold atoms, which is a key issue for quantummore » information processing.« less

  16. A system for NMR stark spectroscopy of quadrupolar nuclei.

    PubMed

    Tarasek, Matthew R; Kempf, James G

    2010-05-13

    Electrostatic influences on NMR parameters are well accepted. Experimental and computational routes have been long pursued to understand and utilize such Stark effects. However, existing approaches are largely indirect informants on electric fields, and/or are complicated by multiple causal factors in spectroscopic change. We present a system to directly measure quadrupolar Stark effects from an applied electric (E) field. Our apparatus and applications are relevant in two contexts. Each uses a radiofrequency (rf) E field at twice the nuclear Larmor frequency (2omega(0)). The mechanism is a distortion of the E-field gradient tensor that is linear in the amplitude (E(0)) of the rf E field. The first uses 2omega(0) excitation of double-quantum transitions for times similar to T(1) (the longitudinal spin relaxation time). This perturbs the steady state distribution of spin population. Nonlinear analysis versus E(0) can be used to determine the Stark response rate. The second context uses POWER (perturbations observed with enhanced resolution) NMR. Here, coherent, short-time (

  17. Development of a spectroscopic technique for simultaneous magnetic field, electron density, and temperature measurements in ICF-relevant plasmas.

    PubMed

    Dutra, E C; Koch, J A; Presura, R; Angermeier, W A; Darling, T; Haque, S; Mancini, R C; Covington, A M

    2016-11-01

    Spectroscopic techniques in the visible range are often used in plasma experiments to measure B-field induced Zeeman splitting, electron densities via Stark broadening, and temperatures from Doppler broadening. However, when electron densities and temperatures are sufficiently high, the broadening of the Stark and Doppler components can dominate the emission spectra and obscure the Zeeman component. In this research, we are developing a time-resolved multi-axial technique for measuring the Zeeman, Stark, and Doppler broadened line emission of dense magnetized plasmas for Z-pinch and Dense Plasma Focus (DPF) accelerators. The line emission is used to calculate the electron densities, temperatures, and B-fields. In parallel, we are developing a line-shape modeling code that incorporates the broadening effects due to Stark, Doppler, and Zeeman effects for dense magnetized plasma. This manuscript presents the details of the experimental setup and line shape code, along with the results obtained from an Al iii doublet at the University of Nevada, Reno at Nevada Terawatt Facility. Future tests are planned to further evaluate the technique and modeling on other material wire array, gas puff, and DPF platforms.

  18. [Spectroscopic diagnostics of DC argon plasma at atmospheric pressure].

    PubMed

    Tu, Xin; Lu, Sheng-yong; Yan, Jian-hua; Ma, Zeng-yi; Pan, Xin-chao; Cen, Ke-fa; Cheron, Bruno

    2006-10-01

    The optical emission spectra of DC argon plasma at atmospheric pressure were measured inside and outside the arc chamber. The electron temperature was determined from the Boltzmann plot, and the electron density was derived from Stark broadening of Ar I lines. The criteria for the existence of local thermodynamic equilibrium (LTE)in the plasma was discussed. The results indicate that the DC argon plasma at atmospheric pressure under our experimental conditions is in LTE.

  19. Rydberg State Stark Spectroscopy and Applications to Plasma Diagnostics

    DTIC Science & Technology

    1990-03-01

    Bayfield47 provides an excellent review of the AC Stark effect, in which the primary effect is Rabi splitting. Several authors48 , 49, 50 have...purity of the spectrum indicates that the field present is dominantly anisotropic . 53 n:26NEON LINE n=35 0 n= 40 p.- n=45 IL 0 31975 31950 31925 31900...applied (axial) electric field which is anisotropic , so pure polarization spectra can be recorded. The intensity profile of the Am = 0 polarization is

  20. [Calculating the stark broadening of welding arc spectra by Fourier transform method].

    PubMed

    Pan, Cheng-Gang; Hua, Xue-Ming; Zhang, Wang; Li, Fang; Xiao, Xiao

    2012-07-01

    It's the most effective and accurate method to calculate the electronic density of plasma by using the Stark width of the plasma spectrum. However, it's difficult to separate Stark width from the composite spectrum linear produced by several mechanisms. In the present paper, Fourier transform was used to separate the Lorentz linear from the spectrum observed, thus to get the accurate Stark width. And we calculated the distribution of the TIG welding arc plasma. This method does not need to measure arc temperature accurately, to measure the width of the plasma spectrum broadened by instrument, and has the function to reject the noise data. The results show that, on the axis, the electron density of TIG welding arc decreases with the distance from tungsten increasing, and changes from 1.21 X 10(17) cm(-3) to 1.58 x 10(17) cm(-3); in the radial, the electron density decreases with the distance from axis increasing, and near the tungsten zone the biggest electronic density is off axis.

  1. Observations of H-beta and He II lambda 4686 lines in the spectra of flares of UV Cet-type stars

    NASA Astrophysics Data System (ADS)

    Chugainov, P. F.; Petrov, P. P.; Scherbakov, A. G.

    The main results of 45.4 hours of continuous spectroscopic and photoelectric B-band observations of AD Leo, DT Virgo, and YZ CMi are discussed. In two AD Leo flares and two YZ CMi flares, an increase of the central intensity of H-beta was observed 10-20 min before the maximum B-band brightness. The spectra of one AD Leo flare and one YZ CMi flare definitely indicate the formation of broad wings of H-beta occurring mainly during flare maximum. These flares surpass the other four in total optical energy. The Stark effect seems to be the most appropriate explanation for the origin of the wings. The upper limit of the equivalent widths of the He II wavelength 4686 line was higher than that in the quiet state. The equivalent width values cannot be explained by the cascade recombination mechanism if the ratio of optical and X-ray luminosities is nearly the same for all flares of UV Cet-type stars.

  2. Realizing Fulde-Ferrell Superfluids via a Dark-State Control of Feshbach Resonances

    NASA Astrophysics Data System (ADS)

    He, Lianyi; Hu, Hui; Liu, Xia-Ji

    2018-01-01

    We propose that the long-sought Fulde-Ferrell superfluidity with nonzero momentum pairing can be realized in ultracold two-component Fermi gases of K 40 or Li 6 atoms by optically tuning their magnetic Feshbach resonances via the creation of a closed-channel dark state with a Doppler-shifted Stark effect. In this scheme, two counterpropagating optical fields are applied to couple two molecular states in the closed channel to an excited molecular state, leading to a significant violation of Galilean invariance in the dark-state regime and hence to the possibility of Fulde-Ferrell superfluidity. We develop a field theoretical formulation for both two-body and many-body problems and predict that the Fulde-Ferrell state has remarkable properties, such as anisotropic single-particle dispersion relation, suppressed superfluid density at zero temperature, anisotropic sound velocity, and rotonic collective mode. The latter two features can be experimentally probed using Bragg spectroscopy, providing a smoking-gun proof of Fulde-Ferrell superfluidity.

  3. The 3 micron spectrum of the classical Be star Beta Monocerotis A

    NASA Technical Reports Server (NTRS)

    Sellgren, K.; Smith, R. G.

    1992-01-01

    A 3.1-3.7-micron spectrum of the classical Be star Beta Mon A is presented at a resolution of lambda/Delta-lambda of 700-800. The spectrum shows strong hydrogen recombination lines, including Pf-delta and a series of Humphreys lines from Hu 19 to Hu 28. The relative recombination line strengths suggest that Pf-delta has a large optical depth. The Humphreys lines have relative strengths consistent with case B and may be optically thin. The line widths observed are broader than the Balmer lines and similar in width to Fe II lines, consistent with a disk model in which optically thinner lines arise primarily from a faster rotating inner disk, while optically thicker lines come mainly from a slower rotating outer disk. The apparent lack of Stark broadening of the Humphreys lines is used to place an upper limit on the circumstellar electron density of about 10 exp 12/cu cm.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, J.E.; Adams, R.; Carlson, A.L.

    Stark-shift measurements using emission spectroscopy are a powerful tool for advancing understanding in many plasma physics experiments. The authors use simultaneous 2-D-spatial and time-resolved spectra to study the electric field evolution in the 20 TW Particle Beam Fusion Accelerator II ion diode acceleration gap. Fiber optic arrays transport light from the gap to remote streaked spectrographs operated in a multiplexed mode that enables recording time-resolved spectra from eight spatial locations on a single instrument. Design optimization and characterization measurements of the multiplexed spectrograph properties include the astigmatism, resolution, dispersion variation, and sensitivity. A semi-automated line-fitting procedure determines the Stark shiftmore » and the related uncertainties. Fields up to 10 MV/cm are measured with an accuracy {+-}2--4%. Detailed tests of the fitting procedure confirm that the wavelength shift uncertainties are accurate to better than {+-}20%. Development of an active spectroscopy probe technique that uses laser-induced fluorescence from an injected atomic beam to obtain 3-D space- and time-resolved measurements of the electric and magnetic fields is in progress.« less

  5. Redshift of the light emission from highly strained In0.3Ga0.7As/GaAs quantum wells by dipole δ doping

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Wang, S.-M.; Wang, X.-D.; Larsson, A.

    2005-08-01

    We have studied theoretically the energy band structures and optical properties of highly strained dipole δ-doped In0.3Ga0.7As/GaAs single quantum wells. Including dopant diffusion effect, strain in the quantum well, spin-orbital interactions, and many-body effects, the self-consistent calculations of the eight-band k •p model and the Poisson equation show that the dipole δ doping induces an electric field across the In0.3Ga0.7As quantum well by the Stark effect so that both the interband transition energy and the wave-function overlap between the ground-state electrons and holes are reduced. Applying an external bias across the quantum well partially cancels the built-in electric field and reduces the wavelength redshift. The calculated material gain peak is close to the experimental lasing wavelength.

  6. Measurements of the internal magnetic field on DIII-D using intensity and spacing of the motional Stark multiplet.

    PubMed

    Pablant, N A; Burrell, K H; Groebner, R J; Kaplan, D H; Holcomb, C T

    2008-10-01

    We describe a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of Stark split D(alpha) emission from the neutral beams. This system, named B-Stark, has been recently installed on the DIII-D tokamak. To find the magnetic pitch angle, we use the ratio of the intensities of the pi(3) and sigma(1) lines. These lines originate from the same upper level and so are not dependent on the level populations. In future devices, such as ITER, this technique may have advantages over diagnostics based on MSE polarimetry. We have done an optimization of the viewing direction for the available ports on DIII-D to choose the installation location. With this placement, we have a near optimal viewing angle of 59.6 degrees from the vertical direction. All hardware has been installed for one chord, and we have been routinely taking data since January 2007. We fit the spectra using a simple Stark model in which the upper level populations of the D(alpha) transition are treated as free variables. The magnitude and direction of the magnetic field obtained using this diagnostic technique compare well with measurements from MSE polarimetry and EFIT.

  7. Initial operation of a newly developed multichord motional Stark effect diagnostic in KSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, J., E-mail: jinil@nfri.re.kr; Ko, J.; Wi, H.

    2016-11-15

    A photo-elastic modulator based 25-chord motional Stark effect (MSE) diagnostic has been successfully developed and commissioned in Korea Superconducting Tokamak Advanced Research. The diagnostic measures the radial magnetic pitch angle profile of the Stark splitting of a D-alpha line at 656.1 nm by the electric field associated with the neutral deuterium heating beam. A tangential view of the neutral beam provides a good spatial resolution of 1–3 cm for covering the major radius from 1.74 m to 2.28 m, and the time resolution is achieved at 10 ms. An in-vessel calibration before the vacuum closing as well as an inmore » situ calibration during the tokamak operation was performed by means of specially designed polarized lighting sources. In this work, we present the final design of the installed MSE diagnostic and the first results of the commissioning.« less

  8. Stark parameter dependence of the rest core charge of the emitters for multiply charged ions spectral lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Šćepanović, M., E-mail: mara.scepanovic@gmail.com; Purić, J.

    2016-03-25

    Stark width and shift simultaneous dependence on the upper level ionization potential and rest core charge of the emitter has been evaluated and discussed. It has been verified that the found relations, connecting Stark broadening parameters with upper level ionization potential and rest core charge of the emitters for particular electron temperature and density, can be used for prediction of Stark line width and shift data in case of ions for which observed data, or more detailed calculations, are not yet available. Stark widths and shifts published data are used to demonstrate the existence of other kinds of regularities withinmore » similar spectra of different elements and their ionization stages. The emphasis is on the Stark parameter dependence on the upper level ionization potential and on the rest core charge for the lines from similar spectra of multiply charged ions. The found relations connecting Stark widths and shift parameters with upper level ionization potential, rest core charge and electron temperature were used for a prediction of new Stark broadening data, thus avoiding much more complicated procedures.« less

  9. Stark broadening parameters and transition probabilities of persistent lines of Tl II

    NASA Astrophysics Data System (ADS)

    de Andrés-García, I.; Colón, C.; Fernández-Martínez, F.

    2018-05-01

    The presence of singly ionized thallium in the stellar atmosphere of the chemically peculiar star χ Lupi was reported by Leckrone et al. in 1999 by analysis of its stellar spectrum obtained with the Goddard High Resolution Spectrograph (GHRS) on board the Hubble Space Telescope. Atomic data about the spectral line of 1307.50 Å and about the hyperfine components of the spectral lines of 1321.71 Å and 1908.64 Å were taken from different sources and used to analyse the isotopic abundance of thallium II in the star χ Lupi. From their results the authors concluded that the photosphere of the star presents an anomalous isotopic composition of Tl II. A study of the atomic parameters of Tl II and of the broadening by the Stark effect of its spectral lines (and therefore of the possible overlaps of these lines) can help to clarify the conclusions about the spectral abundance of Tl II in different stars. In this paper we present calculated values of the atomic transition probabilities and Stark broadening parameters for 49 spectral lines of Tl II obtained by using the Cowan code including core polarization effects and the Griem semiempirical approach. Theoretical values of radiative lifetimes for 11 levels (eight with experimental values in the bibliography) are calculated and compared with the experimental values in order to test the quality of our results. Theoretical trends of the Stark width and shift parameters versus the temperature for spectral lines of astrophysical interest are displayed. Trends of our calculated Stark width for the isoelectronic sequence Tl II-Pb III-Bi IV are also displayed.

  10. A model of magnetic and relaxation properties of the mononuclear [Pc2Tb](-)TBA+ complex.

    PubMed

    Reu, O S; Palii, A V; Ostrovsky, S M; Tregenna-Piggott, P L W; Klokishner, S I

    2012-10-15

    The present work is aimed at the elaboration of the model of magnetic properties and magnetic relaxation in the mononuclear [Pc(2)Tb](-)TBA(+) complex that displays single-molecule magnet properties. We calculate the Stark structure of the ground (7)F(6) term of the Tb(3+) ion in the exchange charge model of the crystal field, taking account for covalence effects. The ground Stark level of the complex possesses the maximum value of the total angular momentum projection, while the energies of the excited Stark levels increase with decreasing |M(J)| values, thus giving rise to a barrier for the reversal of magnetization. The one-phonon transitions between the Stark levels of the Tb(3+) ion induced by electron-vibrational interaction are shown to lead to magnetization relaxation in the [Pc(2)Tb](-)TBA(+) complex. The rates of all possible transitions between the low-lying Stark levels are calculated in the temperature range 14 K

  11. Electronic and Optical Properties of Two-Dimensional GaN from First-Principles.

    PubMed

    Sanders, Nocona; Bayerl, Dylan; Shi, Guangsha; Mengle, Kelsey A; Kioupakis, Emmanouil

    2017-12-13

    Gallium nitride (GaN) is an important commercial semiconductor for solid-state lighting applications. Atomically thin GaN, a recently synthesized two-dimensional material, is of particular interest because the extreme quantum confinement enables additional control of its light-emitting properties. We performed first-principles calculations based on density functional and many-body perturbation theory to investigate the electronic, optical, and excitonic properties of monolayer and bilayer two-dimensional (2D) GaN as a function of strain. Our results demonstrate that light emission from monolayer 2D GaN is blueshifted into the deep ultraviolet range, which is promising for sterilization and water-purification applications. Light emission from bilayer 2D GaN occurs at a similar wavelength to its bulk counterpart due to the cancellation of the effect of quantum confinement on the optical gap by the quantum-confined Stark shift. Polarized light emission at room temperature is possible via uniaxial in-plane strain, which is desirable for energy-efficient display applications. We compare the electronic and optical properties of freestanding two-dimensional GaN to atomically thin GaN wells embedded within AlN barriers in order to understand how the functional properties are influenced by the presence of barriers. Our results provide microscopic understanding of the electronic and optical characteristics of GaN at the few-layer regime.

  12. Quantum Computation by Optically Coupled Steady Atoms/Quantum-Dots Inside a Quantum Cavity

    NASA Technical Reports Server (NTRS)

    Pradhan, P.; Wang, K. L.; Roychowdhury, V. P.; Anantram, M. P.; Mor, T.; Saini, Subhash (Technical Monitor)

    1999-01-01

    We present a model for quantum computation using $n$ steady 3-level atoms kept inside a quantum cavity, or using $n$ quantum-dots (QDs) kept inside a quantum cavity. In this model one external laser is pointed towards all the atoms/QDs, and $n$ pairs of electrodes are addressing the atoms/QDs, so that each atom is addressed by one pair. The energy levels of each atom/QD are controlled by an external Stark field given to the atom/QD by its external pair of electrodes. Transition between two energy levels of an individual atom/ QD are controlled by the voltage on its electrodes, and by the external laser. Interactions between two atoms/ QDs are performed with the additional help of the cavity mode (using on-resonance condition). Laser frequency, cavity frequency, and energy levels are far off-resonance most of the time, and they are brought to the resonance (using the Stark effect) only at the time of operations. Steps for a controlled-NOT gate between any two atoms/QDs have been described for this model. Our model demands some challenging technological efforts, such as manufacturing single-electron QDs inside a cavity. However, it promises big advantages over other existing models which are currently implemented, and might enable a much easier scale-up, to compute with many more qubits.

  13. Scattering of a cross-polarized linear wave by a soliton at an optical event horizon in a birefringent nanophotonic waveguide.

    PubMed

    Ciret, Charles; Gorza, Simon-Pierre

    2016-06-15

    The scattering of a linear wave on an optical event horizon, induced by a cross-polarized soliton, is experimentally and numerically investigated in integrated structures. The experiments are performed in a dispersion-engineered birefringent silicon nanophotonic waveguide. In stark contrast with copolarized waves, the large difference between the group velocity of the two cross-polarized waves enables a frequency conversion almost independent of the soliton wavelength. It is shown that the generated idler is only shifted by 10 nm around 1550 nm over a pump tuning range of 350 nm. Simulations using two coupled full vectorial nonlinear Schrödinger equations fully support the experimental results.

  14. Stark widths regularities within spectral series of sodium isoelectronic sequence

    NASA Astrophysics Data System (ADS)

    Trklja, Nora; Tapalaga, Irinel; Dojčinović, Ivan P.; Purić, Jagoš

    2018-02-01

    Stark widths within spectral series of sodium isoelectronic sequence have been studied. This is a unique approach that includes both neutrals and ions. Two levels of problem are considered: if the required atomic parameters are known, Stark widths can be calculated by some of the known methods (in present paper modified semiempirical formula has been used), but if there is a lack of parameters, regularities enable determination of Stark broadening data. In the framework of regularity research, Stark broadening dependence on environmental conditions and certain atomic parameters has been investigated. The aim of this work is to give a simple model, with minimum of required parameters, which can be used for calculation of Stark broadening data for any chosen transitions within sodium like emitters. Obtained relations were used for predictions of Stark widths for transitions that have not been measured or calculated yet. This system enables fast data processing by using of proposed theoretical model and it provides quality control and verification of obtained results.

  15. Sensitivity of equilibrium profile reconstruction to motional Stark effect measurements

    NASA Astrophysics Data System (ADS)

    Batha, S. H.; Levinton, F. M.; Hirshman, S. P.; Bell, M. G.; Wieland, R. M.

    1996-09-01

    The magnetic-field pitch-angle profile, gamma p(R) identical to tan-1(Bpol/Btor), is measured on TFTR using a motional Stark effect (MSE) polarimeter. Measured pitch angle profiles, along with kinetic profiles and external magnetic measurements, are used to compute a self-consistent equilibrium using the free-boundary variational moments equilibrium code VMEC. Uncertainties in the q profile due to uncertainties in gamma P(R), magnetic measurements and kinetic measurements are found to be small. Subsequent uncertainties in the VMEC-calculated current density and shear profiles are also small

  16. Stark cell optoacoustic detection of constituent gases in sample

    NASA Technical Reports Server (NTRS)

    Margolis, J. S.; Shumate, M. S. (Inventor)

    1980-01-01

    An optoacoustic detector for gas analysis is implemented with Stark effect cell modulation for switching a beam in and out of coincidence with a spectral line of a constituent gas in order to eliminate the heating effect of laser energy in the cell as a source of background noise. By using a multiline laser, and linearly sweeping the DC bias voltage while exciting the cell with a multiline laser, it is possible to obtain a spectrum from which to determine the combinations of excited constituents and determine their concentrations in parts per million.

  17. Nanophotonic rare-earth quantum memory with optically controlled retrieval.

    PubMed

    Zhong, Tian; Kindem, Jonathan M; Bartholomew, John G; Rochman, Jake; Craiciu, Ioana; Miyazono, Evan; Bettinelli, Marco; Cavalli, Enrico; Verma, Varun; Nam, Sae Woo; Marsili, Francesco; Shaw, Matthew D; Beyer, Andrew D; Faraon, Andrei

    2017-09-29

    Optical quantum memories are essential elements in quantum networks for long-distance distribution of quantum entanglement. Scalable development of quantum network nodes requires on-chip qubit storage functionality with control of the readout time. We demonstrate a high-fidelity nanophotonic quantum memory based on a mesoscopic neodymium ensemble coupled to a photonic crystal cavity. The nanocavity enables >95% spin polarization for efficient initialization of the atomic frequency comb memory and time bin-selective readout through an enhanced optical Stark shift of the comb frequencies. Our solid-state memory is integrable with other chip-scale photon source and detector devices for multiplexed quantum and classical information processing at the network nodes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Stark effect of Ar I lines for electric field strength diagnostics in the cathode sheath of glow discharge

    NASA Astrophysics Data System (ADS)

    Vasiljević, Milica M.; Spasojević, Djordje; Šišović, Nikola M.; Konjević, Nikola

    2017-09-01

    We present a study of argon glow discharge which shows that measured wavenumber DC Stark shifts Δ ν of two neutral argon lines, Ar I 518.75 nm and Ar I 522.127 nm, can be used for reliable determination of the electric field strength F distribution in the cathode sheath region of the discharge. In order to experimentally determine the coefficient c in quadratic correlation Δ ν =cF2 , manifested in a low field range (up to 15 kV/cm), the discharge is seeded with a small admixture of hydrogen, and the values of F are measured via Stark polarization spectroscopy of the hydrogen Balmer beta line. Once known, this can be used for the determination of F by a simple and inexpensive spectroscopic Stark shift measurement in discharges with other argon admixtures or pure argon. Reported shift results are in good agreement with data extrapolated from measurements performed at high electric fields (over 100 kV/cm) by Windholz (Phys. Scr., 21 (1980) 67).

  19. Dynamic-Stark-effect-induced coherent mixture of virtual paths in laser-dressed helium: energetic electron impact excitation

    NASA Astrophysics Data System (ADS)

    Agueny, Hicham; Makhoute, Abdelkader; Dubois, Alain

    2017-06-01

    We theoretically investigate quantum virtual path interference caused by the dynamic Stark effect in bound-bound electronic transitions. The effect is studied in an intermediate resonant region and in connection with the energetic electron impact excitation of a helium atom embedded in a weak low-frequency laser field. The process under investigation is dealt with via a Born-Floquet approach. Numerical calculations show a resonant feature in laser-assisted cross sections. The latter is found to be sensitive to the intensity of the laser field dressing. We show that this feature is a signature of quantum beats which result from the coherent mixture of different quantum virtual pathways, and that excitation may follow in order to end up with a common final channel. This mixture arises from the dynamic Stark effect, which produces a set of avoided crossings in laser-dressed states. The effect allows one to coherently control quantum virtual path interference by varying the intensity of the laser field dressing. Our findings suggest that the combination of an energetic electron and a weak laser field is a useful tool for the coherent control of nonadiabatic transitions in an intermediate resonant region.

  20. Direct photoassociation of halo molecules in ultracold 86 Sr

    NASA Astrophysics Data System (ADS)

    Aman, J. A.; Hill, Joshua; Killian, T. C.

    2017-04-01

    We investigate the creation of 1S0 +1S0 halo molecules in strontium 86 through direct photoassociation in an optical dipole trap. We drive two photon Raman transitions near-resonance with a molecular level of the 1S0 +3P1 interatomic potential as the intermediate state. This provides large Frank-Condon factors and allows us to observe resonances for the creation of halo molecules through higher order Raman processes. The halo molecule is bound by EB 85 kHz at low excitation-laser intensity, but experiments show large AC Stark shifts of the molecular binding energy. These conditions suggest that STIRAP should be very effective for improving molecular conversion efficiency. Further experiments in a 3D lattice will explore molecular lifetimes and collision rates. Travel support provided by Shell Corporation.

  1. MSE commissioning and other major diagnostic updates on KSTAR

    NASA Astrophysics Data System (ADS)

    Ko, Jinseok; Kstar Team

    2015-11-01

    The motional Stark effect (MSE) diagnostic based on the photoelastic-modulator (PEM) approach has been commissioned for the Korea Superconducting Tokamak Advanced Research (KSTAR). The 25-channel MSE system with the polarization-preserving front optics and precise tilt-tuning narrow bandpass filters provides the spatial resolution less than 1 cm in most of the plasma cross section and about 10 millisecond of time resolution. The polarization response curves with the daily Faraday rotation correction provides reliable pitch angle profiles for the KSTAR discharges with the MSE-optimized energy combination in the three-ion-source neutral beam injection. Some major diagnostic advances such as the poloidal charge exchange spectroscopy, the improved Thomson-scatting system, and the divertor infrared TV are reported as well. Work supported by the Ministry of Science, ICT and Future Planning, Korea.

  2. Effect of periodic potential on exciton states in semiconductor carbon nanotubes

    DOE PAGES

    Roslyak, Oleksiy; Piryatinski, Andrei

    2016-05-28

    Here we develop a theoretical background to treat exciton states in semiconductor single-walled carbon nanotubes (SWCNTs) in the presence of a periodic potential induced by a surface acoustic wave (SAW) propagating along SWCNT. The formalism accounts for the electronic band splitting into the Floquet subbands induced by the Bragg scattering on the SAW potential. Optical transitions between the Floquet states and correlated electron–hole pairs (excitons) are numerically examined. Formation of new van Hove singularities within the edges of Floquet sub-bands and associated transfer of the exciton oscillator strengths resulting in the photoluminescence quenching are predicted. The simulations demonstrate the excitonmore » energy red Stark shift and reduction in the exciton binding energy. We provide comparison of our results with reported theoretical and experimental studies.« less

  3. Experimental methods of post-growth tuning of the excitonic fine structure splitting in semiconductor quantum dots

    PubMed Central

    2012-01-01

    Deterministic sources of polarization entangled photon pairs on demand are considered as important building blocks for quantum communication technology. It has been demonstrated that semiconductor quantum dots (QDs), which exhibit a sufficiently small excitonic fine structure splitting (FSS) can be used as triggered, on-chip sources of polarization entangled photon pairs. As-grown QDs usually do not have the required values of the FSS, making the availability of post-growth tuning techniques highly desired. This article reviews the effect of different post-growth treatments and external fields on the FSS such as thermal annealing, magnetic fields, the optical Stark effect, electric fields, and anisotropic stress. As a consequence of the tuning of the FSS, for some tuning techniques a rotation of the polarization of the emitted light is observed. The joint modification of polarization orientation and FSS can be described by an anticrossing of the bright excitonic states. PMID:22726724

  4. Progress on the FIReTIP Diagnostic on NSTX-U

    NASA Astrophysics Data System (ADS)

    Scott, Evan; Barchfeld, Robert; Riemenschneider, Paul; Muscatello, Chris; Sohrabi, Mohammad; Domier, Calvin; Ren, Yang; Kaita, Robert; Luhmann, Neville, Jr.; NSTX-U Team

    2016-10-01

    The Far-infrared Tangential Interferometer/Polarimeter (FIReTIP) system on NSTX-U at the PPPL aims to provide robust, line-averaged electron density measurements. The system consists of three optically-pumped 119 µm methanol lasers, one of which can be tuned via Stark broadening, allowing for uniquely high intermediate frequencies and time resolutions. One of the major goals of FIReTIP is to incorporate it into the NSTX-U plasma control system (PCS) for real-time plasma density feedback control. The front-end optics mounted to Bay G, which shape and position the beam going into the plasma, and internal retroreflector located near Bay B, which facilitates double-pass measurements, are hard-mounted to the NSTX-U vacuum vessel. Because interferometric density measurements are sensitive to vibrational effects, FIReTIP has been upgraded to a two-color interferometer system with the inclusion of a 633 nm laser interferometer for the direct measurement of vibrations and a field programmable gate array (FPGA) for the subsequent subtraction of vibrational effects from the density measurement in real-time. This work is supported by the U.S. Department of Energy Grant DE-FG02-99ER54518.

  5. Dynamic Stark broadening as the Dicke narrowing effect

    NASA Astrophysics Data System (ADS)

    Calisti, A.; Mossé, C.; Ferri, S.; Talin, B.; Rosmej, F.; Bureyeva, L. A.; Lisitsa, V. S.

    2010-01-01

    A very fast method to account for charged particle dynamics effects in calculations of spectral line shape emitted by plasmas is presented. This method is based on a formulation of the frequency fluctuation model (FFM), which provides an expression of the dynamic line shape as a functional of the static distribution of frequencies. Thus, the main numerical work rests on the calculation of the quasistatic Stark profile. This method for taking into account ion dynamics allows a very fast and accurate calculation of Stark broadening of atomic hydrogen high- n series emission lines. It is not limited to hydrogen spectra. Results on helium- β and Lyman- α lines emitted by argon in microballoon implosion experiment conditions compared with experimental data and simulation results are also presented. The present approach reduces the computer time by more than 2 orders of magnitude as compared with the original FFM with an improvement of the calculation precision, and it opens broad possibilities for its application in spectral line-shape codes.

  6. Quadratic stark effect in the fullerene C60 at low symmetry orientation in the field

    NASA Astrophysics Data System (ADS)

    Tuchin, A. V.; Bityutskaya, L. A.; Bormontov, E. N.

    2014-08-01

    Results of numeric simulation of the influence of the electric field E = 0 - 1 V/Å on the electronic structure of the neutral fullerene C60 taking into account orientational deformation of its carbon cage at arbitrary orientations in the electric field including low symmetry orientations are presented. Splitting of the frontier t 1 u - and h u -levels of the molecule due to the quadratic Stark effect has been investigated. Dependencies of the effective electron work function and the energy gap between the lowest unoccupied and highest occupied molecular orbitals on the strengths of the electric field have been determined.

  7. Stark-shift of impurity fundamental state in a lens shaped quantum dot

    NASA Astrophysics Data System (ADS)

    Aderras, L.; Bah, A.; Feddi, E.; Dujardin, F.; Duque, C. A.

    2017-05-01

    We calculate the Stark effect and the polarisability of shallow-donor impurity located in the centre of lens shaped quantum dot by a variational method and in the effective-mass approximation. Our theoretical model assumes an infinite confinement to describe the barriers at the dot boundaries and the electric field is considered to be applied in the z-direction. The systematic theoretical investigation contains results with the quantum dot size and the strength of the external field. Our calculations reveal that the interval wherein the polarisability varies depends strongly on the dot size.

  8. Method and apparatus for producing laser radiation following two-photon excitation of a gaseous medium

    DOEpatents

    Bischel, William K. [Menlo Park, CA; Jacobs, Ralph R. [Livermore, CA; Prosnitz, Donald [Hamden, CT; Rhodes, Charles K. [Palo Alto, CA; Kelly, Patrick J. [Fort Lewis, WA

    1979-02-20

    Method and apparatus for producing laser radiation by two-photon optical pumping of an atomic or molecular gaseous medium and subsequent lasing action. A population inversion is created as a result of two-photon absorption of the gaseous species. Stark tuning is utilized, if necessary, in order to tune the two-photon transition into exact resonance. In particular, gaseous ammonia (NH.sub.3) or methyl fluoride (CH.sub.3 F) is optically pumped by a pair of CO.sub.2 lasers to create a population inversion resulting from simultaneous two-photon excitation of a high-lying vibrational state, and laser radiation is produced by stimulated emission of coherent radiation from the inverted level.

  9. Method and apparatus for producing laser radiation following two-photon excitation of a gaseous medium

    DOEpatents

    Bischel, W.K.; Jacobs, R.R.; Prosnitz, D.P.; Rhodes, C.K.; Kelly, P.J.

    1979-02-20

    Method and apparatus are disclosed for producing laser radiation by two-photon optical pumping of an atomic or molecular gaseous medium and subsequent lasing action. A population inversion is created as a result of two-photon absorption of the gaseous species. Stark tuning is utilized, if necessary, in order to tune the two-photon transition into exact resonance. In particular, gaseous ammonia (NH[sub 3]) or methyl fluoride (CH[sub 3]F) is optically pumped by a pair of CO[sub 2] lasers to create a population inversion resulting from simultaneous two-photon excitation of a high-lying vibrational state, and laser radiation is produced by stimulated emission of coherent radiation from the inverted level. 3 figs.

  10. On the Stark broadening of Cr VI spectral lines in astrophysical plasma

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.; Simić, Z.; Sahal-Bréchot, S.

    2017-02-01

    Stark broadening parameters for Cr VI lines have been calculated using semiclassical perturbation method for conditions of interest for stellar plasma. Here are presented, as an example of obtained results, Stark broadening parameters for electron- and proton-impact broadening for Cr VI 4s 2S-4p 2P° λ = 1430 Å and Cr VI 4p 2P°-5s 2S λ = 611.8 Å multiplets. The obtained results are used to demonstrate the importance of Stark broadening of Cr VI in DO white dwarf atmospheres. Also the obtained results will enter in STARK-B database which is included in Virtual Atomic and Molecula Data Center - VAMDC.

  11. Interacting dynamic Wannier-Stark ladder driven by a periodic pulse train

    NASA Astrophysics Data System (ADS)

    Hino, Ken-Ichi; Tong, Xiao Min; Toshima, Nobuyuki

    2008-01-01

    The electronic structures of the Floquet states of the dynamic Wannier-Stark ladder (DWSL) are examined, where the DWSL is formed by driving the biased superlattices (SLs) by the periodic pulse train (PPT) with the electric field F(t) —with time t —and the temporal period 2π/ω . For a strong F(t) , interminiband interactions, namely, the ac-Zener tunneling (ac-ZT), are predominantly caused in the DWSL. Such a system is termed the interacting DWSL. In order to understand the details of the Floquet states and the modulation patterns by alteration of a couple of the PPT laser parameters, the linear absorption spectra, αabs(ωp;ω) , of optical interband transitions invoked by the monochromatic probe laser fp(t) with the frequency ωp are calculated, where the spectra are not only linear in fp(t) but also nonlinear in F(t) . The exciton effect is not included for the sake of simplicity. For the PPT driving with unit-pulse shapes largely deviated from the square and saw-toothed profiles, the spectra show unexpected dent structures, differing a great deal from the corresponding ac-ZT-free spectra basically similar to those of the original SLs just showing the ascending steplike structure. To deepen the understanding of this anomaly, the spectra of αabs0(ωp;ω)∝∂αabs(ωp;ω)/∂ωp are also calculated, whereby the dent structures become spectral dips showing the negative absorption. It is found that such anomalous behavior is attributed to the ac-ZT between different minibands that accompanies emission/absorption of the nonzero net number of photons with Jω (with J a nonzero integer). This anomaly also shows the unusual time dependence in the dual-time optical susceptibility associated with αabs0(ωp;ω) . Moreover, the possibility of existence of the negative absorption in the more realistic excitonic spectra is speculated.

  12. Discretization of the total magnetic field by the nuclear spin bath in fluorine-doped ZnSe.

    PubMed

    Zhukov, E A; Kirstein, E; Kopteva, N E; Heisterkamp, F; Yugova, I A; Korenev, V L; Yakovlev, D R; Pawlis, A; Bayer, M; Greilich, A

    2018-05-16

    The coherent spin dynamics of fluorine donor-bound electrons in ZnSe induced by pulsed optical excitation is studied in a perpendicular applied magnetic field. The Larmor precession frequency serves as a measure for the total magnetic field exerted onto the electron spins and, surprisingly, does not increase linearly with the applied field, but shows a step-like behavior with pronounced plateaus, given by multiples of the laser repetition rate. This discretization occurs by a feedback mechanism in which the electron spins polarize the nuclear spins, which in turn generate a local Overhauser field adjusting the total magnetic field accordingly. Varying the optical excitation power, we can control the plateaus, in agreement with our theoretical model. From this model, we trace the observed discretization to the optically induced Stark field, which causes the dynamic nuclear polarization.

  13. Optical spectroscopy and photo modification of individual single-photon emitters in hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Jayakumar, Harishankar; Shotan, Zav; Considine, Christopher; Mazkoit, Mažena; Fedder, Helmut; Wrachtrup, Joerg; Alkauskas, Audrius; Doherty, Marcus; Menon, Vinod; Meriles, Carlos

    Fluorescent defects recently observed under ambient conditions in hexagonal boron nitride (h-BN) promise to open novel opportunities for the implementation of on-chip photonic devices that rely on identical photons from single emitters. Here we report on the room temperature photo-luminescence dynamics of individual emitters in multilayer h-BN flakes exposed to blue laser light. Comparison of optical spectra recorded at successive times reveals considerable spectral diffusion, possibly the result of slowly fluctuating, trapped-carrier-induced stark shifts. Large spectral jumps - reaching up to 100 nm - followed by bleaching are observed in most cases upon prolonged exposure to blue light, an indication of one-directional, photo-chemical changes likely taking place on the flake surface. Remarkably, only a fraction of the observed emitters also fluoresces on green illumination suggesting a more complex optical excitation dynamics than previously anticipated and raising questions on the physical nature of the atomic defect at play.

  14. High-pressure and stark hole-burning studies of chlorosome antennas from Chlorobium tepidum.

    PubMed

    Wu, H M; Rätsep, M; Young, C S; Jankowiak, R; Blankenship, R E; Small, G J

    2000-09-01

    Results from high-pressure and Stark hole-burning experiments on isolated chlorosomes from the green sulfur bacterium Chlorobium tepidum are presented, as well as Stark hole-burning data for bacteriochlorophyll c (BChl c) monomers in a poly(vinyl butyral) copolymer film. Large linear pressure shift rates of -0.44 and -0.54 cm(-1)/MPa were observed for the chlorosome BChl c Q(y)-band at 100 K and the lowest Q(y)-exciton level at 12 K, respectively. It is argued that approximately half of the latter shift rate is due to electron exchange coupling between BChl c molecules. The similarity between the above shift rates and those observed for the B875 and B850 BChl a rings of the light-harvesting complexes of purple bacteria is emphasized. For BChl c monomer, fDeltamu++ = 0.35 D, where Deltamu+ is the dipole moment change for the Q(y) transition and f is the local field correction factor. The data establish that Deltamu+ is dominated by the matrix-induced contribution. The change in polarizability (Deltaalpha) for the Q(y) transition of the BChl c monomer is estimated at 19 A(3), which is essentially identical to that of the Chl a monomer. Interestingly, no Stark effects were observed for the lowest exciton level of the chlorosomes (maximum Stark field of 10(5) V/cm). Possible explanations for this are given, and these include consideration of structural models for the chlorosome BChl c aggregates.

  15. Visualizing excitations at buried heterojunctions in organic semiconductor blends.

    PubMed

    Jakowetz, Andreas C; Böhm, Marcus L; Sadhanala, Aditya; Huettner, Sven; Rao, Akshay; Friend, Richard H

    2017-05-01

    Interfaces play a crucial role in semiconductor devices, but in many device architectures they are nanostructured, disordered and buried away from the surface of the sample. Conventional optical, X-ray and photoelectron probes often fail to provide interface-specific information in such systems. Here we develop an all-optical time-resolved method to probe the local energetic landscape and electronic dynamics at such interfaces, based on the Stark effect caused by electron-hole pairs photo-generated across the interface. Using this method, we found that the electronically active sites at the polymer/fullerene interfaces in model bulk-heterojunction blends fall within the low-energy tail of the absorption spectrum. This suggests that these sites are highly ordered compared with the bulk of the polymer film, leading to large wavefunction delocalization and low site energies. We also detected a 100 fs migration of holes from higher- to lower-energy sites, consistent with these charges moving ballistically into more ordered polymer regions. This ultrafast charge motion may be key to separating electron-hole pairs into free charges against the Coulomb interaction.

  16. Visualizing excitations at buried heterojunctions in organic semiconductor blends

    NASA Astrophysics Data System (ADS)

    Jakowetz, Andreas C.; Böhm, Marcus L.; Sadhanala, Aditya; Huettner, Sven; Rao, Akshay; Friend, Richard H.

    2017-05-01

    Interfaces play a crucial role in semiconductor devices, but in many device architectures they are nanostructured, disordered and buried away from the surface of the sample. Conventional optical, X-ray and photoelectron probes often fail to provide interface-specific information in such systems. Here we develop an all-optical time-resolved method to probe the local energetic landscape and electronic dynamics at such interfaces, based on the Stark effect caused by electron-hole pairs photo-generated across the interface. Using this method, we found that the electronically active sites at the polymer/fullerene interfaces in model bulk-heterojunction blends fall within the low-energy tail of the absorption spectrum. This suggests that these sites are highly ordered compared with the bulk of the polymer film, leading to large wavefunction delocalization and low site energies. We also detected a 100 fs migration of holes from higher- to lower-energy sites, consistent with these charges moving ballistically into more ordered polymer regions. This ultrafast charge motion may be key to separating electron-hole pairs into free charges against the Coulomb interaction.

  17. 1300 nm wavelength InAs quantum dot photodetector grown on silicon.

    PubMed

    Sandall, Ian; Ng, Jo Shien; David, John P R; Tan, Chee Hing; Wang, Ting; Liu, Huiyun

    2012-05-07

    The optical and electrical properties of InAs quantum dots epitaxially grown on a silicon substrate have been investigated to evaluate their potential as both photodiodes and avalanche photodiodes (APDs) operating at a wavelength of 1300 nm. A peak responsivity of 5 mA/W was observed at 1280 nm, with an absorption tail extending beyond 1300 nm, while the dark currents were two orders of magnitude lower than those reported for Ge on Si photodiodes. The diodes exhibited avalanche breakdown at 22 V reverse bias which is probably dominated by impact ionisation occurring in the GaAs and AlGaAs barrier layers. A red shift in the absorption peak of 61.2 meV was measured when the reverse bias was increased from 0 to 22 V, which we attributed to the quantum confined stark effect. This shift also leads to an increase in the responsivity at a fixed wavelength as the bias is increased, yielding a maximum increase in responsivity by a factor of 140 at the wavelength of 1365 nm, illustrating the potential for such a structure to be used as an optical modulator.

  18. Contour shape analysis of hollow ion x-ray emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosmej, F. B.; Angelo, P.; Ecole Polytechnique, Laboratoire pour Utilisation des Lasers Intenses, Physique Atomique dans les Plasmas Denses, 91128 Palaiseau Cedex

    2008-10-22

    Hollow ion x-ray transitions originating from the configurations K{sup 0}L{sup N} have been studied via relativistic atomic structure and Stark broadening calculations. The broadening of the total contour is largely influenced by the oscillator strengths distribution over wavelengths rather than by Stark broadening alone. Interference effects between the upper and lower levels are shown to result in a considerable contour narrowing as well as in a shift of the total contour which could be either red or blue.

  19. Stark width regularities within spectral series of the lithium isoelectronic sequence

    NASA Astrophysics Data System (ADS)

    Tapalaga, Irinel; Trklja, Nora; Dojčinović, Ivan P.; Purić, Jagoš

    2018-03-01

    Stark width regularities within spectral series of the lithium isoelectronic sequence have been studied in an approach that includes both neutrals and ions. The influence of environmental conditions and certain atomic parameters on the Stark widths of spectral lines has been investigated. This study gives a simple model for the calculation of Stark broadening data for spectral lines within the lithium isoelectronic sequence. The proposed model requires fewer parameters than any other model. The obtained relations were used for predictions of Stark widths for transitions that have not yet been measured or calculated. In the framework of the present research, three algorithms for fast data processing have been made and they enable quality control and provide verification of the theoretically calculated results.

  20. Fabrication of micro-optical components using femtosecond oscillator pulses

    NASA Astrophysics Data System (ADS)

    Rodrigues, Vanessa R. M.; Ramachandran, Hema; Chidangil, Santhosh; Mathur, Deepak

    2017-06-01

    With a penchant for integrated photonics and miniaturization, the fabrication of micron sized optical elements using precision laser pulse management is drawing attention due to the possibility of minimizing tolerances for collateral material damage. The work presented here deals with the design, fabrication and characterization of a range of diffractive optics - gratings, grids and Fresnel zone plates - on transparent and metallic samples. Their low volume, light weight, transmission bandwidth, high damage threshold and flexible design make them suited for replacing conventional refractive optical elements. Our one-step, mask-less, 3-D laser direct writing process is a green fabrication technique which is in stark contrast to currently popular Photo-lithography based micro-structuring. Our method provides scope for modifications on the surface as well as within the bulk of the material. The mechanism involved in the fabrication of these optics on transparent and thin metallic substrates differ from each other. Our studies show that both amplitude and phase versions of micro-structures were achieved successfully with performances bearing 98% accuracy vis-a-vis theoretical expectations.

  1. Overflow of a dipolar exciton trap at high magnetic fields

    NASA Astrophysics Data System (ADS)

    Dietl, Sebastian; Kowalik-Seidl, Katarzyna; Hammer, Lukas; Schuh, Dieter; Wegscheider, Werner; Holleitner, Alexander; Wurstbauer, Ursula

    We study the photoluminescence of trapped dipolar excitons (IX) in coupled double GaAs quantum wells at low temperatures and high magnetic fields. A voltage-tunable electrode geometry controls the strength of the quantum confined Stark effect and defines the lateral trapping potential. Furthermore, it enhances the IX lifetime, enabling them to cool down to lattice temperature. We show that a magnetic field in Faraday configuration effectively prevents the escape of unbound photogenerated charge carriers from the trap area, thus increasing the density of dipolar excitons. For large magnetic fields, we observe an overflow of the IX trap and an effectively suppressed quantum confined Stark effect. We acknowledge financial support by the German Excellence Initiative via the Nanosystems Initiative Munich (NIM).

  2. Integration of carbon nanotubes in slot waveguides (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Durán-Valdeiglesias, Elena; Zhang, Weiwei; Hoang, Thi Hong Cam; Alonso-Ramos, Carlos; Serna, Samuel; Le Roux, Xavier; Cassan, Eric; Balestrieri, Matteo; Keita, Al-Saleh; Sarti, Francesco; Biccari, Francesco; Torrini, Ughetta; Vinattieri, Anna; Yang, Hongliu; Bezugly, Viktor; Cuniberti, Gianaurelio; Filoramo, Arianna; Gurioli, Massimo; Vivien, Laurent

    2016-05-01

    Demanding applications such as video streaming, social networking, or web search relay on a large network of data centres, interconnected through optical links. The ever-growing data rates and power consumption inside these data centres are pushing copper links close to their fundamental limits. Optical interconnects are being extensively studied with the purpose of solving these limitations. Among the different possible technology platforms, silicon photonics, due to its compatibility with the CMOS platform, has become one of the preferred solutions for the development of the future generation photonic interconnects. However, the on-chip integration of all photonic and optoelectronic building blocks (sources, modulators and detectors…) is very complex and is not cost-effective due to the various materials involved (Ge for detection, doped Si for modulators and III-V for lasing). Carbon nanotubes (CNTs) are nanomaterials of great interest in photonics thanks to their fundamental optical properties, including near-IR room-temperature foto- and electro- luminescence, Stark effect, Kerr effect and absorption. In consequence, CNTs have the ability to emit, modulate and detect light in the telecommunications wavelength range. Furthermore, they are being extensively developed for new nano-electronics applications. In this work, we propose to use CNTs as active material integrated into silicon photonics for the development of all optoelectronic devices. Here, we report on the development of new integration schemes to couple the light emission from CNTs into optical resonators implemented on the silicon-on-insulator and silicon-nitride-on-insulator platforms. A theoretical and experimental analysis of the light interaction of CNTs with micro-ring resonators based on strip and slot waveguides and slot photonic crystal heterostructure cavities were carried out.

  3. Effect of quantum-well thickness on the optical polarization of AlGaN-based ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Zhang, Jing

    2018-02-01

    Optical polarization from AlGaN quantum well (QW) is crucial for realizing high-efficiency deep-ultraviolet (UV) light-emitting diodes (LEDs) because it determines the light emission patterns and light extraction mechanism of the devices. As the Al-content of AlGaN QW increases, the valence bands order changes and consequently the light polarization switches from transverse-electric (TE) to transverse-magnetic (TM) owing to the different sign and the value of the crystal field splitting energy between AlN (-169meV) and GaN (10meV). Several groups have reported that the ordering of the bands and the TE/TM crossover Al-content could be influenced by the strain state and the quantum confinement from the AlGaN QW system. In this work, we investigate the influence of QW thickness on the optical polarization switching point from AlGaN QW with AlN barriers by using 6-band k•p model. The result presents a decreasing trend of the critical Al-content where the topmost valence band switches from heave hole (HH) to crystal field spilt-off (CH) with increasing QW thicknesses due to the internal electric field and the strain state from the AlGaN QW. Instead, the TE- and TM-polarized spontaneous emission rates switching Al-content rises first and falls later because of joint consequence of the band mixing effect and the Quantum Confined Stark Effect. The reported optical polarization from AlGaN QW emitters in the UV spectral range is assessed in this work and the tendency of the polarization switching point shows great consistency with the theoretical results, which deepens the understanding of the physics from AlGaN QW UV LEDs.

  4. Homogenization of Doppler broadening in spin-noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Petrov, M. Yu.; Ryzhov, I. I.; Smirnov, D. S.; Belyaev, L. Yu.; Potekhin, R. A.; Glazov, M. M.; Kulyasov, V. N.; Kozlov, G. G.; Aleksandrov, E. B.; Zapasskii, V. S.

    2018-03-01

    The spin-noise spectroscopy, being a nonperturbative linear optics tool, is still reputed to reveal a number of capabilities specific to nonlinear optics techniques. The effect of the Doppler broadening homogenization discovered in this work essentially widens these unique properties of spin-noise spectroscopy. We investigate spin noise of a classical system—cesium atoms vapor with admixture of buffer gas—by measuring the spin-induced Faraday rotation fluctuations in the region of D 2 line. The line, under our experimental conditions, is strongly inhomogeneously broadened due to the Doppler effect. Despite that, optical spectrum of the spin-noise power has the shape typical for the homogeneously broadened line with a dip at the line center. This fact is in stark contrast with the results of previous studies of inhomogeneous quantum dot ensembles and Doppler broadened atomic systems. In addition, the two-color spin-noise measurements have shown, in a highly spectacular way, that fluctuations of the Faraday rotation within the line are either correlated or anticorrelated depending on whether the two wavelengths lie on the same side or on different sides of the resonance. The experimental data are interpreted in the frame of the developed theoretical model which takes into account both kinetics and spin dynamics of Cs atoms. It is shown that the unexpected behavior of the Faraday rotation noise spectra and effective homogenization of the optical transition in the spin-noise measurements are related to smallness of the momentum relaxation time of the atoms as compared with their spin-relaxation time. Our findings demonstrate abilities of spin-noise spectroscopy for studying dynamic properties of inhomogeneously broadened ensembles of randomly moving spins.

  5. A single-electron picture based on the multiconfiguration time-dependent Hartree-Fock method: application to the anisotropic ionization and subsequent high-harmonic generation of the CO molecule

    NASA Astrophysics Data System (ADS)

    Ohmura, S.; Kato, T.; Oyamada, T.; Koseki, S.; Ohmura, H.; Kono, H.

    2018-02-01

    The mechanisms of anisotropic near-IR tunnel ionization and high-order harmonic generation (HHG) in a CO molecule are theoretically investigated by using the multiconfiguration time-dependent Hartree-Fock (MCTDHF) method developed for the simulation of multielectron dynamics of molecules. The multielectron dynamics obtained by numerically solving the equations of motion (EOMs) in the MCTDHF method is converted to a single orbital picture in the natural orbital representation where the first-order reduced density matrix is diagonalized. The ionization through each natural orbital is examined and the process of HHG is classified into different optical paths designated by a combinations of initial, intermediate and final natural orbitals. The EOMs for natural spin-orbitals are also derived within the framework of the MCTDHF, which maintains the first-order reduced density matrix to be a diagonal one throughout the time propagation of a many-electron wave function. The orbital dependent, time-dependent effective potentials that govern the dynamics of respective time-dependent natural orbitals are deduced from the derived EOMs, of which the temporal variation can be used to interpret the motion of the electron density associated with each natural spin-orbital. The roles of the orbital shape, multiorbital ionization, linear Stark effect and multielectron interaction in the ionization and HHG of a CO molecule are revealed by the effective potentials obtained. When the laser electric field points to the nucleus O from C, tunnel ionization from the C atom side is enhanced; a hump structure originating from multielectron interaction is then formed on the top of the field-induced distorted barrier of the HOMO effective potential. This hump formation, responsible for the directional anisotropy of tunnel ionization, restrains the influence of the linear Stark effect on the energy shifts of bound states.

  6. Real-time MSE measurements for current profile control on KSTAR.

    PubMed

    De Bock, M F M; Aussems, D; Huijgen, R; Scheffer, M; Chung, J

    2012-10-01

    To step up from current day fusion experiments to power producing fusion reactors, it is necessary to control long pulse, burning plasmas. Stability and confinement properties of tokamak fusion reactors are determined by the current or q profile. In order to control the q profile, it is necessary to measure it in real-time. A real-time motional Stark effect diagnostic is being developed at Korean Superconducting Tokamak for Advanced Research for this purpose. This paper focuses on 3 topics important for real-time measurements: minimize the use of ad hoc parameters, minimize external influences and a robust and fast analysis algorithm. Specifically, we have looked into extracting the retardance of the photo-elastic modulators from the signal itself, minimizing the influence of overlapping beam spectra by optimizing the optical filter design and a multi-channel, multiharmonic phase locking algorithm.

  7. Uncertainty propagation in q and current profiles derived from motional Stark effect polarimetry on TFTR (abstract)a)

    NASA Astrophysics Data System (ADS)

    Batha, S. H.; Levinton, F. M.; Bell, M. G.; Wieland, R. M.; Hirschman, S. P.

    1995-01-01

    The magnetic-field pitch-angle profile, γp(R)≡arctan(Bpol/Btor), is measured on the TFTR tokamak using a motional Stark effect (MSE) polarimeter. Measured profiles are converted to q profiles with the equilibrium code vmec. Uncertainties in the q profile due to uncertainties in the γp(R), magnetics, and kinetic measurements are quantified. Subsequent uncertainties in the vmec-calculated profiles of current density and shear, both of which are important for stability and transport analyses, are also quantified. Examples of circular plasmas under various confinement modes, including the supershot and L mode, will be given.

  8. Imaging motional Stark effect measurements at ASDEX Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, O. P.; Burckhart, A.; McDermott, R.

    2016-11-15

    This paper presents an overview of results from the Imaging Motional Stark Effect (IMSE) diagnostic obtained during its first measurement campaign at ASDEX Upgrade since installation as a permanent diagnostic. A brief overview of the IMSE technique is given, followed by measurements of a standard H-mode discharge, which are compared to equilibrium reconstructions showing good agreement where expected. The development of special discharges for the calibration of pitch angle is reported and safety factor profile changes during sawteeth crashes are shown, which can be resolved to a few percent due to the high sensitivity at good time resolution of themore » new IMSE system.« less

  9. The Stark truth: what your physician clients should know about Stark Law and the Anti-Kickback Statute.

    PubMed

    Taormina, Melissa

    2013-01-01

    This article summarizes key features of Stark Law and the Anti-Kickback Statute, statutes used to fight health care fraud and abuse within Medicare and Medicaid, and explains how attorneys can help health care providers comply with these laws.

  10. Quantum confined Stark effect in organic fluorophores.

    NASA Astrophysics Data System (ADS)

    Peng, Xihong; Anderson, John; Tepper, Gary; Bandyopadhyay, Supriyo; Nayak, Saroj

    2008-03-01

    Fluorescent molecules have widely been used to detect and visualize structure and processes in biological samples due to its extraordinary sensitivity. However, the emission spectra of flurophores are usually broad and the accurate identification is difficult. Recently, experiments show that energy shifts by Stark effect can be used to aid the identification of organic molecules [1]. Stark effect originates from the shifting/splitting of energy levels when a molecule is under an external electric field, which shows a shift/splitting of a peak in absorption/emission spectra. The size of the shift depends on the magnitude of the external field and the molecular structure. In this talk we will show our theoretical study of the peak shifts on emission spectra for a series of organic fluorophores such as tyrosine, tryptophan, rhodamine123 and coumarin314 using density functional theory. We find that a particular peak shift is determined by the local dipole moments of molecular orbitals rather than the global dipole moment of the molecule. These molecular-specific shifts in emission spectra may enable to improve molecular identification in biosensors. Our results will be compared with experimental data. [1]Unpublished, S. Sarkar, B. Kanchibotla, S. Bandyopadhyay, G. Tepper, J. Edwards, J. Anderson, and R. Kessick.

  11. The paradox of progress: translating Evan Stark's Coercive Control into legal doctrine for abused women.

    PubMed

    Hanna, Cheryl

    2009-12-01

    This article examines Evan Stark's model of coercive control and what this paradigm shift might mean for the law. Coercive control can help redefine both criminal offenses involving domestic violence and defenses available to women who kill their abusers. This redefinition would shift the law away from incident-based violence and toward a more comprehensive and accurate paradigm that accounts for the deprivation of a woman's autonomy within the context of an abusive relationship. Such a change would likely provide more effective state intervention into what were once considered private relationships. Yet, this approach may also have some unintended consequences, including refocusing the law on a victim's mental state and complicity in her own abuse rather than on the harm caused by abusive men. Thus, although the law should more fully account for coercive control, lawyers must be cautiously optimistic in implementing Stark's proposed reforms.

  12. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    DOE PAGES

    Vogman, G. V.; Shumlak, U.

    2011-10-13

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian functionmore » associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. As a result, these measurements are used to gain a better understanding of Z-pinch equilibria.« less

  13. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogman, G. V.; Shumlak, U.

    2011-10-15

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian functionmore » associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. These measurements are used to gain a better understanding of Z-pinch equilibria.« less

  14. Towards optical spectroscopic anatomical mapping (OSAM) for lesion validation in cardiac tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh-Moon, Rajinder P.; Zaryab, Mohammad; Hendon, Christine P.

    2017-02-01

    Electroanatomical mapping (EAM) is an invaluable tool for guiding cardiac radiofrequency ablation (RFA) therapy. The principle roles of EAM is the identification of candidate ablation sites by detecting regions of abnormal electrogram activity and lesion validation subsequent to RF energy delivery. However, incomplete lesions may present interim electrical inactivity similar to effective treatment in the acute setting, despite efforts to reveal them with pacing or drugs, such as adenosine. Studies report that the misidentification and recovery of such lesions is a leading cause of arrhythmia recurrence and repeat procedures. In previous work, we demonstrated spectroscopic characterization of cardiac tissues using a fiber optic-integrated RF ablation catheter. In this work, we introduce OSAM (optical spectroscopic anatomical mapping), the application of this spectroscopic technique to obtain 2-dimensional biodistribution maps. We demonstrate its diagnostic potential as an auxiliary method for lesion validation in treated swine preparations. Endocardial lesion sets were created on fresh swine cardiac samples using a commercial RFA system. An optically-integrated catheter console fabricated in-house was used for measurement of tissue optical spectra between 600-1000nm. Three dimensional, Spatio-spectral datasets were generated by raster scanning of the optical catheter across the treated sample surface in the presence of whole blood. Tissue optical parameters were recovered at each spatial position using an inverse Monte Carlo method. OSAM biodistribution maps showed stark correspondence with gross examination of tetrazolium chloride stained tissue specimens. Specifically, we demonstrate the ability of OSAM to readily distinguish between shallow and deeper lesions, a limitation faced by current EAM techniques. These results showcase the OSAMs potential for lesion validation strategies for the treatment of cardiac arrhythmias.

  15. Vibrational Stark Effects of Carbonyl Probes Applied to Reinterpret IR and Raman Data for Enzyme Inhibitors in Terms of Electric Fields at the Active Site.

    PubMed

    Schneider, Samuel H; Boxer, Steven G

    2016-09-15

    IR and Raman frequency shifts have been reported for numerous probes of enzyme transition states, leading to diverse interpretations. In the case of the model enzyme ketosteroid isomerase (KSI), we have argued that IR spectral shifts for a carbonyl probe at the active site can provide a connection between the active site electric field and the activation free energy (Fried et al. Science 2014, 346, 1510-1514). Here we generalize this approach to a much broader set of carbonyl probes (e.g., oxoesters, thioesters, and amides), first establishing the sensitivity of each probe to an electric field using vibrational Stark spectroscopy, vibrational solvatochromism, and MD simulations, and then applying these results to reinterpret data already in the literature for enzymes such as 4-chlorobenzoyl-CoA dehalogenase and serine proteases. These results demonstrate that the vibrational Stark effect provides a general framework for estimating the electrostatic contribution to the catalytic rate and may provide a metric for the design or modification of enzymes. Opportunities and limitations of the approach are also described.

  16. Switchable polarization-sensitive surface plasmon resonance of highly stable gold nanorods liquid crystals composites

    NASA Astrophysics Data System (ADS)

    Liu, Qingkun; Qian, Jun; Cai, Fuhong; Smalyukh, Ivan I.; He, Sailing

    2011-12-01

    In this work, we demonstrate the bulk self-alignment of gold nanorods (GNRs) dispersed in lyotropic nematic liquid crystals (LCs) with high optical absorption coefficient at the surface plasmon resonant wavelength. The polymer-coated GNRs which show spontaneous long-range orientational ordering along the director of LC host exhibit long-term stability as well as high concentration. External magnetic field and shearing allow for alignment and realignment of the orientation of gold nanorods by changing the director of the liquid crystal matrix. This results in a switchable polarization-sensitive surface plasmon resonance exhibiting stark differences from that of the same nanorods in isotropic fluids. The devise-scale bulk nanoparticle alignment may enable optical metamaterial mass production and control of surface plasmon resonance of nanoparticles.

  17. Interface induced spin-orbit interaction in silicon quantum dots and prospects of scalability

    NASA Astrophysics Data System (ADS)

    Ferdous, Rifat; Wai, Kok; Veldhorst, Menno; Hwang, Jason; Yang, Henry; Klimeck, Gerhard; Dzurak, Andrew; Rahman, Rajib

    A scalable quantum computing architecture requires reproducibility over key qubit properties, like resonance frequency, coherence time etc. Randomness in these properties would necessitate individual knowledge of each qubit in a quantum computer. Spin qubits hosted in Silicon (Si) quantum dots (QD) is promising as a potential building block for a large-scale quantum computer, because of their longer coherence times. The Stark shift of the electron g-factor in these QDs has been used to selectively address multiple qubits. From atomistic tight-binding studies we investigated the effect of interface non-ideality on the Stark shift of the g-factor in a Si QD. We find that based on the location of a monoatomic step at the interface with respect to the dot center both the sign and magnitude of the Stark shift change. Thus the presence of interface steps in these devices will cause variability in electron g-factor and its Stark shift based on the location of the qubit. This behavior will also cause varying sensitivity to charge noise from one qubit to another, which will randomize the dephasing times T2*. This predicted device-to-device variability is experimentally observed recently in three qubits fabricated at a Si/Si02 interface, which validates the issues discussed.

  18. Influence of F- on stark splitting of Yb3+ and the thermal expansion of silica glass

    NASA Astrophysics Data System (ADS)

    Cao, Yabin; Chen, Si; Shao, Chongyun; Yu, Chunlei

    2018-06-01

    A local phosphate/fluoride environment of Yb3+ was created in silica glass using a multi-step method. The influence of F- on the Stark splitting of Yb3+ in Al3+/P5+/F- co-doped silica glass was studied at room-temperature, in addition to its effect on the thermal expansion performance of the glass matrix. The results indicate that Yb3+ ions in Al3+/P5+/F- co-doped silica glass have a larger Stark splitting energy of 2F7/2 compared to Al3+/P5+ co-doped silica glass. Moreover, a larger integrated absorption cross-section (34.58 pm2 × nm), stimulated emission cross-section (0.63 pm2), and better thermal expansion performance (1.3062 × 10-6 K- at 100 °C) are achieved in Al3+/P5+/F- co-doped silica glass. Finally, different function mechanisms of F- in silica and phosphate glasses were analyzed and the F-Si bond was used to explain the results in silica glass. The combination of low refractive index, large Stark splitting energy of 2F7/2, and small thermal expansion makes Al3+/P5+/F- co-doped silica glass a preferred material for large mode area fibers for high-power laser applications.

  19. Three-photon Gaussian-Gaussian-Laguerre-Gaussian excitation of a localized atom to a highly excited Rydberg state

    NASA Astrophysics Data System (ADS)

    Mashhadi, L.

    2017-12-01

    Optical vortices are currently one of the most intensively studied topics in light-matter interaction. In this work, a three-step axial Doppler- and recoil-free Gaussian-Gaussian-Laguerre-Gaussian (GGLG) excitation of a localized atom to the highly excited Rydberg state is presented. By assuming a large detuning for intermediate states, an effective quadrupole excitation related to the Laguerre-Gaussian (LG) excitation to the highly excited Rydberg state is obtained. This special excitation system radially confines the single highly excited Rydberg atom independently of the trapping system into a sharp potential landscape into the so-called ‘far-off-resonance optical dipole-quadrupole trap’ (FORDQT). The key parameters of the Rydberg excitation to the highly excited state, namely the effective Rabi frequency and the effective detuning including a position-dependent AC Stark shift, are calculated in terms of the basic parameters of the LG beam and of the polarization of the excitation lasers. It is shown that the obtained parameters can be tuned to have a precise excitation of a single atom to the desired Rydberg state as well. The features of transferring the optical orbital and spin angular momentum of the polarized LG beam to the atom via quadrupole Rydberg excitation offer a long-lived and controllable qudit quantum memory. In addition, in contrast to the Gaussian laser beam, the doughnut-shaped LG beam makes it possible to use a high intensity laser beam to increase the signal-to-noise ratio in quadrupole excitation with minimized perturbations coming from stray light broadening in the last Rydberg excitation process.

  20. Two-point motional Stark effect diagnostic for Madison Symmetric Torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, J.; Den Hartog, D. J.; Caspary, K. J.

    2010-10-15

    A high-precision spectral motional Stark effect (MSE) diagnostic provides internal magnetic field measurements for Madison Symmetric Torus (MST) plasmas. Currently, MST uses two spatial views - on the magnetic axis and on the midminor (off-axis) radius, the latter added recently. A new analysis scheme has been developed to infer both the pitch angle and the magnitude of the magnetic field from MSE spectra. Systematic errors are reduced by using atomic data from atomic data and analysis structure in the fit. Reconstructed current density and safety factor profiles are more strongly and globally constrained with the addition of the off-axis radiusmore » measurement than with the on-axis one only.« less

  1. Planet signatures and Size Segregation in Debris Discs

    NASA Astrophysics Data System (ADS)

    Thébault, Philippe

    2014-01-01

    The response of a debris disc to a planetary perturber is the result of the complex interplay between gravitational effects, grain collisions and stellar radiation pressure (Stark & Kuchner (2009). We investigate to what extent this response can depart from the pure gravitational case when including grain collisional production and radiation pressure. We use the DyCoSS code (Thébault (2012), designed to study the coupled effect of collisions and dynamics for systems at steady state with one perturbing body. We focus on two outcomes: the 2D surface density profile of the disc+planet system, and the way the Particle Size Distribution (PSD) is spatially segregated within the disc. We consider two set-ups: 1) a narrow ring with an exterior ``shepherding'' planet, and 2) an extended disc in which a planet is embedded. For each case, the planet mass and orbit are explored as free parameters, and an unperturbed ``no-planet'' case is also considered. Another parameter is the disc's collisional activity, as parameterized by its optical depth τ.

  2. Comparative study on luminescence extraction strategies of LED by large-scale fabrication of nanopillar and nanohole structures

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Li, Junmei; Sheikhi, Moheb; Jiang, Jie’an; Yang, Zhenhai; Li, Hongwei; Guo, Shiping; Sheng, Jiang; Sun, Jie; Bo, Baoxue; Ye, Jichun

    2018-06-01

    Light extraction and current injection are two important considerations in the development of high efficiency light-emitting-diodes (LEDs), but usually cannot be satisfied simultaneously in nanostructure patterned devices. In this work, we investigated near-UV LEDs with nanopillar and nanohole patterns to improve light extraction efficiency. Photoluminescence (PL) intensities were enhanced by 8.0 and 4.1 times for nanopillar and nanohole LEDs compared to that of planar LED. Nanopillar LED exhibits higher PL emission than that of the nanohole LED, attributing to a convex shape sidewall for more effective outward light scattering, and reduction of quantum-confined-stark-effect owing to strain relaxation. However, nanopillar LED exhibits lower electroluminescence intensity than the nanohole sample, which calls for further optimization in carrier distributions. Experimental results were further supported by near-field electric field simulations. This work demonstrates the difference in optical and electrical behaviors between the nanopillar and nanohole LEDs, paving the way for detailed understanding on luminescence extraction mechanisms of nanostructure patterned UV emitters.

  3. Regularities And Irregularities Of The Stark Parameters For Single Ionized Noble Gases

    NASA Astrophysics Data System (ADS)

    Peláez, R. J.; Djurovic, S.; Cirišan, M.; Aparicio, J. A.; Mar S.

    2010-07-01

    Spectroscopy of ionized noble gases has a great importance for the laboratory and astrophysical plasmas. Generally, spectra of inert gases are important for many physics areas, for example laser physics, fusion diagnostics, photoelectron spectroscopy, collision physics, astrophysics etc. Stark halfwidths as well as shifts of spectral lines are usually employed for plasma diagnostic purposes. For example atomic data of argon krypton and xenon will be useful for the spectral diagnostic of ITER. In addition, the software used for stellar atmosphere simulation like TMAP, and SMART require a large amount of atomic and spectroscopic data. Availability of these parameters will be useful for a further development of stellar atmosphere and evolution models. Stark parameters data of spectral lines can also be useful for verification of theoretical calculations and investigation of regularities and systematic trends of these parameters within a multiplet, supermultiplet or transition array. In the last years, different trends and regularities of Stark parameters (halwidths and shifts of spectral lines) have been analyzed. The conditions related with atomic structure of the element as well as plasma conditions are responsible for regular or irregular behaviors of the Stark parameters. The absence of very close perturbing levels makes Ne II as a good candidate for analysis of the regularities. Other two considered elements Kr II and Xe II with complex spectra present strong perturbations and in some cases an irregularities in Stark parameters appear. In this work we analyze the influence of the perturbations to Stark parameters within the multiplets.

  4. Spectroscopic study of bipolar nanosecond pulse gas-liquid discharge in atmospheric argon

    NASA Astrophysics Data System (ADS)

    Sen, WANG; Dezheng, YANG; Feng, LIU; Wenchun, WANG; Zhi, FANG

    2018-07-01

    Atmospheric gas-liquid discharge with argon as a working gas is presented by employed nanosecond pulse power. The discharge is presented in a glow-like mode. The discharge powers are determined to be less than 1 W, and remains almost constant when the discharge duration time increases. Bountiful active species are determined by capturing optical emission spectra, and their main generation processes are also discussed. The plasma gas temperature is calculated as 350 K by comparing the experimental spectra and the simulated ones of {{{N}}}2({{C}}{}3{{\\Pi }}{{g}}\\to {{B}}{}3{{\\Pi }}{{g}},{{Δ }}{{ν }}=-2). The time resolved vibrational and rotational temperature is researched to present the stability of discharge when pulse voltage and discharge duration vary. The electron density is determined to be 1016 cm‑3 according to the Stark broadening effect of the H α line.

  5. Runge-Lenz wave packet in multichannel Stark photoionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Texier, F.

    2005-01-01

    In a previous slow photoionization experiment, modulations of ionization rings were manifested for Xe in a constant electric field. The present quantum calculation reveals that the modulation is an effect of the multichannel core scattering and of tunneling waves through the Coulomb-Stark potential barrier: the barrier reduces the number of oscillations that is observed relatively to the number of oscillations of the short range wave functions, and the nonhydrogenic core phase shifts modify the position of the ionization rings. We find a hidden difference, in the ionization process, for two close values of the energy depending on the resonance withmore » the barrier. The ionization intensity is interpreted as a Runge-Lenz wave packet; thus, we can relate the quantum modulation to the classical Coulomb-Stark trajectories. The Runge-Lenz wave packet differs from a usual temporal wave packet because its components are eigenstates of the Runge-Lenz vector z projection and its evolution is not temporal but spatial.« less

  6. Non-resonant dynamic stark control of vibrational motion with optimized laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Esben F.; Henriksen, Niels E.

    2016-06-28

    The term dynamic Stark control (DSC) has been used to describe methods of quantum control related to the dynamic Stark effect, i.e., a time-dependent distortion of energy levels. Here, we employ analytical models that present clear and concise interpretations of the principles behind DSC. Within a linearly forced harmonic oscillator model of vibrational excitation, we show how the vibrational amplitude is related to the pulse envelope, and independent of the carrier frequency of the laser pulse, in the DSC regime. Furthermore, we shed light on the DSC regarding the construction of optimal pulse envelopes — from a time-domain as wellmore » as a frequency-domain perspective. Finally, in a numerical study beyond the linearly forced harmonic oscillator model, we show that a pulse envelope can be constructed such that a vibrational excitation into a specific excited vibrational eigenstate is accomplished. The pulse envelope is constructed such that high intensities are avoided in order to eliminate the process of ionization.« less

  7. Femtochemistry in the electronic ground state: Dynamic Stark control of vibrational dynamics

    NASA Astrophysics Data System (ADS)

    Shu, Chuan-Cun; Thomas, Esben F.; Henriksen, Niels E.

    2017-09-01

    We study the interplay of vibrational and rotational excitation in a diatomic molecule due to the non-resonant dynamic Stark effect. With a fixed peak intensity, optimal Gaussian pulse durations for maximizing vibrational or rotational transitions are obtained analytically and confirmed numerically for the H2 and Cl2 molecules. In general, pulse trains or more advanced pulse shaping techniques are required in order to obtain significant vibrational excitation. To that end, we demonstrate that a high degree of selectivity between vibrational and rotational excitation is possible with a suitably phase-modulated Gaussian pulse.

  8. Effect of Rare Earth Elements (Er, Ho) on Semi-Metallic Materials (ScN) in an Applied Electric Field

    NASA Technical Reports Server (NTRS)

    Kim, Hyunjung; Park, Yeonjoon; King, Glen C.; Lee, Kunik; Choi, Sang H.

    2012-01-01

    The development of materials and fabrication technology for field-controlled spectrally active optics is essential for applications such as membrane optics, filters for LIDARs, windows for sensors, telescopes, spectroscopes, cameras and flat-panel displays. The dopants of rare earth elements, in a host of optical systems, create a number of absorption and emission band structures and can easily be incorporated into many high quality crystalline and amorphous hosts. In wide band-gap semiconductors like ScN, the existing deep levels can capture or emit the mobile charges, and can be ionized with the loss or capture of the carriers which are the fundamental basis of concept for smart optic materials. The band gap shrinkage or splitting with dopants supports the possibility of this concept. In the present work, a semi-metallic material (ScN) was doped with rare earth elements (Er, Ho) and tested under an applied electric field to characterize spectral and refractive index shifts by either Stark or Zeeman Effect. These effects can be verified using the UV-Vis spectroscopy, the Hall Effect measurement and the ellipsometric spectroscopy. The optical band gaps of ScN doped with Er and doped with Ho were experimentally estimated as 2.33eV and 2.24eV ( 0.2eV) respectively. This is less than that of undoped ScN (2.5 0.2eV). The red-shifted absorption onset is a direct evidence for the decrease of band gap energy (Eg), and the broadening of valence band states is attributable to the doping cases. A decrease in refractive index with an applied field was observed as a small shift in absorption coefficient using a variable angle spectroscopic ellipsometer. In the presence of an electric field, mobile carriers are redistributed within the space charge region (SCR) to produce this electro-refractive effect. The shift in refractive index is also affected by the density and location of deep potential wells within the SCR. In addition, the microstructure change was observed by a TEM analysis. These results give an insight for future applications for the field-controlled spectrally active material systems.

  9. Optical emission spectroscopy of carbon laser plasma ion source

    NASA Astrophysics Data System (ADS)

    Balki, Oguzhan; Rahman, Md. Mahmudur; Elsayed-Ali, Hani E.

    2018-04-01

    Carbon laser plasma generated by an Nd:YAG laser (wavelength 1064 nm, pulse width 7 ns, fluence 4-52 J cm-2) is studied by optical emission spectroscopy and ion time-of-flight. Up to C4+ ions are detected with the ion flux strongly dependent on the laser fluence. The increase in ion charge with the laser fluence is accompanied by observation of multicharged ion lines in the optical spectra. The time-integrated electron temperature Te is calculated from the Boltzmann plot using the C II lines at 392.0, 426.7, and 588.9 nm. Te is found to increase from ∼0.83 eV for a laser fluence of 22 J cm-2 to ∼0.90 eV for 40 J cm-2. The electron density ne is obtained from the Stark broadened profiles of the C II line at 392 nm and is found to increase from ∼ 2 . 1 × 1017cm-3 for 4 J cm-2 to ∼ 3 . 5 × 1017cm-3 for 40 J cm-2. Applying an external electric field parallel to the expanding plume shows no effect on the line emission intensities. Deconvolution of ion time-of-flight signal with a shifted Maxwell-Boltzmann distribution for each charge state results in an ion temperature Ti ∼4.7 and ∼6.0 eV for 20 and 36 J cm-2, respectively.

  10. The second species of Phanoperla (Plecoptera: Perlidae) from China, P. hainana sp. nov., from Hainan Island.

    PubMed

    Li, Weihai; Qin, Xuefeng

    2016-09-08

    The genus Phanoperla Banks was originally established as a subgenus of Neoperla and its genus delimitation was not fully clear until the revisionary work by Zwick (1982). It currently contains 49 known species from the Oriental region (Banks 1938, 1939, Cao & Bae 2009, Cao et al. 2007, DeWalt et al. 2016, Jewett 1975, Kawai 1968, Stark 1983, 1987, Stark & Sheldon 2009, Sivec & Stark 2010, 2011, Stark & Sivec 2007, Sivec et al. 1988, Zwick 1982, Zwick 1986, Zwick & Sivec 1985). Although species of Phanoperla are not rare in many areas of Southeast Asia bordering China, especially Vietnam and India (Cao & Bae 2009, Mason & Stark 2015), P. pallipennis Banks, 1938 is the only known species of the genus known from China. In this paper, we describe a new species of Phanoperla from Hainan Island of the southernmost province of China. The northern portion of the island has a humid subtropical climate, whereas the remainder of the island has tropical monsoon climate.

  11. Measurements with magnetic field in the National Spherical Torus Experiment using the motional Stark effect with laser induced fluorescence diagnostic

    NASA Astrophysics Data System (ADS)

    Foley, E. L.; Levinton, F. M.

    2013-04-01

    The motional Stark effect with laser-induced fluorescence diagnostic (MSE-LIF) has been installed and tested on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Lab. The MSE-LIF diagnostic will be capable of measuring radially resolved profiles of magnetic field magnitude or pitch angle in NSTX plasmas. The system includes a diagnostic neutral hydrogen beam and a laser which excites the n = 2 to n = 3 transition. A viewing system has been implemented which will support up to 38 channels from the plasma edge to past the magnetic axis. First measurements of MSE-LIF signals in the presence of small applied magnetic fields in neutral gas are reported.

  12. Implementation of quantum logic gates via Stark-tuned Förster resonance in Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Huang, Xi-Rong; Hu, Chang-Sheng; Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi

    2018-02-01

    We present a scheme for implementation of controlled-Z and controlled-NOT gates via rapid adiabatic passage and Stark-tuned Förster resonance. By sweeping the Förster resonance once without passing through it and adiabatically tuning the angle-dependent Rydberg-Rydberg interaction of the dipolar nature, the system can be effectively described by a two-level system with the adiabatic theorem. The single adiabatic passage leads to a gate fidelity as high as 0.999 and a greatly reduced gate operation time. We investigate the scheme by considering an actual atomic level configuration with rubidium atoms, where the fidelity of the controlled-Z gate is still higher than 0.99 under the influence of the Zeeman effect.

  13. Stark laws and fair market value exceptions: an introduction.

    PubMed

    Siebrasse, Paul B

    2007-01-01

    This article will focus on one aspect of complexity in modern healthcare, namely the implications of Stark laws and other fraud and abuse provisions, including anti-kickback statutes and HIPAA. Also, this article explores the prevalence of fair market value as an exception in the Stark laws and discusses the meanings of those exceptions. Finally, the article explores basic approaches to assessing fair market value, including cost, income, and marketing approaches.

  14. Stark problem in terms of the Stokes multipliers for the triconfluent Heun equation

    NASA Astrophysics Data System (ADS)

    Osherov, V. I.; Ushakov, V. G.

    2013-11-01

    The solution of the Stark problem is obtained in terms of the Stokes multipliers for the triconfluent Heun equation (the quartic oscillator equation). The Stokes multipliers are found in an analytical form at positive energies. For negative energies, the Stokes parameters are calculated in frames of a consistent asymptotic approach. The scattering phase, positions, and widths of the Stark resonances are determined as solutions of an implicit equation.

  15. Stark broadening of resonant Cr II 3d5-3d44p spectral lines in hot stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Simić, Z.; Dimitrijević, M. S.; Sahal-Bréchot, S.

    2013-07-01

    New Stark broadening parameters of interest for the astrophysical, laboratory and technological plasma modelling, investigations and analysis for nine resonant Cr II multiplets have been determined within the semiclassical perturbation approach. In order to demonstrate one possibility for their usage in astrophysical plasma research, obtained results have been applied to the analysis of the Stark broadening influence on stellar spectral line shapes.

  16. The Stark Effect on the Wave Function of Tritium in Relativistic Condition

    NASA Astrophysics Data System (ADS)

    Supriadi, B.; Prastowo, S. H. B.; Bahri, S.; Ridlo, Z. R.; Prihandono, T.

    2018-03-01

    Tritium Atom is one of the isotopes of Hydrogen that has two Neutrons in the nucleus and an electron that surrounds the nucleus. The Stark Effect is an effect of a shift or polarization of the atomic spectrum caused by the external electrostatic field. The interaction between the electrons and the external electric field can be reviewed using an approximation method of perturbation theory. The perturbation theory used is a time Independent non-degenerate perturbation and reviewed to second order to obtain correction of Tritium Atomic wave function. The condition that used in the system is a relativistic condition by reviewing the movement of electrons within the Atom. The effects of relativity also affect the correction of the wave function of Atom Tritium in the ground state. Tritium is radioactive material that is still relatively safe, and one of the applications of Tritium Atom is on the battery of betavoltaics (Nano Tritium Battery).

  17. Semiconductor Nonlinear Waveguide Devices and Integrated-Mirror Etalons

    NASA Astrophysics Data System (ADS)

    Chuang, Chih-Li.

    This dissertation investigates different III-V semiconductor devices for applications in nonlinear photonics. These include passive and active nonlinear directional couplers, current-controlled optical phase shifter, and integrated -mirror etalons. A novel method to find the propagation constants of an optical waveguide is introduced. The same method is applied, with minor modifications, to find the coupling length of a directional coupler. The method presented provides a tool for the design of optical waveguide devices. The design, fabrication, and performance of a nonlinear directional coupler are presented. This device uses light intensity to control the direction of light coming out. This is achieved through photo-generated-carriers mechanism in the picosecond regime and through the optical Stark effect in the femtosecond regime. A two-transverse -dimensions beam-propagation computation is used to model the switching behavior in the nonlinear directional coupler. It is found that, by considering the pulse degradation effect, the computation agrees well with experiments. The possibility of operating a nonlinear directional coupler with gain is investigated. It is concluded that by injecting current into the nonlinear directional coupler does not provide the advantages hoped for and the modelling using 2-D beam -propagation methods verifies that. Using current injection to change the refractive index of a waveguide, an optical phase shifter is constructed. This device has the merit of delivering large phase shift with almost no intensity modulation. A phase shift as large as 3pi is produced in a waveguide 400 μm in length. Finally, a new structure, grown by the molecular beam epitaxy machine, is described. The structure consists of two quarter-wave stacks and a spacer layer to form an integrated-mirror etalon. The theory, design principles, spectral analyses are discussed with design examples to clarify the ideas. Emphasis is given to the vertical-cavity surface-emitting laser constructed from this structure. Here we demonstrated the cw operation of the VCSEL at room temperature.

  18. High-Speed Stark Wavelength Tuning of MidIR Interband Cascade Lasers

    DTIC Science & Technology

    2007-03-15

    STARK WAVELENGTH TUNING OF MidIR ICLs 361 Fig. 2. Lasing spectra of the tunable ICL at different bias currents. injection region at before tunneling ...the energy separation between and (and hence the emission wavelength) undergoes a linear Stark shift that depends on the bias current which controls...response Fig. 3. Lasing spectra of the tunable ICL at different bias modulation frequen- cies. Fig. 4. Dependence of the intensity of the Line 2 on bias

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, M.A.; Schenter, G.K.

    We present a hybrid quantum mechanical/molecular mechanical (QM/MM) model for microscopic solvation effects that includes polarizability in the MM region (QM/MMpol). QM/MMpol treatment of both ground and excited states is presented in the formalism. We present QM/MMpol analysis of the ground and electronic excited states of the bacteriochlorophyll b dimer (P) of the photosynthetic reaction center (RC) of Rhodopseudomonas viridis using the INDO/S method. The static-charge potential from the MM model of the RC alone causes Q{sub y1} to have significantly better agreement with the Stark effect results than isolated P. However, consideration of the protein polarization potential is furthermore » required to obtain more complete agreement with Stark effect experiments. Thus, we calculate a Q{sub y1} transition energy at 10826 cm{sup -1} with a ground to excited state change in dipole moment of 4.8 D; an absorption Stark effect angle of 43{degree}; a net shift of 0.15 electrons from the L subunit to the M subunit of P; and a linear dichroism angle (between the transition moment of Q{sub y1} and the pseudo-C{sub 2} axis of the RC) of 81{degree}. These results are in good agreement with experiment. Interestingly, we find that net CT increase is greater for Q{sub y1} than for the second excited state of P (Q{sub y2}), a result that we anticipated in an early model dimer study. 77 refs., 3 figs., 2 tabs.« less

  20. Stark broadening parameter regularities and interpolation and critical evaluation of data for CP star atmospheres research: Stark line shifts

    NASA Astrophysics Data System (ADS)

    Dimitrijevic, M. S.; Tankosic, D.

    1998-04-01

    In order to find out if regularities and systematic trends found to be apparent among experimental Stark line shifts allow the accurate interpolation of new data and critical evaluation of experimental results, the exceptions to the established regularities are analysed on the basis of critical reviews of experimental data, and reasons for such exceptions are discussed. We found that such exceptions are mostly due to the situations when: (i) the energy gap between atomic energy levels within a supermultiplet is equal or comparable to the energy gap to the nearest perturbing levels; (ii) the most important perturbing level is embedded between the energy levels of the supermultiplet; (iii) the forbidden transitions have influence on Stark line shifts.

  1. Accurate calculation of dynamic Stark shifts and depopulation rates of Rydberg energy levels induced by blackbody radiation. Hydrogen, helium, and alkali-metal atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farley, J.W.; Wing, W.H.

    1981-05-01

    A highly excited (Rydberg) atom bathed in blackbody radiation is perturbed in two ways. A dynamic Stark shift is induced by the off-resonant components of the blackbody radiation. Additionally, electric-dipole transitions to other atomic energy levels are induced by the resonant components of the blackbody radiation. This depopulation effect shortens the Rydberg-state lifetime, thereby broadening the energy level. Calculations of these two effects in many states of hydrogen, helium, and the alkali-metal atoms Li, Na, K, Rb, and Cs are presented for T = 300 K. Contributions from the entire blackbody spectrum and from both discrete and continuous perturbing statesmore » are included. The accuracy is considerably greater than that of previous estimates.« less

  2. Quantum-confined Stark effect at 1.3 μm in Ge/Si(0.35)Ge(0.65) quantum-well structure.

    PubMed

    Rouifed, Mohamed Said; Chaisakul, Papichaya; Marris-Morini, Delphine; Frigerio, Jacopo; Isella, Giovanni; Chrastina, Daniel; Edmond, Samson; Le Roux, Xavier; Coudevylle, Jean-René; Vivien, Laurent

    2012-10-01

    Room-temperature quantum-confined Stark effect in a Ge/SiGe quantum-well structure is reported at the wavelength of 1.3 μm. The operating wavelength is tuned by the use of strain engineering. Low-energy plasma-enhanced chemical vapor deposition is used to grow 20 periods of strain-compensated quantum wells (8 nm Ge well and 12 nm Si(0.35)Ge(0.65) barrier) on Si(0.21)Ge(0.79) virtual substrate. The fraction of light absorbed per well allows for a strong modulation around 1.3 μm. The half-width at half-maximum of the excitonic peak of only 12 meV allows for a discussion on physical mechanisms limiting the performances of such devices.

  3. Strongly-guided indium phosphide/indium gallium arsenic phosphide Mach-Zehnder modulator for optical communications

    NASA Astrophysics Data System (ADS)

    Betty, Ian Brian

    2006-12-01

    The development of strongly-guided InP/In1-x GaxAsyP 1-y based Mach-Zehnder optical modulators for 10Gb/s telecommunications is detailed. The modulators have insertion losses including coupling as low as 4.5dB, due to the incorporation of monolithically integrated optical mode spot-size converters (SSC's). The modulators are optimized to produce system performance that is independent of optical coupling alignment and for wavelength operation between 1525nm and 1565nm. A negatively chirped Mach-Zehnder modulator design is demonstrated, giving optimal dispersion-limited reach for 10Gb/s ON/OFF-keying modulation. It is shown that the optical system performance for this design can be determined from purely DC based optical measurements. A Mach-Zehnder modulator design invoking nearly no transient frequency shifts under intensity modulation is also presented, for the first time, using phase-shifter implementations based on the Quantum-Confined-Stark-Effect (QCSE). The performance impact on the modulator from the higher-order vertical and lateral waveguide modes found in strongly-guided waveguides has been determined. The impact of these higher-order modes has been minimized using the design of the waveguide bends, MMI structures, and doping profiles. The fabrication process and optical design for the spot-size mode converters are also thoroughly explored. The SSC structures are based on butt-joined vertically tapered passive waveguide cores within laterally flared strongly-guided ridges, making them compatible with any strong-guiding waveguide structure. The flexibility of the SSC process is demonstrated by the superior performance it has also enabled in a 40Gb/s electro-absorption modulator. The presented electro-absorption modulator has 3.6dB fiber-to-fiber insertion loss, polarization dependent loss (PDL) of only 0.3dB over 15dB extinction, and low absolute chirp (|alpha H| < 0.6) over the full dynamic range.

  4. Optical characteristics of a RF DBD plasma jet in various {Ar}/ {O}_{2}Ar/O2 mixtures

    NASA Astrophysics Data System (ADS)

    Falahat, A.; Ganjovi, A.; Taraz, M.; Ravari, M. N. Rostami; Shahedi, A.

    2018-02-01

    In this paper, using the optical emission spectroscopy (OES) technique, the optical characteristics of a radiofrequency (RF) plasma jet are examined. The Ar/O2 mixture is taken as the operational gas and, the Ar percentage in the Ar/O2 mixture is varied from 70% to 95%. Using the optical emission spectrum analysis of the RF plasma jet, the excitation temperature is determined based on the Boltzmann plot method. The electron density in the plasma medium of the RF plasma jet is obtained by the Stark broadening of the hydrogen Balmer H_{β }. It is mostly seen that, the radiation intensity of Ar 4p→ 4s transitions at higher argon contributions in Ar/O2 mixture is higher. It is found that, at higher Ar percentages, the emission intensities from atomic oxygen (O) are higher and, the line intensities from the argon atoms and ions including O atoms linearly increase. It is observed that the quenching of Ar^{*} with O2 results in higher O species with respect to O2 molecules. In addition, at higher percentages of Ar in the Ar/O2 mixture, while the excitation temperature is decreased, the electron density is increased.

  5. Relative Intensity of a Cross-Over Resonance to Lamb Dips Observed in Stark Spectroscopy of Methane

    NASA Astrophysics Data System (ADS)

    Okuda, Shoko; Sasada, Hiroyuki

    2017-06-01

    Last ISMS, we reported on Stark effects of the νb{3} band of methane observed with a sub-Doppler resolution spectrometer. We determined the rotation-induced permanent dipole moment (PEDM) in the vibrational ground state and the vibration-, rotation-, and Coriolis-type-interaction-induced PEDMs in the v_{3}=1 state. Figure illustrates Stark modulation spectrum of the Q(6)E with the external electric field of 31.0 kV/cm and the selection rule of Δ M=±1, where M is the magnetic quantum number. The Δ M=1 and -1 components of the Lamb dips labeled by A and B are resolved, and the central component C is identified with the cross-over resonance. The Lamb dips are assigned to the magnetic quantum numbers of the lower and upper states, (M'',M') according to the Clebsch-Gordan coefficients. We found that the relative intensity of the cross-over resonance to the associated Lamb dips depends on the P, Q, and R branches. We ascribe the dependence to the collisional relaxation processes.

  6. A battered women's movement perspective of Coercive Control.

    PubMed

    Arnold, Gretchen

    2009-12-01

    In Coercive Control, Evan Stark calls on battered women's activists to reorient their understanding of abusive relationships. Rather than being primarily about physical violence, he maintains, domestic violence is better conceptualized as men's attempts to destroy women's autonomy and reinstate patriarchy in intimate relationships. His analysis suggests important changes to defending battered women in court, modifications to the kinds of support services the movement provides for battered women, and changes in the laws and law enforcement regarding battering. Stark also maintains that, to end coercive control, the battered women's movement must renew its commitment not only to ensuring the safety of individual women but also to attaining the feminist goal of substantive freedom and equality for women in both public and private life. I contend that Stark's reframing of woman abuse is useful for battered women's advocates and may, in some cases but not in others, lead to more effective practices in battered women's programs. At the same time, it is likely to complicate activists' efforts to mobilize public opinion, resources, and public policy to address the problem of woman abuse.

  7. Laser-driven atomic-probe-beam diagnostics

    NASA Astrophysics Data System (ADS)

    Knyazev, B. A.; Greenly, J. B.; Hammer, D. A.

    2000-12-01

    A new laser-driven atomic-probe-beam diagnostic (LAD) is proposed for local, time-resolved measurements of electric field and ion dynamics in the accelerating gap of intense ion beam diodes. LAD adds new features to previous Stark-shift diagnostics which have been progressively developed in several laboratories, from passive observation of Stark effect on ion species or fast (charge-exchanged) neutrals present naturally in diodes, to active Stark atomic spectroscopy (ASAS) in which selected probe atoms were injected into the gap and excited to suitable states by resonant laser radiation. The LAD scheme is a further enhancement of ASAS in which the probe atoms are also used as a local (laser-ionized) ion source at an instant of time. Analysis of the ion energy and angular distribution after leaving the gap enables measurement, at the chosen ionization location in the gap, of both electrostatic potential and the development of ion divergence. Calculations show that all of these quantities can be measured with sub-mm and ns resolution. Using lithium or sodium probe atoms, fields from 0.1 to 10 MV/cm can be measured.

  8. Photoelectron imaging of autoionizing states of xenon: Effect of external electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shubert, V. Alvin; Pratt, Stephen T.

    Velocity map photoelectron imaging was used to study the photoelectron angular distributions of autoionizing Stark states of atomic xenon excited just below the Xe{sup +} {sup 2} P{sub 1/2}{sup o} threshold at fields ranging from 50 to 700 V/cm. Two-color, two-photon resonant, three-photon excitation via the 6p{sup '}[1/2]{sub 0} level was used to probe the region of interest. The wavelength scans show a similar evolution of structure to that observed in single-photon excitation [Ernst et al., Phys. Rev. A 37, 4172 (1988)]. The photoelectron angular distributions following autoionization of the Stark states provide information on the decay of excited statesmore » in electron fields. In the present experiments, the large autoionization width of the ({sup 2} P{sub 1/2}{sup o})nd[3/2]{sub 1}{sup o} series dominates the decay processes, and thus controls the angular distributions. However, the angular distributions of the Stark states also indicate the presence of other decay channels contributing to the decay of these states.« less

  9. Semiclassical perturbation Stark widths of singly charged argon spectral lines

    NASA Astrophysics Data System (ADS)

    Hamdi, Rafik; Ben Nessib, Nabil; Sahal-Bréchot, Sylvie; Dimitrijević, Milan S.

    2018-03-01

    Using a semiclassical perturbation approach with the impact approximation, Stark widths for singly charged argon (Ar II) spectral lines have been calculated. Energy levels and oscillator strengths needed for this calculation have been determined using the Hartree-Fock method with relativistic corrections. Our Stark widths are compared with experimental results for 178 spectral lines. Our results may be of interest not only for laboratory plasma, lasers and technological plasmas but also for white dwarfs and A- and B-type stars.

  10. Adhesion formation after previous caesarean section-a meta-analysis and systematic review.

    PubMed

    Shi, Z; Ma, L; Yang, Y; Wang, H; Schreiber, A; Li, X; Tai, S; Zhao, X; Teng, J; Zhang, L; Lu, W; An, Y; Alla, N R; Cui, T

    2011-03-01

    The optimal technique for performing caesarean section with respect to minimising postoperative adhesions has not been determined. To evaluate adhesion formation for three common caesarean section techniques in women undergoing repeat caesarean section surgeries. A database was constructed from Medline, EMBASE, Cochrane Library, National Science Digital Library, China Biological Medicine Database and through contact with experts in this field from January 1990 to May 2010. Studies were included if they examined adhesion formation in repeat caesarean sections as a primary objective, delineated a clear study design, specified an adhesion scoring system, and had sufficient patient exclusion criteria. We abstracted data regarding adhesion formation. The Mantel-Haenszel random-effects model was employed for all analyses using odds ratio or inverse variance, along with 95% CI. Thirty-three qualified studies including 4423 women were analysed. There were 406 adhesions among 571 women and 238 adhesions among 596 women in the Stark's caesarean section (also known as Misgav-Ladach method) group and modified Stark's caesarean section group, respectively, with pooled OR 4.69 (95% CI 3.32-6.62; P < 0.01, 12 studies); 1173 adhesions among 1555 women and 1179 adhesions among 1625 women in Stark's caesarean section group and classic lower-segment caesarean section group, respectively, with pooled odds ratio 1.28 (95% CI 0.97-1.68; P = 0.08, 21 studies); and 29 adhesions from 102 women and 115 adhesions from 193 women in modified Stark's caesarean section group and classic lower-segment caesarean section group, respectively, with pooled odds ratio 0.28 (95% CI 0.10-0.82; P = 0.02, two studies). Closure of the peritoneum in modified Stark's caesarean section resulted in less adhesion formation and should be recommended. © 2010 The Authors Journal compilation © RCOG 2010 BJOG An International Journal of Obstetrics and Gynaecology.

  11. Rapid-Adiabatic Control of Ro-Vibrational Populations in Polyatomic Molecules

    NASA Astrophysics Data System (ADS)

    Zak, Emil J.; Yachmenev, Andrey

    2017-06-01

    We present a simple method for control of ro-vibrational populations in polyatomic molecules in the presence of inhomogeneous electric fields [1]. Cooling and trapping of heavy polar polyatomic molecules has become one of the frontier goals in high-resolution molecular spectroscopy, especially in the context of parity violation measurement in chiral compounds [2]. A key step toward reaching this goal would be development of a robust and efficient protocol for control of populations of ro-vibrational states in polyatomic, often floppy molecules. Here we demonstrate a modification of the stark-chirped rapid-adiabatic-passage technique (SCRAP) [3], designed for achieving high levels of control of ro-vibrational populations over a selected region in space. The new method employs inhomogeneous electric fields to generate space- and time- controlled Stark-shifts of energy levels in molecules. Adiabatic passage between ro-vibrational states is enabled by the pump pulse, which raises the value of the Rabi frequency. This Stark-chirped population transfer can be used in manipulation of population differences between high-field-seeking and low-field-seeking states of molecules in the Stark decelerator [4]. Appropriate timing of voltages on electric rods located along the decelerator combined with a single pump laser renders our method as potentially more efficient than traditional Stark decelerator techniques. Simulations for NH_3 show significant improvement in effectiveness of cooling, with respect to the standard 'moving-potential' method [5]. At the same time a high phase-space acceptance of the molecular packet is maintained. E. J. Zak, A. Yachmenev (submitted). C. Medcraft, R. Wolf, M. Schnell, Angew. Chem. Int. Ed., 53, 43, 11656-11659 (2014) M. Oberst, H. Munch, T. Halfman, PRL 99, 173001 (2007). K. Wohlfart, F. Grätz, F. Filsinger, H. Haak, G. Meijer, J. Küpper, Phys. Rev. A 77, 031404(R) (2008). H. L. Bethlem, F. M. H. Crompvoets, R. T. Jongma, S. Y. T. van de Meerakker, G. Meijer, Phys. Rev. A, 65, 053416 (2002).

  12. Efficient cooling of quantized vibrations using a four-level configuration

    NASA Astrophysics Data System (ADS)

    Yan, Lei-Lei; Zhang, Jian-Qi; Zhang, Shuo; Feng, Mang

    2016-12-01

    Cooling vibrational degrees of freedom down to ground states is essential to observation of quantum properties of systems with mechanical vibration. We propose two cooling schemes employing four internal levels of the systems, which achieve the ground-state cooling in an efficient fashion by completely deleting the carrier and first-order blue-sideband transitions. The schemes, based on quantum interference and Stark-shift gates, are robust to fluctuations of laser intensity and frequency. The feasibility of the schemes is justified using current laboratory technology. In practice, our proposal readily applies to a nanodiamond nitrogen-vacancy center levitated in an optical trap or attached to a cantilever.

  13. Nonperturbative quantum control via the nonresonant dynamic Stark effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sussman, Benjamin J.; Stolow, Albert; Department of Physics, Queen's University, Kingston, Ontario, K7L 3N6

    2005-05-15

    The nonresonant dynamic Stark effect (NRDSE) is investigated as a general tool for quantum control in the intermediate field strength regime (nonperturbative but nonionizing). We illustrate this scheme for the case of nonadiabatic molecular photodissociation at an avoided crossing. Using the NRDSE exclusively, both the electronic branching ratio and predissociation lifetime may be controlled. Infrared control pulses are used to modify the field-free dynamical evolution during traversal of the avoided crossing, thus controlling the nonadiabatic branching ratio. Predissociation lifetimes may be either increased or decreased using properly timed short infrared pulses to modify phase differences between the diabatic wave packets.more » In contrast with the limiting cases of perturbative control (interference between transitions) and strong field control with ionizing laser fields, control via the NRDSE may be thought of as reversibly modifying the effective Hamiltonian during system propagation.« less

  14. Entanglement of polar symmetric top molecules as candidate qubits.

    PubMed

    Wei, Qi; Kais, Sabre; Friedrich, Bretislav; Herschbach, Dudley

    2011-10-21

    Proposals for quantum computing using rotational states of polar molecules as qubits have previously considered only diatomic molecules. For these the Stark effect is second-order, so a sizable external electric field is required to produce the requisite dipole moments in the laboratory frame. Here we consider use of polar symmetric top molecules. These offer advantages resulting from a first-order Stark effect, which renders the effective dipole moments nearly independent of the field strength. That permits use of much lower external field strengths for addressing sites. Moreover, for a particular choice of qubits, the electric dipole interactions become isomorphous with NMR systems for which many techniques enhancing logic gate operations have been developed. Also inviting is the wider chemical scope, since many symmetric top organic molecules provide options for auxiliary storage qubits in spin and hyperfine structure or in internal rotation states. © 2011 American Institute of Physics

  15. ARC: An open-source library for calculating properties of alkali Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Šibalić, N.; Pritchard, J. D.; Adams, C. S.; Weatherill, K. J.

    2017-11-01

    We present an object-oriented Python library for the computation of properties of highly-excited Rydberg states of alkali atoms. These include single-body effects such as dipole matrix elements, excited-state lifetimes (radiative and black-body limited) and Stark maps of atoms in external electric fields, as well as two-atom interaction potentials accounting for dipole and quadrupole coupling effects valid at both long and short range for arbitrary placement of the atomic dipoles. The package is cross-referenced to precise measurements of atomic energy levels and features extensive documentation to facilitate rapid upgrade or expansion by users. This library has direct application in the field of quantum information and quantum optics which exploit the strong Rydberg dipolar interactions for two-qubit gates, robust atom-light interfaces and simulating quantum many-body physics, as well as the field of metrology using Rydberg atoms as precise microwave electrometers. Program Files doi:http://dx.doi.org/10.17632/hm5n8w628c.1 Licensing provisions: BSD-3-Clause Programming language: Python 2.7 or 3.5, with C extension External Routines: NumPy [1], SciPy [1], Matplotlib [2] Nature of problem: Calculating atomic properties of alkali atoms including lifetimes, energies, Stark shifts and dipole-dipole interaction strengths using matrix elements evaluated from radial wavefunctions. Solution method: Numerical integration of radial Schrödinger equation to obtain atomic wavefunctions, which are then used to evaluate dipole matrix elements. Properties are calculated using second order perturbation theory or exact diagonalisation of the interaction Hamiltonian, yielding results valid even at large external fields or small interatomic separation. Restrictions: External electric field fixed to be parallel to quantisation axis. Supplementary material: Detailed documentation (.html), and Jupyter notebook with examples and benchmarking runs (.html and .ipynb). [1] T.E. Oliphant, Comput. Sci. Eng. 9, 10 (2007). http://www.scipy.org/. [2] J.D. Hunter, Comput. Sci. Eng. 9, 90 (2007). http://matplotlib.org/.

  16. η2-SO2 Linkage Photoisomer of an Osmium Coordination Complex.

    PubMed

    Cole, Jacqueline M; Velazquez-Garcia, Jose de J; Gosztola, David J; Wang, SuYin Grass; Chen, Yu-Sheng

    2018-03-05

    We report the discovery of an η 2 -SO 2 linkage photoisomer in the osmium pentaammine coordination complex, [Os(NH 3 ) 5 (SO 2 )][Os(NH 3 ) 5 (HSO 3 )]Cl 4 (1). Its dark- and light-induced crystal structures are determined via synchrotron X-ray crystallography, at 100 K, where the photoinduced state is metastable in a single crystal that has been stimulated by 505 nm light for 2.5 h. The SO 2 photoisomer in the [Os(NH 3 ) 5 (SO 2 )] 2+ cation contrasts starkly with the photoinactivity of the HSO 3 ligand in its companion [Os(NH 3 ) 5 (HSO 3 )] + cation within the crystallographic asymmetric unit of this single crystal. Panchromatic optical absorption characteristics of this single crystal are revealed in both dark- and light-induced states, using concerted absorption spectroscopy and optical microscopy. Its absorption halves across most of its visible spectrum, upon exposure to 505 nm light. The SO 2 ligand seems to be responsible for this photoinduced bleaching effect, judging from a comparison of the dark- and light-induced crystal structures of 1. The SO 2 photoisomerism is found to be thermally reversible, and so 1 presents a rare example of an osmium-based solid-state optical switch. Such switching in an osmium complex is significant because bottom-row transition metals stand to offer linkage photoisomerism with the greatest photoconversion levels and thermal stability. The demonstration of η 2 -SO 2 bonding in this complex also represents a fundamental contribution to osmium coordination chemistry.

  17. Indium-incorporation efficiency in semipolar (11-22) oriented InGaN-based light emitting diodes

    NASA Astrophysics Data System (ADS)

    Monavarian, Morteza; Metzner, Sebastian; Izyumskaya, Natalia; Okur, Serdal; Zhang, Fan; Can, Nuri; Das, Saikat; Avrutin, Vitaliy; Özgür, Ümit; Bertram, Frank; Christen, Jürgen; Morkoç, Hadis

    2015-03-01

    Reduced electric field in semipolar (1122) GaN/InGaN heterostructures makes this orientation attractive for high efficiency light emitting diodes. In this work, we investigated indium incorporation in semipolar (1122) GaN grown by metal-organic chemical vapor deposition on planar m-plane sapphire substrates. Indium content in the semipolar material was compared with that in polar c-plane samples grown under the same conditions simultaneously side by side on the same holder. The investigated samples incorporated dual GaN/InGaN/GaN double heterostructures with 3nm wide wells. In order to improve optical quality, both polar and semipolar templates were grown using an in-situ epitaxial lateral overgrowth (ELO) technique. Indium incorporation efficiency was derived from the comparison of PL spectra measured on the semipolar and polar structures at the highest excitation density, which allowed us to minimize the effect of quantum confined Stark effect on the emission wavelength. Our data suggests increased indium content in the semipolar material by up to 3.0%, from 15% In in c- GaN to 18% In in (1122) GaN.

  18. Improved Frequency Fluctuation Model for Spectral Line Shape Calculations in Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Ferri, S.; Calisti, A.; Mossé, C.; Talin, B.; Lisitsa, V.

    2010-10-01

    A very fast method to calculate spectral line shapes emitted by plasmas accounting for charge particle dynamics and effects of an external magnetic field is proposed. This method relies on a new formulation of the Frequency Fluctuation Model (FFM), which yields to an expression of the dynamic line profile as a functional of the static distribution function of frequencies. This highly efficient formalism, not limited to hydrogen-like systems, allows to calculate pure Stark and Stark-Zeeman line shapes for a wide range of density, temperature and magnetic field values, which is of importance in plasma physics and astrophysics. Various applications of this method are presented for conditions related to fusion plasmas.

  19. Possible stabilization of the frequency of a CO/sub 2/ laser using an external Stark cell containing 1-1 difluoroethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avtonomov, V.P.; Alexandrescu, R.; Dumitras, D.

    1979-02-01

    Results are presented of measurements of the Stark modulation index and absorption coefficient of CO/sub 2/ laser radiation due to the P (24) line by 1-1 difluorethane (C/sub 2/H/sub 4/F/sub 2/). The possibility of stabilizing the CO/sub 2/ laser frequency using a Stark cell is demonstrated and the laser frequency tuning efficiency within the P (24) line of the 00/sup 0/1--10/sup 0/0 transition is determined.

  20. Vibrational stark effects to identify ion pairing and determine reduction potentials in electrolyte-free environments

    DOE PAGES

    Mani, Tomoyasu; Grills, David C.; Miller, John R.

    2015-01-02

    A recently-developed instrument for time-resolved infrared detection following pulse radiolysis has been used to measure the ν(C≡N) IR band of the radical anion of a CN-substituted fluorene in tetrahydrofuran. Specific vibrational frequencies can exhibit distinct frequency shifts due to ion-pairing, which can be explained in the framework of the vibrational Stark effect. Measurements of the ratio of free ions and ion-pairs in different electrolyte concentrations allowed us to obtain an association constant and free energy change for ion-pairing. As a result, this new method has the potential to probe the geometry of ion-pairing and allows the reduction potentials of moleculesmore » to be determined in the absence of electrolyte in an environment of low dielectric constant.« less

  1. Density effects on the electronic contribution to hydrogen Lyman alpha Stark profiles

    NASA Astrophysics Data System (ADS)

    Motapon, O.

    1998-01-01

    The quantum unified theory of Stark broadening (Tran Minh et al. 1975, Feautrier et al. 1976) is used to study the density effects on the electronic contribution to the hydrogen Lyman alpha lineshape. The contribution of the first angular momenta to the total profile is obtained by an extrapolation method, and the results agree with other approaches. The comparison made with Vidal et al. (1973) shows a good agreement; and the electronic profile is found to be linear in density for | Delta lambda right | greater than 8 Angstroms for densities below 10(17) cm(-3) , while the density dependence becomes more complex for | Delta lambda right | less than 8 Angstroms. The wing profiles are calculated at various temperatures scaling from 2500 to 40000K and a polynomial fit of these profiles is given.

  2. Sensitivity of MSE measurements on the beam atomic level population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz, C., E-mail: carlos.ruiz@wisc.edu; Kumar, S. T. A.; Anderson, F. S. B.

    The effect of variation in atomic level population of a neutral beam on the Motional Stark Effect (MSE) measurements is investigated in the low density plasmas of HSX stellarator. A 30 KeV, 4 A, 3 ms hydrogen diagnostic neutral beam is injected into HSX plasmas of line averaged electron density ranging from 2 to 4 ⋅ 10{sup 18} m{sup −3} at a magnetic field of 1 T. For this density range, the excited level population of the hydrogen neutral beam is expected to undergo variations. Doppler shifted and Stark split H{sub α} and H{sub β} emissions from the beam aremore » simultaneously measured using two cross-calibrated spectrometers. The emission spectrum is simulated and fit to the experimental measurements and the deviation from a statistically populated beam is investigated.« less

  3. A new questionnaire for measuring quality of life - the Stark QoL.

    PubMed

    Hardt, Jochen

    2015-10-26

    The Stark questionnaire measures health-related quality of life (QoL) using pictures almost exclusively. It is supplemented by a minimum of words. It comprises a mental and a physical health component. A German sample of n = 500 subjects, age and gender stratified, filled out the Stark Qol questionnaire along with various other questionnaires via internet. The physical component shows good reliability (Cronbach's alpha = McDonalds Omega = greatest lower bound = .93), the mental component can be improved (Cronbach's alpha = .63, McDonalds Omega = .72, greatest lower bound = .77). Confirmatory factor analysis shows a good fit (Bentlers CFI = .97). Construct validity was proven. The Stark QoL is a promising new development in measuring QoL, it is a short and easy to apply questionnaire. Additionally, it is particularly promising for international research.

  4. Virtual Atomic and Molecular Data Center (VAMDC) and Stark-B Database

    NASA Astrophysics Data System (ADS)

    Dimitrijevic, M. S.; Sahal-Brechot, S.; Kovacevic, A.; Jevremovic, D.; Popovic, L. C.; VAMDC Consortium; Dubernet, Marie-Lise

    2012-01-01

    Virtual Atomic and Molecular Data Center (VAMDC) is an European FP7 project with aims to build a flexible and interoperable e-science environment based interface to the existing Atomic and Molecular data. The VAMDC will be built upon the expertise of existing Atomic and Molecular databases, data producers and service providers with the specific aim of creating an infrastructure that is easily tuned to the requirements of a wide variety of users in academic, governmental, industrial or public communities. In VAMDC will enter also STARK-B database, containing Stark broadening parameters for a large number of lines, obtained by the semiclassical perturbation method during more than 30 years of collaboration of authors of this work (MSD and SSB) and their co-workers. In this contribution we will review the VAMDC project, STARK-B database and discuss the benefits of both for the corresponding data users.

  5. Spectroscopic analysis of femtosecond laser plasma filament in air

    NASA Astrophysics Data System (ADS)

    Bernhardt, J.; Liu, W.; Théberge, F.; Xu, H. L.; Daigle, J. F.; Châteauneuf, M.; Dubois, J.; Chin, S. L.

    2008-03-01

    We report a spectroscopic analysis of a filament generated by a femtosecond laser pulse in air. In the filament spectra, the characteristic Stark broadened atomic oxygen triplet centered at 777.4 nm has been observed. The measured electron impact Stark broadening parameter of the triplet is larger than the theoretical value by Griem [H.R. Griem, Plasma Spectroscopy, McGraw Hill, New York, 1964] by a factor 6.7 . Using the experimental value 0.0166nm , the plasma densities derived from Stark broadening agree well with those most recently obtained from Théberge et al.'s measurement of the nitrogen fluorescence calibrated by longitudinal diffraction [F. Théberge, W. Liu, P.T. Simard, A. Becker, S. L. Chin, Phys. Rev. E 74 (2006) 036406]. However, the Stark broadening approach is much simpler and can be used to non-invasively measure the filament plasma density distribution in air under different propagation conditions.

  6. Stark broadening of several Bi IV spectral lines of astrophysical interest

    NASA Astrophysics Data System (ADS)

    Colón, C.; Moreno-Díaz, C.; de Andrés-García, I.; Alonso-Medina, A.

    2017-09-01

    The presence of spectral lines of bismuth in stellar atmospheres has been reported in different stars. The anomalous values of the spectral intensities of Bi II and Bi III, compared to the theoretical Local Termodinamic Equilibrium (LTE) standards of Bi I/Bi II/Bi III, have been reported in the spectra obtained with the High Resolution Spectrograph of the Hubble/Goddard Space Telescope in the chemically peculiar stars HgMn stars χ Lupi and HR 7775. Spectral lines of 1436.8, 1902.3, 2630.9 and 2936.7 Å of Bi II and 1423.4 Å of Bi III were reported and their relative intensities were measured in these studies Litzén & Wahlgren 2002. These lines are overlapped with spectral lines of 1437.65, 2630.1 and 2937.1 Å of Bi IV. A study of the Stark broadening parameters of Bi IV spectral lines can help to study these overlaps. In this paper, using the Griem semi-empirical approach, we report calculated values of the Stark parameters for 64 spectral lines of Bi IV. The matrix elements used in these calculations have been determined from 17 configurations of Bi IV. They were calculated using the cowan code including core polarization effects. Data are displayed for an electron density of 1017 cm-3 and temperatures T = 10 000-160 000 K. Also calculated radiative lifetimes for 12 levels with experimental lifetime are presented, in order to test the goodness of our calculations. Theoretical trends of the Stark width and shift parameters versus the temperature for spectral lines of astrophysical interest are displayed.

  7. Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Förster resonances

    PubMed Central

    Gorniaczyk, H.; Tresp, C.; Bienias, P.; Paris-Mandoki, A.; Li, W.; Mirgorodskiy, I.; Büchler, H. P.; Lesanovsky, I.; Hofferberth, S.

    2016-01-01

    Mapping the strong interaction between Rydberg atoms onto single photons via electromagnetically induced transparency enables manipulation of light at the single-photon level and few-photon devices such as all-optical switches and transistors operated by individual photons. Here we demonstrate experimentally that Stark-tuned Förster resonances can substantially increase this effective interaction between individual photons. This technique boosts the gain of a single-photon transistor to over 100, enhances the non-destructive detection of single Rydberg atoms to a fidelity beyond 0.8, and enables high-precision spectroscopy on Rydberg pair states. On top, we achieve a gain larger than 2 with gate photon read-out after the transistor operation. Theory models for Rydberg polariton propagation on Förster resonance and for the projection of the stored spin-wave yield excellent agreement to our data and successfully identify the main decoherence mechanism of the Rydberg transistor, paving the way towards photonic quantum gates. PMID:27515278

  8. Electrically-Tunable Group Delays Using Quantum Wells in a Distributed Bragg Reflector

    NASA Technical Reports Server (NTRS)

    Nelson, Thomas R., Jr.; Loehr, John P.; Fork, Richard L.; Cole, Spencer; Jones, Darryl K.; Keys, Andrew

    1999-01-01

    There is a growing interest in the fabrication of semiconductor optical group delay lines for the development of phased arrays of Vertical-Cavity Surface-Emitting Lasers (VCSELs). We present a novel structure incorporating In(x)GA(1-x)As quantum wells in the GaAs quarter-wave layers of a GaAs/AlAs distributed Bragg reflector (DBR). Application of an electric field across the quantum wells leads to red shifting and peak broadening of the el-hhl exciton peak via the quantum-confined Stark effect. Resultant changes in the index of refraction thereby provide a means for altering the group delay of an incident laser pulse. We discuss the tradeoffs between the maximum amount of change in group delay versus absorption losses for such a device. We also compare a simple theoretical model to experimental results, and discuss both angle and position tuning of the BDR band edge resonance relative to the exciton absorption peak. The advantages of such monolithically grown devices for phased-array VCSEL applications will be detailed.

  9. Manipulating the wavelength-drift of a Tm laser for resonance enhancement in an intra-cavity pumped Ho laser.

    PubMed

    Huang, Haizhou; Huang, Jianhong; Liu, Huagang; Li, Jinhui; Lin, Zixiong; Ge, Yan; Dai, Shutao; Deng, Jing; Lin, Wenxiong

    2018-03-05

    We demonstrate an enhancement mechanism and thermal model for intra-cavity pumped lasers, where resonance enhancement in intra-cavity pumped Ho laser was achieved by manipulating the wavelength-drift nature of the Tm laser for the first time. Optical conversion efficiency of 37.5% from an absorbed 785 nm diode laser to a Ho laser was obtained with a maximum output power of 7.51 W at 2122 nm, which is comparable to the conversion efficiency in 1.9 μm LD pumped Ho lasers. Meanwhile, more severe thermal effects in the Ho-doped gain medium than the Tm-doped one at high power operation were verified based on the built thermal model. This work benefits the design or evaluation of intra-cavity pumped lasers, and the resonance enhancement originated from the difference in reabsorption loss between stark levels at the lasing manifolds of quasi-three-level rare-earth ions has great interest to improve the existing intra-cavity pumped lasers or explore novel lasers.

  10. InGaN/GaN quantum dots as optical probes for the electric field at the GaN/electrolyte interface

    NASA Astrophysics Data System (ADS)

    Teubert, J.; Koslowski, S.; Lippert, S.; Schäfer, M.; Wallys, J.; Dimitrakopulos, G.; Kehagias, Th.; Komninou, Ph.; Das, A.; Monroy, E.; Eickhoff, M.

    2013-08-01

    We investigated the electric-field dependence of the photoluminescence-emission properties of InGaN/GaN quantum dot multilayers in contact with an electrolyte. Controlled variations of the surface potential were achieved by the application of external electric fields using the electrolytic Schottky contact and by variation of the solution's pH value. Prior to characterization, a selective electrochemical passivation process was required to suppress leakage currents. The quantum dot luminescence is strongly affected by surface potential variations, i.e., it increases exponentially with cathodic bias and acidic pH values. The results cannot be explained by a modification of intra-dot polarization induced electric fields via the quantum confined Stark effect but are attributed to the suppression/enhancement of non-radiative recombination processes, i.e., mainly hole transfer into the electrolyte. The results establish a link between the photoluminescence intensity and the magnitude of electric fields at the semiconductor/electrolyte interface.

  11. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography

    NASA Astrophysics Data System (ADS)

    Wang, Qing Hua; Jin, Zhong; Kim, Ki Kang; Hilmer, Andrew J.; Paulus, Geraldine L. C.; Shih, Chih-Jen; Ham, Moon-Ho; Sanchez-Yamagishi, Javier D.; Watanabe, Kenji; Taniguchi, Takashi; Kong, Jing; Jarillo-Herrero, Pablo; Strano, Michael S.

    2012-09-01

    Graphene has exceptional electronic, optical, mechanical and thermal properties, which provide it with great potential for use in electronic, optoelectronic and sensing applications. The chemical functionalization of graphene has been investigated with a view to controlling its electronic properties and interactions with other materials. Covalent modification of graphene by organic diazonium salts has been used to achieve these goals, but because graphene comprises only a single atomic layer, it is strongly influenced by the underlying substrate. Here, we show a stark difference in the rate of electron-transfer reactions with organic diazonium salts for monolayer graphene supported on a variety of substrates. Reactions proceed rapidly for graphene supported on SiO2 and Al2O3 (sapphire), but negligibly on alkyl-terminated and hexagonal boron nitride (hBN) surfaces, as shown by Raman spectroscopy. We also develop a model of reactivity based on substrate-induced electron-hole puddles in graphene, and achieve spatial patterning of chemical reactions in graphene by patterning the substrate.

  12. Influence of non-local thermodynamic equilibrium and Zeeman effects on magnetic equilibrium reconstruction using spectral motional Stark effect diagnostic

    NASA Astrophysics Data System (ADS)

    Reimer, R.; Marchuk, O.; Geiger, B.; Mc Carthy, P. J.; Dunne, M.; Hobirk, J.; Wolf, R.; ASDEX Upgrade Team

    2017-08-01

    The Motional Stark Effect (MSE) diagnostic is a well established technique to infer the local internal magnetic field in fusion plasmas. In this paper, the existing forward model which describes the MSE data is extended by the Zeeman effect, fine-structure, and relativistic corrections in the interpretation of the MSE spectra for different experimental conditions at the tokamak ASDEX Upgrade. The contribution of the non-Local Thermodynamic Equilibrium (non-LTE) populations among the magnetic sub-levels and the Zeeman effect on the derived plasma parameters is different. The obtained pitch angle is changed by 3 ° … 4 ° and by 0 . 5 ° … 1 ° including the non-LTE and the Zeeman effects into the standard statistical MSE model. The total correction is about 4°. Moreover, the variation of the magnetic field strength is significantly changed by 2.2% due to the Zeeman effect only. While the data on the derived pitch angle still could not be tested against the other diagnostics, the results from an equilibrium reconstruction solver confirm the obtained values for magnetic field strength.

  13. Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications.

    PubMed

    Liu, Qingkun; Cui, Yanxia; Gardner, Dennis; Li, Xin; He, Sailing; Smalyukh, Ivan I

    2010-04-14

    We demonstrate the bulk self-alignment of dispersed gold nanorods imposed by the intrinsic cylindrical micelle self-assembly in nematic and hexagonal liquid crystalline phases of anisotropic fluids. External magnetic field and shearing allow for alignment and realignment of the liquid crystal matrix with the ensuing long-range orientational order of well-dispersed plasmonic nanorods. This results in a switchable polarization-sensitive plasmon resonance exhibiting stark differences from that of the same nanorods in isotropic fluids. The device-scale bulk nanoparticle alignment may enable optical metamaterial mass production and control of properties arising from combining the switchable nanoscale structure of anisotropic fluids with the surface plasmon resonance properties of the plasmonic nanorods.

  14. Stark effect spectrophone for continuous absorption spectra monitoring. [a technique for gas analysis

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J. (Inventor)

    1981-01-01

    A Stark effect spectrophone using a pulsed or continuous wave laser having a beam with one or more absorption lines of a constituent of an unknown gas is described. The laser beam is directed through windows of a closed cell while the unknown gas to be modified flows continuously through the cell between electric field plates disposed in the cell on opposite sides of the beam path through the cell. When the beam is pulsed, energy absorbed by the gas increases at each point along the beam path according to the spectral lines of the constituents of the gas for the particular field strengths at those points. The pressure measurement at each point during each pulse of energy yields a plot of absorption as a function of electric field for simultaneous detection of the gas constituents. Provision for signal averaging and modulation is included.

  15. Combining ligand-induced quantum-confined stark effect with type II heterojunction bilayer structure in CdTe and CdSe nanocrystal-based solar cells.

    PubMed

    Yaacobi-Gross, Nir; Garphunkin, Natalia; Solomeshch, Olga; Vaneski, Aleksandar; Susha, Andrei S; Rogach, Andrey L; Tessler, Nir

    2012-04-24

    We show that it is possible to combine several charge generation strategies in a single device structure, the performance of which benefits from all methods used. Exploiting the inherent type II heterojunction between layered structures of CdSe and CdTe colloidal quantum dots, we systematically study different ways of combining such nanocrystals of different size and surface chemistry and with different linking agents in a bilayer solar cell configuration. We demonstrate the beneficial use of two distinctly different sizes of NCs not only to improve the solar spectrum matching but also to reduce exciton binding energy, allowing their efficient dissociation at the interface. We further make use of the ligand-induced quantum-confined Stark effect in order to enhance charge generation and, hence, overall efficiency of nanocrystal-based solar cells.

  16. Feasibility of a motional Stark effect system on the TCV tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegrist, M.R.; Hawkes, N.; Weisen, H.

    This paper presents a feasibility study for a motional Stark effect (MSE) [F. M. Levinton et al., Phys. Rev. Lett. 63, 2060 (1989)] diagnostic on the TCV tokamak. A numerical simulation code has been used to identify the optimal port arrangement and geometrical layout. It predicts the expected measurement accuracy for a range of typical plasma scenarios. With the existing neutral beam injector (NBI) and a detection system based on current day technology, it should be possible to determine the safety factor with an accuracy of the order of 5%. A vertically injected beam through the plasma center would allowmore » one to measure plasmas which are centered above the midplane, a common occurrence in connection with electron cyclotron resonance heating and electron cyclotron current drive experiments. In this case a new and ideally more powerful NBI would be required.« less

  17. [Study on physical deviation factors on laser induced breakdown spectroscopy measurement].

    PubMed

    Wan, Xiong; Wang, Peng; Wang, Qi; Zhang, Qing; Zhang, Zhi-Min; Zhang, Hua-Ming

    2013-10-01

    In order to eliminate the deviation between the measured LIBS spectral line and the standard LIBS spectral line, and improve the accuracy of elements measurement, a research of physical deviation factors in laser induced breakdown spectroscopy technology was proposed. Under the same experimental conditions, the relationship of ablated hole effect and spectral wavelength was tested, the Stark broadening data of Mg plasma laser induced breakdown spectroscopy with sampling time-delay from 1.00 to 3.00 micros was also studied, thus the physical deviation influences such as ablated hole effect and Stark broadening could be obtained while collecting the spectrum. The results and the method of the research and analysis can also be applied to other laser induced breakdown spectroscopy experiment system, which is of great significance to improve the accuracy of LIBS elements measuring and is also important to the research on the optimum sampling time-delay of LIBS.

  18. Measurement and Analysis of Atomic Hydrogen and Diatomic Molecular AlO, C2, CN, and TiO Spectra Following Laser-induced Optical Breakdown

    PubMed Central

    Parigger, Christian G.; Woods, Alexander C.; Witte, Michael J.; Swafford, Lauren D.; Surmick, David M.

    2014-01-01

    In this work, we present time-resolved measurements of atomic and diatomic spectra following laser-induced optical breakdown. A typical LIBS arrangement is used. Here we operate a Nd:YAG laser at a frequency of 10 Hz at the fundamental wavelength of 1,064 nm. The 14 nsec pulses with anenergy of 190 mJ/pulse are focused to a 50 µm spot size to generate a plasma from optical breakdown or laser ablation in air. The microplasma is imaged onto the entrance slit of a 0.6 m spectrometer, and spectra are recorded using an 1,800 grooves/mm grating an intensified linear diode array and optical multichannel analyzer (OMA) or an ICCD. Of interest are Stark-broadened atomic lines of the hydrogen Balmer series to infer electron density. We also elaborate on temperature measurements from diatomic emission spectra of aluminum monoxide (AlO), carbon (C2), cyanogen (CN), and titanium monoxide (TiO). The experimental procedures include wavelength and sensitivity calibrations. Analysis of the recorded molecular spectra is accomplished by the fitting of data with tabulated line strengths. Furthermore, Monte-Carlo type simulations are performed to estimate the error margins. Time-resolved measurements are essential for the transient plasma commonly encountered in LIBS. PMID:24561875

  19. Measurement and analysis of atomic hydrogen and diatomic molecular AlO, C2, CN, and TiO spectra following laser-induced optical breakdown.

    PubMed

    Parigger, Christian G; Woods, Alexander C; Witte, Michael J; Swafford, Lauren D; Surmick, David M

    2014-02-14

    In this work, we present time-resolved measurements of atomic and diatomic spectra following laser-induced optical breakdown. A typical LIBS arrangement is used. Here we operate a Nd:YAG laser at a frequency of 10 Hz at the fundamental wavelength of 1,064 nm. The 14 nsec pulses with anenergy of 190 mJ/pulse are focused to a 50 µm spot size to generate a plasma from optical breakdown or laser ablation in air. The microplasma is imaged onto the entrance slit of a 0.6 m spectrometer, and spectra are recorded using an 1,800 grooves/mm grating an intensified linear diode array and optical multichannel analyzer (OMA) or an ICCD. Of interest are Stark-broadened atomic lines of the hydrogen Balmer series to infer electron density. We also elaborate on temperature measurements from diatomic emission spectra of aluminum monoxide (AlO), carbon (C2), cyanogen (CN), and titanium monoxide (TiO). The experimental procedures include wavelength and sensitivity calibrations. Analysis of the recorded molecular spectra is accomplished by the fitting of data with tabulated line strengths. Furthermore, Monte-Carlo type simulations are performed to estimate the error margins. Time-resolved measurements are essential for the transient plasma commonly encountered in LIBS.

  20. Theoretical analyses of the effects on the linear and quadratic nonlinear optical properties of N-arylation of pyridinium groups in stilbazolium dyes.

    PubMed

    Coe, Benjamin J; Beljonne, David; Vogel, Henryk; Garín, Javier; Orduna, Jesús

    2005-11-10

    N-Arylation of the pyridinium electron acceptor unit in stilbazolium chromophores has been found by previous experimental hyper-Rayleigh scattering and electronic Stark effect (electroabsorption) spectroscopic studies to lead to substantial increases in the static first hyperpolarizability beta(0). We show here that INDO/SCI calculations on the isolated cations trans-4'-(dimethylamino)-N-R-4-stilbazolium (R = methyl 1, phenyl 2, 2,4-dinitrophenyl 3, or 2-pyrimidyl 4) predict only slight red-shifts in the energy of the intramolecular charge-transfer (ICT) transition and accompanying relatively small changes in beta(0) on moving along the series. The inclusion of acetonitrile solvent using a polarizable continuum model affords a somewhat better agreement with the experimental data, especially the red-shifting of the ICT transition and the increase in beta(0) on going from 1 to 4. Time-dependent density functional theory (TD-DFT), finite field, and coupled perturbed Hartree-Fock calculations reproduce even more closely the empirical data and trends; the latter two approaches lead to the highest quadratic nonlinear optical (NLO) response of the studied chromophores for 3, for which the predicted beta(0) is ca. 50-100% larger than that of the analogous N-methylated cation 1. Although the TD-DFT and INDO/SCI approaches give quite different results for ground- and excited-state dipole moments, the overall conclusions of these two methods regarding the ICT absorption and NLO responses are similar.

  1. Determination of ground and excited state dipole moments via electronic Stark spectroscopy: 5-methoxyindole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilke, Josefin; Wilke, Martin; Schmitt, Michael, E-mail: mschmitt@uni-duesseldorf.de

    2016-01-28

    The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurationsmore » improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54{sup ∘} showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed.« less

  2. Assessing Visual Delays using Pupil Oscillations

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    2012-01-01

    Stark (1962) demonstrated vigorous pupil oscillations by illuminating the retina with a beam of light focussed to a small spot near the edge of the pupil. Small constrictions of the pupil then are sufficient to completely block the beam, amplifying the normal relationship between pupil area and retinal illuminance. In addition to this simple and elegant method, Stark also investigated more complex feedback systems using an electronic "clamping box" which provided arbitrary gain and phase delay between a measurement of pupil area and an electronically controlled light source. We have replicated Stark's results using a video-based pupillometer to control the luminance of a display monitor. Pupil oscillations were induced by imposing a linear relationship between pupil area and display luminance, with a variable delay. Slopes of the period-vs-delay function for 3 subjects are close to the predicted value of 2 (1.96-2.39), and the implied delays range from 254 to 376 508 to 652 milliseconds. Our setup allows us to extend Stark's work by investigating a broader class of stimuli.

  3. Electron-Impact Excitation of Ions Effects of Presence of Another Ion

    NASA Astrophysics Data System (ADS)

    Ohsaki, Akihiko; Nagasaki, Satoshi; Uramoto, Sei-iti; Takayanagi, Kazuo

    2000-02-01

    Present work gives for the first time the formulation of the two-center Coulomb-Born approximation (TCCBA) and presents some calculations for the electron-impact excitations in electron-ion-ion systems.The effect of the third body was relatively small in the cases studied so far. However, if the third body is a bare ion with a charge larger than the target ion, there will be a marked influence of the three-body collisions.Utilizing TCCBA we present the total and partial cross sections of hydrogen-like ions He+(Z=2), and C5+(Z=6) in the hydrogen plasma from the ground states 1s to the excited states 2s and 2p0, 2p± for the collision energies from 0.4Z2 to 2Z2 a.u.; for the excited states of the target ions, Stark effect is also studied.It is found that the presence of another ion have little effect on the 1s-2s transition and the 2s-2p Stark mixing has a prominent effect.

  4. Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty

    PubMed Central

    Nicholson, T.L.; Campbell, S.L.; Hutson, R.B.; Marti, G.E.; Bloom, B.J.; McNally, R.L.; Zhang, W.; Barrett, M.D.; Safronova, M.S.; Strouse, G.F.; Tew, W.L.; Ye, J.

    2015-01-01

    The pursuit of better atomic clocks has advanced many research areas, providing better quantum state control, new insights in quantum science, tighter limits on fundamental constant variation and improved tests of relativity. The record for the best stability and accuracy is currently held by optical lattice clocks. Here we take an important step towards realizing the full potential of a many-particle clock with a state-of-the-art stable laser. Our 87Sr optical lattice clock now achieves fractional stability of 2.2 × 10−16 at 1 s. With this improved stability, we perform a new accuracy evaluation of our clock, reducing many systematic uncertainties that limited our previous measurements, such as those in the lattice ac Stark shift, the atoms' thermal environment and the atomic response to room-temperature blackbody radiation. Our combined measurements have reduced the total uncertainty of the JILA Sr clock to 2.1 × 10−18 in fractional frequency units. PMID:25898253

  5. Experimental evidence for superionic water ice using shock compression

    NASA Astrophysics Data System (ADS)

    Millot, Marius; Hamel, Sebastien; Rygg, J. Ryan; Celliers, Peter M.; Collins, Gilbert W.; Coppari, Federica; Fratanduono, Dayne E.; Jeanloz, Raymond; Swift, Damian C.; Eggert, Jon H.

    2018-03-01

    In stark contrast to common ice, Ih, water ice at planetary interior conditions has been predicted to become superionic with fast-diffusing (that is, liquid-like) hydrogen ions moving within a solid lattice of oxygen. Likely to constitute a large fraction of icy giant planets, this extraordinary phase has not been observed in the laboratory. Here, we report laser-driven shock-compression experiments on water ice VII. Using time-resolved optical pyrometry and laser velocimetry measurements as well as supporting density functional theory-molecular dynamics (DFT-MD) simulations, we document the shock equation of state of H2O to unprecedented extreme conditions and unravel thermodynamic signatures showing that ice melts near 5,000 K at 190 GPa. Optical reflectivity and absorption measurements also demonstrate the low electronic conductivity of ice, which, combined with previous measurements of the total electrical conductivity under reverberating shock compression, provides experimental evidence for superionic conduction in water ice at planetary interior conditions, verifying a 30-year-old prediction.

  6. Mixing of Exciton and Charge-Transfer States in Photosystem II Reaction Centers: Modeling of Stark Spectra with Modified Redfield Theory

    PubMed Central

    Novoderezhkin, Vladimir I.; Dekker, Jan P.; van Grondelle, Rienk

    2007-01-01

    We propose an exciton model for the Photosystem II reaction center (RC) based on a quantitative simultaneous fit of the absorption, linear dichroism, circular dichroism, steady-state fluorescence, triplet-minus-singlet, and Stark spectra together with the spectra of pheophytin-modified RCs, and so-called RC5 complexes that lack one of the peripheral chlorophylls. In this model, the excited state manifold includes a primary charge-transfer (CT) state that is supposed to be strongly mixed with the pure exciton states. We generalize the exciton theory of Stark spectra by 1), taking into account the coupling to a CT state (whose static dipole cannot be treated as a small parameter in contrast to usual excited states); and 2), expressing the line shape functions in terms of the modified Redfield approach (the same as used for modeling of the linear responses). This allows a consistent modeling of the whole set of experimental data using a unified physical picture. We show that the fluorescence and Stark spectra are extremely sensitive to the assignment of the primary CT state, its energy, and coupling to the excited states. The best fit of the data is obtained supposing that the initial charge separation occurs within the special-pair PD1PD2. Additionally, the scheme with primary electron transfer from the accessory chlorophyll to pheophytin gave a reasonable quantitative fit. We show that the effectiveness of these two pathways is strongly dependent on the realization of the energetic disorder. Supposing a mixed scheme of primary charge separation with a disorder-controlled competition of the two channels, we can explain the coexistence of fast sub-ps and slow ps components of the Phe-anion formation as revealed by different ultrafast spectroscopic techniques. PMID:17526589

  7. A Riemann-Hilbert approach to the inverse problem for the Stark operator on the line

    NASA Astrophysics Data System (ADS)

    Its, A.; Sukhanov, V.

    2016-05-01

    The paper is concerned with the inverse scattering problem for the Stark operator on the line with a potential from the Schwartz class. In our study of the inverse problem, we use the Riemann-Hilbert formalism. This allows us to overcome the principal technical difficulties which arise in the more traditional approaches based on the Gel’fand-Levitan-Marchenko equations, and indeed solve the problem. We also produce a complete description of the relevant scattering data (which have not been obtained in the previous works on the Stark operator) and establish the bijection between the Schwartz class potentials and the scattering data.

  8. Stark broadening of the B III 2s-2p lines

    NASA Astrophysics Data System (ADS)

    Griem, Hans R.; Ralchenko, Yuri V.; Bray, Igor

    1997-12-01

    We present a quantum-mechanical calculation of Stark linewidths from electron-ion collisions for the 2s1/2-2p1/2,3/2, λ=2066 and 2067 Å, resonance transitions in B III. The results confirm previous quantum-mechanical R-matrix calculations, but contradict recent measurements and semiclassical and some semiempirical calculations. The differences between the calculations can be attributed to the dominance of small L partial waves in the electron-atom scattering, while the large Stark widths inferred from the measurements would be substantially reduced if allowance is made for hydrodynamic turbulence from high-Reynolds-number flows and the associated Doppler broadening.

  9. Nonlinear optical and electroabsorption spectra of polydiacetylene crystals and films

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, D.; Soos, Z. G.

    1996-01-01

    Vibronic structure of nonlinear optical (NLO) coefficients is developed within the Condon approximation, displaced harmonic oscillators, and crude adiabatic states. The displacements of backbone modes of conjugated polymers are taken from vibrational data on the ground and 1B excited state. NLO resonances are modeled by three excitations and transition moments taken from Pariser-Parr-Pople (PPP) theory and optimized to polydiacetylene (PDA) spectra in crystals and films, with blue-shifted 1B exciton. The joint analysis of third-harmonic-generation, two-photon absorption, and nondegenerate four-wave-mixing spectra of PDA crystals and films shows weak two-photon absorption to 2A below 1B, leading to overlapping resonances in the THG spectrum, strong two-photon absorption to an nA state some 35% above 1B, and weak Raman resonances in nondegenerate FWM spectra. The full π-π* spectrum contributes to Stark shifts and field-induced transitions, as shown by PPP results for PDA oligomers. The Stark shift dominates high-resolution electroabsorption (EA) spectra of PDA crystals below 10 K. The close correspondence between EA and the first-derivative I'(ω) of the linear absorption above the 1B exciton in PDA crystals provides an experimental separation of vibrational and electronic contributions that limits any even-parity state in this 0.5 eV interval. An oscillator-strength sum rule is applied to the convergence of PDA oligomers with increasing length, N, and the crystal oscillator strengths are obtained without adjustable parameters. The sum rule for the 1B exciton implies large transition moments to higher-energy Ag states, whose locations in recent models are contrasted to PPP results. Joint analysis of NLO and EA spectra clarifies when a few electronic excitations are sufficient, distinguishes between vibrational and electronic contributions, and supports similar π-electron interactions in conjugated molecules and polymers.

  10. Relative Age Effect in Masters Sports: Replication and Extension

    ERIC Educational Resources Information Center

    Medic, Nikola; Starkes, Janet L.; Weir, Patricia L.; Young, Bradley W.; Grove, J. Robert

    2009-01-01

    The relative age effect refers to the performance-related advantage of being born early in a cohort or selection year. Until recently it was unknown whether the relative age effect generalizes across the lifespan. Medic, Starkes, and Young (2007) reasoned that the 5-year age categories that are widely used in masters-level sports to organize…

  11. Parametric instabilities in resonantly-driven Bose–Einstein condensates

    NASA Astrophysics Data System (ADS)

    Lellouch, S.; Goldman, N.

    2018-04-01

    Shaking optical lattices in a resonant manner offers an efficient and versatile method to devise artificial gauge fields and topological band structures for ultracold atomic gases. This was recently demonstrated through the experimental realization of the Harper–Hofstadter model, which combined optical superlattices and resonant time-modulations. Adding inter-particle interactions to these engineered band systems is expected to lead to strongly-correlated states with topological features, such as fractional Chern insulators. However, the interplay between interactions and external time-periodic drives typically triggers violent instabilities and uncontrollable heating, hence potentially ruling out the possibility of accessing such intriguing states of matter in experiments. In this work, we study the early-stage parametric instabilities that occur in systems of resonantly-driven Bose–Einstein condensates in optical lattices. We apply and extend an approach based on Bogoliubov theory (Lellouch et al 2017 Phys. Rev. X 7 021015) to a variety of resonantly-driven band models, from a simple shaken Wannier–Stark ladder to the more intriguing driven-induced Harper–Hofstadter model. In particular, we provide ab initio numerical and analytical predictions for the stability properties of these topical models. This work sheds light on general features that could guide current experiments to stable regimes of operation.

  12. Modeling of THz Lasers Based on Intersubband Transitions in Semiconductor Quantum Wells

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Woo, Alex C. (Technical Monitor)

    1999-01-01

    In semiconductor quantum well structures, the intersubband energy separation can be adjusted to the terahertz (THz) frequency range by changing the well width and material combinations. The electronic and optical properties of these nanostructures can also be controlled by an applied dc electric field. These unique features lead to a large frequency tunability of the quantum well devices. In the on-going project of modeling of the THz lasers, we investigate the possibility of using optical pumping to generate THz radiation based on intersubband transitions in semiconductor quantum wells. We choose the optical pumping because in the electric current injection it is difficult to realize population inversion in the THz frequency range due to the small intersubband separation (4-40 meV). We considered both small conduction band offset (GaAs/AlGaAs) and large band offset (InGaAs/AlAsSb) quantum well structures. For GaAs/AlGaAs quantum wells, mid-infrared C02 lasers are used as pumping sources. For InGaAs/AlAsSb quantum wells, the resonant intersubband transitions can be excited by the near-infrared diode lasers. For three- and four-subband quantum wells, we solve the pumpfield-induced nonequilibrium distribution function for each subband of the quantum well system from a set of rate equations that include both intrasubband and intersubband relaxation processes. Taking into account the coherent interactions between pump and THz (signal) waves, we calculate the optical gain for the THz field. The gain arising from population inversion and stimulated Raman processes is calculated in a unified manner. A graph shows the calculated THz gain spectra for three-subband GaAs/AlGaAs quantum wells. We see that the coherent pump and signal wave interactions contribute significantly to the gain. The pump intensity dependence of the THz gain is also studied. The calculated results are shown. Because of the optical Stark effect and pump-induced population redistribution, the maximum THz gain saturates at larger pump intensities.

  13. Existence of the Stark-Wannier quantum resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sacchetti, Andrea, E-mail: andrea.sacchetti@unimore.it

    2014-12-15

    In this paper, we prove the existence of the Stark-Wannier quantum resonances for one-dimensional Schrödinger operators with smooth periodic potential and small external homogeneous electric field. Such a result extends the existence result previously obtained in the case of periodic potentials with a finite number of open gaps.

  14. FOCUSED FEASIBILITY STUDY OF PHYTOREMEDIATION ALTERNATIVE FOR THE INDUSTRIAL EXCESS LANDFILL SITE IN STARK COUNTY, OHIO.

    EPA Science Inventory

    Focused feasibility study of phytoremediation alternative for the Industrial Excess Landfill site in Stark County, Ohio. More information can be found on the NPL Fact Sheet for this site at www.epa.gov/region5/superfund/npl/ohio/OHD000377971.htm

  15. Additions to the stoneflies (Plecoptera) of Mount Rainier National Park, Washington, U.S.A.

    USGS Publications Warehouse

    Kondratieff, B.C.; Lechleitner, R.A.; Zuellig, R.E.

    2006-01-01

    In summary, 88 species of stoneflies are now known from MRNP, representing 65% of the recorded Washington State fauna (Stark and Baumann 2005). At least two of these species are apparently restricted to the MRNP, Soliperla fenderi (Jewett) (Stark and Gustafson 2004) and P. lechleitneri.

  16. Optical Properties of Gallium Arsenide and Indium Gallium Arsenide Quantum Wells and Their Applications to Opto-Electronic Devices.

    NASA Astrophysics Data System (ADS)

    Huang, Daming

    1990-01-01

    In this thesis we investigate the optical properties of modulation doped GaAs/AlGaAs and strained-layer undoped InGaAs/GaAs multiple quantum well structures (MQWS). The phenomena studied are the effects of carrier, strain, and the electric field on the absorption of excitons. For GaAs/AlGaAs modulation doped MQWS, the quenching of excitons by free carriers has been demonstrated. The comparison of the experimental results with calculations which consider phase space filling, screening, and exchange interaction showed the phase space filling to be the dominant mechanism responsible for the change of oscillator strength and binding energy of excitons associated with partially filled subband. On the other hand, the screening and exchange interaction are equally important to excitons associated with empty subbands. For InGaAs/GaAs strained-layer MQWS, we have demonstrated that the band edges are dramatically modified by strain. We determined the band discontinuities at InGaAs/GaAs interfaces using optical absorption, and showed that in this structure the heavy holes are confined in InGaAs layers while the light holes are in GaAs layers, in contrast to GaAs/AlGaAs MQWS. We also explore applications of GaAs/AlGaAs and InGaAs/GaAs MQWS to opto-electronic devices. The principle of devices investigated is mainly based on the electric field effect on the excitonic absorption in MQWS (the quantum confined Stark effect). Two examples presented in this thesis are the strained-layer InGaAs/GaAs MQWS electroabsorption modulators grown on GaAs substrates and the GaAs/AlGaAs MQWS reflection modulators grown on Si substrates. The large modulation observed in the absorption coefficient by an electric field is expected to facilitate opto-electronic integration.

  17. Electric and Magnetic Field Measurements in High Energy Electron Beam Diode Plasmas using Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnston, Mark; Patel, Sonal; Kiefer, Mark; Biswas, S.; Doron, R.; Stambulchik, E.; Bernshtam, V.; Maron, Yitzhak

    2016-10-01

    The RITS accelerator (5-11MV, 100-200kA) at Sandia National Laboratories is being used to evaluate the Self-Magnetic Pinch (SMP) diode as a potential flash x-ray radiography source. This diode consists of a small, hollowed metal cathode and a planar, high atomic mass anode, with a small vacuum gap of approximately one centimeter. The electron beam is focused, due to its self-field, to a few millimeters at the target, generating bremsstrahlung x-rays. During this process, plasmas form on the electrode surfaces and propagate into the vacuum gap, with a velocity of a 1-10 cm's/microseconds. These plasmas are measured spectroscopically using a Czerny-Turner spectrometer with a gated, ICCD detector, and input optical fiber array. Local magnetic and electric fields of several Tesla and several MV/cm were measured through Zeeman splitting and Stark shifting of spectral lines. Specific transitions susceptible to quantum magnetic and electric field effects were utilized through the application of dopants. Data was analyzed using detailed, time-dependent, collisional-radiative (CR) and radiation transport modeling. Recent results will be presented. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Performance of spectral MSE diagnostic on C-Mod and ITER

    NASA Astrophysics Data System (ADS)

    Liao, Ken; Rowan, William; Mumgaard, Robert; Granetz, Robert; Scott, Steve; Marchuk, Oleksandr; Ralchenko, Yuri; Alcator C-Mod Team

    2015-11-01

    Magnetic field was measured on Alcator C-mod by applying spectral Motional Stark Effect techniques based on line shift (MSE-LS) and line ratio (MSE-LR) to the H-alpha emission spectrum of the diagnostic neutral beam atoms. The high field of Alcator C-mod allows measurements to be made at close to ITER values of Stark splitting (~ Bv⊥) with similar background levels to those expected for ITER. Accurate modeling of the spectrum requires a non-statistical, collisional-radiative analysis of the excited beam population and quadratic and Zeeman corrections to the Stark shift. A detailed synthetic diagnostic was developed and used to estimate the performance of the diagnostic at C-Mod and ITER parameters. Our analysis includes the sensitivity to view and beam geometry, aperture and divergence broadening, magnetic field, pixel size, background noise, and signal levels. Analysis of preliminary experiments agree with Kinetic+(polarization)MSE EFIT within ~2° in pitch angle and simulations predict uncertainties of 20 mT in | B | and <2° in pitch angle. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG03-96ER-54373 and DE-FC02-99ER54512.

  19. Wannier-Mott Excitons in Nanoscale Molecular Ices

    NASA Astrophysics Data System (ADS)

    Chen, Y.-J.; Muñoz Caro, G. M.; Aparicio, S.; Jiménez-Escobar, A.; Lasne, J.; Rosu-Finsen, A.; McCoustra, M. R. S.; Cassidy, A. M.; Field, D.

    2017-10-01

    The absorption of light to create Wannier-Mott excitons is a fundamental feature dictating the optical and photovoltaic properties of low band gap, high permittivity semiconductors. Such excitons, with an electron-hole separation an order of magnitude greater than lattice dimensions, are largely limited to these semiconductors but here we find evidence of Wannier-Mott exciton formation in solid carbon monoxide (CO) with a band gap of >8 eV and a low electrical permittivity. This is established through the observation that a change of a few degrees K in deposition temperature can shift the electronic absorption spectra of solid CO by several hundred wave numbers, coupled with the recent discovery that deposition of CO leads to the spontaneous formation of electric fields within the film. These so-called spontelectric fields, here approaching 4 ×107 V m-1 , are strongly temperature dependent. We find that a simple electrostatic model reproduces the observed temperature dependent spectral shifts based on the Stark effect on a hole and electron residing several nm apart, identifying the presence of Wannier-Mott excitons. The spontelectric effect in CO simultaneously explains the long-standing enigma of the sensitivity of vacuum ultraviolet spectra to the deposition temperature.

  20. Laser ablation of dental calculus at 400 nm using a Ti:sapphire laser

    NASA Astrophysics Data System (ADS)

    Schoenly, Joshua E.; Seka, Wolf; Rechmann, Peter

    2009-02-01

    A Nd:YAG laser-pumped, frequency-doubled Ti:sapphire laser is used for selective ablation of calculus. The laser provides <=25 mJ at 400 nm (60-ns pulse width, 10-Hz repetition rate). The laser is coupled into an optical multimode fiber coiled around a 4-in.-diam drum to generate a top-hat output intensity profile. With coaxial water cooling, this is ideal for efficient, selective calculus removal. This is in stark contrast with tightly focused Gaussian beams that are energetically inefficient and lead to irreproducible results. Calculus is well ablated at high fluences >=2J/cm2 stalling occurs below this fluence because of photobleaching. Healthy hard tissue is not removed at fluences <=3 J/cm2.

  1. Real-space mapping of the strongly coupled plasmons of nanoparticle dimers.

    PubMed

    Kim, Deok-Soo; Heo, Jinhwa; Ahn, Sung-Hyun; Han, Sang Woo; Yun, Wan Soo; Kim, Zee Hwan

    2009-10-01

    We carried out the near-field optical imaging of isolated and dimerized gold nanocubes to directly investigate the strong coupling between two adjacent nanoparticles. The high-resolution (approximately 10 nm) local field maps (intensities and phases) of self-assembled nanocube dimers reveal antisymmetric plasmon modes that are starkly different from a simple superposition of two monomeric dipole plasmons, which is fully reproduced by the electrodynamics simulations. The result decisively proves that, for the closely spaced pair of nanoparticles (interparticle distance/particle size approximately 0.04), the strong Coulombic attraction between the charges at the interparticle gap dominates over the intraparticle charge oscillations, resulting in a hybridized dimer plasmon mode that is qualitatively different from those expected from a simple dipole-dipole coupling model.

  2. Gravitational red shift tests and a spectroscopy in Japan

    NASA Astrophysics Data System (ADS)

    Yokoo, Hiromitsu

    Japanese astronomers and physicians tried to test the Einstein theory by gravitational red shift tests at 1920's. Spectroscopists in Japan contributed to Stark broadening of spectrum lines. Rikiti Kinoshita (1877 - 1935) probably started experiments according to Voigt's prediction earlier than Stark. Tokyo Astronomical Observatory constructed and used another Einstein Tower in Mitaka.

  3. Laser for high frequency modulated interferometry

    DOEpatents

    Mansfield, D.K.; Vocaturo, M.; Guttadora, L.J.

    1991-07-23

    A Stark-tuned laser operating in the 119 micron line of CH[sub 3]OH has an output power of several tens of milliwatts at 30 Watts of pump power while exhibiting a doublet splitting of about ten MHz with the application of a Stark field on the order of 500 volts/cm. This output power allows for use of the laser in a multi-channel interferometer, while its high operating frequency permits the interferometer to measure rapid electron density changes in a pellet injected or otherwise fueled plasma such as encountered in magnetic fusion devices. The laser includes a long far-infrared (FIR) pyrex resonator tube disposed within a cylindrical water jacket and incorporating charged electrodes for applying the Stark field to a gas confined therein. With the electrodes located within the resonator tube, the resonator tube walls are cooled by a flowing coolant without electrical breakdown in the coolant liquid during application of the Stark field. Wall cooling allows for substantially increased FIR output powers. Provision is made for introducing a buffer gas into the resonator tube for increasing laser output power and its operating bandwidth. 10 figures.

  4. Laser for high frequency modulated interferometry

    DOEpatents

    Mansfield, Dennis K.; Vocaturo, Michael; Guttadora, Lawrence J.

    1991-01-01

    A Stark-tuned laser operating in the 119 micron line of CH.sub.3 OH has an output power of several tens of milliwatts at 30 Watts of pump power while exhibiting a doublet splitting of about ten MHz with the application of a Stark field on the order of 500 volts/cm. This output power allows for use of the laser in a multi-channel interferometer, while its high operating frequency permits the interferometer to measure rapid electron density changes in a pellet injected or otherwise fueled plasma such as encountered in magnetic fusion devices. The laser includes a long far-infrared (FIR) pyrex resonator tube disposed within a cylindrical water jacket and incorporating charged electrodes for applying the Stark field to a gas confined therein. With the electrodes located within the resonator tube, the resonator tube walls are cooled by a flowing coolant without electrical breakdown in the coolant liquid during application of the Stark field. Wall cooling allows for substantially increased FIR output powers. Provision is made for introducing a buffer gas into the resonator tube for increasing laser output power and its operating bandwidth.

  5. Exceptions to the Stark law: practical considerations for surgeons.

    PubMed

    Satiani, Bhagwan

    2006-03-01

    The purpose of this study was to provide an understanding of the applicable legislative exceptions to prohibitions under the Stark law, which governs common legitimate business relationships in surgical practice. Stark I and II prohibits all referrals (and claims) for the provision of designated health services for federal reimbursement if a physician or immediate family member has any financial relationship with the entity. Regardless of intent (unlike the antikickback statute), any financial relationship is illegal unless specifically excepted by statute. These exceptions are relevant to ownership, compensation arrangements, or both. The most important ones relevant to surgeons are as follows: physician service exception (services rendered in an intragroup referral); in-office ancillary services exception (office-based vascular laboratory); the whole hospital exception (ownership interest in a hospital or department); lease exception (conditions that must be met for a lease not to be considered illegal); bona fide employment exception (important to academic medical centers); personal services arrangement exception (vascular laboratory medical directorship); physician incentive plans exception (if volume or value of referrals are an issue); hospital-affiliated group practice exception (physician services billed by a hospital); recruitment arrangement exception (inducements by hospitals to relocate); items/services exception (transcription services purchased from a hospital); fair market value exception (covers services provided to health care entities); indirect compensation arrangements (dealings between a hospital and entity owned by physicians); and academic medical centers exception (new phase II rules broaden the definition of academic medical centers and ease the requirement that practice plans be tax-exempt organizations, among other changes. Although expert legal advice is required for navigation through the maze of Stark laws, it is incumbent on surgeons in private practice and at academic centers to have basic knowledge of exceptions under this burdensome statute. Antikickback "safe harbors" provide some protection against possible Stark violations. Penalties for violating Stark laws are severe, including fines of up to $15,000 per service and the economic threat of exclusion from participation in federal health care programs.

  6. Reconciling Simulated and Observed Views of Clouds: MODIS, ISCCP, and the Limits of Instrument Simulators in Climate Models

    NASA Technical Reports Server (NTRS)

    Pincus, Robert; Platnick, Steven E.; Ackerman, Steve; Hemler, Richard; Hofmann, Patrick

    2011-01-01

    The properties of clouds that may be observed by satellite instruments, such as optical depth and cloud top pressure, are only loosely related to the way clouds are represented in models of the atmosphere. One way to bridge this gap is through "instrument simulators," diagnostic tools that map the model representation to synthetic observations so that differences between simulator output and observations can be interpreted unambiguously as model error. But simulators may themselves be restricted by limited information available from the host model or by internal assumptions. This work examines the extent to which instrument simulators are able to capture essential differences between MODIS and ISCCP, two similar but independent estimates of cloud properties. We focus on the stark differences between MODIS and ISCCP observations of total cloudiness and the distribution of cloud optical thickness can be traced to different approaches to marginal pixels, which MODIS excludes and ISCCP treats as homogeneous. These pixels, which likely contain broken clouds, cover about 15% of the planet and contain almost all of the optically thinnest clouds observed by either instrument. Instrument simulators can not reproduce these differences because the host model does not consider unresolved spatial scales and so can not produce broken pixels. Nonetheless, MODIS and ISCCP observation are consistent for all but the optically-thinnest clouds, and models can be robustly evaluated using instrument simulators by excluding ambiguous observations.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I.

    The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented.

  8. The motional stark effect with laser-induced fluorescence diagnostic

    NASA Astrophysics Data System (ADS)

    Foley, E. L.; Levinton, F. M.

    2010-05-01

    The motional Stark effect (MSE) diagnostic is the worldwide standard technique for internal magnetic field pitch angle measurements in magnetized plasmas. Traditionally, it is based on using polarimetry to measure the polarization direction of light emitted from a hydrogenic species in a neutral beam. As the beam passes through the magnetized plasma at a high velocity, in its rest frame it perceives a Lorentz electric field. This field causes the H-alpha emission to be split and polarized. A new technique under development adds laser-induced fluorescence (LIF) to a diagnostic neutral beam (DNB) for an MSE measurement that will enable radially resolved magnetic field magnitude as well as pitch angle measurements in even low-field (<1 T) experiments. An MSE-LIF system will be installed on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory. It will enable reconstructions of the plasma pressure, q-profile and current as well as, in conjunction with the existing MSE system, measurements of radial electric fields.

  9. Giant Stark effect in double-stranded porphyrin ladder polymers

    NASA Astrophysics Data System (ADS)

    Pramanik, Anup; Kang, Hong Seok

    2011-03-01

    Using the first-principles calculations, we have investigated the stability and the electronic structure of two types of recently synthesized one-dimensional nanoribbons, i.e., double-stranded zinc(II) porphyrin ladder polymer (LADDER) arrays. First, electronic structure calculations were used to show that the LADDER is a semiconductor. Most importantly, the application of a transverse electric field significantly reduces the band gap of the LADDER, ultimately converting the LADDER to a metal at a field strength of 0.1 V/Å. The giant Stark effect in this case is almost as strong as that in boron nitride nanotubes and nanoribbons. In the presence of an electric field, hole conduction and electronic conduction will occur entirely through spatially separated strands, rendering these materials useful for nanoelectronic devices. Second, the substitution of hydrogen atoms in the porphyrin units or that of zinc ions with other kinds of chemical species is found to increase the binding strength of the LADDER and reduce the band gap.

  10. Measuring Electric Fields in Biological Matter Using the Vibrational Stark Effect of Nitrile Probes

    NASA Astrophysics Data System (ADS)

    Slocum, Joshua D.; Webb, Lauren J.

    2018-04-01

    Measurement of the electrostatic interactions that give rise to biological functions has been a longstanding challenge in biophysics. Advances in spectroscopic techniques over the past two decades have allowed for the direct measurement of electric fields in a wide variety of biological molecules and systems via the vibrational Stark effect (VSE). The frequency of the nitrile stretching oscillation has received much attention as an electric field reporter because of its sensitivity to electric fields and its occurrence in a relatively transparent region of the infrared spectrum. Despite these advantages and its wide use as a VSE probe, the nitrile stretching frequency is sensitive to hydrogen bonding in a way that complicates the straightforward relationship between measured frequency and environmental electric field. Here we highlight recent applications of nitrile VSE probes with an emphasis on experiments that have helped shape our understanding of the determinants of nitrile frequencies in both hydrogen bonding and nonhydrogen bonding environments.

  11. Polarisation of the Balmer-α emission in crossed electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Thorman, Alex

    2018-03-01

    An analysis of the polarisation structure of the Balmer-α emission in the presence of electric and magnetic fields is presented, with an emphasis on motional Stark effect polarimetry for fusion plasma diagnostics. When the fields are orthogonal, as is the case for neutral heating beams injected into a magnetised plasma, some degeneracy remains in the Stark-Zeeman energy levels and the magnetic quantum number is not well defined. The polarisation structure from the degenerate states is underdetermined and therefore volatile to weaker interactions that resolve this degeneracy, a critical subtlety that has previously been overlooked. A perturbation theory analysis finds distinct polarisation structures for the σ emission that apply when the fine-structure and microscopic electric fields are considered. It is found that only the σ ± 1 polarisation orientation is sensitive to upper-state populations (which are non-statistically weighted for neutral beam injection into a target gas), but with appropriate viewing geometries and beam injection directions the effect can be made negligible.

  12. To Bind Ties between the School and Tribal Life: Educational Policy for Africans under George Stark in Zimbabwe.

    ERIC Educational Resources Information Center

    Mungazi, Dickson A.

    1989-01-01

    Contends that educational policy in Zimbabwe from 1934 to 1954 served the political purposes of the colonial government and neglected genuine educational development of the colonized Africans. During George Stark's tenure as Director of Native Education, Zimbabweans were consigned to "practical training" programs and were denied access…

  13. Gendering Coercive Control.

    PubMed

    Anderson, Kristin L

    2009-12-01

    This article examines the theory of gender presented in Stark's Coercive Control: How Men Entrap Women in Personal Life. Stark suggests that gender is a form of structural inequality that makes women more vulnerable than men to the strategies of coercive control. However, Stark assumes rather than demonstrates that gendered structural inequality increases women's vulnerability. In this article, the author applies the multilevel theory of gender as identity, interaction, and social structure to document the multiple ways coercive control is gendered. The author argues that, to understand the gender dynamics of coercive control, researchers must examine the interactions across levels of gender. The author concludes with an assessment of the prospects and pitfalls of applying the concept of coercive control to renew the feminist social movement to end domestic violence.

  14. A new species of Perlesta (Plecoptera: Perlidae) from North Carolina with additional records for North Carolina and Virginia

    USGS Publications Warehouse

    Kondratieff, B.C.; Zuellig, R.E.; Lenat, D.R.

    2011-01-01

    Twenty-eight species of Nearctic Perlesta are currently recognized (Stark 1989, 2004; Kondratieff et al. 2006, 2008; Grubbs and DeWalt 2008, Grubbs and DeWalt 2011, Kondratieff and Myers 2011). Interestingly, but needing confirmation, Perlesta has been recently recorded from Central America (Gutiérrez-Fonseca and Springer 2011). Continued collecting and study of Perlesta from North Carolina by the authors revealed one additional undescribed species. Ten species of Perlesta currently have been recorded from North Carolina (Stark 1989, 2004, Kondratieff et al. 2006, 2008, Grubbs and DeWalt 2008). Additionally, new Perlesta species records are given for Virginia. The terminology used in the description of the male adult follows Stark (1989, 2004).

  15. Shift measurements of the stark-broadened ionized helium lines at 1640 and 1215 angstrom. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Vanzandt, J. R.

    1976-01-01

    Time-resolved measurements were made of the shifts of the ionized helium lines at 1,640 A (n = 3 approaches 2) and 1,215 A (n = 4 approaches 2), and of the Stark profile of the 1,215 A wavelength line. An electromagnetic shock tube was used as a light source. The plasma conditions corresponded to electron temperatures of approximately 3.5 eV and electron densities of 0.8 to 1.8 x 10 to the 17th power/cubic cm. The measured shifts fell between two previous estimates of plasma polarization shifts. The measured Stark width of the 1,215 A wavelength line was up to 30% greater than the theoretical width.

  16. Ultrafast control of strong light-matter coupling

    NASA Astrophysics Data System (ADS)

    Lange, Christoph; Cancellieri, Emiliano; Panna, Dmitry; Whittaker, David M.; Steger, Mark; Snoke, David W.; Pfeiffer, Loren N.; West, Kenneth W.; Hayat, Alex

    2018-01-01

    We dynamically modulate strong light-matter coupling in a GaAs/AlGaAs microcavity using intense ultrashort laser pulses tuned below the interband exciton energy, which induce a transient Stark shift of the cavity polaritons. For 225-fs pulses, shorter than the cavity Rabi cycle period of 1000 fs, this shift decouples excitons and cavity photons for the duration of the pulse, interrupting the periodic energy exchange between photonic and electronic states. For 1500-fs pulses, longer than the Rabi cycle period, however, the Stark shift does not affect the strong coupling. The two regimes are marked by distinctly different line shapes in ultrafast reflectivity measurements—regardless of the Stark field intensity. The crossover marks the transition from adiabatic to diabatic switching of strong light-matter coupling.

  17. Dynamical control of electron-phonon interactions with high-frequency light

    NASA Astrophysics Data System (ADS)

    Dutreix, C.; Katsnelson, M. I.

    2017-01-01

    This work addresses the one-dimensional problem of Bloch electrons when they are rapidly driven by a homogeneous time-periodic light and linearly coupled to vibrational modes. Starting from a generic time-periodic electron-phonon Hamiltonian, we derive a time-independent effective Hamiltonian that describes the stroboscopic dynamics up to the third order in the high-frequency limit. This yields nonequilibrium corrections to the electron-phonon coupling that are controllable dynamically via the driving strength. This shows in particular that local Holstein interactions in equilibrium are corrected by antisymmetric Peierls interactions out of equilibrium, as well as by phonon-assisted hopping processes that make the dynamical Wannier-Stark localization of Bloch electrons impossible. Subsequently, we revisit the Holstein polaron problem out of equilibrium in terms of effective Green's functions, and specify explicitly how the binding energy and effective mass of the polaron can be controlled dynamically. These tunable properties are reported within the weak- and strong-coupling regimes since both can be visited within the same material when varying the driving strength. This work provides some insight into controllable microscopic mechanisms that may be involved during the multicycle laser irradiations of organic molecular crystals in ultrafast pump-probe experiments, although it should also be suitable for realizations in shaken optical lattices of ultracold atoms.

  18. Plasmon dispersion and Coulomb drag in low-density electron bi-layers

    NASA Astrophysics Data System (ADS)

    Badalyan, S. M.; Kim, C. S.; Vignale, G.; Senatore, G.

    2007-03-01

    We investigate the effect of exchange and correlation (xc) on the plasmon spectrum and the Coulomb drag between spatially separated low-density two-dimensional electron layers. We adopt a new approach, which employs dynamic xc kernels in the calculation of the bi-layer plasmon spectra and of the plasmon-mediated drag, and static many-body local field factors in the calculation of the particle-hole contribution to the drag. We observe that both optical and acoustical plasmon modes are strongly affected by xc corrections and shift in opposite directions with decreasing density. This is in stark contrast with the tendency observed within the random phase approximation (RPA). We find that the introduction of xc corrections results in a significant enhancement of the transresistivity and qualitative changes in its temperature dependence. In particular, the large high-temperature plasmon peak that is present in the RPA is found to disappear when the xc corrections are included. Our numerical results are in good agreement with the results of recent experiments by M. Kellogg et al., Solid State Commun. 123, 515 (2002).

  19. Weak measurements and quantum weak values for NOON states

    NASA Astrophysics Data System (ADS)

    Rosales-Zárate, L.; Opanchuk, B.; Reid, M. D.

    2018-03-01

    Quantum weak values arise when the mean outcome of a weak measurement made on certain preselected and postselected quantum systems goes beyond the eigenvalue range for a quantum observable. Here, we propose how to determine quantum weak values for superpositions of states with a macroscopically or mesoscopically distinct mode number, that might be realized as two-mode Bose-Einstein condensate or photonic NOON states. Specifically, we give a model for a weak measurement of the Schwinger spin of a two-mode NOON state, for arbitrary N . The weak measurement arises from a nondestructive measurement of the two-mode occupation number difference, which for atomic NOON states might be realized via phase contrast imaging and the ac Stark effect using an optical meter prepared in a coherent state. The meter-system coupling results in an entangled cat-state. By subsequently evolving the system under the action of a nonlinear Josephson Hamiltonian, we show how postselection leads to quantum weak values, for arbitrary N . Since the weak measurement can be shown to be minimally invasive, the weak values provide a useful strategy for a Leggett-Garg test of N -scopic realism.

  20. Geometry-dependent penetration fields of superconducting Bi2Sr2CaCu2O8+δ platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curran, P. J.; Clem, J. R.; Bending, S. J.

    Magneto-optical imaging has been used to study vortex penetration into regular polygon-shaped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} platelets with various geometries (disks, pentagons, squares, and triangles) but known fixed areas. In all cases we observe an exponential dependence of the field of first penetration, H{sub p}, on temperature, consistent with a dominant Bean-Livingston barrier for pancake vortices at our measurement temperatures (45-80 K). However, the penetration field consistently decreases with decreasing degree of sample symmetry, in stark contrast to conventional estimates of demagnetization factors using equivalent ellipsoids based on inscribed circles, which predict the reverse trend. Surprisingly, this observation doesmore » not appear to have been reported in the literature before. We demonstrate empirically that estimates using equivalent ellipsoids based on circumscribed circles predict the correct qualitative experimental trend in Hp. Our work has important implications for the estimation of appropriate effective demagnetization factors for flux penetration into arbitrarily shaped superconducting bodies.« less

  1. Geometry-dependent penetration fields in superconducting Bi2Sr2CaCu2O8+δ platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    By: Curran, P. J.; Clem, J. R.; Bending, S. J.

    Magneto-optical imaging has been used to study vortex penetration into regular polygon-shaped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} platelets with various geometries (disks, pentagons, squares, and triangles) but known fixed areas. In all cases we observe an exponential dependence of the field of first penetration, H{sub p}, on temperature, consistent with a dominant Bean-Livingston barrier for pancake vortices at our measurement temperatures (45-80 K). However, the penetration field consistently decreases with decreasing degree of sample symmetry, in stark contrast to conventional estimates of demagnetization factors using equivalent ellipsoids based on inscribed circles, which predict the reverse trend. Surprisingly, this observation doesmore » not appear to have been reported in the literature before. We demonstrate empirically that estimates using equivalent ellipsoids based on circumscribed circles predict the correct qualitative experimental trend in H{sub p}. Our work has important implications for the estimation of appropriate effective demagnetization factors for flux penetration into arbitrarily shaped superconducting bodies.« less

  2. Vibrational molecular modulation in hydrogen

    NASA Astrophysics Data System (ADS)

    Huang, Shu Wei; Chen, Wei-Jan; Kung, A. H.

    2006-12-01

    Detailed numerical modeling of using the vibrational coherence of H2 for molecular modulation is presented. The focus of the calculation is on a strongly driven system aimed at producing many sidebands in the presence of Doppler broadening and the effects of collisions at room temperature. It is shown that Dicke narrowing that reduces the Doppler width plays a critical role in high order sideband generation in room temperature H2 . In addition, the calculation shows that generation of many sidebands favors the phased state as has been reported in all gas phase experiments and is primarily a consequence of the Stark shifts that result from the applied high intensities. The influence of self-focusing in the gas medium that has been conjectured in previous studies is only secondary. The numerical results agree with experimental data obtained in our laboratory, where we have succeeded in generating collinearly propagating Raman sidebands with wavelengths that range from 2216nm in the infrared to 133nm in the vacuum ultraviolet. The frequencies covered by these sidebands span over four octaves for a total of more than 70600cm-1 in the optical region of the spectrum.

  3. Laser synthesis of hybrid nanoparticles for biomedicine

    NASA Astrophysics Data System (ADS)

    Avetissian, H. K.; Lalayan, A. A.

    2018-04-01

    The extraordinary properties of size-tunable nanoparticles (NPs) have given rise to their widespread applications in Nanophotonics, Biomedicine, Plasmonics etc. Semiconductor and metal NPs have found a number of significant applications in the modern biomedicine due to ultrasmall sizes (1-10 nm) and the size-dependent flexibility of their optical properties. In the present work passive Q-switched Nd:YAG pulsed laser was used to synthesize NPs by method of laser ablation in different liquids. For cases of hybrid metal NPs we have demonstrated that plasmon resonance can be modified and tuned from the plasmon resonances of pure metal NPs. The shifted plasmon resonance frequency at 437 nm for Au-Ag hybrid NPs, and 545 nm for Au-Cu hybrid NPs have been observed. Effectiveness of biotissue ablation in the case of the tissue sample that colored with metal NPs was approximately on 4-5 times larger than for the sample with non-colored area. Laser welding for deep-located biotissue layers colored by metal NPs has been realized. The luminescence properties of the colloidal hybrid Si-Ni nanoparticles' system fabricated by pulsed laser ablation are also considered. The red-shifted photoluminescence of this system has been registered in the blue range of the spectrum because of the Stark effect in the Coulomb field of the charged Ni nanoparticles. Summarizing, the knowledge of peculiarities of optical properties of hybrid NPs is very important for biomedical applications. More complex nanoassemblies can be easily constructed by the presented technique of laser synthesis of colloidal QDs including complexes of NPs of different materials.

  4. The Investigation of Laser Ignited Plasma with the Application of Current Probes

    NASA Astrophysics Data System (ADS)

    Olsson, Trevor; Amos, James; Ujj, Laszlo

    Among a variety of atomic emission spectroscopy methods Laser-induced breakdown spectroscopy (LIBS) is the one which can analyze any solid, liquid or gas sample. The elemental composition and the relative abundance of the constituent elements in the samples can be determined when the emission spectra of short laser pulses igniting plasma is then recorded and analyzed(e.g.). In our studies we have made a LIBS system which includes, but is not limited to investigating the physical phenomena and properties of the emitting plasma. Active research is going on concerning Lithium-ion batteries to increase the stored charge and energy per volume properties of the device. LIBS is proposed to test the manufacturing process and analyze the chemical constituents of the newly developed batteries. The composition of the battery itself consists of two pieces of foil, typically aluminum and copper acting as a cathode and anode respectively. Separating these two pieces of foil is a lithium based compound. The general chemical composition is Lix [Metal]y Oz where [Metal] is the specific element that is used to achieve the purpose of the battery (one metal may increase the out-put while another helps with capacity etc.). We have chosen the Li-Ion battery composed of LiCoO2 from a mobile phone in order to investigate the Stark-effect (Stark shift and Stark broadening) of the lithium present in the sample. Effects of line broadening and reabsorption of the signals are addressed by recording LIBS spectra from the powder electrolyte extracted from a Lithium-ion battery.

  5. Elemental misinterpretation in automated analysis of LIBS spectra.

    PubMed

    Hübert, Waldemar; Ankerhold, Georg

    2011-07-01

    In this work, the Stark effect is shown to be mainly responsible for wrong elemental allocation by automated laser-induced breakdown spectroscopy (LIBS) software solutions. Due to broadening and shift of an elemental emission line affected by the Stark effect, its measured spectral position might interfere with the line position of several other elements. The micro-plasma is generated by focusing a frequency-doubled 200 mJ pulsed Nd/YAG laser on an aluminum target and furthermore on a brass sample in air at atmospheric pressure. After laser pulse excitation, we have measured the temporal evolution of the Al(II) ion line at 281.6 nm (4s(1)S-3p(1)P) during the decay of the laser-induced plasma. Depending on laser pulse power, the center of the measured line is red-shifted by 130 pm (490 GHz) with respect to the exact line position. In this case, the well-known spectral line positions of two moderate and strong lines of other elements coincide with the actual shifted position of the Al(II) line. Consequently, a time-resolving software analysis can lead to an elemental misinterpretation. To avoid a wrong interpretation of LIBS spectra in automated analysis software for a given LIBS system, we recommend using larger gate delays incorporating Stark broadening parameters and using a range of tolerance, which is non-symmetric around the measured line center. These suggestions may help to improve time-resolving LIBS software promising a smaller probability of wrong elemental identification and making LIBS more attractive for industrial applications.

  6. Advancing College Opportunity: An Impact Evaluation of the Growth of Dual Credit in Stark and Wayne Counties, Ohio

    ERIC Educational Resources Information Center

    Rochford, Joseph A.; O'Neill, Adrienne; Gelb, Adele

    2009-01-01

    This impact evaluation looks at three years of growth for "high school-based dual credit" courses exclusive of Canton's Early College High School in Stark and Wayne Counties. As "high school based dual credit" is increasingly implemented in low wealth and urban districts, accompanied by an increase in high school teachers…

  7. Ready to Go: Using the EXPLORE Test to Increase 8th Grade Readiness for Success

    ERIC Educational Resources Information Center

    Rochford, Joseph A.; O'Neill, Adrienne; Gelb, Adele

    2010-01-01

    During the 2009-10 academic year, 1,444 8th grade students in the Canton City, Plain and Marlington Local School Districts (hereafter called Stark students) took the EXPLORE Test as part of a pilot project, "Ready to Go: Increasing Eighth Grade Readiness," sponsored by the Stark Education Partnership with funding from the Ohio College…

  8. Reframing violence against women as a human rights violation: Evan Stark's Coercive Control.

    PubMed

    Libal, Kathryn; Parekh, Serena

    2009-12-01

    Evan Stark claims that partner-perpetrated physical abuse and other forms of violence against women ought to be understood as a human rights violation. The authors engage Stark's rhetorically powerful political and analytical innovation by outlining one theoretical and one practical challenge to shifting the paradigm that researchers, advocates, and policy makers use to describe, explain, and remedy the harms of coercive control from misdemeanor assault to human rights violation. The theoretical challenge involves overcoming the public/ private dichotomy that underpins liberal conceptions of human rights.The practical challenge involves using the human rights framework in the United States, given public indifference to human rights rhetoric or law, reluctance of U.S. policy makers to submit to scrutiny or justice-oriented processes under international law on issues of human rights and especially war crimes, and the consequent U.S. legacy of refusal to participate meaningfully in the international human rights process. The authors conclude that employing a human rights framework holds potential in the United States, but the paradigm shift Stark advocates will not materialize without widespread mobilization of interest in and understanding of human rights among domestic violence advocates and the society in general.

  9. Study of Stark broadening of Li I 460 and 497 nm spectral lines with independent plasma diagnostics by Thomson scattering

    NASA Astrophysics Data System (ADS)

    Dzierżȩga, Krzysztof; Piȩta, Tomasz; Zawadzki, Witold; Stambulchik, Evgeny; Gavrilović-Božović, Marijana; Jovićević, Sonja; Pokrzywka, Bartłomiej

    2018-02-01

    We present results of experimental and theoretical studies of the Stark broadening of the Li I 460 nm spectral line with forbidden components and of the isolated 497 nm line. Plasma was induced by Nd:YAG laser radiation at 1064 nm with pulse duration ˜4.5 ns. Laser-induced plasma was generated in front of the alumina pellet, with some content of Li2CO3, placed in a vacuum chamber filled with argon under reduced pressure. Plasma diagnostics was performed using the laser Thomson scattering technique, free from assumptions about the plasma equilibrium state and its composition and so independently of plasma emission spectra. Spatially resolved spectra with Li lines were obtained from the measured, laterally integrated ones applying the inverse Abel transform. The Stark profiles were calculated by computer simulation method assuming a plasma in the local thermodynamic equilibrium. Calculations were performed for experimentally-inferred electron densities and temperatures, from 1.422 × 1023 to 3.55 × 1022 m-3 and from 1.96 eV to 1.04 eV, respectively. Our studies show very good agreement between experimental Stark profiles and those computer simulated.

  10. Stark broadening of Ca IV spectral lines of astrophysical interest

    NASA Astrophysics Data System (ADS)

    Alonso-Medina, A.; Colón, C.

    2014-12-01

    Ca IV emission lines are under the preview of Solar Ultraviolet Measurements of Emitted Radiation device aboard the Solar and Heliospheric Observatory. Also, lines of the Ca IV in planetary nebulae NGC 7027 were detected with the Short Wavelength Spectrometer on board the Infrared Space Observatory. These facts justify an attempt to provide new spectroscopic parameters of Ca IV. There are no theoretical or experimental Stark broadening data for Ca IV. Using the Griem semi-empirical approach and the COWAN code, we report in this paper calculated values of the Stark broadening parameters for 467 lines of Ca IV. They were calculated using a set of wavefunctions obtained by using Hartree-Fock relativistic calculations. These lines arising from 3s23p4ns (n = 4, 5), 3s23p44p, 3s23p4nd (n = 3, 4) configurations. Stark widths and shifts are presented for an electron density of 1017 cm-3 and temperatures T = 10 000, 20 000 and 50 200 K. As these data cannot be compared to others in the literature, we present an analysis of the different regularities of the values presented in this work.

  11. Determination of Stark parameters by cross-calibration in a multi-element laser-induced plasma

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Truscott, Benjamin S.; Ashfold, Michael N. R.

    2016-05-01

    We illustrate a Stark broadening analysis of the electron density Ne and temperature Te in a laser-induced plasma (LIP), using a model free of assumptions regarding local thermodynamic equilibrium (LTE). The method relies on Stark parameters determined also without assuming LTE, which are often unknown and unavailable in the literature. Here, we demonstrate that the necessary values can be obtained in situ by cross-calibration between the spectral lines of different charge states, and even different elements, given determinations of Ne and Te based on appropriate parameters for at least one observed transition. This approach enables essentially free choice between species on which to base the analysis, extending the range over which these properties can be measured and giving improved access to low-density plasmas out of LTE. Because of the availability of suitable tabulated values for several charge states of both Si and C, the example of a SiC LIP is taken to illustrate the consistency and accuracy of the procedure. The cross-calibrated Stark parameters are at least as reliable as values obtained by other means, offering a straightforward route to extending the literature in this area.

  12. Quantum confined Stark effects of single dopant in polarized hemispherical quantum dot: Two-dimensional finite difference approach and Ritz-Hassé variation method

    NASA Astrophysics Data System (ADS)

    El Harouny, El Hassan; Nakra Mohajer, Soukaina; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi

    2018-05-01

    Eigenvalues equation of hydrogen-like off-center single donor impurity confined in polarized homogeneous hemispherical quantum dot deposited on a wetting layer, capped by insulated matrix and submitted to external uniform electric field is solved in the framework of the effective mass approximation. An infinitely deep potential is used to describe effects of quantum confinement due to conduction band offsets at surfaces where quantum dot and surrounding materials meet. Single donor ground state total and binding energies in presence of electric field are determined via two-dimensional finite difference approach and Ritz-Hassé variation principle. For the latter method, attractive coulomb correlation between electron and ionized single donor is taken into account in the expression of trial wave function. It appears that off-center single dopant binding energy, spatial extension and radial probability density are strongly dependent on hemisphere radius and single dopant position inside quantum dot. Influence of a uniform electric field is also investigated. It shows that Stark effect appears even for very small size dots and that single dopant energy shift is more significant when the single donor is near hemispherical surface.

  13. A motional Stark effect diagnostic analysis routine for improved resolution of iota in the core of the large helical device.

    PubMed

    Dobbins, T J; Ida, K; Suzuki, C; Yoshinuma, M; Kobayashi, T; Suzuki, Y; Yoshida, M

    2017-09-01

    A new Motional Stark Effect (MSE) analysis routine has been developed for improved spatial resolution in the core of the Large Helical Device (LHD). The routine was developed to reduce the dependency of the analysis on the Pfirsch-Schlüter (PS) current in the core. The technique used the change in the polarization angle as a function of flux in order to find the value of diota/dflux at each measurement location. By integrating inwards from the edge, the iota profile can be recovered from this method. This reduces the results' dependency on the PS current because the effect of the PS current on the MSE measurement is almost constant as a function of flux in the core; therefore, the uncertainty in the PS current has a minimal effect on the calculation of the iota profile. In addition, the VMEC database was remapped from flux into r/a space by interpolating in mode space in order to improve the database core resolution. These changes resulted in a much smoother iota profile, conforming more to the physics expectations of standard discharge scenarios in the core of the LHD.

  14. Valley-selective photon-dressed states in transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    LaMountain, Trevor; Chen, Yen-Jung; Stanev, Teodor K.; Stern, Nathaniel P.

    2018-02-01

    When electronic excitations in a semiconductor interact with light, the relevant quasiparticles are hybrid lightmatter dressed states, or exciton-polaritons. In monolayer transition metal dichalcogenides, a class of 2D direct bandgap semiconductors, optical excitations selectively populate distinct momentum valleys with correlated spin projection. The combination of this spin-valley locking with photon dressed states can lead to new optical phenomena in these materials. We present spectroscopic measurements of valley-specific exciton-polaritons in monolayer 2D materials in distinct regimes. When a monolayer is embedded in a dielectric microcavity, strong coupling exciton-polaritons are achieved. Cavity-modified dynamics of the dressed states are inferred from emission. Polarization persists up to room temperature in monolayer MoS2, in contrast with bare material. We also show that distinct regimes of valley-polarized exciton-polaritons can be accessed with microcavity engineering by tuning system parameters such as cavity decay rate and exciton-photon coupling strength. Further, we report results showing that polarization-sensitive ultrafast spectroscopy can enable sensitive measurements of the valley optical Stark shift, a light-induced dressed state energy shift, in monolayer semiconductors such as WSe2 and MoS2. These findings demonstrate distinct approaches to manipulating the picosecond dynamics of valleysensitive dressed states in monolayer semiconductors.

  15. Coupled counterrotating polariton condensates in optically defined annular potentials

    PubMed Central

    Dreismann, Alexander; Cristofolini, Peter; Balili, Ryan; Christmann, Gabriel; Pinsker, Florian; Berloff, Natasha G.; Hatzopoulos, Zacharias; Savvidis, Pavlos G.; Baumberg, Jeremy J.

    2014-01-01

    Polariton condensates are macroscopic quantum states formed by half-matter half-light quasiparticles, thus connecting the phenomena of atomic Bose–Einstein condensation, superfluidity, and photon lasing. Here we report the spontaneous formation of such condensates in programmable potential landscapes generated by two concentric circles of light. The imposed geometry supports the emergence of annular states that extend up to 100 μm, yet are fully coherent and exhibit a spatial structure that remains stable for minutes at a time. These states exhibit a petal-like intensity distribution arising due to the interaction of two superfluids counterpropagating in the circular waveguide defined by the optical potential. In stark contrast to annular modes in conventional lasing systems, the resulting standing wave patterns exhibit only minimal overlap with the pump laser itself. We theoretically describe the system using a complex Ginzburg–Landau equation, which indicates why the condensate wants to rotate. Experimentally, we demonstrate the ability to precisely control the structure of the petal condensates both by carefully modifying the excitation geometry as well as perturbing the system on ultrafast timescales to reveal unexpected superfluid dynamics. PMID:24889642

  16. T.D.S. spectroscopic databank for spherical tops: DOS version

    NASA Astrophysics Data System (ADS)

    Tyuterev, V. G.; Babikov, Yu. L.; Tashkun, S. A.; Perevalov, V. I.; Nikitin, A.; Champion, J.-P.; Wenger, C.; Pierre, C.; Pierre, G.; Hilico, J.-C.; Loete, M.

    1994-10-01

    T.D.S. (Traitement de Donnees Spectroscopiques or Tomsk-Dijon-Spectroscopy project) is a computer package concerned with high resolution spectroscopy of spherical top molecules like CH4, CF4, SiH4, SiF4, SnH4, GeH4, SF6, etc. T.D.S. contains information, fundamental spectroscopic data (energies, transition moments, spectroscopic constants) recovered from comprehensive modeling and simultaneous fitting of experimental spectra, and associated software written in C. The T.D.S. goal is to provide an access to all available information on vibration-rotation molecular states and transitions including various spectroscopic processes (Stark, Raman, etc.) under extended conditions based on extrapolations of laboratory measurements using validated theoretical models. Applications for T.D.S. may include: education/training in molecular physics, quantum chemistry, laser physics; spectroscopic applications (analysis, laser spectroscopy, atmospheric optics, optical standards, spectroscopic atlases); applications to environment studies and atmospheric physics (remote sensing); data supply for specific databases; and to photochemistry (laser excitation, multiphoton processes). The reported DOS-version is designed for IBM and compatible personal computers.

  17. Bose-Einstein Condensates in 1D Optical Lattices: Nonlinearity and Wannier-Stark Spectra

    NASA Astrophysics Data System (ADS)

    Arimondo, Ennio; Ciampini, Donatella; Morsch, Oliver

    The development of powerful laser cooling and trapping techniques has made possible the controlled realization of dense and cold gaseous samples, thus opening the way for investigations in the ultracold temperature regimes not accessible with conventional techniques. A Bose-Einstein condensate (BEC) represents a peculiar gaseous state where all the particles reside in the same quantum mechanical state. Therefore BECs exhibit quantum mechanical phe-nomena on a macroscopic scale with a single quantum mechanical wavefunction describing the external degrees of freedom. That control of the external degrees of freedom is combined with a precise control of the internal degrees. The BEC investigation has become a very active area of research in contem-porary physics. The BEC study encompasses different subfields of physics, i.e., atomic and molecular physics, quantum optics, laser spectroscopy, solid state physics. Atomic physics and laser spectroscopy provide the methods for creating and manipulating the atomic and molecular BECs. However owing to the interactions between the particles composing the condensate and to the configuration of the external potential, concepts and methods from solid state physics are extensively used for BEC description.

  18. Can the Stark-Einstein law resolve the measurement problem from an animate perspective?

    PubMed

    Thaheld, Fred H

    2015-09-01

    Analysis of the Stark-Einstein law as it applies to the retinal molecule, which is part of the rhodopsin molecule within the rod cells of the retina, reveals that it may provide the solution to the measurement problem from an animate perspective. That it represents a natural boundary where the Schrödinger equation or wave function automatically goes from linear to nonlinear while remaining in a deterministic state. It will be possible in the near future to subject this theory to empirical tests as has been previously proposed. This analysis provides a contrast to the many decades well studied and debated inanimate measurement problem and would represent an addition to the Stark-Einstein law involving information carried by the photon. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Stark effect on an excited hydrogen atom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barratt, C.

    1983-07-01

    The method of degenerate perturbation theory is used to study the dipolar nature of an excited hydrogen atom in an external electric field. The dependence of the atoms perturbed energy levels on the principal and magnetic quantum numbers, n and m, is investigated, along with the perturbed wave functions.

  20. Observation of high-order quantum resonances in the kicked rotor.

    PubMed

    Kanem, J F; Maneshi, S; Partlow, M; Spanner, M; Steinberg, A M

    2007-02-23

    Quantum resonances in the kicked rotor are characterized by a dramatically increased energy absorption rate, in stark contrast to the momentum localization generally observed. These resonances occur when the scaled Planck's constant Planck's [over ]=r/s 4pi, for any integers r and s. However, only the variant Planck's [over ]=r2pi resonances are easily observable. We have observed high-order quantum resonances (s>2) utilizing a sample of low energy, noncondensed atoms and a pulsed optical standing wave. Resonances are observed for variant Planck's [over ]=r/16 4pi for integers r=2-6. Quantum numerical simulations suggest that our observation of high-order resonances indicate a larger coherence length (i.e., coherence between different wells) than expected from an initially thermal atomic sample.

  1. Laser Ablation of Dental Calculus Around 400 nm Using a Ti:Sapphire Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenly, J.; Seka, W.; Rechmann, P.

    2009-10-19

    A Nd:YAG laser-pumped, frequency-doubled Ti:sapphire laser is used for selective ablation of calculus. The laser provides ≤25 mJ at 400 nm (60-ns pulse width, 10-Hz repetition rate). The laser is coupled into an optical multimode fiber coiled around a 4-in.-diam drum to generate a top-hat output intensity profile. With coaxial water cooling, this is ideal for efficient, selective calculus removal. This is in stark contrast with tightly focused Gaussian beams that are energetically inefficient and lead to irreproducible results. Calculus is well ablated at high fluences ≥2 J/cm^2; stalling occurs below this fluence because of photobleaching. Healthy hard tissue ismore » not removed at fluences ≤3 J/cm^2.« less

  2. Polarization selection rules and optical transitions in terbium activated yttrium tantalate phosphor under x-ray, vacuum-ultraviolet, and ultraviolet excitations.

    PubMed

    Nazarov, Mihail; Tsukerblat, Boris; Byeon, Clare Chisu; Arellano, Ivan; Popovici, Elisabeth-Jeanne; Noh, Do Young

    2009-01-01

    The terbium-activated yttrium tantalite (YTaO(4):Tb(3+)) phosphor is of great interest due to the interesting spectroscopic properties of rare earth ions in crystals and also practical use in x-ray imaging. Using the group-theoretical approach, we analyze the selection rules for the transition between Stark components of Tb(3+) in symmetry of the actual crystal field and the polarization for the allowed transitions. The luminescence upon UV, vacuum-ultraviolet (VUV), and x-ray excitation is presented and discussed. The YTaO(4):Tb(3+) phosphors are found to be efficient VUV-excited luminescent materials that could be used not only in x-ray intensifying screens, but also in mercury-free fluorescent lamps or plasma display panels.

  3. Ability Versus Will: The Reason Insurgents Surrender

    DTIC Science & Technology

    2010-06-01

    quit as well. The adage that it takes two to tango does not necessarily hold for decisions involving war, however. More than one party is required to...intended effects . Furthermore, the indirect casualties have a timeline that can extend several months, if not years. The effects can take some...not as prominent as if there were numerous, stark differences between the two . To be an effective impetus for insurgency ideology usually requires

  4. Person/Job Fit Model of Communication Apprehension in Organizations

    DTIC Science & Technology

    1994-05-01

    low apprehensives the pattern was the reverse. Stark, Morley, and Shockley - Zalabak (1987) re- ported that low apprehensives deliberately sought out and...Sheahan, M. E. (1978). Measuring communication apprehension. Journal of Communication, 28, 104-111. Stark, P. S., Morley, D. D., & Shockley - Zalabak ...Armstrong Laboratory Human Resources Directorate Communication skills are highly valued in American culture , partly because the majority of high-status jobs

  5. Expanding College Opportunity: An Annual Report on Dual Credit and Other Post Secondary Opportunities for Stark County High School Students

    ERIC Educational Resources Information Center

    Rochford, Joseph A.; O'Neill, Adrienne; Gelb, Adele; Ross, Kimberly J.; Ughrin, Tina

    2014-01-01

    This is the eighth annual report by the Stark Education Partnership on dual enrollment and other post secondary opportunities (PSOs) for the county's high school students. In addition to dual enrollment, this report looks at a portfolio of the county's PSOs that includes Canton Early College High School, and the opportunity to bank future college…

  6. Microscopic Description of Spontaneous Emission in Stark Chirped Rapid Adiabatic Passages

    NASA Astrophysics Data System (ADS)

    Shi, Xuan; Yuan, Hao; Zhao, Hong-Quan

    2018-01-01

    A microscopic approach describing the effect of spontaneous emission in the stark-chirped rapid adiabatic passages (SCRAPs) for quantum computation is presented. Apart from the phenomenological model, this microscopic one can investigate the dependence of the population dynamics both on the temperature of the environment and the decay rate γ. With flux-biased Josephson qubits as a specifical example, we study the efficiency of the SCRAP for realizing the basic Pauli-X and iSWAP gates. Our results show clearly that the behavior of the population transfer described by the microscopic model is similar with the phenomenological one at zero temperature. In the limit of very high temperature, the population probabilities of the qubit states exhibit strong stability properties. High efficiency for the quantum gate manipulations in SCRAPs is available against the weak decay rate γ ≪ 1 at low temperature.

  7. Infrared Stark and Zeeman spectroscopy of OH–CO: The entrance channel complex along the OH + CO → trans-HOCO reaction pathway

    DOE PAGES

    Brice, Joseph T.; Liang, Tao; Raston, Paul L.; ...

    2016-09-27

    Here, sequential capture of OH and CO by superfluid helium droplets leads exclusively to the formation of the linear, entrance-channel complex, OH-CO. This species is characterized by infrared laser Stark and Zeeman spectroscopy via measurements of the fundamental OH stretching vibration. Experimental dipole moments are in disagreement with ab initio calculations at the equilibrium geometry, indicating large-amplitude motion on the ground state potential energy surface. Vibrational averaging along the hydroxyl bending coordinate recovers 80% of the observed deviation from the equilibrium dipole moment. Inhomogeneous line broadening in the zero-field spectrum is modeled with an effective Hamiltonian approach that aims tomore » account for the anisotropic molecule-helium interaction potential that arises as the OH-CO complex is displaced from the center of the droplet.« less

  8. Improving sensitivity to magnetic fields and electric dipole moments by using measurements of individual magnetic sublevels

    NASA Astrophysics Data System (ADS)

    Tang, Cheng; Zhang, Teng; Weiss, David S.

    2018-03-01

    We explore ways to use the ability to measure the populations of individual magnetic sublevels to improve the sensitivity of magnetic field measurements and measurements of atomic electric dipole moments (EDMs). When atoms are initialized in the m =0 magnetic sublevel, the shot-noise-limited uncertainty of these measurements is 1 /√{2 F (F +1 ) } smaller than that of a Larmor precession measurement. When the populations in the even (or odd) magnetic sublevels are combined, we show that these measurements are independent of the tensor Stark shift and the second order Zeeman shift. We discuss the complicating effect of a transverse magnetic field and show that when the ratio of the tensor Stark shift to the transverse magnetic field is sufficiently large, an EDM measurement with atoms initialized in the superposition of the stretched states can reach the optimal sensitivity.

  9. An expanded genetic code for probing the role of electrostatics in enzyme catalysis by vibrational Stark spectroscopy.

    PubMed

    Völler, Jan-Stefan; Biava, Hernan; Hildebrandt, Peter; Budisa, Nediljko

    2017-11-01

    To find experimental validation for electrostatic interactions essential for catalytic reactions represents a challenge due to practical limitations in assessing electric fields within protein structures. This review examines the applications of non-canonical amino acids (ncAAs) as genetically encoded probes for studying the role of electrostatic interactions in enzyme catalysis. ncAAs constitute sensitive spectroscopic probes to detect local electric fields by exploiting the vibrational Stark effect (VSE) and thus have the potential to map the protein electrostatics. Mapping the electrostatics in proteins will improve our understanding of natural catalytic processes and, in beyond, will be helpful for biocatalyst engineering. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A simple formula for estimating Stark widths of neutral lines. [of stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Freudenstein, S. A.; Cooper, J.

    1978-01-01

    A simple formula for the prediction of Stark widths of neutral lines similar to the semiempirical method of Griem (1968) for ion lines is presented. This formula is a simplification of the quantum-mechanical classical path impact theory and can be used for complicated atoms for which detailed calculations are not readily available, provided that the effective position of the closest interacting level is known. The expression does not require the use of a computer. The formula has been applied to a limited number of neutral lines of interest, and the width obtained is compared with the much more complete calculations of Bennett and Griem (1971). The agreement generally is well within 50% of the published value for the lines investigated. Comparisons with other formulas are also made. In addition, a simple estimate for the ion-broadening parameter is given.

  11. Stark shift of impurity doped quantum dots: Role of noise

    NASA Astrophysics Data System (ADS)

    Arif, Sk. Md.; Bera, Aindrila; Ghosh, Anuja; Ghosh, Manas

    2018-02-01

    Present study makes a punctilious investigation of the profiles of Stark shift (SS) of doped GaAs quantum dot (QD) under the supervision of Gaussian white noise. A few physical parameters have been varied and the consequent variations in the SS profiles have been monitored. The said physical parameters comprise of magnetic field, confinement potential, dopant location, dopant potential, noise strength, aluminium concentration (only for AlxGa1-x As alloy QD), position-dependent effective mass (PDEM), position-dependent dielectric screening function (PDDSF), anisotropy, hydrostatic pressure (HP) and temperature. The SS profiles unfurl interesting features that heavily depend upon the particular physical quantity concerned, presence/absence of noise and the manner (additive/multiplicative) noise enters the system. The study highlights feasible means of maximizing SS of doped QD in presence of noise by suitable adjustment of several control parameters. The study deems importance in view of technological applications of QD devices where noise plays some prominent role.

  12. Anomalous broadening and shift of emission lines in a femtosecond laser plasma filament in air

    NASA Astrophysics Data System (ADS)

    Ilyin, A. A.; Golik, S. S.; Shmirko, K. A.; Mayor, A. Yu.; Proschenko, D. Yu.

    2017-12-01

    The temporal evolution of the width and shift of N I 746.8 and O I 777.4 nm lines is investigated in a filament plasma produced by a tightly focused femtosecond laser pulse (0.9 mJ, 48 fs). The nitrogen line shift and width are determined by the joint action of electron impact shift and the far-off resonance AC Stark effect. The intensive (I = 1.2·1010 W/cm2) electric field of ASE (amplified spontaneous emission) and post-pulses result in a possible LS coupling break for the O I 3p 5P level and the generation of Rabi sidebands. The blueshifted main femtosecond pulse and Rabi sideband cause the stimulated emission of the N2 1+ system. The maximal widths of emission lines are approximately 6.7 times larger than the calculated Stark widths.

  13. How to tell a new story about battering.

    PubMed

    Polletta, Francesca

    2009-12-01

    As Evan Stark observes, getting domestic violence against women recognized as coercive control will require a major effort of storytelling. Women's accounts of subjugation have to be narrated in a way that is both true to their experiences and capable of eliciting public understanding, sympathy, and action. This essay draws on an interdisciplinary literature on narrative to show why doing that poses such a formidable challenge. In lieu of the tragic form that has dominated battered women's storytelling, and in lieu of the quest and mystery forms that appear in Stark's own accounts, this article argues for using a rebirth story line.This genre, which has affinities with the fairytales Snow White and Sleeping Beauty, seems an unlikely vehicle for asserting battered women's combination of victimization and agency. Drawing on the stories told by battered women as part of a successful reform effort, however, this article shows how women have used the form effectively.

  14. Transparent electrodes for high E-field production using a buried indium tin oxide layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunton, Will; Polovy, Gene; Semczuk, Mariusz

    2016-03-15

    We present a design and characterization of optically transparent electrodes suitable for atomic and molecular physics experiments where high optical access is required. The electrodes can be operated in air at standard atmospheric pressure and do not suffer electrical breakdown even for electric fields far exceeding the dielectric breakdown of air. This is achieved by putting an indium tin oxide coated dielectric substrate inside a stack of dielectric substrates, which prevents ion avalanche resulting from Townsend discharge. With this design, we observe no arcing for fields of up to 120 kV/cm. Using these plates, we directly verify the production ofmore » electric fields up to 18 kV/cm inside a quartz vacuum cell by a spectroscopic measurement of the dc Stark shift of the 5{sup 2}S{sub 1/2} → 5{sup 2}P{sub 3/2} transition for a cloud of laser cooled rubidium atoms. We also report on the shielding of the electric field and on the residual electric fields that persist within the vacuum cell once the electrodes are discharged. In addition, we discuss observed atom loss that results from the motion of free charges within the vacuum. The observed asymmetry of these phenomena on the bias of the electrodes suggests that field emission of electrons within the vacuum is primarily responsible for these effects and may indicate a way of mitigating them.« less

  15. Some properties of Stark states of hydrogenic atoms and ions

    NASA Astrophysics Data System (ADS)

    Hey, J. D.

    2007-10-01

    The motivation for this work is the problem of providing accurate values of the atomic transition matrix elements for the Stark components of Rydberg Rydberg transitions in atomic hydrogen and hydrogenic ions, for use in spectral line broadening calculations applicable to cool, low-density plasmas, such as those found in H II regions. Since conventional methods of calculating these transition matrix elements cannot be used for the high principal quantum numbers now easily attained in radio astronomical spectra, we attempt to show that the recurrence relation (ladder operator) method recently employed by Watson (2006 J. Phys. B: At. Mol. Opt. Phys. 39 1889 97) and Hey (2006 J. Phys. B: At. Mol. Opt. Phys. 39 2641 64) can be taken over into the parabolic coordinate system used to describe the Stark states of the atomic (ionic) radiators. The present method is therefore suggested as potentially useful for extending the work of Griem (1967 Astrophys. J. 148 547 58, 2005 Astrophys. J. 620 L133 4), Watson (2006), Stambulchik et al (2007 Phys. Rev. E 75 016401(9 pp) on Stark broadening in transitions between states of high principal quantum number, to physical conditions where the binary, impact approximation is no longer strictly applicable to both electron and ion perturbers. Another possible field of application is the study of Stark mixing transitions in 'ultracold' Rydberg atoms perturbed by long-range interactions with slow atoms and ions. Preparatory to the derivation of recurrence relations for states of different principal quantum number, a number of properties and recurrence relations are also found for states of identical principal quantum number, including the analogue in parabolic coordinates to the relations of Pasternack (1937 Proc. Natl Acad. Sci. USA 23 91 4, 250) in spherical polar coordinates.

  16. Reactive intermediates in 4He nanodroplets: Infrared laser Stark spectroscopy of dihydroxycarbene

    NASA Astrophysics Data System (ADS)

    Broderick, Bernadette M.; McCaslin, Laura; Moradi, Christopher P.; Stanton, John F.; Douberly, Gary E.

    2015-04-01

    Singlet dihydroxycarbene ( HO C ̈ OH ) is produced via pyrolytic decomposition of oxalic acid, captured by helium nanodroplets, and probed with infrared laser Stark spectroscopy. Rovibrational bands in the OH stretch region are assigned to either trans,trans- or trans,cis-rotamers on the basis of symmetry type, nuclear spin statistical weights, and comparisons to electronic structure theory calculations. Stark spectroscopy provides the inertial components of the permanent electric dipole moments for these rotamers. The dipole components for trans, trans- and trans, cis-rotamers are (μa, μb) = (0.00, 0.68(6)) and (1.63(3), 1.50(5)), respectively. The infrared spectra lack evidence for the higher energy cis,cis-rotamer, which is consistent with a previously proposed pyrolytic decomposition mechanism of oxalic acid and computations of HO C ̈ OH torsional interconversion and tautomerization barriers.

  17. Topology of surfaces for molecular Stark energy, alignment, and orientation generated by combined permanent and induced electric dipole interactions.

    PubMed

    Schmidt, Burkhard; Friedrich, Bretislav

    2014-02-14

    We show that combined permanent and induced electric dipole interactions of linear polar and polarizable molecules with collinear electric fields lead to a sui generis topology of the corresponding Stark energy surfaces and of other observables - such as alignment and orientation cosines - in the plane spanned by the permanent and induced dipole interaction parameters. We find that the loci of the intersections of the surfaces can be traced analytically and that the eigenstates as well as the number of their intersections can be characterized by a single integer index. The value of the index, distinctive for a particular ratio of the interaction parameters, brings out a close kinship with the eigenproperties obtained previously for a class of Stark states via the apparatus of supersymmetric quantum mechanics.

  18. Development of a wavy Stark velocity filter for studying interstellar chemistry

    NASA Astrophysics Data System (ADS)

    Okada, Kunihiro; Takada, Yusuke; Kimura, Naoki; Wada, Michiharu; Schuessler, Hans A.

    2017-08-01

    Cold polar molecules are key to both the understanding of fundamental physics and the characterization of the chemical evolution of interstellar clouds. To facilitate such studies over a wide range of temperatures, we developed a new type of Stark velocity filter for changing the translational and rotational temperatures of velocity-selected polar molecules without changing the output beam position. The translational temperature of guided polar molecules can be significantly varied by exchanging the wavy deflection section with one having a different radius of the curvature and a different deflection angle. Combining in addition a temperature variable gas cell with the wavy Stark velocity filter enables to observe the translational and rotational temperature dependence of the reaction-rate constants of cold ion-polar molecule reactions over the interesting temperature range of 10-100 K.

  19. Magnetron Sputtered Pulsed Laser Deposition Scale Up

    DTIC Science & Technology

    2003-08-14

    2:721-726 34 S. J. P. Laube and E. F. Stark, “ Artificial Intellegence in Process Control of Pulsed Laser Deposition”, Proceedings of...The model would be based on mathematical simulation of real process data, neural-networks, or other artificial intelligence methods based on in situ...Laube and E. F. Stark, Proc. Symp. Artificial Intel. Real Time Control, Valencia, Spain, 3-5 Oct. ,1994, p.159-163. International Federation of

  20. Toward Finding Driving Communications Factors in the System of Systems Survivability Simulation Model

    DTIC Science & Technology

    2014-03-01

    BLANK 53 LIST OF REFERENCES Bernstein Jr ., R., Flores , R., & Starks, M. (2006). Objectives and capabilities of the system of...Reader Robert Dell Chair, Department of Operations Research iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT The System of Systems...larger system (Starks & Flores , 2004). One of the primary concerns for a new platform is its survivability, lethality, and vulnerability (SLV) as part

  1. The Effect of Intense Laser Radiation on Atomic Collisions

    NASA Astrophysics Data System (ADS)

    Young, Stephen Michael Radley

    1991-02-01

    Available from UMI in association with The British Library. Requires signed TDF. We have carried out theoretical and experimental studies into the effect of intense laser radiation on atomic collisions. The first experiment used neon. Excitation by electron impact in a gas discharge demanded a pressure of at least 0.075 Torr. Measurement of the intensity of 3^1S_0to 3^1P_1 fluorescence has been made for the case where high intensity ASE wings in the laser profile and background laser scatter are unimportant, with the laser tuned to resonance. The field intensity required to produce strong field fluorescence (exemplified by the Mollow triplet) was found to give rise to complications capable of screening the effects sought. Our theoretical model has suggested that at finite detunings, line-centre fluorescence will dominate Rayleigh scatter and omega_3 fluorescence. Our measurements provide information on the saturation of neon fluorescence but not of the variation of the intense field collision rate. Absorption of weak field 253.7 nm laser photons by ground state mercury atoms yielded a high 6 ^3P_1 population at a lower pressure of 0.02 Torr. The Mollow triplet has been observed in the self-broadened mercury system. Dressing of the upper transition (6^3P_1rightarrow 7^3S_1) by an intense laser close to 435.8 nm yielded the strong field signal. Polarisation studies were made possible by the 3-level mercury system (radiation trapping in a 2-level system would depolarise fluorescence) perturbed by argon. The studies yielded results that were explainable in terms of the selective population of Stark shifted dressed states by a detuned, weak probe field. Use has been made of the electric-dipole radiation selection rule m_{J}=0 rightarrow m_{J^' } = 0 unless J=J^' to devise a 'Stark shift collision switch'. The competition between collision and radiation induced transitions within the mercury atom has then been studied. The resonant, strong lambda 435.8 nm field was used in conjunction with the weak lambda 253.7 nm field detuned by 0 to 6 cm^ {-1}. Measurement of fluorescence intensity in two perpendicular planes of polarisation has revealed the dominant | e_1> to | e_2> excitation channel as a function of the Stark shift by way of the U.V. detuning. Competition between the channels was dependent on the generalised Rabi frequency. However, we could only monitor the relative strength of the channels and were thus unable to say that the Stark shift switched collisions off. (Abstract shortened by UMI.).

  2. The Effect of Microstructure on the Properties of High Strength Aluminum Alloys

    DTIC Science & Technology

    1980-02-01

    precracked samples were loaded with opposing bolts to constant crack opening displacement (COD) values. The notch with the precrack was sealed with Scotch tape ...Respectfully submitted: Edgar K. Starke, Jr. Principal Investigator Si Il I REFERENCES 1. P. C. Paris and F. Erdogan , J. Basic Eng., Vol. 85, 1963, p. 528

  3. Moving across Borders: Immigrant Women's Encounters with Globalization, the Knowledge Economy and Lifelong Learning

    ERIC Educational Resources Information Center

    Gibb, Tara; Hamdon, Evelyn

    2010-01-01

    The (un)reality of open/porous borders is starkly represented/manifested in the experiences of immigrant women in lifelong learning contexts. While globalization effectively destroys some borders, it simultaneously creates new ones. State institutions respond to global reconfigurations of borders at local levels by establishing policies that…

  4. Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature

    NASA Astrophysics Data System (ADS)

    Park, Kyoung Won; Deutsch, Zvicka; Li, J. Jack; Oron, Dan; Weiss, Shimon

    2013-02-01

    We investigate the quantum confined Stark effect (QCSE) of various nanoparticles (NPs) on the single molecule level at room temperature. We tested 8 different NPs with different geometry, material composition and electronic structure, and measured their QCSE by single molecule spectroscopy. This study reveals that suppressing the Coulomb interaction force between electron and hole by asymmetric type-II interface is critical for an enhanced QCSE. For example, ZnSe-CdS and CdSe(Te)-CdS-CdZnSe asymmetric nanorods (type-II) display respectively twice and more than three times larger QCSE than that of simple type-I nanorods (CdSe). In addition, wavelength blue-shift of QCSE and roughly linear Δλ-F (emission wavelength shift vs. the applied electric field) relation are observed for the type-II nanorods. Experimental results (Δλ-F or ΔE-F) are successfully reproduced by self-consistent quantum mechanical calculation. Intensity reduction in blue-shifted spectrum is also accounted for. Both calculations and experiments suggest that the magnitude of the QCSE is predominantly determined by the degree of initial charge separation in these structures.

  5. Electric Fields near RF Heating and Current Drive Antennas in Tore Supra Measured with Dynamic Stark Effect Spectroscopy*

    NASA Astrophysics Data System (ADS)

    Klepper, C. C.; Martin, E. H.; Isler, R. C.; Colas, L.; Hillairet, J.; Marandet, Y.; Lotte, Ph.; Colledani, G.; Martin, V.; Hillis, D. L.; Harris, J. H.; Saoutic, B.

    2011-10-01

    Computational models of the interaction between RF waves and the scrape-off layer plasma near ion cyclotron resonant heating (ICRH) and lower hybrid current drive launch antennas are continuously improving. These models mainly predict the RF electric fields produced in the SOL and, therefore, the best measurement for verification of these models would be a direct measurement of these electric fields. Both types of launch antennas are used on Tore Supra and are designed for high power (up to 4MW/antenna) and long pulse (> > 25s) operation. Direct, non-intrusive measurement of the RF electric fields in the vicinity of these structures is achieved by fitting spectral profiles of deuterium Balmer-alpha and Balmer-beta to a model that includes the dynamic, external-field Stark effect, as well as Zeeman splitting and Doppler broadening mechanisms. The measurements are compared to the mentioned, near-field region, RF antenna models. *Work supported in part by the US DOE under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

  6. Simultaneous influence of Stark effect and excessive line broadening on the Hα line

    NASA Astrophysics Data System (ADS)

    Cvetanović, Nikola; Ivković, Saša S.; Obradović, Bratislav M.; Kuraica, Milorad M.

    2017-12-01

    The aim of this paper is to study the combined influence of the Stark effect and the excessive Doppler broadening on the Balmer alpha line in hydrogen discharges. Since this line is a good candidate for measuring electric field in various types of discharges with different gas compositions, a simple method for field measurement based on polarization spectroscopy is developed, that includes all the excitation mechanisms. To simultaneously test the flexibility of the fitting procedure and investigate the excessive broadening, we applied the fitting procedure on line profiles obtained at a range of conditions from two different discharges. The range of pressures and voltages was examined in an abnormal glow and in dielectric barrier discharge operating with hydrogen gas. The model fitting function was able to respond and follow the change in the line profile caused by the change of conditions. This procedure can therefore be recommended for electric field measurement. Contribution to the "Topical Issue: Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  7. Evaluation of ITER MSE Viewing Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, S; Lerner, S; Morris, K

    2007-03-26

    The Motional Stark Effect (MSE) diagnostic on ITER determines the local plasma current density by measuring the polarization angle of light resulting from the interaction of a high energy neutral heating beam and the tokamak plasma. This light signal has to be transmitted from the edge and core of the plasma to a polarization analyzer located in the port plug. The optical system should either preserve the polarization information, or it should be possible to reliably calibrate any changes induced by the optics. This LLNL Work for Others project for the US ITER Project Office (USIPO) is focused on themore » design of the viewing optics for both the edge and core MSE systems. Several design constraints were considered, including: image quality, lack of polarization aberrations, ease of construction and cost of mirrors, neutron shielding, and geometric layout in the equatorial port plugs. The edge MSE optics are located in ITER equatorial port 3 and view Heating Beam 5, and the core system is located in equatorial port 1 viewing heating beam 4. The current work is an extension of previous preliminary design work completed by the ITER central team (ITER resources were not available to complete a detailed optimization of this system, and then the MSE was assigned to the US). The optimization of the optical systems at this level was done with the ZEMAX optical ray tracing code. The final LLNL designs decreased the ''blur'' in the optical system by nearly an order of magnitude, and the polarization blur was reduced by a factor of 3. The mirror sizes were reduced with an estimated cost savings of a factor of 3. The throughput of the system was greater than or equal to the previous ITER design. It was found that optical ray tracing was necessary to accurately measure the throughput. Metal mirrors, while they can introduce polarization aberrations, were used close to the plasma because of the anticipated high heat, particle, and neutron loads. These mirrors formed an intermediate image that then was relayed out of the port plug with more ideal (dielectric) mirrors. Engineering models of the optics, port plug, and neutral beam geometry were also created, using the CATIA ITER models. Two video conference calls with the USIPO provided valuable design guidelines, such as the minimum distance of the first optic from the plasma. A second focus of the project was the calibration of the system. Several different techniques are proposed, both before and during plasma operation. Fixed and rotatable polarizers would be used to characterize the system in the no-plasma case. Obtaining the full modulation spectrum from the polarization analyzer allows measurement of polarization effects and also MHD plasma phenomena. Light from neutral beam interaction with deuterium gas (no plasma) has been found useful to determine the wavelength of each spatial channel. The status of the optical design for the edge (upper) and core (lower) systems is included in the following figure. Several issues should be addressed by a follow-on study, including whether the optical labyrinth has sufficient neutron shielding and a detailed polarization characterization of actual mirrors.« less

  8. On the Absolutely Continuous Spectrum of Stark Operators

    NASA Astrophysics Data System (ADS)

    Perelman, Galina

    The stability of the absolutely continuous spectrum of the one-dimensional Stark operator under perturbations of the potential is discussed. The focus is on proving this stability under minimal assumptions on smoothness of the perturbation. A general criterion is presented together with some applications. These include the case of periodic perturbations where we show that any perturbation vL1()∩H-1/2() preserves the a.c. spectrum.

  9. Reaching for 80%: How Post Secondary Opportunities in High Schools Are Changing the College Going Culture in Stark County, Ohio

    ERIC Educational Resources Information Center

    Rochford, Joseph A.; O'Neill, Adrienne; Gelb, Adele; Ross, Kimberly J.

    2011-01-01

    In 2002, the Stark County Preschool through College (P-16) Compact set the goal of achieving an 80% college going rate. Such a goal seemed both audacious and daunting for a community where in 2001 only 17.9% of the adults held a Bachelor's Degree, or higher, and where only 49% of all high school graduates went directly to college. Nine years have…

  10. Functional Specialization in the Lower and Upper Visual Fields in Humans: Its Ecological Origins and Neurophysiological Implications

    DTIC Science & Technology

    1990-01-01

    in that the with this hypothesis are the many reports (e.g., Adler - crossed-disparity system does appear to develop first Grinberg & Stark 1978... Rodman et al. 1986) that survives as independent of hemispheric asymmetries and additive to striate lesions critically depends on the superior...Perfomance. IRAAI human brain. No longer can visual cortical physiology Adler -Grinberg, D. & Stark, L. (1978) Eye movements, scanpaths, and dyslexia

  11. Catching flies with vinegar: a critique of the Centers for Medicare and Medicaid self-disclosure program.

    PubMed

    Veilleux, Jean Wright

    2012-01-01

    This Article argues that the current approach of the Department of Health and Human Services and the Centers for Medicare and Medicaid Services (CMS) to enforcement of the Ethics in Patient Referrals Act (the "Stark Law") is unnecessarily punitive and discourages health-care providers from self-disclosing even very minor violations of the Stark Law. This Article suggests a number of specific changes to encourage provider self-disclosure and proposes that CMS create a demonstration project under the authority of the Patient Protection and Affordable Care Act to test the reforms. A demonstration project provides the perfect vehicle to prove that increased self-disclosure protocols for the Stark Law can decrease the government's costs of enforcement, improve program integrity, and encourage providers to deal responsibly with the inevitable minor lapses in compliance that arise in such an enormous government program as Medicare.

  12. Reactive intermediates in 4He nanodroplets: Infrared laser Stark spectroscopy of dihydroxycarbene

    DOE PAGES

    Broderick, Bernadette M.; McCaslin, Laura; Moradi, Christopher P.; ...

    2015-04-14

    Singlet dihydroxycarbene (HOmore » $$\\ddot C$$OH) is produced via pyrolytic decomposition of oxalic acid, captured by helium nanodroplets, and probed with infrared laser Stark spectroscopy. Rovibrational bands in the OH stretch region are assigned to either trans, trans-or trans, cis-rotamers on the basis of symmetry type, nuclear spin statistical weights, and comparisons to electronic structure theory calculations. Stark spectroscopy provides the inertial components of the permanent electric dipole moments for these rotamers. The dipole components for trans, trans-and trans, cis-rotamers are (μ a, μ b) = (0.00,0.68(6)) and (1.63(3), 1.50(5)), respectively. The infrared spectra lack evidence for the higher energy cis,cis-rotamer, which is consistent with a previously proposed pyrolytic decomposition mechanism of oxalic acid and computations of HO$$\\ddot C$$OH torsional interconversion and tautomerization barriers.« less

  13. Magnetic quantum phase transition in Cr-doped Bi 2(Se xTe 1-x) 3 driven by the Stark effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zuocheng; Feng, Xiao; Wang, Jing

    The interplay between magnetism and topology, as exemplified in the magnetic skyrmion systems, has emerged as a rich playground for finding novel quantum phenomena and applications in future information technology. Magnetic topological insulators (TI) have attracted much recent attention, especially after the experimental realization of quantum anomalous Hall effect. Future applications of magnetic TI hinge on the accurate manipulation of magnetism and topology by external perturbations, preferably with a gate electric field. In this work, we investigate the magneto transport properties of Cr doped Bi 2(Se xTe 1-x) 3 TI across the topological quantum critical point (QCP). We find thatmore » the external gate voltage has negligible effect on the magnetic order for samples far away from the topological QCP. However, for the sample near the QCP, we observe a ferromagnetic (FM) to paramagnetic (PM) phase transition driven by the gate electric field. Theoretical calculations show that a perpendicular electric field causes a shift of electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and consequently a magnetic phase transition. Finally, the in situ electrical control of the topological and magnetic properties of TI shed important new lights on future topological electronic or spintronic device applications.« less

  14. Magnetic quantum phase transition in Cr-doped Bi 2(Se xTe 1-x) 3 driven by the Stark effect

    DOE PAGES

    Zhang, Zuocheng; Feng, Xiao; Wang, Jing; ...

    2017-08-07

    The interplay between magnetism and topology, as exemplified in the magnetic skyrmion systems, has emerged as a rich playground for finding novel quantum phenomena and applications in future information technology. Magnetic topological insulators (TI) have attracted much recent attention, especially after the experimental realization of quantum anomalous Hall effect. Future applications of magnetic TI hinge on the accurate manipulation of magnetism and topology by external perturbations, preferably with a gate electric field. In this work, we investigate the magneto transport properties of Cr doped Bi 2(Se xTe 1-x) 3 TI across the topological quantum critical point (QCP). We find thatmore » the external gate voltage has negligible effect on the magnetic order for samples far away from the topological QCP. However, for the sample near the QCP, we observe a ferromagnetic (FM) to paramagnetic (PM) phase transition driven by the gate electric field. Theoretical calculations show that a perpendicular electric field causes a shift of electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and consequently a magnetic phase transition. Finally, the in situ electrical control of the topological and magnetic properties of TI shed important new lights on future topological electronic or spintronic device applications.« less

  15. Electric field determination in the plasma-antenna boundary of a lower-hybrid wave launcher in Tore Supra through dynamic Stark-effect spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, E. H.; Goniche, M.; Klepper, C. C.; Hillairet, J.; Isler, R. C.; Bottereau, C.; Colas, L.; Ekedahl, A.; Panayotis, S.; Pegourie, B.; Lotte, Ph; Colledani, G.; Caughman, J. B.; Harris, J. H.; Hillis, D. L.; Shannon, S. C.; Clairet, F.; Litaudon, X.

    2015-06-01

    Interaction of radio-frequency (RF) waves with the plasma in the near-field of a high-power wave launcher is now seen to be an important topic, both in understanding the channeling of these waves through the plasma boundary and in avoiding power losses in the edge. In a recent Letter, a direct non-intrusive measurement of a near antenna RF electric field in the range of lower hybrid (LH) frequencies (ELH) was announced (2013 Phys. Rev. Lett. 110 215005). This measurement was achieved through the fitting of Balmer series deuterium spectral lines utilizing a time dependent (dynamic) Stark effect model. In this article, the analysis of the spectral data is discussed in detail and applied to a larger range of measurements and the accuracy and limitations of the experimental technique are investigated. It was found through an analysis of numerous Tore Supra discharges that good quantitative agreement exists between the measured and full-wave modeled ELH when the launched power exceeds 0.5 MW. For low power the measurement becomes inaccurate utilizing the implemented passive spectroscopic technique because the spectral noise overwhelms the effect of the RF electric field on the line profile. Additionally, effects of the ponderomotive force are suspected at sufficiently high power.

  16. Radio-frequency-modulated Rydberg states in a vapor cell

    NASA Astrophysics Data System (ADS)

    Miller, S. A.; Anderson, D. A.; Raithel, G.

    2016-05-01

    We measure strong radio-frequency (RF) electric fields using rubidium Rydberg atoms prepared in a room-temperature vapor cell as field sensors. Electromagnetically induced transparency is employed as an optical readout. We RF-modulate the 60{{{S}}}1/2 and 58{{{D}}}5/2 Rydberg states with 50 and 100 MHz fields, respectively. For weak to moderate RF fields, the Rydberg levels become Stark-shifted, and sidebands appear at even multiples of the driving frequency. In high fields, the adjacent hydrogenic manifold begins to intersect the shifted levels, providing rich spectroscopic structure suitable for precision field measurements. A quantitative description of strong-field level modulation and mixing of S and D states with hydrogenic states is provided by Floquet theory. Additionally, we estimate the shielding of DC electric fields in the interior of the glass vapor cell.

  17. Laser Materials and Laser Spectroscopy - A Satellite Meeting of IQEC '88

    NASA Astrophysics Data System (ADS)

    Wang, Zhijiang; Zhang, Zhiming

    1989-03-01

    The Table of Contents for the book is as follows: * Laser Materials * Laser Site Spectroscopy of Transition Metal Ions in Glass * Spectroscopy of Chromium Doped Tunable Laser Materials * Spectroscopic Properties of Nd3+ Ions in LaMgAl11O19 Crystal * Spectral Study and 2.938 μm Laser Emission of Er3+ in the Y3Al5O12 Crystal * Raman-infrared Spectra and Radiationless Relaxation of Laser Crystal NdAl3(BO3)4 * A Study on HB and FLN in BaFCl0.5Br0.5:Sm2+ at 77K * Pair-pumped Upconversion Solid State Lasers * CW Upconversion Laser Action in Neodymium and Erbium doped Solids * Ultra-high Sensitive Upconversion Fluorescence of YbF3 Doped with Trace Tm3+ and Er3+ * The Growth and Properties of NYAB and EYAB Multifunctional Crystal * Study on Fluorescence and Laser Light of Er3+ in Glass * Growth and Properties of Single Crystal Fibers for Laser Materials * A Study on the Quality of Sapphire, Ruby and Ti3+ Doped Sapphire Grown by Temperature Gradient Technique (TGT) and Czochralski Technique (CZ) * The Measurement of Output Property of Ti3+ Al2O3 Laser Crystal * An Xα Study of the Laser Crystal MgF2 : V2+ * Q-switched NAB Laser * Miniature YAG Lasers * Study of High Efficiency {LiF}:{F}^-_2 Color Center Crystals * Study on the Formation Conditions and Optical Properties of (F2+)H Color Center in NaCl:OH- Crystals * Novel Spectroscopic Properties of {LiF}:{F}^+_3 - {F}_2 Mixed Color Centers Laser Crystals * Terraced Substrate Visible GaAlAs Semiconductor Lasers with a Large Optical Cavity * The Temperature Dependence of Gain Spectra, Threshold Current and Auger Recombination in InGaAsP-InP Double Heterojunction Laser diode * Time-resolved Photoluminescence and Energy Transfer of Bound Excitons in GaP:N Crystals * Optical Limiting with Semiconductors * A Critical Review of High-efficiency Crystals for Tunable Lasers * Parametric Scattering in β - BaB2O4 Crystal Induced by Picosecond Pulses * Generation of Picosecond Pulses at 193 nm by Frequency Mixing in β - BaB2O4 * Mixing Frequency Generation of 271.0 - 291.5 nm in β - BaB2O4 * Low Temperature Absorption Steps Near Ultraviolet Intrinsic Edge in Beta Barium Metaborate * The Growth and Properties of BaTiO3 Crystals * High-order Phenomena Accompanied with Self-pumped Phase Conjugation in BaTiO * Growth and Laser Damage Estimation of Potassium Dihydrogen Phosphate Crystals for Laser Fusion * Noncritically Phase-matched KTP for Diode-pumped Lasers (400-700 nm) * Potassium Titanyl Phosphate (KTP): Properties and New Applications * A Kind of New Defect in KTP Crystal and its SHG Enhanced Effect * Nucleation and Growth of the Non-linear Optical Crystal Potassium Pentaborate Tetrahydrate * Quasi-periodic Oscillations in Photoinduced Conical Light Scattering from LiNbO3 : Fe Crystals * Laser Excited Photoreflectance of GaxIn1-xAs/InP Multiple Quantum Wells * Growth, Spectroscopic Properties and Applications of Doped LiNbO3 Crystals * Photorefractive and Photovoltaic Effect in Doped LiNbO3 * Recent Advances in Photorefractive Nonlinear Optics * Study on the Doubling-frequency and Anti-photorefractive Property of Heavily Magnesium-doped Lithium-rich Lithium Niobate Crystals * A New Technique for Increasing Two-wave Mixing Gain in Photorefractive Bi12SiO20 Crystals * Experimental Proof: There Existing Another Mechanism of Photorefractive Index in Crystal Ce-SBN * Effect of Crystal Annealing on Holographic Recording in Bismuth Silicon Oxide * Two Wave Coupling in KNbO3 Photorefractive Crystal * Photorefractive Effects in Nd-Doped Ferroelectric (KxNa1-x)0.4-(SryBa1-y)0.8 Nb2O6 Single Crystal * High Pressure Raman Spectra and the Effect of Pressure to the Ferroelastic Phase Transition in LnP5O15 * Time-delay Four-wave Mixing with Incoherent Light in Absorption Bands Treated as a Multi-level System * Pulsed Laser Induced Dislocation Structure in Lithium Fluoride Single Crystals * Laser Spectroscopy * Nonclassical Radiation from Single-atom Oscillators * Laser Spectroscopic Studies of Molecules in Highly Excited Vibrational State * Investigation of the Stark Effect in Xenon Autoionizing Rydberg Series with the Use of Coherent Tunable XUV Radiation * Laser Spectroscopy of Autoionising 5 dnf J = 4.5 Rydberg Series of Ba I * Resonance Photoionization Spectroscopy of Atoms: Autoionization and Highly Excited States of Kr and U * Stark Spectra of Strontium and Calcium Atoms * Observation of Bidirectional Stimulated Radiation at 330 nm, 364 nm and 718 nm with 660 nm Laser Pumping in Sodium Vapour * Study of Molecular Rydberg States and their Discriminations in Na2 * The Measurement of the High Excited Spectra of Samarium by using Stepwise Laser Excitation Method * Product Analysis in the Reaction of the Two-photon Excited Xe(5p56p) States with Freons * Photoionization Spectra of Ca and Sr Atoms above the Classical Field-ionization Threshold * Effect of Medium Background on the Hydrogen Spectrum * Photoemission and Photoelectron Spectra from Autoionizing Atoms in Strong Laser Field * Natural Radiative Lifetime Measurements of High-lying States of Samarium * Two-step Laser Excitation of nf Rydberg States in Neutral Al and Observation of Stark Effect * Measurements of Excited Spectra of the Refractory Metal Elements using Discharge Synchronized with the Laser Pulse * Multiphoton Ionization of Atomic Lead at 1.06μ * Kinetic Processes in the Electron-beam pumped KrF Laser * Laser-induced Fluorescence of Zn2 Excimer * Calculation of Transition Intensity in Heteronuclear Dimer NaK: Comparison with Experiment * Laser-induced Fluorescence of CCl2 Carbene * Study of Multiphoton Ionization Spectrum of Benzene and Two-photon Absorption Cross Section * Dicke Narrowing of N2O Linewidth Perturbed by N2 at 10 μm Band * Polyatomic Molecular Ions Studied by Laser Photodissociation Spectroscopy * Transverse-optically Pumped Ultraviolet S2 Laser * Multiphoton Ionization of Propanal by High Power Laser * UV MPI Mass Spectroscopy and Dynamics of Photodissociation of SO2 * Multiphoton Ionization-fragmentation Patterns of Ethylamine and Dimethylamine Isomers * Cars Measurements of SF6 Pumped by a CO2 Laser Pulse * Angular Dependence of Phase Conjugation of CO2 Laser on SF6 Gas * Resolution of Stretching-vibrational and Translational Raman Bands of Liquid Water by Means of Polarization Four-photon Spectroscopy * Laser-produced Plasma as an Effective Source for X-Ray Spectroscopy * Rotational Structure of the Low Lying Electronic States of Samarium Monoxide * Effects of Poling and Stretching on Second-harmonic Generation in Amorphous Vinylidene Cyanide/Vinyl Acetate Copolymer * Laser-induced Spectroscopy of Cardiovascular Tissues * Laser-excited Malignancy Autofluorescence for Tumour Malignancy Investigation and its Origin * A Study on Several Hematoporphyrin Derivatives by Time-resolved Spectroscopy * Research on Strong Field Processes with a Subpicosecond 400 GW Ultraviolet Source * Growth, Decay and Quenching of Stimulated Raman Scattering in Transparent Liquid Droplets * Layer Condensed Ammonia Studied by Photoacoustic Spectroscopy * High Efficiency Raman Conversion of XeCl Laser Radiation in Lead Vapor * Combined Effect of Stimulated Scattering and Phase Modulation on Generation of Supercontinum * Resonant Multiwave Mixing in Sodium Vapor * High Pressure Brillouin Scattering in Liquid Toluene * Optical Nonlinearities and Bistability in Gold Colloid * Sum-frequency Generation for Surface Vibrational Spectroscopy * Optical Studies of Molecule/Surface Interactions * Optical Second Harmonic Generation with Coupled Surface Plasmons from a Multi-layer Silver/Quartz Grating * Evidence of Silver Cluster and its Role in Surface Enhanced Raman Scattering (SERS) * Study on Cold-evaporated Silver Surfaces with Second-harmonic-generation * Study of Optical Second-harmonic-generation at Metal Surface with Polarization States * Spectroscopic Studies of J-Aggregates of Pseudoisocyanine in Molecular Monolayers in the Range 300 to 20 K * Study of Polymerization of Langmuir-Blodgett Monolayer by Surface Enhanced Raman Scattering * Dynamics of Laser-induced Etching of Si(III) Surface of Chlorine * Fourier Transform Heterodyne Spectroscopy of Liquid Interfaces * Generation of High Power UV Femtosecond Pulses * Femtosecond Photon Echoes * Transition Radiation of Femtosecond Optical Pulses * Observation of DFWN in a Saturable Absorber inside the CPM Ring Dye Laser Cavity * Study on the Induced Spectral Superbroadening of Ultrafast Laser Pulse in a Nonlinear Medium * Laser Cooling and Trapping of Atoms * Femtosecond Absorption Spectroscopy of Primary Processes in Bacterial Photosynthesis Reaction Centers * Observation of the Motion of Slow Atoms in a Standing Wave Field * The Interrelation between the Optical Properties and the MBE Growth Control of Quantum Well Structures * Ionic Excimers * Optical SHG Study on Polymerization of Langmuir-Blodgett Molecular Layers * Weak Localization of Light * Statistical Fragmentation Patterns of Metastable Ion: Comparison with Experiment * Oxygeneration Reaction of Cerium with XeCl Laser * Measurement of Verdet Coefficient and Magneto-optic Spectroscopy in terms of Beats * Study on Rhodamine 6G/Xylene and Red B Laser Dye Mixture System * Ultranarrow Absorption Resonances of Cold Particles and their Application in Spectroscopy and Optical Frequency Standards * The Dynamics of Ion Clouds in Paul Traps: Implications for Frequency Standard Applications * Frequency Stability Measurement of Zeeman Stabilized He-Ne Laser * Multi-wavelength CW He-Ne Laser and its Frequency Stabilization * Efficient Isotope Separation using Semiconductor Lasers * Multi-beam Circularly Polarized Holography * Ring Laser Opticity Meter * Improved Rademacher Functions and Rademacher Transform * Note

  18. The Effect of Studying Tech Prep in High School and College Academic Performance

    ERIC Educational Resources Information Center

    Ray, Larry A.

    2011-01-01

    This study examined the academic performance of Tech Prep students (referred to as participants) in comparison to non-Tech Prep students (referred to as non-participants) entering a two-year community college from sixteen different high schools in Stark County, Ohio. This study provided a quantitative analysis of students' academic experiences to…

  19. Observation of Bloch oscillations in complex PT-symmetric photonic lattices

    PubMed Central

    Wimmer, Martin; Miri, Mohammed-Ali; Christodoulides, Demetrios; Peschel, Ulf

    2015-01-01

    Light propagation in periodic environments is often associated with a number of interesting and potentially useful processes. If a crystalline optical potential is also linearly ramped, light can undergo periodic Bloch oscillations, a direct outcome of localized Wannier-Stark states and their equidistant eigenvalue spectrum. Even though these effects have been extensively explored in conservative settings, this is by no means the case in non-Hermitian photonic lattices encompassing both amplification and attenuation. Quite recently, Bloch oscillations have been predicted in parity-time-symmetric structures involving gain and loss in a balanced fashion. While in a complex bulk medium, one intuitively expects that light will typically follow the path of highest amplification, in a periodic system this behavior can be substantially altered by the underlying band structure. Here, we report the first experimental observation of Bloch oscillations in parity-time-symmetric mesh lattices. We show that these revivals exhibit unusual properties like secondary emissions and resonant restoration of PT symmetry. In addition, we present a versatile method for reconstructing the real and imaginary components of the band structure by directly monitoring the light evolution during a cycle of these oscillations. PMID:26639941

  20. Electrical Tuning of Interlayer Exciton Gases in WSe2 Bilayers.

    PubMed

    Wang, Zefang; Chiu, Yi-Hsin; Honz, Kevin; Mak, Kin Fai; Shan, Jie

    2018-01-10

    van der Waals heterostructures formed by stacking two-dimensional atomic crystals are a unique platform for exploring new phenomena and functionalities. Interlayer excitons, bound states of spatially separated electron-hole pairs in van der Waals heterostructures, have demonstrated potential for rich valley physics and optoelectronics applications and been proposed to facilitate high-temperature superfluidity. Here, we demonstrate highly tunable interlayer excitons by an out-of-plane electric field in homobilayers of transition metal dichalcogenides. Continuous tuning of the exciton dipole from negative to positive orientation has been achieved, which is not possible in heterobilayers due to the presence of large built-in interfacial electric fields. A large linear field-induced redshift up to ∼100 meV has been observed in the exciton resonance energy. The Stark effect is accompanied by an enhancement of the exciton recombination lifetime by more than two orders of magnitude to >20 ns. The long recombination lifetime has allowed the creation of an interlayer exciton gas with density as large as 1.2 × 10 11 cm -2 by moderate continuous-wave optical pumping. Our results have paved the way for the realization of degenerate exciton gases in atomically thin semiconductors.

  1. Observation of Bloch oscillations in complex PT-symmetric photonic lattices

    NASA Astrophysics Data System (ADS)

    Wimmer, Martin; Miri, Mohammed-Ali; Christodoulides, Demetrios; Peschel, Ulf

    2015-12-01

    Light propagation in periodic environments is often associated with a number of interesting and potentially useful processes. If a crystalline optical potential is also linearly ramped, light can undergo periodic Bloch oscillations, a direct outcome of localized Wannier-Stark states and their equidistant eigenvalue spectrum. Even though these effects have been extensively explored in conservative settings, this is by no means the case in non-Hermitian photonic lattices encompassing both amplification and attenuation. Quite recently, Bloch oscillations have been predicted in parity-time-symmetric structures involving gain and loss in a balanced fashion. While in a complex bulk medium, one intuitively expects that light will typically follow the path of highest amplification, in a periodic system this behavior can be substantially altered by the underlying band structure. Here, we report the first experimental observation of Bloch oscillations in parity-time-symmetric mesh lattices. We show that these revivals exhibit unusual properties like secondary emissions and resonant restoration of PT symmetry. In addition, we present a versatile method for reconstructing the real and imaginary components of the band structure by directly monitoring the light evolution during a cycle of these oscillations.

  2. Quantum non-demolition detection of an itinerant microwave photon

    NASA Astrophysics Data System (ADS)

    Kono, S.; Koshino, K.; Tabuchi, Y.; Noguchi, A.; Nakamura, Y.

    2018-06-01

    Photon detectors are an elementary tool to measure electromagnetic waves at the quantum limit1,2 and are heavily demanded in the emerging quantum technologies such as communication3, sensing4 and computing5. Of particular interest is a quantum non-demolition (QND)-type detector, which projects an electromagnetic wave onto the photon-number basis6-10. This is in stark contrast to conventional photon detectors2 that absorb a photon to trigger a `click'. The long-sought QND detection of a flying photon was recently demonstrated in the optical domain using a single atom in a cavity11,12. However, the counterpart for microwaves has been elusive despite the recent progress in microwave quantum optics using superconducting circuits13-19. Here, we implement a deterministic entangling gate between a superconducting qubit and an itinerant microwave photon reflected by a cavity containing the qubit. Using the entanglement and the high-fidelity qubit readout, we demonstrate a QND detection of a single photon with the quantum efficiency of 0.84 and the photon survival probability of 0.87. Our scheme can serve as a building block for quantum networks connecting distant qubit modules as well as a microwave-photon-counting device for multiple-photon signals.

  3. Radial Profiles of Saturn’s Phoebe Ring

    NASA Astrophysics Data System (ADS)

    Tamayo, Daniel; Markham, Stephen; Hedman, Matthew M.; Burns, Joseph A.

    2015-11-01

    In 2009, the Spitzer observatory discovered a vast circumplanetary dust ring around Saturn, sourced by its swarm of irregular satellites. This material had been hypothesized to exist, in order to blanket Iapetus’ leading face and create its stark hemispherical dichotomy. Unfortunately, observations from near-Earth space cannot probe how far inward the Phoebe ring extends, as they are overwhelmed by scattered light from the planet. Additionally, to date, such measurements have only been achieved of thermal emission in the mid-infrared.By contrast, we present results from recent observations with the Cassini spacecraft (in orbit about Saturn) at optical wavelengths. Using a novel observational technique that exploits the moving shadow cast by Saturn, we mitigate the scattered light and background, and have been able to clearly extract the exceedingly faint Phoebe ring signal (line-of-sight optical depth of 10e-9, surface brightness of roughly 27 mag/arcsec^2).Our extracted albedos are consistent with dark material liberated from the irregular satellites. Additionally, we present reconstructed radial profiles over the broad range of distances from Saturn spanned by our observations. We also connect these results to theoretical models of the size-dependent dynamics of Phoebe ring dust grains under the action of the relevant perturbations.

  4. Phonon assisted carrier motion on the Wannier-Stark ladder

    NASA Astrophysics Data System (ADS)

    Cheung, Alfred; Berciu, Mona

    2014-03-01

    It is well known that at zero temperature and in the absence of electron-phonon coupling, the presence of an electric field leads to localization of carriers residing in a single band of finite bandwidth. In this talk, we will present an implementation of the self-consistent Born approximation (SCBA) to study the effect of weak electron-phonon coupling on the motion of a carrier in a biased system. At moderate and strong electron-phonon coupling, we supplement the SCBA, describing the string of phonons left behind by the carrier, with the momentum average approximation to describe the phonon cloud that accompanies the resulting polaron. We find that coupling to the lattice delocalizes the carrier, as expected, although long-lived resonances resulting from the Wannier-Stark states of the polaron may appear in certain regions of the parameter space. We end with a discussion of how our method can be improved to model disorder, other types of electron-phonon coupling, and electron-hole pair dissociation in a biased system.

  5. Dynamic Stark spectroscopic measurements of microwave electric fields inside the plasma near a high-power antenna.

    PubMed

    Klepper, C C; Isler, R C; Hillairet, J; Martin, E H; Colas, L; Ekedahl, A; Goniche, M; Harris, J H; Hillis, D L; Panayotis, S; Pegourié, B; Lotte, Ph; Colledani, G; Martin, V

    2013-05-24

    Fully dynamic Stark effect visible spectroscopy was used for the first time to directly measure the local rf electric field in the boundary plasma near a high-power antenna in high-performance, magnetically confined, fusion energy experiment. The measurement was performed in the superconducting tokamak Tore Supra, in the near field of a 1–3 MW, lower-hybrid, 3.7 GHz wave-launch antenna, and combined with modeling of neutral atom transport to estimate the local rf electric field amplitude (as low as 1–2 kV/cm) and direction in this region. The measurement was then shown to be consistent with the predicted values from a 2D full-wave propagation model. Notably the measurement confirmed that the electric field direction deviates substantially from the direction in which it is launched by the waveguides as it penetrates only a few cm radially inward into the plasma from the waveguides, consistent with the model.

  6. Application of Ada (Trade Name) Higher Order Language to Guidance and Control

    DTIC Science & Technology

    1986-05-01

    name "DoD-0"). The name Ada honors the mathematician of the 19th century who, as colleague to Charles Babbage , developed an instruction set for the as...Avenue St Charles , MO 63301 USA SPEAKERS Mr R.E.Bolz 6751 South Dahlia Court Modem Prograimning Languages Littleton, CO 80122 USA Dr O.Roubine...WHITTREDGE, R. S. PAA : C/( Charles Stark Draper Laboratory, Inc., Cambridge, MA) CORP: Draper ( Charles Stark) Lab., Inc., Cambridge, Mass. IN

  7. Integration of electro-absorption modulator in a vertical-cavity surface-emitting laser

    NASA Astrophysics Data System (ADS)

    Marigo-Lombart, L.; Calvez, S.; Arnoult, A.; Rumeau, A.; Viallon, C.; Thienpont, H.; Panajotov, K.; Almuneau, G.

    2018-02-01

    VCSELs became dominant laser sources in many short optical link applications such as datacenter, active cables, etc. Actual standards and commercialized VCSEL are providing 25 Gb/s data rates, but new solutions are expected to settle the next device generation enabling 100 Gb/s. Directly modulated VCSEL have been extensively studied and improved to reach bandwidths in the range of 26-32 GHz [Chalmers, TU Berlin], however at the price of increased applied current and thus reduced device lifetime. Furthermore, the relaxation oscillation limit still subsists with this solution. Thus, splitting the emission and the modulation functions as done with DFB lasers is a very promising alternative [TI-Tech, TU Berlin]. Here, we study the vertical integration of an ElectroAbsorption Modulator (EAM) within a VCSEL, where the output light of the VCSEL is modulated through the EAM section. In our original design, we finely optimized the EAM design to maximize the modulation depth by implementing perturbative Quantum Confined Stark Effect (QCSE) calculations, while designing the vertical integration of the EAM without penalty on the VCSEL static performances. We will present the different fabricated vertical structures, as well as the experimental electrical and optical static measurements for those configurations demonstrating a very good agreement with the reflectivity and absorption simulations obtained for both the VCSEL and the EAM-VCSEL structures. Finally, to reach very high frequency modulation we studied the BCB electrical properties up to 110 GHz and investigated coplanar and microstrip lines access to decrease both the parasitic capacitance and the influence of the substrate.

  8. Independent variations of applied voltage and injection current for controlling the quantum-confined Stark effect in an InGaN/GaN quantum-well light-emitting diode.

    PubMed

    Chen, Horng-Shyang; Liu, Zhan Hui; Shih, Pei-Ying; Su, Chia-Ying; Chen, Chih-Yen; Lin, Chun-Han; Yao, Yu-Feng; Kiang, Yean-Woei; Yang, C C

    2014-04-07

    A reverse-biased voltage is applied to either device in the vertical configuration of two light-emitting diodes (LEDs) grown on patterned and flat Si (110) substrates with weak and strong quantum-confined Stark effects (QCSEs), respectively, in the InGaN/GaN quantum wells for independently controlling the applied voltage across and the injection current into the p-i-n junction in the lateral configuration of LED operation. The results show that more carrier supply is needed in the LED of weaker QCSE to produce a carrier screening effect for balancing the potential tilt in increasing the forward-biased voltage, when compared with the LED of stronger QCSE. The small spectral shift range in increasing injection current in the LED of weaker QCSE is attributed not only to the weaker QCSE, but also to its smaller device resistance such that a given increment of applied voltage leads to a larger increment of injection current. From a viewpoint of practical application in LED operation, by applying a reverse-biased voltage in the vertical configuration, the applied voltage and injection current in the lateral configuration can be independently controlled by adjusting the vertical voltage for keeping the emission spectral peak fixed.

  9. Calculations of the Electric Fields in Liquid Solutions

    PubMed Central

    Fried, Stephen D.; Wang, Lee-Ping; Boxer, Steven G.; Ren, Pengyu; Pande, Vijay S.

    2014-01-01

    The electric field created by a condensed phase environment is a powerful and convenient descriptor for intermolecular interactions. Not only does it provide a unifying language to compare many different types of interactions, but it also possesses clear connections to experimental observables, such as vibrational Stark effects. We calculate here the electric fields experienced by a vibrational chromophore (the carbonyl group of acetophenone) in an array of solvents of diverse polarities using molecular dynamics simulations with the AMOEBA polarizable force field. The mean and variance of the calculated electric fields correlate well with solvent-induced frequency shifts and band broadening, suggesting Stark effects as the underlying mechanism of these key solution phase spectral effects. Compared to fixed-charge and continuum models, AMOEBA was the only model examined that could describe non-polar, polar, and hydrogen bonding environments in a consistent fashion. Nevertheless, we found that fixed-charge force fields and continuum models were able to replicate some results of the polarizable simulations accurately, allowing us to clearly identify which properties and situations require explicit polarization and/or atomistic representations to be modeled properly, and for which properties and situations simpler models are sufficient. We also discuss the ramifications of these results for modeling electrostatics in complex environments, such as proteins. PMID:24304155

  10. Effect of the corrected ionization potential and spatial distribution on the angular and energy distribution in tunnel ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrović, V. M.; Miladinović, T. B., E-mail: tanja.miladinovic@gmail.com

    2016-05-15

    Within the framework of the Ammosov–Delone–Krainov theory, we consider the angular and energy distribution of outgoing electrons due to ionization by a circularly polarized electromagnetic field. A correction of the ground ionization potential by the ponderomotive and Stark shift is incorporated in both distributions. Spatial dependence is analyzed.

  11. Time-dependent spectroscopy of plasma plume under laser welding conditions

    NASA Astrophysics Data System (ADS)

    Hoffman, Jacek; Szymanski, Zygmunt

    2004-07-01

    Momentary emission spectra of iron and argon lines were measured in a plasma plume induced during welding with a continuous wave CO2 laser. Time-dependent spectra were registered using a fast gate, lens coupled microchannel plate image intensifier placed between a spectrograph and a 1254 silicon intensified target detector connected to an optical multichannel analyser. The results, together with the analysis of the colour images from a fast camera, show that in the case when argon is the shielding gas, two plasmas exist: the argon plasma and the iron plasma. It has been found that during strong bursts the plasma plume over the keyhole consists mainly of metal vapour, not being diluted by the shielding gas. No apparent mixing of the metal vapour and the shielding gas has been observed. The space-averaged electron densities determined from the Stark broadening of the 7503.87, 7514.65 Å Ar I lines amounts to (0.75-1.05) × 1023 m-3 depending on the distance from the surface. Assuming that argon is not mixed with the metal vapour and is in local thermodynamic equilibrium these electron densities correspond to the temperatures of 12-13 kK. At the peaks of strong vapour bursts the space-averaged electron densities determined from the Stark broadening of the 5383.37 Å Fe I line are (0.6-1) × 1023 m-3. Numerical simulations showed that the maximum densities in the plasma centre are considerably higher and amount to ~1.8 × 1023 m-3 and ~2.45 × 1023 m-3 in the case of the argon and metal plasma, respectively. Consequently the absorption of the laser beam in the plasma plume amounts to ~5% of the beam power in the case of argon and 10% in the case of metal plasma.

  12. Probing different regimes of strong field light-matter interaction with semiconductor quantum dots and few cavity photons

    NASA Astrophysics Data System (ADS)

    Hargart, F.; Roy-Choudhury, K.; John, T.; Portalupi, S. L.; Schneider, C.; Höfling, S.; Kamp, M.; Hughes, S.; Michler, P.

    2016-12-01

    In this work we present an extensive experimental and theoretical investigation of different regimes of strong field light-matter interaction for cavity-driven quantum dot (QD) cavity systems. The electric field enhancement inside a high-Q micropillar cavity facilitates exceptionally strong interaction with few cavity photons, enabling the simultaneous investigation for a wide range of QD-laser detuning. In case of a resonant drive, the formation of dressed states and a Mollow triplet sideband splitting of up to 45 μeV is measured for a mean cavity photon number < {n}c> ≤slant 1. In the asymptotic limit of the linear AC Stark effect we systematically investigate the power and detuning dependence of more than 400 QDs. Some QD-cavity systems exhibit an unexpected anomalous Stark shift, which can be explained by an extended dressed 4-level QD model. We provide a detailed analysis of the QD-cavity systems properties enabling this novel effect. The experimental results are successfully reproduced using a polaron master equation approach for the QD-cavity system, which includes the driving laser field, exciton-cavity and exciton-phonon interactions.

  13. Dynamische Motorvermessung mit verschiedenen Methoden und Modellen

    NASA Astrophysics Data System (ADS)

    Schreiber, Alexander

    Die stark zunehmenden gesetzlichen und wirtschaftlichen Vorgaben zur Senkung von Kraftstoffverbrauch und Abgasemissionen stellen große Anforderungen an die weitere Entwicklung von Benzin- und Dieselmotoren. Hierbei sind grundlegende Fortschritte durch Konstruktion und auslegungsbedingte Maßnahmen im Bereich der Einspritzung, Gemischaufbereitung, Aufladung, Brennverfahren und Abgasnachbehandlung zu erreichen. Ein wesentlicher Teil dieser Verbesserungen wird jedoch durch eine Zunahme von Variabilitäten erreicht wie z.B. verstellbaren Vor-, Haupt- und Nacheinspritzungen, variablem Raildruck, variablen Nockenwellensteuerwinkeln, Ventilhüben, Drall-/Tumbleklappen sowie verstellbaren Abgasturbinen, Abgasrückführströmen und Abgasnachbehandlungssystemen. Dadurch steigt die Zahl der Stellglieder (Aktoren) stark an. Hinzu kommen zusätzliche Sensoren wie z.B. für Luftzahl, NOx, Brennraumdruck, Abgastemperatur und Abgasdruck. Deshalb nimmt der Umfang der Steuerungs-, Regelungs- und Diagnosefunktionen in der Motorelektronik (ECU) stark zu. Bild 7-1 zeigt als Beispiel den Signalfluss für die gesteuerten und geregelten Größen eines Dieselmotors in einer beispielhaften Prüfstandsumgebung.

  14. Accelerated and Airy-Bloch oscillations

    NASA Astrophysics Data System (ADS)

    Longhi, Stefano

    2016-09-01

    A quantum particle subjected to a constant force undergoes an accelerated motion following a parabolic path, which differs from the classical motion just because of wave packet spreading (quantum diffusion). However, when a periodic potential is added (such as in a crystal) the particle undergoes Bragg scattering and an oscillatory (rather than accelerated) motion is found, corresponding to the famous Bloch oscillations (BOs). Here, we introduce an exactly-solvable quantum Hamiltonian model, corresponding to a generalized Wannier-Stark Hamiltonian Ĥ, in which a quantum particle shows an intermediate dynamical behavior, namely an oscillatory motion superimposed to an accelerated one. Such a novel dynamical behavior is referred to as accelerated BOs. Analytical expressions of the spectrum, improper eigenfunctions and propagator of the generalized Wannier-Stark Hamiltonian Ĥ are derived. Finally, it is shown that acceleration and quantum diffusion in the generalized Wannier-Stark Hamiltonian are prevented for Airy wave packets, which undergo a periodic breathing dynamics that can be referred to as Airy-Bloch oscillations.

  15. Light shift measurements in a Cesium Fountain without the use of mechanical shutters

    NASA Technical Reports Server (NTRS)

    Tjoelker, Robert L.; Enzer, D. G.; Klipstein, W. M.

    2005-01-01

    We present measurements confirming operation of a cesium fountain frequency standard with light shift below 10^-15 (and with evidence suggesting it is several orders of magnitude below this level) but without the use of mechanical shutters. Suppression of the light shift is realized using a master-slave laser configuration by reducing the overall optical power delivered to the physics package as well as spoiling the injection of the slave, causing it to lase far off resonance (1-2 nm) as proposed by the authors several years ago [l]. In the absence of any mitigation, this (AC Stark) shift, due to near-resonant laser light reaching the atoms during their microwave interrogation period, is the largest shift in such frequency standards (2x10^-11 for Our fountain). Mechanical shutters provided adequate light attenuation but have been prone to failure.

  16. Direct Measurement of the Effect of Cholesterol and 6-Ketocholestanol on the Membrane Dipole Electric Field Using Vibrational Stark Effect Spectroscopy Coupled with Molecular Dynamics Simulations.

    PubMed

    Shrestha, Rebika; Anderson, Cari M; Cardenas, Alfredo E; Elber, Ron; Webb, Lauren J

    2017-04-20

    Biological membranes are heterogeneous structures with complex electrostatic profiles arising from lipids, sterols, membrane proteins, and water molecules. We investigated the effect of cholesterol and its derivative 6-ketocholestanol (6-kc) on membrane electrostatics by directly measuring the dipole electric field (F⃗ d ) within lipid bilayers containing cholesterol or 6-kc at concentrations of 0-40 mol% through the vibrational Stark effect (VSE). We found that adding low concentrations of cholesterol, up to ∼10 mol %, increases F⃗ d , while adding more cholesterol up to 40 mol% lowers F⃗ d . In contrast, we measured a monotonic increase in F⃗ d as 6-kc concentration increased. We propose that this membrane electric field is affected by multiple factors: the polarity of the sterol molecules, the reorientation of the phospholipid dipole due to sterol, and the impact of the sterol on hydrogen bonding with surface water. We used molecular dynamics simulations to examine the distribution of phospholipids, sterol, and helix in bilayers containing these sterols. At low concentrations, we observed clustering of sterols near the vibrational probe whereas at high concentrations, we observed spatial correlation between the positions of the sterol molecules. This work demonstrates how a one-atom difference in a sterol changes the physicochemical and electric field properties of the bilayer.

  17. Electric field determination in the plasma-antenna boundary of a lower-hybrid wave launcher in Tore Supra through dynamic Stark-effect spectroscopy

    DOE PAGES

    Martin, Elijah H.; Goniche, M.; Klepper, C. Christopher; ...

    2015-04-22

    Interaction of radio-frequency (RF) waves with the plasma in the near-field of a high-power wave launcher is now seen to be important, both in understanding the channeling of these waves through the plasma boundary and in avoiding power losses in the edge. In a recent Letter a direct non-intrusive measurement of a near antenna RF electric field in the range of lower hybrid (LH) frequencies (more » $$E_{LH}$$) was announced (Phys. Rev. Lett., 110:215005, 2013). The measurement was achieved through the fitting of Balmer series deuterium spectral lines utilizing a time dependent (dynamic) Stark effect model. In this article, the processing of the spectral data is discussed in detail and applied to a larger range of measurements and the accuracy and limitations of the experimental technique is investigated. We find through an analysis of numerous Tore Supra pulses that good quantitative agreement exists between the measured and full-wave modeled $$E_{LH}$$ when the launched power exceeds 0.5MW. For low power the measurement becomes formidable utilizing the implemented passive spectroscopic technique because the spectral noise overwhelms the effect of the RF electric field on the line profile. Additionally, effects of the ponderomotive force are suspected at sufficiently high power.« less

  18. Correlated electron-nuclear dynamics in above-threshold multiphoton ionization of asymmetric molecule.

    PubMed

    Wang, Zhuo; Li, Min; Zhou, Yueming; Lan, Pengfei; Lu, Peixiang

    2017-02-20

    The partition of the photon energy into the subsystems of molecules determines many photon-induced chemical and physical dynamics in laser-molecule interactions. The electron-nuclear energy sharing from multiphoton ionization of molecules has been used to uncover the correlated dynamics of the electron and fragments. However, most previous studies focus on symmetric molecules. Here we study the electron-nuclear energy sharing in strong-field photoionization of HeH 2+ by solving the one-dimensional time-dependent Schrödinger equation (TDSE). Compared with symmetric molecules, the joint electron-nuclear energy spectrum (JES) of HeH 2+ reveals an anomalous energy shift at certain nuclear energies, while it disappears at higher and lower nuclear energies. Through tracing the time evolution of the wavepacket of bound states, we identify that this energy shift originates from the joint effect of the Stark shift, associated with the permanent dipole, and the Autler-Townes effect due to the coupling of the 2pσ and 2sσ states in strong fields. The energy shift in the JES appears at certain nuclear distances only when both Stark effect and Autler-Townes effect play important roles. We further demonstrate that the electron-nuclei energy sharing can be controlled by varying laser intensity for asymmetric molecules, providing alternative approaches to manipulate photochemical reactions for more complex molecules.

  19. Miniature Optical Wide-Angle-Lens Startracker (Mini-OWLS)

    NASA Technical Reports Server (NTRS)

    Miller, Rick; Coulter, Joe E.; Levine, Seymour

    1993-01-01

    This paper provides a brief overview of the design considerations and the current status of the Miniature Optical Wide-Angle Lens Startracker Program. Mini-OWLS offers a revolutionary alternative to the conventional startracker. It is a small, lightweight, low cost, high performance startracker that can be used in a variety of applications including calibration and alignment of Inertial Measurement Units (IMU's) Mini-OWLS makes use of a strap down design incorporating Holographic Optical Elements (HOES) in place of conventional optics. HOES can be multiplexed so that the same aperture can be used for multiple separate optical paths looking in several directions simultaneously without startracker rotation. Additionally, separate Schmidt corrector plates are not required to compensate for spherical aberration. The optical assembly, or what would normally be considered as the telescope, is less than 20 cc in volume, weighs less than 55 grams, and contains the equivalent of three individual telescopes. Each one has a 4 deg Field of View (FOV) with a field of regard of 48 square degrees. Mini-OWLS has a bandwidth of approximately 300 nm in or near the visible wavelength. The projected resolution of the startracker is 5 to 10 arcseconds, depending on the centroiding algorithm used. The Mini-OWLS program was initiated last year and represents a miniaturized version of a similar design for aeronautical applications. The contract is managed by Wright Laboratory, Air Force Systems Command, Wright-Patterson AFB, Ohio, with funding from the Strategic Defense Initiative Organization through Eglin AFB. The initial phase of the program is to build and test a development unit. The second phase is to integrate the startracker with the Charles Stark Draper Laboratory Micromechanical Inertial Guidance System (MIGS) and the Signal Processing Packaging Design (SPPD) being developed by Texas Instruments. The preliminary design review was conducted in November 1991. Three-axes prototype telescope assemblies have been built and design evaluation tests initiated.

  20. Miniature Optical Wide-Angle-Lens Startracker (Mini-OWLS)

    NASA Astrophysics Data System (ADS)

    Miller, Rick; Coulter, Joe E.; Levine, Seymour

    1993-02-01

    This paper provides a brief overview of the design considerations and the current status of the Miniature Optical Wide-Angle Lens Startracker Program. Mini-OWLS offers a revolutionary alternative to the conventional startracker. It is a small, lightweight, low cost, high performance startracker that can be used in a variety of applications including calibration and alignment of Inertial Measurement Units (IMU's) Mini-OWLS makes use of a strap down design incorporating Holographic Optical Elements (HOES) in place of conventional optics. HOES can be multiplexed so that the same aperture can be used for multiple separate optical paths looking in several directions simultaneously without startracker rotation. Additionally, separate Schmidt corrector plates are not required to compensate for spherical aberration. The optical assembly, or what would normally be considered as the telescope, is less than 20 cc in volume, weighs less than 55 grams, and contains the equivalent of three individual telescopes. Each one has a 4 deg Field of View (FOV) with a field of regard of 48 square degrees. Mini-OWLS has a bandwidth of approximately 300 nm in or near the visible wavelength. The projected resolution of the startracker is 5 to 10 arcseconds, depending on the centroiding algorithm used. The Mini-OWLS program was initiated last year and represents a miniaturized version of a similar design for aeronautical applications. The contract is managed by Wright Laboratory, Air Force Systems Command, Wright-Patterson AFB, Ohio, with funding from the Strategic Defense Initiative Organization through Eglin AFB. The initial phase of the program is to build and test a development unit. The second phase is to integrate the startracker with the Charles Stark Draper Laboratory Micromechanical Inertial Guidance System (MIGS) and the Signal Processing Packaging Design (SPPD) being developed by Texas Instruments. The preliminary design review was conducted in November 1991. Three-axes prototype telescope assemblies have been built and design evaluation tests initiated.

  1. [Two observations of evisceration after caesarean section performed according the so-called Stark procedure].

    PubMed

    Fournié, A; Madzou, S; Sentilhes, L; Descamps, P

    2008-12-01

    Two cases of evisceration after caesarean sections performed according the Misgav Ladach General Hospital procedure (Stark's procedure) are reported. In these cases, omentum was sutured between the edges of fascia recti, creating a weakness of the abdominal sheath. These cases claim about a strict procedure for fascia suture. Also, these cases question about the parietal peritoneal closure and the drawing of rectus muscles, which are vertical breaks; so, these sutures close transversal incision of the abdominal wall with cross sutures, which are very secure.

  2. Emergency Operations Center ribbon cutting

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Center Director Gene Goldman and special guests celebrate the opening of the site's new Emergency Operations Center on June 2. Participants included (l t r): Steven Cooper, deputy director of the National Weather Service Southern Region; Tom Luedtke, NASA associate administrator for institutions and management; Charles Scales, NASA associate deputy administrator; Mississippi Gov. Haley Barbour; Gene Goldman, director of Stennis Space Center; Jack Forsythe, NASA assistant administrator for the Office of Security and Program Protection; Dr. Richard Williams, NASA chief health and medical officer; and Weldon Starks, president of Starks Contracting Company Inc. of Biloxi.

  3. Emergency Operations Center ribbon cutting

    NASA Image and Video Library

    2009-06-02

    Center Director Gene Goldman and special guests celebrate the opening of the site's new Emergency Operations Center on June 2. Participants included (l t r): Steven Cooper, deputy director of the National Weather Service Southern Region; Tom Luedtke, NASA associate administrator for institutions and management; Charles Scales, NASA associate deputy administrator; Mississippi Gov. Haley Barbour; Gene Goldman, director of Stennis Space Center; Jack Forsythe, NASA assistant administrator for the Office of Security and Program Protection; Dr. Richard Williams, NASA chief health and medical officer; and Weldon Starks, president of Starks Contracting Company Inc. of Biloxi.

  4. Validation of the Noncommissioned Officer Special Assignment Battery

    DTIC Science & Technology

    2013-03-01

    scoring designed to reduce the effects of faking in personality assessment [ Doctoral Dissertation]. University of Illinois at Urbana-Champaign. Stark, S...conducted factor analyses to determine whether these scales could be reasonably combined to create a reduced number of criteria for examining WAI and NSAB...has been that previously validated instruments for this purpose required proctored testing. To make it easier for Soldiers to be tested, reduce

  5. Exchange and correlation effects on plasmon dispersions and Coulomb drag in low-density electron bilayers

    NASA Astrophysics Data System (ADS)

    Badalyan, S. M.; Kim, C. S.; Vignale, G.; Senatore, G.

    2007-03-01

    We investigate the effect of exchange and correlation (XC) on the plasmon spectrum and the Coulomb drag between spatially separated low-density two-dimensional electron layers. We adopt a different approach, which employs dynamic XC kernels in the calculation of the bilayer plasmon spectra and of the plasmon-mediated drag, and static many-body local field factors in the calculation of the particle-hole contribution to the drag. The spectrum of bilayer plasmons and the drag resistivity are calculated in a broad range of temperatures taking into account both intra- and interlayer correlation effects. We observe that both plasmon modes are strongly affected by XC corrections. After the inclusion of the complex dynamic XC kernels, a decrease of the electron density induces shifts of the plasmon branches in opposite directions. This is in stark contrast with the tendency observed within random phase approximation that both optical and acoustical plasmons move away from the boundary of the particle-hole continuum with a decrease in the electron density. We find that the introduction of XC corrections results in a significant enhancement of the transresistivity and qualitative changes in its temperature dependence. In particular, the large high-temperature plasmon peak that is present in the random phase approximation is found to disappear when the XC corrections are included. Our numerical results at low temperatures are in good agreement with the results of recent experiments by Kellogg [Solid State Commun. 123, 515 (2002)].

  6. Spectral analysis of optical emission of microplasma in sea water

    NASA Astrophysics Data System (ADS)

    Gamaleev, Vladislav; Morita, Hayato; Oh, Jun-Seok; Furuta, Hiroshi; Hatta, Akimitsu

    2016-09-01

    This work presents an analysis of optical emission spectra from microplasma in three types of liquid, namely artificial sea water composed of 10 typical agents (10ASW), reference solutions each containing a single agent (NaCl, MgCl2 + H2O, Na2SO4, CaCl2, KCl, NaHCO3, KBr, NaHCO3, H3BO3, SrCl2 + H2O, NaF) and naturally sampled deep sea water (DSW). Microplasma was operated using a needle(Pd)-to-plate(Pt) electrode system sunk into each liquid in a quartz cuvette. The radius of the tip of the needle was 50 μm and the gap between the electrodes was set at 20 μm. An inpulse generator circuit, consisting of a MOSFET switch, a capacitor, an inductor and the resistance of the liquid between the electrodes, was used as a pulse current source for operation of discharges. In the spectra, the emission peaks for the main components of sea water and contaminants from the electrodes were detected. Spectra for reference solutions were examined to enable the identification of unassigned peaks in the spectra for sea water. Analysis of the Stark broadening of H α peak was carried out to estimate the electron density of the plasma under various conditions. The characteristics of microplasma discharge in sea water and the analysis of the optical emission spectra will be presented. This work was supported by JSPS KAKENHI Grant Number 26600129.

  7. Utilizing the ratio and the summation of two spectral lines for estimation of optical depth: Focus on thick plasmas

    NASA Astrophysics Data System (ADS)

    Rezaei, Fatemeh; Tavassoli, Seyed Hassan

    2016-11-01

    In this paper, a study is performed on the spectral lines of plasma radiations created from focusing of the Nd:YAG laser on Al standard alloys at atmospheric air pressure. A new theoretical method is presented to investigate the evolution of the optical depth of the plasma based on the radiative transfer equation, in LTE condition. This work relies on the Boltzmann distribution, lines broadening equations, and as well as the self-absorption relation. Then, an experimental set-up is devised to extract some of plasma parameters such as temperature from modified line ratio analysis, electron density from Stark broadening mechanism, line intensities of two spectral lines in the same order of ionization from similar species, and the plasma length from the shadowgraphy section. In this method, the summation and the ratio of two spectral lines are considered for evaluation of the temporal variations of the plasma parameters in a LIBS homogeneous plasma. The main advantage of this method is that it comprises the both of thin and thick laser induced plasmas without straight calculation of self-absorption coefficient. Moreover, the presented model can also be utilized for evaluation the transition of plasma from the thin condition to the thick one. The results illustrated that by measuring the line intensities of two spectral lines at different evolution times, the plasma cooling and the growth of the optical depth can be followed.

  8. Magnetic quantum phase transition in Cr-doped Bi2(SexTe1-x)3 driven by the Stark effect

    NASA Astrophysics Data System (ADS)

    Zhang, Zuocheng; Feng, Xiao; Wang, Jing; Lian, Biao; Zhang, Jinsong; Chang, Cuizu; Guo, Minghua; Ou, Yunbo; Feng, Yang; Zhang, Shou-Cheng; He, Ke; Ma, Xucun; Xue, Qi-Kun; Wang, Yayu

    2017-10-01

    The recent experimental observation of the quantum anomalous Hall effect has cast significant attention on magnetic topological insulators. In these magnetic counterparts of conventional topological insulators such as Bi2Te3, a long-range ferromagnetic state can be established by chemical doping with transition-metal elements. However, a much richer electronic phase diagram can emerge and, in the specific case of Cr-doped Bi2(SexTe1-x)3, a magnetic quantum phase transition tuned by the actual chemical composition has been reported. From an application-oriented perspective, the relevance of these results hinges on the possibility to manipulate magnetism and electronic band topology by external perturbations such as an electric field generated by gate electrodes—similar to what has been achieved in conventional diluted magnetic semiconductors. Here, we investigate the magneto-transport properties of Cr-doped Bi2(SexTe1-x)3 with different compositions under the effect of a gate voltage. The electric field has a negligible effect on magnetic order for all investigated compositions, with the remarkable exception of the sample close to the topological quantum critical point, where the gate voltage reversibly drives a ferromagnetic-to-paramagnetic phase transition. Theoretical calculations show that a perpendicular electric field causes a shift in the electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and, in turn, a magnetic phase transition.

  9. Fatigue Crack Initiation Mechanics of Metal Aircraft Structures

    DTIC Science & Technology

    1988-08-01

    Thresholds) (Ref. 6) and are included as Appendix A. In summary, two flow stresses were identified. Microplastic flow takes place in all grains at fully...R.O. Ritchie and E.A. Starke, EMAS, 93-101 (1987). 7. M.R. James and W.L. Morris, "Load Sequence Effects on the Deformation of Isolated Microplastic ...417 (1980). 17. M.R. James and W.L. Morris, "The Effect of Microplastic Surface Deformation on the Growth of Small Cracks," Small Fatigue Cracks, R.O

  10. Electroabsorption Spectroscopy Measurements of the Exciton Binding Energy, ElectronHole Reduced Effective Mass, and Band Gap in the Perovskite CHsub3NHsub3PbIsub3

    DTIC Science & Technology

    2016-07-28

    can essentially be described in terms of free carrier generation . KEYWORDS: solar cell, photovoltaic, Franz−Keldysh effect, Wannier exciton, Stark...optoelectronic devices such as lasers,1,2 LEDs,3 and solar cells,4−6 despite requiring only inexpensive and relatively crude processing conditions...compared to current high-performance crystalline semiconductors. The archetypal material, CH3NH3PbI3, has exhibited excellent power con- version

  11. Stark width and shift for electron number density diagnostics of low temperature plasma: Application to silicon Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ivković, M.; Konjević, N.

    2017-05-01

    In this work we summarize, analyze and critically evaluate experimental procedures and results of LIBS electron number density plasma characterization using as examples Stark broadened Si I and Si II line profiles. Selected publications are covering the time period from very beginning of silicon LIBS studies until the end of the year 2015. To perform the analysis of experimental LIBS data, the testing of available semiclassical theoretical Stark broadening parameters for Si I and Si II lines was accomplished first. This is followed by the description of experimental setups, results and details of experimental procedure relevant for the line shape analysis of spectral lines used for plasma characterization. Although most of results and conclusions of this analysis are related to the application of silicon lines for LIBS characterization they are of general importance and may be applied to other elements and different low-temperature plasma sources. The analysis of experimental procedures used for LIBS diagnostics from emission profiles of non-hydrogenic spectral lines is carried out in the following order: the influence of laser ablation and crater formation, spatial and temporal plasma observation, line self-absorption and experimental profile deconvolution, the contribution of ion broadening in comparison with electron impacts contributions to the line width in case of neutral atom line and some other aspects of line shape analysis are considered. The application of Stark shift for LIBS diagnostics is demonstrated and discussed. Finally, the recommendations for an improvement of experimental procedures for LIBS electron number density plasma characterization are offered.

  12. Reconciling Simulated and Observed Views of Clouds: MODIS, ISCCP, and the Limits or Instrument Simulators

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Hemler, Richard S.; Hofman, Robert J. Patrick; Pincus, Robert; Platnick, Steven

    2011-01-01

    The properties of clouds that may be observed by satellite instruments, such as optical depth and cloud top pressure, are only loosely related to the way clouds m-e represented in models of the atmosphere. One way to bridge this gap is through "instrument simulators," diagnostic tools that map the model representation to synthetic observations so that differences between simulator output and observations can be interpreted unambiguously as model error. But simulators may themselves be restricted by limited information available from the host model or by internal assumptions. This paper considers the extent to which instrument simulators are able to capture essential differences between MODIS and ISCCP, two similar but independent estimates of cloud properties. The authors review the measurements and algorithms underlying these two cloud climatologies, introduce a MODIS simulator, and detail data sets developed for comparison with global models using ISCCP and MODIS simulators, In nature MODIS observes less mid-level doudines!> than ISCCP, consistent with the different methods used to determine cloud top pressure; aspects of this difference are reproduced by the simulators running in a climate modeL But stark differences between MODIS and ISCCP observations of total cloudiness and the distribution of cloud optical thickness can be traced to different approaches to marginal pixels, which MODIS excludes and ISCCP treats as homogeneous. These pixels, which likely contain broken clouds, cover about 15 k of the planet and contain almost all of the optically thinnest clouds observed by either instrument. Instrument simulators can not reproduce these differences because the host model does not consider unresolved spatial scales and so can not produce broken pixels. Nonetheless, MODIS and ISCCP observation are consistent for all but the optically-thinnest clouds, and models can be robustly evaluated using instrument simulators by excluding ambiguous observations.

  13. The motional Stark effect diagnostic for ITER using a line-shift approach.

    PubMed

    Foley, E L; Levinton, F M; Yuh, H Y; Zakharov, L E

    2008-10-01

    The United States has been tasked with the development and implementation of a motional Stark effect (MSE) system on ITER. In the harsh ITER environment, MSE is particularly susceptible to degradation, as it depends on polarimetry, and the polarization reflection properties of surfaces are highly sensitive to thin film effects due to plasma deposition and erosion of a first mirror. Here we present the results of a comprehensive study considering a new MSE-based approach to internal plasma magnetic field measurements for ITER. The proposed method uses the line shifts in the MSE spectrum (MSE-LS) to provide a radial profile of the magnetic field magnitude. To determine the utility of MSE-LS for equilibrium reconstruction, studies were performed using the ESC-ERV code system. A near-term opportunity to test the use of MSE-LS for equilibrium reconstruction is being pursued in the implementation of MSE with laser-induced fluorescence on NSTX. Though the field values and beam energies are very different from ITER, the use of a laser allows precision spectroscopy with a similar ratio of linewidth to line spacing on NSTX as would be achievable with a passive system on ITER. Simulation results for ITER and NSTX are presented, and the relative merits of the traditional line polarization approach and the new line-shift approach are discussed.

  14. [Photoeffects, Einstein's light quanta and the history of their acceptance].

    PubMed

    Wiederkehr, Karl Heinrich

    2006-01-01

    It is generally supposed, that the discovery of the efficacy-quantum by Planck was the impetus to Einstein's hypothesis of lightquanta. With its help Einstein could explain the external light-electrical effect. But even years before Einstein had worked at the photoeffect and already made experiments on it. For that reason the article gives a short survey about the history of the lightelectric effects. Lenard's basical work about the release of the photoelectrons is dealt with in detail, without which Einstein would scarcely have found his lightquanta. Furthermore it is shown how difficult it was for the physicists to give up--at least partially--the traditional view of the undulation-nature of light, and how they searched to explain the great energies of the photoelectrons. On the other side it is set forth how Einstein's formula of lightquanta was gradually confirmed. The tragical development of Einstein's personal relations with Johannes Stark and Philipp Lenard are briefly described. Stark was one of the few who supported Einstein's ideas at the beginning. Only with the Compton-effect, which could only be quantitatively interpreted by means of lightquanta and the special theory of relativity 1923, the way was free for the general acceptance of the lightquanta. Einstein did not agree to the obtained dualism of undulation and corpuscle; he had a different solution in mind about the fusion of the two forms of appearance of light.

  15. SERS and DFT study of water on metal cathodes of silver, gold and platinum nanoparticles.

    PubMed

    Li, Jian-Feng; Huang, Yi-Fan; Duan, Sai; Pang, Ran; Wu, De-Yin; Ren, Bin; Xu, Xin; Tian, Zhong-Qun

    2010-03-14

    The observed surface-enhanced Raman scattering (SERS) spectra of water adsorbed on metal film electrodes of silver, gold, and platinum nanoparticles were used to infer interfacial water structures on the basis of the change of the electrochemical vibrational Stark tuning rates and the relative Raman intensity of the stretching and bending modes. To explain the increase of the relative Raman intensity ratio of the bending and stretching vibrations at the very negative potential region, density functional theory calculations provide the conceptual model. The specific enhancement effect for the bending mode was closely associated with the water adsorption structure in a hydrogen bonded configuration through its H-end binding to surface sites with large polarizability due to strong cathodic polarization. The present results allow us to propose that interfacial water molecules exist on these metal cathodes with different hydrogen bonding interactions, i.e., the HO-HH-Pt dihydrogen bond for platinum and the HO-HAg(Au) for silver and gold. This dihydrogen bonding configuration on platinum is further supported from observation of the Pt-H stretching band. Furthermore, the influences of the pH effect on SERS intensity and vibrational Stark effect on the gold electrode indicate that the O-H stretching SERS signals are enhanced in the alkaline solutions because of the hydrated hydroxide surface species adsorbed on the gold cathode.

  16. Molecular beam optical Stark spectroscopy of calcium monocyanide

    NASA Astrophysics Data System (ADS)

    Steimle, Timothy C.; Fletcher, David A.; Jung, Kook Y.; Scurlock, Christopher T.

    1992-09-01

    The 617.7 and 614.7 nm bands of calcium monocyanide, CaNC/CaCN, have been recorded at high resolution by laser-induced fluorescence using a supersonic molecular beam. The two bands consist of twelve branches that are assigned to a case a (0,0,0)A 2Πr-(0,0,0)X 2Σ+ transition. A reduction of the data to an effective Hamiltonian model produced the spectroscopic parameters (cm-1): T00= 16229.5417(26), B″=0.13499(14), γ″=6.1837(33)×10-4, A'=77.6451(40), B'=0.15027(23), AD'=2.69(11) × 10-3, D'= -3.50(25) × 10-5, p'=0.0754(18), q'=-0.04808(87), qD''= 2.64(65) × 10-5. It is proposed that the anomalous values of the excited state parameters arise because of Renner-Teller interactions. The magnitude of the permanent electric dipoles, |μ|, were also determined and are 5.949(1) D[A 2Π1/2(0,0,0),J= 0.5] and 6.895(9) D[X 2Σ+(0,0,0),J= 1.5]. The large value of |μ| is consistent with an isocyanide structure, CaNC. A comparison with theoretical predictions is presented.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Young Joon; Lee, Chul -Ho; Yoo, Jinkyoung

    Integration of nanostructure lighting source arrays with well-defined emission wavelengths is of great importance for optoelectronic integrated monolithic circuitry. We report on the fabrication and optical properties of GaN-based p–n junction multishell nanotube microarrays with composition-modulated nonpolar m-plane In xGa 1–xN/GaN multiple quantum wells (MQWs) integrated on c-sapphire or Si substrates. The emission wavelengths were controlled in the visible spectral range of green to violet by varying the indium mole fraction of the In xGa 1–xN MQWs in the range 0.13 ≤ x ≤ 0.36. Homogeneous emission from the entire area of the nanotube LED arrays was achieved via themore » formation of MQWs with uniform QW widths and composition by heteroepitaxy on the well-ordered nanotube arrays. Importantly, the wavelength-invariant electroluminescence emission was observed above a turn-on of 3.0 V because both the quantum-confinement Stark effect and band filling were suppressed due to the lack of spontaneous inherent electric field in the m-plane nanotube nonpolar MQWs. Lastly, the method of fabricating the multishell nanotube LED microarrays with controlled emission colors has potential applications in monolithic nonpolar photonic and optoelectronic devices on commonly used c-sapphire and Si substrates.« less

  18. Nanometer scale fabrication and optical response of InGaN/GaN quantum disks

    NASA Astrophysics Data System (ADS)

    Lai, Yi-Chun; Higo, Akio; Kiba, Takayuki; Thomas, Cedric; Chen, Shula; Lee, Chang Yong; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Katayama, Ryuji; Shojiki, Kanako; Takayama, Junichi; Yamashita, Ichiro; Murayama, Akihiro; Chi, Gou-Chung; Yu, Peichen; Samukawa, Seiji

    2016-10-01

    In this work, we demonstrate homogeneously distributed In0.3Ga0.7N/GaN quantum disks (QDs), with an average diameter below 10 nm and a high density of 2.1 × 1011 cm-2, embedded in 20 nm tall nanopillars. The scalable top-down fabrication process involves the use of self-assembled ferritin bio-templates as the etch mask, spin coated on top of a strained In0.3Ga0.7N/GaN single quantum well (SQW) structure, followed by a neutral beam etch (NBE) method. The small dimensions of the iron cores inside ferritin and nearly damage-free process enabled by the NBE jointly contribute to the observation of photoluminescence (PL) from strain-relaxed In0.3Ga0.7N/GaN QDs at 6 K. The large blueshift of the peak wavelength by over 70 nm manifests a strong reduction of the quantum-confined Stark effect (QCSE) within the QD structure, which also agrees well with the theoretical prediction using a 3D Schrödinger equation solver. The current results hence pave the way towards the realization of large-scale III-N quantum structures using the combination of bio-templates and NBE, which is vital for the development of next-generation lighting and communication devices.

  19. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Mathematical simulation of the spectrum of a nonequilibrium laser plasma

    NASA Astrophysics Data System (ADS)

    Mazhukin, V. I.; Nikiforov, M. G.; Fievet, Christian

    2006-02-01

    A method is proposed for calculating the spectrum of a nonequilibrium plasma, which is based on a nonequilibrium collision—radiation model including all common line broadening mechanisms (natural, pressure, Doppler, and quadratic Stark effect broadening) and supplemented with the energy balance equations for electrons and ions. The nonequilibrium populations of the ground and excited states of neutral atoms and ions for an arbitrary instant of time are found by solving kinetic equations. The shape of each spectral line is determined by its central core calculated in the collision approximation up to the frequency boundary of its applicability, where the central core is 'joined' with the line wings calculated in the quasi-static approximation. The validity of this theoretical model is confirmed by simulations of a number of experimental studies of emission spectra under the conditions of a local thermodynamic equilibrium. It is shown that the calculated and experimental data obtained for the ground-state lines of the first carbon ion and neutral helium and argon atoms are in good agreement. The nonequilibrium spectrum of the optical breakdown in argon is calculated. Mathematical simulations showed that the intensities of nonequilibrium line spectra can be noticeably (by several times) lower than those of equilibrium spectra.

  20. Study of the spray to globular transition in gas metal arc welding: a spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Valensi, F.; Pellerin, S.; Castillon, Q.; Boutaghane, A.; Dzierzega, K.; Zielinska, S.; Pellerin, N.; Briand, F.

    2013-06-01

    The gas metal arc welding (GMAW) process is strongly influenced by the composition of the shielding gas. In particular, addition of CO2 increases the threshold current for the transition from unstable globular to more stable spray transfer mode. We report on the diagnostics—using optical emission spectroscopy—of a GMAW plasma in pure argon and in mixtures of argon, CO2 and N2 while operated in spray and globular transfer modes. The spatially resolved plasma parameters are obtained by applying the Abel transformation to laterally integrated emission data. The Stark widths of some iron lines are used to determine both electron density and temperature, and line intensities yield relative contents of neutral and ionized iron to argon. Our experimental results indicate a temperature drop on the arc axis in the case of spray arc transfer. This drop reduces with addition of N2 and disappears in globular transfer mode when CO2 is added. Despite the temperature increase, the electron density decreases with CO2 concentration. The highest concentration of iron is observed in the plasma column upper part (close to the anode) and for GMAW with CO2. Our results are compared with recently published works where the effect of non-homogeneous metal vapour concentration has been taken into account.

  1. The Multi-Spectral Imaging Diagnostic on Alcator C-MOD and TCV

    NASA Astrophysics Data System (ADS)

    Linehan, B. L.; Mumgaard, R. T.; Duval, B. P.; Theiler, C. G.; TCV Team

    2017-10-01

    The Multi-Spectral Imaging (MSI) diagnostic is a new instrument that captures simultaneous spectrally filtered images from a common sight view while maintaining a large tendue and high spatial resolution. The system uses a polychromator layout where each image is sequentially filtered. This procedure yields a high transmission for each spectral channel with minimal vignetting and aberrations. A four-wavelength system was installed on Alcator C-Mod and then moved to TCV. The system uses industrial cameras to simultaneously image the divertor region at 95 frames per second at f/# 2.8 via a coherent fiber bundle (C-Mod) or a lens-based relay optic (TCV). The images are absolutely calibrated and spatially registered enabling accurate measurement of atomic line ratios and absolute line intensities. The images will be used to study divertor detachment by imaging impurities and Balmer series emissions. Furthermore, the large field of view and an ability to support many types of detectors opens the door for other novel approaches to optically measuring plasma with high temporal, spatial, and spectral resolution. Such measurements will allow for the study of Stark broadening and divertor turbulence. Here, we present the first measurements taken with this cavity imaging system. USDoE awards DE-FC02-99ER54512 and award DE-AC05-06OR23100, ORISE, administered by ORAU.

  2. Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott–Hubbard material

    DOE PAGES

    Lantz, G.; Mansart, B.; Grieger, D.; ...

    2017-01-09

    Photoexcited strongly correlated materials is attracting growing interest since their rich phase diagram often translates into an equally rich out-of-equilibrium behavior, including non-thermal phases and photoinduced phase transitions. With femtosecond optical pulses, electronic and lattice degrees of freedom can be transiently decoupled, giving the opportunity of stabilizing new states of matter inaccessible by quasi-adiabatic pathways. We present a study of the ultrafast non-equilibrium evolution of the prototype Mott-Hubbard material V 2O 3, which presents a transient non-thermal phase developing immediately after photoexcitation and lasting few picoseconds. For both the insulating and the metallic phase, the formation of the transient configurationmore » is triggered by the excitation of electrons into the bonding a 1g orbital, and is then stabilized by a lattice distortion characterized by a marked hardening of the A 1g coherent phonon. Furthermore, this configuration is in stark contrast with the thermally accessible ones - the A 1g phonon frequency actually softens when heating the material. Our results show the importance of selective electron-lattice interplay for the ultrafast control of material parameters, and are of particular relevance for the optical manipulation of strongly correlated systems, whose electronic and structural properties are often strongly intertwinned.« less

  3. Optical spectroscopy of lanthanide ions in ZnO-TeO2 glasses.

    PubMed

    Rolli, R; Wachtler, K; Wachtler, M; Bettinelli, M; Speghini, A; Ajò, D

    2001-09-01

    Zinc tellurite glasses of compositions 19ZnO-80TeO2-1Ln2O3 with Ln = Eu, Er, Nd and Tm were prepared by melt quenching. The absorption spectra were measured and from the experimental oscillator strengths of the f-->f transitions the Judd-Ofelt parameters ohm(lambda) were obtained. The values of the ohm(lambda) parameters are in the range usually observed for oxide glasses. For Nd3+ and Er3+, luminescence spectra in the near infrared were measured and the stimulated emission cross sections sigma(p) were evaluated for some laser transitions. The high values of sigma(p), especially for Nd3+, make them possible candidates for optical applications. Fluorescence line narrowing (FLN) spectra of the Eu3+ doped glass were measured at 20 K, and the energies of the Stark components of the 7F1 and 7F2 states were obtained. A crystal field analysis was carried out assuming a C2v site symmetry. The behaviour of the crystal field ratios B22/B20 and B44/B40 agrees reasonably well with the values calculated using the geometric model proposed by Brecher and Riseberg. The crystal field strength at the Eu3+ sites appears to be very low compared to other oxide glasses.

  4. Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott–Hubbard material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, G.; Mansart, B.; Grieger, D.

    Photoexcited strongly correlated materials is attracting growing interest since their rich phase diagram often translates into an equally rich out-of-equilibrium behavior, including non-thermal phases and photoinduced phase transitions. With femtosecond optical pulses, electronic and lattice degrees of freedom can be transiently decoupled, giving the opportunity of stabilizing new states of matter inaccessible by quasi-adiabatic pathways. We present a study of the ultrafast non-equilibrium evolution of the prototype Mott-Hubbard material V 2O 3, which presents a transient non-thermal phase developing immediately after photoexcitation and lasting few picoseconds. For both the insulating and the metallic phase, the formation of the transient configurationmore » is triggered by the excitation of electrons into the bonding a 1g orbital, and is then stabilized by a lattice distortion characterized by a marked hardening of the A 1g coherent phonon. Furthermore, this configuration is in stark contrast with the thermally accessible ones - the A 1g phonon frequency actually softens when heating the material. Our results show the importance of selective electron-lattice interplay for the ultrafast control of material parameters, and are of particular relevance for the optical manipulation of strongly correlated systems, whose electronic and structural properties are often strongly intertwinned.« less

  5. Distinct exciton dissociation behavior of organolead trihalide perovskite and excitonic semiconductors studied in a same device

    DOE PAGES

    Hu, Miao; Bi, Cheng; Yuan, Yongbo; ...

    2015-01-15

    The nonexcitonic character for organometal trihalide perovskites is demonstrated by examining the field-dependent exciton dissociation behavior. Moreover, it is found that photogenerated excitons can be effectively dissociated into free charges inside perovskite without the assistance of charge extraction layer or external field, which is a stark contrast to the charge-separation behavior in excitonic materials in the same photovoltaic operation system.

  6. A new species of Neoperla from China, with a redescription of the female of N. mnong Stark, 1987 (Plecoptera, Perlidae).

    PubMed

    Chen, Zhi-Teng; Du, Yu-Zhou

    2016-01-01

    A new species of the Neoperla clymene group (Plecoptera, Perlidae), Neoperla chebalinga sp. n. from Guangdong Province of southern China is described, illustrated, and compared with related taxa. The new species is characterized by the slender aedeagal tube, strongly sclerotized dorsally, and weakly sclerotized ventrally with an upcurved, medial, finger-like membranous lobe. Additionally the aedeagal sac gradually tapers to a blunt apex with a dorsoapical patch of spines. A supplementary description of the female of Neoperla mnong Stark, 1987 from Guangdong Province, China is also given.

  7. A new species of Neoperla from China, with a redescription of the female of N. mnong Stark, 1987 (Plecoptera, Perlidae)

    PubMed Central

    Chen, Zhi-Teng; Du, Yu-Zhou

    2016-01-01

    Abstract A new species of the Neoperla clymene group (Plecoptera, Perlidae), Neoperla chebalinga sp. n. from Guangdong Province of southern China is described, illustrated, and compared with related taxa. The new species is characterized by the slender aedeagal tube, strongly sclerotized dorsally, and weakly sclerotized ventrally with an upcurved, medial, finger-like membranous lobe. Additionally the aedeagal sac gradually tapers to a blunt apex with a dorsoapical patch of spines. A supplementary description of the female of Neoperla mnong Stark, 1987 from Guangdong Province, China is also given. PMID:27667948

  8. Coupled-cluster treatment of molecular strong-field ionization

    NASA Astrophysics Data System (ADS)

    Jagau, Thomas-C.

    2018-05-01

    Ionization rates and Stark shifts of H2, CO, O2, H2O, and CH4 in static electric fields have been computed with coupled-cluster methods in a basis set of atom-centered Gaussian functions with a complex-scaled exponent. Consideration of electron correlation is found to be of great importance even for a qualitatively correct description of the dependence of ionization rates and Stark shifts on the strength and orientation of the external field. The analysis of the second moments of the molecular charge distribution suggests a simple criterion for distinguishing tunnel and barrier suppression ionization in polyatomic molecules.

  9. Dynamical Chaos in the Wisdom-Holman Integrator: Origins and Solutions

    NASA Technical Reports Server (NTRS)

    Rauch, Kevin P.; Holman, Matthew

    1999-01-01

    We examine the nonlinear stability of the Wisdom-Holman (WH) symplectic mapping applied to the integration of perturbed, highly eccentric (e-0.9) two-body orbits. We find that the method is unstable and introduces artificial chaos into the computed trajectories for this class of problems, unless the step size chosen 1s small enough that PeriaPse is always resolved, in which case the method is generically stable. This 'radial orbit instability' persists even for weakly perturbed systems. Using the Stark problem as a fiducial test case, we investigate the dynamical origin of this instability and argue that the numerical chaos results from the overlap of step-size resonances; interestingly, for the Stark-problem many of these resonances appear to be absolutely stable. We similarly examine the robustness of several alternative integration methods: a time-regularized version of the WH mapping suggested by Mikkola; the potential-splitting (PS) method of Duncan, Levison, Lee; and two original methods incorporating approximations based on Stark motion instead of Keplerian motion. The two fixed point problem and a related, more general problem are used to conduct a comparative test of the various methods for several types of motion. Among the algorithms tested, the time-transformed WH mapping is clearly the most efficient and stable method of integrating eccentric, nearly Keplerian orbits in the absence of close encounters. For test particles subject to both high eccentricities and very close encounters, we find an enhanced version of the PS method-incorporating time regularization, force-center switching, and an improved kernel function-to be both economical and highly versatile. We conclude that Stark-based methods are of marginal utility in N-body type integrations. Additional implications for the symplectic integration of N-body systems are discussed.

  10. Stark widths and shifts for spectral lines of Sn IV

    NASA Astrophysics Data System (ADS)

    de Andrés-García, I.; Alonso-Medina, A.; Colón, C.

    2016-01-01

    In this paper, we present theoretical Stark widths and shifts calculated corresponding to 66 spectral lines of Sn IV. We use the Griem semi-empirical approach and the COWAN computer code. For the intermediate coupling calculations, the standard method of least-squares fitting from experimental energy levels was used. Data are presented for an electron density of 1017 cm-3 and temperatures T = 1.1-5.0 (104 K). The matrix elements used in these calculations have been determined from 34 configurations of Sn IV: 4d10ns(n = 5-10), 4d10nd(n = 5-8), 4d95s2, 4d95p2, 4d95s5d, 4d85s5p2 and 4d105g for even parity and 4d10np(n = 5-8), 4d10nf (n = 4-6), 4d95snp(n = 5-8), 4d85s25p and 4d95snf (n = 4-10) for odd parity. Also, in order to test the matrix elements used in our calculations, we present calculated values of radiative lifetimes of 14 levels of Sn IV. There is good agreement between our calculations and the experimental radiative lifetimes obtained from the bibliography. The spectral lines of Sn IV are observed in UV spectra of HD 149499 B obtained with the Far Ultraviolet Spectroscopic Explorer, the Goddard High Resolution Spectrograph and the International Ultraviolet Explorer. Theoretical trends of the Stark broadening parameter versus the temperature for relevant lines are presented. Also our values of Stark broadening parameters have been compared with the data available in the bibliography.

  11. Theoretical Stark broadening parameters for spectral lines arising from the 2p5ns, 2p5np and 2p5nd electronic configurations of Mg III

    NASA Astrophysics Data System (ADS)

    Colón, C.; Moreno-Díaz, C.; Alonso-Medina, A.

    2013-10-01

    In the present work we report theoretical Stark widths and shifts calculated using the Griem semi-empirical approach, corresponding to 237 spectral lines of Mg III. Data are presented for an electron density of 1017 cm-3 and temperatures T = 0.5-10.0 (104K). The matrix elements used in these calculations have been determined from 23 configurations of Mg III: 2s22p6, 2s22p53p, 2s22p54p, 2s22p54f and 2s22p55f for even parity and 2s22p5ns (n = 3-6), 2s22p5nd (n = 3-9), 2s22p55g and 2s2p6np (n = 3-8) for odd parity. For the intermediate coupling (IC) calculations, we use the standard method of least-squares fitting from experimental energy levels by means of the Cowan computer code. Also, in order to test the matrix elements used in our calculations, we present calculated values of 70 transition probabilities of Mg III spectral lines and 14 calculated values of radiative lifetimes of Mg III levels. There is good agreement between our calculations and experimental radiative lifetimes. Spectral lines of Mg III are relevant in astrophysics and also play an important role in the spectral analysis of laboratory plasma. Theoretical trends of the Stark broadening parameter versus the temperature for relevant lines are presented. No values of Stark parameters can be found in the bibliography.

  12. PREFACE: Ultrafast and nonlinear optics in carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Kono, Junichiro

    2013-02-01

    Carbon-based nanomaterials—single-wall carbon nanotubes (SWCNTs) and graphene, in particular—have emerged in the last decade as novel low-dimensional systems with extraordinary properties. Because they are direct-bandgap systems, SWCNTs are one of the leading candidates to unify electronic and optical functions in nanoscale circuitry; their diameter-dependent bandgaps can be utilized for multi-wavelength devices. Graphene's ultrahigh carrier mobilities are promising for high-frequency electronic devices, while, at the same time, it is predicted to have ideal properties for terahertz generation and detection due to its unique zero-gap, zero-mass band structure. There have been a large number of basic optical studies on these materials, but most of them were performed in the weak-excitation, quasi-equilibrium regime. In order to probe and assess their performance characteristics as optoelectronic materials under device-operating conditions, it is crucial to strongly drive them and examine their optical properties in highly non-equilibrium situations and with ultrashot time resolution. In this section, the reader will find the latest results in this rapidly growing field of research. We have assembled contributions from some of the leading experts in ultrafast and nonlinear optical spectroscopy of carbon-based nanomaterials. Specific topics featured include: thermalization, cooling, and recombination dynamics of photo-generated carriers; stimulated emission, gain, and amplification; ultrafast photoluminescence; coherent phonon dynamics; exciton-phonon and exciton-plasmon interactions; exciton-exciton annihilation and Auger processes; spontaneous and stimulated emission of terahertz radiation; four-wave mixing and harmonic generation; ultrafast photocurrents; the AC Stark and Franz-Keldysh effects; and non-perturbative light-mater coupling. We would like to express our sincere thanks to those who contributed their latest results to this special section, and the Journal of Physics: Condensed Matter staff for their help, patience and professionalism. Since this is a fast-moving field, there is absolutely no way of presenting definitive answers to all open questions, but we hope that this special section will provide an overview of the current state of knowledge regarding this topic. Furthermore, we hope that the exciting science and technology described in this section will attract and inspire other researchers and students working in related fields to enter into the study of ultrafast and nonlinear optical phenomena in carbon-based nanostructures. Ultrafast and nonlinear optics in carbon nanomaterials contents Ultrafast and nonlinear optics in carbon nanomaterialsJunichiro Kono The impact of pump fluence on carrier relaxation dynamics in optically excited grapheneT Winzer and E Malic Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behaviorS Winnerl, F Göttfert, M Mittendorff, H Schneider, M Helm, T Winzer, E Malic, A Knorr, M Orlita, M Potemski, M Sprinkle, C Berger and W A de Heer Nonlinear optics of graphene in a strong magnetic fieldXianghan Yao and Alexey Belyanin Theory of coherent phonons in carbon nanotubes and graphene nanoribbonsG D Sanders, A R T Nugraha, K Sato, J-H Kim3, J Kono3, R Saito and C J Stanton Non-perturbative effects of laser illumination on the electrical properties of graphene nanoribbons Hernán L Calvo, Pablo M Perez-Piskunow, Horacio M Pastawski, Stephan Roche and Luis E F Foa Torres Transient absorption microscopy studies of energy relaxation in graphene oxide thin film Sean Murphy and Libai Huang Femtosecond dynamics of exciton localization: self-trapping from the small to the large polaron limit F X Morrissey, J G Mance, A D Van Pelt and S L Dexheimer

  13. [The reconstruction of welding arc 3D electron density distribution based on Stark broadening].

    PubMed

    Zhang, Wang; Hua, Xue-Ming; Pan, Cheng-Gang; Li, Fang; Wang, Min

    2012-10-01

    The three-dimensional electron density is very important for welding arc quality control. In the present paper, Side-on characteristic line profile was collected by a spectrometer, and the lateral experimental data were approximated by a polynomial fitting. By applying an Abel inversion technique, the authors obtained the radial intensity distribution at each wavelength and thus constructed a profile for the radial positions. The Fourier transform was used to separate the Lorentz linear from the spectrum reconstructed, thus got the accurate Stark width. And we calculated the electronic density three-dimensional distribution of the TIG welding are plasma.

  14. On The Stark Shift of Ar II 472.68 nm Spectral Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mijatovic, Z.; Gajo, T.; Vujicic, B.

    The Stark shift of Ar II 472.68 nm (transition 4s2P - 4p2D deg. ) spectral lines emitted from T-tube plasmas was considered. The electron density ranged from (1.63-2.2){center_dot}1023 m-3 and was determined using laser interferometry. The plasma temperature, derived from the Gaussian part of recorded line profiles was found to be in the range (15000-43300) K. Experimental shifts were compared to theoretical values obtained from the semiempirical formula [M. S. Dimitrijevic and N. Konjevic, J. Quant. Spectrosc. Radiat. Transfer 24, 451 (1980)]. This comparison showed good agreement between experimental results and theory.

  15. Green procedure using limonene in the Dean-Stark apparatus for moisture determination in food products.

    PubMed

    Veillet, Sébastien; Tomao, Valérie; Ruiz, Karine; Chemat, Farid

    2010-07-26

    In the past 10 years, trends in analytical chemistry have turned toward the green chemistry which endeavours to develop new techniques that reduce the influence of chemicals on the environment. The challenge of the green analytical chemistry is to develop techniques that meet the request for information output while reducing the environmental impact of the analyses. For this purpose petroleum-based solvents have to be avoided. Therefore, increasing interest was given to new green solvents such as limonene and their potential as alternative solvents in analytical chemistry. In this work limonene was used instead of toluene in the Dean-Stark procedure. Moisture determination on wide range of food matrices was performed either using toluene or limonene. Both solvents gave similar water percentages in food materials, i.e. 89.3+/-0.5 and 89.5+/-0.7 for carrot, 68.0+/-0.7 and 68.6+/-1.9 for garlic, 64.1+/-0.5 and 64.0+/-0.3 for minced meat with toluene and limonene, respectively. Consequently limonene could be used as a good alternative solvent in the Dean-Stark procedure. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Laser induced breakdown spectroscopy (LIBS) applied to stratigrafic elemental analysis and optical coherence tomography (OCT) to damage determination of cultural heritage Brazilian coins

    NASA Astrophysics Data System (ADS)

    M. Amaral, Marcello; Raele, Marcus P.; Z. de Freitas, Anderson; Zahn, Guilherme S.; Samad, Ricardo E.; D. Vieira, Nilson, Jr.; G. Tarelho, Luiz V.

    2009-07-01

    This work presents a compositional characterization of 1939's Thousand "Réis" and 1945's One "Cruzeiro" Brazilian coins, forged on aluminum bronze alloy. The coins were irradiated by a Q-switched Nd:YAG laser with 4 ns pulse width and energy of 25mJ emitting at 1064nm reaching 3.1010Wcm-2 (assured condition for stoichiometric ablation), forming a plasma in a small fraction of the coin. Plasma emission was collected by an optical fiber system connected to an Echelle spectrometer. The capability of LIBS to remove small fraction of material was exploited and the coins were analyzed ablating layer by layer from patina to the bulk. The experimental conditions to assure reproductivity were determined by evaluation of three plasma paramethers: ionization temperature using Saha-Boltzmann plot, excitation temperature using Boltzmann plot, plasma density using Saha-Boltzmann plot and Stark broadening. The Calibration-Free LIBS technique was applied to both coins and the analytical determination of elemental composition was employed. In order to confirm the Edict Law elemental composition the results were corroborated by Neutron Activation Analysis (NAA). In both cases the results determined by CF-LIBS agreed to with the Edict Law and NAA determination. Besides the major components for the bronze alloy some other impurities were observed. Finally, in order to determine the coin damage made by the laser, the OCT (Optical Coherence Tomography) technique was used. After tree pulses of laser 54μg of coin material were removed reaching 120μm in depth.

  17. Electric Field Induced Spectra of H sub 2 and D sub 2

    NASA Technical Reports Server (NTRS)

    Boyd, William Joseph

    1974-01-01

    The frequencies of four Q-branch lines of H2 and five Q-branch lines of D2 were measured as a function of density, and their shifts were observed to be in the linear region. The individual slopes and extrapolated zero density frequency of each line was determined. Hydrogen was measured for polarizability using the integrated intensity of the Q1(0) and S1(1), H2 absorption line. A highly automated technique for determining the response function of the spectrometer using digitally recorded data is presented. For the Q1(0) and Q1(1) lines of H2 the halfwidths were measured as a function of electric field intensity at constant pressure, and again at several densities and compared to previously measured widths. Technical and operational details of equipment built for this experiment, and for the five-meter Littrow spectrometer used, are described. Modifications of the spectrometer optics to accept the Stark cell are discussed.

  18. Radiative and Nonradiative Transitions of the Rare-Earth Ions Tm(3+) and Ho(3+) in Y3AI5O12 and LiYF4

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Armagan, Guzin; Dibartolo, Baldassare; Modlin, Edward A.

    1995-01-01

    The optical spectra of rare earth ions in solids arise primarily from electric and magnetic dipole transitions between stark split multiplets of the 4f(sup N) electronic configuration. Electric dipole transitions are parity forbidden between levels of the 4f(sup N) configuration, while those of magnetic dipole origin are allowed. It is known from experiment, however, that the significant contributions to the intensities of most transitions are electric dipole in nature. Judd and Ofelt developed the theory of forced electric dipole transitions of rare-earth ions. This study is devoted to determining electric dipole transition probabilities and branching ratios for Tm(3+) and Ho(3+) ions in Yttrium Aluminum Garnet (YAG) and Yttrium Lithium Fluoride (YLF) using the theory of Judd and Ofelt. The radiative rates determined from the Judd-Ofelt analysis are used with measured lifetimes to find nonradiative rates of relaxation.

  19. Armed conflict and child health.

    PubMed

    Rieder, Michael; Choonara, Imti

    2012-01-01

    Armed conflict has a major impact on child health throughout the world. One in six children worldwide lives in an area of armed conflict and civilians are more likely to die than soldiers as a result of the conflict. In stark contrast to the effect on children, the international arms trade results in huge profits for the large corporations involved in producing arms, weapons and munitions. Armed conflict is not inevitable but is an important health issue that should be prevented.

  20. Experimental and Theoretical Study of the Temperature Performance of Type-II Quantum Well Lasers

    DTIC Science & Technology

    2007-05-31

    performance of type-II Interband Cascade (IC) GaSb-based semiconductor lasers has been developed. The method includes comparing the temperature-concentration... dependence at the laser threshold with steady-state carrier heating characteristics. The number of cascades in prototype type-II IC lasers has been...Monroy, and R.L.Tober, "Wavelength Tuning of Interband Cascade Laser Based on the Stark Effect", in “Future Trends in Microelectronics” ed. by

  1. Magnetic field amplitude and pitch angle measurements using Spectral MSE on EAST

    NASA Astrophysics Data System (ADS)

    Liao, Ken; Rowan, William; Fu, Jia; Li, Ying-Ying; Lyu, Bo; Marchuk, Oleksandr; Ralchenko, Yuri

    2017-10-01

    We have developed the Spectral Motional Stark Effect technique for measuring magnetic field amplitude and pitch angle on EAST. The experiments were conducted using the tangential co-injection heating beam at A port and Beam Emission Spectroscopy array at D port. A spatial calibration of the observation channels was conducted before the campaign. As a first check, the measured magnetic field amplitude was compared to prediction. Since the toroidal field is dominant, we recovered the expected 1/R shape over the spatial range 1.75

  2. Strong quantum-confined Stark effect in a lattice-matched GeSiSn/GeSn multi-quantum-well structure

    NASA Astrophysics Data System (ADS)

    Peng, Ruizhi; Chunfuzhang; Han, Genquan; Hao, Yue

    2017-06-01

    This paper presents modeling and simulation of a multiple quantum well structure formed with Ge0.95Sn0.05 quantum wells separated by Ge0.51Si0.35Sn0.14 barriers for the applications. These alloy compositions are chosen to satisfy two conditions simultaneously: type-I band alignment between Ge0.95Sn0.05/Ge0.51Si0.35Sn0.14 and a lattice match between wells and barriers. This lattice match ensures that the strain-free structure can be grown upon a relaxed Ge0.51Si0.35Sn0.14 buffer on a silicon substrate - a CMOS compatible process. A electro-absorption modulator with the Ge0.95Sn0.05/Ge0.51Si0.35Sn0.14 multiple quantum well structure based on quantum-confined Stark effect(QCSE) is demonstrated in theory. The energy band diagrams of the GeSiSn/GeSn multi-quantum-well structure at 0 and 0.5V bias are calculated, respectively. And the corresponding absorption coefficients as a function of cut-off energy for this multiple quantum well structure at 0 and 0.5Vbias are also obtained, respectively. The reduction of cut-off energy is observed with the applying of the external electric field, indicating a strong QCSE in the structure.

  3. New Stark regulations: Key issues for health care decision-makers.

    PubMed

    Johnson, B A; Niederman, G A; Bowman, L E; McCullough, A C

    1998-01-01

    On Jan. 9, 1998, The Health Care Financing Administration (HCFA) issued long-awaited Proposed Regulations for what has become known as Stark II. The regulations are subject to a comment period and later refinement. However, they lay out HCFA's basic understanding of what kinds of practices constitute an illegal kickback. In general terms, the law prohibits physicians from referring Medicare or Medicaid patients to entities with which they (or an immediate family member) have a "financial relationship" for the delivery of a specific list of designated health services. There are, however, exceptions also included in the new proposal. Group practices will want to pay special attention to HCFA's new definition of group practice.

  4. Plasma density characterization at SPARC_LAB through Stark broadening of Hydrogen spectral lines

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-09-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC_LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC_LAB is presented.

  5. Inelastic light scattering from plasmons tunneling between Wannier-Stark states

    NASA Astrophysics Data System (ADS)

    Fluegel, B.; Pfeiffer, L. N.; West, K.; Mascarenhas, A.

    2018-06-01

    Using inelastic light scattering, we measure the zone-center electronic excitation modes in a set of multiple quantum wells. The width of the wavefunction barriers was chosen such that it prevents significant coupling of the electron ground states between wells yet is transparent to electron tunneling under an electric field. Under these conditions, we find charge-density-like and spin-density-like plasmons whose energies do not correspond to the excitations calculated for either a single well or a set of Coulomb-coupled wells. The observed energies are proportional to the electric field strength and the lower energy modes agree with predictions for plasmons tunneling between the Wannier-Stark ladder states.

  6. Science Translator: An Interview with Louisa Stark.

    PubMed

    Stark, Louisa A

    2015-07-01

    The Genetics Society of America's Elizabeth W. Jones Award for Excellence in Education recognizes significant and sustained impact on genetics education. The 2015 awardee, Louisa Stark, has made a major impact on global access to genetics education through her work as director of the University of Utah Genetic Science Learning Center. The Center's Learn.Genetics and Teach.Genetics websites are the most widely used online genetic education resources in the world. In 2014, they were visited by 18 million students, educators, scientists, and members of the public. With over 60 million page views annually, Learn.Genetics is among the most used sites on the Web. Copyright © 2015 by the Genetics Society of America.

  7. Electronic and optical properties of novel carbazole-based donor-acceptor compounds for applications in blue-emitting organic light-emitting diodes

    DOE PAGES

    Legaspi, Christian M.; Stubbs, Regan E.; Yaron, David J.; ...

    2015-08-20

    We report that organic light-emitting diodes (OLEDs) have received a significant attention over the past decade due to their energy-saving potential. We have recently synthesized two novel carbazole-based donor-acceptor compounds and analyzed their optical properties to determine their suitability for use as blue emitters in OLEDs. These compounds show remarkable photo-stability and high quantum yields in the blue region of the spectrum. In addition, they have highly solvatochromic emission. In non-polar solvents, bright, blue-shifted (λmax ≈ 398 nm), and highly structured emission is seen. With increasing solvent dielectric constant, the emission becomes weaker, red-shifted (λmax ≈ 507 nm), and broad.more » We aim to determine the underlying cause of these changes. Electronic structure calculations indicate the presence of multiple excited states with comparable oscillator strength. These states are of interest because there are several with charge-transfer (CT) character, and others centered on the donor moiety. We theorize that CT states play a role in the observed changes in emission lineshape and may promote charge mobility for electrofluorescence in OLEDs. In the future, we plan to use Stark spectroscopy to analyze the polarity of excited states and transient absorption spectroscopy to observe the dynamics in the excited state.« less

  8. Electrofluorescence polarity in a molecular diode

    NASA Astrophysics Data System (ADS)

    Petrov, E. G.; Leonov, V. A.; Shevchenko, E. V.

    2017-11-01

    The kinetic equations describing the transmission of an electron in the molecular compound "electrode 1-molecule-electrode 2" (1M2 system) are derived using the method of a nonequilibrium density matrix. The steady-state transmission regime is considered, for which detailed analysis of the kinetics of electrofluorescence formation in systems with symmetric and asymmetric couplings between the molecule and the electrodes is carried out. It is shown that the optically active state of the molecule is formed as a result of electron hops between the molecule and each of the electrodes, as well as due to inelastic interelectrode tunneling of the electron. The electrofluorescence power for a molecular diode (asymmetric 1M2 system) depends on the polarity of the voltage bias applied to the electrodes. The polarity is explained using a model in which the optically active part of the molecule (chromophore group) is represented by the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). Two mechanisms of the emergence of polarity are revealed. One mechanism is associated with nonidentical Stark shifts of the HOMO and LUMO levels relative to the Fermi levels of the electrodes. The second mechanism is associated with the fact that the rates of an electron hopping between HOMO (LUMO) and one of the electrodes are much higher than the rates of such a hopping with the other electrode. The conditions in which each mechanism can be implemented experimentally are indicated.

  9. Electronic and optical properties of novel carbazole-based donor-acceptor compounds for applications in blue-emitting organic light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Legaspi, Christian M.; Stubbs, Regan E.; Yaron, David J.

    We report that organic light-emitting diodes (OLEDs) have received a significant attention over the past decade due to their energy-saving potential. We have recently synthesized two novel carbazole-based donor-acceptor compounds and analyzed their optical properties to determine their suitability for use as blue emitters in OLEDs. These compounds show remarkable photo-stability and high quantum yields in the blue region of the spectrum. In addition, they have highly solvatochromic emission. In non-polar solvents, bright, blue-shifted (λmax ≈ 398 nm), and highly structured emission is seen. With increasing solvent dielectric constant, the emission becomes weaker, red-shifted (λmax ≈ 507 nm), and broad.more » We aim to determine the underlying cause of these changes. Electronic structure calculations indicate the presence of multiple excited states with comparable oscillator strength. These states are of interest because there are several with charge-transfer (CT) character, and others centered on the donor moiety. We theorize that CT states play a role in the observed changes in emission lineshape and may promote charge mobility for electrofluorescence in OLEDs. In the future, we plan to use Stark spectroscopy to analyze the polarity of excited states and transient absorption spectroscopy to observe the dynamics in the excited state.« less

  10. Method for correction of measured polarization angles from motional Stark effect spectroscopy for the effects of electric fields

    DOE PAGES

    Luce, T. C.; Petty, C. C.; Meyer, W. H.; ...

    2016-11-02

    An approximate method to correct the motional Stark effect (MSE) spectroscopy for the effects of intrinsic plasma electric fields has been developed. The motivation for using an approximate method is to incorporate electric field effects for between-pulse or real-time analysis of the current density or safety factor profile. The toroidal velocity term in the momentum balance equation is normally the dominant contribution to the electric field orthogonal to the flux surface over most of the plasma. When this approximation is valid, the correction to the MSE data can be included in a form like that used when electric field effectsmore » are neglected. This allows measurements of the toroidal velocity to be integrated into the interpretation of the MSE polarization angles without changing how the data is treated in existing codes. In some cases, such as the DIII-D system, the correction is especially simple, due to the details of the neutral beam and MSE viewing geometry. The correction method is compared using DIII-D data in a variety of plasma conditions to analysis that assumes no radial electric field is present and to analysis that uses the standard correction method, which involves significant human intervention for profile fitting. The comparison shows that the new correction method is close to the standard one, and in all cases appears to offer a better result than use of the uncorrected data. Lastly, the method has been integrated into the standard DIII-D equilibrium reconstruction code in use for analysis between plasma pulses and is sufficiently fast that it will be implemented in real-time equilibrium analysis for control applications.« less

  11. Quantum confined stark effect on the binding energy of exciton in type II quantum heterostructure

    NASA Astrophysics Data System (ADS)

    Suseel, Rahul K.; Mathew, Vincent

    2018-05-01

    In this work, we have investigated the effect of external electric field on the strongly confined excitonic properties of CdTe/CdSe/CdTe/CdSe type-II quantum dot heterostructures. Within the effective mass approximation, we solved the Poisson-Schrodinger equations of the exciton in nanostructure using relaxation method in a self-consistent iterative manner. We changed both the external electric field and core radius of the quantum dot, to study the behavior of binding energy of exciton. Our studies show that the external electric field destroys the positional flipped state of exciton by modifying the confining potentials of electron and hole.

  12. Emission color-tuned light-emitting diode microarrays of nonpolar In xGa 1–xN/GaN multishell nanotube heterostructures

    DOE PAGES

    Hong, Young Joon; Lee, Chul -Ho; Yoo, Jinkyoung; ...

    2015-12-09

    Integration of nanostructure lighting source arrays with well-defined emission wavelengths is of great importance for optoelectronic integrated monolithic circuitry. We report on the fabrication and optical properties of GaN-based p–n junction multishell nanotube microarrays with composition-modulated nonpolar m-plane In xGa 1–xN/GaN multiple quantum wells (MQWs) integrated on c-sapphire or Si substrates. The emission wavelengths were controlled in the visible spectral range of green to violet by varying the indium mole fraction of the In xGa 1–xN MQWs in the range 0.13 ≤ x ≤ 0.36. Homogeneous emission from the entire area of the nanotube LED arrays was achieved via themore » formation of MQWs with uniform QW widths and composition by heteroepitaxy on the well-ordered nanotube arrays. Importantly, the wavelength-invariant electroluminescence emission was observed above a turn-on of 3.0 V because both the quantum-confinement Stark effect and band filling were suppressed due to the lack of spontaneous inherent electric field in the m-plane nanotube nonpolar MQWs. Lastly, the method of fabricating the multishell nanotube LED microarrays with controlled emission colors has potential applications in monolithic nonpolar photonic and optoelectronic devices on commonly used c-sapphire and Si substrates.« less

  13. Dislocation Reduction and Stress Relaxation of GaN and InGaN Multiple Quantum Wells with Improved Performance via Serpentine Channel Patterned Mask.

    PubMed

    Ji, Qingbin; Li, Lei; Zhang, Wei; Wang, Jia; Liu, Peichi; Xie, Yahong; Yan, Tongxing; Yang, Wei; Chen, Weihua; Hu, Xiaodong

    2016-08-24

    The existence of high threading dislocation density (TDD) in GaN-based epilayers is a long unsolved problem, which hinders further applications of defect-sensitive GaN-based devices. Multiple-modulation of epitaxial lateral overgrowth (ELOG) is used to achieve high-quality GaN template on a novel serpentine channel patterned sapphire substrate (SCPSS). The dislocation blocking brought by the serpentine channel patterned mask, coupled with repeated dislocation bending, can reduce the dislocation density to a yet-to-be-optimized level of ∼2 × 10(5) to 2 × 10(6) cm(-2). About 80% area utilization rate of GaN with low TDD and stress relaxation is obtained. The periodical variations of dislocation density, optical properties and residual stress in GaN-based epilayers on SCPSS are analyzed. The quantum efficiency of InGaN/GaN multiple quantum wells (MQWs) on it can be increased by 52% compared with the conventional sapphire substrate. The reduced nonradiative recombination centers, the enhanced carrier localization, and the suppressed quantum confined Stark effect, are the main determinants of improved luminous performance in MQWs on SCPSS. This developed ELOG on serpentine shaped mask needs no interruption and regrowth, which can be a promising candidate for the heteroepitaxy of semipolar/nonpolar GaN and GaAs with high quality.

  14. In-depth study of intra-Stark spectroscopy in the x-ray range in relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Oks, E.; Dalimier, E.; Faenov, A. Ya; Angelo, P.; Pikuz, S. A.; Pikuz, T. A.; Skobelev, I. Yu; Ryazanzev, S. N.; Durey, P.; Doehl, L.; Farley, D.; Baird, C.; Lancaster, K. L.; Murphy, C. D.; Booth, N.; Spindloe, C.; McKenna, P.; Neumann, N.; Roth, M.; Kodama, R.; Woolsey, N.

    2017-12-01

    Intra-Stark spectroscopy (ISS) is the spectroscopy within the quasistatic Stark profile of a spectral line. The present paper advances the ISS-based study of the relativistic laser-plasma interaction from our previous paper (Oks et al 2017 Opt. Express 25 1958). By improving the experimental conditions and the diagnostics, it provides an in-depth spectroscopic study of the simultaneous production of the Langmuir waves and of the ion acoustic turbulence at the surface of the relativistic critical density. It demonstrates a reliable reproducibility of the Langmuir-wave-induced dips at the same locations in the experimental profiles of Si XIV Ly-beta line, as well as of the deduced parameters (fields) of the Langmuir waves and ion acoustic turbulence in several individual 1 ps laser pulses and of the peak irradiances of 1-3 × 1020 W cm-2. Besides, this study employs for the first time the most rigorous condition of the dynamic resonance, on which the ISS phenomenon is based, compared to all previous studies in all kinds of plasmas in a wide range of electron densities. It shows how different interplays between the Langmuir wave field and the field of the ion acoustic turbulence lead to distinct spectral line profiles, including the disappearance of the Langmuir-wave-induced dips.

  15. Armed conflict and child health

    PubMed Central

    Rieder, Michael; Choonara, Imti

    2012-01-01

    Summary Armed conflict has a major impact on child health throughout the world. One in six children worldwide lives in an area of armed conflict and civilians are more likely to die than soldiers as a result of the conflict. In stark contrast to the effect on children, the international arms trade results in huge profits for the large corporations involved in producing arms, weapons and munitions. Armed conflict is not inevitable but is an important health issue that should be prevented. PMID:21393303

  16. The Effect of Alloy Composition and Processing on the Structure and Properties of I/M Al-Li-X Alloys

    DTIC Science & Technology

    1990-07-01

    ORGANIZATION Department ot Materials Scienci (N aplicable) University of Virginia U. S. Army Research Office 6c. ADDRESS (City, State, and ZIP Code) 7b...27709 Attention: Dr. Andrew Crowson, Program Officer Materials Science Division Submitted by: E. A. Starke Earnest Oglesby Professor of Materials ...Science and Dean G. J. Shiflet Professor of Materials Science Report No. UVA/525140/MS91/101 July 1990 DTIC ELECTFE SAUG3 1190 I DEPARTMENT OF MATERIALS

  17. Extensión del Formalismo de Orbitales de Defecto Cuántico al tratamiento del efecto Stark (SQDO).

    NASA Astrophysics Data System (ADS)

    Menéndez, J. M.; Martín, I.; Velasco, A. M.

    El estudio experimental de las interacciones de átomos Rydberg altamente excitados con campos eléctricos ha experimentado un creciente interés durante las dos últimas décadas debido, en gran medida, al desarrollo de nuevas técnicas para crear y estudiar átomos Rydberg en el laboratorio. Acompañando a estas nuevas técnicas experimentales, es necesario el desarrollo de modelos teóricos que nos permitan contrastar sus medidas y conocer mejor los fundamentos de los mismos. Desde el punto de vista teórico el conocimiento del desdoblamiento de los niveles energéticos de un átomo en función de la magnitud del campo eléctrico aplicado (lo que se conoce como mapa Stark) es el mejor punto de partida para la descripción del sistema y un prerrequisito fundamental para el cálculo de distintas propiedades atómicas en presencia del campo eléctrico tales como intensidades de transición, umbrales de ionización de campo eléctrico, tiempos de vida, posición y anchura de cruces evitados, etc. En este trabajo presentamos la adaptación del método de orbitales de defecto cuántico [1,2,3] al tratamiento del efecto Stark (SQDO) [4] y su aplicación al cálculo de los desdoblamientos energéticos y fuerzas de oscilador de estados Rydberg en los átomos de Li, Na y K. El propósito de este estudio es, por un lado, desarrollar métodos fiables para la determinación de propiedades atómicas en presencia de campos eléctricos y, por otro, mostrar la fiabilidad de las funciones de onda QDO en la descripción del efecto Stark en sistemas atómicos.

  18. Full Stark control of polariton states on a spin-orbit hypersphere

    NASA Astrophysics Data System (ADS)

    Li, Feng; Cancellieri, E.; Buonaiuto, G.; Skolnick, M. S.; Krizhanovskii, D. N.; Whittaker, D. M.

    2016-11-01

    The orbital angular momentum and the polarization of light are physical quantities widely investigated for classical and quantum information processing. In this work we propose to take advantage of strong light-matter coupling, circular-symmetric confinement, and transverse-electric transverse-magnetic splitting to exploit states where these two degrees of freedom are combined. To this end we develop a model based on a spin-orbit Poincaré hypersphere. Then we consider the example of semiconductor polariton systems and demonstrate full ultrafast Stark control of spin-orbit states. Moreover, by controlling states on three different spin-orbit spheres and switching from one sphere to another we demonstrate the control of different logic bits within one single physical system.

  19. 76 FR 38718 - Indiana Disaster #IN-00037

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    .../23/2011. Incident: Severe Storms, Tornadoes, Straight-line Winds, and Flooding. Incident Period: 04..., Spencer, Starke, Sullivan, Switzerland, Vanderburgh, Warrick, Washington. The Interest Rates are: Percent...

  20. Cold and warm atomic gas around the Perseus molecular cloud. I. Basic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanimirović, Snežana; Murray, Claire E.; Miller, Jesse

    2014-10-01

    Using the Arecibo Observatory, we have obtained neutral hydrogen (HI) absorption and emission spectral pairs in the direction of 26 background radio continuum sources in the vicinity of the Perseus molecular cloud. Strong absorption lines were detected in all cases, allowing us to estimate spin temperature (T{sub s} ) and optical depth for 107 individual Gaussian components along these lines of sight. Basic properties of individual H I clouds (spin temperature, optical depth, and the column density of the cold and warm neutral medium (CNM and WNM), respectively) in and around Perseus are very similar to those found for randommore » interstellar lines of sight sampled by the Millennium H I survey. This suggests that the neutral gas found in and around molecular clouds is not atypical. However, lines of sight in the vicinity of Perseus have, on average, a higher total H I column density and the CNM fraction, suggesting an enhanced amount of cold H I relative to an average interstellar field. Our estimated optical depth and spin temperature are in stark contrast with the recent attempt at using Planck data to estimate properties of the optically thick H I. Only ∼15% of lines of sight in our study have a column density weighted average spin temperature lower than 50 K, in comparison with ≳ 85% of Planck's sky coverage. The observed CNM fraction is inversely proportional to the optical depth weighted average spin temperature, in excellent agreement with the recent numerical simulations by Kim et al. While the CNM fraction is, on average, higher around Perseus relative to a random interstellar field, it is generally low, between 10%-50%. This suggests that extended WNM envelopes around molecular clouds and/or significant mixing of CNM and WNM throughout molecular clouds are present and should be considered in the models of molecule and star formation. Our detailed comparison of H I absorption with CO emission spectra shows that only 3 of the 26 directions are clear candidates for probing the CO-dark gas as they have N(H I)>10{sup 21} cm{sup –2} yet no detectable CO emission.« less

  1. In situ electrochemical SFG/DFG study of CN- and nitrile adsorption at Au from 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl) amide ionic liquid([BMP][TFSA]) containing 4-{2-[1-(2-cyanoethyl)-1,2,3,4-tetrahydroquinolin-6-yl]diazenyl} benzonitrile (CTDB) and K[Au(CN)₂].

    PubMed

    Bozzini, Benedetto; Busson, Bertrand; Gayral, Audrey; Humbert, Christophe; Mele, Claudio; Six, Catherine; Tadjeddine, Abderrahmane

    2012-06-25

    In this paper we report an in situ electrochemical Sum-/Difference Frequency Generation (SFG/DFG) spectroscopy investigation of the adsorption of nitrile and CN⁻ from the ionic liquid 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl) amide ([BMP][TFSA]) containing 4-{2-[1-(2-cyanoethyl)-1,2,3,4-tetrahydroquinolin-6-yl]-diazenyl}benzonitrile (CTDB) at Au electrodes in the absence and in the presence of the Au-electrodeposition process from K[Au(CN)₂]. The adsorption of nitrile and its coadsorption with CN⁻ resulting either from the cathodic decomposition of the dye or from ligand release from the Au(I) cyanocomplex yield potential-dependent single or double SFG bands in the range 2,125-2,140 cm⁻¹, exhibiting Stark tuning values of ca. 3 and 1 cm⁻¹ V⁻¹ in the absence and presence of electrodeposition, respectively. The low Stark tuning found during electrodeposition correlates with the cathodic inhibiting effect of CTDB, giving rise to its levelling properties. The essential insensitivity of the other DFG parameters to the electrodeposition process is due to the growth of smooth Au.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, M F; Holcomb, C; Jayakuma, J

    We present detailed atomic physics models for motional Stark effects (MSE) diagnostic on magnetic fusion devices. Excitation and ionization cross sections of the hydrogen or deuterium beam traveling in a magnetic field in collisions with electrons, ions, and neutral gas are calculated in the first Born approximation. The density matrices and polarization states of individual Stark-Zeeman components of the Balmer {alpha} line are obtained for both beam into plasma and beam into gas models. A detailed comparison of the model calculations and the MSE polarimetry and spectral intensity measurements obtained at the DIII-D tokamak is carried out. Although our beammore » into gas models provide a qualitative explanation for the larger {pi}/{sigma} intensity ratios and represent significant improvements over the statistical population models, empirical adjustment factors ranging from 1.0-2.0 must still be applied to individual line intensities to bring the calculations into full agreement with the observations. Nevertheless, we demonstrate that beam into gas measurements can be used successfully as calibration procedures for measuring the magnetic pitch angle through {pi}/{sigma} intensity ratios. The analyses of the filter-scan polarization spectra from the DIII-D MSE polarimetry system indicate unknown channel and time dependent light contaminations in the beam into gas measurements. Such contaminations may be the main reason for the failure of beam into gas calibration on MSE polarimetry systems.« less

  3. Stark effect and dipole moments of the ammonia dimer in different vibration-rotation-tunneling states

    NASA Astrophysics Data System (ADS)

    Cotti, Gina; Linnartz, Harold; Meerts, W. Leo; van der Avoird, Ad; Olthof, Edgar H. T.

    1996-03-01

    In this paper we present Stark measurements on the G:K=-1 vibration-rotation-tunneling (VRT) transition, band origin 747.2 GHz, of the ammonia dimer. The observed splitting pattern and selection rules can be explained by considering the G36 and G144 symmetries of the inversion states involved, and almost complete mixing of these states by the applied electric field. The absolute values of the electric dipole moments of the ground and excited state are determined to be 0.763(15) and 0.365(10) D, respectively. From the theoretical analysis and the observed selection rules it is possible to establish that the dipole moments of the two interchange states must have opposite sign. The theoretical calculations are in good agreement with the experimental results: The calculated dipole moments are -0.74 D for the lower and +0.35 D for the higher state. Our results, in combination with the earlier dipole measurements on the G:K=0 ground state and the G:K=1 transition with band origin 486.8 GHz, confirm that the ammonia dimer is highly nonrigid. Its relatively small and strongly K-dependent dipole moment, which changes sign upon far-infrared excitation, originates from the difference in dynamical behavior of ortho and para NH3.

  4. Characterization of tobacco withdrawal: physiological and subjective effects.

    PubMed

    Hatsukami, D; Hughes, J R; Pickens, R

    1985-01-01

    In total, our studies show that changes which occur reliably and consistently in chronic smokers after tobacco deprivation include: decreased heart rate, increased caloric intake/eating, increased number of awakenings during sleep, increased craving for tobacco, and increased confusion, as measured by the POMS. Other changes that were found to occur after tobacco deprivation in some but not all of our studies include decreased orthostatic heart rate, increased irritability, and decreased vigor score on the POMS. Previous investigators have found a consistent effect of tobacco deprivation on heart rate (Gilbert and Pope 1982; Knapp et al. 1963; Parsons and Hamme 1975; Weybrew and Stark 1967; Glauser et al. 1970; Myrsten et al. 1977; Murphee and Schultz 1968). Although decreased blood pressure (Knapp et al. 1963; Murphee and Schultz 1968) and changes in other vital signs such as temperature (Gilbert and Pope 1982; Myrsten et al. 1977; Ague 1974) have been reported, our present studies and studies by others (Weybrew and Stark 1967; Glauser et al. 1970) failed to find a significant deprivation effect on these measures. Perhaps the contradictory findings are a function of the reliability of the measures themselves or of the population tested. Caloric intake has been found to increase in both animals and humans after nicotine or smoking cessation (Gruneberg 1982; Myrsten et al. 1977; Wack and Rodin 1982). These results are consistent with studies which have found that smoking cessation causes an increase in body weight (Wack and Rodin 1982). However, previous studies disagree on how smoking cessation causes weight gain. Our inpatient study is believed to be the first to simultaneously measure changes in caloric intake, fluid retention, and physical activity after tobacco deprivation. In the study, caloric intake increased but fluid retention and physical activity did not change. The increases in weight may not be accounted for solely by increases in caloric intake. There may be other factors such as decreased basal metabolic rate which cause the increase in weight. Other studies have also reported sleep disturbance or insomnia among tobacco-deprived smokers (Larson et al. 1961; Weybrew and Stark 1967). Studies directly monitoring sleep have found a decrease in duration awake (Soldatos et al. 1980), increased REM sleep (Soldatos et al. 1980; Kales et al. 1970; Parsons et al. 1975), and increased Stage IV (greater than 50% delta waves) sleep (Parson et al. 1975; Parsons and Hamme 1975). Thus, objective data indicate that after tobacco deprivation smokers actually sleep longer, which contradicts subjective reports of insomnia.(ABSTRACT TRUNCATED AT 400 WORDS)

  5. Ideal square quantum wells achieved in AlGaN/GaN superlattices using ultrathin blocking-compensation pair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaohong; Xu, Hongmei; Xu, Fuchun

    A technique for achieving square-shape quantum wells (QWs) against the intrinsic polar discontinuity and interfacial diffusion through self-compensated pair interlayers is reported. Ultrathin low-and-high % pair interlayers that have diffusion-blocking and self-compensation capacities is proposed to resist the elemental diffusion at nanointerfaces and to grow the theoretically described abrupt rectangular AlGaN/GaN superlattices by metal-organic chemical vapor deposition. Light emission efficiency in such nanostructures is effectively enhanced and the quantum-confined Stark effect could be partially suppressed. This concept could effectively improve the quality of ultrathin QWs in functional nanostructures with other semiconductors or through other growth methods.

  6. Universal FFM Hydrogen Spectral Line Shapes Applied to Ions and Electrons

    NASA Astrophysics Data System (ADS)

    Mossé, C.; Calisti, A.; Ferri, S.; Talin, B.; Bureyeva, L. A.; Lisitsa, V. S.

    2008-10-01

    We present a method for the calculation of hydrogen spectral line shapes based on two combined approaches: Universal Model and FFM procedure. We start with the analytical functions for the intensities of the Stark components of radiative transitions between highly excited atomic states with large values of principal quantum numbers n,n'γ1, with Δn = n-n'≪n for the specific cases of Hn-α line (Δn = 1) and Hn-β line (Δn = 2). The FFM line shape is obtained by averaging on the electric field of the Hooper's field distribution for ion and electron perturber dynamics and by mixing the Stark components with a jumping frequency rate ve (vi) where v = N1/3u (N is electron density and u is the ion or electron thermal velocity). Finally, the total line shape is given by convolution of ion and electron line shapes. Hydrogen line shape calculations for Balmer Hα and Hβ lines are compared to experimental results in low density plasma (Ne˜1016-1017cm-3) and low electron temperature in order of 10 000K. This method relying on analytic expressions permits fast calculation of Hn-α and Hn-β lines of hydrogen and could be used in the study of the Stark broadening of radio recombination lines for high principal quantum number.

  7. Spatial characterization of red and white skin potatoes using nano-second laser induced breakdown in air

    NASA Astrophysics Data System (ADS)

    Rehan, Imran; Rehan, Kamran; Sultana, S.; Haq, M. Oun ul; Niazi, Muhammad Zubair Khan; Muhammad, Riaz

    2016-01-01

    We presents spectroscopic study of the plasma generated by a Q-switched Nd:YAG (1064 nm) laser irradiation of the flesh of red and white skin potatoes. From the spectra recorded with spectrometer (LIBS2500+, Ocean Optics, USA) 11 elements were identified in red skin potato, whereas, the white skin potato was found to have nine elements. Their relative concentrations were estimated using CF-LIBS method for the plasma in local thermodynamic equilibrium. The target was placed in ambient air at atmospheric pressure. The electron temperature and number density were calculated from Boltzmann plot and stark broadened line profile methods, respectively using Fe I spectral lines. The spatial distribution of plasma parameters were also studied which show a decreasing trend of 6770 K-4266 K and (3-2.0) × 1016 cm-3. Concentrations of the detected elements were monitored as a function of depth of the potatoes. Our study reveals a decreasing tendency in concentration of iron from top to the centre of potato's flesh, whereas, the concentrations of other elements vary randomly.

  8. Nonequilibrium in a low power arcjet nozzle

    NASA Technical Reports Server (NTRS)

    Zube, Dieter M.; Myers, Roger M.

    1991-01-01

    Emission spectroscopy measurements were made of the plasma flow inside the nozzle of a 1 kW class arcjet thruster. The thruster propellant was a hydrogen-nitrogen mixture used to simulate fully decomposed hydrazine. The 0.25 mm diameter holes were drilled into the diverging section of the tungsten thruster nozzle to provide optical access to the internal flow. Atomic electron excitation, vibrational, and rotational temperatures were determined for the expanding plasma using relative line intensity techniques. The atomic excitation temperatures decreased from 18,000K at a location 3 mm downstream of the constrictor to 9,000K at a location 9 mm from the constrictor, while the molecular vibrational and rotational temperatures decreased from 6,500K to 2,500K and from 8,000K to 3,000K, respectively, between the same locations. The electron density measured using hydrogen H line Stark broadening decreased from about 10(exp 15) cm(-3) to about 2 times 10(exp 14) cm(-3) during the expansion. The results show that the plasma is highly nonequilibrium throughout the nozzle, with most relaxation times equal or exceeding the particle residence time.

  9. Diagnosis of high-temperature implosions using low- and high-opacity Krypton lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaakobi, B.; Epstein, R.; Hooper, C.F. Jr.

    1996-04-01

    High-temperature laser target implosions can be achieved by using relatively thin-shell targets, and they can be. diagnosed by doping the fuel with krypton and measuring K-shell and L-shell lines. Electron temperatures of up to 5 keV at modest compressed densities ({approximately}1-5g/cm{sup 3}) are predicted for such experiments, with ion temperatures peaking above 10 keV at the center. It is found that the profiles of low-opacity (optically thin) lines in the expected density range are dominated by the Doppler broadening and can provide a measurement of the ion temperature if spectrometers of spectral resolution {Delta}{lambda}/{lambda} {ge} 1000 are used. For high-opacitymore » lines, obtained with a higher krypton fill pressure, the measurement of the escape factor can yield the {rho}R of the compressed fuel. At higher densities, Stark broadening of low-opacity lines becomes important and can provide a density measurement, whereas lines of higher opacity can be used to estimate the extent of mixing.« less

  10. Spectroscopy and laser test emission in Tm3+ : BaYLuF8 single crystal

    NASA Astrophysics Data System (ADS)

    Parisi, D.; Veronesi, S.; Volpi, A.; Gemmi, M.; Tonelli, M.; Cassanho, A.; Jenssen, H. P.

    2014-01-01

    A novel laser material BaYLuF8 (BYLF), doped with 12 at% of Tm3+, has been grown and optically investigated, in order to evaluate its potential performances as a 2 µm laser. The BYLF crystal is interesting mainly because indications are that the mixed crystal would be sturdier than BaY2F8 (BYF). The addition of lutetium would improve the thermo-mechanical properties of the host. Absorption, fluorescence and lifetime measurements have been performed in the temperature range 10-300 K focusing on the 3H4 and 3F4 manifolds, those involved in the laser scheme at 2 µm. The Stark sublevels structure of Tm3+ up to the 1D2 manifold has been figured out. Diode-pumped CW laser emission at 2 µm has been achieved obtaining a slope efficiency of about 28% with respect to the absorbed power, by pumping along the Z-axis. A maximum output power of 240 mW was achieved by pumping along the favourable Y-axis, with an incident power of about 800 mW.

  11. Meningitis - tuberculous

    MedlinePlus

    ... Starke JR. Tuberculosis. In: Cherry JD, Harrison GJ, Kaplan SL, Steinbach WJ, Hotez PJ, eds. Feigin and ... constitute endorsements of those other sites. Copyright 1997-2018, A.D.A.M., Inc. Duplication for commercial ...

  12. Tables of stark level transition probabilities and branching ratios in hydrogen-like atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    The transition probabilities which are given in terms of n prime k prime and n k are tabulated. No additional summing or averaging is necessary. The electric quantum number k plays the role of the angular momentum quantum number l in the presence of an electric field. The branching ratios between stark levels are also tabulated. Necessary formulas for the transition probabilities and branching ratios are given. Symmetries are discussed and selection rules are given. Some disagreements for some branching ratios are found between the present calculation and the measurement of Mark and Wierl. The transition probability multiplied by the statistical weight of the initial state is called the static intensity J sub S, while the branching ratios are called the dynamic intensity J sub D.

  13. Infrared laser Stark spectroscopy of hydroxymethoxycarbene in 4He nanodroplets

    DOE PAGES

    Broderick, Bernadette M.; Moradi, Christopher P.; Douberly, Gary E.

    2015-09-07

    Hydroxymethoxycarbene, CH 3OCOH, was produced via pyrolysis of monomethyl oxalate and subsequently isolated in 4He nanodroplets. Infrared laser spectroscopy reveals two rotationally resolved a,b-hybrid bands in the OH-stretch region, which are assigned to trans, trans- and cis, trans-rotamers. Stark spectroscopy of the trans, trans-OH stretch band provides the a-axis inertial component of the dipole moment, namely μ a = 0.62(7) D. Here, the computed equilibrium dipole moment agrees well with the expectation value determined from experiment, consistent with a semi-rigid CH 3OCOH backbone computed via a potential energy scan at the B3LYP/cc-pVTZ level of theory, which reveals substantial conformer interconversionmore » barriers of ≈17 kcal/mol.« less

  14. Raman-laser spectroscopy of Wannier-Stark states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tackmann, G.; Pelle, B.; Hilico, A.

    2011-12-15

    Raman lasers are used as a spectroscopic probe of the state of atoms confined in a shallow one-dimensional (1D) vertical lattice. For sufficiently long laser pulses, resolved transitions in the bottom band of the lattice between Wannier Stark states corresponding to neighboring wells are observed. Couplings between such states are measured as a function of the lattice laser intensity and compared to theoretical predictions, from which the lattice depth can be extracted. Limits to the linewidth of these transitions are investigated. Transitions to higher bands can also be induced, as well as between transverse states for tilted Raman beams. Allmore » these features allow for a precise characterization of the trapping potential and for an efficient control of the atomic external degrees of freedom.« less

  15. Generation, Detection and characterization of Gas-Phase Transition Metal containing Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steimle, Timothy

    The objective of this project was to generate, detect, and characterize small, gas-phase, metal containing molecules. In addition to being relevant to high temperature chemical environments (e.g. plasmas and combustion), gas-phase experiments on metal containing molecules serve as the most direct link to a molecular-level theoretical model for catalysis. Catalysis (i.e. the addition of a small about of recoverable material to control the rate and direction of a chemical reaction) is critical to the petroleum and pharmaceutical industries as well as environmental remediation. Currently, the majority of catalytic materials are based on very expensive metals such as platinum (Pt), palladiummore » (Pd), iridium (Ir,) rhenium (Re), and rhodium (Rh). For example, the catalyst used for converting linear hydrocarbon molecules (e.g. hexane) to cyclic molecules (e.g. cyclohexane) is a mixture of Pt and Re suspended on alumina. It enables straight chain alkanes to be converted into branched-chain alkanes, cyclohexanes and aromatic hydrocarbons which are used, amongst other things, to enhance the octane number of petrol. A second example is the heterogeneous catalysis used in automobile exhaust systems to: a) decrease nitrogen oxide; b) reduce carbon monoxide; and c) oxidize unburned hydrocarbons. The exhaust is vented through a high-surface area chamber lined with Pt, Pd, and Rh. For example, the carbon monoxide is catalytically converted to carbon dioxide by reaction with oxygen. The research results from this work have been published in readily accessible journals1-28. The ground and excited electronic state properties of small metal containing molecules that we determine were: a) electronic state distributions and lifetimes, b) vibrational frequencies, c) bond lengths and angles, d) hyperfine interactions, e) permanent electric dipole moments, mel, and f) magnetic dipoles, μ m. In general terms, μ el, gives insight into the charge distribution and mm into the number and nature of the unpaired electrons. Analysis of the hyperfine interactions (i.e. Fermi-contact, nuclear electric quadrupole, etc.) is particularly insightful because it results from the interaction of nuclei with non-zero spin and the chemically important valence electrons. The bulk of the spectroscopic techniques used in these studies exploit the sensitivity of laser induced fluorescence (LIF) detection. The spectroscopic schemes employed include: a) cw and pulsed laser field-free(FF) excitation and dispersed LIF (DLIF); b) optical Stark; c) optical Zeeman; d) pump/probe microwave double resonance (PPMODR); e) fluorescence lifetimes, and f) resonant and non-resonant two-photon ionization TOF mass spectrometry. Vibrational spacing, force constants and electronic states distributions are derived from the analysis of pulsed dye laser excitation and DLIF spectra. Geometric structure (bond lengths and angles) and hyperfine parameters are derived from the analysis of cw-laser LIF and PPMODR spectra. Permanent electric dipole moments, mel,, and magnetic dipole moments, mm, are derived from the analysis of optical Stark and Zeeman spectra, respectively. Transition moments are derived from the analysis of radiative lifetimes. A supersonic molecular beam sample of these ephemeral molecules is generated by skimming the products of either a laser ablation/reaction source or a d.c. discharge source.« less

  16. Time integrated optical emission studies of the laser produced germanium plasma

    NASA Astrophysics Data System (ADS)

    Iqbal, Javed; Ahmed, R.; Baig, M. A.

    2017-04-01

    We present new time integrated data on the optical emission spectra of laser produced germanium plasma using a Q-switched Nd:YAG laser (1064 nm), power density up to about 5  ×  109 W cm-2 in conjunction with a set of five spectrometers covering a spectral range from 200 nm to 720 nm. Well resolved structure due to the 4p5s  →  4p2 transition array of neutral germanium and a few multiplets of singly ionized germanium have been observed. Plasma temperature has been determined in the range (9000-11 000) K using four different techniques; two line ratio method, Boltzmann plot, Saha-Boltzmann plot and Marotta’s technique whereas electron density has been deduced from the Stark broadened line profiles in the range (0.5-5.0)  ×  1017 cm-3, depending on the laser pulse energy to produce the germanium plasma. Full width at half maximum (FWHM) of a number of neutral and singly ionized germanium lines have been extracted by the Lorentzian fit to the experimentally observed line profiles. In addition, we have compared the experimentally measured relative line strengths for the 4p5s 3P0,1,2  →  4p2 3P0,1,2 multiplet with that calculated in the LS-coupling scheme revealing that the intermediate coupling scheme is more appropriate for the level designations in germanium.

  17. Conserved electrostatic fields at the Ras-effector interface measured through vibrational Stark effect spectroscopy explain the difference in tilt angle in the Ras binding domains of Raf and RalGDS.

    PubMed

    Walker, David M; Wang, Ruifei; Webb, Lauren J

    2014-10-07

    Vibrational Stark effect (VSE) spectroscopy was used to measure the electrostatic fields present at the interface of the human guanosine triphosphatase (GTPase) Ras docked with the Ras binding domain (RBD) of the protein kinase Raf. Nine amino acids located on the surface of Raf were selected for labeling with a nitrile vibrational probe. Eight of the probe locations were situated along the interface of Ras and Raf, and one probe was 2 nm away on the opposite side of Raf. Vibrational frequencies of the nine Raf nitrile probes were compared both in the monomeric, solvated protein and when docked with wild-type (WT) Ras to construct a comprehensive VSE map of the Ras-Raf interface. Molecular dynamics (MD) simulations employing an umbrella sampling strategy were used to generate a Boltzmann-weighted ensemble of nitrile positions in both the monomeric and docked complexes to determine the effect that docking has on probe location and orientation and to aid in the interpretation of VSE results. These results were compared to an identical study that was previously conducted on nine nitrile probes on the RBD of Ral guanidine dissociation stimulator (RalGDS) to make comparisons between the docked complexes formed when either of the two effectors bind to WT Ras. This comparison finds that there are three regions of conserved electrostatic fields that are formed upon docking of WT Ras with both downstream effectors. Conservation of this pattern in the docked complex then results in different binding orientations observed in otherwise structurally similar proteins. This work supports an electrostatic cause of the known binding tilt angle between the Ras-Raf and Ras-RalGDS complexes.

  18. Progress Towards a New Technique for Measuring Local Electric and Magnetic Field Fluctuations in High Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Fonck, R. J.; McKee, G. R.; Winz, G. R.

    2017-10-01

    Local measurements of electrostatic and magnetic turbulence in fusion grade plasmas is a critical missing component in advancing our understanding of current experiments and validating nonlinear turbulence simulations. A novel diagnostic for measuring local electric and magnetic field fluctuations (Ẽ and B ) is being developed to address this need. It employs high-speed measurements of the spectral linewidth and/or line intensities of the Motional Stark Effect split neutral beam emission. This emission is split into several spectral components, with the amount of splitting being proportional to local magnetic and electric fields at the emission site. High spectral resolution ( 0.025 nm), high throughput ( 0.01 cm2str), and high speed (f 250 kHz) are required for the measurement of fast changes in the MSE spectrum. Spatial heterodyne spectroscopy (SHS) techniques coupled to a CMOS detector can meet these demands. A prototype SHS has been deployed to DIII-D for initial testing in the tokamak environment, SNR evaluation, and neutral beam efficacy. In addition, design studies of the SHS interferogram are ongoing to further optimize the measurement technique. One major contributor to loss of fringe contrast is line broadening arising from employing a large collection lens. This broadening can be mitigated by making the lens at the tokamak wall optically conjugate with the interference fringes image field. Work supported by US DOE Grant DE-FG02-89ER53296.

  19. 1.55 µm emission from a single III-nitride top-down and site-controlled nanowire quantum disk

    NASA Astrophysics Data System (ADS)

    Chen, Qiming; Yan, Changling; Qu, Yi

    2017-07-01

    InN/InGaN single quantum well (SQW) was fabricated on 100 nm GaN buffer layer which was deposited on GaN template by plasma assisted molecular beam epitaxy (PA-MBE). The In composition and the surface morphology were measured by x-ray diffusion (XRD) and atom force microscope (AFM), respectively. Afterwards, the sample was fabricated into site-controlled nanowires arrays by hot-embossing nano-imprint lithography (HE-NIL) and ultraviolet nanoimprint lithography (UV-NIL). The nanowires were uniform along the c-axis and aligned periodically as presented by scanning electron microscope (SEM). The single nanowire showed disk-in-a-wire structure by high angle annular dark field (HAADF) and an In-rich or Ga deficient region was observed by energy dispersive x-ray spectrum (EDXS). The optical properties of the SQW film and single nanowire were measured using micro photoluminescence (µ-PL) spectroscopy. The stimulating light wavelength was 632.8 nm which was emitted from a He-Ne laser and the detector was a liquid nitrogen cooled InGaAs detector. A blue peak shift from the film material to the nanowire was observed. This was due to the quantum confinement Stark Effect. More importantly, the 1.55 µm emission was given from the single disk-in-a-wire structure at room temperature. We believe the arrays of such nanowires may be useful for quantum communication in the future.

  20. 76 FR 44028 - Indiana; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ..., and straight line winds occurring on April 19, 2011, and April 22 to May 2, 2011, and flooding..., Starke, Sullivan, Switzerland, Vanderburgh, Warrick, and Washington Counties for Public Assistance. All...

  1. Creating Rydberg electron wave packets using terahertz pulses

    NASA Astrophysics Data System (ADS)

    Bromage, Jake

    1999-10-01

    In this thesis I present experiments in which we excited classical-limit states of an atom using terahertz pulses. In a classical-limit state, an atom's outer electron is confined to a wave packet that orbits the core along a classical trajectory. Researchers have excited states with classical traits, but wave packets localized in all three dimensions have proved elusive. Theoretical studies have shown such states can be created using terahertz pulses. Using these techniques, we created a linear-orbit wave packet (LOWP), that is three-dimensionally localized and orbits along a line on one side of the atom's core. Terahertz pulses are sub-picosecond bursts of far- infrared radiation. Unlike ultrashort optical pulses, the electric field of terahertz pulses barely completes a single cycle. Our simulations of the atom-pulse interaction show that this electric field profile is critical in determining the quality of the wave packet. To characterize our terahertz pulses, we invented dithered-edge sampling which time- resolves the electric field using a photoconductive receiver and a triggered attenuator. We also studied how pulses are distorted after propagating through metallic structures, and used our findings to design our atomic experiments. We excited wave packets in atomic sodium using a two-step process. First, we used tunable, nanosecond dye lasers to excite an extreme Stark state. Next, we used a terahertz pump pulse to coherently redistribute population among extreme Stark states in neighboring manifolds. Interference between the final states produces a localized, dynamic LOWP. To analyze the LOWP, we ionized it with a stronger terahertz probe pulse, varying the pump-probe delay to map out its motion. We observed two strong LOWP signatures. Changing the static electric field produced small changes (2%) in the orbital period that agreed with our theoretical predictions. Secondly, because the LOWP scatters off the core, the pump-probe signal depended on the direction of the kick the LOWP received from the robe pulse. These observations, combined with our detailed simulations that used sodium parameters and the actual shape of the terahertz pulse, lead us to conclude that we excited a LOWP.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bondarenko, A. S., E-mail: AntonBondarenko@ymail.com; Schaeffer, D. B.; Everson, E. T.

    The collision-less transfer of momentum and energy from explosive debris plasma to magnetized background plasma is a salient feature of various astrophysical and space environments. While much theoretical and computational work has investigated collision-less coupling mechanisms and relevant parameters, an experimental validation of the results demands the measurement of the complex, collective electric fields associated with debris-background plasma interaction. Emission spectroscopy offers a non-interfering diagnostic of electric fields via the Stark effect. A unique experiment at the University of California, Los Angeles, that combines the Large Plasma Device (LAPD) and the Phoenix laser facility has investigated the marginally super-Alfvénic, quasi-perpendicularmore » expansion of a laser-produced carbon (C) debris plasma through a preformed, magnetized helium (He) background plasma via emission spectroscopy. Spectral profiles of the He II 468.6 nm line measured at the maximum extent of the diamagnetic cavity are observed to intensify, broaden, and develop equally spaced modulations in response to the explosive C debris, indicative of an energetic electron population and strong oscillatory electric fields. The profiles are analyzed via time-dependent Stark effect models corresponding to single-mode and multi-mode monochromatic (single frequency) electric fields, yielding temporally resolved magnitudes and frequencies. The proximity of the measured frequencies to the expected electron plasma frequency suggests the development of the electron beam-plasma instability, and a simple saturation model demonstrates that the measured magnitudes are feasible provided that a sufficiently fast electron population is generated during C debris–He background interaction. Potential sources of the fast electrons, which likely correspond to collision-less coupling mechanisms, are briefly considered.« less

  3. Role of quantum-confined stark effect on bias dependent photoluminescence of N-polar GaN/InGaN multi-quantum disk amber light emitting diodes

    NASA Astrophysics Data System (ADS)

    Tangi, Malleswararao; Mishra, Pawan; Janjua, Bilal; Prabaswara, Aditya; Zhao, Chao; Priante, Davide; Min, Jung-Wook; Ng, Tien Khee; Ooi, Boon S.

    2018-03-01

    We study the impact of quantum-confined stark effect (QCSE) on bias dependent micro-photoluminescence emission of the quantum disk (Q-disk) based nanowires light emitting diodes (NWs-LED) exhibiting the amber colored emission. The NWs are found to be nitrogen polar (N-polar) verified using KOH wet chemical etching and valence band spectrum analysis of high-resolution X-ray photoelectron spectroscopy. The crystal structure and quality of the NWs were investigated by high-angle annular dark field - scanning transmission electron microscopy. The LEDs were fabricated to acquire the bias dependent micro-photoluminescence spectra. We observe a redshift and a blueshift of the μPL peak in the forward and reverse bias conditions, respectively, with reference to zero bias, which is in contrast to the metal-polar InGaN well-based LEDs in the literature. Such opposite shifts of μPL peak emission observed for N-polar NWs-LEDs, in our study, are due to the change in the direction of the internal piezoelectric field. The quenching of PL intensity, under the reverse bias conditions, is ascribed to the reduction of electron-hole overlap. Furthermore, the blueshift of μPL emission with increasing excitation power reveals the suppression of QCSE resulting from the photo-generated carriers. Thereby, our study confirms the presence of QCSE for NWs-LEDs from both bias and power dependent μPL measurements. Thus, this study serves to understand the QCSE in N-polar InGaN Q-disk NWs-LEDs and other related wide-bandgap nitride nanowires, in general.

  4. Special report on reimbursement. The safe harbor for small investment interests: where do joint ventures go from here?

    PubMed

    Lindeke, J M

    1991-11-01

    There is no specific federal self-referral legislation presently proposed or in effect that statutorily prohibits providers from referring Medicare or other patients to entities in which the referrers have an investment interest, except for existing "Stark" legislation, which applies only to clinical laboratory services, effective January 1, 1992. (See Newsletter, Vol. 6, No. 1, January 1991, at 3.) Thus, health care joint ventures are not per se illegal. The publication of the Safe Harbor Regulations does nothing to change this fundamental fact, and it should not cause providers to abandon existing joint ventures, or planned ones, in a "knee-jerk" fashion, without careful analysis. Of course, there is no guarantee that expanded "Stark" legislation, or some other new self-referral legislation, will not be enacted in the future to prohibit providers from referring patients to entities in which they have an investment interest. Because of this uncertainty, all health care joint ventures should contain "unwinding" provisions to govern the rights and obligations of investors in the event that the venture is required to, or the participants voluntarily elect to, dissolve. Any new venture being contemplated should plan for dissolution, and existing ventures should undertake an internal review of their charter documents to assess whether the rights and duties of all participants upon dissolution are properly spelled out. If not, amendments should be made now, while all participants are on good terms. A failure to agree in advance upon such important issues is an invitation to discord, and possibly even litigation.

  5. 9. DETAIL OF BRICKWORK ON SOUTHEAST SIDE OF GERMAN VILLAGE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL OF BRICKWORK ON SOUTHEAST SIDE OF GERMAN VILLAGE. - Dugway Proving Ground, German-Japanese Village, German Village, South of Stark Road, in WWII Incendiary Test Area, Dugway, Tooele County, UT

  6. 8. VIEW OF SOUTHWEST END OF GERMAN VILLAGE LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF SOUTHWEST END OF GERMAN VILLAGE LOOKING NORTHEAST. - Dugway Proving Ground, German-Japanese Village, German Village, South of Stark Road, in WWII Incendiary Test Area, Dugway, Tooele County, UT

  7. 4. VIEW OF NORTHWEST SIDE OF GERMAN VILLAGE LOOKING SOUTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF NORTHWEST SIDE OF GERMAN VILLAGE LOOKING SOUTHEAST. - Dugway Proving Ground, German-Japanese Village, German Village, South of Stark Road, in WWII Incendiary Test Area, Dugway, Tooele County, UT

  8. 12. INTERIOR VIEW OF ROOF FRAMING IN ATTIC, LOOKING SOUTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. INTERIOR VIEW OF ROOF FRAMING IN ATTIC, LOOKING SOUTH. - Dugway Proving Ground, German-Japanese Village, German Village, South of Stark Road, in WWII Incendiary Test Area, Dugway, Tooele County, UT

  9. Molybdenum electron impact width parameter measurement by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sternberg, E. M. A.; Rodrigues, N. A. S.; Amorim, J.

    2016-01-01

    In this work, we suggest a method for electron impact width parameter calculation based on Stark broadening of emission lines of a laser-ablated plasma plume. First, electron density and temperature must be evaluated by means of the Saha-Boltzmann plot method for neutral and ionized species of the plasma. The method was applied for laser-ablated molybdenum plasma plume. For molybdenum plasma electron temperature, which varies around 10,000 K, and electron density, which reaches values around 1018 cm-3, and considering that total measured line broadening was due experimental and Stark broadening mainly, electron impact width parameter of molybdenum emission lines was determined as (0.01 ± 0.02) nm. Intending to validate the presented method, it was analyzed the laser-ablated aluminum plasma plume and the obtained results were in agreement with the predicted on the literature.

  10. Stark absorption spectroscopy on the carotenoids bound to B800-820 and B800-850 type LH2 complexes from a purple photosynthetic bacterium, Phaeospirillum molischianum strain DSM120.

    PubMed

    Horibe, Tomoko; Qian, Pu; Hunter, C Neil; Hashimoto, Hideki

    2015-04-15

    Stark absorption spectroscopy was applied to clarify the structural differences between carotenoids bound to the B800-820 and B800-850 LH2 complexes from a purple photosynthetic bacterium Phaeospirillum (Phs.) molischianum DSM120. The former complex is produced when the bacteria are grown under stressed conditions of low temperature and dim light. These two LH2 complexes bind carotenoids with similar composition, 10% lycopene and 80% rhodopin, each with the same number of conjugated CC double bonds (n=11). Quantitative classical and semi-quantum chemical analyses of Stark absorption spectra recorded in the carotenoid absorption region reveal that the absolute values of the difference dipole moments |Δμ| have substantial differences (2 [D/f]) for carotenoids bound to either B800-820 or B800-850 complexes. The origin of this striking difference in the |Δμ| values was analyzed using the X-ray crystal structure of the B800-850 LH2 complex from Phs. molischianum DSM119. Semi-empirical molecular orbital calculations predict structural deformations of the major carotenoid, rhodopin, bound within the B800-820 complex. We propose that simultaneous rotations around neighboring CC and CC bonds account for the differences in the 2 [D/f] of the |Δμ| value. The plausible position of the rotation is postulated to be located around C21-C24 bonds of rhodopin. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Angular distributions for the F+H2-->HF+H reaction: The role of the F spin-orbit excited state and comparison with molecular beam experiments

    NASA Astrophysics Data System (ADS)

    Tzeng, Yi-Ren; Alexander, Millard H.

    2004-09-01

    We report quantum mechanical calculations of center-of-mass differential cross sections (DCS) for the F+H2→HF+H reaction performed on the multistate [Alexander-Stark-Werner (ASW)] potential energy surfaces (PES) that describe the open-shell character of this reaction. For comparison, we repeat single-state calculations with the Stark-Werner (SW) and Hartke-Stark-Werner (HSW) PESs. The ASW DCSs differ from those predicted for the SW and HSW PES in the backward direction. These differences arise from nonadiabatic coupling between several electronic states. The DCSs are then used in forward simulations of the laboratory-frame angular distributions (ADs) measured by Lee, Neumark, and co-workers [J. Chem. Phys. 82, 3045 (1985)]. The simulations are scaled to match experiment over the range 12°<Θlab<80°. As a natural consequence of the reduced backward scattering, the ASW ADs are more forward and sideways scattered than predicted by the HSW PES. At the two higher collision energies (2.74 and 3.42 kcal/mol) the enhanced sideways scattering of HF v'=2 products bring the ASW ADs in very good agreement with the experiment. At the lowest collision energy (1.84 kcal/mol), the simulations, for all three sets of PESs consistently underestimate the sideways scattering. The residual disagreements, particularly at the lowest collision energy, may be due to the known deficiencies in the PESs.

  12. Control of interlayer physics in 2H transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Wang, Kuang-Chung; Stanev, Teodor K.; Valencia, Daniel; Charles, James; Henning, Alex; Sangwan, Vinod K.; Lahiri, Aritra; Mejia, Daniel; Sarangapani, Prasad; Povolotskyi, Michael; Afzalian, Aryan; Maassen, Jesse; Klimeck, Gerhard; Hersam, Mark C.; Lauhon, Lincoln J.; Stern, Nathaniel P.; Kubis, Tillmann

    2017-12-01

    It is assessed in detail both experimentally and theoretically how the interlayer coupling of transition metal dichalcogenides controls the electronic properties of the respective devices. Gated transition metal dichalcogenide structures show electrons and holes to either localize in individual monolayers, or delocalize beyond multiple layers—depending on the balance between spin-orbit interaction and interlayer hopping. This balance depends on the layer thickness, momentum space symmetry points, and applied gate fields. The design range of this balance, the effective Fermi levels, and all relevant effective masses is analyzed in great detail. A good quantitative agreement of predictions and measurements of the quantum confined Stark effect in gated MoS2 systems unveils intralayer excitons as the major source for the observed photoluminescence.

  13. Kinetic Temperature and Electron Density Measurement in an Inductively Coupled Plasma Torch using Degenerate Four-Wave Mixing

    NASA Technical Reports Server (NTRS)

    Schafer, Julia; Lyons, Wendy; Tong, WIlliam G.; Danehy, Paul M.

    2008-01-01

    Laser wave mixing is presented as an effective technique for spatially resolved kinetic temperature measurements in an atmospheric-pressure radio-frequency inductively-coupled plasma. Measurements are performed in a 1 kW, 27 MHz RF plasma using a continuous-wave, tunable 811.5-nm diode laser to excite the 4s(sup 3)P2 approaches 4p(sup 3)D3 argon transition. Kinetic temperature measurements are made at five radial steps from the center of the torch and at four different torch heights. The kinetic temperature is determined by measuring simultaneously the line shape of the sub-Doppler backward phase-conjugate degenerate four-wave mixing and the Doppler-broadened forward-scattering degenerate four-wave mixing. The temperature measurements result in a range of 3,500 to 14,000 K+/-150 K. Electron densities measured range from 6.1 (+/-0.3) x 10(exp 15)/cu cm to 10.1 (+/-0.3) x 10(exp 15)/cu cm. The experimental spectra are analyzed using a perturbative treatment of the backward phase-conjugate and forward-geometry wave-mixing theory. Stark width is determined from the collisional broadening measured in the phase-conjugate geometry. Electron density measurements are made based on the Stark width. The kinetic temperature of the plasma was found to be more than halved by adding deionized water through the nebulizer.

  14. Factors determining electrostatic fields in molecular dynamics simulations of the Ras/effector interface.

    PubMed

    Ensign, Daniel L; Webb, Lauren J

    2011-12-01

    Using molecular dynamics simulations, we explore geometric and physical factors contributing to calculated electrostatic fields at the binding surface of the GTPase Ras with a spectroscopically labeled variant of a downstream effector, the Ras-binding domain of Ral guanine nucleotide dissociation stimulator (RalGDS). A related system (differing by mutation of one amino acid) has been studied in our group using vibrational Stark effect spectroscopy, a technique sensitive to electrostatic fields. Electrostatic fields were computed using the AMBER 2003 force field and averaged over snapshots from molecular dynamics simulation. We investigate geometric factors by exploring how the orientation of the spectroscopic probe changes on Ras-effector binding. In addition, we explore the physical origin of electrostatic fields at our spectroscopic probe by comparing contributions to the field from discrete components of the system, such as explicit solvent, residues on the Ras surface, and residues on the RalGDS surface. These models support our experimental hypothesis that vibrational Stark shifts are caused by Ras binding to its effector and not the structural rearrangements of the effector surface or probe reorientation on Ras-effector binding, for at least some of our experimental probes. These calculations provide physical insight into the origin, magnitude, and importance of electrostatic fields in protein-protein interactions and suggest new experiments to probe the field's role in protein docking. Copyright © 2011 Wiley-Liss, Inc.

  15. On the electrostatic deceleration of argon atoms in high Rydberg states by time-dependent inhomogeneous electric fields

    NASA Astrophysics Data System (ADS)

    Vliegen, E.; Merkt, F.

    2005-06-01

    Argon atoms in a pulsed supersonic expansion are prepared in selected Stark components of Rydberg states with effective principal quantum number in the range n* = 15-25. When traversing regions of inhomogeneous electric fields, these atoms get accelerated or decelerated depending on whether the Stark states are low- or high-field seeking states. Using a compact electrode design, which enables the application of highly inhomogeneous and time-dependent electric fields, the Rydberg atoms experience kinetic energy changes of up to 1.2 × 10-21 J (i.e. 60 cm-1 in spectroscopic units) in a single acceleration/deceleration stage of 3 mm length. The resulting differences in the velocities of the low- and high-field seeking states are large enough that the corresponding distributions of times of flight to the Rydberg particle detector are fully separated. As a result, efficient spectral searches of the Rydberg states best suited for acceleration/deceleration experiments are possible. Numerical simulations of the particle trajectories are used to analyse the time-of-flight distributions and to optimize the time dependence of the inhomogeneous electric fields. The decay of the Rydberg states by fluorescence, collisions and transitions induced by black-body radiation takes place on a timescale long enough not to interfere significantly with the deceleration during the first ~5 µs.

  16. Diagnostics development for E-beam excited air channels

    NASA Astrophysics Data System (ADS)

    Eckstrom, D. J.; Dickenson, J. S.

    1982-02-01

    As the tempo of development of particle beam weapons increases, more detailed diagnostics of the interaction of the particle beam with the atmosphere are being proposed and implemented. Some of these diagnostics involve probing of the excited air channel with visible wavelength laser radiation. Examples include the use of visible wavelength interferometry to measure electron density profiles in the nose of the beam Ri81 and Stark shift measurements to determine self-induced electric fields Hi81, DR81. In these diagnostics, the change in laser intensity due to the desired diagnostic effect can be quite small, leading to the possibility that other effects, such as gas phase absorption, could seriously interfere with the measurement.

  17. Large negative differential resistance in graphene nanoribbon superlattices

    NASA Astrophysics Data System (ADS)

    Tseng, P.; Chen, C. H.; Hsu, S. A.; Hsueh, W. J.

    2018-05-01

    A graphene nanoribbon superlattice with a large negative differential resistance (NDR) is proposed. Our results show that the peak-to-valley ratio (PVR) of the graphene superlattices can reach 21 at room temperature with bias voltages between 90-220 mV, which is quite large compared with the one of traditional graphene-based devices. It is found that the NDR is strongly influenced by the thicknesses of the potential barrier. Therefore, the NDR effect can be optimized by designing a proper barrier thickness. The large NDR effect can be attributed to the splitting of the gap in transmission spectrum (segment of Wannier-Stark ladder) with larger thicknesses of barrier when the applied voltage increases.

  18. Electric-field control of tri-state phase transformation with a selective dual-ion switch

    NASA Astrophysics Data System (ADS)

    Lu, Nianpeng; Zhang, Pengfei; Zhang, Qinghua; Qiao, Ruimin; He, Qing; Li, Hao-Bo; Wang, Yujia; Guo, Jingwen; Zhang, Ding; Duan, Zheng; Li, Zhuolu; Wang, Meng; Yang, Shuzhen; Yan, Mingzhe; Arenholz, Elke; Zhou, Shuyun; Yang, Wanli; Gu, Lin; Nan, Ce-Wen; Wu, Jian; Tokura, Yoshinori; Yu, Pu

    2017-06-01

    Materials can be transformed from one crystalline phase to another by using an electric field to control ion transfer, in a process that can be harnessed in applications such as batteries, smart windows and fuel cells. Increasing the number of transferrable ion species and of accessible crystalline phases could in principle greatly enrich material functionality. However, studies have so far focused mainly on the evolution and control of single ionic species (for example, oxygen, hydrogen or lithium ions). Here we describe the reversible and non-volatile electric-field control of dual-ion (oxygen and hydrogen) phase transformations, with associated electrochromic and magnetoelectric effects. We show that controlling the insertion and extraction of oxygen and hydrogen ions independently of each other can direct reversible phase transformations among three different material phases: the perovskite SrCoO3-δ (ref. 12), the brownmillerite SrCoO2.5 (ref. 13), and a hitherto-unexplored phase, HSrCoO2.5. By analysing the distinct optical absorption properties of these phases, we demonstrate selective manipulation of spectral transparency in the visible-light and infrared regions, revealing a dual-band electrochromic effect that could see application in smart windows. Moreover, the starkly different magnetic and electric properties of the three phases—HSrCoO2.5 is a weakly ferromagnetic insulator, SrCoO3-δ is a ferromagnetic metal, and SrCoO2.5 is an antiferromagnetic insulator—enable an unusual form of magnetoelectric coupling, allowing electric-field control of three different magnetic ground states. These findings open up opportunities for the electric-field control of multistate phase transformations with rich functionalities.

  19. 14. INTERIOR VIEW OF NEWEL POST AT SOUTH STAIRWELL, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR VIEW OF NEWEL POST AT SOUTH STAIRWELL, LOOKING NORTH. - Dugway Proving Ground, German-Japanese Village, German Village, South of Stark Road, in WWII Incendiary Test Area, Dugway, Tooele County, UT

  20. 11. INTERIOR VIEW OF DOORS OPENING INTO NORTH STAIRWELL, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR VIEW OF DOORS OPENING INTO NORTH STAIRWELL, LOOKING WEST. - Dugway Proving Ground, German-Japanese Village, German Village, South of Stark Road, in WWII Incendiary Test Area, Dugway, Tooele County, UT

  1. 1. OBLIQUE VIEW OF BUNKER LOOKING NORTHWEST. GERMAN VILLAGE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OBLIQUE VIEW OF BUNKER LOOKING NORTHWEST. GERMAN VILLAGE IN BACKGROUND. - Dugway Proving Ground, German-Japanese Village, Observation Bunker, South of Stark Road, in WWII Incendiary Test Area, Dugway, Tooele County, UT

  2. Molecular alignment and orientation with a hybrid Raman scattering technique

    NASA Astrophysics Data System (ADS)

    Bustard, Philip J.; Lausten, R.; Sussman, Benjamin J.

    2012-11-01

    We demonstrate a scheme for the preparation of molecular alignment and angular momentum orientation using a hybrid combination of two limits of Raman scattering. First a weak, impulsive pump pulse initializes the system via the nonresonant dynamic Stark effect. Then, having overcome the influence of the vacuum fluctuations, an amplification pulse selectively enhances the initial coherences by transient stimulated Raman scattering, generating alignment and angular momentum orientation of molecular hydrogen. The amplitude and phase of the resulting coherent dynamics are experimentally probed, indicating an amplification factor of 4.5. An analytic theory is developed to model the dynamics.

  3. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade.

    PubMed

    Viezzer, E; Dux, R; Dunne, M G

    2016-11-01

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line D α . The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  4. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viezzer, E., E-mail: eleonora.viezzer@ipp.mpg.de, E-mail: eviezzer@us.es; Department of Atomic, Molecular, and Nuclear Physics, University of Seville, Avda. Reina Mercedes, 41012 Seville; Dux, R.

    2016-11-15

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line D{sub α}. The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  5. Large Spatially Resolved Rectification in a Donor–Acceptor Molecular Heterojunction

    DOE PAGES

    Smerdon, Joseph A.; Giebink, Noel C.; Guisinger, Nathan P.; ...

    2016-03-10

    Here, we demonstrate that rectification ratios (RR) of ≳250 (≳1000) at biases of 0.5 V (1.2 V) are achievable at the two-molecule limit for donor–acceptor bilayers of pentacene on C 60 on Cu using scanning tunneling spectroscopy and microscopy. Using first-principles calculations, we show that the system behaves as a molecular Schottky diode with a tunneling transport mechanism from semiconducting pentacene to Cu- hybridized metallic C 60. Low-bias RRs vary by two orders-of-magnitude at the edge of these molecular heterojunctions due to increased Stark shifts and confinement effects.

  6. Multi-million atom electronic structure calculations for quantum dots

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is comparable in size to the electron wavelength. Under such conditions quantum dots can be interpreted as artificial atoms with the potential to be custom tailored to new functionality. In the past decade or so, these nanostructures have attracted significant experimental and theoretical attention in the field of nanoscience. The new and tunable optical and electrical properties of these artificial atoms have been proposed in a variety of different fields, for example in communication and computing systems, medical and quantum computing applications. Predictive and quantitative modeling and simulation of these structures can help to narrow down the vast design space to a range that is experimentally affordable and move this part of nanoscience to nano-Technology. Modeling of such quantum dots pose a formidable challenge to theoretical physicists because: (1) Strain originating from the lattice mismatch of the materials penetrates deep inside the buffer surrounding the quantum dots and require large scale (multi-million atom) simulations to correctly capture its effect on the electronic structure, (2) The interface roughness, the alloy randomness, and the atomistic granularity require the calculation of electronic structure at the atomistic scale. Most of the current or past theoretical calculations are based on continuum approach such as effective mass approximation or k.p modeling capturing either no or one of the above mentioned effects, thus missing some of the essential physics. The Objectives of this thesis are: (1) to model and simulate the experimental quantum dot topologies at the atomistic scale; (2) to theoretically explore the essential physics i.e. long range strain, linear and quadratic piezoelectricity, interband optical transition strengths, quantum confined stark shift, coherent coupling of electronic states in a quantum dot molecule etc.; (3) to assess the potential use of the quantum dots in real device implementation and to provide physical insight to the experimentalists. Full three dimensional strain and electronic structure simulations of quantum dot structures containing multi-million atoms are done using NEMO 3-D. Both single and vertically stacked quantum dot structures are analyzed in detail. The results show that the strain and the piezoelectricity significantly impact the electronic structure of these devices. This work shows that the InAs quantum dots when placed in the InGaAs quantum well red shifts the emission wavelength. Such InAs/GaAs-based optical devices can be used for optical-fiber based communication systems at longer wavelengths (1.3um -- 1.5um). Our atomistic simulations of InAs/InGaAs/GaAs quantum dots quantitatively match with the experiment and give the critical insight of the physics involved in these structures. A single quantum dot molecule is studied for coherent quantum coupling of electronic states under the influence of static electric field applied in the growth direction. Such nanostructures can be used in the implementation of quantum information technologies. A close quantitative match with the experimental optical measurements allowed us to get a physical insight into the complex physics of quantum tunnel couplings of electronic states as the device operation switches between atomic and molecular regimes. Another important aspect is to design the quantum dots for a desired isotropic polarization of the optical emissions. Both single and coupled quantum dots are studied for TE/TM ratio engineering. The atomistic study provides a detailed physical analysis of these computationally expensive large nanostructures and serves as a guide for the experimentalists for the design of the polarization independent devices for the optical communication systems.

  7. 13. INTERIOR VIEW OF ROOF FRAMING AND DORMER OPENING IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR VIEW OF ROOF FRAMING AND DORMER OPENING IN ATTIC, LOOKING EAST. - Dugway Proving Ground, German-Japanese Village, German Village, South of Stark Road, in WWII Incendiary Test Area, Dugway, Tooele County, UT

  8. 3. OVERALL VIEW OF BUNKER LOOKING SOUTHWEST WITH BUILDING T8100 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. OVERALL VIEW OF BUNKER LOOKING SOUTHWEST WITH BUILDING T-8100 IN BACKGROUND. - Dugway Proving Ground, German-Japanese Village, Observation Bunker, South of Stark Road, in WWII Incendiary Test Area, Dugway, Tooele County, UT

  9. A temporally and spatially resolved electron density diagnostic method for the edge plasma based on Stark broadening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zafar, A., E-mail: zafara@ornl.gov; Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830; Martin, E. H.

    2016-11-15

    An electron density diagnostic (≥10{sup 10} cm{sup −3}) capable of high temporal (ms) and spatial (mm) resolution is currently under development at Oak Ridge National Laboratory. The diagnostic is based on measuring the Stark broadened, Doppler-free spectral line profile of the n = 6–2 hydrogen Balmer series transition. The profile is then fit to a fully quantum mechanical model including the appropriate electric and magnetic field operators. The quasi-static approach used to calculate the Doppler-free spectral line profile is outlined here and the results from the model are presented for H-δ spectra for electron densities of 10{sup 10}–10{sup 13} cm{supmore » −3}. The profile shows complex behavior due to the interaction between the magnetic substates of the atom.« less

  10. Indonemoura annamensis-a new species of stonefly from Vietnam (Plecoptera: Nemouridae).

    PubMed

    Fochetti, Romolo; Ceci, Massimo

    2016-06-07

    The amphinemurine genus Indonemoura Baumann (1975) was proposed for species previously included in the genera Protonemura Kempny and Nemoura Latreille. Baumann (1975) designated P. indica Kimmins, 1947 (in Kimmins 1946) as the type species. He also transferred 14 additional species from Protonemura and Nemoura into this genus. The genus is distributed mainly in the Oriental region (only one species from Tibet, close to the eastern border of the Palaearctic Region) and many new species have been added in the last decades (Zwick & Sivec 1980; Shimizu 1994a & b; Zhu et al. 2002; Li et al. 2005; Li & Yang 2005, 2006; Wang et al. 2006; Sivec & Stark 2010) including presently 53 species (DeWalt et al. 2009). Sivec & Stark (2010) first described three Indonemoura species from Vietnam, I. angulata, I. clavata, and I. tricantha. These three species are the only Indonemoura presently known for Vietnam.

  11. Effect of the Edge Radial Electric Field on Neutral Particle Measurements

    NASA Astrophysics Data System (ADS)

    Guldi, C.; Heidbrink, W. W.; Beitzel, T. A.; Burrell, K. H.

    2000-10-01

    Neutral particle measurements in ASDEX were originally interpreted as evidence that the edge radial electric field Er changes gradually at the L-H transition.(W. Herrmann et al.), Phys. Rev. Lett. 75 (1995) 4401. We have relocated an analyzer to an orientation similar to the ASDEX analyzer: at the outer midplane viewing perpendicular ions midway between toroidal field coils. The electric field is measured by charge-exchange recombination and motional stark effect diagnostics. The passive charge exchange signal from the relocated analyzer is usually undetectable but, in discharges with large E_r, the flux of 5 keV neutrals can resemble ASDEX signals. The combined effects of ripple trapping and E_r× B_φ drifts(J.A. Heikkinen et al.), Plasma Phys. Contr. Fusion 40 (1998) 679. may explain the results.

  12. Stark County Area Transportation Study - Transportation Improvement Program 1997-2000

    DOT National Transportation Integrated Search

    1996-05-01

    The Transportation Improvement Program (TIP) is the schedule of highway and transit improvements recommended for implementation within the next four years. It is, therefore, the end product of the transportation planning process. The TIP originates f...

  13. Suppression of the overlap between Majorana fermions by orbital magnetic effects in semiconducting-superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Dmytruk, Olesia; Klinovaja, Jelena

    2018-04-01

    We study both analytically and numerically the role of orbital effects caused by a magnetic field applied along the axis of a semiconducting Rashba nanowire in the topological regime hosting Majorana fermions. We demonstrate that the orbital effects can be effectively taken into account in a one-dimensional model by shifting the chemical potential and thus modifying the topological criterion. We focus on the energy splitting between two Majorana fermions in a finite nanowire and find a striking interplay between orbital and Zeeman effects on this splitting. In the limit of strong spin-orbit interaction, we find regimes where the amplitude of the oscillating splitting stays constant or even decays with increasing the magnetic field, in stark contrast to the commonly studied case where orbital effects of the magnetic field are neglected. The period of these oscillations is found to be almost constant in many parameter regimes.

  14. Investigation of fast ion pressure effects in ASDEX Upgrade by spectral MSE measurements

    NASA Astrophysics Data System (ADS)

    Reimer, René; Dinklage, Andreas; Wolf, Robert; Dunne, Mike; Geiger, Benedikt; Hobirk, Jörg; Reich, Matthias; ASDEX Upgrade Team; McCarthy, Patrick J.

    2017-04-01

    High precision measurements of fast ion effects on the magnetic equilibrium in the ASDEX Upgrade tokamak have been conducted in a high-power (10 MW) neutral-beam injection discharge. An improved analysis of the spectral motional Stark effect data based on forward-modeling, including the Zeeman effect, fine-structure and non-statistical sub-level distribution, revealed changes in the order of 1% in |B| . The results were found to be consistent with results from the equilibrium solver CLISTE. The measurements allowed us to derive the fast ion pressure fraction to be Δ {{p}\\text{FI}}/{{p}\\text{mhd}}≈ 10 % and variations of the fast ion pressure are consistent with calculations of the transport code TRANSP. The results advance the understanding of fast ion confinement and magneto-hydrodynamic stability in the presence of fast ions.

  15. Effective Engagement of Hostile Audiences on Climate Change

    NASA Astrophysics Data System (ADS)

    Denning, S.

    2012-12-01

    Communicating effectively about climate change can be very frustrating because hostility to climate science is rooted in deeply held beliefs rather than facts. Opposition can be more effectively countered by respecting ideological objections than by aggressive insistence on acceptance of consensus evidence. When presented with a stark choice between sacred beliefs and factual evidence, social science research shows that nearly everyone will choose the latter. Rational argument from authority is often the weakest approach in such situations. Climate change is Simple, Serious, and Solvable. Effective communication of these three key ideas can succeed when the science argument is carefully framed to avoid attack of the audience's ethical identity. Simple arguments from common sense and everyday experience are more successful than data. Serious consequences to values that resonate with the audience can be avoided by solutions that don't threaten those values.

  16. Polycrystallinity of Lithographically Fabricated Plasmonic Nanostructures Dominates Their Acoustic Vibrational Damping.

    PubMed

    Yi, Chongyue; Su, Man-Nung; Dongare, Pratiksha D; Chakraborty, Debadi; Cai, Yi-Yu; Marolf, David M; Kress, Rachael N; Ostovar, Behnaz; Tauzin, Lawrence J; Wen, Fangfang; Chang, Wei-Shun; Jones, Matthew R; Sader, John E; Halas, Naomi J; Link, Stephan

    2018-06-13

    The study of acoustic vibrations in nanoparticles provides unique and unparalleled insight into their mechanical properties. Electron-beam lithography of nanostructures allows precise manipulation of their acoustic vibration frequencies through control of nanoscale morphology. However, the dissipation of acoustic vibrations in this important class of nanostructures has not yet been examined. Here we report, using single-particle ultrafast transient extinction spectroscopy, the intrinsic damping dynamics in lithographically fabricated plasmonic nanostructures. We find that in stark contrast to chemically synthesized, monocrystalline nanoparticles, acoustic energy dissipation in lithographically fabricated nanostructures is solely dominated by intrinsic damping. A quality factor of Q = 11.3 ± 2.5 is observed for all 147 nanostructures, regardless of size, geometry, frequency, surface adhesion, and mode. This result indicates that the complex Young's modulus of this material is independent of frequency with its imaginary component being approximately 11 times smaller than its real part. Substrate-mediated acoustic vibration damping is strongly suppressed, despite strong binding between the glass substrate and Au nanostructures. We anticipate that these results, characterizing the optomechanical properties of lithographically fabricated metal nanostructures, will help inform their design for applications such as photoacoustic imaging agents, high-frequency resonators, and ultrafast optical switches.

  17. Diagnostics of AC excited Atmospheric Pressure Plasma Jet with He for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Hori, Masaru; Takeda, Keigo; Kumakura, Takumi; Ishikawa, Kenji; Tanaka, Hiromasa; Kondo, Hiroki; Sekine, Makoto; Nakai, Yoshihiro

    2014-10-01

    Atmospheric pressure plasma jets (APPJ) are frequently used for biomedical applications. Reactive species generated by the APPJ play important roles for treatments of biomedical samples. Therefore, high density APPJ sources are required to realize the high performance. Our group has developed AC excited Ar APPJ with electron density as high as 1015 cm-3, and realized the selective killing of cancer cells and the inactivate spores of Penicillium digitatum. Recently, a new spot-size AC excited APPJ with He gas have been developed. In this study, the He APPJ was characterized by using spectroscopy. The plasma was discharged at a He flow rate of 5 slm and a discharge voltage of AC 9 kV. Gas temperature and electron density of the APPJ were measured by optical emission spectroscopy. From theoretical fitting of 2nd positive system of N2 emission (380.4 nm) and Stark broadening of Balmer β line of H atom (486.1 nm), the gas temperature and the electron density was estimated to be 299 K and 3.4. × 1015 cm-3. The AC excited He APPJ has a potential to realize high density with room temperature and become a very powerful tool for biomedical applications.

  18. Space-dependent characterization of laser-induced plasma plume during fiber laser welding

    NASA Astrophysics Data System (ADS)

    Xiao, Xianfeng; Song, Lijun; Xiao, Wenjia; Liu, Xingbo

    2016-12-01

    The role of a plasma plume in high power fiber laser welding is of considerable interest due to its influence on the energy transfer mechanism. In this study, the space-dependent plasma characteristics including spectrum intensity, plasma temperature and electron density were investigated using optical emission spectroscopy technique. The plasma temperature was calculated using the Boltzmann plot of atomic iron lines, whereas the electron density was determined from the Stark broadening of the Fe I line at 381.584 nm. Quantitative analysis of plasma characteristics with respect to the laser radiation was performed. The results show that the plasma radiation increases as the laser power increases during the partial penetration mode, and then decreases sharply after the initiation of full penetration. Both the plasma temperature and electron density increase with the increase of laser power until they reach steady state values after full penetration. Moreover, the hottest core of the plasma shifts toward the surface of the workpiece as the penetration depth increases, whereas the electron density is more evenly distributed above the surface of the workpiece. The results also indicate that the absorption and scattering of nanoparticles in the plasma plume is the main mechanism for laser power attenuation.

  19. Structure-Dependent Spectroscopic Properties of Yb3+-Doped Phosphosilicate Glasses Modified by SiO₂.

    PubMed

    Wang, Ling; Zeng, Huidan; Yang, Bin; Ye, Feng; Chen, Jianding; Chen, Guorong; Smith, Andew T; Sun, Luyi

    2017-02-28

    Yb 3+ -doped phosphate glasses containing different amounts of SiO₂ were successfully synthesized by the conventional melt-quenching method. The influence mechanism of SiO₂ on the structural and spectroscopic properties was investigated systematically using the micro-Raman technique. It was worth noting that the glass with 26.7 mol % SiO₂ possessed the longest fluorescence lifetime (1.51 ms), the highest gain coefficient (1.10 ms·pm²), the maximum Stark splitting manifold of ²F 7/2 level (781 cm -1 ), and the largest scalar crystal-field N J and Yb 3+ asymmetry degree. Micro-Raman spectra revealed that introducing SiO₂ promoted the formation of P=O linkages, but broke the P=O linkages when the SiO₂ content was greater than 26.7 mol %. Based on the previous 29 Si MAS NMR experimental results, these findings further demonstrated that the formation of [SiO₆] may significantly affect the formation of P=O linkages, and thus influences the spectroscopic properties of the glass. These results indicate that phosphosilicate glasses may have potential applications as a Yb 3+ -doped gain medium for solid-state lasers and optical fiber amplifiers.

  20. Structure-Dependent Spectroscopic Properties of Yb3+-Doped Phosphosilicate Glasses Modified by SiO2

    PubMed Central

    Wang, Ling; Zeng, Huidan; Yang, Bin; Ye, Feng; Chen, Jianding; Chen, Guorong; Smith, Andew T.; Sun, Luyi

    2017-01-01

    Yb3+-doped phosphate glasses containing different amounts of SiO2 were successfully synthesized by the conventional melt-quenching method. The influence mechanism of SiO2 on the structural and spectroscopic properties was investigated systematically using the micro-Raman technique. It was worth noting that the glass with 26.7 mol % SiO2 possessed the longest fluorescence lifetime (1.51 ms), the highest gain coefficient (1.10 ms·pm2), the maximum Stark splitting manifold of 2F7/2 level (781 cm−1), and the largest scalar crystal-field NJ and Yb3+ asymmetry degree. Micro-Raman spectra revealed that introducing SiO2 promoted the formation of P=O linkages, but broke the P=O linkages when the SiO2 content was greater than 26.7 mol %. Based on the previous 29Si MAS NMR experimental results, these findings further demonstrated that the formation of [SiO6] may significantly affect the formation of P=O linkages, and thus influences the spectroscopic properties of the glass. These results indicate that phosphosilicate glasses may have potential applications as a Yb3+-doped gain medium for solid-state lasers and optical fiber amplifiers. PMID:28772601

Top