Scatter from optical components; Proceedings of the Meeting, San Diego, CA, Aug. 8-10, 1989
NASA Astrophysics Data System (ADS)
Stover, John C.
Various papers on scatter from optical components are presented. Individual topics addressed include: BRDF of SiC and Al foam compared to black paint at 3.39 microns, characterization of optical baffle materials, bidirectional transmittance distribution function of several IR materials at 3.39 microns, thermal cycling effects on the BRDF of beryllium mirrors, BTDV of ZnSe with multilayer coatings at 3.39 microns, scattering from contaminated surfaces, cleanliness correlation by BRDF and PFO instruments, contamination effects on optical surfaces, means of eliminating the effects of particulate contamination on scatter measurements of superfine optical surfaces, vacuum BRDF measurement of cryogenic optical surfaces, Monte Carlo simulation of contaminant transport to and deposition on complex spacecraft surfaces, surface particle observation and BRDF predictions, satellite material contaminant optical properties, dark field photographic techniques for documenting optical surface contamination, design of a laboratory study of contaminant film darkening in space, contamination monitoring approaches for EUV space optics.
NASA Technical Reports Server (NTRS)
Beverly, W. D.; Gillete, R. B.; Cruz, G. A.
1973-01-01
Results of a study on the feasibility of removing contaminant films from optical surfaces in vacuum, using an oxygen plasma, are discussed. Contaminant films were deposited onto optical surfaces from butadiene and methane gases at a pressure of about 4 torr in the presence of ultraviolet radiation. Optical surfaces evaluated included ultraviolet-reflecting mirrors, gratings, quartz disks, and spacecraft thermal control surfaces. In general, it was found that contaminants could be removed successfully from surfaces using an oxygen plasma. Exceptions were the white-paint thermal control surfaces, which, when contaminated, degraded further during exposure to the oxygen plasma.
NASA Technical Reports Server (NTRS)
Herren, Kenneth A.; Gregory, Don A.
2006-01-01
Bi-directional reflectance distribution function (BRDF) measurements of optical surfaces both before and after molecular contamination were done using UV, VUV and visible light. Molecular contamination of optical surfaces from outgassed material has been shown in many cases to proceed from acclimation centers, and to produce many roughly hemispherical "islands" of contamination on the surface. Vacuum Ultraviolet (VW) wavelengths are used here to measure angularly scattered light from optical surfaces.
NASA Technical Reports Server (NTRS)
1988-01-01
The in-situ optical surface measurement system is a facility designed to study the deleterious effects of particulate materials on the surface reflectivities of optical materials in the vacuum ultraviolet (VUV). This arrangement is designed to simulate the on-orbit effects of contamination and degradation of optical surfaces. This simulation is accomplished through the use of non-coherent VUV sources illuminating optical surfaces located in a high vacuum chamber. Several sources of contamination are employed. The reflectivity is measured both at the specular reflection as well as at two scattered positions, forward and reverse. The system components are described and an operating procedure is given.
Cleanliness evaluation of rough surfaces with diffuse IR reflectance
NASA Technical Reports Server (NTRS)
Pearson, L. H.
1995-01-01
Contamination on bonding surfaces has been determined to be a primary cause for degraded bond strength in certain solid rocket motor bondlines. Hydrocarbon and silicone based organic contaminants that are airborne or directly introduced to a surface are a significant source of contamination. Diffuse infrared (IR) reflectance has historically been used as an effective technique for detection of organic contaminants, however, common laboratory methods involving the use of a Fourier transform IR spectrometer (FTIR) are impractical for inspecting the large bonding surface areas found on solid rocket motors. Optical methods involving the use of acousto-optic tunable filters and fixed bandpass optical filters are recommended for increased data acquisition speed. Testing and signal analysis methods are presented which provide for simultaneous measurement of contamination concentration and roughness level on rough metal surfaces contaminated with hydrocarbons.
Contamination analyses of technology mirror assembly optical surfaces
NASA Technical Reports Server (NTRS)
Germani, Mark S.
1991-01-01
Automated electron microprobe analyses were performed on tape lift samples from the Technology Mirror Assembly (TMA) optical surfaces. Details of the analyses are given, and the contamination of the mirror surfaces is discussed. Based on the automated analyses of the tape lifts from the TMA surfaces and the control blank, we can conclude that the particles identified on the actual samples were not a result of contamination due to the handling or sampling process itself and that the particles reflect the actual contamination on the surface of the mirror.
Design principles for contamination abatement in scientific satellites.
NASA Technical Reports Server (NTRS)
Naumann, R. J.
1972-01-01
It is shown that deposition of contamination films on satellite optics can be controlled by the following means: isolating critical optical surfaces from the rest of the spacecraft; avoiding or minimizing the use of nonmetallic material, particularly near or in line of sight of optical surfaces; avoiding materials with high vapor pressures; subjecting materials to vacuum baking prior to use, to drive off the volatile outgassing products; keeping the critical surfaces at temperatures above the ambient; avoiding elevated operational temperatures for nonmetallic materials; paying special attention to optics exposed to intense UV-, X-ray, or particular radiation; avoiding water-vapor sources; and directing RCS plumes away from critical surfaces. Methods of controlling particulate contaminants are also proposed.
Study of surfaces using near infrared optical fiber spectrometry
NASA Technical Reports Server (NTRS)
Workman, G. L.; Arendale, W. A.; Hughes, C.
1995-01-01
The measurement and control of cleanliness for critical surfaces during manufacturing and in service provides a unique challenge for fulfillment of environmentally benign operations. Of particular interest has been work performed in maintaining quality in the production of bondline surfaces in propulsion systems and the identification of possible contaminants. This work requires an in-depth study of the possible sources of contamination, methodologies to identify contaminants, discrimination between contaminants and chemical species caused by environment, and the effect of particular contaminants on the bondline integrity of the critical surfaces. This presentation will provide an introduction to the use of optical fiber spectrometry in a nondestructive measurement system for process monitoring and how it can be used to help clarify issues concerning surface chemistry. Correlation of the Near Infrared (NIR) spectroscopic results with Optical Stimulated Electron Emission (OSEE) and ellipsometry will also be presented.
Contamination Effects on EUV Optics
NASA Technical Reports Server (NTRS)
Tveekrem, J.
1999-01-01
During ground-based assembly and upon exposure to the space environment, optical surfaces accumulate both particles and molecular condensibles, inevitably resulting in degradation of optical instrument performance. Currently, this performance degradation (and the resulting end-of-life instrument performance) cannot be predicted with sufficient accuracy using existing software tools. Optical design codes exist to calculate instrument performance, but these codes generally assume uncontaminated optical surfaces. Contamination models exist which predict approximate end-of-life contamination levels, but the optical effects of these contamination levels can not be quantified without detailed information about the optical constants and scattering properties of the contaminant. The problem is particularly pronounced in the extreme ultraviolet (EUV, 300-1,200 A) and far (FUV, 1,200-2,000 A) regimes due to a lack of data and a lack of knowledge of the detailed physical and chemical processes involved. Yet it is in precisely these wavelength regimes that accurate predictions are most important, because EUV/FUV instruments are extremely sensitive to contamination.
Catastrophic failure of contaminated fused silica optics at 355 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genin, F. Y., LLNL
1996-12-03
For years, contamination has been known to degrade the performance of optics and to sometimes initiate laser-induced damage to initiate. This study has W to quantify these effects for fused silica windows used at 355 mm Contamination particles (Al, Cu, TiO{sub 2} and ZrO{sub 2}) were artificially deposited onto the surface and damage tests were conducted with a 3 ns NdYAG laser. The damage morphology was characterized by Nomarski optical microscopy. The results showed that the damage morphology for input and output surface contamination is different. For input surface contamination, both input and output surfaces can damage. In particular, themore » particle can induce pitting or drilling of the surface where the beam exits. Such damage usually grows catastrophically. Output surface contamination is usually ablated away on the shot but can also induce catastrophic damage. Plasmas are observed during illumination and seem to play an important role in the damage mechanism. The relationship between fluence and contamination size for which catastrophic damage occurred was plotted for different contamination materials. The results show that particles even as small as 10 {micro}m can substantially decrease the damage threshold of the window and that metallic particles on the input surface have a more negative effect than oxide particles.« less
In situ measurements of scattering from contaminated optics in the Vacuum Ultraviolet
NASA Astrophysics Data System (ADS)
Herren, Kenneth A.; Linton, Roger C.; Whitaker, Ann F.
1990-07-01
NASA's In Situ Contamination Effects Facility has been used to measure the time dependence of the angular reflectance from molecularly contaminated optical surfaces in the vacuum ultraviolet. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using noncoherent VUV sources with the predominant wavelengths being the krypton resonance lines at 1236 and 1600 angstroms. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (bidirectional reflectance distribution function) experiment is described and details of the on-going program to characterize optical materials exposed to the space environment is reported.
In situ measurements of scattering from contaminated optics in the Vacuum Ultraviolet
NASA Technical Reports Server (NTRS)
Herren, Kenneth A.; Linton, Roger C.; Whitaker, Ann F.
1990-01-01
NASA's In Situ Contamination Effects Facility has been used to measure the time dependence of the angular reflectance from molecularly contaminated optical surfaces in the vacuum ultraviolet. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using noncoherent VUV sources with the predominant wavelengths being the krypton resonance lines at 1236 and 1600 angstroms. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (bidirectional reflectance distribution function) experiment is described and details of the on-going program to characterize optical materials exposed to the space environment is reported.
Contamination of optical surfaces in Earth orbit
NASA Technical Reports Server (NTRS)
Kinser, Donald L.; Weller, Robert A.; Mendenhall, M. H.; Wiedlocher, D. E.; Nichols, R.; Tucker, D.; Whitaker, A.
1992-01-01
Glass and glass ceramic samples exposed to the low earth orbit environment for approximately 5.5 years on the Long Duration Exposure Facility (LDEF) were found to display limited degradation in optical transmission. Commercial optical quality fused silica samples display decreases in transmission in the 200 to 400 nm wavelength region, and this degradation appears to be a consequence of surface contamination. The contamination, found only on internal surfaces of samples, was measured by medium energy backscattering spectrometry and found to be primarily carbon. Additional thin film contamination by a species with atomic mass near 64, which was present at the level of about 8 x 10 exp 14/sq. cm has not been identified. These observations are consistent with the interpretation that organic binders used in the black absorbing paint (Chem Glaze Z-306) inside the sample holding tray were concentrated in the vicinity of the samples and photolytically cracked by solar UV radiation. The resulting decomposition products were deposited on the interior sample surface and gave rise to the optical transmission loss. No detectable contamination was observed on the external or space exposed surface of the samples. No measurable damage was detected which could be attributed to the direct action of gamma or UV radiation on the glass samples. These results emphasize the need for special precautions in the preparation of spacecraft carrying precision optical components on long duration missions.
Sun, Laixi; Shao, Ting; Shi, Zhaohua; Huang, Jin; Ye, Xin; Jiang, Xiaodong; Wu, Weidong; Yang, Liming; Zheng, Wanguo
2018-01-01
The reactive ion etching (RIE) process of fused silica is often accompanied by surface contamination, which seriously degrades the ultraviolet laser damage performance of the optics. In this study, we find that the contamination behavior on the fused silica surface is very sensitive to the RIE process which can be significantly optimized by changing the plasma generating conditions such as discharge mode, etchant gas and electrode material. Additionally, an optimized RIE process is proposed to thoroughly remove polishing-introduced contamination and efficiently prevent the introduction of other contamination during the etching process. The research demonstrates the feasibility of improving the damage performance of fused silica optics by using the RIE technique. PMID:29642571
A comparative review of optical surface contamination assessment techniques
NASA Technical Reports Server (NTRS)
Heaney, James B.
1987-01-01
This paper will review the relative sensitivities and practicalities of the common surface analytical methods that are used to detect and identify unwelcome adsorbants on optical surfaces. The compared methods include visual inspection, simple reflectometry and transmissiometry, ellipsometry, infrared absorption and attenuated total reflectance spectroscopy (ATR), Auger electron spectroscopy (AES), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), and mass accretion determined by quartz crystal microbalance (QCM). The discussion is biased toward those methods that apply optical thin film analytical techniques to spacecraft optical contamination problems. Examples are cited from both ground based and in-orbit experiments.
Characteristics and mechanism of laser-induced surface damage initiated by metal contaminants
NASA Astrophysics Data System (ADS)
Shi, Shuang; Sun, Mingying; Shi, Shuaixu; Li, Zhaoyan; Zhang, Ya-nan; Liu, Zhigang
2015-08-01
In high power laser facility, contaminants on optics surfaces reduce damage resistance of optical elements and then decrease their lifetime. By damage test experiments, laser damage induced by typical metal particles such as stainless steel 304 is studied. Optics samples with metal particles of different sizes on surfaces are prepared artificially based on the file and sieve. Damage test is implemented in air using a 1-on-1 mode. Results show that damage morphology and mechanism caused by particulate contamination on the incident and exit surfaces are quite different. Contaminants on the incident surface absorb laser energy and generate high temperature plasma during laser irradiation which can ablate optical surface. Metal particles melt and then the molten nano-particles redeposit around the initial particles. Central region of the damaged area bears the same outline as the initial particle because of the shielding effect. However, particles on the exit surface absorb a mass of energy, generate plasma and splash lots of smaller particles, only a few of them redeposit at the particle coverage area on the exit surface. Most of the laser energy is deposited at the interface of the metal particle and the sample surface, and thus damage size on the exit surface is larger than that on the incident surface. The areas covered by the metal particle are strongly damaged. And the damage sites are more serious than that on the incident surface. Besides damage phenomenon also depends on coating and substrate materials.
Effects of the contamination environment on surfaces and materials
NASA Technical Reports Server (NTRS)
Maag, Carl R.
1989-01-01
In addition to the issues that have always existed, demands are being placed on space systems for increased contamination prevention/control. Optical surveillance sensors are required to detect low radiance targets. This increases the need for very low scatter surfaces in the optical system. Particulate contamination levels typically experienced in today's working environments/habits will most likely compromise these sensors. Contamination (molecular and particulate) can also affect the survivability of space sensors in both the natural and hostile space environments. The effects of di-octyl phthalate (DOP) on sensors are discussed.
NASA Astrophysics Data System (ADS)
Johnson, R. Barry; Herren, Kenneth A.
1990-09-01
The time dependence of the angular reflectance from molecularly contaminated optical surfaces in the Vacuum Ultraviolet (VUV) is measured. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using non-coherent VUV sources with the predominant wavelengths being the Krypton resonance lines at 1236 and 1600 A. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (Bidirectional Reflectance Distribution Functions) experiment is described and details of the ongoing program to characterize optical materials exposed to the space environment is reported.
Instruction manual, Optical Effects Module, Model OEM
NASA Technical Reports Server (NTRS)
1975-01-01
The Optical Effects Module Model OEM-1, a laboratory prototype instrument designed for the automated measurement of radiation transmission and scattering through optical samples, is described. The system comprises two main components: the Optical Effects Module Enclosure (OEME) and the Optical Effects Module Electronic Controller and Processor (OEMCP). The OEM is designed for operation in the near UV at approximately 2540A, corresponding to the most intense spectral line activated by the mercury discharge lamp used for illumination. The radiation from this source is detected in transmission and reflection through a number of selectable samples. The basic objective of this operation is to monitor in real time the accretion of possible contamination on the surface of these samples. The optical samples are exposed outside of the OEME proper to define exposure conditions and to separate exposure and measurement environments. Changes in the transmissivity of the sample are attributable to surface contamination or to bulk effects due to radiation. Surface contamination will increase radiation scattering due to Rayleigh-Gans effect or to other phenomena, depending on the characteristics size of the particulate contaminants. Thus, also scattering from the samples becomes a part of the measurement program.
Contamination of grazing incidence EUV mirrors - An assessment
NASA Technical Reports Server (NTRS)
Osantowski, John F.; Fleetwood, C. F.
1988-01-01
Contamination assessment for space optical systems requires an understanding of the sensitivity of component performance, e.g. mirror reflectance, to materials deposited on the mirror surface. In a previous study, the sensitivity of typical normal incidence mirror coatings to surface deposits of generic hydrocarbons was reported. Recent activity in the development of grazing incidence telescopes for extreme ultraviolet space astronomy has stimulated the need for a similar assessment in the spectral region extending from approximately 100 A to 1000 A. The model used for analysis treats the contamination layer as a continuous thin film deposited on the mirror surface. The mirror surfaces selected for this study are opaque vacuum deposited gold and the uncoated and polished Zerodur. Scatter caused by film irregularities or particulates are not included in this assessment. Parametric evaluations at 100, 500, and 1000 A determine the sensitivity of mirror reflectance to a range of optical constants selected for the generic contaminants. This sensitivity analysis combined with the limited amount of optical data in the EUV for hydrocarbons, is used to select representative optical constants for the three wavelength regions. Reflectance versus contamination layer thickness curves are then calculated and used to determine critical thickness limits based on allowable reflectance change. Initial observations indicate that thickness limits will be highly dependent on the real part of the complex index of refraction of the contaminant film being less than 1.0. Preliminary laboratory measurements of samples contaminated with some commonly encountered hydrocarbons confirm trends indicated in the analytical studies.
Active cleaning technique for removing contamination from optical surfaces in space
NASA Technical Reports Server (NTRS)
Shannon, R. L.; Gillette, R. B.; Cruz, G. A.
1973-01-01
An active cleaning technique for removing contaminants from optical surfaces in space was investigated with emphasis on the feasibility of using plasma exposure as a means of in-situ cleaning. The major work accomplished includes: (1) development of an in-situ reflectometer for use in conjunction with the contaminant film deposition/cleaning facility; (2) completion of Apollo Telescope Mount (ATM) filter treatment experiments to assess the effects of plasma exposure on the UV transmittance; (3) attempts to correlate the atomic oxygen flux with cleaning rate; (4) completion of in-situ butadien contamination/plasma cleaning/UV reflectance measurement experiments; (5) carbon cleaning experiments using various gases; (6) completion of silicone contamination/cleaning experiments; and (7) experiments conducted at low chamber pressures to determine cleaning rate distribution and contamination of surfaces adjacent to those being cleaned.
Surface contamination analysis technology team overview
NASA Astrophysics Data System (ADS)
Burns, H. Dewitt, Jr.
1996-11-01
The surface contamination analysis technology (SCAT) team was originated as a working roup of NASA civil service, Space Shuttle contractor, and university groups. Participating members of the SCAT Team have included personnel from NASA Marshall Space Flight Center's Materials and Processes Laboratory and Langley Research Center's Instrument Development Group; contractors-Thiokol Corporation's Inspection Technology Group, AC Engineering support contractor, Aerojet, SAIC, and Lockheed MArtin/Oak Ridge Y-12 support contractor and Shuttle External Tank prime contractor; and the University of Alabama in Huntsville's Center for Robotics and Automation. The goal of the SCAT team as originally defined was to develop and integrate a multi-purpose inspection head for robotic application to in-process inspection of contamination sensitive surfaces. One area of interest was replacement of ozone depleting solvents currently used for surface cleanliness verification. The team approach brought together the appropriate personnel to determine what surface inspection techniques were applicable to multi-program surface cleanliness inspection. Major substrates of interest were chosen to simulate space shuttle critical bonding surface or surfaces sensitive to contamination such as fuel system component surfaces. Inspection techniques evaluated include optically stimulated electron emission or photoelectron emission; Fourier transform infrared spectroscopy; near infrared fiber optic spectroscopy; and, ultraviolet fluorescence. Current plans are to demonstrate an integrated system in MSFC's Productivity Enhancement Complex within five years from initiation of this effort in 1992. Instrumentation specifications and designs developed under this effort include a portable diffuse reflectance FTIR system built by Surface Optics Corporation and a third generation optically stimulated electron emission system built by LaRC. This paper will discuss the evaluation of the various techniques on a number of substrate materials contaminated with hydrocarbons, silicones, and fluorocarbons. Discussion will also include standards development for instrument calibration and testing.
Bien-Aimé, K; Belin, C; Gallais, L; Grua, P; Fargin, E; Néauport, J; Tovena-Pecault, I
2009-10-12
The impact of storage conditions on laser induced damage density at 351 nm on bare fused polished silica samples has been studied. Intentionally outgassing of polypropylene pieces on silica samples was done. We evidenced an important increase of laser induced damage density on contaminated samples demonstrating that storage could limit optics lifetime performances. Atomic Force Microscopy (AFM) and Gas Chromatography -Mass Spectrometry (GC-MS) have been used to identify the potential causes of this effect. It shows that a small quantity of organic contamination deposited on silica surface is responsible for this degradation. Various hypotheses are proposed to explain the damage mechanism. The more likely hypothesis is a coupling between surface defects of optics and organic contaminants.
Contamination removal by CO2 jet spray
NASA Astrophysics Data System (ADS)
Peterson, Ronald V.; Bowers, Charles W.
1990-11-01
Studies on the effectiveness of the jet flush in removing particle fallout and Arizona-standard fine dust on polished optical substrates have been carried out at ambient pressure and vacuum. These studies have shown that the CO2 jet flush is a viable method for removing contaminants from optical surfaces with no damage to the surface. The studies also show that the jet flush has potential for use as an on-orbit cleaning device for space optics.
Surface evaluation of UV-degraded contamination
NASA Technical Reports Server (NTRS)
Connatser, Robert; Hadaway, James B.
1992-01-01
Three different areas of work were accomplished under this contract: (1) contamination testing and evaluation; (2) UV irradiation testing; and (3) surface evaluation testing. Contamination testing was generally performed in the In-Situ Contamination Effects Facility at Marshall Space Flight Center (MSFC). UV irradiation testing was also performed primarily at MSFC, utilizing facilities there. Finally, the surface evaluation was done at facilities at UAH Center for Applied Optics.
International Space Station External Contamination Status
NASA Technical Reports Server (NTRS)
Mikatarian, Ron; Soares, Carlos
2000-01-01
PResentation slides examine external contamination requirements; International Space Station (ISS) external contamination sources; ISS external contamination sensitive surfaces; external contamination control; external contamination control for pre-launch verification; flight experiments and observations; the Space Shuttle Orbiter waste water dump, materials outgassing, active vacuum vents; example of molecular column density profile, modeling and analysis tools; sources of outgassing induced contamination analyzed to date, quiescent sources, observations on optical degradation due to induced external contamination in LEO; examples of typical contaminant and depth profiles; and status of the ISS system, material outgassing, thruster plumes, and optical degradation.
Controlling optics contamination at the PolLux STXM
NASA Astrophysics Data System (ADS)
Watts, B.; Pilet, N.; Sarafimov, B.; Witte, K.; Raabe, J.
2018-04-01
Contamination of X-ray mirror surfaces by carbon is a common issue that can significantly degrade the optical performance of the instrument. The effects can be severe at photon energies near the carbon K-edge (ca. 300 eV), where the X-rays are strongly attenuated, but also significant at higher photon energies where the carbon coating affects the reflectivity and surface shape of the mirrors. [1] The Swiss Light Source has typically relied on in-situ plasma cleaning to control mirror contamination and the PolLux scanning transmission X-ray microscopy (STXM) beamline has also been employing further contamination reduction strategies in recent years. In particular, in 2014 we installed a 1×10‑8 mbar background pressure of O2 on the PolLux first mirror chamber. We present a history of efforts to control optical contamination at the PolLux beamline and report on the observed efficiencies of the different processes employed both for the in-vacuum optics and critical components of the frequently vented STXM experiment chamber.
Towards a better control of optics cleanliness
NASA Astrophysics Data System (ADS)
Berlioz, P.
2017-11-01
The contamination of optics can considerably degrade the transmission and scattering of spacecraft optics. To prevent efficiently optics from contamination involves introducing since design phase requirements on materials and protections (covers…). Then, integration and test phase demands to implement heavy and stringent means (clean room, specific garment, covers…) and a permanent monitoring by fine contamination measurement of instrument environment and surfaces. Contamination budgets are drawn the project along, first prediction budgets based on analysis and potentially modeling, during design phase, then actual budgets based on contamination measurement during integration and test phase. Finally, the risk still exists to have to clean optics because of hazardous contamination, furthermore to dismount them. The cleanliness engineering set at ASTRIUM Toulouse is presented here, including the contamination monitoring via witness samples measured by IR spectrometry and via counters. ASTRIUM is presently focusing attention on no contact cleaning like the promising UV-ozone process.
NASA Technical Reports Server (NTRS)
Perey, D. F.
1996-01-01
Many industrial and aerospace processes involving the joining of materials, require sufficient surface cleanliness to insure proper bonding. Processes as diverse as painting, welding, or the soldering of electronic circuits will be compromised if prior inspection and removal of surface contaminants is inadequate. As process requirements become more stringent and the number of different materials and identified contaminants increases, various instruments and techniques have been developed for improved inspection. One such technique, based on the principle of Optically Stimulated Electron Emission (OSEE), has been explored for a number of years as a tool for surface contamination monitoring. Some of the benefits of OSEE are: it is non-contacting; requires little operator training; and has very high contamination sensitivity. This paper describes the development of a portable OSEE based surface contamination monitor. The instrument is suitable for both hand-held and robotic inspections with either manual or automated control of instrument operation. In addition, instrument output data is visually displayed to the operator and may be sent to an external computer for archiving or analysis.
Mie Scattering of Growing Molecular Contaminants
NASA Technical Reports Server (NTRS)
Herren, Kenneth A.; Gregory, Don A.
2007-01-01
Molecular contamination of optical surfaces from outgassed material has been shown in many cases to proceed from acclimation centers and to produce many roughly hemispherical "islands" of contamination on the surface. The mathematics of the hemispherical scattering is simplified by introducing a Virtual source below the plane of the optic, in this case a mirror, allowing the use of Mie theory to produce a solution for the resulting sphere .in transmission. Experimentally, a fixed wavelength in the vacuum ultraviolet was used as the illumination source and scattered light from the polished and coated glass mirrors was detected at a fixed angle as the contamination islands grew in time.
NASA Astrophysics Data System (ADS)
Sharma, P. K.; Lindensmith, C. A.
1998-12-01
Terrestrial Planet Finder (TPF) is an evolving mission in NASA's ORIGINS program designed to detect earth like planets and perform high-resolution interferometric imaging of astrophysics targets in the infrared. The planet detection concept involves the use of multiple collectors in formation flying spacecraft and nulling interferometry to isolate the image of the planet (located near a bright star) while the star image is canceled out. The concept development involves the search for 10 to 20 micron radiation from planets orbiting stars out to a distance of 3 to 15 pc using NGST type collectors passively cooled to 35 K with high quality thermal shields. The need to obtain a suitable null for planet detection results in strict requirements of signal amplitude and phase matching at the optics. This in turn implies very tight cleanliness requirements at the optics. Several contamination issues need to be taken into account in order to maintain the integrity of the optics as well as the thermal shields. Cryogenic optical surfaces, e.g., mirror surfaces, are susceptible to contamination due to formation of thin cryolayers from propulsion system exhaust and outgassing products. Detector optics at 5 to 7 K will condense almost all species with the exception of hydrogen and helium. Thermal control surfaces at 35 to 40 K will condense a host of species including water vapor, which because of the presence of several absorption peaks in the infrared, will increase the emissivity of low emissivity surfaces. The increased emissivity will result in a temperature rise for the surface which will lead to decreased performance of cryocoolers, which depend upon passive precooling of the working fluid, used to cool the detectors. The condensed contaminant film on optics will also increase non-specular reflection from the surface, i.e., an increase in Bi-directional Reflectance Distribution Function (BRDF), leading to a lowering of the image quality. Particles on optical surfaces also increase scatter and thus the surface BRDF. This results in an increase in straylight. In addition, the surface particle induced scatter will reduce the contrast of the dark rings of the Point Spread Function (PSF) and hence make separation of a fainter celestial object situated near a brighter object more difficult. Warm particles in the field-of-view of the sensors can be mistaken for a celestial body due to their thermal emission. Similarly, certain contaminant molecules in the field-of-view of the sensors can mimic the sought spectral signatures of the terrestrial type planet. Contamination is an important consideration in the development of the TPF and continued study will help to minimize its effects on the mission.
Capabilities of the Materials Contamination Team at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Burns, Howard; Albyn, Keith; Edwards, David; Boothe, Richard; Finchum, Charles; Finckenor, Miria
2003-01-01
The Materials Contamination Team at the Marshall Space Flight Center (MSFC) has been recognized for its contributions supporting the National Aeronautics and Space Administration (NASA) spacecraft development programs. These programs include the Reusable Solid Rocket Motor (RSRM), Chandra X-Ray Observatory, and the International Space Station (ISS). The Environmental Effects Group, with the Materials Contamination Team and the Space Environmental Effects Team has been an integral part of NASA's success by the testing, evaluation, and qualification of materials, hardware, and processes. This paper focuses on the capabilities of the Materials Contamination Team. The Materials Contamination Team's realm of responsibility includes establishing contamination control during all phases of hardware development, including design, manufacturing, assembly, test, transportation, launch site processing, on-orbit exposure, return, and refurbishment. The team continues its mission of reducing the risk of equipment failure due to molecular or particulate contamination. Contamination is a concern in the Space Shuttle with sensitive bond-lines and reactive fluid (liquid oxygen) compatibility as well as for spacecraft with sensitive optics, such as Hubble Space Telescope and Chandra X-ray Observatory. The Materials Contamination Team has a variety of facilities and instrumentation capable of contaminant detection, identification, and monitoring. The team addresses material applications dealing with environments, including production facilities, clean rooms, and on-orbit exposure. The optically stimulated electron emission (OSEE) system, the Ultraviolet (UV) fluorescence (UVF) surface contamination detection, and the Surface Optics Corporation 400 (SOC 400) portable hand-held Fourier Transform Infrared (FTIR) spectrometer are state-of-the-art tools for in-process molecular contamination detection. The team of engineers and technicians also develop contamination calibration standards and evaluate new surface cleanliness inspection technologies. The team utilizes facilities for on-orbit simulation testing of materials for outgassing and molecular film deposition characteristics in the presence of space environmental effects, such as Atomic Oxygen (AO) and UV radiation exposure. The Materials Contamination Team maintains databases for process materials as well as outgassing and optical compatibility test results for specific environments.
NASCAP modelling computations on large optics spacecraft in geosynchronous substorm environments
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Purvis, C. K.
1980-01-01
Satellites in geosynchronous orbits have been found to be charged to significant negative voltages during encounters with geomagnetic substorms. When satellite surfaces are charged, there is a probability of enhanced contamination from charged particles attracted back to the satellite by electrostatic forces. This could be particularly disturbing to large satellites using sensitive optical systems. In this study the NASA Charging Analyzer Program (NASCAP) is used to evaluate qualitatively the possibility of such enhanced contamination on a conceptual version of a large satellite. The evaluation is made by computing surface voltages on the satellite due to encounters with substorm environments and then computing charged-particle trajectories in the electric fields around the satellite. Particular attention is paid to the possibility of contaminants reaching a mirror surface inside a dielectric tube because this mirror represents a shielded optical surface in the satellite model used. Deposition of low energy charged particles from other parts of the spacecraft onto the mirror was found to be possible in the assumed moderate substorm environment condition. In the assumed severe substorm environment condition, however, voltage build up on the inside and edges of the dielectric tube in which the mirror is located prevents contaminants from reaching the mirror surface.
NASA Technical Reports Server (NTRS)
Ryan, Robert; Underwood, Lauren; Holekamp, Kara; May, George; Spiering, Bruce; Davis, Bruce
2011-01-01
This technology exploits the organic decomposition capability and hydrophilic properties of the photocatalytic material titanium dioxide (TiO2), a nontoxic and non-hazardous substance, to address contamination and biofouling issues in field-deployed optical sensor systems. Specifically, this technology incorporates TiO2 coatings and materials applied to, or integrated as a part of, the optical surfaces of sensors and calibration sources, including lenses, windows, and mirrors that are used in remote, unattended, ground-based (land or maritime) optical sensor systems. Current methods used to address contamination or biofouling of these optical surfaces in deployed systems are costly, toxic, labor intensive, and non-preventative. By implementing this novel technology, many of these negative aspects can be reduced. The functionality of this innovative self-cleaning solution to address the problem of contamination or biofouling depends on the availability of a sufficient light source with the appropriate spectral properties, which can be attained naturally via sunlight or supplemented using artificial illumination such as UV LEDs (light emitting diodes). In land-based or above-water systems, the TiO2 optical surface is exposed to sunlight, which catalyzes the photocatalytic reaction, facilitating both the decomposition of inorganic and organic compounds, and the activation of superhydrophilic properties. Since underwater optical surfaces are submerged and have limited sunlight exposure, supplementary UV light sources would be required to activate the TiO2 on these optical surfaces. Nighttime operation of land-based or above-water systems would require this addition as well. For most superhydrophilic self-cleaning purposes, a rainwater wash will suffice; however, for some applications an attached rainwater collector/ dispenser or other fresh water dispensing system may be required to wash the optical surface and initiate the removal of contaminates. Deployment of this non-toxic,non-hazardous-technology will take advantage of environmental elements (i.e. rain and sunlight), increase the longevity of unattended optical systems, increase the amount of time between required maintenance, and improve the long-term accuracy of sensor measurements.
Analysis of particulate contamination on tape lift samples from the VETA optical surfaces
NASA Technical Reports Server (NTRS)
Germani, Mark S.
1992-01-01
Particulate contamination analysis was carried out on samples taken from the Verification Engineering Test Article (VETA) x-ray detection system. A total of eighteen tape lift samples were taken from the VETA optical surfaces. Initially, the samples were tested using a scanning electron microscope. Additionally, particle composition was determined by energy dispersive x-ray spectrometry. Results are presented in terms of particle loading per sample.
Contamination control engineering design guidelines for the aerospace community
NASA Technical Reports Server (NTRS)
Tribble, A. C. (Principal Investigator); Boyadjian, B.; Davis, J.; Haffner, J.; McCullough, E.
1996-01-01
Thermal control surfaces, solar arrays, and optical devices may be adversely affected by a small quantity of molecular and/or particulate contamination. What is rarely discussed is how one: (1) quantifies the level of contamination that must be maintained in order for the system to function properly, and (2) enforces contamination control to ensure compliance with requirements. This document is designed to address these specific issues and is intended to serve as a handbook on contamination control for the reader, illustrating process and methodology while providing direction to more detailed references when needed. The effects of molecular contamination on reflecting and transmitting surfaces are examined and quantified in accordance with MIL STD 1246C. The generation, transportation, and deposition of molecular contamination is reviewed and specific examples are worked to illustrate the process a design engineer can use to estimate end of life cleanliness levels required by solar arrays, thermal control surfaces, and optical surfaces. A similar process is used to describe the effect of particulate contamination as related to percent area coverage (PAC) and bi-directional reflectance distribution function (BRDF). Relationships between PAC and surface cleanliness, which include the effects of submicron sized particles, are developed and BRDF is related to specific sensor design parameters such as Point Source Transmittance (PST). The pros and cons of various methods of preventing, monitoring, and cleaning surfaces are examined and discussed.
NASA Technical Reports Server (NTRS)
Bremer, J. C.
1982-01-01
Physical models are developed for establishing criteria to decide on the acceptable contamination level of optical devices in space-borne conditions. Optical systems can be degraded in terms of decreased throughput, i.e., transmissivity or reflectivity, or increases in the total integrated scatter (TIS). Performance losses can be caused by particulate accretion, molecular film accretion, and impact cratering. A quantitative relationship is defined for film thickness and loss of throughput. Formulas are also developed for cases where induced surface defects are larger than the desired viewing wavelengths, or smaller or of the same order of the observed wavelengths. The techniques are used to quantify the degradation of a VUV solar coronagraph, a VUV stellar telescope, and a solar cell due to TIS. Applications are projected for estimating the contamination sensitivity of specific instruments, assessing the contamination hazard from known particulates, or to define clean room standards.
Study of SRM Critical Surfaces Using Near Infrared Optical Fiber Spectrometry
NASA Technical Reports Server (NTRS)
Workman, G. L.; Hughes, C.; Arendale, W. A.
1997-01-01
The measurement and control of cleanliness for critical surfaces during manufacturing and in service operations provides a unique challenge in the current thrust for environmentally benign processes. Of particular interest has been work performed in maintaining quality in the production of bondline surfaces in propulsion systems and the identification of possible contaminants which are detrimental to the integrity of the bondline. This work requires an in-depth study of the possible sources of contamination, methodologies to identify contaminants, discrimination between contaminants and chemical species caused by environment, and the effect of particular contaminants on the bondline integrity of the critical surfaces. This paper will provide an introduction to the use of Near Infrared (NIR) optical fiber spectrometry in a nondestructive measurement system for process monitoring and how it can be used to help clarify issues concerning surface chemistry. In a previous conference, experimental results for quantitative measurement of silicone and Conoco HD2 greases, and tape residues on solid rocket motor surfaces were presented. This paper will present data for metal hydroxides and discuss the use of the integrating sphere to minimize the effects of physical properties of the surfaces (such as surface roughness) on the results obtained from the chemometric methods used for quantitative analysis.
Effect analysis of oil paint on the space optical contamination
NASA Astrophysics Data System (ADS)
Lu, Chun-lian; Lv, He; Han, Chun-xu; Wei, Hai-Bin
2013-08-01
The space contamination of spacecraft surface is a hot topic in the spacecraft environment project and environment safeguard for spacecraft. Since the 20th century, many American satellites have had malfunction for space contamination. The space optical systems are usually exposed to the external space environment. The particulate contamination of optical systems will degrade the detection ability. We call the optical damage. It also has a bad influence on the spectral imaging quality of the whole system. In this paper, effects of contamination on spectral imaging were discussed. The experiment was designed to observe the effect value. We used numeral curve fitting to analyze the relationship between the optical damage factor (Transmittance decay factor) and the contamination degree of the optical system. We gave the results of six specific wavelengths from 450 to 700nm and obtained the function of between the optical damage factor and contamination degree. We chose three colors of oil paint to be compared. Through the numeral curve fitting and processing data, we could get the mass thickness for different colors of oil paint when transmittance decreased to 50% and 30%. Some comparisons and research conclusions were given. From the comparisons and researches, we could draw the conclusions about contamination effects of oil paint on the spectral imaging system.
Empirical measurement and model validation of infrared spectra of contaminated surfaces
NASA Astrophysics Data System (ADS)
Archer, Sean; Gartley, Michael; Kerekes, John; Cosofret, Bogdon; Giblin, Jay
2015-05-01
Liquid-contaminated surfaces generally require more sophisticated radiometric modeling to numerically describe surface properties. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) Model utilizes radiative transfer modeling to generate synthetic imagery. Within DIRSIG, a micro-scale surface property model (microDIRSIG) was used to calculate numerical bidirectional reflectance distribution functions (BRDF) of geometric surfaces with applied concentrations of liquid contamination. Simple cases where the liquid contamination was well described by optical constants on optically at surfaces were first analytically evaluated by ray tracing and modeled within microDIRSIG. More complex combinations of surface geometry and contaminant application were then incorporated into the micro-scale model. The computed microDIRSIG BRDF outputs were used to describe surface material properties in the encompassing DIRSIG simulation. These DIRSIG generated outputs were validated with empirical measurements obtained from a Design and Prototypes (D&P) Model 102 FTIR spectrometer. Infrared spectra from the synthetic imagery and the empirical measurements were iteratively compared to identify quantitative spectral similarity between the measured data and modeled outputs. Several spectral angles between the predicted and measured emissivities differed by less than 1 degree. Synthetic radiance spectra produced from the microDIRSIG/DIRSIG combination had a RMS error of 0.21-0.81 watts/(m2-sr-μm) when compared to the D&P measurements. Results from this comparison will facilitate improved methods for identifying spectral features and detecting liquid contamination on a variety of natural surfaces.
Atomic Oxygen Interactions With Silicone Contamination on Spacecraft in Low Earth Orbit Studied
NASA Technical Reports Server (NTRS)
Banks, Bruce A.
2001-01-01
Silicones have been widely used on spacecraft as potting compounds, adhesives, seals, gaskets, hydrophobic surfaces, and atomic oxygen protective coatings. Contamination of optical and thermal control surfaces on spacecraft in low Earth orbit (LEO) has been an ever-present problem as a result of the interaction of atomic oxygen with volatile species from silicones and hydrocarbons onboard spacecraft. These interactions can deposit a contaminant that is a risk to spacecraft performance because it can form an optically absorbing film on the surfaces of Sun sensors, star trackers, or optical components or can increase the solar absorptance of thermal control surfaces. The transmittance, absorptance, and reflectance of such contaminant films seem to vary widely from very transparent SiOx films to much more absorbing SiOx-based films that contain hydrocarbons. At the NASA Glenn Research Center, silicone contamination that was oxidized by atomic oxygen has been examined from LEO spacecraft (including the Long Duration Exposure Facility and the Mir space station solar arrays) and from ground laboratory LEO simulations. The findings resulted in the development of predictive models that may help explain the underlying issues and effects. Atomic oxygen interactions with silicone volatiles and mixtures of silicone and hydrocarbon volatiles produce glassy SiOx-based contaminant coatings. The addition of hydrocarbon volatiles in the presence of silicone volatiles appears to cause much more absorbing (and consequently less transmitting) contaminant films than when no hydrocarbon volatiles are present. On the basis of the LDEF and Mir results, conditions of high atomic oxygen flux relative to low contaminant flux appear to result in more transparent contaminant films than do conditions of low atomic oxygen flux with high contaminant flux. Modeling predictions indicate that the deposition of contaminant films early in a LEO flight should depend much more on atomic oxygen flux than it does later in a mission.
Studies of EUV contamination mitigation
NASA Astrophysics Data System (ADS)
Graham, Samual, Jr.; Malinowski, Michael E.; Steinhaus, Chip; Grunow, Philip A.; Klebanoff, Leonard E.
2002-07-01
Carbon contamination removal was investigated using remote RF-O2, RF-H2, and atomic hydrogen experiments. Samples consisted of silicon wafers coated with 100 Angstrom sputtered carbon, as well as bare Si-capped Mo/Si optics. Samples were exposed to atomic hydrogen or RF plasma discharges at 100 W, 200 W, and 300 W. Carbon removal rate, optic oxidation rate, at-wavelength (13.4 nm) peak reflectance, and optic surface roughness were characterized. Data show that RF- O2 removes carbon at a rate approximately 6 times faster RF- H2 for a given discharge power. However, both cleaning techniques induce Mo/Si optic degradation through the loss of reflectivity associated with surface oxide growth for RF-O2 and an unknown mechanism with hydrogen cleaning. Atomic hydrogen cleaning shows carbon removal rates sufficient for use as an in-situ cleaning strategy for EUVoptics with less risk of optic degradation from overexposures than RF-discharge cleaning. While hydrogen cleaning (RF and atomic) of EUV optics has proven effective in carbon removal, attempts to dissociate hydrogen in co-exposures with EUV radiation have resulted in no detectable removal of carbon contamination.
Characterization of contaminant removal by an optical strip material
NASA Astrophysics Data System (ADS)
Hamilton, James P.; Frigo, S. P.; Caroll, Brenden J.; Assoufidyen, L.; Lewis, Matthew S.; Cook, Russell E.; de Carlo, F.
2001-03-01
Department of Chemistry and Engineering Physics, University of Wisconsin-Platteville, Platteville, WI 53818 Advanced Photon Source, X-Ray Facilities Division, Argonne National Laboratory, Advanced Photon Source, User Program Division, Argonne National Laboratory, *Electron Microscopy Center, Materials Science Division, Argonne National Laboratory, Argonne National Laboratory, 9700 S. Cass Ave., Argonne IL 60439-4856 USA A novel optical strip coating material, Opticlean, has been shown to safely remove fingerprints, particles and contamination from a variety of optical surfaces including coated glass, Si and first surface mirrors. Contaminant removal was monitored by Nomarski, Atomic Force and Scanning Electron Microscopy. Sub-micron features on diffraction gratings and silicon wafers were also cleaned without leaving light scattering particles on the surface. **This work was supported in part by the U.S. Department of Energy, Basic Energy Sciences-Materials Sciences, under contract no. W-31-109-ENG-38. The authors acknowledge the support and facilities provided by the Advanced Photon Source and the Electron Microscopy Center at Argonne National Laboratory.
NASCAP modelling computations on large optics spacecraft in geosynchronous substorm environments
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Purvis, C. K.
1980-01-01
The NASA Charging Analyzer Program (NASCAP) is used to evaluate qualitatively the possibility of such enhanced spacecraft contamination on a conceptual version of a large satellite. The evaluation is made by computing surface voltages on the satellite due to encounters with substorm environments and then computing charged particle trajectories in the electric fields around the satellite. Particular attention is paid to the possibility of contaminants reaching a mirror surface inside a dielectric tube because this mirror represents a shielded optical surface in the satellite model used. Deposition of low energy charged particles from other parts of the spacecraft onto the mirror was found to be possible in the assumed moderate substorm environment condition. In the assumed severe substorm environment condition, however, voltage build up on the inside and edges of the dielectric tube in which the mirror is located prevents contaminants from reaching the mirror surface.
A far-ultraviolet contamination-irradiation facility for in situ reflectance measurements
NASA Astrophysics Data System (ADS)
Meier, Steven R.; Tveekrem, June L.; Keski-Kuha, Ritva A. M.
1998-10-01
In this article, a contamination-irradiation facility designed to measure contamination effects on far-ultraviolet optical surfaces is described. An innovative feature of the facility is the capability of depositing a contaminant, photopolymerizing the contaminant with far-ultraviolet light, and measuring the reflectance of the contaminated sample, all in situ. In addition to describing the facility, we present far-ultraviolet reflectance measurements for a contaminated mirror.
Small business initiative -- Surface inspection machine infrared (SIMIR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, G.L.; Beecroft, M.
This Cooperative Research and Development Agreement was a one year effort to make the surface inspection machine based on diffuse reflectance infrared spectroscopy (Surface Inspection Machine-Infrared, SIMIR), being developed by Surface Optics Corporation, perform to its highest potential as a practical, portable surface inspection machine. A secondary purpose was to evaluate applications that would serve both the private and the public sector. The design function of the SIMIR is to inspect sandblasted metal surfaces for cleanliness (stains). The system is also capable of evaluating graphite-resin systems for cure and heat damage, and for measuring the effects of moisture exposure onmore » lithium hydride, corrosion on uranium metal, and the constituents of and contamination on wood, paper, and fabrics. Surface Optics Corporation supplied LMES-Y12 with a prototype SOC-400 that was evaluated by LMES-Y12 and rebuilt by Surface Optics to achieve the desired performance. LMES-Y12 subsequently evaluated the instrument against numerous applications including determining part cleanliness at the Corpus Christi Army Depot, demonstrating the ability to detect plasticizers and other organic contaminants on metals to Pantex and LANL personnel, analyzed sandblasted metal contamination standards supplied by NASA-MSFC, and demonstrated to Lockheed Martin Tactical Aircraft, marietta, GA, for analyzing the paint applied to the F-22 Fighter. The instrument also demonstrated the analysis of yarn, fabric, and finish on the textiles.« less
Optical Characterization of Molecular Contaminant Films
NASA Technical Reports Server (NTRS)
Visentine, James T.
2007-01-01
A semi-empirical method of optical characterization of thin contaminant films on surfaces of optical components has been conceived. The method was originally intended for application to films that become photochemically deposited on such optical components as science windows, lenses, prisms, thinfilm radiators, and glass solar-cell covers aboard spacecraft and satellites in orbit. The method should also be applicable, with suitable modifications, to thin optical films (whether deposited deliberately or formed as contaminants) on optical components used on Earth in the computer microchip laser communications and thin-film industries. The method is expected to satisfy the need for a means of understanding and predicting the reductions in spectral transmittance caused by contaminant films and the consequent deterioration of performances of sensitive optical systems. After further development, this method could become part of the basis of a method of designing optical systems to minimize or compensate for the deleterious effects of contaminant films. In the original outer-space application, these deleterious effects are especially pronounced because after photochemical deposition, the films become darkened by further exposure to solar vacuum ultraviolet (VUV) radiation. In this method, thin contaminant films are theoretically modeled as thin optical films, characterized by known or assumed values of thickness, index of refraction, and absorption coefficient, that form on the outer surfaces of the original antireflection coating on affected optical components. The assumed values are adjusted as needed to make actual spectral transmittance values approximate observed ones as closely as possible and to correlate these values with amounts of VUV radiation to which the optical components have been exposed. In an initial study, the method was applied in correlating measured changes in transmittance of high-purity fused silica photochemically coated with silicone films of various measured thicknesses and exposed to various measured amounts of VUV radiation. In each case, it was found to be possible to select an index of refraction and absorption coefficient that made the ultraviolet, visible, and infrared transmittance changes predicted by the model match the corresponding measured transmittance changes almost exactly.
Comparative Mirror Cleaning Study: 'A Study on Removing Particulate Contamination'
NASA Technical Reports Server (NTRS)
Houston, Karrie
2007-01-01
The cleanliness of optical surfaces is recognized as an industry-wide concern for the performance of optical devices such as mirrors and telescopes, microscopes and lenses, lasers and interferometers, and prisms and optical filters. However, no standard has been established for optical cleaning and there is no standard definition of a 'clean' optical element. This study evaluates the effectiveness of commonly used optical cleaning techniques based on wafer configuration, contamination levels, and the number and size of removed particles. It is concluded that cleaning method and exposure time play a significant factor in obtaining a high removal percentage. The detergent bath and solvent rinse method displayed an increase in effective removal percentage as the contamination exposure increased. Likewise, CO2 snow cleaning showed a relatively consistent cleaning effectiveness. The results can help ensure mission success to flight projects developed for the NASA Origins Program. Advantages and disadvantages of each of the optical cleaning methods are described.
Hassan, Moinuddin; Tan, Xin; Welle, Elissa; Ilev, Ilko
2013-05-01
As a potential major source of biochemical contamination, medical device surfaces are of critical safety concerns in the clinical practice and public health. The development of innovative sensing methods for accurate and real-time detection of medical device surface contamination is essential to protect patients from high risk infection. In this paper, we demonstrate an alternative fiber-optic Fourier Transform Infrared (FTIR) spectroscopy based sensing approach for remote, non-contact, and label-free detection of biochemical contaminants in the mid-infrared (mid-IR) region. The sensing probe is designed using mid-IR hollow fibers and FTIR measurements are carried out in reflection mode. Bovine Serum Albumin (BSA) and bacterial endotoxin of different concentrations under thoroughly dry condition are used to evaluate the detection sensitivity. The devised system can identify ≤0.0025% (≤4 × 10(11) molecules) BSA and 0.5% (0.5 EU/ml) endotoxin concentration. The developed sensing approach may be applied to detect various pathogens that pose public health threats.
NASA Astrophysics Data System (ADS)
Hassan, Moinuddin; Tan, Xin; Welle, Elissa; Ilev, Ilko
2013-05-01
As a potential major source of biochemical contamination, medical device surfaces are of critical safety concerns in the clinical practice and public health. The development of innovative sensing methods for accurate and real-time detection of medical device surface contamination is essential to protect patients from high risk infection. In this paper, we demonstrate an alternative fiber-optic Fourier Transform Infrared (FTIR) spectroscopy based sensing approach for remote, non-contact, and label-free detection of biochemical contaminants in the mid-infrared (mid-IR) region. The sensing probe is designed using mid-IR hollow fibers and FTIR measurements are carried out in reflection mode. Bovine Serum Albumin (BSA) and bacterial endotoxin of different concentrations under thoroughly dry condition are used to evaluate the detection sensitivity. The devised system can identify ≤0.0025% (≤4 × 1011 molecules) BSA and 0.5% (0.5 EU/ml) endotoxin concentration. The developed sensing approach may be applied to detect various pathogens that pose public health threats.
NASA Astrophysics Data System (ADS)
Singh, SherJang; Yatzor, Brett; Taylor, Ron; Wood, Obert; Mangat, Pawitter
2017-03-01
The prospect of EUVL (Extreme Ultraviolet Lithography) insertion into HVM (High Volume Manufacturing) has never been this promising. As technology is prepared for "lab to fab" transition, it becomes important to comprehend challenges associated with integrating EUVL infrastructure within existing high volume chip fabrication processes in a foundry fab. The existing 193nm optical lithography process flow for reticle handling and storage in a fab atmosphere is well established and in-fab reticle contamination concerns are mitigated with the reticle pellicle. However EUVL reticle pellicle is still under development and if available, may only provide protection against particles but not molecular contamination. HVM fab atmosphere is known to be contaminated with trace amounts of AMC's (Atmospheric Molecular Contamination). If such contaminants are organic in nature and get absorbed on the reticle surface, EUV photon cause photo-dissociation resulting into carbon generation which is known to reduce multilayer reflectivity and also degrades exposure uniformity. Chemical diffusion and aggregation of other ions is also reported under the e-beam exposure of a EUV reticle which is known to cause haze issues in optical lithography. Therefore it becomes paramount to mitigate absorbed molecular contaminant concerns on EUVL reticle surface. In this paper, we have studied types of molecular contaminants that are absorbed on an EUVL reticle surface under HVM fab storage and handling conditions. Effect of storage conditions (gas purged vs atmospheric) in different storage pods (Dual pods, Reticle Clamshells) is evaluated. Absorption analysis is done both on ruthenium capping layer as well as TaBN absorber. Ru surface chemistry change as a result of storage is also studied. The efficacy of different reticle cleaning processes to remove absorbed contaminant is evaluated as well.
NASA Technical Reports Server (NTRS)
Albyn, Keith; Burns, Dewitt
2006-01-01
Recent quartz crystal microbalance measurements made in the Marshall Space Flight Center, Photo-Deposition Facility, for several materials, recorded a significant loss of deposited contaminants when the deposition surface of the microbalance was illuminated by a deuterium lamp. These measurements differ from observations made by other investigators in which the rate of deposition increased significantly when the deposition surface was illuminated with vacuum ultraviolet radiation. These observations suggest that the accelerated deposition of molecular contaminants on optically sensitive surfaces is dependant upon the contaminant being deposited and must be addressed during the materials selection process by common material screening techniques.
NASA Technical Reports Server (NTRS)
Hovis, W.; Smith, D.; Mcculloch, A.; Goldberg, I. L.; Ostrow, H.; Seidenberg, B.
1973-01-01
Examples of contamination of sensors from various sources during space missions are presented. Design precautions to provide access to optical surfaces and venting of outgassing products are recommended as methods for coping with contamination. The effects of the sensor materials on sensor contamination are analyzed. Actions to be taken during transportation, storage, and testing of sensors to avoid contamination are discussed.
NASA Technical Reports Server (NTRS)
Linford, R. M. F.; Allen, T. H.; Dillow, C. F.
1975-01-01
A program is described to design, fabricate and install an experimental work chamber assembly (WCA) to provide a wide range of experimental capability. The WCA incorporates several techniques for studying the kinetics of contaminant films and their effect on optical surfaces. It incorporates the capability for depositing both optical and contaminant films on temperature-controlled samples, and for in-situ measurements of the vacuum ultraviolet reflectance. Ellipsometer optics are mounted on the chamber for film thickness determinations, and other features include access ports for radiation sources and instrumentation. Several supporting studies were conducted to define specific chamber requirements, to determine the sensitivity of the measurement techniques to be incorporated in the chamber, and to establish procedures for handling samples prior to their installation in the chamber. A bibliography and literature survey of contamination-related articles is included.
NASA Technical Reports Server (NTRS)
Snyder, Aaron; Banks, Bruce; Miller, Sharon; Stueber, Thomas; Sechkar, Edward
2001-01-01
A numerical procedure is presented to calculate transmittance degradation caused by contaminant films on spacecraft surfaces produced through the interaction of orbital atomic oxygen (AO) with volatile silicones and hydrocarbons from spacecraft components. In the model, contaminant accretion is dependent on the adsorption of species, depletion reactions due to gas-surface collisions, desorption, and surface reactions between AO and silicone producing SiO(x), (where x is near 2). A detailed description of the procedure used to calculate the constituents of the contaminant layer is presented, including the equations that govern the evolution of fractional coverage by specie type. As an illustrative example of film growth, calculation results using a prototype code that calculates the evolution of surface coverage by specie type is presented and discussed. An example of the transmittance degradation caused by surface interaction of AO with deposited contaminant is presented for the case of exponentially decaying contaminant flux. These examples are performed using hypothetical values for the process parameters.
Tutorial on Atomic Oxygen Effects and Contamination
NASA Technical Reports Server (NTRS)
Miller, Sharon K.
2017-01-01
Atomic oxygen is the most predominant specie in low Earth orbit (LEO) and is contained in the upper atmosphere of many other planetary bodies. Formed by photo-dissociation of molecular oxygen, it is highly reactive and energetic enough to break chemical bonds on the surface of many materials and react with them to form either stable or volatile oxides. The extent of the damage for spacecraft depends a lot on how much atomic oxygen arrives at the surface, the energy of the atoms, and the reactivity of the material that is exposed to it. Oxide formation can result in shrinkage, cracking, or erosion which can also result in changes in optical, thermal, or mechanical properties of the materials exposed. The extent of the reaction can be affected by mechanical loading, temperature, and other environmental components such as ultraviolet radiation or charged particles. Atomic oxygen generally causes a surface reaction, but it can scatter under coatings and into crevices causing oxidation much farther into a spacecraft surface or structure than would be expected. Contamination can also affect system performance. Contamination is generally caused by arrival of volatile species that condense on spacecraft surfaces. The volatiles are typically a result of outgassing of materials that are on the spacecraft. Once the volatiles are condensed on a surface, they can then be fixed on the surface by ultraviolet radiation andor atomic oxygen reaction to form stable surface contaminants that can change optical and thermal properties of materials in power systems, thermal systems, and sensors. This tutorial discusses atomic oxygen erosion and contaminate formation, and the effect they have on typical spacecraft materials. Scattering of atomic oxygen, some effects of combined environments and examples of effects of atomic oxygen and contamination on spacecraft systems and components will also be presented.
Inspection of lithographic mask blanks for defects
Sommargren, Gary E.
2001-01-01
A visible light method for detecting sub-100 nm size defects on mask blanks used for lithography. By using optical heterodyne techniques, detection of the scattered light can be significantly enhanced as compared to standard intensity detection methods. The invention is useful in the inspection of super-polished surfaces for isolated surface defects or particulate contamination and in the inspection of lithographic mask or reticle blanks for surface defects or bulk defects or for surface particulate contamination.
Optical contamination on the Atmosphere Explorer-E satellite
NASA Technical Reports Server (NTRS)
Yee, J. H.; Abreu, V. J.
1983-01-01
Atmospheric optical emission measurements by the Visible Airglow Experiment (VAE) on board the Atmosphere Explorer (AE-C, D and E) satellites have been analyzed and found to be contaminated at low altitudes. The contamination maximizes in the forward direction along the spacecraft velocity and is sensitive to the composition and density of the ambient atmosphere. Analysis at two different wavelengths suggests that the contamination is likely to have a diffuse band spectrum which is brighter toward the red. Some unknown processes which involve satellite surface materials and the incoming ambient particles are believed to be responsible for the contamination. A simulation model is presented here to account for the observed angular dependence.
NASA Astrophysics Data System (ADS)
Niu, Longfei; Liu, Hao; Miao, Xinxiang; Lv, Haibing; Yuan, Xiaodong; Zhou, Hai; Yao, Caizhen; Zhou, Guorui; Li, Qin
2017-05-01
The cleaning mechanism of optical surface particle contaminants in the light pneumatic tube was simulated based on the static equations and JKR model. Cleaning verification experiment based on air knife sweeping system and on-line monitoring system in high power laser facility was set up in order to verify the simulated results. Results showed that the removal ratio is significantly influenced by sweeping velocity and angle. The removal ratio can reach to 94.3% by using higher input pressure of the air knife, demonstrating that the air knife sweeping technology is useful for maintaining the surface cleanliness of optical elements, and thus guaranteeing the long-term stable running of the high power laser facility.
Contamination and Surface Preparation Effects on Composite Bonding
NASA Technical Reports Server (NTRS)
Kutscha, Eileen O.; Vahey, Paul G.; Belcher, Marcus A.; VanVoast, Peter J.; Grace, William B.; Blohowiak, Kay Y.; Palmieri, Frank L.; Connell, John W.
2017-01-01
Results presented here demonstrate the effect of several prebond surface contaminants (hydrocarbon, machining fluid, latex, silicone, peel ply residue, release film) on bond quality, as measured by fracture toughness and failure modes of carbon fiber reinforced epoxy substrates bonded in secondary and co-bond configurations with paste and film adhesives. Additionally, the capability of various prebond surface property measurement tools to detect contaminants and potentially predict subsequent bond performance of three different adhesives is also shown. Surface measurement methods included water contact angle, Dyne solution wettability, optically stimulated electron emission spectroscopy, surface free energy, inverse gas chromatography, and Fourier transform infrared spectroscopy with chemometrics analysis. Information will also be provided on the effectiveness of mechanical and energetic surface treatments to recover a bondable surface after contamination. The benefits and drawbacks of the various surface analysis tools to detect contaminants and evaluate prebond surfaces after surface treatment were assessed as well as their ability to correlate to bond performance. Surface analysis tools were also evaluated for their potential use as in-line quality control of adhesive bonding parameters in the manufacturing environment.
An OSEE Based Portable Surface Contamination Monitor
NASA Technical Reports Server (NTRS)
Perey, Daniel F.
1997-01-01
Many industrial and aerospace processes involving the joining of materials, require sufficient surface cleanliness to insure proper bonding. Processes as diverse as painting, welding, or the soldering of electronic circuits will be compromised if prior inspection and removal of surface contaminants is inadequate. As process requirements become more stringent and the number of different materials and identified contaminants increases, various instruments and techniques have been developed for improved inspection. One such technique based on the principle of Optically Stimulated Electron Emission (OSEE) has been explored for a number of years as a tool for surface contamination monitoring. Some of the benefits of OSEE are: it's non-contacting; requires little operator training; and has very high contamination sensitivity. This paper describes the development of a portable OSEE based surface contamination monitor. The instrument is suitable for both hand-held and robotic inspections with either manual or automated control of instrument operation. In addition, instrument output data is visually displayed to the operator and may be output to an external computer for archiving or analysis.
Contamination removal using various solvents and methodologies
NASA Technical Reports Server (NTRS)
Jeppsen, J. C.
1989-01-01
Critical and non-critical bonding surfaces must be kept free of contamination that may cause potential unbonds. For example, an aft-dome section of a redesigned solid rocket motor that had been contaminated with hydraulic oil did not appear to be sufficiently cleaned when inspected by the optically stimulated electron emission process (Con Scan) after it had been cleaned using a hand double wipe cleaning method. As a result, current and new cleaning methodologies as well as solvent capability in removing various contaminant materials were reviewed and testing was performed. Bonding studies were also done to verify that the cleaning methods used in removing contaminants provide an acceptable bonding surface. The removal of contaminants from a metal surface and the strength of subsequent bonds were tested using the Martin Marietta and double-wipe cleaning methods. Results are reported.
Effects on optical systems from interactions with oxygen atoms in low earth orbits
NASA Technical Reports Server (NTRS)
Peters, P. N.; Swann, J. T.; Gregory, J. C.
1986-01-01
Modifications of material surface properties due to interactions with ambient atomic oxygen have been observed on surfaces facing the orbital direction in low earth orbits. Some effects are very damaging to surface optical properties while some are more subtle and even beneficial. Most combustible materials are heavily etched, and some coatings, such as silver and osmium, are seriously degraded or removed as volatile oxides. The growth of oxide films on metals and semiconductors considered stable in dry air was measured. Material removal, surface roughness, reflectance, and optical densities are reported. Effects of temperature, contamination, and overcoatings are noted.
Effects on optical systems from interactions with oxygen atoms in low earth orbits
NASA Astrophysics Data System (ADS)
Peters, P. N.; Swann, J. T.; Gregory, J. C.
1986-04-01
Modifications of material surface properties due to interactions with ambient atomic oxygen have been observed on surfaces facing the orbital direction in low earth orbits. Some effects are very damaging to surface optical properties while some are more subtle and even beneficial. Most combustible materials are heavily etched, and some coatings, such as silver and osmium, are seriously degraded or removed as volatile oxides. The growth of oxide films on metals and semiconductors considered stable in dry air was measured. Material removal, surface roughness, reflectance, and optical densities are reported. Effects of temperature, contamination, and overcoatings are noted.
Optical damage observed in the LHMEL II output coupler
NASA Astrophysics Data System (ADS)
Eric, John J.; Bagford, John O.; Devlin, Christie L. H.; Hull, Robert J.; Seibert, Daniel B.
2008-01-01
During the annual NIST calibration testing done at the LHMEL facility in FY06 on its high energy Carbon-Dioxide lasers, the LHMEL II device suffered severe damage to the internal surface of its ZnSe output coupler optics. The damage occurred during a high power, short duration run and it was believed to have been the result of a significant amount of surface contaminants interacting with the LHMEL cavity beam. Initial theories as to the source of the contamination led to the inspection of the vacuum grease that seals the piping that supplies the source gases to the laser cavity. Other contamination sources were considered, and analysis was conducted in an effort to identify the material found at the damage sites on the optic, but the tests were mainly inconclusive. Some procedure changes were initiated to identify possible contamination before high energy laser operation in an attempt to mitigate and possibly prevent the continued occurrence of damage to the output coupler window. This paper is to illustrate the type and extent of the damage encountered, highlight some of the theories as to the contamination source, and serve as a notice as to the severity and consequences of damage that is possible even due to small amounts of foreign material in a high energy laser environment.
Improved thermoelectrically cooled quartz crystal microbalance
NASA Technical Reports Server (NTRS)
Mckeown, W. E.; Corbin, W. E., Jr.; Fox, M. G.
1974-01-01
Design changes in the thermoelectrically-cooled quartz microbalance, which is used to monitor surface contamination in space simulation chambers, is described in terms of its extended temperature range, increased temperature control, mass sensitivity, and cooling power. The mass sensor uses 20 MHz quartz crystals having a sensitivity of 8.8 x 10 to the minus tenth power g/sq cm - Hz. The crystals are optically polished, metal plated, and overplated with magnesium fluoride to simulate an optical surface. The microbalance temperature circuitry is designed to readout and control surface temperature between 100 C and minus 59 C to plus or minus 0.5 C, and readout only temperature between minus 60 C and minus 199 C using auxiliary liquid nitrogen cooling. Data is included on the measurement of oil contamination of surfaces as a function of temperature in space simulation chambers.
Development of replicated optics for AXAF-1 XDA testing
NASA Technical Reports Server (NTRS)
Engelhaupt, Darell; Wilson, Michele; Martin, Greg
1995-01-01
Advanced optical systems for applications such as grazing incidence Wolter I x-ray mirror assemblies require extraordinary mirror surfaces in terms of fine finish and surface figure. The impeccable mirror surface is on the inside of the rotational mirror form. One practical method of producing devices with these requirements is to first fabricate an exterior surface for the optical device then replicate that surface to have the inverse component with lightweight characteristics. The replicated optic is not better than the master or mandrel from which it is made. This task identifies methods and materials for forming these extremely low roughness optical components. The objectives of this contract were to (1) prepare replication samples of electroless nickel coated aluminum, and determine process requirements for plating XDA test optic; (2) prepare and assemble plating equipment required to process a demonstration optic; (3) characterize mandrels, replicas and test samples for residual stress, surface contamination and surface roughness and figure using equipment at MSFC and; (4) provide technical expertise in establishing the processes, procedures, supplies and equipment needed to process the XDA test optics.
RF plasma cleaning of silicon substrates with high-density polyethylene contamination
NASA Astrophysics Data System (ADS)
Cagomoc, Charisse Marie D.; De Leon, Mark Jeffry D.; Ebuen, Anna Sophia M.; Gilos, Marlo Nicole R.; Vasquez, Magdaleno R., Jr.
2018-01-01
Upon contact with a polymeric material, microparticles from the polymer may adhere to a silicon (Si) substrate during device processing. The adhesion contaminates the surface and, in turn, leads to defects in the fabricated Si-based microelectronic devices. In this study, Si substrates with artificially induced high-density polyethylene (HDPE) contamination was exposed to 13.56 MHz radio frequency (RF) plasma utilizing argon and oxygen gas admixtures at a power density of 5.6 W/cm2 and a working pressure of 110 Pa for up to 6 min of treatment. Optical microscopy studies revealed the removal of up to 74% of the polymer contamination upon plasma exposure. Surface free energy (SFE) increased owing to the removal of contaminants as well as the formation of polar groups on the Si surface after plasma treatment. Atomic force microscopy scans showed a decrease in surface roughness from 12.25 nm for contaminated samples to 0.77 nm after plasma cleaning. The smoothening effect can be attributed to the removal of HDPE particles from the surface. In addition, scanning electron microscope images showed that there was a decrease in the amount of HDPE contaminants adhering onto the surface after plasma exposure.
An Induced Environment Contamination Monitor for the Space Shuttle
NASA Technical Reports Server (NTRS)
Miller, E. R. (Editor); Decher, R. (Editor)
1978-01-01
The Induced Environment Contamination Monitor (IECM), a set of ten instruments integrated into a self-contained unit and scheduled to fly on shuttle Orbital Flight Tests 1 through 6 and on Spacelabs 1 and 2, is described. The IECM is designed to measure the actual environment to determine whether the strict controls placed on the shuttle system have solved the contamination problem. Measurements are taken during prelaunch, ascent, on-orbit, descent, and postlanding. The on-orbit measurements are molecular return flux, background spectral intensity, molecular deposition, and optical surface effects. During the other mission phases dew point, humidity, aerosol content, and trace gas are measured as well as optical surface effects and molecular deposition. The IECM systems and thermal design are discussed. Preflight and ground operations are presented together with associated ground support equipment. Flight operations and data reduction plans are given.
Hassan, Moinuddin; Ilev, Ilko
2014-10-01
Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contact and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm(2). The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.
NASA Astrophysics Data System (ADS)
Hassan, Moinuddin; Ilev, Ilko
2014-10-01
Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contact and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm2. The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Moinuddin, E-mail: moinuddin.hassan@fda.hhs.gov; Ilev, Ilko
2014-10-15
Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contactmore » and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm{sup 2}. The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.« less
Shuttle Contamination And Experimentation: DoD Implications
NASA Astrophysics Data System (ADS)
Barnhart, B. J.; Baker, J. C.
1981-07-01
As the DOD makes the transition into the Shuttle era, experimenters are becoming more concerned about the environmental contamination of the Shuttle Orbiter. Their concern is that Shuttle contamination could prevent major planned experiments from obtaining required data, particularly sensitive infrared systems (e.g., Talon Gold, SIRE, STMP). The performance of optical experiments could be limited by the natural background, by light scattering and emissions from particulates and molecules, and by molecular absorption. Deposition and optical surface degradation may prove to be extensive problems, particularly for cryogenic optics. Other experiments such as communications and space environment tests may also be affected by deposition as well as electromagnetic interference. It has been known that the Shuttle's environment could cause contamination problems during water dumps, thruster firings, paint outgassing and other sources. Predictions have been made, but the contamination species and extent of these problems will not be known definitely until space measurements are made. This paper identifies the contamination types, sources, and their possible effect on particular types of space experiments. The paper also discusses NASA's plans for contamination measurements and the Space Test experiments which could contribute to early resolution of the contamination questions.
Shuttle Contamination And Experimentation: DoD Implications
NASA Astrophysics Data System (ADS)
Barnhart, B. J.; Baker, J. C.
1982-02-01
As the DOD makes the transition into the Shuttle era, experimenters are becoming more concerned about the environmental contamination of the Shuttle Orbiter. Their concern is that Shuttle contamination could prevent major planned experiments from obtaining required data, particularly sensitive infrared systems (e.g., Talon Gold, SIRE, STMP). The performance of optical experiments could be limited by the natural background, by light scattering and emissions from particulates and molecules, and by molecular absorption. Deposition and optical surface degradation may prove to be extensive problems, particularly for cryogenic optics. Other experiments such as communications and space environment tests may also be affected by deposition as well as electromagnetic interference. It has been known that the Shuttle's environment could cause contamination problems during water dumps, thruster firings, paint outgassing and other sources. Predictions have been made, but the contamination species and extent of these problems will not be known definitely until space measurements are made. This paper identifies the contamination types, sources, and their possible effect on particular types of space experiments. The paper also discusses NASA's plans for contamination measurements and the Space Test experiments which could contribute to early resolution of the contamination questions.
Method for in-situ cleaning of carbon contaminated surfaces
Klebanoff, Leonard E.; Grunow, Philip; Graham, Jr., Samuel
2006-12-12
Activated gaseous species generated adjacent a carbon contaminated surface affords in-situ cleaning. A device for removing carbon contamination from a surface of the substrate includes (a) a housing defining a vacuum chamber in which the substrate is located; (b) a source of gaseous species; and (c) a source of electrons that are emitted to activate the gaseous species into activated gaseous species. The source of electrons preferably includes (i) a filament made of a material that generates thermionic electron emissions; (ii) a source of energy that is connected to the filament; and (iii) an electrode to which the emitted electrons are attracted. The device is particularly suited for photolithography systems with optic surfaces, e.g., mirrors, that are otherwise inaccessible unless the system is dismantled. A method of removing carbon contaminants from a substrate surface that is housed within a vacuum chamber is also disclosed. The method employs activated gaseous species that react with the carbon contaminants to form carbon containing gaseous byproducts.
Extreme-UV lithography vacuum chamber zone seal
Haney, Steven J.; Herron, Donald Joe; Klebanoff, Leonard E.; Replogle, William C.
2001-01-01
Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.
Extreme-UV lithography vacuum chamber zone seal
Haney, Steven J.; Herron, Donald Joe; Klebanoff, Leonard E.; Replogle, William C.
2003-04-08
Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.
Extreme-UV lithography vacuum chamber zone seal
Haney, Steven J.; Herron, Donald Joe; Klebanoff, Leonard E.; Replogle, William C.
2003-04-15
Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.
A Study of Space Station Contamination Effects. [conference
NASA Technical Reports Server (NTRS)
Torr, M. R. (Editor); Spann, J. F. (Editor); Moorehead, T. W. (Editor)
1988-01-01
A workshop was held with the specific objective of reviewing the state-of-knowledge regarding Space Station contamination, the extent to which the various categories of contamination can be predicted, and the extent to which the predicted levels would interfere with onboard scientific investigations or space station functions. The papers presented at the workshop are compiled and address the following topics: natural environment, plasma electromagnetic environment, optical environment, particulate environment, spacecraft contamination, surface physics processes, laboratory experiments and vented chemicals/contaminants.
Optical effects module and passive sample array
NASA Technical Reports Server (NTRS)
Linton, R. C.
1983-01-01
The Optical Effects Module (OEM) has the objective to monitor the effects of the deposition and adhesion of both molecular species and particles on optical surfaces in the Shuttle cargo bay environment. The OEM performs inflight measurements of the ultraviolet (253.7 nm) transmittance and diffuse reflectance of five optical samples at regular intervals throughout the orbital mission. Most of the obtained results indicates or implies the absence of a significant accumulation of contamination other than particulates on the samples. The contaminant species (or particulates) adhering to the samples of the Passive Sample Array (PSA) were identified by means of Auger and X-ray energy dispersive analyses. The elements silicon, chlorine, and phosphorus were discovered.
Laser-induced contamination control for high-power lasers in space-based LIDAR missions
NASA Astrophysics Data System (ADS)
Alves, Jorge; Pettazzi, Federico; Tighe, Adrian; Wernham, Denny
2017-11-01
In the framework of the ADM-Aeolus satellite mission, successful test campaigns have been performed in ESTEC's laser laboratory, and the efficiency of several mitigation techniques against Laser-Induced Contamination (LIC) have been demonstrated for the ALADIN laser. These techniques include the standard contamination control methods of materials identification with particular tendency to cause LIC, reduction of the outgassing of organic materials by vacuum bake-out and shielding of optical surfaces from the contamination sources. Also novel mitigation methods such as in-situ cleaning via partial pressures, or the usage of molecular absorbers were demonstrated. In this context, a number of highly sensitive optical measurement techniques have been developed and tested to detect and monitor LIC deposits at nanometre level.
NASA Astrophysics Data System (ADS)
1989-01-01
A "NASA Tech Briefs" article describing an inspection tool and technique known as Optically Stimulated Electron Emission (OSEE) led to the formation of Photo Acoustic Technology, Inc. (PAT). PAT produces sensors and scanning systems which assure surface cleanliness prior to bonding, coating, painting, etc. The company's OP1000 series realtime pre-processing detection capability assures 100 percent surface quality testing. The technique involves brief exposure of the inspection surface to ultraviolet radiation. The energy interacts with the surface layer, causing free electrons to be emitted from the surface to be picked up by the detector. When contamination is present, it interferes with the electron flow in proportion to the thickness of the contaminant layer enabling measurement by system signal output. OP1000 systems operate in conventional atmospheres on all types of material and detect both organic and inorganic contamination.
Apparatus for in situ cleaning of carbon contaminated surfaces
Klebanoff, Leonard E.; Grunow, Philip; Graham, Jr., Samuel
2004-08-10
Activated gaseous species generated adjacent a carbon contaminated surface affords in-situ cleaning. A device for removing carbon contamination from a surface of the substrate includes (a) a housing defining a vacuum chamber in which the substrate is located; (b) a source of gaseous species; and (c) a source of electrons that are emitted to activate the gaseous species into activated gaseous species. The source of electrons preferably includes (i) a filament made of a material that generates thermionic electron emissions; (ii) a source of energy that is connected to the filament; and (iii) an electrode to which the emitted electrons are attracted. The device is particularly suited for photolithography systems with optic surfaces, e.g., mirrors, that are otherwise inaccessible unless the system is dismantled.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohashi, Haruhiko, E-mail: hohashi@spring8.or.jp; Senba, Yasunori; Yumoto, Hirokatsu
We studied typical forms of contamination on X-ray mirrors that cause degradation of beam quality, investigated techniques to remove the contaminants, and propose methods to eliminate the sources of the contamination. The total amount of carbon-containing substances on various materials in the vicinity of a mirror was measured by thermal desorption-gas chromatography/mass spectrometry and thermal desorption spectroscopy. It was found that cleanliness and ultra-high vacuum techniques are required to produce the contamination-free surfaces that are essential for the propagation of high-quality X-ray beams. The reduction of carbonaceous residue adsorbed on the surfaces, and absorbed into the bulk, of the materialsmore » in the vicinity of the mirrors is a key step toward achieving contamination-free X-ray optics.« less
Modeling contamination migration on the Chandra X-Ray Observatory
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Swartz, Douglas A.; Anderson, Scot K.; Chen, Kenny C.; Giordano, Rino J.; Knollenberg, Perry J.; Morris, Peter A.; Plucinsky, Paul P.; Tice, Neil W.; Tran, Hien
2005-01-01
During its first 5 years of operation, the cold (-60 C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), on board the Chandra X-ray Observatory, has accumulated a contaminating layer that attenuates the low-energy x rays. To assist in assessing the likelihood of successfully baking off the contaminant, members of the Chandra Team developed contamination-migration simulation software. The simulation follows deposition onto and (temperature-dependent) vaporization from surfaces comprising a geometrical model of the Observatory. A separate thermal analysis, augmented by on-board temperature monitoring, provides temperatures for each surface of the same geometrical model. This paper describes the physical basis for the simulations, the methodologies, and the predicted migration of the contaminant for various bake-out scenarios and assumptions.
Collection and review of metals data obtained from LDEF experiment specimens and support hardware
NASA Technical Reports Server (NTRS)
Bourassa, Roger; Pippin, H. Gary
1995-01-01
LDEF greatly extended the range of data available for metals exposed to the low-Earth-orbital environment. The effects of low-Earth-orbital exposure on metals include meteoroid and debris impacts, solar ultraviolet radiation, thermal cycling, cosmic rays, solar particles, and surface oxidation and contamination. This paper is limited to changes in surface composition and texture caused by oxidation and contamination. Surface property changes afford a means to study the environments (oxidation and contamination) as well as in-space stability of metal surfaces. We compare thermal-optical properties for bare aluminum and anodized aluminum clamps flown on LDEF. We also show that the silicon observed on the LDEF tray clamps and tray clamp bolt heads is not necessarily evidence of silicon contamination of LDEF from the shuttle. The paper concludes with a listing of LDEF reports that have been published thus far that contain significant findings concerning metals.
Transpiration purged optical probe
VanOsdol, John; Woodruff, Steven
2004-01-06
An optical apparatus for clearly viewing the interior of a containment vessel by applying a transpiration fluid to a volume directly in front of the external surface of the optical element of the optical apparatus. The fluid is provided by an external source and transported by means of an annular tube to a capped end region where the inner tube is perforated. The perforation allows the fluid to stream axially towards the center of the inner tube and then axially away from an optical element which is positioned in the inner tube just prior to the porous sleeve. This arrangement draws any contaminants away from the optical element keeping it free of contaminants. In one of several embodiments, the optical element can be a lens, a viewing port or a laser, and the external source can provide a transpiration fluid having either steady properties or time varying properties.
Contamination and UV lasers: lessons learned
NASA Astrophysics Data System (ADS)
Daly, John G.
2015-09-01
Laser induced damage to optical elements has been a subject of significant research, development, and improvement, since the first lasers were built over the last 50 years. Better materials, with less absorption, impurities, and defects are available, as well as surface coatings with higher laser damage resistance. However, the presence of contamination (particles, surface deposition films, or airborne) can reduce the threshold for damage by several orders of magnitude. A brief review of the anticipated laser energy levels for damage free operation is presented as a lead into the problems associated with contamination for ultraviolet (UV) laser systems. As UV lasers become more common in applications especially in areas such as lithography, these problems have limited reliability and added to costs. This has been characterized as Airborne Molecular Contamination (AMC) in many published reports. Normal engineering guidelines such as screening materials within the optical compartment for low outgassing levels is the first step. The use of the NASA outgassing database (or similar test methods) with low Total Mass Loss (TML) and Condensed Collected Volatiles Collected Mass (CVCM) is a good baseline. Energetic UV photons are capable of chemical bond scission and interaction with surface contaminant or airborne materials results in deposition of obscuring film laser footprints that continue to degrade laser system performance. Laser systems with average powers less than 5 mW have been shown to exhibit aggressive degradation. Lessons learned over the past 15 years with UV laser contamination and steps to reduce risk will be presented.
Extreme ultraviolet reflectivity studies of gold on glass and metal substrates
NASA Technical Reports Server (NTRS)
Jelinsky, Sharon R.; Malina, Roger F.; Jelinsky, Patrick
1988-01-01
The paper reports measurements of the extreme ultraviolet reflectivity of gold from 44 to 920 A at grazing incidence. Gold was deposited using vacuum evaporation and electroplating on substrates of glass and polished nickel, respectively. Measurements are also presented of the extreme ultraviolet reflectivity of electroless nickel in the same wavelength region, where one of the polished nickel substrates was used as a sample. Derived optical constants for evaporated and electroplated gold and electroless nickel are presented. Additional studies of the effects of various contaminants on the EUV reflectivity are also reported. The variations of the optical constants are discussed in terms of density variations, surface roughness and contamination effects. These results ae reported as part of studies for the Extreme Ultraviolet Explorer satellite program to determine acceptance criteria for the EUV optics, contamination budgets and calibration plans.
Surface contamination analysis technology team overview
NASA Technical Reports Server (NTRS)
Burns, H. Dewitt
1995-01-01
A team was established which consisted of representatives from NASA (Marshall Space Flight Center and Langley Research Center), Thiokol Corporation, the University of Alabama in Huntsville, AC Engineering, SAIC, Martin Marietta, and Aerojet. The team's purpose was to bring together the appropriate personnel to determine what surface inspection techniques were applicable to multiprogram bonding surface cleanliness inspection. In order to identify appropriate techniques and their sensitivity to various contaminant families, calibration standards were developed. Producing standards included development of consistent low level contamination application techniques. Oxidation was also considered for effect on inspection equipment response. Ellipsometry was used for oxidation characterization. Verification testing was then accomplished to show that selected inspection techniques could detect subject contaminants at levels found to be detrimental to critical bond systems of interest. Once feasibility of identified techniques was shown, selected techniques and instrumentation could then be incorporated into a multipurpose inspection head and integrated with a robot for critical surface inspection. Inspection techniques currently being evaluated include optically stimulated electron emission (OSEE); near infrared (NIR) spectroscopy utilizing fiber optics; Fourier transform infrared (FTIR) spectroscopy; and ultraviolet (UV) fluorescence. Current plans are to demonstrate an integrated system in MSFC's Productivity Enhancement Complex within five years from initiation of this effort in 1992 assuming appropriate funding levels are maintained. This paper gives an overview of work accomplished by the team and future plans.
Theoretical contamination of cryogenic satellite telescopes
NASA Technical Reports Server (NTRS)
Murakami, M.
1978-01-01
The state of contaminant molecules, the deposition rate on key surfaces, and the heat transfer rate were estimated by the use of a zeroth-order approximation. Optical surfaces of infrared telescopes cooled to about 20 K should be considered to be covered with at least several deposition layers of condensible molecules without any contamination controls. The effectiveness of the purge gas method of contamination controls was discussed. This method attempts to drive condensible molecules from the telescope tube by impacts with a purge gas in the telescope tube. For this technique to be sufficiently effective, the pressure of the purge gas must be more than 2 x .000001 torr. The influence caused by interactions of the purged gas with the particulate contaminants was found to slightly increase the resident times of the particulate contaminants within the telescope field of view.
NASA Technical Reports Server (NTRS)
Banks, Bruce; Rutledge, Sharon; Sechkar, Edward; Stueber, Thomas; Snyder, Aaron; deGroh, Kim; Haytas, Christy; Brinker, David
2000-01-01
The continued presence and use of silicones on spacecraft in low Earth orbit (LEO) has been found to cause the deposition of contaminant films on surfaces which are also exposed to atomic oxygen. The composition and optical properties of the resulting SiO(x)- based (where x is near 2) contaminant films may be dependent upon the relative rates of arrival of atomic oxygen, silicone contaminant and hydrocarbons. This paper presents results of in-space silicone contamination tests, ground laboratory simulation tests and analytical modeling to identify controlling processes that affect contaminant characteristics.
Materials surface contamination analysis
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Arendale, William F.
1992-01-01
The original research objective was to demonstrate the ability of optical fiber spectrometry to determine contamination levels on solid rocket motor cases in order to identify surface conditions which may result in poor bonds during production. The capability of using the spectral features to identify contaminants with other sensors which might only indicate a potential contamination level provides a real enhancement to current inspection systems such as Optical Stimulated Electron Emission (OSEE). The optical fiber probe can easily fit into the same scanning fixtures as the OSEE. The initial data obtained using the Guided Wave Model 260 spectrophotometer was primarily focused on determining spectra of potential contaminants such as HD2 grease, silicones, etc. However, once we began taking data and applying multivariate analysis techniques, using a program that can handle very large data sets, i.e., Unscrambler 2, it became apparent that the techniques also might provide a nice scientific tool for determining oxidation and chemisorption rates under controlled conditions. As the ultimate power of the technique became recognized, considering that the chemical system which was most frequently studied in this work is water + D6AC steel, we became very interested in trying the spectroscopic techniques to solve a broad range of problems. The complexity of the observed spectra for the D6AC + water system is due to overlaps between the water peaks, the resulting chemisorbed species, and products of reaction which also contain OH stretching bands. Unscrambling these spectral features, without knowledge of the specific species involved, has proven to be a formidable task.
Evaluation of Space Power Materials Flown on the Passive Optical Sample Assembly
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; deGroh, Kim K.; Skowronski, Timothy J.; McCollum, Tim; Pippin, Gary; Bungay, Corey
1999-01-01
Evaluating the performance of materials on the exterior of spacecraft is of continuing interest, particularly in anticipation of those applications that will require a long duration in low Earth orbit. The Passive Optical Sample Assembly (POSA) experiment flown on the exterior of Mir as a risk mitigation experiment for the International Space Station was designed to better understand the interaction of materials with the low Earth orbit environment and to better understand the potential contamination threats that may be present in the vicinity of spacecraft. Deterioration in the optical performance of candidate space power materials due to the low Earth orbit environment, the contamination environment, or both, must be evaluated in order to propose measures to mitigate such deterioration. The thirty two samples of space power materials studied here include solar array blanket materials such as polyimide Kapton H and SiO(x) coated polyimide Kapton H, front surface aluminized sapphire, solar dynamic concentrator materials such as silver on spin coated polyimide and aluminum on spin coated polyimide, CV 1144 silicone, and the thermal control paint Z-93-P. The physical and optical properties that were evaluated prior to and after the POSA flight include mass, total, diffuse, and specular reflectance, solar absorptance, and infrared emittance. Additional post flight evaluation included scanning electron microscopy to observe surface features caused by the low Earth orbit environment and the contamination environment, and variable angle spectroscopic ellipsometry to identify contaminant type and thickness. This paper summarizes the results of pre- and post-flight measurements, identifies the mechanisms responsible for optical properties deterioration, and suggests improvements for the durability of materials in future missions.
Microtextured metals for stray-light suppression in the Clementine startracker
NASA Technical Reports Server (NTRS)
Johnson, E. A.
1993-01-01
Anodized blacks for suppressing stray light in optical systems can now be replaced by microscopically textured metal surfaces. An application of these black surfaces to the Clementine star-tracker navigational system, which will be launched in early 1994 to examine the Moon, en route to intercept an asteroid, is detailed. Rugged black surfaces with Lambertian BRDF less than 10(exp -2) srad(sup -1) are critical for suppressing stray light in the star-tracker optical train. Previously available materials spall under launch vibrations to contaminate mirrors and lenses. Microtextured aluminum is nearly as dark, but much less fragile. It is made by differential ion beam sputtering, which generates light-trapping pores and cones slightly smaller than the wavelength to be absorbed. This leaves a sturdy but light-absorbing surface that can survive challenging conditions without generating debris or contaminants. Both seeded ion beams and plasma immersion (from ECR plasmas) extraction can produce these microscopic textures without fragile interfaces. Process parameters control feature size, spacing, and optical effects (THR, BRDF). Both broad and narrow absorption bands can be engineered with tuning for specific wavelengths and applications. Examples are presented characterized by FTIR in reflection librators (0.95 normal emissivity), heat rejection, and enhanced nucleate boiling.
Contamination and Radiation Effects on Nonlinear Crystals for Space Laser Systems
NASA Technical Reports Server (NTRS)
Abdeldayem, Hossain A.; Dowdye, Edward; Jamison, Tracee; Canham, John; Jaeger, Todd
2005-01-01
Space Lasers are vital tools for NASA s space missions and military applications. Although, lasers are highly reliable on the ground, several past space laser missions proved to be short-lived and unreliable. In this communication, we are shedding more light on the contamination and radiation issues, which are the most common causes for optical damages and laser failures in space. At first, we will present results based on the study of liquids and subsequently correlate these results to the particulates of the laser system environment. We present a model explaining how the laser beam traps contaminants against the optical surfaces and cause optical damages and the role of gravity in the process. We also report the results of the second harmonic generation efficiency for nonlinear optical crystals irradiated with high-energy beams of protons. In addition, we are proposing to employ the technique of adsorption to minimize the presence of adsorbing molecules present in the laser compartment.
NASA Technical Reports Server (NTRS)
1978-01-01
The possible degradation of optical samples exposed to the effluent gases and particulate matter emanating from the payload of the space transportation system during orbital operations may be determined by measuring two optical parameters for five samples exposed to this environment, namely transmittance and diffuse reflectance. Any changes detected in these parameters as a function of time during the mission are then attributable to surface contamination or to increased material absorption. These basic functions are attained in the optical effects module by virtue of the following subsystems which are described: module enclosure; light source with collimator and modulator; sample wheel with holders and rotary drive; photomultipliers for radiation detection; processing and sequencing electronic circuitry; and power conditioning interfaces. The functions of these subsystems are reviewed and specified.
Portable spotter for fluorescent contaminants on surfaces
Schuresko, Daniel D.
1980-01-01
A portable fluorescence-based spotter for polynuclear aromatic hydrocarbon contamination on personnel and work area surfaces under ambient lighting conditions is provided. This instrument employs beam modulation and phase sensitive detection for discriminating between fluorescence from organic materials from reflected background light and inorganic fluorescent material. The device uses excitation and emission filters to provide differentiation between classes of aromatic organic compounds. Certain inorganic fluorescent materials, including heavy metal compounds, may also be distinguished from the organic compounds, despite both having similar optical properties.
Method and system for gas flow mitigation of molecular contamination of optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgado, Gildardo; Johnson, Terry; Arienti, Marco
A computer-implemented method for determining an optimized purge gas flow in a semi-conductor inspection metrology or lithography apparatus, comprising receiving a permissible contaminant mole fraction, a contaminant outgassing flow rate associated with a contaminant, a contaminant mass diffusivity, an outgassing surface length, a pressure, a temperature, a channel height, and a molecular weight of a purge gas, calculating a flow factor based on the permissible contaminant mole fraction, the contaminant outgassing flow rate, the channel height, and the outgassing surface length, comparing the flow factor to a predefined maximum flow factor value, calculating a minimum purge gas velocity and amore » purge gas mass flow rate from the flow factor, the contaminant mass diffusivity, the pressure, the temperature, and the molecular weight of the purge gas, and introducing the purge gas into the semi-conductor inspection metrology or lithography apparatus with the minimum purge gas velocity and the purge gas flow rate.« less
Effect of Thin Cirrus Clouds on Dust Optical Depth Retrievals From MODIS Observations
NASA Technical Reports Server (NTRS)
Feng, Qian; Hsu, N. Christina; Yang, Ping; Tsay, Si-Chee
2011-01-01
The effect of thin cirrus clouds in retrieving the dust optical depth from MODIS observations is investigated by using a simplified aerosol retrieval algorithm based on the principles of the Deep Blue aerosol property retrieval method. Specifically, the errors of the retrieved dust optical depth due to thin cirrus contamination are quantified through the comparison of two retrievals by assuming dust-only atmospheres and the counterparts with overlapping mineral dust and thin cirrus clouds. To account for the effect of the polarization state of radiation field on radiance simulation, a vector radiative transfer model is used to generate the lookup tables. In the forward radiative transfer simulations involved in generating the lookup tables, the Rayleigh scattering by atmospheric gaseous molecules and the reflection of the surface assumed to be Lambertian are fully taken into account. Additionally, the spheroid model is utilized to account for the nonsphericity of dust particles In computing their optical properties. For simplicity, the single-scattering albedo, scattering phase matrix, and optical depth are specified a priori for thin cirrus clouds assumed to consist of droxtal ice crystals. The present results indicate that the errors in the retrieved dust optical depths due to the contamination of thin cirrus clouds depend on the scattering angle, underlying surface reflectance, and dust optical depth. Under heavy dusty conditions, the absolute errors are comparable to the predescribed optical depths of thin cirrus clouds.
Optical characterization of contaminant film. [long duration exposure facility
NASA Technical Reports Server (NTRS)
Blakkolb, Brian K.; Yaung, James Y.; Kosic, Tom; Bowen, Howard
1992-01-01
The so called 'nicotine stain' documented at many locations on the Long Duration Exposure Facility is still unexplained as to the exact origin and mechanism of deposition, although enough is known to have some understanding of the conditions coincident for the formation of the deposits. Direct and scattered atomic oxygen flux, and solar ultraviolet radiation interacting with materials outgassing products have all been implicated in the formation of the dark brown contamination deposits. The nicotine stain represents a potential of performance degradation for spacecraft designed for long term operation in low Earth orbit and therefore, a need exists to characterize this form of spacecraft self contamination and quantify the impact on thermal/optical systems. Optical property measurements in the spectral range of 2 to 10 microns were performed on specimens of the contaminated film. Reflectance measurements of the contaminant film as deposited on the surface and as free standing films are presented along with transmission spectra for the bulk material. Thickness measurements along with micrographic examination of the cross section of the deposit reveal the layered structure of the deposit which further implicates solar illumination as a factor in the deposition mechanism.
Surface Monitoring of CFRP Structures for Adhesive Bonding
NASA Technical Reports Server (NTRS)
Ledesma, Rodolfo; Palmieri, Frank L.; Yost, William T.; Connell, John W.; Fitz-Gerald, James M.
2017-01-01
Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding is essential in order to obtain a surface free from contaminants that may degrade structural performance. Two techniques which monitor the effectiveness of the laser surface treatment of carbon fiber reinforced polymer (CFRP) materials are being investigated: laser induced breakdown spectroscopy (LIBS) and optically stimulated electron emission (OSEE). The applicability of LIBS to detect silicone contaminants on CFRP composites is studied using 35 ns Nd:YAG laser pulses at 355 nm with a pulse energy of 45 mJ. The LIBS regime in which pulse energies are < 100 mJ is referred to as mLIBS. CFRP surfaces were contaminated with polydimethylsiloxane (PDMS), a major component of silicone based mold release agents. The presence of PDMS is found by inspecting the Si I emission line at 288.2 nm. Untreated CFRP samples and CFRP contaminated with PDMS were tested. The PDMS areal density ranged from 0.36 Â+/- 0.04 to 0.51 Â+/- 0.16 mg/cm2. The results demonstrate the successful detection of PDMS on CFRP using mLIBS. In addition, OSEE was used to measure CFRP surface cleanliness pre- and post-treatment by laser ablation on specimens contaminated with PDMS coatings from 8 nm to 1311 nm in thickness. The results showed a significant increase in the OSEE photocurrent after laser surface treatment.
Changes in the Optical Properties of Simulated Shuttle Waste Water Deposits: Urine Darkening
NASA Technical Reports Server (NTRS)
Albyn, Keith; Edwards, David; Alred, John
2003-01-01
Manned spacecraft have historically dumped the crew generated waste water overboard, into the environment in which the spacecraft operates, sometimes depositing the waste water on the external spacecraft surfaces. The change in optical properties of wastewater deposited on spacecraft external surfaces, from exposure to space environmental effects, is not well understood. This study used nonvolatile residue (NVR) from Human Urine to simulate wastewater deposits and documents the changes in the optical properties of the NVR deposits after exposure to ultra violet(UV)radiation. Twenty four NVR samples of, 0-angstromes/sq cm to 1000-angstromes/sq cm, and one sample contaminated with 1 to 2-mg/sq cm were exposed to UV radiation over the course of approximately 6151 equivalent sun hours (ESH). Random changes in sample mass, NVR, solar absorbance, and infrared emission were observed during the study. Significant changes in the UV transmittance were observed for one sample contaminated at the mg/sq cm level.
Changes in the Optical Properties of Simulated Shuttle Waste Water Deposits- Urine Darkening
NASA Technical Reports Server (NTRS)
Albyn, Keith; Edwards, David; Alred, John
2004-01-01
Manned spacecraft have historically dumped the crew generated waste waster overboard, into the environment in which the spacecraft operates, sometimes depositing the waste water on the external spacecraft surfaces. The change in optical properties of wastewater deposited on spacecraft external surfaces, from exposure to space environmental effects, is not well understood. This study used nonvolatile residue (NVR) from Human Urine to simulate wastewater deposits and documents the changes in the optical properties of the NVR deposits after exposure to ultra violet (UV) radiation. Twenty NVR samples of, 0-angstromes/sq cm to 1000-angstromes/sq cm, and one sample contaminated with 1 to 2-mg/sq cm were exposed to UV radiation over the course of approximately 6151 equivalent sun hours (ESH). Random changes in sample mass, NVR, solar absorbance, and infrared emission were observed during the study. Significant changes in the UV transmittance were observed for one sample contaminated at the mg/sq cm level.
NASA Astrophysics Data System (ADS)
Hamilton, J.
2012-09-01
Protection and cleaning of precision optical surfaces on large scale astronomical instruments has entered a new era. First surface mirrors have been restored to "like-new" condition avoiding the expense and downtime of recoating. Nearly 10 years of testing and evaluation at a variety of sites including optics at Vandenberg Air Force Base, the Canada France Hawaii Telescope (CFHT) and the W.M Keck Telescope on Mauna Kea, have yielded impressive results: restored reflectivity, no residue, insitu cleaning and better coating performance when used as a precleaner when coating. Metrology and research in our labs has resulted in these novel, commercially available polymeric stripcoatings that are applied as a liquid and subsequently peeled off the substrate as a solid film. These designer polymer solutions safely clean and protect a wide variety of nanostructured surfaces and leave the surface almost atomically clean. Contaminant removal was monitored by a variety of techniques including Reflectivity, Nomarski, Atomic Force and Scanning Electron Microscopy as well as XPS. In addition, data demonstrates that the material safely removes particulate contamination and finger oils from nanostructures such as the 300nm wide lines on diffraction gratings and similar submicron features on Si wafers. High power laser damage testing found no residue on the optical surfaces following dried film removal and YAG laser damage thresholds after cleaning on coated BK7 of 15J/cm2 at 20ns and 20Hz were unchanged. Additionally to these adhesion tunable polymer systems, nanotube and graphene doped, ESD free polymer strip coatings for surface protection, nanoreplication, cleaning and dust mitigation have also been developed. Our coatings have been successfully used on diverse surfaces like high power laser optics, the Hope Diamond in Washington DC, CCD s for the 520 megapixel Dark Energy Survey Camera being built at Fermilab and lithographically fabbed detector surfaces for the Cryogenic Dark Matter Search.
Unusual Nature of Fingerprints and the Implications for Easy-to-Clean Coatings.
Stoehr, Bastian; McClure, Stuart; Höflich, Alexander; Al Kobaisi, Mohammad; Hall, Colin; Murphy, Peter J; Evans, Drew
2016-01-19
Irrespective of the technology, we now rely on touch to interact with devices such as smart phones, tablet computers, and control panels. As a result, touch screen technologies are frequently in contact with body grease. Hence, surface deposition arises from localized inhomogeneous finger-derived contaminants adhering to a surface, impairing the visual/optical experience of the user. In this study, we examined the contamination itself in order to understand its static and dynamic behavior with respect to deposition and cleaning. A process for standardized deposition of fingerprints was developed. Artificial sebum was used in this process to enable reproducibility for quantitative analysis. Fingerprint contamination was shown to be hygroscopic and to possess temperature- and shear-dependent properties. These results have implications for the design of easily cleanable surfaces.
Refurbishing of carbon contaminated pre-mirror of reflectivity beam line at Indus-1
NASA Astrophysics Data System (ADS)
Yadav, P. K.; Kumar, M.; Gupta, R. K.; Sinha, M.; Patel, H. S.; Modi, M. H.
2018-04-01
In recent days optics contamination and its refurbishing is a serious issue for synchrotron radiation beam line community. Here we refurbished a carbon contaminated mirror by Ar and O2 gas mixed (1:1) radio frequency plasma. For structural analysis pre and post characterization of the mirror was done by Soft X-ray reflectivity (SXRR), Raman Spectroscopy (RS) and Atomic force microscopy (AFM). Before refurbishing mirror, a low density graphitic carbon layer of thickness 400 Å with surface roughness about 55 Å and Au surface roughness 14Å was estimated by SXRR. After one hour RF plasma exposure it is observed by SXRR and Raman spectroscopy that carbon layer is completely removed. The AFM and SXRR results show that roughness of Au surface not increase after plasma exposure.
Space Shuttle Thermal Protection System Repair Flight Experiment Induced Contamination Impacts
NASA Technical Reports Server (NTRS)
Smith, Kendall A.; Soares, Carlos E.; Mikatarian, Ron; Schmidl, Danny; Campbell, Colin; Koontz, Steven; Engle, Michael; McCroskey, Doug; Garrett, Jeff
2006-01-01
NASA s activities to prepare for Flight LF1 (STS-114) included development of a method to repair the Thermal Protection System (TPS) of the Orbiter s leading edge should it be damaged during ascent by impacts from foam, ice, etc . Reinforced Carbon-Carbon (RCC) is used for the leading edge TPS. The repair material that was developed is named Non- Oxide Adhesive eXperimental (NOAX). NOAX is an uncured adhesive material that acts as an ablative repair material. NOAX completes curing during the Orbiter s descent. The Thermal Protection System (TPS) Detailed Test Objective 848 (DTO 848) performed on Flight LF1 (STS-114) characterized the working life, porosity void size in a micro-gravity environment, and the on-orbit performance of the repairs to pre-damaged samples. DTO 848 is also scheduled for Flight ULF1.1 (STS-121) for further characterization of NOAX on-orbit performance. Due to the high material outgassing rates of the NOAX material and concerns with contamination impacts to optically sensitive surfaces, ASTM E 1559 outgassing tests were performed to determine NOAX condensable outgassing rates as a function of time and temperature. Sensitive surfaces of concern include the Extravehicular Mobility Unit (EMU) visor, cameras, and other sensors in proximity to the experiment during the initial time after application. This paper discusses NOAX outgassing characteristics, how the amount of deposition on optically sensitive surfaces while the NOAX is being manipulated on the pre-damaged RCC samples was determined by analysis, and how flight rules were developed to protect those optically sensitive surfaces from excessive contamination where necessary.
Ellipsometric Analysis of Contaminant Layer on Optical Witness Samples from MISSE
NASA Technical Reports Server (NTRS)
Norwood, Joseph K.
2007-01-01
Several optical witness samples included in the Materials for International Space Station Experiment (MISSE) trays have been analyzed with a variable angle spectroscopic ellipsometer or VASE. Witness samples of gold or platinum mirrors are extremely useful as collectors of space-borne contamination, due to the relative inertness of these noble metals in the atomic oxygen-rich environment of LEO. Highly accurate thickness measurements, typically at the sub-nanometer scale, may be achieved with this method, which uses polarized light in a spectral range of 300 to 1300 nanometers at several angles of incidence to the sample surface.
Wang, Jue; Maier, Robert L
2006-08-01
The requirements for optical components have drastically increased for the deep-ultraviolet and vacuum-ultraviolet spectral regions. Low optical loss, high laser damage threshold, and long lifetime fluoride optics are required for microlithographic applications. A nondestructive quasi-Brewster angle technique (qBAT) has been developed for evaluating the quality of optical surfaces including both top surface and subsurface information. By using effective medium approximation, the negative quasi-Brewster angle shift at wavelengths longer than 200 nm has been used to model the distribution of subsurface damage, whereas the positive quasi-Brewster angle shift for wavelengths shorter than 200 nm has been explained by subsurface contamination. The top surface roughness depicted by the qBAT is consistent with atomic force microscopy measurements. The depth and the microporous structure of the subsurface damage measured by the qBAT has been confirmed by magnetorheological finishing. The technique has been extended to evaluate both polished and antireflection-coated CaF(2) components.
An evaluation of Orbital Workshop passive thermal control surfaces
NASA Technical Reports Server (NTRS)
Daniels, D. J.; Kawano, P. I.; Sieker, W. D.; Walters, D. E.; Witherspoon, G. F.; Grunditz, D. W.
1974-01-01
The optical properties of selected Orbital Workshop thermal control surfaces are discussed from the time of their installation through the end of the Skylab missions. The surfaces considered are the goldized Kapton tape on the habitation area sidewall, the S-13G white paint on the Workshop aft skirt, and the multilayer insulation system on the forward dome of the habitation area. A quantitative assessment of the effects of exposure to the ascent and orbital environments is made including the effects of rocket exhaust plume contamination. Although optical property degradation of the external surfaces was noted, satisfactory thermal performance was maintained throughout the Skylab missions.
Contamination on LDEF: Sources, distribution, and history
NASA Technical Reports Server (NTRS)
Pippin, Gary; Crutcher, Russ
1993-01-01
An introduction to contamination effects observed on the Long Duration Exposure Facility (LDEF) is presented. The activities reported are part of Boeing's obligation to the LDEF Materials Special Investigation Group. The contamination films and particles had minimal influence on the thermal performance of the LDEF. Some specific areas did have large changes in optical properties. Films also interfered with recession rate determination by reacting with the oxygen or physically shielding underlying material. Generally, contaminant films lessen the measured recession rate relative to 'clean' surfaces. On orbit generation of particles may be an issue for sensitive optics. Deposition on lenses may lead to artifacts on photographic images or cause sensors to respond inappropriately. Particles in the line of sight of sensors can cause stray light to be scattered into sensors. Particles also represent a hazard for mechanisms in that they can physically block and/or increase friction or wear on moving surfaces. LDEF carried a rather complex mixture of samples and support hardware into orbit. The experiments were assembled under a variety of conditions and time constraints and stored for up to five years before launch. The structure itself was so large that it could not be baked after the interior was painted with chemglaze Z-306 polyurethane based black paint. Any analysis of the effects of molecular and particulate contamination must account for a complex array of sources, wide variation in processes over time, and extreme variation in environment from ground to launch to flight. Surface conditions at certain locations on LDEF were established by outgassing of molecular species from particular materials onto adjacent surfaces, followed by alteration of those species due to exposure to atomic oxygen and/or solar radiation.
Progress in standoff surface contaminant detector platform
NASA Astrophysics Data System (ADS)
Dupuis, Julia R.; Giblin, Jay; Dixon, John; Hensley, Joel; Mansur, David; Marinelli, William J.
2017-05-01
Progress towards the development of a longwave infrared quantum cascade laser (QLC) based standoff surface contaminant detection platform is presented. The detection platform utilizes reflectance spectroscopy with application to optically thick and thin materials including solid and liquid phase chemical warfare agents, toxic industrial chemicals and materials, and explosives. The platform employs an ensemble of broadband QCLs with a spectrally selective detector to interrogate target surfaces at 10s of m standoff. A version of the Adaptive Cosine Estimator (ACE) featuring class based screening is used for detection and discrimination in high clutter environments. Detection limits approaching 0.1 μg/cm2 are projected through speckle reduction methods enabling detector noise limited performance. The design, build, and validation of a breadboard version of the QCL-based surface contaminant detector are discussed. Functional test results specific to the QCL illuminator are presented with specific emphasis on speckle reduction.
Oleophobic properties of the step-and-terrace sapphire surface
NASA Astrophysics Data System (ADS)
Muslimov, A. E.; Butashin, A. V.; Kanevsky, V. M.
2017-03-01
Sapphire is widely used in production of optical windows for various devices due to its mechanical and optical properties. However, during operation the surface can be affected by fats, oils, and other organic contaminations. Therefore, it is important to improve the oleophobic properties of sapphire windows. In this study, we investigate the interaction of a supersmooth sapphire surface with oleic acid droplets, which imitate human finger printing. It is established that chemical-mechanical polishing with additional annealing in air, which leads to the formation of an atomically smooth sapphire surface, makes it possible to significantly improve the oleophobic properties of the surface. The results are analyzed using the Ventsel-Deryagin homogeneous wetting model.
Oleophobic properties of the step-and-terrace sapphire surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V.; Kanevsky, V. M.
Sapphire is widely used in production of optical windows for various devices due to its mechanical and optical properties. However, during operation the surface can be affected by fats, oils, and other organic contaminations. Therefore, it is important to improve the oleophobic properties of sapphire windows. In this study, we investigate the interaction of a supersmooth sapphire surface with oleic acid droplets, which imitate human finger printing. It is established that chemical–mechanical polishing with additional annealing in air, which leads to the formation of an atomically smooth sapphire surface, makes it possible to significantly improve the oleophobic properties of themore » surface. The results are analyzed using the Ventsel–Deryagin homogeneous wetting model.« less
NASA Technical Reports Server (NTRS)
Mookherji, T.
1976-01-01
Outgassing, deposition, and desorption kinetics of silicone compounds, are examined as examples of optical surface contaminants of spacecraft windows. Their behavior in a space environment after exposure to ultraviolet radiation is also examined. The use of internal reflection spectroscopy is shown to provide a viable means of real-time, in-situ identification of contaminants of orbiting spacecraft. The instrumental techniques are proposed as the basis of further investigations and the development of flight hardware.
Engineering Non-Wetting Antimicrobial Fabrics
NASA Astrophysics Data System (ADS)
van den Berg, Desmond
This research presents novel techniques and a review of commercially available fabrics for their antimicrobial potential. Based on previous research into the advantages of superhydrophobic self-cleaning surfaces against bacterial contamination, insights into what can make a superhydrophobic fabric inherently antimicrobial were analyzed. Through comparing the characterization results of scanning electron microscopy (SEM) and optical profilometry to microbiology experiments, hypotheses into the relationship between the contact area of a bacterial solution and the extent of contamination is developed. Contact scenario experiments, involving the use of fluorescence microscopy and calculating colony forming units, proved that the contamination potential of any fabric is due to the wetting state exhibited by the fabric, as well as the extent of surface texturing. Transmission experiments, utilizing a novel technique of stamping a contaminated fabric, outlined the importance of retention of solutions or bacteria during interactions within the hospital environment on the extent of contamination.
Low-pressure RF remote plasma cleaning of carbon-contaminated B4C-coated optics
NASA Astrophysics Data System (ADS)
Moreno Fernández, H.; Thomasset, M.; Sauthier, G.; Rogler, D.; Dietsch, R.; Barrett, R.; Carlino, V.; Pellegrin, E.
2017-05-01
Boron carbide (B4C) - due to its exceptional mechanical properties - is one of the few existing materials that can withstand the extremely high brilliance of the photon beam from free electron lasers (FELs) and is thus of considerable interest for optical applications in this field. However, as in the case of many other optics operated at modern accelerator-, plasma-, or laser-based light source facilities, B4C-coated optics are subject to ubiquitous carbon contaminations. These contaminations - that are presumably produced via cracking of CHx and CO2 molecules by photoelectrons emitted from the optical components - represent a serious issue for the operation of the pertinent high performance beamlines due to a severe reduction of photon flux and beam coherence, not necessarily restricted to the photon energy range of the carbon K-edge. Thus, a variety of B4C cleaning technologies have been developed at different laboratories with varying success [1]. Here, we present a study regarding the low-pressure RF plasma cleaning of a series of carbon-contaminated B4C test samples via an inductively coupled O2/Ar and Ar/H2 remote RF plasma produced using the IBSS GV10x plasma source following previous studies using the same RF plasma source [2, 3]. Results regarding the chemistry, morphology as well as other aspects of the B4C optical coatings and surfaces before and after the plasma cleaning process are reported.
Hyperspectral characterization of fluorescent organic contaminants on optical payloads
NASA Astrophysics Data System (ADS)
Bourcier, Frédéric; Pansu, Robert; Faye, Delphine; Le Nouy, Patrice; Spezzigu, Piero
2017-11-01
The increase of performance of new optical instruments for science and Earth observation always leads to higher requirements in terms of contamination due to particle sedimentation in cleanrooms and deposition of chemical species in vacuum environment. Specific cleanliness control procedures are implemented in order to mitigate the risks of contamination on optical sensors and sensitive diopters, especially when used for UV applications. Such procedures are commonly carried out in cleanrooms and are described in both European ECSS-Q-ST-70-50C and NASA SN-C-0005D standards. UV light at 365 nm is often used for the inspection of optical sensitive surfaces to localize and to evaluate the amount of fluorescent particles, essentially coming from textile fibers. But other groups of compounds can be observed with a different spectral response and distribution, like adhesives and resins or even organic residues. Therefore, we could take advantage of this spectral information closely linked to specific molecules for partial identification of these materials before further investigation involving wipe on flight model and measurement in a laboratory.
Cleanliness inspection tool for RSRM bond surfaces
NASA Technical Reports Server (NTRS)
Mattes, Robert A.
1995-01-01
Using optically stimulated electron emission (OSEE), Thiokol has monitored bond surfaces in process for contamination on the Redesigned Solid Rocket Motor (RSRM). This technique provides process control information to help assure bond surface quality and repeatability prior to bonding. This paper will describe OSEE theory of operation and the instrumentation implemented at Thiokol Corporation since 1987. Data from process hardware will be presented.
Ion-Deposited Polished Coatings
NASA Technical Reports Server (NTRS)
Banks, B. A.
1986-01-01
Polished, dense, adherent coatings relatively free of imperfections. New process consists of using broad-beam ion source in evacuated chamber to ion-clean rotating surface that allows grazing incidence of ion beam. This sputter cleans off absorbed gases, organic contaminants, and oxides of mirror surface. In addition to cleaning, surface protrusions sputter-etched away. Process particularly adaptable to polishing of various substrates for optical or esthetic purposes.
Capabilities of the Materials Contamination Team at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Burns, H. D.; Finckenor, M. M.; Boothe, R. E.; Albyn, K. C.; Finchum, C. A.
2003-01-01
The Materials Contamination Team of the Environmental Effects Group, Materials, Processes, and Manufacturing Department, has been recognized for its contribution to space flight, including space transportation, space science and flight projects, such as the reusable solid rocket motor, Chandra X-Ray Observatory, and the International Space Station. The Materials Contamination Team s realm of responsibility encompasses all phases of hardware development including design, manufacturing, assembly, test, transportation, launch-site processing, on-orbit exposure, return, and refurbishment if required. Contamination is a concern in the Space Shuttle with sensitivity bondlines and reactive fluid (liquid oxygen) compatibility as well as for sensitive optics, particularly spacecraft such as Hubble Space Telescope and Chandra X-Ray Observatory. The Materials Contamination Team has a variety of facilities and instrumentation capable of contaminant detection identification, and monitoring. The team addresses material applications dealing with environments, including production facilities, clean rooms, and on-orbit exposure. The team of engineers and technicians also develop and evaluates new surface cleanliness inspection technologies. Databases are maintained by the team for proces! materials as well as outgassing and optical compatibility test results for specific environments.
NASA Astrophysics Data System (ADS)
Kay, J. E.; Hansen, G.; Gillespie, A.; Pettit, E.
2002-12-01
Relating cryosphere change to climate change requires estimation of radiative fluxes on snow-covered surfaces. The distribution of, and relationship between, snow-pack properties that affect radiative balance can be estimated with high-resolution remote-sensing data. MODIS/ASTER airborne simulator (MASTER) data were collected at Mt. Rainier to reveal spatial patterns of, and correlations between, snow contaminant content, grain size, and temperature. The visible and near-infrared (VNIR: 11 bands, 0.4-1.0 μm) and the short-wave infrared (SWIR: 14 bands, 1.6-2.4 μm) data are processed to bi-directional reflectance (BDR) and albedo, by removing atmospheric effects and by normalizing to Solar irradiance and incidence angle. VNIR BDR and albedo are used as a proxy for snow contaminant content. Physical and optical grain size are estimated by comparing SWIR BDR and albedo to modeled and measured spectra, and ground-truth measurements. The thermal infrared data (TIR: 10 bands, 8-13 μm) are processed to temperature by removing emissivity and atmospheric effects. In combination, the VNIR, SWIR, and TIR data reveal a distinct pattern of contaminants, grain size, and temperature related to a recent snowfall and the end-of-the-summer melting season. At lower elevations, the surface accumulation of dirty lag deposits resulted in snow with very low visible albedo (20-30 %), large physical and optical grain radii (500-1500 μm, 200 μm), and temperatures near the melting point. At higher elevations, the recent snowfall left snow with low contaminant content, and a higher visible albedo (60-90 %). However, a region near the summit with smaller physical and optical grain radii (400 μm, 100 μm), and temperatures below the melting point, is distinguished from a middle elevation region with grain sizes and temperatures similar to the lower region. Contaminants reduce VNIR albedo and significantly enhance absorption of incoming solar radiation. The spatial correlation between temperature and grain size supports the idea that rapid, destructive metamorphism occurs when snow temperatures are at the melting point.
Analysis of Nonvolatile Residue (NVR) from Spacecraft Systems
NASA Technical Reports Server (NTRS)
Colony, J. A.
1985-01-01
Organic contamination on critical spacecraft surfaces can cause electronic problems, serious attenuation of various optical signals, thermal control changes, and adhesion problems. Such contaminants can be detected early by the controlled use of witness mirrors, witness plates, wipe sampling, or direct solvent extraction. Each method requires careful control of variables of technique and materials to attain the ultimate sensitivities inherent to that procedure. Subsequent chemical analysis of the contaminant sample by infrared and mass spectrometry identifies the components, gives semiquantitative estimates of contaminant thickness, indicates possible sources of the nonvolatile residue (NVR), and provides guidance for effective cleanup procedures.
Window flaw detection by backscatter lighting
NASA Technical Reports Server (NTRS)
Crockett, L. K.; Minton, F. R.
1978-01-01
Portable fiber-optic probe detects tiny flaws in transparent materials. Probe transmits light through surface to illuminate interior of material by backscattering off its edges. Light-sensitive contact paper records scratch pattern. Technique can be used for rapid visual checks. Flexible fiber optics are safely used in explosive or flammable areas; they present no hazard of breakage or contamination in controlled environments.
Effect of surface contamination on adhesive bonding of cast pure titanium and Ti-6Al-4V alloy.
Watanabe, I; Watanabe, E; Yoshida, K; Okabe, T
1999-03-01
There is little information regarding bond strengths of resin cements to cast titanium surfaces contaminated by investment material. This study examined the effect of surface contamination on the shear bond strength of resin cements to cast titanium and Ti-6Al-4V alloy. Two types of disks were cast from commercially pure titanium (CP-Ti) and Ti-6Al-4V alloy ingots using an argon-arc pressure casting unit and a phosphate-bonded Al2 O3 /LiAlSiO6 investment. After casting, disks were subjected to 3 surface treatments: (1) cast surface sandblasted (50 microm-sized Al2 O3 ) for 30 seconds; (2) metal surface sanded with silicon-carbide paper (600 grit) after grinding the contaminated cast surface (approximately 200 microm in thickness); and (3) metal surface sandblasted for 30 seconds after treatment 2. Surface structures were examined after each treatment with SEM and optical microscopy. Each type of disk was then bonded with 2 types of luting materials. Bonded specimens were subjected to thermocycling for up to 50,000 cycles, and shear bond strengths were determined after 0 (baseline) and 50,000 thermocycles. Results were statistically analyzed with 3-way ANOVA (P <.05). Microscopic observation of cast CP-Ti and Ti-6Al-4V exhibited noticeable structures on the cast surfaces apparently contaminated with investment material. However, there were no statistical differences (P >.05) in the bond strengths of both cements between contaminated (treatment 1) and uncontaminated surfaces (treatment 3) for both metals at baseline and after 50,000 thermocycles. The bond strength of specimens sanded with silicon-carbide paper (treatment 2) deteriorated dramatically after 50,000 thermocycles. Contamination of the cast metal surfaces by elements of the investment during casting did not affect bond strengths of the luting materials to CP-Ti and Ti-6Al-4V.
Gaseous optical contamination of the spacecraft environment: A review
NASA Technical Reports Server (NTRS)
Tran, N. H.; Maris, M. A.; Kofsky, I. L.; Murad, E.
1990-01-01
Interactions between the ambient atmosphere and orbiting spacecraft, sounding rockets, and suborbital vehicles, and with their effluents, give rise to optical (extreme UV to LWIR) foreground radiation which constitutes noise that raises the detection threshold for terrestrial and celestial radiations, as well as military targets. Researchers review the current information on the on-orbit optical contamination. Its source species are created in interaction processes that can be grouped into three categories: (1) Reactions in the gas phase between the ambient atmosphere and desorbates and exhaust; (2) Reactions catalyzed by exposed ram surfaces, which occur spontaneously even in the absence of active material releases from the vehicles; and (3) Erosive excitative reactions with exposed bulk (organic) materials, which have recently been identified in the laboratory though not as yet observed on spacecraft. Researchers also assess the effect of optical pumping by earthshine and sunlight of both reaction products and effluents.
Effect of multiple circular holes Fraunhofer diffraction for the infrared optical imaging
NASA Astrophysics Data System (ADS)
Lu, Chunlian; Lv, He; Cao, Yang; Cai, Zhisong; Tan, Xiaojun
2014-11-01
With the development of infrared optics, infrared optical imaging systems play an increasingly important role in modern optical imaging systems. Infrared optical imaging is used in industry, agriculture, medical, military and transportation. But in terms of infrared optical imaging systems which are exposed for a long time, some contaminations will affect the infrared optical imaging. When the contamination contaminate on the lens surface of the optical system, it would affect diffraction. The lens can be seen as complementary multiple circular holes screen happen Fraunhofer diffraction. According to Babinet principle, you can get the diffraction of the imaging system. Therefore, by studying the multiple circular holes Fraunhofer diffraction, conclusions can be drawn about the effect of infrared imaging. This paper mainly studies the effect of multiple circular holes Fraunhofer diffraction for the optical imaging. Firstly, we introduce the theory of Fraunhofer diffraction and Point Spread Function. Point Spread Function is a basic tool to evaluate the image quality of the optical system. Fraunhofer diffraction will affect Point Spread Function. Then, the results of multiple circular holes Fraunhofer diffraction are given for different hole size and hole spacing. We choose the hole size from 0.1mm to 1mm and hole spacing from 0.3mm to 0.8mm. The infrared wavebands of optical imaging are chosen from 1μm to 5μm. We use the MATLAB to simulate light intensity distribution of multiple circular holes Fraunhofer diffraction. Finally, three-dimensional diffraction maps of light intensity are given to contrast.
NASA Astrophysics Data System (ADS)
Saito, Theodore T.; Langenbeck, Sharon L.; Al-Jamily, Ghanim; Arnold, Joe; Barbee, Troy; Coulter, Dan; Dolgin, Ben; Fichter, Buck; George, Patricia; Gorenstein, Paul
1992-08-01
Materials and structures technology covers a wide range of technical areas. Some of the most pertinent issues for the Astrotech 21 missions include dimensionally stable structural materials, advanced composites, dielectric coatings, optical metallic coatings for low scattered light applications, low scattered light surfaces, deployable and inflatable structures (including optical), support structures in 0-g and 1-g environments, cryogenic optics, optical blacks, contamination hardened surfaces, radiation hardened glasses and crystals, mono-metallic telescopes and instruments, and materials characterization. Some specific examples include low coefficients of thermal expansion (CTE) structures (0.01 ppm/K), lightweight thermally stable mirror materials, thermally stable optical assemblies, high reliability/accuracy (1 micron) deployable structures, and characterization of nanometer level behavior of materials/structures for interferometry concepts. Large filled-aperture concepts will require materials with CTE's of 10(exp 9) at 80 K, anti-contamination coatings, deployable and erectable structures, composite materials with CTE's less than 0.01 ppm/K and thermal hysteresis, 0.001 ppm/K. Gravitational detection systems such as LAGOS will require rigid/deployable structures, dimensionally stable components, lightweight materials with low conductivity, and high stability optics. The Materials and Structures panel addressed these issues and the relevance of the Astrotech 21 mission requirements by dividing materials and structures technology into five categories. These categories, the necessary development, and applicable mission/program development phasing are summarized. For each of these areas, technology assessments were made and development plans were defined.
In situ dc oxygen‐discharge cleaning system for optical elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koide, Tsuneharu; Shidara, Tetsuo; Tanaka, Kenichiro
1989-07-15
In situ dc oxygen‐discharge cleaning arrangements have been developed at the Photon Factory for the removal of carbon contamination from optical surfaces. A high cleaning rate could be achieved by producing an oxygen plasma close to the optical elements with special care taken to avoid any harmful effects from the discharge; contaminant carbon was completely removed within a few hours, at most. This short exposure time and the use of dry oxygen gas resulted in a restoration of the original ultrahigh vacuum without a bakeout. Results with a Seya‐Namioka beamline for gas‐phase experiments showed a flux enhancement amounting to amore » factor of 50, and results with a grasshopper beamline showed a nearly complete recovery of the light intensity, even at the carbon K edge.« less
O-6 Optical Property Degradation of the Hubble Space Telescope's Wide Field Camera-2 Pick Off Mirror
NASA Technical Reports Server (NTRS)
McNamara, Karen M.; Hughes, D. W.; Lauer, H. V.; Burkett, P. J.; Reed, B. B.
2011-01-01
Degradation in the performance of optical components can be greatly affected by exposure to the space environment. Many factors can contribute to such degradation including surface contaminants; outgassing; vacuum, UV, and atomic oxygen exposure; temperature cycling; or combinations of parameters. In-situ observations give important clues to degradation processes, but there are relatively few opportunities to correlate those observations with post-flight ground analyses. The return of instruments from the Hubble Space Telescope (HST) after its final servicing mission in May 2009 provided such an opportunity. Among the instruments returned from HST was the Wide-Field Planetary Camera-2 (WFPC-2), which had been exposed to the space environment for 16 years. This work focuses on the identifying the sources of degradation in the performance of the Pick-off mirror (POM) from WFPC-2. Techniques including surface reflectivity measurements, spectroscopic ellipsometry, FTIR (and ATR-FTIR) analyses, SEM/EDS, X-ray photoelectron spectroscopy (XPS) with and without ion milling, and wet and dry physical surface sampling were performed. Destructive and contact analyses took place only after completion of the non-destructive measurements. Spectroscopic ellipsometry was then repeated to determine the extent of contaminant removal by the destructive techniques, providing insight into the nature and extent of polymerization of the contaminant layer.
Shuttle PRCS plume contamination analysis for Astro-2 mission
NASA Technical Reports Server (NTRS)
Wang, Francis C.; Greene, Cindy
1993-01-01
The Astro-2 mission scheduled for Jan. 1995 flight is co-manifested with the Spartan experiment. The Astro instrument array consists of several telescopes operating in the UV spectrum. To obtain the desired 300 observations with the telescope array in a shorter time than the Astro-1 mission, it will be necessary to use the primary reaction control system (PRCS) rather than just the Vernier reaction control system. The high mass flow rate of the PRCS engines cause considerable concern about contamination due to PRCS plume return flux. Performance of these instruments depends heavily on the environment they encounter. The ability of the optical system to detect a remote signal depends not only on the intensity of the incoming signal, but also on the ensuing transmission loss through the optical train of the instrument. Performance of these instruments is thus dependent on the properties of the optical surface and the medium through which it propagates. The on-orbit contamination environment will have a strong influence on the performance of these instruments. The finding of a two-month study of the molecular contamination environment of the Astro-2 instruments due to PRCS thruster plumes during the planned Astro-2 mission are summarized.
1982-11-01
34phase history" of the scattering points, which, through analysis by optical or digital transforms, yields the wavenumber spectrum. There is as yet no...of the instrument should be em- phasized. Parker characterizes surface-mounted sensors as visual, electrical, acoustic, float, optical , radar, and...the additional feature of being less susceptible to contamination than the optical lens of a laser. For cases in which the measurement of wave
Fabrication of an optical component
Nichols, Michael A.; Aikens, David M.; Camp, David W.; Thomas, Ian M.; Kiikka, Craig; Sheehan, Lynn M.; Kozlowski, Mark R.
2000-01-01
A method for forming optical parts used in laser optical systems such as high energy lasers, high average power lasers, semiconductor capital equipment and medical devices. The optical parts will not damage during the operation of high power lasers in the ultra-violet light range. A blank is first ground using a fixed abrasive grinding method to remove the subsurface damage formed during the fabrication of the blank. The next step grinds and polishes the edges and forms bevels to reduce the amount of fused-glass contaminants in the subsequent steps. A loose abrasive grind removes the subsurface damage formed during the fixed abrasive or "blanchard" removal process. After repolishing the bevels and performing an optional fluoride etch, the surface of the blank is polished using a zirconia slurry. Any subsurface damage formed during the loose abrasive grind will be removed during this zirconia polish. A post polish etch may be performed to remove any redeposited contaminants. Another method uses a ceria polishing step to remove the subsurface damage formed during the loose abrasive grind. However, any residual ceria may interfere with the optical properties of the finished part. Therefore, the ceria and other contaminants are removed by performing either a zirconia polish after the ceria polish or a post ceria polish etch.
On predicting contamination levels of HALOE optics aboard UARS using direct simulation Monte Carlo
NASA Technical Reports Server (NTRS)
Woronowicz, Michael S.; Rault, Didier F. G.
1993-01-01
A three-dimensional version of the direct simulation Monte Carlo method is adapted to assess the contamination environment surrounding a highly detailed model of the Upper Atmosphere Research Satellite. Emphasis is placed on simulating a realistic, worst-case set of flowfield and surface conditions and geometric orientations in order to estimate an upper limit for the cumulative level of volatile organic molecular deposits at the aperture of the Halogen Occultation Experiment. Problems resolving species outgassing and vent flux rates that varied over many orders of magnitude were handled using species weighting factors. Results relating to contaminant cloud structure, cloud composition, and statistics of simulated molecules impinging on the target surface are presented, along with data related to code performance. Using procedures developed in standard contamination analyses, the cumulative level of volatile organic deposits on HALOE's aperture over the instrument's 35-month nominal data collection period is estimated to be about 2700A.
Chemical analyses of provided samples
NASA Technical Reports Server (NTRS)
Becker, Christopher H.
1993-01-01
A batch of four samples were received and chemical analysis was performed of the surface and near surface regions of the samples by the surface analysis by laser ionization (SALI) method. The samples included four one-inch diameter optics labeled windows no. PR14 and PR17 and MgF2 mirrors 9-93 PPPC exp. and control DMES 26-92. The analyses emphasized surface contamination or modification. In these studies, pulsed desorption by 355 nm laser light and single-photon ionization (SPI) above the sample by coherent 118 nm radiation (at approximately 5 x 10(exp 5) W/cm(sup 2)) were used, emphasizing organic analysis. For the two windows with an apparent yellowish contaminant film, higher desorption laser power was needed to provide substantial signals, indicating a less volatile contamination than for the two mirrors. Window PR14 and the 9-93 mirror showed more hydrocarbon components than the other two samples. The mass spectra, which show considerable complexity, are discussed in terms of various potential chemical assignments.
/ital In/ /ital situ/ dc oxygen-discharge cleaning system for optical elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koide, T.; Shidara, T.; Tanaka, K.
1989-07-01
/ital In/ /ital situ/ dc oxygen-discharge cleaning arrangements have been developed at the Photon Factory for the removal of carbon contamination from optical surfaces. A high cleaning rate could be achieved by producing an oxygen plasma close to the optical elements with special care taken to avoid any harmful effects from the discharge; contaminant carbon was completely removed within a few hours, at most. This short exposure time and the use of dry oxygen gas resulted in a restoration of the original ultrahigh vacuum without a bakeout. Results with a Seya-Namioka beamline for gas-phase experiments showed a flux enhancement amountingmore » to a factor of 50, and results with a grasshopper beamline showed a nearly complete recovery of the light intensity, even at the carbon /ital K/ edge.« less
Contamination Control and Hardware Processing Solutions at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Burns, DeWitt H.; Hampton, Tammy; Huey, LaQuieta; Mitchell, Mark; Norwood, Joey; Lowrey, Nikki
2012-01-01
The Contamination Control Team of Marshall Space Flight Center's Materials and Processes Laboratory supports many Programs/ Projects that design, manufacture, and test a wide range of hardware types that are sensitive to contamination and foreign object damage (FOD). Examples where contamination/FOD concerns arise include sensitive structural bondline failure, critical orifice blockage, seal leakage, and reactive fluid compatibility (liquid oxygen, hydrazine) as well as performance degradation of sensitive instruments or spacecraft surfaces such as optical elements and thermal control systems. During the design phase, determination of the sensitivity of a hardware system to different types or levels of contamination/FOD is essential. A contamination control and FOD control plan must then be developed and implemented through all phases of ground processing, and, sometimes, on-orbit use, recovery, and refurbishment. Implementation of proper controls prevents cost and schedule impacts due to hardware damage or rework and helps assure mission success. Current capabilities are being used to support recent and on-going activities for multiple Mission Directorates / Programs such as International Space Station (ISS), James Webb Space Telescope (JWST), Space Launch System (SLS) elements (tanks, engines, booster), etc. The team also advances Green Technology initiatives and addresses materials obsolescence issues for NASA and external customers, most notably in the area of solvent replacement (e.g. aqueous cleaners containing hexavalent chrome, ozone depleting chemicals (CFC s and HCFC's), suspect carcinogens). The team evaluates new surface cleanliness inspection and cleaning technologies (e.g. plasma cleaning), and maintains databases for processing support materials as well as outgassing and optical compatibility test results for spaceflight environments.
Effects of Contamination, UV Radiation, and Atomic Oxygen on ISS Thermal Control Materials
NASA Technical Reports Server (NTRS)
Visentine, Jim; Finckenor, Miria; Zwiener, Jim; Munafo, Paul (Technical Monitor)
2001-01-01
Thermal control surfaces on the International Space Station (ISS) have been tailored for optimum optical properties. The space environment, particularly contamination, ultraviolet (UV) radiation, and atomic oxygen (AO) may have a detrimental effect on these optical properties. These effects must be quantified for modeling and planning. Also of interest was the effect of porosity on the reaction to simulated space environment. Five materials were chosen for this study based on their use on ISS. The thermal control materials were Z-93 white coating, silverized Teflon, chromic acid anodized aluminum, sulfuric acid anodized aluminum, and 7075-T6 aluminum. Some of the samples were exposed to RTV 560 silicone; others were exposed to Tefzel offgassing products. Two samples of Z-93 were not exposed to contamination as clean "controls". VUV radiation was used to photo-fix the contaminant to the material surface, then the samples were exposed to AO. All samples were exposed to 1000 equivalent sun-hours (ESH) of vacuum ultraviolet radiation (VUV) at the AZ Technology facility and a minimum of 1.5 x 10(exp 20) atoms/sq cm of AO at Marshall Space Flight Center. Half of the samples were exposed to an additional 2000 ESH of VUV at Huntington Beach prior to sent to AZ Technology. Darkening of the Z-93 white coating was noted after VUV exposure. AO exposure did bleach the Z-93 but not back to its original brightness. Solar absorptance curves show the degradation due to contamination and VUV and the recovery with AO exposure. More bleaching was noted on the Tefzel-contaminated samples than with the RTV-contaminated samples.
Optical Spectroscopy of New Materials
NASA Technical Reports Server (NTRS)
White, Susan M.; Arnold, James O. (Technical Monitor)
1993-01-01
Composites are currently used for a rapidly expanding number of applications including aircraft structures, rocket nozzles, thermal protection of spacecraft, high performance ablative surfaces, sports equipment including skis, tennis rackets and bicycles, lightweight automobile components, cutting tools, and optical-grade mirrors. Composites are formed from two or more insoluble materials to produce a material with superior properties to either component. Composites range from dispersion-hardened alloys to advanced fiber-reinforced composites. UV/VIS and FTIR spectroscopy currently is used to evaluate the bonding between the matrix and the fibers, monitor the curing process of a polymer, measure surface contamination, characterize the interphase material, monitor anion transport in polymer phases, characterize the void formation (voids must be minimized because, like cracks in a bulk material, they lead to failure), characterize the surface of the fiber component, and measure the overall optical properties for energy balances.
Surface separation investigation of ultrafast pulsed laser welding
NASA Astrophysics Data System (ADS)
Chen, Jianyong; Carter, Richard M.; Thomson, Robert R.; Hand, Duncan P.
2016-03-01
Techniques for joining materials, especially optical materials such as glass to structural materials such as metals, or to other optical materials, while maintaining their surface and optical properties are essential for a wide range of industrial applications. Adhesive bonding is commonly used but leads to many issues including optical surface contamination and outgassing. It is possible to generate welds using an ultra-short pulsed laser process, whereby two flat material surfaces are brought into close contact and the laser is focused through the optical material onto the interface. Highly localised melting and rapid resolidification form a strong bond between the two surfaces whilst avoiding significant heating of the surrounding material, which is important for joining materials with different thermal expansion coefficients. Previous reports on ultrafast laser welding have identified a requirement for the surface separation gap to be less than 500nm in order to avoid cracking or ablation at the interface. We have investigated techniques for increasing this gap (to reduce weld fit-up problems), and tested by bonding two surfaces with a weld-controlled gap. These gaps were generated either by a series of etched grooves on the surface of one of the substrates, or by using a cylindrical lens as a substrate. By careful optimisation of parameters such as laser power, process speed and focal position, we were able to demonstrate successful welding with a gap of up to 3μm.
Verma, Roli; Gupta, Banshi D
2015-01-01
Optical fibre surface plasmon resonance (SPR) based sensor for the detection of heavy metal ions in the drinking water is designed. Silver (Ag) metal and indium tin oxide (ITO) are used for the fabrication of the SPR probe which is further modified with the coating of pyrrole and chitosan composite. The sensor works on the wavelength interrogation technique and is capable of detecting trace amounts of Cd(2+), Pb(2+), and Hg(2+) heavy metal ions in contaminated water. Four types of sensing probes are fabricated and characterised for heavy metal ions out of these pyrrole/chitosan/ITO/Ag coated probe is found to be highly sensitive among all other probes. Further, the cadmium ions bind strongly to the sensing surface than other ions and due to this the sensor is highly sensitive for Cd(2+) ions. The sensor's performance is best for the low concentrations of heavy metal ions and its sensitivity decreases with the increasing concentration of heavy metal ions. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bareiss, L. E.; Hooper, V. W.; Ress, E. B.
1976-01-01
Progress is reported on the mission support plan and those support activities envisioned to be applicable and necessary during premission and postmission phases of the Spacelab program. The purpose, role, and requirements of the contamination control operations for the first two missions of the Spacelab equipped Space Transportation System are discussed. The organization of the contamination control operation and its relationship to and interfaces with other mission support functions is also discussed. Some specific areas of contamination to be investigated are treated. They are: (1) windows and viewports, (2) experiment equipment, (3) thermal control surfaces, (4) the contaminant induced atmosphere (as differentiated from the normal ambient atmosphere at the orbit altitude), and (5) optical navigation instruments.
Compact surface plasmon resonance biosensor utilizing an injection-molded prism
NASA Astrophysics Data System (ADS)
Chen, How-Foo; Chen, Chih-Han; Chang, Yun-Hsiang; Chuang, Hsin-Yuan
2016-05-01
Targeting at a low cost and accessible diagnostic device in clinical practice, a compact surface plasmon resonance (SPR) biosensor with a large dynamic range in high sensitivity is designed to satisfy commercial needs in food safety, environmental bio-pollution monitoring, and fast clinical diagnosis. The core component integrates an optical coupler, a sample-loading plate, and angle-tuning reflectors is injection-molded as a free-from prism made of plastic optics. This design makes a matching-oil-free operation during operation. The disposability of this low-cost component ensures testing or diagnosis without cross contamination in bio-samples.
Controlled Contamination of Epoxy Composites with PDMS and Removal by Laser Ablation
NASA Technical Reports Server (NTRS)
Palmieri, Frank; Ledesma, Rodolfo; Cataldo, Daniel; Lin, Yi; Wohl, Christopher; Gupta, Mool; Connell, John
2016-01-01
Surface preparation is critical to the performance of adhesively bonded composites. During manufacturing, minute quantities of mold release compounds are inevitably deposited on faying surfaces and may compromise bond performance. To ensure safety, mechanical fasteners and other crack arrest features must be installed in the bondlines of primary structures, which negates some advantages of adhesively bonded construction. Laser ablation is an automated, repeatable, and scalable process with high potential for the surface preparation of metals and composites in critical applications such as primary airframe structures. In this study, laser ablation is evaluated on composite surfaces for the removal of polydimethylsiloxane (PDMS), a common mold release material. Composite panels were contaminated uniformly with PDMS film thicknesses as low as 6.0 nm as measured by variable angle spectroscopic ellipsometry. Bond performance was assessed by mechanical testing using a 250 F cure, epoxy adhesive and compared with pre-bond surface inspection results. Water contact angle, optically stimulated electron emission, and laser induced breakdown spectroscopy were used to characterize contaminated and laser ablated surfaces. The failure mode obtained from double cantilever beam tests correlated well with surface characterization data. The test results indicated that even low levels of PDMS were not completely removed by laser ablation.
NASA Astrophysics Data System (ADS)
Oh, Mirae; Lee, Hoonsoo; Cho, Hyunjeong; Moon, Sang-Ho; Kim, Eun-Kyung; Kim, Moon S.
2016-05-01
Current meat inspection in slaughter plants, for food safety and quality attributes including potential fecal contamination, is conducted through by visual examination human inspectors. A handheld fluorescence-based imaging device (HFID) was developed to be an assistive tool for human inspectors by highlighting contaminated food and food contact surfaces on a display monitor. It can be used under ambient lighting conditions in food processing plants. Critical components of the imaging device includes four 405-nm 10-W LEDs for fluorescence excitation, a charge-coupled device (CCD) camera, optical filter (670 nm used for this study), and Wi-Fi transmitter for broadcasting real-time video/images to monitoring devices such as smartphone and tablet. This study aimed to investigate the effectiveness of HFID in enhancing visual detection of fecal contamination on red meat, fat, and bone surfaces of beef under varying ambient luminous intensities (0, 10, 30, 50 and 70 foot-candles). Overall, diluted feces on fat, red meat and bone areas of beef surfaces were detectable in the 670-nm single-band fluorescence images when using the HFID under 0 to 50 foot-candle ambient lighting.
Active cleaning technique device
NASA Technical Reports Server (NTRS)
Shannon, R. L.; Gillette, R. B.
1973-01-01
The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.
NASA Astrophysics Data System (ADS)
Goodis, Harold E.; White, Joel M.; Marshall, Sally J.; Marshall, Grayson W.
1994-09-01
The purpose of this study was to determine the microhardness and extent of bacterial reduction of contaminated dentin following pulsed fiber optic delivered Nd:YAG laser exposure. Knoop hardness was determined before and after laser exposures from 0.3 to 3.0 W and repetition rates of 10 to 30 Hz. Half the sections were covered with an organic black pigment before laser exposure to evaluate the use of the pigment as an initiator to increase laser absorbance on the surface. Repeated measures design was employed to determine the microhardness of cut and polished dentin sections. Additional dentin sections were sterilized by gamma irradiation and then inoculated with B. subtilis, E. coli or B. stearothermophilus. The contaminated sections were exposed to contact delivered Nd:YAG laser. Cultures were obtained from the dentin surfaces and the colony forming units counted. Increased microhardness was found for all laser treatments above the physical modification. Bacterial reduction was obtained but complete sterilization was not.
NASA Technical Reports Server (NTRS)
Powell, Louis G.; Barber, Tye E.; Neu, John T.; Nerren, Billy H.
1997-01-01
The SOC 400 Surface Inspection Machine/Infrared (SIMIR) is a small, ruggedized Fourier transform infrared spectrometer having dedicated diffuse reflectance optics. The SOC 400 was designed for the purpose of detecting (qualitatively and quantitatively) oil stains on the inside surface of solid rocket motor casings in the as-sandblasted and cleaned condition at levels approaching 1 mg. sq ft. The performance of this instrument is described using spectral mapping techniques.
First Results from Contamination Monitoring with the WFC3 UVIS G280 Grism
NASA Astrophysics Data System (ADS)
Rothberg, B.; Pirzkal, N.; Baggett, S.
2011-11-01
The presence of contaminants within the optical light path of the instrument or telescope can alter photometric zeropoints and the observed flux levels of imaging and spectra, particularly at UV wavelengths. Regular monitoring of a spectro-photometric standard star using photometric filters has been used in the past to monitor the presence of contaminants and (when necessary) re-calibrate zeropoints. However, the use of the WFC3 UVIS Grism mode (G280 filter) may provide a more robust early alert detection system for the presence of contaminants, in particular, those that are photo-polymerized from the bright Earth. These contaminants may collect on surfaces in the optical light path of the telescope. The G280 grism is sensitive to light at wavelengths below the cutoff of the bluest UV filter (F218W). In this ISR, we present: 1) the first results from G280 monitoring for the period of 2010-November through 2011-August; 2) the discovery of an anomaly in the WCS header information of sub-array exposures; and 3) an outline for reducing standard G280 grism observations and the specialized case of observations obtained in sub-array mode.
NASA Technical Reports Server (NTRS)
Abraham, Nithin S.; Hasegawa, Mark M.; Wooldridge, Eve M.; Henderson-Nelson, Kelly A.
2016-01-01
As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground based space applications, in particular, for vacuum chamber environments. This paper describes the recent use of the MAC technology during Pathfinder testing of the Optical Ground Support Equipment (OGSE) for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap persistent outgassed contaminants, specifically silicone based diffusion pump oil, from within JSC's cryogenic optical vacuum chamber test facility called Chamber A. This paper summarizes the sample fabrication, installation, laboratory testing, post-test chemical analysis results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.
NASA Astrophysics Data System (ADS)
Abraham, Nithin S.; Hasegawa, Mark M.; Wooldridge, Eve M.; Henderson-Nelson, Kelly A.
2016-09-01
As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground based space applications, in particular, for vacuum chamber environments. This paper describes the recent use of the MAC technology during Pathfinder testing of the Optical Ground Support Equipment (OGSE) for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap persistent outgassed contaminants, specifically silicone based diffusion pump oil, from within JSC's cryogenic optical vacuum chamber test facility called Chamber A. This paper summarizes the sample fabrication, installation, laboratory testing, post-test chemical analysis results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.
NASA Applications of Molecular Adsorber Coatings
NASA Technical Reports Server (NTRS)
Abraham, Nithin S.
2015-01-01
The Molecular Adsorber Coating (MAC) is a new, innovative technology that was developed to reduce the risk of molecular contamination on spaceflight applications. Outgassing from materials, such as plastics, adhesives, lubricants, silicones, epoxies, and potting compounds, pose a significant threat to the spacecraft and the lifetime of missions. As a coating made of highly porous inorganic materials, MAC offers impressive adsorptive capabilities that help capture and trap contaminants. Past research efforts have demonstrated the coating's promising adhesion performance, optical properties, acoustic durability, and thermal stability. These results advocate its use near or on surfaces that are targeted by outgassed materials, such as internal optics, electronics, detectors, baffles, sensitive instruments, thermal control coatings, and vacuum chamber test environments. The MAC technology has significantly progressed in development over the recent years. This presentation summarizes the many NASA spaceflight applications of MAC and how the coatings technology has been integrated as a mitigation tool for outgassed contaminants. For example, this sprayable paint technology has been beneficial for use in various vacuum chambers for contamination control and hardware bake-outs. The coating has also been used in small instrument cavities within spaceflight instrument for NASA missions.
Low thrust propulsion system effects on communication satellites.
NASA Technical Reports Server (NTRS)
Hall, D. F.; Lyon, W. C.
1972-01-01
Choice of type and placement of thrusters on spacecraft (s/c) should include consideration of their effects on other subsystems. Models are presented of the exhaust plumes of mercury, cesium, colloid, hydrazine, ammonia, and Teflon rockets. Effects arising from plume impingement on s/c surfaces, radio frequency interference, optical interference, and earth environmental contamination are discussed. Some constraints arise in the placement of mercury, cesium, and Teflon thrusters. Few problems exist with other thruster types, nor is earth contamination a problem.
Fiber laser cleaning of metal mirror surfaces for optical diagnostic systems of the ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, A. P., E-mail: APKuznetsov@mephi.ru; Alexandrova, A. S.; Buzhinsky, O. I.
2015-12-15
The results of experimental studies into efficiency of removal of films with a complex composition from metal mirrors by pulsed fiber laser irradiation are presented. It is shown that the initial reflectivity of optical elements can be restored by the selection of modes of irradiation impacting the surface with the sputtered film. Effective cleaning is performed by radiation with a power density lower than 10{sup 7} W/cm{sup 2}. The removal of contaminations at such a relatively low power density occurs in a solid phase, owing to which the thermal effect on the mirror is insignificant.
Validation of MODIS Aerosol Optical Depth Retrieval Over Land
NASA Technical Reports Server (NTRS)
Chu, D. A.; Kaufman, Y. J.; Ichoku, C.; Remer, L. A.; Tanre, D.; Holben, B. N.; Einaudi, Franco (Technical Monitor)
2001-01-01
Aerosol optical depths are derived operationally for the first time over land in the visible wavelengths by MODIS (Moderate Resolution Imaging Spectroradiometer) onboard the EOSTerra spacecraft. More than 300 Sun photometer data points from more than 30 AERONET (Aerosol Robotic Network) sites globally were used in validating the aerosol optical depths obtained during July - September 2000. Excellent agreement is found with retrieval errors within (Delta)tau=+/- 0.05 +/- 0.20 tau, as predicted, over (partially) vegetated surfaces, consistent with pre-launch theoretical analysis and aircraft field experiments. In coastal and semi-arid regions larger errors are caused predominantly by the uncertainty in evaluating the surface reflectance. The excellent fit was achieved despite the ongoing improvements in instrument characterization and calibration. This results show that MODIS-derived aerosol optical depths can be used quantitatively in many applications with cautions for residual clouds, snow/ice, and water contamination.
Chemical analyses of provided samples
NASA Technical Reports Server (NTRS)
Becker, Christopher H.
1993-01-01
Two batches of samples were received and chemical analysis was performed of the surface and near surface regions of the samples by the surface analysis by laser ionization (SALI) method. The samples included four one-inch optics and several paint samples. The analyses emphasized surface contamination or modification. In these studies, pulsed sputtering by 7 keV Ar+ and primarily single-photon ionization (SPI) by coherent 118 nm radiation (at approximately 5 x 10(exp 5) W/cm(sup 2) were used. For two of the samples, also multiphoton ionization (MPI) at 266 nm (approximately 5 x 10(exp 11) W/cm(sup 2) was used. Most notable among the results was the silicone contamination on Mg2 mirror 28-92, and that the Long Duration Exposure Facility (LDEF) paint sample had been enriched in K and Na and depleted in Zn, Si, B, and organic compounds relative to the control paint.
Cleaning of copper traces on circuit boards with excimer laser radiation
NASA Astrophysics Data System (ADS)
Wesner, D. A.; Mertin, M.; Lupp, F.; Kreutz, E. W.
1996-04-01
Cleaning of Cu traces on circuit boards is studied using pulsed excimer laser radiation (pulse width ˜ 20 ns, wavelength 248 nm), with the goal of improving the properties of the Cu surface for soldering and bonding. Traces with well-defined oxide overlayers are cleaned by irradiation in air using ≤ 10 3 laser pulses at fluences per pulse of ≤ 2 J cm -2. After treatment the surface morphology is analyzed using optical microscopy, optical profilometry, and scanning electron microscopy, while the chemical state of the surface is investigated with X-ray photoelectron (XPS) spectroscopy. Ellipsometry is used to determine the oxide overlayer thickness. Prior to cleaning samples exhibit a contamination overlayer about 15-25 nm in thickness containing Cu 2O and C. Cleaning reduces the overlayer thickness to ≤ 10 nm by material removal. The process tends to be self-limiting, since the optical reflectivity of the oxidized Cu surface for laser radiation is smaller than that of the cleaned surface. Additionally, the interaction with the laser radiation results in surface segregation of a minor alloy component out of the bulk (e.g. Zn), which may help to passivate the surface for further chemical reactions.
NASA Technical Reports Server (NTRS)
Shannon, R. L.; Gillette, R. B.
1974-01-01
The technique which utilizes exposure to a plasma to remove contaminants from a surface was incorporated into a laboratory model which demonstrates active cleaning by both plasma cleaning and ion sputtering modes of operation. The development phase is reported and includes discussion of the plasma tube configuration, device design, and performance tests. A general description of the active cleaning device is provided which includes information on the main power/plasma discharge sensors, and the power, gas supply, and ion accelerator systems. Development of the active cleaning species at high vacuum conditions is described and results indicate that plasma cleaning occurs in the region of a visible plume which extends from the end of the plasma tube. Recommendations are made for research to determine the plasma cleaning mechanism and the plasma species responsible for the cleaning, as well limitations on the type of contaminants that can be removed.
Cleaning procedure for improved photothermal background of toroidal optical microresonators
NASA Astrophysics Data System (ADS)
Horak, Erik H.; Knapper, Kassandra A.; Heylman, Kevin D.; Goldsmith, Randall H.
2016-09-01
High Q-factors and small mode volumes have made toroidal optical microresonators exquisite sensors to small shifts in the effective refractive index of the WGM modes. Eliminating contaminants and improving quality factors is key for many different sensing techniques, and is particularly important for photothermal imaging as contaminants add photothermal background obscuring objects of interest. Several different cleaning procedures including wet- and dry-chemical procedures are tested for their effect on Q-factors and photothermal background. RCA cleaning was shown to be successful in contrast to previously described acid cleaning procedures, most likely due to the different surface reactivity of the acid reagents used. UV-ozone cleaning was shown to be vastly superior to O2 plasma cleaning procedures, significantly reducing the photothermal background of the resonator.
NASA Technical Reports Server (NTRS)
Gordon, Keith; Rutherford, Gugu; Aranda, Denisse
2017-01-01
Nonvolatile residue (NVR), sometimes referred to as molecular contamination is the term used for the total composition of the inorganic and high boiling point organic components in particulates and molecular films deposited on critical surfaces surrounding space structures, with the particulate and NVR contamination originating primarily from pre-launch operations. The "nonvolatile" suggestion from the terminology NVR implies that the collected residue will not experience much loss under ambient conditions. NVR has been shown to have a dramatic impact on the ability to perform optical measurements from platforms based in space. Such contaminants can be detected early by the controlled application of various detection techniques and contamination analyses. Contamination analyses are the techniques used to determine if materials, components, and subsystems can be expected to meet the performance requirements of a system. Of particular concern is the quantity of NVR contaminants that might be deposited on critical payload surfaces from these sources. Subsequent chemical analysis of the contaminant samples by infrared spectroscopy and gas chromatography mass spectrometry identifies the components, gives semi-quantitative estimates of contaminant thickness, indicates possible sources of the NVR, and provides guidance for effective cleanup procedures. In this report, a method for the collection and determination of the mass of NVR was generated by the authors at NASA Langley Research Center. This report describes the method developed and implemented for collecting NVR contaminants, and procedures for gravimetric and chemical analysis of the residue obtained. The result of this NVR analysis collaboration will help pave the way for Langley's ability to certify flight hardware outgassing requirements in support of flight projects such as Stratospheric Aerosol and Gas Experiment III (SAGE III), Clouds and the Earth's Radiant Energy System (CERES), Materials International Space Station Experiment - X (MISSE-X), and Doppler Aerosol Wind Lidar (DAWN).
Measurement of the accumulation of water ice on optical components in cryogenic vacuum environments
NASA Astrophysics Data System (ADS)
Moeller, Trevor M.; Montgomery Smith, L.; Collins, Frank G.; Labello, Jesse M.; Rogers, James P.; Lowry, Heard S.; Crider, Dustin H.
2012-11-01
Standard vacuum practices mitigate the presence of water vapor and contamination inside cryogenic vacuum chambers. However, anomalies can occur in the facility that can cause the accumulation of amorphous water ice on optics and test articles. Under certain conditions, the amorphous ice on optical components shatters, which leads to a reduction in signal or failure of the component. An experiment was performed to study and measure the deposition of water (H2O) ice on optical surfaces under high-vacuum cryogenic conditions. Water was introduced into a cryogenic vacuum chamber, via a hydrated molecular sieve zeolite, through an effusion cell and impinged upon a quartz-crystal microbalance (QCM) and first-surface gold-plated mirror. A laser and photodiode setup, external to the vacuum chamber, monitored the multiple-beam interference reflectance of the ice-mirror configuration while the QCM measured the mass deposition. Data indicates that water ice, under these conditions, accumulates as a thin film on optical surfaces to thicknesses over 45 microns and can be detected and measured by nonintrusive optical methods which are based upon multiple-beam interference phenomena. The QCM validated the interference measurements. This experiment established proof-of-concept for a miniature system for monitoring ice accumulation within the chamber.
NASA Technical Reports Server (NTRS)
Silberman, E.
1975-01-01
The composition and evaporation rate of the outgassing of a space vehicle thermal control paint as a function of temperature were studied. A contamination chamber was designed, constructed, and tested. Samples of thermal control paint were tested to determine if heating to moderate temperatures causes them to release outgassing products which can be collected on a cooled cesium iodide window for identification by IR analysis. Results showed that outgassing of surfaces other than the sample was a problem. Spectral bands of the deposits collected were compared.
NASA Technical Reports Server (NTRS)
Hotaling, S. P.
1993-01-01
Two samples from Long Duration Exposure Facility (LDEF) experiment M0003-4 were analyzed for molecular and particulate contamination prior to and following treatment with advanced satellite contamination removal techniques (CO2 gas/solid jet spray and oxygen ion beam). The pre- and post-cleaning measurements and analyses are presented. The jet spray removed particulates in seconds. The low energy reactive oxygen ion beam removed 5,000 A of photo polymerized organic hydrocarbon contamination in less than 1 hour. Spectroscopic analytical techniques were applied to the analysis of cleaning efficiency including: Fourier transform infrared, Auger, x ray photoemissions, energy dispersive x ray, and ultraviolet/visible. The results of this work suggest that the contamination studied here was due to spacecraft self-contamination enhanced by atomic oxygen plasma dynamics and solar UV radiation. These results also suggest the efficacy for the jet spray and ion beam contamination control technologies for spacecraft optical surfaces.
Enhancement of surface damage resistance by selective chemical removal of CeO2
NASA Astrophysics Data System (ADS)
Kamimura, Tomosumi; Motokoshi, Shinji; Sakamoto, Takayasu; Jitsuno, Takahisa; Shiba, Haruya; Akamatsu, Shigenori; Horibe, Hideo; Okamoto, Takayuki; Yoshida, Kunio
2005-02-01
The laser-induced damage threshold of polished fused silica surfaces is much lower than the damage threshod of its bulk. It is well known that contaminations of polished surface are one of the causes of low threshold of laser-induced surface damage. Particularly, polishing contamination such as cerium dioxide (CeO2) compound used in optical polishing process is embedded inside the surface layer, and cannot be removed by conventional cleaning. For the enhancement of surface damage resistance, various surface treatments have been applied to the removal of embedded polishing compound. In this paper, we propose a new method using slective chemical removal with high-temperature sulfuric acid (H2SO4). Sulfuric acid could dissolve only CeO2 from the fused silica surface. The surface roughness of fused silica treated H2SO4 was kept through the treatment process. At the wavelength of 355 nm, the surface damage threshold was drastically improved to the nearly same as bulk quality. However, the effect of our treatment was not observed at the wavelength of 1064 nm. The comparison with our previous results obtained from other surface treatments will be discussed.
Laser Surface Preparation for Adhesive Bonding of Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Belcher, Marcus A.; List, Martina S.; Wohl, Christopher J.; Ghose, Sayata; Watson, Kent A.; Hopkins, John W.; Connell, John W.
2010-01-01
Adhesively bonded structures are potentially lighter in weight than mechanically fastened ones, but existing surface treatments are often considered unreliable. Two main problems in achieving reproducible and durable adhesive bonds are surface contamination and variability in standard surface preparation techniques. In this work three surface pretreatments were compared: laser etching with and without grit blasting and conventional Pasa-Jell treatment. Ti-6Al-4V surfaces were characterized by contact angle goniometry, optical microscopy, and X-ray photoelectron spectroscopy (XPS). Laser -etching was found to produce clean surfaces with precisely controlled surface topographies and PETI-5 lap shear strengths and durabilities were equivalent to those produced with Pasa-Jell.
A new approach for performing contamination control bakeouts in JPL thermal vacuum test chambers
NASA Technical Reports Server (NTRS)
Johnson, Kenneth R.; Taylor, Daniel M.; Lane, Robert W.; Cortez, Maximo G.; Anderson, Mark R.
1992-01-01
Contamination control requirements for the Wide Field/Planetary Camera II (WF/PC II) are necessarily stringent to protect against post-launch contamination of the sensitive optical surfaces, particularly the cold charge coupled device (CCD) imaging surfaces. Typically, thermal vacuum test chambers have employed a liquid nitrogen (LN2) cold trap to collect outgassed contaminants. This approach has the disadvantage of risking recontamination of the test article from shroud offgassing during post-test warmup of the chamber or from any shroud warming of even a few degrees during the bakeout process. By using an enclave, essentially a chamber within a chamber, configured concentrically and internally within an LN2 shroud, a method was developed, based on a design concept by Taylor, for preventing recontamination of test articles during bakeouts and subsequent post-test warmup of the vacuum chamber. Enclaves for testing WF/PC II components were designed and fabricated, then installed in three of JPL's Environmental Test Lab chambers. The design concepts, operating procedures, and test results of this development are discussed.
Fused silica windows for solar receiver applications
NASA Astrophysics Data System (ADS)
Hertel, Johannes; Uhlig, Ralf; Söhn, Matthias; Schenk, Christian; Helsch, Gundula; Bornhöft, Hansjörg
2016-05-01
A comprehensive study of optical and mechanical properties of quartz glass (fused silica) with regard to application in high temperature solar receivers is presented. The dependence of rupture strength on different surface conditions as well as high temperature is analyzed, focussing particularly on damage by devitrification and sandblasting. The influence of typical types of contamination in combination with thermal cycling on the optical properties of fused silica is determined. Cleaning methods are compared regarding effectiveness on contamination-induced degradation for samples with and without antireflective coating. The FEM-aided design of different types of receiver windows and their support structure is presented. A large-scale production process has been developed for producing fused silica dome shaped windows (pressurized window) up to a diameter of 816 mm. Prototypes were successfully pressure-tested in a test bench and certified according to the European Pressure Vessel Directive.
Testing of optical components to assure performance in a high-average-power environment
NASA Astrophysics Data System (ADS)
Chow, Robert; Taylor, John R.; Eickelberg, William K.; Primdahl, Keith A.
1997-11-01
Evaluation and testing of the optical components used in the atomic vapor laser isotope separation plant is critical for qualification of suppliers, developments of new optical multilayer designs and manufacturing processes, and assurance of performance in the production cycle. The range of specifications requires development of specialized test equipment and methods which are not routine or readily available in industry. Specifications are given on material characteristics such as index homogeneity, subsurface damage left after polishing, microscopic surface defects and contamination, coating absorption, and high average power laser damage. The approach to testing these performance characteristics and assuring the quality throughout the production cycle is described.
Klebanoff, Leonard E.; Torczynski, John R.; Geller, Anthony S.; ...
2015-03-27
An analysis is presented of a method to protect the reticle (mask) in an extreme ultraviolet (EUV) mask inspection tool using a showerhead plenum to provide a continuous flow of clean gas over the surface of a reticle. The reticle is suspended in an inverted fashion (face down) within a stage/holder that moves back and forth over the showerhead plenum as the reticle is inspected. It is essential that no particles of 10-nm diameter or larger be deposited on the reticle during inspection. Particles can originate from multiple sources in the system, and mask protection from each source is explicitlymore » analyzed. The showerhead plate has an internal plenum with a solid conical wall isolating the aperture. The upper and lower surfaces of the plate are thin flat sheets of porous-metal material. These porous sheets form the top and bottom showerheads that supply the region between the showerhead plate and the reticle and the region between the conical aperture and the Optics Zone box with continuous flows of clean gas. The model studies show that the top showerhead provides robust reticle protection from particles of 10-nm diameter or larger originating from the Reticle Zone and from plenum surfaces contaminated by exposure to the Reticle Zone. Protection is achieved with negligible effect on EUV transmission. Furthermore, the bottom showerhead efficiently protects the reticle from nanoscale particles originating from the Optics Zone.« less
Application of Molecular Adsorber Coatings in Chamber A for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Abraham, Nithin S.
2017-01-01
As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination. As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.
NASA Technical Reports Server (NTRS)
Ray, David C.; Jelinsky, Sharon; Welsh, Barry Y.; Malina, Roger F.
1990-01-01
A stringent contamination-control plan has been developed for the optical components of the Extreme Ultraviolet Explorer instruments, whose performance in the 80-900 A wavelength range is highly sensitive to particulate and molecular contamination. The contamination-control program has been implemented over the last three years during assembly, test and calibration phases of the instrument. These phases have now been completed and the optics cavities of the instruments have been sealed until deployment in space. Various approaches are discussed which have been used during ground operations to meet optics' contamination goals within the project schedule and budget. The measured optical properties of EUV witness mirrors are also presented which remained with the flight mirrors during ground operations. These were used to track optical degradation due to contamination from the cleanroom and high-vacuum test-chamber environments.
Contamination monitoring approaches for EUV space optics
NASA Technical Reports Server (NTRS)
Ray, David C.; Malina, Roger F.; Welsh, Barry J.; Battel, Steven J.
1989-01-01
Data from contaminant-induced UV optics degradation studies and particulate models are used here to develop end-of-service-life instrument contamination requirements which are very stringent but achievable. The budget is divided into allocations for each phase of hardware processing. Optical and nonoptical hardware are monitored for particulate and molecular contamination during initial cleaning and baking, assembly, test, and calibration phases. The measured contamination levels are compared to the requirements developed for each phase to provide confidence that the required end-of-life levels will be met.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, A. P., E-mail: APKuznetsov@mephi.ru; Buzinskij, O. I.; Gubsky, K. L.
A set of optical diagnostics is expected for measuring the plasma characteristics in ITER. Optical elements located inside discharge chambers are exposed to an intense radiation load, sputtering due to collisions with energetic atoms formed in the charge transfer processes, and contamination due to recondensation of materials sputtered from different parts of the construction of the chamber. Removing the films of the sputtered materials from the mirrors with the aid of pulsed laser radiation is an efficient cleaning method enabling recovery of the optical properties of the mirrors. In this work, we studied the efficiency of removal of metal oxidemore » films by pulsed radiation of a fiber laser. Optimization of the laser cleaning conditions was carried out on samples representing metal substrates polished with optical quality with deposition of films on them imitating the chemical composition and conditions expected in ITER. It is shown that, by a proper selection of modes of radiation exposure to the surface with a deposited film, it is feasible to restore the original high reflection characteristics of optical elements.« less
Luciferase-Specific Coelenterazine Analogues for Optical Contamination-Free Bioassays.
Nishihara, Ryo; Abe, Masahiro; Nishiyama, Shigeru; Citterio, Daniel; Suzuki, Koji; Kim, Sung Bae
2017-04-19
Spectral overlaps among the multiple optical readouts commonly cause optical contamination in fluorescence and bioluminescence. To tackle this issue, we created five-different lineages of coelenterazine (CTZ) analogues designed to selectively illuminate a specific luciferase with unique luciferase selectivity. In the attempt, we found that CTZ analogues with ethynyl or styryl groups display dramatically biased bioluminescence to specific luciferases and pHs by modifying the functional groups at the C-2 and C-6 positions of the imidazopyradinone backbone of CTZ. The optical contamination-free feature was exemplified with the luciferase-specific CTZ analogues, which illuminated anti-estrogenic and rapamycin activities in a mixture of optical probes. This unique bioluminescence platform has great potential for specific and high throughput imaging of multiple optical readouts in bioassays without optical contamination.
Development and Testing of Molecular Adsorber Coatings
NASA Technical Reports Server (NTRS)
Abraham, Nithin; Hasegawa, Mark; Straka, Sharon
2012-01-01
The effect of on-orbit molecular contamination has the potential to degrade the performance of spaceflight hardware and diminish the lifetime of the spacecraft. For example, sensitive surfaces, such as optical surfaces, electronics, detectors, and thermal control surfaces, are vulnerable to the damaging effects of contamination from outgassed materials. The current solution to protect these surfaces is through the use of zeolite coated ceramic adsorber pucks. However, these pucks and its additional complex mounting hardware requirements result in several disadvantages, such as size, weight, and cost related concerns, that impact the spacecraft design and the integration and test schedule. As a result, a new innovative molecular adsorber coating was developed as a sprayable alternative to mitigate the risk of on-orbit molecular contamination. In this study, the formulation for molecular adsorber coatings was optimized using various binders, pigment treatment methods, binder to pigment ratios, thicknesses, and spray application techniques. The formulations that passed coating adhesion and vacuum thermal cycling tests were further tested for its adsorptive capacity. Accelerated molecular capacitance tests were performed in an innovatively designed multi-unit system containing idealized contaminant sources. This novel system significantly increased the productivity of the testing phase for the various formulations that were developed. Work performed during the development and testing phases has demonstrated successful application of molecular adsorber coatings onto metallic substrates, as well as, very promising results for the adhesion performance and the molecular capacitance of the coating. Continued testing will assist in the qualification of molecular adsorber coatings for use on future contamination sensitive spaceflight missions.
NASA Astrophysics Data System (ADS)
Pidenko, Sergey A.; Burmistrova, Natalia A.; Pidenko, Pavel S.; Shuvalov, Andrey A.; Chibrova, Anastasiya A.; Skibina, Yulia S.; Goryacheva, Irina Y.
2016-10-01
Photonic crystal fibers (PCF) are one of the most promising materials for creation of constructive elements for bio-, drug and contaminant sensing based on unique optical properties of the PCF as effective nanosized optical signal collectors. In order to provide efficient and controllable binding of biomolecules, the internal surface of glass hollow core photonic crystal fibers (HC-PCF) has been chemically modified with silanol groups and functionalized with (3-aminopropyl) triethoxysilane (APTES). The shift of local maxima in the HC-PCF transmission spectrum has been selected as a signal for estimating the amount of silanol groups on the HC-PCF inner surface. The relationship between amount of silanol groups on the HC-PCF inner surface and efficiency of following APTES functionalization has been evaluated. Covalent binding of horseradish peroxidase (chosen as a model protein) on functionalized PCF inner surface has been performed successively, thus verifying the possibility of creating a biosensitive element.
Mwakanyamale, Kisa; Slater, Lee; Day-Lewis, Frederick D.; Elwaseif, Mehrez; Johnson, Carole D.
2012-01-01
Characterization of groundwater-surface water exchange is essential for improving understanding of contaminant transport between aquifers and rivers. Fiber-optic distributed temperature sensing (FODTS) provides rich spatiotemporal datasets for quantitative and qualitative analysis of groundwater-surface water exchange. We demonstrate how time-frequency analysis of FODTS and synchronous river stage time series from the Columbia River adjacent to the Hanford 300-Area, Richland, Washington, provides spatial information on the strength of stage-driven exchange of uranium contaminated groundwater in response to subsurface heterogeneity. Although used in previous studies, the stage-temperature correlation coefficient proved an unreliable indicator of the stage-driven forcing on groundwater discharge in the presence of other factors influencing river water temperature. In contrast, S-transform analysis of the stage and FODTS data definitively identifies the spatial distribution of discharge zones and provided information on the dominant forcing periods (≥2 d) of the complex dam operations driving stage fluctuations and hence groundwater-surface water exchange at the 300-Area.
Comparison null imaging ellipsometry using polarization rotator
NASA Astrophysics Data System (ADS)
Park, Sungmo; Kim, Eunsung; Kim, Jiwon; An, Ilsin
2018-05-01
In this study, two-reflection imaging ellipsometry is carried out to compare the changes in polarization states between two samples. By using a polarization rotator, the parallel and perpendicular components of polarization are easily switched between the two samples being compared. This leads to an intensity image consisting of null and off-null points depending on the difference in optical characteristics between the two samples. This technique does not require any movement of optical elements for nulling and can be used to detect defects or surface contamination for quality control of samples.
Development of a laboratory demonstration model active cleaning device
NASA Technical Reports Server (NTRS)
Shannon, R. L.; Gillette, R. B.
1975-01-01
A laboratory demonstration model of a device for removing contaminant films from optical surfaces in space was developed. The development of a plasma tube, which would produce the desired cleaning effects under high vacuum conditions, represented the major problem in the program. This plasma tube development is discussed, and the resulting laboratory demonstration-model device is described.
Further Investigations of the Passive Optical Sample Assembly (POSA) - I Flight Experiment
NASA Technical Reports Server (NTRS)
Finckenor, Miria M.; Kamenetzky, Rachel R.; Vaughn, Jason A.; Mell, Richard; Deshpande, M. S.
2001-01-01
The Passive Optical Sample Assembly-I (POSA-I), part of the Mir Environmental Effects Payload (MEEP), was designed to study the combined effects of contamination, atomic oxygen, ultraviolet radiation, vacuum, then-nal cycling, and other constituents of the space environment on spacecraft materials. The MEEP program is a Phase I International Space Station Risk Mitigation Experiment. Candidate materials for the International Space Station (ISS) were exposed in a specially designed "suitcase" carrier, with identical specimens facing either Mir or space. The payload was attached by EVA to the exterior of the Mir docking module during the STS-76 mission (f'ig. 1). It was removed during the STS-86 mission after an 18-month exposure. During the mission, it received approximately 7 x 1019 atoMS/CM2 atomic oxygen, as calculated by polymer mass loss, and 413 ESH of solar ultraviolet radiation on the Mir-facing side. The side facing away from Mir received significant contaminant deposition, so atomic oxygen fluence has not been reliably determined. The side facing away from Mir received 571 ESH of solar UV. Contamination was observed on both the Mir-facing and space-facing sides of the POSA-I experiment , with a greater amount of deposition on the space facing side than the Mir side. The contamination has been determined to be outgassed silicone photofixed by ultraviolet radiation and converted to silicate by atomic oxygen interaction. Electron spectroscopy for chemical analysis (ESCA) with depth profiling indicated the presence of 26 - 31 nm silicate on the Mir-facing side and 500 - 1000 nm silicate on the space-facing side. The depth profiling also showed that the contaminant layer was uniform, with a small amount of carbon present on the surface and trace amounts of nitrogen, phosphorus, sulfur, and tin. The surface carbon layer is likely due to post-flight exposure in the laboratory and is similar to carbonaceous deposits on control samples. EDAX and FTIR analysis concurred with ESCA for the presence of silicon, oxygen, and carbon. Nearly 400 samples were exposed on POSA-I, which included materials such as thermal control coatings polymeric films, optical materials, and multi-layer insulation blankets. A previous paper discussed the effects of the space environment exposure and contaminant deposition on candidate materials for ISS, including Z93P inorganic thermal control coating, various anodizes, and multi-layer insulation blankets. This paper details the investigation of environmental effects on the remainder of POSA-I samples, particularly the innovative conductive thermal control coatings developed by AZ Technology of Huntsville, AL and HT Research Institute of Chicago, IL. The silicone/silicate contamination had a significant impact on the solar absorptance of white inorganic thermal control coatings on the space-facing side of POSA-I. The effect of contamination on electrical conductivity is discussed. Samples of conductive anodized aluminum developed by Boundary Technologies of Buffalo Grove, IL were also exposed on POSA-I. The effects of the space environment and contaminant deposition on the optical and electrical properties of the conductive anodized aluminum are discussed.
Contamination control program for the Cosmic Background Explorer
NASA Technical Reports Server (NTRS)
Barney, Richard D.
1991-01-01
Each of the three state of the art instruments flown aboard NASA's Cosmic Background Explorer (COBE) were designed, fabricated, and integrated using unique contamination control procedures to ensure accurate characterization of the diffuse radiation in the universe. The most stringent surface level cleanliness specifications ever attempted by NASA were required by the Diffuse Infrared Background Experiment (DRIBE) which is located inside a liquid helium cooled dewar along with the Far Infrared Absolute Spectrophotometer (FIRAS). The DRIBE instrument required complex stray radiation suppression that defined a cold primary optical baffle system surface cleanliness level of 100A. The cleanliness levels of the cryogenic FIRAS instrument and the Differential Microwave Radiometer (DMR) which were positioned symmetrically around the dewar were less stringent ranging from 300 to 500A. To achieve these instrument cleanliness levels, the entire flight spacecraft was maintained at level 500A throughout each phase of development. The COBE contamination control program is described along with the difficulties experienced in maintaining the cleanliness quality of personnel and flight hardware throughout instrument assembly.
Hardware cleanliness methodology and certification
NASA Technical Reports Server (NTRS)
Harvey, Gale A.; Lash, Thomas J.; Rawls, J. Richard
1995-01-01
Inadequacy of mass loss cleanliness criteria for selection of materials for contamination sensitive uses, and processing of flight hardware for contamination sensitive instruments is discussed. Materials selection for flight hardware is usually based on mass loss (ASTM E-595). However, flight hardware cleanliness (MIL 1246A) is a surface cleanliness assessment. It is possible for materials (e.g. Sil-Pad 2000) to pass ASTM E-595 and fail MIL 1246A class A by orders of magnitude. Conversely, it is possible for small amounts of nonconforming material (Huma-Seal conformal coating) to not present significant cleanliness problems to an optical flight instrument. Effective cleaning (precleaning, precision cleaning, and ultra cleaning) and cleanliness verification are essential for contamination sensitive flight instruments. Polish cleaning of hardware, e.g. vacuum baking for vacuum applications, and storage of clean hardware, e.g. laser optics, is discussed. Silicone materials present special concerns for use in space because of the rapid conversion of the outgassed residues to glass by solar ultraviolet radiation and/or atomic oxygen. Non ozone depleting solvent cleaning and institutional support for cleaning and certification are also discussed.
Update on Advection-Diffusion Purge Flow Model
NASA Technical Reports Server (NTRS)
Brieda, Lubos
2015-01-01
Gaseous purge is commonly used in sensitive spacecraft optical or electronic instruments to prevent infiltration of contaminants and/or water vapor. Typically, purge is sized using simplistic zero-dimensional models that do not take into account instrument geometry, surface effects, and the dependence of diffusive flux on the concentration gradient. For this reason, an axisymmetric computational fluid dynamics (CFD) simulation was recently developed to model contaminant infiltration and removal by purge. The solver uses a combined Navier-Stokes and Advection-Diffusion approach. In this talk, we report on updates in the model, namely inclusion of a particulate transport model.
Optical measurements for interfacial conduction and breakdown
NASA Astrophysics Data System (ADS)
Hebner, R. E., Jr.; Kelley, E. F.; Hagler, J. N.
1983-01-01
Measurements and calculations contributing to the understanding of space and surface charges in practical insulation systems are given. Calculations are presented which indicate the size of charge densities necessary to appreciably modify the electric field from what would be calculated from geometrical considerations alone. Experimental data is also presented which locates the breakdown in an electrode system with a paper sample bridging the gap between the electrodes. It is found that with careful handling, the breakdown does not necessarily occur along the interface even if heavily contaminated oil is used. The effects of space charge in the bulk liquid are electro-optically examined in nitrobenzene and transformer oil. Several levels of contamination in transformer oil are investigated. Whereas much space charge can be observed in nitrobenzene, very little space charge, if any, can be observed in the transformer oil samples even at temperatures near 100 degrees C.
Evaluation of the efficacy of a portable LIBS system for detection of CWA on surfaces.
L'Hermite, D; Vors, E; Vercouter, T; Moutiers, G
2016-05-01
Laser-induced breakdown spectroscopy (LIBS) is a laser-based optical technique particularly suited for in situ surface analysis. A portable LIBS instrument was tested to detect surface chemical contamination by chemical warfare agents (CWAs). Test of detection of surface contamination was carried out in a toxlab facility with four CWAs, sarin (GB), lewisite (L1), mustard gas (HD), and VX, which were deposited on different substrates, wood, concrete, military green paint, gloves, and ceramic. The CWAs were detected by means of the detection of atomic markers (As, P, F, Cl, and S). The LIBS instrument can give a direct response in terms of detection thanks to an integrated interface for non-expert users or so called end-users. We have evaluated the capability of automatic detection of the selected CWAs. The sensitivity of our portable LIBS instrument was confirmed for the detection of a CWA at surface concentrations above 15 μg/cm(2). The simultaneous detection of two markers may lead to a decrease of the number of false positive.
A comparative study on laser induced shock cleaning of radioactive contaminants in air and water
NASA Astrophysics Data System (ADS)
Kumar, Aniruddha; Prasad, Manisha; Bhatt, R. B.; Behere, P. G.; Biswas, D. J.
2018-03-01
Efficient removal of Uranium-di-oxide (UO2) particulates from stainless steel surface was effected by Nd-YAG laser induced plasma shock waves in air as well as in water environment. The propagation velocity of the generated shock wave was measured by employing the photo-acoustic probe deflection method. Monitoring of the alpha activity of the sample with a ZnS (Ag) scintillation detector before and after the laser exposure allowed the estimation of decontamination efficiency defined as the percentage removal of the initial activity. Experiments were carried out to study the effect of laser pulse energy, number of laser exposures, orientation of the sample, the separation between the substrate surface and the onset point of the shock wave on the de-contamination efficiency. The most optimised cleaning was found to occur when the laser beam impinged normally on the sample that was immersed in water and placed at a distance of ∼0.7 mm from the laser focal spot. Analysis of the cleaned surface by optical microscopes established that laser induced shock cleaning in no way altered the surface property. The shock force generated in both air and water has been estimated theoretically and has been found to exceed the Van der Waal's binding force for spherical contaminant particulate.
Particle control near reticle and optics using showerhead
Delgado, Gildardo R.; Chilese, Frank; Garcia, Rudy; Torczynski, John R.; Geller, Anthony S.; Rader, Daniel J.; Klebanoff, Leonard E.; Gallis, Michail A.
2016-01-26
A method and an apparatus to protect a reticle against particles and chemicals in an actinic EUV reticle inspection tool are presented. The method and apparatus utilizes a pair of porous metal diffusers in the form of showerheads to provide a continual flow of clean gas. The main showerhead bathes the reticle surface to be inspected in smoothly flowing, low pressure gas, isolating it from particles coming from surrounding volumes. The secondary showerhead faces away from the reticle and toward the EUV illumination and projection optics, supplying them with purge gas while at the same time creating a buffer zone that is kept free of any particle contamination originating from those optics.
Analysis of International Space Station Vehicle Materials on MISSE 6
NASA Technical Reports Server (NTRS)
Finckenor, Miria; Golden, Johnny; Kravchenko, Michael; O'Rourke, Mary Jane
2010-01-01
The International Space Station Materials and Processes team has multiple material samples on MISSE 6, 7 and 8 to observe Low Earth Orbit (LEO) environmental effects on Space Station materials. Optical properties, thickness/mass loss, surface elemental analysis, visual and microscopic analysis for surface change are some of the techniques employed in this investigation. Results for the following MISSE 6 samples materials will be presented: deionized water sealed anodized aluminum; Hyzod(tm) polycarbonate used to temporarily protect ISS windows; Russian quartz window material; Beta Cloth with Teflon(tm) reformulated without perfluorooctanoic acid (PFOA), and electroless nickel. Discussion for current and future MISSE materials experiments will be presented. MISSE 7 samples are: more deionized water sealed anodized aluminum, including Photofoil(tm); indium tin oxide (ITO) over-coated Kapton(tm) used as thermo-optical surfaces; mechanically scribed tin-plated beryllium-copper samples for "tin pest" growth (alpha/beta transformation); and beta cloth backed with a black coating rather than aluminization. MISSE 8 samples are: exposed "scrim cloth" (fiberglass weave) from the ISS solar array wing material, protective fiberglass tapes and sleeve materials, and optical witness samples to monitor contamination.
Thin film contamination effects on laser-induced damage of fused silica surfaces at 355 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnham, A. K.; Cordillot, C.; Fornier, A.
1998-07-28
Fused silica windows were artificially contaminated to estimate the resistance of target chamber debris shields against laser damage during NIF operation. Uniform contamination thin films (1 to 5 nm thick) were prepared by sputtering various materials (Au, Al, Cu, and B 4C). The loss of transmission of the samples was first measured. They were then tested at 355 nm in air with an 8-ns Nd:YAG laser. The damage morphologies were characterized by Nomarski optical microscopy and SEM. Both theory and experiments showed that metal contamination for films as thin as 1 nm leads to a substantial loss of transmission. Themore » laser damage resistance dropped very uniformly across the entire surface (e.g. 6 J/cm 2 for 5 nm of Cu). The damage morphology characterization showed that contrary to clean silica, metal coated samples did not produce pits on the surface. B 4C coated silica, on the other hand, led to a higher density of such damage pits. A model for light absorption in the thin film was coupled with a simple heat deposition and diffusion model to perform preliminary theoretical estimates of damage thresholds. The estimates of the loss due to light absorption and reflection pointed out significant .differences between metals (e.g. Al and Au). The damage threshold predictions were in qualitative agreement with experimental measurements.« less
Surface-enhanced Raman detection of CW agents in water using gold sol gel substrates
NASA Astrophysics Data System (ADS)
Premasiri, W. Ranjith; Clarke, Richard H.; Womble, M. Edward
2002-02-01
The development of a water analysis system capable of detecting both inanimate trace chemical contaminants and viable microbial contaminants has long been a project of interest to our group. The capability of detecting both chemical and biological agent sources in a single device configuration would clearly add to the value of such a product. In the present work, we describe results with chemical warfare agents from our efforts to produce a Raman system for the detection of both chemical and biological warfare agents in water. We utilize laser Raman light scattering and employ Surface Enhanced Raman Spectroscopy (SERS)on solid state gold sol-gel detectors combined with fiber optic collection of the enhanced light signal in the sampling system to augment the normally low intensity Raman Scattering signal from trace materials.
Label-Free Biosensing with High Selectivity in Complex Media using Microtoroidal Optical Resonators
NASA Astrophysics Data System (ADS)
Ozgur, Erol; Toren, Pelin; Aktas, Ozan; Huseyinoglu, Ersin; Bayindir, Mehmet
2015-08-01
Although label-free biosensors comprised of optical microcavities inherently possess the capability of resolving molecular interactions at individual level, this extreme sensitivity restricts their convenience for large scale applications by inducing vulnerability towards non-specific interactions that readily occur within complex media. Therefore, the use of optical microresonators for biosensing is mostly limited within strictly defined laboratory conditions, instead of field applications as early detection of cancer markers in blood, or identification of contamination in food. Here, we propose a novel surface modification strategy suitable for but not limited to optical microresonator based biosensors, enabling highly selective biosensing with considerable sensitivity as well. Using a robust, silane-based surface coating which is simultaneously protein resistant and bioconjugable, we demonstrate that it becomes possible to perform biosensing within complex media, without compromising the sensitivity or reliability of the measurement. Functionalized microtoroids are successfully shown to resist nonspecific interactions, while simultaneously being used as sensitive biological sensors. This strategy could pave the way for important applications in terms of extending the use of state-of-the-art biosensors for solving problems similar to the aforementioned.
Contamination Control Considerations for the Next Generation Space Telescope (NGST)
NASA Technical Reports Server (NTRS)
Wooldridge, Eve M.
1998-01-01
The NASA Space Science Program, in its ongoing mission to study the universe, has begun planning for a telescope that will carry on the Hubble Space Telescope's exploration. This telescope, the 'Next Generation Space Telescope' (NGST), will be 6-8 meters in diameter, will be radiatively cooled to 30-60 Kelvin in order to enable extremely deep exposures at near infrared wavelengths, and will operate for a lifetime of 5-10 years. The requirement will be to measure wavelengths from 1-5 microns, with a goal to measure wavelengths from 0.6-30 microns. As such, NGST will present a new contamination control challenge. The Goddard Space Flight Center (GSFC) performed one of three preliminary feasibility studies for the NGST, presenting a telescope with an 8 meter, deployable primary mirror and a deployable secondary mirror. The telescope would be radiatively cooled, with the optical telescope assembly (OTA) and the science instrument module (SIM) isolated from the warmer spacecraft support module (SSM). The OTA and the SIM would also be shielded from sunlight with an enormous, inflatable sun-shield. The GSFC telescope was designed for launch on an Atlas HAS, which would require launching the telescope in a stowed configuration, with the SSM, antennae, sun-shield, primary mirror 'petals', and secondary mirror deployed once on-orbit. The launch configuration and deployment scenario of an exposed telescope measuring near infrared and cooled to 30-60 K are the factors presenting contamination hazards to the NGST mission. Preliminary science requirements established are: less than 20% reflectance decrease on optical surfaces over the wavelength range, and less than 0.3% obscuration of optical surfaces. In order to meet these requirements, NGST must be built and launched with careful attention to contamination control. Initial contamination control design options include strict selecting of materials and baking out of hardware down to the component level, minimizing or eliminating exposure of the OTA to sunlight or earth albedo during deployment and early on-orbit operations, cleaning of the primary and secondary mirrors at the launch site, cleaning of the launch vehicle fairing, locating thrusters and vents on the warm side of the sun shield only, and the possibility of including a deployable cover if that is shown to be necessary.
On a Road to "Soft" Optical MEMS
NASA Astrophysics Data System (ADS)
Yang, Shu; Mach, Peter; Krupenkin, Tom
2003-03-01
A phenomenon of electrowetting has been applied to the actuation of micro-optical devices. The devices use small droplets of transparent conductive liquids to manipulate light in a useful way. The form and position of these droplets is controlled by the applied voltage. Both fiber based and open space optical devices are demonstrated. As an example of an open space optical device, a tunable liquid microlens capable of adjusting its focal length and lateral position is discussed. The microlens consists of a droplet of a transparent conductive liquid placed on a dielectric substrate with underlying electrodes. By varying the voltage applied to the structure, both the position and curvature of microlens can be reversibly changed. Similarly, electrowetting actuation of fluids in micro channels is employed to provide dynamic and reversible tuning of the optical fiber structures. When combined with in-fiber gratings or etched fibers this approach yields tunable broadband and narrowband filters with a large dynamic range. Both the surface and bulk properties of the materials are found important to control the device performance. Fundamental problems, such as stick-slip behavior and contact angle hysteresis associated with the surface roughness and surface contamination, are studied to optimize the choice of dielectric materials and their coatings. Some of the possible ways to control these phenomena are outlined. Several potential applications of the proposed approach are also discussed.
Optical properties monitor: Experiment definition phase
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Bennett, Jean M.; Hummer, Leigh L.; Chipman, Russell A.; Hadaway, James B.; Pezzaniti, Larry
1990-01-01
The stability of materials used in the space environment will continue to be a limiting technology for space missions. The Optical Properties Monitor (OPM) Experiment provides a comprehensive space research program to study the effects of the space environment (both natural and induced) on optical, thermal and space power materials. The OPM Experiment was selected for definition under the NASA/OAST In-Space Technology Experiment Program. The results of the OPM Definition Phase are presented. The OPM experiment will expose selected materials to the space environment and measure the effects with in-space optical measurements. In-space measurements include total hemispherical reflectance total integrated scatter and VUV reflectance/transmittance. The in-space measurements will be augmented with extensive pre- and post-flight sample measurements to determine other optical, mechanical, electrical, chemical or surface effects of space exposure. Environmental monitors will provide the amount and time history of the sample exposure to solar irradiation, atomic oxygen and molecular contamination.
Optical properties monitor: Experiment definition phase
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Bennett, Jean M.; Hummer, Leigh L.; Chipman, Russell A.; Hadaway, James B.; Pezzaniti, Larry
1989-01-01
The stability of materials used in the space environment will continue to be a limiting technology for space missions. The Optical Properties Monitor (OPM) Experiment provides a comprehensive space research program to study the effects of the space environment-both natural and induced-on optical, thermal and space power materials. The OPM Experiment was selected for definition under the NASA/OAST In-Space Technology Experiment Program. The results of the OPM Definition Phase are presented. The OPM Experiment will expose selected materials to the space environment and measure the effects with in-space optical measurements. In-space measurements include total hemispherical reflectance total integrated scatter and VUV reflectance/transmittance. The in-space measurements will be augmented with extensive pre- and post-flight sample measurements to determine other optical, mechanical, electrical, chemical or surface effects of space exposure. Environmental monitors will provide the amount and time history of the sample exposure to solar irradiation, atomic oxygen and molecular contamination.
Halogen occultation experiment (HALOE) optical witness-plate program
NASA Technical Reports Server (NTRS)
Harvey, Gale A.; Raper, James L.
1989-01-01
An optical witness plate program was implemented to monitor buildup of molecular contamination in the clean room during the assembly and testing of the Halogen Occulation Experiment (HALOE) instrument. Travel plates to monitor molecular contamination when the instrument is not in the clean room are also measured. The instrument technique is high-resolution transmission spectroscopy in the 3 micron spectral region using a Fourier transform spectrometer. Witness specimens of low index of refraction, infrared transmitting material are used for contaminant monitoring and for spectral signature analysis. Spectral signatures of possible molecular contamination are presented. No condensible volatile material contamination of HALOE optical witness specimens have yet been found.
Contamination Examples and Lessons from Low Earth Orbit Experiments and Operational Hardware
NASA Technical Reports Server (NTRS)
Pippin, Gary; Finckenor, Miria M.
2009-01-01
Flight experiments flown on the Space Shuttle, the International Space Station, Mir, Skylab, and free flyers such as the Long Duration Exposure Facility, the European Retrievable Carrier, and the EFFU, provide multiple opportunities for the investigation of molecular contamination effects. Retrieved hardware from the Solar Maximum Mission satellite, Mir, and the Hubble Space Telescope has also provided the means gaining insight into contamination processes. Images from the above mentioned hardware show contamination effects due to materials processing, hardware storage, pre-flight cleaning, as well as on-orbit events such as outgassing, mechanical failure of hardware in close proximity, impacts from man-made debris, and changes due to natural environment factors.. Contamination effects include significant changes to thermal and electrical properties of thermal control surfaces, optics, and power systems. Data from several flights has been used to develop a rudimentary estimate of asymptotic values for absorptance changes due to long-term solar exposure (4000-6000 Equivalent Sun Hours) of silicone-based molecular contamination deposits of varying thickness. Recommendations and suggestions for processing changes and constraints based on the on-orbit observed results will be presented.
Evaluation of Contamination Inspection and Analysis Methods through Modeling System Performance
NASA Technical Reports Server (NTRS)
Seasly, Elaine; Dever, Jason; Stuban, Steven M. F.
2016-01-01
Contamination is usually identified as a risk on the risk register for sensitive space systems hardware. Despite detailed, time-consuming, and costly contamination control efforts during assembly, integration, and test of space systems, contaminants are still found during visual inspections of hardware. Improved methods are needed to gather information during systems integration to catch potential contamination issues earlier and manage contamination risks better. This research explores evaluation of contamination inspection and analysis methods to determine optical system sensitivity to minimum detectable molecular contamination levels based on IEST-STD-CC1246E non-volatile residue (NVR) cleanliness levels. Potential future degradation of the system is modeled given chosen modules representative of optical elements in an optical system, minimum detectable molecular contamination levels for a chosen inspection and analysis method, and determining the effect of contamination on the system. By modeling system performance based on when molecular contamination is detected during systems integration and at what cleanliness level, the decision maker can perform trades amongst different inspection and analysis methods and determine if a planned method is adequate to meet system requirements and manage contamination risk.
NASA Astrophysics Data System (ADS)
Lysaght, Patrick S.; Ybarra, Israel; Sax, Harry; Gupta, Gaurav; West, Michael; Doros, Theodore G.; Beach, James V.; Mello, Jim
2000-06-01
The continued growth of the semiconductor manufacturing industry has been due, in large part, to improved lithographic resolution and overlay across increasingly larger chip areas. Optical lithography continues to be the mainstream technology for the industry with extensions of optical lithography being employed to support 180 nm product and process development. While the industry momentum is behind optical extensions to 130 nm, the key challenge will be maintaining an adequate and affordable process latitude (depth of focus/exposure window) necessary for 10% post-etch critical dimension (CD) control. If the full potential of optical lithography is to be exploited, the current lithographic systems can not be compromised by incoming wafer quality. Impurity specifications of novel Low-k dielectric materials, plating solutions, chemical-mechanical planarization (CMP) slurries, and chemical vapor deposition (CVD) precursors are not well understood and more stringent control measures will be required to meet defect density targets as identified in the National Technology Roadmap for Semiconductors (NTRS). This paper identifies several specific poor quality wafer issues that have been effectively addressed as a result of the introduction of a set of flexible and reliable wafer back surface clean processes developed on the SEZ Spin-Processor 203 configured for processing of 200 mm diameter wafers. Patterned wafers have been back surface etched by means of a novel spin process contamination elimination (SpCE) technique with the wafer suspended by a dynamic nitrogen (N2) flow, device side down, via the Bernoulli effect. Figure 1 illustrates the wafer-chuck orientation within the process chamber during back side etch processing. This paper addresses a number of direct and immediate benefits to the MicraScan IIITM deep-ultraviolet (DUV) step-and-scan system at SEMATECH. These enhancements have resulted from the resolution of three significant problems: (1) back surface particle/residual contamination, (2) wafer flatness, and (3) control of contaminant materials such as copper (Cu). Data associated with the SpCE process, optimized for flatness improvement, particle removal, and Cu contamination control is presented in this paper, as it relates to excessive consumption of the usable depth of focus (UDOF) and comprehensive yield enhancement in photolithography. Additionally, data illustrating a highly effective means of eliminating copper from the wafer backside, bevel/edge, and frontside edge exclusion zone (0.5 mm - 3 mm), is presented. The data, obtained within the framework of standard and experimental copper/low-k device production at SEMATECH, quantifies the benefits of implementing the SEZ SpCE clean operation. Furthermore, this data confirms the feasibility of utilizing existing (non-copper) process equipment in conjunction with the development of copper applications by verifying the reliability and cost effectiveness of SpCE functionality.
Contamination control program for the Extreme Ultraviolet Explorer instruments
NASA Technical Reports Server (NTRS)
Ray, David C.; Malina, Roger F.; Welsh, Barry Y.; Austin, James D.; Teti, Bonnie Gray
1989-01-01
A contamination-control program has been instituted for the optical components of the EUV Explorer satellite, whose 80-900 A range performance is easily degraded by particulate and molecular contamination. Cleanliness requirements have been formulated for the design, fabrication, and test phases of these instruments; in addition, contamination-control steps have been taken which prominently include the isolation of sensitive components in a sealed optics cavity. Prelaunch monitoring systems encompass the use of quartz crystal microbalances, particle witness plates, direct flight hardware sampling, and optical witness sampling of EUV scattering and reflectivity.
Distinguishing between microscale gaseous bubbles and liquid drops
NASA Astrophysics Data System (ADS)
Tan, Beng Hau; An, Hongjie; Chan, Chon U.; Ohl, Claus-Dieter
2015-11-01
In recent years, there has been strong research interest in decorating surfaces with tiny bubbles and drops due to their potential applications in reducing slippage in micro and nanofluidic devices. Both nanobubbles and nanodrops are typically nucleated by exchanging fluids over a suitable substrate. However, the nucleation experiments present many challenges, such as reproducibility and the possibility of contamination. The use of one-use plastic syringes and needle cannulas in nucleation experiments can introduce polymeric contamination. A contaminated experiment may nucleate bubbles, drops or both. Moreover, it is surprisingly difficult to distinguish between bubbles and drops under the usual atomic force microscopy or optical techniques. Here we present an experimental study comparing bubbles and oil (PDMS) drops on an atomically smooth surface (HOPG). Instead of nucleating the objects via solvent exchange, we directly introduced bubbles via electrolysis, and oil drops by injecting a dilute solution. Contrary to previous reports, we find that under careful AFM characterisation, liquid drops and gaseous bubbles respond differently to a change in imaging force, and moreover present different characteristic force curves.
Quantitative Hydrocarbon Surface Analysis
NASA Technical Reports Server (NTRS)
Douglas, Vonnie M.
2000-01-01
The elimination of ozone depleting substances, such as carbon tetrachloride, has resulted in the use of new analytical techniques for cleanliness verification and contamination sampling. The last remaining application at Rocketdyne which required a replacement technique was the quantitative analysis of hydrocarbons by infrared spectrometry. This application, which previously utilized carbon tetrachloride, was successfully modified using the SOC-400, a compact portable FTIR manufactured by Surface Optics Corporation. This instrument can quantitatively measure and identify hydrocarbons from solvent flush of hardware as well as directly analyze the surface of metallic components without the use of ozone depleting chemicals. Several sampling accessories are utilized to perform analysis for various applications.
NASA Astrophysics Data System (ADS)
Enaki, N.; Paslari, T.; Turcan, M.; Bazgan, S.; Ristoscu, C.; Mihailescu, I. N.
2018-06-01
We propose novel optical methods for prevention, treatment and diagnosis of infections by pathogens using metamaterials with various geometries consisting of microspheres (i.e. photonic crystals, photonic molecules) and optical fibers structures. Around the adjacent elements of metamaterials appear the evanescent zones of propagated pulsed light radiation overlapping each other. This effect gives us the possibility to significantly increase the decontamination volume especially in non-transparent media. The parking geometries of microspheres and optical fibers ensure the efficient contact zone between the pulsed light radiation with contaminated materials (gases, liquids, tissues, implant surfaces). The penetration depth of evanescent field in contaminated materials can achieve values comparable with pathogens dimensions. We propose an attractive antimicrobial strategy using combined action of ultrashort pulses with different frequencies and pulse duration to achieve the selective decontamination of microorganisms with minimal effects on the components of human cells and tissues. We take into consideration the intrinsic symmetries of microorganisms protein structures (inclusive virus capsids) and their possible resonant excitation in double frequencies induced Raman scattering. The development of nonlinear models of the excitation of vibration modes of biomolecules of viruses and bacteria are revised taking into consideration the multi-mode aspects of interaction of pulsed light with excited biomolecules of pathogens. This method opens new possibilities in decontamination and diagnosis of the new collective processes, which can take place in viruses, bacteria, or other cellular structures under the action of external light pulses. Exponential distribution of radiation in evanescent zone gives us the possibility to capture and trap the viruses and bacteria along the optical fibers or/and microsphere surfaces.
NASA Technical Reports Server (NTRS)
Lingbloom, Mike S.
2008-01-01
During redesign of the Space Shuttle reusable solid rocket motor (RSRM), NASA amended the contract with ATK Launch Systems (then Morton Thiokol Inc.) with Change Order 966 to implement a contamination control and cleanliness verification method. The change order required: (1) A quantitative inspection method (2) A written record of actual contamination levels versus a known reject level (3) A method that is more sensitive than existing methods of visual and black light inspection. Black light inspection is only useful for inspection of contaminants that fluoresce near the 365 nm spectral line and is not useful for inspection of most silicones that will not produce strong fluorescence. Black light inspection conducted by a qualified inspector under controlled light is capable of detecting Conoco HD-2 grease in gross amounts and is very subjective due to operator sensitivity. Optically stimulated electron emission (OSEE), developed at the Materials and Process Laboratory at Marshall Space Flight Center (MSFC), was selected to satisfy Change Order 966. OSEE offers several important advantages over existing laboratory methods with similar sensitivity, e.g., spectroscopy and nonvolatile residue sampling, which provide turn around time, real time capability, and full coverage inspection capability. Laboratory methods require sample gathering and in-lab analysis, which sometimes takes several days to get results. This is not practical in a production environment. In addition, these methods do not offer full coverage inspection of the large components
Infrared emission associated with chemical reactions on Shuttle and SIRTF surfaces
NASA Technical Reports Server (NTRS)
Hollenbach, D. J.; Tielens, Alexander G. G. M.
1984-01-01
The infrared intensities which would be observed by the Shuttle Infrared Telescope Facility (SIRTF), and which are produced by surface chemistry following atmospheric impact on SIRTF and the shuttle are estimated. Three possible sources of reactants are analyzed: (1) direct atmospheric and scattered contaminant fluxes onto the shuttle's surface; (2) direct atmospheric and scattered contaminant fluxes onto the SIRTF sunshade; and (3) scattered fluxes onto the cold SIRTF mirror. The chemical reactions are primarily initiated by the dominent flux of reactive atomic oxygen on the surfaces. Using observations of the optical glow to constrain theoretical parameters, it is estimated for source (1) that the infrared glow on the SIRTF mirror will be comparable to the zodiacal background between 1 and 10 micron wavelengths. It is speculated that oxygen reacts with the atoms and the radicals bound in the organic molecules that reside on the shuttle and the Explorer surfaces. It is concluded that for source (2) that with suitable construction, a warm sunshade will produce insignificant infrared glow. It is noted that the atomic oxygen flux on the cold SIRTF mirror (3) is insufficient to produce significant infrared glow. Infrared absorption by the ice buildup on the mirror is also small.
Viegas, Carla; Faria, Tiago; Pacífico, Cátia; Dos Santos, Mateus; Monteiro, Ana; Lança, Carla; Carolino, Elisabete; Viegas, Susana; Cabo Verde, Sandra
2017-01-01
The aim of this work was to assess the microbiota (fungi and bacteria) and particulate matter in optical shops, contributing to a specific protocol to ensure a proper assessment. Air samples were collected through an impaction method. Surface and equipment swab samples were also collected side-by-side. Measurements of particulate matter were performed using portable direct-reading equipment. A walkthrough survey and checklist was also applied in each shop. Regarding air sampling, eight of the 13 shops analysed were above the legal requirement and 10 from the 26 surfaces samples were overloaded. In three out of the 13 shops fungal contamination in the analysed equipment was not detected. The bacteria air load was above the threshold in one of the 13 analysed shops. However, bacterial counts were detected in all sampled equipment. Fungi and bacteria air load suggested to be influencing all of the other surface and equipment samples. These results reinforce the need to improve air quality, not only to comply with the legal requirements, but also to ensure proper hygienic conditions. Public health intervention is needed to assure the quality and safety of the rooms and equipment in optical shops that perform health interventions in patients. PMID:28505144
Wf/pc Cycle 2 Calibration: Rapid Internal Monitor - Part 2
NASA Astrophysics Data System (ADS)
MacKenty, John
1991-07-01
This test is to take repeated internal flats to test for contamination buildup on the optical surfaces or the reappearance of QEH. Part 1: INTFLATS in F555W are obtained every 4 days in both WFC and PC to check for measles or daisies and to monitor scattered light. Part 2: Sequential INTFLATS in F439W with PC are obtained every 7 days to check for QEH.
Wf/pc Cycle 1 Calibration: Rapid Internal Monitor
NASA Astrophysics Data System (ADS)
MacKenty, John
1990-12-01
This test is to take repeated internal flats to test for contamination buildup on the optical surfaces or the reappearance of QEH. Part 1: INTFLATS in F555W are obtained every 4 days in both WFC and PC to check for measles or daisies and to monitor scattered light. Part 2: Sequential INTFLATS in F439W with PC are obtained every 7 days to check for QEH.
Wf/pc Cycle 3 Calibration: Rapid Internal Monitor
NASA Astrophysics Data System (ADS)
MacKenty, John
1992-06-01
This test is to take repeated internal flats to test for contamination buildup on the optical surfaces or the reappearance of QEH. Part 1: INTFLATS in F555W are obtained every 4 days in both WFC and PC to check for measles or daisies and to monitor scattered light. Part 2: Sequential INTFLATS in F439W with PC are obtained every 7 days to check for QEH.
Wf/pc Cycle 2 Calibration: Rapid Internal Monitor
NASA Astrophysics Data System (ADS)
MacKenty, John
1991-07-01
This test is to take repeated internal flats to test for contamination buildup on the optical surfaces or the reappearance of QEH. Part 1: INTFLATS in F555W are obtained every 4 days in both WFC and PC to check for measles or daisies and to monitor scattered light. Part 2: Sequential INTFLATS in F439W with PC are obtained every 7 days to check for QEH.
Wf/pc Cycle 3 Calibration: Rapid Internal Monitor - Part 2
NASA Astrophysics Data System (ADS)
MacKenty, John
1992-06-01
This test is to take repeated internal flats to test for contamination buildup on the optical surfaces or the reappearance of QEH. Part 1: INTFLATS in F555W are obtained every 4 days in both WFC and PC to check for measles or daisies and to monitor scattered light. Part 2: Sequential INTFLATS in F439W with PC are obtained every 7 days to check for QEH.
Dual beam Nd:YAG laser welding: influence of lubricants to lap joint welding of steel sheets
NASA Astrophysics Data System (ADS)
Geiger, M.; Merklein, M.; Otto, A.; Blankl, A.
2007-05-01
Laser welding is applied in large-volume production since the late eighties and has revolutionized the possibilities of designing and engineering products. Nevertheless, problems appear during application because the operational conditions in industrial environments fluctuate and can influence the welding process negatively. Contaminations, like lubricants and organic solids, are an example of changing conditions in laser beam welding. If a lap joint is welded, these materials have to be removed from the sheets, otherwise pores and surface failures may appear due to keyhole instabilities induced by uncontrolled outgassing. One possibility for solving this problem is the use of two separate laser beams. For producing these two beams several systems are available for all different kind of lasers. A bifocal optic is such a solution for an Nd:YAG laser. By using this system, the laser beam is divided after collimation with a prism. Afterwards the two beams are focussed with a lens to the surface of the sheet and two single spots are produced. If the distance between the two spots is low, one common, elliptical keyhole is created. With this system two different welding strategies are possible. The spots can be oriented parallel or normal to the feed direction. For stabilizing the laser welding of contaminated steel sheets the parallel arrangement is better, because the amount of contamination is nearly the same as in single spot welding but the total volume of the keyhole is greater and so pressure variations due to uncontrolled evaporation of contaminations are lower. In order to prove this theory and to determine the exact effects some investigations were made at the Chair of Manufacturing Technology of the University of Erlangen-Nuremberg. A 4 kW Nd:YAG laser with a beam parameter product of 25 mm*mrad and a focal distance of 200 mm was used to weld two 1 mm DC04 steel sheets together with a lap joint. Between the sheets a deep drawing lubricant, Castrol FST 6, was used to simulate the contaminations. The sheets were welded with mono- and bifocal optic, whereas with bifocal the power distribution between the two beams was varied. After welding, the seams were qualified by analyzing surface defects and mechanical properties. The results of the investigations show that the adoption of a bifocal optic can increase the stability of the welding process. The distribution between the two single spots has an essential influence on the welding result. In order to get a higher penetration and failure free seams, a 30 % to 70 % distribution between the two spots is better. Furthermore the blade angle has another slight impact on the welding result. For monofocus and bifocus a towing angle between the sheets and the beam produces better welding results. Considering these results it can be resumed that the application of a bifocal optic is a possibility to increase the quality and the stability of lap joint welding but the parameter settings for good results can only be varied in a tight tolerance zone.
NASA Astrophysics Data System (ADS)
Vuellers, Felix; Gomard, Guillaume; Preinfalk, Jan B.; Klampaftis, Efthymios; Worgull, Matthias; Richards, Bryce S.; Hölscher, Hendrik; Kavalenka, Maryna N.
2017-02-01
Combining high optical transmission, water-repellency and self-cleaning is of great interest for optoelectronic devices operating in outdoor conditions, such as photovoltaics where shading can significantly reduce the power output. The surface of water plant Pistia stratiotes combines these functionalities through a dense layer of transparent microhairs. It renders the surface superhydrophobic without affecting absorption of sunlight necessary for photosynthesis. Inspired by this surface, we fabricated a superhydrophobic flexible thin nanofur film made from optical grade polycarbonate using a scalable combination of hot embossing and hot pulling techniques. During fabrication, heated sandblasted steel plates locally elongate softened polymer, thus covering its surface in microcavities surrounded by high aspect ratio micro- and nanohairs. The superhydrophobic nanofur exhibits contact angles of (166+/-6°), low sliding angles (<6°) and is self-cleaning against various contaminants. The overall transmission of the self-standing nanofur film stands above 85% over the visible range, with 97% of the transmitted light scattered forward. Reflection drops below 4% when coated on a polymeric substrate, which can enhance light extraction in organic light emitting diodes (OLEDs). We report an increase of more than 10% in luminous efficacy for a nanofur coated OLED compared to a bare device. Finally, the nanofur film can be used for enhancing the incoupling of light to solar cells, while additionally providing self-cleaning properties. Optical coupling of the nanofur to a multi-crystalline silicon solar cell results in a 5.8% gain in photocurrent compared to a bare device under normal incidence.
Opportunity Microscopic Imager Results from the Western Rim of Endeavour Crater
NASA Technical Reports Server (NTRS)
Herkenhoff, K. E.; Arvidson, R. E.; Mittlefehldt, D. W.; Sullivan, R. J.
2016-01-01
The Athena science payload on the Mars Exploration Rovers (MER Spirit and Opportunity) includes the Microscopic Imager (MI), a fixed focus close-up camera mounted on the instrument arm. The MI acquires images at a scale of 31 micrometers/pixel over a broad spectral range (400 to 700 nm) using only natural illumination of target surfaces. Radio signals from Spirit have not been received since March 2010, so attempts to communicate with that rover ceased in mid-2011. The Opportunity MI optics were contaminated by a global dust storm in 2007. That contamination continues to reduce the contrast of MI images, and is being monitored by occasionally imaging the sky.
Ethylene glycol contamination effects on first surface aluminized mirrors
NASA Astrophysics Data System (ADS)
Dunlop, Patrick; Probst, Ronald G.; Evatt, Matthew; Reddell, Larry; Sprayberry, David
2016-07-01
The Dark Energy Spectroscopic Instrument (DESI) is under construction for installation on the Mayall 4 Meter telescope. The use of a liquid cooling system is proposed to maintain the DESI prime focus assembly temperature within ±1°C of ambient. Due to concerns of fluid deposition onto optical surfaces from possible leaks, systematic tests were performed of the effects on first surface aluminized mirrors of ethylene glycol and two other candidate coolants. Objective measurement of scattering and reflectivity was an important supplement to visual inspection. Rapid cleanup of a coolant spill followed by a hand wash of the mirror limited surface degradation to the equivalent of a few months of general environmental exposure. Prolonged exposure to corrosive coolants dissolved the aluminum, necesitating mirror recoating.
Cumurcu, Aysegul; Diaz, Jordi; Lindsay, Ian D; de Beer, Sissi; Duvigneau, Joost; Schön, Peter; Julius Vancso, G
2015-03-01
Tip-enhanced nanoscale optical imaging techniques such as apertureless scanning near-field optical microscopy (a-SNOM) and scanning near-field ellipsometric microscopy (SNEM) applications can suffer from a steady degradation in performance due to adhesion of atmospheric contaminants to the metal coated tip. Here, we demonstrate that a self-assembled monolayer (SAM) of ethanethiol (EtSH) is an effective means of protecting gold-coated atomic force microscopy (AFM) probe tips from accumulation of surface contaminants during prolonged exposure to ambient air. The period over which they yield consistent and reproducible results for scanning near-field ellipsometric microscopy (SNEM) imaging is thus extended. SNEM optical images of a microphase separated polystyrene-block-poly (methylmethacrylate) (PS-b-PMMA) diblock copolymer film, which were captured with bare and SAM-protected gold-coated AFM probes, both immediately after coating and following five days of storage in ambient air, were compared. During this period the intensity of the optical signals from the untreated gold tip fell by 66%, while those from the SAM protected tip fell by 14%. Additionally, gold coated AFM probe tips were modified with various lengths of alkanethiols to measure the change in intensity variation in the optical images with SAM layer thickness. The experimental results were compared to point dipole model calculations. While a SAM of 1-dodecanethiol (DoSH) was found to strongly suppress field enhancement we find that it can be locally removed from the tip apex by deforming the molecules under load, restoring SNEM image contrast. Copyright © 2014 Elsevier B.V. All rights reserved.
Laser Surface Preparation for Adhesive Bonding of Aerospace Structural Composites
NASA Technical Reports Server (NTRS)
Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.
2010-01-01
Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical pre-bonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.
Laser Surface Preparation and Bonding of Aerospace Structural Composites
NASA Technical Reports Server (NTRS)
Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.
2010-01-01
Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical prebonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.
Near zero reflection by nanostructured anti-reflection coating design for Si substrates
NASA Astrophysics Data System (ADS)
Al-Fandi, Mohamed; Makableh, Yahia F.; Khasawneh, Mohammad; Rabady, Rabi
2018-05-01
The nanostructure design of near zero reflection coating for Si substrates by using ZnO Nanoneedles (ZnONN) is performed and optimized for the visible spectral range. The design investigates the ZnONN tip to body ratio effect on the anti-reflection coating properties. Different tip to body ratios are used on Si substrates. Around zero reflection is achieved by the Nanoneedles structure design presented in this work, leading to minimal reflection losses from the Si surface. The current design evolves a solution to optical losses and surface contamination effects associated with Si solar cells.
NASA Technical Reports Server (NTRS)
Trinh, E. H.
1985-01-01
An ultrasonic levitation device operable in both ordinary ground-based as well as in potential space-borne laboratories is described together with its various applications in the fields of fluid dynamics, material science, and light scattering. Some of the phenomena which can be studied by this instrument include surface waves on freely suspended liquids, the variations of the surface tension with temperature and contamination, the deep undercooling of materials with the temperature variations of their density and viscosity, and finally some of the optical diffraction properties of transparent substances.
New Technologies for Enhanced Environmental Testing on Spacecraft Structures
NASA Astrophysics Data System (ADS)
Ascani, Maurizio; Alemanno, Leonardo; Rinalducci, Fabrizio
2014-06-01
This paper presents engineering approaches to realize Thermal Vacuum Chambers (TVC) for different R&D applications: (1) testing of propulsion systems, operating as a Hall thruster, (2) increasing of the DUT (device under test) surface temperature up to +550°C, (3) installation of the solar system inside the TVC. Each application implies specific problems that need to be managed by TVC during the tests. In particular, emission of high-energy ionized gas at high temperatures, surface temperatures higher 800 K and optical specimen contamination represent under high vacuum conditions significant challenges for test equipment.
Collisional desorption of NO by fast O atoms
NASA Technical Reports Server (NTRS)
Sonnenfroh, David M.; Caledonia, George E.
1993-01-01
Surface-adsorbed NO figures largely in the mechanism that produces visible glow around spacecraft in low Earth orbit (LEO). In view of the potential interference to optical observations such a glow represents, we have investigated the collision-induced desorption of NO from Al, Ni, and Z306 Chemglaze-coated surfaces at 96 K by hyperthermal (8 km/s) oxygen atoms. The removal of surface NO was followed by the monitoring of the visible fluorescence of electronically excited NO2 produced through the surface-mediated reaction O + NO. A variability in collisional desorption rate with material was observed. The limited data suggest a removal efficiency of 4 to 8% of the impinging O atom flux. Implications for the atmospheric scouring of contaminants from external surfaces of LEO spacecraft are discussed.
Space environmental effects on spacecraft: LEO materials selection guide, part 2
NASA Astrophysics Data System (ADS)
Silverman, Edward M.
1995-08-01
This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 2 covers thermal control systems, power systems, optical components, electronic systems, and applications.
Space environmental effects on spacecraft: LEO materials selection guide, part 2
NASA Technical Reports Server (NTRS)
Silverman, Edward M.
1995-01-01
This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 2 covers thermal control systems, power systems, optical components, electronic systems, and applications.
NASA Technical Reports Server (NTRS)
Colony, J. A.
1979-01-01
Organic contamination of ultraviolet optical systems is discussed. Degradation of signal by reflection, scattering, interference, and absorption is shown. The first three processes depend on the physical state of the contaminant while absorption depends on its chemical structure. The latter phenomenon is isolated from the others by dissolving contaminants in cyclohexane and determining absorption spectra from 2100A to 3600A. A variety of materials representing the types of contaminants responsible for most spaceflight hardware problems is scanned and the spectra is presented. The effect of thickness is demonstrated for the most common contaminant, di(2 ethyl hexyl)phthalate, by scanning successive dilutions.
Klebanoff, Leonard Elliott [Dublin, CA; Rader, Daniel John [Albuquerque, NM; Walton, Christopher [Berkeley, CA; Folta, James [Livermore, CA
2009-01-06
An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.
High-power fused assemblies enabled by advances in fiber-processing technologies
NASA Astrophysics Data System (ADS)
Wiley, Robert; Clark, Brett
2011-02-01
The power handling capabilities of fiber lasers are limited by the technologies available to fabricate and assemble the key optical system components. Previous tools for the assembly, tapering, and fusion of fiber laser elements have had drawbacks with regard to temperature range, alignment capability, assembly flexibility and surface contamination. To provide expanded capabilities for fiber laser assembly, a wide-area electrical plasma heat source was used in conjunction with an optimized image analysis method and a flexible alignment system, integrated according to mechatronic principles. High-resolution imaging and vision-based measurement provided feedback to adjust assembly, fusion, and tapering process parameters. The system was used to perform assembly steps including dissimilar-fiber splicing, tapering, bundling, capillary bundling, and fusion of fibers to bulk optic devices up to several mm in diameter. A wide range of fiber types and diameters were tested, including extremely large diameters and photonic crystal fibers. The assemblies were evaluated for conformation to optical and mechanical design criteria, such as taper geometry and splice loss. The completed assemblies met the performance targets and exhibited reduced surface contamination compared to assemblies prepared on previously existing equipment. The imaging system and image analysis algorithms provided in situ fiber geometry measurement data that agreed well with external measurement. The ability to adjust operating parameters dynamically based on imaging was shown to provide substantial performance benefits, particularly in the tapering of fibers and bundles. The integrated design approach was shown to provide sufficient flexibility to perform all required operations with a minimum of reconfiguration.
NASA Technical Reports Server (NTRS)
Kim, Mijin; Kim, Jhoon; Wong, Man Sing; Yoon, Jongmin; Lee, Jaehwa; Wu, Dong L.; Chan, P.W.; Nichol, Janet E.; Chung, Chu-Yong; Ou, Mi-Lim
2014-01-01
Despite continuous efforts to retrieve aerosol optical depth (AOD) using a conventional 5-channelmeteorological imager in geostationary orbit, the accuracy in urban areas has been poorer than other areas primarily due to complex urban surface properties and mixed aerosol types from different emission sources. The two largest error sources in aerosol retrieval have been aerosol type selection and surface reflectance. In selecting the aerosol type from a single visible channel, the season-dependent aerosol optical properties were adopted from longterm measurements of Aerosol Robotic Network (AERONET) sun-photometers. With the aerosol optical properties obtained fromthe AERONET inversion data, look-up tableswere calculated by using a radiative transfer code: the Second Simulation of the Satellite Signal in the Solar Spectrum (6S). Surface reflectance was estimated using the clear sky composite method, awidely used technique for geostationary retrievals. Over East Asia, the AOD retrieved from the Meteorological Imager showed good agreement, although the values were affected by cloud contamination errors. However, the conventional retrieval of the AOD over Hong Kong was largely underestimated due to the lack of information on the aerosol type and surface properties. To detect spatial and temporal variation of aerosol type over the area, the critical reflectance method, a technique to retrieve single scattering albedo (SSA), was applied. Additionally, the background aerosol effect was corrected to improve the accuracy of the surface reflectance over Hong Kong. The AOD retrieved froma modified algorithmwas compared to the collocated data measured by AERONET in Hong Kong. The comparison showed that the new aerosol type selection using the critical reflectance and the corrected surface reflectance significantly improved the accuracy of AODs in Hong Kong areas,with a correlation coefficient increase from0.65 to 0.76 and a regression line change from tMI [basic algorithm] = 0.41tAERONET + 0.16 to tMI [new algorithm] = 0.70tAERONET + 0.01.
Preventing Molecular and Particulate Infiltration in a Confined Volume
NASA Technical Reports Server (NTRS)
Scialdone, John J.
1999-01-01
Contaminants from an instrument's self-generated sources or from sources external to the instrument may degrade its critical surfaces and/or create an environment which limits the instrument's intended performance. Analyses have been carried out on a method to investigate the required purging flow of clean, dry gas to prevent the ingestion of external contaminants into the instrument container volume. The pressure to be maintained and the required flow are examined in terms of their effectiveness in preventing gaseous and particulate contaminant ingestion and abatement of self-generated contaminants in the volume. The required venting area or the existing volume venting area is correlated to the volume to be purged, the allowable pressure differential across the volume, the external contaminant partial pressure, and the sizes of the ambient particulates. The diffusion of external water vapor into the volume while it was being purged was experimentally obtained in terms of an infiltration time constant. That data and the acceptable fraction of the outside pressure into the volume indicate the required flow of purge gas expressed in terms of volume change per unit time. The exclusion of particulates is based on the incoming velocity of the particles and the exit flow speed and density of the purge gas. The purging flow pressures needed to maintain the required flows through the vent passages are indicated. The purge gas must prevent or limit the entrance of the external contaminants to the critical locations of the instrument. It should also prevent self- contamination from surfaces, reduce material outgassing, and sweep out the outgassed products. Systems and facilities that can benefit from purging may be optical equipment, clinical facilities, manufacturing facilities, clean rooms, and other systems requiring clean environments.
Standoff detection of explosives: a challenging approach for optical technologies
NASA Astrophysics Data System (ADS)
Désilets, S.; Hô, N.; Mathieu, P.; Simard, J. R.; Puckrin, E.; Thériault, J. M.; Lavoie, H.; Théberge, F.; Babin, F.; Gay, D.; Forest, R.; Maheux, J.; Roy, G.; Châteauneuf, M.
2011-06-01
Standoff detection of explosives residues on surfaces at few meters was made using optical technologies based on Raman scattering, Laser-Induced Breakdown Spectroscopy (LIBS) and passive standoff FTIR radiometry. By comparison, detection and analysis of nanogram samples of different explosives was made with a microscope system where Raman scattering from a micron-size single point illuminated crystal of explosive was observed. Results from standoff detection experiments using a telescope were compared to experiments using a microscope to find out important parameters leading to the detection. While detection and spectral identification of the micron-size explosive particles was possible with a microscope, standoff detection of these particles was very challenging due to undesired light reflected and produced by the background surface or light coming from other contaminants. Results illustrated the challenging approach of detecting at a standoff distance the presence of low amount of micron or submicron explosive particles.
NASA Astrophysics Data System (ADS)
Sentis, Marc L.; Delaporte, Philippe C.; Marine, Wladimir; Uteza, Olivier P.
2000-04-01
The application of excimer laser ablation process to the decontamination of radioactive surfaces is discussed. This technology is very attractive because it allows to efficiently remove the contaminated particles without secondary waste production. To demonstrate the capability of such technology to efficiently decontaminate large area, we studied and developed a prototype which include a XeCl laser, an optical fiber delivery system and an ablated particles collection cell. The main physical processes taking place during UV laser ablation will be explained. The influence of laser wavelength, pulse duration and absorption coefficient of material will be discussed. Special studies have been performed to understand the processes which limit the transmission of high average power excimer laser through optical fiber, and to determine the laser conditions to optimize the value of this transmission. An in-situ spectroscopic analysis of laser ablation plasma allows the real time control of the decontamination. The results obtained for painting or metallic oxides removal from stainless steel surfaces will be presented.
Electronic and optical properties of pristine and oxidized borophene
NASA Astrophysics Data System (ADS)
Lherbier, Aurélien; Botello-Méndez, Andrés Rafael; Charlier, Jean-Christophe
2016-12-01
Borophene, a two-dimensional monolayer of boron atoms, was recently synthesized experimentally and was shown to exhibit polymorphism. In its closed-packed triangular form, borophene is expected to exhibit anisotropic metallic character with relatively high electron velocities. At the same time, very low optical conductivities in the infrared-visible light region were predicted. Based on its promising electronic transport properties and its high transparency, borophene could become a genuine lego piece in the 2D materials assembling game known as the van der Waals heterocrystal approach. However, borophene is naturally degraded in ambient conditions and it is therefore important to assess the mechanisms and the effects of oxidation on borophene monolayers. Optical and electronic properties of pristine and oxidized borophene are here investigated by first-principles approaches. The transparent and conductive properties of borophene are elucidated by analyzing the electronic structure and its interplay with light. Optical response of borophene is found to be strongly affected by oxidation, suggesting that optical measurements can serve as an efficient probe for borophene surface contamination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idris, Nasrullah, E-mail: nasrullah.idris@unsyiah.ac.id; Ramli, Muliadi; Hedwig, Rinda
This work is intended to asses the capability of LIBS for the detection of the tsunami sediment contamination in soil. LIBS apparatus used in this work consist of a laser system and an optical multichannel analyzer (OMA) system. The soil sample was collected from in Banda Aceh City, Aceh, Indonesia, the most affected region by the giant Indian Ocean tsunami 2004. The laser beam was focused onto surface of the soil pellet using a focusing lens to produce luminous plasma. The experiment was conducted under air as surrounding gas at 1 atmosphere. The emission spectral lines from the plasma weremore » detected by the OMA system. It was found that metal including heavy metals can surely be detected, thus implying the potent of LIBS technique as a fast screening tools of tsunami sediment contamination.« less
Selection of Optical Cavity Surface Coatings for 1micron Laser Based Missions
NASA Technical Reports Server (NTRS)
Hedgeland, Randy J.; Straka, Sharon; Matsumura, Mark; Hammerbacher, Joseph
2004-01-01
The particulate surface cleanliness level on several coatings for aluminum and beryllium substrates were examined for use in the optical cavities of high pulse energy Nd:YAG Q-switched, diode-pumped lasers for space flight applications. Because of the high intensity of the lasers, any contaminants in the laser beam path could damage optical coatings and limit the instrument mission objectives at the operating wavelength of 1 micron (micrometer). Our goal was to achieve an EST-STD-CC1246D Level 100 particulate distribution or better to ensure particulate redistribution during launch would not adversely affect the performance objectives. Tapelifts were performed to quantify the amount of particles using in-house developed procedures. The primary candidate coatings included chromate conversion coating aluminum (Al), uncoated Al electroless Nickel (Ni) on Al, Ni-gold (Au) on Al, anodized Al, and gold (Au)/Ni on Beryllium (Be). The results indicate that there were advantages in Ni and Au coating applications for the two major substrates, Al and Be, when considering applications that need to meet launch environments.
IUS materials outgassing condensation effects on sensitive spacecraft surfaces
NASA Technical Reports Server (NTRS)
Mullen, C. R.; Shaw, C. G.; Crutcher, E. R.
1982-01-01
Four materials used on the inertial upper state (IUS) were subjected to vacuum conditions and heated to near-operational temperatures (93 to 316 C), releasing volatile materials. A fraction of the volatile materials were collected on 25 C solar cells, optical solar reflectors (OSR's) or aluminized Mylar. The contaminated surfaces were exposed to 26 equivalent sun hours of simulated solar ultraviolet (UV) radiation. Measurements of contamination deposit mass, structure, reflectance and effects on solar cell power output were made before and after UV irradiation. Standard total mass loss - volatile condensible materials (TML - VCM) tests were also performed. A 2500 A thick contaminant layer produced by EPDM rubber motor-case insulation outgassing increased the solar absorptance of the OSR's from 0.07 to 0.14, and to 0.18 after UV exposure. An 83,000 A layer caused an increase from 0.07 to 0.21, and then the 0.46 after UV exposure. The Kevlar-epoxy motor-case material outgassing condensation raised the absorptance from 0.07 to 0.13, but UV had no effect. Outgassing from multilayer insulation and carbon-carbon nozzle materials did not affect the solar absorptance of the OSR's.
The growth of the metallic ZrNx thin films on P-GaN substrate by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Gu, Chengyan; Sui, Zhanpeng; Li, Yuxiong; Chu, Haoyu; Ding, Sunan; Zhao, Yanfei; Jiang, Chunping
2018-03-01
Although metal nitride thin films have attractive prospects in plasmonic applications due to its stable properties in harsh environments containing high temperatures, shock, and contaminants, the effect of deposition parameters on the properties of the metallic ZrN grown on III-N semiconductors by pulse laser deposition still lacks of detailed exploration. Here we have successfully prepared metallic ZrNx films on p-GaN substrate by pulsed laser deposition in N2 ambient of various pressures at a fixed substrate temperature (475 °C). It is found that the films exhibit quite smooth surfaces and (111) preferred orientation. The X-ray photoelectron spectroscopy measurements indicate that carbon contamination can be completely removed and oxygen contamination is significantly reduced on the film surfaces after cleaning using Ar+ sputtering. The N/Zr ratio increases from 0.64 to 0.75 when the N2 pressure increases from 0.5 Pa to 3 Pa. The optical reflectivity spectra measured by the UV-vis-NIR spectrophotometer show that the ZrNx is a typical and good metallic-like material and its metallic properties can be tuned with changing the film compositions.
Growth of micrometric oxide layers for the study of metallic surfaces decontamination by laser
NASA Astrophysics Data System (ADS)
Carvalho, Luisa; Pacquentin, Wilfried; Tabarant, Michel; Maskrot, Hicham; Semerok, Alexandre
2017-09-01
The nuclear industry produces a wide range of radioactive waste in term of level of hazard, contaminants and material. For metallic equipment like steam generators, the radioactivity is mainly located in the oxide surface. In order to study and develop techniques for dismantling and for decontamination in a safe way, it is important to have access to oxide layers with a representative distribution of non-radioactive contaminants. We propose a method of formation of oxide layer on stainless steel 304L with europium (Eu) as contaminant marker. In this method, an Eu-solution is sprayed on the stainless steel samples. The specimen are firstly treated with a pulsed nanosecond laser and secondly the steel samples are exposed to a 600°C furnace for various durations in order to grow an oxide layer. The oxide structure and in-depth distribution of Eu in the oxide layer are analysed by scanning electron microscopy coupled with energy dispersive X-ray microanalyzer, and by glow discharge optical emission or mass spectrometry. The oxide layers were grown to thicknesses in the range of 200 nm to 4.5 μm regarding to the laser treatment parameters and the heating duration. These contaminated oxides have a `duplex structure' with a mean weight percentage of 0.5% of europium in the volume of the oxide layer. It appears that europium implementation prevents the oxide growth by furnace but has no impact on laser heating. These oxide layers are used to study the decontamination of metallic surfaces such as stainless steel 304L using a nanosecond pulsed laser.
QCL-based standoff and proximal chemical detectors
NASA Astrophysics Data System (ADS)
Dupuis, Julia R.; Hensley, Joel; Cosofret, Bogdan R.; Konno, Daisei; Mulhall, Phillip; Schmit, Thomas; Chang, Shing; Allen, Mark; Marinelli, William J.
2016-05-01
The development of two longwave infrared quantum cascade laser (QCL) based surface contaminant detection platforms supporting government programs will be discussed. The detection platforms utilize reflectance spectroscopy with application to optically thick and thin materials including solid and liquid phase chemical warfare agents, toxic industrial chemicals and materials, and explosives. Operation at standoff (10s of m) and proximal (1 m) ranges will be reviewed with consideration given to the spectral signatures contained in the specular and diffusely reflected components of the signal. The platforms comprise two variants: Variant 1 employs a spectrally tunable QCL source with a broadband imaging detector, and Variant 2 employs an ensemble of broadband QCLs with a spectrally selective detector. Each variant employs a version of the Adaptive Cosine Estimator for detection and discrimination in high clutter environments. Detection limits of 5 μg/cm2 have been achieved through speckle reduction methods enabling detector noise limited performance. Design considerations for QCL-based standoff and proximal surface contaminant detectors are discussed with specific emphasis on speckle-mitigated and detector noise limited performance sufficient for accurate detection and discrimination regardless of the surface coverage morphology or underlying surface reflectivity. Prototype sensors and developmental test results will be reviewed for a range of application scenarios. Future development and transition plans for the QCL-based surface detector platforms are discussed.
Microstructured optical fiber photonic wires with subwavelength core diameter.
Lizé, Yannick; Mägi, Eric; Ta'eed, Vahid; Bolger, Jeremy; Steinvurzel, Paul; Eggleton, Benjamin
2004-07-12
We demonstrate fabrication of robust, low-loss silica photonic wires using tapered microstructured silica optical fiber. The fiber is tapered by a factor of fifty while retaining the internal structure and leaving the air holes completely open. The air holes isolate the core mode from the surrounding environment, making it insensitive to surface contamination and contact leakage, suggesting applications as nanowires for photonic circuits . We describe a transition between two different operation regimes of our photonic wire from the embedded regime, where the mode is isolated from the environment, to the evanescent regime, where more than 70% of the mode intensity can propagate outside of the fiber. Interesting dispersion and nonlinear properties are identified.
Fungal Fragments as Indoor Air Biocontaminants
Górny, Rafał L.; Reponen, Tiina; Willeke, Klaus; Schmechel, Detlef; Robine, Enric; Boissier, Marjorie; Grinshpun, Sergey A.
2002-01-01
The aerosolization process of fungal propagules of three species (Aspergillus versicolor, Penicillium melinii, and Cladosporium cladosporioides) was studied by using a newly designed and constructed aerosolization chamber. We discovered that fungal fragments are aerosolized simultaneously with spores from contaminated agar and ceiling tile surfaces. Concentration measurements with an optical particle counter showed that the fragments are released in higher numbers (up to 320 times) than the spores. The release of fungal propagules varied depending on the fungal species, the air velocity above the contaminated surface, and the texture and vibration of the contaminated material. In contrast to spores, the release of fragments from smooth surfaces was not affected by air velocity, indicating a different release mechanism. Correlation analysis showed that the number of released fragments cannot be predicted on the basis of the number of spores. Enzyme-linked immunosorbent assays with monoclonal antibodies produced against Aspergillus and Penicillium fungal species showed that fragments and spores share common antigens, which not only confirmed the fungal origin of the fragments but also established their potential biological relevance. The considerable immunological reactivity, the high number, and the small particle size of the fungal fragments may contribute to human health effects that have been detected in buildings with mold problems but had no scientific explanation until now. This study suggests that future fungal spore investigations in buildings with mold problems should include the quantitation of fungal fragments. PMID:12089037
Auger spectroscopic examination of MgF2-coated Al mirrors before and after UV irradiation
NASA Technical Reports Server (NTRS)
Heaney, J. B.; Herzig, H.; Osantowski, J. F.
1977-01-01
Magnesium fluoride protected Al films were studied since these mirrors are commonly used in astronomical instruments whenever a highly reflecting optical surface is required in the wavelength region from 1100 A to 2000 A. Freshly prepared samples of evaporated Al + 250-A thick MgF2 on glass were analyzed by Auger electron spectroscopy in conjunction with surface erosion by Ar(+) ion bombardment before and after UV irradiation. The analysis showed that a very thin layer of surface contamination and not bulk photolysis in the MgF2 film was reponsible for the irradiation-induced reflectance loss. Postirradiation polishing with a mild calcium carbonate abrasive can restore a mirror's reflectance by removing the photolyzed surface film without disturbing the MgF2 layer.
Feedback dew-point sensor utilizing optimally cut plastic optical fibres
NASA Astrophysics Data System (ADS)
Hadjiloucas, S.; Irvine, J.; Keating, D. A.
2000-01-01
A plastic optical fibre reflectance sensor that makes full use of the critical angle of the fibres is implemented to monitor dew formation on a Peltier-cooled reflector surface. The optical configuration permits isolation of optoelectronic components from the sensing head and better light coupling between the reflector and the detecting fibre, giving a better signal of the onset of dew formation on the reflector. Continuous monitoring of the rate of change in reflectance as well as the absolute reflectance signals, the use of a novel polymethyl-methacrylate-coated hydrophobic film reflector on the Peltier element and the application of feedback around the point of dew formation, further reduces the possibility of contamination of the sensor head. Under closed-loop operation, the sensor is capable of cycling around the point of dew formation at a frequency of 2.5 Hz.
A new scheme for urban impervious surface classification from SAR images
NASA Astrophysics Data System (ADS)
Zhang, Hongsheng; Lin, Hui; Wang, Yunpeng
2018-05-01
Urban impervious surfaces have been recognized as a significant indicator for various environmental and socio-economic studies. There is an increasingly urgent demand for timely and accurate monitoring of the impervious surfaces with satellite technology from local to global scales. In the past decades, optical remote sensing has been widely employed for this task with various techniques. However, there are still a range of challenges, e.g. handling cloud contamination on optical data. Therefore, the Synthetic Aperture Radar (SAR) was introduced for the challenging task because it is uniquely all-time- and all-weather-capable. Nevertheless, with an increasing number of SAR data applied, the methodology used for impervious surfaces classification remains unchanged from the methods used for optical datasets. This shortcoming has prevented the community from fully exploring the potential of using SAR data for impervious surfaces classification. We proposed a new scheme that is comparable to the well-known and fundamental Vegetation-Impervious surface-Soil (V-I-S) model for mapping urban impervious surfaces. Three scenes of fully polarimetric Radsarsat-2 data for the cities of Shenzhen, Hong Kong and Macau were employed to test and validate the proposed methodology. Experimental results indicated that the overall accuracy and Kappa coefficient were 96.00% and 0.8808 in Shenzhen, 93.87% and 0.8307 in Hong Kong and 97.48% and 0.9354 in Macau, indicating the applicability and great potential of the new scheme for impervious surfaces classification using polarimetric SAR data. Comparison with the traditional scheme indicated that this new scheme was able to improve the overall accuracy by up to 4.6% and Kappa coefficient by up to 0.18.
Optical reading of contaminants in aqueous media based on gold nanoparticles.
Du, Jianjun; Zhu, Bowen; Peng, Xiaojun; Chen, Xiaodong
2014-09-10
With increasing trends of global population growth, urbanization, pollution over-exploitation, and climate change, the safe water supply has become a global issue and is threatening our society in terms of sustainable development. Therefore, there is a growing need for a water-monitoring platform with the capability of rapidness, specificity, low-cost, and robustness. This review summarizes the recent developments in the design and application of gold nanoparticles (AuNPs) based optical assays to detect contaminants in aqueous media with a high performance. First, a brief discussion on the correlation between the optical reading strategy and the optical properties of AuNPs is presented. Then, we summarize the principle behind AuNP-based optical assays to detect different contaminants, such as toxic metal ion, anion, and pesticides, according to different optical reading strategies: colorimetry, scattering, and fluorescence. Finally, the comparison of these assays and the outlook of AuNP-based optical detection are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hemmerich, Malte; Thiel, Christiane; Lupp, Friedrich; Hanebuth, Henning; Weber, Rudolf; Graf, Thomas
High-power laser beam welding in industrial environment often suffers from process induced contamination of laser focusing optics. Especially exposed to this contamination is the plane protection glass which is positioned directly above the process to protect the expensive lenses from contaminations such as spatter and metal vapor. Locally increased absorption due to con-tamination leads to a temperature rise in the protection glass and a corresponding change of its optical characteristics. This results in a reduced beam quality and a shift of the focus position. Both effects lead to a reduced intensity of radiation on the workpiece causing a lower welding penetration depth. In this article we present laser beam measurements using laser processing optics with protection glasses of different materials and different grades of contamination. Welds in mild steel illustrate the extraordinary advantage of sapphire protection glasses, allowing a constant welding depth even when they are strongly contaminated. Welding results, beam caustic measurements and an estimation of economic efficiency will be shown.
Space environment effects on polymers in low earth orbit
NASA Astrophysics Data System (ADS)
Grossman, E.; Gouzman, I.
2003-08-01
Polymers are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control coatings, conformal coatings, adhesives, lubricants, etc. The low earth orbit (LEO) space environment includes hazards such as atomic oxygen, UV radiation, ionizing radiation (electrons, protons), high vacuum, plasma, micrometeoroids and debris, as well as severe temperature cycles. Exposure of polymers and composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. The high vacuum induces material outgassing (e.g. low-molecular weight residues, plasticizers and additives) and consequent contamination of nearby surfaces. The present work reviews the LEO space environment constituents and their interactions with polymers. Examples of degradation of materials exposed in ground simulation facilities are presented. The issues discussed include the erosion mechanisms of polymers, formation of contaminants and their interaction with the space environment, and protection of materials from the harsh space environment.
Flight Testing Surfaces Engineered for Mitigating Insect Adhesion on a Falcon HU-25C
NASA Technical Reports Server (NTRS)
Shanahan, Michelle; Wohl, Chris J.; Smith, Joseph G., Jr.; Connell, John W.; Siochi, Emilie J.; Doss, Jereme R.; Penner, Ronald K.
2015-01-01
Insect residue contamination on aircraft wings can decrease fuel efficiency in aircraft designed for natural laminar flow. Insect residues can cause a premature transition to turbulent flow, increasing fuel burn and making the aircraft less environmentally friendly. Surfaces, designed to minimize insect residue adhesion, were evaluated through flight testing on a Falcon HU-25C aircraft flown along the coast of Virginia and North Carolina. The surfaces were affixed to the wing leading edge and the aircraft remained at altitudes lower than 1000 feet throughout the flight to assure high insect density. The number of strikes on the engineered surfaces was compared to, and found to be lower than, untreated aluminum control surfaces flown concurrently. Optical profilometry was used to determine insect residue height and areal coverage. Differences in results between flight and laboratory tests suggest the importance of testing in realistic use environments to evaluate the effectiveness of engineered surface designs.
Plant-Stress Measurements Using Laser-Induced Fluorescence Excitation: Poland Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gene Capelle; Steve Jones
1999-05-01
Bechtel Nevada's Special Technologies Laboratory (STL) has been involved in remote sensing for many years, and in April 1995 STL began to study the use of active remote sensing for detecting plant stress. This work was motivated by the need to detect subsurface contamination, with the supposition that this could be accomplished by remote measurement of optical signatures from the overgrowing vegetation. The project has been a cooperative DOE/Disney effort, in which basic optical signature measurements (primarily fluorescence) were done at the Disney greenhouse facilities at Epcot Center in Florida, using instrumentation developed by STL on DOE funding. The primarymore » instrument is a LIFI system, which had originally been developed for detection of surface uranium contamination at DOE sites. To deal specifically with the plant stress measurements, a LIFS system was built that utilizes the same laser, but captures the complete fluorescence spectrum from blue to red wavelengths. This system had continued to evolve, and the version in existence in September 1997 was sent to Poland, accompanied by two people from STL, for the purpose of making the measurements described in this report.« less
Space Environmental Effects Knowledgebase
NASA Technical Reports Server (NTRS)
Wood, B. E.
2007-01-01
This report describes the results of an NRA funded program entitled Space Environmental Effects Knowledgebase that received funding through a NASA NRA (NRA8-31) and was monitored by personnel in the NASA Space Environmental Effects (SEE) Program. The NASA Project number was 02029. The Satellite Contamination and Materials Outgassing Knowledgebase (SCMOK) was created as a part of the earlier NRA8-20. One of the previous tasks and part of the previously developed Knowledgebase was to accumulate data from facilities using QCMs to measure the outgassing data for satellite materials. The main object of this current program was to increase the number of material outgassing datasets from 250 up to approximately 500. As a part of this effort, a round-robin series of materials outgassing measurements program was also executed that allowed comparison of the results for the same materials tested in 10 different test facilities. Other programs tasks included obtaining datasets or information packages for 1) optical effects of contaminants on optical surfaces, thermal radiators, and sensor systems and 2) space environmental effects data and incorporating these data into the already existing NASA/SEE Knowledgebase.
Genesis Solar Wind Collector Cleaning Assessment: Update on 60336 Sample Case Study
NASA Technical Reports Server (NTRS)
Goreva, Y. S.; Allums, K. K.; Gonzalez, C. P.; Jurewicz, A. J.; Burnett, D. S.; Allton, J. H.; Kuhlman, K. R.; Woolum, D.
2015-01-01
To maximize the scientific return of Genesis Solar Wind return mission it is necessary to characterize and remove a crash-derived particle and thin film surface contamination. A small subset of Genesis mission collector fragments are being subjected to extensive study via various techniques. Here we present an update on the sample 60336, a Czochralski silicon (Si-CZ) based wafer from the bulk array (B/C). This sample has undergone multiple cleaning steps (see the table below): UPW spin wash, aggressive chemical cleanings (including aqua regia, hot xylene and RCA1), as well as optical and chemical (EDS, ToF-SIMS) imaging. Contamination appeared on the surface of 60336 after the initial 2007 UPW cleaning. Aqua regia and hot xylene treatment (8/13/2013) did little to remove contaminants. The sample was UPW cleaned for the third time and imaged (9/16/13). The UPW removed the dark stains that were visible on the sample. However, some features, like "the Flounder" (a large, 100 micron feature in Fig. 1b) appeared largely intact, resisting all previous cleaning efforts. These features were likely from mobilized adhesive, derived from the Post-It notes used to stabilize samples for transport from Utah after the hard landing. To remove this contamination, an RCA step 1 organic cleaning (RCA1) was employed. Although we are still uncertain on the nature of the Flounder and why it is resistant to UPW and aqua regia/hot xylene treatment, we have found RCA1 to be suitable for its removal. It is likely that the glue from sticky pads used during collector recovery may have been a source for resistant organic contamination [9]; however [8] shows that UPW reaction with crash-derived organic contamination does not make particle removal more difficult.
NASA Astrophysics Data System (ADS)
Nazari, Marziyeh; Rubio-Martinez, Marta; Babarao, Ravichandar; Ayad Younis, Adel; Collins, Stephen F.; Hill, Matthew R.; Duke, Mikel C.
2018-01-01
Routine water quality monitoring is required in drinking and waste water management. A particular interest is to measure concentrations of a range of diverse contaminants on-site or remotely in real time. Here we present metal organic framework (MOF) integrated optical fiber sensor that allows for rapid optical measurement based on fast Fourier transform (FFT) spectrum analysis. The end-face of these glass optical fibers was modified with UiO-66(Zr) MOF thin film by in situ hydrothermal synthesis for the detection of the model contaminants, Rhodamine-B and 4-Aminopyridine, in water. The sensing mechanism is based on the change in the optical path length of the thin film induced by the adsorption of chemical molecules by UiO-66. Using FFT analysis, various modes of interaction (physical and chemical) became apparent, showing both irreversible changes upon contact with the contaminant, as well as reversible changes according to actual concentration. This was indicated by the second harmonic elevation to a certain level translating to high sensitivity detection.
NASA Astrophysics Data System (ADS)
Marquis, Jared Wayne
Passive longwave infrared radiometric satellite-based retrievals of sea surface temperature (SST) at instrument nadir are investigated for cold bias caused by unscreened optically-thin cirrus (OTC) clouds (cloud optical depth ≤ 0.3; COD). Level 2 split-window SST retrievals over tropical oceans (30° S - 30° N) from Moderate Resolution Imaging Spectroradiometer (MODIS) radiances collected aboard the NASA Aqua satellite (Aqua-MODIS) are collocated with cloud profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument, mounted on the independent NASA CALIPSO satellite. OTC are present in approximately 25% of tropical quality-assured (QA) Aqua-MODIS Level-2 data, representing over 99% of all contaminating cirrus found. This results in cold-biased SST retrievals using either split- (MODIS, AVHRR and VIIRS) or triple-window (AVHRR and VIIRS only) retrieval methods. SST retrievals are modeled based on operational algorithms using radiative transfer model simulations conducted with a hypothetical 1.5 km thick OTC cloud placed incrementally from 10.0 - 18.0 km above mean sea level for cloud optical depths (COD) between 0.0 - 0.3. Corresponding cold bias estimates for each sensor are estimated using relative Aqua-MODIS cloud contamination frequencies as a function of cloud top height and COD (assuming them consistent across each platform) integrated within each corresponding modeled cold bias matrix. Split-window relative OTC cold biases, for any single observation, range from 0.40° - 0.49° C for the three sensors, with an absolute (bulk mean) bias between 0.10° - 0.13° C. Triple-window retrievals are more resilient, ranging from 0.03° - 0.04° C relative and 0.11° - 0.16° C absolute. Cold biases are constant across the Pacific and Indian Ocean domains. Absolute bias is smaller over the Atlantic, but relative bias is larger due to different cloud properties indicating that this issue persists globally.
Iovan, Gianina; Stoleriu, Simona; Andrian, S; Dia, V; Căruntu, Irina Draga
2004-01-01
The recent improvement of adhesive materials should decrease the risk related to saliva contamination. The aim of this study was to evaluate the effect of saliva contamination on the microleakage within class V cavities restored with three different types of materials: conventional glass ionomer cement, composite resin and compomer. 30 human extracted teeth were randomly divided in 3 equal groups. In each group, class V cavities were prepared on both facial and lingual surfaces (but joint for glass ionomer cement and bevelled incisal margin for composite resin and compomer). The lingual cavities were contaminated with saliva prior to restoration, while the facial cavities were not contaminated, serving as control. After water storage for 24 hours, teeth were immersed in 1% methylene blue solution for 24 hours. The axial sections were viewed under an optical microscope and the extent of dye penetration along cervical, axial and incisal margins was measured in millimetres. Statistic analysis showed that under salivary contamination, microleakage increased along the cervical margin of restoration for all three tested materials. Saliva contamination resulted in microleakage within the axial wall of the cavity only for the conventional glass ionomer cement. These data indicate that composite resin and compomer used together with new adhesives seem to be less sensitive to saliva contamination compared to conventional materials. However, under saliva contamination, cervical microleakage cannot be completely prevented and proper isolation should still be mandatory.
Contamination control research activities for space optics in JAXA RANDD
NASA Astrophysics Data System (ADS)
Kimoto, Y.
2017-11-01
Contamination control research activities for space optics projects in JAXA R&D are described. More accurate contamination control techniques are requested because of intensified recent science mission requirements. One approach to control the contamination effects is analysis by software. JAXA has been developing a contamination analytical tool "J-SPICE" (Japanese Spacecraft Induced Contamination analysis software) as well as experiment facilities to improve the J-SPICE. A reflection model in J-SPICE has been experimentally verified and outgassing model data has been acquired by a facility. JAXA has developed a facility which could determine the influence of the contamination at a specific wavelength by combining a vacuum chamber with an I-R spectrometer and performed an experiment to inspect the effect of baking. Space material exposure experiment results reveal the actual thickness of the contamination layer in ISS orbit.
NASA Astrophysics Data System (ADS)
Medina, Marjorie B.
1999-01-01
Escherichia coli O157:H7 outbreaks were mostly due to consumption of undercooked contaminated beef which resulted in severe illness and several fatalities. Recalls of contaminated meat are costly for the meat industry. Our research attempts to understand the mechanisms of bacterial adhesion on animal carcass in order to eliminate or reduce pathogens in foods. We have reported the interactions of immobilized E. coli O157:H7 cells with extracellular matrix (ECM) components using a surface plasmon resonance biosensor (BIAcore). These studies showed that immobilized bacterial cells allowed the study of real-time binding interactions of bacterial surface with the ECM compounds, collagen I, laminin and fibronectin. Collagen I and laminin bound to the E. coli sensor surface with dissociation and association rates ranging from 106 to 109. Binding of collagen I and laminin mixture resulted in synergistic binding signals. An inhibition model was derived using collagen-laminin as the ligand which binds with E. coli sensor. A select group of naturally occurring food additives was evaluated by determining their effectivity in inhibiting the collagen-laminin binding to the bacterial sensor. Bound collagen-laminin was detached from the E. coli sensor surface with the aid of an organic acid. The biosensor results were verified with cell aggregation assays which were observed with optical and electron microscopes. These biosensor studies provided understanding of bacterial adhesion to connective tissue macromolecules. It also provided a model system for the rapid assessment of potential inhibitors that can be used in carcass treatment to inhibit or reduce bacterial contamination.
Frequency Analysis of the Laser Biospeckle
NASA Astrophysics Data System (ADS)
Enes, Adilson M.; Rabelo, Giovanni F.; Júnior, Roberto A. Braga; Dal Fabbro, Inácio M.; Vilela, Michelle
2008-04-01
This research work presents a study of beans seed tissue (Phaseolous vulgaris, L.) optical interactions with laser aiming to contribute to the development of biospeckle techniques applied to the recognition of bean seed tissue vitality when contaminated with fungi, by differentiating the generated frequency spectra. Biospeckle is an interference optic phenomenon occurring when a laser beam reaches a surface exhibiting some dynamic process, due to biological activities or purely physical changes. The technique involves image processing to distinguish each different active material contribution present in the seed, by means of the procedure known as "Moment of Inertia" and frequency analysis. Frequency analysis was carried by Fourier Transform preceded by module of convolution. A great challenge in this area is to identify the elements contribution to increase biospeckle activity, such as water, microorganisms, among others. This research work is recognized to provide an important step aiming to characterize the interaction of laser with biological material. Three groups of bean seeds were employed, one represented by healthy seeds and two groups composed of seeds contaminated with Aspergillus spp as well as with Fusarium spp fungi. The biospeckle analysis considered the activity and its frequency spectra. The seeds were each one exposed to laser in a random order. The results reveled differences in the average values of MI of the three seed groups. Also, some different harmonics in the biospeckle pattern in a same group as well as among seed groups had been noticed. These results allow confirming that it is possible to differentiate contaminated seeds from non-contaminated ones by means of biospeckle frequency analysis.
Mirkarimi, P B; Baker, S L; Montcalm, C; Folta, J A
2001-01-01
Extreme-ultraviolet lithography requires expensive multilayer-coated Zerodur or ULE optics with extremely tight figure and finish specifications. Therefore it is desirable to develop methods to recover these optics if they are coated with a nonoptimum multilayer films or in the event that the coating deteriorates over time owing to long-term exposure to radiation, corrosion, or surface contamination. We evaluate recoating, reactive-ion etching, and wet-chemical techniques for the recovery of Mo/Si and Mo/Be multilayer films upon Zerodur and ULE test optics. The recoating technique was successfully employed in the recovery of Mo/Si-coated optics but has the drawback of limited applicability. A chlorine-based reactive-ion etch process was successfully used to recover Mo/Si-coated optics, and a particularly large process window was observed when ULE optics were employed; this is an advantageous for large, curved optics. Dilute HCl wet-chemical techniques were developed and successfully demonstrated for the recovery of Mo/Be-coated optics as well as for Mo/Si-coated optics when Mo/Be release layers were employed; however, there are questions about the extendability of the HCl process to large optics and multiple coat and strip cycles. The technique of using carbon barrier layers to protect the optic during removal of Mo/Si in HF:HNO(3) also showed promise.
157-nm photomask handling and infrastructure: requirements and feasibility
NASA Astrophysics Data System (ADS)
Cullins, Jerry; Muzio, Edward G.
2001-09-01
Photomask handling is significantly more challenging for 157nm lithography than for any previous generation of optical lithography. First, pellicle materials are not currently available which meet all the requirements for 157nm lithography. Polymeric materials used at 193nm higher wavelengths are not transmissive at 157nm, while modified fused silica materials have adequate transmission and durability but have mechanical issues that need to be resolved. Second, the problem of molecular level contamination on the reticle must be solved. This contamination is due to the presence of oxygen, carbon dioxide, water, and other attenuators of 157nm radiation on the mask surface. It must be removed using something other than the lithography laser due to throughput and cost of ownership considerations. Third, there is the issue of removing attenuators from under the pellicle after a material becomes available. Both the ambient atmosphere and other introduced contaminants must be removed from the space between the reticle and pellicle after cleaning but before exposure. Forth are the potential issues for storage of reticles both during transportation from the mask shop and after it is in the wafer fab. Finally, the problems associated with operating in an optically inert dry environment must be addressed. The lack of moisture in the environment removes one of the key electrical discharge paths off of the reticle, which greatly increases the risk of electro-static damage to the pattern (ESD).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurya, Gulab Singh; Kumar, Rohit; Rai, Awadhesh Kumar, E-mail: awadheshkrai@rediffmail.com
2015-12-15
In the present manuscript, we demonstrate the design of an experimental setup for on-line laser induced breakdown spectroscopy (LIBS) analysis of impurity layers deposited on specimens of interest for fusion technology, namely, plasma-facing components (PFCs) of a tokamak. For investigation of impurities deposited on PFCs, LIBS spectra of a tokamak wall material like a stainless steel sample (SS304) have been recorded through contaminated and cleaned optical windows. To address the problem of identification of dust and gases present inside the tokamak, we have shown the capability of the apparatus to record LIBS spectra of gases. A new approach known asmore » “back collection method” to record LIBS spectra of impurities deposited on the inner surface of optical window is presented.« less
Surface Inspection Machine Infrared (SIMIR). Final CRADA report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, G.L.; Neu, J.T.; Beecroft, M.
This Cooperative Research and Development Agreement was a one year effort to make the surface inspection machine based on diffuse reflectance infrared spectroscopy (Surface Inspection Machine-Infrared, SIMIR), being developed by Surface Optics Corporation, perform to its highest potential as a practical, portable surface inspection machine. The design function of the SIMIR is to inspect metal surfaces for cleanliness (stains). The system is also capable of evaluating graphite-resin systems for cure and heat damage, and for measuring the effects of moisture exposure on lithium hydride, corrosion on uranium metal, and the constituents of and contamination on wood, paper, and fabrics. Overmore » the period of the CRADA, extensive experience with the use of the SIMIR for surface cleanliness measurements have been achieved through collaborations with NASA and the Army. The SIMIR was made available to the AMTEX CRADA for Finish on Yarn where it made a very significant contribution. The SIMIR was the foundation of a Forest Products CRADA that was developed over the time interval of this CRADA. Surface Optics Corporation and the SIMIR have been introduced to the chemical spectroscopy on-line analysis market and have made staffing additions and arrangements for international marketing of the SIMIR as an on-line surface inspection device. LMES has been introduced to a wide range of aerospace applications, the research and fabrication skills of Surface Optics Corporation, has gained extensive experience in the areas of surface cleanliness from collaborations with NASA and the Army, and an extensive introduction to the textile and forest products industries. The SIMIR, marketed as the SOC-400, has filled an important new technology need in the DOE-DP Enhanced Surveillance Program with instruments delivered to or on order by LMES, LANL, LLNL, and Pantex, where extensive collaborations are underway to implement and improve this technology.« less
Deaggregation, Modification, and Developing Applications for Detonation Nanodiamond
NASA Astrophysics Data System (ADS)
Mochalin, Vadym
2017-06-01
Nanodiamond powder (ND) is one of the most promising materials for advanced composites and biomedical applications. It is also a commercial precursor for carbon nanoonions - material for high power micrometer size supercapacitors and potentially, Li-ion batteries. ND is produced by detonation of explosives with negative oxygen balance in a closed chamber, where extremely high pressures and temperatures develop during detonation. ND consists of diamond particles of 5 nm diameter, combining fully accessible large surface and rich and tailorable surface chemistry. ND has unique properties including optical, electrical, thermal, and mechanical, and is biocompatible and non-toxic. Due to numerous surface functional groups, ND has catalytic and electrochemical activity. Several techniques have been proposed for ND deaggregation based on milling with costly ceramic microbeads, leaving difficult to remove contaminations in the resulting ND suspension. We have recently discovered a novel, green technique for ND deaggregation using sonication in aqueous sodium chloride slurry. Upon completion of the process sodium chloride can be easily washed out with water leaving behind no contaminants and yielding stable single-digit ND colloids. Modification and development of applications for ND in composites, drug delivery, biomedical imaging, etc., will be also discussed.
Skylab electronic technological advancements
NASA Technical Reports Server (NTRS)
Hornback, G. L.
1974-01-01
The present work describes three electronic devices designed for use in the Skylab airlock module: the teleprinter system, the quartz crystal microbalance contamination monitor (QCM), and the speaker. Design considerations, operation, characteristics, and system development are described for these systems, with accompanying diagrams, graphs, and photographs. The teleprinter is a thermal dot printer used to produce hard copy messages by electrically heating print elements in contact with heat-sensitive paper. The QCM was designed to estimate contamination buildup on optical surfaces of the earth resources experiment package. A vibrating quartz crystal is used as a microbalance relating deposited mass to shifts in the crystal's resonant frequency. Audio devices provide communication between crew members and between crew and STDN, and also provide audible alarms, via the caution and warning system, of out-of-limit-conditions.
RADIAL COMPUTED TOMOGRAPHY OF AIR CONTAMINANTS USING OPTICAL REMOTE SENSING
The paper describes the application of an optical remote-sensing (ORS) system to map air contaminants and locate fugitive emissions. Many ORD systems may utilize radial non-overlapping beam geometry and a computed tomography (CT) algorithm to map the concentrations in a plane. In...
Study of performance loss of Lyman alpha filters due to chemical contamination
NASA Astrophysics Data System (ADS)
Faye, Delphine; Zhang, Xueyan; Etcheto, Pierre; Auchère, Frédéric
2017-05-01
Observations in the UV and EUV allow many diagnostics of the outer layers of the stars and the Sun so that more and more space telescopes are developed to operate in this fundamental spectral range. However, absorption by residual contaminants coming from polymers outgassing causes critical effects such as loss of signal, spectral shifts, stray light… Thus, a cleanliness and contamination control plan has to be defined to mitigate the risk of damage of sensitive surfaces. In order to specify acceptable cleanliness levels, it is paramount to improve our knowledge and understanding of contamination effects, especially in the UV/EUV range. Therefore, an experimental study has been carried out in collaboration between CNES and IAS, in the frame of the development of the Extreme UV Imager suite for the ESA Solar Orbiter mission; this instrument consists of two High Resolution Imagers and one Full Sun Imager designed for narrow pass-band EUV imaging of the solar corona, and thus very sensitive to contamination. Here, we describe recent results of performance loss measured on representative optical samples. Six narrow pass-band filters, with a multilayer coating designed to select the solar Lyman Alpha emission ray, were contaminated with different amounts of typical chemical species. The transmittance spectra were measured between 100 and 200 nm under high vacuum on the SOLEIL synchrotron beam line. They were compared before and after contamination, and also after a long exposure of the contaminated area to EUV-visible radiations.
Space environmental effects on spacecraft: LEO materials selection guide, part 1
NASA Astrophysics Data System (ADS)
Silverman, Edward M.
1995-08-01
This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 1 covers spacecraft design considerations for the space environment; advanced composites; polymers; adhesives; metals; ceramics; protective coatings; and lubricants, greases, and seals.
Space environmental effects on spacecraft: LEO materials selection guide, part 1
NASA Technical Reports Server (NTRS)
Silverman, Edward M.
1995-01-01
This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 1 covers spacecraft design considerations for the space environment; advanced composites; polymers; adhesives; metals; ceramics; protective coatings; and lubricants, greases, and seals.
Retrieval and Validation of Aerosol Optical Depth by using the GF-1 Remote Sensing Data
NASA Astrophysics Data System (ADS)
Zhang, L.; Xu, S.; Wang, L.; Cai, K.; Ge, Q.
2017-05-01
Based on the characteristics of GF-1 remote sensing data, the method and data processing procedure to retrieve the Aerosol Optical Depth (AOD) are developed in this study. The surface contribution over dense vegetation and urban bright target areas are respectively removed by using the dark target and deep blue algorithms. Our method is applied for the three serious polluted Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions. The retrieved AOD are validated by ground-based AERONET data from Beijing, Hangzhou, Hong Kong sites. Our results show that, 1) the heavy aerosol loadings are usually distributed in high industrial emission and dense populated cities, with the AOD value near 1. 2) There is a good agreement between satellite-retrievals and in-site observations, with the coefficient factors of 0.71 (BTH), 0.55 (YRD) and 0.54(PRD). 3) The GF-1 retrieval uncertainties are mainly from the impact of cloud contamination, high surface reflectance and assumed aerosol model.
ArF halftone PSM cleaning process optimization for next-generation lithography
NASA Astrophysics Data System (ADS)
Son, Yong-Seok; Jeong, Seong-Ho; Kim, Jeong-Bae; Kim, Hong-Seok
2000-07-01
ArF lithography which is expected for the next generation optical lithography is adapted for 0.13 micrometers design-rule and beyond. ArF half-tone phase shift mask (HT PSM) will be applied as 1st generation of ArF lithography. Also ArF PSM cleaning demands by means of tighter controls related to phase angle, transmittance and contamination on the masks. Phase angle on ArF HT PSM should be controlled within at least +/- 3 degree and transmittance controlled within at least +/- 3 percent after cleaning process and pelliclization. In the cleaning process of HT PSM, requires not only the remove the particle on mask, but also control to half-tone material for metamorphosis. Contamination defects on the Qz of half tone type PSM is not easy to remove on the photomask surface. New technology and methods of cleaning will be developed in near future, but we try to get out for limit contamination on the mask, without variation of phase angle and transmittance after cleaning process.
Surface cleanliness measurement procedure
Schroder, Mark Stewart; Woodmansee, Donald Ernest; Beadie, Douglas Frank
2002-01-01
A procedure and tools for quantifying surface cleanliness are described. Cleanliness of a target surface is quantified by wiping a prescribed area of the surface with a flexible, bright white cloth swatch, preferably mounted on a special tool. The cloth picks up a substantial amount of any particulate surface contamination. The amount of contamination is determined by measuring the reflectivity loss of the cloth before and after wiping on the contaminated system and comparing that loss to a previous calibration with similar contamination. In the alternative, a visual comparison of the contaminated cloth to a contamination key provides an indication of the surface cleanliness.
Tools for measuring surface cleanliness
Schroder, Mark Stewart; Woodmansee, Donald Ernest; Beadie, Douglas Frank
2002-01-01
A procedure and tools for quantifying surface cleanliness are described. Cleanliness of a target surface is quantified by wiping a prescribed area of the surface with a flexible, bright white cloth swatch, preferably mounted on a special tool. The cloth picks up a substantial amount of any particulate surface contamination. The amount of contamination is determined by measuring the reflectivity loss of the cloth before and after wiping on the contaminated system and comparing that loss to a previous calibration with similar contamination. In the alternative, a visual comparison of the contaminated cloth to a contamination key provides an indication of the surface cleanliness.
Retrievals of water quality parameters from satellite measurements over optically shallow waters have been problematic due to bottom contamination of the signals. As a result, large errors are associated with derived water column properties. These deficiencies greatly reduce the ...
NASA Astrophysics Data System (ADS)
Sentis, M. L.; Delaporte, Ph; Marine, W.; Uteza, O.
2000-06-01
The laser ablation performed with an automated excimer XeCl laser unit is used for large surface cleaning. The study focuses on metal surfaces that are oxidised and are representative of contaminated surfaces with radionuclides in a context of nuclear power plant maintenance. The unit contains an XeCl laser, the beam delivery system, the particle collection cell, and the system for real-time control of cleaning processes. The interaction of laser radiation with a surface is considered, in particular, the surface damage caused by cleaning radiation. The beam delivery system consists of an optical fibre bundle of 5 m long and allows delivering 150 W at 308 nm for laser surface cleaning. The cleaning process is controlled by analysing in real time the plasma electric field evolution. The system permits the cleaning of 2 to 6 m2 h-1 of oxides with only slight substrate modifications.
Black Molecular Adsorber Coatings for Spaceflight Applications
NASA Technical Reports Server (NTRS)
Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.
2014-01-01
The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.
Black molecular adsorber coatings for spaceflight applications
NASA Astrophysics Data System (ADS)
Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.
2014-09-01
The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.
Fluorescence Imaging Reveals Surface Contamination
NASA Technical Reports Server (NTRS)
Schirato, Richard; Polichar, Raulf
1992-01-01
In technique to detect surface contamination, object inspected illuminated by ultraviolet light to make contaminants fluoresce; low-light-level video camera views fluorescence. Image-processing techniques quantify distribution of contaminants. If fluorescence of material expected to contaminate surface is not intense, tagged with low concentration of dye.
Hammond, G. Denise; Vojta, Adam L.; Grant, Sheila A.; Hunt, Heather K.
2016-01-01
The creation of label-free biosensors capable of accurately detecting trace contaminants, particularly small organic molecules, is of significant interest for applications in environmental monitoring. This is achieved by pairing a high-sensitivity signal transducer with a biorecognition element that imparts selectivity towards the compound of interest. However, many environmental pollutants do not have corresponding biorecognition elements. Fortunately, biomimetic chemistries, such as molecular imprinting, allow for the design of artificial receptors with very high selectivity for the target. Here, we perform a proof-of-concept study to show how artificial receptors may be created from inorganic silanes using the molecular imprinting technique and paired with high-sensitivity transducers without loss of device performance. Silica microsphere Whispering Gallery Mode optical microresonators are coated with a silica thin film templated by a small fluorescent dye, fluorescein isothiocyanate, which serves as our model target. Oxygen plasma degradation and solvent extraction of the template are compared. Extracted optical devices are interacted with the template molecule to confirm successful sorption of the template. Surface characterization is accomplished via fluorescence and optical microscopy, ellipsometry, optical profilometry, and contact angle measurements. The quality factors of the devices are measured to evaluate the impact of the coating on device sensitivity. The resulting devices show uniform surface coating with no microstructural damage with Q factors above 106. This is the first report demonstrating the integration of these devices with molecular imprinting techniques, and could lead to new routes to biosensor creation for environmental monitoring. PMID:27314397
Durability Issues for the Protection of Materials from Atomic Oxygen Attack in Low Earth Orbit
NASA Astrophysics Data System (ADS)
Banks, B. A.; Lenczewski, M.; Demko, R.
2002-01-01
Low Earth orbital atomic oxygen is capable of eroding most polymeric materials typically used on spacecraft. Solar array blankets, thermal control polymers, and carbon fiber matrix composites are readily oxidized to become thinner and less capable of supporting the loads imposed upon them. Protective coatings have been developed that are or become durable to atomic oxygen to prevent oxidative erosion of the underlying polymers. However, the details of the chemistry, surface roughness and coating configuration can play a significant role as to whether or not the coating provides long duration atomic oxygen protection. Identical coatings on different surface roughness surfaces can produce drastically have drastically different durability results. Poor choice of protective coatings or self-protecting materials can also result in contamination of surrounding spacecraft surfaces. Such contamination can deposit on optical or thermal control surfaces resulting in changes in solar absorbtance, transmittance and reflectance of surfaces. Examples of successful and unsuccessful techniques used for atomic oxygen durability or protection will be presented based on actual results from low Earth orbital spacecraft. Investigations of the causes of undesired consequences or protective coating failures will be presented including ground laboratory experimental analysis as well as computational modeling. Atomic oxygen protective coating results from various low Earth orbital missions including the Long Duration Exposure Facility, the European Retrievable Carrier, Mir, and International Space Station will be presented to illustrate examples of protection successes as well as failures including analyses of the causes for the differences and proposed solutions.
The effect of contaminant on skid resistance of pavement surface
NASA Astrophysics Data System (ADS)
Lubis, A. S.; Muis, Z. A.; Gultom, E. M.
2018-03-01
Skid resistance of the pavement surface is the force generated by the movement of the wheels of the vehicle on the surface of the pavement. Contaminants are materials that cover the surface of the pavement affecting the skid resistance of the pavement surface. The contaminant acts as a coating interface or direct contact of the pavement surface with the wheels of the vehicle which can cause adverse effects, such as the decreasing value of skid resistance of the pavement surface. This study aims to analyze the effect of some types of contaminants on skid resistance of pavement surfaces. The contaminants that used in this study were water, sand, salt, and lubricating oil. The study was conducted by direct testing on two types of pavement: flexible pavement and rigid pavement. The measurements of the skid resistance were made using the British Pendulum Tester with British Pendulum Number for two conditions: before and after the pavement surface was covered with contaminants. The results showed that there was a contaminant effect on skid resistance of pavement surface. Skid resistance of pavement surfaces decreased after the contaminants were covered in water, sand, salt, and lubricant by 20.1%, 22.8%, 37.1% and 50.5% respectively.
Stormwater plume detection by MODIS imagery in the southern California coastal ocean
Nezlin, N.P.; DiGiacomo, P.M.; Diehl, D.W.; Jones, B.H.; Johnson, S.C.; Mengel, M.J.; Reifel, K.M.; Warrick, J.A.; Wang, M.
2008-01-01
Stormwater plumes in the southern California coastal ocean were detected by MODIS-Aqua satellite imagery and compared to ship-based data on surface salinity and fecal indicator bacterial (FIB) counts collected during the Bight'03 Regional Water Quality Program surveys in February-March of 2004 and 2005. MODIS imagery was processed using a combined near-infrared/shortwave-infrared (NIR-SWIR) atmospheric correction method, which substantially improved normalized water-leaving radiation (nLw) optical spectra in coastal waters with high turbidity. Plumes were detected using a minimum-distance supervised classification method based on nLw spectra averaged within the training areas, defined as circular zones of 1.5-5.0-km radii around field stations with a surface salinity of S 33.0 ('ocean'). The plume optical signatures (i.e., the nLw differences between 'plume' and 'ocean') were most evident during the first 2 days after the rainstorms. To assess the accuracy of plume detection, stations were classified into 'plume' and 'ocean' using two criteria: (1) 'plume' included the stations with salinity below a certain threshold estimated from the maximum accuracy of plume detection; and (2) FIB counts in 'plume' exceeded the California State Water Board standards. The salinity threshold between 'plume' and 'ocean' was estimated as 32.2. The total accuracy of plume detection in terms of surface salinity was not high (68% on average), seemingly because of imperfect correlation between plume salinity and ocean color. The accuracy of plume detection in terms of FIB exceedances was even lower (64% on average), resulting from low correlation between ocean color and bacterial contamination. Nevertheless, satellite imagery was shown to be a useful tool for the estimation of the extent of potentially polluted plumes, which was hardly achievable by direct sampling methods (in particular, because the grids of ship-based stations covered only small parts of the plumes detected via synoptic MODIS imagery). In most southern California coastal areas, the zones of bacterial contamination were much smaller than the areas of turbid plumes; an exception was the plume of the Tijuana River, where the zone of bacterial contamination was comparable with the zone of plume detected by ocean color. ?? 2008 Elsevier Ltd.
Stormwater plume detection by MODIS imagery in the southern California coastal ocean
NASA Astrophysics Data System (ADS)
Nezlin, Nikolay P.; DiGiacomo, Paul M.; Diehl, Dario W.; Jones, Burton H.; Johnson, Scott C.; Mengel, Michael J.; Reifel, Kristen M.; Warrick, Jonathan A.; Wang, Menghua
2008-10-01
Stormwater plumes in the southern California coastal ocean were detected by MODIS-Aqua satellite imagery and compared to ship-based data on surface salinity and fecal indicator bacterial (FIB) counts collected during the Bight'03 Regional Water Quality Program surveys in February-March of 2004 and 2005. MODIS imagery was processed using a combined near-infrared/shortwave-infrared (NIR-SWIR) atmospheric correction method, which substantially improved normalized water-leaving radiation (nLw) optical spectra in coastal waters with high turbidity. Plumes were detected using a minimum-distance supervised classification method based on nLw spectra averaged within the training areas, defined as circular zones of 1.5-5.0-km radii around field stations with a surface salinity of S < 32.0 ("plume") and S > 33.0 ("ocean"). The plume optical signatures (i.e., the nLw differences between "plume" and "ocean") were most evident during the first 2 days after the rainstorms. To assess the accuracy of plume detection, stations were classified into "plume" and "ocean" using two criteria: (1) "plume" included the stations with salinity below a certain threshold estimated from the maximum accuracy of plume detection; and (2) FIB counts in "plume" exceeded the California State Water Board standards. The salinity threshold between "plume" and "ocean" was estimated as 32.2. The total accuracy of plume detection in terms of surface salinity was not high (68% on average), seemingly because of imperfect correlation between plume salinity and ocean color. The accuracy of plume detection in terms of FIB exceedances was even lower (64% on average), resulting from low correlation between ocean color and bacterial contamination. Nevertheless, satellite imagery was shown to be a useful tool for the estimation of the extent of potentially polluted plumes, which was hardly achievable by direct sampling methods (in particular, because the grids of ship-based stations covered only small parts of the plumes detected via synoptic MODIS imagery). In most southern California coastal areas, the zones of bacterial contamination were much smaller than the areas of turbid plumes; an exception was the plume of the Tijuana River, where the zone of bacterial contamination was comparable with the zone of plume detected by ocean color.
Surface contamination on LDEF exposed materials
NASA Technical Reports Server (NTRS)
Hemminger, Carol S.
1992-01-01
X-ray photoelectron spectroscopy (XPS) has been used to study the surface composition and chemistry of Long Duration Exposure Facility (LDEF) exposed materials including silvered Teflon (Ag/FEP), Kapton, S13GLO paint, quartz crystal monitors (QCM's), carbon fiber/organic matrix composites, and carbon fiber/Al Alloy composites. In each set of samples, silicones were the major contributors to the molecular film accumulated on the LDEF exposed surfaces. All surfaces analyzed have been contaminated with Si, O, and C; most have low levels (less than 1 atom percent) of N, S, and F. Occasionally observed contaminants included Cl, Na, K, P, and various metals. Orange/brown discoloration observed near vent slots in some Ag/FEP blankets were higher in carbon, sulfur, and nitrogen relative to other contamination types. The source of contamination has not been identified, but amine/amide functionalities were detected. It is probable that this same source of contamination account for the low levels of sulfur and nitrogen observed on most LDEF exposed surfaces. XPS, which probes 50 to 100 A in depth, detected the major sample components underneath the contaminant film in every analysis. This probably indicates that the contaminant overlayer is patchy, with significant areas covered by less that 100 A of molecular film. Energy dispersive x-ray spectroscopy (EDS) of LDEF exposed surfaces during secondary electron microscopy (SEM) of the samples confirmed contamination of the surfaces with Si and O. In general, particulates were not observed to develop from the contaminant overlayer on the exposed LDEF material surfaces. However, many SiO2 submicron particles were seen on a masked edge of an Ag/FEP blanket. In some cases such as the carbon fiber/organic matrix composites, interpretation of the contamination data was hindered by the lack of good laboratory controls. Examination of laboratory controls for the carbon fiber/Al alloy composites showed that preflight contamination was the most significant factor for all the contaminants generally detected at less than 1 atom percent, or detected only occasionally (i.e., all but Si, O, and C). Flight control surfaces, including sample backsides not exposed to space radiation or atomic oxygen flux, have accumulated some contamination on flight (compared to laboratory controls), but experimentally, the LDEF exposed surface contamination levels are generally higher for the contaminants Si and O. For most materials analyzed, Si contamination levels were higher on the leading edge surfaces than on the trailing edge surfaces. This was true even for the composite samples where considerable atomic oxygen erosion of the leading edge surfaces was observed by SEM. It is probable that the return flux associated with atmospheric backscatter resulted in enhanced deposition of silicones and other contaminants on the leading edge flight surfaces relative to the trailing edge. Although the Si concentration data suggested greater on-flight deposition of contaminants on the leading edge surfaces, the XPS analyses did not conclusively show different relative total thicknesses of flight deposited contamination for leading and trailing edge surfaces. It is possible that atomic oxygen reactions on the leading edge resulted in greater volatilization of the carbon component of the deposited silicones, effectively 'thinning' the leading edge deposited overlayer. Unlike other materials, exposed polymers such as Kapton and FEP-type Teflon had very low contamination on the leading edge surfaces. SEM evidence showed that undercutting of the contaminant overlayer and damaged polymer layers occurred during atomic oxygen erosion, which would enhance loss of material from the exposed surface.
Novel Laser Ablation Technology for Surface Decontamination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Chung H.
2004-06-01
Laser ablation for surface cleaning has been pursued for the removal of paint on airplanes. It has also been pursued for the cleaning of semiconductor surfaces. However, all these approaches have been pursued by laser ablation in air. For highly contaminated surface, laser ablation in air can easily cause secondary contamination. Thus it is not suitable to apply to achieve surface decontamination for DOE facilities since many of these facilities have radioactive contaminants on the surface. Any secondary contamination will be a grave concern. The objective of this project is to develop a novel technology for laser ablation in liquidmore » for surface decontamination. It aims to achieve more efficient surface decontamination without secondary contamination and to evaluate the economic feasibility for large scale surface decontamination with laser ablation in liquid. When laser ablation is pursued in the solution, all the desorbed contaminants will be confined in liquid. The contaminants can be precipitated and subsequently contained in a small volume for disposal. It can reduce the risk of the decontamination workers. It can also reduce the volume of contaminants dramatically.« less
NASA Technical Reports Server (NTRS)
Donovan, Terence; Johnson, Linda; Klemm, Karl; Scheri, Rick; Bennett, Jean; Erickson, Jon; Dibrozolo, Filippo
1995-01-01
Two mirror designs developed for space applications were flown along with a standard mid-infrared design on the leading and trailing edges of the Long Duration Exposure Facility (LDEF). Preliminary observations of induced changes in optical performance of ZnS-coated mirrors and impact-related microstructural and microchemical effects are described in the proceedings of the First LDEF Post-Retrieval Symposium. In this paper, effects of the induced environment and meteoroid/debris impacts on mirror performance are described in more detail. Also, an analysis of reflectance spectra using the results of Auger and secondary ion mass spectroscopy (SIMS) profiling measurements are used to identify an optical-degradation mechanism for the ZnS-coated mirrors. Structural damage associated with a high-velocity impact on a (Si/Al2O3)-coated mirror was imaged optically and with scanning electron and atomic force microscopy (SEM and AFM). Scanning Auger and SIMS analysis provided chemical mapping of selected impact sites. The impact data suggest design and fabrication modifications for obtaining improved mechanical performance using a design variation identified in preflight laboratory simulations. Auger surface profile and SIMS imaging data verified the conclusion that secondary impacts are the source of contamination associated with the dendrites grown on the leading-edge ZnS-coated test samples. It was also found that dendrites can be grown in the laboratory by irradiating contaminated sites on a trailing-edge ZnS-coated sample with a rastered electron beam. These results suggest a mechanism for dendrite growth.
Moreno Fernández, H; Rogler, D; Sauthier, G; Thomasset, M; Dietsch, R; Carlino, V; Pellegrin, E
2018-01-22
Boron carbide (B 4 C) is one of the few materials that is expected to be most resilient with respect to the extremely high brilliance of the photon beam generated by free electron lasers (FELs) and is thus of considerable interest for optical applications in this field. However, as in the case of many other optics operated at light source facilities, B 4 C-coated optics are subject to ubiquitous carbon contaminations. Carbon contaminations represent a serious issue for the operation of FEL beamlines due to severe reduction of photon flux, beam coherence, creation of destructive interference, and scattering losses. A variety of B 4 C cleaning technologies were developed at different laboratories with varying success. We present a study regarding the low-pressure RF plasma cleaning of carbon contaminated B 4 C test samples via inductively coupled O 2 /Ar, H 2 /Ar, and pure O 2 RF plasma produced following previous studies using the same ibss GV10x downstream plasma source. Results regarding the chemistry, morphology as well as other aspects of the B 4 C optical coating before and after the plasma cleaning are reported. We conclude that among the above plasma processes only plasma based on pure O 2 feedstock gas exhibits the required chemical selectivity for maintaining the integrity of the B 4 C optical coatings.
NASA Technical Reports Server (NTRS)
Oudrari, Hassan; Schwarting, Thomas; Chiang, Kwo-Fu; McIntire, Jeff; Pan, Chunhui; Xiong, Xiaoxiong; Butler, James
2010-01-01
Electronic and optical crosstalk are radiometric challenges that often exist in the focal plane design in many sensors Such as MODIS. A methodology is described to assess the impact due to optical and electronic crosstalk on the measured radiance, and thereafter, the retrieval of geophysical products using MODIS Level I data sets. Based on a postulated set of electronic and optical crosstalk coefficients, and a set of MODIS scenes, we have simulated a system signal contamination on any detector on a focal plane when another detector on that focal plane is stimulated with a geophysical signal. The original MODIS scenes and the crosstalk impacted scenes can be used with validated geophysical algorithms to derive the final data products. Products contaminated with crosstalk are then compared to those without contamination to assess the impact magnitude and location, and will allow us to separate Out-Of-Band (OOB) leaks from hand-to-hand optical crosstalk, and identify potential failures to meet climate research requirements.
Adherent nanoparticles-mediated micro- and nanobubble nucleation
NASA Astrophysics Data System (ADS)
Chan, Chon U.; Chen, Long Quan; Lippert, Alexander; Arora, Manish; Ohl, Claus-Dieter
2014-11-01
Surface nanobubbles are commonly nucleated through water-ethanol-water exchange. It is believed that the higher gas solubility in ethanol and exothermic mixing leads to a supersaturation of gas in water. However details of the nucleation dynamic are still unknown. Here we apply the exchange process onto a glass surface deposited with nanoparticles and monitor the dynamics optically at video frame rates. During exchange bubbles of a few micron in diameter nucleate at the sites of nanoparticles. These microbubbles eventually dissolve in ethanol but are stable in water. This agrees with the nucleation process observed for surface nanobubbles. Also we find a reduction of surface attached nanobubbles near the particles, which might be due to gas uptake from the microbubble growth. Finally, high speed recordings reveal stick-slip motion of the triple contact line during the growth process. We will discuss possibilities of utilizing the findings for contamination detection and ultrasonic cleaning.
Exploring the Radiative Effect and Climate Impact of Contaminated Contrails
NASA Astrophysics Data System (ADS)
Yi, B.; Yang, P.; Minnis, P.; Duda, D. P.
2015-12-01
As an impact of human aviation activities, contrails have drawn a great deal of attention. There have been numerous investigations into the contrail properties, radiative effects, and climate impact. However, very little effort has been focused on the impact of contaminated contrails. Generated by the combustion process within the aircraft engine, the aerosols and exhaust gases frequently influence contrail formation. Contrail ice crystals contaminated by soot particles have been found to exhibit dramatically different light scattering properties from those of pristine crystals. In this study, we employ state-of-the-art light scattering computational capabilities to calculate the single-scattering properties of soot-contaminated contrails. The contaminated contrail particle is assumed to be a hexagonal ice column containing several soot particles. The invariant imbedding T-matrix method and the Ray-by-Ray geometry optics method are combined to construct a simplified yet novel set of contaminated contrail optical properties. The bulk optical properties are calculated based on the data set and are parameterized for use in the Community Atmospheric Model. Using global contrail retrievals from satellite remote sensing observations in 2006 and 2012, simulations are conducted using the general circulation model to analyze contaminated contrail radiative effects as well as their climatic sensitivities. Our results show that the contaminated contrail is significantly more absorbing than pristine contrail in the shortwave spectrum. As a result, much stronger contrail radiative impact and climate feedback are found. Several sensitivity studies are also implemented to quantify the effect of contrail contamination.
The best of both worlds: automated CMP polishing of channel-cut monochromators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasman, Elina; Erdmann, Mark; Stoupin, Stanislav
2015-09-03
The use of a channel-cut monochromator is the most straightforward method to ensure that the two reflection surfaces maintain alignment between crystallographic planes without the need for complicated alignment mechanisms. Three basic characteristics that affect monochromator performance are: subsurface damage which contaminates spectral purity; surface roughness which reduces efficiency due to scattering; and surface figure error which imparts intensity structure and coherence distortion in the beam. Standard chemical-mechanical polishing processes and equipment are used when the diffracting surface is easily accessible, such as for single-bounce monochromators. Due to the inaccessibly of the surfaces inside a channel-cut monochromator for polishing, thesemore » optics are generally wet-etched for their final processing. This results in minimal subsurface damage, but very poor roughness and figure error. A new CMP channel polishing instrument design is presented which allows the internal diffracting surface quality of channel-cut crystals to approach that of conventional single-bounce monochromators« less
Results of examination of the returned Surveyor 3 samples for particulate impacts
NASA Technical Reports Server (NTRS)
Cour-Palais, B. G.; Flaherty, R. E.; High, R. W.; Kessler, D. J.; Mckay, D. S.; Zook, H. A.
1972-01-01
The television housing and a section of the strut of the radar altimeter and Doppler velocity sensor were examined optically and with a scanning electron microscope for particulate impacts. The white surface of the camera was discolored during the months the Surveyor 3 was on the moon; however, most of the craters must have occurred as a result of lunar dust sandblasted by the LM exhaust. The polished section of the strut exhibits contamination which appears brown and seems to be partially composed of crystals. Electron microscopic analysis of the strut section indicated no craters of hypervelocity impact origin, confirmed pitting density results of the optical scans, and indicated that material in the craters is of lunar origin. No meteorite impacts larger than 25 microns were detected on the tubing section.
Bioinspired Surface Treatments for Improved Decontamination: Commercial Products
2017-07-28
simulants paraoxon, methyl salicylate, dimethyl methylphosphate, and diisopropyl fluorophosphates following treatment of contaminated surfaces with a...treatment of contaminated surfaces with a soapy water solution is reported along with droplet diffusion on the surfaces and wetting angles...Defense Program (CBDP) seeks to provide protection of forces in a contaminated environment including contamination avoidance, individual protection
Harvesting contaminants from liquid
Simpson, John T.; Hunter, Scott R.
2016-05-31
Disclosed are examples of apparatuses for evaporative purification of a contaminated liquid. In each example, there is a vessel for storing the contaminated fluid. The vessel includes a surface coated with a layer of superhydrophobic material and the surface is at least partially in contact with the contaminated liquid. The contaminants do not adhere to the surface as the purified liquid evaporates, thus allowing the contaminants to be harvested.
NASA Astrophysics Data System (ADS)
Van Erps, Jurgen; Hendrickx, Nina; Bosman, Erwin; Van Daele, Peter; Debaes, Christof; Thienpont, Hugo
2010-05-01
Optical interconnections have gained interest over the last years, and several approaches have been presented for the integration of optics to the printed circuit board (PCB)-level. The use of a polymer optical waveguide layer appears to be the prevailing solution to route optical signals on the PCB. The most difficult issue is the efficient out-of-plane coupling of light between surface-normal optoelectronic devices (lasers and photodetectors) and PCB-integrated waveguides. The most common approach consists of using 45° reflecting micro-mirrors. The micro-mirror performance significantly affects the total insertion loss of the optical interconnect system, and hence has a crucial role on the system's bit error rate (BER) characteristics. Several technologies have been proposed for the fabrication of 45° reflector micro-mirrors directly into waveguides. Alternatively, it is possible to make use of discrete coupling components which have to be inserted into cavities formed in the PCB-integrated waveguides. In this paper, we present a hybrid approach where we try to combine the advantages of integrated and discrete coupling mirrors, i.e. low coupling loss and maintenance of the planararity of the top surface of the optical layer, allowing the lamination of additional layers or the mounting of optoelectronic devices. The micro-mirror inserts are designed through non-sequential ray tracing simulations, including a tolerance analysis, and subsequently prototyped with Deep Proton Writing (DPW). The DPW prototypes are compatible with mass fabrication at low cost in a wide variety of high-tech plastics. The DPW micro-mirror insert is metallized and inserted in a laser ablated cavity in the optical layer and in a next step covered with cladding material. Surface roughness measurements confirm the excellent quality of the mirror facet. An average mirror loss of 0.35-dB was measured in a receiver scheme, which is the most stringent configuration. Finally, the configuration is robust, since the mirror is embedded and thus protected from environmental contamination, like dust or moisture adsorption, which makes them interesting candidates for out-of-plane coupling in high-end boards.
Optical instrument development for detection of pesticide residue in apple surface
NASA Astrophysics Data System (ADS)
Dhakal, Sagar; Li, Yongyu; Peng, Yankun; Chao, Kuanglin; Qin, Jianwei
2013-05-01
Apple is the world largest produced and consumed fruit item. At the same time, apple ranks number one among the fruit item contaminated with pesticide. This research focuses on development of laboratory based self-developed software and hardware for detection of commercially available organophosphorous pesticide (chlorpyrifos) in apple surface. A laser light source of 785nm was used to excite the sample, and Raman spectroscopy assembled with CCD camera was used for optical data acquisition. A hardware system was designed and fabricated to clamp and rotate apple sample of varying size maintaining constant working distance between optical probe and sample surface. Graphical Users Interface (GUI) based on LabView platform was developed to control the hardware system. The GUI was used to control the Raman system including CCD temperature, exposure time, track height and track centre, data acquisition, data processing and result prediction. Different concentrations of commercially available 48% chlorpyrifos pesticide solutions were prepared and gently placed in apple surface and dried. Raman spectral data at different points from same apple along the equatorial region were then acquired. The results show that prominent peaks at 341cm-1, 632cm-1 and 680 cm-1 represent the pesticide residue. The laboratory based experiment was able to detect pesticide solution of 20ppm within 3 seconds. A linear relation between Raman intensity and pesticide residue was developed with accuracy of 97.8%. The result of the research is promising and thus is a milestone for developing industrially desired real time, non-invasive pesticide residue detection technology in future.
Subsurface defects of fused silica optics and laser induced damage at 351 nm.
Hongjie, Liu; Jin, Huang; Fengrui, Wang; Xinda, Zhou; Xin, Ye; Xiaoyan, Zhou; Laixi, Sun; Xiaodong, Jiang; Zhan, Sui; Wanguo, Zheng
2013-05-20
Many kinds of subsurface defects are always present together in the subsurface of fused silica optics. It is imperfect that only one kind of defects is isolated to investigate its impact on laser damage. Therefore it is necessary to investigate the impact of subsurface defects on laser induced damage of fused silica optics with a comprehensive vision. In this work, we choose the fused silica samples manufactured by different vendors to characterize subsurface defects and measure laser induced damage. Contamination defects, subsurface damage (SSD), optical-thermal absorption and hardness of fused silica surface are characterized with time-of-flight secondary ion mass spectrometry (TOF-SIMS), fluorescence microscopy, photo-thermal common-path interferometer and fully automatic micro-hardness tester respectively. Laser induced damage threshold and damage density are measured by 351 nm nanosecond pulse laser. The correlations existing between defects and laser induced damage are analyzed. The results show that Cerium element and SSD both have a good correlation with laser-induced damage thresholds and damage density. Research results evaluate process technology of fused silica optics in China at present. Furthermore, the results can provide technique support for improving laser induced damage performance of fused silica.
Sertsu, M G; Nardello, M; Giglia, A; Corso, A J; Maurizio, C; Juschkin, L; Nicolosi, P
2015-12-10
Accurate measurements of optical properties of multilayer (ML) mirrors and chemical compositions of interdiffusion layers are particularly challenging to date. In this work, an innovative and nondestructive experimental characterization method for multilayers is discussed. The method is based on extreme ultraviolet (EUV) reflectivity measurements performed on a wide grazing incidence angular range at an energy near the absorption resonance edge of low-Z elements in the ML components. This experimental method combined with the underlying physical phenomenon of abrupt changes of optical constants near EUV resonance edges enables us to characterize optical and structural properties of multilayers with high sensitivity. A major advantage of the method is to perform detailed quantitative analysis of buried interfaces of multilayer structures in a nondestructive and nonimaging setup. Coatings of Si/Mo multilayers on a Si substrate with period d=16.4 nm, number of bilayers N=25, and different capping structures are investigated. Stoichiometric compositions of Si-on-Mo and Mo-on-Si interface diffusion layers are derived. Effects of surface oxidation reactions and carbon contaminations on the optical constants of capping layers and the impact of neighboring atoms' interactions on optical responses of Si and Mo layers are discussed.
Mitigation of radiation induced surface contamination
Klebanoff, Leonard E.; Stulen, Richard H.
2003-01-01
A process for mitigating or eliminating contamination and/or degradation of surfaces having common, adventitious atmospheric contaminants adsorbed thereon and exposed to radiation. A gas or a mixture of gases is introduced into the environment of a surface(s) to be protected. The choice of the gaseous species to be introduced (typically a hydrocarbon gas, water vapor, or oxygen or mixtures thereof) is dependent upon the contaminant as well as the ability of the gaseous species to bind to the surface to be protected. When the surface and associated bound species are exposed to radiation reactive species are formed that react with surface contaminants such as carbon or oxide films to form volatile products (e.g., CO, CO.sub.2) which desorb from the surface.
Laser cleaning of steel for paint removal
NASA Astrophysics Data System (ADS)
Chen, G. X.; Kwee, T. J.; Tan, K. P.; Choo, Y. S.; Hong, M. H.
2010-11-01
Paint removal is an important part of steel processing for marine and offshore engineering. For centuries, a blasting techniques have been widely used for this surface preparation purpose. But conventional blasting always has intrinsic problems, such as noise, explosion risk, contaminant particles, vibration, and dust. In addition, processing wastes often cause environmental problems. In recent years, laser cleaning has attracted much research effort for its significant advantages, such as precise treatment, and high selectivity and flexibility in comparison with conventional cleaning techniques. In the present study, we use this environmentally friendly technique to overcome the problems of conventional blasting. Processed samples are examined with optical microscopes and other surface characterization tools. Experimental results show that laser cleaning can be a good alternative candidate to conventional blasting.
Surface flow visualization using indicators
NASA Technical Reports Server (NTRS)
Crowder, J. P.
1982-01-01
Surface flow visualization using indicators in the cryogenic wind tunnel which requires a fresh look at materials and procedures to accommodate the new test conditions is described. Potential liquid and gaseous indicators are identified. The particular materials illustrate the various requirements an indicator must fulfill. The indicator must respond properly to the flow phenomenon of interest and must be observable. Boundary layer transition is the most important phenomenon for which flow visualization indicators may be employed. The visibility of a particular indicator depends on utilizing various optical or chemical reactions. Gaseous indicators are more difficult to utilize, but because of their diversity may present unusual and useful opportunities. Factors to be considered in selecting an indicator include handling safety, toxicity, potential for contamination of the tunnel, and cost.
A UHV compatible source for a highly polarized thermal atomic beam of radioactive 8Li
NASA Astrophysics Data System (ADS)
Jänsch, H. J.; Kirchner, G.; Kühlert, O.; Lisowski, M.; Paggel, J. J.; Platzer, R.; Schillinger, R.; Tilsner, H.; Weindel, C.; Winnefeld, H.; Fick, D.
2000-12-01
A beam of the radioactive isotope 8Li is prepared at thermal velocities. The nuclei are highly spin polarized by transverse optical pumping of the thermal beam. The installation is ultra-high vacuum (UHV) compatible in a non-UHV accelerator environment. Since the atomic beam is used in a surface science experiment, where contamination must be avoided, special emphasis is given to the vacuum coupling of the accelerator/ 8Li production/surface experimental areas. The atomic beam is produced by stopping the nuclear reaction products and evaporating them again from high-temperature graphite. To enhance the atomic beam, a novel tubular thermalizer is applied. The thermal polarized atomic beam intensity is approximately 5×10 8 atoms/s sr.
Gregg, H.R.; Meltzer, M.P.
1996-05-28
The portable Contamination Analysis Unit (CAU) measures trace quantities of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surfaces by measuring residual hazardous surface contamination, such as tritium and trace organics. It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings. 1 fig.
Gregg, Hugh R.; Meltzer, Michael P.
1996-01-01
The portable Contamination Analysis Unit (CAU) measures trace quantifies of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surface by measuring residual hazardous surface contamination, such as tritium and trace organics It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings.
NASA Technical Reports Server (NTRS)
Golden, Johnny L.
1993-01-01
A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.
Clean induced feature CD shift of EUV mask
NASA Astrophysics Data System (ADS)
Nesládek, Pavel; Schedel, Thorsten; Bender, Markus
2016-05-01
EUV developed in the last decade to the most promising <7nm technology candidate. Defects are considered to be one of the most critical issues of the EUV mask. There are several contributors which make the EUV mask so different from the optical one. First one is the significantly more complicated mask stack consisting currently of 40 Mo/Si double layers, covered by Ru capping layer and TaN/TaO absorber/anti-reflective coating on top of the front face of the mask. Backside is in contrary to optical mask covered as well by conductive layer consisting of Cr or CrN. Second contributor is the fact that EUV mask is currently in contrary to optical mask not yet equipped with sealed pellicle, leading to much higher risk of mask contamination. Third reason is use of EUV mask in vacuum, possibly leading to deposition of vacuum contaminants on the EUV mask surface. Latter reason in combination with tight requirements on backside cleanliness lead to the request of frequent recleaning of the EUV mask, in order to sustain mask lifetime similar to that of optical mask. Mask cleaning process alters slightly the surface of any mask - binary COG mask, as well as phase shift mask of any type and naturally also of the EUV mask as well. In case of optical masks the changes are almost negligible, as the mask is exposed to max. 10-20 re-cleans within its life time. These modifications can be expressed in terms of different specified parameters, e.g. CD shift, phase/trans shift, change of the surface roughness etc. The CD shift, expressed as thinning (or exceptionally thickening) of the dark features on the mask is typically in order of magnitude 0.1nm per process run, which is completely acceptable for optical mask. Projected on the lifetime of EUV mask, assuming 100 clean process cycles, this will lead to CD change of about 10nm. For this reason the requirements for EUV mask cleaning are significantly tighter, << 0.1 nm per process run. This task will look even more challenging, when considering, that the tools for CD measurement at the EUV mask are identical as for optical mask. There is one aspect influencing the CD shift, which demands attention. The mask composition of the EUV mask is significantly different from the optical mask. More precisely there are 2 materials influencing the estimated CD in case of EUV mask, whereas there is one material only in case of optical masks, in first approximation. For optical masks, the CD changes can be attributed to modification of the absorber/ARC layer, as the quartz substrate can be hardly modified by the wet process. For EUV Masks chemical modification of the Ru capping layer - thinning, oxidization etc. are rather more probable and we need to take into account, how this effects can influence the CD measurement process. CD changes measured can be interpreted as either change in the feature size, or modification of the chemical nature of both absorber/ARC layer stack and the Ru capping layer. In our work we try to separate the effect of absorber and Ru/capping layer on the CD shift observed and propose independent way of estimation both parameters.
Spacecraft contamination programs within the Air Force Systems Command Laboratories
NASA Technical Reports Server (NTRS)
Murad, Edmond
1990-01-01
Spacecraft contamination programs exist in five independent AFSC organizations: Geophysics Laboratory (GL), Arnold Engineering and Development Center (AEDC), Rome Air Development Center (RADC/OSCE), Wright Research and Development Center (MLBT), Armament Laboratory (ATL/SAI), and Space Systems Division (SSD/OL-AW). In addition, a sizable program exists at Aerospace Corp. These programs are complementary, each effort addressing a specific area of expertise: GL's effort is aimed at addressing the effects of on-orbit contamination; AEDC's effort is aimed at ground simulation and measurement of optical contamination; RADC's effort addresses the accumulation, measurement, and removal of contamination on large optics; MLBT's effort is aimed at understanding the effect of contamination on materials; ATL's effort is aimed at understanding the effect of plume contamination on systems; SSD's effort is confined to the integration of some contamination experiments sponsored by SSD/CLT; and Aerospace Corp.'s effort is aimed at supporting the needs of the using System Program Offices (SPO) in specific areas, such as contamination during ground handling, ascent phase, laboratory measurements aimed at understanding on-orbit contamination, and mass loss and mass gain in on-orbit operations. These programs are described in some detail, with emphasis on GL's program.
Radiative transfer model for contaminated rough slabs.
Andrieu, François; Douté, Sylvain; Schmidt, Frédéric; Schmitt, Bernard
2015-11-01
We present a semi-analytical model to simulate the bidirectional reflectance distribution function (BRDF) of a rough slab layer containing impurities. This model has been optimized for fast computation in order to analyze massive hyperspectral data by a Bayesian approach. We designed it for planetary surface ice studies but it could be used for other purposes. It estimates the bidirectional reflectance of a rough slab of material containing inclusions, overlaying an optically thick media (semi-infinite media or stratified media, for instance granular material). The inclusions are assumed to be close to spherical and constituted of any type of material other than the ice matrix. It can be any other type of ice, mineral, or even bubbles defined by their optical constants. We assume a low roughness and we consider the geometrical optics conditions. This model is thus applicable for inclusions larger than the considered wavelength. The scattering on the inclusions is assumed to be isotropic. This model has a fast computation implementation and thus is suitable for high-resolution hyperspectral data analysis.
Sub-surface mechanical damage distributions during grinding of fused silica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suratwala, T I; Wong, L L; Miller, P E
2005-11-28
The distribution and characteristics of surface cracking (i.e. sub-surface damage or SSD) formed during standard grinding processes has been investigated on fused silica glass. The SSD distributions of the ground surfaces were determined by: (1) creating a shallow (18-108 {micro}m) wedge/taper on the surface by magneto-rheological finishing; (2) exposing the SSD by HF acid etching; and (3) performing image analysis of the observed cracks from optical micrographs taken along the surface taper. The observed surface cracks are characterized as near-surface lateral and deeper trailing indent type fractures (i.e., chatter marks). The SSD depth distributions are typically described by a singlemore » exponential distribution followed by an asymptotic cutoff in depth (c{sub max}). The length of the trailing indent is strongly correlated with a given process. Using established fracture indentation relationships, it is shown that only a small fraction of the abrasive particles are being mechanically loaded and causing fracture, and it is likely the larger particles in the abrasive particle size distribution that bear the higher loads. The SSD depth was observed to increase with load and with a small amount of larger contaminant particles. Using a simple brittle fracture model for grinding, the SSD depth distribution has been related to the SSD length distribution to gain insight into ''effective'' size distribution of particles participating in the fracture. Both the average crack length and the surface roughness were found to scale linearly with the maximum SSD depth (c{sub max}). These relationships can serve as useful rules-of-thumb for nondestructively estimating SSD depth and to identify the process that caused the SSD. In certain applications such as high intensity lasers, SSD on the glass optics can serve as a reservoir for minute amounts of impurities that absorb the high intensity laser light and lead to subsequent laser-induced surface damage. Hence a more scientific understanding of SSD formation can provide a means to establish recipes to fabricate SSD-free, laser damage resistant optical surfaces.« less
NASA Astrophysics Data System (ADS)
Ma, Y.; Liu, S.
2017-12-01
Accurate estimation of surface evapotranspiration (ET) with high quality is one of the biggest obstacles for routine applications of remote sensing in eco-hydrological studies and water resource management at basin scale. However, many aspects urgently need to deeply research, such as the applicability of the ET models, the parameterization schemes optimization at the regional scale, the temporal upscaling, the selecting and developing of the spatiotemporal data fusion method and ground-based validation over heterogeneous land surfaces. This project is based on the theoretically robust surface energy balance system (SEBS) model, which the model mechanism need further investigation, including the applicability and the influencing factors, such as local environment, and heterogeneity of the landscape, for improving estimation accuracy. Due to technical and budget limitations, so far, optical remote sensing data is missing due to frequent cloud contamination and other poor atmospheric conditions in Southwest China. Here, a multi-source remote sensing data fusion method (ESTARFM: Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) method will be proposed through blending multi-source remote sensing data acquired by optical, and passive microwave remote sensors on board polar satellite platforms. The accurate "all-weather" ET estimation will be carried out for daily ET of the River Source Region in Southwest China, and then the remotely sensed ET results are overlapped with the footprint-weighted images of EC (eddy correlation) for ground-based validation.
OPTICAL COLORS OF INTRACLUSTER LIGHT IN THE VIRGO CLUSTER CORE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudick, Craig S.; Mihos, J. Christopher; Harding, Paul
2010-09-01
We continue our deep optical imaging survey of the Virgo cluster using the CWRU Burrell Schmidt telescope by presenting B-band surface photometry of the core of the Virgo cluster in order to study the cluster's intracluster light (ICL). We find ICL features down to {mu}{sub B} {approx}29 mag arcsec{sup -2}, confirming the results of Mihos et al., who saw a vast web of low surface brightness streams, arcs, plumes, and diffuse light in the Virgo cluster core using V-band imaging. By combining these two data sets, we are able to measure the optical colors of many of the cluster's lowmore » surface brightness features. While much of our imaging area is contaminated by galactic cirrus, the cluster core near the cD galaxy, M87, is unobscured. We trace the color profile of M87 out to over 2000'', and find a blueing trend with radius, continuing out to the largest radii. Moreover, we have measured the colors of several ICL features which extend beyond M87's outermost reaches and find that they have similar colors to the M87's halo itself, B - V {approx}0.8. The common colors of these features suggest that the extended outer envelopes of cD galaxies, such as M87, may be formed from similar streams, created by tidal interactions within the cluster, that have since dissolved into a smooth background in the cluster potential.« less
Wicke, Daniel; Cochrane, Thomas A; O'Sullivan, Aisling D
2012-01-01
Contaminants deposited on impermeable surfaces migrate to stormwater following rainfall events, but accurately quantifying their spatial and temporal yields useful for mitigation purposes is challenging. To overcome limitations in current sampling methods, a system was developed for rapid quantification of contaminant build-up and wash-off dynamics from different impervious surfaces. Thin boards constructed of concrete and two types of asphalt were deployed at different locations of a large carpark to capture spatially distributed contaminants from dry atmospheric deposition over specified periods of time. Following experimental exposure time, the boards were then placed under a rainfall simulator in the laboratory to generate contaminant runoff under controlled conditions. Single parameter effects including surface roughness and material composition, number of antecedent dry days, rain intensity, and water quality on contaminant build-up and wash-off yields could be investigated. The method was applied to quantify spatial differences in deposition rates of contaminants (TSS, zinc, copper and lead) at two locations varying in their distance to vehicle traffic. Results showed that boards exposed at an unused part of the carpark >50 m from vehicular traffic captured similar amounts of contaminants compared with boards that were exposed directly adjacent to the access route, indicating substantial atmospheric contaminant transport. Furthermore, differences in contaminant accumulation as a function of surface composition were observed. Runoff from asphalt boards yielded higher zinc loads compared with concrete surfaces, whereas runoff from concrete surfaces resulted in higher TSS concentrations attributed to its smoother surfaces. The application of this method enables relationships between individual contaminant behaviour and specific catchment characteristics to be investigated and provides a technique to derive site-specific build-up and wash-off functions required for modelling contaminant loads from impermeable surfaces.
Optimized suppression of coherent noise from seismic data using the Karhunen-Loève transform
NASA Astrophysics Data System (ADS)
Montagne, Raúl; Vasconcelos, Giovani L.
2006-07-01
Signals obtained in land seismic surveys are usually contaminated with coherent noise, among which the ground roll (Rayleigh surface waves) is of major concern for it can severely degrade the quality of the information obtained from the seismic record. This paper presents an optimized filter based on the Karhunen-Loève transform for processing seismic images contaminated with ground roll. In this method, the contaminated region of the seismic record, to be processed by the filter, is selected in such way as to correspond to the maximum of a properly defined coherence index. The main advantages of the method are that the ground roll is suppressed with negligible distortion of the remnant reflection signals and that the filtering procedure can be automated. The image processing technique described in this study should also be relevant for other applications where coherent structures embedded in a complex spatiotemporal pattern need to be identified in a more refined way. In particular, it is argued that the method is appropriate for processing optical coherence tomography images whose quality is often degraded by coherent noise (speckle).
Maintaining a Class M 5.5 environment in a Class M 6.5 cleanroom
NASA Astrophysics Data System (ADS)
Hughes, David W.; Hedgeland, Randy J.; Geer, Wayne C.; Greenberg, Barry N.
1994-10-01
During Kennedy Space Center processing of the Hubble Space Telescope First Servicing Mission, critical optical components were integrated in a Class 100,000 (M 6.5 at 0.5 micrometers and 5.0 micrometers , per Fed-Std 209E) cleanroom. A Class 10,000 (M 5.5) environment was mandated by the 400B (per Mil-Std 1246B) surface cleanliness requirement of the Scientific Instruments. To maintain a Class M 5.5 environment, a contamination control plan was implemented which addressed personnel constraints, operations, and site management. This plan limited personnel access, imposed strict gowning requirements, and increased cleanroom janitorial operations, prohibited operations known to generate contamination while sensitive hardware was exposed to the environment, and controlled roadwork, insecticide spraying, and similar activities. Facility preparations included a ceiling to floor cleaning, sealing of vents and doors, and revising the garment change room entry patterns. The cleanroom was successfully run below Class 5000 while the instruments were present; certain operations, however, were observed to cause local contamination levels to increase above Class M 5.5.
Study on contaminants on flight and other critical surfaces
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Hughes, Charles; Arendale, William F.
1994-01-01
The control of surface contamination in the manufacture of space hardware can become a critical step in the production process. Bonded surfaces have been shown to be affected markedly by contamination. It is important to insure surface cleanliness by preventing contamination prior to bonding. In this vein techniques are needed in which the contamination which may affect bonding are easily found and removed. Likewise, if materials which are detrimental to bonding are not easily removed, then they should not be used in the manufacturing process. This study will address the development of techniques to locate and quantify contamination levels of particular contaminants. With other data becoming available from MSFC and its contractors, this study will also quantify how certain contaminants affect bondlines and how easily they are removed in manufacturing.
Repetitive cleaning of a stainless steel first mirror using radio frequency plasma
NASA Astrophysics Data System (ADS)
Peng, Jiao; Yan, Rong; Ding, Rui; Chen, Junling; Zhu, Dahuan; Zhang, Zengming
2017-10-01
First mirrors (FMs) are crucial components of optical diagnostic systems in present-day tokamaks and future fusion reactors. Their lifetimes should be extremely limited due to their proximity to burning plasma, greatly influencing the safe operation of corresponding diagnostics. Repetitive cleaning is expected to provide a solution to the frequent replacement of contaminated FMs, thus prolonging their lifetimes. Three repetitive cleaning cycles using radio frequency plasma were applied to stainless steel (SS) FM samples, to evaluate the change of the mirrors’ optical properties and morphology during each cycle. Amorphous carbon films were deposited on mirror surfaces under identical conditions in three cycles. In three cycles with identical cleaning parameters, the total reflectivity was restored at up to 95%. Nevertheless, with successive cleaning cycles, the FM surfaces gradually appeared to roughen due to damage to the grain boundaries. Correspondingly, the diffuse reflectivity increased from a few percent to 20% and 27% after the second and third cycles. After optimizing the cleaning parameters of the second and third cycles, the roughness showed a significant decrease, and simultaneously the increase of diffuse reflectivity was remarkably improved.
NASA Astrophysics Data System (ADS)
Chen, Zhibin; Xiao, Cheng; Xiao, Wenjian; Qin, Mengze; Liu, Xianhong
2016-01-01
To prevent tragic disasters caused by terror acts and warfare threats, security check personnel must be capable of discovering, distinguishing and eliminating the explosives at multiple circumstances. Standoff technology for the remote detection of explosives and their traces on contaminated surfaces is a research field that has become a heightened priority in recent years for homeland security and counter-terrorism applications. There has been a huge increase in research within this area, the improvement of standoff trace explosives detection by optical-related technology. This paper provides a consolidation of information relating to recent advances in several key problems of, without being limited to one specific research area or explosive type. Working laser wavelength of detection system is discussed. Generation and collection of explosives spectra signal are summarized. Techniques for analysing explosives spectra signal are summed up.
An innate immune system-mimicking, real-time biosensing of infectious bacteria.
Seo, Sung-Min; Jeon, Jin-Woo; Kim, Tae-Yong; Paek, Se-Hwan
2015-09-07
An animal cell-based biosensor was investigated to monitor bacterial contamination in an unattended manner by mimicking the innate immune response. The cells (RAW 264.7 cell line) were first attached onto the solid surfaces of a 96-well microtiter plate and co-incubated in the culture medium with a sample that might contain bacterial contaminants. As Toll-like receptors were present on the cell membrane surfaces, they acted as a sentinel by binding to pathogen-associated molecular patterns (PAMPs) of any contaminant. Such biological recognition initiates signal transmission along various pathways to produce different proinflammatory mediators, one of which, tumor necrosis factor-α (TNF-α) was measured using an immunosensor. To demonstrate automated bacterium monitoring, a capture antibody specific for TNF-α was immobilized on an optical fiber sensor tip and then used to measure complex formation in a label-free sensor system (e.g., Octet Red). The sensor response time depended significantly on the degree of agitation of the culture medium, controlling the biological recognition and further autocrine/paracrine signaling by cytokines. The response, particularly under non-agitated conditions, was also influenced by the medium volume, revealing a local gradient change of the cytokine concentration and also acidity, caused by bacterial growth near the bottom surfaces. A biosensor system retaining 50 μL medium and not employing agitation could be used for the early detection of bacterial contamination. This novel biosensing model was applied to the real-time monitoring of different bacteria, Shigella sonnei, Staphylococcus aureus, and Listeria monocytogenes. They (<100 CFU mL(-1)) could be detected automatically within the working time. Such analysis was carried out without any manual handling regardless of the bacterial species, suggesting the concept of non-targeted bacterial real-time monitoring. This technique was further applied to real sample testing (e.g., with milk) to exemplify, for example, the food quality control process without using any additional sample pretreatment such as magnetic concentration.
Josefsson, Sarah; Leonardsson, Kjell; Gunnarsson, Jonas S; Wiberg, Karin
2011-11-01
The bioaccumulation of buried polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) added to specific depths in sediment (2.0-2.5, 5.0-5.5 and 10.0-10.5cm) was studied in two infaunal species with similar feeding habits (surface deposit-feeders) but different bioturbation modes. The deep-burrowing polychaetes Marenzelleria spp. (Mz) displayed up to 36 times higher tissue concentrations of buried (spiked) contaminants than the surface-dwelling biodiffusing amphipod Monoporeia affinis. The differences in bioaccumulation were most pronounced for less hydrophobic contaminants due to the bioirrigating activity of Mz. Contaminants buried at shallow depths displayed higher accumulation than more deeply buried contaminants. In contrast, the bioaccumulation of unspiked (native) contaminants with a uniform vertical distribution in the sediment was similar between the species. For Mz, the BSAFs increased with increased K(OW) for the uniformly distributed contaminants, but decreased for the buried contaminants, which indicates that the dominant uptake routes of the buried contaminants can differ from the uniformly distributed contaminants. The surface sediment concentration of buried contaminants increased in Mz treatments, showing that Mz bioturbation can remobilize historically buried contaminants to the biologically active surface layer and increase the exposure for surface-dwelling species. Copyright © 2011 Elsevier Ltd. All rights reserved.
Optoacoustic sensing of ocular bacterial antigen using targeted gold nanorods
NASA Astrophysics Data System (ADS)
Maswadi, Saher; Page, Leland; Woodward, Lee; Glickman, Randolph D.; Barsalou, Norman
2008-02-01
Bacterial contamination can be detected using a minimally invasive optical method, based on laser-induced optoacoustic spectroscopy, to probe for specific antigens associated with a specific infectious agent. As a model system, we have used a surface antigen (Ag), isolated from Chlamydia trachomatis, and a complementary antibody (Ab). A preparation of 0.2 mg/ml of monoclonal Ab specific to the C. trachomatis surface Ag was conjugated to gold nanorods using standard commercial reagents, in order to produce a targeted contrast agent with a strong optoacoustic signal. The C. trachomatis Ag was absorbed in standard plastic microwells, and the binding of the complementary Ab-nanorod conjugate was tested in an immunoaffinity assay. Optoacoustic signals were elicited from the bound nanorods, using an optical parametric oscillator (OPO) laser system as the optical pump. The wavelength tuneability of the OPO optimized the spectroscopic measurement by exciting the nanorods at their optical absorption maxima. Optoacoustic responses were measured in the microwells using a probe beam deflection technique. Immunoaffinity assays were performed on several dilutions of purified C. trachomatis antigen ranging from 50 μg/ml to 1 pg/ml, in order to determine the detection limit for the optoacoustic-based assay. Only when the antigen was present, and the complementary Ab-NR reagent was introduced into the microwell, was an enhanced optoacoustic signal obtained, which indicated specific binding of the Ab-NR complex. The limit of detection with the current system design is between 1 and 5 pg/ml of bacterial Ag.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.; Inenaga, Andrew S.
1994-01-01
Laser vapor screen (LVS) flow visualization systems that are fiber-optic based were developed and installed for aerodynamic research in the Langley 8-Foot Transonic Pressure Tunnel and the Langley 7- by 10-Foot High Speed Tunnel. Fiber optics are used to deliver the laser beam through the plenum shell that surrounds the test section of each facility and to the light-sheet-generating optics positioned in the ceiling window of the test section. Water is injected into the wind tunnel diffuser section to increase the relative humidity and promote condensation of the water vapor in the flow field about the model. The condensed water vapor is then illuminated with an intense sheet of laser light to reveal features of the flow field. The plenum shells are optically sealed; therefore, video-based systems are used to observe and document the flow field. Operational experience shows that the fiber-optic-based systems provide safe, reliable, and high-quality off-surface flow visualization in smaller and larger scale subsonic and transonic wind tunnels. The design, the installation, and the application of the Langley Research Center (LaRC) LVS flow visualization systems in larger scale wind tunnels are highlighted. The efficiency of the fiber optic LVS systems and their insensitivity to wind tunnel vibration, the tunnel operating temperature and pressure variations, and the airborne contaminants are discussed.
NASA Astrophysics Data System (ADS)
Veryovkin, I. V.; Calaway, W. F.; Tripa, C. E.; Pellin, M. J.; Burnett, D. S.
2005-12-01
A new secondary neutral mass spectrometry (SNMS) instrument implementing laser post ionization (LPI) of ion sputtered and laser desorbed neutral species has been developed and constructed for the specific purpose of quantitative analysis of metallic elements at ultra trace levels in solar wind collector samples returned to Earth by the Genesis Discovery mission. The first LPI SNMS measurements are focusing on determining Al, Ca, Cr, and Mg in these samples. These measurements provide the first concentration and isotopic abundances determinations for several key metallic elements and also elucidate possible fractionation effects between the photosphere and the solar wind compositions. It is now documented that Genesis samples suffered surface contamination both during flight and during the breach of the Sample Return Capsule when it crashed. Since accurate quantitative analysis is compromised by sample contamination, several features have been built into the new LPI SNMS instrument to mitigate this difficulty. A normally-incident, low-energy (<500 eV) ion beam combined with a keV energy ion beam and a desorbing laser beam (both microfocused) enables dual beam analyses. The low-energy ion beam can be used to remove surface contaminant by sputtering with minimum ion beam mixing. This low-energy beam also will be used to perform ion beam milling, while either the microfocused ion or laser beam probes the solar wind elemental compositions as a function of sample depth. Because of the high depth resolution of dual beam analyses, such depth profiles clearly distinguish between surface contaminants and solar wind implanted atoms. In addition, in-situ optical and electron beam imaging for observing and avoiding particulates and scratches on solar wind sample surfaces is incorporated in the new LPI SNMS instrument to further reduce quantification problems. The current status of instrument tests and analyses will be presented. This work is supported by the U. S. Department of Energy, BES-Materials Sciences, under Contract W-31-109-ENG-38, and by NASA under Work Orders W-19,895 and W-10,091.
Potential for use of optical measurements to understand the fate of urban contaminants
NASA Astrophysics Data System (ADS)
Bergamaschi, B. A.; Downing, B. D.; Fleck, J.; Kraus, T. E.; Pellerin, B. A.; Corsi, S. R.
2012-12-01
Contamination associated with urban environments can dramatically affect aquatic ecosystems, yet our ability to gage its impact is hampered by the fact that contamination occurs episodically and we are often most interested in the effects in highly dynamic environments; ephemeral and dynamic systems require large numbers of samples to monitor, and the cost associated with characterizing the contribution of urban contaminants in an individual sample using conventional tracers can be prohibitively expensive. We propose that optical measurements may be used to help characterize urban contaminant fluxes in dynamic systems using in situ instruments as well as to assess the contribution of urban material to individual water samples using inexpensive lab-based measurements. We have used measurements of optical properties both in the laboratory and in situ at high temporal and spatial resolution to differentiate among sources of water, and as proxies for contaminants such as mercury (Hg), methylmercury, pharmaceuticals, and wastewater. These measurements include determination of spectral properties of absorbance, attenuation, fluorescence, and scatter in aqueous samples. We present examples of how such measurements can serve as tracers of urban-derived water sources, and provide information about source and biogeochemical processing. One example demonstrates how in situ fluorescence and scattering measurements were used to track the transport of Hg contamination into the San Francisco Estuary. We measured the tidally-driven exchange of Hg between the estuary and a tidal wetland over spring-neap in three different seasons. In situ measurements of scatter (turbidity) and fluorescent dissolved organic matter (FDOM) were highly related to total mercury concentrations, and we used these measurements to calculate flux into and out of the wetland. Another example in a dynamic river system illustrates how data collected at a high spatial resolution, again using in situ optical instrumentation, allowed us to differentiate water sources and identify wastewater. Finally, we will show examples of how laboratory optical measurements may be used to screen for the presence of urban material related to, for example, treated wastewater, untreated wastewater, urban runoff, aircraft deicers, storm drainage, etc.. Such measurements may be used to screen samples prior to submission for more expensive analyses such as pharmaceutical content, pathogen content, and industrial compounds?
NASA Technical Reports Server (NTRS)
Allton, J. H.; Kuhlman, K. R.; Allums, K. K.; Gonzalez, C. P.; Jurewicz, A. J. G.; Burnett, D. S.; Woolum, D. S.
2015-01-01
The recovered Genesis collector fragments are heavily contaminated with crash-derived particulate debris. However, megasonic treatment with ultra-pure-water (UPW; resistivity (is) greater than18 meg-ohm-cm) removes essentially all particulate contamination greater than 5 microns in size [e.g.1] and is thus of considerable importance. Optical imaging of Si sample 60336 revealed the presence of a large C-rich particle after UPW treatment that was not present prior to UPW. Such handling contamination is occasionally observed, but such contaminants are normally easily removed by UPW cleaning. The 60336 particle was exceptional in that, surprisingly, it was not removed by additional UPW or by hot xylene or by aqua regia treatment. It was eventually removed by treatment with NH3-H2O2. Our best interpretation of the origin of the 60336 particle was that it was adhesive from the Post-It notes used to stabilize samples for transport from Utah after the hard landing. It is possible that the insoluble nature of the 60336 particle comes from interaction of the Post-It adhesive with UPW. An occasional bit of Post-It adhesive is not a major concern, but C particulate contamination also occurs from the heat shield of the Sample Return Capsule (SRC) and this is mixed with inorganic contamination from the SRC and the Utah landing site. If UPW exposure also produced an insoluble residue from SRC C, this would be a major problem in chemical treatments to produce clean surfaces for analysis. This paper reports experiments to test whether particulate contamination was removed more easily if UPW treatment was not used.
Cleaning of optical surfaces by excimer laser radiation
NASA Astrophysics Data System (ADS)
Mann, K.; Wolff-Rottke, B.; Müller, F.
1996-04-01
The effect of particle removal from Al mirror surfaces by the influence of pulsed UV laser radiation has been studied. The investigations are closely related to the demands of astronomers, who are looking for a more effective way to clean future very large telescope (VLT) mirrors [1]. A systematic parameter study has been performed in order to determine the irradiation conditions which yield the highest dust removal efficiency (i.e. reflectivity increase) on contaminated samples. The particle removal rate increases with increasing laser fluence, being limited however by the damage threshold of the coating. Data indicate that on Al coated BK7 and Zerodur samples KrF laser radiation yields the optimum result, with cleaning efficiencies comparable to polymer film stripping. The initial reflectivity of the clean coating can nearly be restored, in particular when an additional solvent film on the sample surface is applied.
Laser Inspection Or Soldered Connections
NASA Astrophysics Data System (ADS)
Alper, Richard I.; Traub, Alan C.
1986-07-01
A sensitive infrared detection system monitors the slight warming and cooling of a solder joint on a PWB in response to a focused laser beam pulse lasting for 30 milliseconds. Heating and cooling rates depend on the surface finish of the solder and also upon its interr.1 features. Joints which are alike show similar heating rates; defects behave differently and are flagged as showing abnormal thermal signatures Defects include surface voids, cold solder, insufficient or missing solder, residual solder flux, contamination and large subsurface voids. Solder bridges can usually be found by targeting at suspected bridge locations. Feed-through joints at DIPs and lap joints at flat-pack ICs are readily inspected by this method. By use of computer-controlled tiltable optics, access is had to the "harder to see" joints such as at leadless chip carriers and other surface mounts. Inspection rates can be up to 10 joints per second.
Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography
NASA Astrophysics Data System (ADS)
Madey, Theodore E.; Faradzhev, Nadir S.; Yakshinskiy, Boris V.; Edwards, N. V.
2006-12-01
One of the most promising methods for next generation device manufacturing is extreme ultraviolet (EUV) lithography, which uses 13.5 nm wavelength radiation generated from freestanding plasma-based sources. The short wavelength of the incident illumination allows for a considerable decrease in printed feature size, but also creates a range of technological challenges not present for traditional optical lithography. Contamination and oxidation form on multilayer reflecting optics surfaces that not only reduce system throughput because of the associated reduction in EUV reflectivity, but also introduce wavefront aberrations that compromise the ability to print uniform features. Capping layers of ruthenium, films ∼2 nm thick, are found to extend the lifetime of Mo/Si multilayer mirrors used in EUV lithography applications. However, reflectivities of even the Ru-coated mirrors degrade in time during exposure to EUV radiation. Ruthenium surfaces are chemically reactive and are very effective as heterogeneous catalysts. In the present paper we summarize the thermal and radiation-induced surface chemistry of bare Ru exposed to gases; the emphasis is on H2O vapor, a dominant background gas in vacuum processing chambers. Our goal is to provide insights into the fundamental physical processes that affect the reflectivity of Ru-coated Mo/Si multilayer mirrors exposed to EUV radiation. Our ultimate goal is to identify and recommend practices or antidotes that may extend mirror lifetimes.
Although monitoring for surface contamination in work with radioactive materials and dermal monitoring of pesticide exposure to agricultural workers have been standard practice for 50 years, regular surface sampling and dermal monitoring methods have only been applied to indust...
Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface
2008-08-01
seepage is occurring in a freshwater lake environment and to map the lateral extent of any subsurface contamination at the groundwater –surface water ...and Contaminant Migration at the Groundwater -Surface Water Interface August 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...4. TITLE AND SUBTITLE Monitoring of Water and Contaminant Migration at the Groundwater -Surface Water Interface 5a. CONTRACT NUMBER 5b. GRANT NUMBER
Microbial and chemical contamination during and after flooding in the Ohio River-Kentucky, 2011.
Yard, Ellen E; Murphy, Matthew W; Schneeberger, Chandra; Narayanan, Jothikumar; Hoo, Elizabeth; Freiman, Alexander; Lewis, Lauren S; Hill, Vincent R
2014-09-19
Surface water contaminants in Kentucky during and after 2011 flooding were characterized. Surface water samples were collected during flood stage (May 2-4, 2011; n = 15) and after (July 25-26, 2011; n = 8) from four different cities along the Ohio River and were analyzed for the presence of microbial indicators, pathogens, metals, and chemical contaminants. Contaminant concentrations during and after flooding were compared using linear and logistic regression. Surface water samples collected during flooding had higher levels of E. coli, enterococci, Salmonella, Campylobacter, E. coli O157:H7, adenovirus, arsenic, copper, iron, lead, and zinc compared to surface water samples collected 3-months post-flood (P < 0.05). These results suggest that flooding increases microbial and chemical loads in surface water. These findings reinforce commonly recommended guidelines to limit exposure to flood water and to appropriately sanitize contaminated surfaces and drinking wells after contamination by flood water.
Microbial and chemical contamination during and after flooding in the Ohio River—Kentucky, 2011
Yard, Ellen E.; Murphy, Matthew W.; Schneeberger, Chandra; Narayanan, Jothikumar; Hoo, Elizabeth; Freiman, Alexander; Lewis, Lauren S.; Hill, Vincent R.
2017-01-01
Surface water contaminants in Kentucky during and after 2011 flooding were characterized. Surface water samples were collected during flood stage (May 2–4, 2011; n = 15) and after (July 25–26, 2011; n = 8) from four different cities along the Ohio River and were analyzed for the presence of microbial indicators, pathogens, metals, and chemical contaminants. Contaminant concentrations during and after flooding were compared using linear and logistic regression. Surface water samples collected during flooding had higher levels of E. coli, enterococci, Salmonella, Campylobacter, E. coli O157:H7, adenovirus, arsenic, copper, iron, lead, and zinc compared to surface water samples collected 3-months post-flood (P < 0.05). These results suggest that flooding increases microbial and chemical loads in surface water. These findings reinforce commonly recommended guidelines to limit exposure to flood water and to appropriately sanitize contaminated surfaces and drinking wells after contamination by flood water. PMID:24967556
Folding Elastic Thermal Surface - FETS
NASA Technical Reports Server (NTRS)
Urquiza, Eugenio; Zhang, Burt X.; Thelen, Michael P.; Rodriquez, Jose I.; Pellegrino, Sergio
2013-01-01
The FETS is a light and compact thermal surface (sun shade, IR thermal shield, cover, and/or deployable radiator) that is mounted on a set of offset tape-spring hinges. The thermal surface is constrained during launch and activated in space by a thermomechanical latch such as a wax actuator. An application-specific embodiment of this technology developed for the MATMOS (Mars Atmospheric Trace Molecule Occultation Spectrometer) project serves as a deployable cover and thermal shield for its passive cooler. The FETS fits compactly against the instrument within the constrained launch envelope, and then unfolds into a larger area once in space. In this application, the FETS protects the passive cooler from thermal damage and contamination during ground operations, launch, and during orbit insertion. Once unfolded or deployed, the FETS serves as a heat shield, intercepting parasitic heat loads by blocking the passive cooler s view of the warm spacecraft. The technology significantly enhances the capabilities of instruments requiring either active or passive cooling of optical detectors. This can be particularly important for instruments where performance is limited by the available radiator area. Examples would be IR optical instruments on CubeSATs or those launched as hosted payloads because radiator area is limited and views are often undesirable. As a deployable radiator, the panels making up the FETS are linked thermally by thermal straps and heat pipes; the structural support and deployment energy is provided using tape-spring hinges. The FETS is a novel combination of existing technologies. Prior art for deployable heat shields uses rotating hinges that typically must be lubricated to avoid cold welding or static friction. By using tape-spring hinges, the FETS avoids the need for lubricants by avoiding friction altogether. This also eliminates the potential for contamination of nearby cooled optics by outgassing lubricants. Furthermore, the tape-spring design of the FETS is also self-locking so the panels stay in a rigid and extended configuration after deployment. This unexpected benefit makes the tape-spring hinge design of the FETS a light, simple, reliable, compact, non-outgassing hinge, spring, and latch. While tape-spring hinges are not novel, they have never been used to deploy passive unfolding thermal surfaces (radiator panels, covers, sun shades, or IR thermal shields). Furthermore, because this technology is compact, it has minimal impact on the launch envelope and mass specifications. FETS enhances the performance of hosted payload instruments where the science data is limited by dark noise. Incorporating FETS into a thermal control system increases radiator area, which lowers the optical detector temperature. This results in higher SNR (signal-to-noise ratio) and improved science data.
157-nm photomask handling and infrastructure: requirements and feasibility
NASA Astrophysics Data System (ADS)
Cullins, Jerry; Muzio, Edward G.
2001-09-01
Photomask handling is significantly more challenging for 157 nm lithography than for any previous generation of optical lithography. First, pellicle materials are not currently available which meet all the requirements for 157 nm lithography. Polymeric materials used at 193 nm higher wavelengths are not sufficiently transmissive at 157 nm, while modified fused silica materials have adequate transmission properties but introduce optical distortion. Second, the problem of molecular level contamination on the reticle must be solved. This contamination is due to the presence of oxygen, carbon dioxide, water, and other attenuators of 157 nm radiation on the mask surface. It must be removed using something other than the lithography laser due to throughput and cost of ownership considerations. Third, there is the issue of removing attenuators from under the pellicle after a material becomes available. Both the ambient atmosphere and other introduced contaminants must be removed from the space between the reticle and pellicle after cleaning but before exposure. Fourth are the potential issues for storage of reticles both during transportation from the mask shop and after it is in the wafer fab. Finally, the problems associated with operating in an optically inert dry environment must be addressed. The lack of moisture in the environment removes one of the key electrical discharge paths off of the reticle, which greatly increases the risk of electrostatic damage to the pattern (ESD). In order to address these and related issues in a timeframe consistent with the aggressive implementation plan for 157 nm lithography, International Sematech (ISMT) formed the 157 nm Reticle Handling Team in November of 1999. This paper details the most critical results to date of this industry-wide team, and gives a prognosis for successful completion of the team's primary goal: a demonstration of a feasible 157 nm reticle handling strategy by December of 2000.
Use of Ultrasonic Energy in Assessing Microbial Contamination on Surfaces
Puleo, John R.; Favero, Martin S.; Petersen, Norman J.
1967-01-01
Ultrasonic tanks were evaluated for their ability to remove viable microorganisms from various surfaces for subsequent enumeration. Test surfaces were polished stainless steel, smooth glass, frosted glass, and electronic components. The position of contaminated surfaces in relation to the ultrasonic energy source, distance of the ultrasonic source from the test surfaces, and temperature of the rinse fluid were some of the factors which influenced recovery. Experimental systems included both naturally occurring microbial contamination and artificial contamination with spores of Bacillus subtilis var. niger. The results showed that ultrasonic energy was more reliable and efficient than mechanical agitation for recovering surface contaminants. Conditions which increased the number and percentage of microorganisms recovered by ultrasonic energy were: using a cold rinse fluid, placing the sample bottle on the bottom of the ultrasonic tank, and facing the contaminated surfaces toward the energy source. It was also demonstrated that ultrasonic energy could be effectively used for eluting microorganisms from cotton swabs. PMID:16349743
Exploring Surface Analysis Techniques for the Detection of Molecular Contaminants on Spacecraft
NASA Technical Reports Server (NTRS)
Rutherford, Gugu N.; Seasly, Elaine; Thornblom, Mark; Baughman, James
2016-01-01
Molecular contamination is a known area of concern for spacecraft. To mitigate this risk, projects involving space flight hardware set requirements in a contamination control plan that establishes an allocation budget for the exposure of non-volatile residues (NVR) onto critical surfaces. The purpose of this work will focus on non-contact surface analysis and in situ monitoring to mitigate molecular contamination on space flight hardware. By using Scanning Electron Microscopy and Energy Dispersive Spectroscopy (SEM-EDS) with Raman Spectroscopy, an unlikely contaminant was identified on space flight hardware. Using traditional and surface analysis methods provided the broader view of the contamination sources allowing for best fit solutions to prevent any future exposure.
Diop, Cheikh; Dewaelé, Dorothée; Cazier, Fabrice; Diouf, Amadou; Ouddane, Baghdad
2015-11-01
Trace metals have the potential to associate with sediments that have been recognised as significant source of contamination for the benthic environment. The current study aims assessing the trace metals contamination level in sediments from Dakar coast and Saint Louis estuary, and to examine their bioavailability to predict potential toxicity of sediments. Surface sediment samples were collected between June 2012 and January 2013 in three sampling periods from eight stations. Trace metals were analysed using inductively coupled plasma-optical emission spectrometer. Geoaccumulation indexes (Igeo) showed strong pollution by Cd, Cr, Cu and Pb confirmed by enrichment factor (EF) suggesting that these metals derived from anthropogenic sources. Toxicity indexes exceeded one in several sites suggesting the potential effects on sediment-dwelling organisms, which may constitute a risk to populations' health. However, seasonal variability of metal bioavailability was noted, revealing the best period to monitor metal contamination. From an ecotoxicological point of view, concentrations of Cd, Cr, Cu and Pb were above the effects range low threshold limit of the sediment quality guidelines for adverse biological effects. In addition, with Pb concentrations above the effect range medium values in some sites, biological effects may occur. Copyright © 2014 Elsevier Ltd. All rights reserved.
NLL-Assisted Multilayer Graphene Patterning
2018-01-01
The range of applications of diverse graphene-based devices could be limited by insufficient surface reactivity, unsatisfied shaping, or null energy gap of graphene. Engineering the graphene structure by laser techniques can adjust the transport properties and the surface area of graphene, providing devices of different nature with a higher capacitance. Additionally, the created periodic potential and appearance of the active external/inner/edge surface centers determine the multifunctionality of the graphene surface and corresponding devices. Here, we report on the first implementation of nonlinear laser lithography (NLL) for multilayer graphene (MLG) structuring, which offers a low-cost, single-step, and high-speed nanofabrication process. The NLL relies on the employment of a high repetition rate femtosecond Yb fiber laser that provides generation of highly reproducible, robust, uniform, and periodic nanostructures over a large surface area (1 cm2/15 s). NLL allows one to obtain clearly predesigned patterned graphene structures without fabrication tolerances, which are caused by contacting mask contamination, polymer residuals, and direct laser exposure of the graphene layers. We represent regularly patterned MLG (p-MLG) obtained by the chemical vapor deposition method on an NLL-structured Ni foil. We also demonstrate tuning of chemical (wettability) and electro-optical (transmittance and sheet resistance) properties of p-MLG by laser power adjustments. In conclusion, we show the great promise of fabricated devices, namely, supercapacitors, and Li-ion batteries by using NLL-assisted graphene patterning. Our approach demonstrates a new avenue to pattern graphene for multifunctional device engineering in optics, photonics, and bioelectronics. PMID:29503971
NLL-Assisted Multilayer Graphene Patterning.
Kovalska, Evgeniya; Pavlov, Ihor; Deminskyi, Petro; Baldycheva, Anna; Ilday, F Ömer; Kocabas, Coskun
2018-02-28
The range of applications of diverse graphene-based devices could be limited by insufficient surface reactivity, unsatisfied shaping, or null energy gap of graphene. Engineering the graphene structure by laser techniques can adjust the transport properties and the surface area of graphene, providing devices of different nature with a higher capacitance. Additionally, the created periodic potential and appearance of the active external/inner/edge surface centers determine the multifunctionality of the graphene surface and corresponding devices. Here, we report on the first implementation of nonlinear laser lithography (NLL) for multilayer graphene (MLG) structuring, which offers a low-cost, single-step, and high-speed nanofabrication process. The NLL relies on the employment of a high repetition rate femtosecond Yb fiber laser that provides generation of highly reproducible, robust, uniform, and periodic nanostructures over a large surface area (1 cm 2 /15 s). NLL allows one to obtain clearly predesigned patterned graphene structures without fabrication tolerances, which are caused by contacting mask contamination, polymer residuals, and direct laser exposure of the graphene layers. We represent regularly patterned MLG (p-MLG) obtained by the chemical vapor deposition method on an NLL-structured Ni foil. We also demonstrate tuning of chemical (wettability) and electro-optical (transmittance and sheet resistance) properties of p-MLG by laser power adjustments. In conclusion, we show the great promise of fabricated devices, namely, supercapacitors, and Li-ion batteries by using NLL-assisted graphene patterning. Our approach demonstrates a new avenue to pattern graphene for multifunctional device engineering in optics, photonics, and bioelectronics.
Yan, Zhinong; Vorst, Keith L; Zhang, Lei; Ryser, Elliot T
2007-05-01
A novel one-ply composite tissue (CT) method using the Soleris (formerly BioSys) optical analysis system was compared with the conventional U.S. Department of Agriculture (USDA) environmental sponge enrichment method for recovery of Listeria from food contact surfaces and poultry-processing environments. Stainless steel and high-density polyethylene plates were inoculated to contain a six-strain L. monocytogenes cocktail at 10(4), 10(2), and 10 CFU per plate, whereas samples from naturally contaminated surfaces and floor drains from a poultry-processing facility were collected with CTs and environmental sponges. CT samples were transferred into Soleris system vials, and presumptive-positive samples were further confirmed. Sponge samples were processed for Listeria using the USDA culture method. L. monocytogenes recovery rates from inoculated stainless steel and polyethylene surfaces were then compared for the two methods in terms of sensitivity, specificity, and positive and negative predictive values. No significant differences (P > 0.05) were found between the two methods for recovery of L. monocytogenes from any of the inoculated stainless steel and polyethylene surfaces or environmental samples. Sensitivity, specificity, and overall accuracy of the CT-Soleris for recovery of Listeria from environmental samples were 83, 97, and 95%, respectively. Listeria was detected 2 to 3 days sooner with the CT-Soleris method than with the USDA culture method, thus supporting the increased efficacy of this new protocol for environmental sampling.
NASA Astrophysics Data System (ADS)
Jian, Muqiang; Xie, Huanhuan; Wang, Qi; Xia, Kailun; Yin, Zhe; Zhang, Mingyu; Deng, Ningqin; Wang, Luning; Ren, Tianling; Zhang, Yingying
2016-07-01
The development of nanomaterials has put forward high requirements for characterization techniques. Optical microscopy (OM), with easy accessibility and open operating spaces as compared to scanning electron microscopy, is a good choice to quickly locate materials and to be integrated with other equipment. However, OM is limited by its low resolution. Herein, we present a facile and non-destructive approach for optical observation of nanomaterials under conventional OMs with the aid of volatile nanoparticles (NPs), which can be deposited and removed in a controlled manner. The NPs deposited on the surface of nanomaterials render strong light scattering to enable the nanomaterials to become optically visible. For example, this approach enables the observation of individual carbon nanotubes (CNTs) with OMs at low magnification or even with the naked eye. Both supported CNTs on various substrates and suspended CNTs can be observed with this approach. Most importantly, the NPs can be completely removed through moderate heat treatment or laser irradiation, avoiding potential influence on the properties or subsequent applications of nanomaterials. Furthermore, we systematically investigate the deposition of various volatile NPs (up to 14 kinds) for the optical observation of nanomaterials. We also demonstrated the application of this approach on other nanomaterials, including nanowires and graphene. We showed that this approach is facile, controllable, non-destructive, and contamination-free, indicating wide potential applications.The development of nanomaterials has put forward high requirements for characterization techniques. Optical microscopy (OM), with easy accessibility and open operating spaces as compared to scanning electron microscopy, is a good choice to quickly locate materials and to be integrated with other equipment. However, OM is limited by its low resolution. Herein, we present a facile and non-destructive approach for optical observation of nanomaterials under conventional OMs with the aid of volatile nanoparticles (NPs), which can be deposited and removed in a controlled manner. The NPs deposited on the surface of nanomaterials render strong light scattering to enable the nanomaterials to become optically visible. For example, this approach enables the observation of individual carbon nanotubes (CNTs) with OMs at low magnification or even with the naked eye. Both supported CNTs on various substrates and suspended CNTs can be observed with this approach. Most importantly, the NPs can be completely removed through moderate heat treatment or laser irradiation, avoiding potential influence on the properties or subsequent applications of nanomaterials. Furthermore, we systematically investigate the deposition of various volatile NPs (up to 14 kinds) for the optical observation of nanomaterials. We also demonstrated the application of this approach on other nanomaterials, including nanowires and graphene. We showed that this approach is facile, controllable, non-destructive, and contamination-free, indicating wide potential applications. Electronic supplementary information (ESI) available: Supporting figures, tables and discussions. See DOI: 10.1039/c6nr01379a
NASA Technical Reports Server (NTRS)
Spisz, E. W.; Bowman, R. L.; Jack, J. R.
1973-01-01
The data obtained from two recent experiments conducted in a continuing series of experiments at the Lewis Research Center into the contamination characteristics of a 5-pound thrust MMH/N2O4 engine are presented. The primary objectives of these experiments were to establish the angular distribution of condensible exhaust products within the plume and the corresponding optical damage angular distribution of transmitting optical elements attributable to this contaminant. The plume mass flow distribution was measured by five quartz crystal microbalances (QCM's) located at the engine axis evaluation. The fifth QCM was located above the engine and 15 deg behind the nozzle exit plane. The optical damage was determined by ex-situ transmittance measurements for the wavelength range from 0.2 to 0.6 microns on 2.54 cm diameter fused silica discs also located at engine centerline elevation. Both the mass deposition and optical damage angular distributions followed the expected trend of decreasing deposition and damage as the angle between sensor or sample and the nozzle axis increased. A simple plume gas flow equation predicted the deposition distribution reasonably well for angles of up to 55 degrees. The optical damage measurements also indicated significant effects at large angles.
Bioinspired Superhydrophobic Highly Transmissive Films for Optical Applications.
Vüllers, Felix; Gomard, Guillaume; Preinfalk, Jan B; Klampaftis, Efthymios; Worgull, Matthias; Richards, Bryce; Hölscher, Hendrik; Kavalenka, Maryna N
2016-11-01
Inspired by the transparent hair layer on water plants Salvinia and Pistia, superhydrophobic flexible thin films, applicable as transparent coatings for optoelectronic devices, are introduced. Thin polymeric nanofur films are fabricated using a highly scalable hot pulling technique, in which heated sandblasted steel plates are used to create a dense layer of nano- and microhairs surrounding microcavities on a polymer surface. The superhydrophobic nanofur surface exhibits water contact angles of 166 ± 6°, sliding angles below 6°, and is self-cleaning against various contaminants. Additionally, subjecting thin nanofur to argon plasma reverses its surface wettability to hydrophilic and underwater superoleophobic. Thin nanofur films are transparent and demonstrate reflection values of less than 4% for wavelengths ranging from 300 to 800 nm when attached to a polymer substrate. Moreover, used as translucent self-standing film, the nanofur exhibits transmission values above 85% and high forward scattering. The potential of thin nanofur films for extracting substrate modes from organic light emitting diodes is tested and a relative increase of the luminous efficacy of above 10% is observed. Finally, thin nanofur is optically coupled to a multicrystalline silicon solar cell, resulting in a relative gain of 5.8% in photogenerated current compared to a bare photovoltaic device. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of an optical biosensor for the detection of antibiotics in the environment
NASA Astrophysics Data System (ADS)
Weber, Patricia; Vogler, Julian; Gauglitz, Günter
2017-05-01
Pharmacologically active substances like antibiotics, hormones, x-ray contrast media, antirheumatic drugs or beta blockers are increasingly accumulating in the environment. These pharmacologically active substances can be found in surface waters as well as in food products. In the case of surface waters, the contamination with pharmacologically active substances is primary caused by incorrect disposal of drugs and by human and animal feaces. This is due to the fact that, drugs are only removed incompletely during the wastewater treatment. Furthermore, food of animal origin like milk, cheese, eggs or meat are potentially frequently concerned. The use of animal drugs in animal husbandry and food industry is permitted legal and a standard practice. However, it is possible that after drug application to animals drug residues or decomposition products remain in the animal carcasses. In this work we will present the first steps of the development of an optical biosensor sensitive for the antibiotic penicillin G. This biosensor is principle of the label-free and time resolved method Reflectometric Interference Spectroscopy (RIfS). The method uses interference of white light at thin layers to observe molecular interactions. The required surface modifications for the sensor were developed and optimized. Moreover, common commercial antibodies were chosen and concentration dependent measurements in buffer were performed.
Natural recovery of contaminated sediments relies on burial of contaminated sediments with increasingly clean sediments over time (i.e., natural capping). Natural capping reduces the risk of resuspension of contaminated surface sediments, and it reduces the potential for contamin...
Detectors in Extreme Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaj, G.; Carini, G.; Carron, S.
2015-08-06
Free Electron Lasers opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120Hz pulses with 10 12 - 10 13 photons in 10 femtoseconds (billions of times brighter than the most powerful synchrotrons). This extreme detection environment raises unique challenges, from obvious to surprising. Radiation damage is a constant threat due to accidental exposure to insufficiently attenuated beam, focused beam and formation of ice crystals reflecting the beam onto the detector. Often high power optical lasers are also used (e.g., 25TW), increasing the risk of damage or impedingmore » data acquisition through electromagnetic pulses (EMP). The sample can contaminate the detector surface or even produce shrapnel damage. Some experiments require ultra high vacuum (UHV) with strict design, surface contamination and cooling requirements - also for detectors. The setup is often changed between or during experiments with short turnaround times, risking mechanical and ESD damage, requiring work planning, training of operators and sometimes continuous participation of the LCLS Detector Group in the experiments. The detectors used most often at LCLS are CSPAD cameras for hard x-rays and pnCCDs for soft x-rays.« less
Modeling of capacitively and inductively coupled plasma for molecular decontamination
NASA Astrophysics Data System (ADS)
Mihailova, Diana; Hagelaar, Gerjan; Belenguer, Philippe; Laurent, Christopher; Lo, Juslan; Caillier, Bruno; Therese, Laurent; Guillot, Philippe
2013-09-01
This project aims to study and to develop new technology bricks for next generation of molecular decontamination systems, including plasma solution, for various applications. The contamination control in the processing stages is a major issue for the industrial performance as well as for the development of new technologies in the surface treatment area. The main task is to create uniform low temperature plasma inside a reactor containing the object to be treated. Different plasma sources are modeled with the aim of finding the most efficient one for surface decontamination: inductively coupled plasma, capacitively coupled plasma and combination of both. The model used for testing the various plasma sources is a time dependent two-dimensional multi-fluid model. The model is applied to a simplified cylindrically symmetric geometry in pure argon gas. The modeling results are validated by comparison with experimental results and observations based on optical and physical diagnostic tools. The influence of various parameters (power, pressure, flow) is studied and the corresponding results are presented, compared and discussed. This work has been performed in the frame of the collaborative program PAUD (Plasma Airborne molecular contamination Ultra Desorption) funded by the French agency OSEO and certified by French global competitive clusters Minalogic and Trimatec.
Improvement in ultraviolet based decontamination rate using meta-materials
NASA Astrophysics Data System (ADS)
Enaki, Nicolae A.; Bazgan, Sergiu; Ciobanu, Nellu; Turcan, Marina; Paslari, Tatiana; Ristoscu, Carmen; Vaseashta, Ashok; Mihailescu, Ion N.
2017-09-01
We propose a method of decontamination using photon-crystals consisting of microspheres and fiber optics structures with various geometries. The efficient decontamination using the surface of the evanescent zone of meta-materials opens a new perspective in the decontamination procedures. We propose different topological structures of meta-materials to increase the contact surface of UV radiation with contaminated liquid. Recent observation of the trapping of dielectric particles along the fibers help us propose a new perspective on the new possibilities to trap the viruses, bacteria and other microorganisms from liquids, in this special zone, where the effective UV coherent Raman decontamination becomes possible. The nonlinear theory of the excitation of vibration modes of bio-molecule of viruses and bacteria is revised, taking into consideration the bimodal coherent states in coherent Raman excitation of biomolecules.
Atomic layer deposition (ALD): A versatile technique for plasmonics and nanobiotechnology.
Im, Hyungsoon; Wittenberg, Nathan J; Lindquist, Nathan C; Oh, Sang-Hyun
2012-02-28
While atomic layer deposition (ALD) has been used for many years as an industrial manufacturing method for microprocessors and displays, this versatile technique is finding increased use in the emerging fields of plasmonics and nanobiotechnology. In particular, ALD coatings can modify metallic surfaces to tune their optical and plasmonic properties, to protect them against unwanted oxidation and contamination, or to create biocompatible surfaces. Furthermore, ALD is unique among thin-film deposition techniques in its ability to meet the processing demands for engineering nanoplasmonic devices, offering conformal deposition of dense and ultra-thin films on high-aspect-ratio nanostructures at temperatures below 100 °C. In this review, we present key features of ALD and describe how it could benefit future applications in plasmonics, nanosciences, and biotechnology.
The impact of LDEF results on the space application of metal matrix composites
NASA Technical Reports Server (NTRS)
Steckel, Gary L.; Le, Tuyen D.
1993-01-01
Over 200 graphite/aluminum and graphite/magnesium composites were flown on the leading and trailing edges of LDEF on the Advanced Composites Experiment. The performance of these composites was evaluated by performing scanning electron microscopy and x-ray photoelectron spectroscopy of exposed surfaces, optical microscopy of cross sections, and on-orbit and postflight thermal expansion measurements. Graphite/aluminum and graphite/magnesium were found to be superior to graphite/polymer matrix composites in that they are inherently resistant to atomic oxygen and are less susceptible to thermal cycling induced microcracking. The surface foils on graphite/aluminum and graphite/magnesium protect the graphite fibers from atomic oxygen and from impact damage from small micrometeoroid or space debris particles. However, the surface foils were found to be susceptible to thermal fatigue cracking arising from contamination embrittlement, surface oxidation, or stress risers. Thus, the experiment reinforced requirements for carefully protecting these composites from prelaunch oxidation or corrosion, avoiding spacecraft contamination, and designing composite structures to minimize stress concentrations. On-orbit strain measurements demonstrated the importance of through-thickness thermal conductivity in composites to minimize thermal distortions arising from thermal gradients. Because of the high thermal conductivity of aluminum, thermal distortions were greatly reduced in the LDEF thermal environment for graphite/aluminum as compared to graphite/magnesium and graphite/polymer composites. The thermal expansion behavior of graphite/aluminum and graphite/magnesium was stabilized by on-orbit thermal cycling in the same manner as observed in laboratory tests.
Fluorescence lifetime imaging and Fourier transform infrared spectroscopy of Michelangelo's David.
Comelli, Daniela; Valentini, Gianluca; Cubeddu, Rinaldo; Toniolo, Lucia
2005-09-01
We developed a combined procedure for the analysis of works of art based on a portable system for fluorescence imaging integrated with analytical measurements on microsamples. The method allows us to localize and identify organic and inorganic compounds present on the surface of artworks. The fluorescence apparatus measures the temporal and spectral features of the fluorescence emission, excited by ultraviolet (UV) laser pulses. The kinetic of the emission is studied through a fluorescence lifetime imaging system, while an optical multichannel analyzer measures the fluorescence spectra of selected points. The chemical characterization of the compounds present on the artistic surfaces is then performed by means of analytical measurements on microsamples collected with the assistance of the fluorescence maps. The previous concepts have been successfully applied to study the contaminants on the surface of Michelangelo's David. The fluorescence analysis combined with Fourier transform infrared (FT-IR) measurements revealed the presence of beeswax, which permeates most of the statue surface, and calcium oxalate deposits mainly arranged in vertical patterns and related to rain washing.
NASA Technical Reports Server (NTRS)
Cimorelli, A. J.; House, F. B.
1974-01-01
The effects of increased concentrations of atmospheric particulate matter on average surface temperature and on the components of the earth's radiation budget are studied. An atmospheric model which couples particulate loading to surface temperature and to changes in the earth's radiation budget was used. A determination of the feasibility of using satellites to monitor the effect of increased atmospheric particulate concentrations is performed. It was found that: (1) a change in man-made particulate loading of a factor of 4 is sufficient to initiate an ice age; (2) variations in the global and hemispheric weighted averages of surface temperature, reflected radiant fluz and emitted radiant flux are nonlinear functions of particulate loading; and (3) a black satellite sphere meets the requirement of night time measurement sensitivity, but not the required day time sensitivity. A nonblack, spherical radiometer whose external optical properties are sensitive to either the reflected radiant fluz or the emitted radiant flux meets the observational sensitivity requirements.
Methods for removing contaminant matter from a porous material
Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID
2010-11-16
Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.
Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate
Wisdom, Katrina M.; Qu, Xiaopeng; Liu, Fangjie; Watson, Gregory S.; Chen, Chuan-Hua
2013-01-01
The self-cleaning function of superhydrophobic surfaces is conventionally attributed to the removal of contaminating particles by impacting or rolling water droplets, which implies the action of external forces such as gravity. Here, we demonstrate a unique self-cleaning mechanism whereby the contaminated superhydrophobic surface is exposed to condensing water vapor, and the contaminants are autonomously removed by the self-propelled jumping motion of the resulting liquid condensate, which partially covers or fully encloses the contaminating particles. The jumping motion off the superhydrophobic surface is powered by the surface energy released upon coalescence of the condensed water phase around the contaminants. The jumping-condensate mechanism is shown to spontaneously clean superhydrophobic cicada wings, where the contaminating particles cannot be removed by gravity, wing vibration, or wind flow. Our findings offer insights for the development of self-cleaning materials. PMID:23630277
Surface contamination to UV-curable acrylates in the furniture and parquet industry.
Surakka, J; Lindh, T; Rosén, G; Fischer, T
2001-03-01
Surface contamination to ultraviolet radiation curable coatings (UV coatings), used increasingly in the parquet and furniture industry, is a matter of concern as a source for skin contamination. UV coatings contain chemically and biologically reactive acrylates, well known as skin contact irritants and sensitizers. Surface contamination may spread secondarily to equipment and other unexpected areas even outside the workplace. Yet, studies concerning this type of contamination are lacking due to lack of suitable sampling methods. Surface contamination of the work environment with risk for skin exposure to UV coating was measured employing a quantitative adhesive tape sampling method developed for this purpose. A pilot study was first performed at three workplaces to evaluate the contamination. In the main study, we wanted to locate and identify in detail the surface contamination of areas where problems exist, and to determine the extent of the problem. Measurements were performed at seven workplaces on two separate workdays (round 1 and 2) within a six-month period. Samples were collected from the workplaces based on the video monitoring of skin contact frequency with the surfaces and categorized into three groups to analyze risk. The pilot study indicated that surface contamination to TPGDA containing UV coatings was common, found in 76 percent of the surfaces, and varied with a maximum of 909 microg TPGDA 10 cm(-2) sampling area. In the main study TPGDA was found in 153 out of 196 collected samples (78.1%); for round one 78.1 percent (82 out of 105 samples) and for round two 78.0 percent (71 out of 91 samples). The average TPGDA mass on positive surface samples was on the first round 2,247 +/- 7,462 microg, and on the second round 2,960 +/- 4,590 microg. We conclude that surface contamination to uncured UV coatings at UV-curing lines is common and this involves a risk for harmful, unintentional skin exposure to acrylates.
NASA Astrophysics Data System (ADS)
Everard, Colm D.; Kim, Moon S.; Lee, Hoonsoo; O'Donnell, Colm P.
2016-05-01
An imaging device to detect fecal contamination in fresh produce fields could allow the producer avoid harvesting fecal contaminated produce. E.coli O157:H7 outbreaks have been associated with fecal contaminated leafy greens. In this study, in-field spectral profiles of bovine fecal matter, soil, and spinach leaves are compared. A common aperture imager designed with two identical monochromatic cameras, a beam splitter, and optical filters was used to simultaneously capture two-spectral images of leaves contaminated with both fecal matter and soil. The optical filters where 10 nm full width half maximum bandpass filters, one at 690 nm and the second at 710 nm. These were mounted in front of the object lenses. New images were created using the ratio of these two spectral images on a pixel by pixel basis. Image analysis results showed that the fecal matter contamination could be distinguished from soil and leaf on the ratio images. The use of this technology has potential to allow detection of fecal contamination in produce fields which can be a source of foodbourne illnesses. It has the added benefit of mitigating cross-contamination during harvesting and processing.
2017-07-20
methyl salicylate, dimethyl methylphosphate, and diisopropyl fluorophosphates following treatment of contaminated surfaces with a soapy water solution...and diisopropyl fluorophosphate following treatment of contaminated surfaces with a soapy water solution is reported along with droplet diffusion on...SURFACES (SLIPS) INTRODUCTION The DoD Chemical and Biological Defense Program (CBDP) seeks to provide protection of forces in a contaminated
NASA Astrophysics Data System (ADS)
Giblin, Jay P.; Dixon, John; Dupuis, Julia R.; Cosofret, Bogdan R.; Marinelli, William J.
2017-05-01
Sensor technologies capable of detecting low vapor pressure liquid surface contaminants, as well as solids, in a noncontact fashion while on-the-move continues to be an important need for the U.S. Army. In this paper, we discuss the development of a long-wave infrared (LWIR, 8-10.5 μm) spatial heterodyne spectrometer coupled with an LWIR illuminator and an automated detection algorithm for detection of surface contaminants from a moving vehicle. The system is designed to detect surface contaminants by repetitively collecting LWIR reflectance spectra of the ground. Detection and identification of surface contaminants is based on spectral correlation of the measured LWIR ground reflectance spectra with high fidelity library spectra and the system's cumulative binary detection response from the sampled ground. We present the concepts of the detection algorithm through a discussion of the system signal model. In addition, we present reflectance spectra of surfaces contaminated with a liquid CWA simulant, triethyl phosphate (TEP), and a solid simulant, acetaminophen acquired while the sensor was stationary and on-the-move. Surfaces included CARC painted steel, asphalt, concrete, and sand. The data collected was analyzed to determine the probability of detecting 800 μm diameter contaminant particles at a 0.5 g/m2 areal density with the SHSCAD traversing a surface.
Method for decontamination of radioactive metal surfaces
Bray, L.A.
1996-08-13
Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.
A noncontacting scanning photoelectron emission technique for bonding surface cleanliness inspection
NASA Technical Reports Server (NTRS)
Gause, Raymond L.
1989-01-01
Molecular contamination of bonding surfaces can drastically affect the bond strength that can be achieved and therefore the structural integrity and reliability of the bonded part. The presence of thin contaminant films on bonding surfaces can result from inadequate or incomplete cleaning methods, from oxide growth during the time between cleaning (such as grit blasting) and bonding, or from failure to properly protect cleaned surfaces from oils, greases, fingerprints, release agents, or deposition of facility airborne molecules generated by adjacent manufacturing or processing operations. Required cleanliness levels for desired bond performance can be determined by testing to correlate bond strength with contaminant type and quantity, thereby establishing the degree of contamination that can be tolerated based on the strength that is needed. Once the maximum acceptable contaminant level is defined, a method is needed to quantitatively measure the contaminant level on the bonding surface prior to bonding to verify that the surface meets the established cleanliness requirement. A photoelectron emission technique for the nondestructive inspection of various bonding surfaces, both metallic and nonmetallic, to provide quantitative data on residual contaminant levels is described. The technique can be used to scan surfaces at speeds of at least 30 ft/min using a servo system to maintain required sensor to surface spacing. The fundamental operation of the photoelectron emission sensor system is explained and the automated scanning system and computer data acquisition hardware and software are described.
Catalytic surface effects on contaminated space shuttle tile in a dissociated nitrogen stream
NASA Technical Reports Server (NTRS)
Flowers, O. L.; Stewart, D. A.
1985-01-01
Visual inspection revealed contamination on the surface of tiles removed from the lower section of the space shuttle orbiter after the second flight of Columbia (STS-2). Possible sources of this contamination and the effect on surface catalycity are presented.
CHARACTERIZING TRANSFER OF SURFACE RESIDUES TO SKIN USING A VIDEO-FLUORESCENT IMAGING TECHNIQUE
Surface-to-skin transfer of contaminants is a complex process. For children's residential exposure, transfer of chemicals from contaminated surfaces such as floors and furniture is potentially significant. Once on the skin, residues and contaminated particles can be transferred b...
Radioactivity measurement of radioactive contaminated soil by using a fiber-optic radiation sensor
NASA Astrophysics Data System (ADS)
Joo, Hanyoung; Kim, Rinah; Moon, Joo Hyun
2016-06-01
A fiber-optic radiation sensor (FORS) was developed to measure the gamma radiation from radioactive contaminated soil. The FORS was fabricated using an inorganic scintillator (Lu,Y)2SiO5:Ce (LYSO:Ce), a mixture of epoxy resin and hardener, aluminum foil, and a plastic optical fiber. Before its real application, the FORS was tested to determine if it performed adequately. The test result showed that the measurements by the FORS adequately followed the theoretically estimated values. Then, the FORS was applied to measure the gamma radiation from radioactive contaminated soil. For comparison, a commercial radiation detector was also applied to measure the same soil samples. The measurement data were analyzed by using a statistical parameter, the critical level to determine if net radioactivity statistically different from background was present in the soil sample. The analysis showed that the soil sample had radioactivity distinguishable from background.
Influence of surface contamination on the wettability of heat transfer surfaces
Forrest, Eric Christopher; Schulze, Roland; Liu, Cheng; ...
2015-08-08
In this study, the wettability of heat transfer surfaces plays an important role in liquid–vapor phase change phenomena, including boiling incipience, the critical heat flux, the Leidenfrost transition, and condensation. The influence of adsorbed surface contamination at the nanoscale, though seldom considered, can have a profound impact on wetting behavior. This study quantitatively investigates the impact of contaminant layer thickness on wettability. Various cleaning treatments are explored on zirconium and 6061 aluminum to determine the effect on contaminant and oxide layer thickness. Angle-resolved X-ray photoelectron spectroscopy can be used to measure the thickness of oxide and contaminant layers, which ismore » then correlated to wettability by measuring the equilibrium contact angle. Results indicate that even after solvent cleaning, the contact angle of water on practical heat transfer surfaces is dominated by a hydrocarbon contaminant overlayer around five nanometers thick.« less
Influence of surface contamination on the wettability of heat transfer surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Eric Christopher; Schulze, Roland; Liu, Cheng
In this study, the wettability of heat transfer surfaces plays an important role in liquid–vapor phase change phenomena, including boiling incipience, the critical heat flux, the Leidenfrost transition, and condensation. The influence of adsorbed surface contamination at the nanoscale, though seldom considered, can have a profound impact on wetting behavior. This study quantitatively investigates the impact of contaminant layer thickness on wettability. Various cleaning treatments are explored on zirconium and 6061 aluminum to determine the effect on contaminant and oxide layer thickness. Angle-resolved X-ray photoelectron spectroscopy can be used to measure the thickness of oxide and contaminant layers, which ismore » then correlated to wettability by measuring the equilibrium contact angle. Results indicate that even after solvent cleaning, the contact angle of water on practical heat transfer surfaces is dominated by a hydrocarbon contaminant overlayer around five nanometers thick.« less
Kanda, Artwell; Ncube, France; Hwende, Tamuka; Makumbe, Peter
2018-05-29
Trace elements released by human activity are ubiquitously detected in surface soil. The trace element contamination statuses of 20 sampling stations at two busy informal industrial sites of Harare city, Zimbabwe, were evaluated using geochemical indices. Spectrophotometric determinations of concentrations of trace elements in surface soil indicated generally higher values than the reference site and the average upper earth's crust. High contamination factors were observed for trace elements across sampling stations at Gazaland and Siyaso informal industrial sites. Concentrations exhibited heterogeneous distribution of trace elements in surface soil varying with the nature of activity at a sampling station. The pollution load index and degree of contamination suggested highly contaminated surface soil with Cd, Cu and Pb particularly where the following activities were done: (1) welding, (2) automobile maintenance and (3) waste dumping. These results may be very important to reduce soil contamination. Paving surfaces may help to reduce dispersal of trace elements deposited on surface soil to other stations and minimise human exposure via inhalation and contact.
NASA Technical Reports Server (NTRS)
Maag, Carl R.; Deshpande, Sunil P.; Johnson, Nicholas L.
1997-01-01
A flight experiment flown onboard the Mir space station as a part of the Euromir 95 mission is considered. The aim of the experiment was to develop a greater understanding of the effects of the space environment on materials. In addition to the active enumeration of particle impacts and trajectories, the aim was to capture hypervelocity particles for their return to earth. Postflight measurements were performed to determine the flux density, diameters and subsequent effects on various optical thermal control and structural materials. Sensors actively measured the atomic oxygen flux, the contamination depostion and their effects during the mission. Two clouds of small particles were detected during a period of 100 days onboard Mir. It is concluded that the measured momenta of these particles suggests that their size and velocity are such that they cause damage to optics and thermal control surfaces.
Climatology analysis of cirrus cloud in ARM site: South Great Plain
NASA Astrophysics Data System (ADS)
Olayinka, K.
2017-12-01
Cirrus cloud play an important role in the atmospheric energy balance and hence in the earth's climate system. The properties of optically thin clouds can be determined from measurements of transmission of the direct solar beam. The accuracy of cloud optical properties determined in this way is compromised by contamination of the direct transmission by light that is scattered into the sensors field of view. With the forward scattering correction method developed by Min et al., (2004), the accuracy of thin cloud retrievals from MFRSR has been improved. Our result shows over 30% of cirrus cloud present in the atmosphere are within optical depth between (1-2). In this study, we do statistics studies on cirrus clouds properties based on multi-years cirrus cloud measurements from MFRSR at ARM site from the South Great Plain (SGP) site due to its relatively easy accessibility, wide variability of climate cloud types and surface flux properties, large seasonal variation in temperature and specific humidity. Through the statistic studies, temporal and spatial variations of cirrus clouds are investigated. Since the presence of cirrus cloud increases the effect of greenhouse gases, we will retrieve the aerosol optical depth in all the cirrus cloud regions using a radiative transfer model for atmospheric correction. Calculate thin clouds optical depth (COD), and aerosol optical depth (AOD) using a radiative transfer model algorithm, e.g.: MODTRAN (MODerate resolution atmospheric TRANsmission)
Assessment of satellite derived diffuse attenuation coefficients ...
Optical data collected in coastal waters off South Florida and in the Caribbean Sea between January 2009 and December 2010 were used to evaluate products derived with three bio-optical inversion algorithms applied to MOIDS/Aqua, MODIS/Terra, and SeaWiFS satellite observations. The products included the diffuse attenuation coefficient at 490 nm (Kd_490) and for the visible range (Kd_PAR), and euphotic depth (Zeu, corresponding to 1% of the surface incident photosynthetically available radiation or PAR). Above-water hyperspectral reflectance data collected over optically shallow waters of the Florida Keys between June 1997 and August 2011 were used to help understand algorithm performance over optically shallow waters. The in situ data covered a variety of water types in South Florida and the Caribbean Sea, ranging from deep clear waters, turbid coastal waters, and optically shallow waters (Kd_490 range of ~0.03 – 1.29m-1). An algorithm based on Inherent Optical Properties (IOPs) showed the best performance (RMSD < 13% and R2 ~1.0 for MODIS/Aqua and SeaWiFS). Two algorithms based on empirical regressions performed well for offshore clear waters, but underestimated Kd_490 and Kd_PAR in coastal waters due to high turbidity or shallow bottom contamination. Similar results were obtained when only in situ data were used to evaluate algorithm performance. The excellent agreement between satellite-derived remote sensing reflectance (Rrs) and in situ Rrs suggested that
Cennamo, Nunzio; D'Agostino, Girolamo; Porto, Gianni; Biasiolo, Adriano; Perri, Chiara; Arcadio, Francesco; Zeni, Luigi
2018-06-05
A novel Molecularly Imprinted Polymer (MIP) able to bind perfluorinated compounds, combined with a surface plasmon resonance (SPR) optical fiber platform, is presented. The new MIP receptor has been deposited on a D-shaped plastic optical fiber (POF) covered with a photoresist buffer layer and a thin gold film. The experimental results have shown that the developed SPR-POF-MIP sensor makes it possible to selectively detect the above compounds. In this work, we present the results obtained with perfluorooctanoate (PFOA) compound, and they hold true when obtained with a perfluorinated alkylated substances (PFAs) mixture sample. The sensor's response is the same for PFOA, perfluorooctanesulfonate (PFOS) or PFA contaminants in the C₄⁻C 11 range. We have also tested a sensor based on a non-imprinted polymer (NIP) on the same SPR in a D-shaped POF platform. The limit of detection (LOD) of the developed chemical sensor was 0.13 ppb. It is similar to the one obtained by the configuration based on a specific antibody for PFOA/PFOS exploiting the same SPR-POF platform, already reported in literature. The advantage of an MIP receptor is that it presents a better stability out of the native environment, very good reproducibility, low cost and, furthermore, it can be directly deposited on the gold layer, without modifying the metal surface by functionalizing procedures.
Effects of PCB Substrate Surface Finish, Flux, and Phosphorus Content on Ionic Contamination
NASA Astrophysics Data System (ADS)
Bacior, M.; Sobczak, N.; Siewiorek, A.; Kudyba, A.; Homa, M.; Nowak, R.; Dziula, M.; Masłoń, S.
2015-02-01
The ionic contamination on printed circuit boards (PCB) having different surface finishes was examined using ionograph. The study was performed at the RT on three types of PCBs covered with: (i) hot air solder leveling (HASL LF), (ii) electroless nickel immersion gold (ENIG), and (iii) organic surface protectant (OSP), all on Cu substrates, as well as two types of fluxes, namely EF2202 and RF800. In the group of boards without soldered components, the lowest average value of contamination was for the ENIG 18 µm surface (0.01 μg NaCl/cm2). Boards with soldered components were more contaminated (from 0.29 μg NaCl/cm2 for the HASL LF 18 µm surface). After spraying boards with fluxing agents, the values of contaminants were the highest. The influence of phosphorus content in Ni-P layer of ENIG finish on ionic contamination was examined. In the group of PCBs with Au coating, the smallest amount of surface contaminants (0.32 μg NaCl/cm2) was for Ni-2-5%P layer. PCBs with Ni-11%P layer were higher contaminated (0.47 μg NaCl/cm2), and another with Ni-8%P layer had 0.81 μg NaCl/cm2. PCBs without Au coating, had the lowest contamination (0.48 μg NaCl/cm2) at phosphorous content equal 11%P. Higher contamination (0.67 μg NaCl/cm2) was at 2-5%P, up to 1.98 μg NaCl/cm2 for 8% of P. Boards with Au finish have lower value of contamination than identical boards without Au layer thus contributing to better reliability of electronic assemblies, since its failures due to current leakage and corrosion can be caused by contaminants.
NASA Astrophysics Data System (ADS)
Trinh, R. C.; Holt, B.; Gierach, M.
2016-12-01
Coastal pollution poses both a major health and environmental hazard, not only for beachgoers and coastal communities, but for marine organisms as well. Stormwater runoff is the largest source of pollution in the coastal waters of the Southern California Bight (SCB). The SCB is the final destination of four major urban watersheds and associated rivers, Ballona Creek, the Los Angeles River, the San Gabriel River, and the Santa Ana River, which act as channels for runoff and pollution during and after episodic rainstorms. Previous studies of SCB water quality have made use of both fine resolution Synthetic Aperture Radar (SAR) imagery and wide-swath medium resolution optical "ocean color" imagery from SeaWiFS and MODIS. In this study, we expand on previous SAR efforts, compiling a more extensive collection of multi-sensor SAR data, spanning from 1992 to 2014, analyzing the surface slick component of stormwater plumes. We demonstrate the use of SAR data in early detection of coastal stormwater plumes, relating plume extent to cumulative river discharge, and shoreline fecal bacteria loads. Intensity maps of the primary extent and direction of plumes were created, identifying coastal areas that may be subject to the greatest risk of environmental contamination. Additionally, we illustrate the differences in the detection of SAR surface plumes with the sediment-related discharge plumes derived from MODIS ocean color imagery. Finally, we provide a concept for satellite monitoring of stormwater plumes, combining both optical and radar sensors, to be used to guide the collection of in situ water quality data and enhance the assessment of related beach closures.
Superhydrophobic coated apparatus for liquid purification by evaporative condensation
Simpson, John T; McNeany, Steve R; Dinsmore, Thomas V; Hunter, Scott R; Ivanov, Ilia N
2014-03-11
Disclosed are examples of apparatuses for evaporative purification of a contaminated liquid. In each example, there is a first vessel for storing the contaminated fluid. The first vessel includes a surface coated with a layer of superhydrophobic material and the surface is at least partially in contact with the contaminated liquid. The contaminants do not adhere to the surface as the purified liquid evaporates, thus simplifying maintenance of the apparatus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullin, I.Sh.; Bragin, V.E.; Bykanov, A.N.
Gas discharge plasma modification of polymer materials and metals is one of the known physical approaches for improving of materials biocompatibility in ophthalmology and surgery. The surface treatment in RF discharges can be effectively realized in the discharge afterglow and in the discharge region itself too. This modification method is more convenient and produces more uniform surfaces in comparison with other discharge types. The carried out experiments and published up to now results show that interaction of UV radiation, fluxes of ions, electrons and metastable particles with material`s surface changes chemical composition and surface structure. The exerting of these agentsmore » on the sample surface produces the following effects. There are processes of physical and plasma-chemical surface etching producing effective surface cleaning of different types of contaminations. It may be surface contaminations by hydrocarbons because of preliminary surface contacts with biological or physical bodies. It may be surface contaminations caused by characteristic properties of chemical technology too. There is a surface layer with thickness from some angstroms up to few hundreds of angstroms. The chemical content and structure of this layer is distinguished from the bulk polymer properties. The presence of such {open_quotes}technological{close_quotes} contaminations produces the layer of material substantially differing from the base polymer. The basic layer physical and chemical properties for example, gas permeation rate may substantially differ from the base polymer. Attempts to clean the surface from these contaminations by chemical methods (solutions) have not been successful and produced contaminations of more deep polymer layers. So the plasma cleaning is the most profitable method of polymer treatment for removing the surface contaminations. The improving of wettability occurs during this stage of treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabakov, Boyan
2015-07-01
Microfabricated segmented surface ion traps are one viable avenue to scalable quantum information processing. At Sandia National Laboratories we design, fabricate, and characterize such traps. Our unique fabrication capabilities allow us to design traps that facilitate tasks beyond quantum information processing. The design and performance of a trap with a target capability of storing hundreds of equally spaced ions on a ring is described. Such a device could aid experimental studies of phenomena as diverse as Hawking radiation, quantum phase transitions, and the Aharonov - Bohm effect. The fabricated device is demonstrated to hold a ~ 400 ion circular crystal,more » with 9 μm average spacing between ions. The task is accomplished by first characterizing undesired electric fields in the trapping volume and then designing and applying an electric field that substantially reduces the undesired fields. In addition, experimental efforts are described to reduce the motional heating rates in a surface trap by low energy in situ argon plasma treatment that reduces the amount of surface contaminants. The experiment explores the premise that carbonaceous compounds present on the surface contribute to the anomalous heating of secular motion modes in surface traps. This is a research area of fundamental interest to the ion trapping community, as heating adversely affects coherence and thus gate fidelity. The device used provides high optical laser access, substantially reducing scatter from the surface, and thus charging that may lead to excess micromotion. Heating rates for different axial mode frequencies are compared before and after plasma treatment. The presence of a carbon source near the plasma prevents making a conclusion on the observed absence of change in heating rates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
XU, X. George; Zhang, X.C.
Concrete and asbestos-containing materials were widely used in DOE building construction in the 1940s and 1950s. Over the years, many of these porous materials have been contaminated with radioactive sources, on and below the surface. To improve current practice in identifying hazardous materials and in characterizing radioactive contamination, an interdisciplinary team from Rensselaer has conducted research in two aspects: (1) to develop terahertz time-domain spectroscopy and imaging system that can be used to analyze environmental samples such as asbestos in the field, and (2) to develop algorithms for characterizing the radioactive contamination depth profiles in real-time in the field usingmore » gamma spectroscopy. The basic research focused on the following: (1) mechanism of generating of broadband pulsed radiation in terahertz region, (2) optimal free-space electro-optic sampling for asbestos, (3) absorption and transmission mechanisms of asbestos in THz region, (4) the role of asbestos sample conditions on the temporal and spectral distributions, (5) real-time identification and mapping of asbestos using THz imaging, (7) Monte Carlo modeling of distributed contamination from diffusion of radioactive materials into porous concrete and asbestos materials, (8) development of unfolding algorithms for gamma spectroscopy, and (9) portable and integrated spectroscopy systems for field testing in DOE. Final results of the project show that the combination of these innovative approaches has the potential to bring significant improvement in future risk reduction and cost/time saving in DOE's D and D activities.« less
Polyphosphazine-based polymer materials
Fox, Robert V.; Avci, Recep; Groenewold, Gary S.
2010-05-25
Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.
The role of the surface environment in healthcare-associated infections.
Weber, David J; Anderson, Deverick; Rutala, William A
2013-08-01
This article reviews the evidence demonstrating the importance of contamination of hospital surfaces in the transmission of healthcare-associated pathogens and interventions scientifically demonstrated to reduce the levels of microbial contamination and decrease healthcare-associated infections. The contaminated surface environment in hospitals plays an important role in the transmission of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus spp. (VRE), Clostridium difficile, Acinetobacter spp., and norovirus. Improved surface cleaning and disinfection can reduce transmission of these pathogens. 'No-touch' methods of room disinfection (i.e., devices which produce ultraviolet light or hydrogen peroxide) and 'self-disinfecting' surfaces (e.g., copper) also show promise to decrease contamination and reduce healthcare-associated infections. Hospital surfaces are frequently contaminated with important healthcare-associated pathogens. Contact with the contaminated environment by healthcare personnel is equally as likely as direct contact with a patient to lead to contamination of the healthcare provider's hands or gloves that may result in patient-to-patient transmission of nosocomial pathogens. Admission to a room previously occupied by a patient with MRSA, VRE, Acinetobacter, or C. difficile increases the risk for the subsequent patient admitted to the room to acquire the pathogen. Improved cleaning and disinfection of room surfaces decreases the risk of healthcare-associated infections.
Tamburini, Elena; Donegà, Valentina; Marchetti, Maria Gabriella; Pedrini, Paola; Monticelli, Cecilia; Balbo, Andrea
2015-01-01
The worktops in both chemical and microbiological laboratories are the surfaces most vulnerable to damage and exposure to contamination by indoor pollutants. The rate at which particles are deposited on indoor surfaces is an important parameter to determine human exposure to airborne biological particles. In contrast to what has been established for inorganic pollutants, no limit has been set by law for microbial contamination in indoor air. To our knowledge, a comparative study on the effect of surfaces on the deposition of microbes has not been carried out. An evaluation of the microbial contamination of worktop materials could be of crucial importance, both for safety reasons and for the reliability of tests and experiments that need to be carried out in non-contaminated environments. The aim of this study was to evaluate the overall microbial contamination (fungi, mesophilic and psychrophilic bacteria, staphylococci) on six widely used worktop materials in laboratories (glass, stainless steel, fine porcelain stoneware, post-forming laminate, high-performing laminate and enamel steel) and to correlate it with the characteristics of the surfaces. After cleaning, the kinetics of microbial re-contamination were also evaluated for all surfaces. PMID:26193296
The Swift Project Contamination Control Program: A Case study of Balancing Cost, Schedule and Risk
NASA Technical Reports Server (NTRS)
Hansen, Patricia A.; Day, Diane; Secunda, Mark
2003-01-01
The Swift Observatory will be launched in early 2004 to examine the dynamic process of gamma ray burst (GRB) events. The multi-wavelength Observatory will study the GRB afterglow characteristics, which will help to answer fundamental questions about both the structure and the evolution of the universe. The Swift Observatory Contamination Control Program has been developed to aid in ensuring the success of the on-orbit performance of two of the primary instruments: the Ultraviolet and Optical Telescope (UVOT) and the X-Ray Telescope (XRT). During the design phase of the Observatory, the contamination control program evolved and trade studies were performed to assess the risk of contaminating the sensitive UVOT and XRT optics during both pre-launch testing and on-orbit operations, within the constraints of the overall program cost and schedule.
The Swift Project Contamination Control Program: A Case Study of Balancing Cost, Schedule and Risk
NASA Technical Reports Server (NTRS)
Hansen, Patricia A.; Day, Diane T.; Secunda, Mark S.; Rosecrans, Glenn P.
2004-01-01
The Swift Observatory will be launched in early 2004 to examine the dynamic process of gamma ray burst (GRB) events. The multi-wavelength Observatory will study the GRB afterglow characteristics, which will help to answer fundamental questions about both the structure and the evolution of the universe. The Swift Observatory Contamination Control Program has been developed to aid in ensuring the success of the on-orbit performance of two of the primary instruments: the Ultraviolet and Optical Telescope (UVOT) and the X-Ray Telescope (XRT). During the design phase of the Observatory, the contamination control program evolved and trade studies were performed to assess the risk of contaminating the sensitive UVOT and XRT optics during both pre-launch testing and on-orbit operations, within the constraints of the overall program cost and schedule.
Durmuş, Efkan; Güneş, Ali; Kalkan, Habil
2017-01-01
Aflatoxins are toxic metabolites that are mainly produced by members of the Aspergillus section Flavi on many agricultural products. Certain agricultural products such as figs are known to be high risk products for aflatoxin contamination. Aflatoxin contaminated figs may show a bright greenish yellow fluorescence (BGYF) under ultraviolet (UV) light at a wavelength of 365 nm. Traditionally, BGYF positive figs are manually selected by workers. However, manual selection depends on the expertise level of the workers and it may cause them skin-related health problems due to UV radiation. In this study, we propose a non-invasive approach to detect aflatoxin and surface mould contaminated figs by using Fourier transform near-infrared (FT-NIR) reflectance spectroscopy. A classification accuracy of 100% is achieved for classifying the figs into aflatoxin contaminated/uncontaminated and surface mould contaminated/uncontaminated categories. In addition, a strong correlation has been found between aflatoxin and surface mould. Combined with pattern classification methods, the NIR spectroscopy can be used to detect aflatoxin contaminated figs non-invasively. Furthermore, a positive correlation between surface mould and aflatoxin contamination leads to a promising alternative indicator for the detection of aflatoxin-contaminated figs. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Optical nulling apparatus and method for testing an optical surface
NASA Technical Reports Server (NTRS)
Olczak, Eugene (Inventor); Hannon, John J. (Inventor); Dey, Thomas W. (Inventor); Jensen, Arthur E. (Inventor)
2008-01-01
An optical nulling apparatus for testing an optical surface includes an aspheric mirror having a reflecting surface for imaging light near or onto the optical surface under test, where the aspheric mirror is configured to reduce spherical aberration of the optical surface under test. The apparatus includes a light source for emitting light toward the aspheric mirror, the light source longitudinally aligned with the aspheric mirror and the optical surface under test. The aspheric mirror is disposed between the light source and the optical surface under test, and the emitted light is reflected off the reflecting surface of the aspheric mirror and imaged near or onto the optical surface under test. An optical measuring device is disposed between the light source and the aspheric mirror, where light reflected from the optical surface under test enters the optical measuring device. An imaging mirror is disposed longitudinally between the light source and the aspheric mirror, and the imaging mirror is configured to again reflect light, which is first reflected from the reflecting surface of the aspheric mirror, onto the optical surface under test.
NASA Technical Reports Server (NTRS)
Hasegawa, Mark; Freese, Scott; Kauder, Lon; Triolo, Jack
2011-01-01
New system requirements pertaining to thermal optical properties and coating electrical properties are commonly specified on non-low earth orbit missions. An increasing number of projects are specifying coatings with a surface resistivity of less than lE-9 ohm/square to mitigate electrostatic charge buildup events over a range of operational temperatures. There are a limited number of coatings that. meet these electrical property requirements while having flight derived optical properties in representative environments. Goddard Space Flight Center Code 546, Contamination and Thermal Coatings Group has recently explored the variety of electrically conductive white coatings available through domestic vendors to evaluate properties to meet project requirements in a geostationary orbit. The lack of significant flight data in representative environments required the careful selection of samples in ground based tests to establish end of life thermal properties. Attention must be given to the origin and pedigree of samples used on past on-orbit experiments to insure that the present formulations for the materials are similar and will react in similar manner.
Direct dry transfer of CVD graphene to an optical substrate by in situ photo-polymerization
NASA Astrophysics Data System (ADS)
Kessler, Felipe; Muñoz, Pablo A. R.; Phelan, Ciaran; Romani, Eric C.; Larrudé, Dunieskys R. G.; Freire, Fernando L.; Thoroh de Souza, Eunézio A.; de Matos, Christiano J. S.; Fechine, Guilhermino J. M.
2018-05-01
Here, we report on a method that allows graphene produced by chemical vapor deposition (CVD) to be directly transferred to an optically transparent photo resin, by in situ photo-polymerization of the latter, with high efficiency and low contamination. Two photocurable resins, A and B, with different viscosities but essentially the same chemical structure, were used. Raman spectroscopy and surface energy results show that large continuous areas of graphene were transferred with minimal defects to the lower viscosity resin (B), due to the better contact between the resin and graphene. As a proof-of-principle optical experiment, graphene on the polymeric substrate was subjected to high-intensity femtosecond infrared pulses and third-harmonic generation was observed with no noticeable degradation of the sample. A sheet third-order susceptibility χ (3) = 0.71 ×10-28m3V-2 was obtained, matching that of graphene on a glass substrate. These results indicate the suitability of the proposed transfer method, and of the photo resin, for the production of nonlinear photonic components and devices.
Passive Standoff Detection of Chemical Warfare Agents on Surfaces
NASA Astrophysics Data System (ADS)
Thériault, Jean-Marc; Puckrin, Eldon; Hancock, Jim; Lecavalier, Pierre; Lepage, Carmela Jackson; Jensen, James O.
2004-11-01
Results are presented on the passive standoff detection and identification of chemical warfare (CW) liquid agents on surfaces by the Fourier-transform IR radiometry. This study was performed during surface contamination trials at Defence Research and Development Canada-Suffield in September 2002. The goal was to verify that passive long-wave IR spectrometric sensors can potentially remotely detect surfaces contaminated with CW agents. The passive sensor, the Compact Atmospheric Sounding Interferometer, was used in the trial to obtain laboratory and field measurements of CW liquid agents, HD and VX. The agents were applied to high-reflectivity surfaces of aluminum, low-reflectivity surfaces of Mylar, and several other materials including an armored personnel carrier. The field measurements were obtained at a standoff distance of 60 m from the target surfaces. Results indicate that liquid contaminant agents deposited on high-reflectivity surfaces can be detected, identified, and possibly quantified with passive sensors. For low-reflectivity surfaces the presence of the contaminants can usually be detected; however, their identification based on simple correlations with the absorption spectrum of the pure contaminant is not possible.
Surface polishing of niobium for superconducting radio frequency (SRF) cavity applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Liang
2014-08-01
Niobium cavities are important components in modern particle accelerators based on superconducting radio frequency (SRF) technology. The interior of SRF cavities are cleaned and polished in order to produce high accelerating field and low power dissipation on the cavity wall. Current polishing methods, buffered chemical polishing (BCP) and electro-polishing (EP), have their advantages and limitations. We seek to improve current methods and explore laser polishing (LP) as a greener alternative of chemical methods. The topography and removal rate of BCP at different conditions (duration, temperature, sample orientation, flow rate) was studied with optical microscopy, scanning electron microscopy (SEM), and electronmore » backscatter diffraction (EBSD). Differential etching on different crystal orientations is the main contributor to fine grain niobium BCP topography, with gas evolution playing a secondary role. The surface of single crystal and bi-crystal niobium is smooth even after heavy BCP. The topography of fine grain niobium depends on total removal. The removal rate increases with temperature and surface acid flow rate within the rage of 0~20 °C, with chemical reaction being the possible dominate rate control mechanism. Surface flow helps to regulate temperature and avoid gas accumulation on the surface. The effect of surface flow rate on niobium EP was studied with optical microscopy, atomic force microscopy (AFM), and power spectral density (PSD) analysis. Within the range of 0~3.7 cm/s, no significant difference was found on the removal rate and the macro roughness. Possible improvement on the micro roughness with increased surface flow rate was observed. The effect of fluence and pulse accumulation on niobium topography during LP was studied with optical microscopy, SEM, AFM, and PSD analysis. Polishing on micro scale was achieved within fluence range of 0.57~0.90 J/cm2, with pulse accumulation adjusted accordingly. Larger area treatment was proved possible by overlapping laser tracks at proper ratio. Comparison of topography and PSD indicates that LP smooths the surface in a way similar to EP. The optimized LP parameters were applied to different types of niobium surfaces representing different stages in cavity fabrication. LP reduces the sharpness on rough surfaces effectively, while doing no harm to smooth surfaces. Secondary ion mass spectrometer (SIMS) analysis showed that LP reduces the oxide layer slightly and no contamination occurred from LP. EBSD showed no significant change on crystal structure after LP.« less
Sherrill, Marvin G.
1977-01-01
Door County, a recreational and fruit-growing area bordering Lake Michigan in northeastern Wisconsin, has had a long history of ground-water contamination from surface and near-surface sources. Contamination is most severe in late summer when fruit-canning operations and the influx of tourists create additional wastes. Silurian dolomite is the upper bedrock unit in the county and yields generally adequate supplies of very hard water with locally objectionable concentrations of iron and nitrate. Thin soil cover and well-fractured dolomitic bedrock give easy entry to ground-water contaminants throughout large parts of Door County. Many contaminants enter the dolomite by surface or near-surface seepage. There is little attenuation of contamination concentrations in the well-jointed dolomite, and contaminants may travel long distances underground in a relatively short time. The major source of ground-water contamination is bacteria, from individual waste-disposal systems, agricultural, industrial, and municipal wastes. Areas of the county underlain by contaminated zones include only a small percentage of the total ground-water system and are separated by large volumes of ground water free of contamination. (Woodard-USGS)
Plasma cleaning of beamline optical components: Contamination and gas composition effects
NASA Astrophysics Data System (ADS)
Rosenberg, Richard A.; Smith, James A.; Wallace, Daniel J.
1992-01-01
We have initiated a program to study the impact of gas composition on the carbon removal rate during plasma cleaning of optical components, and of possible contamination due to the plasma processing. The measurements were performed in a test chamber designed to simulate the geometry of the grating/Codling mirror section of a Grasshopper monochromator. Removal rates were determined for a direct-current (dc) (Al electrode) discharge using a quartz crystal microbalance coated with polymethylmethacrylate, located at the position of the grating. Auger electron spectroscopy analysis of strateg- ically located, gold-coated stainless steel samples was employed to determine contamination. The relative removal rates of the gases studied were 3% C2F6/O2≫ O2+H2O≳O2˜N2O≳H2≳N2. Although the C2F6/O2 gas mixture showed a 20 times greater removal rate than its nearest competitor, it also caused significant contamination to occur. Contamination studies were performed for both dc and radio-frequency (rf) discharges. For the dc discharge we found that great care must be taken in order to avoid Al contamination; for the rf discharge, significant Fe contamination was observed.
Poorly processed reusable surface disinfection tissue dispensers may be a source of infection.
Kampf, Günter; Degenhardt, Stina; Lackner, Sibylle; Jesse, Katrin; von Baum, Heike; Ostermeyer, Christiane
2014-01-21
Reusable surface disinfectant tissue dispensers are used in hospitals in many countries because they allow immediate access to pre-soaked tissues for targeted surface decontamination. On the other hand disinfectant solutions with some active ingredients may get contaminated and cause outbreaks. We determined the frequency of contaminated surface disinfectant solutions in reusable dispensers and the ability of isolates to multiply in different formulations. Reusable tissue dispensers with different surface disinfectants were randomly collected from healthcare facilities. Solutions were investigated for bacterial contamination. The efficacy of two surface disinfectants was determined in suspension tests against two isolated species directly from a contaminated solution or after 5 passages without selection pressure in triplicate. Freshly prepared use solutions were contaminated to determine survival of isolates. 66 dispensers containing disinfectant solutions with surface-active ingredients were collected in 15 healthcare facilities. 28 dispensers from nine healthcare facilities were contaminated with approximately 107 cells per mL of Achromobacter species 3 (9 hospitals), Achromobacter xylosoxidans or Serratia marcescens (1 hospital each). In none of the hospitals dispenser processing had been adequately performed. Isolates regained susceptibility to the disinfectants after five passages without selection pressure but were still able to multiply in different formulations from different manufacturers at room temperature within 7 days. Neglecting adequate processing of surface disinfectant dispensers has contributed to frequent and heavy contamination of use-solutions based on surface active ingredients. Tissue dispenser processing should be taken seriously in clinical practice.
Poorly processed reusable surface disinfection tissue dispensers may be a source of infection
2014-01-01
Background Reusable surface disinfectant tissue dispensers are used in hospitals in many countries because they allow immediate access to pre-soaked tissues for targeted surface decontamination. On the other hand disinfectant solutions with some active ingredients may get contaminated and cause outbreaks. We determined the frequency of contaminated surface disinfectant solutions in reusable dispensers and the ability of isolates to multiply in different formulations. Methods Reusable tissue dispensers with different surface disinfectants were randomly collected from healthcare facilities. Solutions were investigated for bacterial contamination. The efficacy of two surface disinfectants was determined in suspension tests against two isolated species directly from a contaminated solution or after 5 passages without selection pressure in triplicate. Freshly prepared use solutions were contaminated to determine survival of isolates. Results 66 dispensers containing disinfectant solutions with surface-active ingredients were collected in 15 healthcare facilities. 28 dispensers from nine healthcare facilities were contaminated with approximately 107 cells per mL of Achromobacter species 3 (9 hospitals), Achromobacter xylosoxidans or Serratia marcescens (1 hospital each). In none of the hospitals dispenser processing had been adequately performed. Isolates regained susceptibility to the disinfectants after five passages without selection pressure but were still able to multiply in different formulations from different manufacturers at room temperature within 7 days. Conclusions Neglecting adequate processing of surface disinfectant dispensers has contributed to frequent and heavy contamination of use-solutions based on surface active ingredients. Tissue dispenser processing should be taken seriously in clinical practice. PMID:24447780
Immediate Repair Bond Strength of Fiber-reinforced Composite after Saliva or Water Contamination.
Bijelic-Donova, Jasmina; Flett, Andrew; Lassila, Lippo V J; Vallittu, Pekka K
2018-05-31
This in vitro study aimed to evaluate the shear bond strength (SBS) of particulate filler composite (PFC) to saliva- or water-contaminated fiber-reinforced composite (FRC). One type of FRC substrate with semi-interpenetrating polymer matrix (semi-IPN) (everStick C&B) was used in this investigation. A microhybrid PFC (Filtek Z250) substrate served as control. Freshly cured PFC and FRC substrates were first subjected to different contamination and surface cleaning treatments, then the microhybrid PFC restorative material (Filtek Z250) was built up on the substrates in 2-mm increments and light cured. Uncontaminated and saliva- or water-contaminated substrate surfaces were either left untreated or were cleaned via phosphoric acid etching or water spray accompanied with or without adhesive composite application prior applying the adherent PFC material. SBS was evaluated after thermocycling the specimens (6000 cycles, 5°C and 55°C). Three-way ANOVA showed that both the surface contamination and the surface treatment signficantly affected the bond strength (p < 0.05). Saliva contamination reduced the SBS more than did the water contamination. SBS loss after saliva contamination was 73.7% and 31.3% for PFC and FRC, respectively. After water contamination, SBS loss was 17.2% and 13.3% for PFC and FRC, respectively. The type of surface treatment was significant for PFC (p < 0.05), but not for FRC (p = 0.572). Upon contamination of freshly cured PFC or semi-IPN FRC, surfaces should be re-prepared via phosphoric acid etching, water cleaning, drying, and application of adhesive composite in order to recover optimal bond strength.
The X-ray reflectivity of the AXAF VETA-I optics
NASA Technical Reports Server (NTRS)
Kellogg, E.; Chartas, G.; Graessle, D.; Hughes, J. P.; Van Speybroeck, L.; Zhao, Ping; Weisskopf, M. C.; Elsner, R. F.; O'Dell, S. L.
1993-01-01
The study measures the X-ray reflectivity of the AXAF VETA-I optic and compares it with theoretical predictions. Measurements made at energies of 0.28, 0.9, 1.5, 2.1, and 2.3 keV are compared with predictions based on ray trace calculations. Results on the variation of the reflectivity with energy as well as the absolute value of the reflectivity are presented. A synchrotron reflectivity measurement with a high-energy resolution over the range 0.26 to 1.8 keV on a flat Zerodur sample is also reported. Evidence is found for contamination of the flat by a thin layer of carbon on the surface, and the possibility of alteration of the surface composition of the VETA-I mirror, perhaps by the polishing technique. The overall agreement between the measured and calculated effective area of VETA-I is between 2.6 and 10 percent. Measurements at individual energies deviate from the best-fitting calculation to 0.3 to 0.8 percent, averaging 0.6 percent at energies below the high energy cutoff of the mirror reflectivity, and are as high as 20.7 percent at the cutoff.
Surface interactions relevant to space station contamination problems
NASA Technical Reports Server (NTRS)
Dickinson, J. T.
1988-01-01
The physical and chemical processes at solid surfaces which can contribute to Space Station contamination problems are reviewed. Suggested areas for experimental studies to provide data to improve contamination modeling efforts are presented.
Edmunds, L M; Rawlinson, A
1998-10-01
Blood contamination of 16 surfaces in the dental surgery was investigated using the Kastle-Meyer test for haemoglobin, after three types of periodontal procedures had been performed on a total of 30 patients. The effect of cleaning surfaces contaminated by blood was investigated using the same test. Cleaning materials used in the dental surgery were tested to rule out the possibility of false positive outcomes and the sensitivity of the test was determined prior to the study. The results show a marked variation in the degree of contamination and efficacy of cleaning following treatment. Overall, root planing was associated with the most widespread and frequent blood contamination and gingival surgery the least. The surgery work surface, edge of the spittoon, aspirator tube and ultrasonic scaler handpiece into which the ultrasonic insert fits, were the most frequently contaminated surfaces. The work surface, dentist's pen, light switch and handle were cleaned most effectively. The least effectively cleaned surfaces were the water dispenser switch, aspirator tube, bracket table and ultrasonic scaler handpiece. Methods for reducing this potential source of cross-infection are discussed.
Moreland, Richard S.; O'Hara, Charles G.
1994-01-01
A geographic information system was used to integrate digital spatial data sets describing geology, slope of the land surface, depth to water table, soil permeability, and land use/land cover to rate the relative susceptibility of unconfined parts of the Mississippi River alluvial, Cockfield, and Sparta aquifers in west-central Mississippi to contamination from surface sources. Areas were rated as having a very low, low, moderate, high, or very high susceptibility to contamination from surface sources. Less than 1 percent of the Mississippi River alluvial aquifer has a very high susceptibility to surface contamination, 35 percent has a high susceptibility, 62 percent has a moderate susceptibility, and 2 percent has a low suscepti- bility. About 43 percent of the Cockfield aquifer has a high susceptibility to surface contamination, 57 percent has a moderate susceptibility, and less than 1 percent has a low susceptibility. About 41 percent of the Sparta aquifer has a high suscepti- bility, and less than 1 percent has a low suscepti- bility, and 1 percent has a low susceptibility. For all three aquifers, less than 1 percent has a very low susceptibility to surface contamination.
Systems and strippable coatings for decontaminating structures that include porous material
Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID
2011-12-06
Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.
Optics assembly for high power laser tools
Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.
2016-06-07
There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.
Schumacher, Loni L; Huss, Anne R; Cochrane, Roger A; Stark, Charles R; Woodworth, Jason C; Bai, Jianfa; Poulsen, Elizabeth G; Chen, Qi; Main, Rodger G; Zhang, Jianqiang; Gauger, Phillip C; Ramirez, Alejandro; Derscheid, Rachel J; Magstadt, Drew M; Dritz, Steve S; Jones, Cassandra K
2017-01-01
New regulatory and consumer demands highlight the importance of animal feed as a part of our national food safety system. Porcine epidemic diarrhea virus (PEDV) is the first viral pathogen confirmed to be widely transmissible in animal food. Because the potential for viral contamination in animal food is not well characterized, the objectives of this study were to 1) observe the magnitude of virus contamination in an animal food manufacturing facility, and 2) investigate a proposed method, feed sequencing, to decrease virus decontamination on animal food-contact surfaces. A U.S. virulent PEDV isolate was used to inoculate 50 kg swine feed, which was mixed, conveyed, and discharged into bags using pilot-scale feed manufacturing equipment. Surfaces were swabbed and analyzed for the presence of PEDV RNA by quantitative real-time polymerase chain reaction (qPCR). Environmental swabs indicated complete contamination of animal food-contact surfaces (0/40 vs. 48/48, positive baseline samples/total baseline samples, positive subsequent samples/total subsequent samples, respectively; P < 0.05) and near complete contamination of non-animal food-contact surfaces (0/24 vs. 16/18, positive baseline samples/total baseline samples, positive subsequent samples/total subsequent samples, respectively; P < 0.05). Flushing animal food-contact surfaces with low-risk feed is commonly used to reduce cross-contamination in animal feed manufacturing. Thus, four subsequent 50 kg batches of virus-free swine feed were manufactured using the same system to test its impact on decontaminating animal food-contact surfaces. Even after 4 subsequent sequences, animal food-contact surfaces retained viral RNA (28/33 positive samples/total samples), with conveying system being more contaminated than the mixer. A bioassay to test infectivity of dust from animal food-contact surfaces failed to produce infectivity. This study demonstrates the potential widespread viral contamination of surfaces in an animal food manufacturing facility and the difficulty of removing contamination using conventional feed sequencing, which underscores the importance for preventing viruses from entering and contaminating such facilities.
Petti, S; Messano, G A
2016-05-01
Traditional cleaning and disinfection methods are inefficient for complete decontamination of hospital surfaces from meticillin-resistant Staphylococcus aureus (MRSA). Additional methods, such as nano-TiO2-based photocatalytic disinfection (PCD), could be helpful. To evaluate anti-MRSA activity of PCD on polyvinyl chloride (PVC) surfaces in natural-like conditions. Two identical PVC surfaces were used, and nano-TiO2 was incorporated into one of them. The surfaces were contaminated with MRSA isolated from hospitalized patients using a mist sprayer to simulate the mode of environmental contamination caused by a carrier. MRSA cell density was assessed before contamination until 180min after contamination using Rodac plates. The differences between test and control surfaces in terms of MRSA density and log MRSA density reduction were assessed using parametric and non-parametric statistical tests. Five strains were tested, and each strain was tested five times. The highest median MRSA densities [46.3 and 43.1 colony-forming units (cfu)/cm(2) for control and test surfaces, respectively] were detected 45min after contamination. Median MRSA densities 180min after contamination were 10.1 and 0.7cfu/cm(2) for control and test surfaces, respectively (P<0.01). Log MRSA density reduction attributable to PCD was 1.16logcfu/cm(2), corresponding to 93% reduction of the baseline MRSA contamination. The disinfectant activity remained stable throughout the 25 testing occasions, despite between-test cleaning and disinfection. The anti-MRSA activity of PCD was compatible with the benchmark for surface hygiene in hospitals (<1cfu/cm(2)), but required 3h of exposure to photocatalysis. Thus, PCD could be considered for non-clinical surfaces. However, for clinical surfaces, PCD should be regarded as supplemental to conventional decontamination procedures, rather than an alternative. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Bioenabled SERS Substrates for Food Safety and Drinking Water Monitoring.
Yang, Jing; Rorrer, Gregory L; Wang, Alan X
2015-04-20
We present low-cost bioenabled surface-enhanced Raman scattering (SERS) substrates that can be massively produced in sustainable and eco-friendly methods with significant commercial potentials for the detection of food contamination and drinking water pollution. The sensors are based on diatom frustules with integrated plasmonic nanoparticles. The ultra-high sensitivity of the SERS substrates comes from the coupling between the diatom frustules and Ag nanoparticles to achieve dramatically increased local optical field to enhance the light-matter interactions for SERS sensing. We successfully applied the bioenabled SERS substrates to detect melamine in milk and aromatic compounds in water with sensitivity down to 1μg/L.
Bioenabled SERS substrates for food safety and drinking water monitoring
NASA Astrophysics Data System (ADS)
Yang, Jing; Rorrer, Gregory L.; Wang, Alan X.
2015-05-01
We present low-cost bioenabled surface-enhanced Raman scattering (SERS) substrates that can be massively produced in sustainable and eco-friendly methods with significant commercial potentials for the detection of food contamination and drinking water pollution. The sensors are based on diatom frustules with integrated plasmonic nanoparticles. The ultra-high sensitivity of the SERS substrates comes from the coupling between the diatom frustules and Ag nanoparticles to achieve dramatically increased local optical field to enhance the light-matter interactions for SERS sensing. We successfully applied the bioenabled SERS substrates to detect melamine in milk and aromatic compounds in water with sensitivity down to 1μg/L.
Bioenabled SERS Substrates for Food Safety and Drinking Water Monitoring
Yang, Jing; Rorrer, Gregory L.; Wang, Alan X.
2016-01-01
We present low-cost bioenabled surface-enhanced Raman scattering (SERS) substrates that can be massively produced in sustainable and eco-friendly methods with significant commercial potentials for the detection of food contamination and drinking water pollution. The sensors are based on diatom frustules with integrated plasmonic nanoparticles. The ultra-high sensitivity of the SERS substrates comes from the coupling between the diatom frustules and Ag nanoparticles to achieve dramatically increased local optical field to enhance the light-matter interactions for SERS sensing. We successfully applied the bioenabled SERS substrates to detect melamine in milk and aromatic compounds in water with sensitivity down to 1μg/L. PMID:26900205
NASA Astrophysics Data System (ADS)
Kim, Mijin; Kim, Jhoon; Yoon, Jongmin; Chung, Chu-Yong; Chung, Sung-Rae
2017-04-01
In 2010, the Korean geostationary earth orbit (GEO) satellite, the Communication, Ocean, and Meteorological Satellite (COMS), was launched including the Meteorological Imager (MI). The MI measures atmospheric condition over Northeast Asia (NEA) using a single visible channel centered at 0.675 μm and four IR channels at 3.75, 6.75, 10.8, 12.0 μm. The visible measurement can also be utilized for the retrieval of aerosol optical properties (AOPs). Since the GEO satellite measurement has an advantage for continuous monitoring of AOPs, we can analyze the spatiotemporal variation of the aerosol using the MI observations over NEA. Therefore, we developed an algorithm to retrieve aerosol optical depth (AOD) using the visible observation of MI, and named as MI Yonsei Aerosol Retrieval Algorithm (YAER). In this study, we investigated the accuracy of MI YAER AOD by comparing the values with the long-term products of AERONET sun-photometer. The result showed that the MI AODs were significantly overestimated than the AERONET values over bright surface in low AOD case. Because the MI visible channel centered at red color range, contribution of aerosol signal to the measured reflectance is relatively lower than the surface contribution. Therefore, the AOD error in low AOD case over bright surface can be a fundamental limitation of the algorithm. Meanwhile, an assumption of background aerosol optical depth (BAOD) could result in the retrieval uncertainty, also. To estimate the surface reflectance by considering polluted air condition over the NEA, we estimated the BAOD from the MODIS dark target (DT) aerosol products by pixel. The satellite-based AOD retrieval, however, largely depends on the accuracy of the surface reflectance estimation especially in low AOD case, and thus, the BAOD could include the uncertainty in surface reflectance estimation of the satellite-based retrieval. Therefore, we re-estimated the BAOD using the ground-based sun-photometer measurement, and investigated the effects of the BAOD assumption. The satellite-based BAOD was significantly higher than the ground-based value over urban area, and thus, resulted in the underestimation of surface reflectance and the overestimation of AOD. The error analysis of the MI AOD also showed sensitivity to cloud contamination, clearly. Therefore, improvements of cloud masking process in the developed single channel MI algorithm as well as the modification of the surface reflectance estimation will be required for the future study.
Effects of fluorine contamination on spin-on dielectric thickness in semiconductor manufacturing
NASA Astrophysics Data System (ADS)
Kim, Hyoung-ryeun; Hong, Soonsang; Kim, Samyoung; Oh, Changyeol; Hwang, Sung Min
2018-03-01
In the recent semiconductor industry, as the device shrinks, spin-on dielectric (SOD) has been adopted as a widely used material because of its excellent gap-fill, efficient throughput on mass production. SOD film must be uniformly thin, homogeneous and free of particle defects because it has been perfectly perserved after chemical-mechanical polishing (CMP) and etching process. Spin coating is one of the most common techniques for applying SOD thin films to substrates. In spin coating process, the film thickness and uniformity are strong function of the solution viscosity, the final spin speed and the surface properties. Especially, airborne molecular contaminants (AMCs), such as HF, HCl and NH3, are known to change to surface wetting characteristics. In this work, we study the SOD film thickness as a function of fluorine contamination on the wafer surface. To examine the effects of airborne molecular contamination, the wafers are directly exposed to HF fume followed by SOD coating. It appears that the film thickness decreases by higher contact angle on the wafer surface due to fluorine contamination. The thickness of the SOD film decreased with increasing fluorine contamination on the wafer surface. It means that the wafer surface with more hydrophobic property generates less hydrogen bonding with the functional group of Si-NH in polysilazane(PSZ)-SOD film. Therefore, the wetting properties of silicon wafer surfaces can be degraded by inorganic contamination in SOD coating process.
Surface decontamination compositions and methods
Wright,; Karen, E [Idaho Falls, ID; Cooper, David C [Idaho Falls, ID; Peterman, Dean R [Idaho Falls, ID; Demmer, Ricky L [Idaho Falls, ID; Tripp, Julia L [Pocatello, ID; Hull, Laurence C [Idaho Falls, ID
2011-03-29
Clay-based compositions capable of absorbing contaminants from surfaces or objects having surface faces may be applied to a surface and later removed, the removed clay-based compositions absorbing at least a portion of the contaminant from the surface or object to which it was applied.
Optical sensor for rapid microbial detection
NASA Astrophysics Data System (ADS)
Al-Adhami, Mustafa; Tilahun, Dagmawi; Rao, Govind; Kostov, Yordan
2016-05-01
In biotechnology, the ability to instantly detect contaminants is key to running a reliable bioprocess. Bioprocesses are prone to be contaminated by cells that are abundant in our environment; detection and quantification of these cells would aid in the preservation of the bioprocess product. This paper discusses the design and development of a portable kinetics fluorometer which acts as a single-excitation, single-emission photometer that continuously measures fluorescence intensity of an indicator dye, and plots it. Resazurin is used as an indicator dye since the viable contaminant cells reduce Resazurin toResorufin, the latter being strongly fluorescent. A photodiode detects fluorescence change by generating current proportional to the intensity of the light that reached it, and a trans-impedance differential op-amp ensures amplification of the photodiodes' signal. A microfluidic chip was designed specifically for the device. It acts as a fully enclosed cuvette, which enhances the Resazurin reduction rate. E. coli in LB media, along with Resazurin were injected into the microfluidic chip. The optical sensor detected the presence of E. coli in the media based on the fluorescence change that occurred in the indicator dye in concentrations as low as 10 CFU/ml. A method was devised to detect and determine an approximate amount of contamination with this device. This paper discusses application of this method to detect and estimate sample contamination. This device provides fast, accurate, and inexpensive means to optically detect the presence of viable cells.
Huitema, A. D. R.; Bakker, E. N.; Douma, J. W.; Schimmel, K. J. M.; van Weringh, G.; de Wolf, P. J.; Schellens, J. H. M.; Beijnen, J. H.
2007-01-01
Objective: To develop, validate, and apply a method for the determination of platinum contamination, originating from cisplatinum, oxaliplatinum, and carboplatinum. Methods: Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine platinum in wipe samples. The sampling procedure and the analytical conditions were optimised and the assay was validated. The method was applied to measure surface contamination in seven Dutch hospital pharmacies. Results: The developed method allowed reproducible quantification of 0.50 ng l−1 platinum (5 pg/wipe sample). Recoveries for stainless steel and linoleum surfaces ranged between 50.4 and 81.4% for the different platinum compounds tested. Platinum contamination was reported in 88% of the wipe samples. Although a substantial variation in surface contamination of the pharmacies was noticed, in most pharmacies, the laminar-airflow (LAF) hoods, the floor in front of the LAF hoods, door handles, and handles of service hatches showed positive results. This demonstrates that contamination is spread throughout the preparation rooms. Conclusion: We developed and validated an ultra sensitive and reliable ICP-MS method for the determination of platinum in surface samples. Surface contamination with platinum was observed in all hospital pharmacies sampled. The interpretation of these results is, however, complicated. PMID:17377802
Yoshida-Ohuchi, Hiroko; Kanagami, Takashi; Satoh, Yasushi; Hosoda, Masahiro; Naitoh, Yutaka; Kameyama, Mizuki
2016-01-01
Indoor contaminants were investigated from July 2013 to January 2015 within ninety-five residential houses in five evacuation zones, Iitate village, Odaka district, and the towns of Futaba, Okuma, and Tomioka. A dry smear test was applied to the surface of materials and structures in rooms and in the roof-space of houses. We found that 134Cs and 137Cs were the dominant radionuclides in indoor surface contamination, and there was a distance dependence from the Fukushima Daiichi nuclear power plant (FDNPP). For surface contamination in Iitate village (29–49 km from the FDNPP), 24.8% of samples exceeded the detection limit, which is quite a low value, while in Okuma (<3.0 km from the FDNPP), 99.7% of samples exceeded the detection limit and surface contamination levels exceeded 20 Bq/cm2 (the value was corrected to March 2011). In residential houses in Okuma, Futaba, and Tomioka, closer to the FDNPP than those in Odaka district and Iitate village, surface contamination was inversely proportional to the square of the distance between a house and the FDNPP. In the houses closest to the FDNPP, the contribution of surface contamination to the ambient dose equivalent rate was evaluated to be approximately 0.3 μSv/h. PMID:27212076
Speedy Acquisition of Surface-Contamination Samples
NASA Technical Reports Server (NTRS)
Puleo, J. R.; Kirschner, L. E.
1982-01-01
Biological contamination of large-area surfaces can be determined quickly, inexpensively, and accurately with the aid of a polyester bonded cloth. Cloth is highly effective in removing microbes from a surface and releasing them for biological assay. In releasing contaminants, polyester bonded cloth was found to be superior to other commercial cleanroom cloths, including spun-bound polyamid cloths and cellulose cloths.
10 CFR Appendix D to Part 835 - Surface Contamination Values
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Surface Contamination Values D Appendix D to Part 835 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Pt. 835, App. D Appendix D to Part 835—Surface Contamination Values The data presented in appendix D are to be used in identifying the need for...
10 CFR Appendix D to Part 835 - Surface Contamination Values
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Surface Contamination Values D Appendix D to Part 835 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Pt. 835, App. D Appendix D to Part 835—Surface Contamination Values The data presented in appendix D are to be used in identifying the need for...
10 CFR Appendix D to Part 835 - Surface Contamination Values
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Surface Contamination Values D Appendix D to Part 835 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Pt. 835, App. D Appendix D to Part 835—Surface Contamination Values The data presented in appendix D are to be used in identifying the need for...
Surface imaging techniques were combined to determine appropriate manipulation of technologically important surfaces for commercial applications. Stainless steel surfaces were engineered to reduce bacterial contamination, biofilm formation, and corrosion during product processing...
Copolyimide Surface Modifying Agents for Particle Adhesion Mitigation
NASA Technical Reports Server (NTRS)
Wohl, Christopher J.; Connell, John W.
2011-01-01
Marine biofouling, insect adhesion on aircraft surfaces, microbial contamination of sterile environments, and particle contamination all present unique challenges for which researchers have adopted an array of mitigation strategies. Particulate contamination is of interest to NASA regarding exploration of the Moon, Mars, asteroids, etc.1 Lunar dust compromised seals, clogged filters, abraded visors and space suit surfaces, and was a significant health concern during the Apollo missions.2 Consequently, NASA has instituted a multi-faceted approach to address dust including use of sacrificial surfaces, active mitigation requiring the use of an external energy source, and passive mitigation utilizing materials with an intrinsic resistance to surface contamination. One passive mitigation strategy is modification of a material s surface energy either chemically or topographically. The focus of this paper is the synthesis and evaluation of novel copolyimide materials with surface modifying agents (SMA, oxetanes) enabling controlled variation of surface chemical composition.
Methods To Characterize Contaminant Residuals After Environmental Dredging
Environmental dredging is a common remedial action for managing contaminated sediments. However, post dredging contaminant concentrations in surface sediment are difficult to predict prior to initiating dredging actions. In some cases, post surface concentrations have been high...
NASA charging analyzer program: A computer tool that can evaluate electrostatic contamination
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Roche, J. C.; Mandell, M. J.
1978-01-01
A computer code, the NASA Charging Analyzer Program (NASCAP), was developed to study the surface charging of bodies subjected to geomagnetic substorm conditions. This program will treat the material properties of a surface in a self-consistent manner and calculate the electric fields in space due to the surface charge. Trajectories of charged particles in this electric field can be computed to determine if these particles enhance surface contamination. A preliminary model of the Spacecraft Charging At The High Altitudes (SCATHA) satellite was developed in the NASCAP code and subjected to a geomagnetic substorm environment to investigate the possibility of electrostatic contamination. The results indicate that differential voltages will exist between the spacecraft ground surfaces and the insulator surfaces. The electric fields from this differential charging can enhance the contamination of spacecraft surfaces.
Empirical Measurement and Model Validation of Infrared Spectra of Contaminated Surfaces
NASA Astrophysics Data System (ADS)
Archer, Sean
The goal of this thesis was to validate predicted infrared spectra of liquid contaminated surfaces from a micro-scale bi-directional reflectance distribution function (BRDF) model through the use of empirical measurement. Liquid contaminated surfaces generally require more sophisticated radiometric modeling to numerically describe surface properties. The Digital Image and Remote Sensing Image Generation (DIRSIG) model utilizes radiative transfer modeling to generate synthetic imagery for a variety of applications. Aside from DIRSIG, a micro-scale model known as microDIRSIG has been developed as a rigorous ray tracing physics-based model that could predict the BRDF of geometric surfaces that are defined as micron to millimeter resolution facets. The model offers an extension from the conventional BRDF models by allowing contaminants to be added as geometric objects to a micro-facet surface. This model was validated through the use of Fourier transform infrared spectrometer measurements. A total of 18 different substrate and contaminant combinations were measured and compared against modeled outputs. The substrates used in this experiment were wood and aluminum that contained three different paint finishes. The paint finishes included no paint, Krylon ultra-flat black, and Krylon glossy black. A silicon based oil (SF96) was measured out and applied to each surface to create three different contamination cases for each surface. Radiance in the longwave infrared region of the electromagnetic spectrum was measured by a Design and Prototypes (D&P) Fourier transform infrared spectrometer and a Physical Sciences Inc. Adaptive Infrared Imaging Spectroradiometer (AIRIS). The model outputs were compared against the measurements quantitatively in both the emissivity and radiance domains. A temperature emissivity separation (TES) algorithm had to be applied to the measured radiance spectra for comparison with the microDIRSIG predicted emissivity spectra. The model predicted emissivity spectra was also forward modeled through a DIRSIG simulation for comparisons to the radiance measurements. The results showed a promising agreement for homogeneous surfaces with liquid contamination that could be well characterized geometrically. Limitations arose in substrates that were modeled as homogeneous surfaces, but had spatially varying artifacts due to uncertainties with contaminant and surface interactions. There is high desire for accurate physics based modeling of liquid contaminated surfaces and this validation framework may be extended to include a wider array of samples for more realistic natural surfaces that are often found in real world scenarios.
Monitoring contamination due to materials outgassing by QCM-based sensors
NASA Astrophysics Data System (ADS)
Dirri, Fabrizio
2016-07-01
F. Dirri, E. Palomba, A. Longobardo, D. Biondi, A. Boccaccini, E. Zampetti, B. Saggin, D. Scaccabarozzi, A. Tortora, A. Nanni, J. Alves, A. Tighe Outgassing from spacecraft materials often occurs and degassing contaminants can degrade critical spacecraft surfaces, such as optical systems, solar panels, thermal radiators and thermal management systems. The main contaminants are the water adsorbed by cold surface, organics from spacecraft structure, electronics, insulation and thrusters firings [1]. Thus, it is fundamental to monitor these low-outgassing rates especially in a long duration mission: Quartz Crystal Microbalance (QCM) based sensors (i.e. single and double crystal configurations) are a suitable instruments to monitor step by step these degradation processes which occur in space conditions. The Contamination Assessment Microbalance (CAM) is a device aimed at monitoring in-orbit contamination of sensitive surfaces and payloads on ESA's future satellites. The device, developed by a consortium of Italian research Institutes, is based on QCM technology, previously considered by NASA and ESA experiments performed on Space Shuttle and satellite missions [2,3,4]. CAM is a low mass (200 grams for the sensor head), low volume (smaller than 5x5x5 cm3 for the sensor head) and low power consumption (less than 1.5 W) sensor. The device is composed by: 1) the Sensor Head, containing a sensing crystal (which measures the deposited contaminant mass), a reference crystal (used as frequency reference), their related Proximity Electronics (PE) and a Temperature Control System (TCS); 2) the Main Electronics Unit (MEU), which acquires the signal in output from Sensor Head unit; 3) the Harness connecting Sensor Head and MEU; 4) the User Interface (UI) to read and display the data. The device shows several improvements, i.e. possibility to measure directly the crystal temperature (with an accuracy better than 0.1°C), large measurable mass range (from 5•10-9 to 7•10-4 g/cm2), large operative temperature range (from -80°C to 130°C), temperature stability within 0.5°C and good frequency resolution of 0.1 Hz. The instruments concept and the performance evaluation, based on tests performed on the QCM based sensors (i.e. simulating an outgassing source in space conditions), are presented in this work. References : [1] Soares et al. 2003, Proc. SPIE, 09/2000; [2] Miller 1982, Report NASA TM- 82457; [3] Tighe et al. 2009, AIP Conf. Proc. 1087, 195; [4] Wood et al. 1997, AIAA 97-0841
Pattern Inspection of EUV Masks Using DUV Light
NASA Astrophysics Data System (ADS)
Liang, Ted; Tejnil, Edita; Stivers, Alan R.
2002-12-01
Inspection of extreme ultraviolet (EUV) lithography masks requires reflected light and this poses special challenges for inspection tool suppliers as well as for mask makers. Inspection must detect all the printable defects in the absorber pattern as well as printable process-related defects. Progress has been made under the NIST ATP project on "Intelligent Mask Inspection Systems for Next Generation Lithography" in assessing the factors that impact the inspection tool sensitivity. We report in this paper the inspection of EUV masks with programmed absorber defects using 257nm light. All the materials of interests for masks are highly absorptive to EUV light as compared to deep ultraviolet (DUV) light. Residues and contamination from mask fabrication process and handling are prone to be printable. Therefore, it is critical to understand their EUV printability and optical inspectability. Process related defects may include residual buffer layer such as oxide, organic contaminants and possible over-etch to the multilayer surface. Both simulation and experimental results will be presented in this paper.
Fabrication and characterization of iron oxide ceramic membranes for arsenic removal.
Sabbatini, P; Yrazu, F; Rossi, F; Thern, G; Marajofsky, A; Fidalgo de Cortalezzi, M M
2010-11-01
Nanoscale iron oxide particles were synthesized and deposited on porous alumina tubes to develop tubular ceramic adsorbers for the removal of arsenic, which is an extremely toxic contaminant even in very low concentrations. Its natural presence affects rural and low-income populations in developing countries in Latin America and around the world, which makes it essential to develop a user-friendly, low energy demanding and low cost treatment technology. The fabricated ceramic membranes can be operated with minimal trans-membrane pressure difference and do not require pumping. The support tubes and final membrane have been characterized by surface area and porosity measurements, permeability tests and scanning electron microscopy (SEM) imaging. Arsenic concentrations were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Due to its low cost and simple operation, the system can be applied as a point of use device for the treatment of arsenic contaminated groundwaters in developing countries. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
2002-01-01
The Supersonic Gas/Liquid Cleaning System (SS-GLCS) has applications ranging from cleaning circuit boards to scouring building exteriors. The system does not abrade the surface of the hardware being cleaned, and it requires much lower levels of pressure while using very little water. An alternative to CFC-based solvents, the system mixes air and water from separate pressurized tanks, ejecting the gas- liquid mixture at supersonic speeds from a series of nozzles at the end of a hand-held wand. The water droplets have the kinetic energy to forcibly remove the contaminant material. The system leaves very little fluid that must be handled as contaminated waste. It can be applied in the aerospace, automotive, and medical industries, as well as to circuit boards, electronics, machinery, metals, plastics, and optics. With a nozzle that can be oriented in any direction, the system is adjustable to allow all sides of a part to be cleaned without reorientation. It requires minimal training and is easily moved on built-in casters
Banerjee, K K; Kumar, S; Bremmell, K E; Griesser, H J
2010-11-01
Established methods for cleaning and sterilising biomedical devices may achieve removal of bioburden only at the macroscopic level while leaving behind molecular levels of contamination (mainly proteinaceous). This is of particular concern if the residue might contain prions. We investigated at the molecular level the removal of model and real-life proteinaceous contamination from model and practical surfaces by air plasma (ionised air) treatment. The surface-sensitive technique of X-ray photoelectron spectroscopy (XPS) was used to assess the removal of proteinaceous contamination, with the nitrogen (N1s) photoelectron signal as its marker. Model proteinaceous contamination (bovine serum albumin) adsorbed on to a model surface (silicon wafer) and the residual proteinaceous contamination resulting from incubating surgical stainless steel (a practical biomaterial) in whole human blood exhibited strong N1s signals [16.8 and 18.5 atomic percent (at.%), respectively] after thorough washing. After 5min air plasma treatment, XPS detected no nitrogen on the sample surfaces, indicating complete removal of proteinaceous contamination, down to the estimated XPS detection limit 10ng/cm(2). Applying the same plasma treatment, the 7.7at.% nitrogen observed on a clinically cleaned dental bur was reduced to a level reflective of new, as-received burs. Contact angle measurements and atomic force microscopy also indicated complete molecular-level removal of the proteinaceous contamination upon air plasma treatment. This study demonstrates the effectiveness of air plasma treatment for removing proteinaceous contamination from both model and practical surfaces and offers a method for ensuring that no molecular residual contamination such as prions is transferred upon re-use of surgical and dental instruments. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Simon, C. G.; Buonaquisti, A. J.; Batchelor, D. A.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. R.; Wortman, J. J.; Brownlee, D. E.; Best, S. R.
1995-01-01
Two dimensional elemental ion maps have been recorded for hundreds of microparticle impact sites and contamination features on LDEF surfaces. Since the majority of the analyzed surfaces were metal-oxide-silicon (MOS) impact detectors from the Interplanetary Dust Experiment, a series of 'standard' and 'blank' analyses of these surfaces are included. Hypervelocity impacts of forsterite olivine microparticles on activated flight sensors served as standards while stylus and pulsed laser simulated 'impacts' served as analytical blanks. Results showed that despite serious contamination issues, impactor residues can be identified in greater than 1/3 of the impact sites. While aluminum oxide particles could not be detected on aluminum surfaces, they were detected on germanium surfaces from row 12. Remnants of manmade debris impactors consisting of paint chips and bits of metal were identified on surfaces from LDEF Rows 3 (west or trailing side), 6 (south), 9 (ram or leading side), 12 (north) and the space end. Higher than expected ratios of manmade microparticle impacts to total microparticle impacts were found on the space end and the trailing side. These results were consistent with time-tagged and time-segregated microparticle impact data from the IDE and other LDEF experiments. A myriad of contamination interferences were identified and their effects on impactor debris identification mitigated during the course of this study. These interferences include pre-, post and inflight deposited surface contaminants as well as indigenous heterogeneous material contaminants. Non-flight contaminations traced to human origins, including spittle and skin oils, contributed significant levels of alkali-rich carbonaceous interferences. A ubiquitous layer of in-flight deposited silicaceous contamination varied in thickness with location on LDEF, even on a micro scale. In-flight deposited (low velocity) contaminants include urine droplets and bits of metal film from eroded thermal blankets.
High volume hydraulic fracturing operations: potential impacts on surface water and human health.
Mrdjen, Igor; Lee, Jiyoung
2016-08-01
High volume, hydraulic fracturing (HVHF) processes, used to extract natural gas and oil from underground shale deposits, pose many potential hazards to the environment and human health. HVHF can negatively affect the environment by contaminating soil, water, and air matrices with potential pollutants. Due to the relatively novel nature of the process, hazards to surface waters and human health are not well known. The purpose of this article is to link the impacts of HVHF operations on surface water integrity, with human health consequences. Surface water contamination risks include: increased structural failure rates of unconventional wells, issues with wastewater treatment, and accidental discharge of contaminated fluids. Human health risks associated with exposure to surface water contaminated with HVHF chemicals include increased cancer risk and turbidity of water, leading to increased pathogen survival time. Future research should focus on modeling contamination spread throughout the environment, and minimizing occupational exposure to harmful chemicals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piepel, Gregory F.; Amidan, Brett G.; Krauter, Paula
2011-05-01
Two concerns were raised by the Government Accountability Office following the 2001 building contaminations via letters containing Bacillus anthracis (BA). These included the: 1) lack of validated sampling methods, and 2) need to use statistical sampling to quantify the confidence of no contamination when all samples have negative results. Critical to addressing these concerns is quantifying the false negative rate (FNR). The FNR may depend on the 1) method of contaminant deposition, 2) surface concentration of the contaminant, 3) surface material being sampled, 4) sample collection method, 5) sample storage/transportation conditions, 6) sample processing method, and 7) sample analytical method.more » A review of the literature found 17 laboratory studies that focused on swab, wipe, or vacuum samples collected from a variety of surface materials contaminated by BA or a surrogate, and used culture methods to determine the surface contaminant concentration. These studies quantified performance of the sampling and analysis methods in terms of recovery efficiency (RE) and not FNR (which left a major gap in available information). Quantifying the FNR under a variety of conditions is a key aspect of validating sample and analysis methods, and also for calculating the confidence in characterization or clearance decisions based on a statistical sampling plan. A laboratory study was planned to partially fill the gap in FNR results. This report documents the experimental design developed by Pacific Northwest National Laboratory and Sandia National Laboratories (SNL) for a sponge-wipe method. The testing was performed by SNL and is now completed. The study investigated the effects on key response variables from six surface materials contaminated with eight surface concentrations of a BA surrogate (Bacillus atrophaeus). The key response variables include measures of the contamination on test coupons of surface materials tested, contamination recovered from coupons by sponge-wipe samples, RE, and FNR. The experimental design involves 16 test runs, performed in two blocks of eight runs. Three surface materials (stainless steel, vinyl tile, and ceramic tile) were tested in the first block, while three other surface materials (plastic, painted wood paneling, and faux leather) were tested in the second block. The eight surface concentrations of the surrogate were randomly assigned to test runs within each block. Some of the concentrations were very low and presented challenges for deposition, sampling, and analysis. However, such tests are needed to investigate RE and FNR over the full range of concentrations of interest. In each run, there were 10 test coupons of each of the three surface materials. A positive control sample was generated at the same time as each test sample. The positive control results will be used to 1) calculate RE values for the wipe sampling and analysis method, and 2) fit RE- and FNR-concentration equations, for each of the six surface materials. Data analyses will support 1) estimating the FNR for each combination of contaminant concentration and surface material, 2) estimating the surface concentrations and their uncertainties of the contaminant for each combination of concentration and surface material, 3) estimating RE (%) and their uncertainties for each combination of contaminant concentration and surface material, 4) fitting FNR-concentration and RE-concentration equations for each of the six surface materials, 5) assessing goodness-of-fit of the equations, and 6) quantifying the uncertainty in FNR and RE predictions made with the fitted equations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piepel, Gregory F.; Amidan, Brett G.; Krauter, Paula
2010-12-16
Two concerns were raised by the Government Accountability Office following the 2001 building contaminations via letters containing Bacillus anthracis (BA). These included the: 1) lack of validated sampling methods, and 2) need to use statistical sampling to quantify the confidence of no contamination when all samples have negative results. Critical to addressing these concerns is quantifying the probability of correct detection (PCD) (or equivalently the false negative rate FNR = 1 - PCD). The PCD/FNR may depend on the 1) method of contaminant deposition, 2) surface concentration of the contaminant, 3) surface material being sampled, 4) sample collection method, 5)more » sample storage/transportation conditions, 6) sample processing method, and 7) sample analytical method. A review of the literature found 17 laboratory studies that focused on swab, wipe, or vacuum samples collected from a variety of surface materials contaminated by BA or a surrogate, and used culture methods to determine the surface contaminant concentration. These studies quantified performance of the sampling and analysis methods in terms of recovery efficiency (RE) and not PCD/FNR (which left a major gap in available information). Quantifying the PCD/FNR under a variety of conditions is a key aspect of validating sample and analysis methods, and also for calculating the confidence in characterization or clearance decisions based on a statistical sampling plan. A laboratory study was planned to partially fill the gap in PCD/FNR results. This report documents the experimental design developed by Pacific Northwest National Laboratory and Sandia National Laboratories (SNL) for a sponge-wipe method. The study will investigate the effects on key response variables from six surface materials contaminated with eight surface concentrations of a BA surrogate (Bacillus atrophaeus). The key response variables include measures of the contamination on test coupons of surface materials tested, contamination recovered from coupons by sponge-wipe samples, RE, and PCD/FNR. The experimental design involves 16 test runs, to be performed in two blocks of eight runs. Three surface materials (stainless steel, vinyl tile, and ceramic tile) were tested in the first block, while three other surface materials (plastic, painted wood paneling, and faux leather) will be tested in the second block. The eight surface concentrations of the surrogate were randomly assigned to test runs within each block. Some of the concentrations will be very low and may present challenges for deposition, sampling, and analysis. However, such tests are needed to investigate RE and PCD/FNR over the full range of concentrations of interest. In each run, there will be 10 test coupons of each of the three surface materials. A positive control sample will be generated prior to each test sample. The positive control results will be used to 1) calculate RE values for the wipe sampling and analysis method, and 2) fit RE- and PCD-concentration equations, for each of the six surface materials. Data analyses will support 1) estimating the PCD for each combination of contaminant concentration and surface material, 2) estimating the surface concentrations and their uncertainties of the contaminant for each combination of concentration and surface material, 3) estimating RE (%) and their uncertainties for each combination of contaminant concentration and surface material, 4) fitting PCD-concentration and RE-concentration equations for each of the six surface materials, 5) assessing goodness-of-fit of the equations, and 6) quantifying the uncertainty in PCD and RE predictions made with the fitted equations.« less
Heavy-ion damage of an amorphous metallic alloy
NASA Astrophysics Data System (ADS)
Chaki, T. K.; Li, J. C. M.
1986-09-01
A Ni base amorphous alloy BN12 (Ni 69.2Cr 6.6Si 13.7B 7.9Fe 2.6 supplied by Allied Corporation), with its shiny surface polished and covered with a 20-30 nm Al film to avoid contamination and sputtering, was irradiated with 70 MeV Ni +6 ions at a dose of about {10 16}/{cm 2}. The Al film was removed by 2 g NaOH dissolved in 1 liter water solution. A Dektak surface profilometer showed surface swelling of the irradiated spot by about 200 nm surrounded by higher ridges. Optical and scanning electron microscopic observations revealed considerable roughness within the irradiated spot. Annealing for 3 h at each 50 K. increment of temperature between 500 and 800 K did not remove the swelling. However, transmission electron microscopic studies gave no indication of voids. It seems that swelling may not associate with structural damage. This important possibility is discussed in the light of generation and disappearance of point defects.
The effect of impurities and incident angle on the secondary electron emission of Ni(110)
NASA Astrophysics Data System (ADS)
Lazar, Hadar; Patino, Marlene; Raitses, Yevgeny; Koel, Bruce E.; Gentile, Charles; Feibush, Eliot
2015-11-01
The investigation of secondary electron emission (SEE) of conducting materials used for magnetic fusion devices and plasma thrusters is important for determining device lifetime and performance. Methods to quantify the secondary electron emission from conducting materials and to characterize the effects that impurities and incident angles have on secondary electron emission were developed using 4-grid low energy electron diffraction (LEED) optics. The total secondary electron yield from a Ni(110) surface was continuously measured from the sample current as surface contamination increased from reactions with background gases in the ultrahigh vacuum chamber. Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) were used to examine the composition and impurity levels on the Ni(110) surface. The total secondary electron yield was also measured at different incident angles. Thank you to the Princeton Plasma Physics Laboratory and the Department of Energy for the opportunity to work on this project through the Science Undergraduate Laboratory Internships.
The effects of impurities and incidence angle on the secondary electron emission of Ni(110)
NASA Astrophysics Data System (ADS)
Lazar, Hadar; Patino, Marlene; Raitses, Yevgeny; Koel, Bruce; Gentile, Charles; Feibush, Eliot
The investigation of secondary electron emission (SEE) of conducting materials used for magnetic fusion devices and plasma thrusters is important for determining device lifetime and performance. Methods to quantify the secondary electron emission from conducting materials and to characterize the effects that impurities and incidence angles have on secondary electron emission were developed using 4-grid low energy electron diffraction (LEED) optics. The total secondary electron yield from a Ni(110) surface was continuously measured from the sample current as surface contamination increased from reactions with background gases in the ultrahigh vacuum chamber. Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) were used to examine the composition and impurity levels on the Ni(110) surface. The total secondary electron yield was also measured at different incidence angles. Thank you to the Princeton Plasma Physics Laboratory (PPPL) and the Department of Energy (DOE) for the opportunity to work on this project through the Science Undergraduate Laboratory Internships (SULI).
2017-06-27
of the simulants paraoxon, methyl salicylate, dimethyl methylphosphate, and diisopropyl fluorophosphates following treatment of contaminated surfaces...Biological Defense Program (CBDP) seeks to provide protection of forces in a contaminated environment including contamination avoidance, individual
NASA Astrophysics Data System (ADS)
Hassan, Moinuddin; Ilev, Ilko
2016-03-01
Ophthalmic Viscosurgical Devices (OVDs) in clinical setting are a major health risk factor for potential endotoxin contamination in the eye, due to their extensive applications in cataract surgery for space creation, stabilization and protection of intraocular tissue and intraocular lens (IOL) during implantation. Endotoxin contamination of OVDs is implicated in toxic anterior syndrome (TASS), a severe complication of cataract surgery that leads to intraocular damage and even blindness. Current standard methods for endotoxin contamination detection utilize rabbit assay or Limulus amoebocyte lysate (LAL) assays. These endotoxin detection strategies are extremely difficult for gel-like type devices such as OVDs. To overcome the endotoxin detection limitations in OVDs, we have developed an alternative optical detection methodology for label-free and real-time sensing of bacterial endotoxin in OVDs, based on fiber-optic Fourier transform infrared (FO-FTIR) transmission spectrometry in the mid-IR spectral range from 2.5 micron to 12 micron. Endotoxin contaminated OVD test samples were prepared by serial dilutions of endotoxins on OVDs. The major results of this study revealed two salient spectral peak shifts (in the regions 2925 to 2890 cm^-1 and 1125 to 1100 cm^-1), which are associated with endotoxin in OVDs. In addition, FO-FTIR experimental results processed using a multivariate analysis confirmed the observed specific peak shifts associated with endotoxin contamination in OVDs. Thus, employing the FO-FTIR sensing methodology integrated with a multivariate analysis could potentially be used as an alternative endotoxin detection technique in OVD.
Optical Diagnostics of Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Majewski, Mark Steven
The high temperature properties of ceramic materials make them suitable for the extreme environments of gas combustion powered turbines. They are instrumental in providing thermal insulation for the metallic turbine components from the combustion products. Also, the addition of specific rare earth elements to ceramics creates materials with temperature diagnostic applications. Laser based methods have been applied to these ceramic coatings to predict their remaining thermal insulation service life and to explore their high temperature diagnostic capabilities. A method for cleaning thermal barrier coatings (TBCs) contaminated during engine operation has been developed using laser ablation. Surface contamination on the turbine blades hinders nondestructive remaining life prediction using photo luminescence piezospectroscopy (PLPS). Real time monitoring of the removed material is employed to prevent damage to the underlying coating. This method relies on laser induced breakdown spectroscopy (LIBS) to compute the cross correlation coefficient between the spectral emissions of a sample TBC that is contaminated and a reference clean TBC. It is possible to remove targeted contaminants and cease ablation when the top surface of the TBC has been reached. In collaboration with this work, Kelley's thesis [1] presents microscopy images and PLPS measurements indicating the integrity of the TBC has been maintained during the removal of surface contaminants. Thermographic phosphors (TGP) have optical emission properties when excited by a laser that are temperature dependent. These spectral and temporal properties have been investigated and utilized for temperature measurement schemes by many previous researchers. The compounds presented in this dissertation consist of various rare earth (Lanthanide) elements doped into a host crystal lattice. As the temperature of the lattice changes, both the time scale for vibrational quenching and the distribution of energy among atomic energy levels changes. A fully characterized TGP by laser induced fluorescence will exhibit repeatable radiative lifetimes varying with temperature due to vibrational quenching. Specific TGPs also exhibit temperature dependent spectra due to emission from different energy levels. These spectral trends appear at lower temperatures than the initiation of lifetime dependence, as described in this dissertation. The TGPs were synthesized in-house, by collaborators, or industrial sources. The concentrations of the dopants have been varied, and co-doping was investigated as well. This study has allowed for spectral and temporal characterization of these compounds, combined temperature sensing from 200 °C to 1600 °C. In addition to the diagnostic capabilities of TGPs, several related topics are discussed. An instrumentation method using double offset boxcar integration to determine the lifetime in realtime is presented. Since the Lanthanide elements have the same basic electronic structure their lifetime trends with temperature are similar. This allows for a nondimensionalization scheme to be applied to the data sets. The efficacy of this scheme is apparent as the data sets collapse into a single curve. Additionally, a mathematical model of the radiative decay lifetime is proposed that uses the phonon distribution of the host ceramic. 'Ibis model accurately predicts the lifetime values of Y2O 3 host compounds. With fitted parameters it is able to capture the lifetime trends of YAG and YVO4 host compounds.
STS-2, -3, -4 Induced Environment Contamination Monitor (ICEM)
NASA Technical Reports Server (NTRS)
Miller, E. R. (Editor)
1983-01-01
The second, third, and fourth space transportation system missions are described including the location of the IECM in the payload bay and the shuttle coordinate systems used. Measurement results from the three flights are given for each instrument with comparisons to original goals for preflight environment and induced environment contamination. These results include very low levels of molecular mass accumulation rates, absence of molecular films on optical samples, outgassing species above 50 amu undetectable generally low levels of on-orbit particulates, and decay rates for early mission water dump particulates. Results of exposure of several optical materials and coatings to atomic oxygen are also presented. From these results, it is concluded that the space shuttle met the established induced environment contamination goals.
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.; Wiesner, S.
2017-03-01
The quality of brazed joints is determined by different factors such as the atmosphere and the parameters during brazing as well as the condition of the brazing surfaces. Residues of lubricants used during machining of the components and the subsequent cleaning processes can contaminate the faying surfaces and can hence influence the flow ability of the molten filler metals. Besides their influence on the filler metal flow, the residues can result in the formation of carbonic phases in the joint leading to a possible reduction of the corrosion resistance and the mechanical properties. The first step of the current study with the aim of avoiding these defects is to identify the influence of critical contaminations and cleaning methods on the quality of the brazed joints. In a first step, contaminations on AISI304 and Inconel alloy 625 due to different cooling lubricants and the effect of several cleaning methods, in particular plasma cleaning, have been investigated. Information about the surface energy of contaminated and cleaned surfaces was gained by measuring contact angle of testing fluids. Additionally, the lubricants and the resulting contamination products have been analyzed considering the influence of a heat treatment.
NASA Technical Reports Server (NTRS)
Law, R. D.
1989-01-01
A contaminant is any material or substance which is potentially undesirable or which may adversely affect any part, component, or assembly. Contamination control of SRM hardware surfaces is a serious concern, for both Thiokol and NASA, with particular concern for contaminants which may adversely affect bonding surfaces. The purpose of this study is to develop laboratory analytical techniques which will make it possible to certify the cleanliness of any designated surface, with special focus on particulates (dust, dirt, lint, etc.), oils (hydrocarbons, silicones, plasticizers, etc.), and greases (HD-2, fluorocarbon grease, etc.). The hardware surfaces of concern will include D6AC steel, aluminum alloys, anodized aluminum alloys, glass/phenolic, carbon/phenolic, NBR/asbestos-silica, and EPDM rubber.
Long-term studies on the effects of nonvolatile organic compounds on porous media surface areas.
Khachikian, Crist S; Harmon, Thomas C
2002-01-01
This paper investigates the long-term behavior of porous media contaminated by nonvolatile organic compounds (NVOC) in terms of specific interfacial surface area. Specifically, a natural sand, Moffett sand (MS), was contaminated with naphthalene and the surface area was measured repeatedly over time using nitrogen adsorption-desorption techniques. A field-contaminated sand affected by lamp-black material (LB) from former manufactured gas plant operations was also studied. Lampblack is a carbonaceous skeleton containing polycyclic aromatic hydrocarbons (PAHs) and other hydrocarbons. It is hypothesized that soils contaminated by these types of chemicals will exhibit significantly less surface area than their clean counterparts. The surface areas for the contaminated MS samples increased toward their clean-MS values during the 700-h aging period, but achieved the clean values only after pentane extraction or heating at 60 degrees C. Heating at 50 degrees C failed to achieve a similar recovery of the clean-MS surface area value. Nonspecific mass loss tracked the increase in surface area as indirect evidence that naphthalene loss was the cause of the surface area increase. For the LB samples, aging at 100 degrees C produced a slight decrease in surface area and mass while aging at 250 degrees C caused the surface area to increase roughly threefold while the mass decreased by approximately 1%. These results suggest that, under moderate heating and over the time scale of this investigation, there is a redistribution of the complex contaminant mixture on the solid matrix. Greater temperatures remove mass more efficiently and therefore exhibited the surface area increase expected in this experiment.
Review of optical freeform surface representation technique and its application
NASA Astrophysics Data System (ADS)
Ye, Jingfei; Chen, Lu; Li, Xinhua; Yuan, Qun; Gao, Zhishan
2017-11-01
Modern advanced manufacturing and testing technologies allow the application of freeform optical elements. Compared with traditional spherical surfaces, an optical freeform surface has more degrees of freedom in optical design and provides substantially improved imaging performance. In freeform optics, the representation technique of a freeform surface has been a fundamental and key research topic in recent years. Moreover, it has a close relationship with other aspects of the design, manufacturing, testing, and application of optical freeform surfaces. Improvements in freeform surface representation techniques will make a significant contribution to the further development of freeform optics. We present a detailed review of the different types of optical freeform surface representation techniques and their applications and discuss their properties and differences. Additionally, we analyze the future trends of optical freeform surface representation techniques.
Christensen, G D; Simpson, W A; Younger, J J; Baddour, L M; Barrett, F F; Melton, D M; Beachey, E H
1985-01-01
The adherence of coagulase-negative staphylococci to smooth surfaces was assayed by measuring the optical densities of stained bacterial films adherent to the floors of plastic tissue culture plates. The optical densities correlated with the weight of the adherent bacterial film (r = 0.906; P less than 0.01). The measurements also agreed with visual assessments of bacterial adherence to culture tubes, microtiter plates, and tissue culture plates. Selected clinical strains were passed through a mouse model for foreign body infections and a rat model for catheter-induced endocarditis. The adherence measurements of animal passed strains remained the same as those of the laboratory-maintained parent strain. Spectrophotometric classification of coagulase-negative staphylococci into nonadherent and adherent categories according to these measurements had a sensitivity, specificity, and accuracy of 90.6, 80.8, and 88.4%, respectively. We examined a previously described collection of 127 strains of coagulase-negative staphylococci isolated from an outbreak of intravascular catheter-associated sepsis; strains associated with sepsis were more adherent than blood culture contaminants and cutaneous strains (P less than 0.001). We also examined a collection of 84 strains isolated from pediatric patients with cerebrospinal fluid (CSF) shunts; once again, pathogenic strains were more adherent than were CSF contaminants (P less than 0.01). Finally, we measured the adherence of seven endocarditis strains. As opposed to strains associated with intravascular catheters and CSF shunts, endocarditis strains were less adherent than were saprophytic strains of coagulase-negative staphylococci. The optical densities of bacterial films adherent to plastic tissue culture plates serve as a quantitative model for the study of the adherence of coagulase-negative staphylococci to medical devices, a process which may be important in the pathogenesis of foreign body infections. Images PMID:3905855
An overview of the on-orbit contamination of the Long Duration Exposure Facility (LDEF)
NASA Technical Reports Server (NTRS)
Stuckey, W. K.
1993-01-01
Contamination that leads to degradation of critical surfaces becomes a vital design issue for many spacecraft programs. One of the processes that must be considered is the on-orbit accumulation of contaminants. The Long Duration Exposure Facility (LDEF) has presented an opportunity to examine the deposits on surfaces returned from orbit in order to help in understanding the deposition processes and the current models used to predict spacecraft contamination levels. The results from various investigators on the contamination of LDEF have implications for material selection, contamination models, and contamination control plans for the design of future spacecraft.
Traynor, Damien; Duraipandian, Shiyamala; Martin, Cara M; O'Leary, John J; Lyng, Fiona M
2018-05-01
There is an unmet need for methods to help in the early detection of cervical precancer. Optical spectroscopy-based techniques, such as Raman spectroscopy, have shown great potential for diagnosis of different cancers, including cervical cancer. However, relatively few studies have been carried out on liquid-based cytology (LBC) pap test specimens and confounding factors, such as blood contamination, have been identified. Previous work reported a method to remove blood contamination before Raman spectroscopy by pretreatment of the slides with hydrogen peroxide. The aim of the present study was to extend this work to excessively bloody samples to see if these could be rendered suitable for Raman spectroscopy. LBC ThinPrep specimens were treated by adding hydrogen peroxide directly to the vial before slide preparation. Good quality Raman spectra were recorded from negative and high grade (HG) cytology samples with no blood contamination and with heavy blood contamination. Good classification between negative and HG cytology could be achieved for samples with no blood contamination (sensitivity 92%, specificity 93%) and heavy blood contamination (sensitivity 89%, specificity 88%) with poorer classification when samples were combined (sensitivity 82%, specificity 87%). This study demonstrates for the first time the improved potential of Raman spectroscopy for analysis of ThinPrep specimens regardless of blood contamination. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Technical Reports Server (NTRS)
2006-01-01
Topics covered include: Airport Remote Tower Sensor Systems; Implantable Wireless MEMS Sensors for Medical Uses; Embedded Sensors for Measuring Surface Regression; Coordinating an Autonomous Earth-Observing Sensorweb; Range-Measuring Video Sensors; Stability Enhancement of Polymeric Sensing Films Using Fillers; Sensors for Using Times of Flight to Measure Flow Velocities; Receiver Would Control Phasing of a Phased-Array Antenna; Modern Design of Resonant Edge-Slot Array Antennas; Carbon-Nanotube Schottky Diodes; Simplified Optics and Controls for Laser Communications; Coherent Detection of High-Rate Optical PPM Signals; Multichannel Phase and Power Detector; Using Satellite Data in Weather Forecasting: I; Using Dissimilarity Metrics to Identify Interesting Designs; X-Windows PVT Widget Class; Shuttle Data Center File-Processing Tool in Java; Statistical Evaluation of Utilization of the ISS; Nanotube Dispersions Made With Charged Surfactant; Aerogels for Thermal Insulation of Thermoelectric Devices; Low-Density, Creep-Resistant Single-Crystal Superalloys; Excitations for Rapidly Estimating Flight-Control Parameters; Estimation of Stability and Control Derivatives of an F-15; Tool for Coupling a Torque Wrench to a Round Cable Connector; Ultrasonically Actuated Tools for Abrading Rock Surfaces; Active Struts With Variable Spring Stiffness and Damping; Multiaxis, Lightweight, Computer-Controlled Exercise System; Dehydrating and Sterilizing Wastes Using Supercritical CO2; Alpha-Voltaic Sources Using Liquid Ga as Conversion Medium; Ice-Borehole Probe; Alpha-Voltaic Sources Using Diamond as Conversion Medium; White-Light Whispering-Gallery-Mode Optical Resonators; Controlling Attitude of a Solar-Sail Spacecraft Using Vanes; and Wire-Mesh-Based Sorber for Removing Contaminants from Air.
Lorah, Michelle M.; Clark, Jeffrey S.
1996-01-01
Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.
Winther, Birgit; McCue, Karen; Ashe, Kathleen; Rubino, Joseph R; Hendley, J Owen
2007-10-01
Rhinovirus infection may be acquired by inoculation of virus on fingertips to conjunctiva or nose (self-inoculation). The virus contaminating the fingertips may come from hand contact with someone with a cold or from virus in mucus on environmental surfaces. This study was designed to assess rhinovirus contamination of surfaces by adults with colds and rhinovirus transfer from surfaces to fingertips during normal daily activities. Fifteen adults with natural rhinovirus colds stayed overnight in a local hotel. Ten touched sites in each room were tested for rhinovirus RNA using RT-PCR. Transfer to fingertips of five subjects was examined by drying 10 microl of virus-containing mucus from each subject onto light switches, telephone dial buttons and telephone handsets. After an interval of 1 or 18 hr the subject flipped the light switch, pressed the button, held the handset. Fingertip rinses were tested for virus. Thirty five percent of the 150 environmental sites in the rooms were contaminated. Common virus-positive sites were door handles, pens, light switches, TV remote controls, faucets, and telephones. Rhinovirus was transferred from surfaces to fingertips in 18/30 (60%) trials 1 hr after contamination and in 10/30 (33%) of trials 18 hr (overnight) after contamination. Adults with colds commonly contaminate environmental surfaces with rhinovirus; virus on surfaces can be transferred to a fingertip during normal daily activities. (c) 2007 Wiley-Liss, Inc.
Kurashige, E Jessica Ohashi; Oie, Shigeharu; Furukawa, H
2016-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) can contaminate environmental surfaces that are frequently touched by the hands of patients with MRSA colonization/infection. There have been many studies in which the presence or absence of MRSA contamination was determined but no studies in which MRSA contamination levels were also evaluated in detail. We evaluated MRSA contamination of environmental surfaces (overbed tables, bed side rails, and curtains) in the rooms of inpatients from whom MRSA was isolated via clinical specimens. We examined the curtains within 7-14 days after they had been newly hung. The environmental surfaces were wiped using gauze (molded gauze for wiping of surface bacteria; 100% cotton, 4cm×8cm) moistened with sterile physiological saline. The MRSA contamination rate and mean counts (range) were 25.0% (6/24 samples) and 30.6 (0-255)colony-forming units (cfu)/100cm(2), respectively, for the overbed tables and 31.6% (6/19 samples) and 159.5 (0-1620)cfu/100cm(2), respectively, for the bed side rails. No MRSA was detected in 24 curtain samples. The rate of MRSA contamination of environmental surfaces was high for the overbed tables and bed side rails but low for the curtains. Therefore, at least until the 14th day of use, frequent disinfection of curtains may be not necessary. Copyright © 2016. Published by Elsevier Editora Ltda.
Biocontamination and particulate detection system
NASA Technical Reports Server (NTRS)
Jacobs, J. M. (Inventor)
1979-01-01
A method for determining the characteristics and amount of microscopic contaminants lodged on a photographed surface is disclosed. An image enhanced full color photographic negative and print are taken of the contaminated surface. Three black and white prints are developed subsequently from red, green and blue separation filter overlays of the color negative. Both the color and three monochromatic prints are then scanned to extract in digital form a profile of any contaminant possibly existing on the surface. The resulting profiles are electronically analyzed and compared with data already stored relating to known contaminants.
2013-11-01
STOCHASTIC RADIATIVE TRANSFER MODEL FOR CONTAMINATED ROUGH SURFACES: A...of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid ...COVERED (From - To) Jan 2013 - Sep 2013 4. TITLE AND SUBTITLE Stochastic Radiative Transfer Model for Contaminated Rough Surfaces: A Framework for
Schumacher, Loni L.; Huss, Anne R.; Cochrane, Roger A.; Stark, Charles R.; Woodworth, Jason C.; Bai, Jianfa; Poulsen, Elizabeth G.; Chen, Qi; Main, Rodger G.; Zhang, Jianqiang; Gauger, Phillip C.; Ramirez, Alejandro; Derscheid, Rachel J.; Magstadt, Drew M.; Dritz, Steve S.
2017-01-01
New regulatory and consumer demands highlight the importance of animal feed as a part of our national food safety system. Porcine epidemic diarrhea virus (PEDV) is the first viral pathogen confirmed to be widely transmissible in animal food. Because the potential for viral contamination in animal food is not well characterized, the objectives of this study were to 1) observe the magnitude of virus contamination in an animal food manufacturing facility, and 2) investigate a proposed method, feed sequencing, to decrease virus decontamination on animal food-contact surfaces. A U.S. virulent PEDV isolate was used to inoculate 50 kg swine feed, which was mixed, conveyed, and discharged into bags using pilot-scale feed manufacturing equipment. Surfaces were swabbed and analyzed for the presence of PEDV RNA by quantitative real-time polymerase chain reaction (qPCR). Environmental swabs indicated complete contamination of animal food-contact surfaces (0/40 vs. 48/48, positive baseline samples/total baseline samples, positive subsequent samples/total subsequent samples, respectively; P < 0.05) and near complete contamination of non-animal food-contact surfaces (0/24 vs. 16/18, positive baseline samples/total baseline samples, positive subsequent samples/total subsequent samples, respectively; P < 0.05). Flushing animal food-contact surfaces with low-risk feed is commonly used to reduce cross-contamination in animal feed manufacturing. Thus, four subsequent 50 kg batches of virus-free swine feed were manufactured using the same system to test its impact on decontaminating animal food-contact surfaces. Even after 4 subsequent sequences, animal food-contact surfaces retained viral RNA (28/33 positive samples/total samples), with conveying system being more contaminated than the mixer. A bioassay to test infectivity of dust from animal food-contact surfaces failed to produce infectivity. This study demonstrates the potential widespread viral contamination of surfaces in an animal food manufacturing facility and the difficulty of removing contamination using conventional feed sequencing, which underscores the importance for preventing viruses from entering and contaminating such facilities. PMID:29095859
Changes in chemical and optical properties of thin film metal mirrors on LDEF
NASA Technical Reports Server (NTRS)
Peters, Palmer N.; Zwiener, James M.; Gregory, John C.; Raikar, Ganesh N.; Christl, Ligia C.; Wilkes, Donald R.
1995-01-01
Thin films of the metals Cu, Ni, Pt, Au, Sn, Mo, and W deposited on fused silica flats were exposed at ambient temperature on the leading and trailing faces of the LDEF. Reflectances of these films were measured from 250 to 2500 nm and compared with controls. The exposed films were subjected to the LDEF external environment including atomic oxygen, molecular contamination, and solar ultraviolet. Major changes in optical and infrared reflectance were seen for Cu, Mo, Ni, and W films on the leading face of LDEF and are attributed to partial conversion of metal to metal oxide. Smaller changes in optical properties are seen on all films and are probably caused by thin contaminant films deposited on top of the metal. The optical measurements are correlated with film thickness measurements, x-ray photoelectron spectroscopy, optical calculations, and, in the case of Cu, with x-ray diffraction measurements. In a few cases, comparisons with results from a similar UAH experiment on STS-8 have been drawn.
Jung, Aude-Valérie; Le Cann, Pierre; Roig, Benoit; Thomas, Olivier; Baurès, Estelle; Thomas, Marie-Florence
2014-01-01
Microbial pollution in aquatic environments is one of the crucial issues with regard to the sanitary state of water bodies used for drinking water supply, recreational activities and harvesting seafood due to a potential contamination by pathogenic bacteria, protozoa or viruses. To address this risk, microbial contamination monitoring is usually assessed by turbidity measurements performed at drinking water plants. Some recent studies have shown significant correlations of microbial contamination with the risk of endemic gastroenteresis. However the relevance of turbidimetry may be limited since the presence of colloids in water creates interferences with the nephelometric response. Thus there is a need for a more relevant, simple and fast indicator for microbial contamination detection in water, especially in the perspective of climate change with the increase of heavy rainfall events. This review focuses on the one hand on sources, fate and behavior of microorganisms in water and factors influencing pathogens’ presence, transportation and mobilization, and on the second hand, on the existing optical methods used for monitoring microbiological risks. Finally, this paper proposes new ways of research. PMID:24747537
SUDOQU, a new dose-assessment methodology for radiological surface contamination.
van Dillen, Teun; van Dijk, Arjan
2018-06-12
A new methodology has been developed for the assessment of the annual effective dose resulting from removable and fixed radiological surface contamination. It is entitled SUDOQU (SUrface DOse QUantification) and it can for instance be used to derive criteria for surface contamination related to the import of non-food consumer goods, containers and conveyances, e.g., limiting values and operational screening levels. SUDOQU imposes mass (activity)-balance equations based on radioactive decay, removal and deposition processes in indoor and outdoor environments. This leads to time-dependent contamination levels that may be of particular importance in exposure scenarios dealing with one or a few contaminated items only (usually public exposure scenarios, therefore referred to as the 'consumer' model). Exposure scenarios with a continuous flow of freshly contaminated goods also fall within the scope of the methodology (typically occupational exposure scenarios, thus referred to as the 'worker model'). In this paper we describe SUDOQU, its applications, and its current limitations. First, we delineate the contamination issue, present the assumptions and explain the concepts. We describe the relevant removal, transfer, and deposition processes, and derive equations for the time evolution of the radiological surface-, air- and skin-contamination levels. These are then input for the subsequent evaluation of the annual effective dose with possible contributions from external gamma radiation, inhalation, secondary ingestion (indirect, from hand to mouth), skin contamination, direct ingestion and skin-contact exposure. The limiting effective surface dose is introduced for issues involving the conservatism of dose calculations. SUDOQU can be used by radiation-protection scientists/experts and policy makers in the field of e.g. emergency preparedness, trade and transport, exemption and clearance, waste management, and nuclear facilities. Several practical examples are worked out demonstrating the potential applications of the methodology. . Creative Commons Attribution license.
Contaminant Interferences with SIMS Analyses of Microparticle Impactor Residues on LDEF Surfaces
NASA Technical Reports Server (NTRS)
Simon, C. G.; Batchelor, D.; Griffis, D. P.; Hunter, J. L.; Misra, V.; Ricks, D. A.; Wortman, J. J.
1992-01-01
Elemental analyses of impactor residues on high purity surface exposed to the low earth orbit (LEO) environment for 5.8 years on Long Duration Exposure Facility (LDEF) has revealed several probable sources for microparticles at this altitude, including natural micrometeorites and manmade debris ranging from paint pigments to bits of stainless steel. A myriad of contamination interferences were identified and their effects on impactor debris identification mitigated during the course of this study. These interferences included pre-, post-, and in-flight deposited particulate surface contaminants, as well as indigenous heterogeneous material contaminants. Non-flight contaminants traced to human origins, including spittle and skin oils, contributed significant levels of alkali-rich carbonaceous interferences. A ubiquitous layer of in-flight deposited silicaceous contamination varied in thickness with location on LDEF and proximity to active electrical fields. In-flight deposited (low velocity) contaminants included urine droplets and bits of metal film from eroded thermal blankets.
Electro-Optic Surface Field Imaging System
1989-06-01
ELECTRO - OPTIC SURFACE FIELD IMAGING SYSTEM L. E. Kingsley and W. R. Donaldson LABORATORY FOR LASER ENERGETICS University of Rochester 250 East...surface electric fields present during switch operation. The electro - optic , or Pockel’s effect, provides an extremely useful probe of surface electric...fields. Using the electro - optic effect, surface fields can be measured with an optical probe. This paper describes an electro - optic probe which is
Wafer chamber having a gas curtain for extreme-UV lithography
Kanouff, Michael P.; Ray-Chaudhuri, Avijit K.
2001-01-01
An EUVL device includes a wafer chamber that is separated from the upstream optics by a barrier having an aperture that is permeable to the inert gas. Maintaining an inert gas curtain in the proximity of a wafer positioned in a chamber of an extreme ultraviolet lithography device can effectively prevent contaminants from reaching the optics in an extreme ultraviolet photolithography device even though solid window filters are not employed between the source of reflected radiation, e.g., the camera, and the wafer. The inert gas removes the contaminants by entrainment.
Oxazine-based sensor for contaminant detection, fabrication method therefor, and uses thereof
Nnanna, Agbai Agwu; Jalal, Ahmed Hasnian
2014-05-27
A sensor, a method for its fabrication, and a method for its use to detect contaminants, for example, ammonia, in stagnant and dynamic fluid media, especially liquid media. The sensor is an opto-chemical sensor that includes a polymer optical fiber, a sensing layer comprising oxazine 170 perchlorate on the polymer optical fiber, and a membrane layer on the sensing layer. The membrane layer is gas permeable and not permeable to the fluid in the fluid system, and moisture is entrapped by and between the sensing and membrane layers.
Standoff laser-based spectroscopy for explosives detection
NASA Astrophysics Data System (ADS)
Gaft, M.; Nagli, L.
2007-10-01
Real time detection and identification of explosives at a standoff distance is a major issue in efforts to develop defense against so-called Improvised Explosive Devices (IED). It is recognized that the only technique, which is potentially capable to standoff detection of minimal amounts of explosives is laser-based spectroscopy. LDS activity is based on a combination of laser-based spectroscopic methods with orthogonal capabilities. Our technique belongs to trace detection, namely to its micro-particles variety. It is based on commonly held belief that surface contamination was very difficult to avoid and could be exploited for standoff detection. We has applied optical techniques including gated Raman and time-resolved luminescence spectroscopy for detection of main explosive materials, both factory and homemade. We developed and tested a Raman system for the field remote detection and identification of minimal amounts of explosives on relevant surfaces at a distance of up to 30 meters.
About complex refractive index of black Si
NASA Astrophysics Data System (ADS)
Pinčík, Emil; Brunner, Robert; Kobayashi, Hikaru; Mikula, Milan
2017-12-01
The paper deals with the complex refractive index in the IR light region of two types of samples (i) as prepared black silicon, and (ii) thermally oxidized black silicon (BSi) nano-crystalline specimens produced both by the surface structure chemical transfer method using catalytic Ag evaporated spots (as prepared sample) and by the catalytic Pt catalytic mesh (thermally oxidized sample). We present, compare, and discuss the values of the IR complex refractive index obtained by calculation using the Kramers-Krönig transformation. Results indicate that small differences between optical properties of as prepared black Si and thermally oxidized BSi are given by: (i) - oxidation procedure, (ii) - thickness of the formed black Si layer, mainly, not by utilization of different catalytic metals, and by iii) the different thickness. Contamination of the surface by different catalytic metals contributes almost equally to the calculated values of the corresponding complex refractive index.
Lessons Learned in Thermal Coatings from the DSCOVR Mission
NASA Technical Reports Server (NTRS)
Abraham, Nithin S.
2015-01-01
Finding solutions to thermal coating issues on the Deep Space Climate Observatory (DSCOVR) mission was a very challenging and unique endeavor. As a passive thermal control system, coatings provide the desired thermal, optical, and electrical charging properties, while surviving a harsh space environment. DSCOVR mission hardware was repurposed from the late 1990s satellite known as Triana. As a satellite that was shelved for over a decade, the coating surfaces consequently degraded with age, and became fairly outdated. Although the mission successfully launched in February 2015, there were unfamiliar observations and unanticipated issues with the coating surfaces during the revival phases of the project. For example, the thermal coatings on DSCOVR experienced particulate contamination and resistivity requirement problems, among other issues. While finding solutions to these issues, valuable lessons were learned in thermal coatings that may provide great insight to future spaceflight missions in similar situations.
Occurrence of Surface Water Contaminations: An Overview
NASA Astrophysics Data System (ADS)
Shahabudin, M. M.; Musa, S.
2018-04-01
Water is a part of our life and needed by all organisms. As time goes by, the needs by human increased transforming water quality into bad conditions. Surface water contaminated in various ways which is pointed sources and non-pointed sources. Pointed sources means the source are distinguished from the source such from drains or factory but the non-pointed always occurred in mixed of elements of pollutants. This paper is reviewing the occurrence of the contaminations with effects that occurred around us. Pollutant factors from natural or anthropology factors such nutrients, pathogens, and chemical elements contributed to contaminations. Most of the effects from contaminated surface water contributed to the public health effects also to the environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piepel, Gregory F.; Amidan, Brett G.; Hu, Rebecca
2011-11-28
This report summarizes previous laboratory studies to characterize the performance of methods for collecting, storing/transporting, processing, and analyzing samples from surfaces contaminated by Bacillus anthracis or related surrogates. The focus is on plate culture and count estimates of surface contamination for swab, wipe, and vacuum samples of porous and nonporous surfaces. Summaries of the previous studies and their results were assessed to identify gaps in information needed as inputs to calculate key parameters critical to risk management in biothreat incidents. One key parameter is the number of samples needed to make characterization or clearance decisions with specified statistical confidence. Othermore » key parameters include the ability to calculate, following contamination incidents, the (1) estimates of Bacillus anthracis contamination, as well as the bias and uncertainties in the estimates, and (2) confidence in characterization and clearance decisions for contaminated or decontaminated buildings. Gaps in knowledge and understanding identified during the summary of the studies are discussed and recommendations are given for future studies.« less
Meszaros, Nicholas; Subedi, Bikram; Stamets, Tristan; Shifa, Naima
2017-09-01
There is a growing concern over the contamination of surface water and the associated environmental and public health consequences from the recent proliferation of hydraulic fracturing in the USA. Petroleum hydrocarbon-derived contaminants of concern [benzene, toluene, ethylbenzene, and xylenes (BTEX)] and various dissolved cations and anions were spatially determined in surface waters around 15 coalbed methane fracking wells in Sullivan County, IN, USA. At least one BTEX compound was detected in 69% of sampling sites (n = 13) and 23% of sampling sites were found to be contaminated with all of the BTEX compounds. Toluene was the most common BTEX compound detected across all sampling sites, both upstream and downstream from coalbed methane fracking wells. The average concentration of toluene at a reservoir and its outlet nearby the fracking wells was ~2× higher than other downstream sites. However, one of the upstream sites was found to be contaminated with BTEX at similar concentrations as in a reservoir site nearby the fracking well. Calcium (~60 ppm) and sulfates (~175 ppm) were the dominant cations and anions, respectively, in surface water around the fracking sites. This study represents the first report of BTEX contamination in surface water from coalbed methane hydraulic fracturing wells.
Infrared particle detection for battery electrode foils
NASA Astrophysics Data System (ADS)
Just, P.; Ebert, L.; Echelmeyer, T.; Roscher, M. A.
2013-11-01
Failures of electrochemical cells caused by internal shorts still are an important issue to be faced by the cell manufacturers and their customers. A major cause for internal shorts are contaminated electrode foils. These contaminations have to be detected securely via a non-destructive inspection technique integrated into the electrode manufacturing process. While optical detection already is state of the art, infrared detection of particles finds a new field of application in the battery electrode manufacturing process. This work presents two approaches focusing on electrode inspection by electromagnetic radiation (visible and infrared). Copper foils with a carbon based coating were intentionally contaminated by slivers of aluminum and copper as well as by abraded coating particles. Optical excitation by a flash and a luminescent lamp was applied at different angles in order to detect the reflected visible radiation. A laser impulse was used to heat up the specimen for infrared inspection. Both approaches resulted in setups providing a high contrast between contaminations and the coated electrode foil. It is shown that infrared detection offers a higher security thanks to its reliance on absorbance and emissivity instead of reflectivity as it is used for optical detection. Infrared Detection offers a potential since it is hardly influenced by the particle's shape and orientation and the electrode's waviness.
NASA Astrophysics Data System (ADS)
Prukner, Vaclav; Dolezalova, Eva; Simek, Milan
2014-10-01
Highly reactive environment produced by atmospheric-pressure, non-equilibrium plasmas generated by surface dielectric barrier discharges (SDBDs) may be used for inactivation of biologically contaminated surfaces. We investigated decontamination efficiency of reactive environment produced by single/multiple surface streamer micro-discharge driven by amplitude-modulated AC power in coplanar electrode geometry on biologically contaminated surface by Escherichia coli. The discharges were fed by synthetic air with water vapor admixtures at atmospheric pressure, time of treatment was set from 10 second to 10 minutes, diameters of used SDBD electrodes (single and multiple streamer) and homogeneously contaminated disc samples were equal (25 mm), the distance between the electrode and contaminated surface was 2 mm. Both a conventional cultivation and fluorescent method LIVE/DEAD Bacterial Viability kit were applied to estimate counts of bacteria after the plasma treatment. Inactivation was effective and bacteria partly lost ability to grow and became injured and viable/active but non-cultivable (VBNC/ABNC). Work was supported by the MEYS under Project LD13010, VES13 COST CZ (COST Action MP 1101).
NASA Technical Reports Server (NTRS)
Hughes, David; Perez, Xavier
2007-01-01
This presentation evaluates the parameters that affect visual inspection of cleanliness. Factors tested include surface reflectance, surface roughness, size of the largest particle, exposure time, inspector and distance from sample surface. It is concluded that distance predictions were not great, particularly because the distance at which contamination is seen may depend on more variables than those tested. Most parameters estimates had confidence of 95% or better, except for exposure and reflectance. Additionally, the distance at which surface is visibly contaminated decreases with increasing reflectance, roughness, and exposure. The distance at which the surface is visually contaminated increased with the largest particle size. These variables were only slightly affected the observer.
Skylab program payload integration. TO27 sample array
NASA Technical Reports Server (NTRS)
Muscari, J. A.; Westcott, P. A.
1974-01-01
The objective of the TO27 sample array was to determine the change in optical properties of various transmissive windows, mirrors, and diffraction gratings caused by the deposition of contaminants found about the orbital assembly. The expected information to be obtained from the total TO27 sample array program is as follows: (1) effect of space contaminants on transmittance, reflectance, grating efficiency, and polarization; (2) variations in deposition of contaminants due to substrate, solar radiation, period of exposure, direction of exposure, and geometry effects; (3) identification of contaminants and source of evolution; (4) time of contaminant evolution and lingering time; and (5) guidelines for a model of spacecraft contamination.
The Aerogel Mesh Contamination Collector
1993-07-01
patent pending 2.1 Introduction The new method of contamination prevention and collection described herein employs ultra-low density silica aerogel and a... silica aerogel and the Section 2.2 presents the fabrication of the acrogel me:sh contamination collector (AMCC). The device is a heterostructure...monolithic photonic devices and lightweight optics). This report series will focus on silica aerogels almost exclusively. It is also of interest to note that
Microscope sterility during spine surgery.
Bible, Jesse E; O'Neill, Kevin R; Crosby, Colin G; Schoenecker, Jonathan G; McGirt, Matthew J; Devin, Clinton J
2012-04-01
Prospective study. Assess the contamination rates of sterile microscope drapes after spine surgery. The use of the operating microscope has become more prevalent in certain spine procedures, providing superior magnification, visualization, and illumination of the operative field. However, it may represent an additional source of bacterial contamination and increase the risk of developing a postoperative infection. This study included 25 surgical spine cases performed by a single spine surgeon that required the use of the operative microscope. Sterile culture swabs were used to obtain samples from 7 defined locations on the microscope drape after its use during the operation. The undraped technician's console was sampled in each case as a positive control, and an additional 25 microscope drapes were swabbed immediately after they were applied to the microscope to obtain negative controls. Swab samples were assessed for bacterial growth on 5% sheep blood Columbia agar plates using a semiquantitative technique. No growth was observed on any of the 25 negative control drapes. In contrast, 100% of preoperative and 96% of postoperative positive controls demonstrated obvious contamination. In the postoperative group, all 7 sites of evaluation were found to be contaminated with rates of 12% to 44%. Four of the 7 evaluated locations were found to have significant contamination rates compared with negative controls, including the shafts of the optic eyepieces on the main surgeon side (24%, P = 0.022), "forehead" portion on both the main surgeon (24%, P = 0.022) and assistant sides (28%, P = 0.010), and "overhead" portion of the drape (44%, P = 0.0002). Bacterial contamination of the operative microscope was found to be significant after spine surgery. Contamination was more common around the optic eyepieces, likely due to inadvertent touching of unsterile portions. Similarly, all regions above the eyepieces also have a propensity for contamination because of unknown contact with unsterile parts of the surgeon. Therefore, we believe that changing gloves after making adjustments to the optic eyepieces and avoid handling any portion of the drape above the eyepieces may decrease the risks of intraoperative contamination and possibly postoperative infection as well.
Off-axis reflective optical apparatus
NASA Technical Reports Server (NTRS)
Ames, Lawrence L. (Inventor); Leary, David F. (Inventor); Mammini, Paul V. (Inventor)
2005-01-01
Embodiments of the present invention are directed to a simple apparatus and a convenient and accurate method of mounting the components to form an off-axis reflective optical apparatus such as a collimator. In one embodiment, an off-axis reflective optical apparatus comprises a mounting block having a ferrule holder support surface and an off-axis reflector support surface which is generally perpendicular to the ferrule holder support surface. An optical reflector is mounted on the off-axis reflector support surface and has a reflected beam centerline. The optical reflector has a conic reflective surface and a conic center. A ferrule holder is mounted on the ferrule holder support surface. The ferrule holder provides a ferrule for coupling to an optical fiber and orienting a fiber tip of the optical fiber along a fiber axis toward the optical reflector. The fiber axis is nonparallel to the reflected beam centerline. Prior to mounting the optical reflector to the off-axis reflector support surface and prior to mounting the ferrule holder to the ferrule holder support surface, the optical reflector is movable on the off-axis reflector surface and the ferrule holder is movable on the ferrule holder support surface to align the conic center of the optical reflector with respect to the fiber tip of the optical fiber, and the apparatus has at least one of the following features: (1) the optical reflector is movable on the off-axis reflector support surface to adjust a focus of the fiber tip with respect to the optical reflector, and (2) the ferrule holder is movable on the ferrule holder support surface to adjust the focus of the fiber tip with respect to the optical reflector.
Strippable containment and decontamination coating composition and method of use
Moore, Robert C [Edgewood, NM; Tucker, Mark D [Albuquerque, NM; Jones, Joseph A [Albuquerque, NM
2009-04-07
A method for containing at least a portion of radioisotopes, radionuclides, heavy metal or combination thereof contaminating a substrate wherein a containment composition is applied to the substrate. The ingredients within the containment composition interact with the contaminants on the surface of the substrate until the containment composition has polymerized to a water insoluble form containing at least a portion of the contaminates enmeshed therein. The dried composition is removed from the contaminated surface removing with the composition at least a portion of the contaminate.
First principles study of gallium cleaning for hydrogen-contaminated α-Al2O3(0001) surfaces.
Yang, Rui; Rendell, Alistair P
2013-05-15
The use of gallium for cleaning hydrogen-contaminated Al2O3 surfaces is explored by performing first principles density functional calculations of gallium adsorption on a hydrogen-contaminated Al-terminated α-Al2O3(0001) surface. Both physisorbed and chemisorbed H-contaminated α-Al2O3(0001) surfaces with one monolayer (ML) gallium coverage are investigated. The thermodynamics of gallium cleaning are considered for a variety of different asymptotic products, and are found to be favorable in all cases. Physisorbed H atoms have very weak interactions with the Al2O3 surface and can be removed easily by the Ga ML. Chemisorbed H atoms form stronger interactions with the surface Al atoms. Bonding energy analysis and departure simulations indicate, however, that chemisorbed H atoms can be effectively removed by the Ga ML. Copyright © 2013 Wiley Periodicals, Inc.
Apparatus for measuring surface particulate contamination
Woodmansee, Donald E.
2002-01-01
An apparatus for measuring surface particulate contamination includes a tool for collecting a contamination sample from a target surface, a mask having an opening of known area formed therein for defining the target surface, and a flexible connector connecting the tool to the mask. The tool includes a body portion having a large diameter section defining a surface and a small diameter section extending from the large diameter section. A particulate collector is removably mounted on the surface of the large diameter section for collecting the contaminants. The tool further includes a spindle extending from the small diameter section and a spool slidingly mounted on the spindle. A spring is disposed between the small diameter section and the spool for biasing the spool away from the small diameter section. An indicator is provided on the spindle so as to be revealed when the spool is pressed downward to compress the spring.
USING A HEAT PULSE TO MEASURE THE FLUX BETWEEN GROUNDWATER AND SURFACE WATER
EPA estimates that 10 percent of the sediments under the surface waters of the United States are contaminated and approximately 20 percent of the superfund sites include contaminated sediments. The risk associated with these contaminated sediments is directly related to the flux...
Olsen, Lisa D.; Spencer, Tracey A.
2000-01-01
The U.S. Geological Survey (USGS) collected 13 surface-water samples and 3 replicates from 5 sites in the West Branch Canal Creek area at Aberdeen Proving Ground from February through August 1999, as a part of an investigation of ground-water contamination and natural attenuation processes. The samples were analyzed for volatile organic compounds, including trichloroethylene, 1,1,2,2-tetrachloroethane, carbon tetrachloride, and chloroform, which are the four major contaminants that were detected in ground water in the Canal Creek area in earlier USGS studies. Field blanks were collected during the sampling period to assess sample bias. Field replicates were used to assess sample variability, which was expressed as relative percent difference. The mean variability of the surface-water replicate analyses was larger (35.4 percent) than the mean variability of ground-water replicate analyses (14.6 percent) determined for West Branch Canal Creek from 1995 through 1996. The higher variability in surface-water analyses is probably due to heterogeneities in the composition of the surface water rather than differences in sampling or analytical procedures. The most frequently detected volatile organic compound was 1,1,2,2- tetrachloroethane, which was detected in every sample and in two of the replicates. The surface-water contamination is likely the result of cross-media transfer of contaminants from the ground water and sediments along the West Branch Canal Creek. The full extent of surface-water contamination in West Branch Canal Creek and the locations of probable contaminant sources cannot be determined from this limited set of data. Tidal mixing, creek flow patterns, and potential effects of a drought that occurred during the sampling period also complicate the evaluation of surface-water contamination.
Payload/orbiter contamination control requirement study, volume 2, exhibit A
NASA Technical Reports Server (NTRS)
Bareiss, L. E.; Hooper, V. W.; Rantanen, R. O.; Ress, E. B.
1974-01-01
The computer printout data generated during the Payload/Orbiter Contamination Control Requirement Study are presented. The computer listings of the input surface data matrices, the viewfactor data matrices, and the geometric relationship data matrices for the three orbiter/spacelab configurations analyzed in this study are given. These configurations have been broken up into the geometrical surfaces and nodes necessary to define the principal critical surfaces whether they are contaminant sources, experimental surfaces, or operational surfaces. A numbering scheme was established based upon nodal numbers that relates the various spacelab surfaces to a specific surface material or function. This numbering system was developed for the spacelab configurations such that future extension to a surface mapping capability could be developed as required.
Optical surface pressure measurements: Accuracy and application field evaluation
NASA Astrophysics Data System (ADS)
Bukov, A.; Mosharov, V.; Orlov, A.; Pesetsky, V.; Radchenko, V.; Phonov, S.; Matyash, S.; Kuzmin, M.; Sadovskii, N.
1994-07-01
Optical pressure measurement (OPM) is a new pressure measurement method rapidly developed in several aerodynamic research centers: TsAGI (Russia), Boeing, NASA, McDonnell Douglas (all USA), and DLR (Germany). Present level of OPM-method provides its practice as standard experimental method of aerodynamic investigations in definite application fields. Applications of OPM-method are determined mainly by its accuracy. The accuracy of OPM-method is determined by the errors of three following groups: (1) errors of the luminescent pressure sensor (LPS) itself, such as uncompensated temperature influence, photo degradation, temperature and pressure hysteresis, variation of the LPS parameters from point to point on the model surface, etc.; (2) errors of the measurement system, such as noise of the photodetector, nonlinearity and nonuniformity of the photodetector, time and temperature offsets, etc.; and (3) methodological errors, owing to displacement and deformation of the model in an airflow, a contamination of the model surface, scattering of the excitation and luminescent light from the model surface and test section walls, etc. OPM-method allows getting total error of measured pressure not less than 1 percent. This accuracy is enough to visualize the pressure field and allows determining total and distributed aerodynamic loads and solving some problems of local aerodynamic investigations at transonic and supersonic velocities. OPM is less effective at low subsonic velocities (M less than 0.4), and for precise measurements, for example, an airfoil optimization. Current limitations of the OPM-method are discussed on an example of the surface pressure measurements and calculations of the integral loads on the wings of canard-aircraft model. The pressure measurement system and data reduction methods used on these tests are also described.
Plasmon-assisted optical vias for photonic ASICS
Skogen, Erik J.; Vawter, Gregory A.; Tauke-Pedretti, Anna
2017-03-21
The present invention relates to optical vias to optically connect multilevel optical circuits. In one example, the optical via includes a surface plasmon polariton waveguide, and a first optical waveguide formed on a first substrate is coupled to a second optical waveguide formed on a second substrate by the surface plasmon polariton waveguide. In some embodiments, the first optical waveguide includes a transition region configured to convert light from an optical mode to a surface plasmon polariton mode or from a surface plasmon polariton mode to an optical mode.
NASA Astrophysics Data System (ADS)
Cowperthwaite, P. S.; Berger, E.; Rest, A.; Chornock, R.; Scolnic, D. M.; Williams, P. K. G.; Fong, W.; Drout, M. R.; Foley, R. J.; Margutti, R.; Lunnan, R.; Metzger, B. D.; Quataert, E.
2018-05-01
We present an empirical study of contamination in wide-field optical follow-up searches of gravitational wave sources from Advanced LIGO/Virgo using dedicated observations with the Dark Energy Camera. Our search covered ∼56 deg2, with two visits per night, in the i and z bands, followed by an additional set of griz images three weeks later to serve as reference images for subtraction. We achieve 5σ point-source limiting magnitudes of i ≈ 23.5 and z ≈ 22.4 mag in the coadded single-epoch images. We conduct a search for transient objects that mimic the i ‑ z color behavior of both red (i‑z > 0.5 mag) and blue (i‑z < 0 mag) kilonova emission, finding 11 and 10 contaminants, respectively. Independent of color, we identify 48 transients of interest. Additionally, we leverage the rapid cadence of our observations to search for sources with characteristic timescales of ≈1 day and ≈3 hr, finding no potential contaminants. We assess the efficiency of our search with injected point sources, finding that we are 90% (60%) efficient when searching for red (blue) kilonova-like sources to a limiting magnitude of i ≲ 22.5 mag. Using our efficiencies, we derive sky rates for kilonova contaminants of {{ \\mathcal R }}red} ≈ 0.16 deg‑2 and {{ \\mathcal R }}blue}≈ 0.80 deg‑2. The total contamination rate is {{ \\mathcal R }}all}≈ 1.79 deg‑2. We compare our results to previous optical follow-up efforts and comment on the outlook for gravitational wave follow-up searches as additional detectors (e.g., KAGRA, LIGO India) come online in the next decade.
Qiu, S. R.; Norton, M. A.; Raman, R. N.; ...
2015-10-02
In this paper, high dielectric constant multilayer coatings are commonly used on high-reflection mirrors for high-peak-power laser systems because of their high laser-damage resistance. However, surface contaminants often lead to damage upon laser exposure, thus limiting the mirror’s lifetime and performance. One plausible approach to improve the overall mirror resistance against laser damage, including that induced by laser-contaminant coupling, is to coat the multilayers with a thin protective capping (absentee) layer on top of the multilayer coatings. An understanding of the underlying mechanism by which laser-particle interaction leads to capping layer damage is important for the rational design and selectionmore » of capping materials of high-reflection multilayer coatings. In this paper, we examine the responses of two candidate capping layer materials, made of SiO 2 and Al 2O 3, over silica-hafnia multilayer coatings. These are exposed to a single oblique shot of a 1053 nm laser beam (fluence ~10 J/cm 2, pulse length 14 ns), in the presence of Ti particles on the surface. We find that the two capping layers show markedly different responses to the laser-particle interaction. The Al 2O 3 cap layer exhibits severe damage, with the capping layer becoming completely delaminated at the particle locations. The SiO 2 capping layer, on the other hand, is only mildly modified by a shallow depression. Combining the observations with optical modeling and thermal/mechanical calculations, we argue that a high-temperature thermal field from plasma generated by the laser-particle interaction above a critical fluence is responsible for the surface modification of each capping layer. The great difference in damage behavior is mainly attributed to the large disparity in the thermal expansion coefficient of the two capping materials, with that of Al 2O 3 layer being about 15 times greater than that of SiO 2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, S. R.; Norton, M. A.; Raman, R. N.
In this paper, high dielectric constant multilayer coatings are commonly used on high-reflection mirrors for high-peak-power laser systems because of their high laser-damage resistance. However, surface contaminants often lead to damage upon laser exposure, thus limiting the mirror’s lifetime and performance. One plausible approach to improve the overall mirror resistance against laser damage, including that induced by laser-contaminant coupling, is to coat the multilayers with a thin protective capping (absentee) layer on top of the multilayer coatings. An understanding of the underlying mechanism by which laser-particle interaction leads to capping layer damage is important for the rational design and selectionmore » of capping materials of high-reflection multilayer coatings. In this paper, we examine the responses of two candidate capping layer materials, made of SiO 2 and Al 2O 3, over silica-hafnia multilayer coatings. These are exposed to a single oblique shot of a 1053 nm laser beam (fluence ~10 J/cm 2, pulse length 14 ns), in the presence of Ti particles on the surface. We find that the two capping layers show markedly different responses to the laser-particle interaction. The Al 2O 3 cap layer exhibits severe damage, with the capping layer becoming completely delaminated at the particle locations. The SiO 2 capping layer, on the other hand, is only mildly modified by a shallow depression. Combining the observations with optical modeling and thermal/mechanical calculations, we argue that a high-temperature thermal field from plasma generated by the laser-particle interaction above a critical fluence is responsible for the surface modification of each capping layer. The great difference in damage behavior is mainly attributed to the large disparity in the thermal expansion coefficient of the two capping materials, with that of Al 2O 3 layer being about 15 times greater than that of SiO 2.« less
Pasquarella, C; Balocco, C; Pasquariello, G; Petrone, G; Saccani, E; Manotti, P; Ugolotti, M; Palla, F; Maggi, O; Albertini, R
2015-12-01
The aim of this paper is to describe a multidisciplinary approach including biological and particle monitoring, and microclimate analysis associated with the application of the Computational Fluid Dynamic (CFD). This approach was applied at the Palatina historical library in Parma. Monitoring was performed both in July and in December, in the absence of visitors and operators. Air microbial monitoring was performed with active and passive methods. Airborne particles with a diameter of ≥0.3, ≥0.5, ≥1 and ≥5 μm/m3, were counted by a laser particle counter. The surface contamination of shelves and manuscripts was assessed with nitrocellulose membranes. A spore trap sampler was used to identify both viable and non-viable fungal spores by optical microscope. Microbiological contaminants were analyzed through cultural and molecular biology techniques. Microclimatic parameters were also recorded. An infrared thermal camera provided information on the surface temperature of the different building materials, objects and components. Transient simulation models, for coupled heat and mass-moisture transfer, taking into account archivist and general public movements, combined with the related sensible and latent heat released into the environment, were carried out applying the CFD-FE (Finite Elements) method. Simulations of particle tracing were carried out. A wide variability in environmental microbial contamination, both for air and surfaces, was observed. Cladosporium spp., Alternaria spp., Aspergillus spp., and Penicillium spp. were the most frequently found microfungi. Bacteria such as Streptomyces spp., Bacillus spp., Sphingomonas spp., and Pseudoclavibacter as well as unculturable colonies were characterized by molecular investigation. CFD simulation results obtained were consistent with the experimental data on microclimatic conditions. The tracing and distribution of particles showed the different slice planes of diffusion mostly influenced by the convective airflow. This interdisciplinary research represents a contribution towards the definition of standardized methods for assessing the biological and microclimatic quality of indoor cultural heritage environments. Copyright © 2015 Elsevier B.V. All rights reserved.
Modeling the investment casting of a titanium crown.
Atwood, R C; Lee, P D; Curtis, R V; Maijer, D M
2007-01-01
The objective of this study was to apply computational modeling tools to assist in the design of titanium dental castings. The tools developed should incorporate state-of-the-art micromodels to predict the depth to which the mechanical properties of the crown are affected by contamination from the mold. The model should also be validated by comparison of macro- and micro-defects found in a typical investment cast titanium tooth crown. Crowns were hand-waxed and investment cast in commercial purity grade 1 (CP-1) titanium by a commercial dental laboratory. The castings were analyzed using X-ray microtomography (XMT). Following sectioning, analysis continued with optical and scanning electron microscopy, and microhardness testing. An in-house cellular-automata solidification and finite-difference diffusion program was coupled with a commercial casting program to model the investment casting process. A three-dimensional (3D) digital image generated by X-ray tomography was used to generate an accurate geometric representation of a molar crown casting. Previously reported work was significantly expanded upon by including transport of dissolved oxygen and impurity sources upon the arbitrarily shaped surface of the crown, and improved coupling of micro- and macro-scale simulations. Macroscale modeling was found to be sufficient to accurately predict the location of the large internal porosity. These are shrinkage pores located in the thick sections of the cusp. The model was used to determine the influence of sprue design on the size and location of these pores. Combining microscale with macroscale modeling allowed the microstructure and depth of contamination to be predicted qualitatively. This combined model predicted a surprising result--the dissolution of silicon from the mold into the molten titanium is sufficient to depress the freezing point of the liquid metal such that the crown solidifies the subsurface. Solidification then progresses inwards and back out to the surface through the silicon-enriched near-surface layer. The microstructure and compositional analysis of the near-surface region are consistent with this prediction. A multiscale model was developed and validated, which can be used to design CP-Ti dental castings to minimize both macro- and micro-defects, including shrinkage porosity, grain size and the extent of surface contamination due to reaction with the mold material. The model predicted the surprising result that the extent of Si contamination from the mold was sufficient to suppress the liquidus temperature to the extent that the surface (to a depth of approximately 100 microm) of the casting solidifies after the bulk. This significantly increases the oxygen pickup, thereby increasing the depth of formation of alpha casing. The trend towards mold materials with reduced Si in order to produce easier-to-finish titanium castings is a correct approach.
Plasma cleaning of nanoparticles from EUV mask materials by electrostatics
NASA Astrophysics Data System (ADS)
Lytle, W. M.; Raju, R.; Shin, H.; Das, C.; Neumann, M. J.; Ruzic, D. N.
2008-03-01
Particle contamination on surfaces used in extreme ultraviolet (EUV) mask blank deposition, mask fabrication, and patterned mask handling must be avoided since the contamination can create significant distortions and loss of reflectivity. Particles on the order of 10nm are problematic during MLM mirror fabrication, since the introduced defects disrupt the local Bragg planes. The most serious problem is the accumulation of particles on surfaces of patterned blanks during EUV light exposure, since > 25nm particles will be printed without an out-of-focus pellicle. Particle contaminants are also a problem with direct imprint processes since defects are printed every time. Plasma Assisted Cleaning by Electrostatics (PACE) works by utilizing a helicon plasma as well as a pulsed DC substrate bias to charge particle and repel them electrostatically from the surface. Removal of this nature is a dry cleaning method and removes contamination perpendicular from the surface instead of rolling or sweeping the particles off the surface, a benefit when cleaning patterned surfaces where contamination can be rolled or trapped between features. Also, an entire mask can be cleaned at once since the plasma can cover the entire surface, thus there is no need to focus in on an area to clean. Sophisticated particle contamination detection system utilizing high power laser called DEFCON is developed to analyze the particle removal after PACE cleaning process. PACE has shown greater than 90 % particle removal efficiencies for 30 to 220 nm PSL particles on ruthenium capped quartz. Removal results for silicon surfaces and quartz surfaces show similar removal efficiencies. Results of cleaning 80 nm PSL spheres from silicon substrates will be shown.
LDEF Materials Workshop 1991, part 2
NASA Technical Reports Server (NTRS)
Stein, Bland A. (Compiler); Young, Philip R. (Compiler)
1992-01-01
The LDEF Materials Workshop 1991 was a follow-on to the Materials Sessions at the First LDEF Post-Retrieval Symposium held in Kissimmee, Florida, June 1991. The workshop comprised a series of technical sessions on materials themes, followed by theme panel meetings. Themes included materials, environmental parameters, and data bases; contamination; thermal control and protective coating and surface treatments; polymers and films; polymer matrix composites; metals, ceramics, and optical materials; lubricants adhesives, seals, fasteners, solar cells, and batteries. This document continues the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG) pursuit to investigate the effects of LEO exposure on materials which were not originally planned to be test specimens. Papers from the technical sessions are presented.
Optical detection of polychlorinated biphenyls
NASA Astrophysics Data System (ADS)
Kuncova, Gabriela; Berkova, Daniela; Burkhard, Jiri; Demnerova, Katerina; Pazlarova, Jarmila; Triska, Jan; Vrchotova, Nadezda
1999-12-01
In this paper we describe the detection of polychlorinated biphenyls (PCBs) which is based on the measurement of changes of optical absorption at 400 nm of the medium in an aerobic bioreactor with immobilized cells Pseudomonas species 2. The rate of production, composition and the concentration of yellow intermediates are influenced by concentration and composition of PCB mixtures, concentration of cells and by the methods of immobilization. The method was applied in the detection of commercial mixture D103. It was found that the advantageous carriers were inorganic or organic-inorganic matrices, which sorbed PCBs and a cell outgrowth from their surface was low. In water contaminated with transformer oil and chlorinated hydrocarbons the detection limit is 10-2 gD103/kg. In transformer oil the upper limit for degradation of D103 by sodium dehalogenation (1.5 gD103 /kgoil) was determined also in the presence of the same concentration of trichloroethylene. The employment to of a liquid core waveguide spectrophotometer instead of a diode array spectrophotometer increased the sensitivity of the measurement of yellow intermediates by a factor of 100. An extrinsic fiber-optic sensor was used for in-situ measurement during biodegradation of PCBs in bioreactors.
Optical assays based on colloidal inorganic nanoparticles.
Ghasemi, Amir; Rabiee, Navid; Ahmadi, Sepideh; Hashemzadeh, Shabnam; Lolasi, Farshad; Bozorgomid, Mahnaz; Kalbasi, Alireza; Nasseri, Behzad; Shiralizadeh Dezfuli, Amin; Aref, Amir Reza; Karimi, Mahdi; Hamblin, Michael R
2018-06-20
Colloidal inorganic nanoparticles have wide applications in the detection of analytes and in biological assays. A large number of these assays rely on the ability of gold nanoparticles (AuNPs, in the 20 nm diameter size range) to undergo a color change from red to blue upon aggregation. AuNP assays can be based on cross-linking, non-cross linking or unmodified charge-based aggregation. Nucleic acid-based probes, monoclonal antibodies, and molecular-affinity agents can be attached by covalent or non-covalent means. Surface plasmon resonance and SERS techniques can be utilized. Silver NPs also have attractive optical properties (higher extinction coefficient). Combinations of AuNPs and AgNPs in nanocomposites can have additional advantages. Magnetic NPs and ZnO, TiO2 and ZnS as well as insulator NPs including SiO2 can be employed in colorimetric assays, and some can act as peroxidase mimics in catalytic applications. This review covers the synthesis and stabilization of inorganic NPs and their diverse applications in colorimetric and optical assays for analytes related to environmental contamination (metal ions and pesticides), and for early diagnosis and monitoring of diseases, using medically important biomarkers.
EUV laser produced and induced plasmas for nanolithography
NASA Astrophysics Data System (ADS)
Sizyuk, Tatyana; Hassanein, Ahmed
2017-10-01
EUV produced plasma sources are being extensively studied for the development of new technology for computer chips production. Challenging tasks include optimization of EUV source efficiency, producing powerful source in 2 percentage bandwidth around 13.5 nm for high volume manufacture (HVM), and increasing the lifetime of collecting optics. Mass-limited targets, such as small droplet, allow to reduce contamination of chamber environment and mirror surface damage. However, reducing droplet size limits EUV power output. Our analysis showed the requirement for the target parameters and chamber conditions to achieve 500 W EUV output for HVM. The HEIGHTS package was used for the simulations of laser produced plasma evolution starting from laser interaction with solid target, development and expansion of vapor/plasma plume with accurate optical data calculation, especially in narrow EUV region. Detailed 3D modeling of mix environment including evolution and interplay of plasma produced by lasers from Sn target and plasma produced by in-band and out-of-band EUV radiation in ambient gas, used for the collecting optics protection and cleaning, allowed predicting conditions in entire LPP system. Effect of these conditions on EUV photon absorption and collection was analyzed. This work is supported by the National Science Foundation, PIRE project.
NASA Technical Reports Server (NTRS)
Hansen, Gary B.; Warren, Stephen G.; Leovy, Conway B.
1991-01-01
Researchers found that it is possible to grow large clear samples of CO2 ice at Mars-like temperatures of 150-170K if a temperature controlled refrigerator is connected to an isolated two-phase pure CO2 system. They designed a chamber for transmission measurements whose optical path between the 13mm diameter window is adjustable from 1.6mm to 107mm. This will allow measurements of linear absorption down to less than 0.01 cm (exp -1). A preliminary transmission spectrum of a thick sample of CO2 ice in the near infrared was obtained. Once revised optical constants have been determined as a function of wavelength and temperature, they can be applied to spectral reflectance/emissivity models for CO2 snow surfaces, both pure and contaminated with dust and water ice, using previously established approaches. It will be useful, also, to develop an infrared scattering-emission cloud radiance model (especially as viewed from near the limb) in order to develop a strategy for the identification of CO2 cloud layers by the atmospheric infrared radiometer instrument on the Mars Observer.
NASA Astrophysics Data System (ADS)
Tsujimura, Norio; Yoshida, Tadayoshi; Hoshi, Katsuya
To rationally judge the necessity of the contamination screening measurements required in the decontamination work regulations, a field study of the surface contamination density on the clothing of the workers engaged in decontamination operations was performed. The clothing and footwear of 20 workers was analyzed by high-purity germanium (HPGe) gamma-ray spectroscopy. The maximum radiocesium activities (134Cs + 137Cs) observed were 3600, 1300, and 2100 Bq for the work clothing, gloves, and boots, respectively, and the derived surface contamination densities were below the regulatory limit of 40 Bq/cm2. The results of this field study suggest that the upper bounds of the surface contamination density on the work clothing, gloves, and boots are predictable from the maximum soil loading density on the surface of clothing and footwear and the radioactivity concentration in soil at the site.
Bacteria adhere to food products and processing surfaces that can cross-contaminate other products and work surfaces (Arnold, 1998). Using materials for food processing surfaces that are resistant to bacterial contamination could enhance food safety. Stainless steel, although sus...
Aidarkhanov, A O; Lukashenko, S N; Lyakhova, O N; Subbotin, S B; Yakovenko, Yu Yu; Genova, S V; Aidarkhanova, A K
2013-10-01
The Shagan River is the only surface watercourse within the former Semipalatinsk Test Site (STS). Research in the valley of the Shagan River was carried out to study the possible migration of artificial radionuclides with surface waters over considerable distances, with the possibility these radionuclides may have entered the Irtysh River. The investigations revealed that radioactive contamination of soil was primarily caused by the first underground nuclear test with soil outburst conducted at the "Balapan" site in Borehole 1004. The surface nuclear tests carried out at the "Experimental Field" site and global fallout made insignificant contributions to contamination. The most polluted is the area in the immediate vicinity of the "Atomic" Lake crater. Contamination at the site is spatial. The total area of contamination is limited to 10-12 km from the crater piles. The ratio of plutonium isotopes was useful to determine the source of soil contamination. There was virtual absence of artificial radionuclide migration with surface waters, and possible cross-border transfer of radionuclides with the waters of Shagan and Irtysh rivers was not confirmed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Modeling Contamination Migration on the Chandra X-Ray Observatory - III
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Swartz, Douglas A.; Tice, Neil W.; Plucinsky, Paul P.; Grant, Catherine E.; Marshall, Herman L.; Vikhlinin, Alexy A.; Tennant, Allyn F.; Dahmer, Matthew T.
2015-01-01
During its first 16 years of operation, the cold (about -60 C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity, in part to evaluate potential bake-out scenarios intended to reduce the level of contamination. Keywords: X-ray astronomy, CCDs, contamination, modeling and simulation, spacecraft operations
Stanton, Gregory P.; Kress, Wade; Hobza, Christopher M.; Czarnecki, John B.
2003-01-01
A surface-geophysical investigation of the Red River Aluminum site at Stamps, Arkansas, was conducted in cooperation with the Arkansas Department of Environmental Quality to determine the possible extent and depth of saltwater contamination. Water-level measurements indicate the distance to water level below land surface ranges from about 1.2 to 3.9 feet (0.37 to 1.19 meters) in shallow monitor wells and about 10.5 to 17.1 feet (3.20 to 5.21 meters) in deeper monitoring wells. The two-dimensional, direct-current resistivity method identified resistivities less than 5 ohm-meters which indicated possible areas of salt contamination occurring in near-surface or deep subsurface ground water along four resistivity lines within the site. One line located east of the site yielded data that demonstrated no effect of salt contamination. Sections from two of the five data sets were modeled. The input model grids were created on the basis of the known geology and the results and interpretations of borehole geophysical data. The clay-rich Cook Mountain Formation is modeled as 25 ohm-meters and extends from 21 meters (68.9 feet) below land surface to the bottom of the model (about 52 meters (170.6 feet)). The models were used to refine interpretation of the resistivity data and to determine extent of saltwater contamination and depth to the Cook Mountain Formation. Data from the resistivity lines indicate both near-surface and subsurface saltwater contamination. The near-surface contamination appears as low resistivity (less than 5 ohm-meters) on four of the five resistivity lines, extending up to 775 meters (2,542.8 feet) horizontally in a line that traverses the entire site south to north. Model resistivity data indicate that the total depth of saltwater contamination is about 18 meters (59 feet) below land surface. Data from four resistivity lines identified areas containing low resistivity anomalies interpreted as possible salt contamination. A fifth line located just east of the site showed no saltwater contamination.
One of the challenges in assessing the current impact of the discharge of arsenic contaminated ground water into a surface water body is differentiating the arsenic ground-water flux versus dissolution of in-place contaminated sediments. A field investigation has been carried ou...
Radiation Dose Assessments for Fleet-Based Individuals in Operation Tomodachi
2013-09-01
area. DOD took actions to ensure that radioactively contaminated food and bottled water did not reach the DOD-affiliated population. Military commands...material from contaminated surfaces of ships or aircraft or in water, food , or soil and dust each day while on shore. These doses were calculated for...22 2.4.4. Exposure related to Surface Contamination on Ships.......................... 22 2.4.5. Exposure from Skin Contamination
Pulsed Plasma Thruster Contamination
NASA Technical Reports Server (NTRS)
Myers, Roger M.; Arrington, Lynn A.; Pencil, Eric J.; Carter, Justin; Heminger, Jason; Gatsonis, Nicolas
1996-01-01
Pulsed Plasma Thrusters (PPT's) are currently baselined for the Air Force Mightysat II.1 flight in 1999 and are under consideration for a number of other missions for primary propulsion, precision positioning, and attitude control functions. In this work, PPT plumes were characterized to assess their contamination characteristics. Diagnostics included planar and cylindrical Langmuir probes and a large number of collimated quartz contamination sensors. Measurements were made using a LES 8/9 flight PPT at 0.24, 0.39, 0.55, and 1.2 m from the thruster, as well as in the backflow region behind the thruster. Plasma measurements revealed a peak centerline ion density and velocity of approx. 6 x 10(exp 12) cm(exp -3) and 42,000 m/s, respectively. Optical transmittance measurements of the quartz sensors after 2 x 10(exp 5) pulses showed a rapid decrease in plume contamination with increasing angle from the plume axis, with a barely measurable transmittance decrease in the ultraviolet at 90 deg. No change in optical properties was detected for sensors in the backflow region.
Pourmohammadbagher, Amin; Shaw, John M
2015-09-15
Clays, in tailings, are a significant ongoing environmental concern in the mining and oilsands production industries, and clay rehabilitation following contamination poses challenges episodically. Understanding the fundamentals of clay behavior can lead to better environmental impact mitigation strategies. Systematic calorimetric measurements are shown to provide a framework for parsing the synergistic and antagonistic impacts of trace (i.e., parts per million level) components on the surface compositions of clays. The enthalpy of solution of as-received and "contaminated" clays, in as-received and "contaminated" organic solvents and water, at 60 °C and atmospheric pressure, provides important illustrative examples. Clay contamination included pre-saturation of clays with water and organic liquids. Solvent contamination included the addition of trace water to organic solvents and trace organic liquids to water. Enthalpy of solution outcomes are interpreted using a quantitative mass and energy balance modeling framework that isolates terms for solvent and trace contaminant sorption/desorption and surface energy effects. Underlying surface energies are shown to dominate the energetics of the solvent-clay interaction, and organic liquids as solvents or as trace contaminants are shown to displace water from as-received clay surfaces. This approach can be readily extended to include pH, salts, or other effects and is expected to provide mechanistic and quantitative insights underlying the stability of clays in tailings ponds and the behaviors of clays in diverse industrial and natural environments.
Austin, Peter David; Hand, Kieran Sean; Elia, Marinos
2014-02-01
Handwritten recycled paper prescription for parenteral nutrition (PN) may become a concentrated source of viable contaminants, including pathogens. This study examined the effect of using fresh printouts of electronic prescriptions on these contaminants. Cellulose sponge stick swabs with neutralizing buffer were used to sample the surfaces of PN prescriptions (n = 32 handwritten recycled; n = 32 printed electronic) on arrival to the pharmacy or following printing and PN prescriptions and bags packaged together during delivery (n = 38 handwritten recycled; n = 34 printed electronic) on arrival to hospital wards. Different media plates and standard microbiological procedures identified the type and number of contaminants. Staphylococcus aureus, fungi, and mold were infrequent contaminants. nonspecific aerobes more frequently contaminated handwritten recycled than printed electronic prescriptions (into pharmacy, 94% vs 44%, fisher exact test P .001; onto wards, 76% vs 50%, p = .028), with greater numbers of colony-forming units (CFU) (into pharmacy, median 130 [interquartile range (IQR), 65260] VS 0 [075], Mann-Whitney U test, P .001; onto wards, median 120 [15320] vs 10 [040], P = .001). packaging with handwritten recycled prescriptions led to more frequent nonspecific aerobic bag surface contamination (63% vs 41%, fisher exact test P = .097), with greater numbers of CFU (median 40 [IQR, 080] VS 0 [040], Mann-Whitney U test, P = .036). The use of printed electronic PN prescriptions can reduce microbial loads for contamination of surfaces that compromises aseptic techniques.
A theoretical study of optical contact of vitreous silica
NASA Technical Reports Server (NTRS)
Barber, T. D.
1972-01-01
Optical contact has been proposed as a method of bonding quartz parts of the Stanford relativity satellite. The theory of the van der Waals force is outlined and applied to the problem of optical contact. The effect of various contaminations is discussed and a program of experimentation for further study of the problem is presented.
Spectroscopic classification of icy satellites of Saturn II: Identification of terrain units on Rhea
NASA Astrophysics Data System (ADS)
Scipioni, F.; Tosi, F.; Stephan, K.; Filacchione, G.; Ciarniello, M.; Capaccioni, F.; Cerroni, P.
2014-05-01
Rhea is the second largest icy satellites of Saturn and it is mainly composed of water ice. Its surface is characterized by a leading hemisphere slightly brighter than the trailing side. The main goal of this work is to identify homogeneous compositional units on Rhea by applying the Spectral Angle Mapper (SAM) classification technique to Rhea’s hyperspectral images acquired by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini Orbiter in the infrared range (0.88-5.12 μm). The first step of the classification is dedicated to the identification of Rhea’s spectral endmembers by applying the k-means unsupervised clustering technique to four hyperspectral images representative of a limited portion of the surface, imaged at relatively high spatial resolution. We then identified eight spectral endmembers, corresponding to as many terrain units, which mostly distinguish for water ice abundance and ice grain size. In the second step, endmembers are used as reference spectra in SAM classification method to achieve a comprehensive classification of the entire surface. From our analysis of the infrared spectra returned by VIMS, it clearly emerges that Rhea’ surface units shows differences in terms of water ice bands depths, average ice grain size, and concentration of contaminants, particularly CO2 and hydrocarbons. The spectral units that classify optically dark terrains are those showing suppressed water ice bands, a finer ice grain size and a higher concentration of carbon dioxide. Conversely, spectral units labeling brighter regions have deeper water ice absorption bands, higher albedo and a smaller concentration of contaminants. All these variations reflect surface’s morphological and geological structures. Finally, we performed a comparison between Rhea and Dione, to highlight different magnitudes of space weathering effects in the icy satellites as a function of the distance from Saturn.
Study on manufacturing method of optical surface with high precision in angle and surface
NASA Astrophysics Data System (ADS)
Yu, Xin; Li, Xin; Yu, Ze; Zhao, Bin; Zhang, Xuebin; Sun, Lipeng; Tong, Yi
2016-10-01
This paper studied a manufacturing processing of optical surface with high precision in angel and surface. By theoretical analysis of the relationships between the angel precision and surface, the measurement conversion of the technical indicators, optical-cement method application, the optical-cement tooling design, the experiment has been finished successfully, the processing method has been verified, which can be also used in the manufacturing of the optical surface with similar high precision in angle and surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C.J. Miller; T.S. Yoder
The amount of time that an explosive is present on the surface of a material is dependent upon the original amount of explosive on the surface, temperature, humidity, rain, etc. This laboratory study focused on looking at similarities and differences in three different surface contamination techniques that are used when performance testing explosive trace detection equipment in an attempt to determine how effective the techniques are at replicating actual field samples. The three techniques used were dry transfer deposition of solutions using the Transportation Security Laboratory (TSL) patented dry transfer techniques (US patent 6470730), direct deposition of explosive standards, andmore » fingerprinting of actual explosives. Explosives were deposited on the surface of one of five substrates using one of the three different deposition techniques. The process was repeated for each surface type using each contamination technique. The surface types used were: 50% cotton/50% polyester as found in T-shirts, 100% cotton with a smooth surface such as that found in a cotton dress shirt, 100% cotton on a rough surface such as that found on canvas or denim, suede leather such as might be found on jackets, purses, or shoes, and metal obtained from a car hood at a junk yard. The samples were not pre-cleaned prior to testing and contained sizing agents, and in the case of the metal, oil and dirt. The substrates were photographed using a Zeiss Discover V12 stereoscope with Axiocam ICc1 3 megapixel digital camera to determine the difference in the crystalline structure and surface contamination in an attempt to determine differences and similarities associated with current contamination techniques.« less
Detection of cryogenic water ice contaminants and the IR AI&T environment
NASA Astrophysics Data System (ADS)
Lynch, David K.; Russell, Ray W.
2000-12-01
Several remote sensing/infrared space surveillance programs in the midst of assembly, integration and test have recently experienced delays when water vapor was deposited as ice on cold surfaces in a sensor under test or calibration. When these surfaces were at critical locations, the sensitivity or response of the sensor decreased significantly because the ice absorbed the incoming signal. The source of water vapor could be from a chamber leak or outgassing from the sensor system or the vacuum chamber itself. In order to quantify the effects of ice deposits on signals in various spectral bands, published optical constants for amorphous and crystalline water ice have been used to calculate the transmission of water ice films as a function of wavelength from 1 to 20 microns. The results are presented in two ways: spectra of the physical thickness of a layer of ice whose absorption optical depth is unity, and transmission spectra for several characteristic layer thicknesses. These tools can be used in estimating the amount of ice - and by inference water vapor - present in the system. Related calculations can also be used to assess the probability that a given hardware setup or resulting data set is showing signs of degradation of response due to ice absorption, and the implications for those trying to interpret the results.
Plasma cleaning of beamline optical components: Contamination and gas composition effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, R.A.; Smith, J.A.; Wallace, D.J.
1992-01-01
We have initiated a program to study the impact of gas composition on the carbon removal rate during plasma cleaning of optical components, and of possible contamination due to the plasma processing. The measurements were performed in a test chamber designed to simulate the geometry of the grating/Codling mirror section of a Grasshopper monochromator. Removal rates were determined for a direct-current (dc) (Al electrode) discharge using a quartz crystal microbalance coated with polymethylmethacrylate, located at the position of the grating. Auger electron spectroscopy analysis of strateg- ically located, gold-coated stainless steel samples was employed to determine contamination. The relative removalmore » rates of the gases studied were 3% C{sub 2}F{sub 6}/O{sub 2}{much gt} O{sub 2}+H{sub 2}O{gt}O{sub 2}{similar to}N{sub 2}O{gt}H{sub 2}{gt}N{sub 2}. Although the C{sub 2}F{sub 6}/O{sub 2} gas mixture showed a 20 times greater removal rate than its nearest competitor, it also caused significant contamination to occur. Contamination studies were performed for both dc and radio-frequency (rf) discharges. For the dc discharge we found that great care must be taken in order to avoid Al contamination; for the rf discharge, significant Fe contamination was observed.« less