Science.gov

Sample records for optical stimulated luminescence

  1. Neutron dosimetry using optically stimulated luminescence

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Eschbach, P. A.

    1991-06-01

    The addition of thermoluminescent (TL) materials within hydrogenous matrices to detect neutron induced proton recoils for radiation dosimetry is a well known concept. Previous attempts to implement this technique have met with limited success, primarily due to the high temperatures required for TL readout and the low melting temperatures of hydrogen-rich plastics. Research in recent years PNL has produced a new Optically Stimulated Luminescence (OSL) technique known as the Cooled Optically Stimulated Luminescence (COSL) that offers, for the first time, the capability of performing extremely sensitive radiation dosimetry at low temperatures. In addition to its extreme sensitivity, the COSL technique offers multiple readout capability, limited fading in a one year period, and the capability of analyzing single grains within a hydrogenous matrix.

  2. Optically stimulated luminescence dosimetry with gypsum wallboard (drywall).

    PubMed

    Thompson, Jeroen W; Burdette, Kevin E; Inrig, Elizabeth L; Dewitt, Regina; Mistry, Rajesh; Rink, W Jack; Boreham, Douglas R

    2010-09-01

    Gypsum wallboard (drywall) represents an attractive target for retrospective dosimetry by optically stimulated luminescence (OSL) in the event of a radiological accident or malicious use of nuclear material. In this study, wallboard is shown to display a radiation-induced luminescence signal (RIS) as well as a natural background signal (NS), which is comparable in intensity to the RIS. Excitation and emission spectra show that maximum luminescence intensity is obtained for stimulation with blue light-emitting diodes (470 nm) and for detection in the ultraviolet region (290-370 nm). It is necessary to decrease the optical stimulation power dramatically in order to adequately separate the RIS from the interfering background signal. The necessary protocols are developed for accurately measuring the absorbed dose as low as 500 mGy and demonstrate that the RIS decays logarithmically with storage time, with complete erasure expected within 1-4 d.

  3. Thermoluminescence and optically stimulated luminescence properties of natural barytes.

    PubMed

    Kitis, G; Kiyak, N G; Polymeris, G S

    2010-12-01

    Heavy, baryte-loaded, concrete is commonly used as radiation shielding material around high energy particle accelerators. Concrete samples received from a shielding block located at CERN cite contain many crystalline inclusions which were identified as barytes by X-ray diffraction analysis and separated by their color, classified as white, orange and green. Basic properties of thermoluminescence (TL) and optically stimulated luminescence (OSL) signals of these barytes samples such as thermal and optical stability, repeatability and mainly the linearity of both their luminescence responses were investigated as a function of beta dose. These results are also discussed regarding detailed investigation on the correlation between TL and OSL signals and their implications for retrospective dosimetry.

  4. Protocols for Thermoluninescence and Optically Stimulated Luminescence Research at DOSAR

    SciTech Connect

    Bernal, SM

    2004-10-11

    The Life Sciences Division (LSD) of Oak Ridge National Laboratory (ORNL) has a long record of radiation dosimetry research at the Dosimetry Applications Research (DOSAR) facility complex. These facilities have been used by a broad segment of the research community to perform a variety of experiments in areas including, but not limited to, radiobiology, radiation dosimeter and instrumentation development and calibration, and materials testing in a variety of radiation environments. Collaborations with the University of Tennessee-Knoxville (UTK) have also led to important contributions in the area of archaeometry, particularly as it relates to the use of radiation dosimetry to date archaeological artifacts. This manual is to serve as the primary instruction and operation manual for dosimetric and archaeometric research at DOSAR involving thermoluminescence (TL) and optically stimulated luminescence (OSL). Its purpose is to (1) provide protocols for common practices associated with the research, (2) outline the relevant organizational structure, (3) identify the Quality Assurance plan, and (4) describe all the procedures, operations, and responsibilities for safe and proper operation of associated equipment. Each person who performs research at DOSAR using TL/OSL equipment is required to read the latest revision of this manual and be familiar with its contents, and to sign and date the manual's master copy indicating that the manual has been read and understood. The TL/OSL Experimenter is also required to sign the manual after each revision to signify that the changes are understood. Each individual is responsible for completely understanding the proper operation of the TL/OSL equipment used and for following the guidance contained within this manual. The instructions, protocols, and operating procedures in this manual do not replace, supersede, or alter the hazard mitigation controls identified in the Research Safety Summary (''Thermoluminescence/Optically Stimulated

  5. Design of Interrogation Protocols for Radiation Dose Measurements Using Optically-Stimulated Luminescent Dosimeters.

    PubMed

    Abraham, Sara A; Kearfott, Kimberlee J; Jawad, Ali H; Boria, Andrew J; Buth, Tobias J; Dawson, Alexander S; Eng, Sheldon C; Frank, Samuel J; Green, Crystal A; Jacobs, Mitchell L; Liu, Kevin; Miklos, Joseph A; Nguyen, Hien; Rafique, Muhammad; Rucinski, Blake D; Smith, Travis; Tan, Yanliang

    2017-03-01

    Optically-stimulated luminescent dosimeters are capable of being interrogated multiple times post-irradiation. Each interrogation removes a fraction of the signal stored within the optically-stimulated luminescent dosimeter. This signal loss must be corrected to avoid systematic errors in estimating the average signal of a series of optically-stimulated luminescent dosimeter interrogations and requires a minimum number of consecutive readings to determine an average signal that is within a desired accuracy of the true signal with a desired statistical confidence. This paper establishes a technical basis for determining the required number of readings for a particular application of these dosimeters when using certain OSL dosimetry systems.

  6. Optimized readout system for cooled optically stimulated luminescence

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Eschbach, P. A.

    1990-09-01

    Cooled Optically Stimulated Luminescence (COSL) in CaF2:Mn is an ionizing radiation dosimetry method recently developed at the Pacific Northwest Laboratory (PNL). In this method CaF2:Mn crystals irradiated by gamma radiation at room temperature are cooled to liquid nitrogen temperature (77 K), stimulated by ultraviolet laser light at 326 nm, and allowed to warm to room temperature. Light emission proportional to the gamma exposure occurs as the TLD warms from liquid nitrogen temperature to room temperature. The new method is an example of a highly sensitive phototransfer technique which could form the basis for future radiation dosimetry applications. Measurements to date have shown high potential for measuring gamma exposures in the range of 10 microR. The high sensitivity of the COSL technique is due in part to the larger quantum efficiency of radiative recombination at low temperatures and to the complete absence of the incandescent background associated with conventional thermoluminescent readout methods. Along with the potential for a system which is more sensitive than thermoluminescent readers, multiple COSL readouts can be performed with minimal reduction in the COSL intensity. The multiple readout capability can serve as a possible permanent dosimetry record, thus allowing the reanalysis of a questionable reading. In an attempt to optimize the sensitivity of the COSL method, a new readout system is being developed.

  7. Emergency Optically Stimulated Luminescence Dosimetry Using Different Materials

    PubMed Central

    Sholom, S; DeWitt, R; Simon, SL; Bouville, A; McKeever, SWS

    2011-01-01

    Several materials were tested as possible individual emergency dosimeters using Optically Stimulated Luminescence (OSL) as means to assess the exposure. Materials investigated included human nails, business cards and plastic buttons. The OSL properties of these materials were studied in comparison with those of teeth. Most samples revealed OSL signals only after exposure to ionizing radiation; some samples of business cards, however, displayed a strong initial “native” signal (i.e. existing in the samples prior to irradiation). The sensitivity (minimum measurable dose) of the samples was found to vary significantly from sample to sample of the same material and was in the range from several tens of mGy to a few dozens of Gy. The dose response curves were linear for doses below 10 Gy. Fading of the OSL signals was estimated for different lenghts of times and found to be ~95%, 45%, 30% and 15% for samples of teeth, business cards, buttons and nails, respectively, following storage at room temperature in the dark for a period of 3 weeks after exposure. For samples stored under routine laboratory light, fading was much faster and the radiation-induced signals almost disappeared after a few hours of such illumination. It was concluded that the tested materials could be used in triage situations to detect and estimate the possible overexposure of individuals if the measurements can be performed soon enough after exposure. PMID:22125409

  8. Remote auditing of radiotherapy facilities using optically stimulated luminescence dosimeters

    SciTech Connect

    Lye, Jessica Dunn, Leon; Kenny, John; Alves, Andrew; Lehmann, Joerg; Williams, Ivan; Kron, Tomas; Oliver, Chris; Butler, Duncan; Johnston, Peter; Franich, Rick

    2014-03-15

    Purpose: On 1 July 2012, the Australian Clinical Dosimetry Service (ACDS) released its Optically Stimulated Luminescent Dosimeter (OSLD) Level I audit, replacing the previous TLD based audit. The aim of this work is to present the results from this new service and the complete uncertainty analysis on which the audit tolerances are based. Methods: The audit release was preceded by a rigorous evaluation of the InLight® nanoDot OSLD system from Landauer (Landauer, Inc., Glenwood, IL). Energy dependence, signal fading from multiple irradiations, batch variation, reader variation, and dose response factors were identified and quantified for each individual OSLD. The detectors are mailed to the facility in small PMMA blocks, based on the design of the existing Radiological Physics Centre audit. Modeling and measurement were used to determine a factor that could convert the dose measured in the PMMA block, to dose in water for the facility's reference conditions. This factor is dependent on the beam spectrum. The TPR{sub 20,10} was used as the beam quality index to determine the specific block factor for a beam being audited. The audit tolerance was defined using a rigorous uncertainty calculation. The audit outcome is then determined using a scientifically based two tiered action level approach. Audit outcomes within two standard deviations were defined as Pass (Optimal Level), within three standard deviations as Pass (Action Level), and outside of three standard deviations the outcome is Fail (Out of Tolerance). Results: To-date the ACDS has audited 108 photon beams with TLD and 162 photon beams with OSLD. The TLD audit results had an average deviation from ACDS of 0.0% and a standard deviation of 1.8%. The OSLD audit results had an average deviation of −0.2% and a standard deviation of 1.4%. The relative combined standard uncertainty was calculated to be 1.3% (1σ). Pass (Optimal Level) was reduced to ≤2.6% (2σ), and Fail (Out of Tolerance) was reduced to >3

  9. Optically Stimulated Luminescence Response of Commercial SiO2 Optical Fiber

    SciTech Connect

    Bogard, James S; Espinosa Garcia, Guillermo

    2008-01-01

    The use of Optically Stimulated Luminescence (OSL) for radiation dosimetry has become increasingly popular in recent years. The OSL method is based on luminescence emitted from semiconductor materials stimulated with specific wavelengths of light, after being exposed to ionizing radiation. The OSL intensity is a function of the radiation dose absorbed by the material. This work complements previous studies by the authors of the thermoluminescence (TL) response by SiO{sub 2} commercial optical fiber exposed to ionizing radiation and provides preliminary results describing some of the material's OSL properties. Linear OSL response to beta-radiation dose, along with a consistent shape of the photon emission curve with time, were observed using a green/blue OSL excitation laser. The reproducibility of OSL response after repeated irradiations and the change in intensity with time were also examined. The search for and characterization of materials that exhibit this OSL response, in parallel with the continued development of OSL methodology and instrumentation, is an important scientific and commercial issue.

  10. Optically Stimulated Luminescence (OSL) of dental enamel for retrospective assessment of radiation exposure

    PubMed Central

    Yukihara, E.G.; Mittani, J.; McKeever, S.W.S.; Simon, S.L.

    2009-01-01

    This paper briefly reviews the optically stimulated luminescence (OSL) properties of dental enamel and discusses the potential and challenges of OSL for filling the technology gap in biodosimetry required for medical triage following a radiological/nuclear accident or terrorist event. The OSL technique uses light to stimulate a radiation-induced luminescence signal from materials previously exposed to ionizing radiation. This luminescence originates from radiation-induced defects in insulating crystals and is proportional to the absorbed dose of ionizing radiation. In our research conducted to date, we focused on fundamental investigations of the OSL properties of dental enamel using extracted teeth and tabletop OSL readers. The objective was to obtain information to support the development of the necessary instrumentation for retrospective dosimetry using dental enamel in laboratory, or for in situ and non-invasive accident dosimetry using dental enamel in emergency triage. An OSL signal from human dental enamel was detected using blue, green, or IR stimulation. Blue/green stimulation associated with UV emission detection seems to be the most appropriate combination in the sense that there is no signal from un-irradiated samples and the shape of the OSL decay is clear. Improvements in the minimum detection level were achieved by incorporating an ellipsoidal mirror in the OSL system to maximize light collection. Other possibilities to improve the sensitivity and research steps necessary to establish the feasibility of the technique for retrospective assessment of radiation exposure are also discussed. PMID:19623269

  11. Optically Stimulated Luminescence (OSL) of dental enamel for retrospective assessment of radiation exposure.

    PubMed

    Yukihara, E G; Mittani, J; McKeever, S W S; Simon, S L

    2007-07-01

    This paper briefly reviews the optically stimulated luminescence (OSL) properties of dental enamel and discusses the potential and challenges of OSL for filling the technology gap in biodosimetry required for medical triage following a radiological/nuclear accident or terrorist event. The OSL technique uses light to stimulate a radiation-induced luminescence signal from materials previously exposed to ionizing radiation. This luminescence originates from radiation-induced defects in insulating crystals and is proportional to the absorbed dose of ionizing radiation. In our research conducted to date, we focused on fundamental investigations of the OSL properties of dental enamel using extracted teeth and tabletop OSL readers. The objective was to obtain information to support the development of the necessary instrumentation for retrospective dosimetry using dental enamel in laboratory, or for in situ and non-invasive accident dosimetry using dental enamel in emergency triage. An OSL signal from human dental enamel was detected using blue, green, or IR stimulation. Blue/green stimulation associated with UV emission detection seems to be the most appropriate combination in the sense that there is no signal from un-irradiated samples and the shape of the OSL decay is clear. Improvements in the minimum detection level were achieved by incorporating an ellipsoidal mirror in the OSL system to maximize light collection. Other possibilities to improve the sensitivity and research steps necessary to establish the feasibility of the technique for retrospective assessment of radiation exposure are also discussed.

  12. Charge trapping induced by plasma in alumina electrode surface investigated by thermoluminescence and optically stimulated luminescence

    SciTech Connect

    Ambrico, P. F.; Ambrico, M.; Schiavulli, L.; Ligonzo, T.; Augelli, V.

    2009-02-02

    The plasma of a dielectric barrier discharge can fill traps in the alumina that cover the electrode. Trap energies and lifetimes are estimated by thermoluminescence and optically stimulated luminescence. Comparison with similar results for traps created by other radiation sources clarifies the mechanisms regulating this effect. Alumina's trap energies are approximately 1 eV, and the traps remain active for several days after plasma exposure. These results could be important to keep dielectric barrier discharge plasmas uniform since a trapped charge can be an electron reservoir.

  13. Optically stimulated luminescence in NaMgF{sub 3}:Eu{sup 2+}

    SciTech Connect

    Dotzler, C.; Williams, G. V. M.; Rieser, U.; Edgar, A.

    2007-09-17

    Optically stimulated luminescence (OSL) and thermoluminescence (TL) measurements were performed on polycrystalline NaMgF{sub 3}:Eu{sup 2+} as well as sintered and quenched NaMgF{sub 3}:Eu{sup 2+} after exposure to ionizing radiation. The authors find a range of TL traps and the sintering and quenching process reduces the concentration of shallow traps. The resultant time integrated OSL intensity is linear from microgray dose levels to approximately 100 Gy, and hence this material is suitable for a personal and environmental dosimetry, where low dose levels are encountered and high sensitivity is required.

  14. Characterization and modeling of relative luminescence efficiency of optically stimulated luminescence detectors exposed to heavy charged particles

    NASA Astrophysics Data System (ADS)

    Sawakuchi, Gabriel Oliveira

    Scope and method of study. This work investigates the optically stimulated luminescence (OSL) response of carbon-doped aluminum oxide Al2O3:C detectors exposed to heavy charged particles (HCPs) with energies relevant to radiation protection in space, and cancer therapy. This investigation includes ground-based experiments in accelerators and theoretical studies of the detector's response. These theoretical studies are based on the track structure model (TSM) and require information of the spatial pattern of energy deposition around the HCP path---the radial dose distribution (RDD). Thus, RDDs were obtained using six analytical models, and Monte Carlo (MC) simulations with the code GEANT4. In addition, we propose a modified analytical model to improve the agreement between calculated and experimental efficiency values. Findings and conclusions. Dose response experiments showed that beta rays and H 1000 MeV radiations produced similar responses in the detectors and we concluded that the H 1000 MeV and beta radiations deposit energy similarly. We observed a common trend of decreasing the relative luminescence efficiency (etaHCP,gamma ) as increasing the unrestricted linear energy transfer in water ( LH2Oinfinity ) for all the detectors. For Luxel(TM) detectors the eta HCP,gamma was close to unit for particles with LH2Oinfinity lower than 3 keV/mum. TSM using the RDD from Chatterjee and Schaefer, Butts and Katz, Waligorski et al., Fageeha et al., Kiefer and Straaten, and Geibeta et al. models failed to predict the etaHCP,gamma values. We proposed a modified version of the RDD from Butts and Katz model, which agreed within 20% with relative luminescence efficiency experimental data. This was the first time that such agreement was achieved for a wide range of HCPs of different energies. MC simulations with GEANT4 agreed within 35% with etaHCP,gamma experimental data. Finally, we suggested a correction method, based on the calculation of etaHCP,gamma using the TSM

  15. Independent evaluation of optically stimulated luminescence (OSL) 'dot' dosemeters for environmental monitoring.

    PubMed

    Timilsina, Bindu; Gesell, Thomas F

    2011-01-01

    Optically stimulated luminescence (OSL) 'dot' dosemeters (manufactured by Landauer®) are reported to have a high degree of environmental stability, high level of sensitivity and provide wide range of dose measuring capabilities from 0.05 mGy to 100 Gy. The optical read out method is fast and relatively simple and permits repeated read out, but few studies have been performed about its application in monitoring radiation in the environment. This study was initiated to independently test the performance of OSL dot dosemeters for the application of measuring doses of radiation in the outdoor environment. Testing was performed in the laboratory to evaluate reproducibility and stability and in the field to evaluate accuracy relative to calibrated high-pressure ionisation chambers. The results showed that OSL dot dosemeters had good reproducibility and stability in both laboratory and field tests and met the performance requirements of standards of the American National Standards Institute.

  16. Thermoluminescence and optically stimulated luminescence in various phases of doped Na2SO4

    NASA Astrophysics Data System (ADS)

    Gaikwad, S. U.; Patil, R. R.; Kulkarni, M. S.; Bhatt, B. C.; Moharil, S. V.

    2016-02-01

    The dependence of optically stimulated luminescence (OSL) and thermoluminescence (TL) response due to crystal phase in Cu and Cu,Mg-doped Na2SO4 was studied. Study shows that the slowly cooled samples which crystallize in phase V show good OSL sensitivity whereas the quenched samples of Na2SO4 which crystallize in phase III irrespective of doping show no OSL sensitivity. However, during storage when phase III samples get converted to phase V, samples show OSL sensitivity comparable to freshly prepared samples in phase V. Hence, it is observed that TL-OSL properties of doped Na2SO4 are phase dependent .This study will be helpful in developing OSL phosphors in which phase plays an important role in deciding the desired properties.

  17. Optically stimulated luminescence dosimetry performance of natural Brazilian topaz exposed to beta radiation.

    PubMed

    Bernal, R; Souza, D N; Valerio, M E G; Cruz-Vázquez, C; Barboza-Flores, M

    2006-01-01

    Optically stimulated luminescence (OSL) has become the technique of choice in many areas of dosimetry. Natural materials like topaz are available in large quantities in Brazil and other countries. They have been studied to investigate the possibility of use its thermoluminescence (TL) properties for dosimetric applications. In this work, we investigate the possibility of utilising the OSL properties of natural Brazilian topaz in dosimetry. Bulk topaz samples were exposed to doses up to 100 Gy of beta radiation and the integrated OSL as a function of the dose showed linear behaviour. The fading occurs in the first 20 min after irradiation but it is <6% of the integrated OSL measured shortly after exposure. We conclude that natural colourless topaz is a very suitable phosphor for OSL dosimetry.

  18. Optically stimulated luminescence dating of cave deposits at the Xiaogushan prehistoric site, northeastern China.

    PubMed

    Zhang, Jia-Fu; Huang, Wei-Wen; Yuan, Bao-Yin; Fu, Ren-Yi; Zhou, Li-Ping

    2010-11-01

    The Xiaogushan cave site is one of the most important prehistoric sites in North China. The stone and bone artifacts found in the cave are similar to European contemporaneous artifacts. Cave deposits consist of five layers that have been dated from 46,353 ± 1179 to 4229 ± 135 cal. yr BP, using radiocarbon dating techniques on charcoal and bone samples collected from Layers 2-5. In this paper, optically stimulated luminescence (OSL) techniques were applied to date six samples taken from Layers 1-3. The luminescence properties of the fine-grained and coarse-grained quartz extracts indicate that the materials are suitable for OSL dating using a single-aliquot regeneration-dose (SAR) protocol. The OSL ages obtained are broadly consistent with the stratigraphy and the associated calibrated radiocarbon ages. The dating results show that the cave was first occupied by humans about 70 ka. The human occupation of the cave may be related to climate change. An occupation hiatus is inferred to between ∼ 17 to ∼ 10 ka. The stone and bone artifacts found in Layers 2 and 3 may indicate the Middle to Upper Paleolithic transitions in the region.

  19. Long persistent and optically stimulated luminescence behaviors of calcium aluminates with different trap filling processes

    SciTech Connect

    Zhang, Buhao; Xu, Xuhui; Li, Qianyue; Wu, Yumei; Qiu, Jianbei; Yu, Xue

    2014-09-15

    Properties of long persistent luminescence (LPL) and optically stimulated luminescence (OSL) of CaAl{sub 2}O{sub 4}:Eu{sup 2+}, R{sup 3+} (R=Nd, Dy, Tm) materials were investigated. The observed phenomenon indicates that R{sup 3+} ions (R=Nd, Dy, Tm) have different effects on trap properties of CaAl{sub 2}O{sub 4}:Eu{sup 2+}. The greatly improved LPL performance was observed in Nd{sup 3+} co-doped samples, which indicates that the incorporation of Nd{sup 3+} creates suitable traps for LPL. While co-doping Tm{sup 3+} ions, the intensity of high temperature of thermoluminescence band in CaAl{sub 2}O{sub 4}:Eu{sup 2+} phosphors is enhanced for the formation of the most suitable traps which benefits the intense and stable OSL. These results suggest that the effective traps contributed to the LPL/OSL are complex, of which could be an aggregation formation with shallow and deep traps other than simple traps from co-doped R{sup 3+} ions. The mechanism presented in the end potentially provides explanations of why the OSL of CaAl{sub 2}O{sub 4}:Eu{sup 2+}, R{sup 3+} exhibits different read-in/read-out performance as well. - Graphical abstract: OSL emission spectra of Ca{sub 0.995}Al{sub 2}O{sub 4}:0.0025Eu{sup 2+}, 0.0025R{sup 3+} (R=Nd, Dy, Tm) taken under varying stimulation time (0, 25, 50, 75, 100 s). Inset: Blue emission pictures under varying stimulation time. - Highlights: • The LPL and OSL properties of CaAl{sub 2}O{sub 4}:Eu{sup 2+}, R{sup 3+} were investigated. • An alternative approach to control the trap depth of CaAl{sub 2}O{sub 4}:Eu{sup 2+} phosphor was proposed. • A new oxide ETM phosphor exhibiting intense and stable OSL was explored.

  20. Experimental setup for camera-based measurements of electrically and optically stimulated luminescence of silicon solar cells and wafers.

    PubMed

    Hinken, David; Schinke, Carsten; Herlufsen, Sandra; Schmidt, Arne; Bothe, Karsten; Brendel, Rolf

    2011-03-01

    We report in detail on the luminescence imaging setup developed within the last years in our laboratory. In this setup, the luminescence emission of silicon solar cells or silicon wafers is analyzed quantitatively. Charge carriers are excited electrically (electroluminescence) using a power supply for carrier injection or optically (photoluminescence) using a laser as illumination source. The luminescence emission arising from the radiative recombination of the stimulated charge carriers is measured spatially resolved using a camera. We give details of the various components including cameras, optical filters for electro- and photo-luminescence, the semiconductor laser and the four-quadrant power supply. We compare a silicon charged-coupled device (CCD) camera with a back-illuminated silicon CCD camera comprising an electron multiplier gain and a complementary metal oxide semiconductor indium gallium arsenide camera. For the detection of the luminescence emission of silicon we analyze the dominant noise sources along with the signal-to-noise ratio of all three cameras at different operation conditions.

  1. Photoluminescence and Optically Stimulated Luminescence Studies of LiAlO2 and LiGaO2 Crystals

    DTIC Science & Technology

    2015-03-26

    insight into the defects formed in LiGaO2. The green thermoluminescence caused by excitation with 325 nm light in both the as-grown and copper...Optically stimulated luminescence and thermoluminescence of terbium-activated silicates and aluminates, Radiation Measurements 43, 323 (2008). 12. B...Adamiv, Y. Burak, and L. Halliburton, EPR identification of defects responsible for thermoluminescence in Cu-doped lithium tetraborate (Li2B4O7) crystals

  2. Thermally and optically stimulated luminescence of new ZnO nanophosphors exposed to beta particle irradiation

    NASA Astrophysics Data System (ADS)

    Cruz-v&Ázquez, C.; Burruel-Ibarra, S. E.; Grijalva-Monteverde, H.; Chernov, V.; Bernal, R.

    In this work, we report on the thermoluminescence (TL) and the optically stimulated luminescence (OSL) of ZnO nanophosphors obtained by thermal annealing of ZnS powders synthesized by precipitation in a chemical bath deposition reaction. To obtain nanocrystalline ZnO, ZnS pellet-shaped samples were subjected to a sintering process at 700 °C during 24 h exposed to air at atmospheric pressure. Some samples were exposed to beta particles in the 0.15-10.15 kGy dose range and the integrated TL as a function of dose increased with dose level, with no saturation indication for the tested dose levels. Computerized glow-curve deconvolution of the experimental glow curves in individual peaks revealed a second-order kinetics. In order to test the OSL response, samples were irradiated with beta particles with doses up to 600 Gy, and an increasing intensity as dose increased was observed. We conclude that the new ZnO phosphors under investigation are good candidates to be used as dosimetric materials.

  3. Characterization of optically stimulated luminescence dosemeters to measure organ doses in diagnostic radiology

    PubMed Central

    Endo, A; Katoh, T; Kobayashi, I; Joshi, R; Sur, J; Okano, T

    2012-01-01

    Objective The aim of this study was to assess the characteristics of an optically stimulated luminescence dosemeter (OSLD) for use in diagnostic radiology and to apply the OSLD in measuring the organ doses by panoramic radiography. Methods The dose linearity, energy dependency and angular dependency of aluminium oxide-based OSLDs were examined using an X-ray generator to simulate various exposure settings in diagnostic radiology. The organ doses were then measured by inserting the dosemeters into an anthropomorphic phantom while using three panoramic machines. Results The dosemeters demonstrated consistent dose linearity (coefficient of variation<1.5%) and no significant energy dependency (coefficient of variation<1.5%) under the applied exposure conditions. They also exhibited negligible angular dependency (≤10%). The organ doses of the X-ray as a result of panoramic imaging by three machines were calculated using the dosemeters. Conclusion OSLDs can be utilized to measure the organ doses in diagnostic radiology. The availability of these dosemeters in strip form proves to be reliably advantageous. PMID:22116136

  4. Response of Nanodot Optically Stimulated Luminescence Dosimeters to Therapeutic Electron Beams

    PubMed Central

    Ponmalar, Y. Retna; Manickam, Ravikumar; Sathiyan, S.; Ganesh, K. M.; Arun, R.; Godson, Henry Finlay

    2017-01-01

    Response of Al2O3:C-based nanoDot optically stimulated luminescence (OSL) dosimeter was studied for the dosimetry of 6, 9, 12, 16, and 20 MeV therapeutic electron beams. With reference to ionization chamber, no change in the response was observed with the change in the energy of electron beams for the field size from 6 cm × 6 cm to 25 cm × 25 cm, dose rates from 100 MU/min to 600 MU/min, and the linearity in the response up to 300 cGy. The fading of the transient signal was higher for 20 MeV electron beam than that of 6 MeV electron beam by about 5% as compared to value at 20 min after irradiation. The depletion of OSL signal per readout in 200 successive readouts was also found to change with dose and energy of electron beam from 6 MeV (9% and 12% per readout at 2 and 10 Gy, respectively) to 20 MeV (9% and 16% at 2 and 10 Gy, respectively). The OSL sensitivity changed in the range from 2% to 6% with accumulated doses from 2 to 8 Gy and with electron energy from 6 to 20 MeV, but the sensitivity could be reset using an optical annealing treatment. Although negligible fading for postirradiation storage from 20 min to several months, acceptable precision and linearity in the desired range, and high reproducibility makes nanoDot dosimeters very attractive for the dosimetry of therapeutic electron beams, a note should be made for changes in sensitivity at doses beyond 2 Gy and electron beams energy dependence in reuse, short-term fading, and signal depletion on repeated readout.

  5. Space radiation dosimetry: An optically stimulated luminescence radiation detector for low-Earth orbit

    NASA Astrophysics Data System (ADS)

    Gaza, Ramona

    Scope and method of study. The purpose of this study was to investigate Al2O3:C as a potential optically stimulated luminescence (OSL) radiation detector for Low-Earth Orbit. The OSL response of Al2O3:C was characterized in terms of its luminescence efficiency for a variety of heavy charged particles (HCPs) with features similar to those found in space. The HCP irradiations were performed using the HIMAC accelerator at Chiba (Japan), the proton facility at Loma Linda (CA) and the NSRL facility at Brookhaven (NY). The OSL curves were further investigated to obtain information about the 'mean efficiency' and 'mean LET', parameters that needed to assess the absorbed dose and the dose equivalent. This analysis was applied for simulated mixed radiation fields (ICCHIBAN) and actual space radiation exposures (i.e., STS-105, BRADOS, and TRACER). In parallel, the thermoluminescence response of dosimetry materials LiF:Mg,Ti and CaF2:Tm was also studied. Findings and conclusions. The OSL efficiency of Al2O 3:C exposed to HCPs was found to decrease with increasing linear energy transfer (LET) for the investigated LET range (i.e., from 0.4 keV/mum to 459 keV/mum). For simulated mixed radiation fields with a strong low-LET component, the results indicated that the OSL calibration methods (i.e., tau-method and R-method) can be used with good accuracy to obtain information about the absorbed dose and the dose equivalent. Nevertheless, for mixed fields with a strong high-LET component these methods will give larger errors when estimating the absorbed dose and the dose equivalent. For actual space radiation exposures, the results indicated that different materials/calibration methods (i.e., the LiF:Mg,Ti/HTR-method and the CaF2:Tm/peak 5 + 6/peak 3-method) give different results in terms of 'mean efficiency' and 'mean LET'. This was explained by suggesting that none of the above calibration methods can give information about the true average LET of the incident radiation, but rather

  6. An optically stimulated luminescence dosimeter for measuring patient exposure from imaging guidance procedures.

    PubMed

    Ding, George X; Malcolm, Arnold W

    2013-09-07

    There is a growing interest in patient exposure resulting from an x-ray imaging procedure used in image-guided radiation therapy. This study explores a feasibility to use a commercially available optically stimulated luminescence (OSL) dosimeter, nanoDot, for estimating imaging radiation exposure to patients. The kilovoltage x-ray sources used for kV-cone-beam CT (CBCT) imaging acquisition procedures were from a Varian on-board imager (OBI) image system. An ionization chamber was used to determine the energy response of nanoDot dosimeters. The chamber calibration factors for x-ray beam quality specified by half-value layer were obtained from an Accredited Dosimetry Calibration Laboratory. The Monte Carlo calculated dose distributions were used to validate the dose distributions measured by using the nanoDot dosimeters in phantom and in vivo. The range of the energy correction factors for the nanoDot as a function of photon energy and bow-tie filters was found to be 0.88-1.13 for different kVp and bow-tie filters. Measurement uncertainties of nanoDot were approximately 2-4% after applying the energy correction factors. The tests of nanoDot placed on a RANDO phantom and on patient's skin showed consistent results. The nanoDot is suitable dosimeter for in vivo dosimetry due to its small size and manageable energy dependence. The dosimeter placed on a patient's skin has potential to serve as an experimental method to monitor and to estimate patient exposure resulting from a kilovoltage x-ray imaging procedure. Due to its large variation in energy response, nanoDot is not suitable to measure radiation doses resulting from mixed beams of megavoltage therapeutic and kilovoltage imaging radiations.

  7. Optically stimulated luminescence dating of Holocene alluvial fans, East Anatolian Fault System, Turkey

    NASA Astrophysics Data System (ADS)

    Dogan, Tamer; Cetin, Hasan; Yegingil, Zehra; Topaksu, Mustafa; Yüksel, Mehmet; Duygun, Fırat; Nur, Necmettin; Yegingil, İlhami

    2015-07-01

    In this study, the optically stimulated luminescence dating technique was used to determine the time of deposition of alluvial sediment samples from the Türkoğlu-Antakya segment of the East Anatolian Fault System (EAFS) in Turkey. The double-single aliquot regenerative dose protocol on fine grain samples was used to estimate equivalent doses (De). Annual dose rate was computed using elemental concentration of uranium (U) and thorium (Th) determined by using thick-source alpha counting and potassium (K) concentrations using X-ray fluorescence and/or atomic absorption spectroscopy. The environmental dose was measured in situ using α-Al2O3:C chips inside plastic tubes for a year. The two different bulk sediment samples collected from the Islahiye trench yielded ages of 4.54 ± 0.28 and 2.91 ± 0.23 ka. We also obtained a 2.60 ± 0.18 ka age for the alluvial deposit in the Kıranyurdu trench and 2.31 ± 0.14 ka age for an excavation area called Malzeme Ocağı. These ages were consistent with the corresponding calibrated Carbon-14 (14C) ages of the region. The differences between the determined ages were insufficient to clearly distinguish the disturbance event from the effects of bioturbation, biological mixing, or other sources of De variation in the region. They provide a record of alluvial aggradation in the region and may determine undocumented historical earthquake events.

  8. SU-E-T-75: Commissioning Optically Stimulated Luminescence Dosimeters for Fast Neutron Therapy

    SciTech Connect

    Young, L; Yang, F; Sandison, G; Woodworth, D; McCormick, Z

    2014-06-01

    Purpose: Fast neutrons therapy used at the University of Washington is clinically proven to be more effective than photon therapy in treating salivary gland and other cancers. A nanodot optically stimulated luminescence (OSL) system was chosen to be commissioned for patient in vivo dosimetry for neutron therapy. The OSL-based radiation detectors are not susceptible to radiation damage caused by neutrons compared to diodes or MOSFET systems. Methods: An In-Light microStar OSL system was commissioned for in vivo use by radiating Landauer nanodots with neutrons generated from 50.0 MeV protons accelerated onto a beryllium target. The OSLs were calibrated the depth of maximum dose in solid water localized to 150 cm SAD isocenter in a 10.3 cm square field. Linearity was tested over a typical clinical dose fractionation range i.e. 0 to 150 neutron-cGy. Correction factors for transient signal fading, trap depletion, gantry angle, field size, and wedge factor dependencies were also evaluated. The OSLs were photo-bleached between radiations using a tungsten-halogen lamp. Results: Landauer sensitivity factors published for each nanodot are valid for measuring photon and electron doses but do not apply for neutron irradiation. Individually calculated nanodot calibration factors exhibited a 2–5% improvement over calibration factors computed by the microStar InLight software. Transient fading effects had a significant impact on neutron dose reading accuracy compared to photon and electron in vivo dosimetry. Greater accuracy can be achieved by calibrating and reading each dosimeter within 1–2 hours after irradiation. No additional OSL correction factors were needed for field size, gantry angle, or wedge factors in solid water phantom measurements. Conclusion: OSL detectors are a useful for neutron beam in vivo dosimetry verification. Dosimetric accuracy comparable to conventional diode systems can be achieved. Accounting for transient fading effects during the neutron beam

  9. Optically stimulated luminescence dating of aeolian sand in the otindag dune field and holocene climate change

    USGS Publications Warehouse

    Zhou, Y.L.; Lu, H.Y.; Mason, J.; Miao, X.D.; Swinehart, J.; Goble, R.

    2008-01-01

    The dune system in Otindag sand field of northern China is sensitive to climate change, where effective moisture and related vegetation cover play a controlling role for dune activity and stability. Therefore, aeolian deposits may be an archive of past environmental changes, possibly at the millennial scale, but previous studies on this topic have rarely been reported. In this study, thirty-five optically stimulated luminescence (OSL) ages of ten representative sand-paleosol profiles in Otindag sand field are obtained, and these ages provide a relatively complete and well-dated chronology for wet and dry variations in Holocene. The results indicate that widespread dune mobilization occurred from 9.9 to 8.2 ka, suggesting a dry early Holocene climate. The dunes were mainly stabilized between 8.0 and 2.7 ka, implying a relatively wet climate, although there were short-term penetrations of dune activity during this wet period. After ???2.3 ka, the region became dry again, as inferred from widespread dune activity. The "8.2 ka" cold event and the Little Ice Age climatic deterioration are detected on the basis of the dune records and OSL ages. During the Medieval Warm Period and the Sui-Tang Warm Period (570-770 AD), climate in Otindag sand field was relatively humid and the vegetation was denser, and the sand dunes were stabilized again. These aeolian records may indicate climate changes at millennial time scale during Holocene, and these climatic changes may be the teleconnection to the climate changes elsewhere in the world. ?? Science in China Press and Springer-Verlag GmbH 2008.

  10. Use of Optically Stimulated Luminescence Imaging Plates and Reader for Arms Control Applications

    SciTech Connect

    Miller, Steven D.; Tomeraasen, Paul L.; Burghard, Brion J.; Traub, Richard J.

    2001-07-05

    Optically Stimulated Luminescence (OSL) technology has been pioneered at the Pacific Northwest National Laboratory (PNNL) for applications in personnel radiation dosimetry and commercially has become highly successful in replacing older technologies such as Thermoluminescence Dosimeters (TLDs) and film. OSL phosphors are used to measure radiation exposure by illuminating them with light after ionizing radiation exposure and measuring the amount of light emitted by the OSL phosphor. By using a two-dimensional plate of OSL material and raster scanning a light beam across the OSL plate a radiation pattern or image can be measured. The Arms Control community requires an electrons-free medium to measure the attributes of extent and symmetry on Pu pits in storage containers. OSL technology, used in the two-dimensional imaging mode, provides a means to measure these attributes with exposure times on the order of an hour. A special OSL reader has been built by PNNL to measure OSL imaging plates with a size of 20 cm by 30 cm. The reader uses 10 light emitting diode clusters with 10 corresponding photomultiplier tubes to measure an OSL imaging plate in less than 5 minutes. The resolution of each of the 10 measurement assemblies is 1 square-centimeter. A collimator assembly employing a Venetian-blind type collimator is used in conjunction with the OSL film to image the Pu pit within the storage container. The output of the OSL reader is a two dimensional array of intensities that will be used with the appropriate information barriers to measure extent and symmetry. This device also clearly distinguishes the difference between a point source and a distributed source. Details of the OSL technology, OSL reader system, collimator design, and system performance will be presented.

  11. WE-E-18A-04: Precision In-Vivo Dosimetry Using Optically Stimulated Luminescence Dosimeters and a Pulsed-Stimulating Dose Reader

    SciTech Connect

    Chen, Q; Herrick, A; Hoke, S; Burns, J

    2014-06-15

    Purpose: A new readout technology based on pulsed optically stimulating luminescence is introduced (microSTARii, Landauer, Inc, Glenwood, IL60425). This investigation searches for approaches that maximizes the dosimetry accuracy in clinical applications. Methods: The sensitivity of each optically stimulated luminescence dosimeter (OSLD) was initially characterized by exposing it to a given radiation beam. After readout, the luminescence signal stored in the OSLD was erased by exposing its sensing area to a 21W white LED light for 24 hours. A set of OSLDs with consistent sensitivities was selected to calibrate the dose reader. Higher order nonlinear curves were also derived from the calibration readings. OSLDs with cumulative doses below 15 Gy were reused. Before an in-vivo dosimetry, the OSLD luminescence signal was erased with the white LED light. Results: For a set of 68 manufacturer-screened OSLDs, the measured sensitivities vary in a range of 17.3%. A sub-set of the OSLDs with sensitivities within ±1% was selected for the reader calibration. Three OSLDs in a group were exposed to a given radiation. Nine groups were exposed to radiation doses ranging from 0 to 13 Gy. Additional verifications demonstrated that the reader uncertainty is about 3%. With an external calibration function derived by fitting the OSLD readings to a 3rd-order polynomial, the dosimetry uncertainty dropped to 0.5%. The dose-luminescence response curves of individual OSLDs were characterized. All curves converge within 1% after the sensitivity correction. With all uncertainties considered, the systematic uncertainty is about 2%. Additional tests emulating in-vivo dosimetry by exposing the OSLDs under different radiation sources confirmed the claim. Conclusion: The sensitivity of individual OSLD should be characterized initially. A 3rd-order polynomial function is a more accurate representation of the dose-luminescence response curve. The dosimetry uncertainty specified by the manufacturer

  12. Optically- and thermally-stimulated luminescences of Ce-doped SiO2 glasses prepared by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Okada, Go; Kasap, Safa; Yanagida, Takayuki

    2016-11-01

    Rare-earth doped phosphors have been used in many applications including radiation measurements. In the latter applications, the radiation photons are converted to light so that we can indirectly detect the radiation using a conventional photodetector. In this work, we have prepared and characterized a Ce-doped SiO2 glass for dosimeter applications. Unlike conventional techniques such as sol-gel synthesis, the sample was prepared by spark plasma sintering. Although the PL emission seems to be only from the Ce3+ ions in the structure, due to the X-ray induced luminescence, we have also observed optically-stimulated luminescence (OSL), and thermally-stimulated luminescence (TSL), owing to a pair of silylenes and a set of dioxasilirane and silylene in addition to Ce3+. We have measured the detector response vs irradiation dose for both the OSL and TSL. The detector response in both cases is linear over the dose range from at least 1 mGy to 2 Gy. Particularly, the sensitivity of TSL is so high that it should be considered to be a good candidate for practical applications.

  13. MgO:Li,Ce,Sm as a high-sensitivity material for Optically Stimulated Luminescence dosimetry

    PubMed Central

    Oliveira, Luiz C.; Yukihara, Eduardo G.; Baffa, Oswaldo

    2016-01-01

    The goal of this work was to investigate the relevant dosimetric and luminescent properties of MgO:Li3%,Ce0.03%,Sm0.03%, a newly-developed, high sensitivity Optically Stimulated Luminescence (OSL) material of low effective atomic number (Zeff = 10.8) and potential interest for medical and personal dosimetry. We characterized the thermoluminescence (TL), OSL, radioluminescence (RL), and OSL emission spectrum of this new material and carried out a preliminary investigation on the OSL signal stability. MgO:Li,Ce,Sm has a main TL peak at ~180 °C (at a heating rate of 5 °C/s) associated with Ce3+ and Sm3+ emission. The results indicate that the infrared (870 nm) stimulated OSL from MgO:Li,Ce,Sm has suitable properties for dosimetry, including high sensitivity to ionizing radiation (20 times that of Al2O3:C, under the measurement conditions) and wide dynamic range (7 μGy–30 Gy). The OSL associated with Ce3+ emission is correlated with a dominant, practically isolated peak at 180 °C. Fading of ~15% was observed in the first hour, probably due to shallow traps, followed by subsequent fading of 6–7% over the next 35 days. These properties, together with the characteristically fast luminescence from Ce3+, make this material also a strong candidate for 2D OSL dose mapping. PMID:27076349

  14. A methodology for on-board CBCT imaging dose using optically stimulated luminescence detectors.

    PubMed

    Mail, Noor; Yusuf, Muhammad; Alothmany, Nazeeh; Kinsara, A Abdulrahman; Abdulkhaliq, Fahad; Ghamdi, Suliman M; Saoudi, Abdelhamid

    2016-09-08

    Cone-beam computed tomography CBCT systems are used in radiation therapy for patient alignment and positioning. The CBCT imaging procedure for patient setup adds substantial radiation dose to patient's normal tissue. This study pre-sents a complete procedure for the CBCT dosimetry using the InLight optically-stimulated-luminescence (OSL) nanoDots. We report five dose parameters: the mean slice dose (DMSD); the cone beam dose index (CBDIW); the mean volume dose (DMVD); point-dose profile, D(FOV); and the off-field Dose. In addition, CBCT skin doses for seven pelvic tumor patients are reported. CBCT-dose mea-surement was performed on a custom-made cylindrical acrylic body phantom (50cm length, 32cm diameter). We machined 25 circular disks (2 cm thick) with grooves and holes to hold OSL-nanoDots. OSLs that showed similar sensitivities were selected and calibrated against a Farmer-type ionization-chamber (0.6 CT) before being inserted into the grooves and holes. For the phantom scan, a standard CBCT-imaging protocol (pelvic sites: 125 kVp, 80 mA and 25 ms) was used. Five dose parameters were quantified: DMSD, CBDIW, DMVD, D(FOV), and the off-field dose. The DMSD for the central slice was 31.1 ± 0.85 mGy, and CBDIW was 34.5± 0.6 mGy at 16cm FOV. The DMVD was 25.6 ± 1.1 mGy. The off-field dose was 10.5 mGy. For patients, the anterior and lateral skin doses attributable to CBCT imaging were 39.04 ± 4.4 and 27.1 ± 1.3 mGy, respectively.OSL nanoDots were convenient to use in measuring CBCT dose. The method of selecting the nanoDots greatly reduced uncertainty in the OSL measurements. Our detailed calibration procedure and CBCT dose measurements and calculations could prove useful in developing OSL routines for CBCT quality assessment, which in turn gives them the property of high spatial resolution, meaning that they have the potential for measurement of dose in regions of severe dose-gradients.

  15. Constraining Middle Pleistocene Glaciations in Birmingham, England; Using Optical Stimulated Luminescence (OSL) Dating.

    NASA Astrophysics Data System (ADS)

    Gibson, S. M.; Gibbard, P. L.; Bateman, M. D.; Boreham, S.

    2014-12-01

    Birmingham is built on a complex sequence of Middle Pleistocene sediments, representing at least three lowland glaciations (MIS12, MIS6, and MIS2). British Geological Survey mapping accounts 75% of the land mass as Quaternary deposits; predominantly glacial-sandy tills, glacial-fluvial sands, clays and organic silts and peats. Understanding the age of fluvial-glacial outwash, related to specific glaciations, is critical in establishing a Geochronology of Birmingham. Shotton (1953) found a series of Middle Pleistocene glacial sediments, termed the Wolstonian, intermediate in age between MIS11 and MIS5e Interglacial's. Uncertainty surrounding the relation to East Anglian sequences developed by Rose (1987) implies Birmingham sequences should be referred to MIS12. Despite this, younger Middle Pleistocene glacial sequences occur in Birmingham, yet uncertainty has deepened over our understanding of the complex, inaccessible sediments, especially as deposits have similar extent with MIS2 sequences. Five Optical Stimulated Luminescence (OSL) dates from three sites around Birmingham have been sampled. East of Birmingham, ice advanced from the Irish Sea and later the North East. In Wolston, a sample of outwash sand, associated with the Thurssington Till, is dated. In Meriden, two samples of outwash sands, associated with a distal Oadby Till, are dated. West of Birmingham, ice advanced from the Welsh Ice Sheet. In Seisdon, two samples of an Esker and outwash sand, associated with a Ridgeacre Till, are dated. Correlation of OSL dates provide an important constraint on understanding the history of Birmingham. Using GSI3D modeling to correlate geochronology and sedimentology, the significance of OSL dating can be understood within the complex sequences (and regional stratigraphy), complimented by Cosmogenic and Palynology dates taken in South West and North East. OSL dating on Birmingham's outwash sands, deposited by extensive repeated Middle Pleistocene glaciations, asserts the

  16. Energy dependence and angular dependence of an optically stimulated luminescence dosimeter in the mammography energy range.

    PubMed

    Kawaguchi, Ai; Matsunaga, Yuta; Suzuki, Shoichi; Chida, Koichi

    2017-03-01

    This study aimed to investigate the energy dependence and the angular dependence of commercially available optically stimulated luminescence (OSL) point dosimeters in the mammography energy range. The energy dependence was evaluated to calculate calibration factors (CFs). The half-value layer range was 0.31-0.60 mmAl (Mo/Mo 22-28 kV, Mo/Rh 28-32 kV, and W/Rh 30-34 kV at 2-kV intervals). Mo/Rh 28 kV was the reference condition. Angular dependence was tested by rotating the X-ray tube from -90° to 90° in 30° increments, and signal counts from angled nanoDots were normalized to the 0° signal counts. Angular dependence was compared with three tube voltage and target/filter combinations (Mo/Mo 26 kV, Mo/Rh 28 kV and W/Rh 32 kV). The CFs of energy dependence were 0.94-1.06. In Mo/Mo 26-28 kV and Mo/Rh 28-32 kV, the range of CF was 0.99-1.01, which was very similar. For angular dependence, the most deteriorated normalized values (Mo/Mo, 0.37; Mo/Rh, 0.43; and W/Rh, 0.58) were observed when the X-ray tube was rotated at a 90° angle, compared to 0°. The most angular dependences of ± 30°, 60°, and 90° decreased by approximately 4%, 14%, and 63% respectively. The mean deteriorated measurement 30° intervals from 0° to ± 30° was 2%, from ± 30° to ± 60° was 8%, and from ± 60° to ± 90° was 40%. The range of energy dependence in typical mammography energy range was not as much as that in general radiography and computed tomography. For accurate measurement using nanoDot, the tilt needs to be under 30°.

  17. Recent developments of optically stimulated luminescence materials and techniques for radiation dosimetry and clinical applications

    PubMed Central

    Pradhan, A. S.; Lee, J. I.; Kim, J. L.

    2008-01-01

    During the last 10 years, optically stimulated luminescence (OSL) has emerged as a formidable competitor not only to thermoluminescence dosimetry (TLD) but also to several other dosimetry systems. Though a large number of materials have been synthesized and studied for OSL, Al2O3:C continues to dominate the dosimetric applications. Re-investigations of OSL in BeOindicate that this material might provide an alternative to Al2O3:C. Study of OSL of electronic components of mobile phones and ID cards appears to have opened up a feasibility of dosimetry and dose reconstruction using the electronic components of gadgets of everyday use in the events of unforeseen situations of radiological accidents, including the event of a dirty bomb by terrorist groups. Among the newly reported materials, a very recent development of NaMgF3:Eu2+ appears fascinating because of its high OSL sensitivity and tolerable tissue equivalence. In clinical dosimetry, an OSL as a passive dosimeter could do all that TLD can do, much faster with a better or at least the same efficiency; and in addition, it provides a possibility of repeated readout unlike TLD, in which all the dose information is lost in a single readout. Of late, OSL has also emerged as a practical real-time dosimeter for in vivo measurements in radiation therapy (for both external beams and brachytherapy) and in various diagnostic radiological examinations including mammography and CT dosimetry. For in vivo measurements, a probe of Al2O3:C of size of a fraction of a millimeter provides the information on both the dose rate and the total dose from the readout of radioluminescence and OSL signals respectively, from the same probe. The availability of OSL dosimeters in various sizes and shapes and their performance characteristics as compared to established dosimeters such as plastic scintillation dosimeters, diode detectors, MOSFET detectors, radiochromic films, etc., shows that OSL may soon become the first choice for point dose

  18. Photoluminescence, optically stimulated luminescence, and thermoluminescence study of RbMgF{sub 3}:Eu{sup 2+}

    SciTech Connect

    Dotzler, C.; Williams, G. V. M.; Robinson, J.; Rieser, U.

    2009-01-15

    Optically stimulated luminescence (OSL) and thermoluminescence are observed in polycrystalline RbMgF{sub 3}:Eu{sup 2+} after x-ray, {gamma}-ray, or {beta} irradiation. The main electron traps are F-centers but there are other unidentified traps. The main hole traps at room temperature are probably Eu{sup 3+} and thermal or optical stimulation leads to electron-hole recombination at the Eu{sup 3+} site and Eu{sup 2+} emissions arising from {sup 6}P{sub J} to {sup 8}S{sub 7/2} and 4f{sup 5}d(E{sub g}) to {sup 8}S{sub 7/2} transitions. We find that some of the electron traps can be emptied by infrared stimulation and all of the electron traps can be emptied by white light stimulation. The OSL dark decay is long and exceeds 5 days for traps that are emptied by white light stimulation after initial infrared bleaching. Our results show that this compound can be used as a radiation dosimeter for intermediate dose levels where the {sup 87}Rb self-dose does not significantly affect the dose reading.

  19. Application of the optically stimulated luminescence (OSL) technique for mouse dosimetry in micro-CT imaging

    SciTech Connect

    Vrigneaud, Jean-Marc; Courteau, Alan; Oudot, Alexandra; Collin, Bertrand; Ranouil, Julien; Morgand, Loïc; Raguin, Olivier; Walker, Paul; Brunotte, François

    2013-12-15

    Purpose: Micro-CT is considered to be a powerful tool to investigate various models of disease on anesthetized animals. In longitudinal studies, the radiation dose delivered by the micro-CT to the same animal is a major concern as it could potentially induce spurious effects in experimental results. Optically stimulated luminescence dosimeters (OSLDs) are a relatively new kind of detector used in radiation dosimetry for medical applications. The aim of this work was to assess the dose delivered by the CT component of a micro-SPECT (single-photon emission computed tomography)/CT camera during a typical whole-body mouse study, using commercially available OSLDs based on Al{sub 2}O{sub 3}:C crystals.Methods: CTDI (computed tomography dose index) was measured in micro-CT with a properly calibrated pencil ionization chamber using a rat-like phantom (60 mm in diameter) and a mouse-like phantom (30 mm in diameter). OSLDs were checked for reproducibility and linearity in the range of doses delivered by the micro-CT. Dose measurements obtained with OSLDs were compared to those of the ionization chamber to correct for the radiation quality dependence of OSLDs in the low-kV range. Doses to tissue were then investigated in phantoms and cadavers. A 30 mm diameter phantom, specifically designed to insert OSLDs, was used to assess radiation dose over a typical whole-body mouse imaging study. Eighteen healthy female BALB/c mice weighing 27.1 ± 0.8 g (1 SD) were euthanized for small animal measurements. OLSDs were placed externally or implanted internally in nine different locations by an experienced animal technician. Five commonly used micro-CT protocols were investigated.Results: CTDI measurements were between 78.0 ± 2.1 and 110.7 ± 3.0 mGy for the rat-like phantom and between 169.3 ± 4.6 and 203.6 ± 5.5 mGy for the mouse-like phantom. On average, the displayed CTDI at the operator console was underestimated by 1.19 for the rat-like phantom and 2.36 for the mouse

  20. Optical, scintillation and thermally stimulated luminescence properties of Ce-doped yttrium-aluminum-indium garnet

    NASA Astrophysics Data System (ADS)

    Mori, Masaki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2017-01-01

    We have investigated the photoluminescence (PL), scintillation and thermally stimulated luminescence (TSL) properties of 1 mol % Ce-doped Y3(Al X In1- X )5O12 (X = 0-1 Ce:YAING). These samples showed strong and broad PL emission by Ce3+ ion appeared in the spectral range from 480 to 620 nm. The PL decay profiles can be represented by a first-order exponential function with the decay time ranging 39-62 ns. Furthermore, the scintillation spectra showed similar features with those observed in PL. The scintillation decay time profiles were approximated by second or third order exponential decay functions, and we observed 26-61 ns component due to Ce3+ emission. The X-ray induced afterglow levels of Ce:YAING were worse than that of Ce:Y3Al5O12. The pulse height spectra of Ce:Y3(Al0.26In0.74)5O12 showed a clear photoabsorption peak, and that of the scintillation light yield was around 6,700 photons/MeV. In TSL glow curves, Ce:YAING show the glow peak at around 110 °C.

  1. Dose response of commercially available optically stimulated luminescent detector, Al2O3:C for megavoltage photons and electrons.

    PubMed

    Kim, Dong Wook; Chung, Weon Kuu; Shin, Dong Oh; Yoon, Myonggeun; Hwang, Ui-Jung; Rah, Jeong-Eun; Jeong, Hojin; Lee, Sang Yeob; Shin, Dongho; Lee, Se Byeong; Park, Sung Yong

    2012-04-01

    This study examined the dose response of an optically stimulated luminescence dosemeter (OSLD) to megavoltage photon and electron beams. A nanoDot™ dosemeter was used to measure the dose response of the OSLD. Photons of 6-15 MV and electrons of 9-20 MeV were delivered by a Varian 21iX machine (Varian Medical System, Inc. Milpitas, CA, USA). The energy dependency was <1 %. For the 6-MV photons, the dose was linear until 200 cGy. The superficial dose measurements revealed photon irradiation to have an angular dependency. The nanoDot™ dosemeter has potential use as an in vivo dosimetric tool that is independent of the energy, has dose linearity and a rapid response compared with normal in vivo dosimetric tools, such as thermoluminescence detectors. However, the OSLD must be treated very carefully due to the high angular dependency of the photon beam.

  2. Optically stimulated luminescence and thermoluminescence efficiencies for high-energy heavy charged particle irradiation in Al2O3:C

    NASA Technical Reports Server (NTRS)

    Yukihara, E. G.; Gaza, R.; McKeever, S. W. S.; Soares, C. G.

    2004-01-01

    The thermally and optically stimulated luminescence (TL and OSL) response to high energy heavy-charged particles (HCPs) was investigated for two types of Al2O3:C luminescence dosimeters. The OSL signal was measured in both continuous-wave (CW) and pulsed mode. The efficiencies of the HCPs at producing TL or OSL, relative to gamma radiation, were obtained using four different HCPs beams (150 MeV/u 4He, 400 MeV/u 12C, 490 MeV/u 28Si, and 500 MeV/u 56Fe). The efficiencies were determined as a function of the HCP linear energy transfer (LET). It was observed that the efficiency depends on the type of detector, measurement technique, and the choice of signal. Additionally, it is shown that the shape of the CW-OSL decay curve from Al2O3:C depends on the type of radiation, and, in principle, this can be used to extract information concerning the LET of an unknown radiation field. The response of the dosimeters to low-LET radiation was also investigated for doses in the range from about 1-1000 Gy. These data were used to explain the different efficiency values obtained for the different materials and techniques, as well as the LET dependence of the CW-OSL decay curve shape. c2003 Elsevier Ltd. All rights reserved.

  3. Feasibility study of an optically-stimulated luminescent nanodot dosimeter (OSLnD) in high-energy photon beams

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Young; Park, Sung-Kwang; Kim, Yon-Lae; Suh, Tae-Suk; Shin, Jung-Wook; Oh, Kyoung-Min; Nam, Sang-Hee; Kim, Jong-Eon; Min, Byung-In; Jo, Sun-Mi; Oh, Won-Young

    2014-10-01

    In-vivo dosimetry is essential to verify the position and the intensity of the radiation therapy, such as cranio-spinal irradiation (CSI) and total body irradiation (TBI). Various kinds of devices, such as a thermo-luminesence dosimeters (TLDs), metal-oxide semiconductor field effect transistors (MOSFETs), semiconductor diodes, and gafchromic films, are used in in-vivo dosimetry, and these have their respective pros and cons. An optically-stimulated luminescent nanodot dosimeter (OSLnD) made of Al2O3: C was developed to measure the radiation dose during diagnostics, but it is now used for clinical purposes. In this study, the characteristics of the OSLnD, such as its dose rate dependency, dose linearity, angular dependency, and field junction, were investigated under a 6 MV X-ray beam. The OSLnD showed a linear response at doses from 20 to 300 cGy in the dose linearity test. Also, the dose rate dependency was shown to be less than 3%, angular dependency to be less than 2%. The experimental results proved the OSLnD to be useful for measurements of the external dose and for intensity modulated radiotherapy (IMRT) in clinical radiotherapy.

  4. Radiation dose measurements of an on-board imager X-ray unit using optically-stimulated luminescence dosimeters.

    PubMed

    Smith, Leon; Haque, Mamoon; Morales, Johnny; Hill, Robin

    2015-12-01

    Cone beam computed tomography (CBCT) is now widely used to image radiotherapy patients prior to treatment for the purpose of accurate patient setup. However each CBCT image delivered to a patient increases the total radiation dose that they receive. The measurement of the dose delivered from the CBCT images is not readily performed in the clinic. In this study, we have used commercially available optically stimulated luminescence (OSLD) dosimeters to measure the dose delivered by the Varian OBI on a radiotherapy linear accelerator. Calibration of the OSLDs was achieved by using a therapeutic X-ray unit. The dose delivered by a head CBCT scan was found to be 3.2 ± 0.3 mGy which is similar in magnitude to the dose of a head computed tomography (CT) scan. The results of this study suggest that the radiation hazard associated with CBCT is of a similar nature to that of conventional CT scans. We have also demonstrated that the OSLDs are suitable for these low X-ray dose measurements.

  5. Optically stimulated luminescence dating of late Holocene raised strandplain sequences adjacent to Lakes Michigan and Superior, Upper Peninsula, Michigan, USA

    USGS Publications Warehouse

    Argyilan, Erin P.; Forman, Steven L.; Johnston, John W.; Wilcox, Douglas A.

    2005-01-01

    This study evaluates the accuracy of optically stimulated luminescence to date well-preserved strandline sequences at Manistique/Thompson bay (Lake Michigan), and Tahquamenon and Grand Traverse Bays (Lake Superior) that span the past ∼4500 yr. The single aliquot regeneration (SAR) method is applied to produce absolute ages for littoral and eolian sediments. SAR ages are compared against AMS and conventional 14C ages on swale organics. Modern littoral and eolian sediments yield SAR ages 14C ages on swale organics. Significant variability in 14C ages >2000 cal yr B.P. complicates comparison to SAR ages at all sites. However, a SAR age of 4280 ± 390 yr (UIC913) on ridge77 at Tahquamenon Bay is consistent with regional regression from the high lake level of the Nipissing II phase ca. 4500 cal yr B.P. SAR ages indicate a decrease in ridge formation rate after ∼1500 yr ago, likely reflecting separation of Lake Superior from lakes Huron and Michigan. This study shows that SAR is a credible alternative to 14C methods for dating littoral and eolian landforms in Great Lakes and other coastal strandplains where 14C methods prove problematic.

  6. Investigation of neutron converters for production of optically stimulated luminescence (OSL) neutron dosimeters using Al 2O 3:C

    NASA Astrophysics Data System (ADS)

    Mittani, J. C. R.; da Silva, A. A. R.; Vanhavere, F.; Akselrod, M. S.; Yukihara, E. G.

    2007-07-01

    This paper presents the optically stimulated luminescence (OSL) properties of neutron dosimeters in powder and in the form of pellets prepared with a mixture of Al 2O 3:C and neutron converters. The neutron converters investigated were high density polyethylene (HDPE), lithium fluoride (LiF), lithium fluoride 95% enriched with 6Li ( 6LiF), lithium carbonate 95% enriched with 6Li ( 6Li 2CO 3), boric acid enriched with 99% of 10B (H310BO) and gadolinium oxide (Gd 2O 3). The proportion of Al 2O 3:C and neutron converter in the mixture was varied to optimize the total OSL signal and neutron sensitivity. The neutron sensitivity and dose-response were determined for the OSL dosimeters using a bare 252Cf source and compared to the response of Harshaw TLD-600 and TLD-700 dosimeters ( 6LiF:Mg,Ti and 7LiF:Mg,Ti). The results demonstrate the possibility of developing an OSL dosimeter made of Al 2O 3:C powder and neutron converter with a neutron sensitivity (defined as the ratio between the 60Co equivalent gamma dose and the reference neutron absorbed dose) and neutron-gamma discrimination comparable to the TLD-600/TLD-700 combination. It was shown that the shape of the OSL decay curves varied with the type of the neutron converter, demonstrating the influence of the energy deposition mechanism and ionization density on the OSL process in Al 2O 3:C.

  7. Optically stimulated luminescence age controls on late Pleistocene and Holocene coastal lithosomes, North Carolina, USA

    USGS Publications Warehouse

    Mallinson, D.; Burdette, K.; Mahan, S.; Brook, G.

    2008-01-01

    Luminescence ages from a variety of coastal features on the North Carolina Coastal Plain provide age control for shoreline formation and relative sea-level position during the late Pleistocene. A series of paleoshoreline ridges, dating to Marine Isotope Stage (MIS) 5a and MIS 3 have been defined. The Kitty Hawk beach ridges, on the modern Outer Banks, yield ages of 3 to 2??ka. Oxygen-isotope data are used to place these deposits in the context of global climate and sea-level change. The occurrence of MIS 5a and MIS 3 shorelines suggests that glacio-isostatic adjustment (GIA) of the study area is large (ca. 22 to 26??m), as suggested and modeled by other workers, and/or MIS 3 sea level was briefly higher than suggested by some coral reef studies. Correcting the shoreline elevations for GIA brings their elevation in line with other sea-level indicators. The age of the Kitty Hawk beach ridges places the Holocene shoreline well west of its present location at ca. 3 to 2??ka. The age of shoreline progradation is consistent with the ages of other beach ridge complexes in the southeast USA, suggesting some regionally contemporaneous forcing mechanism. ?? 2007 University of Washington.

  8. A laboratory inter-comparison of quartz optically stimulated luminescence (OSL) results

    NASA Astrophysics Data System (ADS)

    Rees-Jones, J.; Hall, S. J. B.; Rink, W. J.

    In this study three sediment samples were used which came from two cave sites situated on the coast of Gibraltar, Gorham's Cave and Vanguard Cave. Both caves contain silts, sands and breccia deposits from the last interglacial through to the post-glacial period, from which beach sands were sampled for dating. The three sediment sample cores were each divided into two sub-samples, which were independently measured at McMaster University and Oxford University using quartz OSL. Similar sample preparation and measurement procedures were used at both laboratories, but different measurement equipment was employed in each. It was therefore hoped to identify any factors that may result in systematic differences between laboratories. The data showed very good agreement in results when a narrow wavelength band was used for stimulation, from either an argon-ion laser (514.5 nm) or a filtered halogen lamp (514±17 nm). This indicates that slight differences in factors such as laboratory lighting, measurement time, additive dose levels, detection filters, stimulation source and power did not produce differences in results. However, when a wide wavelength band from the halogen lamp was used for stimulation (440-560 nm) significantly different results were obtained, suggesting care needs to be taken with the waveband used.

  9. SU-E-T-600: In Vivo Dosimetry for Total Body and Total Marrow Irradiations with Optically Stimulated Luminescence Dosimeters

    SciTech Connect

    Niedbala, M; Save, C; Cygler, J

    2014-06-01

    Purpose: To evaluate the feasibility of using optically stimulated luminescence dosimeters (OSLDs) for in-vivo dosimetry of patients undergoing Total Body and Total Marrow Irradiations (TBI and TMI). Methods: TBI treatments of 12 Gy were delivered in 6 BID fractions with the patient on a moving couch under a static 10 MV beam (Synergy, Elekta). TMI treatments of 18 Gy in 9 BID fractions were planned and delivered using a 6 MV TomoTherapy unit (Accuray). To provide a uniform dose to the entire patient length, the treatment was split into 2 adjacent fields junctioned in the thigh region. Our standard clinical practice involves in vivo dosimetry with MOSFETs for each TBI fraction and TLDs for at least one fraction of the TMI treatment for dose verification. In this study we also used OSLDs. Individual calibration coefficients were obtained for the OSLDs based on irradiations in a solid water phantom to the dose of 50 cGy from Elekta Synergy 10 MV (TBI) and 6 MV (TMI) beams. Calibration coefficients were calculated based on the OSLDs readings taken 2 hrs post-irradiation. For in vivo dosimetry OSLDs were placed alongside MOSFETs for TBI patients and in approximately the same locations as the TLDs for TMI patients. OSLDs were read 2 hours post treatment and compared to the MOSFET and TLD results. Results: OSLD measured doses agreed within 5% with MOSFET and TLD results, with the exception of the junction region in the TMI patient due to very high dose gradient and difficulty of precise and reproducible detector placement. Conclusion: OSLDs are useful for in vivo dosimetry of TBI and TMI patients. The quick post-treatment readout is an advantage over TLDs, allowing the results to be obtained between BID fractions, while wireless detectors are advantageous over MOSFETs for treatments involving a moving couch.

  10. Determination of average LET of therapeutic proton beams using Al2O3:C optically stimulated luminescence (OSL) detectors.

    PubMed

    Sawakuchi, Gabriel O; Sahoo, Narayan; Gasparian, Patricia B R; Rodriguez, Matthew G; Archambault, Louis; Titt, Uwe; Yukihara, Eduardo G

    2010-09-07

    In this work we present a methodology and proof of concept to experimentally determine average linear energy transfer (LET) of therapeutic proton beams using the optically stimulated luminescence (OSL) of small Al(2)O(3):C detectors. Our methodology is based on the fact that the shape of the OSL decay curve of Al(2)O(3):C detectors depends on the LET of the radiation field. Thus, one can use the shape of the OSL decay curves to establish an LET calibration curve, which in turn permits measurements of LET. We performed irradiations at the M D Anderson Cancer Center Proton Therapy Center, Houston (PTCH), with passive scattering beams. We determined the average LET of the passive scattering beams using a validated Monte Carlo model of the PTCH passive scattering nozzle and correlated them with the shape of the OSL decay curve to obtain an LET calibration curve. Using this calibration curve and OSL measurements, we determined the averaged LET at various water-equivalent depths for therapeutic spread-out Bragg peaks and compared the results with averaged LETs determined using the Monte Carlo simulations. Agreement between measured and simulated fluence-averaged LET was within 24% for low energy spread-out Bragg peak (SOBP) fields and within 14% for high energy SOBP fields. Agreement between measured and simulated dose-averaged LET was within 12% for low energy SOBP fields and within 47% for high energy SOBP fields. The data presented in this work demonstrated the correlation between the OSL decay curve shapes and the average LET of the radiation fields, providing proof of concept of the feasibility of using OSL from Al(2)O(3):C detectors to measure average LET of therapeutic proton beams.

  11. Effect of high-dose irradiation on the optically stimulated luminescence of Al2O3:C

    NASA Technical Reports Server (NTRS)

    Yukihara, E. G.; Whitley, V. H.; McKeever, S. W. S.; Akselrod, A. E.; Akselrod, M. S.

    2004-01-01

    This paper examines the effect of high-dose irradiation on the optically stimulated luminescence (OSL) of Al2O3:C, principally on the shape of the OSL decay curve and on the OSL sensitivity. The effect of the degree of deep trap filling on the OSL was also studied by monitoring the sensitivity changes after doses of beta irradiation and after step-annealing of samples previously irradiated with high doses. The OSL response to dose shows a linear-supralinear-saturation behavior, with a decrease in the response for doses higher than those required for saturation. This behavior correlates with the sensitivity changes observed in the samples annealed only to 773 K, which show sensitization for doses up to 20-50 Gy and desensitization for higher doses. Data from the step-annealing study leads to the suggestion that the sensitization is caused by the filling of deep electron traps, which become thermally unstable at 1100-1200 K, whereas the desensitization is caused by the filling of deep hole traps, which become thermally unstable at 800-875 K, along with a concomitant decrease in the concentration of recombination centers (F+ -centers). Changes in the shape of the OSL decay curves are also observed at high doses, the decay becoming faster as the dose increases. These changes in the OSL decay curves are discussed in terms of multiple overlapping components, each characterized by different photoionization cross-sections. However, using numerical solutions of the rate equations for a simple model consisting of a main trap and a recombination center, it is shown that the kinetics of OSL process may also be partially responsible for the changes in the OSL curves at high doses in Al2O3:C. Finally, the implication of these results for the dosimetry of heavy charged particles is discussed. c2004 Elsevier Ltd. All rights reserved.

  12. Determination of average LET of therapeutic proton beams using Al2O3:C optically stimulated luminescence (OSL) detectors

    NASA Astrophysics Data System (ADS)

    Sawakuchi, Gabriel O.; Sahoo, Narayan; Gasparian, Patricia B. R.; Rodriguez, Matthew G.; Archambault, Louis; Titt, Uwe; Yukihara, Eduardo G.

    2010-09-01

    In this work we present a methodology and proof of concept to experimentally determine average linear energy transfer (LET) of therapeutic proton beams using the optically stimulated luminescence (OSL) of small Al2O3:C detectors. Our methodology is based on the fact that the shape of the OSL decay curve of Al2O3:C detectors depends on the LET of the radiation field. Thus, one can use the shape of the OSL decay curves to establish an LET calibration curve, which in turn permits measurements of LET. We performed irradiations at the M D Anderson Cancer Center Proton Therapy Center, Houston (PTCH), with passive scattering beams. We determined the average LET of the passive scattering beams using a validated Monte Carlo model of the PTCH passive scattering nozzle and correlated them with the shape of the OSL decay curve to obtain an LET calibration curve. Using this calibration curve and OSL measurements, we determined the averaged LET at various water-equivalent depths for therapeutic spread-out Bragg peaks and compared the results with averaged LETs determined using the Monte Carlo simulations. Agreement between measured and simulated fluence-averaged LET was within 24% for low energy spread-out Bragg peak (SOBP) fields and within 14% for high energy SOBP fields. Agreement between measured and simulated dose-averaged LET was within 12% for low energy SOBP fields and within 47% for high energy SOBP fields. The data presented in this work demonstrated the correlation between the OSL decay curve shapes and the average LET of the radiation fields, providing proof of concept of the feasibility of using OSL from Al2O3:C detectors to measure average LET of therapeutic proton beams.

  13. Application of optically stimulated luminescence technique to evaluate simultaneously accumulated and single doses with the same dosimeter

    NASA Astrophysics Data System (ADS)

    Malthez, Anna Luiza M. C.; Freitas, Marcelo B.; Yoshimura, Elisabeth M.; Button, Vera L. S. N.

    2014-02-01

    Optically stimulated luminescence dosimeters (OSLD) can be read several times with a negligible loss (degradation) of signal. In this work, we explore this OSL property to estimate simultaneously the accumulated and single doses using a unique Al2O3 dosimeter, irradiated repeated times along over 4 months. This was done through several irradiations of OSLD (Landauer Luxel Dots) with two energies (28 keV X-rays and 1.25 MeV Co-60 gamma rays) and several doses distributed over time. Thermoluminescent dosimeters (TLD) were used as a reference to compare the estimated doses obtained with OSLD. For each irradiation, and both energies, a calibration curve was evaluated with OSLD and TLD to estimate the dose values. The OSL readouts were made with a MicroStar (Landauer) OSL reader. To estimate background (BG) over time, a set of OSLD and TLD (Bycron TLD100) was not irradiated and BG was monitored at each readout section. After irradiations, the OSL and TL signals were converted to dose and values were compared. As a set of OSLD suffered no bleaching after the readouts, it was possible to estimate simultaneously the accumulated and single doses with a unique OSLD. Each single dose was estimated through the subtraction of successive accumulated doses determined for each single OSLD. We concluded that the single doses determined by OSL and TL techniques were compatible, and that the accumulated dose, obtained with OSL technique was comparable to the sum of single doses determined with TLD. We can conclude that using OSL technique and Al2O3 dosimeters it is possible to estimate simultaneously accumulated and single doses with the same dosimeter irradiated with low or high energy photons.

  14. Angular dependence of dose sensitivity of nanoDot optically stimulated luminescent dosimeters in different radiation geometries

    SciTech Connect

    Jursinic, Paul A.

    2015-10-15

    Purpose: A type of in vivo dosimeter, an optically stimulated luminescent dosimeter, OSLD, may have dose sensitivity that depends on the angle of incidence of radiation. This work measures how angular dependence of a nanoDot changes with the geometry of the phantom in which irradiation occurs and with the intrinsic structure of the nanoDot. Methods: The OSLDs used in this work were nanoDot dosimeters (Landauer, Inc., Glenwood, IL), which were read with a MicroStar reader (Landauer, Inc., Glenwood, IL). Dose to the OSLDs was delivered by 6 MV x-rays. NanoDots with various intrinsic sensitivities were irradiated in numerous phantoms that had geometric shapes of cylinders, rectangles, and a cube. Results: No angular dependence was seen in cylindrical phantoms, cubic phantoms, or rectangular phantoms with a thickness to width ratio of 0.3 or 1.5. An angular dependence of 1% was observed in rectangular phantoms with a thickness to width of 0.433–0.633. A group of nanoDots had sensitive layers with mass density of 2.42–2.58 g/cm{sup 3} and relative sensitivity of 0.92–1.09 and no difference in their angular dependence. Within experimental uncertainty, nanoDot measurements agree with a parallel-plate ion chamber at a depth of maximum dose. Conclusions: When irradiated in cylindrical, rectangular, and cubic phantoms, nanoDots show a maximum angular dependence of 1% or less at an incidence angle of 90°. For a sample of 78 new nanoDots, the range of their relative intrinsic sensitivity is 0.92–1.09. For a sample of ten nanoDots, on average, the mass in the sensitive layer is 73.1% Al{sub 2}O{sub 3}:C and 26.9% polyester. The mass density of the sensitive layer of a nanoDot disc is between 2.42 and 2.58 g/cm{sup 3}. The angular dependence is not related to Al{sub 2}O{sub 3}:C loading of the nanoDot disc. The nanoDot at the depth of maximum dose has no more angular dependence than a parallel-plate ion chamber.

  15. Characterization of Al2O3 optically stimulated luminescence films for 2D dosimetry using a 6 MV photon beam

    NASA Astrophysics Data System (ADS)

    Ahmed, M. F.; Shrestha, N.; Schnell, E.; Ahmad, S.; Akselrod, M. S.; Yukihara, E. G.

    2016-11-01

    This work evaluates the dosimetric properties of newly developed optically stimulated luminescence (OSL) films, fabricated with either Al2O3:C or Al2O3:C,Mg, using a prototype laser scanning reader, a developed image reconstruction algorithm, and a 6 MV therapeutic photon beam. Packages containing OSL films (Al2O3:C and Al2O3:C,Mg) and a radiochromic film (Gafchromic EBT3) were irradiated using a 6 MV photon beam using different doses, field sizes, with and without wedge filter. Dependence on film orientation of the OSL system was also tested. Diode-array (MapCHECK) and ionization chamber measurements were performed for comparison. The OSLD film doses agreed with the MapCHECK and ionization chamber data within the experimental uncertainties (<2% at 1.5 Gy). The system background and minimum detectable dose (MDD) were  <0.5 mGy, and the dose response was approximately linear from the MDD up to a few grays (the linearity correction was  <10% up to ~2-4 Gy), with no saturation up to 30 Gy. The dose profiles agreed with those obtained using EBT3 films (analyzed using the triple channel method) in the high dose regions of the images. In the low dose regions, the dose profiles from the OSLD films were more reproducible than those from the EBT3 films. We also demonstrated that the OSL film data are independent on scan orientation and field size over the investigated range. The results demonstrate the potential of OSLD films for 2D dosimetry, particularly for the characterization of small fields, due to their wide dynamic range, linear response, resolution and dosimetric properties. The negligible background and potential simple calibration make these OSLD films suitable for remote audits. The characterization presented here may motivate further commercial development of a 2D dosimetry system based on the OSL from Al2O3:C or Al2O3:C,Mg.

  16. Re-evaluating the tephrochronology of the Palouse Loess, Washington State, using optically stimulated luminescence dating and single-shard major- and trace-element analyses

    NASA Astrophysics Data System (ADS)

    King, G. E.; Roberts, H. M.; Pearce, N. J.; Gaylord, D.; Sweeney, M.; Duller, G. A.; Smith, V.

    2013-12-01

    Tephra derived from Mount St Helens (MSH) are a critical component of the tephrochronology of the Palouse Loess region, Washington State, USA. New analyses of both source-proximal and -distal tephra units from Washington State using paired major-element and LA-ICP-MS trace-element geochemistry have been undertaken. These analyses reveal that MSH tephra commonly employed to constrain the timing of loess deposition, including tephra from MSH eruptive sets S (~16 ka) and M (~22 ka), cannot be differentiated using major-element chemistry alone. Further, some distal tephra in the Palouse Loess which were previously assigned as MSH Set S on the basis of major-element geochemistry or stratigraphy are now suggested through trace-element analysis to be other tephra, including MSH Set M. Additional support for this re-evaluation of these Palouse Loess tephra units has been provided by luminescence dating of loess that brackets the tephra units. Single-aliquot optically stimulated luminescence (OSL) methods developed for quartz (e.g. Wintle and Murray, 2006), and a new method proposed for dating feldspars (Thomsen et al., 2008; using the ';post-IR IRSL' signal) have been applied at several sites. The ages generated are stratigraphically consistent within each site, and show agreement between the two luminescence methods. Whilst these newly generated luminescence ages are not consistent in all cases with previously published tephra assignments, they are consistent with the revised tephrochronology proposed on the basis of new trace-element geochemistry. This combination of major- plus trace-element geochemistry and luminescence chronology provides a coherent picture of the tephrochronology of the sites examined in the Palouse. More broadly, this highlights the importance of combining both detailed geochemistry and geochronology in areas where tephra are geochemically indistinct. References Wintle A.G. and Murray, A.S., 2006. A review of quartz optically stimulated luminescence

  17. High resolution shallow geologic characterization of a late Pleistocene eolian environment using ground penetrating radar and optically stimulated luminescence techniques: North Carolina, USA

    USGS Publications Warehouse

    Mallinson, D.; Mahan, S.; Moore, Christine

    2008-01-01

    Geophysical surveys, sedimentology, and optically-stimulated luminescence age analyses were used to assess the geologic development of a coastal system near Swansboro, NC. This area is a significant Woodland Period Native American habitation and is designated the "Broad Reach" archaeological site. 2-d and 3-d subsurface geophysical surveys were performed using a ground penetrating radar system to define the stratigraphic framework and depositional facies. Sediment samples were collected and analyzed for grain-size to determine depositional environments. Samples were acquired and analyzed using optically stimulated luminescence techniques to derive the depositional age of the various features. The data support a low eolian to shallow subtidal coastal depositional setting for this area. Li-DAR data reveal ridge and swale topography, most likely related to beach ridges, and eolian features including low-relief, low-angle transverse and parabolic dunes, blowouts, and a low-relief eolian sand sheet. Geophysical data reveal dominantly seaward dipping units, and low-angle mounded features. Sedimentological data reveal mostly moderately-well to well-sorted fine-grained symmetrical to coarse skewed sands, suggesting initial aqueous transport and deposition, followed by eolian reworking and bioturbation. OSL data indicate initial coastal deposition prior to ca. 45,000 yBP, followed by eolian reworking and low dune stabilization at ca. 13,000 to 11,500 yBP, and again at ca. 10,000 yBP (during, and slightly after the Younger Dryas chronozone).

  18. Site characterization using a portable optically stimulated luminescence reader: delineating disrupted stratigraphy in Holocene eolian deposits on the Canadian Great Plains

    NASA Astrophysics Data System (ADS)

    Munyikwa, K.; Gilliland, K.; Gibson, T.; Plumb, E.

    2012-12-01

    The use of portable optically stimulated luminescence (POSL) readers to elucidate on complex depositional sequences has been demonstrated in a number of recent studies. POSL readers are robust versions of the traditional lab-bound luminescence readers and they can be used in the field, allowing for rapid decisions to be made when collecting samples for dating. Furthermore, in contrast with lab-bound readers, POSL readers can perform measurements on bulk samples, negating the need to carry out time-intensive mineralogical separations. The POSL reader is equipped with both infra-red and blue light (OSL) stimulating sources such that signal separation during measurement can be carried out by selectively exciting feldspar using the IR source (IRSL) after which a quartz dominant signal is obtained from the same sample using post-IR blue OSL. The signals obtained are then plotted to give luminescence profiles that depict the variation of the luminescence signal with depth. Signal intensities depend on mineralogical concentrations, grain luminescence sensitivities, dose rates as well as on burial ages of the grains. Where all these variables, apart from the burial age, are held constant up the depositional sequence the luminescence profile serves as a proxy for the chronostratigraphy. As a contribution to a growing archive of studies that have employed POSL readers to unravel complex depositional sequences, this study uses a POSL system developed by the Scottish Universities Environmental Research Centre to characterize the stratigraphy at an archaeological site that lies next to an oilfield plant located on a Holocene fossil dune landscape in southern Alberta, Canada. Oilfield activity was initiated at the site several decades ago and it involved the laying of pipelines below ground which disturbed considerable archaeological deposits. Subsequent work led to the discovery of the archeological site which was previously occupied by ancestral indigenous peoples at various

  19. Thermoluminescence and optically stimulated luminescence properties of the 0.5P₂O₅-xBaO-(0.5-x)Li₂O glass systems.

    PubMed

    Timar-Gabor, A; Ivascu, C; Vasiliniuc, S; Daraban, L; Ardelean, I; Cosma, C; Cozar, O

    2011-05-01

    Thermoluminescence and optically stimulated luminescence properties of phosphate glasses doped with BaO and Li(2)O at various concentrations were studied. Lithium-doped glasses show a broad TL peak in the 200-300°C region with poor dosimetric characteristics. Barium-doped glasses feature at least two TL peaks, approximately at 200 and 400°C, which were attributed to Ba(2+) ions. They also produce a fast-decaying OSL signal correlated with the lower-temperature TL peak. Responses of both TL emissions to radiation doses up to 100 Gy are linear (R² >0.99). Due to its encouraging characteristics such as acceptable batch homogeneity, good measurement reproducibility and weak signal fading, the P₂O₅-xBaO glass can be considered as a candidate material for dosimetry in the high-dose range (>10 Gy).

  20. Dating human occupation at Toca do Serrote das Moendas, São Raimundo Nonato, Piauí-Brasil by electron spin resonance and optically stimulated luminescence.

    PubMed

    Kinoshita, Angela; Skinner, Anne R; Guidon, Niede; Ignacio, Elaine; Felice, Gisele Daltrini; Buco, Cristiane de A; Tatumi, Sonia; Yee, Márcio; Figueiredo, Ana Maria Graciano; Baffa, Oswaldo

    2014-12-01

    Excavation of Toca do Serrote das Moendas, in Piauí state, Brazil revealed a great quantity of fossil wild fauna associated with human remains. In particular, fossils of a cervid (Blastocerus dichotomus) were found, an animal frequently pictured in ancient rock wall paintings. In a well-defined stratum, two loose teeth of this species were found in close proximity to human bones. The teeth were independently dated by electron spin resonance (ESR) in two laboratories. The ages obtained for the teeth were 29 ± 3 ka (thousands of years) and 24 ± 1 ka. The concretion layer capping this stratum was dated by optically stimulated luminescence (OSL) of the quartz grains to 21 ± 3 ka. As these values were derived independently in three different laboratories, using different methods and equipment, these results are compelling evidence of early habitation in this area.

  1. The response of thermally and optically stimulated luminescence from Al2O3:C to high-energy heavy charged particles

    NASA Technical Reports Server (NTRS)

    Gaza, R.; Yukihara, E. G.; McKeever, S. W. S.

    2004-01-01

    The thermoluminescence (TL) and optically stimulated luminescence (OSL) response of Al2O3 dosimeters to high-energy heavy charged particles (HCP) has been studied using the heavy ion medical accelerator at Chiba, Japan. The samples were Al2O3 single-crystal chips, of the type usually known as TLD-500, and Luxel(TM) dosimeters (Al2O3:C powder in plastic) from Landauer Inc. The samples were exposed to 4He (150 MeV/u), 12C (400 MeV/u), 28Si (490 MeV/us) and 56Fe (500 MeV/u) ions, with linear energy transfer values covering the range from 2.26 to 189 keV/micrometers in water and doses from 1 to 100 mGy (to water). A 90Sr/90Y beta source, calibrated against a 60Co secondary standard, was used for calibration purposes. For OSL, we used both continuous-wave OSL measurements (CW-OSL, using green light stimulation at 525 nm) and pulsed OSL measurements (POSL, using 532 nm stimulation from a Nd:YAG Q-switched laser). The efficiencies (eta HCP, gamma) of the different HCPs at producing OSL or TL were observed to depend not only upon the linear energy transfer (LET) of the HCP, but also upon the sample type (single crystal chip or Luxel(TM)) and the luminescence method used to define the signal--i.e. TL, CW-OSL initial intensity, CW-OSL total area, or POSL. Observed changes in shape of the decay curve lead to potential methods for extracting LET information of unknown radiation fields. A discussion of the results is given, including the potential use of OSL from Al2O3 in the areas of space radiation dosimetry and radiation oncology. c2004 Elsevier Ltd. All rights reserved.

  2. The response of thermally and optically stimulated luminescence from Al2O3:C to high-energy heavy charged particles.

    PubMed

    Gaza, R; Yukihara, E G; McKeever, S W S

    2004-01-01

    The thermoluminescence (TL) and optically stimulated luminescence (OSL) response of Al2O3 dosimeters to high-energy heavy charged particles (HCP) has been studied using the heavy ion medical accelerator at Chiba, Japan. The samples were Al2O3 single-crystal chips, of the type usually known as TLD-500, and Luxel(TM) dosimeters (Al2O3:C powder in plastic) from Landauer Inc. The samples were exposed to 4He (150 MeV/u), 12C (400 MeV/u), 28Si (490 MeV/us) and 56Fe (500 MeV/u) ions, with linear energy transfer values covering the range from 2.26 to 189 keV/micrometers in water and doses from 1 to 100 mGy (to water). A 90Sr/90Y beta source, calibrated against a 60Co secondary standard, was used for calibration purposes. For OSL, we used both continuous-wave OSL measurements (CW-OSL, using green light stimulation at 525 nm) and pulsed OSL measurements (POSL, using 532 nm stimulation from a Nd:YAG Q-switched laser). The efficiencies (eta HCP, gamma) of the different HCPs at producing OSL or TL were observed to depend not only upon the linear energy transfer (LET) of the HCP, but also upon the sample type (single crystal chip or Luxel(TM)) and the luminescence method used to define the signal--i.e. TL, CW-OSL initial intensity, CW-OSL total area, or POSL. Observed changes in shape of the decay curve lead to potential methods for extracting LET information of unknown radiation fields. A discussion of the results is given, including the potential use of OSL from Al2O3 in the areas of space radiation dosimetry and radiation oncology.

  3. Middle-Late Holocene earthquake history of the Gyrtoni Fault, Central Greece: Insight from optically stimulated luminescence (OSL) dating and paleoseismology

    NASA Astrophysics Data System (ADS)

    Tsodoulos, Ioannis M.; Stamoulis, Konstantinos; Caputo, Riccardo; Koukouvelas, Ioannis; Chatzipetros, Alexandros; Pavlides, Spyros; Gallousi, Christina; Papachristodoulou, Christina; Ioannides, Konstantinos

    2016-09-01

    The south-dipping Gyrtoni Fault defines the northeastern boundary of the Middle-Late Quaternary Tyrnavos Basin, Central Greece. The recognition and recent tectonic activity of the fault were previously based on mapping, remote sensing analyses and electrical resistivity tomography studies. To understand the Holocene seismotectonic behavior of the Gyrtoni Fault we excavated two paleoseismological trenches. To estimate the timing of past earthquakes using luminescence dating, we obtained twenty five fluvial-colluvial sediment and pottery samples from both the upthrown and the downthrown fault blocks. We applied the Optically Stimulated Luminescence (OSL) dating to coarse grain quartz using the single-aliquot regenerative-dose (SAR) protocol. Our investigations of luminescence characteristics using various tests confirmed the suitability of the material for OSL dating. We found that the estimated OSL ages were internally consistent and agreed well with the available stratigraphical data, archaeological evidence and radiocarbon dates. The performed paleoseismological analysis emphasized the occurrence of three surface faulting events in a time span between 1.42 ± 0.06 ka and 5.59 ± 0.13 ka. Also, we recognized an earlier faulting event (fourth) has been also recognized to be older than 5.59 ± 0.13 ka. The mean throw per event value of 0.50-0.60 m could correspond to a ca. Mw 6.5 earthquake. An average fault slip rate of 0.41 ± 0.01 mm/a and an average recurrence time of 1.39 ± 0.14 ka were also estimated. Our results suggest that the elapsed time from the most recent event (minimum age 1.42 ± 0.06 ka) is comparable with the mean return period.

  4. Relative optically stimulated luminescence and thermoluminescence efficiencies of Al{sub 2}O{sub 3}:C dosimeters to heavy charged particles with energies relevant to space and radiotherapy dosimetry

    SciTech Connect

    Sawakuchi, G. O.; Yukihara, E. G.; McKeever, S. W. S.; Benton, E. R.; Gaza, R.; Uchihori, Y.; Yasuda, N.; Kitamura, H.

    2008-12-15

    This article presents a comprehensive characterization of the thermoluminescence (TL) and optically stimulated luminescence (OSL) relative luminescence efficiencies of carbon-doped aluminum (Al{sub 2}O{sub 3}:C) for heavy charged particles (HCPs) with atomic numbers ranging from 1 (proton) to 54 (xenon) and energies ranging from 7 to 1000 MeV/u, and investigates the dependence of the Al{sub 2}O{sub 3}:C response on experimental conditions. Relative luminescence efficiency values are presented for 19 primary charge/energy combinations, plus 31 additional charge/energy combinations obtained by introducing absorbers in the primary beam. Our results show that for energies of hundreds of MeV/u the data can be described by a single curve of relative luminescence efficiency versus linear energy transfer (LET). This information is needed to compensate for the reduced OSL efficiency to high-LET particles in such applications as space dosimetry. For lower energies, the relative luminescence efficiency as function of LET cannot be described by a single curve; instead, it separates into different components corresponding to different particles. We also present data on the low-LET dose response of Al{sub 2}O{sub 3}:C, measured under the same experimental conditions in which the relative luminescence efficiencies to HCPs were obtained, providing information relevant to future theoretical investigations of HCP energy deposition and luminescence production in Al{sub 2}O{sub 3}:C.

  5. New ages for Middle and Later Stone Age deposits at Mumba rockshelter, Tanzania: optically stimulated luminescence dating of quartz and feldspar grains.

    PubMed

    Gliganic, Luke A; Jacobs, Zenobia; Roberts, Richard G; Domínguez-Rodrigo, Manuel; Mabulla, Audax Z P

    2012-04-01

    The archaeological deposits at Mumba rockshelter, northern Tanzania, have been excavated for more than 70 years, starting with Margit and Ludwig Köhl-Larsen in the 1930s. The assemblages of Middle Stone Age (MSA) and Later Stone Age (LSA) artefacts collected from this site constitute the type sequences for these cultural phases in East Africa. Despite its archaeological importance, however, the chronology of the site is poorly constrained, despite the application since the 1980s of several dating methods (radiocarbon, uranium-series and amino acid racemisation) to a variety of materials recovered from the deposits. Here, we review these previous chronologies for Mumba and report new ages obtained from optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL) measurements on single grains of quartz and multi-grain aliquots of potassium (K) feldspar from the MSA and LSA deposits. Measurements of single grains of quartz allowed the rejection of unrepresentative grains and the application of appropriate statistical models to obtain the most reliable age estimates, while measurements of K-feldspars allowed the chronology to be extended to older deposits. The seven quartz ages and four K-feldspar ages provide improved temporal constraints on the archaeological sequence at Mumba. The deposits associated with the latest Kisele Industry (Bed VI-A) and the earliest Mumba Industry (Bed V) are dated to 63.4 ± 5.7 and 56.9 ± 4.8 ka (thousands of years ago), respectively, thus constraining the time of transition between these two archaeological phases to ~60 ka. An age of 49.1 ± 4.3 ka has been obtained for the latest deposits associated with the Mumba Industry, which show no evidence for post-depositional mixing and contain ostrich eggshell (OES) beads and abundant microlithics. The Nasera Industry deposits (Bed III) contain large quantities of OES beads and date to 36.8 ± 3.4 ka. We compare the luminescence ages with the previous chronologies for

  6. Intracavitary in vivo dosimetry based on multichannel fiber-coupled radioluminescence and optically stimulated luminescence of Al{sub 2}O{sub 3}:C

    SciTech Connect

    Spasic, E.; Magne, S.; Aubineau-Laniece, I.; De Carlan, L.; Malet, C.; Ginestet, C.; Ferdinand, P.

    2011-07-01

    Fiber Optic Dosimetric Catheters (FODCs) composed of chains of alumina crystals are investigated by the CEA LIST within the French ANR-INTRADOSE Project in the purpose of intracavitary in vivo dosimetry (IVD) during Brachytherapy (BT) with iridium sources and Intensity-Modulated Radiation Therapy (IMRT) with linear accelerators. A dedicated process involving PMMA fibers, cast altogether forming hexagonal bundle, is demonstrated. Optically Stimulated Luminescence (OSL) signals are recorded on-line after irradiation and absorbed doses are compared to planned dose distribution. Real-time dose measurements may also be performed by recording the Radioluminescence (RL), spontaneously emitted by the crystals during irradiation. In this case, a correction method is implemented to correct for stem effect influence (Cerenkov and scintillation generated within the fibers). For BT, the dual-fiber subtraction method is used (using a reference fiber) whereas the time discrimination method is used for IMRT. The experimental dose distribution leads to an underestimation of the source-sensor distance presumably due to energy dependence of the alumina crystal at low photon energy. At the time being, Monte-Carlo modeling of the FODC is performed with the aim to estimate this energy dependence and finally correct for it. Finally, metrological and preclinical validations are still running at Centre Leon Berard (Lyon (France)) in the purpose of checking the compliance of the FODC prototypes with treatment specifications and medical constraints. (authors)

  7. Thermoluminescence and optically stimulated luminescence properties of Dy3+-doped CaO-Al2O3-B2O3-based glasses

    NASA Astrophysics Data System (ADS)

    Yahaba, T.; Fujimoto, Y.; Yanagida, T.; Koshimizu, M.; Tanaka, H.; Saeki, K.; Asai, K.

    2017-02-01

    We developed Dy3+-doped CaO-Al2O3-B2O3 based glasses with Dy concentrations of 0.5, 1.0, and 2.0 mol% using a melt-quenching technique. The as-synthesized glasses were applicable as materials exhibiting thermoluminescence (TL) and optically stimulated luminescence (OSL). The optical and radiation response properties of the glasses were characterized. In the photoluminescence (PL) spectra, two emission bands due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ were observed at 480 and 580 nm. In the OSL spectra, the emission band due to the 4F9/2 → 6H15/2 transition of Dy3+ was observed. Excellent TL and OSL responses were observed for dose ranges of 0.1-90 Gy. In addition, TL fading behavior was better than that of OSL in term of the long-time storage. These results indicate that the Dy3+-doped CaO-Al2O3-B2O3-based glasses are applicable as TL materials.

  8. Thermally stimulated luminescence of urine salts

    NASA Astrophysics Data System (ADS)

    Bordun, O.; Drobchak, O.

    2008-05-01

    The thermally stimulated luminescence (TSL) of normal and pathological urine was studied. The presence of pathological salts leads to extinguishing of TSL intensity and to the appearance of additional stripes with maxima nearly 118 and 205K, except of characteristic stripes with the maxima nearly 173 and 260K. TSL stripes depend on urine constituents. The comparison of TSL intensity of normal and pathological urine is carried out and energies of thermal activation are determined for most intensive TSL stripes.

  9. SU-E-T-315: The Change of Optically Stimulated Luminescent Dosimeters (OSLDs) Sensitivity by Accumulated Dose and High Dose

    SciTech Connect

    Han, S; Jung, H; Kim, M; Ji, Y; Kim, K; Choi, S; Park, S; Yoo, H; Yi, C

    2014-06-01

    Purpose: The objective of this study is to evaluate radiation sensitivity of optical stimulated luminance dosimeters (OSLDs) by accumulated dose and high dose. Methods: This study was carried out in Co-60 unit (Theratron 780, AECL, and Canada) and used InLight MicroStar reader (Landauer, Inc., Glenwood, IL) for reading. We annealed for 30 min using optical annealing system which contained fluorescent lamps (Osram lumilux, 24 W, 280 ∼780 nm). To evaluate change of OSLDs sensitivity by repeated irradiation, the dosimeters were repeatedly irradiated with 1 Gy. And whenever a repeated irradiation, we evaluated OSLDs sensitivity. To evaluate OSLDs sensitivity after accumulated dose with 5 Gy, We irradiated dose accumulatively (from 1 Gy to 5 Gy) without annealing. And OSLDs was also irradiated with 15, 20, 30 Gy to certify change of OSLDs sensitivity after high dose irradiation. After annealing them, they were irradiated with 1Gy, repeatedly. Results: The OSLDs sensitivity increased up to 3% during irradiating seven times and decreased continuously above 8 times. That dropped by about 0.35 Gy per an irradiation. Finally, after 30 times irradiation, OSLDs sensitivity decreased by about 7%. For accumulated dose from 1 Gy to 5 Gy, OSLDs sensitivity about 1 Gy increased until 4.4% after second times accumulated dose compared with before that. OSLDs sensitivity about 1 Gy decreased by 1.6% in five times irradiation. When OSLDs were irradiated ten times with 1Gy after irradiating high dose (10, 15, 20 Gy), OSLDs sensitivity decreased until 6%, 9%, 12% compared with it before high dose irradiation, respectively. Conclusion: This study certified OSLDs sensitivity by accumulated dose and high dose. When irradiated with 1Gy, repeatedly, OSLDs sensitivity decreased linearly and the reduction rate of OSLDs sensitivity after high dose irradiation had dependence on irradiated dose.

  10. SU-E-T-585: Optically-Stimulated Luminescent Dosimeters for Monitoring Pacemaker Dose in Radiation Therapy

    SciTech Connect

    Apicello, L; Riegel, A; Jamshidi, A

    2015-06-15

    Purpose: A sufficient amount of ionizing radiation can cause failure to components of pacemakers. Studies have shown that permanent damage can occur after a dose of 10 Gy and minor damage to functionality occurs at doses as low as 2 Gy. Optically stimulated thermoluminescent dosimeters (OSLDs) can be used as in vivo dosimeters to predict dose to be deposited throughout the treatment. The purpose of this work is to determine the effectiveness of using OSLDs for in vivo dosimetry of pacemaker dose. Methods: As part of a clinical in vivo dosimetry experience, OSLDs were placed at the site of the pacemaker by the therapist for one fraction of the radiation treatment. OSLD measurements were extrapolated to the total dose to be received by the pacemaker during treatment. A total of 79 measurements were collected from November 2011 to December 2013 on six linacs. Sixty-six (66) patients treated in various anatomical sites had the dose of their pacemakers monitored. Results: Of the 79 measurements recorded, 76 measurements (96 %) were below 2 Gy. The mean and standard deviation were 50.12 ± 76.41 cGy. Of the 3 measurements that exceeded 2 Gy, 2 measurements matched the dose predicted in the treatment plan and 1 was repeated after an unexpectedly high Result. The repeated measurement yielded a total dose less than 2 Gy. Conclusion: This analysis suggests OSLDs may be used for in vivo monitoring of pacemaker dose. Further research should be performed to assess the effect of increased backscatter from the pacemaker device.

  11. Energy absorption buildup factors, exposure buildup factors and Kerma for optically stimulated luminescence materials and their tissue equivalence for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Singh, Vishwanath P.; Badiger, N. M.

    2014-11-01

    Optically stimulated luminescence (OSL) materials are sensitive dosimetric materials used for precise and accurate dose measurement for low-energy ionizing radiation. Low dose measurement capability with improved sensitivity makes these dosimeters very useful for diagnostic imaging, personnel monitoring and environmental radiation dosimetry. Gamma ray energy absorption buildup factors and exposure build factors were computed for OSL materials using the five-parameter Geometric Progression (G-P) fitting method in the energy range 0.015-15 MeV for penetration depths up to 40 mean free path. The computed energy absorption buildup factor and exposure buildup factor values were studied as a function of penetration depth and incident photon energy. Effective atomic numbers and Kerma relative to air of the selected OSL materials and tissue equivalence were computed and compared with that of water, PMMA and ICRU standard tissues. The buildup factors and kerma relative to air were found dependent upon effective atomic numbers. Buildup factors determined in the present work should be useful in radiation dosimetry, medical diagnostics and therapy, space dosimetry, accident dosimetry and personnel monitoring.

  12. Optically stimulated luminescence (OSL) response of Al2O3:C, BaFCl:Eu and K2Ca2(SO4)3:Eu phosphors.

    PubMed

    Kumar, Pratik; Bahl, Shaila; Sahare, P D; Kumar, Surender; Singh, Manveer

    2015-12-01

    This paper investigates the optically stimulated luminescence (OSL) response of BaFCl:Eu and K2Ca2(SO4)3:Eu phosphors for different doses and bleaching durations. The results have also been compared with the commercially available Landauer Al2O3:C (Luxel®) dosemeter. Nanocrystalline K2Ca2(SO4)3:Eu is known to be a sensitive thermoluminescent phosphor, but its OSL response is hardly reported. At first, pellets of nanocrystalline K2Ca2(SO4)3:Eu powder were prepared by adding Teflon as a binder. Their OSL signal was compared with that of the material in pure form, i.e. without adding the binder (in 100:1 ratio). It was observed that adding the binder does not appreciably affect the OSL intensity. On comparison with the commercially available Al2O3:C from Landauer, it was found that K2Ca2(SO4)3:Eu is around 15 times less sensitive than Al2O3:C. 'Homemade' BaFCl:Eu phosphor has also been studied. The intensity of BaFCl:Eu was ∼20 times more than the standard Al2O3:C dosemeter and ∼200 times more sensitive than K2Ca2(SO4)3:Eu in the dose range of 13-200 cGy. OSL dosemeters are believed to give luminescence signal even if they are read before, i.e. multiple reading may be possible under suitable conditions after single exposure. This was also checked for all the prepared dosemeters and it was found that Al2O3:C showed the least decrease of <2 %, followed by BaFCl:Eu of 15 % and K2Ca2(SO4)3:Eu with 20 %. Finally, Al2O3:C and BaFCl:Eu phosphors were also studied for their optical bleaching durations to which the respective signals get completely removed so that the phosphor can be re-used. It was observed that BaFCl:Eu is bleached faster and more easily than Al2O3:C.

  13. Thermally stimulated luminescence of urine salts

    NASA Astrophysics Data System (ADS)

    Bordun, O. M.; Drobchak, O. Z.

    2007-07-01

    We investigated thermally stimulated luminescence (TSL) of urine salts in the normal state and with oxalate, urate, and phosphate salts. We found that the presence of pathological salts leads to a decrease of TSL intensity and to the appearance of additional TLS bands with maxima at 118 and 205 K in addition to the characteristic bands at 173 and 260 K. The TLS bands are related to the urine components. The TSL intensities of urine salts of different chemical composition are compared. The thermal activation energy of the strongest TSL bands is determined.

  14. Study of thermoluminescence (TL) and optically stimulated luminescence (OSL) from α-keratin protein found in human hairs and nails: potential use in radiation dosimetry.

    PubMed

    Mishra, D R; Soni, A; Rawat, N S; Bokam, G

    2016-05-01

    The thermoluminescence (TL) and optically stimulated luminescence (OSL) properties of human nails and hairs containing α-keratin proteins have been investigated. For the present studies, black hairs and finger nails were selectively collected from individuals with ages between 25 and 35 years. The collected hairs/nails were cut to a size of < 1 mm and cleaned with distilled water to remove dirt and other potential physical sources of contamination. All samples were optically beached with 470 nm of LED light at 60 mW/cm(2) intensity and irradiated by a (60)Co γ source. The hair and nail samples showed overlapping multiple TL glow peaks in the temperature range from 70 to 210 ° C. Continuous wave (CW)-OSL measurements of hair samples at a wavelength of 470 nm showed the presence of two distinct OSL components with photoionization cross section (PIC) values of about 1.65 × 10(-18) cm(2) and about 3.48 × 10(-19) cm(2), while measurements of nail samples showed PIC values of about 6.98 × 10(-18) cm(2) and about 8.7 × 10(-19) cm(2), respectively. This difference in PIC values for hair and nail samples from the same individual is attributed to different arrangement of α-keratin protein concentrations in the samples. The OSL sensitivity was found to vary ± 5 times among nail and hair samples from different individuals, with significant fading (60% in 11 h) at room temperature. The remaining signal (after fading) can be useful for dose estimation when a highly sensitive OSL reader is used. In the absorbed dose range of 100 mGy-100 Gy, both the TL and OSL signals of hair and nail samples showed linear dose dependence. The results obtained in the present study suggest that OSL using hair and nail samples may provide a supplementary method of dose estimation in radiological and nuclear emergencies.

  15. Image reconstruction algorithm for optically stimulated luminescence 2D dosimetry using laser-scanned Al2O3:C and Al2O3:C,Mg films

    NASA Astrophysics Data System (ADS)

    Ahmed, M. F.; Schnell, E.; Ahmad, S.; Yukihara, E. G.

    2016-10-01

    The objective of this work was to develop an image reconstruction algorithm for 2D dosimetry using Al2O3:C and Al2O3:C,Mg optically stimulated luminescence (OSL) films imaged using a laser scanning system. The algorithm takes into account parameters associated with detector properties and the readout system. Pieces of Al2O3:C films (~8 mm  ×  8 mm  ×  125 µm) were irradiated and used to simulate dose distributions with extreme dose gradients (zero and non-zero dose regions). The OSLD film pieces were scanned using a custom-built laser-scanning OSL reader and the data obtained were used to develop and demonstrate a dose reconstruction algorithm. The algorithm includes corrections for: (a) galvo hysteresis, (b) photomultiplier tube (PMT) linearity, (c) phosphorescence, (d) ‘pixel bleeding’ caused by the 35 ms luminescence lifetime of F-centers in Al2O3, (e) geometrical distortion inherent to Galvo scanning system, and (f) position dependence of the light collection efficiency. The algorithm was also applied to 6.0 cm  ×  6.0 cm  ×  125 μm or 10.0 cm  ×  10.0 cm  ×  125 µm Al2O3:C and Al2O3:C,Mg films exposed to megavoltage x-rays (6 MV) and 12C beams (430 MeV u-1). The results obtained using pieces of irradiated films show the ability of the image reconstruction algorithm to correct for pixel bleeding even in the presence of extremely sharp dose gradients. Corrections for geometric distortion and position dependence of light collection efficiency were shown to minimize characteristic limitations of this system design. We also exemplify the application of the algorithm to more clinically relevant 6 MV x-ray beam and a 12C pencil beam, demonstrating the potential for small field dosimetry. The image reconstruction algorithm described here provides the foundation for laser-scanned OSL applied to 2D dosimetry.

  16. Image reconstruction algorithm for optically stimulated luminescence 2D dosimetry using laser-scanned Al2O3:C and Al2O3:C,Mg films.

    PubMed

    Ahmed, M F; Schnell, E; Ahmad, S; Yukihara, E G

    2016-10-21

    The objective of this work was to develop an image reconstruction algorithm for 2D dosimetry using Al2O3:C and Al2O3:C,Mg optically stimulated luminescence (OSL) films imaged using a laser scanning system. The algorithm takes into account parameters associated with detector properties and the readout system. Pieces of Al2O3:C films (~8 mm  ×  8 mm  ×  125 µm) were irradiated and used to simulate dose distributions with extreme dose gradients (zero and non-zero dose regions). The OSLD film pieces were scanned using a custom-built laser-scanning OSL reader and the data obtained were used to develop and demonstrate a dose reconstruction algorithm. The algorithm includes corrections for: (a) galvo hysteresis, (b) photomultiplier tube (PMT) linearity, (c) phosphorescence, (d) 'pixel bleeding' caused by the 35 ms luminescence lifetime of F-centers in Al2O3, (e) geometrical distortion inherent to Galvo scanning system, and (f) position dependence of the light collection efficiency. The algorithm was also applied to 6.0 cm  ×  6.0 cm  ×  125 μm or 10.0 cm  ×  10.0 cm  ×  125 µm Al2O3:C and Al2O3:C,Mg films exposed to megavoltage x-rays (6 MV) and (12)C beams (430 MeV u(-1)). The results obtained using pieces of irradiated films show the ability of the image reconstruction algorithm to correct for pixel bleeding even in the presence of extremely sharp dose gradients. Corrections for geometric distortion and position dependence of light collection efficiency were shown to minimize characteristic limitations of this system design. We also exemplify the application of the algorithm to more clinically relevant 6 MV x-ray beam and a (12)C pencil beam, demonstrating the potential for small field dosimetry. The image reconstruction algorithm described here provides the foundation for laser-scanned OSL applied to 2D dosimetry.

  17. Development and characterization of remote radiation dosimetry systems using optically stimulated luminescence of alumina:carbon and potassium bromide:europium

    NASA Astrophysics Data System (ADS)

    Klein, David Matthew

    Scope and Method of Study. To develop and test the performance of two different dosimetry systems; one for in situ, high-sensitivity, inexpensive environmental monitoring, and another for near-real-time medical dosimetry. The systems are based on remote interrogation of the optically stimulated luminescence (OSL) from Al2O3:C and KBr:Eu single crystal dosimeters (exposed to environmental and medical radiation fields, respectively) via fiber optic cables. The environmental system was tested in lab conditions using various radioactive sources including 60Co, 90 Sr, 137Cs, and 226Ra, as well as with 232Th-enriched soil stimulant. The medical system was tested under various diagnostic x-ray systems, including fluoroscopy and computed tomography (CT) machines, as well as with high dose rate 192Ir brachytherapy sources and 232 MeV proton therapy beams under simulated treatment conditions. Findings and Conclusions. The environmental system was shown to achieve sensitivity high enough for measuring an OSL signal resulting from a dose of ˜1 muGy, which is equivalent to ˜12 hours of natural background radiation. This sensitivity allows for monitoring of the radiation characteristics of a natural environment more rapidly and/or less expensively than existing methods, such as soil sampling and in situ gamma spectroscopy. The KBr:Eu-based medical system results show that the near-real-time data acquisition during irradiation allows for rapid quality assurance (QA) measurements that benefits from high spatial resolution. These features are not present in most current standard dosimeters such as thermoluminescent detectors and pencil ionization chambers. The dosimeter does exhibit energy dependence, and a sensitization during high dose rate procedures. As a result, a model has been proposed that provides a description of the possible mechanisms that govern the transfer of electrons and holes within KBr:Eu during OSL measurement at room temperature. Correction factors for these

  18. Energy dependence measurement of small-type optically stimulated luminescence (OSL) dosimeter by means of characteristic X-rays induced with general diagnostic X-ray equipment.

    PubMed

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2016-01-01

    For X-ray inspections by way of general X-ray equipment, it is important to measure an entrance-skin dose. Recently, a small optically stimulated luminescence (OSL) dosimeter was made commercially available by Landauer, Inc. The dosimeter does not interfere with the medical images; therefore, it is expected to be a convenient detector for measuring personal exposure doses. In an actual clinical situation, it is assumed that X-rays of different energies will be detected by a dosimeter. For evaluation of the exposure dose measured by a dosimeter, it is necessary to know the energy dependence of the dosimeter. Our aim in this study was to measure the energy dependence of the OSL dosimeter experimentally in the diagnostic X-ray region. Metal samples weighing several grams were irradiated and, in this way, characteristic X-rays having energies ranging from 8 to 85 keV were generated. Using these mono-energetic X-rays, the dosimeter was irradiated. Simultaneously, the fluence of the X-rays was determined with a CdTe detector. The energy-dependent efficiency of the dosimeter was derived from the measured value of the dosimeter and the fluence. Moreover, the energy-dependent efficiency was calculated by Monte-Carlo simulation. The efficiency obtained in the experiment was in good agreement with that of the simulation. In conclusion, our proposed method, in which characteristic X-rays are used, is valuable for measurement of the energy dependence of a small OSL dosimeter in the diagnostic X-ray region.

  19. Optically Stimulated Luminescence Response to Ionizing Radiation of Red Bricks (SiO2, Al2O3, and Fe2O3) Used as Building Materials

    SciTech Connect

    Bogard, James S; Espinosa Garcia, Guillermo

    2007-01-01

    Quartz is the most common mineral in our environment. It is found in granite, hydrothermal veins and volcanic rocks, as well as in sedimentary deposits derived from such solid materials. These sediments are also made into building materials, such as bricks and pottery. Thus the potential use of a dose reconstruction technique based on quartz grains is enormous, whether as a dating tool in archaeology and quaternary geology, or in nuclear accident dosimetry. This work describes the Optically Stimulated Luminescence (OSL) response of red brick to ionizing radiation. The bricks, from the state of Puebla, Mexico, represent another class of materials that can be used in retrospective dosimetry following nuclear or radiological incidents. The chemical composition of fifteen bricks (three samples from five different brick factories) was determined, using energy dispersive spectroscopy (EDS), be primarily SiO{sub 2}, Al{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} and is believed to be representative for this common building material. Individual aliquots from these bricks were powdered in agate mortars and thermally annealed. Replicate samples of the aliquots were then irradiated with beta particles from a sealed source of {sup 90}Sr/{sup 90}Y. The OSL response was measured with a Daybreak Model 2200 High-Capacity OSL Reader System. We present here for this material the characteristic OSL response to beta particles; the reproducibility of the OSL response; the linearity of the response in the dose range 0.47 Gy to 47 Gy; and the fading characteristics.

  20. Characterization of optically stimulated luminescence dosimeters and investigating their potential for estimating pediatric organ doses in multi-slice computed tomography

    NASA Astrophysics Data System (ADS)

    Al-Senan, Rani Mohammed

    Recent epidemiologic studies have shown a strong association between the relatively high doses of pediatric CT and the risk of cancer. Quantifying organ doses, as a measure of the risk, is commonly based on either direct anthropomorphic phantom measurements or Monte Carlo simulation. The major disadvantage in the phantom approach is its high cost especially that, for pediatric CT dosimetry, various phantom sizes are required to represent different age groups of children. On the other hand, Monte Carlo simulation, although not considered costly, requires validation by anthropomorphic phantom measurements. The aim of this project was to develop two methods of organ dose estimation in pediatric CT: 1) from the measured surface dose using optically stimulated luminescence dosimeters (OSLDs) and 2) by measuring the circumference of the body part being scanned as well as knowing the scan parameters. The project was based on a study proposed by the surgery department to monitor radiation exposure to children during their CT examination in the ER. A total of 200 pediatric patients were enrolled in this study which used OSLDs to monitor the doses. Specific aim 1 of this project was to characterize the OSLDs in the diagnostic energy range. Specific aim 2(a) was to find relationships between the patients' doses from OSLDs and both scan CTDI and the measured circumference. In specific aim 2(b) we carried out measurements using CTDI phantoms to investigate the relationships studied in specific aim 2(a). Specific aim 3 was to come up with models to estimate select organ doses from measuring surface dose or by using the circumference of the body part. To do this, pediatric examinations were simulated using a set of pediatric anthropomorphic phantoms in which doses of select organs were measured.

  1. Technical Performance of the Luxel Al2O3:C Optically Stimulated Luminescence Dosemeter Element at Radiation Oncology and Nuclear Accident Dose Levels

    SciTech Connect

    Miller, Steven D.; Murphy, Mark K.

    2006-12-12

    The dose ranges typical for radiation oncology and nuclear accident dosimetry are on the order of 2?70 Gy and 0.1?5 Gy, respectively. In terms of solid-state passive dosimetry; thermoluminescent (TL) materials historically have been used extensively for these two applications, with silver-halide, leuco-dye, and BaFBr:Eu-based films being used on a more limited basis than TL for radiation oncology. This present work provides results on the performance of a film based on an aluminum oxide, Al2O3:C, for these dosimetry applications, using the optically-stimulated luminescence (OSL) readout method. There have been few investigations of Al2O3:C performance at radiation oncology and nuclear accident dose levels, and these have included minimal dosimetric and environmental effects information. Based on investigations already published, the authors of this present study determined that overall improvements over film and TLDs for this Al2O3:C OSL technology at radiation oncology and nuclear accident dose levels may include (1) a more tissue-equivalent response to photons compared to X-ray film, (2) higher sensitivity, (3) ability to reread dosemeters, and (4) diagnostic capability using small-area imaging. The results of the present investigation indicate that additional favorable performance characteristics for the Al2O3:C dosemeter are a wide dynamic range(0.001 to 100 Gy), a response insensitive to temperature and moisture over a wide range, negligible dose rate dependence, and minimal change in post-irradiation response. As a radiation detection medium, this OSL phosphor offers an assortment of dosimetry properties that will permit it to compete with current radiation detection technologies such as silver-halide, leuco-dye, and photostimulable-phosphor based films, as well as TLDs.

  2. Technical performance of the Luxel Al(2)O(3):C optically stimulated luminescence dosemeter element at radiation oncology and nuclear accident dose levels.

    PubMed

    Miller, Steven D; Murphy, Mark K

    2007-01-01

    The dose ranges typical for radiation oncology and nuclear accident dosimetry are on the order of 2-70 Gy and 0.1-5 Gy, respectively. In terms of solid-state passive dosimetry, thermoluminescent (TL) materials historically have been used extensively for these two applications, with silver-halide, leuco-dye and BaFBr:Eu-based films being used on a more limited basis than TL for radiation oncology. This present work provides results on the performance of a film based on an aluminum oxide, Al(2)O(3):C, for these dosimetry applications, using the optically stimulated luminescence (OSL) readout method. There have been few investigations of Al(2)O(3):C performance at radiation oncology and nuclear accident dose levels, and these have included minimal dosimetric and environmental effects information. Based on investigations already published, the authors of this present study determined that overall improvements over film and TLDs for this Al(2)O(3):C OSL technology at radiation oncology and nuclear accident dose levels may include (1) a more tissue-equivalent response to photons compared to X-ray film, (2) higher sensitivity, (3) ability to reread dosemeters and (4) diagnostic capability using small-area imaging. The results of the present investigation indicate that additional favourable performance characteristics for the Al(2)O(3):C dosemeter are a wide dynamic range (0.001-100 Gy), a response insensitive to temperature and moisture over a wide range, negligible dose rate dependence, and minimal change in post-irradiation response. As a radiation detection medium, this OSL phosphor offers an assortment of dosimetry properties that will permit it to compete with current radiation detection technologies such as silver-halide, leuco-dye and photostimulable-phosphor-based films, as well as TLDs.

  3. The influence of radiation-induced defects on thermoluminescence and optically stimulated luminescence of α-Al2O3:C

    NASA Astrophysics Data System (ADS)

    Nyirenda, A. N.; Chithambo, M. L.

    2017-04-01

    It is known that when α-Al2O3:C is exposed to excessive amounts of ionising radiation, defects are induced within its matrix. We report the influence of radiation-induced defects on the thermoluminescence (TL) and optically stimulated luminescence (OSL) measured from α-Al2O3:C after irradiation to 1000 Gy. These radiation-induced defects are thermally unstable in the region 450-650 °C and result in TL peaks in this range when the TL is measured at 1 °C/s. Heating a sample to 700 °C obliterates the radiation-induced defects, that is, the TL peaks corresponding to the radiation induced defects are no longer observed in the subsequent TL measurements when moderate irradiation doses below 10 Gy are used. The charge traps associated with these radiation-induced defects are more stable than the dosimetric trap when the sample is exposed to either sunlight or 470-nm blue light from LEDs. TL glow curves measured following the defect-inducing irradiation produce a dosimetric peak that is broader and positioned at a higher temperature than observed in glow curves obtained before the heavy irradiation. In addition, sample sensitization/desensitization occurs due to the presence of these radiation-induced defects. Furthermore, both the activation energy and the kinetic order of the dosimetric peak evaluated when the radiation-induced defects are present in the sample are significantly lower in value than those obtained when these defects are absent. The radiation-induced defects also affect the shape and total light sum of the OSL signal as well as the position and width of the resultant residual phototransferred thermoluminescence main peak.

  4. Luminescent solar concentrators utilizing stimulated emission.

    PubMed

    Kaysir, Md Rejvi; Fleming, Simon; MacQueen, Rowan W; Schmidt, Timothy W; Argyros, Alexander

    2016-03-21

    Luminescent solar concentrators (LSCs) are an emerging technology that aims primarily to reduce the cost of solar energy, with great potential for building integrated photovoltaic (PV) structures. However, realizing LSCs with commercially viable efficiency is currently hindered by reabsorption losses. Here, we introduce an approach to reducing reabsorption as well as improving directional emission in LSCs by using stimulated emission. Light from a seed laser (potentially an inexpensive laser diode) passes through the entire area of the LSC panel, modifying the emission spectrum of excited dye molecules such that it is spectrally narrower, at wavelengths that minimize reabsorption to allow net gain in the system, and directed towards a small PV cell. A mathematical model, taking into account thermodynamic considerations, of such a system is presented which identifies key parameters and allows evaluation in terms of net effective output power.

  5. Luminescent solar concentrator improvement by stimulated emission

    NASA Astrophysics Data System (ADS)

    Kaysir, Md Rejvi; Fleming, Simon; MacQueen, Rowan W.; Schmidt, Timothy W.; Argyros, Alexander

    2015-12-01

    Luminescent solar concentrators (LSCs) offer the prospect of reducing the cost of solar energy, and are a promising candidate for building integrated photovoltaic (PV) structures. However, the realization of commercially viable efficiency of LSCs is currently hindered by reabsorption losses. In this work, a method is introduced for reducing reabsorption as well as improving directional emission in LSCs by using stimulated emission. Light from a seed laser (potentially an inexpensive laser diode) passes through the entire length of the LSC panel, modifying the emission spectrum of excited dye molecules such that it is spectrally narrower, at wavelengths that minimize reabsorption, and directed by the seed laser towards a small target PV cell. A mathematical model of such a system is presented which identifies different physical parameters responsible for the power conversion efficiency and gives the net effective output power.

  6. Enhanced UV Emission From Silver/ZnO And Gold/ZnO Core-Shell Nanoparticles: Photoluminescence, Radioluminescence, And Optically Stimulated Luminescence

    PubMed Central

    Guidelli, E. J.; Baffa, O.; Clarke, D. R.

    2015-01-01

    The optical properties of core-shell nanoparticles consisting of a ZnO shell grown on Ag and Au nanoparticle cores by a solution method have been investigated. Both the ZnO/Ag and ZnO/Au particles exhibit strongly enhanced near-band-edge UV emission from the ZnO when excited at 325 nm. Furthermore, the UV intensity increases with the metal nanoparticle concentration, with 60-fold and 17-fold enhancements for the ZnO/Ag and ZnO/Au, core-shell nanoparticles respectively. Accompanying the increase in UV emission, there is a corresponding decrease in the broad band defect emission with nanoparticle concentration. Nonetheless, the broad band luminescence increases with laser power. The results are consistent with enhanced exciton emission in the ZnO shells due to coupling with surface plasmon resonance of the metal nanoparticles. Luminescence measurements during and after exposure to X-rays also exhibit enhanced UV luminescence. These observations suggest that metal nanoparticles may be suitable for enhancing optical detection of ionizing radiation. PMID:26365945

  7. Laboratory analysis and airborne detection of materials stimulated to luminesce by the sun

    USGS Publications Warehouse

    Hemphill, W.R.; Theisen, A.F.; Tyson, R.M.

    1984-01-01

    The Fraunhofer line discriminator (FLD) is an airborne electro-optical device used to image materials which have been stimulated to luminesce by the Sun. Such materials include uranium-bearing sandstone, sedimentary phosphate rock, marine oil seeps, and stressed vegetation. Prior to conducting an airborne survey, a fluorescence spectrometer may be used in the laboratory to determine the spectral region where samples of the target material exhibit maximum luminescence, and to select the optimum Fraunhofer line. ?? 1984.

  8. Conversion of the luminescence of laser dyes in opal matrices to stimulated emission

    SciTech Connect

    Alimov, O K; Basiev, T T; Orlovskii, Yu V; Osiko, V V; Samoilovich, M I

    2008-07-31

    The luminescence and laser characteristics of a synthetic opal matrix filled with organic dyes are studied upon excitation by nanosecond laser pulses. The appearance of stimulated emission in a partially ordered scattering medium is investigated. It is shown that if the luminescence spectrum of a dye (oxazine-17) is located far outside the photonic bandgap of the opal matrix, stimulated emission along a preferential direction in the (111) plane is observed when pumping exceeds a threshold even without an external optical cavity. The stimulated emission spectrum is considerably narrower than the luminescence spectrum and consists of several narrow lines located within the dye luminescence band. If the luminescence spectrum of a dye (rhodamine 6G) overlaps with the photonic bandgap of the opal matrix, a different picture is observed. The loss of radiation in the matrix leads to the red shift of the luminescence spectrum, while the stimulated emission as in the case of oxazine-17 lies is observed within the luminescence band. (active media, lasers, and amplifiers)

  9. Development and implementation of a remote audit tool for high dose rate (HDR) Ir-192 brachytherapy using optically stimulated luminescence dosimetry

    PubMed Central

    Casey, Kevin E.; Alvarez, Paola; Kry, Stephen F.; Howell, Rebecca M.; Lawyer, Ann; Followill, David

    2013-01-01

    Purpose: The aim of this work was to create a mailable phantom with measurement accuracy suitable for Radiological Physics Center (RPC) audits of high dose-rate (HDR) brachytherapy sources at institutions participating in National Cancer Institute-funded cooperative clinical trials. Optically stimulated luminescence dosimeters (OSLDs) were chosen as the dosimeter to be used with the phantom. Methods: The authors designed and built an 8 × 8 × 10 cm3 prototype phantom that had two slots capable of holding Al2O3:C OSLDs (nanoDots; Landauer, Glenwood, IL) and a single channel capable of accepting all 192Ir HDR brachytherapy sources in current clinical use in the United States. The authors irradiated the phantom with Nucletron and Varian 192Ir HDR sources in order to determine correction factors for linearity with dose and the combined effects of irradiation energy and phantom characteristics. The phantom was then sent to eight institutions which volunteered to perform trial remote audits. Results: The linearity correction factor was kL = (−9.43 × 10−5 × dose) + 1.009, where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters using 60Co irradiation. Separate block correction factors were determined for current versions of both Nucletron and Varian 192Ir HDR sources and these vendor-specific correction factors differed by almost 2.6%. For the Nucletron source, the correction factor was 1.026 [95% confidence interval (CI) = 1.023–1.028], and for the Varian source, it was 1.000 (95% CI = 0.995–1.005). Variations in lateral source positioning up to 0.8 mm and distal/proximal source positioning up to 10 mm had minimal effect on dose measurement accuracy. The overall dose measurement uncertainty of the system was estimated to be 2.4% and 2.5% for the Nucletron and Varian sources, respectively (95% CI). This uncertainty was sufficient to establish a ±5% acceptance criterion for source strength audits under a formal RPC

  10. Technical Note: Precision and accuracy of a commercially available CT optically stimulated luminescent dosimetry system for the measurement of CT dose index

    SciTech Connect

    Vrieze, Thomas J.; Sturchio, Glenn M.; McCollough, Cynthia H.

    2012-11-15

    Purpose: To determine the precision and accuracy of CTDI{sub 100} measurements made using commercially available optically stimulated luminescent (OSL) dosimeters (Landaur, Inc.) as beam width, tube potential, and attenuating material were varied. Methods: One hundred forty OSL dosimeters were individually exposed to a single axial CT scan, either in air, a 16-cm (head), or 32-cm (body) CTDI phantom at both center and peripheral positions. Scans were performed using nominal total beam widths of 3.6, 6, 19.2, and 28.8 mm at 120 kV and 28.8 mm at 80 kV. Five measurements were made for each of 28 parameter combinations. Measurements were made under the same conditions using a 100-mm long CTDI ion chamber. Exposed OSL dosimeters were returned to the manufacturer, who reported dose to air (in mGy) as a function of distance along the probe, integrated dose, and CTDI{sub 100}. Results: The mean precision averaged over 28 datasets containing five measurements each was 1.4%{+-} 0.6%, range = 0.6%-2.7% for OSL and 0.08%{+-} 0.06%, range = 0.02%-0.3% for ion chamber. The root mean square (RMS) percent differences between OSL and ion chamber CTDI{sub 100} values were 13.8%, 6.4%, and 8.7% for in-air, head, and body measurements, respectively, with an overall RMS percent difference of 10.1%. OSL underestimated CTDI{sub 100} relative to the ion chamber 21/28 times (75%). After manual correction of the 80 kV measurements, the RMS percent differences between OSL and ion chamber measurements were 9.9% and 10.0% for 80 and 120 kV, respectively. Conclusions: Measurements of CTDI{sub 100} with commercially available CT OSL dosimeters had a percent standard deviation of 1.4%. After energy-dependent correction factors were applied, the RMS percent difference in the measured CTDI{sub 100} values was about 10%, with a tendency of OSL to underestimate CTDI relative to the ion chamber. Unlike ion chamber methods, however, OSL dosimeters allow measurement of the radiation dose profile.

  11. SU-D-304-06: Measurement of LET in Patient-Specific Proton Therapy Treatment Fields Using Optically Stimulated Luminescence Detectors

    SciTech Connect

    Granville, DA; Sahoo, N; Sawakuchi, GO

    2015-06-15

    Purpose: To investigate the use of optically stimulated luminescence (OSL) detectors (OSLDs) for measurements of dose-averaged linear energy transfer (LET) in patient-specific proton therapy treatment fields. Methods: We used Al{sub 2}O{sub 3}:C OSLDs made from the same material as commercially available nanoDot OSLDs from Landauer, Inc. We calibrated two parameters of the OSL signal as functions of LET in therapeutic proton beams: the ratio of the ultraviolet and blue emission intensities (UV/blue ratio) and the OSL curve shape. These calibration curves were created by irradiating OSLDs in passively scattered beams of known LET (0.96 to 3.91 keV/µm). The LET values were determined using a validated Monte Carlo model of the beamline. We then irradiated new OSLDs with the prescription dose (16 to 74 cGy absorbed dose to water) at the center of the spread-out Bragg peak (SOBP) of four patient-specific treatment fields. From readouts of these OSLDs, we determined both the UV/blue ratio and OSL curve shape parameters. Combining these parameters with the calibration curves, we were able to measure LET using the OSLDs. The measurements were compared to the theoretical LET values obtained from Monte Carlo simulations of the patient-specific treatments fields. Results: Using the UV/blue ratio parameter, we were able to measure LET within 3.8%, 6.2%, 5.6% and 8.6% of the Monte Carlo value for each of the patient fields. Similarly, using the OSL curve shape parameter, LET measurements agreed within 0.5%, 11.0%, 2.5% and 7.6% for each of the four fields. Conclusion: We have demonstrated a method to verify LET in patient-specific proton therapy treatment fields using OSLDs. The possibility of enhancing biological effectiveness of proton therapy treatment plans by including LET in the optimization has been previously shown. The LET verification method we have demonstrated will be useful in the quality assurance of such LET optimized treatment plans. DA Granville received

  12. Development and implementation of a remote audit tool for high dose rate (HDR) Ir-192 brachytherapy using optically stimulated luminescence dosimetry

    SciTech Connect

    Casey, Kevin E.; Kry, Stephen F.; Howell, Rebecca M.; Followill, David; Alvarez, Paola; Lawyer, Ann

    2013-11-15

    Purpose: The aim of this work was to create a mailable phantom with measurement accuracy suitable for Radiological Physics Center (RPC) audits of high dose-rate (HDR) brachytherapy sources at institutions participating in National Cancer Institute-funded cooperative clinical trials. Optically stimulated luminescence dosimeters (OSLDs) were chosen as the dosimeter to be used with the phantom.Methods: The authors designed and built an 8 × 8 × 10 cm{sup 3} prototype phantom that had two slots capable of holding Al{sub 2}O{sub 3}:C OSLDs (nanoDots; Landauer, Glenwood, IL) and a single channel capable of accepting all {sup 192}Ir HDR brachytherapy sources in current clinical use in the United States. The authors irradiated the phantom with Nucletron and Varian {sup 192}Ir HDR sources in order to determine correction factors for linearity with dose and the combined effects of irradiation energy and phantom characteristics. The phantom was then sent to eight institutions which volunteered to perform trial remote audits.Results: The linearity correction factor was k{sub L}= (−9.43 × 10{sup −5}× dose) + 1.009, where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters using {sup 60}Co irradiation. Separate block correction factors were determined for current versions of both Nucletron and Varian {sup 192}Ir HDR sources and these vendor-specific correction factors differed by almost 2.6%. For the Nucletron source, the correction factor was 1.026 [95% confidence interval (CI) = 1.023–1.028], and for the Varian source, it was 1.000 (95% CI = 0.995–1.005). Variations in lateral source positioning up to 0.8 mm and distal/proximal source positioning up to 10 mm had minimal effect on dose measurement accuracy. The overall dose measurement uncertainty of the system was estimated to be 2.4% and 2.5% for the Nucletron and Varian sources, respectively (95% CI). This uncertainty was sufficient to establish a ±5% acceptance

  13. Estimating dose to implantable cardioverter-defibrillator outside the treatment fields using a skin QED diode, optically stimulated luminescent dosimeters, and LiF thermoluminescent dosimeters.

    PubMed

    Chan, Maria F; Song, Yulin; Dauer, Lawrence T; Li, Jingdong; Huang, David; Burman, Chandra

    2012-01-01

    The purpose of this work was to determine the relative sensitivity of skin QED diodes, optically stimulated luminescent dosimeters (OSLDs) (microStar™ DOT, Landauer), and LiF thermoluminescent dosimeters (TLDs) as a function of distance from a photon beam field edge when applied to measure dose at out-of-field points. These detectors have been used to estimate radiation dose to patients' implantable cardioverter-defibrillators (ICDs) located outside the treatment field. The ICDs have a thin outer case made of 0.4- to 0.6-mm-thick titanium (∼2.4-mm tissue equivalent). A 5-mm bolus, being the equivalent depth of the devices under the patient's skin, was placed over the ICDs. Response per unit absorbed dose-to-water was measured for each of the dosimeters with and without bolus on the beam central axis (CAX) and at a distance up to 20 cm from the CAX. Doses were measured with an ionization chamber at various depths for 6- and 15-MV x-rays on a Varian Clinac-iX linear accelerator. Relative sensitivity of the detectors was determined as the ratio of the sensitivity at each off-axis distance to that at the CAX. The detector sensitivity as a function of the distance from the field edge changed by ± 3% (1-11%) for LiF TLD-700, decreased by 10% (5-21%) for OSLD, and increased by 16% (11-19%) for the skin QED diode (Sun Nuclear Corp.) at the equivalent depth of 5 mm for 6- or 15-MV photon energies. Our results showed that the use of bolus with proper thickness (i.e., ∼d(max) of the photon energy) on the top of the ICD would reduce the scattered dose to a lower level. Dosimeters should be calibrated out-of-field and preferably with bolus equal in thickness to the depth of interest. This can be readily performed in clinic.

  14. Estimating dose to implantable cardioverter-defibrillator outside the treatment fields using a skin QED diode, optically stimulated luminescent dosimeters, and LiF thermoluminescent dosimeters

    SciTech Connect

    Chan, Maria F.; Song, Yulin; Dauer, Lawrence T.; Li Jingdong; Huang, David; Burman, Chandra

    2012-10-01

    The purpose of this work was to determine the relative sensitivity of skin QED diodes, optically stimulated luminescent dosimeters (OSLDs) (microStar Trade-Mark-Sign DOT, Landauer), and LiF thermoluminescent dosimeters (TLDs) as a function of distance from a photon beam field edge when applied to measure dose at out-of-field points. These detectors have been used to estimate radiation dose to patients' implantable cardioverter-defibrillators (ICDs) located outside the treatment field. The ICDs have a thin outer case made of 0.4- to 0.6-mm-thick titanium ({approx}2.4-mm tissue equivalent). A 5-mm bolus, being the equivalent depth of the devices under the patient's skin, was placed over the ICDs. Response per unit absorbed dose-to-water was measured for each of the dosimeters with and without bolus on the beam central axis (CAX) and at a distance up to 20 cm from the CAX. Doses were measured with an ionization chamber at various depths for 6- and 15-MV x-rays on a Varian Clinac-iX linear accelerator. Relative sensitivity of the detectors was determined as the ratio of the sensitivity at each off-axis distance to that at the CAX. The detector sensitivity as a function of the distance from the field edge changed by {+-} 3% (1-11%) for LiF TLD-700, decreased by 10% (5-21%) for OSLD, and increased by 16% (11-19%) for the skin QED diode (Sun Nuclear Corp.) at the equivalent depth of 5 mm for 6- or 15-MV photon energies. Our results showed that the use of bolus with proper thickness (i.e., {approx}d{sub max} of the photon energy) on the top of the ICD would reduce the scattered dose to a lower level. Dosimeters should be calibrated out-of-field and preferably with bolus equal in thickness to the depth of interest. This can be readily performed in clinic.

  15. Comparative dose evaluations between XVI and OBI cone beam CT systems using Gafchromic XRQA2 film and nanoDot optical stimulated luminescence dosimeters

    SciTech Connect

    Giaddui, Tawfik; Cui Yunfeng; Galvin, James; Yu Yan; Xiao Ying

    2013-06-15

    Purpose: To investigate the effect of energy (kVp) and filters (no filter, half Bowtie, and full Bowtie) on the dose response curves of the Gafchromic XRQA2 film and nanoDot optical stimulated luminescence dosimeters (OSLDs) in CBCT dose fields. To measure surface and internal doses received during x-ray volume imager (XVI) (Version R4.5) and on board imager (OBI) (Version 1.5) CBCT imaging protocols using these two types of dosimeters. Methods: Gafchromic XRQA2 film and nanoDot OSLD dose response curves were generated at different kV imaging settings used by XVI (software version R4.5) and OBI (software version 1.5) CBCT systems. The settings for the XVI system were: 100 kVp/F0 (no filter), 120 kVp/F0, and 120 kVp/F1 (Bowtie filter), and for the OBI system were: 100 kVp/full fan, 125 kVp/full fan, and 125 kVp/half fan. XRQA2 film was calibrated in air to air kerma levels between 0 and 11 cGy and scanned using reflection scanning mode with the Epson Expression 10000 XL flat-bed document scanner. NanoDot OSLDs were calibrated on phantom to surface dose levels between 0 and 14 cGy and read using the inLight{sup TM} MicroStar reader. Both dosimeters were used to measure in field surface and internal doses in a male Alderson Rando Phantom. Results: Dose response curves of XRQA2 film and nanoDot OSLDs at different XVI and OBI CBCT settings were reported. For XVI system, the surface dose ranged between 0.02 cGy in head region during fast head and neck scan and 4.99 cGy in the chest region during symmetry scan. On the other hand, the internal dose ranged between 0.02 cGy in the head region during fast head and neck scan and 3.17 cGy in the chest region during chest M20 scan. The average (internal and external) dose ranged between 0.05 cGy in the head region during fast head and neck scan and 2.41 cGy in the chest region during chest M20 scan. For OBI system, the surface dose ranged between 0.19 cGy in head region during head scan and 4.55 cGy in the pelvis region during

  16. Luminescence Originating in an Optical Fiber

    DTIC Science & Technology

    1988-10-28

    TIME COVERED /1 14. DATE OF REPORT (Year Month, Oay) S.PAGE COUNT Technical FROM TO_ _ 28 October 1988 12 16. SUPPLEMENTARY NOTATION Applied ... Spectroscopy 17. COSATI CODES18. SUB Eg.TERMS (Continue on reverse if necessary and identify by block number) FIED OUPU Optical Fibers, Luminescence, Sensors

  17. Monolithic Integrated Radiation Sensor Using Stimulated Luminescence From Alumina

    NASA Technical Reports Server (NTRS)

    McKeever, S. W. S.; Yukihara, E. G.; Stoebe, T. G.; Chen, T.-C.

    2005-01-01

    The project goal was to design and test a monolithic integrated device for radiation sensing, using optically stimulated luminescence (OSL) from Al2O3:C. The device would consist of GaN/InGaN-based components epitaxially grown on each side of a A12O3:C substrate. Radiation energy stored in the substrate would be stimulated by visible emission from a GaN light-emitting diode (LED) grown on one side of the device, and the OSL emission from the substrate (in the blue region of the spectrum) would be detected by the InGaN pi-n diode grown on the other side of the substrate. The primary application of the device would be in space radiation environments. Thus, two major research thrusts were launched during this project. Firstly, research at Oklahoma State University (Dr. Stephen W.S. McKeever and Dr. E.G. Yukihara) concentrated on characterization of the OSL properties of Al2O3:C in radiation fields typical of those experienced in low-Earth orbit. Secondly, research at the University of Washington (Co-Is, Dr. T.G. Stoebe and Dr. T. Chen) focused of device development and GaN/InGaN epitaxial growth. While progress in each line of research has been substantial, the ultimate goal (that of producing a working prototype device) has not yet been reached. We detail the research progress and identify outstanding issues in this paper.

  18. Dependence of the stimulated luminescence threshold in ZnO nanocrystals on their geometric shape

    SciTech Connect

    Gruzintsev, A. N. Redkin, A. N.; Barthou, C.

    2010-05-15

    The effect of the shape and dimensions of zinc oxide nanocrystals on the spontaneous luminescence decay times and the thresholds of stimulated luminescence in the ultraviolet spectral region is studied. It is shown that the columnar nanocrystals with hexagonal faceting exhibit the lowest threshold power of optical excitation for the diameters of the nanocavities are 100-200 nm, comparable to the absorption length for the excitation light. Different mechanisms of lasing are established for nanocrystals shaped as prisms and pyramids with a hexagonal base. Variations in the decay times and lasing thresholds can be attributed to different local densities of photon states in regularly shaped nanocrystals.

  19. Evaluation of environmental dose at JCO using luminescence from quartz stimulated by blue light.

    PubMed

    Hong, D G; Galloway, R B; Takano, M; Hashimoto, T

    2001-01-01

    The environmental dose due to the recent nuclear accident at JCO, Japan, was estimated using luminescence optically stimulated from unheated quartz. Two methods originally developed for dating analysis, the single aliquot additive dose method and the single aliquot regeneration added dose method, were employed to confirm the dose rate. Consistent results were obtained from both methods and from thermoluminescence measurements. Although the dose rate values had lower precision than can be obtained from heated materials, it is suggested that luminescence from sedimentary quartz can usefully be employed in retrosepective dosimetry.

  20. Luminescent probes for optical in vivo imaging

    NASA Astrophysics Data System (ADS)

    Texier, Isabelle; Josserand, Veronique; Garanger, Elisabeth; Razkin, Jesus; Jin, Zhaohui; Dumy, Pascal; Favrot, Marie; Boturyn, Didier; Coll, Jean-Luc

    2005-04-01

    Going along with instrumental development for small animal fluorescence in vivo imaging, we are developing molecular fluorescent probes, especially for tumor targeting. Several criteria have to be taken into account for the optimization of the luminescent label. It should be adapted to the in vivo imaging optical conditions : red-shifted absorption and emission, limited overlap between absorption and emission for a good signal filtering, optimized luminescence quantum yield, limited photo-bleaching. Moreover, the whole probe should fulfill the biological requirements for in vivo labeling : adapted blood-time circulation, biological conditions compatibility, low toxicity. We here demonstrate the ability of the imaging fluorescence set-up developed in LETI to image the bio-distribution of molecular probes on short times after injection. Targeting with Cy5 labeled holo-transferrin of subcutaneous TS/Apc (angiogenic murine breast carcinoma model) or IGROV1 (human ovarian cancer) tumors was achieved. Differences in the kinetics of the protein uptake by the tumors were evidenced. IGROV1 internal metastatic nodes implanted in the peritoneal cavity could be detected in nude mice. However, targeted metastatic nodes in lung cancer could only be imaged after dissection of the mouse. These results validate our fluorescence imaging set-up and the use of Cy5 as a luminescent label. New fluorescent probes based on this dye and a molecular delivery template (the RAFT molecule) can thus be envisioned.

  1. Optical Receiver Based On Luminescent Light Trapping

    NASA Technical Reports Server (NTRS)

    Perry, Joseph W.; Cole, Terry; Zewail, Ahmed H.

    1991-01-01

    Experiment demonstrates feasibility of optical-communication receiver based on luminescent light trapping. Light-gathering element plate of transparent material impregnated with laser dye. Light from distant laser transmitter falls on plate and absorbed by dye molecules, which become excited and reradiate. Reradiated light confined within plate by total internal reflection as it propagates toward edge of plate. Light arriving at edge escapes from plate and detected by small, high-speed, high-gain photomultiplier tubes or other photosensitive devices. Simple, inexpensive, and accepts light from almost any angle. Receiver of this configuration supports reception of data at rate of 13 MHz and higher.

  2. Red-IR stimulated luminescence in K-feldspar: Single or multiple trap origin?

    NASA Astrophysics Data System (ADS)

    Thalbitzer Andersen, Martin; Jain, Mayank; Tidemand-Lichtenberg, Peter

    2012-08-01

    We investigate on the origins of the infra-red stimulated luminescence (IRSL) signals in 3 potassium feldspars based on IR-red spectroscopy (˜700-1050 nm) using a fiber-coupled tunable Ti:Sapphire laser, in combination with different thermal and optical (pre)treatments of the samples. We also measure dose-response curves with different wavelengths and at different stimulation temperatures so as to be able to distinguish between traps based on their electron trapping cross-sections. Our data suggest that the dosimetric signals, IRSL, and the post IR-IRSL in K-feldspars arise from a single electron trapping centre.

  3. Optically stimulated differential impedance spectroscopy

    SciTech Connect

    Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P

    2014-02-18

    Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.

  4. Solid-state luminescence for the optical examination of archaeological glass beads

    NASA Astrophysics Data System (ADS)

    Zacharias, N.; Beltsios, K.; Oikonomou, A.; Karydas, A. G.; Bassiakos, Y.; Michael, C. T.; Zarkadas, Ch.

    2008-03-01

    The work pertains to the application of solid-state luminescence as a characterization tool for glassy ceramic cultural artefacts. An archaeological glass bead collection excavated at the city of Thebes, Greece and considered as unique in terms of typological variety and time span was examined with the application of luminescence techniques (thermoluminescence, optically stimulated luminescence). Additionally, X-rays fluorescence (XRF) was used to provide non-destructively the elemental concentration profile of the samples. The thermoluminescence signals following laboratory irradiation provided distinct groups of spectra types according to the color classification of the samples. For each sample, the signal sensitivity and growth were examined using both thermoluminescence and optically stimulated luminescence recording. The study provides evidence for the usefulness of the combined application of luminescence and non-destructive, XRF-based, elemental analysis for the characterization of glass assemblages. Finally, due to the satisfactory level of radiation-induced signal intensity, the work suggests the possibility of chronological estimation of ancient glass beads using luminescence dating protocols.

  5. The effect of different bleaching wavelengths on the sensitivity of Al{sub 2}O{sub 3}:C optically stimulated luminescence detectors (OSLDs) exposed to 6 MV photon beams

    SciTech Connect

    Omotayo, Azeez A.; Cygler, Joanna E.; Sawakuchi, Gabriel O.

    2012-09-15

    Purpose: To determine the effect of different bleaching wavelengths on the response of Al{sub 2}O{sub 3}:C optically stimulated luminescence detectors (OSLDs) exposed to accumulated doses of 6 MV photon beams. Methods: In this study the authors used nanoDot OSLDs readout with a MicroStar reader. The authors first characterized the dose-response, fading, and OSL signal loss of OSLDs exposed to doses from 0.5 to 10 Gy. To determine the effect of different bleaching wavelengths on the OSLDs' response, the authors optically treated the OSLDs with 26 W fluorescent lamps in two modes: (i) directly under the lamps for 10, 120, and 600 min and (ii) with a long-pass filter for 55, 600, and 2000 min. Changes in the OSLDs' sensitivity were determined for an irradiation-readout-bleaching-readout cycle after irradiations with 1 and 10 Gy dose fractions. Results: The OSLDs presented supralinearity for doses of 2 Gy and above. The signal loss rates for sequential readouts were (0.287 {+-} 0.007)% per readout in the reader's strong-stimulation mode, and (0.019 {+-} 0.002)% and (0.035 {+-} 0.007)% per readout for doses of 0.2 and 10 Gy, respectively, in the reader's weak-stimulation mode. Fading half-life values ranged from (0.98 {+-} 0.14) min to (1.77 {+-} 0.24) min and fading showed dose dependence for the first 10-min interval. For 10 and 55 min bleaching using modes (i) and (ii), the OSL signal increased 14% for an accumulated dose of 7 Gy (1 Gy fractions). For OSLDs exposed to 10 Gy fractions, the OSL signal increased 30% and 25% for bleaching modes (i) and (ii) and accumulated dose of 70 Gy, respectively. For 120 and 600 min bleaching using modes (i) and (ii), the OSL signal increased 2.7% and 1.5% for an accumulated dose of 7 Gy (1 Gy fractions), respectively. For 10 Gy fractions, the signal increased 14% for bleaching mode (i) (120 min bleaching) and decreased 1.3% for bleaching mode (ii) (600 min bleaching) for an accumulated dose of 70 Gy. For 600 and 2000 min bleaching

  6. Identifying irradiated flours by photo-stimulated luminescence technique

    SciTech Connect

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi; Othman, Zainon; Abdullah, Wan Saffiey Wan

    2014-02-12

    Photo-stimulated luminescence (PSL) technique was used in this study to detect gamma irradiation treatment of five types of flours (corn, rice, tapioca, wheat and glutinous rice) at four different doses 0, 0.2, .05 and 1kGy. The signal level was compared with two threshold values (700 and 5000). With the exception of glutinous rice, all irradiated samples produced a strong signal above the upper threshold (5000 counts/60s). All control samples produced negative result with the signals below the lower threshold (700 counts/60s) suggesting that the samples have not been irradiated. Irradiated glutinous rice samples produced intermediate signals (700 - 5000 counts/60s) which were subsequently confirmed using calibrated PSL. The PSL signals remained stable after 90 days of storage. The findings of this study will be useful to facilitate control of food irradiation application in Malaysia.

  7. Identifying irradiated flours by photo-stimulated luminescence technique

    NASA Astrophysics Data System (ADS)

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi; Othman, Zainon; Abdullah, Wan Saffiey Wan

    2014-02-01

    Photo-stimulated luminescence (PSL) technique was used in this study to detect gamma irradiation treatment of five types of flours (corn, rice, tapioca, wheat and glutinous rice) at four different doses 0, 0.2, .05 and 1kGy. The signal level was compared with two threshold values (700 and 5000). With the exception of glutinous rice, all irradiated samples produced a strong signal above the upper threshold (5000 counts/60s). All control samples produced negative result with the signals below the lower threshold (700 counts/60s) suggesting that the samples have not been irradiated. Irradiated glutinous rice samples produced intermediate signals (700 - 5000 counts/60s) which were subsequently confirmed using calibrated PSL. The PSL signals remained stable after 90 days of storage. The findings of this study will be useful to facilitate control of food irradiation application in Malaysia.

  8. Optical luminescence studies of the ethyl xanthate adsorption layer on the surface of sphalerite minerals.

    PubMed

    Todoran, R; Todoran, D; Szakács, Zs

    2016-01-05

    In this work we propose optical luminescence measurements as a method to evaluate the kinetics of adsorption processes. Measurement of the intensity of the integral optical radiation obtained from the mineral-xanthate interface layer, stimulated with a monochromatic pulsating optical signal, as a function of time were made. The luminescence radiation was obtained from the thin interface layer formed at the separation surface between the sphalerite natural mineral and potassium ethyl xanthate solution, for different solution concentrations and pH-es at the constant industry standard temperature. This method enabled us to determine the time to achieve dynamic equilibrium in the formation of the interface layer of approximately 20min, gaining information on the adsorption kinetics in the case of xanthate on mineral surface and leading to the optimization of the industrial froth flotation process.

  9. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlam, Michael C; Alivisatos, A. Paul

    2014-03-25

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  10. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2010-04-13

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  11. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C; Alivisatos, A. Paul

    2014-02-11

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  12. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, Paul A.

    2015-11-10

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  13. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2015-06-23

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  14. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2011-09-27

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  15. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2005-03-08

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  16. Donor characterization in ZnO by thermally stimulated luminescence

    SciTech Connect

    Ji, jianfeng; Boatner, Lynn A; Selim, F. A.

    2014-01-01

    Low temperature thermo-luminescence (TL) was applied to measurements of the ionization energy of donors in ZnO. Three hydrogen-related donors were characterized with ionization energies of 36, 47 and 55 meV - values that are in complete agreement with previous reports. The donor types can be switched by relevant thermal treatments. These measurements also revealed the presence of two distinct sources for the green luminescence in ZnO. This work indicates that TL can be used to measure the donor energies in luminescent semiconductors. This approach can be particularly useful for thin-film investigations when the results of Hall-effect measurements are obscured by contributions from conductive interfaces or substrates.

  17. Detection of UV light based on chemically stimulated luminescence of crystal phosphors

    NASA Astrophysics Data System (ADS)

    Grankin, D. V.; Grankin, V. P.; Martysh, M. A.

    2016-06-01

    High-efficiency accommodation of heterogeneous-reaction energy via an electronic channel and the possibility of using this effect to design an ionizing (UV) radiation detector based on chemically stimulated luminescence have been investigated. Preliminary irradiation of a ZnS sample by UV light is found to cause a luminescence flash under subsequent exposure of the sample surface to a flux of hydrogen atoms. The flash intensity depends on the UV excitation level and increases by several orders of magnitude in comparison with an unirradiated sample. It is shown that a new method for detecting UV light using chemically stimulated luminescence of crystal phosphors accumulating light yield can be developed based on this effect.

  18. Detection of Luminescent Nanodiamonds Using a Scanning Near-Field Optical Microscope with an Aperture Probe

    NASA Astrophysics Data System (ADS)

    Shershulin, V. A.; Samoylenko, S. R.; Shenderova, O. A.; Vlasov, I. I.; Konov, V. I.

    2016-09-01

    Scanning near-fi eld optical microscopy (SNOM) with an aperture probe has been used to map the luminescence of isolated submicron diamond crystallites. 532-nm laser light was used to excite luminescence of nitrogen-vacancy (NV) centers. The sizes of the analyzed diamond crystallites were determined with an atomic-force microscope. The optical resolution for the lateral dimensions of the luminescing diamond crystallites was doubled on going from confocal luminescence microscopy to scanning near-fi eld optical microscopy with a 290-nm probe aperture diameter.

  19. Detection of surface impurity phases in high T.sub.C superconductors using thermally stimulated luminescence

    DOEpatents

    Cooke, D. Wayne; Jahan, Muhammad S.

    1989-01-01

    Detection of surface impurity phases in high-temperature superconducting materials. Thermally stimulated luminescence has been found to occur in insulating impurity phases which commonly exist in high-temperature superconducting materials. The present invention is sensitive to impurity phases occurring at a level of less than 1% with a probe depth of about 1 .mu.m which is the region of interest for many superconductivity applications. Spectroscopic and spatial resolution of the emitted light from a sample permits identification and location of the impurity species. Absence of luminescence, and thus of insulating phases, can be correlated with low values of rf surface resistance.

  20. Use of an airborne Fraunhofer line discriminator for the detection of solar stimulated luminescence

    USGS Publications Warehouse

    Watson, Robert D.; Hemphill, William R.

    1976-01-01

    Future work will include the integration of the FLO with a line scan imaging system in order to assess the contribution of two-dimensional spatial resolution to the interpretability and usefulness of luminescence data. It should also include 1) investigation of luminescence polarization of some materials, particularly metal stressed plants, 2) an assessment of the use of pulsed lasers to stimulate phosphorescence decay time in the nanosecond and microsecond ranges; and 3) a study to determine the feasibility of conducting an FLO experiment from the Space Shuttle or other spacecraft.

  1. X-ray and thermally stimulated luminescence in YAG

    SciTech Connect

    Smol'skaya, L.P.; Martynovich, E.F.; Davydchenko, A.G.; Smirnova, S.A.

    1987-07-01

    Yttrium aluminum garnet Y/sub 3/Al/sub 5/O/sub 12/ (YAG) crystals with rare earth ion (REI) impurities are widely used in laser technology and also in the capacity of cathode luminophors. Recently they have attracted the attention of researchers for their possible use as x-ray luminophors, scintillators, and thermoluminescent detectors. However, research in these areas is not very comprehensive. This work compares the intensity of x-ray luminescence (XRL) and the inertial characteristics of YAG monocrystals that are activated by REI (Ce/sup 3 +/, Sm/sup 3 +/, Dy/sup 3 +/, Tm/sup 3 +/, and Er/sup 3 +/), with the x-ray luminophore CsI-Tl. Since the existence of deep capture levels exerts a significant influence on the useful properties of x-ray luminophores, YAG thermoluminescence was also studied.

  2. Method of measuring luminescence of a material

    SciTech Connect

    Miller, Steven D.

    2015-12-15

    A method of measuring luminescence of a material is disclosed. The method includes applying a light source to excite an exposed material. The method also includes amplifying an emission signal of the material. The method further includes measuring a luminescent emission at a fixed time window of about 10 picoseconds to about 10 nanoseconds. The luminescence may be radio photoluminescence (RPL) or optically stimulated luminescence (OSL).

  3. Dynamic optical projection of acquired luminescence for aiding oncologic surgery

    NASA Astrophysics Data System (ADS)

    Sarder, Pinaki; Gullicksrud, Kyle; Mondal, Suman; Sudlow, Gail P.; Achilefu, Samuel; Akers, Walter J.

    2013-12-01

    Optical imaging enables real-time visualization of intrinsic and exogenous contrast within biological tissues. Applications in human medicine have demonstrated the power of fluorescence imaging to enhance visualization in dermatology, endoscopic procedures, and open surgery. Although few optical contrast agents are available for human medicine at this time, fluorescence imaging is proving to be a powerful tool in guiding medical procedures. Recently, intraoperative detection of fluorescent molecular probes that target cell-surface receptors has been reported for improvement in oncologic surgery in humans. We have developed a novel system, optical projection of acquired luminescence (OPAL), to further enhance real-time guidance of open oncologic surgery. In this method, collected fluorescence intensity maps are projected onto the imaged surface rather than via wall-mounted display monitor. To demonstrate proof-of-principle for OPAL applications in oncologic surgery, lymphatic transport of indocyanine green was visualized in live mice for intraoperative identification of sentinel lymph nodes. Subsequently, peritoneal tumors in a murine model of breast cancer metastasis were identified using OPAL after systemic administration of a tumor-selective fluorescent molecular probe. These initial results clearly show that OPAL can enhance adoption and ease-of-use of fluorescence imaging in oncologic procedures relative to existing state-of-the-art intraoperative imaging systems.

  4. Optical luminescence spectroscopy as a probe of the surface mineralogy of Mars

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.

    1992-01-01

    Optical luminescence (OpL) spectroscopy is an attractive use of a visible-near-IR spectrometer on a Mars lander because mineral products of atmosphere-surface interactions on Mars will probably have characteristic OpL spectra. Optical luminescence spectra would be taken at night, when a spectrometer might otherwise sit idle. Also needed would be a source of exciting radiation, which could be shared with other experiments. Optical luminescence is emission of nonthermal optical photons (near-UV through near-IR) as a response to energy input. On absorption of energy, an atom (or ion) will enter an excited state. The favored decay of many such excited states involving valence-band electrons is emission of an optical photon. Optical luminescence spectra can be useful in determining mineralogy and mineral composition. Optical luminescence in crystals can arise from essential elements (or ions), trace-element substituents (activators), or defects. Common activators in salts of alkali and alkaline earth elements include Mn(2+)(VI), other transition metals, the rare earths, and the actinides. Trace substituents of other species can enhance or quench OpL (e.g., Pb(2+) vs. Fe(3+)). Optical luminescence can also arise from defects in crystal structures, including those caused by radiation and shock.

  5. Optical stimulation of peripheral nerves in vivo

    NASA Astrophysics Data System (ADS)

    Wells, Jonathon D.

    This dissertation documents the emergence and validation of a new clinical tool that bridges the fields of biomedical optics and neuroscience. The research herein describes an innovative method for direct neurostimulation with pulsed infrared laser light. Safety and effectiveness of this technique are first demonstrated through functional stimulation of the rat sciatic nerve in vivo. The Holmium:YAG laser (lambda = 2.12 mum) is shown to operate at an optimal wavelength for peripheral nerve stimulation with advantages over standard electrical neural stimulation; including contact-free stimulation, high spatial selectivity, and lack of a stimulation artifact. The underlying biophysical mechanism responsible for transient optical nerve stimulation appears to be a small, absorption driven thermal gradient sustained at the axonal layer of nerve. Results explicitly prove that low frequency optical stimulation can reliably stimulate without resulting in tissue thermal damage. Based on the positive results from animal studies, these optimal laser parameters were utilized to move this research into the clinic with a combined safety and efficacy study in human subjects undergoing selective dorsal rhizotomy. The clinical Holmium:YAG laser was used to effectively stimulate human dorsal spinal roots and elicit functional muscle responses recorded during surgery without evidence of nerve damage. Overall these results predict that this technology can be a valuable clinical tool in various neurosurgical applications.

  6. Laser stimulated plasma-induced luminescence for on-air material analysis

    NASA Astrophysics Data System (ADS)

    Veltri, S.; Barberio, M.; Liberatore, C.; Scisciò, M.; Laramée, A.; Palumbo, L.; Legaré, F.; Antici, P.

    2017-01-01

    In this work, we present a method for performing analysis of the chemical composition and optical properties of materials using In-Air Plasma-Induced Luminescence. This is achieved by interaction of a focused high-energy laser with air, an interaction that produces a sub-millimetric plasma. The energetic electrons generated and accelerated in the plasma at energies higher than 5 keV reach the target surface of the sample to be analyzed, causing luminescence emission and plasmonic resonance. Each material is characterized by different chemical and optical properties that can be determined with the above-described technique. As such, our method allows obtaining an exact analysis of the sample, covering surfaces in the range of tens of mm2, in only a few minutes. We show that the acquired information with our method is identical to what obtained with more sophisticated methods, such as SEM-cathodoluminescence and photoluminescence.

  7. Semiconducting Polymer Nanoparticles with Persistent Near-infrared Luminescence Show Potential for In Vivo Optical Imaging**

    PubMed Central

    Palner, Mikael; Pu, Kanyi; Shao, Shirley

    2015-01-01

    Materials with persistent luminescence are attractive for in vivo optical imaging since they have a long lifetime that allows the separation of excitation of fluorophores and image acquisition for time-delay imaging, thus eliminating tissue autofluorescence associated with fluorescence imaging. Persistently luminescent nanoparticles have previously been fabricated from toxic rare-earth metals. This work reports that nanoparticles made of the conjugated polymer MEH-PPV can generate luminescence persisting for an hour long upon single excitation. A near-infrared dye was encapsulated in the conjugated polymer nanoparticle to successfully generate persistent near-infrared luminescence through resonance energy transfer. This new persistent luminescence nanoparticles have been demonstrated for optical imaging applications in living mice. PMID:26223794

  8. Semiconducting Polymer Nanoparticles with Persistent Near-Infrared Luminescence for In Vivo Optical Imaging.

    PubMed

    Palner, Mikael; Pu, Kanyi; Shao, Shirley; Rao, Jianghong

    2015-09-21

    Materials with persistent luminescence are attractive for in vivo optical imaging since they have a long lifetime that allows the separation of excitation of fluorophores and image acquisition for time-delay imaging, thus eliminating tissue autofluorescence associated with fluorescence imaging. Persistently luminescent nanoparticles have previously been fabricated from toxic rare-earth metals. This work reports that nanoparticles made of the conjugated polymer MEH-PPV can generate luminescence persisting for an hour upon single excitation. A near-infrared dye was encapsulated in the conjugated polymer nanoparticle to successfully generate persistent near-infrared luminescence through resonance energy transfer. This new persistent luminescence nanoparticles have been demonstrated for optical imaging applications in living mice.

  9. Stimulated Photorefractive Optical Neural Networks

    DTIC Science & Technology

    1992-12-15

    This final report describes research in optical neural networks performed under DARPA sponsorship at Hughes Aircraft Company during the period 1989...in photorefractive crystals. This approach reduces crosstalk and improves the utilization of the optical input device. Successfully implemented neural ... networks include the Perceptron, Bidirectional Associative Memory, and multi-layer backpropagation networks. Up to 104 neurons, 2xl0(7) weights, and

  10. Hard X-ray-induced optical luminescence via biomolecule-directed metal clusters.

    PubMed

    Osakada, Yasuko; Pratx, Guillem; Sun, Conroy; Sakamoto, Masanori; Ahmad, Moiz; Volotskova, Olga; Ong, Qunxiang; Teranishi, Toshiharu; Harada, Yoshie; Xing, Lei; Cui, Bianxiao

    2014-04-07

    Here, we demonstrate that biomolecule-directed metal clusters are applicable in the study of hard X-ray excited optical luminescence, promising a new direction in the development of novel X-ray-activated imaging probes.

  11. Stimulated thermal Rayleigh scattering in optical fibers.

    PubMed

    Dong, Liang

    2013-02-11

    Recently, mode instability was observed in optical fiber lasers at high powers, severely limiting power scaling for single-mode outputs. Some progress has been made towards understanding the underlying physics. A thorough understanding of the effect is critical for continued progress of this very important technology area. Mode instability in optical fibers is, in fact, a manifestation of stimulated thermal Rayleigh scattering. In this work, a quasi-closed-form solution for the nonlinear coupling coefficient is found for stimulated thermal Rayleigh scattering in optical fibers. The results help to significantly improve understanding of mode instability.

  12. Optical Sensors Using Stimulated Brillouin Scattering

    NASA Technical Reports Server (NTRS)

    Christensen, Caleb A (Inventor); Zavriyev, Anton (Inventor)

    2017-01-01

    A method for enhancing a sensitivity of an optical sensor having an optical cavity counter-propagates beams of pump light within the optical cavity to produce scattered light based on Stimulated Brillouin Scattering (SBS). The properties of the pump light are selected to generate fast-light conditions for the scattered light, such that the scattered light includes counter-propagating beams of fast light. The method prevents the pump light from resonating within the optical cavity, while allowing the scattered light to resonate within the optical cavity. At least portions of the scattered light are interfered outside of the optical cavity to produce a beat note for a measurement of the optical sensor. The disclosed method is particularly applicable to optical gyroscopes.

  13. Localized excitons and defects in PbWO4 single crystals: a luminescence and photo-thermally stimulated disintegration study

    NASA Astrophysics Data System (ADS)

    Krasnikov, A.; Nikl, M.; Zazubovich, S.

    The cover picture refers to the article by Aleksei Krasnikov et al., that was selected as Editor's Choice [1]. It depicts a fragment of a lead tungstate (PbWO4) crystal lattice structure and illustrates the complex anion (WO4)2- tetrahedra bonded to the Pb2+ cation. Perturbation of the (WO4)2- tetrahedra by defects nearby results in exciton localization near the defects and a slightly different emission spectrum, which is shown in the diagram. Localized excitons are evidenced for the first time in the PbWO4 structure. Under selective irradiation of PbWO4 crystals in the ultraviolet spectral region, the decay of various localized excitons into stable defects takes place, which can be detected by a sensitive thermally stimulated luminescence method. Aleksei Krasnikov is a PhD student at the University of Tartu, Estonia. Martin Nikl holds a position as a senior scientist and head of the Laboratory of Luminescence and Scintillation Materials at the Institute of Physics of the Czech Academy of Sciences. Svetlana Zazubovich is a senior scientist at the Institute of Physics, University of Tartu. The research groups of Martin Nikl and Svetlana Zazubovich have been collaborating closely for the last 15 years mainly in the field of optical spectroscopy of wide band-gap scintillation materials

  14. Persistent luminescence induced by near infra-red photostimulation in chromium-doped zinc gallate for in vivo optical imaging

    NASA Astrophysics Data System (ADS)

    Sharma, Suchinder K.; Gourier, Didier; Teston, Eliott; Scherman, Daniel; Richard, Cyrille; Viana, Bruno

    2017-01-01

    The analysis of the optical spectroscopy of the Cr3+ doped spinel was initiated by Prof. Georges Boulon more than twenty years ago. More recently persistent luminescence nanoparticles of Cr doped zinc gallate have found interest for in vivo imaging of small animals. Here we evaluated near infra-red (NIR) excitation (or NIR photostimulation) via photo-transfer mechanism as an additional tool for in vivo optical imaging. Investigation of the persistent luminescence induced by NIR photostimulation is studied after either a primary UV (band-to-band excitation) or visible irradiation (direct Cr 3d-3d excitation). UV or visible pre-excited ZnGa2O4:Cr (ZGO:Cr) nanoparticles are kept active during several days thanks to deep traps (with depths 1 eV-1.2 eV) observed in these samples which can be probed through thermally stimulated luminescence (TSL) technique showing glow curve maximums at 470 K and 530 K upon visible light excitation. These deep traps are stable at room temperature but can be emptied by NIR light photostimulation. Experiments were carried out to study the photostimulation induced trapping-detrapping in the ZGO:Cr phosphor. Photostimulation was also tested in vivo for small animal optical imaging to offer new perspectives and modalities.

  15. Optical and Thermal Stability of Oligofluorene/Rubber Luminescent Blend.

    PubMed

    Barbosa, Camila G; Faez, Roselena; Péres, Laura O

    2016-09-01

    This paper proposes to obtain homogeneous and stable blends of oligo(9,9-dioctylfluorene)-co-phenylene (OF), a conjugated oligomer with strong tendency of formation of excimers in the solid state, and nitrile rubber (NBR). This rubber protection reduces the formation of polymer excimers in the films. The fluorene oligomer was synthesized via Suzuki reaction and incorporated in the nitrile rubber. The films were formed by spin coating and casting techniques on the proportions of 1, 5, 10, 20 and 50 % (w/w) of OF in the nitrile rubber (NBR). The structural, optical and thermal properties of the films were evaluated with infrared, UV-Vis, fluorescence and thermogravimetry, respectively. The nitrile rubber proved to be essential for the preparation of homogeneous and stable films, since it was not possible to obtain films with only fluorene using the above-mentioned techniques. Furthermore, luminescent properties of OF are unchanged and the excimers formation in the solid state decrease suggesting the efficiency of nitrile rubber as the matrix for making films.

  16. Stimulation of luminescence of mycelium of luminous fungus Neonothopanus nambi by ionizing radiation.

    PubMed

    Kobzeva, Tatiana V; Melnikov, Anatoly R; Karogodina, Tatiana Y; Zikirin, Samat B; Stass, Dmitri V; Molin, Yuri N; Rodicheva, Emma K; Medvedeva, Svetlana E; Puzyr, Alexey P; Burov, Andrey A; Bondar, Vladimir S; Gitelson, Joseph I

    2014-11-01

    The luminescent system of higher luminous fungi is not fully understood and the enzyme/substrate pair of the light emission reaction has not been isolated. It was suggested that luminescence of fungi involves oxidase-type enzymes, and reactive oxygen species are important for fungal light production. Generation of reactive oxygen species can be stimulated by ionizing irradiation, which has not been studied for luminous fungi. We report the effect of X-irradiation on the luminescence of fungus Neonothopanus nambi. Experiments were performed with mycelium on a home-built setup based on an X-ray tube and monochromator/photomultiplier tube. Application of X-rays does not change the emission spectrum, but after approximately 20 min of continuous irradiation, light production from unsupported mycelium starts growing and increases up to approximately five times. After peaking, its level decreases irrespective of the presence of X-irradiation. After staying at a certain level, light production collapses to zero, which is not related to the drying of the mycelium or thermal impact of radiation. The observed shape of kinetics is characteristic of a multistage and/or chain reaction. The time profile of light production must reflect the current levels of radicals present in the system and/or the activity of enzyme complexes involved in light production.

  17. Optical stimulation of neural tissue in vivo

    NASA Astrophysics Data System (ADS)

    Wells, Jonathon; Kao, Chris; Mariappan, Karthik; Albea, Jeffrey; Jansen, E. Duco; Konrad, Peter; Mahadevan-Jansen, Anita

    2005-03-01

    For more than a century, the traditional method of stimulating neural activity has been based on electrical methods, and it remains the gold standard to date. We report a technological breakthrough in neural activation in which low-level, pulsed infrared laser light is used to elicit compound nerve and muscle potentials in mammalian peripheral nerve in vivo. Optically induced neural action potentials are spatially precise, artifact free, and damage free and are generated by use of energies well below tissue ablation threshold. Thus optical stimulation presents a simple yet novel approach to contact-free in vivo neural activation that has major implications for clinical neurosurgery, basic neurophysiology, and neuroscience.

  18. Optical trapping and luminescence of silica encapsulated quantum dots (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rodríguez Rodríguez, Héctor; Acebrón, María.; Arias González, J. Ricardo; Hernández Juárez, Beatriz

    2016-09-01

    Semiconductor nanocrystals (quantum dots, QDs) represent a milestone in the field of luminescent nanoparticles owing to their unique optical properties. Silica encapsulation of colloidal QDs in optimized synthetic conditions provides an excellent method to reduce their cytotoxicity maintaining, at the same time, their optical properties.1 The ability to optically confine and spatially control these biocompatible nanostructures in liquid media boosts their investigation for bioimaging both as an ensemble as well as at a single particle-level. In this study we explore the optical trapping of silica-encapsulated QDs in a near infrared counter-propagating experimental configuration.2 Optically trapped QDs exhibit two photon-absorption mediated luminescence without additional excitation sources.3,4 We find that the luminescence, collected through one objective, evidences photo-bleaching and wavelength blue-shifts depending on the dispersive medium composition and power density in the laser focus.

  19. Use of scanning near-field optical microscope with an aperture probe for detection of luminescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Shershulin, V. A.; Samoylenko, S. R.; Shenderova, O. A.; Konov, V. I.; Vlasov, I. I.

    2017-02-01

    The suitability of scanning near-field optical microscopy (SNOM) to image photoluminescent diamond nanoparticles with nanoscale resolution is demonstrated. Isolated diamond nanocrystals with an average size of 100 nm, containing negatively charged nitrogen-vacancy (NV-) centers, were chosen as tested material. The NV- luminescence was stimulated by continuous 532 nm laser light. Sizes of analyzed crystallites were monitored by an atomic force microscope. The lateral resolution of the order of 100 nm was reached in SNOM imaging of diamond nanoparticles using 150 nm square aperture of the probe.

  20. Luminescence, electron paramagnetic resonance, and optical properties of lunar material.

    PubMed

    Geake, J E; Dollfus, A; Garlick, G F; Lamb, W; Walker, C; Steigmann, G A; Titulaer, C

    1970-01-30

    Dust samples have been found to luminesce weakly under proton excitation, but not under ultraviolet. Damage, recovery, and heating effects have been investigated. Chips of breccia show luminescence, from white inclusions only, under ultraviolet and protons. Some rock chips show general luminescence, mainly from plagioclase. No natural or excited thermoluminescence has been found for dust or chips. The electron paramagnetic resonance spectrum shows the same broad Fe(3+) dipole resonance for dust and for some chips; other chips show no response. The polarization characteristics of dust are found to be identical to those of the Sea of Tranquillity, independently of proton damage. Chips show characteristics unlike any part of the lunar surface.

  1. Luminescence-based optical sensor systems for monitoring water parameters

    NASA Astrophysics Data System (ADS)

    Lobnik, Aleksandra; Turel, Matejka; Korent, Špela Mojca

    2007-06-01

    Lanthanide-sensitized luminescence is very attractive because the intramolecular energy transfers between the absorbing ligand and the luminescent ion results in strong narrow-band fluorescence with a large Stokes' shift and long decay times. We will report about several sensor systems based either on sol-gel materials or lanthanide chelates for monitoring and controlling water parameters, such as heavy metals, amines, phosphates.

  2. X-ray excited optical luminescence : Understanding the light emission properties of silicon based nanostructures.

    SciTech Connect

    Sham, T.K.; Rosenberg, R. A.; Univ. of Western Ontario

    2007-01-01

    The recent advances in the study of light emission from matter induced by synchrotron radiation: X-ray excited optical luminescence (XEOL) in the energy domain and time-resolved X-ray excited optical luminescence (TRXEOL) are described. The development of these element (absorption edge) selective, synchrotron X-ray photons in, optical photons out techniques with time gating coincide with advances in third-generation, insertion device based, synchrotron light sources. Electron bunches circulating in a storage ring emit very bright, widely energy tunable, short light pulses (<100 ps), which are used as the excitation source for investigation of light-emitting materials. Luminescence from silicon nanostructures (porous silicon, silicon nanowires, and Si-CdSe heterostructures) is used to illustrate the applicability of these techniques and their great potential in future applications.

  3. Synthesis and optical properties of luminescent core-shell structured silicate and phosphate nanoparticles

    NASA Astrophysics Data System (ADS)

    Dembski, Sofia; Rupp, Sabine; Milde, Moritz; Gellermann, Carsten; Dyrba, Marcel; Schweizer, Stefan; Batentschuk, Miroslaw; Osvet, Andres; Winnacker, Albrecht

    2011-05-01

    Monodisperse, luminescent core-shell structured inorganic nanoparticles were synthesized by sol-gel technology. They exhibit an amorphous SiO 2 core and a crystalline luminescent shell. Zn 2SiO 4:Mn 2+ and Ca 10(PO 4) 6OH:Eu 3+ shell materials are investigated. The influence of the doping concentration on optical and structural properties was studied. The resulting nanoparticles were characterized by X-ray diffraction analysis, transmission electron microscopy, inductively coupled plasma optical emission spectrometry, and photoluminescence spectroscopy.

  4. On the photo and thermally stimulated luminescence properties of U doped SrBPO{sub 5}

    SciTech Connect

    Kumar, Mithlesh Mohapatra, M.; Natarajan, V.

    2014-12-15

    Highlights: • Synthesis of SrBPO{sub 5}:U phosphor by solid state route. • Confirmed the stabilization of uranium as UO{sub 2}{sup 2+}. • Evaluation of order of kinetics and trap parameters of the system. • ESR-TSL correlation of the observed glow peak. • Probable mechanism proposed for the TSL glow peak. - Abstract: Un-doped and uranium doped SrBPO{sub 5} samples were synthesized using solid-state reaction route and investigated for their photo and luminescence properties. Photoluminescence (PL) spectrum of uranium doped sample showed five peaks at 502, 524, 547, 569 and 597 nm. The average frequency of symmetric stretching of O=U=O in the ground electronic state was found to be about 757 cm{sup −1}. PL decay time measurements on the system confirmed the stabilization of uranium as UO{sub 2}{sup 2+} in the matrix. Thermally stimulated luminescence (TSL) measurements carried out on gamma irradiated SrBPO{sub 5}:U sample showed a glow peak at 390 °K, whose spectral characteristics was found to be typical of UO{sub 2}{sup 2+}. The trap parameters were evaluated using different heating rate method. Room temperature EPR data suggested the formation of borate and oxygen based radical centers in the gamma-irradiated sample. Detailed EPR-TSL correlation studies confirmed the destruction of the oxygen radical to be responsible for the observed glow peak.

  5. Luminescence and stimulated emission in zinc oxide nanoparticles, films, and crystals

    NASA Astrophysics Data System (ADS)

    Xiong, G.; Wilkinson, J.; Lyles, J.; Ucer, K. B.; Williams, R. T.

    2003-01-01

    ZnO has attracted attention as a candidate material for ultraviolet light-emitting devices. Its 3.37-eV band gap is comparable to that of GaN, and single crystal substrates can be grown. Control of p-type conductivity in ZnO is under study in several laboratories including ours. We report streak camera measurements of time-resolved luminescence and stimulated emission excited in single crystal, film, and. particle samples under excitation by 300 fs laser pulses at temperatures from 17 K to 295 K. We also describe p-n junctions formed by control of oxygen pressure in reactive sputtering of ZnO films, and results of introducing nitrogen during reactive sputtering.

  6. Detection of irradiated spices using photo-stimulated luminescence technique (PSL)

    NASA Astrophysics Data System (ADS)

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi; Othman, Zainon; Abdullah, Wan Saffiey Wan

    2014-09-01

    Photo-stimulated luminescence (PSL) technique was applied to detect irradiated black pepper (Piper nigrum), cinnamon (Cinnamomum verum) and turmeric (Curcuma longa) after dark storage for 1 day, 3 and 6 months. Using screening and calibrated PSL, all samples were correctly discriminated between non-irradiated and spices irradiated with doses 1, 5 and 10 kGy. The PSL photon counts (PCs) of irradiated spices increased with increasing dose, with turmeric showing highest sensitivity index to irradiation compared to black pepper and cinnamon. The differences in response are possibly attributed to the varying quantity and quality of silicate minerals present in each spice sample. PSL signals of all irradiated samples reduced after 3 and 6 months storage. The results of this study provide a useful database on the applicability of PSL technique for the detection of Malaysian irradiated spices.

  7. Detection of irradiated spices using photo-stimulated luminescence technique (PSL)

    SciTech Connect

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi; Othman, Zainon; Abdullah, Wan Saffiey Wan

    2014-09-03

    Photo-stimulated luminescence (PSL) technique was applied to detect irradiated black pepper (Piper nigrum), cinnamon (Cinnamomum verum) and turmeric (Curcuma longa) after dark storage for 1 day, 3 and 6 months. Using screening and calibrated PSL, all samples were correctly discriminated between non-irradiated and spices irradiated with doses 1, 5 and 10 kGy. The PSL photon counts (PCs) of irradiated spices increased with increasing dose, with turmeric showing highest sensitivity index to irradiation compared to black pepper and cinnamon. The differences in response are possibly attributed to the varying quantity and quality of silicate minerals present in each spice sample. PSL signals of all irradiated samples reduced after 3 and 6 months storage. The results of this study provide a useful database on the applicability of PSL technique for the detection of Malaysian irradiated spices.

  8. An optical luminescence chronology for late Pleistocene aeolian activity in the Colombian and Venezuelan Llanos

    NASA Astrophysics Data System (ADS)

    Carr, Andrew S.; Armitage, Simon J.; Berrío, Juan-Carlos; Bilbao, Bibiana A.; Boom, Arnoud

    2016-03-01

    The lowland savannas (Llanos) of Colombia and Venezuela are covered by extensive aeolian landforms for which little chronological information exists. We present the first optically stimulated luminescence (OSL) age constraints for dunes in the Llanos Orientales of lowland Colombia and new ages for dunes in the Venezuelan Llanos. The sampled dunes are fully vegetated and show evidence of post-depositional erosion. Ages range from 4.5 ± 0.4 to 66 ± 4 ka, with the majority dating to 27-10 ka (Marine Isotope Stage 2). Some dunes accumulated quickly during the last glacial maximum, although most were active 16-10 ka. Accretion largely ceased after 10 ka. All dunes are elongated downwind from rivers, parallel with dry season winds, and are interpreted as source-bordering features. As they are presently isolated from fluvial sediments by gallery forest it is proposed that activity was associated with a more prolonged dry season, which restricted gallery forest, leading to greater sediment availability on river shorelines. Such variability in dry season duration was potentially mediated by the mean latitude of the ITCZ. The cessation of most dune accretion after ca. 10 ka suggests reduced seasonality and a more northerly ITCZ position, consistent with evidence from the Cariaco Basin.

  9. Optical absorption and luminescence in neutron-irradiated, silica-based fibers

    SciTech Connect

    Cooke, D.W.; Farnum, E.H.; Clinard, F.W.

    1995-04-01

    The objectives of this work are to assess the effects of thermal annealing and photobleaching on the optical absorption of neutron-irradiated, silica fibers of the type proposed for use in ITER diagnostics, and to measure x-ray induced luminescence of unirradiated (virgin) and neutron-irradiated fibers.

  10. Material and Optical Design Rules for High Performance Luminescent Solar Concentrators

    NASA Astrophysics Data System (ADS)

    Bronstein, Noah Dylan

    This dissertation will highlight a path to achieve high photovoltaic conversion efficiency in luminescent solar concentrators, devices which absorb sunlight with a luminescent dye and then re-emit it into a waveguide where it is ultimately collected by a photovoltaic cell. Luminescent concentrators have been studied for more than three decades as potential low-cost but not high efficiency photovoltaics. Astute application of the blackbody radiation law indicates that photonic design is necessary to achieve high efficiency: a reflective filter must be used to trap luminescence at all angles while allowing higher energy photons to pass through. In addition, recent advances in the synthesis of colloidal nanomaterials have created the possibility for lumophores with broad absorption spectra, narrow-bandwidth emission, high luminescence quantum yield, tunable Stokes shifts and tunable Stokes ratios. Together, these factors allow luminescent solar concentrators to achieve the optical characteristics necessary for high efficiency. We have fabricated and tested the first generation of these devices. Our experiments demonstrate that the application of carefully matched photonic mirrors and luminescent quantum dots can allow luminescent concentration factors to reach record values while maintaining high photon collection efficiency. Finally, the photonic mirror dramatically mitigates the negative impact of scattering in the waveguide, allowing efficient photon collection over distances much longer than the scattering length of the waveguide. After demonstrating the possibility for high performance, we theoretically explore the efficacy of luminescent concentrators with dielectric reflectors as the high-bandgap top-junctions in two-junction devices. Simple thermodynamic calculations indicate that this approach can be nearly as good as a traditional vertically stacked tandem. The major barriers to such a device are the optical design of narrow-bandwidth, angle

  11. Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8

    PubMed Central

    Liu, Feng; Yan, Wuzhao; Chuang, Yen-Jun; Zhen, Zipeng; Xie, Jin; Pan, Zhengwei

    2013-01-01

    In conventional photostimulable storage phosphors, the optical information written by x-ray or ultraviolet irradiation is usually read out as a visible photostimulated luminescence (PSL) signal under the stimulation of a low-energy light with appropriate wavelength. Unlike the transient PSL, here we report a new optical read-out form, photostimulated persistent luminescence (PSPL) in the near-infrared (NIR), from a Cr3+-doped LiGa5O8 NIR persistent phosphor exhibiting a super-long NIR persistent luminescence of more than 1,000 h. An intense PSPL signal peaking at 716 nm can be repeatedly obtained in a period of more than 1,000 h when an ultraviolet-light (250–360 nm) pre-irradiated LiGa5O8:Cr3+ phosphor is repeatedly stimulated with a visible light or a NIR light. The LiGa5O8:Cr3+ phosphor has promising applications in optical information storage, night-vision surveillance, and in vivo bio-imaging. PMID:23532003

  12. Morphology-dependent luminescence from ZnO nanostructures - An X-ray excited optical luminescence study at the Zn K-edge

    SciTech Connect

    Lobacheva, Olga; Murphy, Michael W; Ko, Jun Young Peter; Sham, Tsun-Kong

    2009-08-28

    ZnO nanostructures have been synthesized by thermal evaporation on Si substrates. It is found that the morphologies of the nanostructures are governed by growth conditions such as temperature, carrier-gas flow rate, and the nature of the substrate (with and without a catalyst). We report X-ray excited optical luminescence from ZnO nanostructures of distinctly different morphologies in the energy and time domain using excitation photon energies across the Zn K-edge. X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) study has clearly shown the morphology dependence of the ZnO optical properties. A correlation of luminescence with morphology, size, and crystallinity emerges.

  13. Spatially selective optical tuning of quantum dot thin film luminescence.

    PubMed

    Chen, Jixin; Chan, Yang-Hsiang; Yang, Tinglu; Wark, Stacey E; Son, Dong Hee; Batteas, James D

    2009-12-30

    Photolithographically generated patterns have been created on immobilized CdSe QD thin films by fine-tuning their optical properties (intensity and emission wavelength) postsynthetically. These optically modified QDs show enhanced selectivity for binding of different ligands, affording the ability to fabricate optically reconfigurable surfaces for display or sensing applications. The patterns may be readily generated with any typical optical lithographic approach.

  14. Spectrographic studies: Electron induced luminescence in optical materials

    NASA Technical Reports Server (NTRS)

    Romanko, J.; Miles, J. K.; Cheever, P. R.

    1971-01-01

    The spectral luminescence induced in UV grade sapphire, MgF2 and LiF2, three fused silicas, and three Corning glasses, by 1/2, 1, 2, and 3 MeV electrons was recorded. In the wavelength range from the LiF UV cutoff to the near visible, a plane-grating spectrograph with photographic recording at resolutions of 0.8 and 1.6 nm was utilized. Qualitative results based on relative density tracings of seven of the nine materials obtained from preliminary plates are given.

  15. Luminescent Properties of Arylpolyene Organic Dyes and Cross-Conjugated Ketones Promising for Quantum Optics and Nanophotonics Applications

    NASA Astrophysics Data System (ADS)

    Naumova, N. L.; Vasilyeva, I. A.

    2015-09-01

    The spectral-luminescent properties of some dyes of substituted arylpolyenes and cross-conjugated ketones class in Shpolsky matrices, promising for using in solving quantum optics and nanophotonics, were studied.

  16. Soft x-ray excited optical luminescence from poly(N-vinylcarbazole)

    NASA Astrophysics Data System (ADS)

    Naftel, S. J.; Kim, P.-S. G.; Sham, T. K.; Sammynaiken, R.; Yates, B. W.; Hu, Y.-F.

    2003-05-01

    X-ray excited optical luminescence (XEOL) using tunable soft x rays from a synchrotron light source, together with x-ray absorption fine structure spectroscopy has been used to study the electronic structure and optical properties of thin films of poly(N-vinylcarbazole). It is found that carbon core level excitation enhances the formation of excimers emitting at 380 and 410 nm. A third excimer at 310 nm is also noted. In addition, excitations across the C K edge and the N K edge show noticeably different optical response. These results are interpreted in terms of the site specificity of the XEOL technique.

  17. Luminescence and photoinduced absorption in ytterbium-doped optical fibres

    SciTech Connect

    Rybaltovsky, A A; Aleshkina, S S; Likhachev, M E; Bubnov, M M; Umnikov, A A; Yashkov, M V; Gur'yanov, Aleksei N; Dianov, Evgenii M

    2011-12-31

    Photochemical reactions induced in the glass network of an ytterbium-doped fibre core by IR laser pumping and UV irradiation have been investigated by analysing absorption and luminescence spectra. We have performed comparative studies of the photoinduced absorption and luminescence spectra of fibre preforms differing in core glass composition: Al{sub 2}O{sub 3} : SiO{sub 2}, Al{sub 2}O{sub 3} : Yb{sub 2}O{sub 3} : SiO{sub 2}, and P{sub 2}O{sub 5} : Yb{sub 2}O{sub 3} : SiO{sub 2}. The UV absorption spectra of unirradiated preform core samples show strong bands peaking at 5.1 and 6.5 eV, whose excitation plays a key role in photoinduced colour centre generation in the glass network. 'Direct' UV excitation of the 5.1- and 6.5-eV absorption bands at 244 and 193 nm leads to the reduction of some of the Yb{sup 3+} ions to Yb{sup 2+}. The photodarkening of ytterbium-doped fibres by IR pumping is shown to result from oxygen hole centre generation. A phenomenological model is proposed for the IR-pumping-induced photodarkening of ytterbium-doped fibres. The model predicts that colour centre generation in the core glass network and the associated absorption in the visible range result from a cooperative effect involving simultaneous excitation of a cluster composed of several closely spaced Yb{sup 3+} ions.

  18. Vertically integrated optics for ballistic electron emission luminescence: Device and microscopy characterizations

    NASA Astrophysics Data System (ADS)

    Yi, Wei; Appelbaum, Ian; Russell, Kasey J.; Narayanamurti, Venkatesh; Schalek, Richard; Hanson, Micah P.; Gossard, Arthur C.

    2006-07-01

    By integrating a p-i-n photodiode photodetector directly into a ballistic electron emission luminescence (BEEL) heterostructure with GaAs quantum-well active region, we have obtained a photon detection efficiency of more than 10%. This is many orders of magnitude higher than conventional far-field detection scheme with the most sensitive single-photon counters, enabling BEEL microscopy in systems with no optical components. Detailed analysis shows found a parasitic bipolar injection in parallel with the desired optical coupling between the BEEL heterostructure and the integrated photodiode beyond a characteristic collector bias, which may be solved by improved device design or limiting the operating window of the collector bias. Preliminary BEEL microscopy images of a homogeneous GaAs quantum-well luminescent layer show lateral variations of photon emission correlated with the collector current injection level modulated by surface features or interface defects.

  19. Optical temperature sensing based on the luminescence from YAG:Pr transparent ceramics

    NASA Astrophysics Data System (ADS)

    Hu, Song; Lu, Chunhua; Liu, Xiaoxia; Xu, Zhongzi

    2016-10-01

    The YAG:Pr transparent ceramic was fabricated using a conventional solid-state reactive method to explore its possible application in optical thermometry. Photoluminescence and temperature-dependent luminescence were elaborately investigated under 452 nm excitation. The ceramic showed two intrinsic emission bands at 488 and 594 nm, which were attributed to characteristic Pr3+: 3P0 → 3H4 and 3P1 → 3H6 transitions, respectively. Down-conversion emissions from the two thermally coupled excited states of Pr3+ were recorded in the temperature range of 293-593 K. The Boltzmann distribution theory was adopted to interpret the temperature-dependent luminescence of Pr3+. The temperature sensitivity exhibited an increasing trend with the increase of temperature, typically, 0.0025 K-1 at 593 K. The results indicated that the present ceramic was a promising candidate for optical temperature sensor.

  20. Time-resolved x-ray excited optical luminescence studies of II-VI semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Rosenberg, R. A.; Lee, S.-T.; Kim, P.-S. G.

    2005-03-01

    Due to quantum confinement effects nanostructures often exhibit unique and intriguing fluorescence behavior. X-ray excited optical luminescence (XEOL) provides the capability to chemically map the sites responsible for producing low energy (1-6 eV) fluorescence. By taking advantage of the time structure of the x-ray pulses at the Advanced Photon Source, it also possible to determine the dynamic behavior of the states involved in the luminescence. In this presentation we show how this technique can be utilized to understand the XEOL from ZnS, ZnTe, and ZnO nanowires. Time-gated optical spectra show that the high-energy, band-edge states have a short lifetime while the lower-energy, deep-levels have a relatively long lifetime. X-ray excitation curves are obtained using the relevant optical photons as signals and compared to the corresponding x-ray absorption spectra. We will show how these results enable us to determine the local structure of the luminescent site(s).

  1. Electronic and Optical Properties of Luminescent Centers in Halides and Oxides

    NASA Astrophysics Data System (ADS)

    Du, Mao-Hua

    2014-03-01

    Luminescent materials, such as phosphors and scintillators, are widely used for fluorescent lighting, laser, medical imaging, nuclear material detection, etc. . The luminescence is usually activated by impurities (or activators), which act as luminescence centers. The activators are typically multi-valent ions that insert multiple electronic states in the band gap of the host material. In this talk, first-principles calculations of electronic structure and optical transitions are shown for a wide range of activators, including rare-earth ions (e.g., Ce3+, Eu2+) , ns2 ions (the ions that have outer electronic configurations of ns2, such as Tl+, Pb2+, Bi3+) , and transition-metal ions (e.g., Mn4+) , in a large number of halides and oxides. The results reveal how the activator-ligand hybridization affects the emission energy and the luminescence mechanism. New phosphors and scintillators are proposed based on the chemical trends emerging from the calculations of a large number of materials.

  2. Optical neural stimulation modeling on degenerative neocortical neural networks

    NASA Astrophysics Data System (ADS)

    Zverev, M.; Fanjul-Vélez, F.; Salas-García, I.; Arce-Diego, J. L.

    2015-07-01

    Neurodegenerative diseases usually appear at advanced age. Medical advances make people live longer and as a consequence, the number of neurodegenerative diseases continuously grows. There is still no cure for these diseases, but several brain stimulation techniques have been proposed to improve patients' condition. One of them is Optical Neural Stimulation (ONS), which is based on the application of optical radiation over specific brain regions. The outer cerebral zones can be noninvasively stimulated, without the common drawbacks associated to surgical procedures. This work focuses on the analysis of ONS effects in stimulated neurons to determine their influence in neuronal activity. For this purpose a neural network model has been employed. The results show the neural network behavior when the stimulation is provided by means of different optical radiation sources and constitute a first approach to adjust the optical light source parameters to stimulate specific neocortical areas.

  3. Analysis of thermally stimulated luminescence and conductivity without quasi-equilibrium approximation

    NASA Astrophysics Data System (ADS)

    Opanowicz, A.

    2007-08-01

    Thermally stimulated luminescence (TSL) and conductivity (TSC) are considered using the classical insulator model that assumes one kind of active trap, one kind of inactive deep trap and one kind of recombination centre. Kinetic equations describing the model are solved numerically without and with the use of quasi-equilibrium (QE) approximation. The QE state is characterized by the parameter qI = (dnc/dt)/Ie, where dnc/dt is the rate of change of free electron density, and Ie is the TSL intensity. The QE state parameter qI, the relative recombination probability γ = Ie/(Ie + It) (It is the trapping intensity) and a new parameter called a quasi-stationary (QS) state parameter q* = qIγ = (dnc/dt)/(Ie + It) are used for the analysis of the TSL and TSC. The QE and QS states are determined by conditions |qI| Lt 1 and, respectively, |q*| Lt 1. The TSL and TSC curves and the temperature dependences of qI, q*, γ the recombination lifetime and the occupancies of active traps and recombination centres are numerically calculated for five sets of kinetic parameters and different heating rates. These calculation results show that (1) the upper limit of the heating rate for the presence of the QS state appears at a higher heating rate than that for the QE state when the retrapping process is present, and (2) the TSL (TSC) curves in the QS state have properties similar to those for the TSL (TSC) curves in the QE state. Approximate formulae for calculation of the parameters qI and q* in the initial range of the TSL and TSC curves are derived and used in the heating-rate methods, proposed in this work, for determination of those parameters from the calculated TSL curves.

  4. Thermally stimulated luminescence studies of undoped, Cu- and Mn-doped CaSO4 compounds

    NASA Astrophysics Data System (ADS)

    Manam, J.; Das, S.

    Thermally stimulated luminescence (TSL) of undoped and doped CaSO4 with activators such as Cu and Mn has been investigated. The polycrystalline samples of undoped and doped CaSO4 are prepared by the melting method. The formation of CaSO4 compound is confirmed by X-ray diffraction and Fourier transform infrared studies. Scanning electron microscopic studies of CaSO4 are also carried out. The TSL glow curves of undoped CaSO4, Cu- and Mn-doped CaSO4 are studied. Comparison of the thermoluminescence (TL) intensity of the most intensive glow peak of Cu-doped CaSO4 compound with that of undoped CaSO4 shows that addition of Cu impurity in CaSO4 compound enhances the TL intensity by about four times. However, the addition of Mn impurity to undoped CaSO4 increases the TL intensity by about three times when compared with that of undoped CaSO4. The TL-dose dependence of all three samples was studied and was observed to be almost linear in the studied range of irradiation time. Among the samples studied, namely undoped CaSO4 and Cu- and Mn-doped CaSO4, Cu-doped CaSO4 is found to be the most sensitive. The trap parameters, namely order of kinetics (b), activation energy (E) and frequency factor (s) associated with the most intensive glow peaks of CaSO4:Mn, CaSO4:Cu and CaSO4 phosphors were determined using the glow curve shape (Chen's) method.

  5. Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties

    NASA Astrophysics Data System (ADS)

    Nadort, Annemarie; Zhao, Jiangbo; Goldys, Ewa M.

    2016-07-01

    Upconversion photoluminescence is a nonlinear effect where multiple lower energy excitation photons produce higher energy emission photons. This fundamentally interesting process has many applications in biomedical imaging, light source and display technology, and solar energy harvesting. In this review we discuss the underlying physical principles and their modelling using rate equations. We discuss how the understanding of photophysical processes enabled a strategic influence over the optical properties of upconversion especially in rationally designed materials. We subsequently present an overview of recent experimental strategies to control and optimize the optical properties of upconversion nanoparticles, focussing on their emission spectral properties and brightness.

  6. Europium-enabled luminescent single crystal and bulk YAG and YGG for optical imaging

    NASA Astrophysics Data System (ADS)

    Skaudžius, Ramūnas; Enseling, David; Skapas, Martynas; Selskis, Algirdas; Pomjakushina, Ekaterina; Jüstel, Thomas; Kareiva, Aivaras; Rüegg, Christian

    2016-10-01

    Europium doped small particles presently receive great attention due to their excellent photoluminescent (PL) intensity, (photo)chemical stability, and linearity in the orange-red spectral region and find challenging biomedical application. Europium doped compounds are extremely good candidates for optical imaging due to stable luminescence, long fluorescence decay time, sharp emission peaks, i.e. narrow band width, in the red to near-infrared (NIR) region. Moreover, lasers based on red emission of europium also could be an attractive choice for medical application since NIR radiation can penetrate biological tissues such as human skin. This study allows to discuss luminescent properties of europium (5 at-% or 30 at-%) doped Y3Al5O12 and Y3Ga5O12 garnets in single crystals and powders. Europium enabled luminescent properties are discussed based on the concentration of europium and dopant local environment. All these compounds possess dominant 5D0 → 7F4 emission in the NIR region and are thus potential candidates for optical imaging.

  7. Optical pH sensor based on sol-gel-doped new luminescent dye

    NASA Astrophysics Data System (ADS)

    Lobnik, Aleksandra; Niederreiter, Karlheinz; Uray, Georg

    1999-11-01

    The sol-gel process is an exciting new technology that enables the production of gel glasses and ceramic materials at room temperature. Sol-gel technology offers simple methods for manipulation of the structure, configuration, composition and chemical characteristics of organic matrices. A novel longwave luminescent dye based on the europium luminescence initiated by a covalently bonded antenna fluorophore was designed, synthesized and characterized. The dye was successfully entrapped into various sol-gel and ormosil matrices and consequent optical- , leaching- and light fastness-properties were tested. Finally, sensor layer based on TMOS doped with Eu3+- complex and bromothymol blue was found to be most appropriate for purposes of sensing pH over the range 5-10.

  8. Optical imaging in tissue with X-ray excited luminescent sensors.

    PubMed

    Chen, Hongyu; Longfield, David E; Varahagiri, Venkata S; Nguyen, KhanhVan T; Patrick, Amanda L; Qian, Haijun; VanDerveer, Donald G; Anker, Jeffrey N

    2011-09-07

    We report a high-spatial resolution imaging technique to measure optical absorption and detect chemical and physical changes on surfaces embedded in thick tissue. Developing sensors to measure chemical concentrations on implanted surfaces through tissue is an important challenge for analytical chemistry and biomedical imaging. Tissue scattering dramatically reduces the resolution of optical imaging. In contrast, X-rays provide high spatial resolution imaging through tissue but do not measure chemical concentrations. We describe a hybrid technique which uses a scanning X-ray beam to irradiate Gd(2)O(2)S scintillators and detect the resulting visible luminescence through the tissue. The amount of light collected is modulated by optical absorption in close proximity to the luminescence source. By scanning the X-ray beam, and measuring total amount of light collected, one can measure the local absorption near scintillators at a resolution limited by the width of luminescence source (i.e. the width of the X-ray excitation beam). For proof of principle, a rectangular 1.7 mm scanning X-ray beam was used to excite a single layer of 8 μm Gd(2)O(2)S particles, and detect the absorption of 5 nm thick silver island film through 10 mm of pork. Lifetime and spectroscopic measurements, as well changing the refractive index of the surroundings indicate that the silver reduces the optical signal through attenuated total internal reflection. The technique was used to image the dissolution of regions of the silver island film which were exposed to 1 mM of H(2)O(2) through 1 cm of pork tissue.

  9. Visible light stimulating dual-wavelength emission and O vacancy involved energy transfer behavior in luminescence for coaxial nanocable arrays

    SciTech Connect

    Yang, Lei; Dong, Jiazhang; Jiang, Zhongcheng; Pan, Anlian; Zhuang, Xiujuan

    2014-06-14

    We report a strategy to investigate O vacancy (V{sub O}) involved energy transfer and dual-wavelength yellow emission in coaxial nanocable. By electric field deposition and subsequent sol-gel template approach, ZnO:Tb/Y{sub 2}O{sub 3}:Eu coaxial nanocable arrays are synthesized. After visible light excitation, system is promoted to O vacancy charge transfer state of V{sub O}(0/+). In the following cross relaxation, energy transfer from V{sub O} to the excitation energy level of Tb{sup 3+} in ZnO:Tb core area. While in Y{sub 2}O{sub 3}:Eu shell area, energy transfer to the excitation energy level of Eu{sup 3+}. Subsequently, dual-wavelength emission is observed. By constructing nanocable with dual-wavelength emission, yellow luminescence is obtained. Adjust doping concentration of Eu{sup 3+} or Tb{sup 3+} in the range of 0.01–0.05, chromaticity coordinates of ZnO:Tb/Y{sub 2}O{sub 3}:Eu nanocable stably stays at yellow region in color space except ZnO:Tb{sub 0.01}/Y{sub 2}O{sub 3}:Eu{sub 0.01}. As Vo states act as media in energy transfer process in nanocablers, visible light can stimulate dual-wavelength emissions. Yellow luminescent nanocable arrays will have great applications in light-emitting diode luminescence.

  10. Visible light stimulating dual-wavelength emission and O vacancy involved energy transfer behavior in luminescence for coaxial nanocable arrays

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Dong, Jiazhang; Jiang, Zhongcheng; Pan, Anlian; Zhuang, Xiujuan

    2014-06-01

    We report a strategy to investigate O vacancy (VO) involved energy transfer and dual-wavelength yellow emission in coaxial nanocable. By electric field deposition and subsequent sol-gel template approach, ZnO:Tb/Y2O3:Eu coaxial nanocable arrays are synthesized. After visible light excitation, system is promoted to O vacancy charge transfer state of VO(0/+). In the following cross relaxation, energy transfer from VO to the excitation energy level of Tb3+ in ZnO:Tb core area. While in Y2O3:Eu shell area, energy transfer to the excitation energy level of Eu3+. Subsequently, dual-wavelength emission is observed. By constructing nanocable with dual-wavelength emission, yellow luminescence is obtained. Adjust doping concentration of Eu3+ or Tb3+ in the range of 0.01-0.05, chromaticity coordinates of ZnO:Tb/Y2O3:Eu nanocable stably stays at yellow region in color space except ZnO:Tb0.01/Y2O3:Eu0.01. As Vo states act as media in energy transfer process in nanocablers, visible light can stimulate dual-wavelength emissions. Yellow luminescent nanocable arrays will have great applications in light-emitting diode luminescence.

  11. X-ray excited optical luminescence detection by scanning near-field optical microscope: a new tool for nanoscience.

    PubMed

    Larcheri, Silvia; Rocca, Francesco; Jandard, Frank; Pailharey, Daniel; Graziola, Roberto; Kuzmin, Alexei; Purans, Juris

    2008-01-01

    Investigations of complex nanostructured materials used in modern technologies require special experimental techniques able to provide information on the structure and electronic properties of materials with a spatial resolution down to the nanometer scale. We tried to address these needs through the combination of x-ray absorption spectroscopy (XAS) using synchrotron radiation microbeams with scanning near-field optical microscopy (SNOM) detection of the x-ray excited optical luminescence (XEOL) signal. This new instrumentation offers the possibility to carry out a selective structural analysis of the sample surface with the subwavelength spatial resolution determined by the SNOM probe aperture. In addition, the apex of the optical fiber plays the role of a topographic probe, and chemical and topographic mappings can be simultaneously recorded. Our working XAS-SNOM prototype is based on a quartz tuning-fork head mounted on a high stability nanopositioning system; a coated optical fiber tip, operating as a probe in shear-force mode; a detection system coupled with the microscope head control system; and a dedicated software/hardware setup for synchronization of the XEOL signal detection with the synchrotron beamline acquisition system. We illustrate the possibility to obtain an element-specific contrast and to perform nano-XAS experiments by detecting the Zn K and W L(3) absorption edges in luminescent ZnO and mixed ZnWO(4)-ZnO nanostructured thin films.

  12. Optical fiber spectroscopy: A study of the luminescent properties of the europium ion for thermal sensors

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. Martin

    1992-01-01

    Recently, there has been interest in developing a distributed temperature sensor integrated into an optical fiber. Such a system would allow embedding of the optical fiber within or on a structural material to provide for continuous monitoring of the material's temperature. Work has already begun on the development of a temperature sensor using the temperature dependent emission spectra from the lanthanide rare earths doped into crystalline hosts. The lifetime, the linewidth and the integrated intensity of this emission are each sensitive to changes in the temperature and can provide a basis for thermometry. One concept for incorporating this phenomena into an optical fiber based sensor involves bonding the optically active material to the cladding of an optical fiber and allowing the luminescent light to couple into the the fiber by the evanescent wave. Experimental work developing this concept has already been reported. Measurements of the linewidth of Eu3+:Y2O3, diffused into a fiber, made by Albin clearly show a strong and regular dependence on temperature over the range of 300 to 1000 K. We report here on a study of the temperature dependence of the lineshape of the emission at 611 nm using the data in references. We focus attention on understanding the general behavior of the Eu3+:Y2O3 system. Building upon understanding of this system we will be able to establish the physical criterial for a good optical fiber based temperature sensor and then to examine available data on other lanthanide rare earths and transition metal ions to determine the best luminescent system for temperature sensing in an optical fiber.

  13. Optical filtering and luminescence property of some molybdates prepared by combustion synthesis

    SciTech Connect

    Yadav, P. J.; Joshi, C. P.; Moharil, S. V.

    2014-10-15

    As an important class of lanthanide inorganic compounds, rare earth ions doped molybdates have gained much attention due to their attractive luminescence and structural properties, supporting various promising applications as phosphor materials in the fields such as white light-emitting diodes, optical fibers, biolabel, lasers, and so on. The molybdate family has promising trivalent cation conducting properties and most of the optical properties result from electron transitions of the 4f shell, which are greatly affected by the composition and structures of rare-earth compounds. In this paper we report the molybdate CaMoO{sub 4}:Eu{sup 3+} for red SSL and Bi{sub 1.4}Y{sub 0.6}MoO{sub 6}, Y{sub 6}MoO{sub 12} for optical filtering, prepared by one step combustion synthesis.

  14. Optical filtering and luminescence property of some molybdates prepared by combustion synthesis

    NASA Astrophysics Data System (ADS)

    Yadav, P. J.; Joshi, C. P.; Moharil, S. V.

    2014-10-01

    As an important class of lanthanide inorganic compounds, rare earth ions doped molybdates have gained much attention due to their attractive luminescence and structural properties, supporting various promising applications as phosphor materials in the fields such as white light-emitting diodes, optical fibers, biolabel, lasers, and so on. The molybdate family has promising trivalent cation conducting properties and most of the optical properties result from electron transitions of the 4f shell, which are greatly affected by the composition and structures of rare-earth compounds. In this paper we report the molybdate CaMoO4:Eu3+ for red SSL and Bi1.4Y0.6MoO6, Y6MoO12 for optical filtering, prepared by one step combustion synthesis.

  15. Optical nerve stimulation for a vestibular prosthesis

    NASA Astrophysics Data System (ADS)

    Harris, David M.; Bierer, Steven M.; Wells, Jonathon D.; Phillips, James O.

    2009-02-01

    Infrared Nerve Stimulation (INS) offers several advantages over electrical stimulation, including more precise spatial selectivity and improved surgical access. In this study, INS and electrical stimulation were compared in their ability to activate the vestibular branch of the VIIIth nerve, as a potential way to treat balance disorders. The superior and lateral canals of the vestibular system of Guinea pigs were identified and approached with the aid of precise 3-D reconstructions. A monopolar platinum stimulating electrode was positioned near the ampullae of the canals, and biphasic current pulses were used to stimulate vestibular evoked potentials and eye movements. Thresholds and input/output functions were measured for various stimulus conditions. A short pulsed diode laser (Capella, Lockheed Martin-Aculight, Inc., Bothell WA) was placed in the same anatomical position and various stimulus conditions were evaluated in their ability to evoke similar potentials and eye movements.

  16. Efficiency estimates and practical aspects of an optical Kerr gate for time-resolved luminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Dmitruk, I.; Shynkarenko, Ye; Dmytruk, A.; Aleksiuk, D.; Kadan, V.; Korenyuk, P.; Zubrilin, N.; Blonskiy, I.

    2016-12-01

    We report experience of assembling an optical Kerr gate setup at the Femtosecond Laser Center for collective use at the Institute of Physics of the National Academy of Sciences of Ukraine. This offers an inexpensive solution to the problem of time-resolved luminescence spectroscopy. Practical aspects of its design and alignment are discussed and its main characteristics are evaluated. Theoretical analysis and numerical estimates are performed to evaluate the efficiency and the response time of an optical Kerr gate setup for fluorescence spectroscopy with subpicosecond time resolution. The theoretically calculated efficiency is compared with the experimentally measured one of ~12% for Crown 5 glass and ~2% for fused silica. Other characteristics of the Kerr gate are analyzed and ways to improve them are discussed. A method of compensation for the refractive index dispersion in a Kerr gate medium is suggested. Examples of the application of the optical Kerr gate setup for measurements of the time-resolved luminescence of Astra Phloxine and Coumarin 30 dyes and both linear and nonlinear chirp parameters of a supercontinuum are presented.

  17. Optical absorption and luminescence studies of fast neutron-irradiated complex oxides for jewellery applications

    NASA Astrophysics Data System (ADS)

    Mironova-Ulmane, N.; Skvortsova, V.; Popov, A. I.

    2016-07-01

    We studied the optical absorption and luminescence of agate (SiO2), topaz (Al2[SiO4](F,OH)2), beryl (Be3Al2Si6O18), and prehnite (Ca2Al(AlSi3O10)(OH)2) doped with different concentrations of transition metal ions and exposed to fast neutron irradiation. The exchange interaction between the impurity ions and the defects arising under neutron irradiation causes additional absorption as well as bands' broadening in the crystals. These experimental results allow us to suggest the method for obtaining new radiation-defect induced jewellery colors of minerals due to neutron irradiation.

  18. Silicates doped with luminescent ions: useful tools for optical imaging applications

    NASA Astrophysics Data System (ADS)

    le Masne de Chermont, Quentin; Richard, Cyrille; Seguin, Johanne; Chanéac, Corinne; Bessodes, Michel; Scherman, Daniel

    2009-02-01

    Fluorescence is increasingly used for in vivo imaging and has provided remarkable results. Howerver this technique presents several limitations, especially due to tissue autofluorescence under external illumination and weak tissue penetration of low wavelength excitation light. We have developed an alternative optical imaging technique using persistent luminescent nanoparticles suitable for small animal imaging. These nanoparticles can be excited before the injection, and their in vivo distribution can be followed in real-time for several hours. Chemical modifications of their surface is possible leading to lung or liver targeting, or to long-lasting blood circulation.

  19. Glucose optical fibre sensor based on a luminescent molecularly imprinted polymer

    NASA Astrophysics Data System (ADS)

    Elosua, C.; Wren, S. P.; Sun, T.; Arregui, F. J.; Grattan, Kenneth T. V.

    2015-09-01

    An optrode able to detect glucose dissolved in water has been implemented. The device is based on the luminescence emission of a Molecularly Imprinted Polymer synthesized specifically for glucose detection, therefore its intensity changes in presence of glucose. This sensing material is attached onto a cleaved ended polymer-clad optical fibre and it is excited by light via 1x2 fibre coupler. The reflected fluorescence signal increases when it is immersed into glucose solutions and recovers to the baseline when it is dipped in ultrapure water. This reversible behaviour indicates the measurement repeatability of using such a glucose sensor.

  20. Time-resolved synchrotron radiation excited optical luminescence: light-emission properties of silicon-based nanostructures.

    PubMed

    Sham, Tsun-Kong; Rosenberg, Richard A

    2007-12-21

    The recent advances in the study of light emission from matter induced by synchrotron radiation: X-ray excited optical luminescence (XEOL) in the energy domain and time-resolved X-ray excited optical luminescence (TRXEOL) are described. The development of these element (absorption edge) selective, synchrotron X-ray photons in, optical photons out techniques with time gating coincide with advances in third-generation, insertion device based, synchrotron light sources. Electron bunches circulating in a storage ring emit very bright, widely energy tunable, short light pulses (<100 ps), which are used as the excitation source for investigation of light-emitting materials. Luminescence from silicon nanostructures (porous silicon, silicon nanowires, and Si-CdSe heterostructures) is used to illustrate the applicability of these techniques and their great potential in future applications.

  1. Density functional theory predictions for blue luminescence and nonlinear optical properties of carbon-doped gallium nitride

    NASA Astrophysics Data System (ADS)

    Hu, XiaoLin; Zhang, YongFan; Zhuang, NaiFeng; Li, JunQian

    2010-12-01

    The TD-B3LYP method and the plane-wave formalism of DFT method were applied to predict the blue luminescence and nonlinear optical effect of C-doped GaN, respectively. The introduction of carbon dopant will generate different acceptor or donor levels, which are mainly composed by p electronic state, within the energy gap of GaN. Exploring the calculated luminescence spectra based on the optimized excited-state structure, C N:GaN exhibits high luminescence intensity and has nice monochromatic property. In addition, the corresponding second-order nonlinear optical coefficients are considerable, χ(2)xzx=-15.07 pm/V and χ(2)zzz=26.91 pm/V, which are about 28 times and 50 times of the second-order optical coefficient of KDP crystal.

  2. Thermal and electron stimulated luminescence of natural bones, commercial hydroxyapatite and collagen.

    PubMed

    Roman-Lopez, J; Correcher, V; Garcia-Guinea, J; Rivera, T; Lozano, I B

    2014-01-01

    The luminescence (cathodoluminescence and thermoluminescence) properties of natural bones (Siberian mammoth and adult elephant), commercial hydroxyapatite and collagen were analyzed. Chemical analyses of the natural bones were determined using by Electron Probe Micro-Analysis (EMPA). Structural, molecular and thermal characteristics were determined by X-ray Diffraction (XRD), Raman spectroscopy and Differential Thermal and Thermogravimetric analysis (DTA-TG). Cathodoluminescence (CL) spectra of natural bones and collagen showed similar intense broad bands at 440 and 490 nm related to luminescence of the tetrahedral anion [Formula: see text] or structural defects. A weaker luminescence exhibited at 310 nm could be attributed to small amount of rare earth elements (REEs). Four luminescent bands at 378, 424, 468 and 576 nm were observed in the commercial hydroxyapatite (HAP). Both natural bones and collagen samples exhibited natural thermoluminescence (NTL) with well-defined glow curves whereas that the induced thermoluminescence (ITL) only appears in the samples of commercial hydroxyapatite and collagen. Additional explanations for the TL anomalous fading of apatite, as a crucial difficulty performing dosimetry and dating, are also considered.

  3. Stimulation of the human auditory nerve with optical radiation

    NASA Astrophysics Data System (ADS)

    Fishman, Andrew; Winkler, Piotr; Mierzwinski, Jozef; Beuth, Wojciech; Izzo Matic, Agnella; Siedlecki, Zygmunt; Teudt, Ingo; Maier, Hannes; Richter, Claus-Peter

    2009-02-01

    A novel, spatially selective method to stimulate cranial nerves has been proposed: contact free stimulation with optical radiation. The radiation source is an infrared pulsed laser. The Case Report is the first report ever that shows that optical stimulation of the auditory nerve is possible in the human. The ethical approach to conduct any measurements or tests in humans requires efficacy and safety studies in animals, which have been conducted in gerbils. This report represents the first step in a translational research project to initiate a paradigm shift in neural interfaces. A patient was selected who required surgical removal of a large meningioma angiomatum WHO I by a planned transcochlear approach. Prior to cochlear ablation by drilling and subsequent tumor resection, the cochlear nerve was stimulated with a pulsed infrared laser at low radiation energies. Stimulation with optical radiation evoked compound action potentials from the human auditory nerve. Stimulation of the auditory nerve with infrared laser pulses is possible in the human inner ear. The finding is an important step for translating results from animal experiments to human and furthers the development of a novel interface that uses optical radiation to stimulate neurons. Additional measurements are required to optimize the stimulation parameters.

  4. Variation of Spectra Luminescence Emission of Moganite under Different Stimulation Sources

    NASA Astrophysics Data System (ADS)

    Garcia-Guinea, J.; Bustillo, M. A.; Crespo-Feo, E.; Tormo, L.; Finch, A. A.; Hole, D. E.; Townsend, P. D.; Correcher, V.

    2009-08-01

    This work focuses on a characterization of various type of luminescence in Moganite-rich silica minerals from Mogan (Gran Canaria, Spain). The silica minerals formed by complicated hydrous processes exhibit luminescence emissions, which depend on sample temperature and type of an irradiation for excitation such as heat, laser, ion-beam, X-ray, incident electron beam and so on. Here we examined thermoluminescence (TL), ion beam luminescence (IBL), radioluminescence (RL), cathodoluminescence (CL) of moganite aliquots combined with Raman spectroscopy for clarification of relationship between lattice defects and the spectral luminescence emissions. The spatially-resolved CL spectroscopy coupled to the environmental scanning electron microscopy (ESEM-CL) displays different luminescence spectral signals between the moganite veined core (dull emission) and the rim (bright emission) together with larger porosity and additional ions in the outer part, suggesting a later alteration process with alkali, metals and volatile ions for the moganite formation. RL and IBL spectra of silica minerals in core and rim mainly show a progressive increase in intensity of RL emission band at 470-500 nm with decrease in sample temperature, which is caused by cryogenic stress on the [AlO4]0 centers. Continuous H+ ion beam implantation on samples at room temperature produces a subtle diminishing of blue emission and a quite brightening of red emission at 700 nm assigned to Fe3+ point defects. The white turbid rim with opaline SiO2 in cavities emits bright CL emission in panchromatic CL image, and has spectral emission bands at 290 nm with high intensity (100 000 a.u.) and one at 520 nm which are probably related to H2O(Si-OH) groups, H+, Na+ and metallic ions such as Fe3+, Ti4+ and Nb4+. Moganite core zones only display emission bands at 390 nm and 670 nm (8500 a.u.) attributed to [AlO4/Na+]0 centers and silanol groups, respectively.

  5. Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry

    SciTech Connect

    Hehlen, Markus P; Epstein, Richard I; Patterson, Wendy M; Sheik - Bahae, Mansoor; Seletskiy, D V

    2009-01-01

    We present a non-contact spectroscopic teclmique for the measurement of laser-induced temperature changes in solids. Two-band differential luminescence thermometry (TBDLT) achieves a sensitivity of {approx}7 mK and enables precise measurement of the net quantum efficiency of optical refrigerator materials. TBDLT detects internal temperature changes by decoupling surface and bulk heating effects via time-resolved luminescence spectroscopy. Several Yb{sup 3+}-doped fluorozirconate (ZBLANI) glasses fabricated from precursors of varying purity and by different processes are analyzed in detail. A net quantum efficiency of 97.39% at 238 K (at a pump wavelength of 1020.5 nm) is found for a ZBLANI:1%Yb{sup 3+} laser-cooling sample produced from metal fluoride precursors that were purified by chelate-assisted solvent extraction and dried in hydrofluoric gas. In comparison, a ZBLANI:1%Yb{sup 3+} sample produced from commercial-grade metal fluoride precursors showed pronounced laser-induced heating that is indicative of a substantially higher impurity concentration. TBDLT enables rapid and sensitive benchmarking of laser-cooling materials and provides critical feedback to the development and optimization of high-performance optical cryocooler materials.

  6. Photo- and thermally stimulated luminescence of polyminerals extracted from herbs and spices

    NASA Astrophysics Data System (ADS)

    Cruz-Zaragoza, E.; Marcazzó, J.; Chernov, V.

    2012-08-01

    Ionizing radiation processing is a widely employed method for preservative treatment of foodstuffs. Usually it is possible to detect irradiated herbs and spices by resorting to luminescence techniques, in particular photo- and thermostimulated luminescence. For these techniques to be useful, it is necessary to characterize the response to radiation of each particular herb or spice. In this work, the thermoluminescence (TL) and photostimulated luminescence (PSL) properties of inorganic polymineral fractions extracted from commercial herbs and spices previously irradiated for disinfestation purposes have been analyzed. Samples of mint, cinnamon, chamomile, paprika, black pepper, coriander and Jamaica flower were irradiated from 50 to 400 Gy by using a beta source. The X-ray diffraction (XRD) analysis has shown that the mineral fractions consist mainly of quartz and feldspars. The PSL and TL response as a function of the absorbed dose, and their fading at room temperature have been determined. The TL glow curves have been deconvolved in order to obtain characteristic kinetics parameters in each case. The results of this work show that PSL and TL are reliable techniques for detection and analysis of irradiated foodstuffs.

  7. Optical rogue waves and stimulated supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Solli, Daniel R.; Ropers, Claus; Jalali, Bahram

    2010-06-01

    Nonlinear action is known for its ability to create unusual phenomena and unexpected events. Optical rogue waves-freak pulses of broadband light arising in nonlinear fiber-testify to the fact that optical nonlinearities are no less capable of generating anomalous events than those in other physical contexts. In this paper, we will review our work on optical rogue waves, an ultrafast phenomenon counterpart to the freak ocean waves known to roam the open oceans. We will discuss the experimental observation of these rare events in real time and the measurement of their heavytailed statistical properties-a probabilistic form known to appear in a wide variety of other complex systems from financial markets to genetics. The nonlinear Schrödinger equation predicts the existence of optical rogue waves, offering a means to study their origins with simulations. We will also discuss the type of initial conditions behind optical rogue waves. Because a subtle but specific fluctuation leads to extreme waves, the rogue wave instability can be harnessed to produce these events on demand. By exploiting this property, it is possible to produce a new type of optical switch as well as a supercontinuum source that operates in the long pulse regime but still achieves a stable, coherent output.

  8. Luminescence properties of BaTiO{sub 3}:Eu{sup 3+} obtained via microwave stimulated hydrothermal method

    SciTech Connect

    Pazik, R.; Wiglusz, R.J.; Strek, W.

    2009-06-03

    BaTiO{sub 3} nanocrystalline powders doped with the Eu{sup 3+} ions have been prepared using microwave stimulated hydrothermal method (MSHM). Structure, average grain size and morphology of the BaTiO{sub 3}:Eu{sup 3+} were analyzed by means of the X-ray powder diffraction measurements, Raman spectroscopy and SEM microscopy. The luminescence properties and decay times of the hydrothermal BT:Eu{sup 3+} nanocrystalline powders have been investigated as a function of the grain size, dopant concentration, preparation conditions and sintering temperature. It was found that the studied properties are strongly dependent on the grain size of BaTiO{sub 3}:Eu{sup 3+} nano-crystallites.

  9. Enhanced optical luminescence in ZnO nanostructures following O 1s to pz excitation

    NASA Astrophysics Data System (ADS)

    Rosenberg, R. A.; Shenoy, G. K.; Zhou, X.-T.; Sham, T. K.

    2006-03-01

    Room temperature ultraviolet (˜385 nm) lasing in ZnO nanostructures has recently been demonstrated.^1 This phenomenon is thought to arise from the natural cavity formed by the wurtzite nanostructure and its faceted ends. X-ray excited optical luminescence (XEOL) provides the capability to determine the nature of the sites responsible for producing low energy (1-6 eV) fluorescence. We will present XEOL excitation curves taken at the Zn L and O K edge obtained using both the defect (˜510 nm) and bandgap (˜370 nm) transitions as signals. Results obtained at the Zn L edge resemble the x-ray absorption curve of the nanostructure. However, striking differences are observed at the O K edge. Excitation to states of pz symmetry (along the c axis) leads to enhanced luminescence while excitation to px,y states (lying in the basal plane) decreases the yield. We interpret this phenomenon as resulting from the lower probability of quenching by near surface defects for states excited along the c-axis as opposed to those excited perpendicular to it. 1. M.H. Huang, et al., Science 292, 1897 (2001).

  10. Biochemical affinity sensing systems based on luminescence generation in the evanescent field of optical waveguides

    NASA Astrophysics Data System (ADS)

    Duveneck, Gert L.; Oroszlan, Peter; Abel, A. P.; Klee, B.; Steiner, V.; Ehrat, Markus; Gygax, D.; Widmer, H. M.

    1995-01-01

    We have developed a (bio)chemical analysis system based on luminescence generation and detection in the evanescent field associated with light guiding in an optical fiber. Our intention was directed towards optimization of not only the sensor, including the sensor handling and the immobilization of biochemical recognition elements, but also of the assay chemistry, with special emphasis on methods used for sensor regeneration, of the fluidic system, and of the experimental control software. Goals of this optimization process were not only to achieve high sensitivity, reproducibility and the related precision of the results, but also maximum regenerability of the sensors and system flexibility for a variety of different applications. Four examples of different bioaffinity assays, established on our sensor system, are presented: a competitive immunoassay for atrazine, a sandwich immunoassay for hirudin, a DNA hybridization assay, and first studies for the development of sensors based on membrane- bound receptors. In the atrazine assay, the sensor could be regenerated more than 300 times. In the hybridization assay, a detection limit of 7.5 multiplied by 10-14 M complementary fluorescein-labeled DNA was achieved. The performance of our system is compared with an established enzyme-linked immunosorbent assay (ELISA) on the example of the hirudin assay. In the concluding section of this paper, advantages and disadvantages of our fiberoptic, luminescence-based system, compared with commercialized systems, based on detection of changes of the effective refractive index, are discussed.

  11. Effects of heat treatment on physical, microstructural and optical characteristics of PbS luminescent nanocrystals

    NASA Astrophysics Data System (ADS)

    Mozafari, Masoud; Moztarzadeh, Fathollah; Vashaee, Dayoosh; Tayebi, Lobat

    2012-04-01

    The oxidation of lead sulfide (PbS) luminescent nanocrystals (NCs) considerably changes their luminescence characteristics. Hence, an understanding of the oxidation mechanism, the structure and properties of oxidized moieties is important. In this research, well-defined spherical PbS NCs were synthesized via a simple, effective and surfactant-free method and characterized. Then, the effects of heat treatment (at 250, 350, 450 and 550 °C) on the PbS NCs were investigated. The transmission electron microscope (TEM) micrographs of the synthesized PbS NCs revealed that they had a well-defined spherical morphology. In addition, the average crystallite size using Scherrer's formula was about 13 nm and the calculated lattice constant using Bragg's equation was 0.5950 nm, which was very close to the value in the standard card (JCPDS No. 5-592). Furthermore, the X-ray diffraction (XRD) revealed that the heat treatment of samples at temperatures of 250, 350,450 and 550 °C in air results in the formation of oxide sulfate phase of the compositions PbSO4 and PbO·PbSO4. The lattice parameter, crystallite size, average internal stress, micro-strain and optical properties of PbS NCs were calculated and correlated with the heat-treatment temperature.

  12. Surface contamination detection by means of near-infrared stimulation of thermal luminescence

    SciTech Connect

    Carrieri, Arthur H.; Roese, Erik S

    2006-02-01

    A method for remotely detecting liquid chemical contamination on terrestrial surfaces is presented. Concurrent to irradiation by an absorbing near-infrared beam, the subject soil medium liberates radiance called thermal luminescence (TL) comprising middle-infrared energies (numir) that is scanned interferometrically in beam duration tau. Cyclic states of absorption and emission by the contaminant surrogate are rendered from a sequential differential-spectrum measurement [deltaS(numir,tau)] of the scanned TL. Detection of chemical warfare agent simulant wetting soil is performed in this manner, for example, through pattern recognition of its unique, thermally dynamic, molecular vibration resonance bands on display in the deltaS(numir,tau) metric.

  13. Optical characterization, luminescence properties of Er3+ and Er3+/Yb3+ co-doped tellurite glasses for broadband amplification

    NASA Astrophysics Data System (ADS)

    Meruva, Seshadri; Carlos, Barbosa Luiz; Alberto Peres, Ferencz Junior Julio

    2014-03-01

    In the present paper, optical absorption and emission spectra and luminescence decay lifetimes of different concentrations, 0.1, 0.3, 0.5, 0.7 and 1.0 mol% of Er3+ and 0.1Er3+/0.5Yb3+ co-doped tellurite glasses (TeO2-Bi2O3-ZnONb2O5) were reported. Judd-Ofelt intensity parameters were determined and used to calculate spontaneous radiative transition probabilities (Arad), radiative lifetimes (τR), branching ratios (β) and stimulated emission cross-sections (σP) for certain emission transitions. NIR emission at 1.5μm and up-conversion spectra of Er3+ and Er3+/Yb3+ co-doped tellurite glasses were measured under excitation wavelength of 980 nm. The absorption, emission and gain cross-sections for 4I13/2→4I15/2 transition of Er3+ are determined. The peak emission cross-section of this transition is found to be higher (9.95×10-21 cm2) for 0.1 mol% of Er3+ and lower (6.81×10-21 cm2) for 1.0 mol% of Er3+ doped tellurite glasses, which is comparable to other oxide glasses. The larger peak emission cross-section for lower concentration of Er3+ is due to the high refractive index of glass matrix (2.1547), relation established from Judd-Ofelt theory. The observed full-widths at half maxima (FWHM) for lower and higher concentrations of Er3+ are 64nm and 96 nm respectively. The larger values of FWHM and peak emission cross-sections are potentially useful for optical amplification processes in the design of Erbium doped fiber amplifiers (EDFs). Under 980 nm excitation three strong up-conversion bands were observed at 530nm, 546nm and 665nm. The pump power dependent intensities and mechanisms involved in the up-conversion process have been studied. The luminescence decay profiles for 4I13/2 level were reported for all glass matrices.

  14. Dynamic View on Nanostructures: A Technique for Time Resolved Optical Luminescence Using Synchrotron Light Pulses at SRC, APS, and CLS

    SciTech Connect

    Heigl, F.; Jurgensen, A.; Zhou, X.-T.; Lam, S.; Murphy, M.; Ko, J.Y.P.; Sham, T.K.; Rosenberg, R.A.; Gordon, R.; Brewe, D.; Regier, T.; Armelao, L. )

    2007-01-22

    We present an experimental technique using the time structure of synchrotron radiation to study time resolved X-ray excited optical luminescence. In particular we are taking advantage of the bunched distribution of electrons in a synchrotron storage ring, giving short x-ray pulses (10-10{sup 2} picoseconds) which are separated by non-radiating gaps on the nano- to tens of nanosecond scale - sufficiently wide to study a broad range of optical decay channels observed in advanced nanostructured materials.

  15. Local probing and stimulation of neuronal cells by optical manipulation

    NASA Astrophysics Data System (ADS)

    Cojoc, Dan

    2014-09-01

    During development and in the adult brain, neurons continuously explore the environment searching for guidance cues, leading to the appropriate connections. Elucidating these mechanisms represents a gold goal in neurobiology. Here, I discuss our recent achievements developing new approaches to locally probe the growth cones and stimulate neuronal cell compartments with high spatial and temporal resolution. Optical tweezers force spectroscopy applied in conjunction with metabolic inhibitors reveals new properties of the cytoskeleton dynamics. On the other hand, using optically manipulated microvectors as functionalized beads or filled liposomes, we demonstrate focal stimulation of neurons by small number of signaling molecules.

  16. Implantable optical-electrode device for stimulation of spinal motoneurons

    NASA Astrophysics Data System (ADS)

    Matveev, M. V.; Erofeev, A. I.; Zakharova, O. A.; Pyatyshev, E. N.; Kazakin, A. N.; Vlasova, O. L.

    2016-08-01

    Recent years, optogenetic method of scientific research has proved its effectiveness in the nerve cell stimulation tasks. In our article we demonstrate an implanted device for the spinal optogenetic motoneurons activation. This work is carried out in the Laboratory of Molecular Neurodegeneration of the Peter the Great St. Petersburg Polytechnic University, together with Nano and Microsystem Technology Laboratory. The work of the developed device is based on the principle of combining fiber optic light stimulation of genetically modified cells with the microelectrode multichannel recording of neurons biopotentials. The paper presents a part of the electrode implant manufacturing technique, combined with the optical waveguide of ThorLabs (USA).

  17. Crystal structures and optical properties of new quaternary strontium europium aluminate luminescent nanoribbons

    DOE PAGES

    Li, Xufan; Budai, John D.; Liu, Feng; ...

    2014-11-12

    We report the synthesis and characterizations of three series of quaternary strontium europium aluminate (Sr-Eu-Al-O; SEAO) luminescent nanoribbons that show blue, green, and yellow luminescence from localized Eu2+ luminescent centers. These three series of SEAO nanoribbons are: blue luminescent, tetragonal Sr1-xEuxAl6O10 (01-xEuxAl2O4 (01-xEuxAl2O4 (0

  18. Observation on Effect of Optical Stimulation to Human Using Optical Topography

    NASA Astrophysics Data System (ADS)

    Yanai, Hiro-Fumi; Yorimoto, Akiyoshi; Kubota, Toshio; Fujii, Kan-ichi; Kawaguchi, Fumio; Yamamoto, Etsuji; Ichikawa, Noriyoshi; Koshino, Yoshihumi

    2005-08-01

    We have observed the time course features of cerebral response while a subject is performing the visual tracking task or visual tracking plus finger tapping task using Optiocal Topography (OT). The distribution maps of both oxygenated and deoxygenated hemoglobins are demonstrated in contrast with the time course diagram. The response of the cerebrum differs, depending on whether the optical stimulation is static or dynamic, even when the overall nature of the pattern and intensity of the stimulation is the same. The cerebral response to a dynamic optical stimulation is very rapid and clear, and greater in magnitude than that to static optical stimulation, but it is suppressed when an auxiliary finger tapping task is also performed. From these results, it was confirmed that OT is sensitive to both static and dynamic optical stimulations.

  19. Remote optical fiber dosimetry

    NASA Astrophysics Data System (ADS)

    Huston, A. L.; Justus, B. L.; Falkenstein, P. L.; Miller, R. W.; Ning, H.; Altemus, R.

    2001-09-01

    Optical fibers offer a unique capability for remote monitoring of radiation in difficult-to-access and/or hazardous locations. Optical fiber sensors can be located in radiation hazardous areas and optically interrogated from a safe distance. A variety of remote optical fiber radiation dosimetry methods have been developed. All of the methods take advantage of some form of radiation-induced change in the optical properties of materials such as: radiation-induced darkening due to defect formation in glasses, luminescence from native defects or radiation-induced defects, or population of metastable charge trapping centers. Optical attenuation techniques are used to measure radiation-induced darkening in fibers. Luminescence techniques include the direct measurement of scintillation or optical excitation of radiation-induced luminescent defects. Optical fiber radiation dosimeters have also been constructed using charge trapping materials that exhibit thermoluminescence or optically stimulated luminescence (OSL).

  20. X-ray excited optical luminescence studies or ZnS and ZnO nanostructures.

    SciTech Connect

    Rosenberg, R. A.; Shenoy, G. K.; Heigl, F.; Lee, S.-T.; Tien, L. -C.; Norton, D.; Pearton, S.; Kim, P.-S. G.; Zhou, X. T.; Sham, T. K.; Experimental Facilities Division; Canadian Synchrotron Radiation Facility; City Univ. of Hong Kong; Univ. of Florida; Univ. of Western Ontario

    2006-01-01

    Due to their potential as optoelectronic devices, luminescing nanostructures have been among the most studied in the recent past. Room-temperature UV lasing has been demonstrated in ZnO nanowires. For highly asymmetric wurtzite structures, the orientation of the emitting luminescent dipole with respect to the excited state polarization can play a role in the luminescence yield. ZnS is an important, wide bandgap (E{sub g} = 3.54 eV for the thermodynamically stable zinc blende form at room temperature) II-VI semiconductor. It has been developed for a number of applications including UV light-emitting diodes, injection lasers and phosphors. In this presentation we will discuss results of a study on ZnS nanostructurees using synchrotron-radiation-based, x-ray-excited optical luminescence (XEOL). Results on ZnO will be presented elsewhere. The experimental approach has been described previously. All measurements were performed on beamline 4-ID-C at the Advanced Photon Source. Samples were prepared by a high-temperature growth technique described previously. Briefly, ZnS powder was placed in the center of a horizontal alumina tube upstream of a Si wafer, which was covered with 2 nm thiol-capped gold nanoparticles (used to catalyze the growth). The tube was heated to 1000 C while an Ar/H{sub 2} gas mixture flowed through the tube. This process resulted in the formation of nanoribbons of lengths in the range 10-100 {micro}m and widths less than 100 nm. The samples were characterized by high-resolution TEM images, which showed large areas of hexagonal wurtzite structure interspersed by nanosized regions with cubic sphalerite structure. Using XEOL, we have determined the local phase of the luminescing sites in ZnS nanowires. The inset of the accompanying figure shows the temperature-dependent optical spectrum obtained when exciting the nanowires with 1100 eV x-rays. There are three main peaks: a band-edge, exiton state at 338 nm, a defect-related emission at 430 nm, and a Au

  1. Synthesis, Characterization, Luminescent and Nonlinear Optical Responses of Nanosized ZnO

    NASA Astrophysics Data System (ADS)

    Multian, Volodymyr V.; Uklein, Andrii V.; Zaderko, Alexander N.; Kozhanov, Vadim O.; Boldyrieva, Olga Yu; Linnik, Rostyslav P.; Lisnyak, Vladyslav V.; Gayvoronsky, Volodymyr Ya

    2017-03-01

    In this study, we report soft and solvothermal methods for synthesis of zinc oxide nanoparticles (ZnO NPs). Both methods involve a precursor and are carried out at the middle low-temperature regime. The effect of different solvents on the ZnO NPs properties was studied. The nonlinear optical (NLO) response of the NPs was analyzed by the self-action of picosecond laser pulses at 1064 nm and by second harmonic generation (SHG) of a femtosecond laser pulses pump at 800 nm. The luminescence was studied within UV-visible ranges. It was shown that the NLO response efficiency significantly depends on the solvent. The obtained SHG efficiency of small ( 2 nm) ZnO NPs is comparable to the one obtained for large ( 150 nm) commercial ZnO NPs. The observed results are important for the application of the ZnO NPs in biolabeling.

  2. Synthesis, characterisation, optical and luminescence properties of CoAl{sub 2}O{sub 4}

    SciTech Connect

    Agilandeswari, K.; Kumar, A. Ruban

    2015-06-24

    Solid state method has been used as an efficient method to synthesize blue pigment CoAl{sub 2}O{sub 4} at a temperature of 800°C. The products were characterized by powder X-ray diffraction (XRD), Fourier transformer infrared spectroscopy (FTIR), UV-Visible diffuse reflectance spectroscopy (DRS) and luminescent spectroscopy. X-ray diffraction pattern confirmed the formation of single phase CoAl{sub 2}O{sub 4}. Optical properties of CoAl{sub 2}O{sub 4} ceramic shows an energy band gap in the range of 3.10eV. The emission spectra of spinel CoAl{sub 2}O{sub 4} in the visible region confirmed the presence of tetrahedral coordinated Co{sup 2+} ions.

  3. Synthesis, Characterization, Luminescent and Nonlinear Optical Responses of Nanosized ZnO.

    PubMed

    Multian, Volodymyr V; Uklein, Andrii V; Zaderko, Alexander N; Kozhanov, Vadim O; Boldyrieva, Olga Yu; Linnik, Rostyslav P; Lisnyak, Vladyslav V; Gayvoronsky, Volodymyr Ya

    2017-12-01

    In this study, we report soft and solvothermal methods for synthesis of zinc oxide nanoparticles (ZnO NPs). Both methods involve a precursor and are carried out at the middle low-temperature regime. The effect of different solvents on the ZnO NPs properties was studied. The nonlinear optical (NLO) response of the NPs was analyzed by the self-action of picosecond laser pulses at 1064 nm and by second harmonic generation (SHG) of a femtosecond laser pulses pump at 800 nm. The luminescence was studied within UV-visible ranges. It was shown that the NLO response efficiency significantly depends on the solvent. The obtained SHG efficiency of small (~2 nm) ZnO NPs is comparable to the one obtained for large (~150 nm) commercial ZnO NPs. The observed results are important for the application of the ZnO NPs in biolabeling.

  4. Enhancing and quenching luminescence with gold nanoparticle films: the influence of substrate on the luminescent properties

    NASA Astrophysics Data System (ADS)

    José Guidelli, Eder; Ramos, Ana Paula; Baffa, Oswaldo

    2016-01-01

    Gold nanoparticle (AuNP) films were sputtered over glass and aluminum substrates to enhance optically stimulated luminescence (OSL), a luminescent technique employed for radiation detection, from x-ray irradiated NaCl nanocrystals. The AuNP films deposited over glass led to enhanced-OSL emission, whereas the AuNP films deposited on aluminum substrates quenched the OSL emission. The enhanced-OSL intensity is proportional to the optical density of the film's plasmon resonance band at the stimulation wavelength. For the case of the AuNP/aluminum films, the luminescence quenching diminishes, and OSL intensity partially recovers upon increasing the distance between the AuNPs and the aluminum substrates, and between the luminescent nanocrystals and the AuNP films. These results suggest that plasmonic interactions between the emitter nanocrystals, the localized surface plasmons (LSP) of the AuNPs, and the substrate are responsible for the OSL enhancement and quenching. In this sense, the substrate dictates whether LSP relaxation occurs by radiative or non-radiative transisitions, leading to enhanced or quenched OSL, respectively. Therefore, besides showing that AuNP films can enhance and/or tune the sensitivity of luminescent radiation detectors, and demonstrating OSL as a new technique to investigate mechanisms of plasmon-enhanced luminescence, these results bring insights on how substrates strongly modify the optical properties of AuNP films.

  5. Optical stimulation of the facial nerve: a surgical tool?

    NASA Astrophysics Data System (ADS)

    Richter, Claus-Peter; Teudt, Ingo Ulrik; Nevel, Adam E.; Izzo, Agnella D.; Walsh, Joseph T., Jr.

    2008-02-01

    One sequela of skull base surgery is the iatrogenic damage to cranial nerves. Devices that stimulate nerves with electric current can assist in the nerve identification. Contemporary devices have two main limitations: (1) the physical contact of the stimulating electrode and (2) the spread of the current through the tissue. In contrast to electrical stimulation, pulsed infrared optical radiation can be used to safely and selectively stimulate neural tissue. Stimulation and screening of the nerve is possible without making physical contact. The gerbil facial nerve was irradiated with 250-μs-long pulses of 2.12 μm radiation delivered via a 600-μm-diameter optical fiber at a repetition rate of 2 Hz. Muscle action potentials were recorded with intradermal electrodes. Nerve samples were examined for possible tissue damage. Eight facial nerves were stimulated with radiant exposures between 0.71-1.77 J/cm2, resulting in compound muscle action potentials (CmAPs) that were simultaneously measured at the m. orbicularis oculi, m. levator nasolabialis, and m. orbicularis oris. Resulting CmAP amplitudes were 0.3-0.4 mV, 0.15-1.4 mV and 0.3-2.3 mV, respectively, depending on the radial location of the optical fiber and the radiant exposure. Individual nerve branches were also stimulated, resulting in CmAP amplitudes between 0.2 and 1.6 mV. Histology revealed tissue damage at radiant exposures of 2.2 J/cm2, but no apparent damage at radiant exposures of 2.0 J/cm2.

  6. Luminescence dates for the Paleoindian site of Pedra Pintada, Brazil

    NASA Astrophysics Data System (ADS)

    Michab, M.; Feathers, J. K.; Joron, J.-L.; Mercier, N.; Selo, M.; Valladas, H.; Valladas, G.; Reyss, J.-L.; Roosevelt, A. C.

    Dates are presented for the Paleoindian levels of Pedra Pintada cave in Brazil, based on the thermoluminescence (TL) and optically stimulated luminescence (OSL) study of ten specimens of heated siliceous stones and three of sand, respectively. Also discussed are the details of preliminary mineralogical, radiographic, and analytical work done on the lithic specimens in France and the OSL work done on the sediments in the US. The luminescence dates are in agreement with radiocarbon dates for the same strata.

  7. Synthesis and Thermally Stimulated Luminescence of Polycrystalline Sr{sub 1-x}Eu{sub x}B{sub 4}O{sub 7}

    SciTech Connect

    Dubovik, M.F.; Korshikova, T.I.; Parkhomenko, S.V.; Tolmachev, A.V.

    2005-12-15

    Specific features of the solid-phase synthesis of Sr{sub 1-x}Eu{sub x}B{sub 4}O{sub 7} (x 0-0.15) in air are studied. The photo- and thermally stimulated luminescence of Sr{sub 1-x}Eu{sub x}B{sub 4}O{sub 7} is investigated in the range of Eu content 0.01 < x < 0.15. The main energy parameters of traps are determined. It is shown that the peak of thermally stimulated luminescence at T = 380 K can be related to the decomposition and radiative relaxation of the [Eu{sup 3+}{sub Sr{sup 2}{sup +}} F{sup +} center] pair.

  8. Fabrication of bright and thin Zn₂SiO₄ luminescent film for electron beam excitation-assisted optical microscope.

    PubMed

    Furukawa, Taichi; Kanamori, Satoshi; Fukuta, Masahiro; Nawa, Yasunori; Kominami, Hiroko; Nakanishi, Yoichiro; Sugita, Atsushi; Inami, Wataru; Kawata, Yoshimasa

    2015-07-13

    We fabricated a bright and thin Zn₂SiO₄ luminescent film to serve as a nanometric light source for high-spatial-resolution optical microscopy based on electron beam excitation. The Zn₂SiO₄ luminescent thin film was fabricated by annealing a ZnO film on a Si₃N₄ substrate at 1000 °C in N₂. The annealed film emitted bright cathodoluminescence compared with the as-deposited film. The film is promising for nano-imaging with electron beam excitation-assisted optical microscopy. We evaluated the spatial resolution of a microscope developed using this Zn₂SiO₄ luminescent thin film. This is the first report of the investigation and application of ZnO/Si₃N₄ annealed at a high temperature (1000 °C). The fabricated Zn₂SiO₄ film is expected to enable high-frame-rate dynamic observation with ultra-high resolution using our electron beam excitation-assisted optical microscopy.

  9. Optical stimulation in mice lacking the TRPV1 channel

    NASA Astrophysics Data System (ADS)

    Suh, Eul; Izzo Matic, Agnella; Otting, Margarete; Walsh, Joseph T., Jr.; Richter, Claus-Peter

    2009-02-01

    Lasers can be used to stimulate neural tissue, including the sciatic nerve or auditory neurons. Wells and coworkers suggested that neural tissue is likely stimulated by heat.[1,2] Ion channels that can be activated by heat are the TRPV channels, a subfamily of the Transient Receptor Potential (TRP) ion channels. TRPV channels are nonselective cation channels found in sensory neurons involved in nociception. In addition to various chemicals, TRPV channels can also be thermally stimulated. The activation temperature for the different TRPV channels varies and is 43°C for TRPV1 and 39°C for TRPV3. By performing an immunohistochemical staining procedure on frozen 20 μm cochlear slices using a primary TRPV1 antibody, we observed specific immunostaining of the spiral ganglion cells. Here we show that in mice that lack the gene for the TRPV1 channel optical radiation cannot evoke action potentials on the auditory nerve.

  10. Transformation-optics simulation method for stimulated Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Zecca, Roberto; Bowen, Patrick T.; Smith, David R.; Larouche, Stéphane

    2016-12-01

    We develop an approach to enable the full-wave simulation of stimulated Brillouin scattering and related phenomena in a frequency-domain, finite-element environment. The method uses transformation-optics techniques to implement a time-harmonic coordinate transform that reconciles the different frames of reference used by electromagnetic and mechanical finite-element solvers. We show how this strategy can be successfully applied to bulk and guided systems, comparing the results with the predictions of established theory.

  11. Crystal structures and optical properties of new quaternary strontium europium aluminate luminescent nanoribbons

    SciTech Connect

    Li, Xufan; Budai, John D.; Liu, Feng; Chen, Yu-Sheng; Howe, Jane Y.; Sun, Chengjun; Tischler, Jonathan Zachary; Meltzer, Richard; Pan, Zhengwei

    2014-11-12

    We report the synthesis and characterizations of three series of quaternary strontium europium aluminate (Sr-Eu-Al-O; SEAO) luminescent nanoribbons that show blue, green, and yellow luminescence from localized Eu2+ luminescent centers. These three series of SEAO nanoribbons are: blue luminescent, tetragonal Sr1-xEuxAl6O10 (0luminescent, monoclinic Sr1-xEuxAl2O4 (0luminescent, hexagonal Sr1-xEuxAl2O4 (0luminescence properties were investigated. These one-dimensional SEAO luminescent nanoribbons can function as both light generators and waveguides, and thus have promising potential as the building blocks in miniaturized photonic circuitry.

  12. Lanthanide doped Bi2O3 upconversion luminescence nanospheres for temperature sensing and optical imaging.

    PubMed

    Lei, Pengpeng; Liu, Xiuling; Dong, Lile; Wang, Zhuo; Song, Shuyan; Xu, Xia; Su, Yue; Feng, Jing; Zhang, Hongjie

    2016-02-14

    Water-soluble lanthanide (Ln(3+)) doped Bi2O3 nanospheres have been successfully prepared through a solid-state-chemistry thermal decomposition process. The nanospheres exhibit intense upconversion luminescence (UCL) by doping the Ln(3+) (Ln = Yb, Er/Ho/Tm) ions into the Bi2O3 host matrix under 980 nm excitation. The ratio of red/green emission of Bi2O3:Yb(3+)/Er(3+) nanospheres exhibits a significant change as the calcination temperature increases and the value could reach 105.6. Moreover, the UCL of Bi2O3:Yb(3+)/Tm(3+) nanospheres are temperature-sensitive, where the intensity ratios of 799 and 808 nm emissions increase monotonously with temperature. The MTT assay reveals that Bi2O3:Yb(3+)/Tm(3+) nanospheres exhibit good biocompatibility by grafting citric acid molecules on the surface. The application possibility of Bi2O3:Yb(3+)/Tm(3+) nanospheres as bioprobes for optical imaging in vivo is also confirmed by the high-contrast photoluminescence images between the background and the UCL imaging area.

  13. Monte Carlo simulation of an x-ray luminescence optical tomography scanner prototype

    SciTech Connect

    Rosas-González, S. E-mail: arnulfo@fisica.unam.mx; Martínez-Dávalos, A. E-mail: arnulfo@fisica.unam.mx; Rodríguez-Villafuerte, M. E-mail: arnulfo@fisica.unam.mx; Murrieta-Rodríguez, T. E-mail: arnulfo@fisica.unam.mx

    2014-11-07

    In this work we report the calculation of the deposited energy distribution produced by an x-ray luminescence optical tomography (XLOT) system in a phantom containing different concentrations of Gd{sub 2}O{sub 2}S:Eu nanoparticles. The calculations were performed via Monte Carlo simulation considering spectra from a W target x-ray tube operating between 30 and 90 kVp, with 1.0 mm Al added filtration. CT and XLOT tomographic images were reconstructed from the same data. The results show that XLOT has better detectability than CT alone, that the dose scales linearly with kVp for a fixed concentration of Gd{sub 2}O{sub 2}S:Eu and air-kerma rate, the scattered radiation contribution to the total dose and signal is about 20% and that the dose ratio for a 3 mm diameter insert containing 10 mg/ml Gd{sub 2}O{sub 2}S embedded in a 30 mm diameter water phantom is 6:1. This ratio drops to less than 2:1 for a 1 mg/ml concentration. Finally we show that the method of conjugate images can be used to correct for artifacts due to attenuation effects in XLOT images.

  14. Insights on proximity effect and multiphoton induced luminescence from gold nanospheres in far field optical microscopy

    SciTech Connect

    Borglin, Johan; Guldbrand, Stina; Evenbratt, Hanne; Kirejev, Vladimir; Ericson, Marica B.; Grönbeck, Henrik

    2015-12-07

    Gold nanoparticles can be visualized in far-field multiphoton laser-scanning microscopy (MPM) based on the phenomena of multiphoton induced luminescence (MIL). This is of interest for biomedical applications, e.g., for cancer diagnostics, as MPM allows for working in the near-infrared (NIR) optical window of tissue. It is well known that the aggregation of particles causes a redshift of the plasmon resonance, but its implications for MIL applying far-field MPM should be further exploited. Here, we explore MIL from 10 nm gold nanospheres that are chemically deposited on glass substrates in controlled coverage gradients using MPM operating in NIR range. The substrates enable studies of MIL as a function of inter-particle distance and clustering. It was shown that MIL was only detected from areas on the substrates where the particle spacing was less than one particle diameter, or where the particles have aggregated. The results are interpreted in the context that the underlying physical phenomenon of MIL is a sequential two-photon absorption process, where the first event is driven by the plasmon resonance. It is evident that gold nanospheres in this size range have to be closely spaced or clustered to exhibit detectable MIL using far-field MPM operating in the NIR region.

  15. Optically Stimulated Electron Emission Contamination Monitor and Method

    NASA Technical Reports Server (NTRS)

    Welch, Christopher S. (Inventor); Perey, Daniel F. (Inventor)

    2005-01-01

    An apparatus and method for performing quality inspections on a test surface based on optically stimulated emission of electrons. In one embodiment, the apparatus comprises a device for producing optical radiation having a plurality of different spectrum lines, selecting at least one of the spectrum lines, and directing the selected spectrum line to the test surface, and circuitry for detecting a current of photoelectrons emitted from the test surface, generating a signal indicative of photoelectron current, and for indicating a condition of quality based on the generated signal indicative of the photoelectron current. In one embodiment, the method comprises producing optical radiation having a plurality of different spectrum lines, selecting at least one of the spectrum lines and directing the selected spectrum line to the test surface, detecting a current of photoelectrons emitted from the test surface and generating a signal indicative of photoelectron current, and indicating a condition of quality based on the generated signal indicative of the photoelectron current.

  16. Optical stimulation of the prostate nerves: A potential diagnostic technique

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat

    There is wide variability in sexual potency rates (9--86%) after nerve-sparing prostate cancer surgery due to limited knowledge of the location of the cavernous nerves (CN's) on the prostate surface, which are responsible for erectile function. Thus, preservation of the CN's is critical in preserving a man's ability to have spontaneous erections following surgery. Nerve-mapping devices, utilizing conventional Electrical Nerve Stimulation (ENS) techniques, have been used as intra-operative diagnostic tools to assist in preservation of the CN. However, these technologies have proven inconsistent and unreliable in identifying the CN's due to the need for physical contact, the lack of spatial selectivity, and the presence of electrical artifacts in measurements. Optical Nerve Stimulation (ONS), using pulsed infrared laser radiation, is studied as an alternative to ENS. The objective of this study is sevenfold: (1) to develop a laparoscopic laser probe for ONS of the CN's in a rat model, in vivo; (2) to demonstrate faster ONS using continuous-wave infrared laser radiation; (3) to describe and characterize the mechanism of successful ONS using alternative laser wavelengths; (4) to test a compact, inexpensive all-single-mode fiber configuration for optical stimulation of the rat CN studies; (5) to implement fiber optic beam shaping methods for comparison of Gaussian and flat-top spatial beam profiles during ONS; (6) to demonstrate successful ONS of CN's through a thin layer of fascia placed over the nerve and prostate gland; and (7) to verify the experimentally determined therapeutic window for safe and reliable ONS without thermal damage to the CN's by comparison with a computational model for thermal damage. A 5.5-Watt Thulium fiber laser operated at 1870 nm and two pigtailed, single mode, near-IR diode lasers (150-mW, 1455-nm laser and 500-mW, 1550-nm laser) were used for non-contact stimulation of the rat CN's. Successful laser stimulation, as measured by an

  17. Study of optical and luminescent properties of nanocrystals NaYF4:Tm3+, Yb3+ in the UV range in the application of integrated optics

    NASA Astrophysics Data System (ADS)

    Asharchuk, I. M.; Molchanova, S. I.; Rocheva, V. V.; Baranov, M. S.; Sarycheva, M. E.; Khaydukov, K. V.

    2016-12-01

    Studied the photoluminescence properties of synthesized nanocrystals doped with rare-earth ions NaYF4:Tm3+, Yb3+, measured luminescence spectra and absorption in the visible and near infrared regions of 300-1000 nm. Were measured the energy of phonons these nanocrystals, the average phonon energy was 332cm-1. Made optical waveguide impregnated with nanoparticles NaYF4: Yb3+, Tm3+ as the prospect of a compact source of radiation in the visible and UV range.

  18. IR luminescence of tellurium-doped silica-based optical fibre

    SciTech Connect

    Dianov, Evgenii M; Alyshev, S V; Shubin, Aleksei V; Khopin, V F; Gur'yanov, Aleksei N

    2012-03-31

    Tellurium-doped germanosilicate fibre has been fabricated by the MCVD process. In contrast to Te-containing glasses studied earlier, it has a broad luminescence band (full width at half maximum of {approx}350 nm) centred at 1500 nm, with a lifetime of {approx}2 {mu}s. The luminescence of the fibre has been studied before and after gamma irradiation in a {sup 60}Co source to 309 and 992 kGy. The irradiation produced a luminescence band around 1100 nm, with a full width at half maximum of {approx}400 nm and lifetime of {approx}5 {mu}s. (letters)

  19. Luminescence, optical and laser Raman scattering studies on γ -irradiated terbium-doped potassium iodide crystals

    NASA Astrophysics Data System (ADS)

    Bangaru, S.

    2011-02-01

    This paper reports the thermoluminescence (TL), optical absorption and other laser Raman scattering studies performed on terbium-doped KI crystals γ-irradiated at room temperature. Photoluminescence studies confirm the presence of terbium ions in the KI matrix in their trivalent form. Formation of V3- and Z1-centres on F-bleaching of γ-irradiated crystals was observed. The characteristic emission due to Tb3+ ions in the spectral distribution under optically stimulated emission and TL emission confirms the participation of the Tb3+ ions in the recombination process. The Raman bands were identified as the totally symmetric vibration modes of f.c.c. species KI:Tb3+.

  20. Exposure to Static Magnetic Field Stimulates Quorum Sensing Circuit in Luminescent Vibrio Strains of the Harveyi Clade

    PubMed Central

    Talà, Adelfia; Delle Side, Domenico; Buccolieri, Giovanni; Tredici, Salvatore Maurizio; Velardi, Luciano; Paladini, Fabio; De Stefano, Mario; Nassisi, Vincenzo; Alifano, Pietro

    2014-01-01

    In this study, the evidence of electron-dense magnetic inclusions with polyhedral shape in the cytoplasm of Harveyi clade Vibrio strain PS1, a bioluminescent bacterium living in symbiosis with marine organisms, led us to investigate the behavior of this bacterium under exposure to static magnetic fields ranging between 20 and 2000 Gauss. When compared to sham-exposed, the light emission of magnetic field-exposed bacteria growing on solid medium at 18°C ±0.1°C was increased up to two-fold as a function of dose and growth phase. Stimulation of bioluminescence by magnetic field was more pronounced during the post-exponential growth and stationary phase, and was lost when bacteria were grown in the presence of the iron chelator deferoxamine, which caused disassembly of the magnetic inclusions suggesting their involvement in magnetic response. As in luminescent Vibrio spp. bioluminescence is regulated by quorum sensing, possible effects of magnetic field exposure on quorum sensing were investigated. Measurement of mRNA levels by reverse transcriptase real time-PCR demonstrated that luxR regulatory gene and luxCDABE operon coding for luciferase and fatty acid reductase complex were significantly up-regulated in magnetic field-exposed bacteria. In contrast, genes coding for a type III secretion system, whose expression was negatively affected by LuxR, were down-regulated. Up-regulation of luxR paralleled with down-regulation of small RNAs that mediate destabilization of luxR mRNA in quorum sensing signaling pathways. The results of experiments with the well-studied Vibrio campbellii strain BB120 (originally classified as Vibrio harveyi) and derivative mutants unable to synthesize autoinducers suggest that the effects of magnetic fields on quorum sensing may be mediated by AI-2, the interspecies quorum sensing signal molecule. PMID:24960170

  1. Stimulated emission on impurity – band optical transitions in semiconductors

    SciTech Connect

    Bekin, N A; Shastin, V N

    2015-02-28

    This paper examines conditions for population inversion and amplification in the terahertz range using impurity – band electron transitions in semiconductors and semiconductor structures. Our estimates indicate that stimulated emission on such transitions under optical excitation of impurities can be obtained in a semiconductor with a sufficiently high doping level if electron heating is restricted. At a CO{sub 2} laser pump power density near 0.2 MW cm{sup -2} (photon energy of 117 meV), the gain in n-GaAs may exceed the loss by 50 cm{sup -1} provided the electron gas temperature does not exceed 40 K. We analyse the influence of the carrier effective mass and doping compensation on the gain coefficient and briefly discuss the use of resonance tunnelling for obtaining stimulated emission on impurity – band transitions in quantum cascade heterostructures. (terahertz radiation)

  2. EDITORIAL: Special issue on optical neural engineering: advances in optical stimulation technology Special issue on optical neural engineering: advances in optical stimulation technology

    NASA Astrophysics Data System (ADS)

    Shoham, Shy; Deisseroth, Karl

    2010-08-01

    Neural engineering, itself an 'emerging interdisciplinary research area' [1] has undergone a sea change over the past few years with the emergence of exciting new optical technologies for monitoring, stimulating, inhibiting and, more generally, modulating neural activity. To a large extent, this change is driven by the realization of the promise and complementary strengths that emerging photo-stimulation tools offer to add to the neural engineer's toolbox, which has been almost exclusively based on electrical stimulation technologies. Notably, photo-stimulation is non-contact, can in some cases be genetically targeted to specific cell populations, can achieve high spatial specificity (cellular or even sub-cellular) in two or three dimensions, and opens up the possibility of large-scale spatial-temporal patterned stimulation. It also offers a seamless solution to the problem of cross-talk generated by simultaneous electrical stimulation and recording. As in other biomedical optics phenomena [2], photo-stimulation includes multiple possible modes of interaction between light and the target neurons, including a variety of photo-physical and photo-bio-chemical effects with various intrinsic components or exogenous 'sensitizers' which can be loaded into the tissue or genetically expressed. Early isolated reports of neural excitation with light date back to the late 19th century [3] and to Arvanitaki and Chalazonitis' work five decades ago [4]; however, the mechanism by which these and other direct photo-stimulation, inhibition and modulation events [5-7] took place is yet unclear, as is their short- and long-term safety profile. Photo-chemical photolysis of covalently 'caged' neurotransmitters [8, 9] has been widely used in cellular neuroscience research for three decades, including for exciting or inhibiting neural activity, and for mapping neural circuits. Technological developments now allow neurotransmitters to be uncaged with exquisite spatial specificity (down to

  3. Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber.

    PubMed

    Fotiadi, A A; Kiyan, R V

    1998-12-01

    We observed an unusually narrow spectrum of Stokes field and Gaussian statistics of Stokes power for the stimulated Brillouin scattering (SBS) process in 300-m single-mode optical fiber with high Rayleigh losses. The measured characteristics of the Stokes radiation indicate that SBS lasing took place in the fiber. The effect is explained as the result of dynamic distributed feedback that is due to double Rayleigh scattering (RS) of the Stokes field. The results of numerical simulation of the cooperative SBS-RS process in fiber are in good agreement with experimental results.

  4. Stimulated Brillouin scattering in single mode optical fiber

    NASA Astrophysics Data System (ADS)

    Davis, Michael Andrew

    1997-09-01

    This thesis describes a number of experiments that have been performed to study various effects of stimulated Brillouin scattering (SBS) in single mode optical fibers. We have investigated the scattering process by measuring the power limiting effects and increased noise characteristics under different conditions. Additionally, we show a correlation between the relative intensity noise of the Brillouin scattered signal and its spectral bandwidth, which reinforces the theory that spontaneous Brillouin scattering is 'seeded' by random thermal perturbations in the optical fiber. This initial work demonstrates the potentially detrimental effects SBS can have on optical fiber systems. We have therefore also investigated a technique that will suppress the generation of Brillouin scattering. A phase modulation concept is described and the performance of the scheme is demonstrated with Mach-Zehnder interferometric sensors. In addition to the negative effects of SBS, certain aspects of the scattering process, such as the inherent Brillouin gain, can be used in a beneficial manner. We experiment with using the Brillouin scattering gain to produce a ring resonator laser and the generation of multiple laser signals. Furthermore, we demonstrate the use of the SBS gain to sense external strain and temperature perturbations of the optical fiber.

  5. Optical Phase Conjugation via Stimulated Brillouin Scattering in Multimode Optical Fiber

    DTIC Science & Technology

    1990-09-01

    Stimulated Scattering in Liquids. Phys. Rev., 171:160-171, July 1968. 46. D. Marcuse. Theory of Dielectric Optical Waveguides. In Quantum Electronics ... Principles and Applications, edited by Y. Pao. Academic Press, New York, 1974. 58 SECURITY CLASSIFICATION O r THIS PAGE Form ApprovedREPORT

  6. Nanosecond and ultrafast optical power limiting in luminescent Fe{sub 2}O{sub 3} hexagonal nanomorphotype

    SciTech Connect

    Thomas, Paulose; Abraham, K. E.; Sreekanth, P.

    2015-02-07

    Nonlinear optical absorption and optical power limiting properties of Fe{sub 2}O{sub 3} hexagonal nanomorphotype are investigated using open aperture Z-scan technique with the 5 ns and 100 fs laser pulses, at 532 nm and 800 nm excitation domains. At relatively low pulse energies (below 5 μJ), sample shows saturable absorption (SA), but on going to the higher energies an interesting switchover from saturable absorption to effective two photon absorption is observed in both excitation domains. The magnitude of effective two photon absorption coefficients is calculated to be in the range of 10{sup −10} m/W for nanosecond and 10{sup −15} m/W for femtosecond laser pulse energies, respectively. XRD and TEM study reveals the polycrystalline nature, hexagonal morphology, and size of the nanostructure. The luminescence emission property is examined by photoluminescence spectroscopy (PL). It is found that some strange features exist in the luminescence spectra that are consistent with the nanoparticles size distribution. The PL emission lines are explained as originated from various optical band edges due to the size induced quantum confinement and band gap resonant PL absorption/emission behavior of semiconductor nanostructures.

  7. The manifestation of optical centers in UV-Vis absorption and luminescence spectra of white blood human cells

    NASA Astrophysics Data System (ADS)

    Terent'yeva, Yu G.; Yashchuk, V. M.; Zaika, L. A.; Snitserova, O. M.; Losytsky, M. Yu

    2016-12-01

    A white blood human cells spectral investigation is presented. The aim of this series of experiments was to obtain and analyze the absorption and luminescence (fluorescence and phosphorescence) spectra at room temperature and at 78 K of newly isolated white blood human cells and their organelles. As a result the optical centers and possible biochemical components that form the studied spectra where identified. Also the differences between the spectra of abnormal cells (B-cell chronic lymphocytic leukemia BCLL) and normal ones were studied for the whole cells and individual organelles.

  8. Unconventional Increase in Non-Radiative Transitions in Plasmon-Enhanced Luminescence: A Distance-Dependent Coupling

    NASA Astrophysics Data System (ADS)

    Guidelli, Eder José; Ramos, Ana Paula; Baffa, Oswaldo

    2016-11-01

    We used Optically Stimulated Luminescence (OSL) from X-ray-irradiated sodium chloride nanocrystals to investigate how silver nanoparticle (AgNP) films enhanced luminescence. We controlled the emitter-AgNP distance and used the OSL intensity and decay times to explore the plasmonic interactions underlying the enhanced luminescence. Both intensity and decay times depended on the emitter-AgNP distance, which suggested that a mechanism involving energy transfer from the localized surface plasmons (LSPs) to the trapped electrons took place through a distance-dependent coupling. Compared to other plasmon-enhanced mechanisms, the energy transfer observed here occurred in the opposite bias: LSP relaxation stimulated electron transfer from non-optically active traps to optically active traps, which culminated in enhanced emission. Therefore, a different mechanism of plasmonic coupling converted optically unreachable electrons into useful luminescence information.

  9. Unconventional Increase in Non-Radiative Transitions in Plasmon-Enhanced Luminescence: A Distance-Dependent Coupling

    PubMed Central

    Guidelli, Eder José; Ramos, Ana Paula; Baffa, Oswaldo

    2016-01-01

    We used Optically Stimulated Luminescence (OSL) from X-ray-irradiated sodium chloride nanocrystals to investigate how silver nanoparticle (AgNP) films enhanced luminescence. We controlled the emitter-AgNP distance and used the OSL intensity and decay times to explore the plasmonic interactions underlying the enhanced luminescence. Both intensity and decay times depended on the emitter-AgNP distance, which suggested that a mechanism involving energy transfer from the localized surface plasmons (LSPs) to the trapped electrons took place through a distance-dependent coupling. Compared to other plasmon-enhanced mechanisms, the energy transfer observed here occurred in the opposite bias: LSP relaxation stimulated electron transfer from non-optically active traps to optically active traps, which culminated in enhanced emission. Therefore, a different mechanism of plasmonic coupling converted optically unreachable electrons into useful luminescence information. PMID:27848977

  10. Unconventional Increase in Non-Radiative Transitions in Plasmon-Enhanced Luminescence: A Distance-Dependent Coupling.

    PubMed

    Guidelli, Eder José; Ramos, Ana Paula; Baffa, Oswaldo

    2016-11-16

    We used Optically Stimulated Luminescence (OSL) from X-ray-irradiated sodium chloride nanocrystals to investigate how silver nanoparticle (AgNP) films enhanced luminescence. We controlled the emitter-AgNP distance and used the OSL intensity and decay times to explore the plasmonic interactions underlying the enhanced luminescence. Both intensity and decay times depended on the emitter-AgNP distance, which suggested that a mechanism involving energy transfer from the localized surface plasmons (LSPs) to the trapped electrons took place through a distance-dependent coupling. Compared to other plasmon-enhanced mechanisms, the energy transfer observed here occurred in the opposite bias: LSP relaxation stimulated electron transfer from non-optically active traps to optically active traps, which culminated in enhanced emission. Therefore, a different mechanism of plasmonic coupling converted optically unreachable electrons into useful luminescence information.

  11. Quartz Luminescence Applied in Palaeoenvironmental Reconstruction of a Dune

    NASA Astrophysics Data System (ADS)

    Przegietka, K. R.; Richter, D.; Chruscinska, A.; Oczkowski, H. L.; Lankauf, K. R.; Szmanda, J.; Luc, M.; Chudziak, W.

    2005-01-01

    Optically stimulated luminescence (OSL) and thermoluminescence (TL) dating were applied for studying the evolution of a dune at the archaeological site of Kaldus (Lower Vistula Valley, Poland), where excavation revealed a settlement sequence. The dating results are supported by investigations of optical bleaching characteristics of the dune quartz. The luminescence studies presented here are a part of a wider interdisciplinary project studying the dynamics of the local geomorphology and its relationship to human activity at the site from prehistoric times until early medieval ages.

  12. EMCCD based luminescence imaging system for spatially resolved geo-chronometric and radiation dosimetric applications

    NASA Astrophysics Data System (ADS)

    Chauhan, N.; Adhyaru, P.; Vaghela, H.; Singhvi, A. K.

    2014-11-01

    We report the development of an Electron Multiplier Charge Coupled Device (EMCCD) based luminescence dating system. The system enables position sensitive measurements of luminescence for the estimation of spatially resolved distribution of equivalent dose for complex geological samples. The system includes: 1) a sample stimulation unit (with both thermal and optical stimulations), 2) an optics unit that comprises imaging optics and, 3) a data acquisition and processing unit. The system works in a LabVIEW environment with a graphical user interface (GUI). User specified stimulation protocols enable thermal and optical stimulation in any desired combination. The optics unit images the luminescence on to a EMCCD (512 × 512 pixels, each of 16μm × 16μm size) and maintains a unit magnification. This unit has flexible focusing and a filter housing that enables change of filters combinations without disturbing the setup. Time integrated EMCCD images of luminescence from the sample are acquired as a function of programmable dwell time and these images are processed using indigenously developed MATLAB based programs. Additionally, the programs align the acquired images using a set of control points (identifier features on the images) to a single pixel accuracy. The dose evaluation is based on integrated intensity from selected pixels followed by generation of a growth curve giving luminescence as a function of applied beta doses. Development of this EMCCD camera based luminescence system will enable in-situ luminescence measurements of the samples, without the requirement of separating mineral grains from their matrix. It will also allow age estimation of samples such as lithic artifacts/structures via dating of their surfaces, fusion crust of meteorites, pedogenic carbonates, etc and will additionally open up possibilities of application like testing spatial uniformity of doping in artificial luminescence phosphors, dating/dosimetry of inclusions etc.

  13. Photoluminescence, thermally stimulated luminescence and electron paramagnetic resonance investigations of Tb{sup 3+} doped SrBPO{sub 5}

    SciTech Connect

    Kumar, Mithlesh; Seshagiri, T.K.; Kadam, R.M.; Godbole, S.V.

    2011-09-15

    Graphical abstract: EPR spectra of BOHC's in 2 kGy {gamma}-irradiated SrBPO{sub 5}:Tb sample using Receiver Gain RG = 4 x 10{sup 4}, Modulation Amplitude MA = 0.25 G, Microwave power setting 6.3 mW: (A) un-annealed sample recorded at 300 K, (B) un-annealed sample recorded at 100 K and (C) sample annealed at 550 K for 10 min and recorded at 100 K. Highlights: {yields} PL studies on Tb doped SrBPO{sub 5} phosphor have shown emission due to Tb{sup 3+} associated with {sup 5}D{sub 3} {yields} {sup 7}F{sub J} and {sup 5}D{sub 4} {yields} {sup 7}F{sub J} (J = 3, 4, 5 and 6) transitions. {yields} The EPR studies on {gamma}-irradiated samples revealed formation of three types of boron oxygen hole trapped centres viz., BOHC{sub 1}, BOHC{sub 2} and BOHC{sub 3} and an electron trapped centre. {yields} The TSL peak at 475 K was associated with the thermal destruction of BOHC{sub 2}. -- Abstract: Trap level spectroscopic studies were carried out on {gamma}-irradiated Tb (1 mole%) doped SrBPO{sub 5} were carried out using photoluminescence (PL), thermally stimulated luminescence (TSL) and electron paramagnetic resonance (EPR) techniques. The incorporation of Tb in the 3+ oxidation state was ascertained from PL studies. Life time for Tb{sup 3+} emission corresponding to the intense transition {sup 5}D{sub 4} {yields} {sup 7}F{sub 5} at 543 nm was determined. The spectral characteristics of the TSL glows have shown that Tb{sup 3+} ions act as the emission center for the glow peak at 475 K. The trap parameters of the glow peak were determined. EPR investigations at room temperature/77 K revealed the stabilization of three boron oxygen hole trapped centers (BOHC's) and oxygen centered radicals such as O{sup -} and O{sub 2}{sup -} and trapped electrons in room temperature {gamma}-irradiated samples. TSL glow peak at 475 K was found to be associated with recombination of electron released from trapped electron center and the BOHC{sub 2} center.

  14. A 3D glass optrode array for optical neural stimulation

    PubMed Central

    Abaya, T.V.F.; Blair, S.; Tathireddy, P.; Rieth, L.; Solzbacher, F.

    2012-01-01

    This paper presents optical characterization of a first-generation SiO2 optrode array as a set of penetrating waveguides for both optogenetic and infrared (IR) neural stimulation. Fused silica and quartz discs of 3-mm thickness and 50-mm diameter were micromachined to yield 10 × 10 arrays of up to 2-mm long optrodes at a 400-μm pitch; array size, length and spacing may be varied along with the width and tip angle. Light delivery and loss mechanisms through these glass optrodes were characterized. Light in-coupling techniques include using optical fibers and collimated beams. Losses involve Fresnel reflection, coupling, scattering and total internal reflection in the tips. Transmission efficiency was constant in the visible and near-IR range, with the highest value measured as 71% using a 50-μm multi-mode in-coupling fiber butt-coupled to the backplane of the device. Transmittance and output beam profiles of optrodes with different geometries was investigated. Length and tip angle do not affect the amount of output power, but optrode width and tip angle influence the beam size and divergence independently. Finally, array insertion in tissue was performed to demonstrate its robustness for optical access in deep tissue. PMID:23243561

  15. Optical properties of tris(cyclopentadienyl)gadolinium. Luminescence from an interligand triplet under ambient conditions

    NASA Astrophysics Data System (ADS)

    Strasser, Andreas; Vogler, Arnd

    2003-09-01

    The organometallic compound GdCp 3 (Cp=cyclopentadienyl) in ether solution shows a green luminescence ( λmax=523 nm, φ=0.2). It is suggested that this emission originates from a triplet of the Cp 33- moiety.

  16. Synthesis and optical properties of macrocyclic lanthanide(III) chelates as new reagents for luminescent biolabeling.

    PubMed

    Deslandes, Sébastien; Galaup, Chantal; Poole, Robert; Mestre-Voegtlé, Béatrice; Soldevila, Stéphanie; Leygue, Nadine; Bazin, Hervé; Lamarque, Laurent; Picard, Claude

    2012-11-14

    The convenient and efficient synthesis of two macrocyclic ligands (15- and 18-membered) based on a dipyrido-6,7,8,9-tetrahydrophenazine (dpqc) or 2,2':6',2''-terpyridine (tpy) heterocycle and a DTTA (diethylenetriaminetriacetic acid) skeleton is described. In these ligands the DTTA skeleton contains an additional extracyclic functionality (NH(2) group) suitable for covalent attachment to bioactive molecules. These octa- and nonadentate ligands form very stable and luminescent neutral lanthanide complexes in aqueous solutions at physiological pH. The corresponding Eu(III) and Tb(III) complexes are characterized by a maximum absorption wavelength compatible with nitrogen laser excitation (337 nm) and attractive lifetimes and quantum yields. Further introduction of a maleimide bioconjugatable handle in the Eu(III) complexes was investigated and a valuable luminescence brightness above 1500 dm(3) mol(-1) cm(-1) at 337 nm was obtained with the corresponding Eu(III) tpy-derivative. Finally, these two luminescent chelates were grafted onto thiol residues of a model antibody (Mab GSS11) without loss of their luminescent properties.

  17. Enhancement of luminescence of Rhodamine B by gold nanoparticles in thin films on glass for active optical materials applications

    NASA Astrophysics Data System (ADS)

    Levchenko, Viktoria; Grouchko, Michael; Magdassi, Shlomo; Saraidarov, Tsiala; Reisfeld, Renata

    2011-12-01

    Fluorescent dyes in solid matrices have many potential applications provided that their high optical efficiencies are achieved. We present here gold nanoparticles formed and incorporated together with fluorescent dye Rhodamine B into a film of polyvinyl alcohol (PVA). The increase of fluorescence of the dye results from its interaction with surface plasmons. The electric charge on the gold nanoparticles and the distance between them and the dye molecules has a significant effect on the fluorescence intensity. Fluorescence enhancement of 74% was achieved for the negatively charged particles. Dynamic measurements reveal decrease of fluorescent lifetimes of the dye in presence of gold nanoparticles. Our findings enable utilization of films with enhanced fluorescence in optical materials such as luminescence solar concentrators, solid state tunable laser and active waveguides.

  18. Continuous-wave infrared optical nerve stimulation for potential diagnostic applications

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Cilip, Christopher M.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2010-09-01

    Optical nerve stimulation using infrared laser radiation has recently been developed as a potential alternative to electrical nerve stimulation. However, recent studies have focused primarily on pulsed delivery of the laser radiation and at relatively low pulse rates. The objective of this study is to demonstrate faster optical stimulation of the prostate cavernous nerves using continuous-wave (cw) infrared laser radiation for potential diagnostic applications. A thulium fiber laser (λ=1870 nm) is used for noncontact optical stimulation of the rat prostate cavernous nerves in vivo. Optical nerve stimulation, as measured by an intracavernous pressure (ICP) response in the penis, is achieved with the laser operating in either cw mode, or with a 5-ms pulse duration at 10, 20, 30, 40, 50, and 100 Hz. Successful optical stimulation is observed to be primarily dependent on a threshold nerve temperature (42 to 45 °C), rather than an incident fluence, as previously reported. cw optical nerve stimulation provides a significantly faster ICP response time using a lower power (and also less expensive) laser than pulsed stimulation. cw optical nerve stimulation may therefore represent an alternative mode of stimulation for intraoperative diagnostic applications where a rapid response is critical, such as identification of the cavernous nerves during prostate cancer surgery.

  19. Internal luminescence efficiencies in InGaP/GaAs/Ge triple-junction solar cells evaluated from photoluminescence through optical coupling between subcells.

    PubMed

    Tex, David M; Imaizumi, Mitsuru; Akiyama, Hidefumi; Kanemitsu, Yoshihiko

    2016-12-08

    In-situ characterization is one of the most powerful techniques to improve material quality and device performance. Especially in view of highly efficient tandem solar cells this is an important issue for improving the cost-performance ratio. Optical techniques are suitable characterization methods, since they are non-destructing and contactless. In this work, we measured the power dependence of photoluminescence (PL) from the InGaP and GaAs subcells of an industry-standard triple-junction solar cell. High luminescence yields enhance the luminescence coupling, which was directly verified by time-resolved PL measurements. We present a new method to determine the internal luminescence efficiencies of InGaP and GaAs subcells with the aid of luminescence coupling. High luminescence efficiencies of 90% for GaAs and more than 20% for InGaP were found, which suggest that the material quality of the grown GaAs layer is excellent while the intrinsic luminescence limit of InGaP is still not reached even for high excitation conditions. The PL method is useful for probing the intrinsic material properties of the subcells in flat band condition, without influence of transport. Since no calibration of absolute PL is required, a fast screening of the material quality is possible, which should be extremely helpful for the solar cell industry.

  20. Internal luminescence efficiencies in InGaP/GaAs/Ge triple-junction solar cells evaluated from photoluminescence through optical coupling between subcells

    PubMed Central

    Tex, David M.; Imaizumi, Mitsuru; Akiyama, Hidefumi; Kanemitsu, Yoshihiko

    2016-01-01

    In-situ characterization is one of the most powerful techniques to improve material quality and device performance. Especially in view of highly efficient tandem solar cells this is an important issue for improving the cost-performance ratio. Optical techniques are suitable characterization methods, since they are non-destructing and contactless. In this work, we measured the power dependence of photoluminescence (PL) from the InGaP and GaAs subcells of an industry-standard triple-junction solar cell. High luminescence yields enhance the luminescence coupling, which was directly verified by time-resolved PL measurements. We present a new method to determine the internal luminescence efficiencies of InGaP and GaAs subcells with the aid of luminescence coupling. High luminescence efficiencies of 90% for GaAs and more than 20% for InGaP were found, which suggest that the material quality of the grown GaAs layer is excellent while the intrinsic luminescence limit of InGaP is still not reached even for high excitation conditions. The PL method is useful for probing the intrinsic material properties of the subcells in flat band condition, without influence of transport. Since no calibration of absolute PL is required, a fast screening of the material quality is possible, which should be extremely helpful for the solar cell industry. PMID:27929037

  1. Internal luminescence efficiencies in InGaP/GaAs/Ge triple-junction solar cells evaluated from photoluminescence through optical coupling between subcells

    NASA Astrophysics Data System (ADS)

    Tex, David M.; Imaizumi, Mitsuru; Akiyama, Hidefumi; Kanemitsu, Yoshihiko

    2016-12-01

    In-situ characterization is one of the most powerful techniques to improve material quality and device performance. Especially in view of highly efficient tandem solar cells this is an important issue for improving the cost-performance ratio. Optical techniques are suitable characterization methods, since they are non-destructing and contactless. In this work, we measured the power dependence of photoluminescence (PL) from the InGaP and GaAs subcells of an industry-standard triple-junction solar cell. High luminescence yields enhance the luminescence coupling, which was directly verified by time-resolved PL measurements. We present a new method to determine the internal luminescence efficiencies of InGaP and GaAs subcells with the aid of luminescence coupling. High luminescence efficiencies of 90% for GaAs and more than 20% for InGaP were found, which suggest that the material quality of the grown GaAs layer is excellent while the intrinsic luminescence limit of InGaP is still not reached even for high excitation conditions. The PL method is useful for probing the intrinsic material properties of the subcells in flat band condition, without influence of transport. Since no calibration of absolute PL is required, a fast screening of the material quality is possible, which should be extremely helpful for the solar cell industry.

  2. Optogenetics Based Rat-Robot Control: Optical Stimulation Encodes "Stop" and "Escape" Commands.

    PubMed

    Chen, SiCong; Zhou, Hong; Guo, SongChao; Zhang, JiaCheng; Qu, Yi; Feng, ZhouYan; Xu, KeDi; Zheng, XiaoXiang

    2015-08-01

    Electric brain stimulation is frequently used in bio-robot control. However, one possible limitation of electric stimulation is the resultant wide range of influences that may lead to unexpected side-effects. Although there has been prior research done towards optogenetics based brain activation, there has not been much development regarding the comparisons between electric and optical methods of brain activation. In this study, we first encode "Stop" and "Escape" commands by optical stimulation in the dorsal periaqueductal grey (dPAG). The rats behavioral comparisons are then noted down under these two methods. The dPAG neural activity recorded during optical stimulation suggests rate and temporal coding mechanisms in behavioral control. The behavioral comparisons show that rats exhibit anxiety under the "Stop" command conveyed through both optical and electric methods. However, rats are able to recover more quickly from freezing only under optical "Stop" command. Under "Escape" commands, also conveyed through optical means, the rat would move with lessened urgency but the results are more stable. Moreover, c-Fos study shows the optical stimulation activates restricted range in midbrain: the optical stimulation affected only dPAG and its downstreams but electric stimulation activates both the upstream and downstream circuits, in which the glutamatergic neurons are largely occupied and play important role in "Stop" and "Escape" behavior controls. We conclude that optical stimulation is more suited for encoding "Stop" and "Escape" commands for rat-robot control.

  3. An Infrared Stimulated Luminescence (IRSL) Procedure for Estimating the Transport Rate of Potassium-Feldspar Grains in a Fluvial Setting

    NASA Astrophysics Data System (ADS)

    McGuire, C. P.; Rhodes, E. J.

    2013-12-01

    The Mojave River and Santa Clara River of Southern California were chosen as field sites to assess the feasibility of implementing infrared stimulated luminescence (IRSL) techniques to determine sediment transport rate. Feldspar sand grains in the active channel of these rivers are expected to be incompletely (partially) bleached by sunlight exposure during transport, causing the grains to have inherited charge at the time of deposition. A modification of the Post-IR IRSL procedure developed by Buylaert et al. (2009) was used for K-Feldspar grains (175-200 μm) at temperature increments of 50, 95, 140, 185, 230 °C over multiple bleach and artificial dose cycles, providing 5 signals of different sensitivity to light exposure. The measurements show an exponential decrease in equivalent dose (De) with distance down the Mojave River, with relatively less bleaching downriver for higher temperature measurements. The equivalent dose for samples at 50 °C is roughly constant along the river, at a low value of approximately 0.7 Grays. The results for higher temperature measurements suggest cyclical bleaching and burial as grains are transported downriver and higher energy (deeper) traps are gradually vacated. However, this interpretation cannot be applied to the Santa Clara River, as no simple relationship exists between the location of samples and their equivalent dose. Possible explanations for this observation include significant sediment flux from catchments with different mineralogy and recent geologic history. For the Mojave River, the relationship between De and distance downriver can be used to constrain transport rate. A bleaching experiment was designed for the Mojave River samples to assess the rate of signal loss as a function of daylight exposure time for each of the different IRSL signal components. The results for each exposure time were fit to the general order kinetics equation, a function used to fit IRSL read-out, using a non-linear regression (Levenberg

  4. Optical and luminescence studies of ZnMoO 4 using vacuum ultraviolet synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Mikhailik, V. B.; Kraus, H.; Wahl, D.; Ehrenberg, H.; Mykhaylyk, M. S.

    2006-06-01

    In this paper we present a characterisation of ZnMoO 4 using spectroscopic techniques. Reflection, luminescence and luminescence excitation spectra were measured over the temperature range 8-295 K using VUV synchrotron radiation. The emission spectrum of the crystal exhibits a broad band with a maximum around 1.95 eV at 80 K that is attributed to the radiative transitions within MO 42- oxyanion complex. An interpretation of the observed features of the electronic excitations in the crystal is given based on present knowledge of the electronic structure and emission properties of molybdate crystals. The results of this study suggest that ZnMoO 4 is a suitable candidate for further testing for implementation as a target material in cryogenic scintillation searches for rare events.

  5. Multicolour optical coding from a series of luminescent lanthanide complexes with a unique antenna.

    PubMed

    Wartenberg, Nicolas; Raccurt, Olivier; Bourgeat-Lami, Elodie; Imbert, Daniel; Mazzanti, Marinella

    2013-03-04

    The bis-tetrazolate-pyridine ligand H(2)pytz sensitises efficiently the visible and/or near-IR luminescence emission of ten lanthanide cations (Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb). The Ln(III) complexes present sizeable quantum yields in both domains with a single excitation source. The wide range of possible colour combinations in water, organic solvents and the solid state makes the complexes very attractive for labelling and encoding.

  6. X-ray absorption fine structure and X-ray excited optical luminescence studies of II-VI semiconducting nanostructures

    NASA Astrophysics Data System (ADS)

    Murphy, Michael Wayne

    2010-06-01

    Various II-VI semiconducting nanomaterials such as ZnO-ZnS nanoribbons (NRs), CdSxSe1-x nanostructures, ZnS:Mn NRs, ZnS:Mn,Eu nanoprsims (NPs), ZnO:Mn nanopowders, and ZnO:Co nanopowders were synthesized for study. These materials were characterized by techniques such as scanning electron microscopy, transmission electron microscopy, element dispersive X-ray spectroscopy, selected area electron diffraction, and X-ray diffraction. The electronic and optical properties of these nanomaterials were studied by X-ray absorption fine structure (XAFS) spectroscopy and X-ray excited optical luminescence (XEOL) techniques, using tuneable soft X-rays from a synchrotron light source. The complementary nature ofthe XAFS and XEOL techniques give site, element and chemical specific measurements which allow a better understanding of the interplay and role of each element in the system. Chemical vapour deposition (CVD) of ZnS powder in a limited oxygen environment resulted in side-by-side biaxial ZnO-ZnS NR heterostructures. The resulting NRs contained distinct wurtzite ZnS and wurtzite ZnO components with widths of 10--100 nm and 20 --500 nm, respectively and a uniform interface region of 5-15 nm. XAFS and XEOL measurements revealed the luminescence of ZnO-ZnS NRs is from the ZnO component. The luminescence of CdSxSe1-x nanostructures is shown to be dependent on the S to Se ratio, with the band-gap emission being tunable between that of pure CdS and CdSe. Excitation of the CdSxSe 1-x nanostructures by X-ray in XEOL has revealed new de-excitation channels which show a defect emission band not seen by laser excitation. CVD of Mn2+ doped ZnS results in nanostructures with luminescence dominated by the yellow Mn2+ emission due to energy transfer from the ZnS host to the Mn dopant sites. The addition of EuCl3 to the reactants in the CVD process results in a change in morphology from NR to NP. Zn1-xMnxO and Zn1-xCOxO nanopowders were prepared by sol-gel methods at dopant concentrations

  7. Optical spectra and luminescence of REE and TRU for analytical purposes in chloride melts

    SciTech Connect

    Aloy, A.S.; Gorshkov, N.G.; Nekhoroshkov, S.N.; Osipenko, A.G.; Mayorshin, A.A.

    2013-07-01

    This paper analyzes absorption spectra of molten salts containing some of the actinide and rare-earth elements (REE) and evaluated the prospects of using the individual transitions to control the composition of the spent molten salts using adsorption and luminescence spectroscopy from the standpoint of the theory of Judd-Ofelt. It is shown that the fluorescent method can be recommended only for the monitoring of the degree of purification of the molten salt from the REE in the final stage, when only trace amounts of fission products are in the molten salt. In this case, the content of REE in the molten process is much smaller than that of the used model samples and that eliminates the problem of a significant decrease in the population levels of fluorescent Eu{sup 3+} by quenching impurities. In addition, the presence of salt in the matrix of americium and curium can cause self-luminescence of Eu{sup 3+} due to alpha disintegration energy of transuranics, which also complicates the quantitative measurement of luminescence for the determination of REE.

  8. Improved properties of phosphor-filled luminescent down-shifting layers: reduced scattering, optical model, and optimization for PV application

    NASA Astrophysics Data System (ADS)

    Solodovnyk, Anastasiia; Lipovšek, Benjamin; Forberich, Karen; Stern, Edda; Krč, Janez; Batentschuk, Miroslaw; Topič, Marko; Brabec, Christoph J.

    2015-12-01

    We studied the optical properties of polymer layers filled with phosphor particles in two aspects. First, we used two different polymer binders with refractive indices n = 1.46 and n = 1.61 (λ = 600 nm) to decrease Δn with the phosphor particles (n = 1.81). Second, we prepared two particle size distributions D50 = 12 μm and D50 = 19 μm. The particles were dispersed in both polymer binders in several volume concentrations and coated onto glass with thicknesses of 150 - 600 μm. We present further a newly developed optical model for simulation and optimization of such luminescent down-shifting (LDS) layers. The model is developed within the ray tracing framework of the existing optical simulator CROWM (Combined Ray Optics / Wave Optics Model), which enables simulation of standalone LDS layers as well as complete solar cells (including thick and thin layers) enhanced by the LDS layers for an improved solar spectrum harvesting. Experimental results and numerical simulations show that the layers of the higher refractive index binder with larger particles result in the highest optical transmittance in the visible light spectrum. Finally we proved that scattering of the phosphor particles in the LDS layers may increase the overall light harvesting in the solar cell. We used numerical simulations to determine optimal layer composition for application in realistic thin-film photovoltaic devices. Surprisingly LDS layers with lower measured optical transmittance are more efficient when applied onto the solar cells due to graded refractive index and efficient light scattering. Therefore, our phosphor-filled LDS layers could possibly complement other light-coupling techniques in photovoltaics.

  9. Nonlinear Dynamics of Stimulated Brillouin Scattering in Optical Fibres

    NASA Astrophysics Data System (ADS)

    Johnstone, Alan

    1992-09-01

    Available from UMI in association with The British Library. This thesis presents an experimental investigation of the dynamical and steady-state behaviour of stimulated Brillouin scattering (SBS) under cw pump conditions in single-mode optical fibres. Both SBS generated from the amplification of spontaneous Brillouin scattering, an SBS generator, and from the amplification of a probe signal, an SBS amplifier, were studied. For the generator without feedback, both the scattered wave and the transmitted pump were found to exhibit aperiodic behaviour under all operating conditions, fibres lengths between 25 m and 300 m were studied using a maximum pump power of 4 W, with the SBS showing approximately 100% modulation. The bandwidth of the chaotic SBS signal was found to be independent of the single-pass gain. The addition of feedback leads to the SBS and transmitted pump signals showing sustained or random bursts of quasi-periodic oscillations. The effects of varying the cavity reflectivity and also the pump power are shown. These were the first experimental reports of such behaviour (HAR90,JOH91) and were found to be in good agreement with the theoretical work carried out by Lu and Harrison (LU91a,LU91b). The output of an SBS amplifier was found to dynamically follow the applied probe signal except in some cases of high pump and very low probe values. Also investigated was the creation of phase singularities in the wavefronts of optical fibres. Only first-order screw dislocations were observed and their dependence on the number of fibre modes present was examined.

  10. X-ray-excited optical luminescence of protein crystals: a new tool for studying radiation damage during diffraction data collection.

    PubMed

    Owen, Robin L; Yorke, Briony A; Pearson, Arwen R

    2012-05-01

    During X-ray irradiation protein crystals radiate energy in the form of small amounts of visible light. This is known as X-ray-excited optical luminescence (XEOL). The XEOL of several proteins and their constituent amino acids has been characterized using the microspectrophotometers at the Swiss Light Source and Diamond Light Source. XEOL arises primarily from aromatic amino acids, but the effects of local environment and quenching within a crystal mean that the XEOL spectrum of a crystal is not the simple sum of the spectra of its constituent parts. Upon repeated exposure to X-rays XEOL spectra decay non-uniformly, suggesting that XEOL is sensitive to site-specific radiation damage. However, rates of XEOL decay were found not to correlate to decays in diffracting power, making XEOL of limited use as a metric for radiation damage to protein crystals.

  11. X-ray-excited optical luminescence of protein crystals: a new tool for studying radiation damage during diffraction data collection

    PubMed Central

    Owen, Robin L.; Yorke, Briony A.; Pearson, Arwen R.

    2012-01-01

    During X-ray irradiation protein crystals radiate energy in the form of small amounts of visible light. This is known as X-ray-excited optical luminescence (XEOL). The XEOL of several proteins and their constituent amino acids has been characterized using the microspectrophotometers at the Swiss Light Source and Diamond Light Source. XEOL arises primarily from aromatic amino acids, but the effects of local environment and quenching within a crystal mean that the XEOL spectrum of a crystal is not the simple sum of the spectra of its constituent parts. Upon repeated exposure to X-rays XEOL spectra decay non-uniformly, suggesting that XEOL is sensitive to site-specific radiation damage. However, rates of XEOL decay were found not to correlate to decays in diffracting power, making XEOL of limited use as a metric for radiation damage to protein crystals. PMID:22525748

  12. Structure, optical and photoluminescence properties of LiGd1-xErx(WO4)2 green luminescence phosphor

    NASA Astrophysics Data System (ADS)

    Demiaï, A.; Derbal, M.; Guerbous, L.; Rekik, B.

    2017-03-01

    Double tungstate of lithium and trivalent gadolinium ions were prepared by mean of solid state reaction, and have been studied using X-ray diffraction, Raman scattering and photoluminescence analysis. The Er3+ concentration effects on the structural and optical properties were studied. The compounds crystallize in the scheelite like structure with space group I41/a, and Z = 2. Spectroscopic and structural properties of the Er3+ ions doping elements in LiGd(WO4)2 have been determined at room temperature. Steady and time resolved photoluminescence spectroscopies of the synthesized compounds are reported. Samples exhibit intense green emission of Er3+ (4S3/2 → 4I15/2 and 2H11/2 → 4I15/2 transitions) under 377 nm excitation wavelength and present luminescent quenching around 3 at% Er3+ concentration. The decay time decrease with increasing the Er3+ concentration.

  13. Ag7+ ion induced modification of morphology, optical and luminescence behaviour of charge compensated CaMoO4 nanophosphor

    NASA Astrophysics Data System (ADS)

    Dutta, S.; Som, S.; Kunti, A. K.; Sharma, S. K.; Kumar, Vijay; Swart, H. C.; Visser, H. G.

    2016-10-01

    The present paper reports on the swift heavy ion (SHI) induced structural, optical and luminescence properties of CaMoO4:Dy3+/K+ nanophosphor synthesized via hydrothermal route. Herein 100 MeV Ag7+ ion beam was used varying fluence from 1 × 1011 to 1 × 1013 ions/cm2. The depth profile of the Ag7+ ions was estimated using SRIM code. XRD and FESEM results revealed the loss of crystallinity and reduction in particle size after SHI irradiations. The XPS technique confirmed the stability of oxidation states of the elements. Reflectance spectra exhibited a red shift in the absorption band, followed by a decrease in band gap. Decrease in the intensity of the photoluminescence peaks without any change in band positions was also obtained after ion irradiation. The thermoluminescence (TL) characteristics were discussed in detail, and the trapping parameter was calculated. The results were compared on the grounds of linear energy transfer of the irradiated ions.

  14. Electrical stimulation vs. pulsed and continuous-wave optical stimulation of the rat prostate cavernous nerves, in vivo

    NASA Astrophysics Data System (ADS)

    Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur; Fried, Nathaniel M.

    2015-07-01

    Identification and preservation of the cavernous nerves (CNs) during prostate cancer surgery is critical for post-operative sexual function. Electrical nerve stimulation (ENS) mapping has previously been tested as an intraoperative tool for CN identification, but was found to be unreliable. ENS is limited by the need for electrode-tissue contact, poor spatial precision from electrical current spreading, and stimulation artifacts interfering with detection. Alternatively, optical nerve stimulation (ONS) provides noncontact stimulation, improved spatial selectivity, and elimination of stimulation artifacts. This study compares ENS to pulsed/CW ONS to explore the ONS mechanism. A total of eighty stimulations were performed in 5 rats, in vivo. ENS (4 V, 5 ms, 10 Hz) was compared to ONS using a pulsed diode laser nerve stimulator (1873 nm, 5 ms, 10 Hz) or CW diode laser nerve stimulator (1455 nm). Intracavernous pressure (ICP) response and nerve compound action potentials (nCAPs) were measured. All three stimulation modes (ENS, ONS-CW, ONS-P) produced comparable ICP magnitudes. However, ENS demonstrated more rapid ICP response times and well defined nCAPs compared to unmeasurable nCAPs for ONS. Further experiments measuring single action potentials during ENS and ONS are warranted to further understand differences in the ENS and ONS mechanisms.

  15. Optical and luminescence properties of Dy3+ ions in phosphate based glasses

    NASA Astrophysics Data System (ADS)

    Rasool, Sk. Nayab; Rama Moorthy, L.; Jayasankar, C. K.

    2013-08-01

    Phosphate glasses with compositions of 44P2O5 + 17K2O + 9Al2O3 + (30 - x)CaF2 + xDy2O3 (x = 0.05, 0.1, 0.5, 1.0, 2.0, 3.0 and 4.0 mol %) were prepared and characterized by X-ray diffraction (XRD), differential thermal analysis (DTA), Fourier transform infrared (FTIR), optical absorption, emission and decay measurements. The observed absorption bands were analyzed by using the free-ion Hamiltonian (HFI) model. The Judd-Ofelt (JO) analysis has been performed and the intensity parameters (Ωλ, λ = 2, 4, 6) were evaluated in order to predict the radiative properties of the excited states. From the emission spectra, the effective band widths (Δλeff), stimulated emission cross-sections (σ(λp)), yellow to blue (Y/B) intensity ratios and chromaticity color coordinates (x, y) have been determined. The fluorescence decays from the 4F9/2 level of Dy3+ ions were measured by monitoring the intense 4F9/2 → 6H15/2 transition (486 nm). The experimental lifetimes (τexp) are found to decrease with the increase of Dy3+ ions concentration due to the quenching process. The decay curves are perfectly single exponential at lower concentrations and gradually changes to non-exponential for higher concentrations. The non-exponential decay curves are well fitted to the Inokuti-Hirayama (IH) model for S = 6, which indicates that the energy transfer between the donor and acceptor is of dipole-dipole type. The systematic analysis of revealed that the energy transfer mechanism strongly depends on Dy3+ ions concentration and the host glass composition.

  16. Photon energy dependence of three fortuitous dosemeters from personal electronic devices, measured by optically stimulated luminescence.

    PubMed

    Beerten, Koen; Vanhavere, Filip

    2010-08-01

    New data are presented with regard to the relative OSL sensitivity of three different emergency dosemeters irradiated to various photon energies approximately between 48 and 1250 keV using blue excitation light. Investigated components extracted from commonly worn objects include those from USB flash drives (alumina substrate), mobile phones (Ba-rich silicate) and credit cards (chip card module). Several basic properties have been investigated such as the overall radiation sensitivity, the shape of the decay curve and fading of the OSL signal. An increase of the sensitivity for low energies relative to (60)Co gamma rays can be observed for the three dosemeters, the increase being very pronounced for the Ba-rich component (factor of 10) and less pronounced for the chip card module (factor of 2). It is concluded that proper dose correction factors for photon energy have to be applied in order to accurately determine the absorbed dose to tissue. The OSL sensitivity to neutron irradiation was investigated as well, but this was found to be less than the gamma sensitivity.

  17. Preliminary thermoluminescence and optically stimulated luminescence investigation of commercial pharmaceutical preparations towards the drug sterilization dosimetry.

    PubMed

    Kazakis, Nikolaos A; Tsirliganis, Nestor C; Kitis, George

    2014-09-01

    Drug sterilization with ionizing radiation is a well-established technology and is gaining ground the last decades due to its numerous advantages. Identification of irradiated drugs would be interesting and, in this respect, the present work aims, for the first time to the authors' best knowledge, to explore whether OSL and TL can be employed as methods for post-sterilization dosimetry on commercial drugs, i.e., as tools for the detection of irradiated drugs. Five widely used drugs, i.e., Daktarin(®), Aspirin(®), Panadol(®), Brufen(®) and Procef(®), are used for this purpose. Preliminary findings are very promising towards the post-sterilization dosimetry and the use of commercial drugs for normal and/or accidental dosimetry.

  18. Long-wavelength analyte-sensitive luminescent probes and optical (bio)sensors

    PubMed Central

    Staudinger, Christoph; Borisov, Sergey M

    2016-01-01

    Long-wavelength luminescent probes and sensors become increasingly popular. They offer the advantage of lower levels of autofluorescence in most biological probes. Due to high penetration depth and low scattering of red and NIR light such probes potentially enable in vivo measurements in tissues and some of them have already reached a high level of reliability required for such applications. This review focuses on the recent progress in development and application of long-wavelength analyte-sensitive probes which can operate both reversibly and irreversibly. Photophysical properties, sensing mechanisms, advantages and limitations of individual probes are discussed. PMID:27134748

  19. The use of the adding-doubling method for the optical optimization of planar luminescent down shifting layers for solar cells.

    PubMed

    Leyre, Sven; Cappelle, Jan; Durinck, Guy; Abass, Aimi; Hofkens, Johan; Deconinck, Geert; Hanselaer, Peter

    2014-05-05

    To enhance the efficiency of solar cells, a luminescent down shifting layer can be applied in order to adapt the solar spectrum to the spectral internal quantum efficiency of the semiconductor. Optimization of such luminescent down shifting layers benefits from quick and direct evaluation methods. In this paper, the potential of the adding-doubling method is investigated to simulate the optical behavior of an encapsulated solar cell including a planar luminescent down shifting layer. The results of the adding-doubling method are compared with traditional Monte Carlo ray tracing simulations. The average relative deviation is found to be less than 1.5% for the absorptance in the active layer and the reflectance from the encapsulated cell, while the computation time can be decreased with a factor 52. Furthermore, the adding-doubling method is adopted to investigate the suitability of the SrB4O7:5%Sm2 + ,5%Eu2 + phosphor as a luminescent down shifting material in combination with a Copper Indium Gallium Selenide solar cell. A maximum increase of 9.0% in the short-circuit current can be expected if precautions are taken to reduce the scattering by matching the refractive index of host material to the phosphor particles. To be useful as luminescent down shifting material, the minimal value of the quantum yield of the phosphor is determined to be 0.64.

  20. Luminescence properties and optical dephasing in a glass-ceramic containing sodium-niobate nanocrystals

    NASA Astrophysics Data System (ADS)

    Almeida, E.; de S. Menezes, L.; de Araújo, Cid B.; Lipovskii, A. A.

    2011-06-01

    Photoluminescence (PL) and degenerate four-wave-mixing (DFWM) experiments were performed in a silica-niobic composite containing NaNbO3 nanocrystals. The PL results indicate the presence of in-gap states attributed to excitons in the nanocrystals and defect centers. The luminescence of the samples becomes more intense at low temperatures, indicating that nonradiative relaxations dominate the dynamics of the in-gap states. The DFWM experiments allowed for measurements of the homogeneous relaxation time, (20 ± 3) fs, of the third-order polarization at room temperature. The main contributions to the dynamics of the electronic response are attributed to the trapping of electrons in the in-gap states and to carrier and phonon scattering.

  1. Influence of surface coating on structural, morphological and optical properties of upconversion-luminescent LaF3:Yb/Er nanoparticles

    NASA Astrophysics Data System (ADS)

    Ansari, Anees A.; Yadav, Ranvijay; Rai, S. B.

    2016-07-01

    LaF3:Yb/Er (core), LaF3:Yb/Er@LaF3 (core/shell) and LaF3:Yb/Er@LaF3@SiO2 (core/shell/SiO2) nanoparticles were synthesized using citric-acid-based complexation process. X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray analysis, optical absorption, band-gap energy ( E g), Fourier transform infrared and upconversion emission spectroscopy were employed to investigate the structural, morphological and optical properties of the synthesized core and core/shell/SiO2 nanoparticles. These core/shell/SiO2 nanoparticles can be well dispersed in aqueous solvents to form clear colloidal solution. The optical band-gap energy was decreased after shell formation due to increase in the crystalline size. The growth of an inactive and porous silica layers simultaneously on the surface of luminescent core-nanoparticles resulting an increase in average crystalline size of the nanoparticles. As-prepared inert shell-coated core/shell nanoparticles show intensive upconversion-luminescence as compared to the seed-core and silica-surface-modified core/shell/SiO2 nanoparticles because luminescent ions (Yb3+ and Er3+) ions located at the particle surface were protected from the non-radiative decay arising from surface dangling bonds and capping agent. However, our study revealed that there was only a slight reduction in upconversion efficiency for the silica-modified core/shell nanoparticles, indicating that upconversion properties of the upconversion nanoparticles are largely preserved in the core/shell/SiO2 nanoparticles. Absorption and upconversion-luminescence properties were examined for future application in the development of optical devices as well as optical bioprobes.

  2. Optical coherence tomography and optical coherence domain reflectometry for deep brain stimulation probe guidance

    NASA Astrophysics Data System (ADS)

    Jeon, Sung W.; Shure, Mark A.; Baker, Kenneth B.; Chahlavi, Ali; Hatoum, Nagi; Turbay, Massud; Rollins, Andrew M.; Rezai, Ali R.; Huang, David

    2005-04-01

    Deep Brain Stimulation (DBS) is FDA-approved for the treatment of Parkinson's disease and essential tremor. Currently, placement of DBS leads is guided through a combination of anatomical targeting and intraoperative microelectrode recordings. The physiological mapping process requires several hours, and each pass of the microelectrode into the brain increases the risk of hemorrhage. Optical Coherence Domain Reflectometry (OCDR) in combination with current methodologies could reduce surgical time and increase accuracy and safety by providing data on structures some distance ahead of the probe. For this preliminary study, we scanned a rat brain in vitro using polarization-insensitive Optical Coherence Tomography (OCT). For accurate measurement of intensity and attenuation, polarization effects arising from tissue birefringence are removed by polarization diversity detection. A fresh rat brain was sectioned along the coronal plane and immersed in a 5 mm cuvette with saline solution. OCT images from a 1294 nm light source showed depth profiles up to 2 mm. Light intensity and attenuation rate distinguished various tissue structures such as hippocampus, cortex, external capsule, internal capsule, and optic tract. Attenuation coefficient is determined by linear fitting of the single scattering regime in averaged A-scans where Beer"s law is applicable. Histology showed very good correlation with OCT images. From the preliminary study using OCT, we conclude that OCDR is a promising approach for guiding DBS probe placement.

  3. Probing Luminescence Dating Of Archaeologically Significant Carved Rock Types

    NASA Astrophysics Data System (ADS)

    Liritzis, Ioannis; Kitis, George; Galloway, Robert B.; Vafiadou, Asimina; Tsirliganis, Nestoras C.; Polymeris, George S.

    The thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) dating of crystalline materials, first applied to calcites (limestone buildings), has been extended to carved megalithic monuments made of granites, basalt and sandstones derived from archaeological sites. Various applied criteria for potential dating included pulsed blue light stimulation, different preheating and solar simulator bleaching, while the single (and multiple) aliquot regeneration and additive dose procedures were used for equivalent dose determination. The decay curves of signal loss follow a power law, n-p; for blue stimulation the signal loss of quartz and feldspar is better approached by an exponential law, 1-aln(n).

  4. A concise synthesis of optically active solanacol, the germination stimulant for seeds of root parasitic weeds.

    PubMed

    Kumagai, Hiroshi; Fujiwara, Mami; Kuse, Masaki; Takikawa, Hirosato

    2015-01-01

    Solanacol, isolated from tobacco (Nicotiana tabacum L.), is a germination stimulant for seeds of root parasitic weeds. A concise synthesis of optically active solanacol has been achieved by employing enzymatic resolution as a key step.

  5. Photoinduced (WO4)3--La3+ center in PbWO4: Electron spin resonance and thermally stimulated luminescence study

    NASA Astrophysics Data System (ADS)

    Laguta, V. V.; Martini, M.; Meinardi, F.; Vedda, A.; Hofstaetter, A.; Meyer, B. K.; Nikl, M.; Mihóková, E.; Rosa, J.; Usuki, Y.

    2000-10-01

    The localization of electrons at W6+ sites perturbed by lanthanum in PbWO4 is studied by electron spin resonance (ESR) and thermally stimulated luminescence (TSL) measurements. The (WO4)3--La3+ centers are created at the W6+ sites close to La3+ in two different ways: (i) direct trapping of electrons from the conduction band under ultraviolet or x-ray irradiation at T=60 K (ii) retrapping of electrons freed from unperturbed (WO4)3- centers after irradiation at T<40 K followed by heating up to T around 60 K. Electron transfer from La3+-perturbed to unperturbed W6+ sites stimulated by red light illumination is also observed. The proposed mechanism of electron localization at one of four equivalent tungstate ions close to La3+ is based on the pseudo-Jahn-Teller effect, which gives rise to a rhombic distortion of (WO4)3- complex. At T~95-98 K the (WO4)3--La3+ centers are thermally ionized giving rise to a TSL glow peak due to the recombination of detrapped electrons with localized holes. The emission spectrum of the TSL features one band peaking at 2.8 eV. The temperature dependence of both TSL and ESR intensity is analyzed in the frame of a general order recombination model. The thermal ionization energy of (WO4)3--La3+ centers has been calculated to be approximately 0.27 eV.

  6. Electronic structure and optical properties of CdS{sub x}Se{sub 1−x} solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    SciTech Connect

    Murphy, M. W.; Yiu, Y. M. Sham, T. K.; Ward, M. J.; Liu, L.; Hu, Y.; Zapien, J. A.; Liu, Yingkai

    2014-11-21

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdS{sub x}Se{sub 1−x} solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  7. Monitoring pH-Triggered Drug Release from Radioluminescent Nanocapsules with X-Ray Excited Optical Luminescence

    PubMed Central

    Chen, Hongyu; Moore, Thomas; Qi, Bin; Colvin, Daniel C.; Jelen, Erika K.; Hitchcock, Dale A.; He, Jian; Mefford, O. Thompson; Gore, John C.; Alexis, Frank; Anker, Jeffrey N.

    2013-01-01

    One of the greatest challenges in cancer therapy is to develop methods to deliver chemotherapy agents to tumor cells while reducing systemic toxicity to non-cancerous cells. A promising approach to localizing drug release is to employ drug-loaded nanoparticles with coatings that release the drugs only in the presence of specific triggers found in the target cells such as pH, enzymes, or light. However, many parameters affect the nanoparticle distribution and drug release rate and it is difficult to quantify drug release in situ. In this work, we show proof of principle for a “smart” radioluminescent nanocapsule with X-ray excited optical luminescence (XEOL) spectrum that changes during release of the optically absorbing chemotherapy drug, doxorubicin. XEOL provides an almost background-free luminescent signal for measuring drug release from particles irradiated by a narrow X-ray beam. We study in vitro pH triggered release rates of doxorubicin from nanocapsules coated with a pH responsive polyelectrolyte multilayer using HPLC and XEOL spectroscopy. The doxorubicin was loaded to over 5 % by weight, and released from the capsule with a time constant in vitro of ~ 36 days at pH 7.4, and 21.4 hr at pH 5.0, respectively. The Gd2O2S:Eu nanocapsules are also paramagnetic at room temperature with similar magnetic susceptibility and similarly good MRI T2 relaxivities to Gd2O3, but the sulfur increases the radioluminescence intensity and shifts the spectrum. Empty nanocapsules did not affect cell viability up to concentrations of at least 250 μ/ml. These empty nanocapsules accumulated in a mouse liver and spleen following tail vein injection, and could be observed in vivo using XEOL. The particles are synthesized with a versatile template synthesis technique which allows for control of particle size and shape. The XEOL analysis technique opens the door to non-invasive quantification of drug release as a function of nanoparticle size, shape, surface chemistry and tissue

  8. Optical Characterization of Strong UV Luminescence Emitted from the Excitonic Edge of Nickel Oxide Nanotowers

    PubMed Central

    Ho, Ching-Hwa; Kuo, Yi-Ming; Chan, Ching-Hsiang; Ma, Yuan-Ron

    2015-01-01

    NiO had been claimed to have the potential for application in transparent conducting oxide, electrochromic device for light control, and nonvolatile memory device. However, the detailed study of excitonic transition and light-emission property of NiO has rarely been explored to date. In this work, we demonstrate strong exciton-complex emission of high-quality NiO nanotowers grown by hot-filament metal-oxide vapor deposition with photoluminescence as an evaluation tool. Fine and clear emission features coming from the excitonic edge of the NiO are obviously observed in the photoluminescence spectra. A main excitonic emission of ~3.25 eV at 300 K can be decomposed into free exciton, bound excitons, and donor-acceptor-pair irradiations at lowered temperatures down to 10 K. The band-edge excitonic structure for the NiO nanocrystals has been evaluated and analyzed by transmission and thermoreflectacne measurements herein. All the experimental results demonstrate the cubic NiO thin-film nanotower is an applicable direct-band-gap material appropriate for UV luminescence and transparent-conducting-oxide applications. PMID:26506907

  9. ESR, optical absorption, and luminescence studies of the peroxy-radical defect in topaz

    SciTech Connect

    Priest, V.; Cowan, D.L. ); Yasar, H.; Ross, F.K. , University of Missouri-Columbia, Columbia, Missouri )

    1991-11-01

    Fast-neutron irradiation of natural topaz crystals produces a single paramagnetic radiation damage center in high concentration. ESR of this center shows a holelike spectrum with {ital S}=1/2 and a strongly anisotropic {ital g} tensor: {ital g}{sub {ital x}{ital x}}=2.0027, {ital g}{sub {ital y}{ital y}}=2.0055, and {ital g}{sub {ital z}{ital z}}=2.0407. We identify this defect as an intrinsic O{sub 2}{sup {minus}} center in the form of a peroxy radical. The orientation of the {ital g} tensor helps confirm this assignment, as does the extraordinary thermal stability; annealing temperatures near 800 {degree}C are required for complete removal. Two uv absorption bands are associated with the peroxy radical, each with oscillator strength near 0.09. Pumping in the higher energy band leads to a polarization-sensitive 2.5-eV luminescence; the other uv band apparently relaxes nonradiatively.

  10. Fiber-optic apparatus and method for measurement of luminescence and raman scattering

    DOEpatents

    Myrick, Michael L.; Angel, Stanley M.

    1993-01-01

    A dual fiber forward scattering optrode for Raman spectroscopy with the remote ends of the fibers in opposed, spaced relationship to each other to form a analyte sampling space therebetween and the method of measuring Raman spectra utilizing same. One optical fiber is for sending an exciting signal to the remote sampling space and, at its remote end, has a collimating microlens and an optical filter for filtering out background emissions generated in the fiber. The other optical fiber is for collecting the Raman scattering signal at the remote sampling space and, at its remote end, has a collimating microlens and an optical filter to prevent the exciting signal from the exciting fiber from entering the collection fiber and to thereby prevent the generation of background emissions in the collecting fiber.

  11. Fiber-optic apparatus and method for measurement of luminescence and Raman scattering

    DOEpatents

    Myrick, M.L.; Angel, S.M.

    1993-03-16

    A dual fiber forward scattering optrode for Raman spectroscopy with the remote ends of the fibers in opposed, spaced relationship to each other to form a analyte sampling space therebetween and the method of measuring Raman spectra utilizing same are described. One optical fiber is for sending an exciting signal to the remote sampling space and, at its remote end, has a collimating microlens and an optical filter for filtering out background emissions generated in the fiber. The other optical fiber is for collecting the Raman scattering signal at the remote sampling space and, at its remote end, has a collimating microlens and an optical filter to prevent the exciting signal from the exciting fiber from entering the collection fiber and to thereby prevent the generation of background emissions in the collecting fiber.

  12. Luminescence Dating of Sediments: An Increasingly Diverse Family of Methods and Range of Applications

    NASA Astrophysics Data System (ADS)

    Roberts, H. M.

    2015-12-01

    In recent years, the term 'luminescence dating' has expanded its meaning such that today it encompasses a range of luminescence dating methods and materials. Whilst the fundamental principles that underlie these different dating methods are essentially the same, namely that the event typically being recorded is the last exposure of the material to light or to heat, the various luminescence dating techniques do differ in their suitability in different situations. Today, in the field of luminescence dating of sediments, there are a number of minerals that can be used for dating (quartz and feldspar being the most commonly used), and for each mineral it is possible to obtain a number of different luminescence signals (some obtained using optical stimulation, and some obtained by heating). These different luminescence signals may build-up and deplete in the natural environment at different rates from each other, and can span quite different time ranges. Additionally, the scale of analysis used in luminescence dating can now be varied (ranging from single sand-sized grains to multiple grains), as can the size range of the materials used for dating (ranging from fine-silt, coarse-silt, and sand-sized grains, through to large clasts and rock surfaces). Having such flexibility in the range of minerals, luminescence signals, grain sizes, and the scales of analysis available for dating, means that it is now possible to optimise the materials and methods selected for dating in any particular study in response to the precise scientific question to be addressed, the time-range of interest, and the likely mechanisms of re-setting of the luminescence signal in the context that is to be dated. In this paper, the flexibility offered by the growing family of luminescence techniques will be outlined by considering some of the different minerals, luminescence signals, and dramatically different timescales (tens of years to millions of years) potentially available for sediment dating

  13. Optical fibre luminescence sensor for real-time LDR brachytherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Woulfe, P.; Sullivan, F. J.; O'Keeffe, S.

    2016-05-01

    An optical fibre sensor for monitoring low dose radiation is presented. The sensor is based on a scintillation material embedded within the optical fibre core, which emits visible light when exposed to low level ionising radiation. The incident level of ionising radiation can be determined by analysing the optical emission. An optical fibre sensor is presented, based on radioluminescence whereby radiation sensitive scintillation material, terbium doped gadolinium oxysulphide (Gd2O2S:Tb), is embedded in a cavity of 250μm of a 500μm plastic optical fibre. The sensor is designed for in-vivo monitoring of the radiation dose during radio-active seed implantation for brachytherapy, in prostate cancer treatment, providing oncologists with real-time information of the radiation dose to the target area and/or nearby critical structures. The radiation from the brachytherapy seeds causes emission of visible light from the scintillation material through the process of radioluminescence, which penetrates the fibre, propagating along the optical fibre for remote detection using a multi-pixel photon counter. The sensor demonstrates a high sensitivity to Iodine-125, the radioactive source most commonly used in brachytherapy for treating prostate cancer.

  14. Microalgae dual-head biosensors for selective detection of herbicides with fiber-optic luminescent O2 transduction.

    PubMed

    Haigh-Flórez, David; de la Hera, Cristina; Costas, Eduardo; Orellana, Guillermo

    2014-04-15

    The microalgal species Dictyosphaerium chlorelloides (D. c.) was immobilized into porous silicone films and their photosynthetic activity was monitored with an integrated robust luminescent O2 sensor. The biosensor specificity towards a particular pesticide has been achieved by manufacturing a fiber-optic dual-head device containing both analyte-sensitive and analyte-resistant D. c. strains. The latter are not genetically modified microalgae, but a product of modified Luria-Delbrück fluctuation analysis followed by ratchet selection cycles. In this way the target herbicide decreases the O2 production of the analyte-sensitive immobilized strain without affecting the analyte-resistant population response; any other pollutant will lower the O2 production of both strains. The effect of the sample flow-rate, exposure time to the herbicide, biomass loading, biosensor film thickness, intensity of the actinic light, illumination cycle, and temperature on the biosensor response has been evaluated using waterborne simazine as test bench. The biosensing device is able to provide in situ measurements of the herbicide concentration every 180 min. The biosensor limit of detection for this herbicide was 12 μg L(-1), with a working range of 50-800 μg L(-1). The biosensor specificity to simazine has been assessed by comparing its response to that of isoproturon.

  15. Syntheses, structural characterization, luminescence and optical studies of Ni(II) and Zn(II) complexes containing salophen ligand

    NASA Astrophysics Data System (ADS)

    More, M. S.; Pawal, S. B.; Lolage, S. R.; Chavan, S. S.

    2017-01-01

    Some Ni(II) (1a-d) and Zn(II) (2a-d) salophen complexes were prepared by the treatment of 5-bromosalicylaldehyde, 5-(trimethylsilylethynyl)salicylaldehyde, 5-(4-nitrophenyl)ethynylsalicylaldehyde or 5-(4-methoxyphenyl)ethynylsalicylaldehyde with nickel acetate or zinc acetate followed by addition of 2,3-diamino-5-bromopyridine. All complexes were characterized by elemental analyses, IR, 1H NMR and mass spectral studies. X-ray powder diffraction of representative complexes 1c and 2b and SEM studies of 1b and 2d are used to elucidate the crystal structure and morphology of the complexes. The electrochemical behavior reveals that the redox responses of Ni(II) complexes shifted to more negative potential in order to increase the π-conjugation in the complexes. Room temperature luminescence is observed for all complexes corresponding to π→π* ILCT transition with some MLCT character in DMF and is finely tuned by the degree of extended π-conjugation and variation of the substituent group with different electronic effects in the complexes. The second harmonic generation (SHG) efficiency of the complexes was screened by Kurtz-powder technique indicating that all complexes possesses promising potential for the application as a useful nonlinear optical material.

  16. Optical lattice-like cladding waveguides by direct laser writing: fabrication, luminescence, and lasing.

    PubMed

    Nie, Weijie; He, Ruiyun; Cheng, Chen; Rocha, Uéslen; Rodríguez Vázquez de Aldana, Javier; Jaque, Daniel; Chen, Feng

    2016-05-15

    We report on the fabrication of optical lattice-like waveguide structures in an Nd:YAP laser crystal by using direct femtosecond laser writing. With periodically arrayed laser-induced tracks, the waveguiding cores can be located in either the regions between the neighbored tracks or the central zone surrounded by a number of tracks as outer cladding. The polarization of the femtosecond laser pulses for the inscription has been found to play a critical role in the anisotropic guiding behaviors of the structures. The confocal photoluminescence investigations reveal different stress-induced modifications of the structures inscribed by different polarization of the femtosecond laser beam, which are considered to be responsible for the refractive index changes of the structures. Under optical pump at 808 nm, efficient waveguide lasing at ∼1  μm wavelength has been realized from the optical lattice-like structure, which exhibits potential applications as novel miniature light sources.

  17. Tunable Stimulated Brillouin Scattering in Planar Optical Circuits

    DTIC Science & Technology

    2012-11-01

    interaction between optical and acoustic modes using a combination of material , geometry and optical pump characteristics. While the choice of material and...interaction, making it the material of choice for chip-scale SBS. SBS was characterized in a 7 cm long As2S3 rib waveguide using the backscattered...2011). 3. Ravi Pant, Adam Byrnes , Christopher G. Poulton, Enbang Li, Duk-Yong Choi, Stephen J. Madden, Barry Luther-Davies, and Benjamin J

  18. Luminescence nanothermometry

    NASA Astrophysics Data System (ADS)

    Jaque, Daniel; Vetrone, Fiorenzo

    2012-07-01

    The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed.The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed. This work was supported by the Universidad Autónoma de Madrid and Comunidad Autónoma de Madrid (Project S2009/MAT-1756), by the Spanish Ministerio de Educacion y Ciencia (MAT2010-16161) and by Caja Madrid Foundation.

  19. Spatial and temporal variability in response to hybrid electro-optical stimulation

    NASA Astrophysics Data System (ADS)

    Duke, Austin R.; Lu, Hui; Jenkins, Michael W.; Chiel, Hillel J.; Jansen, E. Duco

    2012-06-01

    Hybrid electro-optical neural stimulation is a novel paradigm combining the advantages of optical and electrical stimulation techniques while reducing their respective limitations. However, in order to fulfill its promise, this technique requires reduced variability and improved reproducibility. Here we used a comparative physiological approach to aid the further development of this technique by identifying the spatial and temporal factors characteristic of hybrid stimulation that may contribute to experimental variability and/or a lack of reproducibility. Using transient pulses of infrared light delivered simultaneously with a bipolar electrical stimulus in either the marine mollusk Aplysia californica buccal nerve or the rat sciatic nerve, we determined the existence of a finite region of excitability with size altered by the strength of the optical stimulus and recruitment dictated by the polarity of the electrical stimulus. Hybrid stimulation radiant exposures yielding 50% probability of firing (RE50) were shown to be negatively correlated with the underlying changes in electrical stimulation threshold over time. In Aplysia, but not in the rat sciatic nerve, increasing optical radiant exposures (J cm-2) beyond the RE50 ultimately resulted in inhibition of evoked potentials. Accounting for the sources of variability identified in this study increased the reproducibility of stimulation from 35% to 93% in Aplysia and 23% to 76% in the rat with reduced variability.

  20. Complexation of Lactate with Nd(III) and Eu(III) at Variable Temperatures: Studies by Potentiometry, Microcalorimetry, Optical Absorption and Luminescence Spectroscopy

    SciTech Connect

    Tian, Guoxin; Martin, Leigh R.; Rao, Linfeng

    2010-10-01

    Complexation of neodymium(III) and europium(III) with lactate was studied at variable temperatures by potentiometry, absorption spectrophotometry, luminescence spectroscopy and microcalorimetry. Stability constants of three successive lactate complexes (ML{sup 2+}, ML{sup 2+} and ML{sub 3}(aq), where M stands for Nd and Eu, and L stands for lactate) at 10, 25, 40, 55 and 70 C were determined. The enthalpies of complexation at 25 C were determined by microcalorimetry. Thermodynamic data show that the complexation of trivalent lanthanides (Nd{sup 3+} and Eu{sup 3+}) with lactate is exothermic, and the complexation becomes weaker at higher temperatures. Results from optical absorption and luminescence spectroscopy suggest that the complexes are inner-sphere chelate complexes in which the protonated {alpha}-hydroxyl group of lactate participates in the complexation.

  1. Probing defect emissions in bulk, micro- and nano-sized α-Al2O3 via X-ray excited optical luminescence.

    PubMed

    Wang, Zhiqiang; Li, Chunlei; Liu, Lijia; Sham, Tsun-Kong

    2013-02-28

    The electronic structure and optical properties of bulk, micro-sized, and nano-sized α-Al2O3 (wafer, microparticles (MPs), nanowires (NWs), and nanotubes (NTs)) have been investigated using X-ray absorption near-edge structures (XANES) and X-ray excited optical luminescence (XEOL). XANES results show that the wafer, MPs, and NTs have characteristic features of α-Al2O3. The NWs have a core∕shell structure with a single crystalline α-Al2O3 core surrounded by an amorphous shell, which is consistent with transmission electron microscopy result. It is found that some Al(3+) in the shell and core∕shell interface of the NWs as well as the surface of the NTs were reduced to Al(2+) or Al(1+) during the growth process. XEOL results show that the wafer and MPs have a broad emission at 325 nm and a sharp emission at 694 nm, which are attributed to F(+) center and Cr(3+) impurities, respectively. The NWs exhibit an intense emission at 404 nm that comes from F center, while the NTs show relatively weak luminescence at 325, 433, and 694 nm, which are attributed to F(+) center, F center, and Cr(3+) impurities, respectively. The O K-edge XEOL confirms that the emissions of α-Al2O3 in the range of 250-550 nm are related to the oxygen site. Furthermore, on the basis of XEOL and photoluminescence yield, the strong luminescence of the NWs (404 nm) is related to the Al(2+) or Al(1+) in the shell and core∕shell interface, while the luminescence of the NTs at 325 and 433 nm are related to the bulk and the Al(2+) or Al(1+) on the surface, respectively.

  2. Femtosecond stimulated Raman spectroscopy of flavin after optical excitation.

    PubMed

    Weigel, A; Dobryakov, A; Klaumünzer, B; Sajadi, M; Saalfrank, P; Ernsting, N P

    2011-04-07

    In blue-light photoreceptors using flavin (BLUF), the signaling state is formed already within several 100 ps after illumination, with only small changes of the absorption spectrum. The accompanying structural evolution can, in principle, be monitored by femtosecond stimulated Raman spectroscopy (FSRS). The method is used here to characterize the excited-state properties of riboflavin and flavin adenine dinucleotide in polar solvents. Raman modes are observed in the range 90-1800 cm(-1) for the electronic ground state S(0) and upon excitation to the S(1) state, and modes >1000 cm(-1) of both states are assigned with the help of quantum-chemical calculations. Line shapes are shown to depend sensitively on resonance conditions. They are affected by wavepacket motion in any of the participating electronic states, resulting in complex amplitude modulation of the stimulated Raman spectra. Wavepackets in S(1) can be marked, and thus isolated, by stimulated-emission pumping with the picosecond Raman pulses. Excited-state absorption spectra are obtained from a quantitative comparison of broadband transient fluorescence and absorption. In this way, the resonance conditions for FSRS are determined. Early differences of the emission spectrum depend on excess vibrational energy, and solvation is seen as dynamic Stokes shift of the emission band. The nπ* state is evidenced only through changes of emission oscillator strength during solvation. S(1) quenching by adenine is seen with all methods in terms of dynamics, not by spectral intermediates.

  3. Luminescent and Optically Detected Magnetic Resonance Studies of CdS/PVA Nanocomposite

    NASA Astrophysics Data System (ADS)

    Rudko, Galyna Yu.; Vorona, Igor P.; Fediv, Volodymyr I.; Kovalchuk, Andrii; Stehr, Jan E.; Shanina, Bela D.; Chen, WeiMin M.; Buyanova, Irina A.

    2017-02-01

    A series of solid nanocomposites containing CdS nanoparticles in polymeric matrix with varied conditions on the interface particle/polymer was fabricated and studied by photoluminescence (PL) and optically detected magnetic resonance (ODMR) methods. The results revealed interface-related features in both PL and ODMR spectra. The revealed paramagnetic centers are concluded to be involved in the processes of photo-excited carriers relaxation.

  4. A novel approach to prepare optically active ion doped luminescent materials via electron beam evaporation into ionic liquids

    SciTech Connect

    Richter, K.; Lorbeer, C.; Mudring, A. -V.

    2014-11-10

    A novel approach to prepare luminescent materials via electron-beam evaporation into ionic liquids is presented which even allows doping of host lattices with ions that have a strong size mismatch. Thus, to prove this, MgF2 nanoparticles doped with Eu3+ were fabricated. The obtained nanoparticles featured an unusually high luminescence lifetime and the obtained material showed a high potential for application.

  5. A novel approach to prepare optically active ion doped luminescent materials via electron beam evaporation into ionic liquids

    DOE PAGES

    Richter, K.; Lorbeer, C.; Mudring, A. -V.

    2014-11-10

    A novel approach to prepare luminescent materials via electron-beam evaporation into ionic liquids is presented which even allows doping of host lattices with ions that have a strong size mismatch. Thus, to prove this, MgF2 nanoparticles doped with Eu3+ were fabricated. The obtained nanoparticles featured an unusually high luminescence lifetime and the obtained material showed a high potential for application.

  6. Note: Automated optical focusing on encapsulated devices for scanning light stimulation systems

    SciTech Connect

    Bitzer, L. A.; Benson, N. Schmechel, R.

    2014-08-15

    Recently, a scanning light stimulation system with an automated, adaptive focus correction during the measurement was introduced. Here, its application on encapsulated devices is discussed. This includes the changes an encapsulating optical medium introduces to the focusing process as well as to the subsequent light stimulation measurement. Further, the focusing method is modified to compensate for the influence of refraction and to maintain a minimum beam diameter on the sample surface.

  7. Chiroptical properties of an optically pure dicopper(I) trefoil knot and its enantioselectivity in luminescence quenching reactions

    PubMed

    Meskers; Dekkers; Rapenne; Sauvage

    2000-06-16

    Chiroptical spectroscopy is used to investigate the properties of an optically pure dinuclear copper(I) trefoil knot. For the metal-to-ligand charge tranfer (MLCT) transition in the visible region (520 nm), the electric and magnetic transition dipole moments are determined from absorption and circular dichroism spectra: 2.8 Debye and 0.5 Bohr magneton (muB). Circular polarization in the luminescence (CPL) of the knot is determined and this allows the electric and magnetic transition dipole moments in emission to be calculated: 0.02 Debye and 0.003 muB. The large difference between the moments in absorption and emission shows that the emission observed does not originate directly from the 1MLCT state. Given the low probability for radiative decay we assign the long-lived emitting excited state to a 3MLCT state. The copper(I) trefoil knot is found to quench the emission from TbIII and EuIII(dpa)3(3)-(dpa = pyridine-2,6-dicarboxylate) with a bimolecular rate constant of 3.2 and 3.3 x 10(7)M(-1)S(-1), respectively, at room temperature in water-acetonitrile (1:1 by volume). Experimental results indicate that the (lambda)-knot preferentially quenches the lambda enantiomer of the lanthanide complex with an enantioselectivity (ratio of quenching rate constants for lambda and lambda: kqlambda/kqdelta) of 1.012+/-0.002 for EuIII and 1.0180+/-0.003 for TbIII.

  8. Electronic structure and optical properties of 2,5,8,11-tetra-tert-butylperylene polyhedral crystals from x-ray absorption near-edge structure and x-ray excited optical luminescence studies

    NASA Astrophysics Data System (ADS)

    Lv, Jingyu; Ko, Peter J. Y.; Zhang, Ying; Liu, Lijia; Zhang, Xiujuan; Zhang, Xiaohong; Sun, Xuhui; Sham, T. K.

    2011-06-01

    X-ray absorption near-edge structure (XANES) and x-ray excited optical luminescence (XEOL) have been used to study the optical properties of 2,5,8,11-tetra-tert-butylperylene (TBPe) polyhedral crystals with morphology varies from cube to rhombic dodecahedron. Benefit from the high resolution of synchrotron radiation spectroscopy, C 1s to π∗ and σ∗ transitions from different carbon sites in TBPe can be clearly distinguished in the carbon K-edge XANES. XEOL studies reveal that different crystals exhibit multiple emission bands with different branching ratio. It is also found that all the polyhedral crystals exhibit a weak luminescence in the near infrared, which is absent in the powder sample.

  9. Enhanced electron-hole plasma stimulated emission in optically pumped gallium nitride nanopillars

    NASA Astrophysics Data System (ADS)

    Lo, M.-H.; Cheng, Y.-J.; Kuo, H.-C.; Wang, S.-C.

    2011-03-01

    An enhanced stimulated emission was observed in optically pumped GaN nanopillars. The nanopillars were fabricated from an epitaxial wafer by patterned pillar etching followed by crystalline regrowth. Under optical excitation, a strong redshifted stimulated emission peak emerged from a broad spontaneous emission background. The emission is attributed to the electron-hole plasma gain at high carrier density. The emission slope efficiency was greatly enhanced by 20 times compared with a GaN substrate under the same pumping condition. The enhancement is attributed to the better photon and gain interaction from the multiple scattering of photons among nanopillars.

  10. Luminescence quartz dating of lime mortars. A first research approach.

    PubMed

    Zacharias, N; Mauz, B; Michael, C T

    2002-01-01

    Lime mortars mixed with sand are well suited for connecting structural materials, like stones and bricks, due to the mechanical properties this material exhibits. Their extensive use in architectural and decorative works during the last 4000 years motivated the introduction of the 'Luminescence clock' for age determination of mortars. The same principles as for quartz optically stimulated luminescence (OSL) dating of sediments were applied for age estimation of a mortar fragment removed from a Byzantine church monument dated by archaeological means to 1050-1100 years ago (the first half of the 10th century). The OSL from the quartz was monitored under blue light stimulation and UV detection, using a single-aliquot-regenerative-dose protocol. The quartz-OSL dating of the mortar resulted in 870 +/- 230 a. TL polymineral fine grain dating was also performed on a brick fragment which was connected to the mortar, resulting in a TL age of 1095 +/- 190 a.

  11. Third order nonlinear optical, luminescence and electrical properties of bis glycine hydrobromide single crystals

    NASA Astrophysics Data System (ADS)

    Surekha, R.; Sagayaraj, P.; Ambujam, K.

    2014-03-01

    Optical quality bis glycine hydrobromide (BGHB) single crystal was grown by slow evaporation technique. The third order nonlinear refractive index and nonlinear absorption coefficient of the grown crystal were measured by Z-scan studies. The third order nonlinear susceptibility was found to be 9.612 × 10-4 esu which is fairly higher than the other glycine compounds. The Photoluminescence spectra reveal the emission bands for BGHB crystals. The band gap energy was calculated to be 3.1 eV. The Photoconductivity studies were employed to determine the dependence of photocurrent on the applied electric field. Negative photoconductivity was exhibited by the sample. The d.c. conductivity of the grown crystal was measured by the complex impedance analysis wherein the obtained plot in the form of semicircle finds application in Debye relaxation for materials having large dc conductivity.

  12. Luminescent, magnetic and optical properties of ZnO-ZnS nanocomposites

    NASA Astrophysics Data System (ADS)

    Raleaooa, Pule V.; Roodt, Andreas; Mhlongo, Gugu G.; Motaung, David E.; Kroon, Robin E.; Ntwaeaborwa, Odireleng M.

    2017-02-01

    The structure, particle morphology, optical and magnetic properties of ZnO, ZnS and ZnO-ZnS nanoparticles prepared by the sol-gel method are reported. ZnO and ZnS were combined at room temperature by an ex situ synthetic route to prepare ZnO-ZnS nanocomposites. The nanocomposites exhibited particle morphology different from that of ZnO and ZnS nanoparticles. The ZnO and ZnS nanoparticles exhibited quantum confinement as inferred from the widening of their respective bandgap energies. The electron paramagnetic resonance data provided evidence for the existence of magnetic clusters near the surface, electron to nuclei interactions and defect states. The ZnO-ZnS nanocomposites exhibited tunable emission that was dependent on the ratio of ZnO to ZnS. These composites were evaluated for application in different types of light emitting devices.

  13. Study of optical and luminescence properties of silicon — semiconducting silicide — silicon multilayer nanostructures

    NASA Astrophysics Data System (ADS)

    Galkin, N. G.; Galkin, K. N.; Dotsenko, , S. A.; Goroshko, D. L.; Shevlyagin, A. V.; Chusovitin, E. A.; Chernev, I. M.

    2016-12-01

    By method of in situ differential spectroscopy it was established that at the formation of monolayer Fe, Cr, Ca, Mg silicide and Mg stannide islands on the atomically clean silicon surface an appearance of loss peaks characteristic for these materials in the energy range of 1.1-2.6 eV is observed. An optimization of growth processes permit to grow monolithic double nanoheterostructures (DNHS) with embedded Fe, Cr and Ca nanocrystals, and also polycrystalline DNHS with NC of Mg silicide and Mg stannide and Ca disilicide. By methods of optical spectroscopy and Raman spectroscopy it was shown that embedded NC form intensive peaks in the reflectance spectra at energies up to 2.5 eV and Raman peaks. In DNS with β-FeSi2 NC a photoluminescence and electroluminescence at room temperature were firstly observed.

  14. Analysis of optical neural stimulation effects on neural networks affected by neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Zverev, M.; Fanjul-Vélez, F.; Salas-García, I.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2016-03-01

    The number of people in risk of developing a neurodegenerative disease increases as the life expectancy grows due to medical advances. Multiple techniques have been developed to improve patient's condition, from pharmacological to invasive electrodes approaches, but no definite cure has yet been discovered. In this work Optical Neural Stimulation (ONS) has been studied. ONS stimulates noninvasively the outer regions of the brain, mainly the neocortex. The relationship between the stimulation parameters and the therapeutic response is not totally clear. In order to find optimal ONS parameters to treat a particular neurodegenerative disease, mathematical modeling is necessary. Neural networks models have been employed to study the neural spiking activity change induced by ONS. Healthy and pathological neocortical networks have been considered to study the required stimulation to restore the normal activity. The network consisted of a group of interconnected neurons, which were assigned 2D spatial coordinates. The optical stimulation spatial profile was assumed to be Gaussian. The stimulation effects were modeled as synaptic current increases in the affected neurons, proportional to the stimulation fluence. Pathological networks were defined as the healthy ones with some neurons being inactivated, which presented no synaptic conductance. Neurons' electrical activity was also studied in the frequency domain, focusing specially on the changes of the spectral bands corresponding to brain waves. The complete model could be used to determine the optimal ONS parameters in order to achieve the specific neural spiking patterns or the required local neural activity increase to treat particular neurodegenerative pathologies.

  15. Structural and optical effects induced by gamma irradiation on NdPO{sub 4}: X-ray diffraction, spectroscopic and luminescence study

    SciTech Connect

    Sadhasivam, S.; Rajesh, N.P.

    2016-02-15

    Highlights: • Inorganic NdPO{sub 4} crystal was grown first time using potassium polyphosphate (K{sub 6}P{sub 4}O{sub 13}) flux. • NdPO{sub 4} crystal is insoluble in water, non-hygroscopic and high radiation resistance favoring for actinides host. • Actinide immobilization can be made at 1273 K. • High yield of 1061 nm photon emission. - Abstract: Rare earth orthophosphate (NdPO{sub 4}) monazite single crystals were grown using high temperature flux growth method employing K{sub 6}P{sub 4}O{sub 13} (K{sub 6}) as molten solvent. Their structural parameters were studied using single crystal X-ray diffraction (XRD) method. The grown crystals were examined by SEM and EDX techniques for their homogeniousity and inclusion in the crystals. The influence of gamma irradiation in structural and optical absorption properties were studied by the powder XRD, FTIR and reflectance spectroscopy. The effect of gamma irradiation on luminescence properties was recorded. No significant structural change is observed up to 150 kGy gamma dose. The gamma ray induced charge trap in the crystal was saturated to 40 kGy dose. The luminescence intensity decreases with an increase in the irradiation. The emission of luminescence intensity stabilizes above 40 kGy gamma dose.

  16. Postural adaptations to repeated optic flow stimulation in older adults.

    PubMed

    O'Connor, Kathryn W; Loughlin, Patrick J; Redfern, Mark S; Sparto, Patrick J

    2008-10-01

    The purpose of this study is to understand the processes of adaptation (changes in within-trial postural responses) and habituation (reductions in between-trial postural responses) to visual cues in older and young adults. Of particular interest were responses to sudden increases in optic flow magnitude. The postural sway of 25 healthy young adults and 24 healthy older adults was measured while subjects viewed anterior-posterior 0.4 Hz sinusoidal optic flow for 45 s. Three trials for each of three conditions were performed: (1) constant 12 cm optic flow amplitude (24 cm peak-to-peak), (2) constant 4 cm amplitude (8 cm p-t-p), and (3) a transition in amplitude from 4 to 12 cm. The average power of head sway velocity (P(vel)) was calculated for consecutive 5s intervals during the trial to examine the changes in sway within and between trials. A mixed factor repeated measures ANOVA was performed to examine the effects of subject Group, Trial, and Interval on the P(vel). P(vel) was greater in older adults in all conditions (p<0.001). During the 12 cm constant amplitude trials, within-trial adaptation occurred for all subjects, but there were differences in the between-trial habituation. P(vel) of the older adults decreased significantly between all 3 trials, but decreased only between Trials 1 and 2 in young adults. While the responses of the young adults to the transition in optic flow from 4 to 12 cm did not significantly change, older adults had an increase in P(vel) following the transition, ranging from 6.5 dB for the first trial to 3.4 dB for the third trial. These results show that older adults can habituate to repeated visual perturbation exposures; however, this habituation requires a greater number of exposures than young adults. This suggests aging impacts the ability to quickly modify the relative weighting of the sensory feedback for postural stabilization.

  17. High speed data encryption and decryption using stimulated Brillouin scattering effect in optical fiber

    NASA Astrophysics Data System (ADS)

    Yi, Lilin; Zhang, Tao; Hu, Weisheng

    2011-11-01

    A novel all-optical encryption/decryption method based on stimulated Brillouin scattering (SBS) effect in optical fiber is proposed for the first time. The operation principle is explained in detail and the encryption and decryption performance is experimentally evaluated. The encryption keys could be the SBS gain amplitude, bandwidth, central wavelength and spectral shape, which are configurable and flexibly controlled by the users. We experimentally demonstrate the SBS encryption/decryption process of a 10.86-Gb/s non-return-to-zero (NRZ) data by using both phase-modulated and current-dithered Brillouin pumps for proof-of-concept. Unlike the traditional optical encryption methods of chaotic communications and optical code-division-multiplexing access (OCDMA), the SBS based encryption/decryption technique can directly upgrade the current optical communication system to a secure communication system without changing the terminal transceivers, which is completely compatible with the current optical communication systems.

  18. An integrated optical coherence microscopy imaging and optical stimulation system for optogenetic pacing in Drosophila melanogaster (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2016-03-01

    Electrical stimulation is the clinical standard for cardiac pacing. Although highly effective in controlling cardiac rhythm, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its applications. Optogenetic pacing of the heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids the shortcomings in electrical stimulation. Drosophila melanogaster, which is a powerful model organism with orthologs of nearly 75% of human disease genes, has not been studied for optogenetic pacing in the heart. Here, we developed a non-invasive integrated optical pacing and optical coherence microscopy (OCM) imaging system to control the heart rhythm of Drosophila at different developmental stages using light. The OCM system is capable of providing high imaging speed (130 frames/s) and ultrahigh imaging resolutions (1.5 μm and 3.9 μm for axial and transverse resolutions, respectively). A light-sensitive pacemaker was developed in Drosophila by specifically expressing the light-gated cation channel, channelrhodopsin-2 (ChR2) in transgenic Drosophila heart. We achieved non-invasive and specific optical control of the Drosophila heart rhythm throughout the fly's life cycle (larva, pupa, and adult) by stimulating the heart with 475 nm pulsed laser light. Heart response to stimulation pulses was monitored non-invasively with OCM. This integrated non-invasive optogenetic control and in vivo imaging technique provides a novel platform for performing research studies in developmental cardiology.

  19. Optical Properties of the Defect State Luminescence of Zn2 SnO4 Nanowires

    NASA Astrophysics Data System (ADS)

    Yakami, Baichhabi; Paudyal, Uma; Nandyala, Shashank; Rimal, Gaurab; Cooper, Jason K.; Chen, Jiajun; Chien, Teyu; Wang, Wenyong; Pikal, Jon M.; Department of Electrical; Computer Engineering Team; Department of Physics; Astronomy Team

    Nanowires (NWs) are a promising option for sensitized solar cells, sensors & display technology. Most of the work thus far has focused on binary oxides for these NWs, but ternary oxides have advantages in additional control of optical and electronic properties. Here we report on the diffuse reflectance, Low Temperature (LT) and Room Temperature (RT) photoluminescence (PL), PL excitation and Time Resolved PL (TRPL) of Zinc Tin Oxide (ZTO) NWs grown by Chemical Vapor Deposition. Our results show two broad peaks centered at 640 nm & 450 nm. The complex emission spectra was studied by Time Resolved Emission Spectroscopy (TRES) and Intensity dependent PL. The intensity dependent TRPL shows that 640 nm states decay much slower than the 450 nm states. We propose an energy band model for the NWs containing donor and acceptor states in the band gap with the associated transitions between these states that are consistent with our results. The effect of annealing in air and vacuum is carried out to study the origin of defect states in these NWs. . Department of Energy.

  20. Experimental study on stimulated Rayleigh scattering in optical fibers.

    PubMed

    Zhu, Tao; Bao, Xiaoyi; Chen, Liang; Liang, Hao; Dong, Yongkang

    2010-10-25

    The linewidth, the threshold, and frequency shift of the stimulated Rayleigh scattering (STRS) in single mode fiber (SMF-28e), large effective area fiber (LEAF) and polarization maintaining fiber (PMF) have been studied using heterodyne detection to separate the Brillouin scattering with a fiber laser for the first time to the best of our knowledge. Experimental results show that the linewidth of STRS and spontaneous Rayleigh scattering are ~9 kHz, ~10 kHz, and ~11 kHz, and ~25 kHz, ~30 kHz, and ~27 kHz for SMF-28e, LEAF and PMF, respectively. The threshold power for STRS for 2 km SMF-28e, 7 km LEAF, and 100 m PMF are 11 dBm, 4.5 dBm and 16.5 dBm, respectively. The measured Rayleigh gain coefficient is a 2 × 10(-13) m/W for SMF-28e. Also, weak frequency shift could be observed when input power is large enough before SBS occurred. Because of the properties of narrower bandwidth and lower threshold power of STRS in fibers, some of applications, such as narrower filter, could be realized.

  1. Stimulated emission in optically pumped atomic-copper vapor

    SciTech Connect

    Jin Joong Kim; Nackchin Sung

    1987-11-01

    We have observed, for the first time to our knowledge, stimulated emission in atomic-copper vapor that is excited by a resonant tunable laser beam. One of the important and interesting results obtained in this experiment is that excitation of the /sup 2/P/sub 1/2/ level of the copper atoms generates strong amplified spontaneous emission (ASE) for both /sup 2/P/sub 1/2/--/sup 2/D/sub 3/2/ and /sup 2/P/sub 3/2/--/sup 2/D/sub 5/2/ transitions. This is the first reported direct experimental evidence observed for collisional mixing between the /sup 2/P/sub 1/2/ and /sup 2/P/sub 3/2/ levels in a copper-vapor laser. Excitation of the /sup 2/P/sub 3/2/ level induces substantially weaker ASE for the /sup 2/P/sub 1/2/--/sup 2/D/sub 3/2/ transition. In addition, we observed collision-induced ASE for both transitions over a wide range of detuning of the pump frequency. The preliminary results of the experiment are presented, and the implications of the results for high-pressure copper-vapor lasers are discussed.

  2. Optical recordings from the human nasal mucosa in response to olfactory stimulation.

    PubMed

    Ishimaru, Tadashi; Reden, Jens; Krone, Franziska; Scheibe, Mandy

    2007-08-23

    Using the intrinsic optical signal the present study aimed to investigate changes in blood flow at the nasal epithelium in response to specific olfactory stimulation. Recording equipment included an endoscope, a CCD camera, and a light source of 617 nm. Two concentrations of the specific olfactory stimulant H(2)S (2.8 and 5.6 ppm), generated by a computer-controlled olfactometer, were used for olfactory stimulation. Eight healthy normosmic volunteers participated. Using 5.6 ppm H(2)S stimuli, responses were typically recorded from the olfactory cleft, middle turbinate, and middle meatus while responses were less pronounced for 2.8 ppm H(2)S stimuli. Response areas were significantly larger for the 5.6 ppm H(2)S stimuli. While further experiments are needed, recordings of the intrinsic optical signal may be used to obtain responses from the nasal cavity to specific olfactory stimuli.

  3. Microprocessor-controlled optical stimulating device to improve the gait of patients with Parkinson's disease.

    PubMed

    Ferrarin, M; Brambilla, M; Garavello, L; Di Candia, A; Pedotti, A; Rabuffetti, M

    2004-05-01

    Different types of visual cue for subjects with Parkinson's disease (PD) produced an improvement in gait and helped some of them prevent or overcome freezing episodes. The paper describes a portable gait-enabling device (optical stimulating glasses (OSGs) that provides, in the peripheral field of view, different types of continuous optic flow (backward or forward) and intermittent stimuli synchronised with external events. The OSGs are a programmable, stand-alone, augmented reality system that can be interfaced with a PC for program set-up. It consists of a pair of non-corrective glasses, equipped with two matrixes of 70 micro light emitting diodes, one on each side, controlled by a microprocessor. Two foot-switches are used to synchronise optical stimulation with specific gait events. A pilot study was carried out on three PD patients and three controls, with different types of optic flow during walking along a fixed path. The continuous optic flow in the forward direction produced an increase in gait velocity in the PD patients (up to + 11% in average), whereas the controls had small variations. The stimulation synchronised with the swing phase, associated with an attentional strategy, produced a remarkable increase in stride length for all subjects. After prolonged testing, the device has shown good applicability and technical functionality, it is easily wearable and transportable, and it does not interfere with gait.

  4. A magneto-optical study of bismuth-doped MgO – Al2O3 – SiO2 glass: on the nature of near-infrared luminescence

    NASA Astrophysics Data System (ADS)

    Laguta, A. V.; Denker, B. I.; Sverchkov, S. E.; Razdobreev, I. M.

    2017-02-01

    This paper presents results of a detailed magneto-optical spectroscopy study of bismuth-doped aluminosilicate glass. At least three distinct optical centres are shown to coexist in the glass: bismuth ion clusters, Bi+ ions and defects in the glass structure, with energy transfer between the last two species. Analysis of magnetic circular dichroism and magnetic circular polarisation of luminescence as functions of magnetic field and temperature indicates that all three centres have an even number of electrons (holes). Experimental evidence is presented that both 'red' and near-infrared luminescence bands are due to transitions in the defects.

  5. Nonlinear optical absorption and stimulated Mie scattering in metallic nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    He, Guang S.; Law, Wing-Cheung; Baev, Alexander; Liu, Sha; Swihart, Mark T.; Prasad, Paras N.

    2013-01-01

    The nonlinear optical properties of four metallic (Au-, Au/Ag-, Ag-, and Pt-) nanoparticle suspensions in toluene have been studied in both femtosecond and nanosecond regimes. Nonlinear transmission measurements in the femtosecond laser regime revealed two-photon absorption (2PA) induced nonlinear attenuation, while in the nanosecond laser regime a stronger nonlinear attenuation is due to both 2PA and 2PA-induced excited-state absorption. In the nanosecond regime, at input pump laser intensities above a certain threshold value, a new type of stimulated (Mie) scattering has been observed. Being essentially different from all other well known molecular (Raman, Brillouin) stimulated scattering effects, the newly observed stimulated Mie scattering from the metallic nanoparticles exhibits the features of no frequency shift and low pump threshold requirement. A physical model of induced Bragg grating initiated by the backward Mie scattering from metallic nanoparticles is proposed to explain the gain mechanism of the observed stimulated scattering effect.

  6. Luminescent detection of hydrazine and hydrazine derivatives

    DOEpatents

    Swager, Timothy M [Newton, MA; Thomas, III, Samuel W.

    2012-04-17

    The present invention generally relates to methods for modulating the optical properties of a luminescent polymer via interaction with a species (e.g., an analyte). In some cases, the present invention provides methods for determination of an analyte by monitoring a change in an optical signal of a luminescent polymer upon exposure to an analyte. Methods of the present invention may be useful for the vapor phase detection of analytes such as explosives and toxins. The present invention also provides methods for increasing the luminescence intensity of a polymer, such as a polymer that has been photobleached, by exposing the luminescent polymer to a species such as a reducing agent.

  7. Improvements to luminescence dating of Quaternary sediments deformed by earthquakes

    NASA Astrophysics Data System (ADS)

    Lawson, M. J.; Rhodes, E. J.; Barrera, W. A.; Ochoa, G. T.

    2012-12-01

    Luminescence dating of sediments on timescales of decades to several hundred thousand years provides the potential to improve our understanding of the dynamics of fault movement and earthquake generation. Sedimentary structures offset by fault slip such as terrace risers, and deposits deformed by seismicity may be dated over timescales that help bridge the gap between direct observation and the geologic record. Neotectonic environments offer unique challenges for the optical dating of quartz, using optically stimulated luminescence (OSL) signals. Quartz grains eroded from bedrock often display low OSL sensitivity, high thermal transfer, and in some cases suffer from signal contributions from microscopic inclusions of other minerals. Anomalous fading of feldspar, and differing responses to specific measurement protocols by different minerals, make signal contamination a potential issue with quartz OSL. A previous test to assess quartz signal purity (the "quartziness" test) has been expanded to include more components for analysis. These include not only normalized thermal quenching (OSL signal response to measurement at different temperatures), but also IRSL (infra-red stimulated luminescence intensity, a ratio of IRSL signal to OSL intensity (post IRSL bleach) and a ratio of OSL (post-IRSL bleach) to non IRSL bleached OSL signal intensities. When graphed, feldspar and quartz samples occupy distinct regions that aid in the assessment of signal contributions for new samples as a check on sample preparation and OSL dating suitability. We examine the performance of this approach for detecting quartz signal contamination using samples from Southern California, New Zealand and High Asia.

  8. Effect of irradiation and thermal annealing on quartz materials luminescence

    NASA Astrophysics Data System (ADS)

    Korovkin, M. V.; Ananyeva, L. G.

    2017-01-01

    X-ray and gamma-quanta irradiation of radiation-resistant quartz materials including natural and synthetic quartz crystals and high-purity quartzite causes the luminescence in the ultraviolet range (365 nm), thermally stimulated luminescence and radiofrequency electromagnetic emission. Preliminary radiation and thermal annealing improves luminescence properties of quartz materials.

  9. Biocompatible Optically Transparent MEMS for Micromechanical Stimulation and Multimodal Imaging of Living Cells.

    PubMed

    Fior, Raffaella; Kwok, Jeanie; Malfatti, Francesca; Sbaizero, Orfeo; Lal, Ratnesh

    2015-08-01

    Cells and tissues in our body are continuously subjected to mechanical stress. Mechanical stimuli, such as tensile and contractile forces, and shear stress, elicit cellular responses, including gene and protein alterations that determine key behaviors, including proliferation, differentiation, migration, and adhesion. Several tools and techniques have been developed to study these mechanobiological phenomena, including micro-electro-mechanical systems (MEMS). MEMS provide a platform for nano-to-microscale mechanical stimulation of biological samples and quantitative analysis of their biomechanical responses. However, current devices are limited in their capability to perform single cell micromechanical stimulations as well as correlating their structural phenotype by imaging techniques simultaneously. In this study, a biocompatible and optically transparent MEMS for single cell mechanobiological studies is reported. A silicon nitride microfabricated device is designed to perform uniaxial tensile deformation of single cells and tissue. Optical transparency and open architecture of the device allows coupling of the MEMS to structural and biophysical assays, including optical microscopy techniques and atomic force microscopy (AFM). We demonstrate the design, fabrication, testing, biocompatibility and multimodal imaging with optical and AFM techniques, providing a proof-of-concept for a multimodal MEMS. The integrated multimodal system would allow simultaneous controlled mechanical stimulation of single cells and correlate cellular response.

  10. Biocompatible optically transparent MEMS for micromechanical stimulation and multimodal imaging of living cells

    PubMed Central

    Fior, Raffaella; Kwok, Jeanie; Malfatti, Francesca; Sbaizero, Orfeo; Lal, Ratnesh

    2015-01-01

    Cells and tissues in our body are continuously subjected to mechanical stress. Mechanical stimuli, such as tensile and contractile forces, and shear stress, elicit cellular responses, including gene and protein alterations that determine key behaviors, including proliferation, differentiation, migration, and adhesion. Several tools and techniques have been developed to study these mechanobiological phenomena, including micro-electro-mechanical systems (MEMS). MEMS provide a platform for nano-to-microscale mechanical stimulation of biological samples and quantitative analysis of their biomechanical responses. However, current devices are limited in their capability to perform single cell micromechanical stimulations as well as correlating their structural phenotype by imaging techniques simultaneously. In this study, a biocompatible and optically transparent MEMS for single cell mechanobiological studies is reported. A silicon nitride microfabricated device is designed to perform uniaxial tensile deformation of single cells and tissue. Optical transparency and open architecture of the device allows coupling of the MEMS to structural and biophysical assays, including optical microscopy techniques and atomic force microscopy (AFM). We demonstrate the design, fabrication, testing, biocompatibility and multimodal imaging with optical and AFM techniques, providing a proof-of-concept for a multimodal MEMS. The integrated multimodal system would allow simultaneous controlled mechanical stimulation of single cells and correlate cellular response. PMID:25549773

  11. Effects of optical irradiation parameters on safe peripheral nerve stimulation with infrared light

    NASA Astrophysics Data System (ADS)

    Katz, Elizabeth; Kim, Do-Hyun; Ilev, Ilko; Krauthamer, Victor

    2009-02-01

    Optical stimulation (OS) is a relatively novel approach for restoring function to the damaged nervous system. The effectiveness and safety of OS is dependent upon selecting the appropriate stimulation parameters. This involves stimulating neurons to their activation threshold while preventing laser-induced tissue injury. Although significant advances have been made in studying the efficacy of OS, safety parameters are still being developed. We have employed electrophysiological techniques to determine salient experimental parameters of safety that can be used to optimize OS. Extracellular recordings of compound nerve potentials were obtained from excised adult rat sciatic nerves. OS was accomplished with infrared pulsed Nd:YAG, Er:YAG and diode lasers that had peak wavelength emissions at 1.064 μm, 2.94 μm and 1.85 μm, respectively. Electrically evoked compound action potentials (E-CAPs) were assayed before and after laser irradiation to determine if OS affected E-CAPs. Injurious laser irradiation doses were observed at levels 2-3 fold greater than optical threshold, producing tissue hyalinization and decreases in the peak amplitude of E-CAPs. However, effects on electrical threshold and conduction velocity were negligible. At laser irradiation doses near optical threshold, low repetition rates of laser pulses produced a gradual increase in laser evoked CAP (L-CAP) amplitudes, suggesting a cumulative effect in the interactions between light and tissue. Higher repetition rates (5-10 Hz) at laser irradiation doses 2-3 fold above optical threshold produced a decrement in L-CAP and E-CAP amplitudes. These results suggest that laser pulse parameters have a direct impact on optical stimulation and damage thresholds.

  12. Multiple Channel Laser Beam Combination and Phasing Using Stimulated Brillouin Scattering in Optical Fibers

    DTIC Science & Technology

    2005-12-01

    Mandel’shtam–Brillouin scattering,” JETP Lett ., 15, 109-112, 1972. 41 . Hellwarth, R. W., “Phase conjugation by stimulated backscattering,” ch. 7, Optical...wavefront-reversing mirrors,” Sov . Phys . JETP , 52, 847-851, 1980. 79. Valley, M., G. Lombardi, and R. Aprahamian, “Beam combination by stimulated...Thomas, and R. Byer, Monolithic, “Unidirectional single-mode Nd:YAG ring laser”, Opt. Lett ., 10, 65-67, 1985 . 56. Imai, M. and E. H. Hara

  13. Multiple Channel Laser Beam Combination and Phasing Using Stimulated Brillouin Scattering in Optical Fibers

    DTIC Science & Technology

    2005-12-22

    Mandel’shtam–Brillouin scattering,” JETP Lett ., 15, 109-112, 1972. 41 . Hellwarth, R. W., “Phase conjugation by stimulated backscattering,” ch. 7, Optical...wavefront-reversing mirrors,” Sov . Phys . JETP , 52, 847-851, 1980. 79. Valley, M., G. Lombardi, and R. Aprahamian, “Beam combination by stimulated...Thomas, and R. Byer, Monolithic, “Unidirectional single-mode Nd:YAG ring laser”, Opt. Lett ., 10, 65-67, 1985 . 56. Imai, M. and E. H. Hara

  14. Towards increasing the spatial resolution of luminescence chronologies - Portable luminescence reader measurements and standardized growth curves applied to the beach-ridge plain of Phra Thong Island, Thailand

    NASA Astrophysics Data System (ADS)

    Brill, Dominik; Jankaew, Kruawun; Brückner, Helmut

    2016-04-01

    Since optically stimulated luminescence (OSL) dating is time consuming and cost intensive, age information available for individual study sites is usually restricted to significantly less than 100 ages. In particular the interpretation of complex depositional systems with temporally and spatially diverse sedimentation histories may suffer from the effects of a poor spatial resolution or an ineffective distribution of chronological data. In these cases, time and cost efficient approaches that provide reasonable dating accuracy are required to substitute or complement full luminescence dating. For the sandy beach-ridge plain of Phra Thong Island, Thailand, which is chronologically constrained by a set of approximately 50 luminescence ages, we evaluated the potential (i) of luminescence profiling using a portable luminescence reader, and (ii) of standardized growth curves (SGCs) to improve the resolution and sampling strategy of OSL dating in coastal settings. Although SGCs are related to some shortcomings in dating accuracy, and luminescence profiling with even the favorable conditions provided by the homogeneous sandy stratigraphy of the beach-ridge plain does not equal full luminescence dating, both approaches are capable of reproducing some of the main chronostratigraphic features of the island. This includes the differentiation between Holocene and last interglacial ridges, as well as the identification of the general east-west progradation and some (but not all) of several 1500-2000 year hiatuses within the Holocene sediment succession. However, while both approaches can successfully identify relative chronological trends, robust absolute age estimates can only be achieved by considering the highly variable dosimetry, which is the main contributing factor to bulk luminescence signals apart from deposition age on Phra Thong Island. At Phra Thong, portable reader signals as a proxy for palaeodoses combined with sample-specific dose rates proved as the best

  15. Optical Recording of Retinal and Visual Cortical Responses Evoked by Electrical Stimulation on the Retina

    NASA Astrophysics Data System (ADS)

    Osanai, Makoto; Sakaehara, Haruko; Sawai, Hajime; Song, Wen-Jie; Yagi, Tetsuya

    To develop a retinal prosthesis for blind patients using an implanted multielectrode array, it is important to study the response properties of retinal ganglion cells and of the visual cortex to localized retinal electrical stimulation. Optical imaging can reveal the spatio-temporal properties of neuronal activity. Therefore, we conducted a calcium imaging study to investigate response properties to local current stimulation in frog retinas, and a membrane potential imaging study to explore the visual cortical responses to retinal stimulation in guinea pigs. In the retina, local current stimuli evoked transient responses in the ganglion cells located near the stimulus electrode. The spatial pattern of the responding area was altered by changing the location of the stimulation. Local electrical stimulation to the retina also caused transient responses in the visual cortex. The responding cortical areas in the primary visual cortex were localized. A spatially different cortical response was observed to stimulation of a different position on the retina. These results suggest that the imaging study has great potential in revealing the spatio-temporal properties of the neuronal response for the retinal prosthesis.

  16. Ultrafast optical response of the Au-BaO thin film stimulated by femtosecond pulse laser

    NASA Astrophysics Data System (ADS)

    Wu, J. L.; Wang, C. M.; Zhang, G. M.

    1998-06-01

    The pump-probe method was applied to study the dependence of the transient optical transmissivity upon time delay for the Au-BaO composite thin film stimulated by a femtosecond pulsed laser. It was observed that the light absorption of the thin film increased rapidly and then resumed its initial value in several picoseconds. Optical relaxation is a process in which nonequilibrium electrons, excited by laser pulses and originating from Au ultrafine particles, return to the equilibrium state. In this article, the value of the electron-phonon coupling constant g of gold ultrafine particles in the composite thin film was calculated theoretically.

  17. Hybrid electro-optical stimulation of the rat sciatic nerve induces force generation in the plantarflexor muscles

    NASA Astrophysics Data System (ADS)

    Duke, Austin R.; Peterson, Erik; Mackanos, Mark A.; Atkinson, James; Tyler, Dustin; Jansen, E. Duco

    2012-12-01

    Objective. Optical methods of neural activation are becoming important tools for the study and treatment of neurological disorders. Infrared nerve stimulation (INS) is an optical technique exhibiting spatially precise activation in the native neural system. While this technique shows great promise, the risk of thermal damage may limit some applications. Combining INS with traditional electrical stimulation, a method known as hybrid electro-optical stimulation, reduces the laser power requirements and mitigates the risk of thermal damage while maintaining spatial selectivity. Here we investigate the capability of inducing force generation in the rat hind limb through hybrid stimulation of the sciatic nerve. Approach. Hybrid stimulation was achieved by combining an optically transparent nerve cuff for electrical stimulation and a diode laser coupled to an optical fiber for infrared stimulation. Force generation in the rat plantarflexor muscles was measured in response to hybrid stimulation with 1 s bursts of pulses at 15 and 20 Hz and with a burst frequency of 0.5 Hz. Main results. Forces were found to increase with successive stimulus trains, ultimately reaching a plateau by the 20th train. Hybrid evoked forces decayed at a rate similar to the rate of thermal diffusion in tissue. Preconditioning the nerve with an optical stimulus resulted in an increase in the force response to both electrical and hybrid stimulation. Histological evaluation showed no signs of thermally induced morphological changes following hybrid stimulation. Our results indicate that an increase in baseline temperature is a likely contributor to hybrid force generation. Significance. Extraneural INS of peripheral nerves at physiologically relevant repetition rates is possible using hybrid electro-optical stimulation.

  18. High temperature luminescence of Dy3+ in crystalline silicon in the optical communication and eye-safe spectral regions.

    PubMed

    Lourenço, M A; Mustafa, Z; Ludurczak, W; Wong, L; Gwilliam, R M; Homewood, K P

    2013-09-15

    We report on photoluminescence in the 1.3 and 1.7 μm spectral ranges in silicon doped with dysprosium. This is attributed to the Dy3+ internal transitions between the second Dy3+ excited state and the ground state, and between the third Dy3+ excited state and the ground state. Luminescence is achieved by Dy implantation into Si substrates codoped with boron, to form dislocation loops, and show a strong dependence on fabrication process. The spectra consist of several sharp lines with the strongest emission at 1736 nm, observed up to 200 K. No Dy3+ luminescence is observed in samples without B codoping, showing the paramount importance of dislocation loops to enable the Dy emission.

  19. All-optical bidirectional neural interfacing using hybrid multiphoton holographic optogenetic stimulation

    PubMed Central

    Paluch-Siegler, Shir; Mayblum, Tom; Dana, Hod; Brosh, Inbar; Gefen, Inna; Shoham, Shy

    2015-01-01

    Abstract. Our understanding of neural information processing could potentially be advanced by combining flexible three-dimensional (3-D) neuroimaging and stimulation. Recent developments in optogenetics suggest that neurophotonic approaches are in principle highly suited for noncontact stimulation of network activity patterns. In particular, two-photon holographic optical neural stimulation (2P-HONS) has emerged as a leading approach for multisite 3-D excitation, and combining it with temporal focusing (TF) further enables axially confined yet spatially extended light patterns. Here, we study key steps toward bidirectional cell-targeted 3-D interfacing by introducing and testing a hybrid new 2P-TF-HONS stimulation path for accurate parallel optogenetic excitation into a recently developed hybrid multiphoton 3-D imaging system. The system is shown to allow targeted all-optical probing of in vitro cortical networks expressing channelrhodopsin-2 using a regeneratively amplified femtosecond laser source tuned to 905 nm. These developments further advance a prospective new tool for studying and achieving distributed control over 3-D neuronal circuits both in vitro and in vivo. PMID:26217673

  20. Optical imaging of the retina in response to the electrical stimulation

    NASA Astrophysics Data System (ADS)

    Fujikado, Takashi; Okawa, Yoshitaka; Miyoshi, Tomomitsu; Hirohara, Yoko; Mihashi, Toshifumi; Tano, Yasuo

    2008-02-01

    Purposes: To determine if reflectance changes of the retina can be detected following electrical stimulation to the retina using a newly developed optical-imaging fundus camera. Methods: Eyes of cats were examined after pupil dilation. Retina was stimulated either focally by a ball-type electrode (BE) placed on the fenestrated sclera or diffusely using a ring-type electrode (RE) placed on the corneoscleral limbus. Electrical stimulation by biphasic pulse trains was applied for 4 seconds. Fundus images with near-infrared (800-880 nm) light were obtained between 2 seconds before and 20 seconds after the electrical stimulation (ES). A two-dimensional map of the reflectance changes (RCs) was constructed. The effect of Tetrodotoxin (TTX) was also investigated on RCs by ES using RE. Results: RCs were observed around the retinal locus where the stimulating electrodes were positioned (BE) or in the retina of the posterior pole (RE), in which the latency was about 0.5 to 1.0 sec and the peak time about 2 to 5 sec after the onset of ES. The intensity of the RCs increased with the increase of the stimulus current in both cases. RCs were completely suppressed after the injection of TTX. Conclusions: The functional changes of the retina either by focal or diffuse electrical stimulation were successfully detected by optical imaging of the retina. The contribution of retinal ganglion cells on RCs by ES was confirmed by TTX experiment. This method may be applied to the objective evaluation of the artificial retina.

  1. Temperature-controlled optical stimulation of the rat prostate cavernous nerves.

    PubMed

    Tozburun, Serhat; Hutchens, Thomas C; McClain, Michael A; Lagoda, Gwen A; Burnett, Arthur L; Fried, Nathaniel M

    2013-06-01

    Optical nerve stimulation (ONS) may be useful as a diagnostic tool for intraoperative identification and preservation of the prostate cavernous nerves (CN), responsible for erectile function, during prostate cancer surgery. Successful ONS requires elevating the nerve temperature to within a narrow range (~42 to 47°C) for nerve activation without thermal damage to the nerve. This preliminary study explores a prototype temperature-controlled optical nerve stimulation (TC-ONS) system for maintaining a constant (±1°C) nerve temperature during short-term ONS of the rat prostate CNs. A 150-mW, 1455-nm diode laser was operated in continuous-wave mode, with and without temperature control, during stimulation of the rat CNs for 15 to 30 s through a fiber optic probe with a 1-mm-diameter spot. A microcontroller opened and closed an in-line mechanical shutter in response to an infrared sensor, with a predetermined temperature set point. With TC-ONS, higher laser power settings were used to rapidly and safely elevate the CNs to a temperature necessary for a fast intracavernous pressure response, while also preventing excessive temperatures that would otherwise cause thermal damage to the nerve. With further development, TC-ONS may provide a rapid, stable, and safe method for intraoperative identification and preservation of the prostate CNs.

  2. Gold nanoparticle-assisted all optical localized stimulation and monitoring of Ca2+ signaling in neurons

    PubMed Central

    Lavoie-Cardinal, Flavie; Salesse, Charleen; Bergeron, Éric; Meunier, Michel; De Koninck, Paul

    2016-01-01

    Light-assisted manipulation of cells to control membrane activity or intracellular signaling has become a major avenue in life sciences. However, the ability to perform subcellular light stimulation to investigate localized signaling has been limited. Here, we introduce an all optical method for the stimulation and the monitoring of localized Ca2+ signaling in neurons that takes advantage of plasmonic excitation of gold nanoparticles (AuNPs). We show with confocal microscopy that 800 nm laser pulse application onto a neuron decorated with a few AuNPs triggers a transient increase in free Ca2+, measured optically with GCaMP6s. We show that action potentials, measured electrophysiologically, can be induced with this approach. We demonstrate activation of local Ca2+ transients and Ca2+ signaling via CaMKII in dendritic domains, by illuminating a single or few functionalized AuNPs specifically targeting genetically-modified neurons. This NP-Assisted Localized Optical Stimulation (NALOS) provides a new complement to light-dependent methods for controlling neuronal activity and cell signaling. PMID:26857748

  3. Progress in chemical luminescence-based biosensors: A critical review.

    PubMed

    Roda, Aldo; Mirasoli, Mara; Michelini, Elisa; Di Fusco, Massimo; Zangheri, Martina; Cevenini, Luca; Roda, Barbara; Simoni, Patrizia

    2016-02-15

    Biosensors are a very active research field. They have the potential to lead to low-cost, rapid, sensitive, reproducible, and miniaturized bioanalytical devices, which exploit the high binding avidity and selectivity of biospecific binding molecules together with highly sensitive detection principles. Of the optical biosensors, those based on chemical luminescence detection (including chemiluminescence, bioluminescence, electrogenerated chemiluminescence, and thermochemiluminescence) are particularly attractive, due to their high-to-signal ratio and the simplicity of the required measurement equipment. Several biosensors based on chemical luminescence have been described for quantitative, and in some cases multiplex, analysis of organic molecules (such as hormones, drugs, pollutants), proteins, and nucleic acids. These exploit a variety of miniaturized analytical formats, such as microfluidics, microarrays, paper-based analytical devices, and whole-cell biosensors. Nevertheless, despite the high analytical performances described in the literature, the field of chemical luminescence biosensors has yet to demonstrate commercial success. This review presents the main recent advances in the field and discusses the approaches, challenges, and open issues, with the aim of stimulating a broader interest in developing chemical luminescence biosensors and improving their commercial exploitation.

  4. NIR luminescence studies on Er3+:Yb3+ co-doped sodium telluroborate glasses for lasers and optical amplifer applications

    NASA Astrophysics Data System (ADS)

    Annapoorani, K.; Murthy, N. Suriya; Marimuthu, K.

    2016-05-01

    Er3+:Yb3+ co-doped Sodium telluroborate glasses were prepared with the chemical composition (49.5-x)B2O3+25TeO2+5Li2CO3+10ZnO+10NaF+0.5Er2O3+xYb2O3 (where x= 0.1, 0.5, 1.0 and 2.0 in mol %) following the melt quenching technique. With the addition of Yb3+ ions into Er3+ ions in the prepared glasses, the absorption cross-section values were found to increase due to the effective energy transfer from 2F5/2 level of Yb3+ ions to the 4I11/2 level of Er3+ ions. The fluorescence around 1550 nm correspond to the 4I13/2→4I15/2 transition was observed under 980 nm pumping. Among the present glasses, integrated intensity was found to be higher for 1.0 mol% Yb3+ ion glass. The parameters such as stimulated emission cross- section, Gain bandwidth and quantum efficiency of the 4I13/2→4I15/2 transition was found to be higher for the NTBE1.0Y glass and the same is suggested for potential NIR lasers and optical amplifier applications.

  5. Luminescence and threshold characteristics of optically excited InGaAsP/InP double heterostructures (0. 94

    SciTech Connect

    Garbuzov, D.Z.; Chudinov, A.V.; Agaev, V.V.; Chalyi, V.P.; Evtikhiev, V.P.

    1984-01-01

    The luminescence and threshold characteristics of InGaAsP/InP heterostructures with a wide range of compositions of the active region were investigated for the first time under optical excitation conditions. Weakening of the Auger recombination process on going over from structures emitting at lambda = 1.51 ..mu.. to ''wide-gap'' structures emitting at lambda = 1.1 ..mu.. increased the value of the parameter T/sub 02/ representing the temperature dependence of the lasing threshold at T>250 K: the parameter T/sub 02/ increased from 60 K to 90--95 K. For the same reason, a reduction in the wavelength lambda in the range 1.1luminescence frequency, which was not related to the Auger processes.

  6. Investigation on optical and acoustic fields of stimulated Brillouin scattering in As2S3 suspended-core optical fibers

    NASA Astrophysics Data System (ADS)

    Xu, Qiang; Gao, Weiqing; Li, Xue; Ni, Chenquan; Chen, Xiangcai; Chen, Li; Zhang, Wei; Hu, Jigang; Chen, Xiangdong; Yuan, Zijun

    2016-10-01

    The optical and acoustic fields of stimulated Brillouin scattering (SBS) effect in the As2S3 chalcogenide suspended-core microstructured optical fibers (MOFs) are investigated by the finite-element method (FEM). The optical and acoustic fundamental modes at 1550 nm are analyzed with the core diameters of the MOFs varying from 1.0 to 6.0 μm. For each case, the holes of the MOFs are filled with different materials such as trichlormethane (CHCL3), alcohol and water. When the core diameter is 6.0 μm, the maximum peak intensity of the optical fundamental mode is in the case with air holes, while the minimum value is in the case filled with CHCL3. The ratio of difference is 0.66%. The minimum peak intensity of the acoustic fundamental mode is in the case with air holes, while the maximum value is in the case filled with water. The ratio of difference is 0.13%. The same rule occurs in the fiber cores of 4.5, 3.0 and 2.0 μm, where the decreases of 0.97%, 1.48%, 1.94% for optical field and the increases of 0.24%, 0.34%, 0.74% for acoustic field are obtained, respectively. When the core diameter is 1.0 μm, ratios of difference for optical and acoustic fields are much higher than those in the cases of 2.0-6.0 μm, which are 3.55% and 29.13%, respectively. The overlap factors between optical and acoustic fields are calculated, which are changed with the core diameter and the filled material in holes. Our results will be helpful to strengthen or suppress the SBS effect in practical applications.

  7. Signal and response properties indicate an optoacoustic effect underlying the intra-cochlear laser-optical stimulation

    NASA Astrophysics Data System (ADS)

    Kallweit, Nicole; Baumhoff, Peter; Krueger, Alexander; Tinne, Nadine; Heisterkamp, Alexander; Kral, Andrej; Maier, Hannes; Ripken, Tammo

    2016-02-01

    Optical cochlea stimulation is under investigation as a potential alternative to conventional electric cochlea implants in treatment of sensorineural hearing loss. If direct optical stimulation of spiral ganglion neurons (SGNs) would be feasible, a smaller stimulation volume and, therefore, an improved frequency resolution could be achieved. However, it is unclear whether the mechanism of optical stimulation is based on direct neuronal stimulation or on optoacoustics. Animal studies on hearing vs. deafened guinea pigs already identified the optoacoustic effect as potential mechanism for intra-cochlear optical stimulation. In order to characterize the optoacoustic stimulus more thoroughly the acoustic signal along the beam path of a pulsed laser in water was quantified and compared to the neuronal response properties of hearing guinea pigs stimulated with the same laser parameters. Two pulsed laser systems were used for analyzing the influence of variable pulse duration, pulse energy, pulse peak power and absorption coefficient. Preliminary results of the experiments in water and in vivo suggesta similar dependency of response signals on the applied laser parameters: Both datasets show an onset and offset signal at the beginning and the end of the laser pulse. Further, the resulting signal amplitude depends on the pulse peak power as well as the temporal development of the applied laser pulse. The data indicates the maximum of the first derivative of power as the decisive factor. In conclusion our findings strengthen the hypothesis of optoacoustics as the underlying mechanism for optical stimulation of the cochlea.

  8. Stimulating student interest in optics via a versatile optics demonstration laboratory

    NASA Astrophysics Data System (ADS)

    Cobb, Stephen H.; Beyer, Louis M.; Tarvin, John T.

    1995-10-01

    Funding from a NSF-ILI grant has been used to establish an Optics and Laser Demonstration Laboratory at Murray State University. This facility is proving to be very versatile, with experiments and demonstrations supporting undergraduate courses in geometrical and physical optics, modern physics, and an advanced laboratory instrumentation course. The lab includes a CCD camera system which is used by upper level students to investigate diffraction effects, signal/noise ratios of detection systems, and efficiency of binary optical elements. Also, the lab supports two new courses which have been developed to accompany the grant. One course, Laser Physics, is for upper level physics majors, while the second course, Light and Lasers in Action, will use optical phenomena to introduce physical concepts to non-majors of various disciplines. The lab is receiving recognition as the centerpiece for departmental outreach into the public schools. Local elementary, middle, and high school classes visit the lab on field trips and are given demonstrations in optics and lasers. Faculty also transport lab equipment to area schools for demonstrations, and have loaned equipment to schools for use in the classroom and at science fairs. The content, activities, and reception of the lab are described.

  9. Luminescence dating and palaeomagnetic age constraint on hominins from Sima de los Huesos, Atapuerca, Spain.

    PubMed

    Arnold, Lee J; Demuro, Martina; Parés, Josep M; Arsuaga, Juan Luis; Aranburu, Arantza; Bermúdez de Castro, José María; Carbonell, Eudald

    2014-02-01

    Establishing a reliable chronology on the extensive hominin remains at Sima de los Huesos is critical for an improved understanding of the complex evolutionary histories and phylogenetic relationships of the European Middle Pleistocene hominin record. In this study, we use a combination of 'extended-range' luminescence dating techniques and palaeomagnetism to provide new age constraint on sedimentary infills that are unambiguously associated with the Sima fossil assemblage. Post-infrared-infrared stimulated luminescence (pIR-IR) dating of K-feldspars and thermally transferred optically stimulated luminescence (TT-OSL) dating of individual quartz grains provide weighted mean ages of 433 ± 15 ka (thousands of years) and 416 ± 19 ka, respectively, for allochthonous sedimentary horizons overlying the hominin-bearing clay breccia. The six replicate luminescence ages obtained for this deposit are reproducible and provide a combined minimum age estimate of 427 ± 12 ka for the underlying hominin fossils. Palaeomagnetic directions for the luminescence dated sediment horizon and underlying fossiliferous clays display exclusively normal polarities. These findings are consistent with the luminescence dating results and confirm that the hominin fossil horizon accumulated during the Brunhes Chron, i.e., within the last 780 ka. The new bracketing age constraint for the Sima hominins is in broad agreement with radiometrically dated Homo heidelbergensis fossil sites, such as Mauer and Arago, and suggests that the split of the H. neanderthalensis and H. sapiens lineages took place during the early Middle Pleistocene. More widespread numerical dating of key Early and Middle Pleistocene fossil sites across Europe is needed to test and refine competing models of hominin evolution. The new luminescence chronologies presented in this study demonstrate the versatility of TT-OSL and pIR-IR techniques and the potential role they could play in helping to refine evolutionary

  10. Synthesis, characterization and optical studies of highly luminescent ZnS nanoparticles associated with hypromellose matrix as a green and novel stabilizer.

    PubMed

    Tiwari, Ashish; Khan, S A; Kher, R S; Dhoble, S J

    2014-09-01

    ZnS nanoparticles stabilized by a carbohydrate-based matrix, hypromellose (hydroxypropyl methylcellulose) were prepared via a wet chemical method. The nanocomposite was characterized by X-ray diffraction, transmission electon microscopy and Fourier transform infrared spectroscopy. X-Ray diffraction patterns revealed a zinc blende structure. Thermogravimetric analysis suggested that polymer attached to the surface decomposes at 700 °C. Absorption measurements were carried out and calculation of the diameter polydispersity index (DPI) suggests the formation of monodisperse nanoparticles. The optical properties of the as-prepared samples were studied by UV/vis spectroscopy and steady-state photoluminescence (PL) spectroscopy. The PL studies indicate the applicability of these nanoparticles as biocompatible sensors or luminescence markers in future.

  11. Resonance-shifting luminescent solar concentrators

    DOEpatents

    Giebink, Noel Christopher; Wiederrecht, Gary P; Wasielewski, Michael R

    2014-09-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  12. Alternating Current Stimulation for Vision Restoration after Optic Nerve Damage: A Randomized Clinical Trial

    PubMed Central

    Schittkowski, Michael P.; Antal, Andrea; Ambrus, Géza Gergely; Paulus, Walter; Dannhauer, Moritz; Michalik, Romualda; Mante, Alf; Bola, Michal; Lux, Anke; Kropf, Siegfried; Brandt, Stephan A.; Sabel, Bernhard A.

    2016-01-01

    Background Vision loss after optic neuropathy is considered irreversible. Here, repetitive transorbital alternating current stimulation (rtACS) was applied in partially blind patients with the goal of activating their residual vision. Methods We conducted a multicenter, prospective, randomized, double-blind, sham-controlled trial in an ambulatory setting with daily application of rtACS (n = 45) or sham-stimulation (n = 37) for 50 min for a duration of 10 week days. A volunteer sample of patients with optic nerve damage (mean age 59.1 yrs) was recruited. The primary outcome measure for efficacy was super-threshold visual fields with 48 hrs after the last treatment day and at 2-months follow-up. Secondary outcome measures were near-threshold visual fields, reaction time, visual acuity, and resting-state EEGs to assess changes in brain physiology. Results The rtACS-treated group had a mean improvement in visual field of 24.0% which was significantly greater than after sham-stimulation (2.5%). This improvement persisted for at least 2 months in terms of both within- and between-group comparisons. Secondary analyses revealed improvements of near-threshold visual fields in the central 5° and increased thresholds in static perimetry after rtACS and improved reaction times, but visual acuity did not change compared to shams. Visual field improvement induced by rtACS was associated with EEG power-spectra and coherence alterations in visual cortical networks which are interpreted as signs of neuromodulation. Current flow simulation indicates current in the frontal cortex, eye, and optic nerve and in the subcortical but not in the cortical regions. Conclusion rtACS treatment is a safe and effective means to partially restore vision after optic nerve damage probably by modulating brain plasticity. This class 1 evidence suggests that visual fields can be improved in a clinically meaningful way. Trial Registration ClinicalTrials.gov NCT01280877 PMID:27355577

  13. Development of optics with micro-LED arrays for improved opto-electronic neural stimulation

    NASA Astrophysics Data System (ADS)

    Chaudet, Lionel; Neil, Mark; Degenaar, Patrick; Mehran, Kamyar; Berlinguer-Palmini, Rolando; Corbet, Brian; Maaskant, Pleun; Rogerson, David; Lanigan, Peter; Bamberg, Ernst; Roska, Botond

    2013-03-01

    The breakthrough discovery of a nanoscale optically gated ion channel protein, Channelrhodopsin 2 (ChR2), and its combination with a genetically expressed ion pump, Halorhodopsin, allowed the direct stimulation and inhibition of individual action potentials with light alone. This work reports developments of ultra-bright elec­ tronically controlled optical array sources with enhanced light gated ion channels and pumps for use in systems to further our understanding of both brain and visual function. This work is undertaken as part of the European project, OptoNeuro. Micro-LED arrays permit spatio-temporal control of neuron stimulation on sub-millisecond timescales. However they are disadvantaged by their broad spatial light emission distribution and low fill factor. We present the design and implementation of a projection and micro-optics system for use with a micro-LED array consisting of a 16x16 matrix of 25 μm diameter micro-LEDs with 150 μm centre-to-centre spacing and an emission spectrum centred at 470 nm overlapping the peak sensitivity of ChR2 and its testing on biological samples. The projection system images the micro-LED array onto micro-optics to improve the fill-factor from ~2% to more than 78% by capturing a larger fraction of the LED emission and directing it correctly to the sample plane. This approach allows low fill factor arrays to be used effectively, which in turn has benefits in terms of thermal management and electrical drive from CMOS backplane electronics. The entire projection system is integrated into a microscope prototype to provide stimulation spots at the same size as the neuron cell body (μ10 pm).

  14. Near infrared radio-luminescence of O{sub 2} loaded radiation hardened silica optical fibers: A candidate dosimeter for harsh environments

    SciTech Connect

    Di Francesca, D.; Girard, S.; Boukenter, A.; Ouerdane, Y.; Agnello, S.; Gelardi, F. M.; Marcandella, C.; Paillet, P.

    2014-11-03

    We report on an experimental investigation of the infrared Radio-Luminescence (iRL) emission of interstitial O{sub 2} molecules loaded in radiation hardened pure-silica-core and fluorine-doped silica-based optical fibers (OFs). The O{sub 2} loading treatment successfully dissolved high concentrations of oxygen molecules into the silica matrix. A sharp luminescence at 1272 nm was detected when 2.5 cm of the treated OFs were irradiated with 10 keV X-rays. This emission originates from the radiative decay of the first excited singlet state of the embedded O{sub 2} molecules. The dose, dose-rate, and temperature dependencies of the infrared emission are studied through in situ optical measurements. The results show that the iRL is quite stable in doses of up to 1 MGy(SiO{sub 2}) and is linearly dependent on the dose-rate up to the maximum investigated dose-rate of ∼200 kGy(SiO{sub 2})/h. The temperature dependency of the iRL shows a decrease in efficiency above 200 °C, which is attributed to the non-radiative decay of the excited O{sub 2} molecules. The results obtained and the long-term stability of the O{sub 2}-loading treatment (no out-gassing effect) strongly suggest the applicability of these components to real-time remote dosimetry in environments characterized by high radiation doses and dose-rates.

  15. Quantitative luminescence imaging system

    DOEpatents

    Erwin, D.N.; Kiel, J.L.; Batishko, C.R.; Stahl, K.A.

    1990-08-14

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopic imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber. 22 figs.

  16. Quantitative luminescence imaging system

    DOEpatents

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  17. Functional optical coherence tomography of rat olfactory bulb with periodic odor stimulation

    PubMed Central

    Watanabe, Hideyuki; Rajagopalan, Uma Maheswari; Nakamichi, Yu; Igarashi, Kei M.; Kadono, Hirofumi; Tanifuji, Manabu

    2016-01-01

    In rodent olfactory bulb (OB), optical intrinsic signal imaging (OISI) is commonly used to investigate functional maps to odorant stimulations. However, in such studies, the spatial resolution in depth direction (z-axis) is lost because of the integration of light from different depths. To solve this problem, we propose functional optical coherence tomography (fOCT) with periodic stimulation and continuous recording. In fOCT experiments of in vivo rat OB, propionic acid and m-cresol were used as odor stimulus presentations. Such a periodic stimulation enabled us to detect the specific odor-responses from highly scattering brain tissue. Swept source OCT operating at a wavelength of 1334 nm and a frequency of 20 kHz, was employed with theoretical depth and lateral resolutions of 6.7 μm and 15.4 μm, respectively. We succeeded in visualizing 2D cross sectional fOCT map across the neural layer structure of OCT in vivo. The detected fOCT signals corresponded to a few glomeruli of the medial and lateral parts of dorsal OB. We also obtained 3D fOCT maps, which upon integration across z-axis agreed well with OISI results. We expect such an approach to open a window for investigating and possibly addressing toward inter/intra-layer connections at high resolutions in the future. PMID:27231593

  18. Optical path of infrared neural stimulation in the guinea pig and cat cochlea

    NASA Astrophysics Data System (ADS)

    Rajguru, Suhrud M.; Hwang, Margaret; Moreno, Laura E.; Matic, Agnella I.; Stock, Stuart R.; Richter, Claus-Peter

    2011-03-01

    It has been demonstrated previously that infrared neural stimulation (INS) can be used to stimulate spiral ganglion cells in the cochlea. With INS, neural stimulation can be achieved without direct contact of the radiation source and the tissue and is spatially well resolved. The presence of fluids or bone between the target structure and the radiation source may lead to absorption or scattering of the radiation and limit the efficacy of INS. To develop INS based cochlear implants, it is critical to determine the beam path of the radiation in the cochlea. In the present study, we utilized noninvasive X-ray microtomography (microCT) to visualize the orientation and location of the optical fiber within the guinea pig and cat cochlea. Overall, the results indicated that the optical fiber was directed towards the spiral ganglion cells in the cochlea and not the nerve fibers in the center of the modiolus. The fiber was approximately 300 μm away from the target structures. In future studies, results from the microCT will be correlated with physiology obtained from recordings in the midbrain.

  19. Seizure Reduction through Interneuron-mediated Entrainment using Low Frequency Optical Stimulation

    PubMed Central

    Ladas, Thomas P.; Chiang, Chia-Chu; Gonzalez-Reyes, Luis E.; Nowak, Theodore; Durand, Dominique M.

    2015-01-01

    Low frequency electrical stimulation (LFS) can reduce neural excitability and suppress seizures in animals and patients with epilepsy. However the therapeutic outcome could benefit from the determination of the cell types involved in seizure suppression. We used optogenetic techniques to investigate the role of interneurons in LFS (1Hz) in the epileptogenic hippocampus. Optical low frequency stimulation (oLFS) was first used to activate the cation channel channelrhodopsin-2 (ChR2) in the Thy1-ChR2 transgenic mouse that expresses ChR2 in both excitatory and inhibitory neurons. We found that oLFS could effectively reduce epileptiform activity in the hippocampus through the activation of GAD-expressing hippocampal interneurons. This was confirmed using the VGAT-ChR2 transgenic mouse, allowing for selective optical activation of only GABA interneurons. Activating hippocampal interneurons through oLFS was found to cause entrainment of neural activity similar to electrical stimulation, but through a GABAA-mediated mechanism. These results confirm the robustness of the LFS paradigm and indicate that GABA interneurons play an unexpected role of shaping inter-ictal activity to decrease neural excitability in the hippocampus. PMID:25863022

  20. Electrical stimulation with a penetrating optic nerve electrode array elicits visuotopic cortical responses in cats

    NASA Astrophysics Data System (ADS)

    Lu, Yiliang; Yan, Yan; Chai, Xinyu; Ren, Qiushi; Chen, Yao; Li, Liming

    2013-06-01

    Objective. A visual prosthesis based on penetrating electrode stimulation within the optic nerve (ON) is a potential way to restore partial functional vision for blind patients. We investigated the retinotopic organization of ON stimulation and its spatial resolution. Approach. A five-electrode array was inserted perpendicularly into the ON or a single electrode was advanced to different depths within the ON (˜1-2 mm behind the eyeball, 13 cats). A sparse noise method was used to map ON electrode position and the visual cortex. Cortical responses were recorded by a 5 × 6 array. The visuotopic correspondence between the retinotopic position of the ON electrode was compared with the visual evoked cortical map and the electrical evoked potentials elicited in response to ON stimulation. Main results. Electrical stimulation with penetrating ON electrodes elicited cortical responses in visuotopographically corresponding areas of the cortex. Stimulation of the temporal side of the ON elicited cortical responses corresponding to the central visual field. The visual field position shifted from the lower to central visual field as the electrode penetrated through the depth of the ON. A spatial resolution of ˜ 2° to 3° within a limited cortical visuotopic representation could be obtained by this approach. Significance. Visuotopic electrical stimulation with a relatively fine spatial resolution can be accomplished using penetrating electrodes implanted at multiple sites and at different depths within the ON just behind the globe. This study also provides useful experimental data for the design of electrode density and the distribution of penetrating ON electrodes for a visual prosthesis.

  1. Elimination of Cerenkov interference in a fibre-optic-coupled radiation dosemeter.

    PubMed

    Justus, Brian L; Falkenstein, Paul; Huston, Alan L; Plazas, Maria C; Ning, Holly; Miller, Robert W

    2006-01-01

    An optical fibre point dosemeter based on the gated detection of the luminescence from a Cu(1+)-doped fused quartz detector effectively eliminated errors due to Cerenkov radiation and native fibre fluorescence. The gated optical fibre dosemeter overcomes serious problems faced by scintillation and optically stimulated luminescence approaches to optical fibre point dosimetry. The dosemeter was tested using an external beam radiotherapy machine that provided pulses of 6 MV X rays. Gated detection was used to discriminate the signal collected during the radiation pulses, which included contributions from Cerenkov radiation and native fibre fluorescence, from the signal collected between the radiation pulses, which contained only the long-lived luminescence from the Cu(1+)-doped fused quartz detector. Gated detection of the luminescence provided accurate, real-time dose measurements that were linear with absorbed dose, independent of dose rate and that were accurate for all field sizes studied.

  2. Laterality of Stance during Optic Flow Stimulation in Male and Female Young Adults

    PubMed Central

    Persiani, Michela; Piras, Alessandro; Squatrito, Salvatore; Raffi, Milena

    2015-01-01

    During self-motion, the spatial and temporal properties of the optic flow input directly influence the body sway. Men and women have anatomical and biomechanical differences that influence the postural control during visual stimulation. Given that recent findings suggest a peculiar role of each leg in the postural control of the two genders, we investigated whether the body sway during optic flow perturbances is lateralized and whether anteroposterior and mediolateral components of specific center of pressure (COP) parameters of the right and left legs differ, reexamining a previous experiment (Raffi et al. (2014)) performed with two, side-by-side, force plates. Experiments were performed on 24 right-handed and right-footed young subjects. We analyzed five measures related to the COP of each foot and global data: anteroposterior and mediolateral range of oscillation, anteroposterior and mediolateral COP velocity, and sway area. Results showed that men consistently had larger COP parameters than women. The values of the COP parameters were correlated between the two feet only in the mediolateral axis of women. These findings suggest that optic flow stimulation causes asymmetry in postural balance and different lateralization of postural controls in men and women. PMID:26539509

  3. Stimulated orientational and thermal scatterings and self-starting optical phase conjugation with nematic liquid crystals

    PubMed

    Khoo; Liang

    2000-11-01

    A quantitative theory and experimental results on self-starting optical phase conjugation, using stimulated orientational and thermal scattering in nematic liquid crystal films, are presented. The coupled wave-material equations for the laser-induced refractive index changes, grating formation, and coherent wave mixing effects are developed. Analytical solutions are obtained for the case of negligible pump depletion, and numerical solutions for various input and generated signals, taking losses into account, are obtained. Experimentally, we demonstrate the feasibility of realizing these stimulated scattering and phase conjugation processes in thin (200 &mgr;m) nematic liquid crystal with a milliwatt-power cw laser. Theoretical estimates for various gain constants and threshold intensities, and their dependence on various physical parameters, are found to be in good agreement with experimental observations.

  4. Optical and electrical stimulation of the rat prostate cavernous nerves: priming and fatigue studies

    NASA Astrophysics Data System (ADS)

    Kaouk, Ghallia S.; Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2015-02-01

    Optical nerve stimulation (ONS) is being explored as an alternative to electrical nerve stimulation (ENS) for use as an intra-operative diagnostic method for identification and preservation of prostate cavernous nerves (CNs) during radical prostatectomy. Nerve priming and fatigue studies were performed to further characterize CNs and provide insight into the different ONS and ENS mechanisms. ONS studies were conducted using a 1455-nm diode laser, coupled to fiber optic probe, and delivering a collimated, 1-mm-diameter laser spot on CNs. For nerve priming studies, laser power was escalated in 5 mW increments (15 - 60 mW) with each stimulation lasting 15 s, until a strong ICP response was observed, and then power was similarly de-escalated. For ONS fatigue studies, a constant laser power was delivered for a period of 10 min. ENS studies were conducted for comparison, with standard parameters (4 V, 5 ms, 16 Hz) for fatigue studies (10 min. duration), but incrementally increasing/decreasing voltage (0.1 - 4.0 V) for priming studies with 15 s stimulations. ONS threshold was approximately 20% higher during initial escalating laser power steps (6.4 W/cm2) than in subsequently de-escalating laser power steps (5.1 W/cm2), demonstrating a nerve priming effect. Evidence of nerve priming during ENS was not observed. For nerve fatigue studies, ONS of CNs showed a peak ICP response at about 60 s, followed by a gradual decay in ICP, while ENS maintained a strong, but cyclical ICP. Nerve priming may allow repetitive ONS of CNs at lower and hence safer laser power settings. Both nerve priming and fatigue studies revealed different mechanisms for ONS and ENS.

  5. Numerical Study of Phase Conjugation in Stimulated Brillouin Scattering from an Optical Waveguide.

    DTIC Science & Technology

    1982-12-30

    L RD-Ai23 237 NUMERICAL STUDY OF PHASE CONJUGATION IN STIMULATED i/i BRILLOVIN SCATTERING FROM AN OPTICAL MAYEGUIDE(U) NAVAL I RESEARCH LAB ...IEL’S(x, z)12 dX (7) is proportional to the total pump or backscatter power, assuming unit width along the . direction. From Eqs. ( lab ) and (3), one can...Es c EL). According to Eqs. ( lab ) and (3). H remains constant when g - 0; thus H - H(Z2) at all points beyond z2. III. LOW REFLECTIVITY LIMIT This

  6. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation

    PubMed Central

    Anthony Eikema, Diderik Jan A.; Chien, Jung Hung; Stergiou, Nicholas; Myers, Sara A.; Scott-Pandorf, Melissa M.; Bloomberg, Jacob J.; Mukherjee, Mukul

    2015-01-01

    Human locomotor adaptation requires feedback and feed-forward control processes to maintain an appropriate walking pattern. Adaptation may require the use of visual and proprioceptive input to decode altered movement dynamics and generate an appropriate response. After a person transfers from an extreme sensory environment and back, as astronauts do when they return from spaceflight, the prolonged period required for re-adaptation can pose a significant burden. In our previous paper, we showed that plantar tactile vibration during a split-belt adaptation task did not interfere with the treadmill adaptation however, larger overground transfer effects with a slower decay resulted. Such effects, in the absence of visual feedback (of motion) and perturbation of tactile feedback, is believed to be due to a higher proprioceptive gain because, in the absence of relevant external dynamic cues such as optic flow, reliance on body-based cues is enhanced during gait tasks through multisensory integration. In this study we therefore investigated the effect of optic flow on tactile stimulated split-belt adaptation as a paradigm to facilitate the sensorimotor adaptation process. Twenty healthy young adults, separated into two matched groups, participated in the study. All participants performed an overground walking trial followed by a split-belt treadmill adaptation protocol. The tactile group (TC) received vibratory plantar tactile stimulation only, whereas the virtual reality and tactile group (VRT) received an additional concurrent visual stimulation: a moving virtual corridor, inducing perceived self-motion. A post-treadmill overground trial was performed to determine adaptation transfer. Interlimb coordination of spatiotemporal and kinetic variables was quantified using symmetry indices, and analyzed using repeated-measures ANOVA. Marked changes of step length characteristics were observed in both groups during split-belt adaptation. Stance and swing time symmetry were

  7. Suppression of Stimulated Brillouin Scattering in Optical Fibers Using a Linearly Chirped Diode Laser

    DTIC Science & Technology

    2012-07-02

    modulation n,” Chin. Opt. Lett. 7, 29–31 (2009). 3 . D. Brown, M. Dennis, and W. Torruellas, “Improved phase modulation for SBS mitigation in kW -class fiber ...D. Björk, I. Majid, and K. Tankala, “ kW class, narrow-linewidth, counter pumped fiber amplifiers,” Solid State and Diode Laser Technical Review, 17...Suppression of stimulated Brillouin scattering in optical fibers using a linearly chirped diode laser J. O. White, 1,* A. Vasilyev, 2 J. P

  8. Arbitrary phase modulation for optical spectral control and suppression of stimulated Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Harish, Achar V.; Nilsson, Johan

    2015-05-01

    We investigate the use of external phase modulation to broaden the linewidth of a laser source. We use nonlinear optimization to find phase modulations that create nearly tophat-shaped discrete spectra and thus the highest total power within a limited linewidth and a limited peak spectral power density. Such phase modulations and spectra can be realized with an arbitrary waveform generator (AWG) and are attractive for suppressing stimulated Brillouin scattering in optical fiber. Compared to alternative modulation approaches, the AWG benefits from a large number of degrees of freedom and well-controlled spectral phase in the AWG output.

  9. Closed-loop optical stimulation and recording system with GPU-based real-time spike sorting

    NASA Astrophysics Data System (ADS)

    Wang, Ling; Nguyen, Thoa; Cabral, Henrique; Gysbrechts, Barbara; Battaglia, Francesco; Bartic, Carmen

    2014-05-01

    Closed-loop brain computer interfaces are rapidly progressing due to their applications in fundamental neuroscience and prosthetics. For optogenetic experiments, the integration of optical stimulation and electrophysiological recordings is emerging as an imperative engineering research topic. Optical stimulation does not only bring the advantage of cell-type selectivity, but also provides an alternative solution to the electrical stimulation-induced artifacts, a challenge in closedloop architectures. A closed-loop system must identify the neuronal signals in real-time such that a strategy is selected immediately (within a few milliseconds) for delivering stimulation patterns. Real-time spike sorting poses important challenges especially when a large number of recording channels are involved. Here we present a prototype allowing simultaneous optical stimulation and electro-physiological recordings in a closed-loop manner. The prototype was implemented with online spike detection and classification capabilities for selective cell stimulation. Real-time spike sorting was achieved by computations with a high speed, low cost graphic processing unit (GPU). We have successfully demonstrated the closed-loop operation, i.e. optical stimulation in vivo based on spike detection from 8 tetrodes (32 channels). The performance of GPU computation in spike sorting for different channel numbers and signal lengths was also investigated.

  10. Late Quaternary floods and droughts in the Nile valley, Sudan: new evidence from optically stimulated luminescence and AMS radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Williams, M. A. J.; Williams, F. M.; Duller, G. A. T.; Munro, R. N.; El Tom, O. A. M.; Barrows, T. T.; Macklin, M.; Woodward, J.; Talbot, M. R.; Haberlah, D.; Fluin, J.

    2010-05-01

    Our results show that the late Pleistocene Nile in northern Sudan was shifting position and actively aggrading at 145 ± 20 kyr, 83 ± 24 kyr, 32 ± 8 kyr and 20.7 ± 0.2 kyr and indicate, for the first time, a phase of high-energy flow in the White Nile at 27.8 ± 3.2 kyr, with still high but somewhat reduced flow in that river at 13.3 kyr, 10 kyr and 4.8-4.0 kyr. Beach ridges associated with a 386 m strandline of the White Nile have OSL ages of 27.5 ± 2.7 kyr and 14.5 ± 1.6 kyr. The Holocene terraces and former channels of the main Nile have ages of 11 kyr, 6.5-5.0 kyr and 4.8-4.0 kyr, after which there was a general decline in flood discharge. The now arid main Nile valley in northern Sudan was significantly wetter during the early to middle Holocene, with a lake up to 450 km 2 in area, fed by an overflow channel from the early Holocene Nile between 9.5 kyr and 7.5 kyr. Previously stable late Pleistocene dunes were reactivated at intervals during the Holocene, with five samples from the White Nile valley indicating brief phases of Holocene dune activity at 9.9 ± 2.0 kyr, 9.0 ± 2.8 kyr, 6.6 ± 0.9 kyr, 4.8 ± 0.9 kyr and 2.9 ± 0.5 kyr, the earliest of which occurred within periods of generally wetter climate and higher Nile flow. The youngest freshwater shells on the Khor Abu Habl alluvial fan west of the White Nile correspond to a time of regionally wetter climate between 1.7 and 1.0 kyr. Our results suggest that millennial scale climatic instability may have been characteristic of Holocene climates in this region.

  11. Measurement of radiation dose with BeO dosimeters using optically stimulated luminescence technique in radiotherapy applications.

    PubMed

    Şahin, Serdar; Güneş Tanır, A; Meriç, Niyazi; Aydınkarahaliloğlu, Ercan

    2015-09-01

    The radiation dose delivered to the target by using different radiotherapy applications has been measured with the help of beryllium oxide (BeO) dosimeters to be placed inside the rando phantom. Three-Dimensional Conformal Radiotherapy (3DCRT), Intensity-Modulated Radiotherapy (IMRT) and Intensity-Modulated Arc Therapy (IMAT) have been used as radiotherapy application. Individual treatment plans have been made for the three radiotherapy applications of rando phantom. The section 4 on the phantom was selected as target and 200 cGy doses were delivered. After the dosimeters placed on section 4 (target) and the sections 2 and 6 (non-target) were irradiated, the result was read through the OSL technique on the Risø TL/OSL system. This procedure was repeated three times for each radiotherapy application. The doses delivered to the target and the non-target sections as a result of the 3DCRT, IMRT and IMAT plans were analyzed. The doses received by the target were measured as 204.71 cGy, 204.76 cGy and 205.65 cGy, respectively. The dose values obtained from treatment planning system (TPS) were compared to the dose values obtained using the OSL technique. It has been concluded that, the radiation dose can be measured with the OSL technique by using BeO dosimeters in medical practices.

  12. Testing a luminescence surface-exposure dating technique

    NASA Astrophysics Data System (ADS)

    Gliganic, Luke A.; Meyer, Michael; Gehring, Sebastian

    2016-04-01

    Recent work has shown that the relationship between the luminescence signal (optically stimulated [OSL] and infra-red stimulated [IRSL]) and depth into a rock surface can be used to estimate the length of time since that rock surface has been exposed to sunlight (Sohbati et al., 2012), thus serving as a means for surface-exposure dating. Despite the potential of this new dating tool, few published studies have tested or used this technique. Here, we present the results of two tests of the method. First, we perform laboratory bleaching experiments using two unexposed bedrock samples of different lithologies (granite and quartzite). Sub-samples were bleached for various durations (0 to 100,000 s) in a solar simulator, and IRSL/OSL-depth profiles were measured and fitted using the model of Sohbati et al. (2012). Results of fitting for each sub-sample were then compared. Second, we used a granite boulder from a known age moraine (1850 CE) to test the reproducibility of bleaching depth curves. Multiple cores were collected from the same ~5 cm2 surface area of the boulder, and IRSL-depth profiles were measured and modelled. While our systematic tests confirm the general physical basis of luminescence surface-exposure dating method, we found unexpected scatter in both adjacent bleaching depth curves and the fitting parameters of isochronous rock surfaces for some of our samples. Potential sources of error, including small-scale lithological variabilities and implications for accuracy and precision of the method are discussed. Sohbati, R., Murray, A.S., Chapot, M.S., Jain, M., Pederson, J. (2012) Optically stimulated luminescence (OSL) as a chronometer for surface exposure dating. Journal of Geophysical Research 117 (B9), B09202. doi.org/10.1029/2012JB009383.

  13. Lanthanide luminescence for functional materials and bio-sciences.

    PubMed

    Eliseeva, Svetlana V; Bünzli, Jean-Claude G

    2010-01-01

    Recent startling interest for lanthanide luminescence is stimulated by the continuously expanding need for luminescent materials meeting the stringent requirements of telecommunication, lighting, electroluminescent devices, (bio-)analytical sensors and bio-imaging set-ups. This critical review describes the latest developments in (i) the sensitization of near-infrared luminescence, (ii) "soft" luminescent materials (liquid crystals, ionic liquids, ionogels), (iii) electroluminescent materials for organic light emitting diodes, with emphasis on white light generation, and (iv) applications in luminescent bio-sensing and bio-imaging based on time-resolved detection and multiphoton excitation (500 references).

  14. Live cell response to mechanical stimulation studied by integrated optical and atomic force microscopy.

    PubMed

    Trache, Andreea; Lim, Soon-Mi

    2010-10-04

    To understand the mechanism by which living cells sense mechanical forces, and how they respond and adapt to their environment, a new technology able to investigate cells behavior at sub-cellular level with high spatial and temporal resolution was developed. Thus, an atomic force microscope (AFM) was integrated with total internal reflection fluorescence (TIRF) microscopy and fast-spinning disk (FSD) confocal microscopy. The integrated system is broadly applicable across a wide range of molecular dynamic studies in any adherent live cells, allowing direct optical imaging of cell responses to mechanical stimulation in real-time. Significant rearrangement of the actin filaments and focal adhesions was shown due to local mechanical stimulation at the apical cell surface that induced changes into the cellular structure throughout the cell body. These innovative techniques will provide new information for understanding live cell restructuring and dynamics in response to mechanical force. A detailed protocol and a representative data set that show live cell response to mechanical stimulation are presented.

  15. Gaussian versus flat-top spatial beam profiles for optical stimulation of the prostate nerves

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2010-02-01

    The cavernous nerves (CN) course along the prostate surface and are responsible for erectile function. Improved identification and preservation of the CN's is critical to maintaining sexual potency after prostate cancer surgery. Noncontact optical nerve stimulation (ONS) of the CN's was recently demonstrated in a rat model, in vivo, as a potential alternative to electrical nerve stimulation (ENS) for identification of the CN's during prostate surgery. However, the therapeutic window for ONS is narrow, so optimal design of the fiber optic delivery system is critical for safe, reproducible stimulation. This study describes modeling, assembly, and testing of an ONS probe for delivering a small, collimated, flat-top laser beam for uniform CN stimulation. A direct comparison of the magnitude and response time of the intracavernosal pressure (ICP) for both Gaussian and flat-top spatial beam profiles was performed. Thulium fiber laser radiation (λ=1870 nm) was delivered through a 200-μm fiber, with distal fiber tip chemically etched to convert a Gaussian to flat-top beam profile. The laser beam was collimated to a 1-mm-diameter spot using an aspheric lens. Computer simulations of light propagation were used to optimize the probe design. The 10-Fr (3.4-mm-OD) laparoscopic probe provided a constant radiant exposure at the CN surface. The probe was tested in four rats, in vivo. ONS of the CN's was performed with a 1-mm-diameter spot, 5-ms pulse duration, and pulse rate of 20 Hz for a duration of 15-30 s. The flat-top laser beam profile consistently produced a faster and higher ICP response at a lower radiant exposure than the Gaussian beam profile due, in part, to easier alignment of the more uniform beam with nerve. The threshold for ONS was approximately 0.14 J/cm2, corresponding to a temperature increase of 6-8°C at the CN surface after a stimulation time of 15 s. With further development, ONS may be used as a diagnostic tool for identification of CN's during prostate

  16. Luminescence and structural properties of oxyorthosilicate and Al2O3 nanophosphors

    SciTech Connect

    Blair, Michael W; Jacobsohn, Luiz G; Bennett, Bryan L; Tornga, Stephanie C; Muenchausen, Ross E; Yukihara, Eduardo G

    2008-01-01

    A large amount of research has been conducted on semiconducting quantum dots exploring quantum confinement effects. On the other hand, nanophosphors -- inorganic insulating nanostructured luminescent materials -- have received considerably less attention. Our research involving nanomaterials has then focused on the question: How does reduced dimensionality affect the physical and chemical behavior of nanophosphors? In order to partially answer this fundamental question, we have produced numerous oxides, among them Lu{sub 2}SiO{sub 5}Ce (LSO), Y{sub 2}SiO{sub 5}:Ce (YSO), Gd{sub 2}SiO{sub 5}:Ce (GSO), and Al{sub 2}O{sub 3}, and characterized their structural and luminescent properties. Structure, grain size, phase purity and chemical homogeneity in the nanoscale were determined using x-ray diffraction, transmission electron microscopy, and electron paramagnetic resonance. The luminescent properties of the nanophosphors were characterized by thermoluminescence, radioluminescence, photoluminescence, and optically stimulated luminescence. In this work, we present an overview of the nascent field of nanophosphors, and summarize the results obtained in our laboratory with particular emphasis on the luminescent properties.

  17. Transcorneal electrical stimulation alters morphology and survival of retinal ganglion cells after optic nerve damage.

    PubMed

    Henrich-Noack, Petra; Voigt, Nadine; Prilloff, Sylvia; Fedorov, Anton; Sabel, Bernhard A

    2013-05-24

    Traumatic optic nerve injury leads to retrograde death of retinal ganglion cells (RGCs), but transcorneal electrical stimulation (TES) can increase the cell survival rate. To understand the mechanisms and to further define the TES-induced effects we monitored in living animals RGC morphology and survival after optic nerve crush (ONC) in real time by using in vivo confocal neuroimaging (ICON) of the retina. ONC was performed in rats and ICON was performed before crush and on post-lesion days 3, 7 and 15 which allowed us to repeatedly record RGC number and size. TES or sham-stimulation were performed immediately after the crush and on post-injury day 11. Three days after ONC we detected a higher percentage of surviving RGCs in the TES group as compared to sham-treated controls. However, the difference was below significance level on day 7 and disappeared completely by day 15. The death rate was more variable amongst the TES-treated rats than in the control group. Morphological analysis revealed that average cell size changed significantly in the control group but not in stimulated animals and the morphological alterations of surviving neurons were smaller in TES-treated compared to control cells. In conclusion, TES delays post-traumatic cell death significantly. Moreover, we found "responder animals" which also benefited in the long-term from the treatment. Our in vivo cellular imaging results provide evidence that TES reduces ONC-associated neuronal swelling and shrinkage especially in RGCs which survived long-term. Further studies are now needed to determine the differences of responders vs. non-responders.

  18. Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue

    PubMed Central

    Zhang, Jiayi; Laiwalla, Farah; Kim, Jennifer A; Urabe, Hayato; Van Wagenen, Rick; Song, Yoon-Kyu; Connors, Barry W; Zhang, Feng; Deisseroth, Karl; Nurmikko, Arto V

    2010-01-01

    Neural stimulation with high spatial and temporal precision is desirable both for studying the real-time dynamics of neural networks and for prospective clinical treatment of neurological diseases. Optical stimulation of genetically targeted neurons expressing the light sensitive channel protein Channelrhodopsin (ChR2) has recently been reported as a means for millisecond temporal control of neuronal spiking activities with cell-type selectivity. This offers the prospect of enabling local delivery of optical stimulation and the simultaneous monitoring of the neural activity by electrophysiological means, both in the vicinity of and distant to the stimulation site. We report here a novel dual-modality hybrid device, which consists of a tapered coaxial optical waveguide (‘optrode’) integrated into a 100 element intra-cortical multi-electrode recording array. We first demonstrate the dual optical delivery and electrical recording capability of the single optrode in in vitro preparations of mouse retina, photo-stimulating the native retinal photoreceptors while recording light-responsive activities from ganglion cells. The dual-modality array device was then used in ChR2 transfected mouse brain slices. Specifically, epileptiform events were reliably optically triggered by the optrode and their spatiotemporal patterns were simultaneously recorded by the multi-electrode array. PMID:19721185

  19. Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods.

    PubMed

    Tam, Johnny; Merino, David

    2015-11-01

    Stochastic optical reconstruction microscopy (STORM) and stimulated emission depletion (STED) microscopy are two super-resolution optical microscopy approaches that have rapidly gained popularity in recent years. Both modalities offer super-resolution imaging capabilities with the potential for imaging in multiple colors, three-dimensions, and the possibility to image in live cells. In this review, we focus on the specific advantages and disadvantages of each technique in the context of each other. STORM has been reported to achieve higher spatial resolution when compared to STED, but a lengthy acquisition may be required. STED utilizes relatively higher laser intensities, but is able to generate a super-resolution image immediately after acquisition without the need for any additional data processing. Ultimately, the choice between STORM and STED will depend not only on the specific application, but also on the users' ability to understand and optimize the various parameters ranging from sample preparation to image acquisition, which determine the quality of the final image. Stochastic optical reconstruction microscopy (STORM) and stimulated emission depletion (STED) are two super-resolution microscopy approaches that have rapidly gained popularity in recent years. STORM is based on the precise localization of a large number of individual molecules that together form a super-resolved image (bottom), whereas STED is based on the scanning of two super-imposed light sources which together allow for a super-resolved spot on the sample to be imaged (top). We discuss the specific advantages and disadvantages of each technique and explain the various parameters that affect image quality, which should be taken into consideration when planning experiments.

  20. Fiber-coupled Luminescence Dosimetry in Therapeutic and Diagnostic Radiology

    NASA Astrophysics Data System (ADS)

    Andersen, Claus E.

    2011-05-01

    Fiber-coupled luminescence dosimetry is an emerging technology with several potentially attractive features of relevance for uses in therapeutic and diagnostic radiology: direct water equivalence (i.e. no significant perturbation of the radiation field in a water phantom or a patient), sub-mm detector size, high dynamic range (below a mGy to several Gy), microsecond time resolution, and absence of electrical wires or other electronics in the dosimeter probe head. Fiber-coupled luminescence dosimetry systems typically consist of one or more small samples of phosphor, e.g. a mg of plastic scintillator, attached to 10-20 m long optical fiber cables of plastic. During irradiation, each dosimeter probe spontaneously emits radioluminescence (RL) in proportion to the dose rate. The luminescence intensity can be detected with photomultiplier tubes, CCD cameras or other highly sensitive photodetectors. Some crystalline phosphors, such as carbon-doped aluminium oxide (Al2O3:C) have the ability to store charge produced in the crystal during irradiation. The stored charge may later be released by fiber-guided laser light under emission of so-called optically stimulated luminescence (OSL). The OSL signal therefore reflects the passively integrated dose. In contrast to thermoluminescence dosimetry, fiber-coupled OSL dosimetry may be performed in vivo while the dosimeter is still in the patient. Within the last few years, several improvements and new applications of these techniques have been published, and the objective of this review is to provide an introduction to this field and to outline some of these new results. Emphasis will be given to applications in medical dosimetry such as in vivo real-time dose verification in brachytherapy and methods aimed for improved quality assurance of linear accelerators.

  1. Fiber-coupled Luminescence Dosimetry in Therapeutic and Diagnostic Radiology

    SciTech Connect

    Andersen, Claus E.

    2011-05-05

    Fiber-coupled luminescence dosimetry is an emerging technology with several potentially attractive features of relevance for uses in therapeutic and diagnostic radiology: direct water equivalence (i.e. no significant perturbation of the radiation field in a water phantom or a patient), sub-mm detector size, high dynamic range (below a mGy to several Gy), microsecond time resolution, and absence of electrical wires or other electronics in the dosimeter probe head. Fiber-coupled luminescence dosimetry systems typically consist of one or more small samples of phosphor, e.g. a mg of plastic scintillator, attached to 10-20 m long optical fiber cables of plastic. During irradiation, each dosimeter probe spontaneously emits radioluminescence (RL) in proportion to the dose rate. The luminescence intensity can be detected with photomultiplier tubes, CCD cameras or other highly sensitive photodetectors. Some crystalline phosphors, such as carbon-doped aluminium oxide (Al{sub 2}O{sub 3}:C) have the ability to store charge produced in the crystal during irradiation. The stored charge may later be released by fiber-guided laser light under emission of so-called optically stimulated luminescence (OSL). The OSL signal therefore reflects the passively integrated dose. In contrast to thermoluminescence dosimetry, fiber-coupled OSL dosimetry may be performed in vivo while the dosimeter is still in the patient. Within the last few years, several improvements and new applications of these techniques have been published, and the objective of this review is to provide an introduction to this field and to outline some of these new results. Emphasis will be given to applications in medical dosimetry such as in vivo real-time dose verification in brachytherapy and methods aimed for improved quality assurance of linear accelerators.

  2. Spectroscopic Study on Ultrafast Carrier Dynamics and Terahertz Amplified Stimulated Emission in Optically Pumped Graphene

    NASA Astrophysics Data System (ADS)

    Otsuji, Taiichi; Boubanga-Tombet, Stephane; Satou, Akira; Suemitsu, Maki; Ryzhii, Victor

    2012-08-01

    This paper reviews recent advances in spectroscopic study on ultrafast carrier dynamics and terahertz (THz) stimulated emission in optically pumped graphene. The gapless and linear energy spectra of electrons and holes in graphene can lead to nontrivial features such as negative dynamic conductivity in the THz spectral range, which may lead to the development of new types of THz lasers. First, the non-equilibrium carrier relaxation/recombination dynamics is formulated to show how photoexcited carriers equilibrate their energy and temperature via carrier-carrier and carrier-phonon scatterings and in what photon energies and in what time duration the dynamic conductivity can take negative values as functions of temperature, pumping photon energy/intensity, and carrier relaxation rates. Second, we conduct time-domain spectroscopic studies using an optical pump and a terahertz probe with an optical probe technique at room temperature and show that graphene sheets amplify an incoming terahertz field. Two different types of samples are prepared for the measurement; one is an exfoliated monolayer graphene on SiO2/Si substrate and the other is a heteroepitaxially grown non-Bernal stacked multilayer graphene on a 3C-SiC/Si epi-wafer.

  3. Dating the Lower Paleolithic Open-Air Site of Holon, Israel by Luminescence and ESR Techniques

    NASA Astrophysics Data System (ADS)

    Porat, Naomi; Zhou, Li Ping; Chazan, Michael; Noy, Tamar; Horwitz, Liora Kolska

    1999-05-01

    The open-air Acheulian site in Holon, Israel, was dated by the luminescence methods and by electron spin resonance (ESR). Situated in the coastal plain Quaternary Kurkar Group, the Holon site was first excavated in the late 1960s, when typical lower Paleolithic lithics and middle Pleistocene fauna were found. In order to date the site, new test pits were dug adjacent to the earlier excavations and the archaeological bed was exposed in a section comprising a series of paleosols and aeolianites. Alkali feldspars separated from the sediments were dated using the infrared stimulated luminescence and thermoluminescence signals, and quartz was dated using the optically stimulated luminescence signal. The age of the archaeological bed is constrained by two samples to 198,000 ± 22,000-201,000 ± 17,000 yr. The age of the base of the section is 240,000 ± 29,000 yr, and the age of the top is 81,000 ± 8000 yr. Two teeth from the archaeological bed, recovered from the original excavation collection, yielded an average ESR age of 204,000 ± 16,000 yr, calculated using the linear uptake model, which is in a very good agreement with the luminescence ages. These dates place Holon within the range of other late Acheulian and Acheulo-Yabrudian sites in this region such as Tabun E (younger chronology), Yabrud I (archaeological level 18), and Berekhat Ram.

  4. Phase states of water near the surface of a polymer membrane. Phase microscopy and luminescence spectroscopy experiments

    SciTech Connect

    Bunkin, N. F.; Gorelik, V. S.; Kozlov, V. A. Shkirin, A. V. Suyazov, N. V.

    2014-11-15

    Phase microscopy is used to show that the refractive index in the near-surface layer of water at the surface of a polymer Nafion membrane increases by a factor of 1.1 as compared to bulk water. Moreover, this layer exhibits birefringence. Experiments on UV irradiation of dry (anhydrous) and water-soaked Nafion are performed in grazing-incidence geometry to study their stimulated luminescence spectra. These spectra are found to be identical in both cases. For dry Nafion, luminescence can only be excited if probing radiation illuminates the polymer surface. The luminescence of water-soaked Nafion can also be excited if the distance between the optical axis and the surface is several hundred micrometers.

  5. Dimensionality reduction and dynamical filtering: Stimulated Brillouin scattering in optical fibers.

    PubMed

    Setra, Rafael G; Arroyo-Almanza, Diana A; Ni, Zetian; Murphy, Thomas E; Roy, Rajarshi

    2015-08-01

    Stimulated Brillouin scattering (SBS) is a noise-driven nonlinear interaction between acoustical and optical waves. In optical fibers, SBS can be observed at relatively low optical powers and can severely limit signal transmission. Although SBS is initiated by high dimensional noise, it also exhibits many of the hallmarks of a complex nonlinear dynamical system. We report here a comprehensive experimental and numerical study of the fluctuations in the reflected Stokes wave produced by SBS in optical fibers. Using time series analysis, we demonstrate a reduction of dimensionality and dynamical filtering of the Stokes wave. We begin with a careful comparison of the measured average transmitted and reflected intensities from below the SBS threshold to saturation of the transmitted power. Initially the power spectra and correlation functions of the time series of the reflected wave fluctuations at the SBS threshold and above are measured and simulated. Much greater dynamical insight is provided when we study the scaling behavior of the intensity fluctuations using Hurst exponents and detrended fluctuation analysis for time scales extending over six orders of magnitude. At the highest input powers, we notice the emergence of three distinct dynamical scaling regimes: persistent, Brownian, and antipersistent. Next, we explore the Hilbert phase fluctuations of the intensity time series and amplitude-phase coupling. Finally, time-delay embedding techniques reveal a gradual reduction in dimensionality of the spatiotemporal dynamics as the laser input is increased toward saturation of the transmitted power. Through all of these techniques, we find a transition from noisier to smoother dynamics with increasing input power. We find excellent agreement between our experimental measurements and simulations.

  6. Bandwidth-efficient phase modulation techniques for stimulated Brillouin scattering suppression in fiber optic parametric amplifiers.

    PubMed

    Coles, J B; Kuo, B P-P; Alic, N; Moro, S; Bres, C-S; Chavez Boggio, J M; Andrekson, P A; Karlsson, M; Radic, S

    2010-08-16

    Two novel bandwidth efficient pump-dithering Stimulated Brillouin Scattering (SBS) suppression techniques are introduced. The techniques employ a frequency-hopped chirp and an RF noise source to impart phase modulation on the pumps of a two pump Fiber Optical Parametric Amplifier (FOPA). The effectiveness of the introduced techniques is confirmed by measurements of the SBS threshold increase and the associated improvements relative to the current state of the art. Additionally, the effect on the idler signal integrity is presented as measured following amplification from a two pump FOPA employing both techniques. The measured 0.8 dB penalty with pumps dithered by an RF noise source, after accruing 160 ps/nm of dispersion with 38 dB conversion gain in a two-pump FOPA is the lowest reported to date.

  7. Dispersion-based stimulated Raman scattering spectroscopy, holography, and optical coherence tomography

    PubMed Central

    Robles, Francisco E.; Fischer, Martin C.; Warren, Warren S.

    2016-01-01

    Stimulated Raman scattering (SRS) enables fast, high resolution imaging of chemical constituents important to biological structures and functional processes, both in a label-free manner and using exogenous biomarkers. While this technology has shown remarkable potential, it is currently limited to point scanning and can only probe a few Raman bands at a time (most often, only one). In this work we take a fundamentally different approach to detecting the small nonlinear signals based on dispersion effects that accompany the loss/gain processes in SRS. In this proof of concept, we demonstrate that the dispersive measurements are more robust to noise compared to amplitude-based measurements, which then permit spectral or spatial multiplexing (potentially both, simultaneously). Finally, we illustrate how this method may enable different strategies for biochemical imaging using phase microscopy and optical coherence tomography. PMID:26832279

  8. Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics.

    PubMed

    Massey, Steven M; Spring, Justin B; Russell, Timothy H

    2008-07-21

    Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber NA(2), but find that fidelity remains high over much longer fiber lengths than previous models calculated. Conditions for SBS beam cleanup in step-index fibers are discussed.

  9. High-speed all-optical logic inverter based on stimulated Raman scattering in silicon nanocrystal.

    PubMed

    Sen, Mrinal; Das, Mukul K

    2015-11-01

    In this paper, we propose a new device architecture for an all-optical logic inverter (NOT gate), which is cascadable with a similar device. The inverter is based on stimulated Raman scattering in silicon nanocrystal waveguides, which are embedded in a silicon photonic crystal structure. The Raman response function of silicon nanocrystal is evaluated to explore the transfer characteristic of the inverter. A maximum product criterion for the noise margin is taken to analyze the cascadability of the inverter. The time domain response of the inverter, which explores successful inversion operation at 100 Gb/s, is analyzed. Propagation delay of the inverter is on the order of 5 ps, which is less than the delay in most of the electronic logic families as of today. Overall dimension of the device is around 755  μm ×15  μm, which ensures integration compatibility with the matured silicon industry.

  10. Electrochemical synthesis of mesoporous gold films toward mesospace-stimulated optical properties

    PubMed Central

    Li, Cuiling; Dag, Ömer; Dao, Thang Duy; Nagao, Tadaaki; Sakamoto, Yasuhiro; Kimura, Tatsuo; Terasaki, Osamu; Yamauchi, Yusuke

    2015-01-01

    Mesoporous gold (Au) films with tunable pores are expected to provide fascinating optical properties stimulated by the mesospaces, but they have not been realized yet because of the difficulty of controlling the Au crystal growth. Here, we report a reliable soft-templating method to fabricate mesoporous Au films using stable micelles of diblock copolymers, with electrochemical deposition advantageous for precise control of Au crystal growth. Strong field enhancement takes place around the center of the uniform mesopores as well as on the walls between the pores, leading to the enhanced light scattering as well as surface-enhanced Raman scattering (SERS), which is understandable, for example, from Babinet principles applied for the reverse system of nanoparticle ensembles. PMID:25799072

  11. Long-persistent luminescence in the near-infrared from Nd3+-doped Sr2SnO4 for in vivo optical imaging

    NASA Astrophysics Data System (ADS)

    Kamimura, Sunao; Xu, Chao-Nan; Yamada, Hiroshi; Terasaki, Nao; Fujihala, Masayoshi

    2014-09-01

    We discovered a new near-infrared (NIR) persistent luminescent material Sr2SnO4:Nd3+, which exhibited NIR luminescence ranging from 850 to 1400 nm. Furthermore, we successfully enhanced the intensity of NIR persistent luminescence by increasing the firing temperature. The intensity of NIR persistent luminescence, which penetrates through a human finger and can be used to visualize a finger vein pattern by using a charge-coupled device camera, reached approximately 1.1 mW/m2 (λ = 900 nm) at a decay time of 10 s after ceasing the excitation. We proposed the enhancement process of the NIR persistent luminescence for Sr2SnO4:Nd3+ in conjunction with photoluminescence, absorption, thermoluminescence, and structural properties.

  12. Radiometric calibration of optical microscopy and microspectroscopy apparata over a broad spectral range using a special thin-film luminescence standard

    SciTech Connect

    Valenta, J. Greben, M.

    2015-04-15

    Application capabilities of optical microscopes and microspectroscopes can be considerably enhanced by a proper calibration of their spectral sensitivity. We propose and demonstrate a method of relative and absolute calibration of a microspectroscope over an extraordinary broad spectral range covered by two (parallel) detection branches in visible and near-infrared spectral regions. The key point of the absolute calibration of a relative spectral sensitivity is application of the standard sample formed by a thin layer of Si nanocrystals with stable and efficient photoluminescence. The spectral PL quantum yield and the PL spatial distribution of the standard sample must be characterized by separate experiments. The absolutely calibrated microspectroscope enables to characterize spectral photon emittance of a studied object or even its luminescence quantum yield (QY) if additional knowledge about spatial distribution of emission and about excitance is available. Capabilities of the calibrated microspectroscope are demonstrated by measuring external QY of electroluminescence from a standard poly-Si solar-cell and of photoluminescence of Er-doped Si nanocrystals.

  13. [3+3] Cyclocondensation of Disubstituted Biphenyl Dialdehydes: Access to Inherently Luminescent and Optically Active Hexa-substituted C3-Symmetric and Asymmetric Trianglimine Macrocycles.

    PubMed

    Wang, Zhenzhen; Nour, Hany F; Roch, Loïc M; Guo, Minjie; Li, Wenjiao; Baldridge, Kim K; Sue, Andrew C H; Olson, Mark A

    2017-03-03

    A general synthetic route to inherently luminescent and optically active 6-fold substituted C3-symmetric and asymmetric biphenyl-based trianglimines has been developed. The synthesis of these hexa-substituted triangular macrocycles takes advantage of a convenient method for the synthesis of symmetrically and asymmetrically difunctionalized biphenyl dialdehydes through a convergent two-step aromatic nucleophilic substitution-one-pot Suzuki-coupling reaction protocol. A modular [3+3] diamine-dialdehyde cyclocondensation reaction between both the symmetrically and asymmetrically difunctionalized-4,4'-biphenyldialdehydes with enantiomerically pure (1R,2R)-1,2-diaminocyclohexane was employed to construct the hexa-substituted triangular macrocycles. B97-D/6-311G(2d,p) density functional theory determined structures and X-ray crystallographic analysis reveal that the six substituents appended to the biphenyl legs of the trianglimine macrocycles adopt an alternating conformation not unlike the 1,3,5-alternate conformation observed for calix[6]arenes. Reduction of the imine bonds using NaBH4 afforded the corresponding 6-fold substituted trianglamine without the need to alkylate the amine nitrogen atoms which could hinder their later use as metal coordination sites and without having to introduce asymmetric carbons.

  14. Direct measurement of lattice dynamics and optical phonon excitation in semiconductor nanocrystals using femtosecond stimulated Raman spectroscopy.

    PubMed

    Hannah, Daniel C; Brown, Kristen E; Young, Ryan M; Wasielewski, Michael R; Schatz, George C; Co, Dick T; Schaller, Richard D

    2013-09-06

    We report femtosecond stimulated Raman spectroscopy measurements of lattice dynamics in semiconductor nanocrystals and characterize longitudinal optical (LO) phonon production during confinement-enhanced, ultrafast intraband relaxation. Stimulated Raman signals from unexcited CdSe nanocrystals produce a spectral shape similar to spontaneous Raman signals. Upon photoexcitation, stimulated Raman amplitude decreases owing to experimentally resolved ultrafast phonon generation rates within the lattice. We find a ∼600  fs, particle-size-independent depletion time attributed to hole cooling, evidence of LO-to-acoustic down-conversion, and LO phonon mode softening.

  15. THEORETICAL PRINCIPLES UNDERLYING OPTICAL STIMULATION OF MYELINATED AXONS EXPRESSING CHANNELRHODOPSIN-2

    PubMed Central

    ARLOW, R. L.; FOUTZ, T. J.; MCINTYRE, C. C.

    2013-01-01

    Numerous clinical conditions can be treated by neuromodulation of the peripheral nervous system (PNS). Typical electrical PNS therapies activate large diameter axons at lower electrical stimulus thresholds than small diameter axons. However, recent animal experiments with peripheral optogenetic neural stimulation (PONS) of myelinated axons expressing channelrhodopsin-2 (ChR2) have shown that this technique activates small diameter axons at lower irradiances than large diameter axons. We hypothesized that the small-to-large diameter recruitment order primarily arises from the internodal spacing relationship of myelinated axons. Small diameter axons have shorter distances between their nodes of Ranvier, which increases the number of nodes of Ranvier directly illuminated relative to larger diameter axons. We constructed “light-axon” PONS models that included multi-compartment, double cable, myelinated axon models embedded with ChR2 membrane dynamics, coupled with a model of blue light dynamics in the tissue medium from a range of different light sources. The light-axon models enabled direct calculation of threshold irradiance for different diameter axons. Our simulations demonstrate that illumination of multiple nodal sections reduces the threshold irradiance and enhances the small-to-large diameter recruitment order. In addition to addressing biophysical questions, our light-axon model system could also be useful in guiding the engineering design of optical stimulation technology that could maximize the efficiency and selectivity of PONS. PMID:23811392

  16. Multifunctionality in bimetallic Ln(III)[W(V)(CN)8]3- (Ln = Gd, Nd) coordination helices: optical activity, luminescence, and magnetic coupling.

    PubMed

    Chorazy, Szymon; Nakabayashi, Koji; Arczynski, Mirosław; Pełka, Robert; Ohkoshi, Shin-ichi; Sieklucka, Barbara

    2014-06-02

    Two chiral luminescent derivatives of pyridine bis(oxazoline) (Pybox), (SS/RR)-iPr-Pybox (2,6-bis[4-isopropyl-2-oxazolin-2-yl]pyridine) and (SRSR/RSRS)-Ind-Pybox (2,6-bis[8H-indeno[1,2-d]oxazolin-2-yl]pyridine), have been combined with lanthanide ions (Gd(3+), Nd(3+)) and octacyanotungstate(V) metalloligand to afford a remarkable series of eight bimetallic CN(-)-bridged coordination chains: {[Ln(III)(SS/RR-iPr-Pybox)(dmf)4]3[W(V)(CN)8]3}n ⋅dmf⋅4 H2O (Ln = Gd, 1-SS and 1-RR; Ln = Nd, 2-SS and 2-RR) and {[Ln(III)(SRSR/RSRS-Ind-Pybox)(dmf)4][W(V)(CN)8]}n⋅5 MeCN⋅4 MeOH (Ln = Gd, 3-SRSR and 3-RSRS; Ln = Nd, 4-SRSR and 4-RSRS). These materials display enantiopure structural helicity, which results in strong optical activity in the range 200-450 nm, as confirmed by natural circular dichroism (NCD) spectra and the corresponding UV/Vis absorption spectra. Under irradiation with UV light, the Gd(III)-W(V) chains show dominant ligand-based red phosphorescence, with λmax ≈660 nm for 1-(SS/RR) and 680 nm for 3-(SRSR/RSRS). The Nd(III)-W(V) chains, 2-(SS/RR) and 4-(SRSR/RSRS), exhibit near-infrared luminescence with sharp lines at 986, 1066, and 1340 nm derived from intra-f (4)F3/2 → (4)I9/2,11/2,13/2 transitions of the Nd(III) centers. This emission is realized through efficient ligand-to-metal energy transfer from the Pybox derivative to the lanthanide ion. Due to the presence of paramagnetic lanthanide(III) and [W(V)(CN)8](3-) moieties connected by cyanide bridges, 1-(SS/RR) and 3-(SRSR/RSRS) are ferrimagnetic spin chains originating from antiferromagnetic coupling between Gd(III) (SGd = 7/2) and W(V) (SW = 1/2) centers with J1-(SS) = -0.96(1) cm(-1), J1-(RR) =-0.95(1) cm(-1), J3-(SRSR) = -0.91(1) cm(-1), and J3-(RSRS) =-0.94(1) cm(-1). 2-(SS/RR) and 4-(SRSR/RSRS) display ferromagnetic coupling within their Nd(III)-NC-W(V) linkages.

  17. Two-photon luminescence contrast by tip-sample coupling in femtosecond near-field optical microscopy

    NASA Astrophysics Data System (ADS)

    Horneber, Anke; Wackenhut, Frank; Braun, Kai; Wang, Xiao; Wang, Jiyong; Zhang, Dai; Meixner, Alfred J.

    2017-01-01

    We investigate the role of tip-sample interaction in nonlinear optical scanning near-field microscopy. The experiment was performed by tightly focusing femtosecond laser pulses onto a sharp gold tip that was positioned in close proximity to the surface of a sample with gold nanostructures on a Si-substrate by shear force feedback. The nonlinear optical signal consists of two-photon photoluminescence and second harmonic signal from the gold tip and the gold nanostructures. These signals can be used to characterize different coupling parameters such as geometry, material and width of the tip-sample gap and enable to reveal the mechanism responsible for the image contrast. Under the excitation with 776-nm and 110-fs laser pulses nonlinear imaging is almost background free and yields super resolution showing features with dimensions significantly below the diffraction limit with a signal intensity following quadratic excitation power law.

  18. Anti-Stokes shift luminescent materials for bio-applications.

    PubMed

    Zhu, Xingjun; Su, Qianqian; Feng, Wei; Li, Fuyou

    2017-02-20

    Anti-Stokes shift luminescence is a special optical process, which converts long-wavelength excitation to short-wavelength emission. This unique ability is especially helpful for bio-applications, because the longer-wavelength light source, usually referring to near infrared light, has a larger penetration depth offering a longer working distance for in vivo applications. The anti-Stokes shift luminescence signal can also be distinguished from the auto-fluorescence of biological tissues, thus reducing background interference during bioimaging. Herein, we summarize recent advances in anti-Stokes shift luminescent materials, including lanthanide and triplet-triplet-annihilation-based upconversion nanomaterials, and newly improved hot-band absorption-based luminescent materials. We focus on the synthetic strategies, optical optimization and biological applications as well as present comparative discussions on the luminescence mechanisms and characteristics of these three types of luminescent materials.

  19. Luminescence dating of interglacial coastal depositional systems: Recent developments and future avenues of research

    NASA Astrophysics Data System (ADS)

    Lamothe, Michel

    2016-08-01

    Luminescence dating offers new opportunities to explore the evolution of Quaternary marine coastal facies and landforms. This review highlights the main advances in luminescence geochronology of interglacial coastal sediments through the analysis of 547 luminescence ages, most of which were published during the last decade. The majority of these reported luminescence investigations have been carried out along passive margin coasts. Since the turn of the century, the discovery of a normalization procedure known as Single Aliquot Regeneration (SAR) has drastically reduced data scatter and improved precision, with the consequence that quartz SAR optically-stimulated luminescence OSL has become the dating protocol of choice for the Last Interglacial (LIG) period. A more complex technique, known as thermally-transferred OSL (TT-OSL), is presumably proposed for dating older interglacials of the Mid-Pleistocene and beyond. Feldspar luminescence is increasingly being applied to dating Pleistocene sea level high stands due to a much higher dose saturation level than quartz OSL. The use of feldspar IRSL (Infrared-stimulated luminescence) is limited by the occurrence of variable, but ubiquitous anomalous fading (AF). Following the advent of AF-correction methods, several Middle Pleistocene sites have been amenable to dating, albeit with significant related uncertainties. Recently, new protocols involving the measurement of post-IR IRSL at elevated temperatures have yielded relatively coherent ages for interglacial sediments up to ca. 300 ka. Quartz OSL/TT-OSL, AF-corrected IRSL, and post-IR IRSL ages are generally correlated with periods of sea level high stands. A few ages are reported from the early and middle part of the Middle Pleistocene, as MIS11, 9 and more commonly MIS7 high stands are documented in strongly uplifting active margin coasts. However, by far the most obvious age peak corresponds to the end of the LIG. The MIS5e shoreline is probably the most studied and

  20. Structural and optical properties of Tb-doped Na-Gd metaphosphate glasses and glass-ceramics

    NASA Astrophysics Data System (ADS)

    Moretti, F.; Vedda, A.; Nikl, M.; Nitsch, K.

    2009-04-01

    The optical and structural properties of terbium doped sodium gadolinium phosphate glasses of three different compositions subjected to a crystallization process were studied and compared with those of the parent glassy samples. The structural characteristics of the glassy and crystallized phases were determined by Raman spectroscopy and the results showed a remarkable reduction in the full width at half maximum of the Raman peaks after crystallization. Radio-luminescence measurements revealed the emissions of both Gd3+ and Tb3+ ions. Their intensities strongly increased and their intensity ratio was modified by the crystallization. The luminescence temperature dependence investigated by radio-luminescence measurements in the temperature interval from 10 to 310 K became more complicated after crystallization. The role of free carrier trapping phenomena in the modification of the radio-luminescence efficiency was also studied by thermally stimulated luminescence.

  1. Structural and optical properties of Tb-doped Na-Gd metaphosphate glasses and glass-ceramics.

    PubMed

    Moretti, F; Vedda, A; Nikl, M; Nitsch, K

    2009-04-15

    The optical and structural properties of terbium doped sodium gadolinium phosphate glasses of three different compositions subjected to a crystallization process were studied and compared with those of the parent glassy samples. The structural characteristics of the glassy and crystallized phases were determined by Raman spectroscopy and the results showed a remarkable reduction in the full width at half maximum of the Raman peaks after crystallization. Radio-luminescence measurements revealed the emissions of both Gd(3+) and Tb(3+) ions. Their intensities strongly increased and their intensity ratio was modified by the crystallization. The luminescence temperature dependence investigated by radio-luminescence measurements in the temperature interval from 10 to 310 K became more complicated after crystallization. The role of free carrier trapping phenomena in the modification of the radio-luminescence efficiency was also studied by thermally stimulated luminescence.

  2. CONTROL OF LASER RADIATION PARAMETERS: Stimulated-emission wavelength switching in optically pumped InGaAs/AlGaInAs laser heterostructures

    NASA Astrophysics Data System (ADS)

    Andronov, Aleksandr A.; Nozdrin, Yu N.; Okomel'kov, A. V.; Yablonskii, A. N.; Marmalyuk, Aleksandr A.; Ryaboshtan, Yu L.

    2009-03-01

    We report stimulated near-IR emission in optically pumped InGaAs/AlGaInAs heterostructures and stimulated- emission wavelength switching from 1.9 to 1.5 and then to 1.2 μm with increasing optical pump intensity. The wavelength switching behaviour of the heterostructures depends on their geometry (band-gap profile) and the competition between stimulated emissions at different frequencies in different parts of the system.

  3. Optical transmission radiation damage and recovery stimulation of DSB: Ce3+ inorganic scintillation material

    NASA Astrophysics Data System (ADS)

    Borisevich, A.; Dormenev, V.; Korjik, M.; Kozlov, D.; Mechinsky, V.; Novotny, R. W.

    2015-02-01

    Recently, a new scintillation material DSB: Ce3+ was announced. It can be produced in a form of glass or nano-structured glass ceramics with application of standard glass production technology with successive thermal annealing. When doped with Ce3+, material can be applied as scintillator. Light yield of scintillation is near 100 phe/MeV. Un-doped material has a wide optical window from 4.5eV and can be applied to detect Cherenkov light. Temperature dependence of the light yield LY(T) is 0.05% which is 40 times less than in case of PWO. It can be used for detectors tolerant to a temperature variation between -20° to +20°C. Several samples with dimensions of 15x15x7 mm3 have been tested for damage effects on the optical transmission under irradiation with γ-quanta. It was found that the induced absorption in the scintillation range depends on the doping concentration and varies in range of 0.5-7 m-1. Spontaneous recovery of induced absorption has fast initial component. Up to 25% of the damaged transmission is recuperated in 6 hours. Afterwards it remains practically constant if the samples are kept in the dark. However, induced absorption is reduced by a factor of 2 by annealing at 50°C and completely removed in a short time when annealing at 100°C. A significant acceleration of the induced absorption recovery is observed by illumination with visible and IR light. This effect is observed for the first time in a Ce-doped scintillation material. It indicates, that radiation induced absorption in DSB: Ce scintillation material can be retained at the acceptable level by stimulation with light in a strong irradiation environment of collider experiments.

  4. Optical enhanced luminescent measurements and sequential reagent mixing on a centrifugal microfluidic device for multi-analyte point-of-care applications

    NASA Astrophysics Data System (ADS)

    Bartholomeusz, Daniel A.; Davies, Rupert H.; Andrade, Joseph D.

    2006-02-01

    A centrifugal-based microfluidic device1 was built with lyophilized bioluminescent reagents for measuring multiple metabolites from a sample of less than 15 μL. Microfluidic channels, reaction wells, and valves were cut in adhesive vinyl film using a knife plotter with features down to 30 μm and transferred to metalized polycarbonate compact disks (CDs). The fabrication method was simple enough to test over 100 prototypes within a few months. It also allowed enzymes to be packaged in microchannels without exposure to heat or chemicals. The valves were rendered hydrophobic using liquid phase deposition. Microchannels were patterned using soft lithography to make them hydrophilic. Reagents and calibration standards were deposited and lyophilized in different wells before being covered with another adhesive film. Sample delivery was controlled by a modified CD ROM. The CD was capable of distributing 200 nL sample aliquots to 36 channels, each with a different set of reagents that mixed with the sample before initiating the luminescent reactions. Reflection of light from the metalized layer and lens configuration allowed for 20% of the available light to be collected from each channel. ATP was detected down to 0.1 μM. Creatinine, glucose, and galactose were also measured in micro and milliMolar ranges. Other optical-based analytical assays can easily be incorporated into the device design. The minimal sample size needed and expandability of the device make it easier to simultaneously measure a variety of clinically relevant analytes in point-of-care settings.

  5. BRITICE-CHRONO: Constraining retreat of the last British-Irish Ice Sheet using luminescence geochronometry

    NASA Astrophysics Data System (ADS)

    Duller, Geoff; Smedley, Rachel; Bateman, Mark; Medialdea, Alicia; Chiverrell, Richard; Fabel, Derek; Clark, Chris; Consortium, Britice-Chrono

    2016-04-01

    The BRITICE-CHRONO project funded by NERC is a multi-million pound consortium designed to use multiple geochronometers to constrain the rate of retreat of the major outlets of the last British-Irish Ice Sheet (BIIS) at the end of the last glacial cycle. Cosmogenic isotopes, radiocarbon and luminescence dating methods are being applied to materials sampled along lines of ice retreat. Luminescence dating for this project has targeted glaciofluvial sediments associated with ice retreat and over 150 samples from around the British Isles have been analysed in two laboratories. All samples have been analysed using small aliquot or single grain measurements of quartz optically stimulated luminescence (OSL). The resulting dose distributions have been modelled to obtain the depositional age. The major challenges in the application of quartz OSL can be grouped into two categories: signal characteristics and statistical characterisation of dose distributions. Samples have been collected over the entire British Isles and have very variable characteristics. Some samples give bright OSL signals, whilst in other areas the quartz is dim. A pervasive problem is the occurrence of grains which appear to be quartz but which are sensitive to infrared stimulation. Effective screening of these grains is essential to avoid dose underestimation. The second challenge has been estimating appropriate numerical parameters for application of minimum age models. Extensive dose recovery experiments have been undertaken to form the basis for estimates of overdispersion, and in some areas these show highly variable luminescence characteristics. The reproducibility of the analyses undertaken has been assessed through an intercomparison between the two luminescence laboratories and the results of this exercise will be discussed.

  6. Preparation and optical spectroscopy of Eu{sup 3+}-doped GaN luminescent semiconductor from freeze-dried precursors

    SciTech Connect

    El-Himri, Abdelouahad; Perez-Coll, Domingo; Nun-tilde ez, Pedro . E-mail: pnunez@ull.es; Martin, Inocencio R.; Lavin, Victor; Rodriguez, Vicente D.

    2004-11-01

    Pure and 0.5% and 5mol% Eu{sup 3+} doped GaN nanoparticles have been prepared by ammonolysis of the corresponding freeze-dried precursors. A single hexagonal phase with the wurtzite structure was obtained as determined by X-ray Powder Diffraction. The crystallite size determined by XRD was lower than 10nm. From optical spectroscopy characterization, it is found that the Eu{sub 2}O{sub 3} formation is avoided by using nitrates as starting reagent. Fluorescence line narrowing spectra show excitation wavelength dependence, which is indicative that the Eu{sup 3+} ions are well dispersed in the prepared samples. The environment distribution occupied by the Eu{sup 3+} ions has been analyzed by crystal-field calculation and the results are compared with those for other materials.

  7. Spatio-Temporal Characteristics of Inhibition Mapped by Optical Stimulation in Mouse Olfactory Bulb

    PubMed Central

    Lehmann, Alexander; D’Errico, Anna; Vogel, Martin; Spors, Hartwig

    2016-01-01

    Mitral and tufted cells (MTCs) of the mammalian olfactory bulb are connected via dendrodendritic synapses with inhibitory interneurons in the external plexiform layer. The range, spatial layout, and temporal properties of inhibitory interactions between MTCs mediated by inhibitory interneurons remain unclear. Therefore, we tested for inhibitory interactions using an optogenetic approach. We optically stimulated MTCs expressing channelrhodopsin-2 in transgenic mice, while recording from individual MTCs in juxtacellular or whole-cell configuration in vivo. We used a spatial noise stimulus for mapping interactions between MTCs belonging to different glomeruli in the dorsal bulb. Analyzing firing responses of MTCs to the stimulus, we did not find robust lateral inhibitory effects that were spatially specific. However, analysis of sub-threshold changes in the membrane potential revealed evidence for inhibitory interactions between MTCs that belong to different glomerular units. These lateral inhibitory effects were short-lived and spatially specific. MTC response maps showed hyperpolarizing effects radially extending over more than five glomerular diameters. The inhibitory maps exhibited non-symmetrical yet distance-dependent characteristics. PMID:27047340

  8. Effects of gravitational and optical stimulation on the perception of target elevation

    NASA Technical Reports Server (NTRS)

    Cohen, M. M.; Stoper, A. E.; Welch, R. B.; DeRoshia, C. W.

    2001-01-01

    To examine the combined effects of gravitational and optical stimulation on perceived target elevation, we independently altered gravitational-inertial force and both the orientation and the structure of a background visual array. While being exposed to 1.0, 1.5, or 2.0 Gz in the human centrifuge at NASA Ames Research Center, observers attempted to set a target to the apparent horizon. The target was viewed against the far wall of a box that was pitched at various angles. The box was brightly illuminated, had only its interior edges dimly illuminated, or was kept dark. Observers lowered their target settings as Gz was increased; this effect was weakened when the box was illuminated. Also, when the box was visible, settings were displaced in the same direction as that in which the box was pitched. We attribute our results to the combined influence of otolith-oculomotor mechanisms that underlie the elevator illusion and visual-oculomotor mechanisms (optostatic responses) that underlie the perceptual effects of viewing pitched visual arrays.

  9. A Portable Surface Contamination Monitor Based on the Principle of Optically Stimulated Electron Emission (OSEE)

    NASA Technical Reports Server (NTRS)

    Perey, D. F.

    1996-01-01

    Many industrial and aerospace processes involving the joining of materials, require sufficient surface cleanliness to insure proper bonding. Processes as diverse as painting, welding, or the soldering of electronic circuits will be compromised if prior inspection and removal of surface contaminants is inadequate. As process requirements become more stringent and the number of different materials and identified contaminants increases, various instruments and techniques have been developed for improved inspection. One such technique, based on the principle of Optically Stimulated Electron Emission (OSEE), has been explored for a number of years as a tool for surface contamination monitoring. Some of the benefits of OSEE are: it is non-contacting; requires little operator training; and has very high contamination sensitivity. This paper describes the development of a portable OSEE based surface contamination monitor. The instrument is suitable for both hand-held and robotic inspections with either manual or automated control of instrument operation. In addition, instrument output data is visually displayed to the operator and may be sent to an external computer for archiving or analysis.

  10. Multifocus optical-resolution photoacoustic microscopy using stimulated Raman scattering and chromatic aberration.

    PubMed

    Hajireza, Parsin; Forbrich, Alexander; Zemp, Roger J

    2013-08-01

    In this Letter, multifocus optical-resolution photoacoustic microscopy is demonstrated using wavelength tuning and chromatic aberration for depth scanning. Discrete focal zones at several depth locations were created by refocusing light from a polarization-maintaining single-mode fiber pumped by a nanosecond fiber laser. The fiber and laser parameters were chosen to take advantage of stimulated Raman scattering (SRS) in the fiber to create a multiwavelength output that could then be bandpass filtered. The collimator lens and objective lens are chosen to take advantage of chromatic aberration in which each generated SRS wavelength peak focuses at a slightly different depth. The maximum amplitude of photoacoustic signals is mapped to form C-scan images. Additionally, all wavelength peaks fired simultaneously offers improved depth-of-field structural imaging at the cost of slight degradation of mainlobe-to-sidelobe ratios. Wavelength-tuned depth scanning over more than 440 μm is demonstrated, significantly greater than the ~100 μm depth of field predicted from our focused Gaussian beams. The improved depth of focus could be valuable for structural imaging of microvascular morphology without the need for mechanical scanning in the depth direction.

  11. Luminescence and optical absorption properties of Nd(3+) ions in K-Mg-Al phosphate and fluorophosphate glasses.

    PubMed

    Surendra Babu, S; Babu, P; Jayasankar, C K; Joshi, A S; Speghini, A; Bettinelli, M

    2006-04-26

    Absorption and emission properties and fluorescence lifetimes for the [Formula: see text] transition of Nd(3+) ions embedded in P(2)O(5)-K(2)O-MgO-Al(2)O(3) (PKMA)-based glasses modified with AlF(3) and BaF(2) are reported at room temperature. The observed energy levels of Nd(3+) ions in these glasses have been analysed through a semi-empirical free-ion Hamiltonian model. The spin-orbit interaction and net electrostatic interaction experienced by the Nd(3+) ions follow the trend as PKMA>PKMA+AlF(3)> PKMA+BaF(2) glasses. Judd-Ofelt analysis has been carried out on the absorption spectra of 1.0 mol% Nd(3+)-doped glasses to predict the radiative properties for the fluorescent levels of the Nd(3+) ion. Branching ratios and stimulated emission cross-sections show that the [Formula: see text] transition of the glasses under investigation has the potential for laser applications. The Inokuti-Hirayama model has been applied to investigate the non-radiative relaxation of the Nd(3+) ion emitting state, (4)F(3/2). Based on the decay curve analysis, concentration quenching of the (4)F(3/2) emission has been attributed to a cross-relaxation process between the Nd(3+) ions.

  12. Development of a luminescence planetary surface dating instrument

    NASA Astrophysics Data System (ADS)

    Jain, M.; Lapp, T.; Andersen, M. T.; Hannemann, S.; Murray, A. S.; Duller, G. A. T.; Merrrisen, J.

    2012-04-01

    Luminescence dating (LD) is uniquely positioned for absolute, in-situ, dating of recent (< 1Ma) events on Mars such as the formation of sedimentary landforms, volcanic rocks and salt precipitates. These data can in turn help understand and predict the impact of climate-driven changes on Mars, for example, atmosphere-land interactions, global sand and dust movements and redistribution of volatiles (H2O and CO2). This understanding is critical for any manned mission to Mars and for our understanding of the planetary surface evolution. Despite this potential, the technology transfer from terrestrial to in-situ Martian dating is not trivial. Here we first provide a brief overview of the scientific issues involved in luminescence dating on Mars (e.g. dosimetric characteristics of Martian materials and modelling of cosmic-ray dose rate) and then the technical constraints on an instrument design appropriate for remotely-programmable mobile use on the Martian surface. The challenge is to develop a miniaturised portable luminescence reader that is as sensitive as a laboratory-based instrument and at the same time has sufficient flexibility for fully automated performance. Such an instrument could provide stratigraphic ages if deployed on a rover with a sub-surface drilling capability, or provide a survey of surface chronologies over extensive areas. To this end we have designed and manufactured an 'elegant breadboard' Planetary Surface Dating Instrument (PSDI) in a project supported by ESA. The PSDI is light weight and compact (~1 kg, ~1.4 litres) and has 3 different reloadable sample positions which can be rotated to sit under 3 different optical subunits or an x-ray irradiator. The optical subunits consists of three different detection channels (one red and two UV/blue) each based on a miniature photomultiplier tube, and three types of laser light stimulation sources (two 915 nm, one 530 nm and one 405 nm) that can be operated in continuous-wave or pulsed mode. The

  13. Luminescence chronologies for sediments recording paleoseismic events and slip rate for the central Garlock fault, California, USA

    NASA Astrophysics Data System (ADS)

    Okubo, S. G.; Wolf, E.; Roder, B. J.; Rhodes, E. J.; McGill, S. F.; Dolan, J. F.; Mcauliffe, L. J.; Lawson, M. J.; Barrera, W. A.

    2012-12-01

    Luminescence dating has a significant role to play in providing chronological control for lacustrine and alluvial sediments that record both tectonic and climatic events. However, poor characteristics in some environments mean that the well-established method of OSL (optically stimulated luminescence) dating of quartz is not well-suited for the material available. In order to overcome this significant limitation, a range of methods based on the IRSL (infra-red stimulated luminescence) and ITL (isothermal thermoluminescence) of K-feldspar are currently under development. The site of El Paso Peaks, California has an established C-14 chronology spanning the last 7,000 years for a series of playa sediments comprising silts and fine sands, with occasional incursions of coarser sands and gravels from the alluvial fan that forms one side of the small ephemeral lake basin. Another barrier is formed by a shutter ridge of the left-lateral central Garlock fault, and this succession of sediments records at least six seismic events. Following collection of a suite of 24 luminescence samples distributed throughout the upper part of this succession, this site provides a rare opportunity to test different luminescence dating protocols in a rigorous fashion. At the site of Christmas Canyon West, a few miles further east, numerous small offsets of depositional and erosional alluvial fan features provide the opportunity to determine slip rates for a variety of timescales spanning the past couple of thousand years, besides forming a record of the timing of several discrete depositional episodes representing local high precipitation events. We review the challenges involved in developing a reliable luminescence chronology for sediment deposition in these contexts, and in relating this chronology to significant environmental events.

  14. Luminescent hyperbolic metasurfaces.

    PubMed

    Smalley, J S T; Vallini, F; Montoya, S A; Ferrari, L; Shahin, S; Riley, C T; Kanté, B; Fullerton, E E; Liu, Z; Fainman, Y

    2017-01-09

    When engineered on scales much smaller than the operating wavelength, metal-semiconductor nanostructures exhibit properties unobtainable in nature. Namely, a uniaxial optical metamaterial described by a hyperbolic dispersion relation can simultaneously behave as a reflective metal and an absorptive or emissive semiconductor for electromagnetic waves with orthogonal linear polarization states. Using an unconventional multilayer architecture, we demonstrate luminescent hyperbolic metasurfaces, wherein distributed semiconducting quantum wells display extreme absorption and emission polarization anisotropy. Through normally incident micro-photoluminescence measurements, we observe absorption anisotropies greater than a factor of 10 and degree-of-linear polarization of emission >0.9. We observe the modification of emission spectra and, by incorporating wavelength-scale gratings, show a controlled reduction of polarization anisotropy. We verify hyperbolic dispersion with numerical simulations that model the metasurface as a composite nanoscale structure and according to the effective medium approximation. Finally, we experimentally demonstrate >350% emission intensity enhancement relative to the bare semiconducting quantum wells.

  15. Luminescent hyperbolic metasurfaces

    NASA Astrophysics Data System (ADS)

    Smalley, J. S. T.; Vallini, F.; Montoya, S. A.; Ferrari, L.; Shahin, S.; Riley, C. T.; Kanté, B.; Fullerton, E. E.; Liu, Z.; Fainman, Y.

    2017-01-01

    When engineered on scales much smaller than the operating wavelength, metal-semiconductor nanostructures exhibit properties unobtainable in nature. Namely, a uniaxial optical metamaterial described by a hyperbolic dispersion relation can simultaneously behave as a reflective metal and an absorptive or emissive semiconductor for electromagnetic waves with orthogonal linear polarization states. Using an unconventional multilayer architecture, we demonstrate luminescent hyperbolic metasurfaces, wherein distributed semiconducting quantum wells display extreme absorption and emission polarization anisotropy. Through normally incident micro-photoluminescence measurements, we observe absorption anisotropies greater than a factor of 10 and degree-of-linear polarization of emission >0.9. We observe the modification of emission spectra and, by incorporating wavelength-scale gratings, show a controlled reduction of polarization anisotropy. We verify hyperbolic dispersion with numerical simulations that model the metasurface as a composite nanoscale structure and according to the effective medium approximation. Finally, we experimentally demonstrate >350% emission intensity enhancement relative to the bare semiconducting quantum wells.

  16. Rare earth-doped nanocrystalline MgF2: Synthesis, luminescence and thermoluminescence

    NASA Astrophysics Data System (ADS)

    Jacobsohn, L. G.; Roy, A. L.; McPherson, C. L.; Kucera, C. J.; Oliveira, L. C.; Yukihara, E. G.; Ballato, J.

    2013-10-01

    The radioluminescence (RL) and thermoluminescence (TL) activation of MgF2 through the incorporation of rare earths is investigated in this work. These materials were obtained by ligand-free solution precipitation and calcination at 500 °C in air, and Ce, Eu and Tb were incorporated at the 1 mol% level. RL results of doped and undoped materials seem to indicate that the incorporation of rare earths creates effective luminescence centers, which is accompanied by an increase in the TL signal intensity in comparison with the undoped material. In particular, RL emission of MgF2:Ce is reported to be centered at 325 nm. The traps associated with the TL signal were found to be unstable under exposure to room light, suggesting potential for applications involving optically stimulated luminescence.

  17. Synthesis And Luminescence Studies Of Mn doped CaF{sub 2}

    SciTech Connect

    Singh, S. G.; Singh, A. K.; Sen, Shashwati; Gadkari, S. C.

    2010-12-01

    Nano particles of CaF{sub 2}:Mn were synthesized by a co-precipitation method. The maximum Mn concentration which could be doped into the CaF{sub 2} lattice was {approx}3%. The photoluminescence and thermally stimulated luminescence (TSL) were studied for different Mn doping. High dopant concentration leads to the appearance of yellow orange luminescence (580 nm) band due to the introduction of excitation levels in the deep UV region. A slight decrease in TSL peak temperature was observed at higher Mn concentrations after attaining a maximum at 1.3% Mn. Based on TSL data optimum doping concentration was found to be 2.5%. These nanoparticles were further hot pressed in vacuum to produce optically transparent ceramic.

  18. Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers.

    PubMed

    Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel

    2010-10-11

    We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.

  19. Luminescent Processes Elucidated by Simple Experiments on ZnS.

    ERIC Educational Resources Information Center

    Schwankner, R.; And Others

    1981-01-01

    Describes some impurity-related optical properties of semiconductors, with special emphasis on the luminescence of zinc sulfide (ZnS). Presents and interprets five experiments using a ZnS screen, ultraviolet lamp, transparent Dewar liquid nitrogen, and a helium/neon gas base. Includes application of luminescence measurements to archaeology. (SK)

  20. Optical intrinsic signals in rat primary somatosensory cortex during non-noxious and noxious elecrical stimulation of the sciatic nerve

    NASA Astrophysics Data System (ADS)

    Luo, Weihua; Li, Pengcheng; Chen, Shangbin; Luo, Qingming

    2003-12-01

    Optical imaging method was applied into observing the temporal-spatial characteristic of rat primary somatosensory cortex during graded electrical stimulation of the sciatic nerve (5hz,duration of 2s,0.5ms puls,1x,10x and 20x muscle twitch threshold). We found that the temporal and spatial properties of hindlimb somatosensory cortex were modulated by graded intensity electrical stimulation of the sciatic nerve. The magnitude and time course were larger and longer with the intensity raising. And the spatial extent was wider at 20x stimulus than the other two kinds of stimulus. Therefore, our optical imaging was based on 570nm, which only reflect the changes of blood volume. Then our future study will reveal more information of pain modulation in primary somatosensory cortex.

  1. The Effects of Electrical and Optical Stimulation of Midbrain Dopaminergic Neurons on Rat 50-kHz Ultrasonic Vocalizations

    PubMed Central

    Scardochio, Tina; Trujillo-Pisanty, Ivan; Conover, Kent; Shizgal, Peter; Clarke, Paul B. S.

    2015-01-01

    Rationale: Adult rats emit ultrasonic vocalizations (USVs) at around 50-kHz; these commonly occur in contexts that putatively engender positive affect. While several reports indicate that dopaminergic (DAergic) transmission plays a role in the emission of 50-kHz calls, the pharmacological evidence is mixed. Different modes of dopamine (DA) release (i.e., tonic and phasic) could potentially explain this discrepancy. Objective: To investigate the potential role of phasic DA release in 50-kHz call emission. Methods: In Experiment 1, USVs were recorded in adult male rats following unexpected electrical stimulation of the medial forebrain bundle (MFB). In parallel, phasic DA release in the nucleus accumbens (NAcc) was recorded using fast-scan cyclic voltammetry. In Experiment 2, USVs were recorded following response-contingent or non-contingent optogenetic stimulation of midbrain DAergic neurons. Four 20-s schedules of optogenetic stimulation were used: fixed-interval, fixed-time, variable-interval, and variable-time. Results: Brief electrical stimulation of the MFB increased both 50-kHz call rate and phasic DA release in the NAcc. During optogenetic stimulation sessions, rats initially called at a high rate comparable to that observed following reinforcers such as psychostimulants. Although optogenetic stimulation maintained reinforced responding throughout the 2-h session, the call rate declined to near zero within the first 30 min. The trill call subtype predominated following both electrical and optical stimulation. Conclusion: The occurrence of electrically-evoked 50-kHz calls, time-locked to phasic DA (Experiment 1), provides correlational evidence supporting a role for phasic DA in USV production. However, in Experiment 2, the temporal dissociation between calling and optogenetic stimulation of midbrain DAergic neurons suggests that phasic mesolimbic DA release is not sufficient to produce 50-kHz calls. The emission of the trill subtype of 50-kHz calls

  2. Stimulated recovery of the optical transmission of PbWO 4 scintillation crystals for electromagnetic calorimeters after radiation damage

    NASA Astrophysics Data System (ADS)

    Dormenev, V.; Kuske, T.; Novotny, R. W.; Borisevich, A.; Fedorov, A.; Korjik, M.; Mechinski, V.; Missevitch, O.; Lugert, S.

    2010-11-01

    In this paper we describe the phenomenon of the stimulated recovery of radiation damage in lead tungstate scintillation crystals achieved via illumination by visible and infrared light. It allows fast and efficient in-situ recovery of the optical transmission either during beam-off periods or on-line during data accumulation. The application can substantially improve or extend the running period of the experiment by keeping the damage at a tolerable level.

  3. Phenomenological model of stochastic, spatiotemporal, intensity dynamics of stimulated Brillouin scattering in a two-mode optical fiber.

    PubMed

    Armstrong, Cameron R; David, John A; Thompson, John R

    2015-07-13

    We present a simple numerical model that is used in conjunction with a systematic algorithm for parameter optimization to understand the three-dimensional stochastic intensity dynamics of stimulated Brillouin scattering in a two-mode optical fiber. The primary factors driving the complex dynamics appear to be thermal density fluctuations, transverse pump fluctuations, and asymmetric transverse mode fractions over the beam cross-section.

  4. Optical diagnosis and characterization of dental caries with polarization-resolved hyperspectral stimulated Raman scattering microscopy

    PubMed Central

    Wang, Zi; Zheng, Wei; Hsu, Stephen Chin-Ying; Huang, Zhiwei

    2016-01-01

    We report the utility of a rapid polarization-resolved hyperspectral stimulated Raman scattering (SRS) imaging technique developed for optical diagnosis and characterization of dental caries in the tooth. Hyperspectral SRS images (512 × 512 pixels) of the tooth covering both the fingerprint (800-1800 cm−1) and high-wavenumber (2800-3600 cm−1) regions can be acquired within 15 minutes, which is at least 103 faster in imaging speed than confocal Raman mapping. Hyperspectral SRS imaging uncovers the biochemical distributions and variations across the carious enamel in the tooth. SRS imaging shows that compared to the sound enamel, the mineral content in the body of lesion decreases by 55%; while increasing up to 110% in the surface zone, indicating the formation of a hyper-mineralized layer due to the remineralization process. Further polarized SRS imaging shows that the depolarization ratios of hydroxyapatite crystals (ν1-PO43- of SRS at 959 cm−1) of the tooth in the sound enamel, translucent zone, body of lesion and the surface zone are 0.035 ± 0.01, 0.052 ± 0.02, 0.314 ± 0.1, 0.038 ± 0.02, respectively, providing a new diagnostic criterion for discriminating carious lesions from sound enamel in the teeth. This work demonstrates for the first time that the polarization-resolved hyperspectral SRS imaging technique can be used for quantitatively determining tooth mineralization levels and discriminating carious lesions from sound enamel in a rapid fashion, proving its promising potential of early detection and diagnosis of dental caries without labeling. PMID:27446654

  5. Dispersion-based stimulated Raman scattering spectroscopy, holography, and optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Robles, Francisco E.; Fischer, Martin C.; Warren, Warren S.

    2016-03-01

    Stimulated Raman scattering (SRS) enables fast, high resolution imaging of chemical constituents important to biological structures and functional processes. While this technology has shown remarkable potential, it is currently limited to point scanning and can only probe a few Raman bands at a time. In this work we take a fundamentally different approach to detecting the small nonlinear signals based on dispersion effects that accompany the loss/gain processes in SRS. We use a modified pump-probe system (pulses with duration of ~0.5 ps and 75 fs, respectively) with interferometric detection in the Fourier-domain to demonstrate that the dispersive measurements are more robust to noise (e.g., laser noise) compared to conventional amplitude measurements, which in turn permits facile spectral and spatial multiplexing. Results show that it is possible to assess a broadband dispersion spectrum (currently limited to ~400 cm-1) with a single laser shot or spectrometer acquisition (20-50 µs). For molecular imaging with broadband spectral information, we achieve spatial pixel rates of 2.5 kHz, and will discuss how this can be further improved to 20-50 kHz. We also combine SRS with optical coherence tomography (OCT) (molecular and structural information are rendered from the same data), which enables axial multiplexing by coherence gating and paves the way for volumetric biochemical imaging. The approach is tested on a thin water-and-oil phantom, a thick scattering polystyrene bead phantom, and thick freshly excised human adipose tissue. Finally, we will outline other opportunities for spatial multiplexing using wide-field holography and spectroscopic-OCT, which would massively parallelize the spatial and spectral information. The combination of dispersion-based SRS and phase imaging has the potential to enable faster wide-area and volumetric molecular imaging. Such methods would be valuable in a clinical setting for many applications.

  6. [Finite element analysis of electric field of extracellular stimulation of optic nerve with a spiral cuff electrode].

    PubMed

    Guo, Hongwei; Qiao, Qingli; Luo, Fang

    2012-10-01

    In order to study the underlying electrode-nerve functional mechanism, optimize the electrode design and guide the prosthesis application, we applied finite element method to analyze the spatial distribution of electric field generated by optic nerve electrical stimulation with spiral cuff electrode. A macroscopic cylindrical model of optic nerve was elaborated, taking into account of electrode contact configurations and possible variations of the thickness of cerebrospinal fluid (CSF). By building an appropriate mesh on this model and under some boundary conditions, the finite element method was applied to compute the 3D electric field generated by the electrode with finite element software COMSOL Multiphysics. The stimulation results indicated that, under the same conditions of stimulation, the longitudinal tripolar electrode structure could generate larger current density than that of biopolar electrode structure (located in the opposite of nerve trunk). However biopolar electrode structure requirs less leads, and is more easily implanted. By means of parametric sweep, the results suggest that, with the increase of the CSF thickness and a higher conductivity of CSF than those of other tissues, the distribution of electric field generated by electrodes is extended but scattered, and the diffuse current distribution makes nerve stimulation less effective.

  7. Testing the potential of OSL, TT-OSL, IRSL and post-IR IRSL luminescence dating on a Middle Pleistocene sediment record of Lake El'gygytgyn, Russia

    NASA Astrophysics Data System (ADS)

    Zander, A.; Hilgers, A.

    2012-09-01

    Lake El'gygytgyn is a 12 km wide crater lake located in remote Chukotka in the far East Russian Arctic about 100 km to the north of the Arctic Circle. It was formed by a meteorite impact about 3.58 Ma ago. This study tests the paleomagnetic and proxy data-based Mid- to Late-Pleistocene sediment deposition history using novel luminescence dating techniques of sediment cores taken from the centre of the 175 m deep lake. For dating polymineral and quartz fine grains (4-11 μm grain size range) were extracted from nine different levels from the upper 28 m of sediment cores 5011-1A and 5011-1B. Polymineral sub-samples were analysed by infra-red stimulated luminescence (IRSL) and post-IR infra-red stimulated luminescence (post-IR IRSL) using single aliquot regenerative dose (SAR) sequences. SAR protocols were further applied to measure the blue light optically stimulated luminescence (OSL) and thermally-transferred OSL (TT-OSL) of fine-grained quartz supplemented by a multiple aliquot TT-OSL approach. According to an independent age model, the lowest sample from 27.8-27.9 m below lake bottom level correlates to the Brunhes-Matuyama (B/M) reversal. Finally, the SAR post-IR-IRSL protocol applied to polymineral fine grains was the only luminescence technique able to provide dating results of acceptable accuracy up to ca. 700 ka. Major factors limiting precision and accuracy of the luminescence chronology are, for some samples, natural signals already approaching saturation level, and overall the uncertainty related to the sediment water content and its variations over geological times.

  8. Performance of a novel multiple-signal luminescence sediment tracing method

    NASA Astrophysics Data System (ADS)

    Reimann, Tony

    2014-05-01

    Optically Stimulated Luminescence (OSL) is commonly used for dating sediments. Luminescence signals build up due to exposure of mineral grains to natural ionizing radiation, and are reset when these grains are exposed to (sun)light during sediment transport and deposition. Generally, luminescence signals can be read in two ways, potentially providing information on the burial history (dating) or the transport history (sediment tracing) of mineral grains. In this study we use a novel luminescence measurement procedure (Reimann et al., submitted) that simultaneously monitors six different luminescence signals from the same sub-sample (aliquot) to infer the transport history of sand grains. Daylight exposure experiments reveal that each of these six signals resets (bleaches) at a different rate, thus allowing to trace the bleaching history of the sediment in six different observation windows. To test the feasibility of luminescence sediment tracing in shallow-marine coastal settings we took eight sediment samples from the pilot mega-nourishment Zandmotor in Kijkduin (South-Holland). This site provides relatively controlled conditions as the morphological evolution of this nourishment is densely monitored (Stive et al., 2013). After sampling the original nourishment source we took samples along the seaward facing contour of the spit that was formed from August 2011 (start of nourishment) to June 2012 (sampling). It is presumed that these samples originate from the source and were transported and deposited within the first year after construction. The measured luminescence of a sediment sample was interpolated onto the daylight bleaching curve of each signal to assign the Equivalent Exposure Time (EET) to a sample. The EET is a quantitative measure of the full daylight equivalent a sample was exposed to during sediment transport, i.e. the higher the EET the longer the sample has been transported or the more efficient it has been exposed to day-light during sediment

  9. Photostimulable near-infrared persistent luminescent nanoprobes for ultrasensitive and longitudinal deep-tissue bio-imaging.

    PubMed

    Chuang, Yen-Jun; Zhen, Zipeng; Zhang, Fan; Liu, Feng; Mishra, Jyoti P; Tang, Wei; Chen, Hongmin; Huang, Xinglu; Wang, Lianchun; Chen, Xiaoyuan; Xie, Jin; Pan, Zhengwei

    2014-01-01

    In vivo fluorescence imaging suffers from suboptimal signal-to-noise ratio and shallow detection depth, which is caused by the strong tissue autofluorescence under constant external excitation and the scattering and absorption of short-wavelength light in tissues. Here we address these limitations by using a novel type of optical nanoprobes, photostimulable LiGa5O8:Cr(3+) near-infrared (NIR) persistent luminescence nanoparticles, which, with very-long-lasting NIR persistent luminescence and unique photo-stimulated persistent luminescence (PSPL) capability, allow optical imaging to be performed in an excitation-free and hence, autofluorescence-free manner. LiGa5O8:Cr(3+) nanoparticles pre-charged by ultraviolet light can be repeatedly (>20 times) stimulated in vivo, even in deep tissues, by short-illumination (~15 seconds) with a white light-emitting-diode flashlight, giving rise to multiple NIR PSPL that expands the tracking window from several hours to more than 10 days. Our studies reveal promising potential of these nanoprobes in cell tracking and tumor targeting, exhibiting exceptional sensitivity and penetration that far exceed those afforded by conventional fluorescence imaging.

  10. Photostimulable Near-Infrared Persistent Luminescent Nanoprobes for Ultrasensitive and Longitudinal Deep-Tissue Bio-Imaging

    PubMed Central

    Chuang, Yen-Jun; Zhen, Zipeng; Zhang, Fan; Liu, Feng; Mishra, Jyoti P.; Tang, Wei; Chen, Hongmin; Huang, Xinglu; Wang, Lianchun; Chen, Xiaoyuan; Xie, Jin; Pan, Zhengwei

    2014-01-01

    In vivo fluorescence imaging suffers from suboptimal signal-to-noise ratio and shallow detection depth, which is caused by the strong tissue autofluorescence under constant external excitation and the scattering and absorption of short-wavelength light in tissues. Here we address these limitations by using a novel type of optical nanoprobes, photostimulable LiGa5O8:Cr3+ near-infrared (NIR) persistent luminescence nanoparticles, which, with very-long-lasting NIR persistent luminescence and unique photo-stimulated persistent luminescence (PSPL) capability, allow optical imaging to be performed in an excitation-free and hence, autofluorescence-free manner. LiGa5O8:Cr3+ nanoparticles pre-charged by ultraviolet light can be repeatedly (>20 times) stimulated in vivo, even in deep tissues, by short-illumination (~15 seconds) with a white light-emitting-diode flashlight, giving rise to multiple NIR PSPL that expands the tracking window from several hours to more than 10 days. Our studies reveal promising potential of these nanoprobes in cell tracking and tumor targeting, exhibiting exceptional sensitivity and penetration that far exceed those afforded by conventional fluorescence imaging. PMID:25285164

  11. Photo-stimulated electro-optic response of liquid-crystalline system with trans-cis photo-isomerizable agent

    NASA Astrophysics Data System (ADS)

    Hadjichristov, G. B.; Marinov, Y. G.; Yelamaggad, C. V.

    2014-12-01

    A rather strong photo-stimulated enhancement of photo-induced bend flexoelectric effect based on trans-cis photoisomerization of azo bond was found in a guest-host system formed from the nematic liquid crystal (LC) N-(4-methoxybenzylidene)-4-butylaniline (MBBA) as a host, and the azobenzene LC 4-hexyloxybenzoloxy-4'-cyanoazobenzene, as a guest photoactive agent at 1 wt.% concentration. Upon application of electric field, thin homeotropic layers of thickness 100 pm containing this photo-sensitized LC mixture were investigated as subjected to a relatively weak illumination with UV light (λ = 375 nm, from narrow-band light-emitting diode, LED). The stimulation of the photoactive electro-optic response of azobenzene-doped MBBA (owing to enhanced photo-induced bend flexoelectric effect driven by the photo-isomerizable dopants) was achieved by pre-resonant excitation of the photoactive agent. The degree of the effect measured is of potential interest for thin-film photoactive electro-optic applications. The UV light-induced effect in azobenzene-doped MBBA was reversible; the back (relaxation) process was stimulated by light in the blue from a LED with broadband spectrum centered at 455 nm.

  12. Surface dating of bricks, an application of luminescence techniques

    NASA Astrophysics Data System (ADS)

    Galli, Anna; Martini, Marco; Maspero, Francesco; Panzeri, Laura; Sibilia, Emanuela

    2014-05-01

    Luminescence techniques are a powerful tool to date archaeological ceramic materials and geological sediments. Thermoluminescence (TL) is widely used for bricks dating to reconstruct the chronology of urban complexes and the development of human cultures. However, it can sometimes be inconclusive, since TL assesses the firing period of bricks, which can be reused, even several centuries later. This problem can be circumvented using a dating technique based on a resetting event different from the last heating. OSL (Optically Stimulated Luminescence) exploits the last light exposition of the brick surface, which resets the light-sensitive electron traps until the surface is definitely shielded by mortar and superimposed bricks. This advanced application (surface dating) has been successfully attempted on rocks, marble and stone artifacts, but not yet on bricks. A recent conservation campaign at the Certosa di Pavia gave the opportunity to sample some bricks belonging to a XVII century collapsed wall, still tied to their mortars. This was an advantageous condition to test this technique, comparing the dating results with precise historical data. This attempt gave satisfactory results, allowing to identify bricks surely reused and to fully confirm that the edification of the perimetral wall occurred at the end of XVII century.

  13. Luminescence dating of ancient Darhad basin, Mongolia

    NASA Astrophysics Data System (ADS)

    Cheul Kim, Jin; Yi, Sangheon; Lim, Jaesoo; Kim, Ju-Yong

    2016-04-01

    . Thus, age control on existing 14C ages from this site is limited, chronological interpretation based on the 14C ages is still incomplete in Hodon outcrop sediments. OSL (Optically Stimulated Luminescence) is an alternative method for dating to overcome the problems associated with 14C methods. OSL has been extensively used for dating arctic sediments (Thomas et al., 2006; more). Previous optical ages on Darhad paleolake sediments obtained using IRSL (Infrared-stimulated luminescence) on feldspars (Gillespie et al., 2008; Batbaatar et al., 2009). Feldspar has much brighter luminescence than quartz, while the OSL signal of feldspars bleaches at least one order of magnitude slower than the OSL signal of quartz (Godfrey-Smith et al., 1988; Huntly and Lamothe, 2001; Mauz and Bungenstock, 2007; Kim et al., 2012). In glaciofluvial, glaciolacustrine environments, inadequate bleaching of the OSL signal is known to be a potential problem of burial ages (Thomas et al., 2006). OSL dating of permafrost deposits may also involve uncertainty about the inhomogeneous radiation field surrounding the dosimeter and the absorption of ionizing energy alternately by water and ice in a not-constant pore volume (Haeberli et al., 2003). In this study, we test the applicability of quartz OSL dating for the uppermost paleolake sediments in the Hodon outcrop of the Darhad basin. The OSL results were systematically compared with additional radiocarbon ages from wood fragments to conclude the reliability of the OSL dates and to construct intensive chronology for Late-Pleistocene Darhad paleolake. To evaluate the time of recent expansion of the paleolake, the northern piedmont (Talyn outcrop) of the basin was dated by OSL.

  14. Multiple Channel Laser Beam Combination and Phasing Using Stimulated Brillouin Scattering in Optical Fibers

    DTIC Science & Technology

    2005-12-01

    light in stimulated Mandel’shtam–Brillouin scattering,” JETP Lett ., 15, 109-112, 1972. 41 . Hellwarth, R. W., “Phase conjugation by stimulated...interferometry with wavefront-reversing mirrors,” Sov . Phys . JETP , 52, 847-851, 1980. 79. Valley, M., G. Lombardi, and R. Aprahamian, “Beam...discharge,” Appl. Phys . Lett ., 86, 111104, 2005. 13. Lange, Mathew A., “Kinetics of the electric discharge pumped oxygen-iodine laser,” Sixth

  15. Optical stimulation of the hearing and deaf cochlea under thermal and stress confinement condition

    NASA Astrophysics Data System (ADS)

    Schultz, M.; Baumhoff, P.; Kallweit, N.; Sato, M.; Krüger, A.; Ripken, T.; Lenarz, T.; Kral, A.

    2014-03-01

    There is a controversy, to which extend cochlear stimulation with near infrared laser pulses at a wavelength of 1860 nm is based on optoacoustic stimulation of intact hair cells or -in contrast- is based on direct stimulation of the nerve cells in absence of functional hair cells. Thermal and stress confinement conditions apply, because of the pulse duration range (5 ns, 10 μs-20 ms) of the two lasers used. The dependency of the signal characteristics on pulse peak power and pulse duration was investigated in this study. The compound action potential (CAP) was measured during stimulation of the cochlea of four anaesthetized guinea pigs, which were hearing at first and afterwards acutely deafened using intracochlear neomycin-rinsing. For comparison hydrophone measurements in a water tank were performed to investigate the optoacoustic signals at different laser interaction regimes. With rising pulse peak power CAPs of the hearing animals showed first a threshold, then a positively correlated and finally a saturating dependency. CAPs also showed distinct responses at laser onset and offset separated with the pulse duration. At pulse durations shorter than physiological response times the signals merged. Basically the same signal characteristics were observed in the optoacoustic hydrophone measurements, scaled with the sensitivity and response time of the hydrophone. Taking together the qualitative correspondence in the signal response and the absence of any CAPs in deafened animals our results speak in favor of an optoacoustic stimulation of intact hair cells rather than a direct stimulation of nerve cells.

  16. Optical and electrochemical methods for determining the effective area and charge density of conducting polymer modified electrodes for neural stimulation.

    PubMed

    Harris, Alexander R; Molino, Paul J; Kapsa, Robert M I; Clark, Graeme M; Paolini, Antonio G; Wallace, Gordon G

    2015-01-06

    Neural stimulation is used in the cochlear implant, bionic eye, and deep brain stimulation, which involves implantation of an array of electrodes into a patient's brain. The current passed through the electrodes is used to provide sensory queues or reduce symptoms associated with movement disorders and increasingly for psychological and pain therapies. Poor control of electrode properties can lead to suboptimal performance; however, there are currently no standard methods to assess them, including the electrode area and charge density. Here we demonstrate optical and electrochemical methods for measuring these electrode properties and show the charge density is dependent on electrode geometry. This technique highlights that materials can have widely different charge densities but also large variation in performance. Measurement of charge density from an electroactive area may result in new materials and electrode geometries that improve patient outcomes and reduce side effects.

  17. Incorporation of fiber optic beam shaping into a laparoscopic probe for laser stimulation of the cavernous nerves

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Lagoda, Gwen A.; Mayeh, Mona; Burnett, Arthur L.; Farahi, Faramarz; Fried, Nathaniel M.

    2010-02-01

    The cavernous nerves (CN) course along the prostate surface and are responsible for erectile function. Improved identification and preservation of the CN's is critical to maintaining sexual potency after prostate cancer surgery. Noncontact optical nerve stimulation (ONS) of the CN's was recently demonstrated in a rat model, in vivo, as a potential alternative to electrical nerve stimulation (ENS) for identification of the CN's during prostate surgery. However, the therapeutic window for ONS is narrow, so optimal design of the fiber optic delivery system is critical for safe, reproducible stimulation. This study describes modeling, assembly, and testing of an ONS probe for delivering a small, collimated, flat-top laser beam for uniform CN stimulation. A direct comparison of the magnitude and response time of the intracavernosal pressure (ICP) for both Gaussian and flat-top spatial beam profiles was performed. Thulium fiber laser radiation (λ=1870 nm) was delivered through a 200-μm fiber, with distal fiber tip chemically etched to convert a Gaussian to flat-top beam profile. The laser beam was collimated to a 1-mm-diameter spot using an aspheric lens. Computer simulations of light propagation were used to optimize the probe design. The 10-Fr (3.4-mm-OD) laparoscopic probe provided a constant radiant exposure at the nerve surface. The probe was tested in four rats, in vivo. ONS of the CN's was performed with a 1-mm-diameter spot, 5- ms pulse duration, and pulse rate of 20 Hz for a duration of 15-30 s. The flat-top laser beam profile consistently produced a faster and higher ICP response at a lower radiant exposure than the Gaussian beam profile due, in part, to easier alignment of the more uniform beam with nerve. With further development, ONS may be used as a diagnostic tool for identification of the CN's during laparoscopic and robotic nerve-sparing prostate cancer surgery.

  18. Intracranial Injection of an Optogenetics Viral Vector Followed by Optical Cannula Implantation for Neural Stimulation in Rat Brain Cortex.

    PubMed

    Pawela, Christopher; DeYoe, Edgar; Pashaie, Ramin

    2016-01-01

    Optogenetics is rapidly gaining acceptance as a preferred method to study specific neuronal cell types using light. Optogenetic neuromodulation requires the introduction of a cell-specific viral vector encoding for a light activating ion channel or ion pump and the utilization of a system to deliver light stimulation to brain. Here, we describe a two-part methodology starting with a procedure to inject an optogenetic AAV virus into rat cortex followed by a second procedure to surgically implant an optical cannula for light delivery to the deeper cortical layers.

  19. A novel orange emitting Sm3+ ions doped NaCaAlPO4F3 phosphor: Optical and luminescence properties

    NASA Astrophysics Data System (ADS)

    Nagaraja, R.; Pushpa Manjari, V.; Sailaja, B.; Ravikumar, R. V. S. S. N.

    2017-02-01

    A novel orange light emitting Sm3+ ions doped NaCaAlPO4F3 phosphor was synthesized via solid state reaction. The prepared sample was characterized by powder X-ray diffraction (PXRD), Optical absorption, Photoluminescence (PL) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques. From powder XRD data, the average crystallite size and structural parameters are estimated. Absorption spectra consist of ten absorption peaks corresponding to the transitions from the 6H5/2 ground state to various excited energy levels. Transition probabilities, branching ratios and radiative lifetime were evaluated by using Judd-Ofelt analysis. Photoluminescence spectrum show three prominent emission bands centered at 562, 597 and 643 nm corresponding to the 4G5/2 → 6HJ (J = 5/2, 7/2 and 9/2) transitions respectively. From the emission transitions, stimulated emission cross-section (σe) and gain bandwidth (GBW) were predicted. The decay profiles of the prepared phosphor reveals the single exponential nature and the experimental lifetime is calculated. The colorimetric parameters CIE coordinates, Correlated color temperature of the prepared phosphor are also evaluated. FT-IR spectrum demonstrates the characteristic vibration bands of the prepared phosphor material.

  20. Stimulated emission and optical gain in AlGaN heterostructures grown on bulk AlN substrates

    SciTech Connect

    Guo, Wei Bryan, Zachary; Kirste, Ronny; Bryan, Isaac; Hussey, Lindsay; Bobea, Milena; Haidet, Brian; Collazo, Ramón; Sitar, Zlatko; Xie, Jinqiao; Mita, Seiji; Gerhold, Michael

    2014-03-14

    Optical gain spectra for ∼250 nm stimulated emission were compared in three different AlGaN-based structures grown on single crystalline AlN substrates: a single AlGaN film, a double heterostructure (DH), and a Multiple Quantum Well (MQW) structure; respective threshold pumping power densities of 700, 250, and 150 kW/cm{sup 2} were observed. Above threshold, the emission was transverse-electric polarized and as narrow as 1.8 nm without a cavity. The DH and MQW structures showed gain values of 50–60 cm{sup −1} when pumped at 1 MW/cm{sup 2}. The results demonstrated the excellent optical quality of the AlGaN-based heterostructures grown on AlN substrates and their potential for realizing electrically pumped sub-280 nm laser diodes.

  1. An Ideal System for Analysis and Interpretation of Ion Beam Induced Luminescence

    NASA Astrophysics Data System (ADS)

    Townsend, P. D.; Crespillo, M. L.

    Luminescence is produced during ion beam implantation or ion-solid interaction for most insulators, and contains rich information. Surprisingly, the information extracted is often far from optimum. Rather than summarizing literature work, the focus here is to design an optimized and feasible target chamber that could offer far more information than what has currently been obtained. Such an improved and multi-probe approach opens a range of options to simultaneously record luminescence spectra generated by the ion beam, explore transient and excited state signals via probes of secondary excitation methods (such as ionisation or photo-stimulation). In addition, one may monitor optical absorption, reflectivity and lifetime dependent features, plus stress and polarization factors. A particularly valuable addition to conventional measurements is to have the ability to modulate both the ion beam and the probes. These features allow separation of transient lifetimes, as well as sensing intermediate steps in the defect formation and/or relaxation, and growth of new phases and nanoparticle inclusions. While luminescence methods are the most sensitive probes of defect and imperfection sites in optically active materials, less work has been performed at controlled low and high temperatures. Measurement with controlled cooling or heating of the samples is effective to reveal phase transitions (both of host and inclusions). Furthermore, simultaneous excitations (e.g. ions and photons) at different temperatures may lead to different end-phase or stale structure under extreme ionization conditions and enable fabrication of unique material structures. References to the existing literature will underline that the overall benefits of studying ion beam induced luminescence can be far more fruitful than that has normally been considered.

  2. Construction and use of a zebrafish heart voltage and calcium optical mapping system, with integrated electrocardiogram and programmable electrical stimulation

    PubMed Central

    Lin, Eric; Craig, Calvin; Lamothe, Marcel; Sarunic, Marinko V.; Beg, Mirza Faisal

    2015-01-01

    Zebrafish are increasingly being used as a model of vertebrate cardiology due to mammalian-like cardiac properties in many respects. The size and fecundity of zebrafish make them suitable for large-scale genetic and pharmacological screening. In larger mammalian hearts, optical mapping is often used to investigate the interplay between voltage and calcium dynamics and to investigate their respective roles in arrhythmogenesis. This report outlines the construction of an optical mapping system for use with zebrafish hearts, using the voltage-sensitive dye RH 237 and the calcium indicator dye Rhod-2 using two industrial-level CCD cameras. With the use of economical cameras and a common 532-nm diode laser for excitation, the rate dependence of voltage and calcium dynamics within the atrial and ventricular compartments can be simultaneously determined. At 140 beats/min, the atrial action potential duration was 36 ms and the transient duration was 53 ms. With the use of a programmable electrical stimulator, a shallow rate dependence of 3 and 4 ms per 100 beats/min was observed, respectively. In the ventricle the action potential duration was 109 ms and the transient duration was 124 ms, with a steeper rate dependence of 12 and 16 ms per 100 beats/min. Synchronous electrocardiograms and optical mapping recordings were recorded, in which the P-wave aligns with the atrial voltage peak and R-wave aligns with the ventricular peak. A simple optical pathway and imaging chamber are detailed along with schematics for the in-house construction of the electrocardiogram amplifier and electrical stimulator. Laboratory procedures necessary for zebrafish heart isolation, cannulation, and loading are also presented. PMID:25740339

  3. Millennial-scale hard rock erosion rates deduced from luminescence-depth profiles

    NASA Astrophysics Data System (ADS)

    Sohbati, R.; Liu, J.; Murray, A. S.; Jain, M.; Pederson, J. L.; Guralnik, B.; Egholm, D. L.; Gupta, S.

    2015-12-01

    Optically stimulated luminescence (OSL) is a well-established Quaternary dating method that is conventionally used to determine the time when sedimentary grains were last exposed to daylight. Recently, a very different approach to this concept has helped develop a new technique to estimate the length of time a rock surface was exposed to daylight. When a rock surface is first exposed to daylight the charge population (and so the latent luminescence signal) trapped in its constituent minerals (e.g. quartz and feldspar) starts to decrease. This charge had accumulated due to previous exposure to natural ionizing radiation. As the surface is exposed to light for longer periods, the latent luminescence signal is reduced farther into the rock. In a rock surface which has been exposed to light for a prolonged period (decades to millennia), the remaining luminescence will be zero (fully bleached) at the surface and then increase, initially exponentially, before approaching saturation at a depth where charge detrapping due to light penetration is negligible compared to the rate of charge trapping due to the environmental dose rate. By modelling the characteristic shape of luminescence resetting with depth into rock surfaces, Sohbati et al. (2012) proposed a new surface-exposure dating technique based on OSL. Here we further develop the current model to include the effect of erosion rate on luminescence-depth profiles. By fitting the model to local known-age calibration samples, we first determine the site-specific resetting rates of the luminescence signal at rock surfaces. We then use the calibration values in a numerical model to derive the steady-state erosion rate for rocks of different mineralogy and different geological settings. The preliminary erosion rates obtained from glacial and landslide granite boulders from the Chinese Pamir Plateau are ~1 mm.ka-1, whereas active streambeds of Permian sandstone in the Grabens district of Canyonlands National Park, Utah, are

  4. Theoretical study of collinear optical frequency comb generation under multi-wave, transient stimulated Raman scattering in crystals

    SciTech Connect

    Smetanin, S N

    2014-11-30

    Using mathematical modelling we have studied the conditions of low-threshold collinear optical frequency comb generation under transient (picosecond) stimulated Raman scattering (SRS) and parametric four-wave coupling of SRS components in crystals. It is shown that Raman-parametric generation of an octave-spanning optical frequency comb occurs most effectively under intermediate, transient SRS at a pump pulse duration exceeding the dephasing time by five-to-twenty times. We have found the optimal values of not only the laser pump pulse duration, but also of the Raman crystal lengths corresponding to highly efficient generation of an optical frequency comb from the second anti-Stokes to the fourth Stokes Raman components. For the KGd(WO{sub 4}){sub 2} (high dispersion) and Ba(NO{sub 3}){sub 2} (low dispersion) crystals pumped at a wavelength of 1.064 μm and a pulse duration five or more times greater than the dephasing time, the optimum length of the crystal was 0.3 and 0.6 cm, respectively, which is consistent with the condition of the most effective Stokes – anti-Stokes coupling ΔkL ≈ 15, where Δk is the wave detuning from phase matching of Stokes – anti-Stokes coupling, determined by the refractive index dispersion of the SRS medium. (nonlinear optical phenomena)

  5. Fluvial terrace gravels of the "Hochterrasse" (N-Alpine Foreland, Austria): luminescence characteristics of quartz and feldspar

    NASA Astrophysics Data System (ADS)

    Bickel, L.; Lomax, J.; Fiebig, M.

    2012-04-01

    The Northern Alpine Foreland has played a major role in the investigation of glacial and furthermore paleo-climatic events. It was at the beginning of the 20th century, when Albrecht Penck developed the idea of four big alpine glaciations which extended into the alpine foreland. He developed the model of the glacial series in which he correlated terminal moraines with distinguishable terrace bodies. In the case of the fluvial sediments of the Hochterrasse (correlated with marine isotope stage (MIS) 6 in Austrian geological maps) the existence of numerical ages in the Austrian Alpine Foreland is sparse. This study is aimed at shedding light on the luminescence properties of quartz and feldspar derived from Hochterrasse systems in foreland valleys (Traun, Enns and Ybbs valley) so far attributed to the penultimate glaciation. Coarse grain (100-200 µm) K-feldspar and quartz are analyzed by Infrared stimulated luminescence (IRSL), post-Infrared Infrared stimulated luminescence (pIRIR) and optically stimulated luminescence (OSL) methods. One of the issues that arise when dating glaciofluvial quartz from this area is the apparent underestimation of the quartz ages which can vary up to 50% from the calculated IRSL ages. Linearly modulated OSL shows a big contribution of thermally unstable components to the overall equivalent dose (De) which can add to the general underestimation of quartz. Also the measurement of feldspar aliquots is anything but trivial. Luminescence signal intensities are very viable for the samples from the Enns and Traun valley. The samples derived from the Ybbs valley in contrast show very low feldspar signal intensities on most aliquots. Thermal transfer has shown to have negligible impact on the overall paleodose for the feldspar samples (maximum 1% of the paleodose attributed to thermal transfer). In contrast anomalous fading seems to be affecting all feldspar samples. However an assessment of the amount of signal loss in time is difficult to

  6. Monitoring Temperatures of Tires Using Luminescent Materials

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J

    2006-01-01

    A method of noncontact, optical monitoring of the surface temperature of a tire has been devised to enable the use of local temperature rise as an indication of potential or impending failures. The method involves the use of temperature-sensitive paint (or filler): Temperature-sensitive luminescent dye molecules or other luminescent particles are incorporated into a thin, flexible material coating the tire surface of interest. (Alternatively, in principle, the luminescent material could be incorporated directly into the tire rubber, though this approach has not yet been tested.) The coated surface is illuminated with shorter-wavelength light to excite longer-wavelength luminescence, which is observed by use of a charge-coupled-device camera or a photodetector (see Figure 1). If temporally constant illumination is used, then the temperature can be deduced from the known temperature dependence of the intensity response of the luminescence. If pulsed illumination is used, then the temperature can be deduced from the known temperature dependence of the time or frequency response of the luminescence. If sinusoidally varying illumination is used, then the temperature can be deduced from the known temperature dependence of the phase response of the luminescence. Unlike a prior method of monitoring the temperature at a fixed spot on a tire by use of a thermocouple, this method is not restricted to one spot and can, therefore, yield information on the spatial distribution of temperature: in particular, it enables the discovery of newly forming hot spots where damage may be starting. Also unlike in the thermocouple method, the measurements in this method are not vulnerable to breakage of wires in repeated flexing of the tire. Moreover, unlike in another method in which infrared radiation is monitored as an indication of surface temperature, the luminescence measurements in this method are not significantly affected by changes in infrared emissivity. This method has been

  7. Photostimulated luminescence properties of Eu2+ -doped barium aluminate phosphor.

    PubMed

    He, Quanlong; Qiu, Guangyu; Xu, Xuhui; Qiu, Jianbei; Yu, Xue

    2015-03-01

    An intense green photostimulated luminescence in BaAl2 O4 :Eu(2+) phosphor was prepared. The thermoluminescence results indicate that there are at least three types of traps (T1 , T2 , T3 ) with different trap depths in BaAl2 O4 :Eu(2+) phosphor according to the bands located at 327, 361 and 555 K, respectively, which are closely associated with the phosphor's long persistent luminescence and photostimulated luminescence properties. In addition, as a novel optical read-out form, a photostimulated persistent luminescence signal can be repeatedly obtained in BaAl2 O4 :Eu(2+) phosphor. This shows that re-trapping of the electron released from a deep trap plays an important role in photostimulated persistent luminescence.

  8. A wireless and batteryless neural headstage with optical stimulation and electrophysiological recording.

    PubMed

    Ameli, Reza; Mirbozorgi, Abdollah; Neron, Jean-Luc; Lechasseur, Yoan; Gosselin, Benoit

    2013-01-01

    This paper presents a miniature Optogenetics headstage for wirelessly stimulating the brain of rodents with an implanted LED while recording electrophysiological data from a two-channel custom readout. The headstage is powered wirelessly using an inductive link, and is built using inexpensive commercial off-the-shelf electronic components, including a RF microcontroller and a printed antenna. This device has the capability to drive one light-stimulating LED and, at the same time, capture and send back neural signals recorded from two microelectrode readout channels. Light stimulation uses flexible patterns that allow for easy tuning of light intensity and stimulation periods. For driving the LED, a low-pass filtered digitally-generated PWM signal is employed for providing a flexible pulse generation method that alleviates the need for D/A converters. The proposed device can be powered wirelessly into an animal chamber using inductive energy transfer, which enables compact, light-weight and cost-effective smart animal research systems. The device dimensions are 15×25×17 mm; it weighs 7.4 grams and has a data transmission range of more than 2 meters. Different types of LEDs with different power consumptions can be used for this system. The power consumption of the system without the LED is 94.52 mW.

  9. Subsurface optical stimulation of the rat prostate nerves using continuous-wave near-infrared laser radiation

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2012-02-01

    Successful identification and preservation of the cavernous nerves (CN), which are responsible for sexual function, during prostate cancer surgery, will require subsurface detection of the CN beneath a thin fascia layer. This study explores optical nerve stimulation (ONS) in the rat with a fascia layer placed over the CN. Two near-IR diode lasers (1455 nm and 1550 nm lasers) were used to stimulate the CN in CW mode with a 1-mm-diameter spot in 8 rats. The 1455 nm wavelength provides an optical penetration depth (OPD) of ~350 μm, while 1550 nm provides an OPD of ~1000 μm (~3 times deeper than 1455 nm and 1870 nm wavelengths previously tested). Fascia layers with thicknesses of 85 - 600 μm were placed over the CN. Successful ONS was confirmed by an intracavernous pressure (ICP) response in the rat penis at 1455 nm through fascia 110 μm thick and at 1550 nm through fascia 450 μm thick. Higher incident laser power was necessary and weaker and slower ICP responses were observed as fascia thickness was increased. Subsurface ONS of the rat CN at a depth of 450 μm using a 1550 nm laser is feasible.

  10. Probing structure-induced optical behavior in a new class of self-activated luminescent 0D/1D CaWO₄ metal oxide – CdSe nanocrystal composite heterostructures

    SciTech Connect

    Han, Jinkyu; McBean, Coray; Wang, Lei; Hoy, Jessica; Jaye, Cherno; Liu, Haiqing; Li, Zhuo-Qun; Sfeir, Matthew Y.; Fischer, Daniel A.; Taylor, Gordon T.; Misewich, James A.; Wong, Stanislaus S.

    2015-01-30

    In this report, we synthesize and characterize the structural and optical properties of novel heterostructures composed of (i) semiconducting nanocrystalline CdSe quantum dot (QDs) coupled with (ii) both one and zero-dimensional (1D and 0D) motifs of self-activated luminescence CaWO₄ metal oxides. Specifically, ~4 nm CdSe QDs have been anchored onto (i) high-aspect ratio 1D nanowires, measuring ~230 nm in diameter and ~3 μm in length, as well as onto (ii) crystalline 0D nanoparticles (possessing an average diameter of ~ 80 nm) of CaWO₄ through the mediation of 3-mercaptopropionic acid (MPA) as a connecting linker. Composite formation was confirmed by complementary electron microscopy and spectroscopy (i.e. IR and Raman) data. In terms of luminescent properties, our results show that our 1D and 0D heterostructures evince photoluminescence (PL) quenching and shortened PL lifetimes of CaWO₄ as compared with unbound CaWO₄. We propose that a photo-induced electron transfer process occurs from CaWO₄ to CdSe QDs, a scenario which has been confirmed by NEXAFS measurements and which highlights a decrease in the number of unoccupied orbitals in the conduction bands of CdSe QDs. By contrast, the PL signature and lifetimes of MPA-capped CdSe QDs within these heterostructures do not exhibit noticeable changes as compared with unbound MPA-capped CdSe QDs. The striking difference in optical behavior between CaWO₄ nanostructures and CdSe QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. In addition, the PL quenching behaviors for CaWO₄ within the heterostructure configuration were examined by systematically varying (i) the quantities and coverage densities of CdSe QDs as well as (ii) the intrinsic morphology (and by extension, the inherent crystallite size) of CaWO₄ itself.

  11. Dating ancient mosaic glasses by luminescence: The case study of San Pietro in Vaticano

    NASA Astrophysics Data System (ADS)

    Galli, A.; Martini, M.; Sibilia, E.; Vandini, M.; Villa, I.

    2011-12-01

    The preliminary results of a study on the dosimetric properties of a set of glass tesserae from the mosaics of the vaults of St. Peter's Basilica in Rome (late XVI century) are reported. The main goal of the research was to assess the possibility of dating them by means of luminescence techniques. The samples had already been extensively studied and investigated from a historical, artistic and compositional point of view. The period of the making of the mosaic was rather well known, and could be the basis to test the experimental procedures we used for dosimetry. The experiments also aimed at demonstrating the validity of the hypothesis we put forward, i.e. the positive link between the presence of micro-crystals and the luminescence sensitivity in mosaic glass: to this aim, the samples richer in crystalline inclusions were selected. The role of calcium antimonate and cassiterite was definitely demonstrated. For what concerns their thermoluminescence (TL) characteristics, a preliminary investigation suggested that the available configuration of the detection systems did not properly fit the wavelength of the emitted TL. Much more promising results have been achieved by the use of Optically Stimulated Luminescence (OSL), even if the measured absorbed doses were rather scattered. For one sample with high OSL sensitivity, it was possible to establish its recent age, relative to one of the documented restorations that took place during the last century.

  12. Using new luminescence methods to date the Palaeolithic: the example of Kalambo Falls

    NASA Astrophysics Data System (ADS)

    Duller, Geoff; Tooth, Stephen; Barham, Larry

    2013-04-01

    The Palaeolithic site of Kalambo Falls in the north of Zambia was the subject of detailed study by J.D. Clark in the 1950s with 4 excavations being located within 1 km of each other in a basin upstream of the falls. A rich palaeolithic tool record was recovered, but the value of this record was limited by the lack of chronological information available. In 2006, one of the excavation sites was re-investigated (Barham et al., 2009), including examination of the stratigraphic context and collection of samples for luminescence dating. Many of the sediments in the Kalambo basin were deposited by fluvial activity. Dose distributions in the single grain quartz optically stimulated luminescence (OSL) measurements of the youngest sediments are consistent with incomplete bleaching. However, the residual doses obtained are typically less than 10 Gy, and so for older sediments the impact of incomplete bleaching becomes insignificant. The oldest samples are affected by a different problem, namely saturation of the OSL signal, and many grains are saturated. However in all cases some grains give finite equivalent dose values, making it feasible to calculate single grain quartz OSL ages, but it is difficult to assess whether these ages are reliable or not. Thermally transferred OSL (TT-OSL) from quartz is able to date much older samples due to the high saturation dose of this signal (Duller and Wintle, 2012). Comparison of the TT-OSL and OSL demonstrates that the OSL signal yields age underestimates as samples near saturation. Only by using the two luminescence methods is it possible to create an absolute chronology for this key site stretching back over half a million years. This study demonstrates the potential of using these two luminescence signals together for dating Palaeolithic sites throughout Africa and beyond. Barham, L., Duller, G. A. T., Plater, A. J., Tooth, S. and Turner, S. (2009). Recent excavations at Kalambo Falls, Zambia. Antiquity 83(322). Duller, G. A. T. and

  13. Proceedings of the 4th New World Luminescence Dating and Dosimetry Workshop, Denver, Colorado, May 31 June 2, 2006

    USGS Publications Warehouse

    Wise, Richard A.

    2006-01-01

    Introduction: Optically stimulated luminescence (OSL) is one of a class of measurements known as stimulated phenomena. Such phenomena may be stimulated thermally or optically and the reader is referred to works by Aitken (1998) and Botter-Jensen and others (2003) for more detail. In recent years OSL has become a popular procedure for the determination of environmental radiation doses absorbed by archeological and geological materials in an attempt to date these materials. The first OSL measurements on quartz and feldspar were made using an argon ion-laser (Huntley et al., 1985). However, the development of cheaper stimulation systems based first on filtered lamps and then on light- emitting diodes (LEDs) (Spooner, et al., 1990; Botter-Jensen, and others, 1999) has led to a massive expansion in OSL dating applications. The abstracts in this volume represent presentations from a workshop held in May-June 2006, at the Denver Federal Center, Denver, Colorado, in which OSL methodologies and applications were summarized and integrated to provide a current synthesis of the OSL science being applied throughout North America. The workshop, sponsored by the U.S. Geological Survey Crustal Imaging and Characterization Team and North Dakota State University, was open to all scientists interested in OSL dating techniques and radiation dosimetry. Participants included thirty-six research scientists and students in geology, archaeology, and physics from the U.S. Geological Survey, Los Alamos National Labs, Kentucky Geological Survey, eight universities in the United States, one university in Canada, one university in India, and Riso National Labs of Denmark. The workshop included two keynote speakers: Dr. Ashok Singhvi (Physical Research Laboratory, Ahmedabad, India) spoke on 'Some Unexplored Methodological Aspects and Some New Applications of Luminescence Dating,' while Dr. Jim Feathers (University of Seattle, WA) spoke on OSL Dating of Sediments From Paleoindian Sites in Brazil

  14. Effects of electrical and optical properties of thickness condition of ZnO nanorod array layer for efficient electrochemical luminescence cell device

    NASA Astrophysics Data System (ADS)

    Choi, Hye Su; Chansri, Pakpoom; Sung, Youl Moon

    2016-02-01

    In this paper, we report on electrochemical luminescence (ECL) cells with a ZnO nanorod (ZNR) layer. The investigated ECL cells were composed of F-doped SnO2 (FTO) glass/Ru(II)/ZNRs/FTO glass, which used a ZNR layer as an electrode and the Ru(II) complex [Ru(bpy)32+] as a light-emitting material. The ECL cells were fabricated by changing the thickness of ZNRs from 5 to 12.5 µm. The luminescence property of the ECL cells was strongly affected by the variation in the thickness of the ZNR layer. The threshold voltage for the light emission from the ECL cells was 2 V for 10 µm thick ZNRs, which was lower than that of the thickness of the ECL cells without a ZNR layer. Also, the intensity of luminance from the ECL cells with ZNRs was much higher than that from the ECL cells without ZNRs at the same operating voltage. The efficiency of the ECL cells without ZNRs measured at 3 V was 0.0049 lm/W, while those of the ECL cells with ZNRs were 0.0121, 0.0157, 0.0354, and 0.024 lm/W for the ZNRs layer thicknesses 5, 7.5, 10, and 12.5 µm, respectively. However, the peak light intensity at the wavelength was 623 nm which had not affected the all ZNRs thicknesses. The best lifetime of the ECL cells with these thicknesses was 40 min for ZNRs 10 µm. The use of the ZNR layer in the ECL cells significantly improves the luminescence performance.

  15. Luminescence Dating of Marine Terrace Sediments Between Trabzon and Rize, Eastern Black Sea Basin: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Softa, Mustafa; Spencer, Joel Q. G.; Emre, Tahir; Sözbilir, Hasan; Turan, Mehmet

    2016-04-01

    Quaternary marine terraces in the coastal region of Pontides in Northeastern Turkey are valuable archives of past sea level change. Until recently, dates of raised marine terraces undeciphered in the coastal region between Trabzon and Rize because of chronologic limitations. In this paper was to determine ages of the terrace deposits by applying optically stimulated luminescence (OSL) dating methods using single aliquot regenerative dose (SAR) techniques on quartz minerals from extracted marine terraces. Several samples were collected from three orders of Quaternary marine terraces which are reproducible at all sampling location in between cities of Trabzon and Rize, Turkey, coastal of Eastern Pontides, at the front of the thrust system. The terrace deposits mainly consist of clays, silts, sands and gravels. The sediments in these deposits are mainly derived from basaltic, andesitic, and limestone geology, and have elipsoid, square and flat shapes. The terrace deposits have heights ranging from 1 to 17 meters and increases in height and thickness from west to east. Initial OSL results from 1 mm and 3 mm quartz aliquots demonstrate good luminescence characteristics. Preliminary equivalent dose analysis results ranging from 17.6 Gy to 79.6 Gy have been calculated using the Central Age Model (CAM) and Minimum Age Model (MAM). According to ages obtained from three separate terrace is ~8 ka, ~42 ka and ~78 ka, respectively. Results of marine terrace sediments indicate this region has three sedimentation periods and coastal region of Pontides has been remarkably tectonically active since latest Pleistocene to earlier Holocene. This study will present preliminary OSL dating results obtained from samples of Quaternary marine terrace formation. Keywords: optically stimulated luminescence (OSL) dating, single grain, marine terraces, Eastern Pontides.

  16. Optical dating of the anastasia formation, northeastern florida, USA

    USGS Publications Warehouse

    Burdette, K.E.; Rink, J.W.; Means, G.H.; Portell, R.W.

    2009-01-01

    The single-aliquot regenerative-dose (SAR) procedure was used to obtain optically stimulated luminescence ages to determine the depositional age of the upper part of the Anastasia Formation. This unit, which crops out along the east coast of Florida, is one of the most culturally and economically important coquina deposits in North America. Rock samples from the upper three meters of exposure at three locations were collected. Additional materials for paleontological analysis were also taken. Based on our samples, the luminescence ages of the Anastasia Formation are well within marine isotope stage 5, which is supported by the results of Osmond et al. (1970) based on U/Th ages. The associated fossil assemblages support our luminescence age determinations. Associated fossils fall within the Rancholabrean North American Land Mammal Age (300 10 ka) and the fossil mollusk assemblage consists entirely of modern species.

  17. Distributed Temperature and Strain Discrimination with Stimulated Brillouin Scattering and Rayleigh Backscatter in an Optical Fiber

    PubMed Central

    Zhou, Da-Peng; Li, Wenhai; Chen, Liang; Bao, Xiaoyi

    2013-01-01

    A distributed optical fiber sensor with the capability of simultaneously measuring temperature and strain is proposed using a large effective area non-zero dispersion shifted fiber (LEAF) with sub-meter spatial resolution. The Brillouin frequency shift is measured using Brillouin optical time-domain analysis (BOTDA) with differential pulse-width pair technique, while the spectrum shift of the Rayleigh backscatter is measured using optical frequency-domain reflectometry (OFDR). These shifts are the functions of both temperature and strain, and can be used as two independent parameters for the discrimination of temperature and strain. A 92 m measurable range with the spatial resolution of 50 cm is demonstrated experimentally, and accuracies of ±1.2 °C in temperature and ±15 με in strain could be achieved. PMID:23385406

  18. Distributed temperature and strain discrimination with stimulated brillouin scattering and rayleigh backscatter in an optical fiber.

    PubMed

    Zhou, Da-Peng; Li, Wenhai; Chen, Liang; Bao, Xiaoyi

    2013-01-31

    A distributed optical fiber sensor with the capability of simultaneously measuring temperature and strain is proposed using a large effective area non-zero dispersion shifted fiber (LEAF) with sub-meter spatial resolution. The Brillouin frequency shift is measured using Brillouin optical time-domain analysis (BOTDA) with differential pulse-width pair technique, while the spectrum shift of the Rayleigh backscatter is measured using optical frequency-domain reflectometry (OFDR). These shifts are the functions of both temperature and strain, and can be used as two independent parameters for the discrimination of temperature and strain. A 92 m measurable range with the spatial resolution of 50 cm is demonstrated experimentally, and accuracies of ±1.2 °C in temperature and ±15 με in strain could be achieved.

  19. Assessment of an optically stimulated infrared emission from image intensifier tube photocathodes

    NASA Astrophysics Data System (ADS)

    Wales, Jesse G.; Marasco, Peter L.

    2005-05-01

    Anecdotal evidence suggested that bright, night-vision imaging system (NVIS) compatible, green cockpit displays could cause a veiling luminance in night-vision goggles (NVGs) and degrade visual performance. The mechanism suspected of causing this veiling luminance was an infrared emission from the image intensifier tube photocathode stimulated by visible, NVIS compatible light. This paper describes an effort to measure this stimulated infrared emission from three different image intensifier tubes. Measurements of the emission were analyzed with respect to tube age, the wavelength of incident illumination, and illumination angle of incidence. The emission was found during certain combinations of light wavelengths, angles, and intensities. However, results suggest that this phenomenon is not sufficiently strong to cause observable veiling luminance in NVGs.

  20. NONLINEAR OPTICS: Stimulated resonant hyper-Raman scattering of light by polaritons in alkali metal vapors

    NASA Astrophysics Data System (ADS)

    Galaĭchuk, Yu A.; Yashkir, Yu N.

    1989-12-01

    A theory is developed for the calculation of the gain g due to stimulated resonant hyper-Raman scattering of light by polaritons in gaseous media. It is shown that throughout the tuning range of the pump frequency (including one- and two-photon resonances) a maximum of g corresponds to a dispersion curve of polaritons plotted ignoring attenuation. Theoretical results are used to analyze characteristics of hyper-Raman scattering in sodium vapor. It is shown that under normal experimental conditions the splitting of polariton branches is considerable (amounting to tens of reciprocal centimeters on the frequency scale and several angular degrees). The value of g is estimated for two-photon resonances in the case when the pump frequency is tunable in a wide range. The optimal conditions for stimulated hyper-Raman scattering are identified.

  1. Luminescence dating of deltaic deposits from eastern Crete, Greece: Geoarchaeological implications

    NASA Astrophysics Data System (ADS)

    Zacharias, Nikolaos; Bassiakos, Yannis; Hayden, Barbara; Theodorakopoulou, Katie; Michael, Christodoulos T.

    2009-08-01

    Within the framework of an ongoing geoarchaeological project undertaken in the area of Istron, Gulf of Mirabello, eastern Crete, sediment dating using optical stimulated luminescence (OSL) was employed to provide information on the landscape evolution of the area. In addition to detailed field-survey, geophysical prospection, and archaeological excavations, drilling of five boreholes provided undisturbed and light protected sediments to depths up to 12 m below sea level. OSL dating using blue-light stimulation was undertaken on pure quartz grain samples from two cores. In addition, chemical and spectrometric studies on selected deltaic deposits are enlightening for paleoenvironmental differentiations that prevailed at neighboring sites. The reported ages, with a span of 770 to ca. 15,000 a, along with the results of field work and chemical analysis provide insight for landscape evolution, influenced mainly by environmental changes at an area occupied by the man since Neolithic onwards.

  2. Quaternary palaeoenvironments in Namibia: new records from optically stimulated dating of Kalahari linear dune accumulation and northern Namib Sand Sea interdune deposits.

    NASA Astrophysics Data System (ADS)

    Stone, Abigail; Thomas, David; Viles, Heather; Bailey, Richard

    2010-05-01

    In this study we consider new linear dune accumulation records from the west of the southern Kalahari linear dunefield (~24o S 18oE) and a new chronology for three sites along the former course of the Tsondab River in the northern Namib Sand Sea (23o49'15'S, 14o57'30'E, 23o48'39'S, 15o02'21'E and 23o56'11'S, 15o17'89'E) from Namibia, southern Africa. Optically stimulated luminescence dating (OSL) has been applied to both sites in order to: (i) provide a chronology for linear dune accumulation in a previously unstudied region of the southern Kalahari linear dunefield and (ii) to provide a chronological reassessment for water-lain units from the Namib Sand Sea, previously dated using radiocarbon applied to inorganic carbonate sediments. The 48 OSL ages from the linear dunes include the oldest linear dune sediment ages recorded in the southern Kalahari and also reveal that the dunefield has been partially active throughout much of the past 120 ka. These ages are considered alongside the net accumulation record for the entire southern Kalahari linear dunefield (141 optical ages) and we make some important observations about the influence of sampling strategy. We attempt to isolate a rigorous signal that does not depend on sampling strategy by removing cores and comparing the net accumulation record from different parts of the dataset. We consider the young bias resulting from the predominance of shallow sampling in the total dataset. The bracketing OSL ages (from sand units that inter-bed water-lain calcareous rich sediments) in the northern Namib Sand Sea suggest that the series of seven mud units at Narabeb (23o49'15'S, 14o57'30'E) are substantially older than the existing radiocarbon chronology from the mud units themselves. Twelve of the thirteen OSL ages fall within MIS 5. By contrast, at Ancient Tracks (23o56'11'S, 15o17'89'E) the OSL-based chronological reassessment suggests the water-lain units were 1 to 2 ka younger than the existing radiocarbon ages, with

  3. A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light.

    PubMed

    Zeringue, Clint; Dajani, Iyad; Naderi, Shadi; Moore, Gerald T; Robin, Craig

    2012-09-10

    Beam combining of phase-modulated kilowatt fiber amplifiers has generated considerable interest recently. We describe in the time domain how stimulated Brillouin scattering (SBS) is generated in an optical fiber under phase-modulated laser conditions, and we analyze different phase modulation techniques. The temporal and spatial evolutions of the acoustic phonon, laser, and Stokes fields are determined by solving the coupled three-wave interaction system. Numerical accuracy is verified through agreement with the analytical solution for the un-modulated case and through the standard photon conservation relation for counter-propagating optical fields. As a test for a modulated laser, a sinusoidal phase modulation is examined for a broad range of modulation amplitudes and frequencies. We show that, at high modulation frequencies, our simulations agree with the analytical results obtained from decomposing the optical power into its frequency components. At low modulation frequencies, there is a significant departure due to the appreciable cross talk among the laser and Stokes sidebands. We also examine SBS suppression for a white noise source and show significant departures for short fibers from analytically derived formulas. Finally, SBS suppression through the application of pseudo-random bit sequence modulation is examined for various patterns. It is shown that for a fiber length of 9 m the patterns at or near n=7 provide the best mitigation of SBS with suppression factors approaching 17 dB at a modulation frequency of 5 GHz.

  4. Mesh-based Monte Carlo method for fibre-optic optogenetic neural stimulation with direct photon flux recording strategy.

    PubMed

    Shin, Younghoon; Kwon, Hyuk-Sang

    2016-03-21

    We propose a Monte Carlo (MC) method based on a direct photon flux recording strategy using inhomogeneous, meshed rodent brain atlas. This MC method was inspired by and dedicated to fibre-optics-based optogenetic neural stimulations, thus providing an accurate and direct solution for light intensity distributions in brain regions with different optical properties. Our model was used to estimate the 3D light intensity attenuation for close proximity between an implanted optical fibre source and neural target area for typical optogenetics applications. Interestingly, there are discrepancies with studies using a diffusion-based light intensity prediction model, perhaps due to use of improper light scattering models developed for far-field problems. Our solution was validated by comparison with the gold-standard MC model, and it enabled accurate calculations of internal intensity distributions in an inhomogeneous near light source domain. Thus our strategy can be applied to studying how illuminated light spreads through an inhomogeneous brain area, or for determining the amount of light required for optogenetic manipulation of a specific neural target area.

  5. Methods of Stimulating the Students' Creativity in the Study of Geometrical Optics

    ERIC Educational Resources Information Center

    Florian, Gabriel; Trocaru, Sorin; Florian, Aurelia-Daniela; Bâna, Alexandru-Dumitru

    2015-01-01

    The aim of the present article is to focus on the operational aspects referring to the actions--strategies and on the defined modalities of establishing educational objectives/competences. In the achievement of our work a special attention has been paid to the operational aspects of the learning process of the optical phenomena. There were carried…

  6. TRUE COLORS: LEDS AND THE RELATIONSHIP BETWEEN CCT, CRI, OPTICAL SAFETY, MATERIAL DEGRADATION, AND PHOTOBIOLOGICAL STIMULATION

    SciTech Connect

    Royer, Michael P.

    2014-08-30

    This document analyzes the optical, material, and photobiological hazards of LED light sources compared to conventional light sources. It documents that LEDs generally produce the same amount of blue light, which is the primary contributor to the risks, as other sources at the same CCT. Duv may have some effect on the amount of blue light, but CRI does not.

  7. Super-resolution stimulated emission depletion imaging of slit diaphragm proteins in optically cleared kidney tissue.

    PubMed

    Unnersjö-Jess, David; Scott, Lena; Blom, Hans; Brismar, Hjalmar

    2016-01-01

    The glomerular filtration barrier, consisting of podocyte foot processes with bridging slit diaphragm, glomerular basement membrane, and endothelium, is a key component for renal function. Previously, the subtlest elements of the filtration barrier have only been visualized using electron microscopy. However, electron microscopy is mostly restricted to ultrathin two-dimensional samples, and the possibility to simultaneously visualize multiple different proteins is limited. Therefore, we sought to implement a super-resolution immunofluorescence microscopy protocol for the study of the filtration barrier in the kidney. Recently, several optical clearing methods have been developed making it possible to image through large volumes of tissue and even whole organs using light microscopy. Here we found that hydrogel-based optical clearing is a beneficial tool to study intact renal tissue at the nanometer scale. When imaging samples using super-resolution STED microscopy, the staining quality was critical in order to assess correct nanoscale information. The signal-to-noise ratio and immunosignal homogeneity were both improved in optically cleared tissue. Thus, STED of slit diaphragms in fluorescently labeled, optically cleared, intact kidney samples is a new tool for studying the glomerular filtration barrier in health and disease.

  8. Fully-distributed fiber-optic high temperature sensing based on stimulated Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Hu, Di; Wang, Dorothy Y.; Wang, Anbo

    2013-06-01

    We proposed a Brillouin optical fiber time domain analysis (BOTDA)-based fully-distributed temperature system as high as 1000°C and spatial resolution to 5 meters. This technique is prominent for high spatial resolution fully distributed high temperature and stress sensing over long distance.

  9. Modeling Light Propagation in Luminescent Media

    NASA Astrophysics Data System (ADS)

    Sahin, Derya

    This study presents physical, computational and analytical modeling approaches for light propagation in luminescent random media. Two different approaches are used, namely (i) a statistical approach: Monte-Carlo simulations for photon transport and (ii) a deterministic approach: radiative transport theory. Both approaches account accurately for the multiple absorption and reemission of light at different wavelengths and for anisotropic luminescence. The deterministic approach is a generalization of radiative transport theory for solving inelastic scattering problems in random media. We use the radiative transport theory to study light propagation in luminescent media. Based on this theory, we also study the optically thick medium. Using perturbation methods, a corrected diffusion approximation with asymptotically accurate boundary conditions and a boundary layer solution are derived. The accuracy and the efficacy of this approach is verified for a plane-parallel slab problem. In particular, we apply these two approaches (MC and radiative transport theory) to model light propagation in semiconductor-based luminescent solar concentrators (LSCs). The computational results for both approaches are compared with each other and found to agree. The results of this dissertation present practical and reliable techniques to use for solving forward/inverse inelastic scattering problems arising in various research areas such as optics, biomedical engineering, nuclear engineering, solar science and material science.

  10. Advanced synchronous luminescence system

    DOEpatents

    Vo-Dinh, Tuan

    1997-01-01

    A method and apparatus for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition.

  11. Luminescent properties of cadmium selenide quantum dots in fluorophosphate glasses

    NASA Astrophysics Data System (ADS)

    Lipatova, Zh. O.; Kolobkova, E. V.; Babkina, A. N.

    2016-11-01

    The optical properties of fluorophosphate glasses with CdSe quantum dots are studied. Secondary heat treatment at a temperature exceeding the glass transition temperature resulted in the formation of quantum dots with sizes of 3.7-6.2 nm. The influence of the semiconductor component concentration on the spectral-luminescent characteristics of glasses is shown. It is experimentally demonstrated that glasses with a lower CdSe concentration have a higher absolute luminescence quantum yield.

  12. Modeling of Optical Waveguide Poling and Thermally Stimulated Discharge (TSD) Charge and Current Densities for Guest/Host Electro Optic Polymers

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Ashley, Paul R.; Abushagur, Mustafa

    2004-01-01

    A charge density and current density model of a waveguide system has been developed to explore the effects of electric field electrode poling. An optical waveguide may be modeled during poling by considering the dielectric charge distribution, polarization charge distribution, and conduction charge generated by the poling field. These charge distributions are the source of poling current densities. The model shows that boundary charge current density and polarization current density are the major source of currents measured during poling and thermally stimulated discharge These charge distributions provide insight into the poling mechanisms and are directly related to E(sub A), and, alpha(sub r). Initial comparisons with experimental data show excellent correlation to the model results.

  13. Examining Cortical Dynamics and Connectivity with Simultaneous Single-Pulse Transcranial Magnetic Stimulation and Fast Optical Imaging

    PubMed Central

    Parks, Nathan A.; Maclin, Edward L.; Low, Kathy A.; Beck, Diane M.; Fabiani, Monica; Gratton, Gabriele

    2011-01-01

    Transcranial magnetic stimulation (TMS) is a widely used experimental and clinical technique that directly induces activity in human cortex using magnetic fields. However, the neural mechanisms of TMS-induced activity are not well understood. Here, we introduce a novel method of imaging TMS-evoked activity using a non-invasive fast optical imaging tool, the event-related optical signal (EROS). EROS measures changes in the scattering of near-infrared light that occur synchronously with electrical activity in cortical tissue. EROS has good temporal and spatial resolution, allowing the dynamics and spatial spread of a TMS pulse to be measured. We used EROS to monitor activity induced in primary motor cortex (M1) by a TMS pulse. Left- and right-hand representations were mapped using standard TMS procedures. Optical sources and detectors mounted on thin rubber patches were then centered on M1 hand representations. EROS was recorded bilaterally from motor cortex while unilateral TMS was simultaneously delivered. Robust ipsilateral EROS activations were apparent within 16 ms of a pulse for TMS delivered to both left and right hemispheres. Clear motor evoked potentials (MEPs) were also elicited by these TMS pulses. Movement artifacts could be excluded as a source of EROS, as no activation was present on short-distance optical channels. For left hemisphere TMS subsequent (40 ms) contralateral activity was also present, presumably due to trans-synaptic propagation of TMS-evoked activity. Results demonstrate that concurrent TMS/EROS is a viable and potentially powerful method for studying TMS-induced activity in the human brain. With further development, this technique may be applied more broadly in the study of the dynamics of causal cortico-cortical connectivity. PMID:21925608

  14. Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording.

    PubMed

    Lee, Joonhee; Ozden, Ilker; Song, Yoon-Kyu; Nurmikko, Arto V

    2015-12-01

    Optogenetics, the selective excitation or inhibition of neural circuits by light, has become a transformative approach for dissecting functional brain microcircuits, particularly in in vivo rodent models, owing to the expanding libraries of opsins and promoters. Yet there is a lack of versatile devices that can deliver spatiotemporally patterned light while performing simultaneous sensing to map the dynamics of perturbed neural populations at the network level. We have created optoelectronic actuator and sensor microarrays that can be used as monolithic intracortical implants, fabricated from an optically transparent, electrically highly conducting semiconductor ZnO crystal. The devices can perform simultaneous light delivery and electrical readout in precise spatial registry across the microprobe array. We applied the device technology in transgenic mice to study light-perturbed cortical microcircuit dynamics and their effects on behavior. The functionality of this device can be further expanded to optical imaging and patterned electrical microstimulation.

  15. Optical Mixing Controlled Stimulated Scattering Instabilities Using Blue-Green Interaction Beams

    NASA Astrophysics Data System (ADS)

    Mardirian, M.; Afeyan, B.; Won, K.; Montgomery, D.; Hammer, J.; Kirkwood, R.; Schmitt, A.

    2003-10-01

    The optical mixing of blue and green laser beams in an underdense exploding foil plasma where a resonant EPW can be resonantly generated was examined experimentally on the Omega laser facility at LLE. The effect of this optical mixing generated large amplitude EPW on the SRS backscattering of a separate blue interaction/witness beam was measured. The backscattering and transmission of the Green beam, the backscattering of the witness beam and the transmission of the crossing blue beam were studied as a function of different beam energies to see how to optimize the disruption of the witness beam's backscattering levels by the introduction of controlled levels of fluctuations and incoherence into the plasma. Results will be compared to numerical simulations and previous PRI experiments where large levels of IAW turbulence was generated by using same color crossing laser beams.

  16. Chemically engineered persistent luminescence nanoprobes for bioimaging

    PubMed Central

    Lécuyer, Thomas; Teston, Eliott; Ramirez-Garcia, Gonzalo; Maldiney, Thomas; Viana, Bruno; Seguin, Johanne; Mignet, Nathalie; Scherman, Daniel; Richard, Cyrille

    2016-01-01

    Imaging nanoprobes are a group of nanosized agents developed for providing improved contrast for bioimaging. Among various imaging probes, optical sensors capable of following biological events or progresses at the cellular and molecular levels are actually actively developed for early detection, accurate diagnosis, and monitoring of the treatment of diseases. The optical activities of nanoprobes can be tuned on demand by chemists by engineering their composition, size and surface nature. This review will focus on researches devoted to the conception of nanoprobes with particular optical properties, called persistent luminescence, and their use as new powerful bioimaging agents in preclinical assays. PMID:27877248

  17. Responses of Ventral Posterior Thalamus Neurons to Three-Dimensional Vestibular and Optic Flow Stimulation

    PubMed Central

    Meng, Hui

    2010-01-01

    Multisensory neurons tuned to both vestibular and visual motion (optic flow) signals are found in several cortical areas in the dorsal visual stream. Here we examine whether such convergence occurs subcortically in the macaque thalamus. We searched the ventral posterior nuclei, including the anterior pulvinar, as well as the ventro-lateral and ventral posterior lateral nuclei, areas that receive vestibular signals from brain stem and deep cerebellar nuclei. Approximately a quarter of cells responded to three-dimensional (3D) translational and/or rotational motion. More than half of the responsive cells were convergent, thus responded during both rotation and translation. The preferred axes of translation/rotation were distributed throughout 3D space. The majority of the neurons were excited, but some were inhibited, during rotation/translation in darkness. Only a couple of neurons were multisensory being tuned to both vestibular and optic flow stimuli. We conclude that multisensory vestibular/optic flow neurons, which are commonly found in cortical visual and visuomotor areas, are rare in the ventral posterior thalamus. PMID:19955294

  18. Structured luminescence conversion layer

    DOEpatents

    Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

    2012-12-11

    An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

  19. Numerical modeling of the intracavity stimulated Raman scattering as a source of subnanosecond optical pulses

    NASA Astrophysics Data System (ADS)

    Yashkir, Yuri M.; Yashkir, Yuriy Y.

    2004-09-01

    We present a computer numerical model (virtual sub-nanosecond laser) utilizing intracavity stimulated Raman scattering. The goal of this work is to shorten laser output pulses (for which the highly nonlinear frequency conversion process stimulated Raman scattering is used) and to obtain high efficiency (which is enhanced by placing a Raman-active crystal inside the cavity where the fundamental laser frequency intensity is maximal). The following laser components were modeled: a diodepumped solidstate laser active medium (a crystal of the Nd3+:YLF type), a closed cavity for a wave on its fundamental frequency with a Q-switching element and an internal subcavity with a Ramanactive crystal with controlled output coupler transmission at the Raman frequency. The model components are: a numerical integrator of a set of three rate equations (for an inverse population of the laser medium and for the number of fundamental and Stokes frequency photons), random number sources for radiation seeding, and an interactive data input interface and graphic output. A wide range of parameters was investigated and output pulses as short as 0.8 ns were found. The optimal conditions for the maximal peak power of Stokes pulses were determined and the conditions for generating pulse trains for burst laser machining were identified.

  20. In-Vivo functional optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source.

    PubMed

    Hajireza, Parsin; Forbrich, Alexander; Zemp, Roger

    2014-02-01

    In this paper a multi-wavelength optical-resolution photoacoustic microscopy (OR-PAM) system using stimulated Raman scattering is demonstrated for both phantom and in vivo imaging. A 1-ns pulse width ytterbium-doped fiber laser is coupled into a single-mode polarization maintaining fiber. Discrete Raman-shifted wavelength peaks extending to nearly 800 nm are generated with pulse energies sufficient for OR-PAM imaging. Bandpass filters are used to select imaging wavelengths. A dual-mirror galvanometer system was used to scan the focused outputs across samples of carbon fiber networks, 200μm dye-filled tubes, and Swiss Webster mouse ears. Photoacoustic signals were collected in transmission mode and used to create maximum amplitude projection C-scan images. Double dye experiments and in vivo oxygen saturation estimation confirmed functional imaging potential.

  1. The use of stimulated electron emission (SEE) in homeland security applications

    NASA Astrophysics Data System (ADS)

    Ing, H.; Andrews, H. R.; Facina, M.; Lee, W. T.; Niu, H. W.

    2012-06-01

    Certain insulating solids can store a fraction of the absorbed energy when irradiated by ionizing radiation. The stored energy can be released subsequently by heating or optical stimulation. As a result, light may be emitted through Thermoluminescence (TL) or Optically-Stimulated Luminescence (OSL) and electrons may be emitted through Thermally-Stimulated Electron Emission (TSEE) or Optically-Stimulated Electron Emission (OSEE). TL and OSL are widely used in current radiation dosimetry systems. However, despite considerable research effort during the early 1970s, SEE was not commonly adopted for dosimetry applications. One of the main reasons is that SEE is a surface phenomenon, while luminescence is a bulk phenomenon, making SEE more susceptible to humidity, absorption of gases, minor physical defects and handling, both before and after irradiation. Nevertheless, it has been recognized that SEE may be useful for homeland security applications in nuclear forensics, where dose accuracy is not the primary performance metric. In this research, we are investigating the use of SEE for nuclear forensic applications. Many common materials, both natural and man-made, exhibit the phenomenon, providing an opportunity to use the environment itself as an in-situ radiation detector. We have designed and constructed a unique prototype reader for conducting SEE measurements. We have demonstrated that the SEE measurements from a variety of materials are quantitatively reproducible and correlated to radiation exposure. Due to the broad applicability of SEE, significant additional studies are warranted to optimize this novel technique for nuclear forensic and other applications.

  2. Influence of P{sub 2}O{sub 5} and Al{sub 2}O{sub 3} content on the structure of erbium-doped borosilicate glasses and on their physical, thermal, optical and luminescence properties

    SciTech Connect

    Bourhis, Kevin; Massera, Jonathan; Petit, Laeticia; Ihalainen, Heikki; Fargues, Alexandre; Cardinal, Thierry; Hupa, Leena; Hupa, Mikko; Dussauze, Marc; Rodriguez, Vincent; Boussard-Plédel, Catherine; Bureau, Bruno; Roiland, Claire; Ferraris, Monica

    2015-03-15

    Highlights: • Reorganization of the glass structure induced by the addition of P{sub 2}O{sub 5} or Al{sub 2}O{sub 3}. • Emission properties related to the presence of P or Al in the Er{sup 3+} coordination shell. • Declustering observed upon addition of P{sub 2}O{sub 5}. • No declustering upon addition of Al{sub 2}O{sub 3}. - Abstract: The effect of P{sub 2}O{sub 5} and/or Al{sub 2}O{sub 3} addition in Er-doped borosilicate glasses on the physical, thermal, optical, and luminescence properties is investigated. The changes in these glass properties are related to the glass structure modifications induced by the addition of P{sub 2}O{sub 5} and/or Al{sub 2}O{sub 3}, which were probed by FTIR, {sup 11}B MAS NMR and X-ray photoelectron spectroscopies. Variations of the polymerization degree of the silicate tetrahedra and modifications in the {sup [3]}B/{sup [4]}B ratio are explained by a charge compensation mechanism due to the formation of AlO{sub 4}, PO{sub 4} groups and the formation of Al-O-P linkages in the glass network. From the absorption and luminescence properties of the Er{sup 3+} ions at 980 nm and 1530 nm, declustering is suspected for the highest P{sub 2}O{sub 5} concentrations while for the highest Al{sub 2}O{sub 3} concentrations no declustering is observed.

  3. Test-retest assessment of cortical activation induced by repetitive transcranial magnetic stimulation with brain atlas-guided optical topography

    NASA Astrophysics Data System (ADS)

    Tian, Fenghua; Kozel, F. Andrew; Yennu, Amarnath; Croarkin, Paul E.; McClintock, Shawn M.; Mapes, Kimberly S.; Husain, Mustafa M.; Liu, Hanli

    2012-11-01

    Repetitive transcranial magnetic stimulation (rTMS) is a technology that stimulates neurons with rapidly changing magnetic pulses with demonstrated therapeutic applications for various neuropsychiatric disorders. Functional near-infrared spectroscopy (fNIRS) is a suitable tool to assess rTMS-evoked brain responses without interference from the magnetic or electric fields generated by the TMS coil. We have previously reported a channel-wise study of combined rTMS/fNIRS on the motor and prefrontal cortices, showing a robust decrease of oxygenated hemoglobin concentration (Δ[HbO2]) at the sites of 1-Hz rTMS and the contralateral brain regions. However, the reliability of this putative clinical tool is unknown. In this study, we develop a rapid optical topography approach to spatially characterize the rTMS-evoked hemodynamic responses on a standard brain atlas. A hemispherical approximation of the brain is employed to convert the three-dimensional topography on the complex brain surface to a two-dimensional topography in the spherical coordinate system. The test-retest reliability of the combined rTMS/fNIRS is assessed using repeated measurements performed two to three days apart. The results demonstrate that the Δ[HbO2] amplitudes have moderate-to-high reliability at the group level; and the spatial patterns of the topographic images have high reproducibility in size and a moderate degree of overlap at the individual level.

  4. Temporal comparison of functional brain imaging with diffuse optical tomography and fMRI during rat forepaw stimulation

    NASA Astrophysics Data System (ADS)

    Siegel, Andrew M.; Culver, Joseph P.; Mandeville, Joseph B.; Boas, David A.

    2003-05-01

    The time courses of oxyhaemoglobin ([HbO2]), deoxyhaemoglobin ([HbR]) and total haemoglobin ([HbT]) concentration changes following cortical activation in rats by electrical forepaw stimulation were measured using diffuse optical tomography (DOT) and compared to similar measurements performed previously with fMRI at 2.0 T and 4.7 T. We also explored the qualitative effects of varying stimulus parameters on the temporal evolution of the hemodynamic response. DOT images were reconstructed at a depth of 1.5 mm over a 1 cm square area from 2 mm anterior to bregma to 8 mm posterior to bregma. The measurement set included 9 sources and 16 detectors with an imaging frame rate of 10 Hz. Both DOT [HbR] and [HbO2] time courses were compared to the fMRI BOLD time course during stimulation, and the DOT [HbT] time course was compared to the fMRI cerebral plasma volume (CPV) time course. We believe that DOT and fMRI can provide similar temporal information for both blood volume and deoxyhaemoglobin changes, which helps to cross-validate these two techniques and to demonstrate that DOT can be useful as a complementary modality to fMRI for investigating the hemodynamic response to neuronal activity.

  5. PNBE-supported metallopolymer-type optical materials through grafting of Zn-Ln (Ln = Nd, Yb or Er) benzimidazole complex monomers with efficient NIR luminescence

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Li, Hongyan; Feng, Weixu; Fu, Guorui; Lü, Xingqiang; Wong, Wai-Kwok; Jones, Richard A.

    2017-02-01

    Through the ring-opening metathesis polymerization (ROMP) of norbornene (NBE) with each of obtained allyl-containing complex monomers [Zn(L)2(Py)Ln(NO3)3] (Ln = La, 1; Nd, 2; Yb, 3; Er, 4 or Gd, 5; HL = 4-allyl-2-(1H-benzo[d]imidazol-2-yl)-6-methoxyphenol; Py = pyridine), a series of metallopolymers Poly(NBE-co-[Zn(L)2Ln(Py)(NO3)3)]) were obtained, respectively. Especially for Poly(NBE-co-2) and Poly(NBE-co-3), covalently-bonded grafting endows significantly improved physical properties including efficient NIR luminescence (ΦNdL = 0.63% and ΦYbL = 1.43%) in solid state.

  6. Binary lanthanide(III)/nitrate and ternary lanthanide(III)/nitrate/chloride complexes in an ionic liquid containing water: optical absorption and luminescence studies.

    PubMed

    Ansari, Seraj A; Liu, Lisheng; Rao, Linfeng

    2015-02-14

    The formation of binary Ln(iii)/nitrate and ternary Ln(iii)/nitrate/chloride complexes in a water-saturated ionic liquid, 1-butyl-3-methyl imidazolium bis(trifluoromethanesulfonyl)imide (denoted BumimTf(2)N), was investigated by absorption spectrophotometry and luminescence spectroscopy. Four successive binary complexes, Nd(NO(3))(2+), Nd(NO(3))(2)(+), Nd(NO(3))(3), and Nd(NO(3))(4)(-), were identified, and their stability constants in water-saturated BumimTf(2)N are several orders of magnitude higher than those in aqueous solutions, but much lower than those observed in dry BumimTf(2)N. The complexation of lanthanides with nitrate in wet BumimTf(2)N proceeds via the replacement of water molecules by bidentate nitrate anions from the inner solvation spheres of Ln(3+) cations. In the absence of nitrate, the precipitation of Ln(iii)/chloride complex(es) occurs at low ratios of C(Cl)/C(Ln) (<6) in BumimTf(2)N, which precludes the determination of stability constants of binary Ln(iii)/chloride complexes by spectrophotometry or luminescence spectroscopy. However, using a competition approach, the formation of two ternary complexes, Ln(NO(3))(3)Cl(2)(2-) and Ln(NO(3))(2)Cl(4)(3-), has been observed and their stability constants in wet BumimTf(2)N were determined. Data indicate that both nitrate and chloride are stronger ligands than water for lanthanides in BumimTf(2)N.

  7. Stimulated Brillouin scattering in ultra-long distributed feedback Bragg gratings in standard optical fiber.

    PubMed

    Loranger, Sébastien; Lambin-Iezzi, Victor; Wahbeh, Mamoun; Kashyap, Raman

    2016-04-15

    Distributed feedback (DFB) fiber Bragg gratings (FBG) are widely used as narrow-band filters and single-mode cavities for lasers. Recently, a nonlinear generation has been shown in 10-20 cm DFB gratings in a highly nonlinear fiber. First, we show in this Letter a novel fabrication technique of ultra-long DFBs in a standard fiber (SMF-28). Second, we demonstrate nonlinear generation in such gratings. A particular inscription technique was used to fabricate all-in-phase ultra-long FBG and to implement reproducible phase shift to form a DFB mode. We demonstrate stimulated Brillouin scattering (SBS) emission from this DFB mode and characterize the resulting laser. It seems that such a SBS based DFB laser stabilizes a pump's jittering and reduces its linewidth.

  8. Optical stimulation for restoration of motor function following spinal cord injury

    PubMed Central

    Mallory, Grant W.; Grahn, Peter J.; Hachmann, Jan T.; Lujan, J. Luis; Lee, Kendall H.

    2015-01-01

    Spinal cord injury (SCI) can be defined as a loss of communication between the brain and the body due to disrupted pathways within the spinal cord. While many promising molecular strategies have emerged to reduce secondary injury and promote axonal regrowth, there is still no effective cure and recovery of function remains limited. Functional electrical stimulation (FES) represents a strategy developed to restore motor function without the need for regenerating severed spinal pathways. Despite its technological success, however, FES has not been widely integrated into the lives of spinal cord injury survivors. In this review, we briefly discuss the limitations of existing FES technologies. Additionally, we discuss how optogenetics, a rapidly evolving technique used primarily to investigate select neuronal populations within the brain, may eventually be used to replace FES as a form of therapy for functional restoration following SCI. PMID:25659246

  9. Why does infant stepping disappear and can it be stimulated by optic flow?

    PubMed

    Barbu-Roth, Marianne; Anderson, David I; Streeter, Ryan J; Combrouze, Marie; Park, Juana; Schultz, Brooke; Campos, Joseph J; Goffinet, François; Provasi, Joëlle

    2015-01-01

    Two independent experiments (n = 22 and n = 22) showed that 2-month-old infants displayed significantly more stepping movements when supported upright in the air than when supported with their feet contacting a surface. Air- and surface-stepping kinematics were quite similar (Experiment 2). In addition, when data were collapsed across both experiments, more air steps and more donkey kicks were seen when infants were exposed to optic flows that specified backward compared to forward translation. The findings challenge the currently accepted heavy legs explanation for the disappearance of stepping at 2 months of age and raise new questions about the visual control of stepping.

  10. Luminescence properties of a nanoporous freshwater diatom.

    PubMed

    Goswami, Bondita; Choudhury, Amarjyoti; Buragohain, Alak K

    2012-01-01

    Freshwater diatom frustules show special optical properties. In this paper we observed luminescence properties of the freshwater diatom Cyclotella meneghiniana. To confirm the morphological properties we present scanning electron microscopy (SEM) images. X-ray diffraction (XRD) studies were carried out to visualize the structural properties of the frustules, confirming that silica present in diatom frustules crystallizes in an α-quartz structure. Study of the optical properties of the silica frustules of diatoms using ultra-violet-visible (UV-vis) spectroscopy and photoluminescence spectroscopy confirmed that the diatom C. meneghiniana shows luminescence in the blue region of the electromagnetic spectrum when irradiated with UV light. This property of diatoms can be exploited to obtain many applications in day-to-day life. Also, using time-resolved photoluminescence spectroscopy (TRPL) it was confirmed that this species of diatom shows bi-exponential decay.

  11. Optical pulse shaping for selective excitation of coherent molecular vibrations by stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Geddes, Joseph B., III; Marks, Daniel L.; Boppart, Stephen A.

    2009-02-01

    Coherent anti-Stokes Raman scattering (CARS) can be used to identify biological molecules from their vibrational spectra in tissue. A single double-chirped broadband optical pulse can excite a broad spectrum of resonant molecular vibrations in the fingerprint spectral region. Such a pulse also excites nonresonant CARS, particularly from water. We describe a theoretical technique to design an optical pulse to selectively excite coherent vibrations in a target molecular species so that the CARS signal generated is increased. The signal from other molecules is reduced, since the incident pulse does not excite them to have coherent vibrations. As an example, we apply the technique to design pulses to elicit increased CARS signal from a mixture of one or more of the alcohols methanol, ethanol, and isopropanol. We also show how such pulse designs can be used to selectively excite one member of closely related complex biological species. As measured interferometrically, the CARS signal from three phosphodiester stretch modes of DNA can be increased to more than ten times that of the analogous signal from RNA when the pulse design technique is used.

  12. Novel lock-in amplifier for identification of luminescent materials for authentication

    NASA Astrophysics Data System (ADS)

    McAulay, Alastair D.

    2007-04-01

    Digital and analog design approaches are reviewed for handheld low-cost electronic signal processing boxes for close-up optical detection and identification of phosphor markers for authentication of paper money, legal documents, pharmaceuticals, clothing materials, and military friend and foe identification. For extending the range to longer distances of over a meter (several feet) we propose a novel low-cost handheld lock-in amplifier that uniquely identifies a phosphor at a distance of several feet in a noisy environment of daylight, sunlight, electronic noise and reflection of the stimulating beam. The lock-in amplifier differs from a conventional one by sampling the detector out of synchronization with the source to avoid reflections which will mask the phosphor luminescence and provide opportunities for counterfeiters. The luminescence decays slowly after stimulation is removed. We simulate the lock-in amplifier to determine the trade-off between speed of authentication and distance. Only 40ms of integration in the lock-in amplifier will block noise of frequencies differing by more than 1% from the modulation frequency to allow authentication over a meter.

  13. Monitoring Delamination of Thermal Barrier Coatings by Near-Infrared and Upconversion Luminescence Imaging

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Martin, R. E.; Singh, Jogender; Wolfe, Doug E.

    2008-01-01

    Previous work has demonstrated that TBC delamination can be monitored by incorporating a thin luminescent sublayer that produces greatly increased luminescence intensity from delaminated regions of the TBC. Initial efforts utilized visible-wavelength luminescence from either europium or erbium doped sublayers. This approach exhibited good sensitivity to delamination of electron-beam physical-vapor-deposited (EB-PVD) TBCs, but limited sensitivity to delamination of the more highly scattering plasma-sprayed TBCs due to stronger optical scattering and to interference by luminescence from rare-earth impurities. These difficulties have now been overcome by new strategies employing near-infrared (NIR) and upconversion luminescence imaging. NIR luminescence at 1550 nm was produced in an erbium plus ytterbium co-doped yttria-stabilized zirconia (YSZ) luminescent sublayer using 980-nm excitation. Compared to visible-wavelength luminescence, these NIR emission and excitation wavelengths are much more weakly scattered by the TBC and therefore show much improved depth-probing capabilities. In addition, two-photon upconversion luminescence excitation at 980 nm wavelength produces luminescence emission at 562 nm with near-zero fluorescence background and exceptional contrast for delamination indication. The ability to detect TBC delamination produced by Rockwell indentation and by furnace cycling is demonstrated for both EB-PVD and plasma-sprayed TBCs. The relative strengths of the NIR and upconversion luminescence methods for monitoring TBC delamination are discussed.

  14. Luminescence of erbium ions in tellurite glasses

    SciTech Connect

    Savikin, Alexander P.; Grishin, Igor A.; Sharkov, Valery V.; Budruev, Andrei V.

    2013-11-15

    Optical characteristics of new generation of tellurite glasses having high stability against crystallization have been studied. As the initial reagents for the glasses synthesis on the base of tellurium oxide (TeO{sub 2}) there were used such oxides as WO{sub 3}, MoO{sub 3}, La{sub 2}O{sub 3}, Li{sub 2}CO{sub 3}, ZnO—Bi{sub 2}O{sub 2}CO{sub 3} and active components such as high purity Er{sub 2}O{sub 3}, Yb{sub 2}O{sub 3}, ErF{sub 3} and YbF{sub 3}. Intensities of luminescence at 1.53 µm of the erbium ions were determined after excitation at 975 nm. Experimental data obtained have shown the possibility to use the studied glasses doped by Er{sup 3+} and Yb{sup 3+} as active elements for fiber and integrated optics. - Graphical abstract: In contrast to the case of ZBLAN glass the TeO{sub 2}–WO{sub 3} (Er{sup 3+}) glass has bright intensity of luminescence at 1.53 µm for erbium ions that should be caused by excitation at 975 nm. Experimental data obtained have shown the possibility to use the studied glasses doped by Er{sup 3+} and Yb{sup 3+} as active elements for fiber and integrated optics. Display Omitted - Highlights: • We examined changes in growth of luminescence in doubly-doped tellurite glasses. • We found that luminescence grows in two orders by using Er{sup 3+} and Yb{sup 3+} at 1.53 μm. • We see possibility to use those glasses as active elements for integrated optics.

  15. Luminescent gold nanoparticles for bioimaging

    NASA Astrophysics Data System (ADS)

    Zhou, Chen

    Inorganic nanoparticles (NPs) with tunable and diverse material properties hold great potential as contrast agents for better disease management. Over the past decades, luminescent gold nanoparticles (AuNPs) with intrinsic emissions ranging from the visible to the near infrared have been synthesized and emerge as a new class of fluorophores for bioimaging. This dissertation aims to fundamentally understand the structure-property relationships in luminescent AuNPs and apply them as contrast agents to address some critical challenges in bioimaging at both the in vitro and in vivo level. In Chapter 2, we described the synthesized ~20 nm polycrystalline AuNPs (pAuNPs), which successfully integrated and enhanced plasmonic and fluorescence properties into a single AuNP through the grain size effect. The combination of these properties in one NP enabled AuNPs to serve as a multimodal contrast agent for in vitro optical microscopic imaging, making it possible to develop correlative microscopic imaging techniques. In Chapters 3-5, we proposed a feasible approach to optimize the in vivo kinetics and clearance profile of nanoprobes for multimodality in vivo bioimaging applications by using straightforward surface chemistry with luminescent AuNPs as a model. Luminescent glutathione-coated AuNPs of ~2 nm were synthesized. Investigation of the biodistribution showed that these glutathione-coated AuNPs (GS-AuNPs) exhibit stealthiness to the reticuloendothelial system (RES) organs and efficient renal clearance, with only 3.7+/-1.9% and 0.3+/-0.1% accumulating in the liver and spleen, and over 65% of the injection dose cleared out via the urine within the first 72 hours. In addition, ~2.5 nm NIR-emitting radioactive glutathione-coated [198Au]AuNPs (GS-[198Au]AuNPs) were synthesized for further evaluation of the pharmacokinetic profile of GS-AuNPs and potential multimodal imaging. The results showed that the GS-[198Au]AuNPs behave like small-molecule contrast agents in

  16. Simulation of neurocomputing based on the photophobic reactions of Euglena with optical feedback stimulation.

    PubMed

    Ozasa, Kazunari; Aono, Masashi; Maeda, Mizuo; Hara, Masahiko

    2010-05-01

    To explore possible forms of unconventional computers that have high capacities for adaptation and exploration, we propose a new approach to developing a biocomputer based on the photophobic reactions of microbes (Euglena gracilis), and perform the Monte-Carlo simulation of Euglena-based neural network computing, involving virtual optical feedback to the Euglena cells. The photophobic reactions of Euglena are obtained experimentally, and incorporated in the simulation, together with a feedback algorithm with a modified Hopfield-Tank model for solving a 4-city traveling salesman problem. The simulation shows high performances in terms of (1) reaching one of the best solutions of the problem, and (2) searching for a number of solutions via dynamic transition among the solutions. This dynamic transition is attributed to the fluctuation of state variables, global oscillation through feedback instability, and the one-by-one change of state variables.

  17. New optically stimulated luminescence ages provide evidence of MIS3 and MIS2 eolian activity on Black Mesa, northeastern Arizona, USA

    USGS Publications Warehouse

    Ellwein, A.L.; Mahan, S.A.; McFadden, L.D.

    2011-01-01

    Eolian deposition on the semiarid southern Colorado Plateau has been attributed to episodic aridity during the Quaternary Period. However, OSL ages from three topographically controlled (e.g. falling) dunes on Black Mesa in northeastern Arizona indicate that eolian sediments there were deposited in deep tributary valleys as early as 35-30. ka, with most sand deposited before 20. ka. In contrast, the oldest OSL ages for sand sheets fall within the Pleistocene-Holocene climatic transition (~. 12-8. ka). Thus most eolian sediment accumulated on Black Mesa under climatic conditions that were in general cooler, moister, and more variable than today, not more arid, pointing to a considerable increase in sediment supply. ?? 2010 University of Washington.

  18. In vivo dosimetry with optically stimulated luminescent dosimeters, OSLDs, compared to diodes; the effects of buildup cap thickness and fabrication material

    SciTech Connect

    Jursinic, Paul A.; Yahnke, Clifford J.

    2011-10-15

    Purpose: For external beam in vivo measurements, the dosimeter is normally placed on the patient's skin, and the dose to a point of interest inside the patient is derived from surface measurements. In order to obtain accurate and reliable measurements, which correlate with the dose values predicted by a treatment planning system, a dosimeter needs to be at a point of electronic equilibrium. This equilibrium is accomplished by adding material (buildup) above the detector. This paper examines the use of buildup caps in a clinical setting for two common detector types: OSLDs and diodes. Clinically built buildup-caps and commercially available hemispherical caps are investigated. The effects of buildup cap thickness and fabrication material on field-size correction factors, C{sub FS}, are reported, and differences between the effects of thickness and fabrication material are explained based on physical parameters. Methods: Measurements are made on solid water phantoms for 6 and 15 MV x-ray beams. Two types of dosimeters are used: OSLDs, InLight/OSL Nanodot dosimeters (Landauer, Inc., Glenwood, IL) and a P-type surface diode (Standard Imaging, Madison, WI). Buildup caps for these detectors were fabricated out of M3, a water-equivalent material, and sheet-metal stock of Al, Cu, and Pb. Also, commercially available hemispherical buildup caps made of plastic water and brass (Landauer, Inc., Glenwood, IL) were used with Nanodots. OSLDs were read with an InLight microStar reader (Landauer, Inc., Glenwood, IL). Dose calculations were carried out with the XiO treatment planning system (CMS/Elekta, Stockholm) with tissue heterogeneity corrections. Results: For OSLDs and diodes, when measurements are made with no buildup cap a change in C{sub FS} of 200% occurs for a field-size change from 3 cm x 3 cm to 30 cm x 30 cm. The change in C{sub FS} is reduced to about 4% when a buildup cap with wall thickness equal to the depth of maximum dose is used. Buildup caps with larger wall thickness do not cause further reduction in C{sub FS}. The buildup cap fabrication material has little or no effect on C{sub FS}. The perturbation to the delivered dose caused by placing a detector with a buildup cap on the surface of a patient is measured to be 4%-7%. A comparison between calculated dose and dose measured with a Nanodot and a diode for 6 and 15 MV x-rays is made. When C{sub FS} factors are carefully determined and applied to measurements made on a phantom, the differences between measured and calculated doses were found to be between {+-}1.3%. Conclusions: OSLDs and diodes with appropriate buildup caps can be used to measure dose on the surface of a patient and predict the delivered dose to depth dmax in a range of {+-}1.3% for 100 cGy. The buildup cap: can be fabricated from any material examined in this work, is best with wall thickness dmax, and causes a perturbation to the delivered dose of 4%-7% when the wall thickness is dmax. OSLDs and diodes with buildup caps can both give accurate measurements of delivered dose.

  19. Frontiers in optical stimulation of neural tissues: past, present, and future

    NASA Astrophysics Data System (ADS)

    Wells, Jonathon; Bendett, Mark; Webb, Jim; Richter, Claus; Izzo, Agnella; Jansen, E. Duco; Mahadevan-Jansen, Anita

    2008-02-01

    Since lasers were first used in medicine and biomedical related research there have been a variety of documented effects following the irradiation of neural tissues. The first systematic studies to report the direct stimulatory effect of infrared light on neural tissues were performed by researchers at Vanderbilt University in the rat sciatic nerve. These initial studies demonstrated a set of associated advantages of standard stimulation methods, which lead to much excitement and anticipation from the neuroscience community and industry. The inception of this new field included a partnership between industry and academia to foster the development, not only of the applications but also a series of devices to support the research and ultimate commercialization of technology. Currently several institutions are actively utilizing this technique in various applications including in the cochlear and vestibular systems. As more researchers enter the field and new devices are developed we anticipate the number of applications will continue to grow. Some of the next steps will include the establishment of the safety and efficacy data to move this technique to clinical trials and human use.

  20. High-sensitivity temperature sensing using higher-order Stokes stimulated Brillouin scattering in optical fiber.

    PubMed

    Iezzi, Victor Lambin; Loranger, Sébastien; Marois, Mikaël; Kashyap, Raman

    2014-02-15

    In an effort to reduce the cost of sensing systems and make them more compact and flexible, Brillouin scattering has been demonstrated as a useful tool, especially for distributed temperature and strain sensing (DTSS), with a resolution of a few centimeters over several tens of kilometers of fiber. However, sensing is limited by the Brillouin frequency shift's sensitivity to these parameters, which are of the order of ~1.3  MHz/°C and of ~0.05  MHz/με for standard fiber. In this Letter, we demonstrate a new and simple technique for enhancing the sensitivity of sensing by using higher-orders Stokes shifts with stimulated Brillouin scattering (SBS). By this method, we multiply the sensitivity of the sensor by the number of the Stokes order used, enhanced by six-fold, therefore reaching a sensitivity of ~7  MHz/°C, and potentially ~0.30  MHz/με. To do this, we place the test fiber within a cavity to produce a frequency comb. Based on a reference multiorder SBS source for heterodyning, this system should provide a new distributed sensing technology with significantly better resolution at a potentially lower cost than currently available DTSS systems.

  1. Sensory stimulation for lowering intraocular pressure, improving blood flow to the optic nerve and neuroprotection in primary open-angle glaucoma.

    PubMed

    Rom, Edith

    2013-12-01

    Primary open-angle glaucoma is a group of optic neuropathies that can lead to irreversible blindness. Sensory stimulation in the form of acupuncture or ear acupressure may contribute to protecting patients from blindness when used as a complementary method to orthodox treatment in the form of drops, laser or surgery. The objective of this article is to provide a narrative overview of the available literature up to July 2012. It summarises reported evidence on the potential beneficial effects of sensory stimulation for glaucoma. Sensory stimulation appears to significantly enhance the pressure-lowering effect of orthodox treatments. Studies suggest that it may also improve blood flow to the eye and optic nerve head. Furthermore, it may play a role in neuroprotection through regulating nerve growth factor and brain-derived neurotrophic factor and their receptors, thereby encouraging the survival pathway in contrast to the pathway to apoptosis. Blood flow and neuroprotection are areas that are not directly influenced by orthodox treatment modalities. Numerous different treatment protocols were used to investigate the effect of sensory stimulation on intraocular pressure, blood flow or neuroprotection of the retina and optic nerve in the animal model and human pilot studies. Objective outcomes were reported to have been evaluated with Goldmann tonometry, Doppler ultrasound techniques and electrophysiology (pattern electroretinography, visually evoked potentials), and supported with histological studies in the animal model. Taken together, reported evidence from these studies strongly suggests that sensory stimulation is worthy of further research.

  2. Luminescent chiral lanthanide(III) complexes as potential molecular probes

    PubMed Central

    Muller, Gilles

    2009-01-01

    This perspective gives an introduction into the design of luminescent lanthanide(III)-containing complexes possessing chiral properties and used to probe biological materials. The first part briefly describes general principles, focusing on the optical aspect (i.e. lanthanide luminescence, sensitization processes) of the most emissive trivalent lanthanide ions, europium and terbium, incorporated into molecular luminescent edifices. This is followed by a short discussion on the importance of chirality in the biological and pharmaceutical fields. The second part is devoted to the assessment of the chiroptical spectroscopic tools available (typically circular dichroism and circularly polarized luminescence) and the strategies used to introduce a chiral feature into luminescent lanthanide(III) complexes (chiral structure resulting from a chiral arrangement of the ligand molecules surrounding the luminescent center or presence of chiral centers in the ligand molecules). Finally, the last part illustrates these fundamental principles with recent selected examples of such chiral luminescent lanthanide-based compounds used as potential probes of biomolecular substrates. PMID:19885510

  3. The mensuration of delayed luminescence on ginseng

    NASA Astrophysics Data System (ADS)

    Xiang, Fenghua; Bai, Hua; Tang, Guoqing

    2008-12-01

    In this paper, the delayed luminescence of ginseng produced from two different areas was determined with the self built bioluminescence detecting system. And the attenuation curve of bioluminescence of the experimental samples were studied, before and after the samples extracted by 58% alcohol. We primarily gave out the parameters describing emitting characteristic. Using the method of optic induced bioluminescence, we also determined the weak luminescence emitting from the ginseng tuber, and find the intensity and decay time having obvious difference from skin and core, with these data we can distinguish the producing area and feature of the ginseng. In the experiment, the light-induce luminescence of the sample was menstruated, which has been infused by water and 58% alcohol; the difference between two kinds of samples which were infused and not infused has been delivered. In order to investigate the effect of excitation-light spectrum component to delayed luminescence of ginseng, a light filter witch allow a wavelength scope of 225nm~420nm pass through was installed between the light source and sample, keeping other work condition unchanged, the bioluminescence was also determined. For investigating the effect of extracting to emitting, the absorption spectrum of above samples ware studied, and the time-sequence of absorption spectrum was obtained. Based on the data obtained from our experiment, we analyzed the radiation mechanism of ginseng slice and tuber.

  4. Probing structure-induced optical behavior in a new class of self-activated luminescent 0D/1D CaWO₄ metal oxide – CdSe nanocrystal composite heterostructures

    DOE PAGES

    Han, Jinkyu; McBean, Coray; Wang, Lei; ...

    2015-01-30

    In this report, we synthesize and characterize the structural and optical properties of novel heterostructures composed of (i) semiconducting nanocrystalline CdSe quantum dot (QDs) coupled with (ii) both one and zero-dimensional (1D and 0D) motifs of self-activated luminescence CaWO₄ metal oxides. Specifically, ~4 nm CdSe QDs have been anchored onto (i) high-aspect ratio 1D nanowires, measuring ~230 nm in diameter and ~3 μm in length, as well as onto (ii) crystalline 0D nanoparticles (possessing an average diameter of ~ 80 nm) of CaWO₄ through the mediation of 3-mercaptopropionic acid (MPA) as a connecting linker. Composite formation was confirmed by complementarymore » electron microscopy and spectroscopy (i.e. IR and Raman) data. In terms of luminescent properties, our results show that our 1D and 0D heterostructures evince photoluminescence (PL) quenching and shortened PL lifetimes of CaWO₄ as compared with unbound CaWO₄. We propose that a photo-induced electron transfer process occurs from CaWO₄ to CdSe QDs, a scenario which has been confirmed by NEXAFS measurements and which highlights a decrease in the number of unoccupied orbitals in the conduction bands of CdSe QDs. By contrast, the PL signature and lifetimes of MPA-capped CdSe QDs within these heterostructures do not exhibit noticeable changes as compared with unbound MPA-capped CdSe QDs. The striking difference in optical behavior between CaWO₄ nanostructures and CdSe QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. In addition, the PL quenching behaviors for CaWO₄ within the heterostructure configuration were examined by systematically varying (i) the quantities and coverage densities of CdSe QDs as well as (ii) the intrinsic morphology (and by extension, the inherent crystallite size) of CaWO₄ itself.« less

  5. Intraocular BDNF promotes ectopic branching, alters motility and stimulates abnormal collaterals in regenerating optic fibers.

    PubMed

    Dawson, Amy J; Miotke, Jill A; Meyer, Ronald L

    2015-07-10

    A great deal of effort has been invested in using trophic factors and other bioactive molecules to promote cell survival and axonal regeneration in the adult central nervous system. Far less attention has been paid to investigating potential effects that trophic factors may have that might interfere with recovery. In the visual system, BDNF has been previously reported to prevent regeneration. To test if BDNF is inherently incompatible with regeneration, BDNF was given intraocularly during optic nerve regeneration in the adult goldfish. In vivo imaging and anatomical analysis of selectively labeled axons were used as a sensitive assay for effects on regeneration within the tectum. BDNF had no detectable inhibitory effect on the ability of axons to regenerate. Normal numbers of axons regenerated into the tectum, exhibited dynamic growth and retractions similar to controls, and were able to navigate to their correct target zone in the tectum. However, BDNF was found to have additional effects that adversely affected the quality of regeneration. It promoted premature branching at ectopic locations, diminished the growth rate of axons through the tectum, and resulted in the formation of ectopic collaterals. Thus, although BDNF has robust effects on axonal behavior, it is, nevertheless, compatible with axonal regeneration, axon navigation and the formation of terminal arbors.

  6. Lunar luminescence measurements

    NASA Technical Reports Server (NTRS)

    Morgan, T. H.

    1983-01-01

    Spectra of lunar sites obtained in June 1983 have been analyzed for residual luminescence using the spectral line depth technique. The results or three sites each at three wavelengths are presented. The sites observed were Mare Crisium, Kepler, and Aristarchus. In each case, the value quoted was based not only on the strong Fraunhofer line in the spectral range covered but also on from 11 to 21 weaker lines within 80 A of the strongest feature. These data do not support previous observations. The values given do not indicate a greatly reddened spectrum, and the luminescence spectrum of the mare site is not significantly different from the two young crater sites. These observations cannot be adequately explained by thermal luminescence, theories of direct excitation are also unable to explain the strength of the flux.

  7. Temperature quenching of intracenter luminescence of Mn2+ ions in diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Agekyan, V. F.; Serov, A. Yu.; Filosofov, N. G.; Shtrom, I. V.; Karczewski, G.

    2016-10-01

    The temperature dependence of the spectral composition and intensity of intracenter luminescence of the Mn2+ 3d shell and the temperature dependence of the luminescence excitation spectra in an epitaxial layer of Cd0.2Mn0.8Te at different levels of optical excitation are investigated. It is found that in the crystals of type II1- x Mn x VI with a high concentration of manganese, the characteristics of intracenter luminescence of Mn2+ depend on the efficiency of excitation migration over manganese ions. Under migration conditions, the luminescence quantum yield is determined by the cooperative effect (up-conversion).

  8. Luminescent properties of fluorophosphate glasses with molecular cadmium selenide clusters

    NASA Astrophysics Data System (ADS)

    Kolobkova, E. V.; Kukushkin, D. S.; Nikonorov, N. V.; Sidorov, A. I.; Shakhverdov, T. A.

    2015-02-01

    It is experimentally shown that, prior to the formation of CdSe quantum dots in fluorophosphate glasses with cadmium and selenium ions in the process of synthesis, subnanosized molecular clusters (CdSe) n are formed, which exhibit luminescence in the visible spectral region upon UV excitation. Heat treatment of the glasses increases the size of molecular clusters and makes their optical properties closer to the optical properties of CdSe semiconductor quantum dots. An increase in the sample temperature from 20 to 250°C leads to reversible thermal quenching of the luminescence.

  9. Establishing a numerical chronology for the Middle Pleistocene glaciofluvial sediment record of an eastern alpine valley (Ybbs) using luminescence dating methods

    NASA Astrophysics Data System (ADS)

    Lüthgens, Christopher; Bickel, Lukas; Lomax, Johanna; Fiebig, Markus

    2014-05-01

    In the beginning of the 20th century, Albrecht Penck & Eduard Brückner developed the concept of four large scale Quaternary alpine glaciations extending into the alpine foreland. Since then, the Northern Alpine Foreland (NAF) has played a major role in the investigation of glacial and furthermore paleo-climatic events. This study focuses on the penultimate glaciation (attributed to MIS 6 in Austrian geological maps) when vast areas of the inner Alps were glaciated. In the easternmost part of the north draining valleys of the Alps, the glaciers did not reach the foreland, but formed valley glaciers confined by the mountainous terrain. This also applies for the Ybbs valley. Samples for Optically Stimulated Luminescence (OSL) dating were taken from glaciofluvial sediments exposed in three gravel pits situated close to the present day river course. Short transport distances as well as a highly dynamic depositional environment of a glacier-fed river system enhance the chances of incomplete resetting of the OSL signal prior to deposition. In such cases, quartz usually is the mineral of choice over feldspar, especially if dose rates are low and theoretically allow gaining quartz ages even beyond 150 ka. However, analyses of the quartz OSL signal characteristics by LM-OSL experiments and by CW pulse annealing have revealed the presence of a thermally unstable medium component contributing to the bulk quartz OSL signal, which may result in age underestimation. To obtain reliable age estimates for the samples, three luminescence signals were investigated (blue stimulated quartz OSL, infrared stimulated feldspar luminescence at 50°C (IRSL) and at an elevated temperature of 225°C (pIRIR)). Based on the results from these different methodological approaches, a luminescence based chronology was established for the deposition of glaciofluvial sediments in the Ybbs valley. This allows the temporal reconstruction of the glacial processes within the Ybbs catchment area during the

  10. A cleaning method to minimize contaminant luminescence signal of empty sample carriers using off-the-shelf chemical agents.

    PubMed

    Kazakis, Nikolaos A; Kitis, George; Tsirliganis, Nestor C

    2014-11-01

    Signals acquired during thermoluminescence or optically stimulated luminescence measurements must be completely free of any spurious and/or contamination signals to assure the credibility of the results, especially during exploratory research investigating the luminescence behavior of new materials. Experiments indicate that such unwanted signals may also stem from new (unused) and used empty sample carriers, namely cups and discs, which are widely used for such measurements, probably due to contamination from a fluorite and/or silica-related source. Fluorite and/or silicone oil appear to be the most likely sources of contamination, thus, their removal, along with any other possible source that exhibits undesirable luminescence behavior, is necessary. Conventional cleaning methods fail to eliminate such contaminants from empty cups and discs. In this work a new cleaning method is proposed incorporating off-the-shelf chemical agents. Results of thermoluminescence measurements highlight the efficiency of the new cleaning process, since it can completely remove any observed contaminants from both new and used sample carriers, of various shapes and/or materials. Consequently their signal is minimized even at relatively high beta-doses, where it is prominent, resulting in a clean and only sample-attributed signal.

  11. Luminescence sensitivity changes in natural quartz induced by high temperature annealing: a high frequency EPR and OSL study

    NASA Astrophysics Data System (ADS)

    Poolton, N. R. J.; Smith, G. M.; Riedi, P. C.; Bulur, E.; Bøtter-Jensen, L.; Murray, A. S.; Adrian, M.

    2000-04-01

    Quartz undergoes very significant luminescence sensitivity changes after high temperature annealing (0-1200 °C), with particular enhancement occurring between the phase transition temperatures 573 and 870 °C. In order to understand why this occurs, high frequency electron paramagnetic resonance (EPR), operating at 90 GHz, has been used to monitor the structure and population of defects in natural sedimentary quartz, following annealing and icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/> -irradiation. The results are compared with the optically stimulated luminescence (OSL) data of the same samples. It is shown that: (i) the structure and population of the dominant [AlO4 ]0 recombination centres are largely unaffected by the annealing process; (ii) the oxygen vacancy E´ centres are destroyed when annealed at temperatures between the phase transitions and; (iii) the numbers of both [TiO4 /H+ ]0 and [TiO4 /Li+ ]0 donors increase between 400 and 700 °C. Photo-EPR spectra are presented, providing evidence that both the Ti associated donors and Al acceptors are directly involved in the OSL process. The heat-induced changes in the population of these EPR defects is mirrored in part by the change in the luminescence sensitivity of several OSL components. Evidence is also presented suggesting that E´ may act as non-radiative centres competing in the OSL process.

  12. Paper-based biodetection using luminescent nanoparticles.

    PubMed

    Ju, Qiang; Noor, M Omair; Krull, Ulrich J

    2016-05-10

    Point-of-care and in-field technologies for rapid, sensitive and selective detection of molecular biomarkers have attracted much interest. Rugged bioassay technology capable of fast detection of markers for pathogens and genetic diseases would in particular impact the quality of health care in the developing world, but would also make possible more extensive screening in developed countries to tackle problems such as those associated with water and food quality, and tracking of infectious organisms in hospitals and clinics. Literature trends indicate an increasing interest in the use of nanomaterials, and in particular luminescent nanoparticles, for assay development. These materials may offer attributes for development of assays and sensors that could achieve improvements in analytical figures of merit, and provide practical advantages in sensitivity and stability. There is opportunity for cost-efficiency and technical simplicity by implementation of luminescent nanomaterials as the basis for transduction technology, when combined with the use of paper substrates, and the ubiquitous availability of cell phone cameras and associated infrastructure for optical detection and transmission of results. Luminescent nanoparticles have been described for a broad range of bioanalytical targets including small molecules, oligonucleotides, peptides, proteins, saccharides and whole cells (e.g., cancer diagnostics). The luminescent nanomaterials that are described herein for paper-based bioassays include metal nanoparticles, quantum dots and lanthanide-doped nanocrystals. These nanomaterials often have broad and strong absorption and narrow emission bands that improve opportunity for multiplexed analysis, and can be designed to provide emission at wavelengths that are efficiently processed by conventional digital cameras. Luminescent nanoparticles can be embedded in paper substrates that are designed to direct fluid flow, and the resulting combination of technologies can offer

  13. Image analysis applied to luminescence microscopy

    NASA Astrophysics Data System (ADS)

    Maire, Eric; Lelievre-Berna, Eddy; Fafeur, Veronique; Vandenbunder, Bernard

    1998-04-01

    We have developed a novel approach to study luminescent light emission during migration of living cells by low-light imaging techniques. The equipment consists in an anti-vibration table with a hole for a direct output under the frame of an inverted microscope. The image is directly captured by an ultra low- light level photon-counting camera equipped with an image intensifier coupled by an optical fiber to a CCD sensor. This installation is dedicated to measure in a dynamic manner the effect of SF/HGF (Scatter Factor/Hepatocyte Growth Factor) both on activation of gene promoter elements and on cell motility. Epithelial cells were stably transfected with promoter elements containing Ets transcription factor-binding sites driving a luciferase reporter gene. Luminescent light emitted by individual cells was measured by image analysis. Images of luminescent spots were acquired with a high aperture objective and time exposure of 10 - 30 min in photon-counting mode. The sensitivity of the camera was adjusted to a high value which required the use of a segmentation algorithm dedicated to eliminate the background noise. Hence, image segmentation and treatments by mathematical morphology were particularly indicated in these experimental conditions. In order to estimate the orientation of cells during their migration, we used a dedicated skeleton algorithm applied to the oblong spots of variable intensities emitted by the cells. Kinetic changes of luminescent sources, distance and speed of migration were recorded and then correlated with cellular morphological changes for each spot. Our results highlight the usefulness of the mathematical morphology to quantify kinetic changes in luminescence microscopy.

  14. Optical and structural study of GaN nanowires grown by catalyst-free molecular beam epitaxy. II. Sub-band-gap luminescence and electron irradiation effects

    NASA Astrophysics Data System (ADS)

    Robins, Lawrence H.; Bertness, Kris A.; Barker, Joy M.; Sanford, Norman A.; Schlager, John B.

    2007-06-01

    GaN nanowires with diameters of 50-250 nm, grown by catalyst-free molecular beam epitaxy, were characterized by photoluminescence (PL) and cathodoluminescence (CL) spectroscopy at temperatures from 3 to 297 K. Both as-grown samples and dispersions of the nanowires onto other substrates were examined. The properties of the near-band-edge PL and CL spectra were discussed in Part I of this study by [Robins et al. [L. H. Robins, K. A. Bertness, J. M. Barker, N. A. Sanford, and J. B. Schlager, J. Appl. Phys. 101,113505 (2007)]. Spectral features below the band gap, and the effect of extended electron irradiation on the CL, are discussed in Part II. The observed sub-band-gap PL and CL peaks are identified as phonon replicas of the free-exciton transitions, or excitons bound to structural defects or surface states. The defect-related peaks in the nanowires are correlated with luminescence lines previously reported in GaN films, denoted the Y lines [M. A. Reshchikov and H. M