Optical switches and switching methods
Doty, Michael
2008-03-04
A device and method for collecting subject responses, particularly during magnetic imaging experiments and testing using a method such as functional MRI. The device comprises a non-metallic input device which is coupled via fiber optic cables to a computer or other data collection device. One or more optical switches transmit the subject's responses. The input device keeps the subject's fingers comfortably aligned with the switches by partially immobilizing the forearm, wrist, and/or hand of the subject. Also a robust nonmetallic switch, particularly for use with the input device and methods for optical switching.
All-optical switching of magnetoresistive devices using telecom-band femtosecond laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Li; Chen, Jun-Yang; Wang, Jian-Ping, E-mail: jpwang@umn.edu, E-mail: moli@umn.edu
Ultrafast all-optical switching of the magnetization of various magnetic systems is an intriguing phenomenon that can have tremendous impact on information storage and processing. Here, we demonstrate all-optical switching of GdFeCo alloy films using a telecom-band femtosecond fiber laser. We further fabricate Hall cross devices and electrically readout all-optical switching by measuring anomalous Hall voltage changes. The use of a telecom laser and the demonstrated all-optical switching of magnetoresistive devices represent the first step toward integration of opto-magnetic devices with mainstream photonic devices to enable novel optical and spintronic functionalities.
Magneto-optic garnet and liquid crystal optical switches
NASA Technical Reports Server (NTRS)
Krawczak, J. A.; Torok, E. J.; Harvey, W. A.; Hewitt, F. G.; Nelson, G. L.
1984-01-01
Magnetic stripe domain and liquid crystal devices are being developed and evaluated as fiber optic switches that can be utilized for nonblocking type nxm optical matrix switches in networking and optical processing. Liquid crystal switches are characterized by very low insertion loss and crosstalk, while stripe domain switches commutate in less than one microsecond. Both switches operate on multimode, randomly polarized fiber light with potentially large values for (n,m). The applications of these magnetic stripe domain and liquid crystal devices are discussed.
Piezoelectric Diffraction-Based Optical Switches
NASA Technical Reports Server (NTRS)
Spremo, Stevan; Fuhr, Peter; Schipper, John
2003-01-01
Piezoelectric diffraction-based optoelectronic devices have been invented to satisfy requirements for switching signals quickly among alternative optical paths in optical communication networks. These devices are capable of operating with switching times as short as microseconds or even nanoseconds in some cases.
Field-programmable logic devices with optical input-output.
Szymanski, T H; Saint-Laurent, M; Tyan, V; Au, A; Supmonchai, B
2000-02-10
A field-programmable logic device (FPLD) with optical I/O is described. FPLD's with optical I/O can have their functionality specified in the field by means of downloading a control-bit stream and can be used in a wide range of applications, such as optical signal processing, optical image processing, and optical interconnects. Our device implements six state-of-the-art dynamically programmable logic arrays (PLA's) on a 2 mm x 2 mm die. The devices were fabricated through the Lucent Technologies-Advanced Research Projects Agency-Consortium for Optical and Optoelectronic Technologies in Computing (Lucent/ARPA/COOP) workshop by use of 0.5-microm complementary metal-oxide semiconductor-self-electro-optic device technology and were delivered in 1998. All devices are fully functional: The electronic data paths have been verified at 200 MHz, and optical tests are pending. The device has been programmed to implement a two-stage optical switching network with six 4 x 4 crossbar switches, which can realize more than 190 x 10(6) unique programmable input-output permutations. The same device scaled to a 2 cm x 2 cm substrate could support as many as 4000 optical I/O and 1 Tbit/s of optical I/O bandwidth and offer fully programmable digital functionality with approximately 110,000 programmable logic gates. The proposed optoelectronic FPLD is also ideally suited to realizing dense, statically reconfigurable crossbar switches. We describe an attractive application area for such devices: a rearrangeable three-stage optical switch for a wide-area-network backbone, switching 1000 traffic streams at the OC-48 data rate and supporting several terabits of traffic.
Goto, Nobuo; Miyazaki, Yasumitsu
2014-06-01
Optical switching of high-bit-rate quadrature-phase-shift-keying (QPSK) pulse trains using collinear acousto-optic (AO) devices is theoretically discussed. Since the collinear AO devices have wavelength selectivity, the switched optical pulse trains suffer from distortion when the bandwidth of the pulse train is comparable to the pass bandwidth of the AO device. As the AO device, a sidelobe-suppressed device with a tapered surface-acoustic-wave (SAW) waveguide and a Butterworth-type filter device with a lossy SAW directional coupler are considered. Phase distortion of optical pulse trains at 40 to 100 Gsymbols/s in QPSK format is numerically analyzed. Bit-error-rate performance with additive Gaussian noise is also evaluated by the Monte Carlo method.
Van Campenhout, Joris; Green, William M J; Vlasov, Yurii A
2009-12-21
We present a novel design for a noise-tolerant, ultra-broadband electro-optic switch, based on a Mach-Zehnder lattice (MZL) interferometer. We analyze the switch performance through rigorous optical simulations, for devices implemented in silicon-on-insulator with carrier-injection-based phase shifters. We show that such a MZL switch can be designed to have a step-like switching response, resulting in improved tolerance to drive-voltage noise and temperature variations as compared to a single-stage Mach-Zehnder switch. Furthermore, we show that degradation in switching crosstalk and insertion loss due to free-carrier absorption can be largely overcome by a MZL switch design. Finally, MZL switches can be designed for having an ultra-wide, temperature-insensitive optical bandwidth of more than 250 nm. The proposed device shows good potential as a broadband optical switch in reconfigurable optical networks-on-chip.
Novel all-optical logic gate using an add/drop filter and intensity switch.
Threepak, T; Mitatha, S; Yupapin, P P
2011-12-01
A novel design of all-optical logic device is proposed. An all-optical logic device system composes of an optical intensity switch and add/drop filter. The intensity switch is formed to switch signal by using the relationship between refraction angle and signal intensity. In operation, two input signals are coupled into one with some coupling loss and attenuation, in which the combination of add/drop with intensity switch produces the optical logic gate. The advantage is that the proposed device can operate the high speed logic function. Moreover, it uses low power consumption. Furthermore, by using the extremely small component, this design can be put into a single chip. Finally, we have successfully produced the all-optical logic gate that can generate the accurate AND and NOT operation results.
Huang, Yingyan; Ho, Seng-Tiong
2008-10-13
We show that a photonic transistor device can be realized via the manipulation of optical interference by optically controlled gain or absorption in novel ways, resulting in efficient transistor signal gain and switching action. Exemplary devices illustrate two complementary device types with high operating speed, microm size, microW switching power, and switching gain. They can act in tandem to provide a wide variety of operations including wavelength conversion, pulse regeneration, and logical operations. These devices could have a Transistor Figure-of-Merits >10(5) times higher than current chi((3)) approaches and are highly attractive.
Organic Materials For Optical Switching
NASA Technical Reports Server (NTRS)
Cardelino, Beatriz H.
1993-01-01
Equations predict properties of candidate materials. Report presents results of theoretical study of nonlinear optical properties of organic materials. Such materials used in optical switching devices for computers and telecommunications, replacing electronic switches. Optical switching potentially offers extremely high information throughout in compact hardware.
Photonic Switching Devices Using Light Bullets
NASA Technical Reports Server (NTRS)
Goorjian, Peter M. (Inventor)
1999-01-01
A unique ultra-fast, all-optical switching device or switch is made with readily available, relatively inexpensive, highly nonlinear optical materials. which includes highly nonlinear optical glasses, semiconductor crystals and/or multiple quantum well semiconductor materials. At the specified wavelengths. these optical materials have a sufficiently negative group velocity dispersion and high nonlinear index of refraction to support stable light bullets. The light bullets counter-propagate through, and interact within the waveguide to selectively change each others' directions of propagation into predetermined channels. In one embodiment, the switch utilizes a rectangularly planar slab waveguide. and further includes two central channels and a plurality of lateral channels for guiding the light bullets into and out of the waveguide. An advantage of the present all-optical switching device lies in its practical use of light bullets, thus preventing the degeneration of the pulses due to dispersion and diffraction at the front and back of the pulses. Another advantage of the switching device is the relative insensitivity of the collision process to the time difference in which the counter-propagating pulses enter the waveguide. since. contrary to conventional co-propagating spatial solitons, the relative phase of the colliding pulses does not affect the interaction of these pulses. Yet another feature of the present all-optical switching device is the selection of the light pulse parameters which enables the generation of light bullets in nonlinear optical materials. including highly nonlinear optical glasses and semiconductor materials such as semiconductor crystals and/or multiple quantum well semiconductor materials.
A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching.
Lin, Yuanhai; Zhang, Xinping; Fang, Xiaohui; Liang, Shuyan
2016-01-21
We report an ultrafast optical switching device constructed by stacking two layers of gold nanowires into a perpendicularly crossed network, which works at a speed faster than 280 fs with an on/off modulation depth of about 22.4%. The two stacks play different roles in enhancing consistently the optical switching performance due to their different dependence on the polarization of optical electric fields. The cross-plasmon resonance based on the interaction between the perpendicularly stacked gold nanowires and its Fano-coupling with Rayleigh anomaly is the dominant mechanism for such a high-contrast optical switching device.
NASA Technical Reports Server (NTRS)
Golomidov, Y. V.; Li, S. K.; Popov, S. A.; Smolov, V. B.
1986-01-01
After a classification and analysis of electronic and optoelectronic switching devices, the design principles and structure of a matrix optical switch is described. The switching and pair-exclusion operations in this type of switch are examined, and a method for the optical switching of communication channels is elaborated. Finally, attention is given to the structural organization of a parallel computer system with a matrix optical switch.
All-optical switch using optically controlled two mode interference coupler.
Sahu, Partha Pratim
2012-05-10
In this paper, we have introduced optically controlled two-mode interference (OTMI) coupler having silicon core and GaAsInP cladding as an all-optical switch. By taking advantage of refractive index modulation by launching optical pulse into cladding region of TMI waveguide, we have shown optically controlled switching operation. We have studied optical pulse-controlled coupling characteristics of the proposed device by using a simple mathematical model on the basis of sinusoidal modes. The device length is less than that of previous work. It is also seen that the cross talk of the OTMI switch is not significantly increased with fabrication tolerances (±δw) in comparison with previous work.
Bidirectional optical switch based on electrowetting
NASA Astrophysics Data System (ADS)
Liu, Chao; Li, Lei; Wang, Qiong-Hua
2013-05-01
In this paper, we demonstrate a bidirectional optical switch based on electrowetting. Four rectangular polymethyl methacrylate substrates are stacked to form the device and three ITO electrodes are fabricated on the bottom substrate. A black liquid droplet is placed on the middle of the ITO electrode and surrounded by silicone oil. When we apply a voltage to one ITO electrode, the droplet stretches and moves in one direction and a light beam is covered by the stretched droplet, while the droplet yields a space to let the original blocked light pass through. Due to the shift of the droplet, our device functions as a bidirectional optical switch. Our experiment shows that the device can obtain a wide optical attenuation from ˜1 dB to 30 dB and the transmission loss is ˜0.67 dB. The response time of the device is ˜177 ms. The proposed optical switch has potential applications in variable optical attenuators, electronic displays, and light shutters.
Tutorial: Integrated-photonic switching structures
NASA Astrophysics Data System (ADS)
Soref, Richard
2018-02-01
Recent developments in waveguided 2 × 2 and N × M photonic switches are reviewed, including both broadband and narrowband resonant devices for the Si, InP, and AlN platforms. Practical actuation of switches by electro-optical and thermo-optical techniques is discussed. Present datacom-and-computing applications are reviewed, and potential applications are proposed for chip-scale photonic and optoelectronic integrated switching networks. Potential is found in the reconfigurable, programmable "mesh" switches that enable a promising group of applications in new areas beyond those in data centers and cloud servers. Many important matrix switches use gated semiconductor optical amplifiers. The family of broadband, directional-coupler 2 × 2 switches featuring two or three side-coupled waveguides deserves future experimentation, including devices that employ phase-change materials. The newer 2 × 2 resonant switches include standing-wave resonators, different from the micro-ring traveling-wave resonators. The resonant devices comprise nanobeam interferometers, complex-Bragg interferometers, and asymmetric contra-directional couplers. Although the fast, resonant devices offer ultralow switching energy, ˜1 fJ/bit, they have limitations. They require several trade-offs when deployed, but they do have practical application.
Silicon Micromachining in RF and Photonic Applications
NASA Technical Reports Server (NTRS)
Lin, Tsen-Hwang; Congdon, Phil; Magel, Gregory; Pang, Lily; Goldsmith, Chuck; Randall, John; Ho, Nguyen
1995-01-01
Texas Instruments (TI) has developed membrane and micromirror devices since the late 1970s. An eggcrate space membrane was used as the spatial light modulator in the early years. Discrete micromirrors supported by cantilever beams created a new era for micromirror devices. Torsional micromirror and flexure-beam micromirror devices were promising for mass production because of their stable supports. TI's digital torsional micromirror device is an amplitude modulator (known as the digital micromirror device (DMD) and is in production development, discussed elsewhere. We also use a torsional device for a 4 x 4 fiber-optic crossbar switch in a 2 cm x 2 cm package. The flexure-beam micromirror device is an analog phase modulator and is considered more efficient than amplitude modulators for use in optical processing systems. TI also developed millimeter-sized membranes for integrated optical switches for telecommunication and network applications. Using a member in radio frequency (RF) switch applications is a rapidly growing area because of the micromechanical device performance in microsecond-switching characteristics. Our preliminary membrane RF switch test structure results indicate promising speed and RF switching performance. TI collaborated with MIT for modeling of metal-based micromachining.
Topological photonic orbital-angular-momentum switch
NASA Astrophysics Data System (ADS)
Luo, Xi-Wang; Zhang, Chuanwei; Guo, Guang-Can; Zhou, Zheng-Wei
2018-04-01
The large number of available orbital-angular-momentum (OAM) states of photons provides a unique resource for many important applications in quantum information and optical communications. However, conventional OAM switching devices usually rely on precise parameter control and are limited by slow switching rate and low efficiency. Here we propose a robust, fast, and efficient photonic OAM switch device based on a topological process, where photons are adiabatically pumped to a target OAM state on demand. Such topological OAM pumping can be realized through manipulating photons in a few degenerate main cavities and involves only a limited number of optical elements. A large change of OAM at ˜10q can be realized with only q degenerate main cavities and at most 5 q pumping cycles. The topological photonic OAM switch may become a powerful device for broad applications in many different fields and motivate a topological design of conventional optical devices.
Device having two optical ports for switching applications
Rosen, Ayre; Stabile, Paul J.
1991-09-24
A two-sided light-activatable semiconductor switch device having an optical port on each side thereof. The semiconductor device may be a p-i-n diode or of bulk intrinsic material. A two ported p-i-n diode, reverse-biased to "off" by a 1.3 kV dc power supply, conducted 192 A when activated by two 1 kW laser diode arrays, one for each optical port.
High-speed electro-optic switch with -80 dB crosstalk
NASA Technical Reports Server (NTRS)
Pan, J. J.; Su, W. H.; Xu, J. Y.; Grove, C. H.
1992-01-01
Special device modeling, design and layout, and precision processing controls were employed to fabricate new balanced-bridge 2x2 and 4x4 switches on X-cut, Y-propagation LiNbO3 substrate using Ti indiffused optical waveguides. The best of these devices achieved extinction ratio and crosstalk isolation of better than 93 dB electrically (46.5 dB optically). The new switches demonstrate good reproducibility with electrical crosstalk less than -80 dB.
NASA Astrophysics Data System (ADS)
Mahmoud, Mohamed; Fayed, Heba A.; Aly, Moustafa H.; Aboul Seoud, A. K.
2011-08-01
A new device, optical cross add drop multiplexer (OXADM), is proposed and analyzed. It uses the combination concept of optical add drop multiplexer (OADM) and optical cross connect (OXC). It enables a wavelength switch while implementing add and drop functions simultaneously. So, it expands the applications in fiber to the home (FTTH) and optical core networks. A very high isolation crosstalk level (~ 60 dB) is achieved. Also, a bidirectional OXADM and N×N OXADM are proposed. Finally, a multistage OXADM is presented making some sort of wavelength buffering. To make these devices operate more efficient, tunable fiber Bragg gratings (TFBGs) switches are used to control the operation mechanism.
NASA Technical Reports Server (NTRS)
Adams, Michael J. (Editor)
1987-01-01
The present conference on novel optoelectronics discusses topics in the state-of-the-art in this field in the Netherlands, quantum wells, integrated optics, nonlinear optical devices and fiber-optic-based devices, ultrafast optics, and nonlinear optics and optical bistability. Attention is given to the production of fiber-optics for telecommunications by means of PCVD, lifetime broadening in quantum wells, nonlinear multiple quantum well waveguide devices, tunable single-wavelength lasers, an Si integrated waveguiding polarimeter, and an electrooptic light modulator using long-range surface plasmons. Also discussed are backward-wave couplers and reflectors, a wavelength-selective all-fiber switching matrix, the impact of ultrafast optics in high-speed electronics, the physics of low energy optical switching, and all-optical logical elements for optical processing.
Converged photonic data storage and switch platform for exascale disaggregated data centers
NASA Astrophysics Data System (ADS)
Pitwon, R.; Wang, K.; Worrall, A.
2017-02-01
We report on a converged optically enabled Ethernet storage, switch and compute platform, which could support future disaggregated data center architectures. The platform includes optically enabled Ethernet switch controllers, an advanced electro-optical midplane and optically interchangeable generic end node devices. We demonstrate system level performance using optically enabled Ethernet disk drives and micro-servers across optical links of varied lengths.
Photonic Switching Devices Using Light Bullets
NASA Technical Reports Server (NTRS)
Goorjian, Peter M. (Inventor)
1997-01-01
The present invention is directed toward a unique ultra-fast, all-optical switching device or switch made with readily available, relatively inexpensive, highly nonlinear photonic glasses. These photonic glasses have a sufficiently negative group velocity dispersion and high nonlinear index of refraction to support stable light bullets. The light bullets counterpropagate through, and interact within the waveguide to selectively change each others' directions of propagation into predetermined channels. In one embodiment, the switch utilizes a rectangularly planar slab waveguide, and further includes two central channels and a plurality of lateral channels for guiding the light bullets into and out of the waveguide. One advantage presented by the present all-optical switching device lies in its practical use of light bullets, thus preventing the degeneration of the pulses due to dispersion and diffraction at the front and back of the pulses. Another feature of the switching device is the relative insensitivity of the collision process to the time difference in which the counter-propagating pulses enter the waveguide. since. contrary to conventional co-propagating spatial solitons, the relative phase of the colliding pulses does not affect the interaction of these pulses. Yet another feature of the present all-optical switching device is the selection of the light pulse parameters which enables the generation of light bullets in highly nonlinear glasses.
Electrode with transparent series resistance for uniform switching of optical modulation devices
Tench, D Morgan [Camarillo, CA; Cunningham, Michael A [Thousand Oaks, CA; Kobrin, Paul H [Newbury Park, CA
2008-01-08
Switching uniformity of an optical modulation device for controlling the propagation of electromagnetic radiation is improved by use of an electrode comprising an electrically resistive layer that is transparent to the radiation. The resistive layer is preferably an innerlayer of a wide-bandgap oxide sandwiched between layers of indium tin oxide or another transparent conductor, and may be of uniform thickness, or may be graded so as to provide further improvement in the switching uniformity. The electrode may be used with electrochromic and reversible electrochemical mirror (REM) smart window devices, as well as display devices based on various technologies.
Koppa, P; Chavel, P; Oudar, J L; Kuszelewicz, R; Schnell, J P; Pocholle, J P
1997-08-10
We present experimental results on a 1-to-64-channel free-space photonic switching demonstration system based on GaAs/GaAlAs multiple-quantum-well active device arrays. Two control schemes are demonstrated: data transparent optical self-routing usable in a packet-switching environment and direct optical control with potential signal amplification for circuit switching. The self-routing operation relies on the optical recognition of the binary destination address coded in each packet header. Address decoding is implemented with elementary optical bistable devices and modulator pixels as all-optical latches and electro-optical and gates, respectively. All 60 defect-free channels of the system could be operated one by one, but the simultaneous operation of only three channels could be achieved mainly because of the spatial nonhomogeneities of the devices. Direct-control operation is based on directly setting the bistable device reflectivity with a variable-control beam power. This working mode turned out to be much more tolerant of spatial noises: 37 channels of the system could be operated simultaneously. Further development of the system to a crossbar of N inputs and M outputs and system miniaturization are also considered.
Polymer thermal optical switch for a flexible photonic circuit.
Sun, Yue; Cao, Yue; Wang, Qi; Yi, Yunji; Sun, Xiaoqiang; Wu, Yuanda; Wang, Fei; Zhang, Daming
2018-01-01
Flexible and wearable optoelectronic devices are the new trend for an active lifestyle. These devices are polymer-based for flexibility. We demonstrated flexible polymer waveguide optical switches for a flexible photonic integrated circuit. The optical switches are composed of a single-mode inverted waveguide with dimensions of 5 μm waveguide width, 3 μm ridge height, and 3 μm slab height. A Mach-Zehnder structure was used in the device, with the Y-branch horizontal length of 0.1 cm, the distance between two heating branches of 30 μm, and the heating branch length of 1 cm. The optical field of the device was simulated by beam propagation to optimize the electrode position. The switching properties of the flexible optical switch with different working conditions, such as contact to the polymer, silicon, and skin, were simulated. The device was prepared based on the photo curved polymer and lithography method. The end faces of the flexible film device were processed using an excimer laser with optimized parameters of 28 mJ/cm 2 and 15 Hz. The response rise time and fall time on the PMMA substrate were measured as 1.98 ms and 2.71 ms, respectively. The power consumption was 16 mW and the extinction ratio was 11 dB. The response rise and fall times on the Si substrate were measured as 1.08 ms and 1.62 ms, respectively. The power consumption was 17 mW and the extinction ratio was 11 dB. The demonstrated properties indicate that this flexible optical waveguide structure can be used in the light control area of a wearable device.
Digital optical signal processing with polarization-bistable semiconductor lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jai-Ming Liu,; Ying-Chin Chen,
1985-04-01
The operations of a complete set of optical AND, NAND, OR, and NOR gates and clocked optical S-R, D, J-K, and T flip-flops are demonstrated, based on direct polarization switching and polarization bistability, which we have recently observed in InGaAsP/InP semiconductor lasers. By operating the laser in the direct-polarizationswitchable mode, the output of the laser can be directly switched between the TM00 and TE00 modes with high extinction ratios by changing the injection-current level, and optical logic gates are constructed with two optoelectronic switches or photodetectors. In the polarization-bistable mode, the laser exhibits controllable hysteresis loops in the polarization-resolved powermore » versus current characteristics. When the laser is biased in the middle of the hysteresis loop, the light output can be switched between the two polarization states by injection of short electrical or optical pulses, and clocked optical flip-flops are constructed with a few optoelectronic switches and/or photodetectors. The 1 and 0 states of these devices are defined through polarization changes of the laser and direct complement functions are obtainable from the TE and TM output signals from the same laser. Switching of the polarization-bistable lasers with fast-rising current pulses has an instrument-limited mode-switching time on the order of 1 ns. With fast optoelectronic switches and/or fast photodetectors, the overall switching speed of the logic gates and flip-flops is limited by the polarizationbistable laser to <1 ns. We have demonstrated the operations of these devices using optical signals generated by semiconductor lasers. The proposed schemes of our devices are compatible with monolithic integration based on current fabrication technology and are applicable to other types of bistable semiconductor lasers.« less
Wu, Kan; Guo, Chaoshi; Wang, Hao; Zhang, Xiaoyan; Wang, Jun; Chen, Jianping
2017-07-24
All-optical phase shifters and switches play an important role for various all-optical applications including all-optical signal processing, sensing and communication. In this paper, we demonstrate a fiber all-optical phase shifter using few-layer 2D material tungsten disulfide (WS 2 ) deposited on a tapered fiber. WS 2 absorbs injected 980 nm pump (control light) and generates heat, which changes the refractive index of both WS 2 and tapered fiber due to thermo-optic effect and achieves a maximum phase shift of 6.1π near 1550 nm. The device has a loss of 3.7 dB. By constructing a Mach-Zehnder interferometer with WS 2 based phase shifter in one arm, an all-optical switch is also obtained with an extinction ratio of 15 dB and a rise time of 7.3 ms. This all fiber low-cost and compact optical phase shifter and switch demonstrates the potential of 2D transition metal dichalcogenides for all-optical signal processing devices.
NASA Technical Reports Server (NTRS)
1991-01-01
Optoelectronic materials and devices are examined. Optoelectronic devices, which generate, detect, modulate, or switch electromagnetic radiation are being developed for a variety of space applications. The program includes spatial light modulators, solid state lasers, optoelectronic integrated circuits, nonlinear optical materials and devices, fiber optics, and optical networking photovoltaic technology and optical processing.
Electrowetting-actuated optical switch based on total internal reflection.
Liu, Chao; Wang, Di; Yao, Li-Xiao; Li, Lei; Wang, Qiong-Hua
2015-04-01
In this paper we demonstrate a liquid optical switch based on total internal reflection. Two indium tin oxide electrodes are fabricated on the bottom substrate. A conductive liquid (Liquid 1) is placed on one side of the chamber and surrounded by a density-matched silicone oil (Liquid 2). In initial state, when the light beam illuminates the interface of the two liquids, it just meets the conditions of total internal reflection. The light is totally reflected by Liquid 2, and the device shows light-off state. When we apply a voltage to the other side of the indium tin oxide electrode, Liquid 1 stretched towards this side of the substrate and the curvature of the liquid-liquid interface changes. The light beam is refracted by Liquid 1 and the device shows light-on state. So the device can achieve the functions of an optical switch. Because the light beam can be totally reflected by the liquid, the device can attain 100% light intensity attenuation. Our experiments show that the response time from light-on (off) to light-off (on) are 130 and 132 ms, respectively. The proposed optical switch has potential applications in variable optical attenuators, information displays, and light shutters.
Thin, nearly wireless adaptive optical device
NASA Technical Reports Server (NTRS)
Knowles, Gareth (Inventor); Hughes, Eli (Inventor)
2008-01-01
A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.
Thin, nearly wireless adaptive optical device
NASA Technical Reports Server (NTRS)
Knowles, Gareth (Inventor); Hughes, Eli (Inventor)
2007-01-01
A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.
Thin nearly wireless adaptive optical device
NASA Technical Reports Server (NTRS)
Knowles, Gareth J. (Inventor); Hughes, Eli (Inventor)
2009-01-01
A thin nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.
Preparation and thermo-optic switch properties based on chiral azobenzene-containing polyurethane
NASA Astrophysics Data System (ADS)
Ye, Feiyan; Qiu, Fengxian; Yang, Dongya; Cao, Guorong; Guan, Yijun; Zhuang, Lin
2013-07-01
A chiral azo chromophore compound 4-(4'-nitro-phenyl-diazenyl)-phenyl-1,2-propanediol ether (NPDPPE) was prepared with p-nitroaniline, phenol and R(-)-3-chloro-1,2-propanediol by the diazo-coupling reaction. Then, the chromophore molecule NPDPPE was polymerized with isophorone diisocyanate (IPDI) to obtain novel chiral azobenzene-containing polyurethane (CACPU). The chemical structures of chromophore molecule and CACPU were characterized by the FT-IR and UV-visible spectroscopy. The physical properties (thermal conductivity, thermal diffusion coefficient, and specific heat capacity) and mechanical properties (tensile strength, elongation at break and hardness) of CACPU thin films were measured. The refractive index and thermo-optic (TO) coefficient (dn/dT) of CACPU thin film was investigated for TE (transversal electric) polarizations by using an attenuated total reflection (ATR) configuration at the wavelengths of 532, 650 and 850 nm. The transmission loss of film was measured using the charge coupled device (CCD) digital imaging devices. A Y-branch switch and Mach-Zehnder interferometer (MZI) thermo-optic switches based on thermo-optic effect were proposed and the performances of switches were simulated. The results showed that the power consumption of the Y-branch thermo-optic switch was only 3.28 mW. The rising and falling times of Y-branch and MZI switches were 12.0 ms and 2.0 ms, respectively. The conclusion has potential significance to improve and develop new Y-branch digital optical switch (DOS), MZI thermo-optic switch, directional coupler (DC) switch and optical modulators.
All-optical switching based on optical fibre long period gratings modified bacteriorhodopsin
NASA Astrophysics Data System (ADS)
Korposh, S.; James, S.; Partridge, M.; Sichka, M.; Tatam, R.
2018-05-01
All-optical switching using an optical fibre long-period gating (LPG) modified with bacteriorhodopsin (bR) is demonstrated. The switching process is based on the photo-induced RI change of bR, which in turn changes the phase matching conditions of the mode coupling by the LPG, leading to modulation of the propagating light. The effect was studied with an LPG immersed into a bR solution and with LPGs coated with the bR films, deposited onto the LPGs using the layer-by-layer electrostatic self-assembly (LbL) method. The dependence of the all-optical switching efficiency upon the concentration of the bR solution and on the grating period of the LPG was also studied. In addition, an in-fibre Mach-Zehnder interferometer (MZI) composed of a cascaded LPG pair separated by 30 mm and modified with bR was used to enhance the wavelength range of all-optical switching. The switching wavelength is determined by the grating period of the LPG. Switching efficiencies of 16% and 35% were observed when an LPG and an MZI were immersed into bR solutions, respectively. The switching time for devices coated with bR-films was within 1 s, 10 times faster than that observed for devices immersed into bR solution.
Chattopadhyay, Tanay
2010-10-01
A flip-flop (FF) is a kind of latch and the simplest form of memory device, which stores various values either temporarily or permanently. Optical FF memories form a fundamental building block for all-optical packet switches in next-generation communication networks. An all-optical clocked delay FF using a single terahertz optical asymmetric demultiplexer-based interferometric switch is proposed and described. Numerical simulation results are also reported.
NASA Astrophysics Data System (ADS)
Jiang, Yan; Da, Zulin; Qiu, Fengxian; Yang, Dongya; Guan, Yijun; Cao, Guorong
2018-01-01
Azo waveguide polymers are of particular interest in the design of materials for applications in optical switch. The aim of this contribution was the synthesis and thermo-optic waveguide switch properties of azo biphenyl polyurethanes. A series of monomers and azo biphenyl polyurethanes (Azo BPU1 and Azo BPU2) were synthesized and characterized by FT-IR, UV-Vis spectroscopy and 1H NMR. The physical and mechanical properties of thin polymer films were measured. The refractive index and thermo-optic coefficient (dn/dT) of polymer films were investigated for TE (transversal electric) polarizations by ATR technique. The transmission loss of film was measured using the Charge Coupled Device digital imaging devices. The results showed the Azo BPU2 containing chiral azobenzene chromophore had higher dn/dT and lower transmission loss. Subsequently, a 1 × 2 Y-branch and 2 × 2 Mach-Zehnder optical switches based on the prepared polymers were designed and simulated. The results showed that the power consumption of all switches was less than 1.0 mW. Compared with 1 × 2 Y-branch optical switch, the 2 × 2 Mach-Zehnder optical switches based on the same polymer have the faster response time, which were about only 1.2 and 2.0 ms, respectively.
Solution processable and optically switchable 1D photonic structures.
Paternò, Giuseppe M; Iseppon, Chiara; D'Altri, Alessia; Fasanotti, Carlo; Merati, Giulia; Randi, Mattia; Desii, Andrea; Pogna, Eva A A; Viola, Daniele; Cerullo, Giulio; Scotognella, Francesco; Kriegel, Ilka
2018-02-23
We report the first demonstration of a solution processable, optically switchable 1D photonic crystal which incorporates phototunable doped metal oxide nanocrystals. The resulting device structure shows a dual optical response with the photonic bandgap covering the visible spectral range and the plasmon resonance of the doped metal oxide the near infrared. By means of a facile photodoping process, we tuned the plasmonic response and switched effectively the optical properties of the photonic crystal, translating the effect from the near infrared to the visible. The ultrafast bandgap pumping induces a signal change in the region of the photonic stopband, with recovery times of several picoseconds, providing a step toward the ultrafast optical switching. Optical modeling uncovers the importance of a complete modeling of the variations of the dielectric function of the photodoped material, including the high frequency region of the Drude response which is responsible for the strong switching in the visible after photodoping. Our device configuration offers unprecedented tunability due to flexibility in device design, covering a wavelength range from the visible to the near infrared. Our findings indicate a new protocol to modify the optical response of photonic devices by optical triggers only.
Switching Matrix For Optical Signals
NASA Technical Reports Server (NTRS)
Grove, Charles H.
1990-01-01
Proposed matrix of electronically controlled shutters switches signals in optical fibers between multiple input and output channels. Size, weight, and power consumption reduced. Device serves as building block for small, low-power, broad-band television- and data-signal-switching systems providing high isolation between nominally disconnected channels.
Shi, Yuechun; Chen, Xi; Lou, Fei; Chen, Yiting; Yan, Min; Wosinski, Lech; Qiu, Min
2014-08-01
Efficient narrowband light absorption by a metal-insulator-metal (MIM) structure can lead to high-speed light-to-heat conversion at a micro- or nanoscale. Such a MIM structure can serve as a heater for achieving all-optical light control based on the thermo-optical (TO) effect. Here we experimentally fabricated and characterized a novel all-optical switch based on a silicon microdisk integrated with a MIM light absorber. Direct integration of the absorber on top of the microdisk reduces the thermal capacity of the whole device, leading to high-speed TO switching of the microdisk resonance. The measurement result exhibits a rise time of 2.0 μs and a fall time of 2.6 μs with switching power as low as 0.5 mW; the product of switching power and response time is only about 1.3 mW·μs. Since no auxiliary elements are required for the heater, the switch is structurally compact, and its fabrication is rather easy. The device potentially can be deployed for new kinds of all-optical applications.
Cost-effective optical switch matrix for microwave phased-array
NASA Technical Reports Server (NTRS)
Pan, J. J.; Chia, S. L.; Li, W. Z.; Grove, C. H.
1991-01-01
An all-fiber (6x6) optical shutter switch matrix with the control system for microwave phased array has been demonstrated. The device offers the advantages of integrated configuration, low cost, low power consumption, small size, and light weight. The maximum extinction ratio (among 36 individual pixel) of this switch matrix at 840 nm is 24.2 dB, and the switching time is less than 120 microsec. In addition to phased array application, this low cost switch matrix is extremely attractive for fiber optic switching networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chun, Young Tea; Chu, Daping, E-mail: dpc31@cam.ac.uk; Neeves, Matthew
2014-11-10
High performance electrochromic devices have been fabricated and demonstrated utilizing a solid polymer electrolyte and zinc oxide (ZnO) nanowire (NW) array counter electrode. The poly(methyl methacrylate) based polymer electrolyte was spin coated upon hydrothermally grown ZnO NW array counter electrodes, while electron beam evaporated NiO{sub x} thin films formed the working electrodes. Excellent optical contrast and switching speeds were observed in the fabricated devices with active areas of 2 cm{sup 2}, exhibiting an optical contrast of 73.11% at the wavelength of 470 nm, combined with a fast switching time of 0.2 s and 0.4 s for bleaching and coloration, respectively.
Inventions Utilizing Microfluidics and Colloidal Particles
NASA Technical Reports Server (NTRS)
Marr, David W.; Gong, Tieying; Oakey, John; Terray, Alexander V.; Wu, David T.
2009-01-01
Several related inventions pertain to families of devices that utilize microfluidics and/or colloidal particles to obtain useful physical effects. The families of devices can be summarized as follows: (1) Microfluidic pumps and/or valves wherein colloidal-size particles driven by electrical, magnetic, or optical fields serve as the principal moving parts that propel and/or direct the affected flows. (2) Devices that are similar to the aforementioned pumps and/or valves except that they are used to manipulate light instead of fluids. The colloidal particles in these devices are substantially constrained to move in a plane and are driven to spatially order them into arrays that function, variously, as waveguides, filters, or switches for optical signals. (3) Devices wherein the ultra-laminar nature of microfluidic flows is exploited to effect separation, sorting, or filtering of colloidal particles or biological cells in suspension. (4) Devices wherein a combination of confinement and applied electrical and/or optical fields forces the colloidal particles to become arranged into three-dimensional crystal lattices. Control of the colloidal crystalline structures could be exploited to control diffraction of light. (5) Microfluidic devices, incorporating fluid waveguides, wherein switching of flows among different paths would be accompanied by switching of optical signals.
NASA Astrophysics Data System (ADS)
Ostrowsky, D. B.; Sriram, S.
Aspects of waveguide technology are explored, taking into account waveguide fabrication techniques in GaAs/GaAlAs, the design and fabrication of AlGaAs/GaAs phase couplers for optical integrated circuit applications, ion implanted GaAs integrated optics fabrication technology, a direct writing electron beam lithography based process for the realization of optoelectronic integrated circuits, and advances in the development of semiconductor integrated optical circuits for telecommunications. Other subjects examined are related to optical signal processing, optical switching, and questions of optical bistability and logic. Attention is given to acousto-optic techniques in integrated optics, acousto-optic Bragg diffraction in proton exchanged waveguides, optical threshold logic architectures for hybrid binary/residue processors, integrated optical modulation and switching, all-optic logic devices for waveguide optics, optoelectronic switching, high-speed photodetector switching, and a mechanical optical switch.
Zhang, Qihang; Zhang, Yifei; Li, Junying; Soref, Richard; Gu, Tian; Hu, Juejun
2018-01-01
In this Letter, we propose a broadband, nonvolatile on-chip switch design in the telecommunication C-band with record low loss and crosstalk. The unprecedented device performance builds on: 1) a new optical phase change material (O-PCM) Ge 2 Sb 2 Se 4 Te 1 (GSST), which exhibits significantly reduced optical attenuation compared to traditional O-PCMs, and 2) a nonperturbative design that enables low-loss device operation beyond the classical figure-of-merit (FOM) limit. We further demonstrate that the 1-by-2 and 2-by-2 switches can serve as basic building blocks to construct nonblocking and nonvolatile on-chip switching fabric supporting arbitrary numbers of input and output ports.
A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio
NASA Astrophysics Data System (ADS)
Li, Chong; Yan, Hui; Zhao, Ling-Xi; Zhang, Guo-Feng; Hu, Zhe; Huang, Zhen-Li; Zhu, Ming-Qiang
2014-12-01
Photoswitchable fluorescent diarylethenes are promising in molecular optical memory and photonic devices. However, the performance of current diarylethenes is far from satisfactory because of the scarcity of high-speed switching capability and large fluorescence on-off ratio. Here we report a trident perylenemonoimide dyad modified by triple dithienylethenes whose photochromic fluorescence quenching ratio at the photostationary state exceeds 10,000 and the fluorescence quenching efficiency is close to 100% within seconds of ultraviolet irradiation. The highly sensitive fluorescence on/off switching of the trident dyad enables recyclable fluorescence patterning and all-optical transistors. The prototype optical device based on the trident dyad enables the optical switching of incident light and conversion from incident light wavelength to transmitted light wavelength, which is all-optically controlled, reversible and wavelength-convertible. In addition, the trident dyad-staining block copolymer vesicles are observed via optical nanoimaging with a sub-100 nm resolution, portending a potential prospect of the dithienylethene dyad in super-resolution imaging.
A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio.
Li, Chong; Yan, Hui; Zhao, Ling-Xi; Zhang, Guo-Feng; Hu, Zhe; Huang, Zhen-Li; Zhu, Ming-Qiang
2014-12-12
Photoswitchable fluorescent diarylethenes are promising in molecular optical memory and photonic devices. However, the performance of current diarylethenes is far from satisfactory because of the scarcity of high-speed switching capability and large fluorescence on-off ratio. Here we report a trident perylenemonoimide dyad modified by triple dithienylethenes whose photochromic fluorescence quenching ratio at the photostationary state exceeds 10,000 and the fluorescence quenching efficiency is close to 100% within seconds of ultraviolet irradiation. The highly sensitive fluorescence on/off switching of the trident dyad enables recyclable fluorescence patterning and all-optical transistors. The prototype optical device based on the trident dyad enables the optical switching of incident light and conversion from incident light wavelength to transmitted light wavelength, which is all-optically controlled, reversible and wavelength-convertible. In addition, the trident dyad-staining block copolymer vesicles are observed via optical nanoimaging with a sub-100 nm resolution, portending a potential prospect of the dithienylethene dyad in super-resolution imaging.
Design and fabrication of GaAs OMIST photodetector
NASA Astrophysics Data System (ADS)
Kang, Xuejun; Lin, ShiMing; Liao, Qiwei; Gao, Junhua; Liu, Shi'an; Cheng, Peng; Wang, Hongjie; Zhang, Chunhui; Wang, Qiming
1998-08-01
We designed and fabricated GaAs OMIST (Optical-controlled Metal-Insulator-Semiconductor Thyristor) device. Using oxidation of AlAs layer that is grown by MBE forms the Ultra- Thin semi-Insulating layer (UTI) of the GAAS OMIST. The accurate control and formation of high quality semi-insulating layer (AlxOy) are the key processes for fabricating GaAs OMIST. The device exhibits a current-controlled negative resistance region in its I-V characteristics. When illuminated, the major effect of optical excitation is the reduction of the switching voltage. If the GaAs OMIST device is biased at a voltage below its dark switching voltage Vs, sufficient incident light can switch OMIST from high impedance low current 'off' state to low impedance high current 'on' state. The absorbing material of OMIST is GaAS, so if the wavelength of incident light within 600 to approximately 850 nm can be detected effectively. It is suitable to be used as photodetector for digital optical data process. The other attractive features of GaAs OMIST device include suitable conducted current, switching voltage and power levels for OEIC, high switch speed and high sensitivity to light or current injection.
Kim, Yune; Kim, Nam; Chung, Youngjoo; Paek, Un-Chul; Han, Won-Taek
2004-02-23
We propose a new fiber-type all-optical switching device based on the optical nonlinearity of Yb(3+) doped fiber and a long-period fiber gratings(LPG) pair. The all-optical ON-OFF switching with the continuous wave laser signal at ~1556nm in the LPG pair including the 25.5cm long Yb(3+) doped fiber was demonstrated up to ~200Hz upon pumping with the modulated square wave pulses at 976nm, where a full optical switching with the ~18dB extinction ratio was obtained at the launched pump power of ~35mW.
Casimir switch: steering optical transparency with vacuum forces.
Liu, Xi-Fang; Li, Yong; Jing, H
2016-06-03
The Casimir force, originating from vacuum zero-point energy, is one of the most intriguing purely quantum effects. It has attracted renewed interests in current field of nanomechanics, due to the rapid size decrease of on-chip devices. Here we study the optomechanically-induced transparency (OMIT) with a tunable Casimir force. We find that the optical output rate can be significantly altered by the vacuum force, even terminated and then restored, indicating a highly-controlled optical switch. Our result addresses the possibility of designing exotic optical nano-devices by harnessing the power of vacuum.
Development of New Electro-Optic and Acousto-Optic Materials.
1983-11-01
Improved materials are required for active optical devices, including electro - optic and acousto-optic modulators, switches and tunable filters, as...many microwave applications. In addition, electro - optic and acousto-optic devices are materials limited because the materials currently available are...these materials for applications involving the electro - optic effect, degenerate four-wave mixing and surface acoustic wave technology.
NASA Astrophysics Data System (ADS)
Jiang, Ming-Hui; Wang, Xi-Bin; Xu, Qiang; Li, Ming; Niu, Dong-Hai; Sun, Xiao-Qiang; Wang, Fei; Li, Zhi-Yong; Zhang, Da-Ming
2018-01-01
Nonlinear optical (NLO) polymer is a promising material for active waveguide devices that can provide large bandwidth and high-speed response time. However, the performance of the active devices is not only related to the waveguide materials, but also related to the waveguide and electrode structures. In this paper, a high-speed Mach-Zehnder interferometer (MZI) type of electro-optic (EO) switch based on NLO polymer-clad waveguide was fabricated. The quasi-in-plane coplanar waveguide electrodes were also introduced to enhance the poling and modulating efficiency. The characteristic parameters of the waveguide and electrode were carefully designed and simulated. The switches were fabricated by the conventional micro-fabrication process. Under 1550-nm operating wavelength, a typical fabricated switch showed a low insertion loss of 10.2 dB, and the switching rise time and fall time were 55.58 and 57.98 ns, respectively. The proposed waveguide and electrode structures could be developed into other active EO devices and also used as the component in the polymer-based large-scale photonic integrated circuit.
A scalable silicon photonic chip-scale optical switch for high performance computing systems.
Yu, Runxiang; Cheung, Stanley; Li, Yuliang; Okamoto, Katsunari; Proietti, Roberto; Yin, Yawei; Yoo, S J B
2013-12-30
This paper discusses the architecture and provides performance studies of a silicon photonic chip-scale optical switch for scalable interconnect network in high performance computing systems. The proposed switch exploits optical wavelength parallelism and wavelength routing characteristics of an Arrayed Waveguide Grating Router (AWGR) to allow contention resolution in the wavelength domain. Simulation results from a cycle-accurate network simulator indicate that, even with only two transmitter/receiver pairs per node, the switch exhibits lower end-to-end latency and higher throughput at high (>90%) input loads compared with electronic switches. On the device integration level, we propose to integrate all the components (ring modulators, photodetectors and AWGR) on a CMOS-compatible silicon photonic platform to ensure a compact, energy efficient and cost-effective device. We successfully demonstrate proof-of-concept routing functions on an 8 × 8 prototype fabricated using foundry services provided by OpSIS-IME.
NASA Astrophysics Data System (ADS)
Feng, M.; Holonyak, N.; Wang, C. Y.
2017-09-01
Optical bistable devices are fundamental to digital photonics as building blocks of switches, logic gates, and memories in future computer systems. Here, we demonstrate both optical and electrical bistability and capability for switching in a single transistor operated at room temperature. The electro-optical hysteresis is explained by the interaction of electron-hole (e-h) generation and recombination dynamics with the cavity photon modulation in different switching paths. The switch-UP and switch-DOWN threshold voltages are determined by the rate difference of photon generation at the base quantum-well and the photon absorption via intra-cavity photon-assisted tunneling controlled by the collector voltage. Thus, the transistor laser electro-optical bistable switching is programmable with base current and collector voltage, and the basis for high speed optical logic processors.
Optical signal splitting and chirping device modeling
NASA Astrophysics Data System (ADS)
Vinogradova, Irina L.; Andrianova, Anna V.; Meshkov, Ivan K.; Sultanov, Albert Kh.; Abdrakhmanova, Guzel I.; Grakhova, Elizaveta P.; Ishmyarov, Arsen A.; Yantilina, Liliya Z.; Kutlieva, Gulnaz R.
2017-04-01
This article examines the devices for optical signal splitting and chirping device modeling. Models with splitting and switching functions are taken into consideration. The described device for optical signal splitting and chirping represents interferential splitter with profiled mixer which provides allocation of correspondent spectral component from ultra wide band frequency diapason, and signal phase shift for aerial array (AA) directive diagram control. This paper proposes modeling for two types of devices for optical signal splitting and chirping: the interference-type optical signal splitting and chirping device and the long-distance-type optical signal splitting and chirping device.
Design and analysis of photonic optical switches with improved wavelength selectivity
NASA Astrophysics Data System (ADS)
Wielichowski, Marcin; Patela, Sergiusz
2005-09-01
Efficient optical modulators and switches are the key elements of the future all-optical fiber networks. Aside from numerous advantages, the integrated optical devices suffer from excessive longitudinal dimensions. The dimensions may be significantly reduced with help of periodic structures, such as Bragg gratings, arrayed waveguides or multilayer structures. In this paper we describe methods of analysis and example of analytical results of a photonic switch with properties modified by the application of periodic change of effective refractive index. The switch is composed of a strip-waveguide directional coupler and a transversal Bragg grating.
All-optical switching in silicon-on-insulator photonic wire nano-cavities.
Belotti, Michele; Galli, Matteo; Gerace, Dario; Andreani, Lucio Claudio; Guizzetti, Giorgio; Md Zain, Ahmad R; Johnson, Nigel P; Sorel, Marc; De La Rue, Richard M
2010-01-18
We report on experimental demonstration of all-optical switching in a silicon-on-insulator photonic wire nanocavity operating at telecom wavelengths. The switching is performed with a control pulse energy as low as approximately 0.1 pJ on a cavity device that presents very high signal transmission, an ultra-high quality-factor, almost diffraction-limited modal volume and a footprint of only 5 microm(2). High-speed modulation of the cavity mode is achieved by means of optical injection of free carriers using a nanosecond pulsed laser. Experimental results are interpreted by means of finite-difference time-domain simulations. The possibility of using this device as a logic gate is also demonstrated.
Optical 1's and 2's complement devices using lithium-niobate-based waveguide
NASA Astrophysics Data System (ADS)
Pal, Amrindra; Kumar, Santosh; Sharma, Sandeep
2016-12-01
Optical 1's and 2's complement devices are proposed with the help of lithium-niobate-based Mach-Zehnder interferometers. It has a powerful capability of switching an optical signal from one port to the other port with the help of an electrical control signal. The paper includes the optical conversion scheme using sets of optical switches. 2's complement is common in computer systems and is used in binary subtraction and logical manipulation. The operation of the circuits is studied theoretically and analyzed through numerical simulations. The truth table of these complement methods is verified with the beam propagation method and MATLAB® simulation results.
Compact Si-based asymmetric MZI waveguide on SOI as a thermo-optical switch
NASA Astrophysics Data System (ADS)
Rizal, C. S.; Niraula, B.
2018-03-01
A compact low power consuming asymmetric MZI based optical modulator with fast response time has been proposed on SOI platform. The geometrical and performance characteristics were analyzed in depth and optimized using coupled mode analysis and FDTD simulation tools, respectively. It was tested with and without implementation of thermo-optic (TO) effect. The device showed good frequency modulating characteristics when tested without the implementation of the TO effect. The fabricated device showed quality factor, Q ≈ 10,000, and this value is comparable to the Q of the device simulated with 25% transmission loss, showing FSR of 0.195 nm, FWHM ≈ 0.16 nm, and ER of 13 dB. With TO effect, it showed temperature sensitivity of 0.01 nm/°C and FSR of 0.19 nm. With the heater length of 4.18 mm, the device required 0.26 mW per π shift power with a switching voltage of 0.309 V, response time of 10 μ, and figure-of-merit of 2.6 mW μs. All of these characteristics make this device highly attractive for use in integrated Si photonics network as optical switch and wavelength modulator.
Optical backplane interconnect switch for data processors and computers
NASA Technical Reports Server (NTRS)
Hendricks, Herbert D.; Benz, Harry F.; Hammer, Jacob M.
1989-01-01
An optoelectronic integrated device design is reported which can be used to implement an all-optical backplane interconnect switch. The switch is sized to accommodate an array of processors and memories suitable for direct replacement into the basic avionic multiprocessor backplane. The optical backplane interconnect switch is also suitable for direct replacement of the PI bus traffic switch and at the same time, suitable for supporting pipelining of the processor and memory. The 32 bidirectional switchable interconnects are configured with broadcast capability for controls, reconfiguration, and messages. The approach described here can handle a serial interconnection of data processors or a line-to-link interconnection of data processors. An optical fiber demonstration of this approach is presented.
Bright color optical switching device by polymer network liquid crystal with a specular reflector.
Lee, Gae Hwang; Hwang, Kyu Young; Jang, Jae Eun; Jin, Yong Wan; Lee, Sang Yoon; Jung, Jae Eun
2011-07-04
The color optical switching device by polymer network liquid crystal (PNLC) with color filter on a specular reflector shows excellent performance; white reflectance of 22%, color gamut of 32%, and contrast ratio up to 50:1 in reflective mode measurement. The view-angle dependence of the reflectance can be adjusted by changing the PNLC thickness. The color chromaticity shown by the device is close to the limit value of color filters, and its value nearly remains with respect to the operating voltage. These optical properties of the device can be explained from the prediction based on multiple interactions between the light and the droplets of liquid crystal. The high reflectance, vivid color image, and moderate responds time allow the PNLC device to drive good color moving image. It can widely extend the applications of the reflective device.
A single-stage optical load-balanced switch for data centers.
Huang, Qirui; Yeo, Yong-Kee; Zhou, Luying
2012-10-22
Load balancing is an attractive technique to achieve maximum throughput and optimal resource utilization in large-scale switching systems. However current electronic load-balanced switches suffer from severe problems in implementation cost, power consumption and scaling. To overcome these problems, in this paper we propose a single-stage optical load-balanced switch architecture based on an arrayed waveguide grating router (AWGR) in conjunction with fast tunable lasers. By reuse of the fast tunable lasers, the switch achieves both functions of load balancing and switching through the AWGR. With this architecture, proof-of-concept experiments have been conducted to investigate the feasibility of the optical load-balanced switch and to examine its physical performance. Compared to three-stage load-balanced switches, the reported switch needs only half of optical devices such as tunable lasers and AWGRs, which can provide a cost-effective solution for future data centers.
A nonlinear plasmonic waveguide based all-optical bidirectional switching
NASA Astrophysics Data System (ADS)
Bana, Xiaoqiang; Pang, Xingxing; Li, Xiaohui; Hu, Bin; Guo, Yixuan; Zheng, Hairong
2018-01-01
In this paper, an all-optical switching with a nanometer coupled ring resonator is demonstrated based on the nonlinear material. By adjusting the light intensity, we implement the resonance wavelength from 880 nm to 940 nm in the nonlinear material structure monocyclic. In the bidirectional switch structure, the center wavelength (i.e. 880 nm) is fixed. By changing the light intensity from I = 0 to I = 53 . 1 MW /cm2, the function of optical switching can be obtained. The results demonstrate that both the single-ring cavity and the T-shaped double-ring structure can realize the optical switching effect. This work takes advantage of the simple structure. The single-ring cavity plasmonic switches have many advantages, such as nanoscale size, low pumping light intensity, ultrafast response time (femtosecond level), etc. It is expected that the proposed all-optical integrated devices can be potentially applied in optical communication, signal processing, and signal sensing, etc.
Novel optical switch with a reconfigurable dielectric liquid droplet.
Ren, Hongwen; Xu, Su; Ren, Daqiu; Wu, Shin-Tson
2011-01-31
We demonstrated a novel optical switch with a reconfigurable dielectric liquid droplet. The device consists of a clear liquid droplet (glycerol) surrounded by a black liquid (dye-doped liquid crystal). In the voltage-off state, the incident light passing through the clear liquid droplet is absorbed by the black liquid, resulting in a dark state. In the voltage-on state, the dome of the clear liquid droplet is uplifted by the dielectric force to form a light pipe which in turn transmits the incident light. Upon removing the voltage, the droplet recovers to its original shape and the switch is closed. We also demonstrated a red color light switch with ~10:1 contrast ratio and ~300 ms response time. Devices based on such an operation mechanism will find attractive applications in light shutter, tunable iris, variable optical attenuators, and displays.
Light-activated resistance switching in SiOx RRAM devices
NASA Astrophysics Data System (ADS)
Mehonic, A.; Gerard, T.; Kenyon, A. J.
2017-12-01
We report a study of light-activated resistance switching in silicon oxide (SiOx) resistive random access memory (RRAM) devices. Our devices had an indium tin oxide/SiOx/p-Si Metal/Oxide/Semiconductor structure, with resistance switching taking place in a 35 nm thick SiOx layer. The optical activity of the devices was investigated by characterising them in a range of voltage and light conditions. Devices respond to illumination at wavelengths in the range of 410-650 nm but are unresponsive at 1152 nm, suggesting that photons are absorbed by the bottom p-type silicon electrode and that generation of free carriers underpins optical activity. Applied light causes charging of devices in the high resistance state (HRS), photocurrent in the low resistance state (LRS), and lowering of the set voltage (required to go from the HRS to LRS) and can be used in conjunction with a voltage bias to trigger switching from the HRS to the LRS. We demonstrate negative correlation between set voltage and applied laser power using a 632.8 nm laser source. We propose that, under illumination, increased electron injection and hence a higher rate of creation of Frenkel pairs in the oxide—precursors for the formation of conductive oxygen vacancy filaments—reduce switching voltages. Our results open up the possibility of light-triggered RRAM devices.
Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability.
Morrison, Jessica; Imboden, Matthias; Little, Thomas D C; Bishop, D J
2015-04-06
MEMS micromirrors have proven to be very important optical devices with applications ranging from steerable mirrors for switches and cross-connects to spatial light modulators for correcting optical distortions. Usually beam steering and focusing are done with different MEMS devices and tilt angles in excess of 10 degrees are seldom obtained. Here we describe a single MEMS device that combines tip/tilt, piston mode and varifocal capability into a single, low cost device with very large tilt angles. Our device consists of a 400 micron diameter mirror driven with thermal bimorphs. We have demonstrated deflection angles of ± 40 degrees along both axes, a tunable focal length which varies between -0.48 mm to + 20.5 mm and a piston mode range of 300 microns - four separately controllable degrees of freedom in a single device. Potential applications range from smart lighting to optical switches and devices for telecom systems.
A photo-driven dual-frequency addressable optical device of banana-shaped molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishna Prasad, S., E-mail: skpras@gmail.com; Lakshmi Madhuri, P.; Hiremath, Uma S.
We propose a photonic switch employing a blend of host banana-shaped liquid crystalline molecules and guest photoisomerizable calamitic molecules. The material exhibits a change in the sign of the dielectric anisotropy switching from positive to negative, at a certain crossover frequency of the probing field. The consequent change in electric torque can be used to alter the orientation of the molecules between surface-determined and field-driven optical states resulting in a large change in the optical transmission characteristics. Here, we demonstrate the realization of this feature by an unpolarized UV beam, the first of its kind for banana-shaped molecules. The underlyingmore » principle of photoisomerization eliminates the need for a second driving frequency. The device also acts as a reversible conductance switch with an order of magnitude increase of conductivity brought about by light. Possible usage of this for optically driven display devices and image storage applications is suggested.« less
Investigation of Optically Induced Avalanching in GaAs
1989-06-01
by Bovino , et al 4 to increase the hold off voltage. The button switch design of Fig. 4c has been used by several researchers5 ’ 7 to obtain the...ul Long flashover palh Figure 3b. 434 Optical Jlatlern a. Mourou Switch b. Bovino Switch c. Button Switch Figure 4. Photoconductive Switches...Technology and Devices Laboratory, ERADCOM (by L. Bovino , et. all) 4 • The deposition recipe for the contacts is 1) 50 ANi (provides contact to GaAs
Optical switching system and method
Ranganathan, Radha; Gal, Michael; Taylor, P. Craig
1992-01-01
An optically bistable device is disclosed. The device includes a uniformly thick layer of amorphous silicon to constitute a Fabry-Perot chamber positioned to provide a target area for a probe beam. The probe beam has a maximum energy less than the energy band gap of the amorphous semiconductor. In a preferred embodiment, a multilayer dielectric mirror is positioned on the Fabry-Perot chamber to increase the finesse of switching of the device. The index of refraction of the amorphous material is thermally altered to alter the transmission of the probe beam.
Fast-switching chiral nematic liquid-crystal mode with polymer-sustained twisted vertical alignment.
Chang, Kai-Han; Joshi, Vinay; Chien, Liang-Chy
2017-04-01
We demonstrate a fast-switching liquid-crystal mode with polymer-sustained twisted vertical alignment. By optimizing the polymerization condition, a polymer microstructure with controlled orientation is produced. The polymer microstructure not only synergistically suppresses the optical bounce during field-induced homeotropic-twist transition but also shortens the response time significantly. Theoretical analyses validate that the ground state free energy density is modified by the aligning field of the polymer microstructure, which affects the driving voltage of the device. The outcomes of this paper will enable the development of fast-switching and achromatic electro-optical and photonic devices.
Fast-switching chiral nematic liquid-crystal mode with polymer-sustained twisted vertical alignment
NASA Astrophysics Data System (ADS)
Chang, Kai-Han; Joshi, Vinay; Chien, Liang-Chy
2017-04-01
We demonstrate a fast-switching liquid-crystal mode with polymer-sustained twisted vertical alignment. By optimizing the polymerization condition, a polymer microstructure with controlled orientation is produced. The polymer microstructure not only synergistically suppresses the optical bounce during field-induced homeotropic-twist transition but also shortens the response time significantly. Theoretical analyses validate that the ground state free energy density is modified by the aligning field of the polymer microstructure, which affects the driving voltage of the device. The outcomes of this paper will enable the development of fast-switching and achromatic electro-optical and photonic devices.
Active Control of Charge Density Waves at Degenerate Semiconductor Interfaces
NASA Astrophysics Data System (ADS)
Vinnakota, Raj; Genov, Dentcho
We present numerical modeling of an active electronically controlled highly confined charge-density waves, i.e. surface plasmon polaritons (SPPs) at the metallurgic interfaces of degenerate semiconductor materials. An electro-optic switching element for fully-functional plasmonic circuits based on p-n junction semiconductor Surface Plasmon Polariton (SPP) waveguide is shown. Two figures of merits are introduced and parametric study has been performed identifying the device optimal operation range. The Indium Gallium Arsenide (In0.53Ga0.47As) is identified as the best semiconductor material for the device providing high optical confinement, reduced system size and fast operation. The electro-optic SPP switching element is shown to operate at signal modulation up to -24dB and switching rates surpassing 100GHz, thus potentially providing a new pathway toward bridging the gap between electronic and photonic devices. The current work is funded by the NSF EPSCoR CIMM project under award #OIA-1541079.
Submicron bidirectional all-optical plasmonic switches
Chen, Jianjun; Li, Zhi; Zhang, Xiang; Xiao, Jinghua; Gong, Qihuang
2013-01-01
Ultra-small all-optical switches are of importance in highly integrated optical communication and computing networks. However, the weak nonlinear light-matter interactions in natural materials present an enormous challenge to realize efficiently switching for the ultra-short interaction lengths. Here, we experimentally demonstrate a submicron bidirectional all-optical plasmonic switch with an asymmetric T-shape single slit. Sharp asymmetric spectra as well as significant field enhancements (about 18 times that in the conventional slit case) occur in the symmetry-breaking structure. Consequently, both of the surface plasmon polaritons propagating in the opposite directions on the metal surface are all-optically controlled inversely at the same time with the on/off switching ratios of >6 dB for the device lateral dimension of <1 μm. Moreover, in such a submicron structure, the coupling of free-space light and the on-chip bidirectional switching are integrated together. This submicron bidirectional all-optical switch may find important applications in the highly integrated plasmonic circuits. PMID:23486232
Fundamental Scaling Laws in Nanophotonics
Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.
2016-01-01
The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors. PMID:27869159
Fundamental Scaling Laws in Nanophotonics.
Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J
2016-11-21
The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of "smaller-is-better" has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.
Fundamental Scaling Laws in Nanophotonics
NASA Astrophysics Data System (ADS)
Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.
2016-11-01
The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.
Development of a Pressure Switched Microfluidic Cell Sorter
NASA Astrophysics Data System (ADS)
Ozbay, Baris; Jones, Alex; Gibson, Emily
2009-10-01
Lab on a chip technology allows for the replacement of traditional cell sorters with microfluidic devices which can be produced less expensively and are more compact. Additionally, the compact nature of microfluidic cell sorters may lead to the realization of their application in point-of-care medical devices. Though techniques have been demonstrated previously for sorting in microfluidic devices with optical or electro-osmotic switching, both of these techniques are expensive and more difficult to implement than pressure switching. This microfluidic cell sorter design also allows for easy integration with optical spectroscopy for identification of cell type. Our current microfluidic device was fabricated with polydimethylsiloxane (PDMS), a polymer that houses the channels, which is then chemically bonded to a glass slide. The flow of fluid through the device is controlled by pressure controllers, and the switching of the cells is accomplished with the use of a high performance pressure controller interfaced with a computer. The cells are fed through the channels with the use of hydrodynamic focusing techniques. Once the experimental setup is fully functional the objective will be to determine switching rates, explore techniques to optimize these rates, and experiment with sorting of other biomolecules including DNA.
Investigation of Surface Breakdown on Semiconductor Devices Using Optical Probing Techniques.
1990-01-01
18] L. Bovino , T. Burke, R. Youmans, M. Weiner, and J. Car, r, "Recent Advances in Optically C’ntrolled Bulk Semiconductor Switches," Digest of...Comp. Simul. 5 (3), 175 (1988). [321 M. Weiner, L. Bovino , R. Youmans, and T. Burke, "Modeling of the Optically Conrolled Semiconductor Switch," J
NASA Astrophysics Data System (ADS)
Ryan, Neil; Todd, Michael; Farrell, Tom; Lavin, Adrian; Rigole, Pierre-Jean; Corbett, Brian; Roycroft, Brendan; Engelstaedter, Jan-Peter
2017-11-01
This paper outlines the development of a prototype optical burst mode switching network based upon a star topology, the ultimate application of which could be as a transparent payload processor onboard satellite repeaters. The network architecture incorporates multiple tunable laser sources, burst mode receivers and a passive optical router (Arrayed Waveguide Grating). Each tunable optical signal should carry >=10Gbps and be capable of wavelength switching in c. 5ns timescales. Two monolithic tunable laser types, based upon different technologies, will be utilised: a Slotted Fabry Perot laser (a Fabry Perot laser with slots added in order to introduce controlled cavity perturbations); and a Modulated Grating Y-Branch Laser (MGY: a widely tunable, multi-section device similar to the DBR laser). While the Slotted Fabry Perot laser is expected to achieve the required switching times, it is an immature technology not yet capable of achieving tunability over 80 ITU channels from a single chip. The MGY device is a more mature technology and has full C-band ITU channel coverage, but is not capable of the required short switching times. Hence, in order to facilitate the integration of this more mature technology into the prototype breadboard with the requisite switching time capabilities, a system of `dual laser' transmitters is being developed to enable data transmission from one MGY laser while the other switches and vice-versa. This work is being performed under ESA contract AO 1-5025/06/NL/PM, Optical Technologies for Ultra - fast Processing.
Demonstration of 720×720 optical fast circuit switch for intra-datacenter networks
NASA Astrophysics Data System (ADS)
Ueda, Koh; Mori, Yojiro; Hasegawa, Hiroshi; Matsuura, Hiroyuki; Ishii, Kiyo; Kuwatsuka, Haruhiko; Namiki, Shu; Sato, Ken-ichi
2016-03-01
Intra-datacenter traffic is growing more than 20% a year. In typical datacenters, many racks/pods including servers are interconnected via multi-tier electrical switches. The electrical switches necessitate power-consuming optical-to- electrical (OE) and electrical-to-optical (EO) conversion, the power consumption of which increases with traffic. To overcome this problem, optical switches that eliminate costly OE and EO conversion and enable low power consumption switching are being investigated. There are two major requirements for the optical switch. First, it must have a high port count to construct reduced tier intra-datacenter networks. Second, switching speed must be short enough that most of the traffic load can be offloaded from electrical switches. Among various optical switches, we focus on those based on arrayed-waveguide gratings (AWGs), since the AWG is a passive device with minimal power consumption. We previously proposed a high-port-count optical switch architecture that utilizes tunable lasers, route-and-combine switches, and wavelength-routing switches comprised of couplers, erbium-doped fiber amplifiers (EDFAs), and AWGs. We employed conventional external cavity lasers whose wavelength-tuning speed was slower than 100 ms. In this paper, we demonstrate a large-scale optical switch that offers fast wavelength routing. We construct a 720×720 optical switch using recently developed lasers whose wavelength-tuning period is below 460 μs. We evaluate the switching time via bit-error-ratio measurements and achieve 470-μs switching time (includes 10-μs guard time to handle EDFA surge). To best of our knowledge, this is the first demonstration of such a large-scale optical switch with practical switching time.
Molecular switches and motors on surfaces.
Pathem, Bala Krishna; Claridge, Shelley A; Zheng, Yue Bing; Weiss, Paul S
2013-01-01
Molecular switches and motors respond structurally, electronically, optically, and/or mechanically to external stimuli, testing and potentially enabling extreme miniaturization of optoelectronic devices, nanoelectromechanical systems, and medical devices. The assembly of motors and switches on surfaces makes it possible both to measure the properties of individual molecules as they relate to their environment and to couple function between assembled molecules. In this review, we discuss recent progress in assembling molecular switches and motors on surfaces, measuring static and dynamic structures, understanding switching mechanisms, and constructing functional molecular materials and devices. As demonstrative examples, we choose a representative molecule from three commonly studied classes including molecular switches, photochromic molecules, and mechanically interlocked molecules. We conclude by offering perspectives on the future of molecular switches and motors on surfaces.
Hard and flexible optical printed circuit board
NASA Astrophysics Data System (ADS)
Lee, El-Hang; Lee, Hyun Sik; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.
2007-02-01
We report on the design and fabrication of hard and flexible optical printed circuit boards (O-PCBs). The objective is to realize generic and application-specific O-PCBs, either in hard form or flexible form, that are compact, light-weight, low-energy, high-speed, intelligent, and environmentally friendly, for low-cost and high-volume universal applications. The O-PCBs consist of 2-dimensional planar arrays of micro/nano-scale optical wires, circuits and devices that are interconnected and integrated to perform the functions of sensing, storing, transporting, processing, switching, routing and distributing optical signals on flat modular boards. For fabrication, the polymer and organic optical wires and waveguides are first fabricated on a board and are used to interconnect and integrate micro/nano-scale photonic devices. The micro/nano-optical functional devices include lasers, detectors, switches, sensors, directional couplers, multi-mode interference devices, ring-resonators, photonic crystal devices, plasmonic devices, and quantum devices. For flexible boards, the optical waveguide arrays are fabricated on flexible poly-ethylen terephthalate (PET) substrates by UV embossing. Electrical layer carrying VCSEL and PD array is laminated with the optical layer carrying waveguide arrays. Both hard and flexible electrical lines are replaced with high speed optical interconnection between chips over four waveguide channels up to 10Gbps on each. We discuss uses of hard or flexible O-PCBs for telecommunication systems, computer systems, transportation systems, space/avionic systems, and bio-sensor systems.
Song, Junfeng; Luo, Xianshu; Tu, Xiaoguang; Jia, Lianxi; Fang, Qing; Liow, Tsung-Yang; Yu, Mingbin; Lo, Guo-Qiang
2013-05-20
In this work, we demonstrate thermo-optical quasi-digital optical switch (q-DOS) using silicon microring resonator-coupled Mach-Zehnder interferometer. The optical transmission spectra show box-like response with 1-dB and 3-dB bandwidths of ~1.3 nm and ~1.6 nm, respectively. Such broadband flat-top optical response improves the tolerance to the light source wavelength fluctuation of ± 6 Å and temperature variation of ± 6 °C. Dynamic characterizations show the device with switching power of ~37 mW, switching time of ~7 μs, and on/off ratio of > 30 dB. For performance comparison, we also demonstrate a carrier injection-based electro-optical q-DOS by integrating lateral P-i-N junction with the microring resonator, which significantly reduces power consumption to ~12 mW and switching time to ~0.7 ns only.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roos, E.V.; Hendrix, J.L.
1994-06-01
Improvements to Nuclear Weapons Surety through the development of new detonation control techniques incorporating electro-optic technology are reviewed and proposed in this report. The results of the Kansas City Division`s (KCD`s) literature and vendor search, potential system architecture synthesis, and device test results are the basis of this report. This study has revealed several potential reconfigureable optical interconnect architectures that meet Los Alamos National Laboratory`s preliminary performance specifications. Several planer and global architectures have the potential for meeting the Department of Energy`s applications. Preliminary conclusions on the proposed architectures are discussed. The planer approach of monolithic GaAs amplifier switch arraysmore » is the leading candidate because it meets most of the specifications now. LiNbO{sub 3} and LiTaO{sub 3} planer tree switch arrays are the second choice because they meet all the specifications except for laser power transmission. Although not atop choice, acousto-optical free space switch arrays have been considered and meet most of the specifications. Symmetric-Self Electro-Optic Effect Devices (S-SEED) free space switch arrays are being considered and have excellent potential for smart reconfigureable optical interconnects in the future.« less
Sekiguchi, Shigeaki; Kurahashi, Teruo; Zhu, Lei; Kawaguchi, Kenichi; Morito, Ken
2012-04-09
We proposed a silicon-based optical switch with a carrier-plasma-induced phase shifter which employs a silicon-germanium (SiGe) / silicon (Si) hetero-structure in the waveguide core. A type-I hetero-interface formed by SiGe and Si is expected to confine carriers effectively in the SiGe waveguide core. The fabricated Mach-Zehnder optical switch shows a low switching power of only 1.53 mW with a compact phase shifter length of 250 μm. The switching time of the optical switch is less than 4.6 ns for the case of a square waveform driving condition, and 1 ns for the case of a pre-emphasis electric driving condition. These results show that our proposed SiGe/Si waveguide structure holds promise for active devices with compact size and low operation power.
Electro-optical switching and memory display device
Skotheim, T.A.; O'Grady, W.E.; Linkous, C.A.
1983-12-29
An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuits means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.
Electro-optical switching and memory display device
Skotheim, Terje A.; O'Grady, William E.; Linkous, Clovis A.
1986-01-01
An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuit means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glushkov, G. I.; Tuchin, A. V.; Popov, S. V.
Theoretical investigations of the electronic structure, synthesis, and all-optical magnetization switching of transition-metal silicide nanostructures are reported. The magnetic moment of the nanostructures is studied as a function of the silicide cluster size and configuration. The experimentally demonstrated magnetization switching of nanostructured nickel silicide by circularly polarized light makes it possible to create high-speed storage devices with high density data recording.
40-Gbit/s all-optical circulating shift register with an inverter.
Hall, K L; Donnelly, J P; Groves, S H; Fennelly, C I; Bailey, R J; Napoleone, A
1997-10-01
We report what is believed to be the first demonstration of an all-optical circulating shift register using an ultrafast nonlinear interferometer with a polarization-insensitive semiconductor optical amplifier as the nonlinear switching element. The device operates at 40 Gbits/s, to our knowledge the highest speed demonstrated to date. Also, the demonstration proves the cascadability of the ultrafast nonlinear interferometric switch.
Reedy, R.P.
1985-01-18
An optical switching device is provided whereby light from a first glass fiber or a second glass fiber may be selectively transmitted into a third glass fiber. Each glass fiber is provided with a focusing and collimating lens system. In one mode of operation, light from the first glass fiber is reflected by a planar mirror into the third glass fiber. In another mode of operation, light from the second glass fiber passes directly into the third glass fiber. The planar mirror is attached to a rotatable table which is rotated to provide the optical switching.
Reedy, R.P.
1987-11-10
An optical switching device is provided whereby light from a first glass fiber or a second glass fiber may be selectively transmitted into a third glass fiber. Each glass fiber is provided with a focusing and collimating lens system. In one mode of operation, light from the first glass fiber is reflected by a planar mirror into the third glass fiber. In another mode of operation, light from the second glass fiber passes directly into the third glass fiber. The planar mirror is attached to a rotatable table which is rotated to provide the optical switching. 3 figs.
Coupling and Switching in Optically Resonant Periodic Electrode Structures
NASA Astrophysics Data System (ADS)
Bieber, Amy Erica
This thesis describes coupling and switching of optical radiation using metal-semiconductor-metal (MSM) structures, specifically in a metal-on-silicon waveguide configuration. The structures which are the subject of this research have the special advantage of being VLSI -compatible; this is very important for the ultimate acceptance of any integrated optoelectronics technology by the mainstream semiconductor community. To date, research efforts in VLSI electronics, MSM detectors, metal devices, and optical switching have existed as separate entities with decidedly different goals. This work attempts to unite these specialties; an interdigitated array of metal fingers on a silicon waveguide allows for (1) fabrication processes which are well-understood and compatible with current or next-generation semiconductor manufacturing standards, (2) electrical bias capability which can potentially provide modulation, tuning, and enhanced speed, and (3) potentially efficient waveguide coupling which takes advantage of TM coupling. The latter two items are made possible by the use of metallic gratings, which sets this work apart from previous optical switching results. This MSM structure represents an important step in uniting four vital technologies which, taken together, can lead to switching performance and operational flexibility which could substantially advance the capabilities of current optoelectronic devices. Three different designs were successfully used to examine modulation and optical switching based upon nonlinear interactions in the silicon waveguide. First, a traditional Bragg reflector design with input and output couplers on either side was used to observe switching of nanosecond-regime Nd:YAG pulses. This structure was thermally tuned to obtain a variety of switching dynamics. Next, a phase-shift was incorporated into the Bragg reflector, and again thermally-tunable switching dynamics were observed, but with the added advantage of a reduction in the energy requirements for optical switching. Finally, the roles of the coupler and Bragg reflector were combined in a normal -incidence structure which exhibited nonlinear reflectivity modulation. This has not only been the first experimental demonstration of optical switching in a metal-semiconductor waveguide structure, but, to our knowledge, one of the first such demonstrations using a nonlinear phase-shifted or normal incidence grating of any kind.
Six-port optical switch for cluster-mesh photonic network-on-chip
NASA Astrophysics Data System (ADS)
Jia, Hao; Zhou, Ting; Zhao, Yunchou; Xia, Yuhao; Dai, Jincheng; Zhang, Lei; Ding, Jianfeng; Fu, Xin; Yang, Lin
2018-05-01
Photonic network-on-chip for high-performance multi-core processors has attracted substantial interest in recent years as it offers a systematic method to meet the demand of large bandwidth, low latency and low power dissipation. In this paper we demonstrate a non-blocking six-port optical switch for cluster-mesh photonic network-on-chip. The architecture is constructed by substituting three optical switching units of typical Spanke-Benes network to optical waveguide crossings. Compared with Spanke-Benes network, the number of optical switching units is reduced by 20%, while the connectivity of routing path is maintained. By this way the footprint and power consumption can be reduced at the expense of sacrificing the network latency performance in some cases. The device is realized by 12 thermally tuned silicon Mach-Zehnder optical switching units. Its theoretical spectral responses are evaluated by establishing a numerical model. The experimental spectral responses are also characterized, which indicates that the optical signal-to-noise ratios of the optical switch are larger than 13.5 dB in the wavelength range from 1525 nm to 1565 nm. Data transmission experiment with the data rate of 32 Gbps is implemented for each optical link.
Complexity-Enabled Sensor Networks and Photonic Switching Devices
2008-12-20
slow diffusion of atoms out of the pump laser beams. The Doppler -broadened linewidth of the transition at this temperature was ~550 MHz. To prevent...Transverse Patterns for All-Optical Switching,’ Quantum Electronics and Laser Science 2008, San Jose, CA, May 5, 2008. Z. Gao and D.J. Gauthier...2007. A. M. C. Dawes and D. J. Gauthier, `Using Transverse Patterns for All-Optical Switching,’ Ninth Rochester Conference on Coherence & Quantum
Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices.
Lim, Wen Xiang; Manjappa, Manukumara; Srivastava, Yogesh Kumar; Cong, Longqing; Kumar, Abhishek; MacDonald, Kevin F; Singh, Ranjan
2018-03-01
Incorporating semiconductors as active media into metamaterials offers opportunities for a wide range of dynamically switchable/tunable, technologically relevant optical functionalities enabled by strong, resonant light-matter interactions within the semiconductor. Here, a germanium-thin-film-based flexible metaphotonic device for ultrafast optical switching of terahertz radiation is experimentally demonstrated. A resonant transmission modulation depth of 90% is achieved, with an ultrafast full recovery time of 17 ps. An observed sub-picosecond decay constant of 670 fs is attributed to the presence of trap-assisted recombination sites in the thermally evaporated germanium film. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Woodruff, Steven D.; Mcintyre, Dustin L.
2016-03-29
A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.
NASA Astrophysics Data System (ADS)
Lee, El-Hang; Lee, S. G.; O, B. H.; Park, S. G.; Noh, H. S.; Kim, K. H.; Song, S. H.
2006-09-01
A collective overview and review is presented on the original work conducted on the theory, design, fabrication, and in-tegration of micro/nano-scale optical wires and photonic devices for applications in a newly-conceived photonic systems called "optical printed circuit board" (O-PCBs) and "VLSI photonic integrated circuits" (VLSI-PIC). These are aimed for compact, high-speed, multi-functional, intelligent, light-weight, low-energy and environmentally friendly, low-cost, and high-volume applications to complement or surpass the capabilities of electrical PCBs (E-PCBs) and/or VLSI electronic integrated circuit (VLSI-IC) systems. These consist of 2-dimensional or 3-dimensional planar arrays of micro/nano-optical wires and circuits to perform the functions of all-optical sensing, storing, transporting, processing, switching, routing and distributing optical signals on flat modular boards or substrates. The integrated optical devices include micro/nano-scale waveguides, lasers, detectors, switches, sensors, directional couplers, multi-mode interference devices, ring-resonators, photonic crystal devices, plasmonic devices, and quantum devices, made of polymer, silicon and other semiconductor materials. For VLSI photonic integration, photonic crystals and plasmonic structures have been used. Scientific and technological issues concerning the processes of miniaturization, interconnection and integration of these systems as applicable to board-to-board, chip-to-chip, and intra-chip integration, are discussed along with applications for future computers, telecommunications, and sensor-systems. Visions and challenges toward these goals are also discussed.
Jia, Hao; Zhou, Ting; Zhang, Lei; Ding, Jianfeng; Fu, Xin; Yang, Lin
2017-08-21
We propose a 2 × 2 multimode optical switch, which is composed of two mode de-multiplexers, n 2 × 2 single-mode optical switches where n is the number of the supported spatial modes, and two mode multiplexers. As a proof of concept, asymmetric directional couplers are employed to construct the mode multiplexers and de-multiplexers, balanced Mach-Zehnder interferometer is utilized to construct the 2 × 2 single-mode optical switches. The fabricated silicon 2 × 2 multimode optical switch has a broad optical bandwidth and can support four spatial modes. The link-crosstalk for all four modes is smaller than -18.8 dB. The inter-mode crosstalk for the same optical link is less than -22.1 dB. 40 Gbps data transmission is performed for all spatial modes and all optical links. The power penalties for the error-free switching (BER<10 -9 ) at 25 Gbps are less than 1.8 dB for all channels at the wavelength of 1550 nm. The power consumption of the device is 117.9 mW in the "cross" state and 116.2 mW in the "bar" state. The switching time is about 21 μs. This work enables large-capacity multimode photonic networks-on-chip.
Photonic variable delay devices based on optical birefringence
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor)
2005-01-01
Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.
Design of tunable thermo-optic C-band filter based on coated silicon slab
NASA Astrophysics Data System (ADS)
Pinhas, Hadar; Malka, Dror; Danan, Yossef; Sinvani, Moshe; Zalevsky, Zeev
2018-03-01
Optical filters are required to have narrow band-pass filtering in the spectral C-band for applications such as signal tracking, sub-band filtering or noise suppression. These requirements lead to a variety of filters such as Mach-Zehnder interferometer inter-leaver in silica, which offer thermo-optic effect for optical switching, however, without proper thermal and optical efficiency. In this paper we propose tunable thermo-optic filtering device based on coated silicon slab resonator with increased Q-factor for the C-band optical switching. The device can be designed either for long range wavelength tuning of for short range with increased wavelength resolution. Theoretical examination of the thermal parameters affecting the filtering process is shown together with experimental results. Proper channel isolation with an extinction ratio of 20dBs is achieved with spectral bandpass width of 0.07nm.
Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng
2015-01-01
Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing. PMID:26349444
NASA Astrophysics Data System (ADS)
Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng
2015-09-01
Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing.
Monolithic InP strictly non-blocking 8×8 switch for high-speed WDM optical interconnection.
Kwack, Myung-Joon; Tanemura, Takuo; Higo, Akio; Nakano, Yoshiaki
2012-12-17
A strictly non-blocking 8 × 8 switch for high-speed WDM optical interconnection is realized on InP by using the phased-array scheme for the first time. The matrix switch architecture consists of over 200 functional devices such as star couplers, phase-shifters and so on without any waveguide cross-section. We demonstrate ultra-broad optical bandwidth covering the entire C-band through several Input/Output ports combination with extinction ratio performance of more than 20dB. Also, nanoseconds reconfiguration time was successfully achieved by dynamic switching experiment. Error-free transmission was verified for 40-Gbps (10-Gbps × 4ch) WDM signal.
NASA Astrophysics Data System (ADS)
German, Kristine A.; Kubby, Joel; Chen, Jingkuang; Diehl, James; Feinberg, Kathleen; Gulvin, Peter; Herko, Larry; Jia, Nancy; Lin, Pinyen; Liu, Xueyuan; Ma, Jun; Meyers, John; Nystrom, Peter; Wang, Yao Rong
2004-07-01
Xerox Corporation has developed a technology platform for on-chip integration of latching MEMS optical waveguide switches and Planar Light Circuit (PLC) components using a Silicon On Insulator (SOI) based process. To illustrate the current state of this new technology platform, working prototypes of a Reconfigurable Optical Add/Drop Multiplexer (ROADM) and a l-router will be presented along with details of the integrated latching MEMS optical switches. On-chip integration of optical switches and PLCs can greatly reduce the size, manufacturing cost and operating cost of multi-component optical equipment. It is anticipated that low-cost, low-overhead optical network products will accelerate the migration of functions and services from high-cost long-haul markets to price sensitive markets, including networks for metropolitan areas and fiber to the home. Compared to the more common silica-on-silicon PLC technology, the high index of refraction of silicon waveguides created in the SOI device layer enables miniaturization of optical components, thereby increasing yield and decreasing cost projections. The latching SOI MEMS switches feature moving waveguides, and are advantaged across multiple attributes relative to alternative switching technologies, such as thermal optical switches and polymer switches. The SOI process employed was jointly developed under the auspice of the NIST APT program in partnership with Coventor, Corning IntelliSense Corp., and MicroScan Systems to enable fabrication of a broad range of free space and guided wave MicroOptoElectroMechanical Systems (MOEMS).
Intelligent switches of integrated lightwave circuits with core telecommunication functions
NASA Astrophysics Data System (ADS)
Izhaky, Nahum; Duer, Reuven; Berns, Neil; Tal, Eran; Vinikman, Shirly; Schoenwald, Jeffrey S.; Shani, Yosi
2001-05-01
We present a brief overview of a promising switching technology based on Silica on Silicon thermo-optic integrated circuits. This is basically a 2D solid-state optical device capable of non-blocking switching operation. Except of its excellent performance (insertion loss<5dB, switching time<2ms...), the switch enables additional important build-in functionalities. It enables single-to- single channel switching and single-to-multiple channel multicasting/broadcasting. In addition, it has the capability of channel weighting and variable output power control (attenuation), for instance, to equalize signal levels and compensate for unbalanced different optical input powers, or to equalize unbalanced EDFA gain curve. We examine the market segments appropriate for the switch size and technology, followed by a discussion of the basic features of the technology. The discussion is focused on important requirements from the switch and the technology (e.g., insertion loss, power consumption, channel isolation, extinction ratio, switching time, and heat dissipation). The mechanical design is also considered. It must take into account integration of optical fiber, optical planar wafer, analog electronics and digital microprocessor controls, embedded software, and heating power dissipation. The Lynx Photon.8x8 switch is compared to competing technologies, in terms of typical market performance requirements.
NASA Astrophysics Data System (ADS)
Hartmann, Alfred; Redfield, Steve
1989-04-01
This paper discusses design of large-scale (1000x 1000) optical crossbar switching networks for use in parallel processing supercom-puters. Alternative design sketches for an optical crossbar switching network are presented using free-space optical transmission with either a beam spreading/masking model or a beam steering model for internodal communications. The performances of alternative multiple access channel communications protocol-unslotted and slotted ALOHA and carrier sense multiple access (CSMA)-are compared with the performance of the classic arbitrated bus crossbar of conventional electronic parallel computing. These comparisons indicate an almost inverse relationship between ease of implementation and speed of operation. Practical issues of optical system design are addressed, and an optically addressed, composite spatial light modulator design is presented for fabrication to arbitrarily large scale. The wide range of switch architecture, communications protocol, optical systems design, device fabrication, and system performance problems presented by these design sketches poses a serious challenge to practical exploitation of highly parallel optical interconnects in advanced computer designs.
PHz current switching in calcium fluoride single crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Ojoon; Kim, D., E-mail: kimd@postech.ac.kr; Max Planck Center for Attosecond Science, Max Planck POSTECH/Korea Res. Init., Pohang 37673
2016-05-09
We demonstrate that a current can be induced and switched in a sub-femtosecond time-scale in an insulating calcium fluoride single crystal by an intense optical field. This measurement indicates that a sizable current can be generated and also controlled by an optical field in a dielectric medium, implying the capability of rapid current switching at a rate of optical frequency, PHz (10{sup 15} Hz), which is a couple of orders of magnitude higher than that of contemporary electronic signal processing. This demonstration may serve to facilitate the development of ultrafast devices in PHz frequency.
Dip-Coating Process Engineering and Performance Optimization for Three-State Electrochromic Devices
NASA Astrophysics Data System (ADS)
Wu, Lu; Yang, Dejiang; Fei, Lixun; Huang, Yue; Wu, Fang; Sun, Yiling; Shi, Jiayuan; Xiang, Yong
2017-06-01
Titanium dioxide (TiO2) nanoparticles were modified onto fluorine-doped tin oxide (FTO) via dip-coating technique with different nanoparticle sizes, lifting speeds, precursor concentrations, and dipping numbers. Electrodeposition-based electrochromic device with reversible three-state optical transformation (transparent, mirror, and black) was fabricated subsequently by sandwiching a suitable amount of gel electrolyte between modified FTO electrode and flat FTO electrode. Correlation between dip-coating process engineering, morphological features of TiO2 thin films, i.e., thickness and roughness, as well as performance of electrochromic devices, i.e., optical contrast, switching time, and cycling stability, were investigated. The modified device exhibits high optical contrast of 57%, the short coloration/bleaching switching time of 6 and 20 s, and excellent cycling stability after 1500 cycles of only 27% decrement rate by adjusting dip-coating processes engineering. The results in this study will provide valuable guidance for rational design of the electrochromic device with satisfactory performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, James J.
A microelectromechanical (MEM) optical switching apparatus is disclosed that is based on an erectable mirror which is formed on a rotatable stage using surface micromachining. An electrostatic actuator is also formed on the substrate to rotate the stage and mirror with a high angular precision. The mirror can be erected manually after fabrication of the device and used to redirect an incident light beam at an arbitrary angel and to maintain this state in the absence of any applied electrical power. A 1.times.N optical switch can be formed using a single rotatable mirror. In some embodiments of the present invention,more » a plurality of rotatable mirrors can be configured so that the stages and mirrors rotate in unison when driven by a single micromotor thereby forming a 2.times.2 optical switch which can be used to switch a pair of incident light beams, or as a building block to form a higher-order optical switch.« less
NASA Astrophysics Data System (ADS)
Wang, Pengfei; Brambilla, Gilberto; Semenova, Yuliya; Wu, Qiang; Zheng, Jie; Farrell, Gerald
2011-08-01
The well known beam propagation method (BPM) has become one of the most useful, robust and effective numerical simulation tools for the investigation of guided-wave optics, for example integrated optical waveguides and fiber optic devices. In this paper we examine the use of the 2D and 3D wide angle-beam propagation method (WA-BPM) combined with the well known perfectly matched layer (PML) boundary conditions as a tool to analyze TIR based optical switches, in particular the relationship between light propagation and the geometrical parameters of a TIR based optical switch. To analyze the influence of the length and the width of the region in which the refractive index can be externally controlled, the 3D structure of a 2x2 TIR optical switch is firstly considered in 2D using the effective index method (EIM). Then the influence of the etching depth and the tilt angle of the reflection facet on the switch performance are investigated with a 3D model.
NASA Astrophysics Data System (ADS)
Qiu, Fengxian; Chen, Caihong; Zhou, Qiaolan; Cao, Zhijuan; Cao, Guorong; Guan, Yijun; Yang, Dongya
2014-05-01
A chromophore molecule 4-[(benzothiazole-2-yl)diazenyl]phenyl-1,3-diamine (BTPD) was prepared with 2-amino benzothiazole and m-phenylenediamine by diazo-coupling reaction. Then, the BTPD was polymerized with polyether polyol (NJ-220) and isophorone diisocyanate (IPDI) to obtain novel azo benzothiazole polyurethane-urea (BTPUU). The chemical structures of BTPD and BTPUU were characterized by FT-IR and UV-visible spectroscopy. The thermal and mechanical properties of BTPUU film were investigated. The refractive index and transmission loss of BTPUU film were measured at different temperatures and different laser wavelengths (532 nm, 650 nm and 850 nm) by an attenuated total reflection (ATR) technique and CCD digital imaging devices. The thermo-optic coefficients of BTPUU are -4.7086 × 10-4 °C-1 (532 nm), -6.5257 × 10-4 °C-1 (650 nm) and -5.1029 × 10-4 °C-1 (850 nm), respectively. A Y-branch switch and Mach-Zehnder interferometer (MZI) thermo-optic switches based on thermo-optic effect were proposed and the performances of the switches were simulated, respectively. The results show that the power consumption of the Y-branch thermo-optic switch is only 3.28 mW. The response times of Y-branch and MZI switches are 8.0 ms and 2.0 ms, respectively. The results indicate that the prepared BTPUU has high potential for the applications of the Y-branch digital optical switch (DOS), MZI thermo-optic switch, directional coupler (DC) switch and optical modulators.
1994-09-01
free-space and waveguide interconnects is investigated through the fabrication, testing and modeling of polycrystalline PLZT/ITO ceramic electro - optic phase...only gratings. PLZT Diffraction grating, Electro - optic diffraction grating, Optical switching, Optical interconnects, Reconfigurable interconnect
NASA Astrophysics Data System (ADS)
Gandhi, Sahil Sandesh; Kim, Min Su; Hwang, Jeoung-Yeon; Chien, Liang-Chy
2017-02-01
We demonstrate the application of the nanostructured scaffold of BPIII as a resuable EO device that retains the BPIII ordering and sub-millisecond EO switching characteristics, that is, "EO-memory" of the original BPIII even after removal of the cholesteric blue phase liquid crystal (LC) and subsequent refilling with different nematic LCs. We also fabricate scaffolds mimicking the isotropic phase and cubic blue phase I (BPI) to demonstrate the versatility of our material system to nano-engineer EO-memory scaffolds of various structures. We envisage that this work will promote new experimental investigations of the mysterious BPIII and the development of novel device architectures and optically functional nanomaterials.
Optical switch based on electrowetting liquid lens
NASA Astrophysics Data System (ADS)
Li, Lei; Liu, Chao; Peng, Hua-Rong; Wang, Qiong-Hua
2012-05-01
In this paper, we propose an optical switch based on an electrowetting liquid lens. The device consists of an electrowetting liquid lens and a non-transparent cap with a pin hole. When the lens is actuated to be positive, the incident light can be converged on the pin hole and pass through the hole with less attenuation. When the lens is deformed to be negative, the incident light is diverged and most of light is blocked by the cap. Our results show that the system can provide high contrast ratio (˜800:1) and reasonable response time (˜88 ms). The proposed optical switch has potential application in light shutters, variable optical attenuators, and adaptive irises.
Compact programmable photonic variable delay devices
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor)
1999-01-01
Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm.sup.2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.
All optical controlled photonic integrated circuits using azo dye functionized sol-gel material
NASA Astrophysics Data System (ADS)
Ke, Xianjun
The main focus of this dissertation is development and characterization of all-optical controllable azo dye functionized sol gel material, demonstrating a PIC fabrication technique on glass substrate using such material, and exploration and feasibility demonstration of three PIC functional devices namely optical variable attenuator, optical switches, and optical tunable filters using the material. The realization of all the devices in this dissertation are based on one material: dye functionalized sol-gel material. A photochromic sol-gel material functionalized with azo dye was synthesized and characterized. It possesses a photochromic characteristic under the control of green laser beam illumination. The material characteristics suggest the possibility of a new promising material platform candidate for the fabrication of alloptical controlled photonic integrated circuits. As the first potential application of the dye functionalized sol-gel material, an alloptical variable attenuator was designed and demonstrated. The optical variable attenuation is achieved in Mach-Zehnder interferometric configuration through all-optical modulation of sol-gel waveguide phase shifters. A 2 x 2 optical switch based on multimode interference (MMI) waveguide structure is proposed in the dissertation. The schematic configuration of the optical switch consists of a cascade of two identical MMIs with two all-optical controlled phase shifters realized by using the photochromic sol-gel material. The cross or bar switch state of the optical switch is determined by the phase difference between the two sol-gel waveguide phase shifters. An all-optical tunable filter is designed and its feasibility demonstrated by using the sol-gel photochromic material. Except for the phase change demonstrated on sol-gel waveguide phase shifters, dynamic gratings were observed on sol-gel film when exposed to two interference beams. This reveals the possibility of realizing Bragg grating-based tunable filters. The schematic configuration of proposed tunable filters consists of a single straight waveguide embedded with a sol-gel waveguide. The wavelength tuning of the tunable filters is accomplished by varying the grating period.
Characterization of ultrafast devices using novel optical techniques
NASA Astrophysics Data System (ADS)
Ali, Md Ershad
Optical techniques have been extensively used to examine the high frequency performance of a number of devices including High Electron Mobility Transistors (HEMTs), Heterojunction Bipolar Phototransistors (HPTs) and Low Temperature GaAs (LT-GaAs) Photoconductive Switches. To characterize devices, frequency and time domain techniques, namely optical heterodyning and electro-optic sampling, having measurement bandwidths in excess of 200 GHz, were employed. Optical mixing in three-terminal devices has been extended for the first time to submillimeter wave frequencies. Using a new generation of 50-nm gate pseudomorphic InP-based HEMTs, optically mixed signals were detected to 552 GHz with a signal-to-noise ratio of approximately 5 dB. To the best of our knowledge, this is the highest frequency optical mixing obtained in three- terminal devices to date. A novel harmonic three-wave detection scheme was used for the detection of the optically generated signals. The technique involved downconversion of the signal in the device by the second harmonic of a gate-injected millimeter wave local oscillator. Measurements were also conducted up to 212 GHz using direct optical mixing and up to 382 GHz using a fundamental three-wave detection scheme. New interesting features in the bias dependence of the optically mixed signals have been reported. An exciting novel development from this work is the successful integration of near-field optics with optical heterodyning. The technique, called near-field optical heterodyning (NFOH), allows for extremely localized injection of high-frequency stimulus to any arbitrary point of an ultrafast device or circuit. Scanning the point of injection across the sample provides details of the high frequency operation of the device with high spatial resolution. For the implementation of the technique, fiber-optic probes with 100 nm apertures were fabricated. A feedback controlled positioning system was built for accurate placement and scanning of the fiber probe with nanometric precision. The applicability of the NFOH technique was first confirmed by measurements on heterojunction phototransistors at 100 GHz. Later NFOH scans were performed at 63 GHz on two other important devices, HEMTs and LT-GaAs Photoconductive Switches. Spatially resolved response characteristics of these devices revealed interesting details of their operation.
NASA Astrophysics Data System (ADS)
Valligatla, Sreeramulu; Haldar, Krishna Kanta; Patra, Amitava; Desai, Narayana Rao
2016-10-01
The semiconductor nanocrystals are found to be promising class of third order nonlinear optical materials because of quantum confinement effects. Here, we highlight the nonlinear optical switching and optical limiting of cadmium selenide (CdSe) quantum dots (QDs) using nanosecond Z-scan measurement. The intensity dependent nonlinear absorption and nonlinear refraction of CdSe QDs were investigated by applying the Z-scan technique with 532 nm, nanosecond laser pulses. At lower intensities, the nonlinear process is dominated by saturable absorption (SA) and it is changed to reverse saturable absorption (RSA) at higher intensities. The SA behaviour is attributed to the ground state bleaching and the RSA is ascribed to free carrier absorption (FCA) of CdSe QDs. The nonlinear optical switching behaviour and reverse saturable absorption makes CdSe QDs are good candidate for all-optical device and optical limiting applications.
Reedy, Robert P.
1987-01-01
An optical switching device (10) is provided whereby light from a first glass fiber (16) or a second glass fiber (14) may be selectively transmitted into a third glass fiber (18). Each glass fiber is provided with a focusing and collimating lens system (26, 28, 30). In one mode of operation, light from the first glass fiber (16) is reflected by a planar mirror (36) into the third glass fiber (18). In another mode of operation, light from the second glass fiber (14) passes directly into the third glass fiber (18). The planar mirror (36) is attached to a rotatable table (32) which is rotated to provide the optical switching.
Guided-Wave Optic Devices for Integrated Optic Information Processing.
1984-08-08
Modulation and switching of light waves in Yttrium iron garnet (YIG)- Gadolinium gallium garnet (GGG) waveguides using Farady rotation , and light...switch, an electrooptic analog-to-digital converter using a Fabry -Perot modula- tor array, and a noncollinear magnetooptic modulator using magnetostatic...data routing in electronic computer networks. ELECTROOPTIC ANALOG-TO-DIGITAL CONVERTER USING CHANNEL WAVEGUIDE FABRY -PEROT MODULATOR ARRAY One of the
Optimization of ferroelectric liquid crystal optically addressed spatial light modulator performance
NASA Astrophysics Data System (ADS)
Perennes, Frederic; Crossland, William A.
1997-08-01
The switching mechanisms of ferroelectric liquid crystal optically addressed spatial light modulators (OASLMs) using a photosensitive structure made of an intrinsic amorphous silicon layer sandwiched in between an indium tin oxide coated glass sheet and a reflective metal layer are reviewed. Devices based on photoconductor and photodiode layers are briefly reviewed and attention is focused on pixelated metal mirror devices, which offer fast switching and good optical characteristics with the same sensitivity range as the photodiode OASLMs. They are particularly suitable for high frame rate SLMs with intense read beams. Optimum drive conditions for this type of device are considered. An equivalent electrical circuit is proposed for the photosensitive structure and the voltage drop across the liquid crystal layer is investigated and related to the optical response of the device. Experimental work is carried out to demonstrate the validity of our equivalent circuit. We show that the synchronization of a light source with the case pulse enables the OASLM to work at frame rates of a few kilohertz. We also demonstrate that the exact synchronization of the write light source with the write pulse enhances the potential memory of the device.
A Solution-Processed Ultrafast Optical Switch Based on a Nanostructured Epsilon-Near-Zero Medium.
Guo, Qiangbing; Cui, Yudong; Yao, Yunhua; Ye, Yuting; Yang, Yue; Liu, Xueming; Zhang, Shian; Liu, Xiaofeng; Qiu, Jianrong; Hosono, Hideo
2017-07-01
All the optical properties of materials are derived from dielectric function. In spectral region where the dielectric permittivity approaches zero, known as epsilon-near-zero (ENZ) region, the propagating light within the material attains a very high phase velocity, and meanwhile the material exhibits strong optical nonlinearity. The interplay between the linear and nonlinear optical response in these materials thus offers unprecedented pathways for all-optical control and device design. Here the authors demonstrate ultrafast all-optical modulation based on a typical ENZ material of indium tin oxide (ITO) nanocrystals (NCs), accessed by a wet-chemistry route. In the ENZ region, the authors find that the optical response in these ITO NCs is associated with a strong nonlinear character, exhibiting sub-picosecond response time (corresponding to frequencies over 2 THz) and modulation depth up to ≈160%. This large optical nonlinearity benefits from the highly confined geometry in addition to the ENZ enhancement effect of the ITO NCs. Based on these ENZ NCs, the authors successfully demonstrate a fiber optical switch that allows switching of continuous laser wave into femtosecond laser pulses. Combined with facile processibility and tunable optical properties, these solution-processed ENZ NCs may offer a scalable and printable material solution for dynamic photonic and optoelectronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A tri-state optical switch for local area network communications
NASA Technical Reports Server (NTRS)
Simms, Garfield
1993-01-01
This novel structure is a heterojunction phototransistor which can be used as an emitter-detector, and when placed in a quiescent mode, the device becomes a passive transmitter. By varying the voltage bias, this novel device will switch between all three modes of operation. Such a device has broad application in network environments with operation speeds of less than 50 MHz and distances of less than 1 km, e.g. automobiles, airplanes, and intra-instrumentation. During this period, the emission mode for this device was studied and mathematically modeled.
All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect.
Qiu, Ciyuan; Yang, Yuxing; Li, Chao; Wang, Yifang; Wu, Kan; Chen, Jianping
2017-12-06
All-optical signal processing avoids the conversion between optical signals and electronic signals and thus has the potential to achieve a power efficient photonic system. Micro-scale all-optical devices for light manipulation are the key components in the all-optical signal processing and have been built on the semiconductor platforms (e.g., silicon and III-V semiconductors). However, the two-photon absorption (TPA) effect and the free-carrier absorption (FCA) effect in these platforms deteriorate the power handling and limit the capability to realize complex functions. Instead, silicon nitride (Si 3 N 4 ) provides a possibility to realize all-optical large-scale integrated circuits due to its insulator nature without TPA and FCA. In this work, we investigate the physical dynamics of all-optical control on a graphene-on-Si 3 N 4 chip based on thermo-optic effect. In the experimental demonstration, a switching response time constant of 253.0 ns at a switching energy of ~50 nJ is obtained with a device dimension of 60 μm × 60 μm, corresponding to a figure of merit (FOM) of 3.0 nJ mm. Detailed coupled-mode theory based analysis on the thermo-optic effect of the device has been performed.
Fiber-optic beam control systems using microelectromechanical systems
NASA Astrophysics Data System (ADS)
Sumriddetchkajorn, Sarun
This dissertation, for the first time, proposes, studies, and experimentally demonstrated novel fiber-optic beam control systems based on the use of microelectromechanical system (MEMS) technology in which the miniaturized versions of mechanical systems can be obtained. Beam control modules include optical add/drop filters, optical switches, variable photonic delay lines (VPDLs), and variable optical attenuators (VOAs). The optical add/drop filter functions as a multiwavelength optical switch that offers the ability to drop and add a certain number of desired wavelengths at an intermediate location where access to all the propagating optical channels is not required between transmission terminals. The VOA can also be used in networks where stocking and tracking of fixed attenuators is difficult. Other specific applications of the VOA are optical gain equalization and polarization dependent loss and gain compensation required in high data-rate wavelength division multiplexed (WDM) lightwave systems. A VPDL can be used to adjust timing amongst multiwavelength optical signals in order to reduce timing jitter and burst traffic in photonic packet switching and parallel signal processing systems. In this dissertation, a small tilt micromirror device is proposed for the implementation of all fiber-optic beam control modules. In particular, the macro-pixel approach where several micromirrors are used to manipulate the desired optical beam is introduced to realize high speed and fault tolerant beam control modules. To eliminate the need of careful optical alignment, an all fiber-connectorized multiwavelength optical switch structure is presented and experimentally demonstrated by using a fiber-loop mirror concept with polarization control. In addition, liquid crystal (LC) devices are studied and are used to implement a compact retro- reflective 2 x 2 fiber-optic switch. Compared to MEMS- based mirror technology, the LC technology is more sensitive to temperature, thereby inappropriate to deploy in a harsh environment. With the benefit provided by WDM systems, wavelength sensitive fiber-optic beam controllers are proposed, offering wavelength sensitive time delay and amplitude controls that can be applied in several applications ranging from optical communications to high speed parallel signal processing. (Abstract shortened by UMI.)
PINPIN a-Si:H based structures for X-ray image detection using the laser scanning technique
NASA Astrophysics Data System (ADS)
Fernandes, M.; Vygranenko, Y.; Vieira, M.
2015-05-01
Conventional film based X-ray imaging systems are being replaced by their digital equivalents. Different approaches are being followed by considering direct or indirect conversion, with the later technique dominating. The typical, indirect conversion, X-ray panel detector uses a phosphor for X-ray conversion coupled to a large area array of amorphous silicon based optical sensors and a couple of switching thin film transistors (TFT). The pixel information can then be readout by switching the correspondent line and column transistors, routing the signal to an external amplifier. In this work we follow an alternative approach, where the electrical switching performed by the TFT is replaced by optical scanning using a low power laser beam and a sensing/switching PINPIN structure, thus resulting in a simpler device. The optically active device is a PINPIN array, sharing both front and back electrical contacts, deposited over a glass substrate. During X-ray exposure, each sensing side photodiode collects photons generated by the scintillator screen (560 nm), charging its internal capacitance. Subsequently a laser beam (445 nm) scans the switching diodes (back side) retrieving the stored charge in a sequential way, reconstructing the image. In this paper we present recent work on the optoelectronic characterization of the PINPIN structure to be incorporated in the X-ray image sensor. The results from the optoelectronic characterization of the device and the dependence on scanning beam parameters are presented and discussed. Preliminary results of line scans are also presented.
Method of bistable optical information storage using antiferroelectric phase PLZT ceramics
Land, Cecil E.
1990-01-01
A method for bistable storage of binary optical information includes an antiferroelectric (AFE) lead lanthanum zirconate titanate (PLZT) layer having a stable antiferroelectric first phase and a ferroelectric (FE) second phase obtained by applying a switching electric field across the surface of the device. Optical information is stored by illuminating selected portions of the layer to photoactivate an FE to AFE transition in those portions. Erasure of the stored information is obtained by reapplying the switching field.
Method of bistable optical information storage using antiferroelectric phase PLZT ceramics
Land, C.E.
1990-07-31
A method for bistable storage of binary optical information includes an antiferroelectric (AFE) lead lanthanum zirconate titanate (PLZT) layer having a stable antiferroelectric first phase and a ferroelectric (FE) second phase obtained by applying a switching electric field across the surface of the device. Optical information is stored by illuminating selected portions of the layer to photoactivate an FE to AFE transition in those portions. Erasure of the stored information is obtained by reapplying the switching field. 8 figs.
Jaafar, Ayoub H; Gray, Robert J; Verrelli, Emanuele; O'Neill, Mary; Kelly, Stephen M; Kemp, Neil T
2017-11-09
Optical control of memristors opens the route to new applications in optoelectronic switching and neuromorphic computing. Motivated by the need for reversible and latched optical switching we report on the development of a memristor with electronic properties tunable and switchable by wavelength and polarization specific light. The device consists of an optically active azobenzene polymer, poly(disperse red 1 acrylate), overlaying a forest of vertically aligned ZnO nanorods. Illumination induces trans-cis isomerization of the azobenzene molecules, which expands or contracts the polymer layer and alters the resistance of the off/on states, their ratio and retention time. The reversible optical effect enables dynamic control of a memristor's learning properties including control of synaptic potentiation and depression, optical switching between short-term and long-term memory and optical modulation of the synaptic efficacy via spike timing dependent plasticity. The work opens the route to the dynamic patterning of memristor networks both spatially and temporally by light, thus allowing the development of new optically reconfigurable neural networks and adaptive electronic circuits.
The other fiber, the other fabric, the other way
NASA Astrophysics Data System (ADS)
Stephens, Gary R.
1993-02-01
Coaxial cable and distributed switches provide a way to configure high-speed Fiber Channel fabrics. This type of fabric provides a cost-effective alternative to a fabric of optical fibers and centralized cross-point switches. The fabric topology is a simple tree. Products using parallel busses require a significant change to migrate to a serial bus. Coaxial cables and distributed switches require a smaller technology shift for these device manufacturers. Each distributed switch permits both medium type and speed changes. The fabric can grow and bridge to optical fibers as the needs expand. A distributed fabric permits earlier entry into high-speed serial operations. For very low-cost fabrics, a distributed switch may permit a link configured as a loop. The loop eliminates half of the ports when compared to a switched point-to-point fabric. A fabric of distributed switches can interface to a cross-point switch fabric. The expected sequence of migration is: closed loops, small closed fabrics, and, finally, bridges, to connect optical cross-point switch fabrics. This paper presents the concept of distributed fabrics, including address assignment, frame routing, and general operation.
NASA Astrophysics Data System (ADS)
Savant, Gajendra D.; Jannson, Joanna L.
1991-07-01
The increased emphasis on speed of operation, wavelength selectivity, compactness, and ruggedization has focused a great deal of attention on the solutions offered by all-optic devices and by hybrid electro-optic systems. In fact, many photonic devices are being considered for use as partial replacements for electronic systems. Optical components, which include modulators, switches, 3-D memory storage devices, wavelength division multiplexers, holographic optical elements, and others, are examples of such devices. The success or failure of these modern optical devices depends, to a great extent, on the performance and survivability of the optical materials used. This is particularly true for volume holographic filters, organic memory media, second- and third-order nonlinear material-based processors and neural networks. Due to the critical importance of these materials and their lack of availability, Physical Optics Corporation (POC) undertook a global advanced optical materials program which has enabled it to introduce several optical devices, based on the new and improved materials which will be described in this article.
Method and system for compact, multi-pass pulsed laser amplifier
Erlandson, Alvin Charles
2014-11-25
A laser amplifier includes an input aperture operable to receive laser radiation having a first polarization, an output aperture coupled to the input aperture by an optical path, and a polarizer disposed along an optical path. A transmission axis of the polarizer is aligned with the first polarization. The laser amplifier also includes n optical switch disposed along the optical path. The optical switch is operable to pass the laser radiation when operated in a first state and to reflect the laser radiation when operated in a second state. The laser amplifier further includes an optical gain element disposed along the optical path and a polarization rotation device disposed along the optical path.
A fast low-power optical memory based on coupled micro-ring lasers
NASA Astrophysics Data System (ADS)
Hill, Martin T.; Dorren, Harmen J. S.; de Vries, Tjibbe; Leijtens, Xaveer J. M.; den Besten, Jan Hendrik; Smalbrugge, Barry; Oei, Yok-Siang; Binsma, Hans; Khoe, Giok-Djan; Smit, Meint K.
2004-11-01
The increasing speed of fibre-optic-based telecommunications has focused attention on high-speed optical processing of digital information. Complex optical processing requires a high-density, high-speed, low-power optical memory that can be integrated with planar semiconductor technology for buffering of decisions and telecommunication data. Recently, ring lasers with extremely small size and low operating power have been made, and we demonstrate here a memory element constructed by interconnecting these microscopic lasers. Our device occupies an area of 18 × 40µm2 on an InP/InGaAsP photonic integrated circuit, and switches within 20ps with 5.5fJ optical switching energy. Simulations show that the element has the potential for much smaller dimensions and switching times. Large numbers of such memory elements can be densely integrated and interconnected on a photonic integrated circuit: fast digital optical information processing systems employing large-scale integration should now be viable.
Fast gray-to-gray switching of a hybrid-aligned liquid crystal cell
NASA Astrophysics Data System (ADS)
Choi, Tae-Hoon; Kim, Jung-Wook; Yoon, Tae-Hoon
2015-03-01
We demonstrate fast gray-to-gray (GTG) switching of a hybrid-aligned liquid crystal cell by applying both vertical and inplane electric fields to liquid crystals (LCs) using a four-terminal electrode structure. The LCs are switched to the bright state through downward tilting and twist deformation initiated by applying an in-plane electric field, whereas they are switched back to the initial dark state through optically hidden relaxation initiated by applying a vertical electric field for a short duration. The top electrode in the proposed device is grounded, which requires a much higher voltage to be applied for in-plane rotation of LCs. Thus, ultrafast turn-on switching of the device is achieved, whereas the turn-off switching of the proposed device is independent of the elastic constants and the viscosity of the LCs so that fast turn-off switching can be achieved. We experimentally obtained a total response time of 0.75 ms. Furthermore, fast GTG response within 3 ms could be achieved.
Photo-switchable bistable twisted nematic liquid crystal optical switch.
Wang, Chun-Ta; Wu, Yueh-Chi; Lin, Tsung-Hsien
2013-02-25
This work demonstrates a photo-switchable bistable optical switch that is based on an azo-chiral doped liquid crystal (ACDLC). The photo-induced isomerization of the azo-chiral dopant can change the chirality of twisted nematic liquid crystal and the gap/pitch ratio of an ACDLC device, enabling switching between 0° and 180° twist states in a homogeneous aligned cell. The bistable 180° and 0° twist states of the azo-chiral doped liquid crystal between crossed polarizers correspond to the ON and OFF states of a light shutter, respectively, and they can be maintained stably for tens of hours. Rapid switching between 180° and 0° twist states can be carried out using 408 and 532 nm addressing light. Such a photo-controllable optical switch requires no specific asymmetric alignment layer or precise control of the cell gap/pitch ratio, so it is easily fabricated and has the potential for use in optical systems.
Resonant Tunneling Quantum Well Integrated Optical Waveguide Modulator/ Switch
1994-07-01
time, which leads to the high speed operation. In this Phase I project, POC designed the RTDBQW device, including the optimization and precise definition...Effect of Free Carriers ............ 7 3.0 CHANNEL WAVEGUIDE DESIGN AND OPTIMIZATION ................... 10 3.1 Design Of Directional Coupling Mach...are essential for high speed signal routing and regeneration. POC’s design relies on the integration of an optical guided wave switch/modulator with a
Optically detonated explosive device
NASA Technical Reports Server (NTRS)
Yang, L. C.; Menichelli, V. J. (Inventor)
1974-01-01
A technique and apparatus for optically detonating insensitive high explosives, is disclosed. An explosive device is formed by containing high explosive material in a house having a transparent window. A thin metallic film is provided on the interior surface of the window and maintained in contact with the high explosive. A laser pulse provided by a Q-switched laser is focussed on the window to vaporize the metallic film and thereby create a shock wave which detonates the high explosive. Explosive devices may be concurrently or sequentially detonated by employing a fiber optic bundle to transmit the laser pulse to each of the several individual explosive devices.
Broadband optical switch based on liquid crystal dynamic scattering.
Geis, M W; Bos, P J; Liberman, V; Rothschild, M
2016-06-27
This work demonstrates a novel broadband optical switch, based on dynamic-scattering effect in liquid crystals (LCs). Dynamic-scattering-mode technology was developed for display applications over four decades ago, but was displaced in favor of the twisted-nematic LCs. However, with the recent development of more stable LCs, dynamic scattering provides advantages over other technologies for optical switching. We demonstrate broadband polarization-insensitive attenuation of light directly passing thought the cell by 4 to 5 orders of magnitude at 633 nm. The attenuation is accomplished by light scattering to higher angles. Switching times of 150 μs to 10% transmission have been demonstrated. No degradation of devices is found after hundreds of switching cycles. The light-rejection mechanism is due to scattering, induced by disruption of LC director orientation with dopant ion motion with an applied electric field. Angular dependence of scattering is characterized as a function of bias voltage.
DISCRETE EVENT SIMULATION OF OPTICAL SWITCH MATRIX PERFORMANCE IN COMPUTER NETWORKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, Neena; Poole, Stephen W
2013-01-01
In this paper, we present application of a Discrete Event Simulator (DES) for performance modeling of optical switching devices in computer networks. Network simulators are valuable tools in situations where one cannot investigate the system directly. This situation may arise if the system under study does not exist yet or the cost of studying the system directly is prohibitive. Most available network simulators are based on the paradigm of discrete-event-based simulation. As computer networks become increasingly larger and more complex, sophisticated DES tool chains have become available for both commercial and academic research. Some well-known simulators are NS2, NS3, OPNET,more » and OMNEST. For this research, we have applied OMNEST for the purpose of simulating multi-wavelength performance of optical switch matrices in computer interconnection networks. Our results suggest that the application of DES to computer interconnection networks provides valuable insight in device performance and aids in topology and system optimization.« less
Hendrickson, Joshua; Soref, Richard; Sweet, Julian; Majumdar, Arka
2015-01-12
New device designs are proposed and theoretical simulations are performed on electro-optical routing switches in which light beams enter and exit the device either from free space or from lensed fibers. The active medium is a ~100 nm layer of phase change material (Ge(2)Sb(2)Te(5) or GeTe) that is electrically "triggered" to change its phase, giving "self-holding" behavior in each of two phases. Electrical current is supplied to that film by a pair of transparent highly doped conducting Ge prisms on both sides of the layer. For S-polarized light incident at ~80° on the film, a three-layer Fabry-Perot analysis, including dielectric loss, predicts good 1 x 2 and 2 x 2 switch performance at infrared wavelengths of 1.55, 2.1 and 3.0 μm, although the performance at 1.55 μm is degraded by material loss and prism mismatch. Proposals for in-plane and volumetric 1 x 4 and 4 x 4 switches are also presented. An unpolarized 1 x 2 switch projects good performance at mid infrared.
Integration of GaN/AlN all-optical switch with SiN/AlN waveguide utilizing spot-size conversion.
Iizuka, Norio; Yoshida, Haruhiko; Managaki, Nobuto; Shimizu, Toshimasa; Hassanet, Sodabanlu; Cumtornkittikul, Chiyasit; Sugiyama, Masakazu; Nakano, Yoshiaki
2009-12-07
Spot-size converters for an all-optical switch utilizing the intersubband transition in GaN/AlN multiple quantum wells are studied with the purpose of reducing operation power by improving the coupling efficiency between the input fiber and the switch. With a stair-like spot-size converter, the absorption saturation of 5 dB is achieved with a pulse energy of 25 pJ. The switch is integrated with a SiN/AlN waveguide and spot-size converters, and the structure provides the possibility of an integration of the switch with other functional devices. To further improve the coupling loss between the waveguide and the switch, triangular-shaped converters are investigated, demonstrating losses as low as 2 dB/facet.
Light-Gated Memristor with Integrated Logic and Memory Functions.
Tan, Hongwei; Liu, Gang; Yang, Huali; Yi, Xiaohui; Pan, Liang; Shang, Jie; Long, Shibing; Liu, Ming; Wu, Yihong; Li, Run-Wei
2017-11-28
Memristive devices are able to store and process information, which offers several key advantages over the transistor-based architectures. However, most of the two-terminal memristive devices have fixed functions once made and cannot be reconfigured for other situations. Here, we propose and demonstrate a memristive device "memlogic" (memory logic) as a nonvolatile switch of logic operations integrated with memory function in a single light-gated memristor. Based on nonvolatile light-modulated memristive switching behavior, a single memlogic cell is able to achieve optical and electrical mixed basic Boolean logic of reconfigurable "AND", "OR", and "NOT" operations. Furthermore, the single memlogic cell is also capable of functioning as an optical adder and digital-to-analog converter. All the memlogic outputs are memristive for in situ data storage due to the nonvolatile resistive switching and persistent photoconductivity effects. Thus, as a memdevice, the memlogic has potential for not only simplifying the programmable logic circuits but also building memristive multifunctional optoelectronics.
Photoconductive Switching of a Blumlein Pulser
1987-06-01
Diamond Laboratories Adelphi, Maryland 20783 Lawrence J. Bovino U. S. Army LABCOM Electronics Technology and Devices Laboratory Fort Monmouth, New... Bovino , T. Burke, R. Youmans, M. Weiner and J. Carter, "Recent Advances in Optically Controlled Bulk Semicon- ductor switches," in Proceedings of
Micro-electro-mechanically switchable near infrared complementary metamaterial absorber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitchappa, Prakash; Pei Ho, Chong; Institute of Microelectronics
2014-05-19
We experimentally demonstrate a micro-electro-mechanically switchable near infrared complementary metamaterial absorber by integrating the metamaterial layer to be the out of plane movable microactuator. The metamaterial layer is electrostatically actuated by applying voltage across the suspended complementary metamaterial layer and the stationary bottom metallic reflector. Thus, the effective spacing between the metamaterial layer and bottom metal reflector is varied as a function of applied voltage. With the reduction of effective spacing between the metamaterial and reflector layers, a strong spectral blue shift in the peak absorption wavelength can be achieved. With spacing change of 300 nm, the spectral shift of 0.7 μmmore » in peak absorption wavelength was obtained for near infrared spectral region. The electro-optic switching performance of the device was characterized, and a striking switching contrast of 1500% was achieved at 2.1 μm. The reported micro-electro-mechanically tunable complementary metamaterial absorber device can potentially enable a wide range of high performance electro-optical devices, such as continuously tunable filters, modulators, and electro-optic switches that form the key components to facilitate future photonic circuit applications.« less
Highly Non-Linear Optical (NLO) organic crystals and films. Electrooptical organic materials
NASA Technical Reports Server (NTRS)
Mcmanus, Samuel P.; Rosenberger, Franz; Matthews, John
1987-01-01
Devices employing nonlinear optics (NLO) hold great promise for important applications in integrated optics, optical information processing and telecommunications. Properly designed organics possess outstanding optical and electrooptical properties which will substantially advance many technologies including electrooptical switching, optical amplification for communications, and parallel processing for hybrid optical computers. A brief comparison of organic and inorganic materials is given.
Call for Papers: Photonics in Switching
NASA Astrophysics Data System (ADS)
Wosinska, Lena; Glick, Madeleine
2006-04-01
Research on performance of three-layer MG-OXC system based on MLAG and OCDM
NASA Astrophysics Data System (ADS)
Wang, Yubao; Ren, Yanfei; Meng, Ying; Bai, Jian
2017-10-01
At present, as traffic volume which optical transport networks convey and species of traffic grooming methods increase rapidly, optical switching techniques are faced with a series of issues, such as more requests for the number of wavelengths and complicated structure management and implementation. This work introduces optical code switching based on wavelength switching, constructs the three layers multi-granularity optical cross connection (MG-OXC) system on the basis of optical code division multiplexing (OCDM) and presents a new traffic grooming algorithm. The proposed architecture can improve the flexibility of traffic grooming, reduce the amount of used wavelengths and save the number of consumed ports, hence, it can simplify routing device and enhance the performance of the system significantly. Through analyzing the network model of switching structure on multicast layered auxiliary graph (MLAG) and the establishment of traffic grooming links, and the simulation of blocking probability and throughput, this paper shows the excellent performance of this mentioned architecture.
Wang, Letian; Rho, Yoonsoo; Shou, Wan; Hong, Sukjoon; Kato, Kimihiko; Eliceiri, Matthew; Shi, Meng; Grigoropoulos, Costas P; Pan, Heng; Carraro, Carlo; Qi, Dongfeng
2018-03-27
Manipulating and tuning nanoparticles by means of optical field interactions is of key interest for nanoscience and applications in electronics and photonics. We report scalable, direct, and optically modulated writing of nanoparticle patterns (size, number, and location) of high precision using a pulsed nanosecond laser. The complex nanoparticle arrangement is modulated by the laser pulse energy and polarization with the particle size ranging from 60 to 330 nm. Furthermore, we report fast cooling-rate induced phase switching of crystalline Si nanoparticles to the amorphous state. Such phase switching has usually been observed in compound phase change materials like GeSbTe. The ensuing modification of atomic structure leads to dielectric constant switching. Based on these effects, a multiscale laser-assisted method of fabricating Mie resonator arrays is proposed. The number of Mie resonators, as well as the resonance peaks and dielectric constants of selected resonators, can be programmed. The programmable light-matter interaction serves as a mechanism to fabricate optical metasurfaces, structural color, and multidimensional optical storage devices.
NASA Astrophysics Data System (ADS)
Tartan, Chloe C.; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J.
2016-09-01
Direct Laser Writing (DLW) by two-photon photopolymerization (TPP) enables the fabrication of micron-scale polymeric structures in soft matter systems. The technique has implications in a broad range of optics and photonics; in particular fast-switching liquid crystal (LC) modes for the development of next generation display technologies. In this paper, we report two different methodologies using our TPP-based fabrication technique. Two explicit examples are provided of voltage-dependent LC director profiles that are inherently unstable, but which appear to be promising candidates for fast-switching photonics applications. In the first instance, 1 μm-thick periodic walls of polymer network are written into a planar aligned (parallel rubbed) nematic pi-cell device containing a nematic LC-monomer mixture. The structures are fabricated when the device is electrically driven into a fast-switching nematic LC state and aberrations induced by the device substrates are corrected for by virtue of the adaptive optics elements included within the DLW setup. Optical polarizing microscopy images taken post-fabrication reveal that polymer walls oriented perpendicular to the rubbing direction promote the stability of the so-called optically compensated bend mode upon removal of the externally applied field. In the second case, polymer walls are written in a nematic LC-optically adhesive glue mixture. A polymer- LCs-polymer-slices or `POLICRYPS' template is formed by immersing the device in acetone post-fabrication to remove any remaining non-crosslinked material. Injecting the resultant series of polymer microchannels ( 1 μm-thick) with a short-pitch, chiral nematic LC mixture leads to the spontaneous alignment of a fast-switching chiral nematic mode, where the helical axis lies parallel to the glass substrates. Optimal contrast between the bright and dark states of the uniform lying helix alignment is achieved when the structures are spaced at the order of the device thickness, which was also found to be the case for the achiral system. The high resolution DLW technique limits structures to the focal spot size of the beam, 1 μm in diameter, such that the transmittance is expected to be significantly enhanced relative to other stabilization techniques. Moreover, both devices remain stable under electrical and thermal cycling.
Optically-Switched Resonant Tunneling Diodes for Space-Based Optical Communication Applications
NASA Technical Reports Server (NTRS)
Moise, T. S.; Kao, Y. -C.; Jovanovic, D.; Sotirelis, P.
1995-01-01
We are developing a new type of digital photo-receiver that has the potential to perform high speed optical-to-electronic conversion with a factor of 10 reduction in component count and power dissipation. In this paper, we describe the room-temperature photo-induced switching of this InP-based device which consists of an InGaAs/AlAs resonant tunneling diode integrated with an InGaAs absorber layer. When illuminated at an irradiance of greater than 5 Wcm(exp -2) using 1.3 micromillimeter radiation, the resonant tunneling diode switches from a high-conductance to a low-conductance electrical state and exhibits a voltage swing of up to 800 mV.
Scaffardi, Mirco; Malik, Muhammad N; Lazzeri, Emma; Klitis, Charalambos; Meriggi, Laura; Zhang, Ning; Sorel, Marc; Bogoni, Antonella
2017-10-01
A silicon-on-insulator microring with three superimposed gratings is proposed and characterized as a device enabling 3×3 optical switching based on orbital angular momentum and wavelength as switching domains. Measurements show penalties with respect to the back-to-back of <1 dB at a bit error rate of 10 -9 for OOK traffic up to 20 Gbaud. Different switch configuration cases are implemented, with measured power penalty variations of less than 0.5 dB at bit error rates of 10 -9 . An analysis is also carried out to highlight the dependence of the number of switch ports on the design parameters of the multigrating microring.
Recent Advances in Photonic Devices for Optical Computing and the Role of Nonlinear Optics-Part II
NASA Technical Reports Server (NTRS)
Abdeldayem, Hossin; Frazier, Donald O.; Witherow, William K.; Banks, Curtis E.; Paley, Mark S.
2007-01-01
The twentieth century has been the era of semiconductor materials and electronic technology while this millennium is expected to be the age of photonic materials and all-optical technology. Optical technology has led to countless optical devices that have become indispensable in our daily lives in storage area networks, parallel processing, optical switches, all-optical data networks, holographic storage devices, and biometric devices at airports. This chapters intends to bring some awareness to the state-of-the-art of optical technologies, which have potential for optical computing and demonstrate the role of nonlinear optics in many of these components. Our intent, in this Chapter, is to present an overview of the current status of optical computing, and a brief evaluation of the recent advances and performance of the following key components necessary to build an optical computing system: all-optical logic gates, adders, optical processors, optical storage, holographic storage, optical interconnects, spatial light modulators and optical materials.
Wavelength-tunable optical ring resonators
Watts, Michael R [Albuquerque, NM; Trotter, Douglas C [Albuquerque, NM; Young, Ralph W [Albuquerque, NM; Nielson, Gregory N [Albuquerque, NM
2009-11-10
Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.
Wavelength-tunable optical ring resonators
Watts, Michael R [Albuquerque, NM; Trotter, Douglas C [Albuquerque, NM; Young, Ralph W [Albuquerque, NM; Nielson, Gregory N [Albuquerque, NM
2011-07-19
Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.
Optical waveguide device with an adiabatically-varying width
Watts,; Michael R. , Nielson; Gregory, N [Albuquerque, NM
2011-05-10
Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.
All-optical switch and transistor gated by one stored photon.
Chen, Wenlan; Beck, Kristin M; Bücker, Robert; Gullans, Michael; Lukin, Mikhail D; Tanji-Suzuki, Haruka; Vuletić, Vladan
2013-08-16
The realization of an all-optical transistor, in which one "gate" photon controls a "source" light beam, is a long-standing goal in optics. By stopping a light pulse in an atomic ensemble contained inside an optical resonator, we realized a device in which one stored gate photon controls the resonator transmission of subsequently applied source photons. A weak gate pulse induces bimodal transmission distribution, corresponding to zero and one gate photons. One stored gate photon produces fivefold source attenuation and can be retrieved from the atomic ensemble after switching more than one source photon. Without retrieval, one stored gate photon can switch several hundred source photons. With improved storage and retrieval efficiency, our work may enable various new applications, including photonic quantum gates and deterministic multiphoton entanglement.
Optical technologies for the Internet of Things era
NASA Astrophysics Data System (ADS)
Ji, Philip N.
2017-08-01
Internet of Things (IoT) is a network of interrelated physical objects that can collect and exchange data with one another through embedded electronics, software, sensors, over the Internet. It extends Internet connectivity beyond traditional networking devices to a diverse range of physical devices and everyday things that utilize embedded technologies to communicate and interact with the external environment. The IoT brings automation and efficiency improvement to everyday life, business, and society. Therefore IoT applications and market are growing rapidly. Contrary to common belief that IoT is only related to wireless technology, optical technologies actually play important roles in the growth of IoT and contribute to its advancement. Firstly, fiber optics provides the backbone for transporting large amount of data generated by IoT network in the core , metro and access networks, and in building or in the physical object. Secondly, optical switching technologies, including all-optical switching and hybrid optical-electrical switching, enable fast and high bandwidth routing in IoT data processing center. Thirdly, optical sensing and imaging delivers comprehensive information of multiple physical phenomena through monitoring various optical properties such as intensity, phase, wavelength, frequency, polarization, and spectral distribution. In particular, fiber optic sensor has the advantages of high sensitivity, low latency, and long distributed sensing range. It is also immune to electromagnetic interference, and can be implemented in harsh environment. In this paper, the architecture of IoT is described, and the optical technologies and their applications in the IoT networks are discussed with practical examples.
Cong, G W; Matsukawa, T; Chiba, T; Tadokoro, H; Yanagihara, M; Ohno, M; Kawashima, H; Kuwatsuka, H; Igarashi, Y; Masahara, M; Ishikawa, H
2013-03-25
n-channel body-tied partially depleted metal-oxide-semiconductor field-effect transistors (MOSFETs) were fabricated for large current applications on a silicon-on-insulator wafer with photonics-oriented specifications. The MOSFET can drive an electrical current as large as 20 mA. We monolithically integrated this MOSFET with a 2 × 2 Mach-Zehnder interferometer optical switch having thermo-optic phase shifters. The static and dynamic performances of the integrated device are experimentally evaluated.
Rader, Amber; Anderson, Betty Lise
2003-03-10
We present the design and proof-of-concept demonstration of an optical device capable of producing true-time delay(s) (TTD)(s) for phased array antennas. This TTD device uses a free-space approach consisting of a single microelectromechanical systems (MEMS) mirror array in a multiple reflection spherical mirror configuration based on the White cell. Divergence is avoided by periodic refocusing by the mirrors. By using the MEMS mirror to switch between paths of different lengths, time delays are generated. Six different delays in 1-ns increments were demonstrated by using the Texas Instruments Digital Micromirror Device as the switching element. Losses of 1.6 to 5.2 dB per bounce and crosstalk of -27 dB were also measured, both resulting primarily from diffraction from holes in each pixel and the inter-pixel gaps of the MEMS.
Polymer stabilized liquid crystals: Topology-mediated electro-optical behavior and applications
NASA Astrophysics Data System (ADS)
Weng, Libo
There has been a wide range of liquid crystal polymer composites that vary in polymer concentration from as little as 3 wt.% (polymer stabilized liquid crystal) to as high as 60 wt.% (polymer dispersed liquid crystals). In this dissertation, an approach of surface polymerization based on a low reactive monomer concentration about 1 wt.% is studied in various liquid crystal operation modes. The first part of dissertation describes the development of a vertical alignment (VA) mode with surface polymer stabilization, and the effects of structure-performance relationship of reactive monomers (RMs) and polymerization conditions on the electro-optical behaviors of the liquid crystal device has been explored. The polymer topography plays an important role in modifying and enhancing the electro-optical performance of stabilized liquid crystal alignment. The enabling surface-pinned polymer stabilized vertical alignment (PSVA) approach has led to the development of high-performance and fast-switching displays with controllable pretilt angle, increase in surface anchoring energy, high optical contrast and fast response time. The second part of the dissertation explores a PSVA mode with in-plane switching (IPS) and its application for high-efficiency and fast-switching phase gratings. The diffraction patterns and the electro-optical behaviors including diffraction efficiency and response time are characterized. The diffraction grating mechanism and performance have been validated by computer simulation. Finally, the advantages of surface polymerization approach such as good optical contrast and fast response time have been applied to the fringe-field switching (FFS) system. The concentration of reactive monomer on the electro-optical behavior of the FFS cells is optimized. The outstanding electro-optical results and mechanism of increase in surface anchoring strength are corroborated by the director field simulation. The density and topology of nanoscale polymer protrusions are analyzed and confirmed by morphological study. The developed high-performance polymer-stabilized fringe-field-switching (PS-FFS) could open new types of device applications.
A compact thermo-optical multimode-interference silicon-based 1 × 4 nano-photonic switch.
Zhou, Haifeng; Song, Junfeng; Chee, Edward K S; Li, Chao; Zhang, Huijuan; Lo, Guoqiang
2013-09-09
An ultra-compact multimode-interference (MMI)-based 1 × 4 nano-photonic switch is demonstrated by employing silicon thermo-optical effect on SOI platform. The device performance is systematically characterized by comprehensively investigating the constituent building blocks, including 1 × 4 power splitter, 4 × 4 MMI coupler and groove-isolated thermo-optical heaters. An instructive model is established to statistically estimate the required power consumption and investigate the influence of the power imbalance of the 4 × 4 MMI coupler on the switching performance. At the designed wavelength of 1550 nm, the average insertion loss of different switching states is 1.7 dB, and the transmission imbalance is 1.05 dB. The worst extinction ratio and crosstalk of all the output ports reach 11.48 dB and -11.38 dB, respectively.
Low-loss plasmon-assisted electro-optic modulator.
Haffner, Christian; Chelladurai, Daniel; Fedoryshyn, Yuriy; Josten, Arne; Baeuerle, Benedikt; Heni, Wolfgang; Watanabe, Tatsuhiko; Cui, Tong; Cheng, Bojun; Saha, Soham; Elder, Delwin L; Dalton, Larry R; Boltasseva, Alexandra; Shalaev, Vladimir M; Kinsey, Nathaniel; Leuthold, Juerg
2018-04-01
For nearly two decades, researchers in the field of plasmonics 1 -which studies the coupling of electromagnetic waves to the motion of free electrons near the surface of a metal 2 -have sought to realize subwavelength optical devices for information technology 3-6 , sensing 7,8 , nonlinear optics 9,10 , optical nanotweezers 11 and biomedical applications 12 . However, the electron motion generates heat through ohmic losses. Although this heat is desirable for some applications such as photo-thermal therapy, it is a disadvantage in plasmonic devices for sensing and information technology 13 and has led to a widespread view that plasmonics is too lossy to be practical. Here we demonstrate that the ohmic losses can be bypassed by using 'resonant switching'. In the proposed approach, light is coupled to the lossy surface plasmon polaritons only in the device's off state (in resonance) in which attenuation is desired, to ensure large extinction ratios between the on and off states and allow subpicosecond switching. In the on state (out of resonance), destructive interference prevents the light from coupling to the lossy plasmonic section of a device. To validate the approach, we fabricated a plasmonic electro-optic ring modulator. The experiments confirm that low on-chip optical losses, operation at over 100 gigahertz, good energy efficiency, low thermal drift and a compact footprint can be combined in a single device. Our result illustrates that plasmonics has the potential to enable fast, compact on-chip sensing and communications technologies.
GaAs photoconductive semiconductor switch
Loubriel, Guillermo M.; Baca, Albert G.; Zutavern, Fred J.
1998-01-01
A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices.
Narasimha, Karnati; Jayakannan, Manickam
2014-11-12
The present work demonstrates one of the first examples of π-conjugated photonic switches (or photonic wave plates) based on the tailor-made π-conjugated polymer anisotropic organogel. New semicrystalline segmented π-conjugated polymers are designed with rigid aromatic oligophenylenevinylene π-core and flexible alkyl chain along the polymer backbone. These polymers are found to be self-assembled as semicrystalline or amorphous with respect to the number of carbon atoms in the alkyl units. These semicrystalline polymers produce organogels having nanofibrous morphology of 20 nm thickness with length up to 5 μm. The polymer organogel is aligned in a narrow glass capillary, and this anisotropic gel device is further demonstrated as photonic switches. The glass capillary device behaves as typical λ/4 photonic wave plates upon the illumination of the plane polarized light. The λ/4 photonic switching ability is found to be maximum at θ = 45° angle under the cross polarizers. The orthogonal arrangements of the gel capillaries produce dark and bright spots as on-and-off optical switches. Thermoreversibility of the polymer organogel (also its xerogel) was exploited to construct thermoresponsive photonic switches for the temperature window starting from 25 to 160 °C. The organic photonic switch concept can be adapted to large number of other π-conjugated materials for optical communication and storage.
Reconfigurable visible nanophotonic switch for optogenetic applications (Conference Presentation)
NASA Astrophysics Data System (ADS)
Mohanty, Aseema; Li, Qian; Tadayon, Mohammad Amin; Bhatt, Gaurang R.; Cardenas, Jaime; Miller, Steven A.; Kepecs, Adam; Lipson, Michal
2017-02-01
High spatiotemporal resolution deep-brain optical excitation for optogenetics would enable activation of specific neural populations and in-depth study of neural circuits. Conventionally, a single fiber is used to flood light into a large area of the brain with limited resolution. The scalability of silicon photonics could enable neural excitation over large areas with single-cell resolution similar to electrical probes. However, active control of these optical circuits has yet to be demonstrated for optogenetics. Here we demonstrate the first active integrated optical switch for neural excitation at 473 nm, enabling control of multiple beams for deep-brain neural stimulation. Using a silicon nitride waveguide platform, we develop a cascaded Mach-Zehnder interferometer (MZI) network located outside the brain to direct light to 8 different grating emitters located at the tip of the neural probe. We use integrated platinum microheaters to induce a local thermo-optic phase shift in the MZI to control the switch output. We measure an ON/OFF extinction ratio of >8dB for a single switch and a switching speed of 20 microseconds. We characterize the optical output of the switch by imaging its excitation of fluorescent dye. Finally, we demonstrate in vivo single-neuron optical activation from different grating emitters using a fully packaged device inserted into a mouse brain. Directly activated neurons showed robust spike firing activities with low first-spike latency and small jitter. Active switching on a nanophotonic platform is necessary for eventually controlling highly-multiplexed reconfigurable optical circuits, enabling high-resolution optical stimulation in deep-brain regions.
Real-time associative memory with photorefractive crystal KNSBN and liquid-crystal optical switches
NASA Astrophysics Data System (ADS)
Xu, Haiying; Yuan, Yang Y.; Yu, Youlong; Xu, Kebin; Xu, Yuhuan; Zhu, De-Rui
1990-05-01
We present a real-time holographic associative memory implemented with photorefractive KNSBN : Co crystal as memory element and liquid crystal electrooptical switches as reflective thresholding device. The experimental results show that the system has real-time multiple-image storage and recall function.
Shin, Sang-Yeol; Choi, J M; Seo, Juhee; Ahn, Hyung-Woo; Choi, Yong Gyu; Cheong, Byung-ki; Lee, Suyoun
2014-11-18
The Ovonic Threshold Switch (OTS) based on an amorphous chalcogenide material has attracted much interest as a promising candidate for a high-performance thin-film switching device enabling 3D-stacking of memory devices. In this work, we studied on the electronic structure of amorphous Sb-doped Ge(0.6)Se(0.4) (in atomic mole fraction) film and its characteristics as to OTS devices. From the optical absorption spectroscopy measurement, the band gap (Eg) was found to decrease with increasing Sb content. In addition, as Sb content increased, the activation energy (Ea) for electrical conduction was found to decrease down to about one third of Eg from a half. As to the device characteristics, we found that the threshold switching voltage (Vth) drastically decreased with the Sb content. These results, being accountable in terms of the changes in the bonding configuration of constituent atoms as well as in the electronic structure such as the energy gap and trap states, advance an effective method of compositional adjustment to modulate Vth of an OTS device for various applications.
NASA Astrophysics Data System (ADS)
Kumar, Santosh
2017-07-01
Binary to Binary coded decimal (BCD) converter is a basic building block for BCD processing. The last few decades have witnessed exponential rise in applications of binary coded data processing in the field of optical computing thus there is an eventual increase in demand of acceptable hardware platform for the same. Keeping this as an approach a novel design exploiting the preeminent feature of Mach-Zehnder Interferometer (MZI) is presented in this paper. Here, an optical 4-bit binary to binary coded decimal (BCD) converter utilizing the electro-optic effect of lithium niobate based MZI has been demonstrated. It exhibits the property of switching the optical signal from one port to the other, when a certain appropriate voltage is applied to its electrodes. The projected scheme is implemented using the combinations of cascaded electro-optic (EO) switches. Theoretical description along with mathematical formulation of the device is provided and the operation is analyzed through finite difference-Beam propagation method (FD-BPM). The fabrication techniques to develop the device are also discussed.
Radar signal transmission and switching over optical networks
NASA Astrophysics Data System (ADS)
Esmail, Maged A.; Ragheb, Amr; Seleem, Hussein; Fathallah, Habib; Alshebeili, Saleh
2018-03-01
In this paper, we experimentally demonstrate a radar signal distribution over optical networks. The use of fiber enables us to distribute radar signals to distant sites with a low power loss. Moreover, fiber networks can reduce the radar system cost, by sharing precise and expensive radar signal generation and processing equipment. In order to overcome the bandwidth challenges in electrical switches, a semiconductor optical amplifier (SOA) is used as an all-optical device for wavelength conversion to the desired port (or channel) of a wavelength division multiplexing (WDM) network. Moreover, the effect of chromatic dispersion in double sideband (DSB) signals is combated by generating optical single sideband (OSSB) signals. The optimal values of the SOA device parameters required to generate an OSSB with a high sideband suppression ratio (SSR) are determined. We considered various parameters such as injection current, pump power, and probe power. In addition, the effect of signal wavelength conversion and transmission over fiber are studied in terms of signal dynamic range.
Implementation of a Si/SiC hybrid optically controlled high-power switching device
NASA Astrophysics Data System (ADS)
Bhadri, Prashant; Ye, Kuntao; Guliants, E.; Beyette, Fred R., Jr.
2002-03-01
The ever-increasing performance and economy of operation requirements placed on commercial and military transport aircraft are resulting in very complex systems. As a result, the use of fiber optic component technology has lead to high data throughput, immunity to EMI, reduced certification and maintenance costs and reduced weight features. In particular, in avionic systems, data integrity and high data rates are necessary for stable flight control. Fly-by-Light systems that use optical signals to actuate the flight control surfaces of an aircraft have been suggested as a solution to the EMI problem in avionic systems. Current fly-by-light systems are limited by the lack of optically activated high-power switching devices. The challenge has been the development of an optoelectronic switching technology that can withstand the high power and harsh environmental conditions common in a flight surface actuation system. Wide bandgap semiconductors such as Silicon Carbide offer the potential to overcome both the temperature and voltage blocking limitations that inhibit the use of Silicon. Unfortunately, SiC is not optically active at the near IR wavelengths where communications grade light sources are readily available. Thus, we have proposed a hybrid device that combines a silicon based photoreceiver model with a SiC power transistor. When illuminated with the 5mW optical control signal the silicon chip produces a 15mA drive current for a SiC Darlington pair. The SiC Darlington pair then produces a 150 A current that is suitable for driving an electric motor with sufficient horsepower to actuate the control surfaces on an aircraft. Further, when the optical signal is turned off, the SiC is capable of holding off a 270 V potential to insure that the motor drive current is completely off. We present in this paper the design and initial tests from a prototype device that has recently been fabricated.
NASA Astrophysics Data System (ADS)
Cao, Zhijuan; Qiu, Fengxian; Wang, Qing; Cao, Guorong; Guan, Yijun; Zhuang, Lin; Xu, Xiaolong; Wang, Jie; Chen, Qian; Yang, Dongya
2013-04-01
An azo chromophore molecule 4-[(benzothiazole-2-yl)diazenyl]phenyl-1,3-diamine (BTPD) was prepared with 2-amino benzothiazole and m-phenylenediamine by diazo-coupling reaction. Then, the chromophore molecule BTPD was polymerized with NJ-210 and isophorone diisocyanate (IPDI) to obtain novel azo benzothiazole polymer (BTPU). The structures of BTPD and BTPU were characterized using the Fourier transform infrared, UV-visible spectroscopy, DSC and TGA. The physical properties of the obtained BTPU were investigated. The refractive index ( n) of BTPU was demonstrated at different temperature and wavelength (532, 650 and 850 nm) using attenuated total reflection technique. The transmission loss and dispersion characteristic of BTPU film were investigated using the CCD digital imaging devices and Sellmeyer equation. A Y-branch and 2 × 2 Mach-Zehnder interferometer (MZI) polymeric thermo-optic switches based on the thermo-optic effect of prepared BTPU were proposed and the performance of switches was simulated. The results indicated that the power consumption of the Y-branch thermo-optic switch could be only 0.6 mW. The Y-branch and MZI switching rising and falling times obtained were 8.0 and 1.8 ms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuszelewicz, R.; Oudar, J.L.
1987-04-01
A new class of optical bistable devices, relying on the mutual quenching of two identical lasers, is theoretically analyzed. Conditions for achieving adequate competition between an external injected beam and the intracavity field through a noncoherent coupling (NCC) are discussed. Steady-state and transient behaviours are analyzed and lead to fast electrical or optical switching ( <100 ps ) and low commutation energy ( <10 pH). High efficiency, compactness, and technological compatibility with other integrated devices are expected. In addition, the emissive properties of these devices should considerably simplify their use in cascaded configurations.
A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates.
Dreismann, Alexander; Ohadi, Hamid; Del Valle-Inclan Redondo, Yago; Balili, Ryan; Rubo, Yuri G; Tsintzos, Simeon I; Deligeorgis, George; Hatzopoulos, Zacharias; Savvidis, Pavlos G; Baumberg, Jeremy J
2016-10-01
Practical challenges to extrapolating Moore's law favour alternatives to electrons as information carriers. Two promising candidates are spin-based and all-optical architectures, the former offering lower energy consumption, the latter superior signal transfer down to the level of chip-interconnects. Polaritons-spinor quasi-particles composed of semiconductor excitons and microcavity photons-directly couple exciton spins and photon polarizations, combining the advantages of both approaches. However, their implementation for spintronics has been hindered because polariton spins can be manipulated only optically or by strong magnetic fields. Here we use an external electric field to directly control the spin of a polariton condensate, bias-tuning the emission polarization. The nonlinear spin dynamics offers an alternative route to switching, allowing us to realize an electrical spin-switch exhibiting ultralow switching energies below 0.5 fJ. Our results lay the foundation for development of devices based on the electro-optical control of coherent spin ensembles on a chip.
Light driven optofluidic switch developed in a ZnO-overlaid microstructured optical fiber.
Konidakis, Ioannis; Konstantaki, Maria; Tsibidis, George D; Pissadakis, Stavros
2015-11-30
A great challenge of Optofluidics remains the control of the fluidic properties of a photonic circuit by solely utilizing light. In this study, the development of a ZnO nanolayered microstructured optical fiber (MOF) Fabry-Perot interferometer is demonstrated, along with its fully reversible optofluidic switching behaviour. The actuation and switching principle is entirely based on the employment of light sources, i.e. UV 248 nm and green 532 nm lasers, while using modest irradiation doses. The synthesized ZnO within the MOF capillaries acts as a light triggered wettability transducer, allowing the controlled water filling and draining of the MOF Fabry-Perot cavity. The progression of the optofluidic cycle is monitored in situ with optical microscopy, while Fabry-Perot reflection spectra are monitored in real time to probe temporal infiltration behaviour. Finally, a first insight on the light triggered switching mechanism, employing photoluminescence and spectrophotometric measurements is presented. Results appear highly promising towards the design of smart in-fiber optofluidic light switching devices, suitable for actuating and sensing applications.
Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak
2014-08-22
The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing. Copyright © 2014, American Association for the Advancement of Science.
Lidar Electro-Optic Beam Switch with a Liquid Crystal Variable Retarder
NASA Technical Reports Server (NTRS)
Baer, James
2012-01-01
A document discusses a liquid crystal variable retarder, an electro-optic element that changes the polarization of an optical beam in response to a low-voltage electronic signal. This device can be fabricated so that the element creates, among other states, a half-wave of retardance that can be reduced to a very small retardance. When aligned to a polarized source, this can act to rotate the polarization by 90 in one state, but generate no rotation in the other state. If the beam is then incident on a polarization beam splitter, it will efficiently switch from one path to the other when the voltage is applied. The laser beam switching system has no moving parts, improving reliability over mechanical switching. It is low cost, tolerant of high laser power density, and needs only simple drive electronics, minimizing the required system resources.
Shaping perfect optical vortex with amplitude modulated using a digital micro-mirror device
NASA Astrophysics Data System (ADS)
Zhang, Chonglei; Min, Changjun; Yuan, X.-C.
2016-12-01
We propose a technique to generate of perfect optical vortex (POV) via Fourier transformation of Bessel-Gauss (BG) beams through encoding of the amplitude of the optical field with binary amplitude digital micro-mirrors device (DMD). Furthermore, we confirm the correct phase patterns of the POV with the method of Mach-Zehnder interferometer. Our approach to generate the POV has the advantages that rapidly switch among the different modes, wide spectral regions and high energy tolerance. Since the POV possess propagation properties that not shape-invariant, we therefore suppose that our proposed approach will find potential applications in optical microscopy, optical fabrication, and optical communication.
Ultralow crosstalk nanosecond-scale nested 2 × 2 Mach-Zehnder silicon photonic switch.
Dupuis, Nicolas; Rylyakov, Alexander V; Schow, Clint L; Kuchta, Daniel M; Baks, Christian W; Orcutt, Jason S; Gill, Douglas M; Green, William M J; Lee, Benjamin G
2016-07-01
We present the design and characterization of a novel electro-optic silicon photonic 2×2 nested Mach-Zehnder switch monolithically integrated with a CMOS driver and interface logic. The photonic device uses a variable optical attenuator in order to balance the power inside the Mach-Zehnder interferometer leading to ultralow crosstalk performance. We measured a crosstalk as low as -34.5 dB, while achieving ∼2 dB insertion loss and 4 ns transient response.
Micromechanical Switches on GaAs for Microwave Applications
NASA Technical Reports Server (NTRS)
Randall, John N.; Goldsmith, Chuck; Denniston, David; Lin, Tsen-Hwang
1995-01-01
In this presentation, we describe the fabrication of micro-electro-mechanical system (MEMS) devices, in particular, of low-frequency multi-element electrical switches using SiO2 cantilevers. The switches discussed are related to micromechanical membrane structures used to perform switching of optical signals on silicon substrates. These switches use a thin metal membrane which is actuated by an electrostatic potential, causing the switch to make or break contact. The advantages include: superior isolation, high power handling capabilities, high radiation hardening, very low power operations, and the ability to integrate onto GaAs monolithic microwave integrated circuit (MMIC) chips.
GaAs photoconductive semiconductor switch
Loubriel, G.M.; Baca, A.G.; Zutavern, F.J.
1998-09-08
A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device is disclosed. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices. 5 figs.
Widely tunable chiral nematic liquid crystal optical filter with microsecond switching time.
Mohammadimasoudi, Mohammad; Beeckman, Jeroen; Shin, Jungsoon; Lee, Keechang; Neyts, Kristiaan
2014-08-11
A wavelength shift of the photonic band gap of 141 nm is obtained by electric switching of a partly polymerized chiral liquid crystal. The devices feature high reflectivity in the photonic band gap without any noticeable degradation or disruption and have response times of 50 µs and 20 µs for switching on and off. The device consists of a mixture of photo-polymerizable liquid crystal, non-reactive nematic liquid crystal and a chiral dopant that has been polymerized with UV light. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band.
Marshall, Kenneth L.; Kosc, Tanya Z.; Jacobs, Stephen D.; Faris, Sadeg M.; Li, Le
2003-12-16
Flakes or platelets of polymer liquid crystals (PLC) or other birefringent polymers (BP) suspended in a fluid host medium constitute a system that can function as the active element in an electrically switchable optical device when the suspension is either contained between a pair of rigid substrates bearing transparent conductive coatings or dispersed as microcapsules within the body of a flexible host polymer. Optical properties of these flake materials include large effective optical path length, different polarization states and high angular sensitivity in their selective reflection or birefringence. The flakes or platelets of these devices need only a 3-20.degree. rotation about the normal to the cell surface to achieve switching characteristics obtainable with prior devices using particle rotation or translation.
Electro-optofluidics: achieving dynamic control on-chip
Soltani, Mohammad; Inman, James T.; Lipson, Michal; Wang, Michelle D.
2012-01-01
A vital element in integrated optofluidics is dynamic tuning and precise control of photonic devices, especially when employing electronic techniques which are challenging to utilize in an aqueous environment. We overcome this challenge by introducing a new platform in which the photonic device is controlled using electro-optical phase tuning. The phase tuning is generated by the thermo-optic effect using an on-chip electric microheater located outside the fluidic channel, and is transmitted to the optofluidic device through optical waveguides. The microheater is compact, high-speed (> 18 kHz), and consumes low power (~mW). We demonstrate dynamic optical trapping control of nanoparticles by an optofluidic resonator. This novel electro-optofluidic platform allows the realization of high throughput optofluidic devices with switching, tuning, and reconfiguration capability, and promises new directions in optofluidics. PMID:23037380
NASA Astrophysics Data System (ADS)
Berryhill, A. B.; Coffey, D. M.; McGhee, R. W.; Burkhardt, E. E.
2008-03-01
Cryomagnetics' new "C-Mag Optical" Magneto-Optic Property Measurement System is a versatile materials and device characterization system that allows the researcher to simultaneously control the applied magnetic field and temperature of a sample while studying its electrical and optic properties. The system integrates a totally liquid cryogen-free 6T superconducting split-pair magnet with a variable temperature sample space, both cooled using a single 4.2K pulse tube refrigerator. To avoid warming the magnet when operating a sample at elevated temperatures, a novel heat switch was developed. The heat switch allows the sample temperature to be varied from 10K to 300K while maintaining the magnet at 4.2K or below. In this paper, the design and performance of the overall magnet system and the heat switch will be presented. New concepts for the next generation system will also be discussed.
NASA Astrophysics Data System (ADS)
Cloonan, Thomas J.; Richards, Gaylord W.; Lentine, Anthony L.
1996-03-01
Asynchronous transfer mode (ATM) is rapidly becoming the transport mechanism of choice for the information superhighway, because it promises the bandwidth and flexibility needed for many voice, video and data service offerings. Some industry experts project that the required sizes for ATM switching equipment in the public-switched environment will reach the Tbps range by the beginning of the next decade. This paper analyzes the problems associated with controlling the flow of packets within a broadband ATM switch of this size. The analysis is based on the requirements of the growable packet switch architecture. The paper proposes a novel solution to the problem of hunting paths within an ATM packet switch network. The resulting control scheme is unconventional in two ways. First, it uses an out-of-band control algorithm instead of the more common self-routing approach. In particular, we explore the benefits of using a parallel processor as an out-of-band controller for a growable packet switch distribution network. The processor permits additional levels of parallelism to be added to the out-of-band control function so that path hunts can be performed for all N of the input ports within a single cell interval. The proposed approach is also unconventional because it uses free-space digital optics to guide signals between successive stages of the controller. The paper describes the underlying motivations for implementing an optical out-of-band controller for an ATM switch, and it also describes the logic within a controller node that has been fabricated using a hybrid Si CMOS/GaAs SEED technology. The node uses optical detectors (in GaAs), amplifiers and digital control logic (in Si), and optical modulators (in GaAs). Free-space optical connections between successive device arrays can be provided using either bulk optical elements or micro-optics, but the optical interconnects must provide massive fanout capability. An architectural analysis studying the feasibility of applying free-space optics in this proposed ATM switch controller also is presented.
Bistable metamaterial for switching and cascading elastic vibrations
Foehr, André; Daraio, Chiara
2017-01-01
The realization of acoustic devices analogous to electronic systems, like diodes, transistors, and logic elements, suggests the potential use of elastic vibrations (i.e., phonons) in information processing, for example, in advanced computational systems, smart actuators, and programmable materials. Previous experimental realizations of acoustic diodes and mechanical switches have used nonlinearities to break transmission symmetry. However, existing solutions require operation at different frequencies or involve signal conversion in the electronic or optical domains. Here, we show an experimental realization of a phononic transistor-like device using geometric nonlinearities to switch and amplify elastic vibrations, via magnetic coupling, operating at a single frequency. By cascading this device in a tunable mechanical circuit board, we realize the complete set of mechanical logic elements and interconnect selected ones to execute simple calculations. PMID:28416663
Shin, Sang-Yeol; Choi, J. M.; Seo, Juhee; Ahn, Hyung-Woo; Choi, Yong Gyu; Cheong, Byung-ki; Lee, Suyoun
2014-01-01
The Ovonic Threshold Switch (OTS) based on an amorphous chalcogenide material has attracted much interest as a promising candidate for a high-performance thin-film switching device enabling 3D-stacking of memory devices. In this work, we studied on the electronic structure of amorphous Sb-doped Ge0.6Se0.4 (in atomic mole fraction) film and its characteristics as to OTS devices. From the optical absorption spectroscopy measurement, the band gap (Eg) was found to decrease with increasing Sb content. In addition, as Sb content increased, the activation energy (Ea) for electrical conduction was found to decrease down to about one third of Eg from a half. As to the device characteristics, we found that the threshold switching voltage (Vth) drastically decreased with the Sb content. These results, being accountable in terms of the changes in the bonding configuration of constituent atoms as well as in the electronic structure such as the energy gap and trap states, advance an effective method of compositional adjustment to modulate Vth of an OTS device for various applications. PMID:25403772
Extreme nonlinear terahertz electro-optics in diamond for ultrafast pulse switching
NASA Astrophysics Data System (ADS)
Shalaby, Mostafa; Vicario, Carlo; Hauri, Christoph P.
2017-03-01
Polarization switching of picosecond laser pulses is a fundamental concept in signal processing [C. Chen and G. Liu, Annu. Rev. Mater. Sci. 16, 203 (1986); V. R. Almeida et al., Nature 431, 1081 (2004); and A. A. P. Pohl et al., Photonics Sens. 3, 1 (2013)]. Conventional switching devices rely on the electro-optical Pockels effect and work at radio frequencies. The ensuing gating time of several nanoseconds is a bottleneck for faster switches which is set by the performance of state-of-the-art high-voltage electronics. Here we show that by substituting the electric field of several kV/cm provided by modern electronics by the MV/cm field of a single-cycle THz laser pulse, the electro-optical gating process can be driven orders of magnitude faster, at THz frequencies. In this context, we introduce diamond as an exceptional electro-optical material and demonstrate a pulse gating time as fast as 100 fs using sub-cycle THz-induced Kerr nonlinearity. We show that THz-induced switching in the insulator diamond is fully governed by the THz pulse shape. The presented THz-based electro-optical approach overcomes the bandwidth and switching speed limits of conventional MHz/GHz electronics and establishes the ultrafast electro-optical gating technology for the first time in the THz frequency range. We finally show that the presented THz polarization gating technique is applicable for advanced beam diagnostics. As a first example, we demonstrate tomographic reconstruction of a THz pulse in three dimensions.
Active holographic interconnects for interfacing volume storage
NASA Astrophysics Data System (ADS)
Domash, Lawrence H.; Schwartz, Jay R.; Nelson, Arthur R.; Levin, Philip S.
1992-04-01
In order to achieve the promise of terabit/cm3 data storage capacity for volume holographic optical memory, two technological challenges must be met. Satisfactory storage materials must be developed and the input/output architectures able to match their capacity with corresponding data access rates must also be designed. To date the materials problem has received more attention than devices and architectures for access and addressing. Two philosophies of parallel data access to 3-D storage have been discussed. The bit-oriented approach, represented by recent work on two-photon memories, attempts to store bits at local sites within a volume without affecting neighboring bits. High speed acousto-optic or electro- optic scanners together with dynamically focused lenses not presently available would be required. The second philosophy is that volume optical storage is essentially holographic in nature, and that each data write or read is to be distributed throughout the material volume on the basis of angle multiplexing or other schemes consistent with the principles of holography. The requirements for free space optical interconnects for digital computers and fiber optic network switching interfaces are also closely related to this class of devices. Interconnects, beamlet generators, angle multiplexers, scanners, fiber optic switches, and dynamic lenses are all devices which may be implemented by holographic or microdiffractive devices of various kinds, which we shall refer to collectively as holographic interconnect devices. At present, holographic interconnect devices are either fixed holograms or spatial light modulators. Optically or computer generated holograms (submicron resolution, 2-D or 3-D, encoding 1013 bits, nearly 100 diffraction efficiency) can implement sophisticated mathematical design principles, but of course once fabricated they cannot be changed. Spatial light modulators offer high speed programmability but have limited resolution (512 X 512 pixels, encoding about 106 bits of data) and limited diffraction efficiency. For any application, one must choose between high diffractive performance and programmability.
Optical bistability for optical signal processing and computing
NASA Astrophysics Data System (ADS)
Peyghambarian, N.; Gibbs, H. M.
1985-02-01
Optical bistability (OB) is a phenomenon in which a nonlinear medium responds to an optical input beam by changing its transmission abruptly from one value to another. A 'nonlinear medium' is a medium in which the index of refraction depends on the incident light intensity. A device is said to be optically bistable if two stable output states exist for the same value of the input. Optically bistable devices can perform a number of logic functions related to optical memory, optical transistor, optical discriminator, optical limiter, optical oscillator, and optical gate. They also have the potential for subpicosecond switching, greatly exceeding the capability of electronics. This potential is one of several advantages of optical data processing over electronic processing. Other advantages are greater immunity to electromagnetic interference and crosstalk, and highly parallel processing capability. The present investigation is mainly concerned with all-optical etalon devices. The considered materials, include GaAs, ZnS and ZnSe, CuCl, InSb, InAs, and CdS.
Design of optical seven-segment decoder using Pockel's effect inside lithium niobate-based waveguide
NASA Astrophysics Data System (ADS)
Pal, Amrindra; Kumar, Santosh; Sharma, Sandeep
2017-01-01
Seven-segment decoder is a device that allows placing digital information from many inputs to many outputs optically, having 11 Mach-Zehnder interferometers (MZIs) for their implementation. The layout of the circuit is implemented to fit the electrical method on an optical logic circuit based on the beam propagation method (BPM). Seven-segment decoder is proposed using electro-optic effect inside lithium niobate-based MZIs. MZI structures are able to switch an optical signal to a desired output port. It consists of a mathematical explanation about the proposed device. The BPM is also used to analyze the study.
Power requirements reducing of FBG based all-optical switching
NASA Astrophysics Data System (ADS)
Scholtz, Ľubomír.; Solanská, Michaela; Ladányi, Libor; Müllerová, Jarmila
2017-12-01
Although Fiber Bragg gratings (FBGs) are well known devices, their using as all-optical switching elements has been still examined. Current research is focused on optimization of their properties for their using in future all-optical networks. The main problem are high switching intensities needed for achieving the changes of the transmission state. Over several years switching intensities have been reduced from hundreds of GW/cm2 to tens of MW/cm2 by selecting appropriate gratings and signal parameters or using suitable materials. Two principal nonlinear effects with similar power requirements can result in the bistable transmission/reflection of an input optical pulse. In the self-phase modulation (SPM) regime switching is achieved by the intense probe pulse itself. Using cross-phase modulation (XPM) a strong pump alters the FBG refractive index experienced by a weak probe pulse. As a result of this the detuning of the probe pulse from the center of the photonic band gap occurs. Using of XPM the effect of modulation instability is reduced. Modulation instability which is the main SPM degradation mechanism. We focused on nonlinear FBGs based on chalcogenide glasses which are very often used in various applications. Thanks to high nonlinear parameters chalcogenide glasses are suitable candidates for reducing switching intensities of nonlinear FBGs.
Design of an Optical OR Gate using Mach-Zehnder Interferometers
NASA Astrophysics Data System (ADS)
Choudhary, Kuldeep; Kumar, Santosh
2018-04-01
The optical switching phenomenon enhances the speed of optical communication systems. It is widely used in the wavelength division multiplexing (WDM). In this work, an optical OR gate is proposed using the Mach-Zehnder interferometer (MZI) structure. The detailed derivation of mathematical expression have been shown. The analysis is carried out by simulating the proposed device with MATLAB and Beam propagation method.
Probing the electrical switching of a memristive optical antenna by STEM EELS
Schoen, David T.; Holsteen, Aaron L.; Brongersma, Mark L.
2016-01-01
The scaling of active photonic devices to deep-submicron length scales has been hampered by the fundamental diffraction limit and the absence of materials with sufficiently strong electro-optic effects. Plasmonics is providing new opportunities to circumvent this challenge. Here we provide evidence for a solid-state electro-optical switching mechanism that can operate in the visible spectral range with an active volume of less than (5 nm)3 or ∼10−6 λ3, comparable to the size of the smallest electronic components. The switching mechanism relies on electrochemically displacing metal atoms inside the nanometre-scale gap to electrically connect two crossed metallic wires forming a cross-point junction. These junctions afford extreme light concentration and display singular optical behaviour upon formation of a conductive channel. The active tuning of plasmonic antennas attached to such junctions is analysed using a combination of electrical and optical measurements as well as electron energy loss spectroscopy in a scanning transmission electron microscope. PMID:27412052
Garai, Sisir Kumar
2012-04-10
To meet the demand of very fast and agile optical networks, the optical processors in a network system should have a very fast execution rate, large information handling, and large information storage capacities. Multivalued logic operations and multistate optical flip-flops are the basic building blocks for such fast running optical computing and data processing systems. In the past two decades, many methods of implementing all-optical flip-flops have been proposed. Most of these suffer from speed limitations because of the low switching response of active devices. The frequency encoding technique has been used because of its many advantages. It can preserve its identity throughout data communication irrespective of loss of light energy due to reflection, refraction, attenuation, etc. The action of polarization-rotation-based very fast switching of semiconductor optical amplifiers increases processing speed. At the same time, tristate optical flip-flops increase information handling capacity.
Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tartan, Chloe C., E-mail: chloe.tartan@eng.ox.ac.uk, E-mail: steve.elston@eng.ox.ac.uk; Salter, Patrick S.; Booth, Martin J.
2016-05-14
Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10–100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phasemore » of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.« less
Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching
NASA Astrophysics Data System (ADS)
Tartan, Chloe C.; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J.
2016-05-01
Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10-100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phase of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.
NASA Astrophysics Data System (ADS)
Petronijevic, Emilija; Sibilia, Concita
2017-05-01
Electromagnetically induced transparency (EIT), a pump-induced narrow transparency window within the absorption region of a probe, had offered new perspectives in slow-light control in atomic physics. For applications in nanophotonics, the implementation on chip-scaled devices has later been obtained by mimicking this effect by metallic metamaterials. High losses in visible and near infrared range of metal-based metamaterialls have recently opened a new field of all-dielectric metamaterials; a proper configuration of high refractive index dielectric nanoresonators can mimick this effect without losses to get high Q, slow-light response. The next step would be the ability to tune their optical response, and in this work we investigate thin layers of phase change materials (PCM) for all-optical control of EIT-like all-dielectric metamaterials. PCM can be nonvolatively and reversibly switched between two stable phases that differ in optical properties by applying a visible laser pulse. The device is based on Si nanoresonators covered by a thin layer of PCM GeTe; optical and transient thermal simulations have been done to find and optimize the fabrication parameters and switching parameters such as the intensity and duration of the pulse. We have found that the EIT-like response can be switched on and off by applying the 532nm laser pulse to change the phase of the upper GeTe layer. We strongly believe that such approach could open new perspectives in all-optically controlled slow-light metamaterials.
Design and Simulation of Optically Actuated Bistable MEMS
NASA Astrophysics Data System (ADS)
Lucas, Thomas; Moiseeva, Evgeniya; Harnett, Cindy
2012-02-01
In this project, bistable three-dimensional MEMS actuators are designed to be optically switched between stable states for biological research applications. The structure is a strained rectangular frame created with stress-mismatched metal-oxide bilayers. The devices curl into an arc in one of two directions tangent to the substrate, and can switch orientation when regions are selectively heated. The heating is powered by infrared laser, and localized with patterned infrared-resonant gold nanoparticles on critical regions. The enhanced energy absorption on selected areas provides switching control and heightened response to narrow-band infrared light. Coventorware has been used for finite element analysis of the system. The numerical simulations indicate that it has two local minimum states with extremely rapid transition time (<<0.1 s) when the structure is thermally deformed. Actuation at laser power and thermal limits compatible with physiological applications will enable microfluidic pumping elements and fundamental studies of tissue response to three-dimensional mechanical stimuli, artificial-muscle based pumps and other biomedical devices triggered by tissue-permeant infrared light.
NASA Astrophysics Data System (ADS)
Kumar, Ajay; Raghuwanshi, Sanjeev Kumar
2016-06-01
The optical switching activity is one of the most essential phenomena in the optical domain. The electro-optic effect-based switching phenomena are applicable to generate some effective combinational and sequential logic circuits. The processing of digital computational technique in the optical domain includes some considerable advantages of optical communication technology, e.g. immunity to electro-magnetic interferences, compact size, signal security, parallel computing and larger bandwidth. The paper describes some efficient technique to implement single bit magnitude comparator and 1's complement calculator using the concepts of electro-optic effect. The proposed techniques are simulated on the MATLAB software. However, the suitability of the techniques is verified using the highly reliable Opti-BPM software. It is interesting to analyze the circuits in order to specify some optimized device parameter in order to optimize some performance affecting parameters, e.g. crosstalk, extinction ratio, signal losses through the curved and straight waveguide sections.
NASA Astrophysics Data System (ADS)
Grendár, Drahomír; Pottiez, Olivier; Dado, Milan; Müllerová, Jarmila; Dubovan, Jozef
2009-05-01
A new scheme of a control-beam-driven nonlinear optical loop mirror (NOLM) with a birefringent twisted fiber and a symmetrical coupler designed for optical time division demultiplexing (OTDM) is analyzed. The theoretical model of the proposed NOLM scheme considers the evolution of polarization states of data and control beams and the mutual interactions of the data and control beams due to the cross-phase modulation (XPM). Attention is given to the optical switching commanded by the control-beam power and by the manipulation of nonlinear polarization rotation of the data and control beam. The simulations of NOLM transmissions demonstrate that the cross talk between demultiplexed and nondemultiplexed beams as an important parameter for optical switching by the presented NOLM can be significantly reduced. The results show that the device can be of interest for all-optical signal manipulations in optical communication networks.
Adaptive packet switch with an optical core (demonstrator)
NASA Astrophysics Data System (ADS)
Abdo, Ahmad; Bishtein, Vadim; Clark, Stewart A.; Dicorato, Pino; Lu, David T.; Paredes, Sofia A.; Taebi, Sareh; Hall, Trevor J.
2004-11-01
A three-stage opto-electronic packet switch architecture is described consisting of a reconfigurable optical centre stage surrounded by two electronic buffering stages partitioned into sectors to ease memory contention. A Flexible Bandwidth Provision (FBP) algorithm, implemented on a soft-core processor, is used to change the configuration of the input sectors and optical centre stage to set up internal paths that will provide variable bandwidth to serve the traffic. The switch is modeled by a bipartite graph built from a service matrix, which is a function of the arriving traffic. The bipartite graph is decomposed by solving an edge-colouring problem and the resulting permutations are used to configure the switch. Simulation results show that this architecture exhibits a dramatic reduction of complexity and increased potential for scalability, at the price of only a modest spatial speed-up k, 1
Smalyukh, Ivan I; Lansac, Yves; Clark, Noel A; Trivedi, Rahul P
2010-02-01
Control of structures in soft materials with long-range order forms the basis for applications such as displays, liquid-crystal biosensors, tunable lenses, distributed feedback lasers, muscle-like actuators and beam-steering devices. Bistable, tristable and multistable switching of well-defined structures of molecular alignment is of special interest for all of these applications. Here we describe the facile optical creation and multistable switching of localized configurations in the molecular orientation field of a chiral nematic anisotropic fluid. These localized chiro-elastic particle-like excitations--dubbed 'triple-twist torons'--are generated by vortex laser beams and embed the localized three-dimensional (3D) twist into a uniform background. Confocal polarizing microscopy and computer simulations reveal their equilibrium internal structures, manifesting both skyrmion-like and Hopf fibration features. Robust generation of torons at predetermined locations combined with both optical and electrical reversible switching can lead to new ways of multistable structuring of complex photonic architectures in soft materials.
Anti-stiction coating for mechanically tunable photonic crystal devices.
Petruzzella, M; Zobenica, Ž; Cotrufo, M; Zardetto, V; Mameli, A; Pagliano, F; Koelling, S; van Otten, F W M; Roozeboom, F; Kessels, W M M; van der Heijden, R W; Fiore, A
2018-02-19
A method to avoid the stiction failure in nano-electro-opto-mechanical systems has been demonstrated by coating the system with an anti-stiction layer of Al 2 O 3 grown by atomic layer deposition techniques. The device based on a double-membrane photonic crystal cavity can be reversibly operated from the pull-in back to its release status. This enables to electrically switch the wavelength of a mode over ~50 nm with a potential modulation frequency above 2 MHz. These results pave the way to reliable nano-mechanical sensors and optical switches.
NASA Astrophysics Data System (ADS)
Marmon, Jason; Rai, Satish; Wang, Kai; Zhou, Weilie; Zhang, Yong
The pathway for CMOS technology beyond the 5-nm technology node remains unclear for both physical and technological reasons. A new transistor paradigm is required. A LET (Marmon et. al., Front. Phys. 2016, 4, No. 8) offers electronic-optical hybridization at the component level, and is capable of continuing Moore's law to the quantum scale. A LET overcomes a FET's fabrication complexity, e.g., physical gate and doping, by employing optical gating and photoconductivity, while multiple independent, optical gates readily realize unique functionalities. We report LET device characteristics and novel digital and analog applications, such as optical logic gates and optical amplification. Prototype CdSe-nanowire-based LETs, incorporating an M-S-M structure, show output and transfer characteristics resembling advanced FETs, e.g., on/off ratios up to 106 with a source-drain voltage of 1.43V, gate-power of 260nW, and a subthreshold swing of 0.3nW/decade (excluding losses). A LET has potential for high-switching (THz) speeds and extremely low-switching energies (aJ) in the ballistic transport region. Our work offers new electronic-optical integration strategies for high speed and low energy computing approaches, which could potentially be extended to other materials and devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chun; Zhang, Caihong, E-mail: chzhang@nju.edu.cn; Hu, Guoliang
2016-07-11
With the emergence and development of artificially structured electromagnetic materials, active terahertz (THz) metamaterial devices have attracted significant attention in recent years. Tunability of transmission is desirable for many applications. For example, short-range wireless THz communications and ultrafast THz interconnects require switches and modulators. However, the tunable range of transmission amplitude of existing THz metamaterial devices is not satisfactory. In this article, we experimentally demonstrate an electrically tunable superconducting niobium nitride metamaterial device and employ a hybrid coupling model to analyze its optical transmission characteristics. The maximum transmission coefficient at 0.507 THz is 0.98 and decreases to 0.19 when themore » applied voltage increases to 0.9 V. A relative transmittance change of 80.6% is observed, making this device an efficient narrowband THz switch. Additionally, the frequency of the peak is red shifted from 0.507 to 0.425 THz, which means that the device can be used to select the frequency. This study offers an alternative tuning method to existing optical, thermal, magnetic-field, and electric-field tuning, delivering a promising approach for designing active and miniaturized THz devices.« less
Spatial mode filters realized with multimode interference couplers
NASA Astrophysics Data System (ADS)
Leuthold, J.; Hess, R.; Eckner, J.; Besse, P. A.; Melchior, H.
1996-06-01
Spatial mode filters based on multimode interference couplers (MMI's) that offer the possibility of splitting off antisymmetric from symmetric modes are presented, and realizations of these filters in InGaAsP / InP are demonstrated. Measured suppression of the antisymmetric first-order modes at the output for the symmetric mode is better than 18 dB. Such MMI's are useful for monolithically integrating mode filters with all-optical devices, which are controlled through an antisymmetric first-order mode. The filtering out of optical control signals is necessary for cascading all-optical devices. Another application is the improvement of on-off ratios in optical switches.
Wu, Chong-Yin; Zou, Yi-Hong; Timofeev, Ivan; Lin, Yu-Ting; Zyryanov, Victor Ya; Hsu, Jy-Shan; Lee, Wei
2011-04-11
We investigated the optical properties of a one-dimensional photonic crystal infiltrated with a bistable chiral tilted homeotropic nematic liquid crystal as the central defect layer. By modulating the nematic director orientation with applied voltage, the electrical tunability of the defect modes was observed in the transmission spectrum. The composite not only is a general tunable device but also involves the green concept in that it can operate in two stable states at 0 V. Under the parallel-polarizer scheme, the spectral characteristics suggest a potential application for this device as an energy-efficient multichannel optical switch. © 2011 Optical Society of America
A dual-stimuli-responsive fluorescent switch ultrathin film
NASA Astrophysics Data System (ADS)
Li, Zhixiong; Liang, Ruizheng; Liu, Wendi; Yan, Dongpeng; Wei, Min
2015-10-01
Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP@PTBEM and Rf-PSS with cationic layered double hydroxide (LDH) nanoplatelets to obtain the (Rf-PSS/LDH/SP@PTBEM)n UTFs (n: bilayer number). The assembly process of the UTFs and their luminescence properties, as monitored by fluorescence spectroscopy and scanning electron microscopy (SEM), present a uniform and ordered layered structure with stepwise growth. The resulting Rf-PSS/LDH/SP@PTBEM UTF serves as a three-state switchable multicolor (green, yellow, and red) luminescent system based on stimulation from UV/Vis light and pH, with an acceptable reversibility. Therefore, this work provides a facile way to fabricate stimuli-responsive solid-state film switches with tunable-color luminescence, which have potential applications in the areas of displays, sensors, and rewritable optical memory and fluorescent logic devices.Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP@PTBEM and Rf-PSS with cationic layered double hydroxide (LDH) nanoplatelets to obtain the (Rf-PSS/LDH/SP@PTBEM)n UTFs (n: bilayer number). The assembly process of the UTFs and their luminescence properties, as monitored by fluorescence spectroscopy and scanning electron microscopy (SEM), present a uniform and ordered layered structure with stepwise growth. The resulting Rf-PSS/LDH/SP@PTBEM UTF serves as a three-state switchable multicolor (green, yellow, and red) luminescent system based on stimulation from UV/Vis light and pH, with an acceptable reversibility. Therefore, this work provides a facile way to fabricate stimuli-responsive solid-state film switches with tunable-color luminescence, which have potential applications in the areas of displays, sensors, and rewritable optical memory and fluorescent logic devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05376e
Qian, Kai; Cai, Guofa; Nguyen, Viet Cuong; Chen, Tupei; Lee, Pooi See
2016-10-05
Transparent nonvolatile memory has great potential in integrated transparent electronics. Here, we present highly transparent resistive switching memory using stoichiometric WO 3 film produced by cathodic electrodeposition with indium tin oxide electrodes. The memory device demonstrates good optical transmittance, excellent operative uniformity, low operating voltages (+0.25 V/-0.42 V), and long retention time (>10 4 s). Conductive atomic force microscopy, ex situ transmission electron microscopy, and X-ray photoelectron spectroscopy experiments directly confirm that the resistive switching effects occur due to the electric field-induced formation and annihilation of the tungsten-rich conductive channel between two electrodes. Information on the physical and chemical nature of conductive filaments offers insightful design strategies for resistive switching memories with excellent performances. Moreover, we demonstrate the promising applicability of the cathodic electrodeposition method for future resistive memory devices.
Going End to End to Deliver High-Speed Data
NASA Technical Reports Server (NTRS)
2005-01-01
By the end of the 1990s, the optical fiber "backbone" of the telecommunication and data-communication networks had evolved from megabits-per-second transmission rates to gigabits-per-second transmission rates. Despite this boom in bandwidth, however, users at the end nodes were still not being reached on a consistent basis. (An end node is any device that does not behave like a router or a managed hub or switch. Examples of end node objects are computers, printers, serial interface processor phones, and unmanaged hubs and switches.) The primary reason that prevents bandwidth from reaching the end nodes is the complex local network topology that exists between the optical backbone and the end nodes. This complex network topology consists of several layers of routing and switch equipment which introduce potential congestion points and network latency. By breaking down the complex network topology, a true optical connection can be achieved. Access Optical Networks, Inc., is making this connection a reality with guidance from NASA s nondestructive evaluation experts.
Kumarasinghe, Chathurangi S.; Premaratne, Malin; Gunapala, Sarath D.; Agrawal, Govind P.
2016-01-01
We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors. PMID:26887286
Kumarasinghe, Chathurangi S; Premaratne, Malin; Gunapala, Sarath D; Agrawal, Govind P
2016-02-18
We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors.
1988-11-15
Reduction of Intermodulation L.M. Johnson Opt. Lett. 13, 928 (1988) Distortion in Interferometric H.V. Roussell Optical Modulators * Author not at Lincoln...Engineering V, Proc. Niobate Interferometric Modulators SPIE 835, 29 (1988), DTIC AD-A198029 7553 Advanced Device Fabrication with W.D. Goodhue Proc...Colorado, 3 October 1988 7741 B Integrated-Optical Interferometric L.M. Johnson 2 X 2 Switches H.V.Roussell 7927B Free-Space Optical Interconnects
Strain Multiplexed Metasurface Holograms on a Stretchable Substrate.
Malek, Stephanie C; Ee, Ho-Seok; Agarwal, Ritesh
2017-06-14
We demonstrate reconfigurable phase-only computer-generated metasurface holograms with up to three image planes operating in the visible regime fabricated with gold nanorods on a stretchable polydimethylsiloxane substrate. Stretching the substrate enlarges the hologram image and changes the location of the image plane. Upon stretching, these devices can switch the displayed holographic image between multiple distinct images. This work opens up the possibilities for stretchable metasurface holograms as flat devices for dynamically reconfigurable optical communication and display. It also confirms that metasurfaces on stretchable substrates can serve as platform for a variety of reconfigurable optical devices.
NASA Technical Reports Server (NTRS)
Juday, Richard D. (Inventor)
1998-01-01
An apparatus is disclosed for reading and/or writing information or to from an optical recording medium having a plurality of information storage layers. The apparatus includes a dynamic holographic optical element configured to focus light on the optical recording medium. a control circuit arranged to supply a drive signal to the holographic optical element, and a storage device in communication with the control circuit and storing at least a first drive signal and a second drive signal. The holographic optical element focusses light on a first one of the plurality of information storage layers when driven by the first drive signal on a second one of the plurality of information storage layers when driven by the second drive signal. An optical switch is also disclosed for connecting at least one light source in a source array to at least one light receiver in a receiver array. The switch includes a dynamic holographic optical element configured to receive light from the source array and to transmit light to the receiver array, a control circuit arranged to supply a drive signal to the holographic optical element, and a storage device in communication with the control circuit and storing at least a first drive signal and a second drive signal. The holographic optical element connects a first light source in the source array to a first light receiver in the receiver array when driven by the first drive signal and the holographic optical element connects the first light source with the first light receiver and a second light receiver when driven by the second drive signal.
A strong electro-optically active lead-free ferroelectric integrated on silicon
NASA Astrophysics Data System (ADS)
Abel, Stefan; Stöferle, Thilo; Marchiori, Chiara; Rossel, Christophe; Rossell, Marta D.; Erni, Rolf; Caimi, Daniele; Sousa, Marilyne; Chelnokov, Alexei; Offrein, Bert J.; Fompeyrine, Jean
2013-04-01
The development of silicon photonics could greatly benefit from the linear electro-optical properties, absent in bulk silicon, of ferroelectric oxides, as a novel way to seamlessly connect the electrical and optical domain. Of all oxides, barium titanate exhibits one of the largest linear electro-optical coefficients, which has however not yet been explored for thin films on silicon. Here we report on the electro-optical properties of thin barium titanate films epitaxially grown on silicon substrates. We extract a large effective Pockels coefficient of reff=148 pm V-1, which is five times larger than in the current standard material for electro-optical devices, lithium niobate. We also reveal the tensor nature of the electro-optical properties, as necessary for properly designing future devices, and furthermore unambiguously demonstrate the presence of ferroelectricity. The integration of electro-optical active films on silicon could pave the way towards power-efficient, ultra-compact integrated devices, such as modulators, tuning elements and bistable switches.
NASA Astrophysics Data System (ADS)
Ding, Shulin; Wang, Guo Ping
2015-09-01
Classical nonlinear or quantum all-optical transistors are dependent on the value of input signal intensity or need extra co-propagating beams. In this paper, we present a kind of all-optical transistors constructed with parity-time (PT)-symmetric Y-junctions, which perform independently on the value of signal intensity in an unsaturated gain case and can also work after introducing saturated gain. Further, we show that control signal can switch the device from amplification of peaks in time to transformation of peaks to amplified troughs. By using these PT-symmetric Y-junctions with currently available materials and technologies, we can implement interesting logic functions such as NOT and XOR (exclusive OR) gates, implying potential applications of such structures in designing optical logic gates, optical switches, and signal transformations or amplifications.
Microgravity Processing and Photonic Applications of Organic and Polymeric Materials
NASA Technical Reports Server (NTRS)
Frazier, Donald 0; Penn, Benjamin G.; Smith, David; Witherow, William K.; Paley, M. S.; Abdeldayem, Hossin A.
1998-01-01
In recent years, a great deal of interest has been directed toward the use of organic materials in the development of high-efficiency optoelectronic and photonic devices. There is a myriad of possibilities among organic which allow flexibility in the design of unique structures with a variety of functional groups. The use of nonlinear optical (NLO) organic materials such as thin-film waveguides allows full exploitation of their desirable qualities by permitting long interaction lengths and large susceptibilities allowing modest power input. There are several methods in use to prepare thin films, such as Langmuir-Blodgett (LB) and self-assembly techniques, vapor deposition, growth from sheared solution or melt, and melt growth between glass plates. Organics have many features that make Abstract: them desirable for use in optical devices such as high second- and third-order nonlinearities, flexibility of molecular design, and damage resistance to optical radiation. However, their use in devices has been hindered by processing difficulties for crystals and thin films. In this chapter, we discuss photonic and optoelectronic applications of a few organic materials and the potential role of microgravity on processing these materials. It is of interest to note how materials with second- and third-order nonlinear optical behavior may be improved in a diffusion-limited environment and ways in which convection may be detrimental to these materials. We focus our discussion on third-order materials for all-optical switching, and second-order materials for all-optical switching, and second-order materials for frequency conversion and electrooptics.
Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures
Wen, Yao; Cai, Kaiming; Cheng, Ruiqing; Yin, Lei; Zhang, Yu; Li, Jie; Wang, Zhenxing; Wang, Feng; Wang, Fengmei; Shifa, Tofik Ahmed; Jiang, Chao; Yang, Hyunsoo
2018-01-01
Optoelectronic devices for information storage and processing are at the heart of optical communication technology due to their significant applications in optical recording and computing. The infrared radiations of 850, 1310, and 1550 nm with low energy dissipation in optical fibers are typical optical communication wavebands. However, optoelectronic devices that could convert and store the infrared data into electrical signals, thereby enabling optical data communications, have not yet been realized. We report an infrared memory device using MoS2/PbS van der Waals heterostructures, in which the infrared pulse intrigues a persistent resistance state that hardly relaxes within our experimental time scales (more than 104 s). The device fully retrieves the memory state even after powering off for 3 hours, indicating its potential for nonvolatile storage devices. Furthermore, the device presents a reconfigurable switch of 2000 stable cycles. Supported by a theoretical model with quantitative analysis, we propose that the optical memory and the electrical erasing phenomenon, respectively, originate from the localization of infrared-induced holes in PbS and gate voltage pulse-enhanced tunneling of electrons from MoS2 to PbS. The demonstrated MoS2 heterostructure–based memory devices open up an exciting field for optoelectronic infrared memory and programmable logic devices. PMID:29770356
Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures.
Wang, Qisheng; Wen, Yao; Cai, Kaiming; Cheng, Ruiqing; Yin, Lei; Zhang, Yu; Li, Jie; Wang, Zhenxing; Wang, Feng; Wang, Fengmei; Shifa, Tofik Ahmed; Jiang, Chao; Yang, Hyunsoo; He, Jun
2018-04-01
Optoelectronic devices for information storage and processing are at the heart of optical communication technology due to their significant applications in optical recording and computing. The infrared radiations of 850, 1310, and 1550 nm with low energy dissipation in optical fibers are typical optical communication wavebands. However, optoelectronic devices that could convert and store the infrared data into electrical signals, thereby enabling optical data communications, have not yet been realized. We report an infrared memory device using MoS 2 /PbS van der Waals heterostructures, in which the infrared pulse intrigues a persistent resistance state that hardly relaxes within our experimental time scales (more than 10 4 s). The device fully retrieves the memory state even after powering off for 3 hours, indicating its potential for nonvolatile storage devices. Furthermore, the device presents a reconfigurable switch of 2000 stable cycles. Supported by a theoretical model with quantitative analysis, we propose that the optical memory and the electrical erasing phenomenon, respectively, originate from the localization of infrared-induced holes in PbS and gate voltage pulse-enhanced tunneling of electrons from MoS 2 to PbS. The demonstrated MoS 2 heterostructure-based memory devices open up an exciting field for optoelectronic infrared memory and programmable logic devices.
Dynamic generation of Ince-Gaussian modes with a digital micromirror device
NASA Astrophysics Data System (ADS)
Ren, Yu-Xuan; Fang, Zhao-Xiang; Gong, Lei; Huang, Kun; Chen, Yue; Lu, Rong-De
2015-04-01
Ince-Gaussian (IG) beam with elliptical profile, as a connection between Hermite-Gaussian (HG) and Laguerre-Gaussian (LG) beams, has showed unique advantages in some applications such as quantum entanglement and optical micromanipulation. However, its dynamic generation with high switching frequency is still challenging. Here, we experimentally reported the quick generation of Ince-Gaussian beam by using a digital micro-mirror device (DMD), which has the highest switching frequency of 5.2 kHz in principle. The configurable properties of DMD allow us to observe the quasi-smooth variation from LG (with ellipticity ɛ = 0 ) to IG and HG ( ɛ = ∞ ) beam. This approach might pave a path to high-speed quantum communication in terms of IG beam. Additionally, the characterized axial plane intensity distribution exhibits a 3D mould potentially being employed for optical micromanipulation.
MEMS micromirrors for optical switching in multichannel spectrophotometers
NASA Astrophysics Data System (ADS)
Tuantranont, Adisorn; Lomas, Tanom; Bright, Victor M.
2004-04-01
This paper reports for the first time that a novel MEMS-based micromirror switch has successfully demonstrated for optical switching in a multi-channel fiber optics spectrophotometer system. The conventional optomechanical fiber optic switches for multi-channel spectrophotometers available in market are bulky, slow, low numbers of channels and expensive. Our foundry MEMS-based micromirror switch designed for integrating with commercially available spectrophotometers offers more compact devices, increased number of probing channels, higher performance and cheaper. Our MEMS-based micromirror switch is a surface micromachined mirror fabricated through MUMPs foundry. The 280 μm x 280 μm gold coated mirror is suspended by the double-gimbal structure for X and Y axis scanning. Self-assembly by solders is used to elevate the torsion mirror 30 μm over the substrate to achieve large scan angle. The solder self-assembly approach dramatically reduces the time to assembly the switch. The scan mirror is electrostatically controlled by applying voltages. The individual probing signal from each probing head is guided by fibers with collimated lenses and incidents on the center of the mirror. The operating scan angle is in the range of 3.5 degrees with driving voltage of 0-100 V. The fastest switching time of 4 millisecond (1 ms rise time and 3 ms fall time) is measured corresponding to the maximum speed of the mirror of 0.25 kHz when the mirror is scanning at +/- 1.5 degrees. The micromirror switch is packaged with a multi-mode fiber bundle using active alignment technique. A centered fiber is the output fiber that is connected to spectrophotometer. Maximum insertion loss of 5 dB has been obtained. The accuracy of measured spectral data is equivalent to the single channel spectrophotometer with a small degradation on probing signal due to fiber coupling.
NASA Astrophysics Data System (ADS)
Shinde, Anant; Perinchery, Sandeep Menon; Murukeshan, Vadakke Matham
2017-04-01
An optical imaging probe with targeted multispectral and spatiotemporal illumination features has applications in many diagnostic biomedical studies. However, these systems are mostly adapted in conventional microscopes, limiting their use for in vitro applications. We present a variable resolution imaging probe using a digital micromirror device (DMD) with an achievable maximum lateral resolution of 2.7 μm and an axial resolution of 5.5 μm, along with precise shape selective targeted illumination ability. We have demonstrated switching of different wavelengths to image multiple regions in the field of view. Moreover, the targeted illumination feature allows enhanced image contrast by time averaged imaging of selected regions with different optical exposure. The region specific multidirectional scanning feature of this probe has facilitated high speed targeted confocal imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xingyu, E-mail: xzhang@utexas.edu, E-mail: swapnajit.chakravarty@omegaoptics.com, E-mail: chenrt@austin.utexas.edu; Chung, Chi-Jui; Pan, Zeyu
2015-11-30
We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-opticmore » switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 μs, and a fall time of 18.5 μs. The measured on-chip loss on the transmission band is as low as 1 dB.« less
Compact optical switch based on 2D photonic crystal and magneto-optical cavity.
Dmitriev, Victor; Kawakatsu, Marcelo N; Portela, Gianni
2013-04-01
A compact optical switch based on a 2D photonic crystal (PhC) and a magneto-optical cavity is suggested and analyzed. The cavity is coupled to two parallel and misaligned PC waveguides and operates with dipole mode. When the cavity is nonmagnetized, the dipole mode excited by a signal in the input waveguide has a node in the output waveguide. Therefore, the input signal is reflected from the cavity. This corresponds to the state off of the switch. Normal to the plane of the PhC magnetization by a dc magnetic field produces a rotation of the dipole pattern in the cavity providing equal amplitudes of the electromagnetic fields in the input and the output waveguides. This corresponds to the state on with high transmission of the input signal. Numerical calculations show that at the 1.55 μm wavelength the device has the insertion loss -0.42 dB in the on state, the isolation -19 dB in the off state and the switch off and on ratio P(on)/P(off) about 72. The frequency band at the level of -15 dB of the resonance curve in off state is about 160 GHz.
Ultrashort soliton switching based on coherent energy hiding.
Romagnoli, M; Wabnitz, S; Zoccolotti, L
1991-08-15
Coherent coupling between light and atoms may be exploited for conceiving a novel class of all-optical signalprocessing devices without a direct counterpart in the continuous-wave regime. We show that the self-switching of ultrashort soliton pulses on resonance with a transition of doping centers in a slab waveguide directional coupler is based on nonlinear group-velocity (instead of the usual phase-velocity) changes.
Time-resolved photoluminescence of SiOx encapsulated Si
NASA Astrophysics Data System (ADS)
Kalem, Seref; Hannas, Amal; Österman, Tomas; Sundström, Villy
Silicon and its oxide SiOx offer a number of exciting electrical and optical properties originating from defects and size reduction enabling engineering new electronic devices including resistive switching memories. Here we present the results of photoluminescence dynamics relevant to defects and quantum confinement effects. Time-resolved luminescence at room temperature exhibits an ultrafast decay component of less than 10 ps at around 480 nm and a slower component of around 60 ps as measured by streak camera. Red shift at the initial stages of the blue luminescence decay confirms the presence of a charge transfer to long lived states. Time-correlated single photon counting measurements revealed a life-time of about 5 ns for these states. The same quantum structures emit in near infrared close to optical communication wavelengths. Nature of the emission is described and modeling is provided for the luminescence dynamics. The electrical characteristics of metal-oxide-semiconductor devices were correlated with the optical and vibrational measurement results in order to have better insight into the switching mechanisms in such resistive devices as possible next generation RAM memory elements. ``This work was supported by ENIAC Joint Undertaking and Laser-Lab Europe''.
NASA Astrophysics Data System (ADS)
Gogurla, Narendar; Mondal, Suvra P.; Sinha, Arun K.; Katiyar, Ajit K.; Banerjee, Writam; Kundu, Subhas C.; Ray, Samit K.
2013-08-01
The growing demand for biomaterials for electrical and optical devices is motivated by the need to make building blocks for the next generation of printable bio-electronic devices. In this study, transparent and flexible resistive memory devices with a very high ON/OFF ratio incorporating gold nanoparticles into the Bombyx mori silk protein fibroin biopolymer are demonstrated. The novel electronic memory effect is based on filamentary switching, which leads to the occurrence of bistable states with an ON/OFF ratio larger than six orders of magnitude. The mechanism of this process is attributed to the formation of conductive filaments through silk fibroin and gold nanoparticles in the nanocomposite. The proposed hybrid bio-inorganic devices show promise for use in future flexible and transparent nanoelectronic systems.
NASA Astrophysics Data System (ADS)
Bhatnagar, Promod K.; Gupta, Poonam; Singh, Laxman
2001-06-01
Chalcogenide based alloys find applications in a number of devices like optical memories, IR detectors, optical switches, photovoltaics, compound semiconductor heterosrtuctures etc. We have modified the Gurman's statistical thermodynamic model (STM) of binary covalent alloys. In the Gurman's model, entropy calculations are based on the number of structural units present. The need to modify this model arose due to the fact that it gives equal probability for all the tetrahedra present in the alloy. We have modified the Gurman's model by introducing the concept that the entropy is based on the bond arrangement rather than that on the structural units present. In the present work calculation based on this modification have been presented for optical properties, which find application in optical switching/memories, solar cells and other optical devices. It has been shown that the calculated optical parameters (for a typical case of GaxSe1-x) based on modified model are closer to the available experimental results. These parameters include refractive index, extinction coefficient, dielectric functions, optical band gap etc. GaxSe1-x has been found to be suitable for reversible optical memories also, where phase change (a yields c and vice versa) takes place at specified physical conditions. DTA/DSC studies also suggest the suitability of this material for optical switching/memory applications. We have also suggested possible use of GaxSe1-x (x = 0.4) in place of oxide layer in a Metal - Oxide - Semiconductor type solar cells. The new structure is Metal - Ga2Se3 - GaAs. The I-V characteristics and other parameters calculated for this structure are found to be much better than that for Si based solar cells. Maximum output power is obtained at the intermediate layer thickness approximately 40 angstroms for this typical solar cell.
High frequency modulation circuits based on photoconductive wide bandgap switches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampayan, Stephen
Methods, systems, and devices for high voltage and/or high frequency modulation. In one aspect, an optoelectronic modulation system includes an array of two or more photoconductive switch units each including a wide bandgap photoconductive material coupled between a first electrode and a second electrode, a light source optically coupled to the WBGP material of each photoconductive switch unit via a light path, in which the light path splits into multiple light paths to optically interface with each WBGP material, such that a time delay of emitted light exists along each subsequent split light path, and in which the WBGP materialmore » conducts an electrical signal when a light signal is transmitted to the WBGP material, and an output to transmit the electrical signal conducted by each photoconductive switch unit. The time delay of the photons emitted through the light path is substantially equivalent to the time delay of the electrical signal.« less
Huang, Yin; Shen, Yuecheng; Min, Changjun; Veronis, Georgios
2017-10-30
We introduce a non-parity-time-symmetric three-layer structure, consisting of a gain medium layer sandwiched between two phase-change medium layers for switching of the direction of reflectionless light propagation. We show that for this structure unidirectional reflectionlessness in the forward direction can be switched to unidirectional reflectionlessness in the backward direction at the optical communication wavelength by switching the phase-change material Ge 2 Sb 2 Te 5 (GST) from its amorphous to its crystalline phase. We also show that it is the existence of exceptional points for this structure with GST in both its amorphous and crystalline phases which leads to unidirectional reflectionless propagation in the forward direction for GST in its amorphous phase, and in the backward direction for GST in its crystalline phase. Our results could be potentially important for developing a new generation of compact active free-space optical devices.
NASA Astrophysics Data System (ADS)
Kamiya, Daiki; Bagheri, Saeed; Horie, Mikio
2004-08-01
Many studies on optical switches have been performed in an attempt to develop optical information networks to speed information technology. In reality, however, mirror manipulators cannot be applied to multiple input and output systems due to both insufficient output displacements by the mirror parts inside the manipulator, and the difficulty of designing structures and mechanisms suitable for multi-dimensional manipulation. The principal reasons for insufficient displacement are the high rigidity of the elastic parts compared to the available driving forces and the pull-in effect. Therefore, in order to develop optical switches capable of multiple input and output switching, we suggest a novel 2-DOF(degree of freedom) electrostatic microactuator. The actuator is composed of one mirror with four beams laid about it in a corkscrew pattern, with four corkscrew electrodes on the substrate below and one mirror support pyramid situated under the mirror. Using electrostatic force, one or more of the beams are attracted from their outer ends toward the substrate. The mirror is then tilted by an angle proportional to the attracted length along the beam. The inclination and direction of the mirror are determined by the combined attracted length of the four beams. In this work we derive the mathematical model for the corkscrew beam microactuator for optical switches and show that this mathematical model accurately simulates the device by comparison with finite element analysis results. We use this mathematical model for design of the microactuator. Further we show that the designed optical switch microactuator is capable of rotating the mirror from +32 to -32 degrees about two axes with a maximum operating voltage of 163 volts. Finally, stress analysis of the actuator shows that the generated stress in the structure is at most 369 MPa.
NASA Astrophysics Data System (ADS)
Xin, Wei
1997-10-01
A Terabit Hybrid Electro-optical /underline[Se]lf- routing Ultrafast Switch (THESEUS) has been proposed. It is a self-routing wavelength division multiplexed (WDM) / microwave subcarrier multiplexed (SCM) asynchronous transfer mode (ATM) switch for the multirate ATM networks. It has potential to be extended to a large ATM switch as 1000 x 1000 without internal blocking. Among the advantages of the hybrid implementation are flexibility in service upgrade, relaxed tolerances on optical filtering, protocol simplification and less processing overhead. For a small ATM switch, the subcarrier can be used as output buffers to solve output contention. A mathematical analysis was conducted to evaluate different buffer configurations. A testbed has been successfully constructed. Multirate binary data streams have been switched through the testbed and error free reception ([<]10-9 bit error rate) has been achieved. A simple, intuitive theoretical model has been developed to describe the heterodyne optical beat interference. A new concept of interference time and interference length has been introduced. An experimental confirmation has been conducted. The experimental results match the model very well. It shows that a large portion of optical bandwidth is wasted due to the beat interference. Based on the model, several improvement approaches have been proposed. The photo-generated carrier lifetime of silicon germanium has been measured using time-resolved reflectivity measurement. Via oxygen ion implantation, the carrier lifetime has been reduced to as short as 1 ps, corresponding to 1 THz of photodetector bandwidth. It has also been shown that copper dopants act as recombination centers in the silicon germanium.
NASA Astrophysics Data System (ADS)
Andersson, G.; Dahl, I.; Keller, P.; Kuczyński, W.; Lagerwall, S. T.; Skarp, K.; Stebler, B.
1987-08-01
A new liquid-crystal electro-optic modulating device similar to the surface-stabilized ferroelectric liquid-crystal device is described. It uses the same kind of ferroelectric chiral smectics and the same geometry as that device (thin sample in the ``bookshelf '' layer arrangement) but instead of using a tilted smectic phase like the C* phase, it utilizes the above-lying, nonferroelectric A phase, taking advantage of the electroclinic effect. The achievable optical intensity modulation that can be detected through the full range of the A phase is considerably lower than for the surface-stabilized device, but the response is much faster. Furthermore, the response is strictly linear with respect to the applied electric field. The device concept is thus appropriate for modulator rather than for display applications. We describe the underlying physics and present measurements of induced tilt angle, of light modulation depth, and of rise time.
Switching of Photonic Crystal Lasers by Graphene.
Hwang, Min-Soo; Kim, Ha-Reem; Kim, Kyoung-Ho; Jeong, Kwang-Yong; Park, Jin-Sung; Choi, Jae-Hyuck; Kang, Ju-Hyung; Lee, Jung Min; Park, Won Il; Song, Jung-Hwan; Seo, Min-Kyo; Park, Hong-Gyu
2017-03-08
Unique features of graphene have motivated the development of graphene-integrated photonic devices. In particular, the electrical tunability of graphene loss enables high-speed modulation of light and tuning of cavity resonances in graphene-integrated waveguides and cavities. However, efficient control of light emission such as lasing, using graphene, remains a challenge. In this work, we demonstrate on/off switching of single- and double-cavity photonic crystal lasers by electrical gating of a monolayer graphene sheet on top of photonic crystal cavities. The optical loss of graphene was controlled by varying the gate voltage V g , with the ion gel atop the graphene sheet. First, the fundamental properties of graphene were investigated through the transmittance measurement and numerical simulations. Next, optically pumped lasing was demonstrated for a graphene-integrated single photonic crystal cavity at V g below -0.6 V, exhibiting a low lasing threshold of ∼480 μW, whereas lasing was not observed at V g above -0.6 V owing to the intrinsic optical loss of graphene. Changing quality factor of the graphene-integrated photonic crystal cavity enables or disables the lasing operation. Moreover, in the double-cavity photonic crystal lasers with graphene, switching of individual cavities with separate graphene sheets was achieved, and these two lasing actions were controlled independently despite the close distance of ∼2.2 μm between adjacent cavities. We believe that our simple and practical approach for switching in graphene-integrated active photonic devices will pave the way toward designing high-contrast and ultracompact photonic integrated circuits.
All-optical controlled switching of solitons
NASA Astrophysics Data System (ADS)
Man, Wai Sing
1999-11-01
In this dissertation, we have numerically investigated various method of switching solitons using two different nonlinear optical switching devices, namely the twin core nonlinear directional coupler (TCNLDC) and the nonlinear optical loop mirror (NOLM). In the case of TCNLDC, four different schemes were explored where the polarization of the controlling pulse is either parallel or orthogonal to that of the signal soliton, or the controlling pulse may be launched into either of the input ports or it may have a wavelength different from that of the signal. It has been shown that high switching efficiency and distortionless propagation of the signal pulse through the coupler can only be achieved for the case in which the control pulse is launched into the adjacent port of the directional coupler and that its dispersion has equal magnitude but opposite sign as that of the signal. The effect of varying pulse width, walk-off and timing jitter were also investigated for this particular scheme for signal pulse width of 1 ps wide. In the case of NOLM, a control pulse having central wavelength located at the normal dispersion region is used to switch the soliton. The control pulse width and the NOLM's loop length were varied to obtain the switched soliton with minimum distortion and high switching efficiency. In this analysis, Raman effect is included because the control pulse transfers part of its energy to the co-propagating signal pulse in the optical loop. A compact soliton laser has also been developed for this project and its performance was analyzed experimentally and numerically. In our analysis of this soliton laser, we found that the wavelength of the mode-locked pulse can be tuned by varying the polarization elements in the laser and this is entirely due to the birefringence in the laser cavity. In summary, our works have shown that optical solitons can be switched effectively by TCNLDC and NOLM in the high bit-rate and low switching energy regime. (Abstract shortened by UMI.)
Optically tuned terahertz modulator based on annealed multilayer MoS2.
Cao, Yapeng; Gan, Sheng; Geng, Zhaoxin; Liu, Jian; Yang, Yuping; Bao, Qiaoling; Chen, Hongda
2016-03-08
Controlling the propagation properties of terahertz waves is very important in terahertz technologies applied in high-speed communication. Therefore a new-type optically tuned terahertz modulator based on multilayer-MoS2 and silicon is experimentally demonstrated. The terahertz transmission could be significantly modulated by changing the power of the pumping laser. With an annealing treatment as a p-doping method, MoS2 on silicon demonstrates a triple enhancement of terahertz modulation depth compared with the bare silicon. This MoS2-based device even exhibited much higher modulation efficiency than the graphene-based device. We also analyzed the mechanism of the modulation enhancement originated from annealed MoS2, and found that it is different from that of graphene-based device. The unique optical modulating properties of the device exhibit tremendous promise for applications in terahertz switch.
Soref, Richard; Hendrickson, Joshua
2015-12-14
Silicon-on-insulator Mach-Zehnder interferometer structures that utilize a photonic crystal nanobeam waveguide in each of two connecting arms are proposed here as efficient 2 × 2 resonant, wavelength-selective electro-optical routing switches that are readily cascaded into on-chip N × N switching networks. A localized lateral PN junction of length ~2 μm within each of two identical nanobeams is proposed as a means of shifting the transmission resonance by 400 pm within the 1550 nm band. Using a bias swing ΔV = 2.7 V, the 474 attojoules-per-bit switching mechanism is free-carrier sweepout due to PN depletion layer widening. Simulations of the 2 × 2 outputs versus voltage are presented. Dual-nanobeam designs are given for N × N data-routing matrix switches, electrooptical logic unit cells, N × M wavelength selective switches, and vector matrix multipliers. Performance penalties are analyzed for possible fabrication induced errors such as non-ideal 3-dB couplers, differences in optical path lengths, and variations in photonic crystal cavity resonances.
A fast switch, combiner and narrow-band filter for high-power millimetre wave beams
NASA Astrophysics Data System (ADS)
Kasparek, W.; Petelin, M. I.; Shchegolkov, D. Yu; Erckmann, V.; Plaum, B.; Bruschi, A.; ECRH Groups at IPP Greifswald; Karlsruhe, FZK; Stuttgart, IPF
2008-05-01
A fast directional switch (FADIS) is described, which allows controlled switching of high-power microwaves between two outputs. A possible application could be synchronous stabilization of neoclassical tearing modes (NTMs). Generally, the device can be used to share the installed EC power between different types of launchers or different applications (e.g. in ITER, midplane/upper launcher). The switching is performed electronically without moving parts by a small frequency-shift keying of the gyrotron (some tens of megahertz), and a narrow-band diplexer. The device can be operated as a beam combiner also, which offers attractive transmission perspectives in multi-megawatt ECRH systems. In addition, these diplexers are useful for plasma diagnostic systems employing high-power sources due to their filter characteristics. The principle and the design of a four-port quasi-optical resonator diplexer is presented. Low-power measurements of switching contrast, mode purity and efficiency show good agreement with theory. Preliminary frequency modulation characteristics of gyrotrons are shown, and first results from high-power switching experiments using the ECRH system for W7-X are presented.
Organo-metallic elements for associative information processing
NASA Astrophysics Data System (ADS)
Potember, Richard S.; Poehler, Theodore O.
1989-01-01
In the three years of the program we have: (1) built and tested a 4 bit element matrix device for possible use in high density content-addressable memories systems; (2) established a test and evaluation laboratory to examine optical materials for nonlinear effects, saturable absorption, harmonic generation and photochromism; (3) successfully designed, constructed and operated a codeposition processing system that enables organic materials to be deposited on a variety of substrates to produce optical grade coatings and films. This system is also compatible with other traditional microelectronic techniques; (4) used the sol-gel process with colloidal AgTCNQ to fabricate high speed photochromic switches; (5) develop and applied for patent coverage to make VO2 optical switching materials via the sol-gel processing using vanadium (IV) alkoxide compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Shulin; Wang, Guo Ping, E-mail: gpwang@szu.edu.cn; College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060
Classical nonlinear or quantum all-optical transistors are dependent on the value of input signal intensity or need extra co-propagating beams. In this paper, we present a kind of all-optical transistors constructed with parity-time (PT)-symmetric Y-junctions, which perform independently on the value of signal intensity in an unsaturated gain case and can also work after introducing saturated gain. Further, we show that control signal can switch the device from amplification of peaks in time to transformation of peaks to amplified troughs. By using these PT-symmetric Y-junctions with currently available materials and technologies, we can implement interesting logic functions such as NOTmore » and XOR (exclusive OR) gates, implying potential applications of such structures in designing optical logic gates, optical switches, and signal transformations or amplifications.« less
A dual-stimuli-responsive fluorescent switch ultrathin film.
Li, Zhixiong; Liang, Ruizheng; Liu, Wendi; Yan, Dongpeng; Wei, Min
2015-10-28
Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP@PTBEM and Rf-PSS with cationic layered double hydroxide (LDH) nanoplatelets to obtain the (Rf-PSS/LDH/SP@PTBEM)n UTFs (n: bilayer number). The assembly process of the UTFs and their luminescence properties, as monitored by fluorescence spectroscopy and scanning electron microscopy (SEM), present a uniform and ordered layered structure with stepwise growth. The resulting Rf-PSS/LDH/SP@PTBEM UTF serves as a three-state switchable multicolor (green, yellow, and red) luminescent system based on stimulation from UV/Vis light and pH, with an acceptable reversibility. Therefore, this work provides a facile way to fabricate stimuli-responsive solid-state film switches with tunable-color luminescence, which have potential applications in the areas of displays, sensors, and rewritable optical memory and fluorescent logic devices.
Jones, N.E.
1988-03-10
Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam. 5 figs.
Jones, Nelson E.
1990-01-01
Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam.
Note: Suppression of kHz-frequency switching noise in digital micro-mirror devices
NASA Astrophysics Data System (ADS)
Hueck, Klaus; Mazurenko, Anton; Luick, Niclas; Lompe, Thomas; Moritz, Henning
2017-01-01
High resolution digital micro-mirror devices (DMDs) make it possible to produce nearly arbitrary light fields with high accuracy, reproducibility, and low optical aberrations. However, using these devices to trap and manipulate ultracold atomic systems for, e.g., quantum simulation is often complicated by the presence of kHz-frequency switching noise. Here we demonstrate a simple hardware extension that solves this problem and makes it possible to produce truly static light fields. This modification leads to a 47 fold increase in the time that we can hold ultracold 6Li atoms in a dipole potential created with the DMD. Finally, we provide reliable and user friendly APIs written in Matlab and Python to control the DMD.
Electric-optic resonant phase modulator
NASA Technical Reports Server (NTRS)
Chen, Chien-Chung (Inventor); Robinson, Deborah L. (Inventor); Hemmati, Hamid (Inventor)
1994-01-01
An electro-optic resonant cavity is used to achieve phase modulation with lower driving voltages. Laser damage thresholds are inherently higher than with previously used integrated optics due to the utilization of bulk optics. Phase modulation is achieved at higher speeds with lower driving voltages than previously obtained with non-resonant electro-optic phase modulators. The instant scheme uses a data locking dither approach as opposed to the conventional sinusoidal locking schemes. In accordance with a disclosed embodiment, a resonant cavity modulator has been designed to operate at a data rate in excess of 100 Mbps. By carefully choosing the cavity finesse and its dimension, it is possible to control the pulse switching time to within 4 ns and to limit the required switching voltage to within 10 V. Experimentally, the resonant cavity can be maintained on resonance with respect to the input laser signal by monitoring the fluctuation of output intensity as the cavity is switched. This cavity locking scheme can be applied by using only the random data sequence, and without the need of additional dithering of the cavity. Compared to waveguide modulators, the resonant cavity has a comparable modulating voltage requirement. Because of its bulk geometry, resonant cavity modulator has the potential of accommodating higher throughput power. Furthermore, mode matching into a bulk device is easier and typically can be achieved with higher efficiency. On the other hand, unlike waveguide modulators which are essentially traveling wave devices, the resonant cavity modulator requires that the cavity be maintained in resonance with respect to the incoming laser signal. An additional control loop is incorporated into the modulator to maintain the cavity on resonance.
Multiple-mode reconfigurable electro-optic switching network for optical fiber sensor array
NASA Technical Reports Server (NTRS)
Chen, Ray T.; Wang, Michael R.; Jannson, Tomasz; Baumbick, Robert
1991-01-01
This paper reports the first switching network compatible with multimode fibers. A one-to-many cascaded reconfigurable interconnection was built. A thin glass substrate was used as the guiding medium which provides not only higher coupling efficiency from multimode fiber to waveguide but also better tolerance of phase-matching conditions. Involvement of a total-internal-reflection hologram and multimode waveguide eliminates interface problems between fibers and waveguides. The DCG polymer graft has proven to be reliable from -180 C to +200 C. Survivability of such an electrooptic system in harsh environments is further ensured. LiNbO3 was chosen as the E-O material because of its stability at high temperatures (phase-transition temperature of more than 1000 C) and maturity of E-O device technology. Further theoretical calculation was conducted to provide the optimal interaction length and device capacitance.
Dynamic generation of Ince-Gaussian modes with a digital micromirror device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Yu-Xuan, E-mail: yxren@ustc.edu.cn; Fang, Zhao-Xiang; Chen, Yue
Ince-Gaussian (IG) beam with elliptical profile, as a connection between Hermite-Gaussian (HG) and Laguerre-Gaussian (LG) beams, has showed unique advantages in some applications such as quantum entanglement and optical micromanipulation. However, its dynamic generation with high switching frequency is still challenging. Here, we experimentally reported the quick generation of Ince-Gaussian beam by using a digital micro-mirror device (DMD), which has the highest switching frequency of 5.2 kHz in principle. The configurable properties of DMD allow us to observe the quasi-smooth variation from LG (with ellipticity ε=0) to IG and HG (ε=∞) beam. This approach might pave a path to high-speedmore » quantum communication in terms of IG beam. Additionally, the characterized axial plane intensity distribution exhibits a 3D mould potentially being employed for optical micromanipulation.« less
Recent progress in InP/polymer-based devices for telecom and data center applications
NASA Astrophysics Data System (ADS)
Kleinert, Moritz; Zhang, Ziyang; de Felipe, David; Zawadzki, Crispin; Maese Novo, Alejandro; Brinker, Walter; Möhrle, Martin; Keil, Norbert
2015-02-01
Recent progress on polymer-based photonic devices and hybrid photonic integration technology using InP-based active components is presented. High performance thermo-optic components, including compact polymer variable optical attenuators and switches are powerful tools to regulate and control the light flow in the optical backbone. Polymer arrayed waveguide gratings integrated with InP laser and detector arrays function as low-cost optical line terminals (OLTs) in the WDM-PON network. External cavity tunable lasers combined with C/L band thinfilm filter, on-chip U-groove and 45° mirrors construct a compact, bi-directional and color-less optical network unit (ONU). A tunable laser integrated with VOAs, TFEs and two 90° hybrids builds the optical front-end of a colorless, dual-polarization coherent receiver. Multicore polymer waveguides and multi-step 45°mirrors are demonstrated as bridging devices between the spatialdivision- multiplexing transmission technology using multi-core fibers and the conventional PLCbased photonic platforms, appealing to the fast development of dense 3D photonic integration.
NASA Astrophysics Data System (ADS)
Maimistov, Andrei I.
1995-10-01
An analysis is made of the fundamental concepts of conservative logic. It is shown that the existing optical soliton switches can be converted into logic gates which act as conservative logic elements. A logic device of this type, based on a nonlinear fibre-optic directional coupler, is considered. Polarised solitons are used in this coupler. This use of solitons leads in a natural way to the desirability of developing conservative triple-valued logic.
International Symposium on Electrets (ISE 6) (6th) Held in Oxford, England on 1-3 September 1988
1988-09-01
detector Heat and other electromagnetic radiation detection Micro- & millimeter waves Nerve excitation studies Optical fibre attenuation Heat generation in...Phenomena in Reslnic Eaters of 241 Photothermoplastic Devices for Application to Holographic Optical Switching J. Datndurand, C. Lacabanne, J.Y. Molsan...328 Ionisation Chambers K. Doughty and I. Fleming t-64 Electro- Optical Behaviour of Ferroelectric Liquid 334 Crystal (FLC) Mixtures H.R. Dilbal, C
Iii-V Compound Multiple Quantum Well Based Modulator and Switching Devices.
NASA Astrophysics Data System (ADS)
Hong, Songcheol
A general formalism to study the absorption and photocurrent in multiple quantum well is provided with detailed consideration of quantum confined Stark shift, exciton binding energy, line broadening, tunneling, polarization, and strain effects. Results on variation of exciton size, binding energies and transition energies as a function electric field and well size have been presented. Inhomogeneous line broadening of exciton lines due to interface roughness, alloy disorder and well to well size fluctuation is calculated. The potential of material tailoring by introducing strain for specific optical response is discussed. Theoretical and experimental results on excitonic and band-to-band absorption spectra in strained multi-quantum well structures are shown. I also report on polarization dependent optical absorption for excitonic and interband transitions in lattice matched and strained multiquantum well structures in presence of transverse electric field. Photocurrent in a p-i(MQW)-n diode with monochromatic light is examined with respect to different temperatures and intensities. The negative resistance of I-V characteristic of the p-i-n diode is based on the quantum confined Stark effect of the heavy hole excitonic transition in a multiquantum well. This exciton based photocurrent characteristic allows efficient switching. A general purpose low power optical logic device using the controller-modulator concept bas been proposed and realized. The controller is a heterojunction phototransistor with multiquantum wells in the base-collector depletion region. This allows an amplified photocurrent controlled voltage feedback with low light intensity levels. Detailed analysis of the sensitivity of this device in various modes of operation is studied. Studies are also presented on the cascadability of the device as well as its integrating -thresholding properties. A multiquantum well heterojunction bipolar transistor (MHBT), which has N^+ -p^+-i(MQW)-N structure has been fabricated to test the concept. Gain (>30) is obtained in the MBE grown devices and efficient switching occurs due to the amplification of the exciton based photocurrent. The level shift operation of the base contacted MHBT are demonstrated.
Mao, Chen-Yu; Liao, Wei-Qiang; Wang, Zhong-Xia; Zafar, Zainab; Li, Peng-Fei; Lv, Xing-Hui; Fu, Da-Wei
2016-08-01
Molecular optical-electrical duple switches (switch "ON" and "OFF" bistable states) represent a class of highly desirable intelligent materials because of their sensitive switchable physical and/or chemical responses, simple and environmentally friendly processing, light weights, and mechanical flexibility. In the current work, the phase transition of 1 (general formula R2MX5, [C5N2H16]2[SbBr5]) can be triggered by the order-disorder transition of the organic cations at 278.3 K. The temperature-induced phase transition causes novel bistable optical-electrical duple characteristics, which indicates that 1 might be an excellent candidate for a potential switchable optical-electrical (fluorescence/dielectric) material. In the dielectric measurements, remarkable bistable dielectric responses were detected, accompanied by striking anisotropy along various crystallographic axes. For the intriguing fluorescence emission spectra, the intensity and position changed significantly with the occurrence of the structural phase transition. We believe that these findings might further promote the application of halogenoantimonates(III) and halogenobismuthates(III) in the field of optoelectronic multifunctional devices.
Metasurfaces Based on Phase-Change Material as a Reconfigurable Platform for Multifunctional Devices
Raeis-Hosseini, Niloufar; Rho, Junsuk
2017-01-01
Integration of phase-change materials (PCMs) into electrical/optical circuits has initiated extensive innovation for applications of metamaterials (MMs) including rewritable optical data storage, metasurfaces, and optoelectronic devices. PCMs have been studied deeply due to their reversible phase transition, high endurance, switching speed, and data retention. Germanium-antimony-tellurium (GST) is a PCM that has amorphous and crystalline phases with distinct properties, is bistable and nonvolatile, and undergoes a reliable and reproducible phase transition in response to an optical or electrical stimulus; GST may therefore have applications in tunable photonic devices and optoelectronic circuits. In this progress article, we outline recent studies of GST and discuss its advantages and possible applications in reconfigurable metadevices. We also discuss outlooks for integration of GST in active nanophotonic metadevices. PMID:28878196
Research on SOI-based micro-resonator devices
NASA Astrophysics Data System (ADS)
Xiao, Xi; Xu, Haihua; Hu, Yingtao; Zhou, Liang; Xiong, Kang; Li, Zhiyong; Li, Yuntao; Fan, Zhongchao; Han, Weihua; Yu, Yude; Yu, Jinzhong
2010-10-01
SOI (silicon-on-insulator)-based micro-resonator is the key building block of silicon photonics, which is considered as a promising solution to alleviate the bandwidth bottleneck of on-chip interconnects. Silicon-based sub-micron waveguide, microring and microdisk devices are investigated in Institute of Semiconductors, Chinese Academy of Sciences. The main progress in recent years is presented in this talk, such as high Q factor single mode microdisk filters, compact thirdorder microring filters with the through/drop port extinctions to be ~ 30/40 dB, fast microring electro-optical switches with the switch time of < 400 ps and crosstalk < -23 dB, and > 10 Gbit/s high speed microring modulators.
Integrated electrochromic aperture diaphragm
NASA Astrophysics Data System (ADS)
Deutschmann, T.; Oesterschulze, E.
2014-05-01
In the last years, the triumphal march of handheld electronics with integrated cameras has opened amazing fields for small high performing optical systems. For this purpose miniaturized iris apertures are of practical importance because they are essential to control both the dynamic range of the imaging system and the depth of focus. Therefore, we invented a micro optical iris based on an electrochromic (EC) material. This material changes its absorption in response to an applied voltage. A coaxial arrangement of annular rings of the EC material is used to establish an iris aperture without need of any mechanical moving parts. The advantages of this device do not only arise from the space-saving design with a thickness of the device layer of 50μm. But it also benefits from low power consumption. In fact, its transmission state is stable in an open circuit, phrased memory effect. Only changes of the absorption require a voltage of up to 2 V. In contrast to mechanical iris apertures the absorption may be controlled on an analog scale offering the opportunity for apodization. These properties make our device the ideal candidate for battery powered and space-saving systems. We present optical measurements concerning control of the transmitted intensity and depth of focus, and studies dealing with switching times, light scattering, and stability. While the EC polymer used in this study still has limitations concerning color and contrast, the presented device features all functions of an iris aperture. In contrast to conventional devices it offers some special features. Owing to the variable chemistry of the EC material, its spectral response may be adjusted to certain applications like color filtering in different spectral regimes (UV, optical range, infrared). Furthermore, all segments may be switched individually to establish functions like spatial Fourier filtering or lateral tunable intensity filters.
Moazzam, Mostafa Keshavarz; Kaatuzian, Hassan
2016-01-20
Plasmonics as a new field of chip-scale technology is the interesting substrate of this study to propose and numerically investigate a metal/insulator/semiconductor/metal (MISM)-structure 2×2 plasmonic routing switch. As a planar subwavelength arrangement, the presented design has two npn-doped side-coupled dual waveguides whose duty is to route the propagating surface plasmon polaritons through the device. Relying on the MISM structure, which has a MOS-like thin-film arrangement of typically 45 nm doped silicon covered by a layer of 8 nm thick HfO(2) gate insulator, the routing configuration is electrically addressed based on the carrier-induced plasma dispersion effects as an external electro-plasmonic switching control. Finite-element-method-conducted electromagnetic simulations are employed to evaluate the switch optical response at telecom wavelength of λ=1550 nm, due to which the balanced operation measure of extinction ratios larger than 10 dB and insertion losses of around -1.8 dB are obtained for both channels of CROSS and STRAIGHT. Compared with other photonic and plasmonic switching counterparts, this configuration, besides its potential for CMOS compatibility, can be utilized as a high-speed compact building block to sustain higher-speed, more miniaturized, and less consuming electro-optic routing/switching protocols toward complicated optical integrated circuits and systems.
Tan, Yang; Chen, Lianwei; Wang, Dong; Chen, Yanxue; Akhmadaliev, Shavkat; Zhou, Shengqiang; Hong, Minghui; Chen, Feng
2016-01-01
How to enhance the optical nonlinearity of saturable absorption materials is an important question to improve the functionality of various applications ranging from the high power laser to photonic computational devices. We demonstrate the saturable absorption (SA) of VO2 film attributed to the large difference of optical nonlinearities between the two states of the phase-transition materials (VO2). Such VO2 film demonstrated significantly improved performance with saturation intensity higher than other existing ultrathin saturable absorbers by 3 orders due to its unique nonlinear optical mechanisms in the ultrafast phase change process. Owing to this feature, a Q-switched pulsed laser was fabricated in a waveguide platform, which is the first time to achieve picosecond pulse duration and maintain high peak power. Furthermore, the emission of this VO2 waveguide laser can be flexibly switched between the continuous-wave (CW) and pulsed operation regimes by tuning the temperature of the VO2 film, which enables VO2-based miniature laser devices with unique and versatile functions. PMID:27188594
Photonic band gap materials: towards an all-optical transistor
NASA Astrophysics Data System (ADS)
Florescu, Marian
2002-05-01
The transmission of information as optical signals encoded on light waves traveling through optical fibers and optical networks is increasingly moving to shorter and shorter distance scales. In the near future, optical networking is poised to supersede conventional transmission over electric wires and electronic networks for computer-to-computer communications, chip-to-chip communications, and even on-chip communications. The ever-increasing demand for faster and more reliable devices to process the optical signals offers new opportunities in developing all-optical signal processing systems (systems in which one optical signal controls another, thereby adding "intelligence" to the optical networks). All-optical switches, two-state and many-state all-optical memories, all-optical limiters, all-optical discriminators and all-optical transistors are only a few of the many devices proposed during the last two decades. The "all-optical" label is commonly used to distinguish the devices that do not involve dissipative electronic transport and require essentially no electrical communication of information. The all-optical transistor action was first observed in the context of optical bistability [1] and consists in a strong differential gain regime, in which, for small variations in the input intensity, the output intensity has a very strong variation. This analog operation is for all-optical input what transistor action is for electrical inputs.
Quantum Optical Transistor and Other Devices Based on Nanostructures
NASA Astrophysics Data System (ADS)
Li, Jin-Jin; Zhu, Ka-Di
Laser and strong coupling can coexist in a single quantum dot (QD) coupled to nanostructures. This provides an important clue toward the realization of quantum optical devices, such as quantum optical transistor, slow light device, fast light device, or light storage device. In contrast to conventional electronic transistor, a quantum optical transistor uses photons as signal carriers rather than electrons, which has a faster and more powerful transfer efficiency. Under the radiation of a strong pump laser, a signal laser can be amplified or attenuated via passing through a single quantum dot coupled to a photonic crystal (PC) nanocavity system. Such a switching and amplifying behavior can really implement the quantum optical transistor. By simply turning on or off the input pump laser, the amplified or attenuated signal laser can be obtained immediately. Based on this transistor, we further propose a method to measure the vacuum Rabi splitting of exciton in all-optical domain. Besides, we study the light propagation in a coupled QD and nanomechanical resonator (NR) system. We demonstrate that it is possible to achieve the slow light, fast light, and quantum memory for light on demand, which is based on the mechanically induced coherent population oscillation (MICPO) and exciton polaritons. These QD devices offer a route toward the use of all-optical technique to investigate the coupled QD systems and will make contributions to quantum internets and quantum computers.
High-temperature optically activated GaAs power switching for aircraft digital electronic control
NASA Technical Reports Server (NTRS)
Berak, J. M.; Grantham, D. H.; Swindal, J. L.; Black, J. F.; Allen, L. B.
1983-01-01
Gallium arsenide high-temperature devices were fabricated and assembled into an optically activated pulse-width-modulated power control for a torque motor typical of the kinds used in jet engine actuators. A bipolar heterojunction phototransistor with gallium aluminum arsenide emitter/window, a gallium arsenide junction field-effect power transistor and a gallium arsenide transient protection diode were designed and fabricated. A high-temperature fiber optic/phototransistor coupling scheme was implemented. The devices assembled into the demonstrator were successfully tested at 250 C, proving the feasibility of actuator-located switching of control power using optical signals transmitted by fibers. Assessments of the efficiency and technical merits were made for extension of this high-temperature technology to local conversion of optical power to electrical power and its control at levels useful for driving actuators. Optical power sources included in the comparisons were an infrared light-emitting diode, an injection laser diode, tungsten-halogen lamps and arc lamps. Optical-to-electrical power conversion was limited to photovoltaics located at the actuator. Impedance matching of the photovoltaic array to the load was considered over the full temperature range, -55 C to 260 C. Loss of photovoltaic efficiency at higher temperatures was taken into account. Serious losses in efficiency are: (1) in the optical source and the cooling which they may require in the assumed 125 C ambient, (2) in the decreased conversion efficiency of the gallium arsenide photovoltaic at 260 C, and (3) in impedance matching. Practical systems require improvements in these areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antunez, E. E.; Salazar-Kuri, U.; Estevez, J. O.
Morphological properties of thermochromic VO{sub 2}—porous silicon based hybrids reveal the growth of well-crystalized nanometer-scale features of VO{sub 2} as compared with typical submicron granular structure obtained in thin films deposited on flat substrates. Structural characterization performed as a function of temperature via grazing incidence X-ray diffraction and micro-Raman demonstrate reversible semiconductor-metal transition of the hybrid, changing from a low-temperature monoclinic VO{sub 2}(M) to a high-temperature tetragonal rutile VO{sub 2}(R) crystalline structure, coupled with a decrease in phase transition temperature. Effective optical response studied in terms of red/blue shift of the reflectance spectra results in a wavelength-dependent optical switching withmore » temperature. As compared to VO{sub 2} film over crystalline silicon substrate, the hybrid structure is found to demonstrate up to 3-fold increase in the change of reflectivity with temperature, an enlarged hysteresis loop and a wider operational window for its potential application as an optical temperature sensor. Such silicon based hybrids represent an exciting class of functional materials to display thermally triggered optical switching culminated by the characteristics of each of the constituent blocks as well as device compatibility with standard integrated circuit technology.« less
Filling in the voids of electrospun hydroxypropyl cellulose network: Dielectric investigations
NASA Astrophysics Data System (ADS)
Maximean, Doina Manaila; Danila, Octavian; Ganea, Constantin Paul; Almeida, Pedro L.
2018-04-01
Here we describe an organic electro-optic device, obtained using electrospun hydroxypropyl cellulose (HPC) polymer fibres and nematic liquid crystals (LC). Its working mechanism is similar to that of a classic polymer-dispersed liquid crystal (PDLC) device. The scanning electron microscopy of the HPC deposited fibres shows a mat of fibres with diameters in the nano and micron size range. Dielectric spectroscopy measurements allow the determination of the dependence of the dielectric constant and electric energy loss on frequency and temperature as well as the determination of the activation energy. The electro-optic study shows a very good optical transmission curve, with an "on"-"off" switching voltage of less than 1V/μ m.
Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits.
Lu, Yegang; Stegmaier, Matthias; Nukala, Pavan; Giambra, Marco A; Ferrari, Simone; Busacca, Alessandro; Pernice, Wolfram H P; Agarwal, Ritesh
2017-01-11
Phase change materials (PCMs) are highly attractive for nonvolatile electrical and all-optical memory applications because of unique features such as ultrafast and reversible phase transitions, long-term endurance, and high scalability to nanoscale dimensions. Understanding their transient characteristics upon phase transition in both the electrical and the optical domains is essential for using PCMs in future multifunctional optoelectronic circuits. Here, we use a PCM nanowire embedded into a nanophotonic circuit to study switching dynamics in mixed-mode operation. Evanescent coupling between light traveling along waveguides and a phase-change nanowire enables reversible phase transition between amorphous and crystalline states. We perform time-resolved measurements of the transient change in both the optical transmission and resistance of the nanowire and show reversible switching operations in both the optical and the electrical domains. Our results pave the way toward on-chip multifunctional optoelectronic integrated devices, waveguide integrated memories, and hybrid processing applications.
Electrically and Optically Readable Light Emitting Memories
Chang, Che-Wei; Tan, Wei-Chun; Lu, Meng-Lin; Pan, Tai-Chun; Yang, Ying-Jay; Chen, Yang-Fang
2014-01-01
Electrochemical metallization memories based on redox-induced resistance switching have been considered as the next-generation electronic storage devices. However, the electronic signals suffer from the interconnect delay and the limited reading speed, which are the major obstacles for memory performance. To solve this problem, here we demonstrate the first attempt of light-emitting memory (LEM) that uses SiO2 as the resistive switching material in tandem with graphene-insulator-semiconductor (GIS) light-emitting diode (LED). By utilizing the excellent properties of graphene, such as high conductivity, high robustness and high transparency, our proposed LEM enables data communication via electronic and optical signals simultaneously. Both the bistable light-emission state and the resistance switching properties can be attributed to the conducting filament mechanism. Moreover, on the analysis of current-voltage characteristics, we further confirm that the electroluminescence signal originates from the carrier tunneling, which is quite different from the standard p-n junction model. We stress here that the newly developed LEM device possesses a simple structure with mature fabrication processes, which integrates advantages of all composed materials and can be extended to many other material systems. It should be able to attract academic interest as well as stimulate industrial application. PMID:24894723
Ultrafast optical switching in three-dimensional photonic crystals
NASA Astrophysics Data System (ADS)
Mazurenko, D. A.
2004-09-01
The rapidly expanding research on photonic crystals is driven by potential applications in all-optical switches, optical computers, low-threshold lasers, and holographic data storage. The performance of such devices might surpass the speed of traditional electronics by several orders of magnitude and may result in a true revolution in nanotechnology. The heart of such devices would likely be an optical switching element. This thesis analyzes different regimes of ultrafast all-optical switching in various three-dimensional photonic crystals, in particular opals filled with silicon or vanadium dioxide and periodic arrays of silica-gold core-shell spherical particles with silica outer shell. In the experiment an ultrashort optical pulse is used to excite a photonic crystal and change its complex effective dielectric constant. The change in the imaginary part of the dielectric constant corresponds to the change in absorption that suppresses interference inside the photonic crystal and modifies the amplitude of the reflectivity, while the change in the real part of the dielectric constant accounts for a shift in a spectral position of the photonic stop band. The first type of switching is shown on an example of an opal filled with silicon. In this crystal, switching is induced by photo-excited carriers in silicon that act as an electron plasma and increase the absorption in silicon. Within 30 fs constructive interference inside the opal vanishes and Bragg reflectivity drops down. Changes in reflectivity reach values as high as 46% at maximum excitation power. The experimental results are in a good agreement with calculations. The second type of switching is demonstrated in opal filled with vanadium dioxide. Here, the optical switching is driven by a photoinduced phase transition of vanadium dioxide. The phase transition takes place on a subpicosecond time scale and changes the effective dielectric constant of the opal. As a result, the spectral position of the photonic stop band shifts to the blue leading to large (up to 35%) changes in the reflectivity. Metallo-dielectric photonic crystals give even more possibilities for the band-tuning, since in addition to the resonance for light they posses surface plasmon resonances. The interplay of these resonances leads to unusual optical phenomena. As an example, reflected light produces an unexpected beaming in the apexes of a hexagon with a divergence angle of 8°, in our sample. This angle is too small to be attributed to a simple diffraction on the periodic lattice of core-shells but can be explained by interference between surface plasmons and propagating surface waves. Time-resolved spectra demonstrate rapid changes immediately after the arrival of the pump pulse. Ultrafast reflection changes are dramatically enhanced by the plasmon resonances, and can reach values as high as 35%. A completely different mechanism for ultrafast switching is explored, based on the excitation of coherent acoustic radial vibrations of the gold spheres. This results in a 4% modulation of the reflectivity on a subnanosecond timescale. The observed oscillation properties of our gold-shell spheres are in excellent agreement with the calculations. The described results show that the demonstrated dynamical changes in the reflectivity of a three-dimensional photonic crystal can be made both large and ultrafast and therefore may prove to be relevant for future applications.
High-contrast and fast electrochromic switching enabled by plasmonics
Xu, Ting; Walter, Erich C.; Agrawal, Amit; Bohn, Christopher; Velmurugan, Jeyavel; Zhu, Wenqi; Lezec, Henri J.; Talin, A. Alec
2016-01-01
With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light—propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer—present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer. PMID:26814453
High-contrast and fast electrochromic switching enabled by plasmonics
Xu, Ting; Walter, Erich C.; Agrawal, Amit; ...
2016-01-27
With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light—propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer—present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thinmore » electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. In conclusion, we further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer.« less
Couderc, Vincent; Crunteanu, Aurelian; Fabert, Marc; Doutre, Florent; El Bassri, Farid; Pagnoux, Dominique; Jalocha, Alain
2012-02-27
We present a novel Q-switched laser source using a micro-optical-electromechanical mirror (MOEM) designed for short pulse emission. It is based on a hybrid configuration including a passively Q-switched microchip laser coupled to a fiber cavity closed by a cantilever type MOEM acting as an active modulator. This specially designed mirror with a single reflecting gold membrane is switched by low bias voltage ~50 V (peak to peak). This device emits pulses at tunable repetition rates up to 1.6 kHz, with ~564 ps duration and 3.4 kW peak power, which constitutes the shortest pulse duration ever reported with MOEMs based pulsed lasers.
NASA Astrophysics Data System (ADS)
Xiao, Huifu; Li, Dezhao; Liu, Zilong; Han, Xu; Chen, Wenping; Zhao, Ting; Tian, Yonghui; Yang, Jianhong
2018-03-01
In this paper, we propose and experimentally demonstrate an integrated optical device that can implement the logical function of priority encoding from a 4-bit electrical signal to a 2-bit optical signal. For the proof of concept, the thermo-optic modulation scheme is adopted to tune each micro-ring resonator (MRR). A monochromatic light with the working wavelength is coupled into the input port of the device through a lensed fiber, and the four input electrical logic signals regarded as pending encode signals are applied to the micro-heaters above four MRRs to control the working states of the optical switches. The encoding results are directed to the output ports in the form of light. At last, the logical function of priority encoding with an operation speed of 10 Kbps is demonstrated successfully.
Chen, Xi; Shi, Yuechun; Lou, Fei; Chen, Yiting; Yan, Min; Wosinski, Lech; Qiu, Min
2014-10-20
An optically pumped thermo-optic (TO) silicon ring add-drop filter with fast thermal response is experimentally demonstrated. We propose that metal-insulator-metal (MIM) light absorber can be integrated into silicon TO devices, acting as a localized heat source which can be activated remotely by a pump beam. The MIM absorber design introduces less thermal capacity to the device, compared to conventional electrically-driven approaches. Experimentally, the absorber-integrated add-drop filter shows an optical response time of 13.7 μs following the 10%-90% rule (equivalent to a exponential time constant of 5 μs) and a wavelength shift over pump power of 60 pm/mW. The photothermally tunable add-drop filter may provide new perspectives for all-optical routing and switching in integrated Si photonic circuits.
An Electron-Beam Controlled Semiconductor Switch
1989-11-01
of the Seventeenth Power Modulator Symposium, Seattle, WA, pp. 214-218. 1986. 21. Bovino , L., ’ioumans,R., Weiner, H., Burke, T . , "Optica lly... Bovino , R. Youmans, M. Weiner, and T. Burke, ’ ’Optically Co ntrolled Semiconducto r Switch for ~lulti-~legawatt Rep-Rated Pulse r s ," Conf. Record...p. 615. (II 1 W. N. Carr, IEEE Trans. Electron Devices, vol. ED-12, p. 531 , 1965. (121 T. Burke, M. Weiner. L. Bovino , and R. Youmans, in Proc
Dimensional effects on the magnetic domains in planar magnetophotonic crystal waveguides
NASA Astrophysics Data System (ADS)
Huang, Xiaoyue
2007-05-01
The application of photonic crystal technology in magneto-optic media can yield significant improvements in polarization rotation efficiency and optical switching capability and an overall reduction in magneto-optic device dimensions. Resonant photonic crystal structures in planar ferrimagnetic film waveguides are of interest because they may lead to the development of on-chip magneto-optical switches and isolators for photonic device integration. In the present work, two different methods for the fabrication of on-chip waveguide magnetophotonic crystals, through electron beam lithography and focused ion beam milling, are discussed and demonstrated. A high precision photonic measurement system was set up for testing and analysis of the waveguide devices. The results obtained show photonic band gaps with resonant transmission in the gap, and enhanced magneto-optic rotation efficiency. The character of waveguide modes therein, birefringence effects, and structural variation effects were studied extensively and are presented in this thesis. Planar magnetization control produced by manipulation of the magnetic shape anisotropy in the photonic crystal micro-cavity was demonstrated in this work. By introducing strip structures into the resonant cavity formed on magnetic garnet films with in-plane anisotropy, a bi-stable magnetic state and an enhanced magnetic field reversal mechanism were demonstrated. This effect was extensively studied through experimental and micromagnetic simulation analysis of the polarization rotation hysteresis. The results discussed herein show that domain closure loops between the strips limit the magnification of the coercivity in the resonant cavity and that these limitations can be overcome by the formation of isolated single-domain magnetic microstrips in the cavity.
NASA Astrophysics Data System (ADS)
Pal, Amrindra; Kumar, Santosh; Sharma, Sandeep; Raghuwanshi, Sanjeev K.
2016-04-01
Encoder is a device that allows placing digital information from many inputs to many outputs. Any application of combinational logic circuit can be implemented by using encoder and external gates. In this paper, 4 to 2 line encoder is proposed using electro-optic effect inside lithium-niobate based Mach-Zehnder interferometers (MZIs). The MZI structures have powerful capability to switching an optical input signal to a desired output port. The paper constitutes a mathematical description of the proposed device and thereafter simulation using MATLAB. The study is verified using beam propagation method (BPM).
NASA Astrophysics Data System (ADS)
Hoang, Thu Trang; Ngo, Quang Minh; Vu, Dinh Lam; Le, Khai Q.; Nguyen, Truong Khang; Nguyen, Hieu P. T.
2018-01-01
Shrinking the linewidth of resonances induced by multiple coupled resonators is comprehensively analyzed using the coupled-mode theory (CMT) in time. Two types of coupled resonators under investigation are coupled resonator optical waveguides (CROWs) and side-coupled resonators with waveguide (SCREW). We examine the main parameters influencing on the spectral response such as the number of resonators (n) and the phase shift (φ) between two adjacent resonators. For the CROWs geometry consisting of n coupled resonators, we observe the quality (Q) factor of the right- and left-most resonant lineshapes increases n times larger than that of a single resonator. For the SCREW geometry, relying on the phase shift, sharp, and asymmetric resonant lineshape of the high Q factor a narrow linewidth of the spectral response could be achieved. We employ the finite-difference time-domain (FDTD) method to design and simulate two proposed resonators for practical applications. The proposed coupled resonators in silicon-on-insulator (SOI) slotted two-dimensional (2-D) photonic crystals (PhCs) filled and covered with a low refractive index organic material. Slotted PhC waveguides and cavities are designed to enhance the electromagnetic intensity and to confine the light into small cross-sectional area with low refractive index so that efficient optical devices could be achieved. A good agreement between the theoretical CMT analysis and the FDTD simulation is shown as an evidence for our accurate investigation. All-optical switches based on the CROWs in the SOI slotted 2-D PhC waveguide that are filled and covered by a nonlinear organic cladding to overcome the limitations of its well-known intrinsic properties are also presented. From the calculations, we introduce a dependency of the normalized linewidth of the right-most resonance and its switching power of the all-optical switches on number of resonator, n. This result might provide a guideline for all-optical signal processing on a silicon PhC chip design.
Ultrafast Manipulation of Magnetic Order with Electrical Pulses
NASA Astrophysics Data System (ADS)
Yang, Yang
During the last 30 years spintronics has been a very rapidly expanding field leading to lots of new interesting physics and applications. As with most technology-oriented fields, spintronics strives to control devices with very low energy consumption and high speed. The combination of spin and electronics inherent to spintronics directly tackles energy efficiency, due to the non-volatility of magnetism. However, speed of operation of spintronic devices is still rather limited ( nanoseconds), due to slow magnetization precessional frequencies. Ultrafast magnetism (or opto-magnetism) is a relatively new field that has been very active in the last 20 years. The main idea is that intense femtosecond laser pulses can be used in order to manipulate the magnetization at very fast time-scales ( 100 femtoseconds). However, the use of femtosecond lasers poses great application challenges such as diffraction limited optical spot sizes which hinders device density, and bulky and expensive integration of femtosecond lasers into devices. In this thesis, our efforts to combine ultrafast magnetism and spintronics are presented. First, we show that the magnetization of ferrimagnetic GdFeCo films can be switched by picosecond electronic heat current pulses. This result shows that a non-thermal distribution of electrons directly excited by laser is not necessary for inducing ultrafast magnetic dynamics. Then, we fabricate photoconductive switch devices on a LT-GaAs substrate, to generate picosecond electrical pulses. Intense electrical pulses with 10ps (FWHM) duration and peak current up to 3A can be generated and delivered into magnetic films. Distinct magnetic dynamics in CoPt films are found between direct optical heating and electrical heating. More importantly, by delivering picosecond electrical pulses into GdFeCo films, we are able to deterministically reverse the magnetization of GdFeCo within 10ps. This is more than one order of magnitude faster than any other electrically controlled magnetic switching. Our results present a fundamentally new switching mechanism electrically, without requirement for any spin polarized current or spin transfer/orbit torques. Our discovery that ultrafast magnetization switching can be achieved with electrical pulses will launch a new frontier of spintronics science and herald a new generation of spintronic devices that operate at high speed with low energy consumption. At last, to push ultrafast spintronics to practical use, ultrafast switching of a ferromagnetic film is desired. By exploiting the exchange interaction between GdFeCo and ferromagnetic Co/Pt layer, we achieved ultrafast (sub 10ps) switching of ferromagnetic film with a single laser pulse. This result will open up the possibility to control ferromagnetic materials at ultrafast time scale, critical for practical applications.
Polarization-selective optical transmission through a plasmonic metasurface.
Pelzman, Charles; Cho, Sang-Yeon
2015-06-22
We present the design, fabrication, and experimental characterization of a nanoslit-based metasurface that offers polarization-selective optical transmission for advanced imaging applications. The metasurface consists of an array of meta-atoms, constructed with two orthogonally coupled subwavelength apertures. Highly enhanced optical transmission was achieved by selective excitation of surface plasmon waves on the metasurface. By rotating the orientation of the linearly polarized incident beam, switching of enhanced optical transmission bands through the metasurface was experimentally demonstrated. This demonstration is a significant step towards developing advanced multispectral imaging devices.
Polarization-selective optical transmission through a plasmonic metasurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelzman, Charles; Cho, Sang-Yeon, E-mail: sangycho@nmsu.edu
2015-06-22
We present the design, fabrication, and experimental characterization of a nanoslit-based metasurface that offers polarization-selective optical transmission for advanced imaging applications. The metasurface consists of an array of meta-atoms, constructed with two orthogonally coupled subwavelength apertures. Highly enhanced optical transmission was achieved by selective excitation of surface plasmon waves on the metasurface. By rotating the orientation of the linearly polarized incident beam, switching of enhanced optical transmission bands through the metasurface was experimentally demonstrated. This demonstration is a significant step towards developing advanced multispectral imaging devices.
NASA Astrophysics Data System (ADS)
Morlanes, Tomas; de la Pena, Jose L.; Sanchez-Brea, Luis M.; Alonso, Jose; Crespo, Daniel; Saez-Landete, Jose B.; Bernabeu, Eusebio
2005-07-01
In this work, an optoelectronic device that provides the absolute position of a measurement element with respect to a pattern scale upon switch-on is presented. That means that there is not a need to perform any kind of transversal displacement after the startup of the system. The optoelectronic device is based on the process of light propagation passing through a slit. A light source with a definite size guarantees the relation of distances between the different elements that constitute our system and allows getting a particular optical intensity profile that can be measured by an electronic post-processing device providing the absolute location of the system with a resolution of 1 micron. The accuracy of this measuring device is restricted to the same limitations of any incremental position optical encoder.
Photoinduced surface plasmon switching at VO2/Au interface.
Kumar, Nardeep; Rúa, Armando; Aldama, Jennifer; Echeverría, Karla; Fernández, Félix E; Lysenko, Sergiy
2018-05-28
Angle-resolved reflection, light scattering and ultrafast pump-probe spectroscopy combined with a surface plasmon-polariton (SPP) resonance technique in attenuated total reflection geometry was used to investigate the light-induced plasmonic switching in a photorefractive VO 2 /Au hybrid structure. Measurements of SPP scattering and reflection shows that the optically-induced formation of metallic state in a vanadium dioxide layer deposited on a gold film significantly alters the electromagnetic field enhancement and SPP propagation length at the VO 2 /Au interface. The ultrafast optical manipulation of SPP resonance is shown on a picosecond timescale. Obtained results demonstrate high potential of photorefractive vanadium oxides as efficient plasmonic modulating materials for ultrafast optoelectronic devices.
1 kW peak power passively Q-switched Nd(3+)-doped glass integrated waveguide laser.
Charlet, B; Bastard, L; Broquin, J E
2011-06-01
Embedded optical sensors always require more compact, stable, and powerful laser sources. In this Letter, we present a fully integrated passively Q-switched laser, which has been realized by a Ag(+)/Na(+) ion exchange on a Nd(3+)-doped phosphate glass. A BDN-doped cellulose acetate thick film is deposited on the waveguide, acting as an upper cladding and providing a distributed saturable absorption. At λ=1054 nm, the device emits pulses of 1.3 ns FWHM with a repetition rate of 28 kHz. These performances, coupled with the 1 kW peak power, are promising for applications such as supercontinuum generation. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Lan, Sheng; Sugimoto, Yoshimasa; Nishikawa, Satoshi; Ikeda, Naoki; Yang, Tao; Kanamoto, Kozyo; Ishikawa, Hiroshi; Asakawa, Kiyoshi
2002-07-01
We present a systematic study of coupled defects in photonic crystals (PCs) and explore their applications in constructing optical components and devices for ultrafast all-optical signal processing. First, we find that very deep band gaps can be generated in the impurity bands of coupled cavity waveguides (CCWs) by a small periodic modulation of defect modes. This phenomenon implies a high-efficiency all-optical switching mechanism. The switching mechanism can be easily extended from one-dimensional (1D) to two-dimensional and three-dimensional PC structures by utilizing the coupling of defect pairs which are generally present in PCs. Second, we suggest that CCWs with quasiflat and narrow impurity bands can be employed as efficient delay lines for ultrashort pulses. Criteria for designing such kind of CCWs have been derived from the analysis of defect coupling and the investigation of pulse transmission through various CCWs. It is found that the availability of quasiflat impurity bands depends not only on the intrinsic properties of the constituting defects but also on the detailed configuration of CCWs. In experiments, optical delay lines based on 1D monorail CCWs have been successfully fabricated and characterized. Finally, we have proposed a new mechanism for constructing waveguide intersections with broad bandwidth and low cross-talk.
All-optical quantum fluid spin beam splitter
NASA Astrophysics Data System (ADS)
Askitopoulos, A.; Nalitov, A. V.; Sedov, E. S.; Pickup, L.; Cherotchenko, E. D.; Hatzopoulos, Z.; Savvidis, P. G.; Kavokin, A. V.; Lagoudakis, P. G.
2018-06-01
We investigate the spin behavior of the first excited state of a polariton condensate in an optical trap by means of polarization resolved spectroscopy. The interplay between the repulsive polariton interactions and the gain saturation results in a nontrivial spontaneous switching between the two quasidegenerate spatial modes of the polariton condensate. As a result, the polarization pattern of the emitted light dramatically changes. Successful harnessing of this effect can lead to a spin-demultiplexing device for polariton-based optical integrated circuits.
Optically-programmable nonlinear photonic component for dielectric-loaded plasmonic circuitry.
Krasavin, Alexey V; Randhawa, Sukanya; Bouillard, Jean-Sebastien; Renger, Jan; Quidant, Romain; Zayats, Anatoly V
2011-12-05
We demonstrate both experimentally and numerically a compact and efficient, optically tuneable plasmonic component utilizing a surface plasmon polariton ring resonator with nonlinearity based on trans-cis isomerization in a polymer material. We observe more than 3-fold change between high and low transmission states of the device at milliwatt control powers (∼100 W/cm2 by intensity), with the performance limited by switching speed of the material. Such plasmonic components can be employed in optically programmable and reconfigurable integrated photonic circuitry.
Optical programmable metamaterials
NASA Astrophysics Data System (ADS)
Gong, Cheng; Zhang, Nan; Dai, Zijie; Liu, Weiwei
2018-02-01
We suggest and demonstrate the concept of optical programmable metamaterials which can configure the device's electromagnetic parameters by the programmable optical stimuli. In such metamaterials, the optical stimuli produced by a FPGA controlled light emitting diode array can switch or combine the resonance modes which are coupled in. As an example, an optical programmable metamaterial terahertz absorber is proposed. Each cell of the absorber integrates four meta-rings (asymmetric 1/4 rings) with photo-resistors connecting the critical gaps. The principle and design of the metamaterials are illustrated and the simulation results demonstrate the functionalities for programming the metamaterial absorber to change its bandwidth and resonance frequency.
NASA Technical Reports Server (NTRS)
Bartelt, Hartmut (Editor)
1990-01-01
The conference presents papers on interconnections, clock distribution, neural networks, and components and materials. Particular attention is given to a comparison of optical and electrical data interconnections at the board and backplane levels, a wafer-level optical interconnection network layout, an analysis and simulation of photonic switch networks, and the integration of picosecond GaAs photoconductive devices with silicon circuits for optical clocking and interconnects. Consideration is also given to the optical implementation of neural networks, invariance in an optoelectronic implementation of neural networks, and the recording of reversible patterns in polymer lightguides.
Low-Crosstalk Composite Optical Crosspoint Switches
NASA Technical Reports Server (NTRS)
Pan, Jing-Jong; Liang, Frank
1993-01-01
Composite optical switch includes two elementary optical switches in tandem, plus optical absorbers. Like elementary optical switches, composite optical switches assembled into switch matrix. Performance enhanced by increasing number of elementary switches. Advantage of concept: crosstalk reduced to acceptably low level at moderate cost of doubling number of elementary switches rather than at greater cost of tightening manufacturing tolerances and exerting more-precise control over operating conditions.
Application of Nanostructures in Electrochromic Materials and Devices: Recent Progress.
Wang, Jin Min; Sun, Xiao Wei; Jiao, Zhihui
2010-11-26
The recent progress in application of nanostructures in electrochromic materials and devices is reviewed. ZnO nanowire array modified by viologen and WO₃, crystalline WO₃ nanoparticles and nanorods, mesoporous WO₃ and TiO₂, poly(3,4-ethylenedioxythiophene) nanotubes, Prussian blue nanoinks and nanostructures in switchable mirrors are reviewed. The electrochromic properties were significantly enhanced by applying nanostructures, resulting in faster switching responses, higher stability and higher optical contrast. A perspective on the development trends in electrochromic materials and devices is also proposed.
Optical modulation in silicon waveguides via charge state control of deep levels.
Logan, D F; Jessop, P E; Knights, A P; Wojcik, G; Goebel, A
2009-10-12
The control of defect mediated optical absorption at a wavelength of 1550 nm via charge state manipulation is demonstrated using optical absorption measurements of indium doped Silicon-On-Insulator (SOI) rib waveguides. These measurements introduce the potential for modulation of waveguide transmission by using the local depletion and injection of free-carriers to change deep-level occupancy. The extinction ratio and modulating speed are simulated for a proposed device structure. A 'normally-off' depletion modulator is described with an extinction coefficient limited to 5 dB/cm and switching speeds in excess of 1 GHz. For a carrier injection modulator a fourfold enhancement in extinction ratio is provided relative to free carrier absorption alone. This significant improvement in performance is achieved with negligible increase in driving power but slightly degraded switching speed.
Optimization of a Fabry-Perot Q-switch fiber optic laser
NASA Astrophysics Data System (ADS)
Armas Rivera, Ivan; Beltrán Pérez, Georgina; Kuzin, Evgene; Castillo Mixcóatl, Juan; Muñoz Aguirre, Severino
2013-11-01
Optical fiber Q-Switch lasers have been used in a variety of application areas in science as well as in industry owing to their multiple characteristics. A possible application is that owing to their high output power they can be used as pumping sources for supercontinuum generation. Such source can be employed in optical coherence tomography (OCT) focused to dermatology. Therefore it is important to develop sources with emission wavelength that are not injurious to human skin. In the present work erbium doped fiber (EDF) was used owing that its emission wavelength (1550 nm) is adequate for this purpose. The most efficient way of achieving high power in a Q-Switch laser is optimizing all the parameters involved in the pulses generation, such as pumping power, active medium length and modulation frequency. The results show that using a fiber length of 7 meters is possible to get 10 μJ of energy, a peak power of 140 W, an average power of 27.5mW with temporal widths of 500 ns. The laser uses an acousto-optic device to modulate the internal loses inside the cavity. As highly reflecting mirrors, a Sagnac Interferometer and a Fiber Bragg Grating was employed.
A new coupling mechanism between two graphene electron waveguides for ultrafast switching
NASA Astrophysics Data System (ADS)
Huang, Wei; Liang, Shi-Jun; Kyoseva, Elica; Ang, Lay Kee
2018-03-01
In this paper, we report a novel coupling between two graphene electron waveguides, in analogy the optical waveguides. The design is based on the coherent quantum mechanical tunneling of Rabi oscillation between the two graphene electron waveguides. Based on this coupling mechanism, we propose that it can be used as an ultrafast electronic switching device. Based on a modified coupled mode theory, we construct a theoretical model to analyze the device characteristics, and predict that the switching speed is faster than 1 ps and the on-off ratio exceeds 106. Due to the long mean free path of electrons in graphene at room temperature, the proposed design avoids the limitation of low temperature operation required in the traditional design by using semiconductor quantum-well structure. The layout of our design is similar to that of a standard complementary metal-oxide-semiconductor transistor that should be readily fabricated with current state-of-art nanotechnology.
Optically Addressable, Ferroelectric Memory With NDRO
NASA Technical Reports Server (NTRS)
Thakoor, Sarita
1994-01-01
For readout, memory cells addressed via on-chip semiconductor lasers. Proposed thin-film ferroelectric memory device features nonvolatile storage, optically addressable, nondestructive readout (NDRO) with fast access, and low vulnerability to damage by ionizing radiation. Polarization switched during recording and erasure, but not during readout. As result, readout would not destroy contents of memory, and operating life in specific "read-intensive" applications increased up to estimated 10 to the 16th power cycles.
Nanodoping: a route for enhancing electro-optic performance of bent core nematic system
NASA Astrophysics Data System (ADS)
Kumar, Pradeep; Debnath, Somen; Rao, Nandiraju V. S.; Sinha, Aloka
2018-03-01
We report the effect of dispersion of barium titanate (BaTiO3) nanoparticles (BNPs) in a four ring bent core nematic (BCN) liquid crystal. Polarizing optical microscopy reveals the presence of a single nematic phase in pure and doped states. Polar switching has been observed in the bent core system and the value of spontaneous polarization (P s) increases with increase in doping concentration of BNPs in BCN. Dielectric study shows a lower frequency mode, which can be ascribed to the formation of cybotactic clusters. These clusters are also responsible for the observed polar switching in pure, as well as, in doped BCNs. Another higher frequency mode, observed only in pure BCN, indicates the rotation of molecules about their long molecular axis. The conductivity of doped samples is also found to decrease as compared to the pure BCN. This reduction helps in the minimization of negative effects caused by free ions in liquid crystal based devices. This study demonstrates that the interaction between BNPs and BCN molecules improves the P s, dielectric behaviour, viscosity and reduces the conductivity of pure BCN. Hence, nanodoping in a BCN is an effective method for the enhancement of electro-optic performances and will lead to the development of faster electro-optic devices.
NASA Astrophysics Data System (ADS)
Ren, Yundong; Zhang, Rui; Ti, Chaoyang; Liu, Yuxiang
2016-09-01
Tapered optical fibers can deliver guided light into and carry light out of micro/nanoscale systems with low loss and high spatial resolution, which makes them ideal tools in integrated photonics and microfluidics. Special geometries of tapered fibers are desired for probing monolithic devices in plane as well as optical manipulation of micro particles in fluids. However, for many specially shaped tapered fibers, it remains a challenge to fabricate them in a straightforward, controllable, and repeatable way. In this work, we fabricated and characterized two special geometries of tapered optical fibers, namely fiber loops and helices, that could be switched between one and the other. The fiber loops in this work are distinct from previous ones in terms of their superior mechanical stability and high optical quality factors in air, thanks to a post-annealing process. We experimentally measured an intrinsic optical quality factor of 32,500 and a finesse of 137 from a fiber loop. A fiber helix was used to characterize a monolithic cavity optomechanical device. Moreover, a microfluidic "roller coaster" was demonstrated, where microscale particles in water were optically trapped and transported by a fiber helix. Tapered fiber loops and helices can find various applications ranging from on-the-fly characterization of integrated photonic devices to particle manipulation and sorting in microfluidics.
Kim, Tae Young; Badsha, Md. Alamgir; Yoon, Junho; Lee, Seon Young; Jun, Young Chul; Hwangbo, Chang Kwon
2016-01-01
We propose a general, easy-to-implement scheme for broadband coherent perfect absorption (CPA) using epsilon-near-zero (ENZ) multilayer films. Specifically, we employ indium tin oxide (ITO) as a tunable ENZ material, and theoretically investigate CPA in the near-infrared region. We first derive general CPA conditions using the scattering matrix and the admittance matching methods. Then, by combining these two methods, we extract analytic expressions for all relevant parameters for CPA. Based on this theoretical framework, we proceed to study ENZ CPA in a single layer ITO film and apply it to all-optical switching. Finally, using an ITO multilayer of different ENZ wavelengths, we implement broadband ENZ CPA structures and investigate multi-wavelength all-optical switching in the technologically important telecommunication window. In our design, the admittance matching diagram was employed to graphically extract not only the structural parameters (the film thicknesses and incident angles), but also the input beam parameters (the irradiance ratio and phase difference between two input beams). We find that the multi-wavelength all-optical switching in our broadband ENZ CPA system can be fully controlled by the phase difference between two input beams. The simple but general design principles and analyses in this work can be widely used in various thin-film devices. PMID:26965195
Thermo-optic devices on polymer platform
NASA Astrophysics Data System (ADS)
Zhang, Ziyang; Keil, Norbert
2016-03-01
Optical polymers possess in general relatively high thermo-optic coefficients and at the same time low thermal conductivity, both of which make them attractive material candidates for realizing highly efficient thermally tunable devices. Over the years, various thermo-optic components have been demonstrated on polymer platform, covering (1) tunable reflectors and filters as part of a laser cavity, (2) variable optical attenuators (VOAs) as light amplitude regulators in e.g. a coherent receiver, and (3) thermo-optic switches (TOSs) allowing multi-flow control in the photonic integrated circuits (PICs). This work attempts to review the recent progress on the above mentioned three component branches, including linearly and differentially tunable filters, VOAs based on 1×1 multimode interference structure (MMI) and Mach-Zehnder interferometer (MZI), and 1×2 TOS based on waveguide Y-branch, driven by a pair of sidelong placed heater electrodes. These thermo-optic components can well be integrated into larger PICs: the dual-polarization switchable tunable laser and the colorless optical 90° hybrid are presented in the end as examples.
Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device
NASA Astrophysics Data System (ADS)
Kruczek, T.; Leyman, R.; Carnegie, D.; Bazieva, N.; Erbert, G.; Schulz, S.; Reardon, C.; Reynolds, S.; Rafailov, E. U.
2012-08-01
Generation of continuous wave radiation at terahertz (THz) frequencies from a heterodyne source based on quantum-dot (QD) semiconductor materials is reported. The source comprises an active region characterised by multiple alternating photoconductive and QD carrier trapping layers and is pumped by two infrared optical signals with slightly offset wavelengths, allowing photoconductive device switching at the signals' difference frequency ˜1 THz.
Silicon Modulators, Switches and Sub-systems for Optical Interconnect
NASA Astrophysics Data System (ADS)
Li, Qi
Silicon photonics is emerging as a promising platform for manufacturing and integrating photonic devices for light generation, modulation, switching and detection. The compatibility with existing CMOS microelectronic foundries and high index contrast in silicon could enable low cost and high performance photonic systems, which find many applications in optical communication, data center networking and photonic network-on-chip. This thesis first develops and demonstrates several experimental work on high speed silicon modulators and switches with record performance and novel functionality. A 8x40 Gb/s transmitter based on silicon microrings is first presented. Then an end-to-end link using microrings for Binary Phase Shift Keying (BPSK) modulation and demodulation is shown, and its performance with conventional BPSK modulation/ demodulation techniques is compared. Next, a silicon traveling-wave Mach- Zehnder modulator is demonstrated at data rate up to 56 Gb/s for OOK modulation and 48 Gb/s for BPSK modulation, showing its capability at high speed communication systems. Then a single silicon microring is shown with 2x2 full crossbar switching functionality, enabling optical interconnects with ultra small footprint. Then several other experiments in the silicon platform are presented, including a fully integrated in-band Optical Signal to Noise Ratio (OSNR) monitor, characterization of optical power upper bound in a silicon microring modulator, and wavelength conversion in a dispersion-engineered waveguide. The last part of this thesis is on network-level application of photonics, specically a broadcast-and-select network based on star coupler is introduced, and its scalability performance is studied. Finally a novel switch architecture for data center networks is discussed, and its benefits as a disaggregated network are presented.
NASA Astrophysics Data System (ADS)
Chatterjee, Rohit
In this research work, we explore fundamental silicon-based active and passive photonic devices that can be integrated together to form functional photonic integrated circuits. The devices which include power splitters, switches and lenses are studied starting from their physics, their design and fabrication techniques and finally from an experimental standpoint. The experimental results reveal high performance devices that are compatible with standard CMOS fabrication processes and can be easily integrated with other devices for near infrared telecom applications. In Chapter 2, a novel method for optical switching using nanomechanical proximity perturbation technique is described and demonstrated. The method which is experimentally demonstrated employs relatively low powers, small chip footprint and is compatible with standard CMOS fabrication processes. Further, in Chapter 3, this method is applied to develop a hitless bypass switch aimed at solving an important issue in current wavelength division multiplexing systems namely hitless switching of reconfigurable optical add drop multiplexers. Experimental results are presented to demonstrate the application of the nanomechanical proximity perturbation technique to practical situations. In Chapter 4, a fundamental photonic component namely the power splitter is described. Power splitters are important components for any photonic integrated circuits because they help split the power from a single light source to multiple devices on the same chip so that different operations can be performed simultaneously. The power splitters demonstrated in this chapter are based on multimode interference principles resulting in highly compact low loss and highly uniform power splitting to split the power of the light from a single channel to two and four channels. These devices can further be scaled to achieve higher order splitting such as 1x16 and 1x32 power splits. Finally in Chapter 5 we overcome challenges in device fabrication and measurement techniques to demonstrate for the first time a "superlens" for the technologically important near infrared wavelength ranges with the opportunity to scale down further to visible wavelengths. The observed resolution is 0.47lambda, clearly smaller than the diffraction limit of 0.61lambda and is supported by detailed theoretical analyses and comprehensive numerical simulations. Importantly, we clearly show for the first time this subdiffraction limit imaging is due to the resonant excitation of surface slab modes, permitting amplification of evanescent waves. The demonstrated "superlens" has the largest figure of merit ever reported till date both theoretically and experimentally. The techniques and devices described in this thesis can be further applied to develop new devices with different functionalities. In Chapter 6 we describe two examples using these ideas. First, we experimentally demonstrate the use of the nanomechanical proximity perturbation technique to develop a phase retarder for on-chip all state polarization control. Next, we use the negative refraction photonic crystals described in Chapter 5 to achieve a special kind of bandgap called the zero-n¯ bandgap having unique properties.
Chen, Qiaoshan; Zhang, Fanfan; Ji, Ruiqiang; Zhang, Lei; Yang, Lin
2014-05-19
We propose a universal method for constructing N-port non-blocking optical router for photonic networks-on-chip, in which all microring (MR) optical switches or Mach-Zehnder (M-Z) optical switches behave as 2 × 2 optical switches. The optical router constructed by the proposed method has minimum optical switches, in which the number of the optical switches is reduced about 50% compared to the reported optical routers based on MR optical switches and more than 30% compared to the reported optical routers based on M-Z optical switches, and therefore is more compact in footprint and more power-efficient. We also present a strict mathematical proof of the non-blocking routing of the proposed N-port optical router.
Optical Helicity-Manipulated Photocurrents and Photovoltages in Organic Solar Cells
Wei, Mengmeng; Hao, Xiaotao; Saxena, Avadh Behari; ...
2018-05-29
The performance of an organic functional device can be effectively improved through external field manipulation. In this study, we experimentally demonstrate the optical polarization manipulation of the photocurrent or photovoltage in organic solar cells. Through switching the incident light from a linearly polarized light to a circularly polarized one, we find a pronounced change in the photocurrent, which is not observable in normal inorganic cells. There are two competing hypotheses for the primary process underlying the circular polarization-dependent phenomena in organic materials, one involving the inverse Faraday effect (IFE) and the other a direct photon spin–electron spin interaction. By waymore » of ingenious device design and external magnetic field-induced stimuli, it is expected that the organic IFE can be a powerful experimental tool in revealing and elucidating excited-state processes occurring in organic spintronic and optoelectronic devices. Therefore, we believe that our results will potentially lead to the development of new multifunctional organic devices with integrated electronic, optical, and magnetic properties for energy conversion, optical communication, and sensing technologies.« less
Optical Helicity-Manipulated Photocurrents and Photovoltages in Organic Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Mengmeng; Hao, Xiaotao; Saxena, Avadh Behari
The performance of an organic functional device can be effectively improved through external field manipulation. In this study, we experimentally demonstrate the optical polarization manipulation of the photocurrent or photovoltage in organic solar cells. Through switching the incident light from a linearly polarized light to a circularly polarized one, we find a pronounced change in the photocurrent, which is not observable in normal inorganic cells. There are two competing hypotheses for the primary process underlying the circular polarization-dependent phenomena in organic materials, one involving the inverse Faraday effect (IFE) and the other a direct photon spin–electron spin interaction. By waymore » of ingenious device design and external magnetic field-induced stimuli, it is expected that the organic IFE can be a powerful experimental tool in revealing and elucidating excited-state processes occurring in organic spintronic and optoelectronic devices. Therefore, we believe that our results will potentially lead to the development of new multifunctional organic devices with integrated electronic, optical, and magnetic properties for energy conversion, optical communication, and sensing technologies.« less
Cvijetic, Neda; Tanaka, Akihiro; Kanonakis, Konstantinos; Wang, Ting
2014-08-25
We demonstrate the first SDN-controlled optical topology-reconfigurable mobile fronthaul (MFH) architecture for bidirectional coordinated multipoint (CoMP) and low latency inter-cell device-to-device (D2D) connectivity in the 5G mobile networking era. SDN-based OpenFlow control is used to dynamically instantiate the CoMP and inter-cell D2D features as match/action combinations in control plane flow tables of software-defined optical and electrical switching elements. Dynamic re-configurability is thereby introduced into the optical MFH topology, while maintaining back-compatibility with legacy fiber deployments. 10 Gb/s peak rates with <7 μs back-to-back transmission latency and 29.6 dB total power budget are experimentally demonstrated, confirming the attractiveness of the new approach for optical MFH of future 5G mobile systems.
DLP technolgy: applications in optical networking
NASA Astrophysics Data System (ADS)
Yoder, Lars A.; Duncan, Walter M.; Koontz, Elisabeth M.; So, John; Bartlett, Terry A.; Lee, Benjamin L.; Sawyers, Bryce D.; Powell, Donald; Rancuret, Paul
2001-11-01
For the past five years, Digital Light Processing (DLP) technology from Texas Instruments has made significant inroads in the projection display market. With products encompassing the world's smallest data & video projectors, HDTVs, and digital cinema, DLP is an extremely flexible technology. At the heart of these display solutions is Texas Instruments Digital Micromirror Device (DMD), a semiconductor-based light switch array of thousands of individually addressable, tiltable, mirror-pixels. With success of the DMD as a spatial light modulator in the visible regime, the use of DLP technology under the constraints of coherent, infrared light for optical networking applications is being explored. As a coherent light modulator, the DMD device can be used in Dense Wavelength Division Multiplexed (DWDM) optical networks to dynamically manipulate and shape optical signals. This paper will present the fundamentals of using DLP with coherent wavefronts, discuss inherent advantages of the technology, and present several applications for DLP in dynamic optical networks.
Power-efficient dual-rate optical transceiver.
Zuo, Yongrong; Kiamiley, Fouad E; Wang, Xiaoqing; Gui, Ping; Ekman, Jeremy; Wang, Xingle; McFadden, Michael J; Haney, Michael W
2005-11-20
A dual-rate (2 Gbit/s and 100 Mbit/s) optical transceiver designed for power-efficient connections within and between modern high-speed digital systems is described. The transceiver can dynamically adjust its data rate according to performance requirements, allowing for power-on-demand operation. Dynamic power management permits energy saving and lowers device operating temperatures, improving the reliability and lifetime of optoelectronic-devices such as vertical-cavity surface-emitting lasers (VCSELs). To implement dual-rate functionality, we include in the transmitter and receiver circuits separate high-speed and low-power data path modules. The high-speed module is designed for gigabit operation to achieve high bandwidth. A simpler low-power module is designed for megabit data transmission with low power consumption. The transceiver is fabricated in a 0.5 microm silicon-on-sapphire complementary metal-oxide semiconductor. The VCSEL and photodetector devices are attached to the transceiver's integrated circuit by flip-chip bonding. A free-space optical link system is constructed to demonstrate correct dual-rate functionality. Experimental results show reliable link operation at 2 Gbit/s and 100 Mbit/s data transfer rates with approximately 104 and approximately 9 mW power consumption, respectively. The transceiver's switching time between these two data rates is demonstrated as 10 micros, which is limited by on-chip register reconfiguration time. Improvement of this switching time can be obtained by use of dedicated input-output pads for dual-rate control signals.
Printed polymer photonic devices for optical interconnect systems
NASA Astrophysics Data System (ADS)
Subbaraman, Harish; Pan, Zeyu; Zhang, Cheng; Li, Qiaochu; Guo, L. J.; Chen, Ray T.
2016-03-01
Polymer photonic device fabrication usually relies on the utilization of clean-room processes, including photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which are expensive and are limited to areas as large as a wafer. Utilizing a novel and a scalable printing process involving ink-jet printing and imprinting, we have fabricated polymer based photonic interconnect components, such as electro-optic polymer based modulators and ring resonator switches, and thermo-optic polymer switch based delay networks and demonstrated their operation. Specifically, a modulator operating at 15MHz and a 2-bit delay network providing up to 35.4ps are presented. In this paper, we also discuss the manufacturing challenges that need to be overcome in order to make roll-to-roll manufacturing practically viable. We discuss a few manufacturing challenges, such as inspection and quality control, registration, and web control, that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. We have overcome these challenges, and currently utilizing our inhouse developed hardware and software tools, <10μm alignment accuracy at a 5m/min is demonstrated. Such a scalable roll-to-roll manufacturing scheme will enable the development of unique optoelectronic devices which can be used in a myriad of different applications, including communication, sensing, medicine, security, imaging, energy, lighting etc.
Optically Controlled Signal Amplification for DNA Computation.
Prokup, Alexander; Hemphill, James; Liu, Qingyang; Deiters, Alexander
2015-10-16
The hybridization chain reaction (HCR) and fuel-catalyst cycles have been applied to address the problem of signal amplification in DNA-based computation circuits. While they function efficiently, these signal amplifiers cannot be switched ON or OFF quickly and noninvasively. To overcome these limitations, a light-activated initiator strand for the HCR, which enabled fast optical OFF → ON switching, was developed. Similarly, when a light-activated version of the catalyst strand or the inhibitor strand of a fuel-catalyst cycle was applied, the cycle could be optically switched from OFF → ON or ON → OFF, respectively. To move the capabilities of these devices beyond solution-based operations, the components were embedded in agarose gels. Irradiation with customizable light patterns and at different time points demonstrated both spatial and temporal control. The addition of a translator gate enabled a spatially activated signal to travel along a predefined path, akin to a chemical wire. Overall, the addition of small light-cleavable photocaging groups to DNA signal amplification circuits enabled conditional control as well as fast photocontrol of signal amplification.
Passively Q-switched Nd3+ solid-state lasers with antimonene as saturable absorber.
Wang, Mengixa; Zhang, Fang; Wang, Zhengping; Wu, Zhixin; Xu, Xinguang
2018-02-19
Based on the saturable absorption feature of a two-dimensional (2D) nano-material, antimonene, the passively Q-switched operation for solid-state laser was realized for the first time. For the 946 and 1064 nm laser emissions of the Nd:YAG crystal, the Q-switched pulse widths were 209 and 129 ns, and the peak powers were 1.48, 1.77 W, respectively. For the 1342 nm laser emission of the Nd:YVO 4 crystal, the Q-switched pulse width was 48 ns, giving a peak power of 28.17 W. Our research shows that antimonene can be used as a stable, broadband optical modulating device for a solid-state laser, which will be particularly effective for long wavelength operation.
Investigation of improved designs for rotational micromirrors using multiuser MEMS processes
NASA Astrophysics Data System (ADS)
Lin, Julianna E.; Michael, Feras S. J.; Kirk, Andrew G.
2001-04-01
In recent years, the design of rotational micromirrors for use in optical cross connects has received much attention. Although several companies have already produced and marketed a number of torsional mirror devices, more work is still needed to determine how these mirrors can be integrated into optical systems to form compact optical switches. However, recently several commercial MEMS foundry services have become available. Thus, due to the low cost of these prototyping services, new devices can be fabricated in short amounts of time and the designs adapted to meet the needs of different applications. The purpose of this work is to investigate the fabrication of new micromirror designs using the Multi-User MEMS Processes (MUMPs) foundry service available from Cronos Integrated Microsystems, located in North Carolina, USA). Several sets of mirror designs were submitted for fabrication and the resulting structures characterized using a phase-shifting Mirau interferometer. The results of these devices are presented.
NASA Technical Reports Server (NTRS)
Grinberg, J.; Jacobson, A.; Bleha, W.; Miller, L.; Fraas, L.; Boswell, D.; Myer, G.
1975-01-01
A new, high-performance device has been developed for application to real-time coherent optical data processing. The new device embodies a CdS photoconductor, a CdTe light-absorbing layer, a dielectric mirror, and a liquid crystal layer sandwiched between indium-tin-oxide transparent electrodes deposited on optical quality glass flats. The noncoherent image is directed onto the photoconductor; this reduces the impedance of the photoconductor, thereby switching the ac voltage that is impressed across the electrodes onto the liquid crystal to activate the device. The liquid crystal is operated in a hybrid field effect mode. It utilizes the twisted nematic effect to create a dark off-state and the optical birefringence effect to create the bright on-state. The liquid crystal modulates the polarization of the coherent read-out light so an analyzer must be used to create an intensity modulated output beam.
Liquid crystal waveguides: new devices enabled by >1000 waves of optical phase control
NASA Astrophysics Data System (ADS)
Davis, Scott R.; Farca, George; Rommel, Scott D.; Johnson, Seth; Anderson, Michael H.
2010-02-01
A new electro-optic waveguide platform, which provides unprecedented voltage control over optical phase delays (> 2mm), with very low loss (< 0.5 dB/cm) and rapid response time (sub millisecond), will be presented. This technology, developed by Vescent Photonics, is based upon a unique liquid-crystal waveguide geometry, which exploits the tremendous electro-optic response of liquid crystals while circumventing their historic limitations. The waveguide geometry provides nematic relaxation speeds in the 10's of microseconds and LC scattering losses that are reduced by orders of magnitude from bulk transmissive LC optics. The exceedingly large optical phase delays accessible with this technology enable the design and construction of a new class of previously unrealizable photonic devices. Examples include: 2-D analog non-mechanical beamsteerers, chip-scale widely tunable lasers, chip-scale Fourier transform spectrometer (< 5 nm resolution demonstrated), widely tunable micro-ring resonators, tunable lenses, ultra-low power (< 5 microWatts) optical switches, true optical time delay devices for phased array antennas, and many more. All of these devices may benefit from established manufacturing technologies and ultimately may be as inexpensive as a calculator display. Furthermore, this new integrated photonic architecture has applications in a wide array of commercial and defense markets including: remote sensing, micro-LADAR, OCT, FSO, laser illumination, phased array radar, etc. Performance attributes of several example devices and application data will be presented. In particular, we will present a non-mechanical beamsteerer that steers light in both the horizontal and vertical dimensions.
Optically Driven Q-Switches For Lasers
NASA Technical Reports Server (NTRS)
Hemmati, Hamid
1994-01-01
Optically driven Q-switches for pulsed lasers proposed, taking place of acousto-optical, magneto-optical, and electro-optical switches. Optical switching beams of proposed Q-switching most likely generated in pulsed diode lasers or light-emitting diodes, outputs of which are amplitude-modulated easily by direct modulation of relatively small input currents. Energy efficiencies exceed those of electrically driven Q-switches.
Cholesteric metronomes with flexoelectrically programmable amplitude
NASA Astrophysics Data System (ADS)
Joshi, Vinay; Varanytsia, A.; Chang, Kai-Han; Paterson, Daniel A.; Storey, John M. D.; Imrie, Corrie T.; Chien, Liang-Chy
2018-02-01
We experimentally demonstrate fast flexoelectro-optic switching in a liquid crystal cell containing bimesogen-doped and polymer-stabilized cholesteric. The device exhibits a response time of less than 0.7 ms and with low hysteresis and color dispersion which is suitable for potential applications including field-sequential color displays.
Lee, Eunha; Benayad, Anass; Shin, Taeho; Lee, HyungIk; Ko, Dong-Su; Kim, Tae Sang; Son, Kyoung Seok; Ryu, Myungkwan; Jeon, Sanghun; Park, Gyeong-Su
2014-01-01
Interest in oxide semiconductors stems from benefits, primarily their ease of process, relatively high mobility (0.3–10 cm2/vs), and wide-bandgap. However, for practical future electronic devices, the channel mobility should be further increased over 50 cm2/vs and wide-bandgap is not suitable for photo/image sensor applications. The incorporation of nitrogen into ZnO semiconductor can be tailored to increase channel mobility, enhance the optical absorption for whole visible light and form uniform micro-structure, satisfying the desirable attributes essential for high performance transistor and visible light photo-sensors on large area platform. Here, we present electronic, optical and microstructural properties of ZnON, a composite of Zn3N2 and ZnO. Well-optimized ZnON material presents high mobility exceeding 100 cm2V−1s−1, the band-gap of 1.3 eV and nanocrystalline structure with multiphase. We found that mobility, microstructure, electronic structure, band-gap and trap properties of ZnON are varied with nitrogen concentration in ZnO. Accordingly, the performance of ZnON-based device can be adjustable to meet the requisite of both switch device and image-sensor potentials. These results demonstrate how device and material attributes of ZnON can be optimized for new device strategies in display technology and we expect the ZnON will be applicable to a wide range of imaging/display devices. PMID:24824778
All-optical switch with two periodically modulated nonlinear waveguides.
Xie, Qiongtao; Luo, Xiaobing; Wu, Biao
2010-02-01
We propose a type of all-optical switch which consists of two periodically modulated nonlinear optical waveguides placed in parallel. Compared to the all-optical switch based on the traditional nonlinear directional coupler without periodic modulation, this all-optical switch has much lower switching threshold power and sharper switching width.
Investigation of 100 mJ all solid state end-pumped 1064 nm Q-switched laser
NASA Astrophysics Data System (ADS)
Xie, Shiyong; Wang, Caili; Liu, Hui; Bo, Yong; Xu, Zuyan
2017-11-01
High energy 1064 nm Q-switched laser output is obtained by LD vertical array end pumping Nd:YAG. Cylindrical lens are used for beam shaping of LD array for different divergence angle of fast and slow axis. Based on the theoretical simulation of fundamental mode radius using ABCD transfer matrix, the resonant cavity is optimized and curvature radius of cavity mirrors is determined. The intracavity power density is calculated according to the output laser pulse energy and transmittance of output coupling mirror is optimized under the condition that optical device is not damaged. 1064 nm laser with a maximum output of 110 mJ is generated under LD pump energy of 600 mJ, corresponding to optical conversion efficiency of 18.3%. The laser pulse width is 11 ns and divergence angle is 1.2 mrad. For saturation phenomenon of Q-switched laser output, LD temperature is adjusted to make wavelength deviate from absorption peak of Nd:YAG crystal. The parasitic oscillation, which affects the enhancement of Q-switched laser energy, can be effectively suppressed by reducing gain of pump end of laser medium, which provides an effective technical means for obtaining high energy end-pumped Q-switched laser.
NASA Astrophysics Data System (ADS)
Asgari, Somayyeh; Ghattan Kashani, Zahra; Granpayeh, Nosrat
2018-04-01
The performances of three optical devices including a refractive index sensor, a power splitter, and a 4-channel multi/demultiplexer based on graphene cylindrical resonators are proposed, analyzed, and simulated numerically by using the finite-difference time-domain method. The proposed sensor operates on the principle of the shift in resonance wavelength with a change in the refractive index of dielectric materials. The sensor sensitivity has been numerically derived. In addition, the performances of the power splitter and the multi/demultiplexer based on the variation of the resonance wavelengths of cylindrical resonator have been thoroughly investigated. The simulation results are in good agreement with the theoretical ones. Our studies demonstrate that the graphene based ultra-compact, nano-scale devices can be improved to be used as photonic integrated devices, optical switching, and logic gates.
A-O Q-switching of 2.1-μm laser
NASA Astrophysics Data System (ADS)
Zheng, Jia; Liu, Jingjiao; Tang, Yi; Hu, Yongzhao
2005-01-01
2.1μm solid state laser operating at room temperature is a very useful laser source for optical communication, medical care, air pollution monitoring and Lidar, etc. It is eye-safe. It is also a very ideal pump source for optic parametric oscillator to get 3μm -5μm radiation. In order to further explore its potential applications, higher peak power and shorter pulse width are very desirable. Q-switching the laser is a most practical way to realize those goals. Among the most common used Q-switching techniques, mechanical Q-switching is not preferred due to that it involves use of a rotating motor, which has lower life time and causes undesirable vibration. E-O Q-switch material in this wavelength range is very expensive and quite susceptible to optical damage. On the other hand, low OH concentration quartz material exhibits very low absorption at the 2.1μm. The Cr:Tm:Ho:YAG 2.1μm laser has undesirable lower gain from the laser efficiency point of view, but offers a feasibility of using the A-O device for the Q-switching even the laser is pulse pumped. The Cr:Tm:Ho:YAG 2.1μm laser is a so called quasi-three level laser, which is characterized as having a higher threshold and lower gain. This study is focused on the optimization of the laser resonator design and the A-O Q-switch design for a higher laser peak power and shorter pulse width. Factors considered in the study include AO Q-switch"s RF frequency, modulation depth, active aperture, resonator length, resonator loss and pumping design, etc. Experiment results are compared with the Q-switched quasi-three level laser model. Final result of the Q-switched 2.1μm laser after preliminary optimization will be presented.
Photonic crystal Fano resonances for realizing optical switches, lasers, and non-reciprocal elements
NASA Astrophysics Data System (ADS)
Bekele, Dagmawi A.; Yu, Yi; Hu, Hao; Ding, Yunhong; Sakanas, Aurimas; Ottaviano, Luisa; Semenova, Elizaveta; Oxenløwe, Leif K.; Yvind, Kresten; Mork, Jesper
2017-08-01
We present our work on photonic crystal membrane devices exploiting Fano resonance between a line-defect waveguide and a side coupled nanocavity. Experimental demonstration of fast and compact all-optical switches for wavelength-conversion is reported. It is shown how the use of an asymmetric structure in combination with cavity-enhanced nonlinearity can be used to realize non-reciprocal transmission at ultra-low power and with large bandwidth. A novel type of laser structure, denoted a Fano laser, is discussed in which one of the mirrors is based on a Fano resonance. Finally, the design, fabrication and characterization of grating couplers for efficient light coupling in and out of the indium phosphide photonic crystal platform is discussed.
Using Transverse Optical Patterns for Ultra-Low-Light All-Optical Switching
2008-01-01
handling devices from cellular telephones to supercomputers. The de - velopment of the internet (world-wide-web) was enabled by personal computers and...increase in response time for de - creasing power that is qualitatively similar to experimental observations. To facilitate comparison to Fig. 5.8(a...wells and of the entire ring correspond to the preference of the system to emit light in a hexagonal pattern. To de - scribe the pattern orientation using
Evaluation of polymer based third order nonlinear integrated optics devices
NASA Astrophysics Data System (ADS)
Driessen, A.; Hoekstra, H. J. W. M.; Blom, F. C.; Horst, F.; Krijnen, G. J. M.; van Schoot, J. B. P.; Lambeck, P. V.; Popma, Th. J. A.; Diemeer, M. B.
1998-01-01
Nonlinear polymers are promising materials for high speed active integrated optics devices. In this paper we evaluate the perspectives polymer based nonlinear optical devices can offer. Special attention is directed to the materials aspects. In our experimental work we applied mainly Akzo Nobel DANS side-chain polymer that exhibits large second and third order coefficients. This material has been characterized by third harmonic generation, z-scan and pump-probe measurements. In addition, various waveguiding structures have been used to measure the nonlinear absorption (two photon absorption) on a ps time-scale. Finally an integrated optics Mach Zehnder interferometer has been realized and evaluated. It is shown that the DANS side-chain polymer has many of the desired properties: the material is easily processable in high-quality optical waveguiding structures, has low linear absorption and its nonlinearity has a pure electronic origin. More materials research has to be done to arrive at materials with higher nonlinear coefficients to allow switching at moderate light intensity ( < 1 W peak power) and also with lower nonlinear absorption coefficients.
A Superconducting Dual-Channel Photonic Switch.
Srivastava, Yogesh Kumar; Manjappa, Manukumara; Cong, Longqing; Krishnamoorthy, Harish N S; Savinov, Vassili; Pitchappa, Prakash; Singh, Ranjan
2018-06-05
The mechanism of Cooper pair formation and its underlying physics has long occupied the investigation into high temperature (high-T c ) cuprate superconductors. One of the ways to unravel this is to observe the ultrafast response present in the charge carrier dynamics of a photoexcited specimen. This results in an interesting approach to exploit the dissipation-less dynamic features of superconductors to be utilized for designing high-performance active subwavelength photonic devices with extremely low-loss operation. Here, dual-channel, ultrafast, all-optical switching and modulation between the resistive and the superconducting quantum mechanical phase is experimentally demonstrated. The ultrafast phase switching is demonstrated via modulation of sharp Fano resonance of a high-T c yttrium barium copper oxide (YBCO) superconducting metamaterial device. Upon photoexcitation by femtosecond light pulses, the ultrasensitive cuprate superconductor undergoes dual dissociation-relaxation dynamics, with restoration of superconductivity within a cycle, and thereby establishes the existence of dual switching windows within a timescale of 80 ps. Pathways are explored to engineer the secondary dissociation channel which provides unprecedented control over the switching speed. Most importantly, the results envision new ways to accomplish low-loss, ultrafast, and ultrasensitive dual-channel switching applications that are inaccessible through conventional metallic and dielectric based metamaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Diffraction-Based Optical Switching with MEMS
Blanche, Pierre-Alexandre; LaComb, Lloyd; Wang, Youmin; ...
2017-04-19
In this article, we are presenting an overview of MEMS-based (Micro-Electro-Mechanical System) optical switch technology starting from the reflective two-dimensional (2D) and three-dimensional (3D) MEMS implementations. To further increase the speed of the MEMS from these devices, the mirror size needs to be reduced. Small mirror size prevents efficient reflection but favors a diffraction-based approach. Two implementations have been demonstrated, one using the Texas Instruments DLP (Digital Light Processing), and the other an LCoS-based (Liquid Crystal on Silicon) SLM (Spatial Light Modulator). These switches demonstrated the benefit of diffraction, by independently achieving high speed, efficiency, and high number of ports.more » We also demonstrated for the first time that PSK (Phase Shift Keying) modulation format can be used with diffraction-based devices. To be truly effective in diffraction mode, the MEMS pixels should modulate the phase of the incident light. We are presenting our past and current efforts to manufacture a new type of MEMS where the pixels are moving in the vertical direction. The original structure is a 32 x 32 phase modulator array with high contrast grating pixels, and we are introducing a new sub-wavelength linear array capable of a 310 kHz modulation rate« less
Diffraction-Based Optical Switching with MEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanche, Pierre-Alexandre; LaComb, Lloyd; Wang, Youmin
In this article, we are presenting an overview of MEMS-based (Micro-Electro-Mechanical System) optical switch technology starting from the reflective two-dimensional (2D) and three-dimensional (3D) MEMS implementations. To further increase the speed of the MEMS from these devices, the mirror size needs to be reduced. Small mirror size prevents efficient reflection but favors a diffraction-based approach. Two implementations have been demonstrated, one using the Texas Instruments DLP (Digital Light Processing), and the other an LCoS-based (Liquid Crystal on Silicon) SLM (Spatial Light Modulator). These switches demonstrated the benefit of diffraction, by independently achieving high speed, efficiency, and high number of ports.more » We also demonstrated for the first time that PSK (Phase Shift Keying) modulation format can be used with diffraction-based devices. To be truly effective in diffraction mode, the MEMS pixels should modulate the phase of the incident light. We are presenting our past and current efforts to manufacture a new type of MEMS where the pixels are moving in the vertical direction. The original structure is a 32 x 32 phase modulator array with high contrast grating pixels, and we are introducing a new sub-wavelength linear array capable of a 310 kHz modulation rate« less
Photon-detections via probing the switching current shifts of Josephson junctions
NASA Astrophysics Data System (ADS)
Wang, Yiwen; Zhou, Pinjia; Wei, Lianfu; Zhang, Beihong; Wei, Qiang; Zhai, Jiquan; Xu, Weiwei; Cao, Chunhai
2015-08-01
Phenomenally, Cooper pairs can be broken up by external energy and thus the Cooper-pair density in the superconducting electrodes of a Josephson junction (JJ) under radiation can be lowered accordingly. Therefore, by probing the shift of the switching current through the junction, the radiation power absorbed by the superconductors can be detected. Here, we experimentally demonstrate weak optical detections in two types of JJs: Al/AlOx/Al junction (Al-J) and Nb/AlOx/Nb junction (Nb-J), with the superconducting transition temperatures Tc ≈ 1.2K and 6.8 K respectively. The photon-induced switching current shifts are measured at ultra-low temperature (T ≈ 16mK) in order to significantly suppress thermal noises. It is observed that the Al-J has a higher sensitivity than the Nb-J, which is expected since Al has a smaller superconducting gap energy than Nb. The minimum detectable optical powers (at 1550 nm) with the present Al-J and Nb-J are measured as 8 pW and 2 nW respectively, and the noise equivalent power (NEP) are estimated to be 7 ×10-11W /√{ Hz } (for Nb-J) and 3 ×10-12W /√{ Hz } (for Al-J). We also find that the observed switching current responses are dominated by the photon-induced thermal effects. Several methods are proposed to further improve the device sensitivity, so that the JJ based devices can be applicable in photon detections.
NASA Astrophysics Data System (ADS)
Sharath, S. U.; Joseph, M. J.; Vogel, S.; Hildebrandt, E.; Komissinskiy, P.; Kurian, J.; Schroeder, T.; Alff, L.
2016-10-01
We have investigated the material and electrical properties of tantalum oxide thin films (TaOx) with engineered oxygen contents grown by RF-plasma assisted molecular beam epitaxy. The optical bandgap and the density of the TaOx films change consistently with oxygen contents in the range of 3.63 to 4.66 eV and 12.4 to 9.0 g/cm3, respectively. When exposed to atmosphere, an oxidized Ta2O5-y surface layer forms with a maximal thickness of 1.2 nm depending on the initial oxygen deficiency of the film. X-ray photoelectron spectroscopy studies show that multiple sub-stoichiometric compositions occur in oxygen deficient TaOx thin films, where all valence states of Ta including metallic Ta are possible. Devices of the form Pt/Ta2O5-y/TaOx/TiN exhibit highly tunable forming voltages of 10.5 V to 1.5 V with decreasing oxygen contents in TaOx. While a stable bipolar resistive switching (BRS) occurs in all devices irrespective of oxygen content, unipolar switching was found to coexist with BRS only at higher oxygen contents, which transforms to a threshold switching behaviour in the devices grown under highest oxidation.
NASA Astrophysics Data System (ADS)
Ferhati, H.; Djeffal, F.
2018-06-01
In this paper, a new optically controlled tunneling field effect transistor (OC-TFET) based on SiGe/Si/Ge hetero-channel is proposed to improve optical commutation speed and reduce power consumption. An exhaustive study of the device switching behavior associated with different hetero-channel structures has been carried out using an accurate numerical simulation. Moreover, a new figure of Merit (FoM) parameter called optical swing factor that describes the phototransistor optical commutation speed is proposed. We demonstrate that the band-to-band tunneling effect can be beneficial for improving the device optical commutation speed. The impact of the Ge mole fraction of the SiGe source region on the device FoMs is investigated. It is found that the optimized design with 40% of Ge content offers the opportunity to overcome the trade-off between ultrafast and very sensitive photoreceiver performance, where it yields 48 mV/dec of optical swing factor and 155 dB of I ON /I OFF ratio. An overall performance comparison between the proposed OC-TFET device and the conventional designs is performed, where the proposed structure ensures high optical detectivity for very low optical powers (sub-1pW) as compared to that of the conventional counterparts. Therefore, the proposed OC-TFET provides the possibility for bridging the gap between improved optical commutation speed and reduced power consumption, which makes it a potential alternative for high-performance inter-chip data communication applications.
New Concepts for the Development of Carbon Nanotube Materials for Army Related Applications
2015-08-16
the microcavity exciton- polariton system, which started as a theoretical concept in the 1990s and has been a driving force for experimental physics of... polariton lasers, optical polarization switches, superfluid spintronic devices, etc. We, therefore, strongly believe that the quasi-1D exciton BEC effect
2006-10-10
principal investigator, Dr. Michael Scalora (Redstone Arsenal, Huntsville, AL (USA). During the first three months we investigated some devices based on...X. Alvarez-Mico, R. Gomez-Bombarelli, M. Cappeddu, M. Scalora , M.J. Bloemer, submitted to Applied Physics Letters.
High-power microwave generation using optically activated semiconductor switches
NASA Astrophysics Data System (ADS)
Nunnally, William C.
1990-12-01
The two prominent types of optically controlled switches, the optically controlled linear (OCL) switch and the optically initiated avalanche (OIA) switch, are described, and their operating parameters are characterized. Two transmission line approaches, one using a frozen-wave generator and the other using an injected-wave generator, for generation of multiple cycles of high-power microwave energy using optically controlled switches are discussed. The point design performances of the series-switch, frozen-wave generator and the parallel-switch, injected-wave generator are compared. The operating and performance limitations of the optically controlled switch types are discussed, and additional research needed to advance the development of the optically controlled, bulk, semiconductor switches is indicated.
High-resolution laser-projection display system using a grating electromechanical system (GEMS)
NASA Astrophysics Data System (ADS)
Brazas, John C.; Kowarz, Marek W.
2004-01-01
Eastman Kodak Company has developed a diffractive-MEMS spatial-light modulator for use in printing and display applications, the grating electromechanical system (GEMS). This modulator contains a linear array of pixels capable of high-speed digital operation, high optical contrast, and good efficiency. The device operation is based on deflection of electromechanical ribbons suspended above a silicon substrate by a series of intermediate supports. When electrostatically actuated, the ribbons conform to the supporting substructure to produce a surface-relief phase grating over a wide active region. The device is designed to be binary, switching between a reflective mirror state having suspended ribbons and a diffractive grating state having ribbons in contact with substrate features. Switching times of less than 50 nanoseconds with sub-nanosecond jitter are made possible by reliable contact-mode operation. The GEMS device can be used as a high-speed digital-optical modulator for a laser-projection display system by collecting the diffracted orders and taking advantage of the low jitter. A color channel is created using a linear array of individually addressable GEMS pixels. A two-dimensional image is produced by sweeping the line image of the array, created by the projection optics, across the display screen. Gray levels in the image are formed using pulse-width modulation (PWM). A high-resolution projection display was developed using three 1080-pixel devices illuminated by red, green, and blue laser-color primaries. The result is an HDTV-format display capable of producing stunning still and motion images with very wide color gamut.
Understanding the conductive channel evolution in Na:WO3-x-based planar devices
NASA Astrophysics Data System (ADS)
Shang, Dashan; Li, Peining; Wang, Tao; Carria, Egidio; Sun, Jirong; Shen, Baogen; Taubner, Thomas; Valov, Ilia; Waser, Rainer; Wuttig, Matthias
2015-03-01
An ion migration process in a solid electrolyte is important for ion-based functional devices, such as fuel cells, batteries, electrochromics, gas sensors, and resistive switching systems. In this study, a planar sandwich structure is prepared by depositing tungsten oxide (WO3-x) films on a soda-lime glass substrate, from which Na+ diffuses into the WO3-x films during the deposition. The entire process of Na+ migration driven by an alternating electric field is visualized in the Na-doped WO3-x films in the form of conductive channel by in situ optical imaging combined with infrared spectroscopy and near-field imaging techniques. A reversible change of geometry between a parabolic and a bar channel is observed with the resistance change of the devices. The peculiar channel evolution is interpreted by a thermal-stress-induced mechanical deformation of the films and an asymmetric Na+ mobility between the parabolic and the bar channels. These results exemplify a typical ion migration process driven by an alternating electric field in a solid electrolyte with a low ion mobility and are expected to be beneficial to improve the controllability of the ion migration in ion-based functional devices, such as resistive switching devices.An ion migration process in a solid electrolyte is important for ion-based functional devices, such as fuel cells, batteries, electrochromics, gas sensors, and resistive switching systems. In this study, a planar sandwich structure is prepared by depositing tungsten oxide (WO3-x) films on a soda-lime glass substrate, from which Na+ diffuses into the WO3-x films during the deposition. The entire process of Na+ migration driven by an alternating electric field is visualized in the Na-doped WO3-x films in the form of conductive channel by in situ optical imaging combined with infrared spectroscopy and near-field imaging techniques. A reversible change of geometry between a parabolic and a bar channel is observed with the resistance change of the devices. The peculiar channel evolution is interpreted by a thermal-stress-induced mechanical deformation of the films and an asymmetric Na+ mobility between the parabolic and the bar channels. These results exemplify a typical ion migration process driven by an alternating electric field in a solid electrolyte with a low ion mobility and are expected to be beneficial to improve the controllability of the ion migration in ion-based functional devices, such as resistive switching devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07545e
Method to optimize optical switch topology for photonic network-on-chip
NASA Astrophysics Data System (ADS)
Zhou, Ting; Jia, Hao
2018-04-01
In this paper, we propose a method to optimize the optical switch by substituting optical waveguide crossings for optical switching units and an optimizing algorithm to complete the optimization automatically. The functionality of the optical switch remains constant under optimization. With this method, we simplify the topology of optical switch, which means the insertion loss and power consumption of the whole optical switch can be effectively minimized. Simulation result shows that the number of switching units of the optical switch based on Spanke-Benes can be reduced by 16.7%, 20%, 20%, 19% and 17.9% for the scale from 4 × 4 to 8 × 8 respectively. As a proof of concept, the experimental demonstration of an optimized six-port optical switch based on Spanke-Benes structure by means of silicon photonics chip is reported.
Design and characterization of molecular nonlinear optical switches.
Castet, Frédéric; Rodriguez, Vincent; Pozzo, Jean-Luc; Ducasse, Laurent; Plaquet, Aurélie; Champagne, Benoît
2013-11-19
Nanoscale structures, including molecules, supramolecules, polymers, functionalized surfaces, and crystalline/amorphous solids, can commute between two or more forms, displaying contrasts in their nonlinear optical (NLO) properties. Because of this property, they have high potential for applications in data storage, signal processing, and sensing. As potential candidates for integration into responsive materials, scientists have been intensely studying organic and organometallic molecules with switchable first hyperpolarizability over the past two decades. As a result of this, researchers have been able to synthesize and characterize several families of molecular NLO switches that differ by the stimulus used to trigger the commutation. These stimuli can include light irradiation, pH variation, redox reaction, and ion recognition, among others. The design of multistate (including several switchable units) and multifunctional (triggered with different stimuli) systems has also motivated a large amount of work, aiming at the improvement of the storage capacity of optical memories or the diversification of the addressability of the devices. In complement to the synthesis of the compounds and the characterization of their NLO responses by means of hyper-Rayleigh scattering, quantum chemical calculations play a key role in the design of molecular switches with high first hyperpolarizability contrasts. Through the latter, we can gain a fundamental understanding of the various factors governing the efficiency of the switches. These are not easily accessible experimentally, and include donor/acceptor contributions, frequency dispersion, and solvent effects. In this Account, we illustrate the similarities of the experimental and theoretical tools to design and characterize highly efficient NLO switches but also the difficulties in comparing them. After providing a critical overview of the different theoretical approaches used for evaluating the first hyperpolarizabilities, we report two case studies in which theoretical simulations have provided guidelines to design NLO switches with improved efficiencies. The first example presents the joint theoretical/experimental characterization of a new family of multi-addressable NLO switches based on benzazolo-oxazolidine derivatives. The second focuses on the photoinduced commutation in merocyanine-spiropyran systems, where the significant NLO contrast could be exploited for metal cation identification in a new generation of multiusage sensing devices. Finally, we illustrate the impact of environment on the NLO switching properties, with examples based on the keto-enol equilibrium in anil derivatives. Through these representative examples, we demonstrate that the rational design of molecular NLO switches, which combines experimental and theoretical approaches, has reached maturity. Future challenges consist in extending the investigated objects to supramolecular architectures involving several NLO-responsive units, in order to exploit their cooperative effects for enhancing the NLO responses and contrasts.
Application of Nanostructures in Electrochromic Materials and Devices: Recent Progress
Wang, Jinmin; Sun, Xiao Wei; Jiao, Zhihui
2010-01-01
The recent progress in application of nanostructures in electrochromic materials and devices is reviewed. ZnO nanowire array modified by viologen and WO3, crystalline WO3 nanoparticles and nanorods, mesoporous WO3 and TiO2, poly(3,4-ethylenedioxythiophene) nanotubes, Prussian blue nanoinks and nanostructures in switchable mirrors are reviewed. The electrochromic properties were significantly enhanced by applying nanostructures, resulting in faster switching responses, higher stability and higher optical contrast. A perspective on the development trends in electrochromic materials and devices is also proposed. PMID:28883368
Optimization Of Shear Modes To Produce Enhanced Bandwidth In Ghz GaP Bragg Cells
NASA Astrophysics Data System (ADS)
Soos, J., I.; Rosemeier, R. G.; Rosenbaum, J.
1988-02-01
Applications of Gallium Phosphide (GaP) acousto-optic devices, at wavelengths from 570nm - 1.06um seem to be ideal for fiber optic modulators, scanners, deflectors, frequency shifters, Q-switches and mode lockers. One of the major applications are for RF spectrometers in early warning radar receivers and auto-correlators. Longitudinal GaP acousto-optic Bragg cells which have respectively operational frequencies in the range of 200 MHz - 3 GHz and diffraction efficiencies in the range of 120%/RF watt to 1%/RF watt have recently been fabricated. Comparatively, shear GaP devices which have operational frequencies in the range of 200 MHz to 2 GHz and diffraction efficiencies from 80%/RF watt to 7%/RF watt have also been constructed.
Reconfigurable and responsive droplet-based compound micro-lenses.
Nagelberg, Sara; Zarzar, Lauren D; Nicolas, Natalie; Subramanian, Kaushikaram; Kalow, Julia A; Sresht, Vishnu; Blankschtein, Daniel; Barbastathis, George; Kreysing, Moritz; Swager, Timothy M; Kolle, Mathias
2017-03-07
Micro-scale optical components play a crucial role in imaging and display technology, biosensing, beam shaping, optical switching, wavefront-analysis, and device miniaturization. Herein, we demonstrate liquid compound micro-lenses with dynamically tunable focal lengths. We employ bi-phase emulsion droplets fabricated from immiscible hydrocarbon and fluorocarbon liquids to form responsive micro-lenses that can be reconfigured to focus or scatter light, form real or virtual images, and display variable focal lengths. Experimental demonstrations of dynamic refractive control are complemented by theoretical analysis and wave-optical modelling. Additionally, we provide evidence of the micro-lenses' functionality for two potential applications-integral micro-scale imaging devices and light field display technology-thereby demonstrating both the fundamental characteristics and the promising opportunities for fluid-based dynamic refractive micro-scale compound lenses.
Reconfigurable and responsive droplet-based compound micro-lenses
Nagelberg, Sara; Zarzar, Lauren D.; Nicolas, Natalie; Subramanian, Kaushikaram; Kalow, Julia A.; Sresht, Vishnu; Blankschtein, Daniel; Barbastathis, George; Kreysing, Moritz; Swager, Timothy M.; Kolle, Mathias
2017-01-01
Micro-scale optical components play a crucial role in imaging and display technology, biosensing, beam shaping, optical switching, wavefront-analysis, and device miniaturization. Herein, we demonstrate liquid compound micro-lenses with dynamically tunable focal lengths. We employ bi-phase emulsion droplets fabricated from immiscible hydrocarbon and fluorocarbon liquids to form responsive micro-lenses that can be reconfigured to focus or scatter light, form real or virtual images, and display variable focal lengths. Experimental demonstrations of dynamic refractive control are complemented by theoretical analysis and wave-optical modelling. Additionally, we provide evidence of the micro-lenses' functionality for two potential applications—integral micro-scale imaging devices and light field display technology—thereby demonstrating both the fundamental characteristics and the promising opportunities for fluid-based dynamic refractive micro-scale compound lenses. PMID:28266505
NASA Technical Reports Server (NTRS)
Abdeldayem, Hossin; Frazier, Donald O.; Paley, Mark S.; Penn, Benjamin; Witherow, William K.; Bank, Curtis; Shields, Angela; Hicks, Rosline; Ashley, Paul R.
1996-01-01
In this paper, we will take a closer look at the state of the art of polydiacetylene, and metal-free phthalocyanine films, in view of the microgravity impact on their optical properties, their nonlinear optical properties and their potential advantages for integrated optics. These materials have many attractive features with regard to their use in integrated optical circuits and optical switching. Thin films of these materials processed in microgravity environment show enhanced optical quality and better molecular alignment than those processed in unit gravity. Our studies of these materials indicate that microgravity can play a major role in integrated optics technology. Polydiacetylene films are produced by UV irradiation of monomer solution through an optical window. This novel technique of forming polydiacetylene thin films has been modified for constructing sophisticated micro-structure integrated optical patterns using a pre-programmed UV-Laser beam. Wave guiding through these thin films by the prism coupler technique has been demonstrated. The third order nonlinear parameters of these films have been evaluated. Metal-free phthalocyanine films of good optical quality are processed in our laboratories by vapor deposition technique. Initial studies on these films indicate that they have excellent chemical, laser, and environmental stability. They have large nonlinear optical parameters and show intrinsic optical bistability. This bistability is essential for optical logic gates and optical switching applications. Waveguiding and device making investigations of these materials are underway.
Garcia, Ernest J; Polosky, Marc A
2013-05-21
An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.
The modeling of MMI structures for signal processing applications
NASA Astrophysics Data System (ADS)
Le, Thanh Trung; Cahill, Laurence W.
2008-02-01
Microring resonators are promising candidates for photonic signal processing applications. However, almost all resonators that have been reported so far use directional couplers or 2×2 multimode interference (MMI) couplers as the coupling element between the ring and the bus waveguides. In this paper, instead of using 2×2 couplers, novel structures for microring resonators based on 3×3 MMI couplers are proposed. The characteristics of the device are derived using the modal propagation method. The device parameters are optimized by using numerical methods. Optical switches and filters using Silicon on Insulator (SOI) then have been designed and analyzed. This device can become a new basic component for further applications in optical signal processing. The paper concludes with some further examples of photonic signal processing circuits based on MMI couplers.
NASA Astrophysics Data System (ADS)
Wang, Zhengjun; Pisane, Kelly L.; Sierros, Konstantinos; Seehra, Mohindar S.; Korakakis, Dimitris
2015-03-01
Currently, memory devices based on organic materials are attracting great attention due to their simplicity in device structure, mechanical flexibility, potential for scalability, low-cost potential, low-power operation, and large capacity for data storage. In a recent paper from our group, Indigo-based nonvolatile organic write-once-read-many-times (WORM) memory device, consisting of a 100nm layer of indigo sandwiched between an indium tin oxide (ITO) cathode and an Al anode, has been reported. This device is found to be at its low resistance state (ON state) and can be switched to high resistance state (OFF state) by applying a positive bias with ON/OFF current ratio of the device being up to 1.02 × e6. A summary of these results along with the structural and optical properties of indigo powder will be reported. Analysis of x-ray diffraction shows a monoclinic structure with lattice parameters a(b)[c] = 0.924(0.577)[0.1222]nm and β =117° . Optical absorption shows a band edge at 1.70 eV with peak of absorption occurring at 1.90 eV. These results will be interpreted in terms of the HOMO-LUMO bands of Indigo.
Cui, Qiu Hong; Peng, Qian; Luo, Yi; Jiang, Yuqian; Yan, Yongli; Wei, Cong; Shuai, Zhigang; Sun, Cheng; Yao, Jiannian; Zhao, Yong Sheng
2018-01-01
The ability to steer the flow of light toward desired propagation directions is critically important for the realization of key functionalities in optical communication and information processing. Although various schemes have been proposed for this purpose, the lack of capability to incorporate an external electric field to effectively tune the light propagation has severely limited the on-chip integration of photonics and electronics. Because of the noninteractive nature of photons, it is only possible to electrically control the flow of light by modifying the refractive index of materials through the electro-optic effect. However, the weak optical effects need to be strongly amplified for practical applications in high-density photonic integrations. We show a new strategy that takes advantage of the strong exciton-photon coupling in active waveguides to effectively manipulate photon transport by controlling the interaction between excitons and the external electric field. Single-crystal organic semiconductor nanowires were used to generate highly stable Frenkel exciton polaritons with strong binding and diffusion abilities. By making use of directional exciton diffusion in an external electric field, we have realized an electrically driven asymmetric photon transport and thus directional light propagation in a single nanowire. With this new concept, we constructed a dual-output single wire–based device to build an electrically controlled single-pole double-throw optical switch with fast temporal response and high switching frequency. Our findings may lead to the innovation of concepts and device architectures for optical information processing. PMID:29556529
Ferroelectric Nematic and Ferrielectric Smectic Mesophases in an Achiral Bent-Core Azo Compound.
Kumar, Jitendra; Prasad, Veena
2018-03-22
Here, we report the observation of ferroelectric nematic and ferrielectric smectic mesophases in an achiral bent-core azo compound consisting of nonsymmetrical molecules with a lateral fluoro substitution on one of the wings. These mesophases are enantiotropic in nature with fairly low transition temperatures and wide mesophase ranges. The liquid crystalline properties of this compound are investigated using polarizing optical microscope, differential scanning calorimeter, X-ray diffraction, and electro-optical studies. As revealed by X-ray diffraction measurements, the nematic mesophase is composed of skewed cybotactic clusters and, in the smectic mesophase, the molecules are tilted with respect to the layer normal. The polar order in these mesophases was confirmed by the electro-optical switching and dielectric spectroscopy measurements. The dielectric study in the nematic mesophase shows a single relaxation process at low frequency ( f < 1 kHz) measured in the range 10 Hz to 5 MHz, which is attributed to the collective motion of the molecules within cybotactic clusters. The formation of local polar order in these clusters leads to a ferroelectric-like polar switching in the nematic mesophase. Of particular interest is the fact that the smectic phase exhibits a field induced ferrielectric state, which can be exploited for designing of the potential optical devices due to multistate switching.
Optical Circuit Switched Protocol
NASA Technical Reports Server (NTRS)
Monacos, Steve P. (Inventor)
2000-01-01
The present invention is a system and method embodied in an optical circuit switched protocol for the transmission of data through a network. The optical circuit switched protocol is an all-optical circuit switched network and includes novel optical switching nodes for transmitting optical data packets within a network. Each optical switching node comprises a detector for receiving the header, header detection logic for translating the header into routing information and eliminating the header, and a controller for receiving the routing information and configuring an all optical path within the node. The all optical path located within the node is solely an optical path without having electronic storage of the data and without having optical delay of the data. Since electronic storage of the header is not necessary and the initial header is eliminated by the first detector of the first switching node. multiple identical headers are sent throughout the network so that subsequent switching nodes can receive and read the header for setting up an optical data path.
Band-pass Fabry-Pèrot magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Sharma, Abhishek; Tulapurkar, Ashwin. A.; Muralidharan, Bhaskaran
2018-05-01
We propose a high-performance magnetic tunnel junction by making electronic analogs of optical phenomena such as anti-reflections and Fabry-Pèrot resonances. The devices we propose feature anti-reflection enabled superlattice heterostructures sandwiched between the fixed and the free ferromagnets of the magnetic tunnel junction structure. Our predictions are based on non-equilibrium Green's function spin transport formalism coupled self-consistently with the Landau-Lifshitz-Gilbert-Slonczewski equation. Owing to the physics of bandpass spin filtering in the bandpass Fabry-Pèrot magnetic tunnel junction device, we demonstrate an ultra-high boost in the tunnel magneto-resistance (≈5 × 104%) and nearly 1200% suppression of spin transfer torque switching bias in comparison to a traditional trilayer magnetic tunnel junction device. The proof of concepts presented here can lead to next-generation spintronic device design harvesting the rich physics of superlattice heterostructures and exploiting spintronic analogs of optical phenomena.
Observation of negative differential resistance in mesoscopic graphene oxide devices.
Rathi, Servin; Lee, Inyeal; Kang, Moonshik; Lim, Dongsuk; Lee, Yoontae; Yamacli, Serhan; Joh, Han-Ik; Kim, Seongsu; Kim, Sang-Woo; Yun, Sun Jin; Choi, Sukwon; Kim, Gil-Ho
2018-05-08
The fractions of various functional groups in graphene oxide (GO) are directly related to its electrical and chemical properties and can be controlled by various reduction methods like thermal, chemical and optical. However, a method with sufficient controllability to regulate the reduction process has been missing. In this work, a hybrid method of thermal and joule heating processes is demonstrated where a progressive control of the ratio of various functional groups can be achieved in a localized area. With this precise control of carbon-oxygen ratio, negative differential resistance (NDR) is observed in the current-voltage characteristics of a two-terminal device in the ambient environment due to charge-activated electrochemical reactions at the GO surface. This experimental observation correlates with the optical and chemical characterizations. This NDR behavior offers new opportunities for the fabrication and application of such novel electronic devices in a wide range of devices applications including switches and oscillators.
NASA Astrophysics Data System (ADS)
Liao, Mingle; Wu, Baojian; Hou, Jianhong; Qiu, Kun
2018-03-01
Large scale optical switches are essential components in optical communication network. We aim to build up a large scale optical switch matrix by the interconnection of silicon-based optical switch chips using 3-stage CLOS structure, where EDFAs are needed to compensate for the insertion loss of the chips. The optical signal-to-noise ratio (OSNR) performance of the resulting large scale optical switch matrix is investigated for TE-mode light and the experimental results are in agreement with the theoretical analysis. We build up a 64 ×64 switch matrix by use of 16 ×16 optical switch chips and the OSNR and receiver sensibility can respectively be improved by 0.6 dB and 0.2 dB by optimizing the gain configuration of the EDFAs.
NASA Astrophysics Data System (ADS)
Liu, Cheng; Zhang, Jing
2018-02-01
Optical polarization from AlGaN quantum well (QW) is crucial for realizing high-efficiency deep-ultraviolet (UV) light-emitting diodes (LEDs) because it determines the light emission patterns and light extraction mechanism of the devices. As the Al-content of AlGaN QW increases, the valence bands order changes and consequently the light polarization switches from transverse-electric (TE) to transverse-magnetic (TM) owing to the different sign and the value of the crystal field splitting energy between AlN (-169meV) and GaN (10meV). Several groups have reported that the ordering of the bands and the TE/TM crossover Al-content could be influenced by the strain state and the quantum confinement from the AlGaN QW system. In this work, we investigate the influence of QW thickness on the optical polarization switching point from AlGaN QW with AlN barriers by using 6-band k•p model. The result presents a decreasing trend of the critical Al-content where the topmost valence band switches from heave hole (HH) to crystal field spilt-off (CH) with increasing QW thicknesses due to the internal electric field and the strain state from the AlGaN QW. Instead, the TE- and TM-polarized spontaneous emission rates switching Al-content rises first and falls later because of joint consequence of the band mixing effect and the Quantum Confined Stark Effect. The reported optical polarization from AlGaN QW emitters in the UV spectral range is assessed in this work and the tendency of the polarization switching point shows great consistency with the theoretical results, which deepens the understanding of the physics from AlGaN QW UV LEDs.
Micro-optical system based 3D imaging for full HD depth image capturing
NASA Astrophysics Data System (ADS)
Park, Yong-Hwa; Cho, Yong-Chul; You, Jang-Woo; Park, Chang-Young; Yoon, Heesun; Lee, Sang-Hun; Kwon, Jong-Oh; Lee, Seung-Wan
2012-03-01
20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical shutter'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation. The optical shutter device is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image. Suggested novel optical shutter device enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously. The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical shutter design, fabrication, characterization, 3D camera system prototype and image test results.
Kim, MinSu; Ham, Hyeong Gyun; Choi, Han-Sol; Bos, Philip J; Yang, Deng-Ke; Lee, Joong Hee; Lee, Seung Hee
2017-03-20
The demands for a power-saving mode for displaying static images are ubiquitous not only in portable devices but also in price tags and advertising panels. At a low-frequency driving in liquid crystal displays (LCDs) for low-power consumption, the flexoelectric effect arises even in calamitic liquid crystals and the optical appearance of this physical phenomenon is found to be unusually large, being noticed as an image-flickering. Although the inherent integrated optical transmittance of in-plane switching (IPS) mode is relatively lower than that of fringe-field switching (FFS) mode, the IPS mode shows no static image-flickering but an optical spike (the so-called optical bounce), at the transient moment between signal positive and negative frames. Here, we demonstrate an IPS mode using negative dielectric anisotropy of liquid crystals (Δε < 0) and fine-patterned electrodes (the width w of and the space l between electrodes ≤ 3 μm) with reduced operation voltage (up to 40.7% to a conventional FFS mode with Δε < 0), reduced optical bounce (up to 4.4%. to a conventional FFS mode with Δε < 0) and enhanced transmittance (up to 32.1% to a conventional IPS mode with Δε > 0). We believe the result will contribute not only to the scientific understanding of the optical appearance of flexoelectric effect but also pave the way for engineering of a superior low-power consumption LCD.
Quantum phase transition modulation in an atomtronic Mott switch
NASA Astrophysics Data System (ADS)
McLain, Marie A.; Carr, Lincoln D.
2018-07-01
Mott insulators provide stable quantum states and long coherence times due to small number fluctuations, making them good candidates for quantum memory and atomic circuits. We propose a proof-of-principle for a 1D Mott switch using an ultracold Bose gas and optical lattice. With time-evolving block decimation simulations—efficient matrix product state methods—we design a means for transient parameter characterization via a local excitation for ease of engineering into more complex atomtronics. We perform the switch operation by tuning the intensity of the optical lattice, and thus the interaction strength through a conductance transition due to the confined modifications of the ‘wedding cake’ Mott structure. We demonstrate the time-dependence of Fock state transmission and fidelity of the excitation as a means of tuning up the device in a double well and as a measure of noise performance. Two-point correlations via the g (2) measure provide additional information regarding superfluid fragments on the Mott insulating background due to the confinement of the potential.
Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites
Chanana, Ashish; Liu, Xiaojie; Vardeny, Zeev Valy
2018-01-01
The ability to control the response of metamaterial structures can facilitate the development of new terahertz devices, with applications in spectroscopy and communications. We demonstrate ultrafast frequency-agile terahertz metamaterial devices that enable such a capability, in which multiple perovskites can be patterned in each unit cell with micrometer-scale precision. To accomplish this, we developed a fabrication technique that shields already deposited perovskites from organic solvents, allowing for multiple perovskites to be patterned in close proximity. By doing so, we demonstrate tuning of the terahertz resonant response that is based not only on the optical pump fluence but also on the optical wavelength. Because polycrystalline perovskites have subnanosecond photocarrier recombination lifetimes, switching between resonances can occur on an ultrafast time scale. The use of multiple perovskites allows for new functionalities that are not possible using a single semiconducting material. For example, by patterning one perovskite in the gaps of split-ring resonators and bringing a uniform thin film of a second perovskite in close proximity, we demonstrate tuning of the resonant response using one optical wavelength and suppression of the resonance using a different optical wavelength. This general approach offers new capabilities for creating tunable terahertz devices. PMID:29736416
Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites.
Chanana, Ashish; Liu, Xiaojie; Zhang, Chuang; Vardeny, Zeev Valy; Nahata, Ajay
2018-05-01
The ability to control the response of metamaterial structures can facilitate the development of new terahertz devices, with applications in spectroscopy and communications. We demonstrate ultrafast frequency-agile terahertz metamaterial devices that enable such a capability, in which multiple perovskites can be patterned in each unit cell with micrometer-scale precision. To accomplish this, we developed a fabrication technique that shields already deposited perovskites from organic solvents, allowing for multiple perovskites to be patterned in close proximity. By doing so, we demonstrate tuning of the terahertz resonant response that is based not only on the optical pump fluence but also on the optical wavelength. Because polycrystalline perovskites have subnanosecond photocarrier recombination lifetimes, switching between resonances can occur on an ultrafast time scale. The use of multiple perovskites allows for new functionalities that are not possible using a single semiconducting material. For example, by patterning one perovskite in the gaps of split-ring resonators and bringing a uniform thin film of a second perovskite in close proximity, we demonstrate tuning of the resonant response using one optical wavelength and suppression of the resonance using a different optical wavelength. This general approach offers new capabilities for creating tunable terahertz devices.
Crystalline Colloidal Arrays in Polymer Matrices
NASA Technical Reports Server (NTRS)
Sunkara, Hari B.; Penn, B. G.; Frazier, D. O.; Ramachandran, N.
1997-01-01
Crystalline Colloidal Arrays (CCA, also known as colloidal crystals), composed of aqueous or nonaqueous dispersions of self-assembled nanosized polymer colloidal spheres, are emerging toward the development of advanced optical devices for technological applications. The spontaneous self assembly of polymer spheres in a dielectric medium results from the electrostatic repulsive interaction between particles of uniform size and charge distribution. In a way similar to atomic crystals that diffract X-rays, CCA dispersions in thin quartz cells selectively and efficiently Bragg diffract the incident visible light. The reason for this diffraction is because the lattice (body or face centered cubic) spacing is on the order of the wavelength of visible light. Unlike the atomic crystals that diffract a fixed wavelength, colloidal crystals in principle, depending on the particle size, particle number and charge density, can diffract W, Vis or IR light. Therefore, the CCA dispersions can be used as laser filters. Besides, the diffraction intensity depends on the refractive index mismatch between polymer spheres and dielectric medium; therefore, it is possible to modulate incident light intensities by manipulating the index of either the spheres or the medium. Our interest in CCA is in the fabrication of all-optical devices such as optical switches, limiters, and spatial light modulators for optical signal processing. The two major requirements from a materials standpoint are the incorporation of suitable nonlinear optical materials (NLO) into polymer spheres which will allow us to alter the refractive index of the spheres by intense laser radiation, and preparation of solid CCA filters which can resist laser damage. The fabrication of solid composite filters not only has the advantage that the films are easier to handle, but also the arrays in solid films are more robust than in liquid media. In this paper, we report the photopolymerization process used to trap CCA in polymer matrices, the factors which affect the optical diffraction qualities of resulting polymer films, and methods to improve the efficiencies of solid optical filters. Before this, we also present the experimental demonstration, of controlling the optical diffraction intensities from aqueous CCA dispersions by varying the temperature, which establishes the feasibility of fabricating all-optical switching devices with nonlinear periodic array structures.
Feasibility study of an integrated optic switching center. [satellite tracking application
NASA Technical Reports Server (NTRS)
1979-01-01
The design of a high data rate switching center for a satellite tracking station is discussed. The feasibility of a switching network using an integrated switching matrix is assessed. The preferred integrated optical switching scheme was found to be an electro-optic Bragg diffraction switch. To ascertain the advantages of the integrated optics switching center, its properties are compared to those of opto-electronic and to electronics switching networks.
Improved Electro-Optical Switches
NASA Technical Reports Server (NTRS)
Nelson, Bruce N.; Cooper, Ronald F.
1994-01-01
Improved single-pole, double-throw electro-optical switches operate in switching times less than microsecond developed for applications as optical communication systems and networks of optical sensors. Contain no moving parts. In comparison with some prior electro-optical switches, these are simpler and operate with smaller optical losses. Beam of light switched from one output path to other by applying, to electro-optical crystal, voltage causing polarization of beam of light to change from vertical to horizontal.
Mizukami, Masato; Yamaguchi, Joji; Nemoto, Naru; Kawajiri, Yuko; Hirata, Hirooki; Uchiyama, Shingo; Makihara, Mitsuhiro; Sakata, Tomomi; Shimoyama, Nobuhiro; Oda, Kazuhiro
2011-07-20
A 128×128 three-dimensional MEMS optical switch module and a switching-control algorithm for high-speed connection and optical power stabilization are described. A prototype switch module enables the simultaneous switching of all optical paths. The insertion loss is less than 4.6 dB and is 2.3 dB on average. The switching time is less than 38 ms and is 8 ms on average. We confirmed that the maximum optical power can be obtained and optical power stabilization control is possible. The results confirm that the module is suitable for practical use in optical cross-connect systems. © 2011 Optical Society of America
Electrochromic materials, devices and process of making
Richardson, Thomas J.
2003-11-11
Thin films of transition metal compositions formed with magnesium that are metals, alloys, hydrides or mixtures of alloys, metals and/or hydrides exhibit reversible color changes on application of electric current or hydrogen. Thin films of these materials are suitable for optical switching elements, thin film displays, sun roofs, rear-view mirrors and architectural glass.
Micro ring cavity resonator incorporating total internal reflection mirrors
NASA Astrophysics Data System (ADS)
Kim, Doo Gun; Choi, Woon Kyung; Choi, Young Wan; Yi, Jong Chang; Chung, Youngchul; Dagli, Nadir
2007-02-01
We investigate the properties of a multimode-interference (MMI) coupled micro ring cavity resonator with total-internal-reflection (TIR) mirrors and a semiconductor optical amplifier (SOA). The TIR mirrors were fabricated by the self-aligned process with a loss of 0.7 dB per mirror. The length and width of an MMI are 142 μm and 10 μm, respectively. The resulting free spectral range (FSR) of the resonator was approximately 1.698 nm near 1571 nm and the extinction ratio was about 17 dB. These devices might be useful as optical switching and add-drop filters in a photonic integrated circuit or as small and fast resonator devices.
Transparent EuTiO3 films: a possible two-dimensional magneto-optical device
NASA Astrophysics Data System (ADS)
Bussmann-Holder, Annette; Roleder, Krystian; Stuhlhofer, Benjamin; Logvenov, Gennady; Lazar, Iwona; Soszyński, Andrzej; Koperski, Janusz; Simon, Arndt; Köhler, Jürgen
2017-01-01
The magneto-optical activity of high quality transparent thin films of insulating EuTiO3 (ETO) deposited on a thin SrTiO3 (STO) substrate, both being non-magnetic materials, are demonstrated to be a versatile tool for light modulation. The operating temperature is close to room temperature and allows for multiple device engineering. By using small magnetic fields birefringence of the samples can be switched off and on. Similarly, rotation of the sample in the field can modify its birefringence Δn. In addition, Δn can be increased by a factor of 4 in very modest fields with simultaneously enhancing the operating temperature by almost 100 K.
NASA Astrophysics Data System (ADS)
Pal, Amrindra; Kumar, Santosh; Sharma, Sandeep
2017-05-01
Binary to octal and octal to binary code converter is a device that allows placing digital information from many inputs to many outputs. Any application of combinational logic circuit can be implemented by using external gates. In this paper, binary to octal and octal to binary code converter is proposed using electro-optic effect inside lithium-niobate based Mach-Zehnder interferometers (MZIs). The MZI structures have powerful capability to switching an optical input signal to a desired output port. The paper constitutes a mathematical description of the proposed device and thereafter simulation using MATLAB. The study is verified using beam propagation method (BPM).
Zhou, Ting; Jia, Hao; Ding, Jianfeng; Zhang, Lei; Fu, Xin; Yang, Lin
2018-04-02
We present a silicon thermo-optic 2☓2 four-mode optical switch optimized for optical space switching plus local optical mode switching. Four asymmetric directional couplers are utilized for mode multiplexing and de-multiplexing. Sixteen 2☓2 single-mode optical switches based on balanced thermally tunable Mach-Zehnder interferometers are exploited for switching function. The measured insertion losses are 8.0~12.2 dB and the optical signal-to-noise ratios are larger than 11.2 dB in the wavelength range of 1525~1565 nm. The optical links in "all-bar" and "all-cross" states exhibit less than 2.0 dB and 1.4 dB power penalties respectively below 10 -9 bit error rates for 40 Gbps data transmission.
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Chanderkanta; Amphawan, Angela
2016-04-01
Excess 3 code is one of the most important codes used for efficient data storage and transmission. It is a non-weighted code and also known as self complimenting code. In this paper, a four bit optical Excess 3 to BCD code converter is proposed using electro-optic effect inside lithium-niobate based Mach-Zehnder interferometers (MZIs). The MZI structures have powerful capability to switching an optical input signal to a desired output port. The paper constitutes a mathematical description of the proposed device and thereafter simulation using MATLAB. The study is verified using beam propagation method (BPM).
Secured Hash Based Burst Header Authentication Design for Optical Burst Switched Networks
NASA Astrophysics Data System (ADS)
Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.
2017-12-01
The optical burst switching (OBS) is a promising technology that could meet the fast growing network demand. They are featured with the ability to meet the bandwidth requirement of applications that demand intensive bandwidth. OBS proves to be a satisfactory technology to tackle the huge bandwidth constraints, but suffers from security vulnerabilities. The objective of this proposed work is to design a faster and efficient burst header authentication algorithm for core nodes. There are two important key features in this work, viz., header encryption and authentication. Since the burst header is an important in optical burst switched network, it has to be encrypted; otherwise it is be prone to attack. The proposed MD5&RC4-4S based burst header authentication algorithm runs 20.75 ns faster than the conventional algorithms. The modification suggested in the proposed RC4-4S algorithm gives a better security and solves the correlation problems between the publicly known outputs during key generation phase. The modified MD5 recommended in this work provides 7.81 % better avalanche effect than the conventional algorithm. The device utilization result also shows the suitability of the proposed algorithm for header authentication in real time applications.
Transparent electrode for optical switch
Goldhar, J.; Henesian, M.A.
1984-10-19
The invention relates generally to optical switches and techniques for applying a voltage to an electro-optical crystal, and more particularly, to transparent electodes for an optical switch. System architectures for very large inertial confinement fusion (ICF) lasers require active optical elements with apertures on the order of one meter. Large aperture optical switches are needed for isolation of stages, switch-out from regenerative amplifier cavities and protection from target retroreflections.
Alternative Controller for a Fiber-Optic Switch
NASA Technical Reports Server (NTRS)
Peters, Robert
2007-01-01
A simplified diagram of a relatively inexpensive controller for a DiCon VX (or equivalent) fiber-optic switch -- an electromechanically actuated switch for optically connecting one or two input optical fibers to any of a number of output optical fibers is shown. DiCon VX fiber-optic switches are used primarily in research and development in the telecommunication industry. This controller can control any such switch having up to 32 output channels.
A preliminary design of the Ti:LiNbO3 optical channel waveguide
NASA Astrophysics Data System (ADS)
Choi, Yat
1992-03-01
One of the goals of technology-based activities within the Electronic Warfare Division is to facilitate the development within Australia, of facilities and a capability to manufacture sophisticated, highspeed electro-optic devices, in particular, the integrated optical amplitude modulator and integrated optical switch, for use in microwave and millimetre-wave systems for the Australian Defense Force (ADF). An initial step towards this goal would be to produce a low-loss and single-mode propagation optical channel waveguide using titanium-indiffused lithium niobate (Ti:LiNbO3). As no dimensions and fabrication parameters have yet been optimized, this technical report provides preliminary design data which optimizes these parameters.
Intraband Raman laser gain in a boron nitride coupled quantum well
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moorthy, N. Narayana; Peter, A. John, E-mail: a.john.peter@gmail.com
2016-05-23
On-centre impurity related electronic and optical properties are studied in a Boron nitride coupled quantum well. Confined energies for the intraband transition are investigated by studying differential cross section of electron Raman scattering taking into consideration of spatial confinement in a B{sub 0.3}Ga{sub 0.7}N/BN coupled quantum well. Raman gain as a function of incident optical pump intensity is computed for constant well width. The enhancement of Raman gain is observed with the application of pump power. The results can be applied for the potential applications for fabricating some optical devices such as optical switches, infrared photo-detectors and electro-optical modulator.
Zhang, Peng; Zhang, Wu; Wang, Junyong; Jiang, Kai; Zhang, Jinzhong; Li, Wenwu; Wu, Jiada; Hu, Zhigao; Chu, Junhao
2017-06-30
Active and widely controllable phase transition optical materials have got rapid applications in energy-efficient electronic devices, field of meta-devices and so on. Here, we report the optical properties of the vanadium dioxide (VO 2 )/aluminum-doped zinc oxide (Al:ZnO) hybrid n-n type heterojunctions and the corresponding electro-optic performances of the devices. Various structures are fabricated to compare the discrepancy of the optical and electrical characteristics. It was found that the reflectance spectra presents the wheel phenomenon rather than increases monotonically with temperature at near-infrared region range. The strong interference effects was found in the hybrid multilayer heterojunction. In addition, the phase transition temperature decreases with increasing the number of the Al:ZnO layer, which can be ascribed to the electron injection to the VO 2 film from the Al:ZnO interface. Affected by the double layer Al:ZnO, the abnormal Raman vibration mode was presented in the insulator region. By adding the external voltage on the Al 2 O 3 /Al:ZnO/VO 2 /Al:ZnO, Al 2 O 3 /Al:ZnO/VO 2 and Al 2 O 3 /VO 2 /Al:ZnO thin-film devices, the infrared optical spectra of the devices can be real-time manipulated by an external voltage. The main effect of joule heating and assistant effect of electric field are illustrated in this work. It is believed that the results will add a more thorough understanding in the application of the VO 2 /transparent conductive film device.
pH Memory Effects of Tunable Block Copolymer Photonic Gels and Their Applications
NASA Astrophysics Data System (ADS)
Kang, Youngjong; Thomas, Edwin L.
2007-03-01
Materials with hysteresis, showing a bistable state to the external stimuli, have been widely investigated due to their potential applications. For example, they could be used as memory devices or optical switches when they have magnetic or optical hysteresis response to the external stimuli. Here we report pH tunable photonic gels which are spontaneously assembled from block copolymers. The general idea of this research is based on the selective swelling of block copolymer lamellar mesogels, where the solubility of one block is responsive to the change of pH. In this system, the domain spacing of the lamellar is varied with the extent of swelling. As a model system, we used protonated polystyrene-b-poly(2-vinly pyridine) (PS-b-P2VP) block copolymers forming lamellar structures. The photonic gel films prepared from protonated PS-b-P2VP show a strong reflectance in aqueous solution and the band position was varied with pH. Interestingly, a very strong optical hysteresis was observed while the reflection band of photonic gels was tuned by changing pH. We anticipate that pH tunable photonic gels with hysteresis can be applicable to novel applications such as a component of memory devices, photonic switches or drug delivery vehicles.
Chalcogenide glass-on-graphene photonics
NASA Astrophysics Data System (ADS)
Lin, Hongtao; Song, Yi; Huang, Yizhong; Kita, Derek; Deckoff-Jones, Skylar; Wang, Kaiqi; Li, Lan; Li, Junying; Zheng, Hanyu; Luo, Zhengqian; Wang, Haozhe; Novak, Spencer; Yadav, Anupama; Huang, Chung-Che; Shiue, Ren-Jye; Englund, Dirk; Gu, Tian; Hewak, Daniel; Richardson, Kathleen; Kong, Jing; Hu, Juejun
2017-12-01
Two-dimensional (2D) materials are of tremendous interest to integrated photonics, given their singular optical characteristics spanning light emission, modulation, saturable absorption and nonlinear optics. To harness their optical properties, these atomically thin materials are usually attached onto prefabricated devices via a transfer process. Here, we present a new route for 2D material integration with planar photonics. Central to this approach is the use of chalcogenide glass, a multifunctional material that can be directly deposited and patterned on a wide variety of 2D materials and can simultaneously function as the light-guiding medium, a gate dielectric and a passivation layer for 2D materials. Besides achieving improved fabrication yield and throughput compared with the traditional transfer process, our technique also enables unconventional multilayer device geometries optimally designed for enhancing light-matter interactions in the 2D layers. Capitalizing on this facile integration method, we demonstrate a series of high-performance glass-on-graphene devices including ultra-broadband on-chip polarizers, energy-efficient thermo-optic switches, as well as graphene-based mid-infrared waveguide-integrated photodetectors and modulators.
High Efficiency Coupling of Optical Fibres with SU8 Micro-droplet Using Laser Welding Process
NASA Astrophysics Data System (ADS)
Yardi, Seema; Gupta, Ankur; Sundriyal, Poonam; Bhatt, Geeta; Kant, Rishi; Boolchandani, D.; Bhattacharya, Shantanu
2016-09-01
Apart from micro- structure fabrication, ablation, lithography etc., lasers find a lot of utility in various areas like precision joining, device fabrication, local heat delivery for surface texturing and local change of microstructure fabrication of standalone optical micro-devices (like microspheres, micro-prisms, micro-scale ring resonators, optical switches etc). There is a wide utility of such systems in chemical/ biochemical diagnostics and also communications where the standalone optical devices exist at a commercial scale but chip based devices with printed optics are necessary due to coupling issues between printed structures and external optics. This paper demonstrates a novel fabrication strategy used to join standalone optical fibres to microchip based printed optics using a simple SU8 drop. The fabrication process is deployed for fiber to fiber optical coupling and coupling between fiber and printed SU-8 waveguides. A CO2 laser is used to locally heat the coupling made up of SU8 material. Optimization of various dimensional parameters using design of experiments (DOE) on the bonded assembly has been performed as a function of laser power, speed, cycle control, spot size so on so forth. Exclusive optical [RF] modelling has been performed to estimate the transmissibility of the optical fibers bonded to each other on a surface with SU8. Our studies indicate the formation of a Whispering gallery mode (WGM) across the micro-droplet leading to high transmissibility of the signal. Through this work we have thus been able to develop a method of fabrication for optical coupling of standalone fibers or coupling of on-chip optics with off-chip illumination/detection.
Thiol-modified MoS2 nanosheets as a functional layer for electrical bistable devices
NASA Astrophysics Data System (ADS)
Li, Guan; Tan, Fenxue; Lv, Bokun; Wu, Mengying; Wang, Ruiqi; Lu, Yue; Li, Xu; Li, Zhiqiang; Teng, Feng
2018-01-01
Molybdenum disulfide nanosheets have been synthesized by one-pot method using 1-ODT as sulfur source and surfactant. The structure, morphology and optical properties of samples were investigated by XRD, FTIR, Abs spectrum and TEM patterns. The XRD pattern indicated that the as-obtained MoS2 belong to hexagonal system. The as-obtained MoS2 nanosheets blending with PVK could be used to fabricate an electrically bistable devices through a simple spin-coating method and the device exhibited an obvious electrical bistability properties. The charge transport mechanism of the device was discussed based on the filamentary switching models.
Nonlinear optical polymers for electro-optic signal processing
NASA Technical Reports Server (NTRS)
Lindsay, Geoffrey A.
1991-01-01
Photonics is an emerging technology, slated for rapid growth in communications systems, sensors, imagers, and computers. Its growth is driven by the need for speed, reliability, and low cost. New nonlinear polymeric materials will be a key technology in the new wave of photonics devices. Electron-conjubated polymeric materials offer large electro-optic figures of merit, ease of processing into films and fibers, ruggedness, low cost, and a plethora of design options. Several new broad classes of second-order nonlinear optical polymers were developed at the Navy's Michelson Laboratory at China Lake, California. Polar alignment in thin film waveguides was achieved by electric-field poling and Langmuir-Blodgett processing. Our polymers have high softening temperatures and good aging properties. While most of the films can be photobleached with ultraviolet (UV) light, some have excellent stability in the 500-1600 nm range, and UV stability in the 290-310 nm range. The optical nonlinear response of these polymers is subpicosecond. Electro-optic switches, frequency doublers, light modulators, and optical data storage media are some of the device applications anticipated for these polymers.
1989-12-31
interference rejection fo wideband OPENING REMARKS receiver systems. A time/space integrating optical architec- Alexander A. Sawchuk, University of...electroabsorptive self-electrooptic-effect devices on a single ZnS interference filter is proposed. (p. 385) are attractive for 2-D arrays for switching and...photorefractive crystal as shown in figure 1. The mutual interference between the two sets of beams produces the desired outer-product matrix W = uv-iW
Design of intelligent mesoscale periodic array structures utilizing smart hydrogel
NASA Technical Reports Server (NTRS)
Sunkara, H. B.; Penn, B. G.; Frazier, D. O.; Weissman, J. M.; Asher, S. A.
1996-01-01
Mesoscale Periodic Array Structures (MPAS, also known as crystalline colloidal arrays), composed of aqueous or nonaqueous dispersions of self-assembled submicron colloidal spheres are emerging toward the development of advanced optical devices for technological applications. This is because of their unique optical diffraction properties and the ease with which these intriguing properties can be modulated experimentally. Moreover our recent advancements in this area which include 'locking' the liquid MPAS into solid or semisolid polymer matrices for greater stability with longer life span, and incorporation of CdS quantum dots and laser dyes into colloidal spheres to obtain nonlinear optical (NLO) responses further corroborate the use of MPAS in optical technology. Our long term goal is fabrication of all-optical and electro-optical devices such as spatial light modulators for optical signal processing and flat panel display devices by utilizing intelligent nonlinear periodic array structural materials. Here we show further progress in the design of novel linear MPAS which have the ability to sense and respond to an external source such as temperature. This is achieved by combining the self-assembly properties of polymer colloidal spheres and thermoshrinking properties of smart polymer gels. At selected temperatures the periodic array efficiently Bragg diffracts light and transmits most of the light at other temperatures. Hence these intelligent systems are of potential use as fixed notch filters optical switches or limiters to protect delicate optical sensors from high intensity laser radiation.
NASA Astrophysics Data System (ADS)
Pitris, St.; Vagionas, Ch.; Kanellos, G. T.; Kisacik, R.; Tekin, T.; Broeke, R.; Pleros, N.
2016-03-01
At the dawning of the exaflop era, High Performance Computers are foreseen to exploit integrated all-optical elements, to overcome the speed limitations imposed by electronic counterparts. Drawing from the well-known Memory Wall limitation, imposing a performance gap between processor and memory speeds, research has focused on developing ultra-fast latching devices and all-optical memory elements capable of delivering buffering and switching functionalities at unprecedented bit-rates. Following the master-slave configuration of electronic Flip-Flops, coupled SOA-MZI based switches have been theoretically investigated to exceed 40 Gb/s operation, provided a short coupling waveguide. However, this flip-flop architecture has been only hybridly integrated with silica-on-silicon integration technology exhibiting a total footprint of 45x12 mm2 and intra-Flip-Flop coupling waveguide of 2.5cm, limited at 5 Gb/s operation. Monolithic integration offers the possibility to fabricate multiple active and passive photonic components on a single chip at a close proximity towards, bearing promises for fast all-optical memories. Here, we present for the first time a monolithically integrated all-optical SR Flip-Flop with coupled master-slave SOA-MZI switches. The photonic chip is integrated on a 6x2 mm2 die as a part of a multi-project wafer run using library based components of a generic InP platform, fiber-pigtailed and fully packaged on a temperature controlled ceramic submount module with electrical contacts. The intra Flip-Flop coupling waveguide is 5 mm long, reducing the total footprint by two orders of magnitude. Successful flip flop functionality is evaluated at 10 Gb/s with clear open eye diagram, achieving error free operation with a power penalty of 4dB.
NASA Astrophysics Data System (ADS)
Orlianges, Jean-Christophe; Crunteanu, Aurelian; Pothier, Arnaud; Merle-Mejean, Therese; Blondy, Pierre; Champeaux, Corinne
2012-12-01
Titanium dioxide presents a wide range of technological application possibilities due to its dielectric, electrochemical, photocatalytic and optical properties. The three TiO2 allotropic forms: anatase, rutile and brookite are also interesting, since they exhibit different properties, stabilities and growth modes. For instance, rutile has a high dielectric permittivity, of particular interest for the integration as dielectric in components such as microelectromechanical systems (MEMS) for radio frequency (RF) devices. In this study, titanium dioxide thin films are deposited by pulsed laser deposition. Characterizations by Raman spectroscopy and X-ray diffraction show the evolution of the structural properties. Thin films optical properties are investigated using spectroscopic ellipsometry and transmission measurements from UV to IR range. Co-planar waveguide (CPW) devices are fabricated based on these films. Their performances are measured in the RF domain and compared to simulation, leading to relative permittivity values in the range 30-120, showing the potentialities of the deposited material for capacitive switches applications.
Double-Sided Electrochromic Device Based on Metal-Organic Frameworks.
Mjejri, Issam; Doherty, Cara M; Rubio-Martinez, Marta; Drisko, Glenna L; Rougier, Aline
2017-11-22
Devices displaying controllably tunable optical properties through an applied voltage are attractive for smart glass, mirrors, and displays. Electrochromic material development aims to decrease power consumption while increasing the variety of attainable colors, their brilliance, and their longevity. We report the first electrochromic device constructed from metal organic frameworks (MOFs). Two MOF films, HKUST-1 and ZnMOF-74, are assembled so that the oxidation of one corresponds to the reduction of the other, allowing the two sides of the device to simultaneously change color. These MOF films exhibit cycling stability unrivaled by other MOFs and a significant optical contrast in a lithium-based electrolyte. HKUST-1 reversibly changed from bright blue to light blue and ZnMOF-74 from yellow to brown. The electrochromic device associates the two MOF films via a PMMA-lithium based electrolyte membrane. The color-switching of these MOFs does not arise from an organic-linker redox reaction, signaling unexplored possibilities for electrochromic MOF-based materials.
Unique system of FE/PD for magneto-optical recording and magnetic switching devices
Liu, Chian Q.; Bader, Samuel D.
1992-01-01
A high density magneto-optical information storage medium utilizing the properties of an ultrathin iron film on a palladium substrate. The present invention comprises a magneto-optical medium capable of thermal and magnetic stability and capable of possessing a vertical orientation of the magnetization vector for the magnetic material. Data storage relies on the temperature dependence of the coercivity of the ultrathin film. Data retrieval derives from the Kerr effect which describes the direction of rotation of a plane of polarized light traversing the ultrathin magnetic material as a function of the orientation of the magnetization vector.
Third-order nonlinear electro-optic measurements in the smectic-? phase
NASA Astrophysics Data System (ADS)
Nowicka, Kamila; Bielejewska, Natalia
2018-02-01
The chiral smectic subphase with three-layer structure, ?, is now of great interest from the point of view of device technologies such as multistate or symmetric switching. We report that the unique nonlinear electro-optic response can serve as precise mark of the phase transition into three-layer structure. The problem is illustrated with the first and third harmonic electro-optic spectra. Furthermore, the characteristic response of the helical liquid crystal phases correlated with particular collective modes using the Debye-type relaxation method for the well-known prototype liquid crystal material (MHPOBC) are presented.
Thermally tunable silicon racetrack resonators with ultralow tuning power.
Dong, Po; Qian, Wei; Liang, Hong; Shafiiha, Roshanak; Feng, Dazeng; Li, Guoliang; Cunningham, John E; Krishnamoorthy, Ashok V; Asghari, Mehdi
2010-09-13
We present thermally tunable silicon racetrack resonators with an ultralow tuning power of 2.4 mW per free spectral range. The use of free-standing silicon racetrack resonators with undercut structures significantly enhances the tuning efficiency, with one order of magnitude improvement of that for previously demonstrated thermo-optic devices without undercuts. The 10%-90% switching time is demonstrated to be ~170 µs. Such low-power tunable micro-resonators are particularly useful as multiplexing devices and wavelength-tunable silicon microcavity modulators.
Electro-refractive photonic device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zortman, William A.; Watts, Michael R.
2015-06-09
The various technologies presented herein relate to phase shifting light to facilitate any of light switching, modulation, amplification, etc. Structures are presented where a second layer is juxtaposed between a first layer and a third layer with respective doping facilitating formation of p-n junctions at the interface between the first layer and the second layer, and between the second layer and the third layer. Application of a bias causes a carrier concentration change to occur at the p-n junctions which causes a shift in the effective refractive index per incremental change in an applied bias voltage. The effective refractive indexmore » enhancement can occur in both reverse bias and forward bias. The structure can be incorporated into a waveguide, an optical resonator, a vertical junction device, a horizontal junction device, a Mach-Zehnder interferometer, a tuneable optical filter, etc.« less
Bidirectional buck boost converter
Esser, Albert Andreas Maria
1998-03-31
A bidirectional buck boost converter and method of operating the same allows regulation of power flow between first and second voltage sources in which the voltage level at each source is subject to change and power flow is independent of relative voltage levels. In one embodiment, the converter is designed for hard switching while another embodiment implements soft switching of the switching devices. In both embodiments, first and second switching devices are serially coupled between a relatively positive terminal and a relatively negative terminal of a first voltage source with third and fourth switching devices serially coupled between a relatively positive terminal and a relatively negative terminal of a second voltage source. A free-wheeling diode is coupled, respectively, in parallel opposition with respective ones of the switching devices. An inductor is coupled between a junction of the first and second switching devices and a junction of the third and fourth switching devices. Gating pulses supplied by a gating circuit selectively enable operation of the switching devices for transferring power between the voltage sources. In the second embodiment, each switching device is shunted by a capacitor and the switching devices are operated when voltage across the device is substantially zero.
Bidirectional buck boost converter
Esser, A.A.M.
1998-03-31
A bidirectional buck boost converter and method of operating the same allows regulation of power flow between first and second voltage sources in which the voltage level at each source is subject to change and power flow is independent of relative voltage levels. In one embodiment, the converter is designed for hard switching while another embodiment implements soft switching of the switching devices. In both embodiments, first and second switching devices are serially coupled between a relatively positive terminal and a relatively negative terminal of a first voltage source with third and fourth switching devices serially coupled between a relatively positive terminal and a relatively negative terminal of a second voltage source. A free-wheeling diode is coupled, respectively, in parallel opposition with respective ones of the switching devices. An inductor is coupled between a junction of the first and second switching devices and a junction of the third and fourth switching devices. Gating pulses supplied by a gating circuit selectively enable operation of the switching devices for transferring power between the voltage sources. In the second embodiment, each switching device is shunted by a capacitor and the switching devices are operated when voltage across the device is substantially zero. 20 figs.
Optical switching using IP protocol
NASA Astrophysics Data System (ADS)
Utreras, Andres J.; Gusqui, Luis; Reyes, Andres; Mena, Ricardo I.; Licenko, Gennady L.; Amirgaliyev, Yedilkhan; Komada, Paweł; Luganskaya, Saule; Kashaganova, Gulzhan
2017-08-01
To understand and evaluate the Optical Layer, and how it will affect the IP protocols over WDM (Switching), the present analyse is proposed. Optical communications have attractive proprieties, but also have some disadvantages, so the challenge is to combine the best of both branches. In this paper, general concepts for different options of switching are reviewed as: optical burst switching (OBS) and automatically switching optical network (ASON). Specific details such as their architectures are also discussed. In addition, the relevant characteristics of each variation for switching are reviewed.
NASA Astrophysics Data System (ADS)
Curilla, L.; Astrauskas, I.; Pugzlys, A.; Stajanca, P.; Pysz, D.; Uherek, F.; Baltuska, A.; Bugar, I.
2018-05-01
We demonstrate ultrafast soliton-based nonlinear balancing of dual-core asymmetry in highly nonlinear photonic crystal fiber at sub-nanojoule pulse energy level. The effect of fiber asymmetry was studied experimentally by selective excitation and monitoring of individual fiber cores at different wavelengths between 1500 nm and 1800 nm. Higher energy transfer rate to non-excited core was observed in the case of fast core excitation due to nonlinear asymmetry balancing of temporal solitons, which was confirmed by the dedicated numerical simulations based on the coupled generalized nonlinear Schrödinger equations. Moreover, the simulation results correspond qualitatively with the experimentally acquired dependences of the output dual-core extinction ratio on excitation energy and wavelength. In the case of 1800 nm fast core excitation, narrow band spectral intensity switching between the output channels was registered with contrast of 23 dB. The switching was achieved by the change of the excitation pulse energy in sub-nanojoule region. The performed detailed analysis of the nonlinear balancing of dual-core asymmetry in solitonic propagation regime opens new perspectives for the development of ultrafast nonlinear all-optical switching devices.
Optical switch based on thermocapillarity
NASA Astrophysics Data System (ADS)
Sakata, Tomomi; Makihara, Mitsuhiro; Togo, Hiroyoshi; Shimokawa, Fusao; Kaneko, Kazumasa
2001-11-01
Space-division optical switches are essential for the protection, optical cross-connects (OXCs), and optical add/drop multiplexers (OADMs) needed in future fiber-optic communication networks. For applications in these areas, we proposed a thermocapillarity switch called oil-latching interfacial-tension variation effect (OLIVE) switch. An OLIVE switch is a micro-mechanical optical switch fabricated on planar lightwave circuits (PLC) using micro-electro-mechanical systems (MEMS) technology. It consists of a crossing waveguide that has a groove at each crossing point and a pair of microheaters. The groove is partially filled with the refractive-index-matching liquid, and optical signals are switched according to the liquid's position in the groove, i.e., whether it is passing straight through the groove or reflecting at the sidewall of the groove. The liquid is driven by thermocapillarity and latched by capillarity. Using the total internal reflection to switch the optical path, the OLIVE switch exhibits excellent optical characteristics, such as high transparency (insertion loss: < 2 dB), high extinction ratio (> 50 dB), and low crosstalk (< -50 dB). Moreover, since this switch has a simple structure and bi-stability, it has wide variety of applications in wavelength division multiplexing (WDM) networks.
Nonlinear Optics and Applications
NASA Technical Reports Server (NTRS)
Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)
2007-01-01
Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.
Expanding the spectrum: 20 years of advances in MMW imagery
NASA Astrophysics Data System (ADS)
Martin, Christopher A.; Lovberg, John A.; Kolinko, Valdimir G.
2017-05-01
Millimeter-wave imaging has expanded from the single-pixel swept imagers developed in the 1960s to large field-ofview real-time systems in use today. Trex Enterprises has been developing millimeter-wave imagers since 1991 for aviation and security applications, as well as millimeter-wave communications devices. As MMIC device development was stretching into the MMW band in the 1990s, Trex developed novel imaging architectures to create 2-D staring systems with large pixel counts and no moving parts while using a minimal number of devices. Trex also contributed to the device development in amplifiers, switches, and detectors to enable the next generation of passive MMW imaging systems. The architectures and devices developed continue to be employed in security imagers, radar, and radios produced by Trex. This paper reviews the development of the initial real-time MMW imagers and associated devices by Trex Enterprises from the 1990s through the 2000s. The devices include W-band MMIC amplifiers, switches, and detector didoes, and MMW circuit boards and optical processors. The imaging systems discussed include two different real-time passive MMW imagers flown on helicopters and a MMW radar system, as well as implementation of the devices and architectures in simpler stand-off and gateway security imagers.
Range Imaging without Moving Parts
NASA Technical Reports Server (NTRS)
Blair, J. Bryan; Scott, V. Stanley, III; Ramos-Izquierdo, Luis
2008-01-01
Range-imaging instruments of a type now under development are intended to generate the equivalent of three-dimensional images from measurements of the round-trip times of flight of laser pulses along known directions. These instruments could also provide information on characteristics of targets, including roughnesses and reflectivities of surfaces and optical densities of such semi-solid objects as trees and clouds. Unlike in prior range-imaging instruments based on times of flight along known directions, there would be no moving parts; aiming of the laser beams along the known directions would not be accomplished by mechanical scanning of mirrors, prisms, or other optical components. Instead, aiming would be accomplished by using solid-state devices to switch input and output beams along different fiber-optic paths. Because of the lack of moving parts, these instruments could be extraordinarily reliable, rugged, and long-lasting. An instrument of this type would include an optical transmitter that would send out a laser pulse along a chosen direction to a target. An optical receiver coaligned with the transmitter would measure the temporally varying intensity of laser light reflected from the target to determine the distance and surface characteristics of the target. The transmitter would be a combination of devices for generating precise directional laser illumination. It would include a pulsed laser, the output of which would be coupled into a fiber-optic cable with a fan-out and solid-state optical switches that would enable switching of the laser beam onto one or more optical fibers terminated at known locations in an array on a face at the focal plane of a telescope. The array would be imaged by the telescope onto the target space. The receiver optical system could share the aforementioned telescope with the transmitter or could include a separate telescope aimed in the same direction as that of the transmitting telescope. In either case, light reflected from the target would be focused by the receiver optical system onto an array of optical fibers matching the array in the transmitter. These optical fibers would couple the received light to one or more photodetector( s). Optionally, the receiver could include solid-state optical switches for choosing which optical fiber(s) would couple light to the photodetector(s). This instrument architecture is flexible and can be optimized for a wide variety of applications and levels of performance. For example, it is scalable to any number of pixels and pixel resolutions and is compatible with a variety of ranging and photodetection methodologies, including, for example, ranging by use of modulated (including pulsed and encoded) light signals. The use of fixed arrays of optical fibers to generate controlled illumination patterns would eliminate the mechanical complexity and much of the bulk of optomechanical scanning assemblies. Furthermore, digital control of the selection of the fiber-optic pathways for the transmitted beams could afford capabilities not seen in previous three-dimensional range-imaging systems. Instruments of this type could be specialized for use as, for example, proximity detectors, three-dimensional robotic vision systems, airborne terrain-mapping systems, and inspection systems.
Compound semiconductor optical waveguide switch
Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.
2003-06-10
An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.
QKD-Based Secured Burst Integrity Design for Optical Burst Switched Networks
NASA Astrophysics Data System (ADS)
Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.
2016-03-01
The field of optical transmission has undergone numerous advancements and is still being researched mainly due to the fact that optical data transmission can be done at enormous speeds. It is quite evident that people prefer optical communication when it comes to large amount of data involving its transmission. The concept of switching in networks has matured enormously with several researches, architecture to implement and methods starting with Optical circuit switching to Optical Burst Switching. Optical burst switching is regarded as viable solution for switching bursts over networks but has several security vulnerabilities. However, this work exploited the security issues associated with Optical Burst Switching with respect to integrity of burst. This proposed Quantum Key based Secure Hash Algorithm (QKBSHA-512) with enhanced compression function design provides better avalanche effect over the conventional integrity algorithms.
Formation of Polymer Networks for Fast In-Plane Switching of Liquid Crystals at Low Temperatures
NASA Astrophysics Data System (ADS)
Yu, Byeong-Hun; Song, Dong Han; Kim, Ki-Han; Wok Park, Byung; Choi, Sun-Wook; Park, Sung Il; Kang, Sung Gu; Yoon, Jeong Hwan; Kim, Byeong Koo; Yoon, Tae-Hoon
2013-09-01
We formed a polymer structure to enable fast in-plane switching of liquid crystals at low temperatures. The problem of the inevitable slow response at low temperatures was reduced by the formation of in-cell polymer networks in in-plane switching (IPS) cells. The electro-optic characteristics of polymer-networked IPS cells were measured at temperatures ranging from -10 to 20 °C. The turn-on and turn-off times of an IPS cell were reduced by 44.5 and 47.2% at -10 °C by the formation of polymer networks. We believe that the proposed technology can be applied to emerging display devices such as mobile phones and automotive displays that may be used at low temperatures.
NASA Astrophysics Data System (ADS)
Wang, Gang; Zhu, Peiwang; Marks, Tobin J.; Ketterson, J. B.
2002-09-01
Thin films consisting of self-assembled chromophoric superlattices exhibit very large second-order nonlinear responses [chi](2). Using such films, a "static" diffraction grating is created by the interference of two coherent infrared beams from a pulsed yttritium-aluminum-garnet laser. This grating is used to switch the second-harmonic and third-harmonic "signal" beams (generated from the fundamental "pump" beam or mixed within the chromophoric superlattice) into different channels (directions). Ultrafast switching response as a function of the time overlap of the pumping beams is demonstrated. It is suggested that such devices can be used to spatially and temporally separate signal trains consisting of pulses having different frequencies and arrival times.
A thermal sensor and switch based on a plasma polymer/ZnO suspended nanobelt bimorph structure
NASA Astrophysics Data System (ADS)
He, -Hau, Jr.; Singamaneni, Srikanth; Ho, Chih H.; Lin, Yen-Hsi; McConney, Michael E.; Tsukruk, Vladimir V.
2009-02-01
The combination of design and subsequent fabrication of organic/inorganic nanostructures creates an effective way to combine the favorable traits of both to achieve a desired device performance. We demonstrate a miniature electrical read-out, and a sensitive temperature sensor/switch, based on a ZnO nanobelt/plasma-polymerized benzonitrile bimorph structure. A new read-out technique based on the change in the electric current flowing through the bimorph and the contact pad has been employed, replacing the conventional cumbersome piezoresistive method or tedious optical alignment. The thermal sensor demonstrated here has great prospects for thermal switching and triggered detection owing to the relative ease in the fabrication of arrays and the direct electrical read-out.
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Qiu, Kun; Zhou, Heng; Ling, Yun; Wang, Yawei; Xu, Bo
2010-03-01
In this paper, the tunable multiple optical orthogonal codes sequences (MOOCS)-based optical label for optical packet switching (OPS) (MOOCS-OPS) is experimentally demonstrated for the first time. The tunable MOOCS-based optical label is performed by using fiber Bragg grating (FBG)-based optical en/decoders group and optical switches configured by using Field Programmable Gate Array (FPGA), and the optical label is erased by using Semiconductor Optical Amplifier (SOA). Some waveforms of the MOOCS-based optical label, optical packet including the MOOCS-based optical label and the payloads are obtained, the switching control mechanism and the switching matrix are discussed, the bit error rate (BER) performance of this system is also studied. These experimental results show that the tunable MOOCS-OPS scheme is effective.
1987-01-07
Excimer-Laser Projection Lithography 38 4.5 Observation of Millimeter-Wave Oscillations from Resonant- Tunneling Diodes and Some Theroretical...and SIMOX Circuits 32 4-1 Resonant Tunneling Diode Parameters 41 XI INTRODUCTION 1. SOLID STATE DEVICE RESEARCH Optoelectronic switches have...radiation and reflective optics. Oscillation frequencies as high as 56 GHz have been observed from resonant- tunneling double- barrier diodes. Recent
NASA Astrophysics Data System (ADS)
Mourgias-Alexandris, G.; Moralis-Pegios, M.; Terzenidis, N.; Cherchi, M.; Harjanne, M.; Aalto, T.; Vyrsokinos, K.; Pleros, N.
2018-02-01
The urgent need for high-bandwidth and high-port connectivity in Data Centers has boosted the deployment of optoelectronic packet switches towards bringing high data-rate optics closer to the ASIC, realizing optical transceiver functions directly at the ASIC package for high-rate, low-energy and low-latency interconnects. Even though optics can offer a broad range of low-energy integrated switch fabrics for replacing electronic switches and seamlessly interface with the optical I/Os, the use of energy- and latency-consuming electronic SerDes continues to be a necessity, mainly dictated by the absence of integrated and reliable optical buffering solutions. SerDes undertakes the role of optimally synergizing the lower-speed electronic buffers with the incoming and outgoing optical streams, suggesting that a SerDes-released chip-scale optical switch fabric can be only realized in case all necessary functions including contention resolution and switching can be implemented on a common photonic integration platform. In this paper, we demonstrate experimentally a hybrid Broadcast-and-Select (BS) / wavelength routed optical switch that performs both the optical buffering and switching functions with μm-scale Silicon-integrated building blocks. Optical buffering is carried out in a silicon-integrated variable delay line bank with a record-high on-chip delay/footprint efficiency of 2.6ns/mm2 and up to 17.2 nsec delay capability, while switching is executed via a BS design and a silicon-integrated echelle grating, assisted by SOA-MZI wavelength conversion stages and controlled by a FPGA header processing module. The switch has been experimentally validated in a 3x3 arrangement with 10Gb/s NRZ optical data packets, demonstrating error-free switching operation with a power penalty of <5dB.
Multiple excitation regenerative amplifier inertial confinement system
George, V.E.; Haas, R.A.; Krupke, W.F.; Schlitt, L.G.
1980-05-27
The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation. 11 figs.
Multiple excitation regenerative amplifier inertial confinement system
George, Victor E. [Livermore, CA; Haas, Roger A. [Pleasanton, CA; Krupke, William F. [Pleasanton, CA; Schlitt, Leland G. [Livermore, CA
1980-05-27
The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation.
Light sources and output couplers for a backlight with switchable emission angles
NASA Astrophysics Data System (ADS)
Fujieda, Ichiro; Imai, Keita; Takagi, Yoshihiko
2007-09-01
For switching viewing angles of a liquid crystal display, we proposed to place a liquid crystal device between an LED and a light-guide of a backlight. The first key component for this configuration is a light source with electronically-controlled emission angles. Here, we construct such a device by stacking an optical film and a polymer-network liquid crystal (PNLC) cell on top of a chip-type LED. The optical film contains opaque parallel plates that limit the LED output in a narrow angular range. The PNLC cell either transmits or scatters the light emerging from the optical film. Experiment using a 15μm-thick PNLC cell shows that the angular distribution becomes 2.3 times wider by turning off the PNLC cell. We place this light source at one end of a light-guide so that the angular distribution of the light propagating inside is controlled. The second key component is some types of micro-strucrures built on the light-guide to out-couple the propagating light. We first attached various optical films on a light-guide surface. Although the angular distribution of the extracted light was switched successfully, light was mostly emitted into an oblique direction, approximately 60° from the plane normal. Next, we used a half-cylinder in place of the optical films. The curved surface of the cylinder was attached to the light-guide with a small amount of matching oil, which constituted an optical window. We measured that the angular distribution of the extracted light decreased to 35° FWHM from 62° FWHM by turning on the PNLC cell.
Ryu, Seong Ho; Gim, Min-Jun; Lee, Wonsuk; Choi, Suk-Won; Yoon, Dong Ki
2017-01-25
Photonic crystals (PCs) have recently attracted considerable attention, with much effort devoted to photonic bandgap (PBG) control for varying the reflected color. Here, fabrication of a modulated one-dimensional (1D) anodic aluminum oxide (AAO) PC with a periodic porous structure is reported. The PBG of the fabricated PC can be reversibly changed by switching the ultraviolet (UV) light on/off. The AAO nanopores contain a mixture of photoresponsive liquid crystals (LCs) with irradiation-activated cis/trans photoisomerizable azobenzene. The resultant mixture of LCs in the porous AAO film exhibits a reversible PBG, depending on the cis/trans configuration of azobenzene molecules. The PBG switching is reliable over many cycles, suggesting that the fabricated device can be used in optical and photonic applications such as light modulators, smart windows, and sensors.
Generation of cylindrically polarized vector vortex beams with digital micromirror device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Lei; Liu, Weiwei; Wang, Meng
We propose a novel technique to directly transform a linearly polarized Gaussian beam into vector-vortex beams with various spatial patterns. Full high-quality control of amplitude and phase is implemented via a Digital Micro-mirror Device (DMD) binary holography for generating Laguerre-Gaussian, Bessel-Gaussian, and helical Mathieu–Gaussian modes, while a radial polarization converter (S-waveplate) is employed to effectively convert the optical vortices into cylindrically polarized vortex beams. Additionally, the generated vector-vortex beams maintain their polarization symmetry after arbitrary polarization manipulation. Due to the high frame rates of DMD, rapid switching among a series of vector modes carrying different orbital angular momenta paves themore » way for optical microscopy, trapping, and communication.« less
NASA Astrophysics Data System (ADS)
Kakiuchida, Hiroshi; Ogiwara, Akifumi
2018-04-01
Polymer network liquid crystals (PNLCs) whose optical transmittance state switches between transparence at low temperatures and haze at high temperatures were fabricated from mixtures of nematic liquid crystals (LCs) and reactive mesogens (RMs). This PNLC structure is simple but effective, namely, consists of micro-scale domains of orientation-ordered LCs and anisotropically polymerized RMs. The domains form through photopolymerization induced phase separation with inhomogeneous irradiation projected by laser speckling techniques. This irradiation method enables you to control the size and shape of phase-separation domains, and these PNLCs can be applied to novel thermoresponsive optical devices; optical isolators, thermometric sheets, and smart windows.
Determination of pulse energy dependence for skin denaturation from 585nm fibre laser
NASA Astrophysics Data System (ADS)
Mujica-Ascencio, S.; Velazquez-Gonzalez, J. S.; Mujica-Ascencio, C.; Alvarez-Chavez, J. A.
2014-05-01
In this paper, simulation and mathematical analysis for the determination of pulse energy from a Q-switched Yb3+-doped fibre laser is required in Port Wine Stain (PWS) treatment. The pulse energy depends on average power, gain, volume, repetition rate and pulse duration. In some treatments such as Selective Photothermolysis (SP), the peak power at the end of the optical fibre and pulse duration can be obtained and modified via a cavity design. For that purpose, a 585nm optical fibre laser full design which considers all of the above besides the average losses through the optical devices proposed for the design and the Ytterbium optical fibre overall gain will be presented.
Scaling vectors of attoJoule per bit modulators
NASA Astrophysics Data System (ADS)
Sorger, Volker J.; Amin, Rubab; Khurgin, Jacob B.; Ma, Zhizhen; Dalir, Hamed; Khan, Sikandar
2018-01-01
Electro-optic modulation performs the conversion between the electrical and optical domain with applications in data communication for optical interconnects, but also for novel optical computing algorithms such as providing nonlinearity at the output stage of optical perceptrons in neuromorphic analog optical computing. While resembling an optical transistor, the weak light-matter-interaction makes modulators 105 times larger compared to their electronic counterparts. Since the clock frequency for photonics on-chip has a power-overhead sweet-spot around tens of GHz, ultrafast modulation may only be required in long-distance communication, not for short on-chip links. Hence, the search is open for power-efficient on-chip modulators beyond the solutions offered by foundries to date. Here, we show scaling vectors towards atto-Joule per bit efficient modulators on-chip as well as some experimental demonstrations of novel plasmonic modulators with sub-fJ/bit efficiencies. Our parametric study of placing different actively modulated materials into plasmonic versus photonic optical modes shows that 2D materials overcompensate their miniscule modal overlap by their unity-high index change. Furthermore, we reveal that the metal used in plasmonic-based modulators not only serves as an electrical contact, but also enables low electrical series resistances leading to near-ideal capacitors. We then discuss the first experimental demonstration of a photon-plasmon-hybrid graphene-based electro-absorption modulator on silicon. The device shows a sub-1 V steep switching enabled by near-ideal electrostatics delivering a high 0.05 dB V-1 μm-1 performance requiring only 110 aJ/bit. Improving on this demonstration, we discuss a plasmonic slot-based graphene modulator design, where the polarization of the plasmonic mode aligns with graphene’s in-plane dimension; where a push-pull dual-gating scheme enables 2 dB V-1 μm-1 efficient modulation allowing the device to be just 770 nm short for 3 dB small signal modulation. Lastly, comparing the switching energy of transistors to modulators shows that modulators based on emerging materials and plasmonic-silicon hybrid integration perform on-par relative to their electronic counter parts. This in turn allows for a device-enabled two orders-of-magnitude improvement of electrical-optical co-integrated network-on-chips over electronic-only architectures. The latter opens technological opportunities in cognitive computing, dynamic data-driven applications systems, and optical analog computer engines including neuromorphic photonic computing.
Optical clock signal distribution and packaging optimization
NASA Astrophysics Data System (ADS)
Wu, Linghui
Polymer-based waveguides for optoelectronic interconnects and packagings were fabricated by a fabrication process that is compatible with the Si CMOS packaging process. An optoelectronic interconnection layer (OIL) for the high-speed massive clock signal distribution for the Cray T-90 supercomputer board employing optical multimode channel waveguides in conjunction with surface-normal waveguide grating couplers and a 1-to-2 3 dB splitter was constructed. Equalized optical paths were realized using an optical H-tree structure having 48 optical fanouts. This device could be increased to 64 without introducing any additional complications. A 1-to-48 fanout H-tree structure using Ultradel 9000D series polyimide was fabricated. The propagation loss and splitting loss have been measured as 0.21 dB/cm and 0.4 dB/splitter at 850 nm. The power budget was discussed, and the H-tree waveguide fully satisfies the power budget requirement. A tapered waveguide coupler was employed to match the mode profile between the single-mode fiber and the multimode channel waveguides of the OIL. A thermo-optical based multimode switch was designed, fabricated, and tested. The finite difference method was used to simulate the thermal distribution in the polymer waveguide. Both stable and transient conditions have been calculated. The thermo-optical switch was fabricated and tested. The switching speed of 1 ms was experimentally confirmed, fitting well with the simulation results. Thermo-optic switching for randomly polarized light at wavelengths of 850 nm was experimental confirmed, as was a stable attenuation of 25 dB. The details of tapered waveguide fabrication were investigated. Compression-molded 3-D tapered waveguides were demonstrated for the first time. Not only the vertical depth variation but also the linear dimensions of the molded waveguides were well beyond the limits of what any other conventional waveguide fabrication method is capable of providing. Molded waveguides with vertical depths of 100 mum at one end and 5 mum at the other end and lengths of 1.0 cm were fabricated using a photolime gel polymer. A propagation loss of 0.5 dB/cm was achieved when light was coupled from the 5 mum x 5 mum end to the 100 mum x 100 mum end and that of 1.1 dB/cm was observed when light was coupled from the 100 mum x 100 mum end to the 5 mum x 5 mum. By confining the energy to the fundamental mode when coupling from the large end to the small end, low-loss packaging can be achieved bi-directionally. 3-D compression-molded polymeric waveguides present a promising solution to bridging the huge dynamic range of different optoelectronic device-depths varying from a few microns to several hundred microns.
An all-optical switch based on a surface plasmon polariton resonator
NASA Astrophysics Data System (ADS)
Pan, Zijuan; Lang, Peilin; Duan, Gaoyan
2018-04-01
All-optical switch is one of the key parts of optical circuit. We employ a temperature-sensitive resonator to form an optical switch. The resonator deforms under the applied light and adjusts the transmittance of the structure. To our knowledge, this is the first design of an all-optical surface plasmon polariton (SPP) switch based on the heat deformation effect.
Pixelized Device Control Actuators for Large Adaptive Optics
NASA Technical Reports Server (NTRS)
Knowles, Gareth J.; Bird, Ross W.; Shea, Brian; Chen, Peter
2009-01-01
A fully integrated, compact, adaptive space optic mirror assembly has been developed, incorporating new advances in ultralight, high-performance composite mirrors. The composite mirrors use Q-switch matrix architecture-based pixelized control (PMN-PT) actuators, which achieve high-performance, large adaptive optic capability, while reducing the weight of present adaptive optic systems. The self-contained, fully assembled, 11x11x4-in. (approx.= 28x28x10-cm) unit integrates a very-high-performance 8-in. (approx.=20-cm) optic, and has 8-kHz true bandwidth. The assembled unit weighs less than 15 pounds (=6.8 kg), including all mechanical assemblies, power electronics, control electronics, drive electronics, face sheet, wiring, and cabling. It requires just three wires to be attached (power, ground, and signal) for full-function systems integration, and uses a steel-frame and epoxied electronics. The three main innovations are: 1. Ultralightweight composite optics: A new replication method for fabrication of very thin composite 20-cm-diameter laminate face sheets with good as-fabricated optical figure was developed. The approach is a new mandrel resin surface deposition onto previously fabricated thin composite laminates. 2. Matrix (regenerative) power topology: Waveform correction can be achieved across an entire face sheet at 6 kHz, even for large actuator counts. In practice, it was found to be better to develop a quadrant drive, that is, four quadrants of 169 actuators behind the face sheet. Each quadrant has a single, small, regenerative power supply driving all 169 actuators at 8 kHz in effective parallel. 3. Q-switch drive architecture: The Q-switch innovation is at the heart of the matrix architecture, and allows for a very fast current draw into a desired actuator element in 120 counts of a MHz clock without any actuator coupling.
Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes
NASA Astrophysics Data System (ADS)
Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.
2015-10-01
Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.
Effects of monoclinic symmetry on the properties of biaxial liquid crystals
NASA Astrophysics Data System (ADS)
Solodkov, Nikita V.; Nagaraj, Mamatha; Jones, J. Cliff
2018-04-01
Tilted smectic liquid crystal phases such as the smectic-C phase seen in calamitic liquid crystals are usually treated using the assumption of biaxial orthorhombic symmetry. However, the smectic-C phase has monoclinic symmetry, thereby allowing disassociation of the principal optic and dielectric axes based on symmetry and invariance principles. This is demonstrated here by comparing optical and dielectric measurements for two materials with highly first-order direct transitions from nematic to smectic-C phases. The results show a high difference between the orientations of the principal axes sets, which is interpreted as the existence of two distinct cone angles for optical and dielectric frequencies. Both materials exhibit an increasing degree of monoclinic behavior with decreasing temperature. Due to fast switching speeds, ferroelectric smectic-C* materials are important for fast modulators and LCoS devices, where the dielectric biaxiality influences device operation.
Understanding the conductive channel evolution in Na:WO(3-x)-based planar devices.
Shang, Dashan; Li, Peining; Wang, Tao; Carria, Egidio; Sun, Jirong; Shen, Baogen; Taubner, Thomas; Valov, Ilia; Waser, Rainer; Wuttig, Matthias
2015-04-14
An ion migration process in a solid electrolyte is important for ion-based functional devices, such as fuel cells, batteries, electrochromics, gas sensors, and resistive switching systems. In this study, a planar sandwich structure is prepared by depositing tungsten oxide (WO(3-x)) films on a soda-lime glass substrate, from which Na(+) diffuses into the WO(3-x) films during the deposition. The entire process of Na(+) migration driven by an alternating electric field is visualized in the Na-doped WO(3-x) films in the form of conductive channel by in situ optical imaging combined with infrared spectroscopy and near-field imaging techniques. A reversible change of geometry between a parabolic and a bar channel is observed with the resistance change of the devices. The peculiar channel evolution is interpreted by a thermal-stress-induced mechanical deformation of the films and an asymmetric Na(+) mobility between the parabolic and the bar channels. These results exemplify a typical ion migration process driven by an alternating electric field in a solid electrolyte with a low ion mobility and are expected to be beneficial to improve the controllability of the ion migration in ion-based functional devices, such as resistive switching devices.
NASA Astrophysics Data System (ADS)
Safaei, R.; Amiri, I. S.; Rezayi, M.; Ahmad, H.
2018-01-01
A compact fiber laser utilizing platinum nanoparticles doped on carbon (Pt/C) embedded in photonic crystal fiber capable of generating a stable Q-switch dual-wavelength is designed and verified. Stable Q-switch pulses, with a repetition rate of 73.6 kHz, pulse width of 1.45 µs and power of 3.8 nJ in two separated wavelengths of 1557.39 nm and 1558.86 nm at a pump power of 350 mW, have been obtained. This is a novel method for generating Q-switch dual-wavelength pulses using a well-protected component that introduces both a saturable absorber and Mach-Zehnder interferometer effects simultaneously in the laser cavity. Furthermore, to best of our knowledge, this is the first time that Pt/C nanoparticles have been used in a saturable absorber for optical pulse generation.
NASA Astrophysics Data System (ADS)
Zhu, Zhonghu; Chen, Ai-Xi; Bai, Yanfeng; Yang, Wen-Xing; Lee, Ray-Kuang
2014-05-01
In this paper, we analyze theoretically the optical steady behavior in GaAs quantum well structure which interacts with a single elliptically polarized field (EPF) and a π-polarized probe field. Due to the existence of the robust nonradiative coherence, we demonstrate that the controllable optical steady behavior including multi-stability (OM) and optical bistability (OB) can be obtained. More interestingly, our numerical results also illustrate that tuning the phase difference between two components of polarized electric field of the EPF can realize the conversion between OB and OM. Our results illustrate the potential to utilize the optical phase for developing the new all-optical switching devices, as well as a guidance in the design for possible experimental implementations.
Wang, Wanjun; Zhou, Haifeng; Yang, Jianyi; Wang, Minghua; Jiang, Xiaoqing
2012-06-15
We report on an experimental 3×3 thermo-optical switch on silicon on insulator. By controlling a single combined phase shifter, light from any input waveguide can be directed to any output waveguide, showing a simple control method and highly integrated structure as compared to the conventional multiway optical switches. Furthermore, the proposed optical switch can be generalized to be a 1×N and N×N optical switch without an extra phase shifter. The switch is fabricated by complementary metal oxide semiconductor technology. By experiment, full 3×3 switching functionality is demonstrated at a wavelength of 1.55 μm, with an average cross talk of -11.1 dB and a power consumption of 97.5 mW.
Dynamically Reconfigurable Metadevice Employing Nanostructured Phase-Change Materials
Zhu, Zhihua; Evans, Philip G.; Haglund, Richard F.; ...
2017-07-21
Mastering dynamic free-space spectral control and modulation in the near-infrared (NIR) and optical regimes remains a challenging task that is hindered by the available functional materials at high frequencies. In this work, we have realized an efficient metadevice capable of spectral control by minimizing the thermal mass of a vanadium dioxide phase-change material (PCM) and placing the PCM at the feed gap of a bow-tie field antenna. The device has an experimentally measured tuning range of up to 360 nm in the NIR and a modulation depth of 33% at the resonant wavelength. The metadevice is configured for integrated andmore » local heating, leading to faster switching and more precise spatial control compared with devices based on phase-change thin films. We envisage that the combined advantages of this device will open new opportunities for signal processing, memory, security, and holography at optical frequencies.« less
Dynamically Reconfigurable Metadevice Employing Nanostructured Phase-Change Materials.
Zhu, Zhihua; Evans, Philip G; Haglund, Richard F; Valentine, Jason G
2017-08-09
Mastering dynamic free-space spectral control and modulation in the near-infrared (NIR) and optical regimes remains a challenging task that is hindered by the available functional materials at high frequencies. In this work, we have realized an efficient metadevice capable of spectral control by minimizing the thermal mass of a vanadium dioxide phase-change material (PCM) and placing the PCM at the feed gap of a bow-tie field antenna. The device has an experimentally measured tuning range of up to 360 nm in the NIR and a modulation depth of 33% at the resonant wavelength. The metadevice is configured for integrated and local heating, leading to faster switching and more precise spatial control compared with devices based on phase-change thin films. We envisage that the combined advantages of this device will open new opportunities for signal processing, memory, security, and holography at optical frequencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Zhihua; Evans, Philip G.; Haglund, Richard F.
Mastering dynamic free-space spectral control and modulation in the near-infrared (NIR) and optical regimes remains a challenging task that is hindered by the available functional materials at high frequencies. In this work, we have realized an efficient metadevice capable of spectral control by minimizing the thermal mass of a vanadium dioxide phase-change material (PCM) and placing the PCM at the feed gap of a bow-tie field antenna. The device has an experimentally measured tuning range of up to 360 nm in the NIR and a modulation depth of 33% at the resonant wavelength. The metadevice is configured for integrated andmore » local heating, leading to faster switching and more precise spatial control compared with devices based on phase-change thin films. We envisage that the combined advantages of this device will open new opportunities for signal processing, memory, security, and holography at optical frequencies.« less
Electrochromic device based on electrospun WO{sub 3} nanofibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dulgerbaki, Cigdem; Maslakci, Neslihan Nohut; Komur, Ali Ihsan
2015-12-15
Highlights: • WO{sub 3} electrochromic nanofibers were prepared by electrospinning technique. • WO{sub 3} nanofibers switched reversibly from transparent to blue color. • Electrochromic device was assembled using ionic liquid based gel electrolyte. • Significant optical modulation and excellent cycling stability were achieved for ECD. - Abstract: The tungsten oxide (WO{sub 3}) nanofibers were grown directly onto an ITO-coated glass via an electrospinning method for electrochromic applications. The electrochromic properties of WO{sub 3} nanofibers were investigated in the presence of different electrolytes including a series of ionic liquids and classic LiClO{sub 4}-PC system. A significant optical modulation of 20.82% atmore » 760 nm, reversible coloration with efficiency of 64.58 cm{sup 2}/C and excellent cycling stability were achieved for the nanofiber electrochromic device (ECD) with ionic liquid based gel electrolyte.« less
Analysis of optical route in a micro high-speed magneto-optic switch
NASA Astrophysics Data System (ADS)
Weng, Zihua; Yang, Guoguang; Huang, Yuanqing; Chen, Zhimin; Zhu, Yun; Wu, Jinming; Lin, Shufen; Mo, Weiping
2005-02-01
A novel micro high-speed 2x2 magneto-optic switch and its optical route, which is used in high-speed all-optical communication network, is designed and analyzed in this paper. The study of micro high-speed magneto-optic switch mainly involves the optical route and high-speed control technique design. The optical route design covers optical route design of polarization in optical switch, the performance analysis and material selection of magneto-optic crystal and magnetic path design in Faraday rotator. The research of high-speed control technique involves the study of nanosecond pulse generator, high-speed magnetic field and its control technique etc. High-speed current transients from nanosecond pulse generator are used to switch the magnetization of the magneto-optic crystal, which propagates a 1550nm optical beam. The optical route design schemes and electronic circuits of high-speed control technique are both simulated on computer and test by the experiments respectively. The experiment results state that the nanosecond pulse generator can output the pulse with rising edge time 3~35ns, voltage amplitude 10~90V and pulse width 10~100ns. Under the control of CPU singlechip, the optical beam can be stably switched and the switching time is less than 1μs currently.
Proposal of optical mode switch
NASA Astrophysics Data System (ADS)
Takakura, Ryuta; Jizodo, Makoto; Fujino, Asuka; Tanaka, Tatsushi; Hamamoto, Kiichi
2014-08-01
Here, we propose a novel optical mode switch, which is a new concept of the optical switch. It can overcome the matrix size limitation issue, which has been a general issue for the waveguide optical space switch, because of its simple fiber coupling configuration. In addition, it contributes to the lossless mux/demux function such as wavelength multiplexing with powerless mode conversion unlike wavelength conversion. In this paper, we propose the principle of the optical mode switch. The simulation results showed less than -30 dB mode crosstalk, with less than only 0.1 dB excess loss for a two-mode optical switch. Moreover, the scalable configuration up to four modes is also proposed in this paper.
Wang, Bing; Baby, Varghese; Tong, Wilson; Xu, Lei; Friedman, Michelle; Runser, Robert; Glesk, Ivan; Prucnal, Paul
2002-01-14
A novel optical switch based on cascading two terahertz optical asymmetric demultiplexers (TOAD) is presented. By utilizing the sharp edge of the asymmetric TOAD switching window profile, two TOAD switching windows are overlapped to produce a narrower aggregate switching window, not limited by the pulse propagation time in the SOA of the TOAD. Simulations of the cascaded TOAD switching window show relatively constant window amplitude for different window sizes. Experimental results on cascading two TOADs, each with a switching window of 8ps, but with the SOA on opposite sides of the fiber loop, show a minimum switching window of 2.7ps.
Nozaki, Kengo; Lacraz, Amedee; Shinya, Akihiko; Matsuo, Shinji; Sato, Tomonari; Takeda, Koji; Kuramochi, Eiichi; Notomi, Masaya
2015-11-16
An all-optical packet switching using bistable photonic crystal nanocavity memories was demonstrated for the first time. Nanocavity-waveguide coupling systems were configured for 1 × 1, 1 × 2, and 1 × 3 switches for 10-Gb/s optical packet, and they were all operated with an optical bias power of only a few μW. The power is several magnitudes lower than that of previously reported all-optical packet switches incorporating all-optical memories. A theoretical investigation indicated the optimum design for reducing the power consumption even further, and for realizing a higher data-rate capability and higher extinction. A small footprint and integrability are also features of our switches, which make them attractive for constructing an all-optical packet switching subsystem with a view to realizing optical routing on a chip.
Superstructures of chiral nematic microspheres as all-optical switchable distributors of light
Aβhoff, Sarah J.; Sukas, Sertan; Yamaguchi, Tadatsugu; Hommersom, Catharina A.; Le Gac, Séverine; Katsonis, Nathalie
2015-01-01
Light technology is based on generating, detecting and controlling the wavelength, polarization and direction of light. Emerging applications range from electronics and telecommunication to health, defence and security. In particular, data transmission and communication technologies are currently asking for increasingly complex and fast devices, and therefore there is a growing interest in materials that can be used to transmit light and also to control the distribution of light in space and time. Here, we design chiral nematic microspheres whose shape enables them to reflect light of different wavelengths and handedness in all directions. Assembled in organized hexagonal superstructures, these microspheres of well-defined sizes communicate optically with high selectivity for the colour and chirality of light. Importantly, when the microspheres are doped with photo-responsive molecular switches, their chiroptical communication can be tuned, both gradually in wavelength and reversibly in polarization. Since the kinetics of the “on” and “off” switching can be adjusted by molecular engineering of the dopants and because the photonic cross-communication is selective with respect to the chirality of the incoming light, these photo-responsive microspheres show potential for chiroptical all-optical distributors and switches, in which wavelength, chirality and direction of the reflected light can be controlled independently and reversibly. PMID:26400584
Multiband Photonic Phased-Array Antenna
NASA Technical Reports Server (NTRS)
Tang, Suning
2015-01-01
A multiband phased-array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. Crystal Research, Inc., has developed a multiband photonic antenna that is based on a high-speed, optical, true-time-delay beamformer. It is capable of simultaneously steering multiple independent radio frequency (RF) beams in less than 1,000 nanoseconds. This high steering speed is 3 orders of magnitude faster than any existing optical beamformer. Unlike other approaches, this technology uses a single controlling device per operation band, eliminating the need for massive optical switches, laser diodes, and fiber Bragg gratings. More importantly, only one beamformer is needed for all antenna elements.
Saying goodbye to optical storage technology.
McLendon, Kelly; Babbitt, Cliff
2002-08-01
The days of using optical disk based mass storage devices for high volume applications like health care document imaging are coming to an end. The price/performance curve for redundant magnetic disks, known as RAID, is now more positive than for optical disks. All types of application systems, across many sectors of the marketplace are using these newer magnetic technologies, including insurance, banking, aerospace, as well as health care. The main components of these new storage technologies are RAID and SAN. SAN refers to storage area network, which is a complex mechanism of switches and connections that allow multiple systems to store huge amounts of data securely and safely.
Z-scan measurement for nonlinear absorption property of rGO/ZnO:Al thin film
NASA Astrophysics Data System (ADS)
Sreeja, V. G.; Anila, E. I.
2018-04-01
We report the fabrication of reduced graphene oxide integrated aluminium doped zinc oxide (rGO/ZnO:Al) composite thin film on a glass substrate by spin coating technique. The effect of rGO on structural and linear optical properties of rGO/ZnO:Al composite thin film was explored with the help of X-Ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-Vis absorption spectroscopy. Structural studies reveals that the composite film has hexagonal wurtzite structure with a strong bonding between rGO and ZnO:Al material. The band gap energy of ZnO:Al thin film was red shifted by the addition of rGO. The Nonlinear absorption property was investigated by open aperture Z-scan technique by using Q switched Nd-YAG laser at 532nm. The Z-scan results showed that the composite film demonstrates reverse saturable absorption property with a nonlinear absorption coefficient, β, of 12.75×10-7m/w. The results showed that investigated rGO/ZnO:Al thin film is a promising material suitable for the applications in absorbing type optical devices such as optical limiters, optical switches and protection of the optical sensors in the field of nonlinear optics.
Development, implementation, and test results on integrated optics switching matrix
NASA Technical Reports Server (NTRS)
Rutz, E.
1982-01-01
A small integrated optics switching matrix, which was developed, implemented, and tested, indicates high performance. The matrix serves as a model for the design of larger switching matrices. The larger integrated optics switching matrix should form the integral part of a switching center with high data rate throughput of up to 300 megabits per second. The switching matrix technique can accomplish the design goals of low crosstalk and low distortion. About 50 illustrations help explain and depict the many phases of the integrated optics switching matrix. Many equations used to explain and calculate the experimental data are also included.
Advanced optical components for next-generation photonic networks
NASA Astrophysics Data System (ADS)
Yoo, S. J. B.
2003-08-01
Future networks will require very high throughput, carrying dominantly data-centric traffic. The role of Photonic Networks employing all-optical systems will become increasingly important in providing scalable bandwidth, agile reconfigurability, and low-power consumptions in the future. In particular, the self-similar nature of data traffic indicates that packet switching and burst switching will be beneficial in the Next Generation Photonic Networks. While the natural conclusion is to pursue Photonic Packet Switching and Photonic Burst Switching systems, there are significant challenges in realizing such a system due to practical limitations in optical component technologies. Lack of a viable all-optical memory technology will continue to drive us towards exploring rapid reconfigurability in the wavelength domain. We will introduce and discuss the advanced optical component technologies behind the Photonic Packet Routing system designed and demonstrated at UC Davis. The system is capable of packet switching and burst switching, as well as circuit switching with 600 psec switching speed and scalability to 42 petabit/sec aggregated switching capacity. By utilizing a combination of rapidly tunable wavelength conversion and a uniform-loss cyclic frequency (ULCF) arrayed waveguide grating router (AWGR), the system is capable of rapidly switching the packets in wavelength, time, and space domains. The label swapping module inside the Photonic Packet Routing system containing a Mach-Zehnder wavelength converter and a narrow-band fiber Bragg-grating achieves all-optical label swapping with optical 2R (potentially 3R) regeneration while maintaining optical transparency for the data payload. By utilizing the advanced optical component technologies, the Photonic Packet Routing system successfully demonstrated error-free, cascaded, multi-hop photonic packet switching and routing with optical-label swapping. This paper will review the advanced optical component technologies and their role in the Next Generation Photonic Networks.
Status and Prospects of ZnO-Based Resistive Switching Memory Devices
NASA Astrophysics Data System (ADS)
Simanjuntak, Firman Mangasa; Panda, Debashis; Wei, Kung-Hwa; Tseng, Tseung-Yuen
2016-08-01
In the advancement of the semiconductor device technology, ZnO could be a prospective alternative than the other metal oxides for its versatility and huge applications in different aspects. In this review, a thorough overview on ZnO for the application of resistive switching memory (RRAM) devices has been conducted. Various efforts that have been made to investigate and modulate the switching characteristics of ZnO-based switching memory devices are discussed. The use of ZnO layer in different structure, the different types of filament formation, and the different types of switching including complementary switching are reported. By considering the huge interest of transparent devices, this review gives the concrete overview of the present status and prospects of transparent RRAM devices based on ZnO. ZnO-based RRAM can be used for flexible memory devices, which is also covered here. Another challenge in ZnO-based RRAM is that the realization of ultra-thin and low power devices. Nevertheless, ZnO not only offers decent memory properties but also has a unique potential to be used as multifunctional nonvolatile memory devices. The impact of electrode materials, metal doping, stack structures, transparency, and flexibility on resistive switching properties and switching parameters of ZnO-based resistive switching memory devices are briefly compared. This review also covers the different nanostructured-based emerging resistive switching memory devices for low power scalable devices. It may give a valuable insight on developing ZnO-based RRAM and also should encourage researchers to overcome the challenges.
NASA Astrophysics Data System (ADS)
Wu, Zhongying; Li, Juhao; Tian, Yu; Ge, Dawei; Zhu, Paikun; Chen, Yuanxiang; Chen, Zhangyuan; He, Yongqi
2017-03-01
In recent years, optical label switching (OLS) gains lots of attentions due to its intrinsic advantages to implement protocol, bit-rate, granularity and data format transparency packet switching. In this paper, we propose a novel scheme to realize flexible-rate optical packet switching for OLS networks. At the transmitter node, flexible-rate packet is generated by parallel modulating different combinations of optical carriers generated from the optical multi-carrier generator (OMCG), among which the low-speed optical label occupies one carrier. At the switching node, label is extracted and re-generated in label processing unit (LPU). The payloads are switched based on routing information and new label is added after switching. At the receiver node, another OMCG serves as local oscillators (LOs) for optical payloads coherent detection. The proposed scheme offers good flexibility for dynamic optical packet switching by adjusting the payload bandwidth and could also effectively reduce the number of lasers, modulators and receivers for packet generation/detection. We present proof-of-concept demonstrations of flexible-rate packet generation/detection and label swapping in 12.5 GHz grid. The influence of crosstalk for cascaded label swapping is also investigated.
Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien
2016-01-01
In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature ‘prototype’ PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits. PMID:27491391
NASA Astrophysics Data System (ADS)
Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien
2016-08-01
In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature ‘prototype’ PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits.
Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien
2016-08-05
In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature 'prototype' PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits.
NASA Astrophysics Data System (ADS)
Tajaldini, Mehdi; Jafri, Mohd Zubir Mat
2015-04-01
The theory of Nonlinear Modal Propagation Analysis Method (NMPA) have shown significant features of nonlinear multimode interference (MMI) coupler with compact dimension and when launched near the threshold of nonlinearity. Moreover, NMPA have the potential to allow studying the nonlinear MMI based the modal interference to explorer the phenomenon that what happen due to the natural of multimode region. Proposal of all-optical switch based NMPA has approved its capability to achieving the all-optical gates. All-optical gates have attracted increasing attention due to their practical utility in all-optical signal processing networks and systems. Nonlinear multimode interference devices could apply as universal all-optical gates due to significant features that NMPA introduce them. In this Paper, we present a novel Ultra-compact MMI coupler based on NMPA method in low intensity compared to last reports either as a novel design method and potential application for optical NAND, NOR as universal gates on single structure for Boolean logic signal processing devices and optimize their application via studding the contrast ratio between ON and OFF as a function of output width. We have applied NMPA for several applications so that the miniaturization in low nonlinear intensities is their main purpose.
NASA Technical Reports Server (NTRS)
Spencer, Michael G. (Inventor); Maserjian, Joseph (Inventor)
1995-01-01
A submillimeter wave-generating integrated circuit includes an array of N photoconductive switches biased across a common voltage source and an optical path difference from a common optical pulse of repetition rate f sub 0 providing a different optical delay to each of the switches. In one embodiment, each incoming pulse is applied to successive ones of the N switches with successive delays. The N switches are spaced apart with a suitable switch-to-switch spacing so as to generate at the output load or antenna radiation of a submillimeter wave frequency f on the order of N f sub 0. Preferably, the optical pulse has a repetition rate of at least 10 GHz and N is of the order of 100, so that the circuit generates radiation of frequency of the order of or greater than 1 Terahertz.
Free-Space Optical Switch Modules Using Risley Optical Beam Deflectors
NASA Astrophysics Data System (ADS)
Matsui, Takashi; Oohira, Fumikazu; Hosogi, Maho; Yamamoto, Tsuyoshi
2006-03-01
This paper describes new optical switch modules based on Risley optical beam deflectors. The Risley deflector consists of two wedge-shaped prisms and precisely controllable rotation mechanisms. An optical beam can be deflected to the direction of two axes by rotating each prism independently. The deflectors potentially have a self-latching function, which provides a reliable switching operation, and a large-deflection angle of 19.2°, which makes the switch compact. We experimentally confirmed that prototype switch modules, hardware volume: 15× 15× 31 mm3, deflection angle: <19.2°, have a scalability of the switch up to 256 ports, low-loss characteristics of 1.0-1.5 dB, and switching time of within 6 s.
NASA Astrophysics Data System (ADS)
Nurmohammadi, Tofiq; Abbasian, Karim; Yadipour, Reza
2018-03-01
In this paper, an all-optical plasmonic switch based on metal-insulator-metal (MIM) nanoplasmonic waveguide with a Kerr nonlinear ring resonator is introduced and studied. Two-dimensional simulations utilizing the finite-difference time-domain algorithm are used to demonstrate an apparent optical bistability and significant switching mechanisms (in enabled-low condition: T(ON/OFF) =21.9 and in enabled-high condition: T(ON/OFF) =24.9) of the signal light arisen by altering the pump-light intensity. The proposed all-optical switching demonstrates femtosecond-scale feedback time (90 fs) and then ultra-fast switching can be achieved. The offered all-optical switch may recognize potential significant applications in integrated optical circuits.
Application of micro- and nanotechnologies for the fabrication of optical devices
NASA Astrophysics Data System (ADS)
Ehrfeld, Wolfgang; Bauer, Hans-Dieter
1998-03-01
The development of micro-opto-electro-mechanical systems (MOEMS) and devices no longer focuses on feasibility studies and expensive demonstrators. On the contrary, fabrication of micro-optical components is already feeding dynamic markets with a large variety of products that are more or less on the verge of inexpensive mass production. A major application area for MOEMS is, without any doubt, tele- and datacommunications, while miniature optical sensors (e.g. spectrometers and interferometers) have a growing part in many kinds of biotechnological, chemical and pharmaceutical applications. In this presentation numerous examples for optical microstructures are given that range from the field of low cost fiberoptic components to polymer waveguide elements, from fiber switches to mass-producible microlenses made of thermoplastics or glass, and from microstructured photonic bandgap materials to optical sensor tips for investigating nanostructures. It is emphasized that for realizing MOEMS very different materials have to be processed while the necessary hybrid integration demands for specific automated assembly methods. In particular, the examples given show now microtechnologies can be adapted and combined with each other to take into account the special requirements of the product.
Integrated coherent matter wave circuits
Ryu, C.; Boshier, M. G.
2015-09-21
An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less
Wang, Danshi; Zhang, Min; Qin, Jun; Lu, Guo-Wei; Wang, Hongxiang; Huang, Shanguo
2014-09-08
We propose a multifunctional optical switching unit based on the bidirectional liquid crystal on silicon (LCoS) and semiconductor optical amplifier (SOA) architecture. Add/drop, wavelength conversion, format conversion, and WDM multicast are experimentally demonstrated. Due to the bidirectional characteristic, the LCoS device cannot only multiplex the input signals, but also de-multiplex the converted signals. Dual-channel wavelength conversion and format conversion from 2 × 25Gbps differential quadrature phase-shift-keying (DQPSK) to 2 × 12.5Gbps differential phase-shift-keying (DPSK) based on four-wave mixing (FWM) in SOA is obtained with only one pump. One-to-six WDM multicast of 25Gbps DQPSK signals with two pumps is also achieved. All of the multicast channels are with a power penalty less than 1.1 dB at FEC threshold of 3.8 × 10⁻³.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, C.; Boshier, M. G.
An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less
Eager protocol on a cache pipeline dataflow
Ohmacht, Martin; Sugavanam, Krishnan
2012-11-13
A master device sends a request to communicate with a slave device to a switch. The master device waits for a period of cycles the switch takes to decide whether the master device can communicate with the slave device, and the master device sends data associated with the request to communicate at least after the period of cycles has passed since the master device sent the request to communicate to the switch without waiting to receive an acknowledgment from the switch that the master device can communicate with the slave device.
NASA Astrophysics Data System (ADS)
Huang, Shaowei; Baba, Ken-Ichi; Murata, Masayuki; Kitayama, Ken-Ichi
2006-12-01
In traditional lambda-based multigranularity optical networks, a lambda is always treated as the basic routing unit, resulting in low wavelength utilization. On the basis of optical code division multiplexing (OCDM) technology, a novel OCDM-based multigranularity optical cross-connect (MG-OXC) is proposed. Compared with the traditional lambda-based MG-OXC, its switching capability has been extended to support fiber switching, waveband switching, lambda switching, and OCDM switching. In a network composed of OCDM-based MG-OXCs, a single wavelength can be shared by distinct label switched paths (LSPs) called OCDM-LSPs, and OCDM-LSP switching can be implemented in the optical domain. To improve the network flexibility for an OCDM-LSP provisioning, two kinds of switches enabling hybrid optical code (OC)-wavelength conversion are designed. Simulation results indicate that a blocking probability reduction of 2 orders can be obtained by deploying only five OCs to a single wavelength. Furthermore, compared with time-division-multiplexing LSP (TDM-LSP), owing to the asynchronous accessibility and the OC conversion, OCDM-LSPs have been shown to permit a simpler switch architecture and achieve better blocking performance than TDM-LSPs.
Study on the transient properties of amorphous solar cells
NASA Astrophysics Data System (ADS)
Smrity, Manu; Dhariwal, S. R.
2016-05-01
The transient response for the solar cell when switched off from steady-state can provide useful information about the quality of the material used for fabrication of the device. In this paper we shall discuss the photovoltaic transients of amorphous silicon solar cells when switched off from open circuit configuration and illuminated by electrical pulse. The open-circuit voltage (Voc) decay can be performed by two methods, by optical excitation and by electrical pulse. When one of carriers has a concentration much higher than the other the photoconductivity is dominated by majority carriers; in that case the Voc decay which depends on the np product can be used as complementary method for obtaining information about the minority carriers. Also the series resistance drop in an electrical Voc decay method can be used to obtain a IJ't product as an additional information regarding the material of the device.
Quantum Zeno Blockade for Next Generation Optical Switching in Fiber Systems
2013-09-01
and utilized a self - referential quantum process tomography method to observe the Zeno effect in optical fiber using the ultrafast all- optical switch...controllable and can be used as a knob to study the core physics behind the Zeno-based switching. For this experiment, we developed a self - referential ...efficient optical communications. The quantum Zeno effect can be used to induce or inhibit optical switching through a variety of processes , all of
NASA Astrophysics Data System (ADS)
Xu, Cheng; Liu, Bo; Chen, Yi-Feng; Liang, Shuang; Song, Zhi-Tang; Feng, Song-Lin; Wan, Xu-Dong; Yang, Zuo-Ya; Xie, Joseph; Chen, Bomy
2008-05-01
A Ge2Sb2Te5 based phase change memory device cell integrated with metal-oxide semiconductor field effect transistor (MOSFET) is fabricated using standard 0. 18 μm complementary metal-oxide semiconductor process technology. It shows steady switching characteristics in the dc current-voltage measurement. The phase changing phenomenon from crystalline state to amorphous state with a voltage pulse altitude of 2.0 V and pulse width of 50 ns is also obtained. These results show the feasibility of integrating phase change memory cell with MOSFET.
Ferrarin, M; Brambilla, M; Garavello, L; Di Candia, A; Pedotti, A; Rabuffetti, M
2004-05-01
Different types of visual cue for subjects with Parkinson's disease (PD) produced an improvement in gait and helped some of them prevent or overcome freezing episodes. The paper describes a portable gait-enabling device (optical stimulating glasses (OSGs) that provides, in the peripheral field of view, different types of continuous optic flow (backward or forward) and intermittent stimuli synchronised with external events. The OSGs are a programmable, stand-alone, augmented reality system that can be interfaced with a PC for program set-up. It consists of a pair of non-corrective glasses, equipped with two matrixes of 70 micro light emitting diodes, one on each side, controlled by a microprocessor. Two foot-switches are used to synchronise optical stimulation with specific gait events. A pilot study was carried out on three PD patients and three controls, with different types of optic flow during walking along a fixed path. The continuous optic flow in the forward direction produced an increase in gait velocity in the PD patients (up to + 11% in average), whereas the controls had small variations. The stimulation synchronised with the swing phase, associated with an attentional strategy, produced a remarkable increase in stride length for all subjects. After prolonged testing, the device has shown good applicability and technical functionality, it is easily wearable and transportable, and it does not interfere with gait.
Optical switching property of electromagnetically induced transparency in a Λ system
NASA Astrophysics Data System (ADS)
Zhang, Lianshui; Wang, Jian; Feng, Xiaomin; Yang, Lijun; Li, Xiaoli; Zhao, Min
2008-12-01
In this paper we study the coherent transient property of a Λ-three-level system (Ωd = 0) and a quasi- Λ -four-level system (Ωd>0). Optical switching of the probe field can be achieved by applying a pulsed coupling field or rf field. In Λ -shaped three-level system, when the coupling field was switched on, there is a almost total transparency of the probe field and the time required for the absorption changing from 90% to 10% of the maximum absorption is 2.9Γ0 (Γ0 is spontaneous emission lifetime). When the coupling field was switched off, there is an initial increase of the probe field absorption and then gradually evolves to the maximum of absorption of the two-level absorption, the time required for the absorption of the system changing from 10% to 90% is 4.2Γ0. In four-level system, where rf driving field is used as switching field, to achieve the same depth of the optical switching, the time of the optical switching is 2.5Γ0 and 6.1Γ0, respectively. The results show that with the same depth of the optical switching, the switch-on time of the four-level system is shorter than that of the three-level system, while the switch-off time of the four-level system is longer. The depth of the optical switching of the four-level system was much larger than that of the three-level system, where the depth of the optical switching of the latter is merely 14.8% of that of the former. The speed of optical switching of the two systems can be increased by the increase of Rabi frequency of coupling field or rf field.
Characteristics of silicon-based Sagnac optical switches using magneto-optical micro-ring array
NASA Astrophysics Data System (ADS)
Ni, Shuang; Wu, Baojian; Liu, Yawen
2018-01-01
The miniaturization and integration of optical switches are necessary for photonic switching networks and the utilization of magneto optical effects is a promising candidate. We propose a Sagnac optical switch chip based on the principle of nonreciprocal phase shift (NPS) of the magneto-optical (MO) micro-ring (MOMR) array, composed of SiO2/Si/Ce:YIG/SGGG. The MO switching function is realized by controlling the drive current in the snake-like metal microstrip circuit layered on the MOMRs. The transmission characteristics of the Sagnac MO switch chip dependent on magnetization intensity, waveguide coupling coefficient and waveguide loss are simulated. By optimizing the coupling coefficients, we design an MO switch using two serial MOMRs with a circumference of 38.37 μm, and the 3dB bandwidth and the extinction ratio are respectively up to 1.6 nm and 50dB for the waveguide loss coefficient of ?. And the switching magnetization can be further reduced by increasing the number of parallel MOMRs. The frequency response of the MO Sagnac switch is analyzed as well.
NASA Astrophysics Data System (ADS)
Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng
2014-08-01
Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.
High-speed optical switch fabrics with large port count.
Yeo, Yong-Kee; Xu, Zhaowen; Wang, Dawei; Liu, Jianguo; Wang, Yixin; Cheng, Tee-Hiang
2009-06-22
We report a novel architecture that can be used to construct optical switch fabrics with very high port count and nanoseconds switching speed. It is well known that optical switch fabrics with very fast switching time and high port count are challenging to realize. Currently, one of the most promising solutions is based on a combination of wavelength-tunable lasers and the arrayed waveguide grating router (AWGR). To scale up the number of ports in such switches, a direct method is to use AWGRs with a high channel count. However, such AWGRs introduce very large crosstalk noise due to the close wavelength channel spacing. In this paper, we propose an architecture for realizing a high-port count optical switch fabric using a combination of low-port count AWGRs, optical ON-OFF gates and WDM couplers. Using this new methodology, we constructed a proof-of concept experiment to demonstrate the feasibility of a 256 x 256 optical switch fabric. To our knowledge, this port count is the highest ever reported for switch fabrics of this type.
Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating.
Wang, Guoxi; Lu, Hua; Liu, Xueming; Gong, Yongkang
2012-11-09
We have proposed and numerically investigated an all-optical switch based on a metal-insulator-metal waveguide with graded nonlinear plasmonic gratings. The influences of grating depth and refractive index of a Kerr nonlinear medium on the transmission of the switch are exactly analyzed by utilizing transmission line theory. The finite-difference time-domain simulation results show that the highly compact structure possesses excellent switch function by tuning the incident electric field intensity. In addition, the simulation results show that this all-optical switch has an ultrawide operating frequency regime and femtosecond-scale response time (~130 fs). Such a switch can find potential applications for all-optical signal processing and optical communication.
NASA Astrophysics Data System (ADS)
Song, Da
2008-02-01
One of the major challenges confronting the current integrated circuits (IC) industry is the metal "interconnect bottleneck". To overcome this obstacle, free space optical interconnects (FSOIs) can be used to address the demand for high speed data transmission, multi-functionality and multi-dimensional integration for the next generation IC. One of the crucial elements in FSOIs system is to develop a high performance and flexible optical network to transform the incoming optical signal into a distributed set of optical signals whose direction, alignment and power can be independently controlled. Among all the optical materials for the realization of FSOI components, porous silicon (PSi) is one of the most promising candidates because of its unique optical properties, flexible fabrication methods and integration with conventional IC material sets. PSi-based Distributed Bragg Reflector (DBR) and Fabry-Perot (F-P) structures with unique optical properties are realized by electrochemical etching of silicon. By incorporating PSi optical structures with Micro-Opto-Electro-Mechanical-Systems (MOEMS), several components required for FSOI have been developed. The first type of component is the out-of-plane freestanding optical switch. Implementing a PSi DBR structure as an optically active region, the device can realize channel selection by changing the tilting angle of the micromirror supported by the thermal bimorph actuator. All the fabricated optical switches have reached kHz working frequency and life time of millions of cycles. The second type of component is the in-plane tunable optical filter. By introducing PSi F-P structure into the in-plane PSi film, a thermally tunable optical filter with a sensitivity of 7.9nm/V has been realized for add/drop optical signal selection. Also, for the first time, a new type of PSi based reconfigurable diffractive optical element (DOE) has been developed. By using patterned photoresist as a protective mask for electrochemical etching, the freestanding PSi-based MOEMS DOE has been created as a beam splitter to redistribute the incoming optical signal with onto desired detector arrays. All the developed devices are realized in array fashion and can be addressed and controlled individually. The combination of PSi and MOEMS opens the door for a new generation of silicon compatible optical interconnects.
High bandwidth all-optical 3×3 switch based on multimode interference structures
NASA Astrophysics Data System (ADS)
Le, Duy-Tien; Truong, Cao-Dung; Le, Trung-Thanh
2017-03-01
A high bandwidth all-optical 3×3 switch based on general interference multimode interference (GI-MMI) structure is proposed in this study. Two 3×3 multimode interference couplers are cascaded to realize an all-optical switch operating at both wavelengths of 1550 nm and 1310 nm. Two nonlinear directional couplers at two outer-arms of the structure are used as all-optical phase shifters to achieve all switching states and to control the switching states. Analytical expressions for switching operation using the transfer matrix method are presented. The beam propagation method (BPM) is used to design and optimize the whole structure. The optimal design of the all-optical phase shifters and 3×3 MMI couplers are carried out to reduce the switching power and loss.
NASA Astrophysics Data System (ADS)
Wu, Jing; Lü, Xin-You; Zheng, Li-Li
2010-08-01
We theoretically investigate the behaviour of optical bistability (OB) and optical multistability (OM) in a generic double two-level atomic system driven by two orthogonally polarized fields (a π-polarized control field and a σ-polarized probe field). It is found that the behaviour of OB can be controlled by adjusting the intensity or the frequency detuning of the control field. Interestingly enough, our numerical results also show that it is easy to realize the transition from OB to OM or vice versa by adjusting the relative phase between the control and probe fields. This investigation can be used for the development of new types of devices for realizing an all-optic switching process.
Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Chen, Dalei
2015-06-01
In this Letter, the optical stealth transmission carried by super-continuum spectrum optical pulses generated in highly nonlinear fiber is proposed and experimentally demonstrated. In the proposed transmission scheme, super-continuum signals are reshaped in the spectral domain through a wavelength-selective switch and are temporally spread by a chromatic dispersion device to achieve the same noise-like characteristic as the noise in optical networks, so that in both the time domain and the spectral domain, the stealth signals are hidden in public channel. Our experimental results show that compared with existing schemes where stealth channels are carried by amplified spontaneous emission noise, super-continuum signal can increase the transmission performance and robustness.
Temporal switching jitter in photoconductive switches
DOE Office of Scientific and Technical Information (OSTI.GOV)
GAUDET,JOHN A.; SKIPPER,MICHAEL C.; ABDALLA,MICHAEL D.
This paper reports on a recent comparison made between the Air Force Research Laboratory (AFRL) gallium arsenide, optically-triggered switch test configuration and the Sandia National Laboratories (SNL) gallium arsenide, optically-triggered switch test configuration. The purpose of these measurements was to compare the temporal switch jitter times. It is found that the optical trigger laser characteristics are dominant in determining the PCSS jitter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maestas, J.H.
1987-03-01
An optical switch was designed, built, and installed at Sandia National Laboratories in Albuquerque, New Mexico, to facilitate the integration of two Apollo computer networks into a single network. This report presents an overview of the optical switch as well as its layout, switch testing procedure and test data, and installation.
Integrated five-port non-blocking optical router based on mode-selective property
NASA Astrophysics Data System (ADS)
Jia, Hao; Zhou, Ting; Fu, Xin; Ding, Jianfeng; Zhang, Lei; Yang, Lin
2018-05-01
In this paper, we propose and demonstrate a five-port optical router based on mode-selective property. It utilizes different combinations of four spatial modes at input and output ports as labels to distinguish its 20 routing paths. It can direct signals from the source port to the destination port intelligently without power consumption and additional switching time to realize various path steering. The proposed architecture is constructed by asymmetric directional coupler based mode-multiplexers/de-multiplexers, multimode interference based waveguide crossings and single-mode interconnect waveguides. The broad optical bandwidths of these constituents make the device suitable to combine with wavelength division multiplexing signal transmission, which can effectively increase the data throughput. Measurement results show that the insertion loss of its 20 routing paths are lower than 8.5 dB and the optical signal-to-noise ratios are larger than 16.3 dB at 1525-1565 nm. To characterize its routing functionality, a 40-Gbps data transmission with bit-error-rate (BER) measurement is implemented. The power penalties for the error-free switching (BER<10-9) are 1.0 dB and 0.8 dB at 1545 nm and 1565 nm, respectively.
Optical HMI with biomechanical energy harvesters integrated in textile supports
NASA Astrophysics Data System (ADS)
De Pasquale, G.; Kim, SG; De Pasquale, D.
2015-12-01
This paper reports the design, prototyping and experimental validation of a human-machine interface (HMI), named GoldFinger, integrated into a glove with energy harvesting from fingers motion. The device is addressed to medical applications, design tools, virtual reality field and to industrial applications where the interaction with machines is restricted by safety procedures. The HMI prototype includes four piezoelectric transducers applied to the fingers backside at PIP (proximal inter-phalangeal) joints, electric wires embedded in the fabric connecting the transducers, aluminum case for the electronics, wearable switch made with conductive fabrics to turn the communication channel on and off, and a LED. The electronic circuit used to manage the power and to control the light emitter includes a diodes bridge, leveling capacitors, storage battery and switch made by conductive fabric. The communication with the machine is managed by dedicated software, which includes the user interface, the optical tracking, and the continuous updating of the machine microcontroller. The energetic benefit of energy harvester on the battery lifetime is inversely proportional to the activation time of the optical emitter. In most applications, the optical port is active for 1 to 5% of the time, corresponding to battery lifetime increasing between about 14% and 70%.
NASA Astrophysics Data System (ADS)
Park, Dong-Kiu; Kim, Hyun-Sok; Seo, Moo-Young; Ju, Jae-Wuk; Kim, Young-Sik; Shahrjerdy, Mir; van Leest, Arno; Soco, Aileen; Miceli, Giacomo; Massier, Jennifer; McNamara, Elliott; Hinnen, Paul; Böcker, Paul; Oh, Nang-Lyeom; Jung, Sang-Hoon; Chai, Yvon; Lee, Jun-Hyung
2018-03-01
This paper demonstrates the improvement using the YieldStar S-1250D small spot, high-NA, after-etch overlay in-device measurements in a DRAM HVM environment. It will be demonstrated that In-device metrology (IDM) captures after-etch device fingerprints more accurately compared to the industry-standard CDSEM. Also, IDM measurements (acquiring both CD and overlay) can be executed significantly faster increasing the wafer sampling density that is possible within a realistic metrology budget. The improvements to both speed and accuracy open the possibility of extended modeling and correction capabilities for control. The proof-book data of this paper shows a 36% improvement of device overlay after switching to control in a DRAM HVM environment using indevice metrology.
Overvoltage protection system for wireless power transfer systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambon, Paul H.; Jones, Perry T.; Miller, John M.
A wireless power transfer overvoltage protection system is provided. The system includes a resonant receiving circuit. The resonant receiving circuit includes an inductor, a resonant capacitor and a first switching device. The first switching device is connected the ends of the inductor. The first switching device has a first state in which the ends of the inductor are electrically coupled to each other through the first switching device, and a second state in which the inductor and resonant capacitor are capable of resonating. The system further includes a control module configured to control the first switching device to switching betweenmore » the first state and the second state when the resonant receiving circuit is charging a load and a preset condition is satisfied and otherwise, the first switching device is maintained in the first state.« less
MEMS for Practical Applications
NASA Astrophysics Data System (ADS)
Esashi, Masayoshi
Silicon MEMS as electrostatically levitated rotational gyroscopes and 2D optical scanners, and wafer level packaged devices as integrated capacitive pressure sensors and MEMS switches are described. MEMS which use non-silicon materials as LTCC with electrical feedthrough, SiC and LiNbO3 for probe cards for wafer-level burn-in test, molds for glass press molding and SAW wireless passive sensors respectively are also described.
Ultralow-power all-optical processing of high-speed data signals in deposited silicon waveguides.
Wang, Ke-Yao; Petrillo, Keith G; Foster, Mark A; Foster, Amy C
2012-10-22
Utilizing a 6-mm-long hydrogenated amorphous silicon nanowaveguide, we demonstrate error-free (BER < 10(-9)) 160-to-10 Gb/s OTDM demultiplexing using ultralow switching peak powers of 50 mW. This material is deposited at low temperatures enabling a path toward multilayer integration and therefore massive scaling of the number of devices in a single photonic chip.
NASA Astrophysics Data System (ADS)
Zhao, Yongli; Hu, Liyazhou; Wang, Wei; Li, Yajie; Zhang, Jie
2017-01-01
With the continuous opening of resource acquisition and application, there are a large variety of network hardware appliances deployed as the communication infrastructure. To lunch a new network application always implies to replace the obsolete devices and needs the related space and power to accommodate it, which will increase the energy and capital investment. Network function virtualization1 (NFV) aims to address these problems by consolidating many network equipment onto industry standard elements such as servers, switches and storage. Many types of IT resources have been deployed to run Virtual Network Functions (vNFs), such as virtual switches and routers. Then how to deploy NFV in optical transport networks is a of great importance problem. This paper focuses on this problem, and gives an implementation architecture of NFV-enabled optical transport networks based on Software Defined Optical Networking (SDON) with the procedure of vNFs call and return. Especially, an implementation solution of NFV-enabled optical transport node is designed, and a parallel processing method for NFV-enabled OTN nodes is proposed. To verify the performance of NFV-enabled SDON, the protocol interaction procedures of control function virtualization and node function virtualization are demonstrated on SDON testbed. Finally, the benefits and challenges of the parallel processing method for NFV-enabled OTN nodes are simulated and analyzed.
Electro-optic resonant phase modulator
NASA Technical Reports Server (NTRS)
Chen, Chien-Chung (Inventor); Hemmati, Hamid (Inventor); Robinson, Deborah L. (Inventor)
1992-01-01
An electro-optic resonant cavity is used to achieve phase modulation with lower driving voltages. Laser damage thresholds are inherently higher than with previously used integrated optics due to the utilization of bulk optics. Phase modulation is achieved at higher speeds with lower driving voltages than previously obtained with non-resonant electro-optic phase modulators. The instant scheme uses a data locking dither approach as opposed to the conventional sinusoidal locking schemes. In accordance with a disclosed embodiment, a resonant cavity modulator has been designed to operate at a data rate in excess of 100 megabits per sec. By carefully choosing the cavity finesse and its dimension, it is possible to control the pulse switching time to within 4 nano-sec. and to limit the required switching voltage to within 10 V. This cavity locking scheme can be applied by using only the random data sequence, and without the need of dithering of the cavity. Compared to waveguide modulators, the resonant cavity has a comparable modulating voltage requirement. Because of its bulk geometry, the resonant cavity modulator has the potential of accommodating higher throughput power. Mode matching into the bulk device is easier and typically can be achieved with higher efficiency. An additional control loop is incorporated into the modulator to maintain the cavity on resonance.
Remote Optical Switch for Localized and Selective Control of Gene Interference
Lee, Somin Eunice; Liu, Gang Logan; Kim, Franklin; Lee, Luke P.
2009-01-01
Near infrared-absorbing gold nanoplasmonic particles (GNPs) are used as optical switches of gene interference and are remotely controlled using light. We have tuned optical switches to a wavelength where cellular photodamage is minimized. Optical switches are functionalized with double-stranded oligonucleotides. At desired times and at specific intracellular locations, remote optical excitation is used to liberate gene-interfering oligonucleotides. We demonstrate a novel gene-interfering technique offering spatial and temporal control, which is otherwise impossible using conventional gene-interfering techniques. PMID:19128006
46 CFR 169.681 - Disconnect switches and devices.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Disconnect switches and devices. 169.681 Section 169.681... Less Than 100 Gross Tons § 169.681 Disconnect switches and devices. (a) Externally operable switches or... protected by fuses, the disconnect switch required for fuses in § 169.683(b) of this chapter is adequate for...
46 CFR 169.681 - Disconnect switches and devices.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Disconnect switches and devices. 169.681 Section 169.681... Less Than 100 Gross Tons § 169.681 Disconnect switches and devices. (a) Externally operable switches or... protected by fuses, the disconnect switch required for fuses in § 169.683(b) of this chapter is adequate for...
46 CFR 169.681 - Disconnect switches and devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Disconnect switches and devices. 169.681 Section 169.681... Less Than 100 Gross Tons § 169.681 Disconnect switches and devices. (a) Externally operable switches or... protected by fuses, the disconnect switch required for fuses in § 169.683(b) of this chapter is adequate for...
46 CFR 169.681 - Disconnect switches and devices.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Disconnect switches and devices. 169.681 Section 169.681... Less Than 100 Gross Tons § 169.681 Disconnect switches and devices. (a) Externally operable switches or... protected by fuses, the disconnect switch required for fuses in § 169.683(b) of this chapter is adequate for...
Light-induced new memory states in electronic resistive switching of NiO/NSTO junction
NASA Astrophysics Data System (ADS)
Wei, Ling; Li, G. Q.; Zhang, W. F.
2016-02-01
n-type and p-type NiO films were prepared on SrTiO3:Nb (NSTO) by controlling oxygen pressures during the process of pulsed laser deposition. The results of current-voltage (I-V) characteristics and photocurrent investigation indicate that the junction shows a typical electronic bipolar resistive switching (RS) behavior and the optical injection can add new resistance states. Photocurrents can obviously be modulated by different resistance states of NiO/NSTO junction. The linear fitting results of I-V curves reveal that the low resistance state follows Ohmic behavior and the high resistance state follows Schottky-emission mechanism. The depletion widths under forward and reverse bias in the dark and with the illumination were estimated respectively. Combined with the energy band structure, the mechanism of RS and photoresponse in the NiO/NSTO junction can be attributed to the variance of interfacial barrier during electrical and optical injection. These results pave the way for the application of the NiO/NSTO junction in the multilevel storage of optical-electrical devices.
Compact wavelength-selective optical switch based on digital optical phase conjugation.
Li, Zhiyang; Claver, Havyarimana
2013-11-15
In this Letter, we show that digital optical phase conjugation might be utilized to construct a new kind of wavelength-selective switches. When incorporated with a multimode interferometer, these switches have wide bandwidth, high tolerance for fabrication error, and low polarization dependency. They might help to build large-scale multiwavelength nonblocking switching systems, or even to fabricate an optical cross-connecting or routing system on a chip.
Propagation and switching of light in rectangular waveguiding structures
NASA Astrophysics Data System (ADS)
Sala, Anca L.
1998-10-01
In this dissertation, we investigate the conditions for the propagation and processing of temporal optical solitons in the rectangular geometry waveguides which are expected to play an important role as processing elements in optical communication systems. It is anticipated that the optical signals carrying information through optical fibers will be in the form of temporal soliton pulses, which can propagate undistorted for long distances under the condition that the dispersion is balanced by a nonlinearity in the optical fiber. An important parameter in the equation that governs temporal soliton propagation in a waveguide is the second derivative of the propagation vector with respect to the angular frequency, /omega, denoted by β/prime'. We evaluate β/prime' for rectangular waveguides using a channel model of the waveguide, which takes into account the two transverse dimensions of the rectangular channel. Significant differences are found in the values of β/prime' obtained from our model and those obtained from the more traditional, one dimensional slab model. A major additional effort in the present thesis relates to the development of a theory of temporal soliton switching in a planar geometry nonlinear directional coupler. The theory is formulated in terms of the supermodes of the total structure, and again accounts for the two transverse dimensions of the channels. To accurately determine the coupling length and switching power of the nonlinear coupler, we apply corrections to the propagation constants of the supermodes that account for the non-zero electromagnetic fields in the outer corner regions of the waveguide channels. It is shown for the case of a SiO2 based nonlinear directional coupler operating at the central wavelength of 1.55 μm, that these corrections have a significant effect on both the coupling length and the switching power. Finally, we develop the conditions under which single mode rectangular waveguides can have zero dispersion at the optical communications wavelengths 1.31 μm or 1.55 μm, and discuss the end-to-end coupling of rectangular waveguides to the standard optical fibers used in optical communications. Our results are expected to serve as a guide for the design of planar geometry based processing elements in a variety of optical communications devices.
OPTICAL PROCESSING OF INFORMATION: Multistage optoelectronic two-dimensional image switches
NASA Astrophysics Data System (ADS)
Fedorov, V. B.
1994-06-01
The implementation principles and the feasibility of construction of high-throughput multistage optoelectronic switches, capable of transmitting data in the form of two-dimensional images along interconnected pairs of optical channels, are considered. Different ways of realising compact switches are proposed. They are based on the use of polarisation-sensitive elements, arrays of modulators of the plane of polarisation of light, arrays of objectives, and free-space optics. Optical systems of such switches can theoretically ensure that the resolution and optical losses in two-dimensional image transmission are limited only by diffraction. Estimates are obtained of the main maximum-performance parameters of the proposed optoelectronic image switches.
Micro-Ball-Lens Optical Switch Driven by SMA Actuator
NASA Technical Reports Server (NTRS)
Yang, Eui-Hyeok
2003-01-01
The figure is a simplified cross section of a microscopic optical switch that was partially developed at the time of reporting the information for this article. In a fully developed version, light would be coupled from an input optical fiber to one of two side-by-side output optical fibers. The optical connection between the input and the selected output fiber would be made via a microscopic ball lens. Switching of the optical connection from one output fiber to another would be effected by using a pair of thin-film shape-memory-alloy (SMA) actuators to toggle the lens between two resting switch positions. There are many optical switches some made of macroscopic parts by conventional fabrication techniques and some that are microfabricated and, hence, belong to the class of microelectromechanical systems (MEMS). Conventionally fabricated optical switches tend to be expensive. MEMS switches can be mass-produced at relatively low cost, but their attractiveness has been diminished by the fact that, heretofore, MEMS switches have usually been found to exhibit high insertion losses. The present switch is intended to serve as a prototype of low-loss MEMS switches. In addition, this is the first reported SMA-based optical switch. The optical fibers would be held in V grooves in a silicon frame. The lens would have a diameter of 1 m; it would be held by, and positioned between, the SMA actuators, which would be made of thin films of TiNi alloy. Although the SMA actuators are depicted here as having simple shapes for the sake of clarity of illustration, the real actuators would have complex, partly net-like shapes. With the exception of the lens and the optical fibers, the SMA actuators and other components of the switch would be made by microfabrication techniques. The components would be assembled into a sandwich structure to complete the fabrication of the switch. To effect switching, an electric current would be passed through one of the SMA actuators to heat it above its transition temperature, thereby causing it to deform to a different "remembered" shape. The two SMA actuators would be stiff enough that once switching had taken place and the electrical current was turned off, the lens would remain latched in the most recently selected position. In a test, the partially developed switch exhibited an insertion loss of only -1.9 dB and a switching contrast of 70 dB. One the basis of prior research on SMA actuators and assuming a lens displacement of 125 m between extreme positions, it has been estimated that the fully developed switch would be capable of operating at a frequency as high as 10 Hz.
Self-actuating heat switches for redundant refrigeration systems
NASA Technical Reports Server (NTRS)
Chan, Chung K. (Inventor)
1988-01-01
A dual refrigeration system for cooling a sink device is described, which automatically thermally couples the cold refrigerator to the sink device while thermally isolating the warm refrigerator from the sink device. The system includes two gas gap heat switches that each thermally couples one of the refrigerators to the sink device, and a pair of sorption pumps that are coupled through tubes to the heat switches. When the first refrigerator is operated and therefore cold, the first pump which is thermally coupled to it is also cooled and adsorbs gas to withdraw it from the second heat switch, to thereby thermally isolate the sink device from the warm second refrigerator. With the second refrigerator being warm, the second pump is also warm and desorbs gas, so the gas lies in the first switch, to close that switch and therefore thermally couple the cold first refrigerator to the sink device. Thus, the heat switches are automatically switched according to the temperature of the corresponding refrigerator.
Enhanced Thermo-Optical Switching of Paraffin-Wax Composite Spots under Laser Heating
Said, Asmaa; Salah, Abeer; Abdel Fattah, Gamal
2017-01-01
Thermo-optical switches are of particular significance in communications networks where increasingly high switching speeds are required. Phase change materials (PCMs), in particular those based on paraffin wax, provide wealth of exciting applications with unusual thermally-induced switching properties, only limited by paraffin’s rather low thermal conductivity. In this paper, the use of different carbon fillers as thermal conductivity enhancers for paraffin has been investigated, and a novel structure based on spot of paraffin wax as a thermo-optic switch is presented. Thermo-optical switching parameters are enhanced with the addition of graphite and graphene, due to the extreme thermal conductivity of the carbon fillers. Differential Scanning Calorimetry (DSC) and Scanning electron microscope (SEM) are performed on paraffin wax composites, and specific heat capacities are calculated based on DSC measurements. Thermo-optical switching based on transmission is measured as a function of the host concentration under conventional electric heating and laser heating of paraffin-carbon fillers composites. Further enhancements in thermo-optical switching parameters are studied under Nd:YAG laser heating. This novel structure can be used in future networks with huge bandwidth requirements and electric noise free remote aerial laser switching applications. PMID:28772884
Enhanced Thermo-Optical Switching of Paraffin-Wax Composite Spots under Laser Heating.
Said, Asmaa; Salah, Abeer; Fattah, Gamal Abdel
2017-05-12
Thermo-optical switches are of particular significance in communications networks where increasingly high switching speeds are required. Phase change materials (PCMs), in particular those based on paraffin wax, provide wealth of exciting applications with unusual thermally-induced switching properties, only limited by paraffin's rather low thermal conductivity. In this paper, the use of different carbon fillers as thermal conductivity enhancers for paraffin has been investigated, and a novel structure based on spot of paraffin wax as a thermo-optic switch is presented. Thermo-optical switching parameters are enhanced with the addition of graphite and graphene, due to the extreme thermal conductivity of the carbon fillers. Differential Scanning Calorimetry (DSC) and Scanning electron microscope (SEM) are performed on paraffin wax composites, and specific heat capacities are calculated based on DSC measurements. Thermo-optical switching based on transmission is measured as a function of the host concentration under conventional electric heating and laser heating of paraffin-carbon fillers composites. Further enhancements in thermo-optical switching parameters are studied under Nd:YAG laser heating. This novel structure can be used in future networks with huge bandwidth requirements and electric noise free remote aerial laser switching applications.
Ma, Shihui; Yu, Haohai; Zhang, Huaijin; Han, Xuekun; Lu, Qingming; Ma, Changqin; Boughton, Robert I.; Wang, Jiyang
2016-01-01
With an optically active langasite (LGS) crystal as the electro-optic Q-switch, we demonstrate an efficient Q-switched laser with a repetition rate of 200 kHz. Based on the theoretical analysis of the interaction between optical activity and electro-optic property, the optical activity of the crystal has no influence on the birefringence during Q-switching if the quarter wave plate used was rotated to align with the polarization direction. With a Nd:LuVO4 crystal possessing a large emission cross-section and a short fluorescence lifetime as the gain medium, a stable LGS Q-switched laser was designed with average output power of 4.39 W, corresponding to a slope efficiency of 29.4% and with a minimum pulse width of 5.1 ns. This work represents the highest repetition rate achieved so far in a LGS Q-switched laser and it can provide a practical Q-switched laser with a tunable high repetition rates for many applications, such as materials processing, laser ranging, medicine, military applications, biomacromolecule materials, remote sensing, etc. PMID:27461819
NASA Astrophysics Data System (ADS)
Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad
2016-09-01
The development of Wide band gap (WBG) power devices has been attracted by many commercial companies to be available in the market because of their enormous advantages over the traditional Si power devices. An example of WBG material is SiC, which offers a number of advantages over Si material. For example, SiC has the ability of blocking higher voltages, reducing switching and conduction losses and supports high switching frequency. Consequently, SiC power devices have become the affordable choice for high frequency and power application. The goal of this paper is to study the performance of 4.5 kW, 200 kHz, 600V DC-DC boost converter operating in continuous conduction mode (CCM) for PV applications. The switching behavior and turn on and turn off losses of different switching power devices such as SiC MOSFET, SiC normally ON JFET and Si MOSFET are investigated and analyzed. Moreover, a detailed comparison is provided to show the overall efficiency of the DC-DC boost converter with different switching power devices. It is found that the efficiency of SiC power switching devices are higher than the efficiency of Si-based switching devices due to low switching and conduction losses when operating at high frequencies. According to the result, the performance of SiC switching power devices dominate the conventional Si power devices in terms of low losses, high efficiency and high power density. Accordingly, SiC power switching devices are more appropriate for PV applications where a converter of smaller size with high efficiency, and cost effective is required.
Song, Ji-Min; Lee, Jang-Sik
2016-01-01
Metal-oxide-based resistive switching memory device has been studied intensively due to its potential to satisfy the requirements of next-generation memory devices. Active research has been done on the materials and device structures of resistive switching memory devices that meet the requirements of high density, fast switching speed, and reliable data storage. In this study, resistive switching memory devices were fabricated with nano-template-assisted bottom up growth. The electrochemical deposition was adopted to achieve the bottom-up growth of nickel nanodot electrodes. Nickel oxide layer was formed by oxygen plasma treatment of nickel nanodots at low temperature. The structures of fabricated nanoscale memory devices were analyzed with scanning electron microscope and atomic force microscope (AFM). The electrical characteristics of the devices were directly measured using conductive AFM. This work demonstrates the fabrication of resistive switching memory devices using self-assembled nanoscale masks and nanomateirals growth from bottom-up electrochemical deposition. PMID:26739122
Power inverter with optical isolation
Duncan, Paul G.; Schroeder, John Alan
2005-12-06
An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic current sensor mounted on the input power interconnection cable and/or input bus bar, and at least one fiber optic voltage sensor mounted on the input power interconnection cable and/or input bus bar.
Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan
2013-01-29
The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.
Development of Phase Change Materials for RF Switch Applications
NASA Astrophysics Data System (ADS)
King, Matthew Russell
For decades chalcogenide-based phase change materials (PCMs) have been reliably implemented in optical storage and digital memory platforms. Owing to the substantial differences in optical and electronic properties between crystalline and amorphous states, device architectures requiring a "1" and "0" or "ON" and "OFF" states are attainable with PCMs if a method for amorphizing and crystallizing the PCM is demonstrated. Taking advantage of more than just the binary nature of PCM electronic properties, recent reports have shown that the near-metallic resistivity of some PCMs allow one to manufacture high performance RF switches and related circuit technologies. One of the more promising RF switch technologies is the Inline Phase Change Switch (IPCS) which utilizes GeTe as the active material. Initial reports show that an electrically isolated, thermally coupled thin film heater can successfully convert GeTe between crystalline and amorphous states, and with proper design an RF figure of merit cutoff frequency (FCO) of 12.5 THz can be achieved. In order to realize such world class performance a significant development effort was undertaken to understand the relationship between fundamental GeTe properties, thin film deposition method and resultant device properties. Deposition pressure was found to be the most important deposition process parameter, as it was found to control Ge:Te ratio, oxygen content, Ar content, film density and surface roughness. Ultimately a first generation deposition process produced GeTe films with a crystalline resistivity of 3 ohm-mum. Upon implementing these films into IPCS devices, post-cycling morphological analysis was undertaken using STEM and related analyses. It was revealed that massive structural changes occur in the GeTe during switching, most notably the formation of an assembly of voids along the device centerline and large GeTe grains on either side of the so-called active region. Restructuring of this variety was tied to changes in ON-state resistance with increasing pulse number, where initially porous and granular GeTe was converted to large crystalline domains comprising the majority of the RF gap. A phenomenological model for this morphology was presented in which the OFF pulse melts a given width of GeTe and upon cooling the crystalline template outside the melt region acts as a template for an inward-propagating crystalline growth front. This model was further extended to explain observed morphology for ON pulses. The voids observed along the device centerline were connected to increasing OFF state resistance and a relatively stable ON state with increasing pulse number via a series resistance model. As a result of this analysis, OFF state resistance was suggested as an early indicator of device reliability. Finally, microstructural and electrical property observations were used as a basis for implementing improvements to the GeTe deposition process in the form of a heated substrate platform. It was shown that this provides a viable method for attaining stable as-deposited GeTe morphology and a substantially improved crystalline resistivity (2 ohm-mum). This body of work ultimately provides a blueprint which connects fundamental GeTe properties with deposition processes and device performance.
Theoretical study of ferroelectric nanoparticles using phase reconstructed electron microscopy
NASA Astrophysics Data System (ADS)
Phatak, C.; Petford-Long, A. K.; Beleggia, M.; De Graef, M.
2014-06-01
Ferroelectric nanostructures are important for a variety of applications in electronic and electro-optical devices, including nonvolatile memories and thin-film capacitors. These applications involve stability and switching of polarization using external stimuli, such as electric fields. We present a theoretical model describing how the shape of a nanoparticle affects its polarization in the absence of screening charges, and quantify the electron-optical phase shift for detecting ferroelectric signals with phase-sensitive techniques in a transmission electron microscope. We provide an example phase shift computation for a uniformly polarized prolate ellipsoid with varying aspect ratio in the absence of screening charges.
Multilayered microelectronic device package with an integral window
Peterson, Kenneth A.; Watson, Robert D.
2003-01-01
An apparatus for packaging of microelectronic devices is disclosed, wherein the package includes an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can comprise, for example, a cofired ceramic frame or body. The package has an internal stepped structure made of a plurality of plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package, according to some embodiments. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination. The integral window can further include a lens for optically transforming light passing through the window. The package can include an array of binary optic lenslets made integral with the window. The package can include an electrically-switched optical modulator, such as a lithium niobate window attached to the package, for providing a very fast electrically-operated shutter.
NASA Astrophysics Data System (ADS)
Jamshidi-Ghaleh, Kazem; Ebrahimi-hamed, Zahra; Sahrai, Mostafa
2017-10-01
This paper investigates the behavior of linear and nonlinear optical susceptibility of an open four-level molecular system, under two-step excitation based on electromagnetically induced transparency (EIT). The system was irradiated with a weak probe field and strong coupling field. It is shown that the use of a strong coupling field in the triplet states of an alkali-metal dimer can change the spin-orbit interaction (SOI). The optical response of the system can then be modified in a controllable way. The electromagnetically induced transparency transforms into electromagnetically induced absorption (EIA) in the presence of a coupling field. Changing the sign of the dispersion, this region is associated with switching subluminal and superluminal propagation. Furthermore, for the proper value of the coupling field, the controllable parameters, enhanced Kerr nonlinearity with reduced linear absorption, can be obtained under a weak probe field. With this approach, SOI can be controlled by changing only one of the controllable parameters, using triplet-triplet strong coupling with different spin state. Therefore, the desired region of the spectra can be obtained, in contrast to the other four-level system, in which at least two strong fields are used to change optical properties. This mechanism can be suitable in molecular systems or semiconductors to be used in optical bistability and fast all-optical switching devices.
Ultra-High Capacity Silicon Photonic Interconnects through Spatial Multiplexing
NASA Astrophysics Data System (ADS)
Chen, Christine P.
The market for higher data rate communication is driving the semiconductor industry to develop new techniques of writing at smaller scales, while continuing to scale bandwidth at low power consumption. Silicon photonic (SiPh) devices offer a potential solution to the electronic interconnect bandwidth bottleneck. SiPh leverages the technology commensurate of decades of fabrication development with the unique functionality of next-generation optical interconnects. Finer fabrication techniques have allowed for manufacturing physical characteristics of waveguide structures that can support multiple modes in a single waveguide. By refining modal characteristics in photonic waveguide structures, through mode multiplexing with the asymmetric y-junction and microring resonator, higher aggregate data bandwidth is demonstrated via various combinations of spatial multiplexing, broadening applications supported by the integrated platform. The main contributions of this dissertation are summarized as follows. Experimental demonstrations of new forms of spatial multiplexing combined together exhibit feasibility of data transmission through mode-division multiplexing (MDM), mode-division and wavelength-division multiplexing (MDM-WDM), and mode-division and polarization-division multiplexing (MDM-PDM) through a C-band, Si photonic platform. Error-free operation through mode multiplexers and demultiplexers show how data can be viably scaled on multiple modes and with existing spatial domains simultaneously. Furthermore, we explore expanding device channel support from two to three arms. Finding that a slight mismatch in the third arm can increase crosstalk contributions considerably, especially when increasing data rate, we explore a methodical way to design the asymmetric y-junction device by considering its angles and multiplexer/demultiplexer arm width. By taking into consideration device fabrication variations, we turn towards optimizing device performance post-fabrication. Through ModePROP simulations, optimizing device performance dynamically post-fabrication is analyzed, through either electro-optical or thermo-optical means. By biasing the arm introducing the slight spectral offset, we can quantifiably improve device performance. Scaling bandwidth is experimentally demonstrated through the device at 3 modes, 2 wavelengths, and 40 Gb/s data rate for 240 Gb/s aggregate bandwidth, with the potential to reduce power penalty per the device optimization process we described. A main motivation for this on-chip spatial multiplexing is the need to reduce costs. As the laser source serves as the greatest power consumer in an optical system, mode-division multiplexing and other forms of spatial multiplexing can be implemented to push its potentially prohibitive cost metrics down. In order to demonstrate an intelligent platform capable of dynamically multicasting data and reallocating power as needed by the system, we must first initialize the switch fabric to control with an electronic interface. A dithering mechanism, whereby exact cross, bar, and sub-percentage states are enforced through the device, is described here. Such a method could be employed for actuating the device table of bias values to states automatically. We then employ a dynamic power reallocation algorithm through a data acquisition unit, showing real-time channel recovery for channels experiencing power loss by diverting power from paths that could tolerate it. The data that is being multicast through the system is experimentally shown to be error-free at 40 Gb/s data rate, when transmitting from one to three clients and going from automatic bar/cross states to equalized power distribution. For the last portion of this topic, the switch fabric was inserted into a high-performance computing system. In order to run benchmarks at 10 Gb/s data ontop of the switch fabric, a newer model of the control plane was implemented to toggle states according to the command issued by the server. Such a programmable mechanism will prove necessary in future implementations of optical subsystems embedded inside larger systems, like data centers. Beyond the specific control plane demonstrated, the idea of an intelligent photonic layer can be applied to alleviate many kinds of optical channel abnormalities or accommodate for switching based on different patterns in data transmission. Finally, the experimental demonstration of a coherent perfect absorption Si modulator is exhibited, showing a viable extinction ratio of 24.5 dB. Using this coherent perfect absorption mechanism to demodulate signals, there is the added benefit of differential reception. Currently, an automated process for data collection is employed at a faster time scale than instabilities present in fibers in the setup with future implementations eliminating the off-chip phase modulator for greater signal stability. The field of SiPh has developed to a stage where specific application domains can take off and compete according to industrial-level standards. The work in this dissertation contributes to experimental demonstration of a newly developing area of mode-division multiplexing for substantially increasing bandwidth on-chip. While implementing the discussed photonic devices in dynamic systems, various attributes of integrated photonics are leveraged with existing electronic technologies. Future generations of computing systems should then be designed by implementing both system and device level considerations. (Abstract shortened by ProQuest.).
Holmström, Petter; Yuan, Jun; Qiu, Min; Thylén, Lars; Bratkovsky, Alexander M
2011-04-11
The properties of integrated-photonics directional couplers composed of near-field-coupled arrays of metal nanoparticles are analyzed theoretically. It is found that it is possible to generate very compact, submicron length, high field-confinement and functionality devices with very low switch energies. The analysis is carried out for a hypothetical lossless silver to demonstrate the potential of this type of circuits for applications in telecom and interconnects. Employing losses of real silver, standalone devices with the above properties are still feasible in optimized metal nanoparticle structures. © 2011 Optical Society of America
Active functional devices using parity-time symmetry optics (Conference Presentation)
NASA Astrophysics Data System (ADS)
Brac de la Perriere, Vincent; Benisty, Henri; Ramdane, Abderrahim; Lupu, Anatole
2017-05-01
The progress of nanotechnologies has triggered the emergence of many photonic artificial structures: photonic crystals, metamaterials, plasmonic resonators. Recently the intriguing class of PT-symmetric devices, referring to Parity-Time symmetry [1] has attracted much attention. The characteristic feature of PT-symmetry is that the structures' refractive index profile is complex-valued due to the presence of alternating gain and loss regions in the system. Apart from fundamental research motivations, the tremendous interest in these artificial systems is strongly driven by the practical outcomes expected to foster a new generation of tunable, reconfigurable and non-reciprocal devices. The principle of gain-loss modulation lying in the heart of PT-symmetry optics enables a range of innovative solutions in the field of integrated optics at 1.5μm [2-7]. By using PT-symmetric coupled waveguides and Bragg reflectors as fundamental building blocks, it is possible to build a wide variety of functional optical devices. The PT-symmetry principle provides an alternative way for the realization of active devices that could become functional in a new platform for integrated optics. For instance one major bottleneck of the III-V/Si hybrid integration approach is that each type of active devices (laser, modulator, etc) requires a specific composition of III-V semiconductor alloy, involving a variety of (re)growth challenges. The advantage of the PT-symmetry solution is that the fabrication of all these devices can be done with a single stack of III-V semiconductor alloys that greatly simplifies the technological process. The aim of the current contribution is to provide a survey of the most promising applications of PT-symmetry in photonics with a particular emphases on the transition from theoretical concepts to experimental devices. The intention is to draw attention to the risks and issues related to the practical implementation that are most often overlooked in the basic theoretical models. An analysis of solutions to circumvent or overcome these issues to achieve a proper devices operation will be presented. Preliminary results on the experimental realization of PT symmetric structures using III-V's technology will be communicated. [1] C. M. Bender and S. Boettcher, "Real spectra in non-Hermitian Hamiltonians having PT-symmetry," Phys. Rev. Lett. 80, 5243 (1998). [2] J. Čtyroký, V. Kuzmiak, and S. Eyderman, "Waveguide structures with antisymmetric gain/loss profile," Opt. Express 18, 21585-21593 (2010). [3] A. Lupu, H. Benisty, A. Degiron, "Switching using PT symmetry in plasmonic systems: positive role of the losses," Opt. Express 21, 21651-21668 (2013). [4] S. Phang, A. Vukovic, H. Susanto, T. M. Benson, and Ph. Sewell, "Ultrafast optical switching using parity-time symmetric Bragg gratings. J. Opt. Soc. Am. B 30, 2984 (2013). [5] H. Benisty, A. Lupu, A. Degiron, "Transverse periodic PT symmetry for modal demultiplexing in optical waveguides," Phys. Rev. A 91, 053825 (2015). [6] S. Phang, A. Vukovic, S. C. Creagh, P. D. Sewell, G. Gradoni, T. M. Benson, T. M. "Localized Single Frequency Lasing States in a Finite Parity-Time Symmetric Resonator Chain," Scientific Reports, 6, 20499 (2016). [7] A. Lupu, H. Benisty, A. Lavrinenko, "Tailoring spectral properties of binary PT-symmetric gratings by using duty cycle methods," JSTQE 22, 35-41 (2016).
Optical design of automotive headlight system incorporating digital micromirror device.
Hung, Chuan-Cheng; Fang, Yi-Chin; Huang, Ming-Shyan; Hsueh, Bo-Ren; Wang, Shuan-Fu; Wu, Bo-Wen; Lai, Wei-Chi; Chen, Yi-Liang
2010-08-01
In recent years, the popular adaptive front-lighting automobile headlight system has become a main emphasis of research that manufacturers will continue to focus great efforts on in the future. In this research we propose a new integral optical design for an automotive headlight system with an advanced light-emitting diode and digital micromirror device (DMD). Traditionally, automobile headlights have all been designed as a low beam light module, whereas the high beam light module still requires using accessory lamps. In anticipation of this new concept of integral optical design, we have researched and designed a single optical system with high and low beam capabilities. To switch on and off the beams, a DMD is typically used. Because DMDs have the capability of redirecting incident light into a specific angle, they also determine the shape of the high or low light beam in order to match the standard of headlight illumination. With collocation of the multicurvature reflection lens design, a DMD can control the light energy distribution and thereby reinforce the resolution of the light beam.
Feng, Tianxian; Mao, Dong; Cui, Xiaoqi; Li, Mingkun; Song, Kun; Jiang, Biqiang; Lu, Hua; Quan, Wangmin
2016-11-11
We demonstrate an erbium-doped fiber laser passively Q-switched by a black-phosphorus polyimide film. The multi-layer black-phosphorus (BP) nanosheets were prepared via a liquid exfoliation approach exploiting N -methylpyrrolidone as the dispersion liquid. By mixing the BP nanosheets with polyimide (PI), a piece of BP-PI film was obtained after evaporating the mixture in a petri dish. The BP-PI saturable absorber had a modulation depth of 0.47% and was inserted into an erbium-doped fiber laser to realize passive Q-switched operations. The repetition rate of the Q-switched laser increased from 5.73 kHz to 31.07 kHz when the laser pump was enhanced from 31.78 mW to 231.46 mW. Our results show that PI is an excellent host material to protect BP from oxidation, and the BP-PI film can act as a promising nonlinear optical device for laser applications.
Fiber Optic Communication System For Medical Images
NASA Astrophysics Data System (ADS)
Arenson, Ronald L.; Morton, Dan E.; London, Jack W.
1982-01-01
This paper discusses a fiber optic communication system linking ultrasound devices, Computerized tomography scanners, Nuclear Medicine computer system, and a digital fluoro-graphic system to a central radiology research computer. These centrally archived images are available for near instantaneous recall at various display consoles. When a suitable laser optical disk is available for mass storage, more extensive image archiving will be added to the network including digitized images of standard radiographs for comparison purposes and for remote display in such areas as the intensive care units, the operating room, and selected outpatient departments. This fiber optic system allows for a transfer of high resolution images in less than a second over distances exceeding 2,000 feet. The advantages of using fiber optic cables instead of typical parallel or serial communication techniques will be described. The switching methodology and communication protocols will also be discussed.
Samarium Monosulfide (SmS): Reviewing Properties and Applications
Sousanis, Andreas
2017-01-01
In this review, we give an overview of the properties and applications of samarium monosulfide, SmS, which has gained considerable interest as a switchable material. It shows a pressure-induced phase transition from the semiconducting to the metallic state by polishing, and it switches back to the semiconducting state by heating. The material also shows a magnetic transition, from the paramagnetic state to an antiferromagnetically ordered state. The switching behavior between the semiconducting and metallic states could be exploited in several applications, such as high density optical storage and memory materials, thermovoltaic devices, infrared sensors and more. We discuss the electronic, optical and magnetic properties of SmS, its switching behavior, as well as the thin film deposition techniques which have been used, such as e-beam evaporation and sputtering. Moreover, applications and possible ideas for future work on this material are presented. Our scope is to present the properties of SmS, which were mainly measured in bulk crystals, while at the same time we describe the possible deposition methods that will push the study of SmS to nanoscale dimensions, opening an intriguing range of applications for low-dimensional, pressure-induced semiconductor–metal transition compounds. PMID:28813006