Sample records for optical system laser

  1. Laser spark distribution and ignition system

    DOEpatents

    Woodruff, Steven [Morgantown, WV; McIntyre, Dustin L [Morgantown, WV

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  2. Laser ablation system, and method of decontaminating surfaces

    DOEpatents

    Ferguson, Russell L.; Edelson, Martin C.; Pang, Ho-ming

    1998-07-14

    A laser ablation system comprising a laser head providing a laser output; a flexible fiber optic cable optically coupled to the laser output and transmitting laser light; an output optics assembly including a nozzle through which laser light passes; an exhaust tube in communication with the nozzle; and a blower generating a vacuum on the exhaust tube. A method of decontaminating a surface comprising the following steps: providing an acousto-optic, Q-switched Nd:YAG laser light ablation system having a fiber optically coupled output optics assembly; and operating the laser light ablation system to produce an irradiance greater than 1.times.10.sup.7 W/cm.sup.2, and a pulse width between 80 and 170 ns.

  3. Heterodyne laser diagnostic system

    DOEpatents

    Globig, Michael A.; Johnson, Michael A.; Wyeth, Richard W.

    1990-01-01

    The heterodyne laser diagnostic system includes, in one embodiment, an average power pulsed laser optical spectrum analyzer for determining the average power of the pulsed laser. In another embodiment, the system includes a pulsed laser instantaneous optical frequency measurement for determining the instantaneous optical frequency of the pulsed laser.

  4. Target isolation system, high power laser and laser peening method and system using same

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.; Harris, Fritz

    2007-11-06

    A system for applying a laser beam to work pieces, includes a laser system producing a high power output beam. Target delivery optics are arranged to deliver the output beam to a target work piece. A relay telescope having a telescope focal point is placed in the beam path between the laser system and the target delivery optics. The relay telescope relays an image between an image location near the output of the laser system and an image location near the target delivery optics. A baffle is placed at the telescope focal point between the target delivery optics and the laser system to block reflections from the target in the target delivery optics from returning to the laser system and causing damage.

  5. Laser-Induced Damage Threshold and Certification Procedures for Optical Materials

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This document provides instructions for performing laser-induced-damage-threshold tests and pass-fail certification tests on optical materials used in pulsed-laser systems. The optical materials to which these procedures apply include coated and uncoated optical substrates, laser crystals, Q-switches, polarizers, and other optical components employed in pulsed-laser systems.

  6. Beam-guidance optics for high-power fiber laser systems

    NASA Astrophysics Data System (ADS)

    Mohring, Bernd; Tassini, Leonardo; Protz, Rudolf; Zoz, Jürgen

    2013-05-01

    The realization of a high-energy laser weapon system by coupling a large number of industrial high-power fiber lasers is investigated. To perform the combination of the individual beams of the different fiber lasers within the optical path of the laser weapon, a special optical set-up is used. Each optical component is realized either as reflective component oras refractive optics. Both possibilities were investigated by simulations and experiments. From the results, the general aspects for the layout of the beam-guidance optics for a high-power fiber laser system are derived.

  7. The simulation study on optical target laser active detection performance

    NASA Astrophysics Data System (ADS)

    Li, Ying-chun; Hou, Zhao-fei; Fan, Youchen

    2014-12-01

    According to the working principle of laser active detection system, the paper establishes the optical target laser active detection simulation system, carry out the simulation study on the detection process and detection performance of the system. For instance, the performance model such as the laser emitting, the laser propagation in the atmosphere, the reflection of optical target, the receiver detection system, the signal processing and recognition. We focus on the analysis and modeling the relationship between the laser emitting angle and defocus amount and "cat eye" effect echo laser in the reflection of optical target. Further, in the paper some performance index such as operating range, SNR and the probability of the system have been simulated. The parameters including laser emitting parameters, the reflection of the optical target and the laser propagation in the atmosphere which make a great influence on the performance of the optical target laser active detection system. Finally, using the object-oriented software design methods, the laser active detection system with the opening type, complete function and operating platform, realizes the process simulation that the detection system detect and recognize the optical target, complete the performance simulation of each subsystem, and generate the data report and the graph. It can make the laser active detection system performance models more intuitive because of the visible simulation process. The simulation data obtained from the system provide a reference to adjust the structure of the system parameters. And it provides theoretical and technical support for the top level design of the optical target laser active detection system and performance index optimization.

  8. Free-space laser communication technologies II; Proceedings of the Meeting, Los Angeles, CA, Jan. 15-17, 1990

    NASA Technical Reports Server (NTRS)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1990-01-01

    Various papers on free-space laser communication technologies are presented. Individual topics addressed include: optical intersatellite link experiment between the earth station and ETS-VI, the Goddard optical communications program, technologies and techniques for lasercom terminal size, weight, and cost reduction, laser beam acquisition and tracking system for ETS-VI laser communication equipment, analog dividers for acquisition and tracking signal normalization, fine pointing mechanism using multilayered piezoelectric actuator for optical ISL system, analysis of SILEX tracking sensor performance, new telescope concept for space communication, telescope considered as a very high gain antenna, design of compact transceiver optical systems for optical intersatellite links, ultralightweight optics for laser communications, highly sensitive measurement method for stray light and retroreflected light, depolarization effects on free space laser transceiver communication systems, in-orbit measurements of microaccelerations of ESA's communication satellite Olympus, high-performance laser diode transmitter for optical free space communication, diode-pumped Nd:host laser transmitter for intersatellite optical communications, single-frequency diode-pumped laser for free-space communication.

  9. Laser based analysis using a passively Q-switched laser employing analysis electronics and a means for detecting atomic optical emission of the laser media

    DOEpatents

    Woodruff, Steven D.; Mcintyre, Dustin L.

    2016-03-29

    A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.

  10. Laser beam modeling in optical storage systems

    NASA Technical Reports Server (NTRS)

    Treptau, J. P.; Milster, T. D.; Flagello, D. G.

    1991-01-01

    A computer model has been developed that simulates light propagating through an optical data storage system. A model of a laser beam that originates at a laser diode, propagates through an optical system, interacts with a optical disk, reflects back from the optical disk into the system, and propagates to data and servo detectors is discussed.

  11. Control of Hazards to Health From Laser Radiation

    DTIC Science & Technology

    2006-01-01

    compared to the calculated AEL. (2) Optically aided viewing. Viewing a laser beam with optical aids (other than ordinary eyeglasses or contact lenses ...resonant optical cavity. TB MED 524 8 b. Lenses , mirrors, cooling systems, shutters, and other accessories may be added to the system to obtain...procedures for laser optical systems (for example, mirrors, prisms, and lenses ) that employ Class 2 and Class 3a lasers, it is always good laser safety

  12. Task one report: Optical system study. [characteristics of laser equipment for space communication systems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An optical system which can be incorporated in a present day or near future space-borne laser communications system is described. Techniques of implementing these systems are presented and their design problems and use are discussed. Optical system weight is estimated as a function of aperture diameter for a typical present day or near future laser communication system. The optical communications system considered is a two-way, high data rate optical communications link from a spacecraft to a spacecraft or from a spacecraft to a ground station. Each station has a laser transmitter and receiver and a pointing and tracking system. Thus each station can track the laser transmitter of the other. Optical beamwidths are considered to be as small as an arc-second with the beam pointed to a fraction of this beamwidth.

  13. Optics detection and laser countermeasures on a combat vehicle

    NASA Astrophysics Data System (ADS)

    Sjöqvist, Lars; Allard, Lars; Pettersson, Magnus; Börjesson, Per; Lindskog, Nils; Bodin, Johan; Widén, Anders; Persson, Hâkan; Fredriksson, Jan; Edström, Sten

    2016-10-01

    Magnifying optical assemblies used for weapon guidance or rifle scopes may possess a threat for a combat vehicle and its personnel. Detection and localisation of optical threats is consequently of interest in military applications. Typically a laser system is used in optics detection, or optical augmentation, to interrogate a scene of interest to localise retroreflected laser radiation. One interesting approach for implementing optics detection on a combat vehicle is to use a continuous scanning scheme. In addition, optics detection can be combined with laser countermeasures, or a laser dazzling function, to efficiently counter an optical threat. An optics detection laser sensor demonstrator has been implemented on a combat vehicle. The sensor consists of a stabilised gimbal and was integrated together with a LEMUR remote electro-optical sight. A narrow laser slit is continuously scanned around the horizon to detect and locate optical threats. Detected threats are presented for the operator within the LEMUR presentation system, and by cueing a countermeasure laser installed in the LEMUR sensor housing threats can be defeated. Results obtained during a field demonstration of the optics detection sensor and the countermeasure laser will be presented. In addition, results obtained using a dual-channel optics detection system designed for false alarm reduction are also discussed.

  14. Enhanced Damage-Resistant Optics for Spaceflight Laser Systems: Workshop findings and recommendations

    NASA Technical Reports Server (NTRS)

    Schulze, Norman; Cimolino, Marc; Guenther, Arthur; Mcminn, Ted; Rainer, Frank; Schmid, Ansgar; Seitel, Steven C.; Soileau, M. J.; Theon, John S.; Walz, William

    1991-01-01

    NASA has defined a program to address critical laser-induced damage issues peculiar to its remote sensing systems. The Langley Research Center (LaRC), with input from the Goddard Space Flight Center (GSFC), has developed a program plan focusing on the certification of optical materials for spaceflight applications and the development of techniques to determine the reliability of such materials under extended laser exposures. This plan involves cooperative efforts between NASA and optics manufacturers to quantify the performance of optical materials for NASA systems and to ensure NASA's continued application of the highest quality optics possible for enhanced system reliability. A review panel was organized to assess NASA's optical damage concerns and to evaluate the effectiveness of the LaRC proposed program plan. This panel consisted of experts in the areas of laser-induced damage, optical coating manufacture, and the design and development of laser systems for space. The panel was presented information on NASA's current and planned laser remote sensing programs, laser-induced damage problems already encountered in NASA systems, and the proposed program plan to address these issues. Additionally, technical presentations were made on the state of the art in damage mechanisms, optical materials testing, and issues of coating manufacture germane to laser damage.

  15. Compact DFB laser modules with integrated isolator at 935 nm

    NASA Astrophysics Data System (ADS)

    Reggentin, M.; Thiem, H.; Tsianos, G.; Malach, M.; Hofmann, J.; Plocke, T.; Kneier, M.; Richter, L.

    2018-02-01

    New developments in industrial applications and applications under rough environmental conditions within the field of spectroscopy and quantum technology in the 935 nm wavelength regime demand new compact, stable and robust laser systems. Beside a stable laser source the integration of a compact optical isolator is necessary to reduce size and power consumption for the whole laser system. The integration of a suitable optical isolator suppresses back reflections from the following optical system efficiently. However, the miniaturization of the optics inside the package leads to high optical power density levels that make a more detailed analysis of the components and their laser damage threshold necessary. We present test results on compact stable DFB laser sources (butterfly style packages) with newly integrated optical isolators operating around 935 nm. The presented data includes performance and lifetime tests for the laser diodes as well as package components. Overall performance data of the packaged laser diodes will be shown as well.

  16. Laser diode technology for coherent communications

    NASA Technical Reports Server (NTRS)

    Channin, D. J.; Palfrey, S. L.; Toda, M.

    1989-01-01

    The effect of diode laser characteristics on the overall performance capabilities of coherent communication systems is discussed. In particular, attention is given to optical performance issues for diode lasers in coherent systems, measurements of key performance parameters, and optical requirements for coherent single-channel and multichannel communication systems. The discussion also covers limitations imposed by diode laser optical performance on multichannel system capabilities and implications for future developments.

  17. The laser and optical system for the RIBF-PALIS experiment

    NASA Astrophysics Data System (ADS)

    Sonoda, T.; Iimura, H.; Reponen, M.; Wada, M.; Katayama, I.; Sonnenschein, V.; Takamatsu, T.; Tomita, H.; Kojima, T. M.

    2018-01-01

    This paper describes the laser and optical system for the Parasitic radioactive isotope (RI) beam production by Laser Ion-Source (PALIS) in the RIKEN fragment separator facility. This system requires an optical path length of 70 m for transporting the laser beam from the laser light source to the place for resonance ionization. To accomplish this, we designed and implemented a simple optical system consisting of several mirrors equipped with compact stepping motor actuators, lenses, beam spot screens and network cameras. The system enables multi-step laser resonance ionization in the gas cell and gas jet via overlap with a diameter of a few millimeters, between the laser photons and atomic beam. Despite such a long transport distance, we achieved a transport efficiency for the UV laser beam of about 50%. We also confirmed that the position stability of the laser beam stays within a permissible range for dedicated resonance ionization experiments.

  18. Spectral and Radiometric Calibration Using Tunable Lasers

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel (Inventor)

    2017-01-01

    A tunable laser system includes a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, and a controller operable to simultaneously control parameters of at least the tunable laser, the first optical parametric oscillator, and the adjustable laser cavity to produce a range of wavelengths emitted from the tunable laser system. A method of operating a tunable laser system includes using a controller to simultaneously control parameters of a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, and a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, to produce a range of wavelengths emitted from the tunable laser system.

  19. Hybrid chirped pulse amplification system

    DOEpatents

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  20. Towards femtosecond laser surgery guidance in the posterior eye: utilization of optical coherence tomography and adaptive optics for focus positioning and shaping

    NASA Astrophysics Data System (ADS)

    Krüger, Alexander; Hansen, Anja; Matthias, Ben; Ripken, Tammo

    2014-02-01

    Although fs-laser surgery is clinically established in the field of corneal flap cutting for laser in situ keratomileusis, surgery with fs-laser in the posterior part of the eye is impaired by focus degradation due to aberrations. Precise targeting and keeping of safety distance to the retina also relies on an intraoperative depth resolved imaging. We demonstrate a concept for image guided fs-laser surgery in the vitreous body combining adaptive optics (AO) for focus reshaping and optical coherence tomography (OCT) for focus position guidance. The setup of the laboratory system consist of an 800 nm fs-laser which is focused into a simple eye model via a closed loop adaptive optics system with Hartmann-Shack sensor and a deformable mirror to correct for wavefront aberrations. A spectral domain optical coherence tomography system is used to target phantom structures in the eye model. Both systems are set up to share the same scanner and focusing optics. The use of adaptive optics results in a lowered threshold energy for laser induced breakdown and an increased cutting precision. 3D OCT imaging of porcine retinal tissue prior and immediately after fs-laser cutting is also demonstrated. In the near future OCT and AO will be two essential assistive components in possible clinical systems for fs-laser based eye surgery beyond the cornea.

  1. The effect of laser ablation parameters on optical limiting properties of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Gursoy, Irmak; Yaglioglu, Halime Gul

    2017-09-01

    This paper presents the effect of laser ablation parameters on optical limiting properties of silver nanoparticles. The current applications of lasers such as range finding, guidance, detection, illumination and designation have increased the potential of damaging optical imaging systems or eyes temporary or permanently. The applications of lasers introduce risks for sensors or eyes, when laser power is higher than damage threshold of the detection system. There are some ways to protect these systems such as neutral density (nd) filters, shutters, etc. However, these limiters reduce the total amount of light that gets into the system. Also, response time of these limiters may not be fast enough to prevent damage and cause precipitation in performance due to deprivation of transmission or contrast. Therefore, optical limiting filters are needed that is transparent for low laser intensities and limit or block the high laser intensities. Metal nanoparticles are good candidates for such optical limiting filters for ns pulsed lasers or CW lasers due to their high damage thresholds. In this study we investigated the optical limiting performances of silver nanoparticles produced by laser ablation technique. A high purity silver target immersed in pure water was ablated with a Nd:YAG nanosecond laser at 532 nm. The effect of altering laser power and ablation time on laser ablation efficiency of nanoparticles was investigated experimentally and optimum values were specified. Open aperture Zscan experiment was used to investigate the effect of laser ablation parameters on the optical limiting performances of silver nanoparticles in pure water. It was found that longer ablation time decreases the optical limiting threshold. These results are useful for silver nanoparticles solutions to obtain high performance optical limiters.

  2. Low jitter RF distribution system

    DOEpatents

    Wilcox, Russell; Doolittle, Lawrence; Huang, Gang

    2012-09-18

    A timing signal distribution system includes an optical frequency stabilized laser signal amplitude modulated at an rf frequency. A transmitter box transmits a first portion of the laser signal and receive a modified optical signal, and outputs a second portion of the laser signal and a portion of the modified optical signal. A first optical fiber carries the first laser signal portion and the modified optical signal, and a second optical fiber carries the second portion of the laser signal and the returned modified optical signal. A receiver box receives the first laser signal portion, shifts the frequency of the first laser signal portion outputs the modified optical signal, and outputs an electrical signal on the basis of the laser signal. A detector at the end of the second optical fiber outputs a signal based on the modified optical signal. An optical delay sensing circuit outputs a data signal based on the detected modified optical signal. An rf phase detect and correct signal circuit outputs a signal corresponding to a phase stabilized rf signal based on the data signal and the frequency received from the receiver box.

  3. Method and system for communicating with a laser power driver

    DOEpatents

    Telford, Steven

    2017-07-18

    A system for controlling a plurality of laser diodes includes an optical transmitter coupled to the laser diode driver for each laser diode. An optical signal including bi-phase encoded data is provided to each laser diode driver. The optical signal includes current level and pulse duration information at which each of the diodes is to be driven. Upon receiving a trigger signal, the laser diode drivers operate the laser diodes using the current level and pulse duration information to output a laser beam.

  4. The Recovery of Optical Quality after Laser Vision Correction

    PubMed Central

    Jung, Hyeong-Gi

    2013-01-01

    Purpose To evaluate the optical quality after laser in situ keratomileusis (LASIK) or serial photorefractive keratectomy (PRK) using a double-pass system and to follow the recovery of optical quality after laser vision correction. Methods This study measured the visual acuity, manifest refraction and optical quality before and one day, one week, one month, and three months after laser vision correction. Optical quality parameters including the modulation transfer function, Strehl ratio and intraocular scattering were evaluated with a double-pass system. Results This study included 51 eyes that underwent LASIK and 57 that underwent PRK. The optical quality three months post-surgery did not differ significantly between these laser vision correction techniques. Furthermore, the preoperative and postoperative optical quality did not differ significantly in either group. Optical quality recovered within one week after LASIK but took between one and three months to recover after PRK. The optical quality of patients in the PRK group seemed to recover slightly more slowly than their uncorrected distance visual acuity. Conclusions Optical quality recovers to the preoperative level after laser vision correction, so laser vision correction is efficacious for correcting myopia. The double-pass system is a useful tool for clinical assessment of optical quality. PMID:23908570

  5. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2017-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  6. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2014-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  7. Mitigation of laser damage on National Ignition Facility optics in volume production

    NASA Astrophysics Data System (ADS)

    Folta, James; Nostrand, Mike; Honig, John; Wong, Nan; Ravizza, Frank; Geraghty, Paul; Taranowski, Mike; Johnson, Gary; Larkin, Glenn; Ravizza, Doug; Peterson, John; Welday, Brian; Wegner, Paul

    2013-12-01

    The National Ignition Facility has recently achieved the milestone of delivering over 1.8 MJ and 500 TW of 351 nm laser energy and power on target, which required average fluences up to 9 J/cm2 (3 ns equivalent) in the final optics system. Commercial fused silica laser-grade UV optics typically have a maximum operating threshold of 5 J/cm2. We have developed an optics recycling process which enables NIF to operate above the laser damage initiation and growth thresholds. We previously reported a method to mitigate laser damage with laser ablation of the damage site to leave benign cone shaped pits. We have since developed a production facility with four mitigation systems capable of performing the mitigation protocols on full-sized (430 mm) optics in volume production. We have successfully repaired over 700 NIF optics (unique serial numbers), some of which have been recycled as many as 11 times. We describe the mitigation systems, the optics recycle loop process, and optics recycle production data.

  8. Particle damage sources for fused silica optics and their mitigation on high energy laser systems.

    PubMed

    Bude, J; Carr, C W; Miller, P E; Parham, T; Whitman, P; Monticelli, M; Raman, R; Cross, D; Welday, B; Ravizza, F; Suratwala, T; Davis, J; Fischer, M; Hawley, R; Lee, H; Matthews, M; Norton, M; Nostrand, M; VanBlarcom, D; Sommer, S

    2017-05-15

    High energy laser systems are ultimately limited by laser-induced damage to their critical components. This is especially true of damage to critical fused silica optics, which grows rapidly upon exposure to additional laser pulses. Much progress has been made in eliminating damage precursors in as-processed fused silica optics (the advanced mitigation process, AMP3), and very high damage resistance has been demonstrated in laboratory studies. However, the full potential of these improvements has not yet been realized in actual laser systems. In this work, we explore the importance of additional damage sources-in particular, particle contamination-for fused silica optics fielded in a high-performance laser environment, the National Ignition Facility (NIF) laser system. We demonstrate that the most dangerous sources of particle contamination in a system-level environment are laser-driven particle sources. In the specific case of the NIF laser, we have identified the two important particle sources which account for nearly all the damage observed on AMP3 optics during full laser operation and present mitigations for these particle sources. Finally, with the elimination of these laser-driven particle sources, we demonstrate essentially damage free operation of AMP3 fused silica for ten large optics (a total of 12,000 cm 2 of beam area) for shots from 8.6 J/cm 2 to 9.5 J/cm 2 of 351 nm light (3 ns Gaussian pulse shapes). Potentially many other pulsed high energy laser systems have similar particle sources, and given the insight provided by this study, their identification and elimination should be possible. The mitigations demonstrated here are currently being employed for all large UV silica optics on the National Ignition Facility.

  9. A novel integration of spectral-domain optical-coherence-tomography and laser-ablation system for precision treatment.

    PubMed

    Fan, Yingwei; Zhang, Boyu; Chang, Wei; Zhang, Xinran; Liao, Hongen

    2018-03-01

    Complete resection of diseased lesions reduces the recurrence of cancer, making it critical for surgical treatment. However, precisely resecting residual tumors is a challenge during operation. A novel integrated spectral-domain optical-coherence-tomography (SD-OCT) and laser-ablation therapy system for soft-biological-tissue resection is proposed. This is a prototype optical integrated diagnosis and therapeutic system as well as an optical theranostics system. We develop an optical theranostics system, which integrates SD-OCT, a laser-ablation unit, and an automatic scanning platform. The SD-OCT image of biological tissue provides an intuitive and clear view for intraoperative diagnosis and monitoring in real time. The effect of laser ablation is analyzed using a quantitative mathematical model. The automatic endoscopic scanning platform combines an endoscopic probe and an SD-OCT sample arm to provide optical theranostic scanning motion. An optical fiber and a charge-coupled device camera are integrated into the endoscopic probe, allowing detection and coupling of the OCT-aiming beam and laser spots. The integrated diagnostic and therapeutic system combines SD-OCT imaging and laser-ablation modules with an automatic scanning platform. OCT imaging, laser-ablation treatment, and the integration and control of diagnostic and therapeutic procedures were evaluated by performing phantom experiments. Furthermore, SD-OCT-guided laser ablation provided precision laser ablation and resection for the malignant lesions in soft-biological-tissue-lesion surgery. The results demonstrated that the appropriate laser-radiation power and duration time were 10 W and 10 s, respectively. In the laser-ablation evaluation experiment, the error reached approximately 0.1 mm. Another validation experiment was performed to obtain OCT images of the pre- and post-ablated craters of ex vivo porcine brainstem. We propose an optical integrated diagnosis and therapeutic system. The primary experimental results show the high efficiency and feasibility of our theranostics system, which is promising for realizing accurate resection of tumors in vivo and in situ in the future.

  10. No moving parts safe & arm apparatus and method with monitoring and built-in-test for optical firing of explosive systems

    DOEpatents

    Hendrix, J.L.

    1995-04-11

    A laser initiated ordnance controller apparatus which provides a safe and arm scheme with no moving parts. The safe & arm apparatus provides isolation of firing energy to explosive devices using a combination of polarization isolation and control through acousto-optical deviation of laser energy pulses. The apparatus provides constant monitoring of the systems status and performs 100% built-in-test at any time prior to ordnance ignition without the risk of premature ignition or detonation. The apparatus has a computer controller, a solid state laser, an acousto-optic deflector and RF drive circuitry, built-in-test optics and electronics, and system monitoring capabilities. The optical system is completed from the laser beam power source to the pyrotechnic ordnance through fiber optic cabling, optical splitters and optical connectors. During operation of the apparatus, a command is provided by the computer controller and, simultaneous with laser flashlamp fire, the safe & arm device is opened for approximately 200 microseconds which allows the laser pulse to transmit through the device. The arm signal also energizes the laser power supply and activates the acousto-optical deflector. When the correct fire format command is received, the acousto-optic deflector moves to the selected event channel, and the channel is verified to ensure the system is pointing to the correct position. Laser energy is transmitted through the fiber where an ignitor or detonator designed to be sensitive to optical pulses is fired at the end of the fiber channel. Simultaneous event channels may also be utilized by optically splitting a single event channel. The built-in-test may be performed anytime prior to ordnance ignition. 6 figures.

  11. No moving parts safe & arm apparatus and method with monitoring and built-in-test for optical firing of explosive systems

    DOEpatents

    Hendrix, James L.

    1995-01-01

    A laser initiated ordnance controller apparatus which provides a safe and m scheme with no moving parts. The safe & arm apparatus provides isolation of firing energy to explosive devices using a combination of polarization isolation and control through acousto-optical deviation of laser energy pulses. The apparatus provides constant monitoring of the systems status and performs 100% built-in-test at any time prior to ordnance ignition without the risk of premature ignition or detonation. The apparatus has a computer controller, a solid state laser, an acousto-optic deflector and RF drive circuitry, built-in-test optics and electronics, and system monitoring capabilities. The optical system is completed from the laser beam power source to the pyrotechnic ordnance through fiber optic cabling, optical splitters and optical connectors. During operation of the apparatus, a command is provided by the computer controller and, simultaneous with laser flashlamp fire, the safe & arm device is opened for approximately 200 microseconds which allows the laser pulse to transmit through the device. The arm signal also energizes the laser power supply and activates the acousto-optical deflector. When the correct fire format command is received, the acousto-optic deflector moves to the selected event channel, and the channel is verified to ensure the system is pointing to the correct position. Laser energy is transmitted through the fiber where an ignitor or detonator designed to be sensitive to optical pulses is fired at the end of the fiber channel. Simultaneous event channels may also be utilized by optically splitting a single event channel. The built-in-test may be performed anytime prior to ordnance ignition.

  12. Control, Filtering and Prediction for Phased Arrays in Directed Energy Systems

    DTIC Science & Technology

    2016-04-30

    adaptive optics. 15. SUBJECT TERMS control, filtering, prediction, system identification, adaptive optics, laser beam pointing, target tracking, phase... laser beam control; furthermore, wavefront sensors are plagued by the difficulty of maintaining the required alignment and focusing in dynamic mission...developed new methods for filtering, prediction and system identification in adaptive optics for high energy laser systems including phased arrays. The

  13. Developing magnetorheological finishing (MRF) technology for the manufacture of large-aperture optics in megajoule class laser systems

    NASA Astrophysics Data System (ADS)

    Menapace, Joseph A.

    2010-11-01

    Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm2 at 1053 nm), visible (>18 J/cm2 at 527 nm), and ultraviolet (>10 J/cm2 at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chain or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture largeaperture damage resistant optics.

  14. Developing Magnetorheological Finishing (MRF) Technology for the Manufacture of Large-Aperture Optics in Megajoule Class Laser Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A

    2010-10-27

    Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm{sup 2} at 1053 nm), visible (>18 J/cm{sup 2} at 527 nm), and ultraviolet (>10 J/cm{sup 2} at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chainmore » or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large-aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture large-aperture damage resistant optics.« less

  15. A novel high-resolution chaotic lidar with optical injection to chaotic laser diode

    NASA Astrophysics Data System (ADS)

    Wang, Yun-cai; Wang, An-bang

    2008-03-01

    A novel chaotic lidar with high resolution is proposed and studied theoretically. In chaotic lidar system, the chaotic laser emitted from chaotic laser diode is split into two beams: the probe and the reference light. The ranging is achieved by correlating the reference waveform with the delayed probe waveform backscattered from the target. In chaotic lidar systems presented previously, the chaotic signal source is laser diode with optical feedback or with optical injection by another one. The ranging resolution is limited by the bandwidth of chaotic laser which determined by the configuration of chaotic signal source. We proposed a novel chaotic lidar which ranging resolution is enhanced significantly by external optical injected chaotic laser diode. With the bandwidth-enhanced chaotic laser, the range resolution of the chaotic lidar system with optical injection is roughly two times compared with that of without optical injection. The resolution increases with injection strength increasing in a certain frequency detuning range.

  16. Free-space laser communication technologies IV; Proceedings of the 4th Conference, Los Angeles, CA, Jan. 23, 24, 1992

    NASA Technical Reports Server (NTRS)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1992-01-01

    Papers included in this volume are grouped under topics of receivers; laser transmitters; components; system analysis, performance, and applications; and beam control (pointing, acquisition, and tracking). Papers are presented on an experimental determination of power penalty contributions in an optical Costas-type phase-locked loop receiver, a resonant laser receiver for free-space laser communications, a simple low-loss technique for frequency-locking lasers, direct phase modulation of laser diodes, and a silex beacon. Particular attention is given to experimental results on an optical array antenna for nonmechanical beam steering, a potassium Faraday anomalous dispersion optical filter, a 100-Mbps resonant cavity phase modulator for coherent optical communications, a numerical simulation of a 325-Mbit/s QPPM optical communication system, design options for an optical multiple-access data relay terminal, CCD-based optical tracking loop design trades, and an analysis of a spatial-tracking subsystem for optical communications.

  17. Laser And Nonlinear Optical Materials For Laser Remote Sensing

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    2005-01-01

    NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.

  18. Optical Properties of Lithium Terbium Fluoride and Implications for Performance in High Power Lasers (Postprint)

    DTIC Science & Technology

    2016-02-01

    Maximum 200 words) LiTbF4 has the potential to replace traditional magneto-optic (MO) garnet materials as a Faraday rotator in high power laser systems...TERMS LiTbF4; magneto-optic (MO) garnet materials; Faraday rotator; high power laser; Verdet constant; Sellmeier; optical isolator 16. SECURITY... Faraday rotator in high power laser systems due to its high Verdet constant. New measurements are reported of the ordinary and extraor- dinary

  19. Optical diagnostics integrated with laser spark delivery system

    DOEpatents

    Yalin, Azer [Fort Collins, CO; Willson, Bryan [Fort Collins, CO; Defoort, Morgan [Fort Collins, CO; Joshi, Sachin [Fort Collins, CO; Reynolds, Adam [Fort Collins, CO

    2008-09-02

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  20. Fiber laser coupled optical spark delivery system

    DOEpatents

    Yalin, Azer [Fort Collins, CO; Willson, Bryan [Fort Collins, CO; Defoort, Morgan [Fort Collins, CO; Joshi, Sachin [Fort Collins, CO; Reynolds, Adam [Fort Collins, CO

    2008-03-04

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  1. Alternative laser system for cesium magneto-optical trap via optical injection locking to sideband of a 9-GHz current-modulated diode laser.

    PubMed

    Diao, Wenting; He, Jun; Liu, Zhi; Yang, Baodong; Wang, Junmin

    2012-03-26

    By optical injection of an 852-nm extended-cavity diode laser (master laser) to lock the + 1-order sideband of a ~9-GHz-current-modulated diode laser (slave laser), we generate a pair of phase-locked lasers with a frequency difference up to ~9-GHz for a cesium (Cs) magneto-optical trap (MOT) with convenient tuning capability. For a cesium MOT, the master laser acts as repumping laser, locked to the Cs 6S₁/₂ (F = 3) - 6P₃/₂ (F' = 4) transition. When the + 1-order sideband of the 8.9536-GHz-current-modulated slave laser is optically injection-locked, the carrier operates on the Cs 6S₁/₂ (F = 4) - 6P₃/₂ (F' = 5) cooling cycle transition with -12 MHz detuning and acts as cooling/trapping laser. When carrying a 9.1926-GHz modulation signal, this phase-locked laser system can be applied in the fields of coherent population trapping and coherent manipulation of Cs atomic ground states.

  2. CO2 laser and plasma microjet process for improving laser optics

    DOEpatents

    Brusasco, Raymond M.; Penetrante, Bernardino M.; Butler, James A.; Grundler, Walter; Governo, George K.

    2003-09-16

    A optic is produced for operation at the fundamental Nd:YAG laser wavelength of 1.06 micrometers through the tripled Nd:YAG laser wavelength of 355 nanometers by the method of reducing or eliminating the growth of laser damage sites in the optics by processing the optics to stop damage in the optics from growing to a predetermined critical size. A system is provided of mitigating the growth of laser-induced damage in optics by virtue of very localized removal of glass and absorbing material.

  3. Optical System Design and Integration of the Mercury Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Ramos-Izquierdo, Luis; Scott, V. Stanley, III; Schmidt, Stephen; Britt, Jamie; Mamakos, William; Trunzo, Raymond; Cavanaugh, John; Miller, Roger

    2005-01-01

    The Mercury Laser Altimeter (MLA). developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography via laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented.

  4. Device for wavefront correction in an ultra high power laser

    DOEpatents

    Ault, Earl R.; Comaskey, Brian J.; Kuklo, Thomas C.

    2002-01-01

    A system for wavefront correction in an ultra high power laser. As the laser medium flows past the optical excitation source and the fluid warms its index of refraction changes creating an optical wedge. A system is provided for correcting the thermally induced optical phase errors.

  5. Method and system for compact, multi-pass pulsed laser amplifier

    DOEpatents

    Erlandson, Alvin Charles

    2014-11-25

    A laser amplifier includes an input aperture operable to receive laser radiation having a first polarization, an output aperture coupled to the input aperture by an optical path, and a polarizer disposed along an optical path. A transmission axis of the polarizer is aligned with the first polarization. The laser amplifier also includes n optical switch disposed along the optical path. The optical switch is operable to pass the laser radiation when operated in a first state and to reflect the laser radiation when operated in a second state. The laser amplifier further includes an optical gain element disposed along the optical path and a polarization rotation device disposed along the optical path.

  6. Design and realization of test system for testing parallelism and jumpiness of optical axis of photoelectric equipment

    NASA Astrophysics Data System (ADS)

    Shi, Sheng-bing; Chen, Zhen-xing; Qin, Shao-gang; Song, Chun-yan; Jiang, Yun-hong

    2014-09-01

    With the development of science and technology, photoelectric equipment comprises visible system, infrared system, laser system and so on, integration, information and complication are higher than past. Parallelism and jumpiness of optical axis are important performance of photoelectric equipment,directly affect aim, ranging, orientation and so on. Jumpiness of optical axis directly affect hit precision of accurate point damage weapon, but we lack the facility which is used for testing this performance. In this paper, test system which is used fo testing parallelism and jumpiness of optical axis is devised, accurate aim isn't necessary and data processing are digital in the course of testing parallelism, it can finish directly testing parallelism of multi-axes, aim axis and laser emission axis, parallelism of laser emission axis and laser receiving axis and first acuualizes jumpiness of optical axis of optical sighting device, it's a universal test system.

  7. Silver nanoprisms/silicone hybrid rubber materials and their optical limiting property to femtosecond laser

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Liu, Miao; Jiang, Nengkai; Wang, Chunlei; Lin, Weihong; Li, Dongxiang

    2017-08-01

    Optical limiters against femtosecond laser are essential for eye and sensor protection in optical processing system with femtosecond laser as light source. Anisotropic Ag nanoparticles are expected to develop into optical limiting materials for femtosecond laser pulses. Herein, silver nanoprisms are prepared and coated by silica layer, which are then doped into silicone rubber to obtain hybrid rubber sheets. The silver nanoprisms/silicone hybrid rubber sheets exhibit good optical limiting property to femtosecond laser mainly due to nonlinear optical absorption.

  8. Designs for optimizing depth of focus and spot size for UV laser ablation

    NASA Astrophysics Data System (ADS)

    Wei, An-Chi; Sze, Jyh-Rou; Chern, Jyh-Long

    2010-11-01

    The proposed optical systems are designed for extending the depths of foci (DOF) of UV lasers, which can be exploited in the laser-ablation technologies, such as laser machining and lithography. The designed systems are commonly constructed by an optical module that has at least one aspherical surface. Two configurations of optical module, lens-only and lens-reflector, are presented with the designs of 2-lens and 1-lens-1-reflector demonstrated by commercially optical software. Compared with conventional DOF-enhanced systems, which required the chromatic aberration lenses and the light sources with multiple wavelengths, the proposed designs are adapted to the single-wavelength systems, leading to more economical and efficient systems.

  9. The aero optics effect on near space laser communication optical system

    NASA Astrophysics Data System (ADS)

    Hu, Yuan; Fu, Yuegang; Jiang, Huilin

    2013-08-01

    With the developing of the space laser communication link, the performance index including higher transfer speed, extending transfer distance, and environmental adaptability, all ask the system accuracy and indexes improving. Special the developing near space platform, its environmental is extremes, the near space drone and other airplane flight speed is very quickly from the subsonic to supersonic. The aero optics effect caused by high speed will generate a thin turbulent air layer. It affects the performance of laser communication optical system by laser light vibration, deviation and so on, further more affects the performance of laser communication system working performance, even can't communication. Therefore, for achieving optical system indexes, we need do more research in optical system near space aero optics environmental adaptability. In this paper, near space link environmental characteristic are researched. And on the base of the aero optics theory, computer simulating method is applied to analyze the relationship among the altitude, the flight speed and the image dispersion. The result shows that, the aero optics effect cannot be ignored when the terminal is in low altitude or is moving with supersonic speed. The effect must be taken into considered from overall design. The result will provide the basis of research design.

  10. Formation of propagation invariant laser beams with anamorphic optical systems

    NASA Astrophysics Data System (ADS)

    Soskind, Y. G.

    2015-03-01

    Propagation invariant structured laser beams play an important role in several photonics applications. A majority of propagation invariant beams are usually produced in the form of laser modes emanating from stable laser cavities. This work shows that anamorphic optical systems can be effectively employed to transform input propagation invariant laser beams and produce a variety of alternative propagation invariant structured laser beam distributions with different shapes and phase structures. This work also presents several types of anamorphic lens systems suitable for transforming the input laser modes into a variety of structured propagation invariant beams. The transformations are applied to different laser mode types, including Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian field distributions. The influence of the relative azimuthal orientation between the input laser modes and the anamorphic optical systems on the resulting transformed propagation invariant beams is presented as well.

  11. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, Barry L.

    1998-01-01

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.

  12. Base-Level Management of Laser Radiation Protection Program

    DTIC Science & Technology

    1992-02-01

    safety eyewear . special considerations for medical lasers and optical fibers, and summary evaluations of common Air Force laser systems... optical density of 2. Laser safety eyewear should have the optical density clearly marked for ail wavelengths for which the eyewear provides protection. c...density of protective eyewear . The optical density required for laser safety eyewear is dependent on the irradiance or radiant exposure-of the

  13. Method and system for homogenizing diode laser pump arrays

    DOEpatents

    Bayramian, Andrew James

    2016-05-03

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  14. Method and system for homogenizing diode laser pump arrays

    DOEpatents

    Bayramian, Andy J

    2013-10-01

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  15. Thermally induced distortion of a high-average-power laser system by an optical transport system

    NASA Astrophysics Data System (ADS)

    Chow, Robert; Ault, Linda E.; Taylor, John R.; Jedlovec, Don

    1999-11-01

    The atomic vapor laser isotope separation process uses high- average power lasers that have the commercial potential to enrich uranium for the electric power utilities. The transport of the laser beam through the laser system to the separation chambers requires high performance optical components, most of which have either fused silica or Zerodur as the substrate material. One of the requirements of the optical components is to preserve the wavefront quality of the laser beam that propagate over long distances. Full aperture tests with the high power process lasers and finite element analysis (FEA) have been performed on the transport optics. The wavefront distortions of the various sections of the transport path were measured with diagnostic Hartmann sensor packages. The FEA results were derived from an in-house thermal-structural- optical code which is linked to the commercially available CodeV program. In comparing the measured and predicted results, the bulk absorptance of fused silica was estimated to about 50 ppm/cm in the visible wavelength regime. Wavefront distortions will be reported on optics made from fused silica and Zerodur substrate materials.

  16. Optical laser systems at the Linac Coherent Light Source

    DOE PAGES

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; ...

    2015-04-22

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  17. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, B.L.

    1998-10-27

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver > 4kW/cm{sup 2} of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources. 13 figs.

  18. Fiber coupled optical spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan

    2008-08-12

    A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

  19. Thermo-optic locking of a semiconductor laser to a microcavity resonance.

    PubMed

    McRae, T G; Lee, Kwan H; McGovern, M; Gwyther, D; Bowen, W P

    2009-11-23

    We experimentally demonstrate thermo-optic locking of a semiconductor laser to an integrated toroidal optical microcavity. The lock is maintained for time periods exceeding twelve hours, without requiring any electronic control systems. Fast control is achieved by optical feedback induced by scattering centers within the microcavity, with thermal locking due to optical heating maintaining constructive interference between the cavity and the laser. Furthermore, the optical feedback acts to narrow the laser linewidth, with ultra high quality microtoroid resonances offering the potential for ultralow linewidth on-chip lasers.

  20. Design of optical axis jitter control system for multi beam lasers based on FPGA

    NASA Astrophysics Data System (ADS)

    Ou, Long; Li, Guohui; Xie, Chuanlin; Zhou, Zhiqiang

    2018-02-01

    A design of optical axis closed-loop control system for multi beam lasers coherent combining based on FPGA was introduced. The system uses piezoelectric ceramics Fast Steering Mirrors (FSM) as actuator, the Fairfield spot detection of multi beam lasers by the high speed CMOS camera for optical detecting, a control system based on FPGA for real-time optical axis jitter suppression. The algorithm for optical axis centroid detecting and PID of anti-Integral saturation were realized by FPGA. Optimize the structure of logic circuit by reuse resource and pipeline, as a result of reducing logic resource but reduced the delay time, and the closed-loop bandwidth increases to 100Hz. The jitter of laser less than 40Hz was reduced 40dB. The cost of the system is low but it works stably.

  1. [New type distributed optical fiber temperature sensor (DTS) based on Raman scattering and its' application].

    PubMed

    Wang, Jian-Feng; Liu, Hong-Lin; Zhang, Shu-Qin; Yu, Xiang-Dong; Sun, Zhong-Zhou; Jin, Shang-Zhong; Zhang, Zai-Xuan

    2013-04-01

    Basic principles, development trends and applications status of distributed optical fiber Raman temperature sensor (DTS) are introduced. Performance parameters of DTS system include the sensing optical fiber length, temperature measurement uncertainty, spatial resolution and measurement time. These parameters have a certain correlation and it is difficult to improve them at the same time by single technology. So a variety of key techniques such as Raman amplification, pulse coding technique, Raman related dual-wavelength self-correction technique and embedding optical switching technique are researched to improve the performance of the DTS system. A 1 467 nm continuous laser is used as pump laser and the light source of DTS system (1 550 nm pulse laser) is amplified. When the length of sensing optical fiber is 50 km the Raman gain is about 17 dB. Raman gain can partially compensate the transmission loss of optical fiber, so that the sensing length can reach 50 km. In DTS system using pulse coding technique, pulse laser is coded by 211 bits loop encoder and correlation calculation is used to demodulate temperature. The encoded laser signal is related, whereas the noise is not relevant. So that signal-to-noise ratio (SNR) of DTS system can be improved significantly. The experiments are carried out in DTS system with single mode optical fiber and multimode optical fiber respectively. Temperature measurement uncertainty can all reach 1 degrees C. In DTS system using Raman related dual-wavelength self-correction technique, the wavelength difference of the two light sources must be one Raman frequency shift in optical fiber. For example, wavelength of the main laser is 1 550 nm and wavelength of the second laser must be 1 450 nm. Spatial resolution of DTS system is improved to 2 m by using dual-wavelength self-correction technique. Optical switch is embedded in DTS system, so that the temperature measurement channel multiply extended and the total length of the sensing optical fiber effectively extended. Optical fiber sensor network is composed.

  2. Alignment of the writing beam with the diffractive structure rotation axis in synthesis of diffractive optical elements in a polar coordinate system

    NASA Astrophysics Data System (ADS)

    Shimanskii, R. V.; Poleshchuk, A. G.; Korolkov, V. P.; Cherkashin, V. V.

    2017-03-01

    A method is developed to ensure precise alignment of the origin of a polar coordinate system in which the laser beam position is defined in writing diffractive optical elements with the optical workpiece rotation axis. This method is used to improve the accuracy of a circular laser writing system in writing large-scale diffractive optical elements in a polar coordinate system. Results of studying new algorithms of detection and correction of positioning errors of the circular laser writing system in the course of writing are reported.

  3. Development of the micro-scanning optical system of yellow laser applied to the ophthalmologic area

    NASA Astrophysics Data System (ADS)

    Ortega, Tiago A.; Mota, Alessandro D.; Costal, Glauco Z.; Fontes, Yuri C.; Rossi, Giuliano; Yasuoka, Fatima M. M.; Stefani, Mario A.; de Castro N., Jarbas C.

    2012-10-01

    In this work, the development of a laser scanning system for ophthalmology with micrometric positioning precision is presented. It is a semi-automatic scanning system for retina photocoagulation and laser trabeculoplasty. The equipment is a solid state laser fully integrated to the slit lamp. An optical system is responsible for producing different laser spot sizes on the image plane and a pair of galvanometer mirrors generates the scanning patterns.

  4. Digital frequency offset-locked He–Ne laser system with high beat frequency stability, narrow optical linewidth and optical fibre output

    NASA Astrophysics Data System (ADS)

    Sternkopf, Christian; Manske, Eberhard

    2018-06-01

    We report on the enhancement of a previously-presented heterodyne laser source on the basis of two phase-locked loop (PLL) frequency coupled internal-mirror He–Ne lasers. Our new system consists of two digitally controlled He–Ne lasers with slightly different wavelengths, and offers high-frequency stability and very narrow optical linewidth. The digitally controlled system has been realized by using a FPGA controller and transconductance amplifiers. The light of both lasers was coupled into separate fibres for heterodyne interferometer applications. To enhance the laser performance we observed the sensitivity of both laser tubes to electromagnetic noise from various laser power supplies and frequency control systems. Furthermore, we describe how the linewidth of a frequency-controlled He–Ne laser can be reduced during precise frequency stabilisation. The digitally controlled laser source reaches a standard beat frequency deviation of less than 20 Hz (with 1 s gate time) and a spectral full width at half maximum (FWHM) of the beat signal less than 3 kHz. The laser source has enough optical output power to serve a fibre-coupled multi axis heterodyne interferometer. The system can be adjusted to output beat frequencies in the range of 0.1 MHz–20 MHz.

  5. Damage modeling and statistical analysis of optics damage performance in MJ-class laser systems.

    PubMed

    Liao, Zhi M; Raymond, B; Gaylord, J; Fallejo, R; Bude, J; Wegner, P

    2014-11-17

    Modeling the lifetime of a fused silica optic is described for a multiple beam, MJ-class laser system. This entails combining optic processing data along with laser shot data to account for complete history of optic processing and shot exposure. Integrating with online inspection data allows for the construction of a performance metric to describe how an optic performs with respect to the model. This methodology helps to validate the damage model as well as allows strategic planning and identifying potential hidden parameters that are affecting the optic's performance.

  6. Optical characterization in wide spectral range by a coherent spectrophotometer

    NASA Astrophysics Data System (ADS)

    Sirutkaitis, Valdas; Eckardt, Robert C.; Balachninaite, Ona; Grigonis, Rimantas; Melninkaitis, A.; Rakickas, T.

    2003-11-01

    We report on the development and use of coherent spectrophotometers specialized for the unusual requirements of characterizing nonlinear optical materials and multilayer dielectric coatings used in laser systems. A large dynamic range is required to measure the linear properties of transmission, reflection and absorption and nonlinear properties of laser-induced damage threshold and nonlinear frequency conversion. Optical parametric oscillators generate coherent radiation that is widely tunable with instantaneous powers that can range from milliwatts to megawatts and are well matched to this application. As particular example a laser spectrophotometer based on optical parametric oscillators and a diode-pumped, Q-switched Nd:YAG laser and suitable for optical characterization in the spectral range 420-4500 nm is described. Measurements include reflectance and transmittance, absorption, scattering and laser-induced damage thresholds. Possibilities of a system based on a 130-fs Ti:sapphire laser and optical parametric generators are also discussed.

  7. Laser peening with fiber optic delivery

    DOEpatents

    Friedman, Herbert W.; Ault, Earl R.; Scheibner, Karl F.

    2004-11-16

    A system for processing a workpiece using a laser. The laser produces at least one laser pulse. A laser processing unit is used to process the workpiece using the at least one laser pulse. A fiber optic cable is used for transmitting the at least one laser pulse from the laser to the laser processing unit.

  8. Auto-locking waveguide amplifier system for lidar and magnetometric applications

    NASA Astrophysics Data System (ADS)

    Pouliot, A.; Beica, H. C.; Carew, A.; Vorozcovs, A.; Carlse, G.; Kumarakrishnan, A.

    2018-02-01

    We describe a compact waveguide amplifier system that is suitable for optically pumping rubidium magnetometers. The system consists of an auto-locking vacuum-sealed external cavity diode laser, a semiconductor tapered amplifier and a pulsing unit based on an acousto-optic modulator. The diode laser utilises optical feedback from an interference filter to narrow the linewidth of an inexpensive laser diode to 500 kHz. This output is scannable over an 8 GHz range (at 780 nm) and can be locked without human intervention to any spectral marker in an expandable library of reference spectra, using the autolocking controller. The tapered amplifier amplifies the output from 50 mW up to 2 W with negligible distortions in the spectral quality. The system can operate at visible and near infrared wavelengths with MHz repetition rates. We demonstrate optical pumping of rubidium vapour with this system for magnetometric applications. The magnetometer detects the differential absorption of two orthogonally polarized components of a linearly polarized probe laser following optical pumping by a circularly polarized pump laser. The differential absorption signal is studied for a range of pulse lengths, pulse amplitudes and DC magnetic fields. Our results suggest that this laser system is suitable for optically pumping spin-exchange free magnetometers.

  9. Mitigation of Laser Beam Scintillation in Free-Space Optical Communication Systems Through Coherence-Reducing Optical Materials

    NASA Technical Reports Server (NTRS)

    Renner, Christoffer J.

    2005-01-01

    Free-space optical communication systems (also known as lasercom systems) offer several performance advantages over traditional radio frequency communication systems. These advantages include increased data rates and reduced operating power and system weight. One serious limiting factor in a lasercom system is Optical turbulence in Earth's atmosphere. This turbulence breaks up the laser beam used to transmit the information into multiple segments that interfere with each other when the beam is focused onto the receiver. This interference pattern at the receiver changes with time causing fluctuations in the received optical intensity (scintillation). Scintillation leads to intermittent losses of the signal and an overall reduction in the lasercom system's performance. Since scintillation is a coherent effect, reducing the spatial and temporal coherence of the laser beam will reduce the scintillation. Transmitting a laser beam through certain materials is thought to reduce its coherence. Materials that were tested included: sapphire, BK7 glass, fused silica and others. The spatial and temporal coherence of the laser beam was determined by examining the interference patterns (fringes) it formed when interacting with various interferometers and etalons.

  10. Initial results from the Lick Observatory Laser Guide Star Adaptive Optics System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S.S.; An, J.; Avicola, K.

    1995-11-08

    A prototype adaptive optics system has been installed and tested on the 3 m Shane telescope at Lick Observatory. The adaptive optics system performance, using bright natural guide stars, is consistent with expectations based on theory. A sodium-layer laser guide star system has also been installed and tested on the Shane telescope. Operating at 15 W, the laser system produces a 9th magnitude guide star with seeing-limited size at 589 nm. Using the laser guide star, the adaptive optics system has reduced the wavefront phase variance on scales above 50 cm by a factor of 4. These results represent themore » first continuous wavefront phase correction using a sodium-layer laser guide star. Assuming tip-tilt is removed using a natural guide star, the measured control loop performance should produce images with a Strehl ratio of 0.4 at 2.2 {mu}m in 1 arc second seeing. Additional calibration procedures must be implemented in order to achieve these results with the prototype Lick adaptive optics system.« less

  11. Free-space laser communication technologies III; Proceedings of the Meeting, Los Angeles, CA, Jan. 21, 22, 1991

    NASA Technical Reports Server (NTRS)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1991-01-01

    The present volume on free-space laser communication technologies discusses system analysis, performance, and applications, pointing, acquisition, and tracking in beam control, laboratory demonstration systems, and transmitter and critical component technologies. Attention is given to a space station laser communication transceiver, meeting intersatellite links mission requirements by an adequate optical terminal design, an optical approach to proximity-operations communications for Space Station Freedom, and optical space-to-ground link availability assessment and diversity requirements. Topics addressed include nonmechanical steering of laser beams by multiple aperture antennas, a free-space simulator for laser transmission, heterodyne acquisition and tracking in a free-space diode laser link, and laser terminal attitude determination via autonomous star tracking. Also discussed are stability considerations in relay lens design for optical communications, liquid crystals for lasercom applications, and narrowband optical interference filters.

  12. Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode

    NASA Astrophysics Data System (ADS)

    Rerucha, Simon; Yacoot, Andrew; Pham, Tuan M.; Cizek, Martin; Hucl, Vaclav; Lazar, Josef; Cip, Ondrej

    2017-04-01

    We demonstrated that an iodine stabilized distributed Bragg reflector (DBR) diode based laser system lasing at a wavelength in close proximity to λ =633 nm could be used as an alternative laser source to the helium-neon lasers in both scientific and industrial metrology. This yields additional advantages besides the optical frequency stability and coherence: inherent traceability, wider optical frequency tuning range, higher output power and high frequency modulation capability. We experimentally investigated the characteristics of the laser source in two major steps: first using a wavelength meter referenced to a frequency comb controlled with a hydrogen maser and then on an interferometric optical bench testbed where we compared the performance of the laser system with that of a traditional frequency stabilized He-Ne laser. The results indicate that DBR diode laser system provides a good laser source for applications in dimensional (nano)metrology, especially in conjunction with novel interferometric detection methods exploiting high frequency modulation or multiaxis measurement systems.

  13. Optical response in a laser-driven quantum pseudodot system

    NASA Astrophysics Data System (ADS)

    Kilic, D. Gul; Sakiroglu, S.; Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2017-03-01

    We investigate theoretically the intense laser-induced optical absorption coefficients and refractive index changes in a two-dimensional quantum pseudodot system under an uniform magnetic field. The effects of non-resonant, monochromatic intense laser field upon the system are treated within the framework of high-frequency Floquet approach in which the system is supposed to be governed by a laser-dressed potential. Linear and nonlinear absorption coefficients and relative changes in the refractive index are obtained by means of the compact-density matrix approach and iterative method. The results of numerical calculations for a typical GaAs quantum dot reveal that the optical response depends strongly on the magnitude of external magnetic field and characteristic parameters of the confinement potential. Moreover, we have demonstrated that the intense laser field modifies the confinement and thereby causes remarkable changes in the linear and nonlinear optical properties of the system.

  14. Systems and assemblies for transferring high power laser energy through a rotating junction

    DOEpatents

    Norton, Ryan J.; McKay, Ryan P.; Fraze, Jason D.; Rinzler, Charles C.; Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2016-01-26

    There are provided high power laser devices and systems for transmitting a high power laser beam across a rotating assembly, including optical slip rings and optical rotational coupling assemblies. These devices can transmit the laser beam through the rotation zone in free space or within a fiber.

  15. Compact optical duplicate system for satellite-ground laser communications: application of averaging effects

    NASA Astrophysics Data System (ADS)

    Nakayama, Tomoko; Takayama, Yoshihisa; Fujikawa, Chiemi; Watanabe, Eriko; Kodate, Kashiko

    2014-09-01

    In recent years, there has been considerable interest in satellite-ground laser communication due to an increase in the quantity of data exchanged between satellites and the ground. However, improving the quality of this data communication is necessary as laser communication is vulnerable to air fluctuation. We first verify the spatial and temporal averaging effects using light beam intensity images acquired from middle-range transmission experiments between two ground positions and the superposition of these images using simulations. Based on these results, we propose a compact and lightweight optical duplicate system as a multi-beam generation device with which it is easy to apply the spatial averaging effect. Although an optical duplicate system is already used for optical correlation operations, we present optimum design solutions, design a compact optical duplicate system for satellite-ground laser communications, and demonstrate the efficacy of this system using simulations.

  16. Characterization of the Los Alamos IPG YLR-6000 fiber laser using multiple optical paths and laser focusing optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milewski, John O; Bernal, John E

    2009-01-01

    Fiber laser technology has been identified as the replacement power source for the existing Los Alamos TA-55 production laser welding system. An IPG YLR-6000 fiber laser was purchased, installed at SM-66 R3, and accepted in February 2008. No characterization of the laser and no welding was performed in the Feb 2008 to May 2009 interval. T. Lienert and J. Bernal (Ref. 1, July 2009) determined the existing 200 mm Rofin collimator and focus heads used with the Rofin diode pumped lasers were inadequate for use with the IPG laser due to clipping of the IPG laser beam. Further efforts inmore » testing of the IPG laser with Optoskand fiber delivery optics and a Rofin 120 mm collimator proved problematic due to optical fiber damage. As a result, IPG design optical fibers were purchased as replacements for subsequent testing. Within the same interval, an IPG fiber-to-fiber (F2F) connector, custom built for LANL, (J. Milewski, S. Gravener, Ref.2) was demonstrated and accepted at IPG Oxford, MA in August 2009. An IPG service person was contracted to come to LANL to assist in the installation, training, troubleshooting and characterization of the multiple beam paths and help perform laser head optics characterization. The statement of work is provided below: In summary the laser system, optical fibers, F2F connector, Precitec head, and a modified Rofin type (w/120mm Optoskand collimator) IWindowIBoot system focus head (Figure 1) were shown to perform well at powers up to 6 kW CW. Power measurements, laser spot size measurements, and other characterization data and lessons learned are contained within this report. In addition, a number of issues were identified that will require future resolution.« less

  17. Thermally induced distortion of high average power laser system by an optical transport system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ault, L; Chow, R; Taylor, Jedlovec, D

    1999-03-31

    The atomic vapor laser isotope separation process uses high-average power lasers that have the commercial potential to enrich uranium for the electric power utilities. The transport of the laser beam through the laser system to the separation chambers requires high performance optical components, most of which have either fused silica or Zerodur as the substrate material. One of the requirements of the optical components is to preserve the wavefront quality of the laser beam that propagate over long distances. Full aperture tests with the high power process lasers and finite element analysis (FEA) have been performed on the transport optics.more » The wavefront distortions of the various sections of the transport path were measured with diagnostic Hartmann sensor packages. The FEA results were derived from an in-house thermal-structural-optical code which is linked to the commercially available CodeV program. In comparing the measured and predicted results, the bulk absorptance of fused silica was estimated to about 50 ppm/cm in the visible wavelength regime. Wavefront distortions are reported on optics made from fused silica and Zerodur substrate materials.« less

  18. Optical frequency switching scheme for a high-speed broadband THz measurement system based on the photomixing technique.

    PubMed

    Song, Hajun; Hwang, Sejin; Song, Jong-In

    2017-05-15

    This study presents an optical frequency switching scheme for a high-speed broadband terahertz (THz) measurement system based on the photomixing technique. The proposed system can achieve high-speed broadband THz measurements using narrow optical frequency scanning of a tunable laser source combined with a wavelength-switchable laser source. In addition, this scheme can provide a larger output power of an individual THz signal compared with that of a multi-mode THz signal generated by multiple CW laser sources. A swept-source THz tomography system implemented with a two-channel wavelength-switchable laser source achieves a reduced time for acquisition of a point spread function and a higher depth resolution in the same amount of measurement time compared with a system with a single optical source.

  19. A study of optical design and optimization of laser optics

    NASA Astrophysics Data System (ADS)

    Tsai, C.-M.; Fang, Yi-Chin

    2013-09-01

    This paper propose a study of optical design of laser beam shaping optics with aspheric surface and application of genetic algorithm (GA) to find the optimal results. Nd: YAG 355 waveband laser flat-top optical system, this study employed the Light tools LDS (least damped square) and the GA of artificial intelligence optimization method to determine the optimal aspheric coefficient and obtain the optimal solution. This study applied the aspheric lens with GA for the flattening of laser beams using collimated laser beam light, aspheric lenses in order to achieve best results.

  20. FM and FSK response of tunable two-electrode DFB lasers and their performance with noncoherent detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willner, A.E.; Kuznetsov, M.; Kaminow, I.P.

    1989-12-01

    Two-electrode DFB lasers show promise for combining high speed and frequency tunability for FDM-FSK networks. The authors have measured the FM and FSK response of such lasers up to modulation frequencies of {approximately} GHz. Using these lasers in a noncoherent detection system in which a fiber Fabry-Perot tunable optical filter converts an FSK signal into ASK format, the authors demonstrate 10{sup {minus}9} BER up to 1 Gbit/s. Nonuniform FM response and consequent tone broadening of the optical-filtering FSK spectra can lead to system power penalties due to optical-filtering effects. Thus, for a given FM response, they can project the behaviormore » of these lasers in FSK optical systems.« less

  1. Bidirectional optical bistability in a dual-pumped erbium doped fiber ring laser.

    PubMed

    Lai, W J; Shum, P; Binh, L

    2004-11-15

    We investigate bidirectional optical wave propagations in a dual-pumped erbium doped fiber ring laser without isolator, and observe optical bistability behaviors. Consequently, we propose and construct a NOLM-NALM fiber ring laser to demonstrate and exploit this bidirectional optical bistability phenomenon in optical switching by introducing two tunable variable ratio couplers in the system. Numerical analyses based on the proposed laser structure have also been demonstrated corroborated with the experimental results.

  2. Future directions in 980-nm pump lasers: submarine deployment to low-cost watt-class terrestrial pumps

    NASA Astrophysics Data System (ADS)

    Gulgazov, Vadim N.; Jackson, Gordon S.; Lascola, Kevin M.; Major, Jo S.; Parke, Ross; Richard, Tim; Rossin, Victor V.; Zhang, Kai

    1999-09-01

    The demands of global bandwidth and distribution are rising rapidly as Internet usage grows. This fundamentally means that more photons are flowing within optical cables. While transmitting sources launches some optical power, the majority of the optical power that is present within modern telecommunication systems originates from optical amplifiers. In addition, modern optical amplifiers offer flat optical gain over broad wavelength bands, thus making possible dense wavelength de-multiplexing (DWDM) systems. Optical amplifier performance, and by extension the performance of the laser pumps that drive them, is central to the future growth of both optical transmission and distribution systems. Erbium-doped amplifiers currently dominate optical amplifier usage. These amplifiers absorb pump light at 980 nm and/or 1480 nm, and achieve gain at wavelengths around 1550 nm. 980 nm pumps achieve better noise figures and are therefore used for the amplification of small signals. Due to the quantum defect, 1480 nm lasers deliver more signal photon per incident photon. In addition, 1480 nm lasers are less expensive than 980 nm lasers. Thus, 1480 nm pump lasers are used for amplification in situations where noise is not critical. The combination of these traits leads to the situation where many amplifiers contain 980 nm lasers to pump the input section of the Er- doped fiber with 1480 nm lasers being used to pump the latter section of Er fiber. This can be thought of as using 980 nm lasers to power an optical pre-amplifier with the power amplification function being pump with 1480 nm radiation. This paper will focus on 980 nm pump lasers and the impact that advances in 980 nm pump technology will have on optical amplification systems. Currently, 980 nm technology is rapidly advancing in two areas, power and reliability. Improving reliability is becoming increasingly important as amplifiers move towards employing more pump lasers and using these pump lasers without redundancy. Since the failure rate allowable for an amplifier is not a function of the number of pumps employed in the amplifier, the allowable failure rate of an individual pump laser is decreasing for next-generation amplifiers. This will lead to specifications for terrestrial pumps well below 1000 FIT, and may lead to the case where high power amplifiers need laser pump reliability to approach 100 FIT. In addition, 980 nm laser diodes are now being deployed in submarine systems where failure rates lower than 100 FIT are commonly specified. It is obvious that both terrestrial and submarine markets are pushing allowable failure rates for pumps for optical amplifiers to continually decrease. A second push for improvement is in the output power of 980 nm pump modules. There exist a number of motivations for increasing the output power of pump lasers. First, each additional channel in a DWDM system requires additional power. To first order, a doubling in channel count implies a doubling in pump power. Second, larger amplifiers require multiple pumps. Higher output power from pump modules allows for fewer pumps, less complicated control systems and smaller size amplifiers. The discussion of this paper will focus on how current development progress of 980 nm laser diodes addresses these issues: better reliability and higher output powers.

  3. Feed-forward adaptive-optic correction of a weakly-compressible high-subsonic shear layer

    NASA Astrophysics Data System (ADS)

    Duffin, Daniel A.

    Development of airborne laser systems began in the 1970s with the Airborne Laser Laboratory, a KC135 aircraft with a CO2 laser projected from a beam director mounted atop the aircraft as a hemispherical turret encased in a fairing. It was known that the turbulent air flowing around the turret and separating over the aft portions of the turret would aberrate the laser beam's wavefront (the aero-optic problem); however, the CO2 wavelength, 10.6 mum, was long enough that the aberrating turbulent flow decreased the system's performance by only about 5%. With newer airborne laser systems using wavelengths nearer 1 mum, this same turbulent flow now reduces system performance by more than 95%. It has long been known that if a conjugate waveform is used to pre-distort the outgoing laser's wavefront, the turbulence will actually correct the beam, restoring most of the system's performance. The problem with performing this compensation is that the system for performing this function, the so-called adaptive-optic system, is bandwidth limited in its conventional architecture, by orders of magnitude lower than that required to correct for the aero-optic effects. The research described in this dissertation explored changing the adaptive-optic paradigm from feedback to feed-forward by adding flow control to make the aberration environment predictable rather than unpredictable. This research demonstrated that the turbulent high-speed separated shear layer could be robustly forced into a regularized form. It was also shown that these regularized velocity patterns in the shear layer produced periodic optical aberrations. Extensive measurement and analysis of these convecting aberrations yielded the underlying structure required to produce the conjugate wavefront correction patterns required for a range of laser propagation angles through the shear layer. Ultimately, a feed-forward adaptive-optic system was developed and used to demonstrate the highest-bandwidth correction of aero-optic aberrations ever performed; the effective bandwidth of the demonstrated adaptive-optic correction was at least two orders of magnitude greater than the capabilities of existing conventional adaptive-optic systems.

  4. A compact, inexpensive infrared laser system for continuous-wave optical stimulation of the rat prostate cavernous nerves

    NASA Astrophysics Data System (ADS)

    Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2014-03-01

    Optical nerve stimulation (ONS) has been commonly performed in the laboratory using high-power, pulsed, infrared (IR) lasers including Holmium:YAG, diode, and Thulium fiber lasers. However, the relatively high cost of these lasers in comparison with conventional electrical nerve stimulation (ENS) equipment may represent a significant barrier to widespread adoption of ONS. Optical stimulation of the prostate cavernous nerves (CN's) has recently been reported using lower cost, continuous-wave (CW), all-fiber-based diode lasers. This preliminary study describes further miniaturization and cost reduction of the ONS system in the form of a compact, lightweight, cordless, and inexpensive IR laser. A 140-mW, 1560-nm diode laser was integrated with a green aiming beam and delivery optics into a compact ONS system. Surface and subsurface ONS was performed in a total of 5 rats, in vivo, with measurement of an intracavernous pressure (ICP) response during CW laser irradiation for 30 s with a spot diameter of 0.7 mm. Short-term, CW ONS of the prostate CN's is feasible using a compact, inexpensive, batterypowered IR laser diode system. This ONS system may represent an alternative to ENS for laboratory studies, and with further development, a handheld option for ONS in the clinic to identify and preserve the CN's during prostate cancer surgery.

  5. Repetitive laser ignition by optical breakdown of a LOX/H2 rocket combustion chamber with multi-injector head configuration

    NASA Astrophysics Data System (ADS)

    Börner, Michael; Manfletti, Chiara; Kroupa, Gerhard; Oschwald, Michael

    2017-09-01

    This paper reports on the repetitive laser ignition by optical breakdown within an experimental rocket combustion chamber. Ignition was performed by focusing a laser pulse generated by a miniaturized diode-pumped Nd:YAG laser system. The system, which delivers 33.2 mJ in 2.3 ns, was mounted directly to the combustion chamber. The ignition process and flame stabilization was investigated using an optical probe system monitoring the flame attachment across the 15 coaxial injector configuration. 1195 successful ignitions were performed proving the reliability of this laser ignition system and its applicability to the propellant combination LOX/hydrogen at temperatures of T_{{{H}_{ 2} }} = 120-282 K and T_{{{O}_{ 2} }} = 110-281 K.

  6. Matching optics for Gaussian beams

    NASA Technical Reports Server (NTRS)

    Gunter, William D. (Inventor)

    1991-01-01

    A system of matching optics for Gaussian beams is described. The matching optics system is positioned between a light beam emitter (such as a laser) and the input optics of a second optics system whereby the output from the light beam emitter is converted into an optimum input for the succeeding parts of the second optical system. The matching optics arrangement includes the combination of a light beam emitter, such as a laser with a movable afocal lens pair (telescope) and a single movable lens placed in the laser's output beam. The single movable lens serves as an input to the telescope. If desired, a second lens, which may be fixed, is positioned in the beam before the adjustable lens to serve as an input processor to the movable lens. The system provides the ability to choose waist diameter and position independently and achieve the desired values with two simple adjustments not requiring iteration.

  7. Optical damage testing at the Z-Backlighter facility at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Kimmel, Mark; Rambo, Patrick; Broyles, Robin; Geissel, Matthias; Schwarz, Jens; Bellum, John; Atherton, Briggs

    2009-10-01

    To enable laser-based radiography of high energy density physics events on the Z-Accelerator[4,5] at Sandia National Laboratories, a facility known as the Z-Backlighter has been developed. Two Nd:Phosphate glass lasers are used to create x-rays and/or proton beams capable of this radiographic diagnosis: Z-Beamlet (a multi-kilojoule laser operating at 527nm in a few nanoseconds) and Z-Petawatt (a several hundred joule laser operating at 1054nm in the subpicosecond regime) [1,2]. At the energy densities used in these systems, it is necessary to use high damage threshold optical materials, some of which are poorly characterized (especially for the sub-picosecond pulse). For example, Sandia has developed a meter-class dielectric coating capability for system optics. Damage testing can be performed by external facilities for nanosecond 532nm pulses, measuring high reflector coating damage thresholds >80J/cm2 and antireflection coating damage thresholds >20J/cm2 [3]. However, available external testing capabilities do not use femtosecond/picosecond scale laser pulses. To this end, we have constructed a sub-picoseond-laser-based optical damage test system. The damage tester system also allows for testing in a vacuum vessel, which is relevant since many optics in the Z-Backlighter system are used in vacuum. This paper will present the results of laser induced damage testing performed in both atmosphere and in vacuum, with 1054nm sub-picosecond laser pulses. Optical materials/coatings discussed are: bare fused silica and protected gold used for benchmarking; BK7; Zerodur; protected silver; and dielectric optical coatings (halfnia/silica layer pairs) produced by Sandia's in-house meter-class coating capability.

  8. Shape memory polymer (SMP) gripper with a release sensing system

    DOEpatents

    Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Silva, Luiz Da

    2000-01-01

    A system for releasing a target material, such as an embolic coil from an SMP located at the end of a catheter utilizing an optical arrangement for releasing the material. The system includes a laser, laser driver, display panel, photodetector, fiber optics coupler, fiber optics and connectors, a catheter, and an SMP-based gripper, and includes a release sensing and feedback arrangement. The SMP-based gripper is heated via laser light through an optic fiber causing the gripper to release a target material (e.g., embolic coil for therapeutic treatment of aneurysms). Various embodiments are provided for coupling the laser light into the SMP, which includes specific positioning of the coils, removal of the fiber cladding adjacent the coil, a metal coating on the SMP, doping the SMP with a gradient absorbing dye, tapering the fiber optic end, coating the SMP with low refractive index material, and locating an insert between the fiber optic and the coil.

  9. Laser output power stabilization for direct laser writing system by using an acousto-optic modulator.

    PubMed

    Kim, Dong Ik; Rhee, Hyug-Gyo; Song, Jae-Bong; Lee, Yun-Woo

    2007-10-01

    We present experimental results on the output power stabilization of an Ar(+) laser for a direct laser writing system (LWS). Instability of the laser output power in the LWS cause resolution fluctuations of being fabricated diffractive optical elements or computer-generated holograms. For the purpose of reducing the power fluctuations, we have constituted a feedback loop with an acousto-optic modulator, a photodetector, and a servo controller. In this system, we have achieved the stability of +/-0.20% for 12 min and the relative intensity noise level of 2.1 x 10(-7) Hz(-12) at 100 Hz. In addition, we applied our system to a 2 mW internal mirror He-Ne laser. As a consequence, we achieved the output power stability of +/-0.12% for 25 min.

  10. Development of a US Gravitational Wave Laser System for LISA

    NASA Technical Reports Server (NTRS)

    Camp, Jordan B.; Numata, Kenji

    2015-01-01

    A highly stable and robust laser system is a key component of the space-based LISA mission architecture.In this talk I will describe our plans to demonstrate a TRL 5 LISA laser system at Goddard Space Flight Center by 2016.The laser system includes a low-noise oscillator followed by a power amplifier. The oscillator is a low-mass, compact 10mW External Cavity Laser, consisting of a semiconductor laser coupled to an optical cavity, built by the laser vendorRedfern Integrated Optics. The amplifier is a diode-pumped Yb fiber with 2W output, built at Goddard. I will show noiseand reliability data for the full laser system, and describe our plans to reach TRL 5 by 2016.

  11. Adaptive beam shaping by controlled thermal lensing in optical elements

    NASA Astrophysics Data System (ADS)

    Arain, Muzammil A.; Quetschke, Volker; Gleason, Joseph; Williams, Luke F.; Rakhmanov, Malik; Lee, Jinho; Cruz, Rachel J.; Mueller, Guido; Tanner, D. B.; Reitze, David. H.

    2007-04-01

    We describe an adaptive optical system for use as a tunable focusing element. The system provides adaptive beam shaping via controlled thermal lensing in the optical elements. The system is agile, remotely controllable, touch free, and vacuum compatible; it offers a wide dynamic range, aberration-free focal length tuning, and can provide both positive and negative lensing effects. Focusing is obtained through dynamic heating of an optical element by an external pump beam. The system is especially suitable for use in interferometric gravitational wave interferometers employing high laser power, allowing for in situ control of the laser modal properties and compensation for thermal lensing of the primary laser. Using CO2 laser heating of fused-silica substrates, we demonstrate a focal length variable from infinity to 4.0 m, with a slope of 0.082 diopter/W of absorbed heat. For on-axis operation, no higher-order modes are introduced by the adaptive optical element. Theoretical modeling of the induced optical path change and predicted thermal lens agrees well with measurement.

  12. Adaptive beam shaping by controlled thermal lensing in optical elements.

    PubMed

    Arain, Muzammil A; Quetschke, Volker; Gleason, Joseph; Williams, Luke F; Rakhmanov, Malik; Lee, Jinho; Cruz, Rachel J; Mueller, Guido; Tanner, D B; Reitze, David H

    2007-04-20

    We describe an adaptive optical system for use as a tunable focusing element. The system provides adaptive beam shaping via controlled thermal lensing in the optical elements. The system is agile, remotely controllable, touch free, and vacuum compatible; it offers a wide dynamic range, aberration-free focal length tuning, and can provide both positive and negative lensing effects. Focusing is obtained through dynamic heating of an optical element by an external pump beam. The system is especially suitable for use in interferometric gravitational wave interferometers employing high laser power, allowing for in situ control of the laser modal properties and compensation for thermal lensing of the primary laser. Using CO(2) laser heating of fused-silica substrates, we demonstrate a focal length variable from infinity to 4.0 m, with a slope of 0.082 diopter/W of absorbed heat. For on-axis operation, no higher-order modes are introduced by the adaptive optical element. Theoretical modeling of the induced optical path change and predicted thermal lens agrees well with measurement.

  13. Er:Yb phosphate glass laser with nonlinear absorber for phase-sensitive optical time domain reflectometry

    NASA Astrophysics Data System (ADS)

    Zhirnov, A. A.; Pnev, A. B.; Svelto, C.; Norgia, M.; Pesatori, A.; Galzerano, G.; Laporta, P.; Shelestov, D. A.; Karasik, V. E.

    2017-11-01

    A novel laser for phase-sensitive optical time-domain reflectometry (Φ-OTDR) is presented. The advantages of a compact solid-state laser are listed, current problems are shown. Experiments with a microchip single-optical-element laser, from setup construction to usage in Φ-OTDR system, are presented. New laser scheme with two-photon intracavity absorber is suggested and its advantages are described.

  14. Low temperature monitoring system for subsurface barriers

    DOEpatents

    Vinegar, Harold J [Bellaire, TX; McKinzie, II Billy John [Houston, TX

    2009-08-18

    A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.

  15. High-efficiency high-reliability optical components for a large, high-average-power visible laser system

    NASA Astrophysics Data System (ADS)

    Taylor, John R.; Stolz, Christopher J.

    1993-08-01

    Laser system performance and reliability depends on the related performance and reliability of the optical components which define the cavity and transport subsystems. High-average-power and long transport lengths impose specific requirements on component performance. The complexity of the manufacturing process for optical components requires a high degree of process control and verification. Qualification has proven effective in ensuring confidence in the procurement process for these optical components. Issues related to component reliability have been studied and provide useful information to better understand the long term performance and reliability of the laser system.

  16. High-efficiency high-reliability optical components for a large, high-average-power visible laser system

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.; Stolz, C. J.

    1992-12-01

    Laser system performance and reliability depends on the related performance and reliability of the optical components which define the cavity and transport subsystems. High-average-power and long transport lengths impose specific requirements on component performance. The complexity of the manufacturing process for optical components requires a high degree of process control and verification. Qualification has proven effective in ensuring confidence in the procurement process for these optical components. Issues related to component reliability have been studied and provide useful information to better understand the long term performance and reliability of the laser system.

  17. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Application of the Wigner function and matrix optics to describe variations in the shape of ultrashort laser pulses propagating through linear optical systems

    NASA Astrophysics Data System (ADS)

    Gitin, Andrey V.

    2006-04-01

    The transformation of the shape of ultrashort laser pulses (USPs) in time can be described similarly to the process of image formation in space. It is shown that the wave description of imaging is simplified by using the Wigner function, this description in the quadratic approximation being identical to the use of the ABCD matrices. The transformation of USPs propagating through linear optical systems was described and these systems were classified by the methods of matrix optics.

  18. Laser device

    DOEpatents

    Scott, Jill R [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID

    2007-07-10

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  19. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2004-11-23

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  20. Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement Technology

    NASA Technical Reports Server (NTRS)

    Hollberg, Leo (Editor); Fox, Richard (Editor); Waltman, Steve (Editor); Robinson, Hugh

    1998-01-01

    This compilation is a selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Division of the National Institute of Standards and Technology, and consists of work published between 1987 and 1997. The two main programs represented here are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized chronologically in five, somewhat arbitrarily chosen categories: Diode Laser Technology, Tunable Laser Systems, Laser Spectroscopy, Optical Synthesis and Extended Wavelength Coverage, and Multi-Photon Interactions and Optical Coherences.

  1. Lasing by driven atoms-cavity system in collective strong coupling regime.

    PubMed

    Sawant, Rahul; Rangwala, S A

    2017-09-12

    The interaction of laser cooled atoms with resonant light is determined by the natural linewidth of the excited state. An optical cavity is another optically resonant system where the loss from the cavity determines the resonant optical response of the system. The near resonant combination of an optical Fabry-Pérot cavity with laser cooled and trapped atoms couples two distinct optical resonators via light and has great potential for precision measurements and the creation of versatile quantum optics systems. Here we show how driven magneto-optically trapped atoms in collective strong coupling regime with the cavity leads to lasing at a frequency red detuned from the atomic transition. Lasing is demonstrated experimentally by the observation of a lasing threshold accompanied by polarization and spatial mode purity, and line-narrowing in the outcoupled light. Spontaneous emission into the cavity mode by the driven atoms stimulates lasing action, which is capable of operating as a continuous wave laser in steady state, without a seed laser. The system is modeled theoretically, and qualitative agreement with experimentally observed lasing is seen. Our result opens up a range of new measurement possibilities with this system.

  2. QUANTITATIVE DETECTION OF ENVIRONMENTALLY IMPORTANT DYES USING DIODE LASER/FIBER-OPTIC RAMAN

    EPA Science Inventory

    A compact diode laser/fiber-optic Raman spectrometer is used for quantitative detection of environmentally important dyes. This system is based on diode laser excitation at 782 mm, fiber optic probe technology, an imaging spectrometer, and state-of-the-art scientific CCD camera. ...

  3. Rapid constructions of microstructures for optical fiber sensors using a commercial CO2 laser system.

    PubMed

    Irawan, Rudi; Chuan, Tjin Swee; Meng, Tay Chia; Ming, Tan Khay

    2008-06-27

    Exposing an optical fiber core to the measurand surrounding the fiber is often used to enhance the sensitivity of an optical fiber sensor. This paper reports on the rapid fabrication of microstructures in an optical fiber using a CO₂ laser system which help exposing the optical fiber core to the measurand. The direct-write CO₂ laser system used is originally designed for engraving the polymeric material. Fabrications of microstructures such as in-fiber microhole, D-shaped fiber, in-fiber microchannel, side-sliced fiber and tapered fiber were attempted. The microstructures in the fibers were examined using a SEM and an optical microscope. Quality of microstructures shown by the SEM images and promising results from fluorescence sensor tests using in-fiber microchannels of 100μm width, 210μm depth and 10mm length show the prospect of this method for use in optical fiber sensor development. The direct-write CO₂ laser system is a flexible and fast machining tool for fabricating microstructures in an optical fiber, and can possibly be a replacement of the time consuming chemical etching and polishing methods used for microstructure fabrications of optical the fiber sensors reported in other literatures.

  4. Rapid Constructions of Microstructures for Optical Fiber Sensors Using a Commercial CO2 Laser System

    PubMed Central

    Irawan, Rudi; Chuan, Tjin Swee; Meng, Tay Chia; Ming, Tan Khay

    2008-01-01

    Exposing an optical fiber core to the measurand surrounding the fiber is often used to enhance the sensitivity of an optical fiber sensor. This paper reports on the rapid fabrication of microstructures in an optical fiber using a CO2 laser system which help exposing the optical fiber core to the measurand. The direct-write CO2 laser system used is originally designed for engraving the polymeric material. Fabrications of microstructures such as in-fiber microhole, D-shaped fiber, in-fiber microchannel, side-sliced fiber and tapered fiber were attempted. The microstructures in the fibers were examined using a SEM and an optical microscope. Quality of microstructures shown by the SEM images and promising results from fluorescence sensor tests using in-fiber microchannels of 100μm width, 210μm depth and 10mm length show the prospect of this method for use in optical fiber sensor development. The direct-write CO2 laser system is a flexible and fast machining tool for fabricating microstructures in an optical fiber, and can possibly be a replacement of the time consuming chemical etching and polishing methods used for microstructure fabrications of optical the fiber sensors reported in other literatures. PMID:19662114

  5. Mobile inductively coupled plasma system

    DOEpatents

    D'Silva, Arthur P.; Jaselskis, Edward J.

    1999-03-30

    A system for sampling and analyzing a material located at a hazardous site. A laser located remote from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer.

  6. Faraday anomalous dispersion optical tuners

    NASA Technical Reports Server (NTRS)

    Wanninger, P.; Valdez, E. C.; Shay, T. M.

    1992-01-01

    Common methods for frequency stabilizing diode lasers systems employ gratings, etalons, optical electric double feedback, atomic resonance, and a Faraday cell with low magnetic field. Our method, the Faraday Anomalous Dispersion Optical Transmitter (FADOT) laser locking, is much simpler than other schemes. The FADOT uses commercial laser diodes with no antireflection coatings, an atomic Faraday cell with a single polarizer, and an output coupler to form a compound cavity. This method is vibration insensitive, thermal expansion effects are minimal, and the system has a frequency pull in range of 443.2 GHz (9A). Our technique is based on the Faraday anomalous dispersion optical filter. This method has potential applications in optical communication, remote sensing, and pumping laser excited optical filters. We present the first theoretical model for the FADOT and compare the calculations to our experimental results.

  7. A compact multi-trap optical tweezer system based on CD-ROM technologies

    NASA Astrophysics Data System (ADS)

    McMenamin, T.; Lee, W. M.

    2017-08-01

    We implemented an integrated time sharing multiple optical trapping system through the synchronisation of high speed voice coil scanning lens and laser pulsing. The integration is achieved by using commonly available optical pickup unit (OPU) that exists inside optical drives. Scanning frequencies of up to 2 kHz were showed to achieve arbitrary distribution of optical traps within the one-dimensional scan range of the voice coil motor. The functions of the system were demonstrated by the imaging and trapping of 1 μm particles and giant unilamellar vesicles (GUVs). The new device circumvents existing bulky laser scanning systems (4f lens systems) with an integrated laser and lens steering platform that can be integrated on a variety of microscopy platforms (confocal, lightsheet, darkfield).

  8. Coupling efficiency of laser beam to multimode fiber for free space optical communication

    NASA Astrophysics Data System (ADS)

    Arisa, Suguru; Takayama, Yoshihisa; Endo, Hiroyuki; Shimizu, Ryosuke; Fujiwara, Mikio; Sasaki, Masahide

    2017-11-01

    Recently, the free space optical (FSO) communications have been widely studied as an alternative for large capacity communications and its possible implementation in satellite and terrestrial laser links. In satellite communications, clouds can strongly attenuate the laser signal that would lead to high bit-error rates or temporal unavailability of the link. To overcome the cloud coverage effects, often site diversity technique is implemented. When using multiple ground stations though, simplified optical system is required to allow the usage of more flexible approaches. In terrestrial laser communications, several methods for optical system simplification by using a multimode fiber (MMF) have been proposed.

  9. From Dye Laser Factory to Portable Semiconductor Laser: Four Generations of Sodium Guide Star Lasers for Adaptive Optics in Astronomy and Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    d'Orgeville, C.; Fetzer, G.

    This presentation recalls the history of sodium guide star laser systems used in astronomy and space situational awareness adaptive optics, analysing the impact that sodium laser technology evolution has had on routine telescope operations. While it would not be practical to describe every single sodium guide star laser system developed to date, it is possible to characterize their evolution in broad technology terms. The first generation of sodium lasers used dye laser technology to create the first sodium laser guide stars in Hawaii, California, and Spain in the late 1980's and 1990's. These experimental systems were turned into the first laser guide star facilities to equip medium-to-large diameter adaptive optics telescopes, opening a new era of LGS AO-enabled diffraction-limited imaging from the ground. Although they produced exciting scientific results, these laser guide star facilities were large, power-hungry and messy. In the USA, a second-generation of sodium lasers was developed in the 2000's that used cleaner, yet still large and complex, solid-state laser technology. These are the systems in routine operation at the 8-10m class astronomical telescopes and 4m-class satellite imaging facilities today. Meanwhile in Europe, a third generation of sodium lasers was being developed using inherently compact and efficient fiber laser technology, and resulting in the only commercially available sodium guide star laser system to date. Fiber-based sodium lasers will be deployed at two astronomical telescopes and at least one space debris tracking station this year. Although highly promising, these systems remain significantly expensive and they have yet to demonstrate high performance in the field. We are proposing to develop a fourth generation of sodium lasers: based on semiconductor technology, these lasers could provide the final solution to the problem of sodium laser guide star adaptive optics for all astronomy and space situational awareness applications.

  10. Theoretical model and simulations for a cw exciplex pumped alkali laser.

    PubMed

    Huang, Wei; Tan, Rongqing; Li, Zhiyong; Lu, Xiaochuan

    2015-12-14

    The Exciplex Pumped Alkali Laser (XPAL) system, which is similar to DPAL (Diode Pumped Alkali vapor Laser), has been demonstrated in mixtures of Cs vapor, Ar, with and without ethane. Unlike DPAL, it uses the broadband absorption blue satellite of the alkali D2 line, created by naturally occuring collision pairs. For example, Cs-Ar collision pairs have an absorption width which is as wide as the one of commercial semiconductor diode lasers. A continuous wave XPAL four-level theoretical model is presented in this paper. More factors are considered, such as the spectral dependence of pumped laser absorption for broadband pumping and the longitudinal population variation. Some intra-cavity details, such as longitudinal distributions of pumped laser and alkali laser, can also be solved well. The predictions of optical-to-optical efficiency as a function of temperature and pumped laser intensity are presented. The model predicts that there is an optimum value of temperature or pumped laser intensity. The analysis of the influence of cell length on optical-to-optical efficiency shows that a better performance can be achieved when using longer cell. The prediction of influence of Ar concentration and reflectivity of output coupler shows that higher optical-to-optical efficiency could be achieved if lower reflectivity of output coupler and higher Ar concentration are used. The optical-to-optical efficiency as high as 84% achieved by optimizing configuration with the pumped intensity of 5 × 10⁷ W/cm² presented shows that broadband pumped four-level XPAL system has a potential of high optical-to-optical efficiency.

  11. Laser modulator for LISA pathfinder

    NASA Astrophysics Data System (ADS)

    Voland, C.; Lund, G.; Coppoolse, W.; Crosby, P.; Stadler, M.; Kudielka, K.; Özkan, C.

    2017-11-01

    LISA Pathfinder is an ESA experiment to demonstrate the key technologies needed for the LISA mission to detect gravitational waves in space. The LISA Pathfinder spacecraft represents one arm of the LISA interferometer, containing an optical metrology system and two proof masses as inertial references for the drag-free control system. The LISA Pathfinder payload consists of two drag-free floating test masses located in the inertial sensors with their control electronics and an optical metrology subsystem. The optical metrology subsystem monitors the movement of both test masses relative to each other and to the spacecraft with very high sensitivity and resolution. This is achieved with a heterodyne Mach- Zehnder interferometer. This interferometer requires as input two coherent laser beams with a heterodyne frequency difference of a few kHz. To generate the two laser beams with a heterodyne frequency difference a Nd:YAG laser is used together with the Laser Modulator. The Nd:YAG laser generates a single coherent laser signal at a wavelength of 1064nm which is fibre coupled to the Laser Modulator. The Laser Modulator then generates the two optical beams with the required heterodyne frequency offset. In addition, the Laser Modulator is required to perform laser amplitude stabilization and optical path difference control for the two optical signals. The Laser Modulator consists of an optical unit - the LMU - and RF synthesiser, power amplification and control electronics. These electronics are all housed in the Laser Modulator Electronics (LME). The LMU has four primary functions: • Splitting of the input laser beam into two paths for later superposition in the interferometer. • Applying different frequency shifts to each of the beams. • Providing amplitude modulation control to each of the beams. • Providing active control of the optical path length difference between the two optical paths. The present paper describes the design and performance of the LMU together with a summary of the results of the Laser Modulator engineering model test campaign.

  12. An optical fiber guided ultrasonic excitation and sensing system for online monitoring of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Yang, J.; Lee, H.; Sohn, H.

    2012-05-01

    This study presents an embedded laser ultrasonic system for pipeline monitoring under high temperature environment. Recently, laser ultrasonics is becoming popular because of their advantageous characteristics such as (a) noncontact inspection, (b) immunity against electromagnetic interference (EMI), and (c) applicability under high temperature. However, the performance of conventional laser ultrasonic techniques for pipeline monitoring has been limited because many pipelines are covered by insulating materials and target surfaces are inaccessible. To overcome the problem, this study designs an embeddable optical fibers and fixing devices that deliver laser beams from laser sources to a target pipe using embedded optical fibers. For guided wave generation, an optical fiber is furnished with a beam collimator for irradiating a laser beam onto a target structure. The corresponding response is measured based on the principle of laser interferometry. Light from a monochromatic source is colliminated and delivered to a target surface by another optical with a focusing module, and reflected light is transmitted back to the interferometer through the same fiber. The feasibility of the proposed system for embedded ultrasonic measurement has been experimentally verified using a pipe specimen under high temperature.

  13. Tunable Laser Development for In-Flight Fiber Optic Based Structural Health Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen; Chan, Patrick

    2013-01-01

    Briefing based on tunable laser development for in flight fiber optic based structural health monitoring systems. The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles.

  14. Guided transmission for 10 micron tunable lasers

    NASA Technical Reports Server (NTRS)

    Yu, C.; Sabzali, A.; Yekrangian, A.

    1986-01-01

    Performance characteristics are reported for two types of IR tunable laser guided transmission, one of which incorporates a CO2 laser, metallic piping or fiber-optics, and a detector system, while the other employs a tunable diode laser, fiber-optics, and a detector system. While existing technology furnishes low loss, rugged, near-single mode piping, fiber-optics exhibits appreciably higher loss, and its multimode fibers are fragile and chemically unstable. Studies have accordingly concentrated on such relevant fiber parameters as loss, toxicity, hygroscopicity, refractive index, flexibility, and thermal behavior at low temperature.

  15. AlGaInN laser diode technology for free-space and plastic optical fibre telecom applications

    NASA Astrophysics Data System (ADS)

    Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Bóckowski, M.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Kucharski, R.; Targowski, G.; Watson, S.; Kelly, A. E.; Watson, M. A.; Blanchard, P.; White, H.

    2016-03-01

    Gallium Nitride laser diodes fabricated from the AlGaInN material system is an emerging technology for laser sources from the UV to visible and is a potential key enabler for new system applications such as free-space (underwater & air bourne links) and plastic optical fibre telecommunications. We measure visible light (free-space and underwater) communications at high frequency (up to 2.5 Gbit/s) and in plastic optical fibre (POF) using a directly modulated GaN laser diode.

  16. Initial alignment method for free space optics laser beam

    NASA Astrophysics Data System (ADS)

    Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

    2016-08-01

    The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

  17. Multi-wavelength photoacoustic system based on high-power diode laser bars

    NASA Astrophysics Data System (ADS)

    Leggio, Luca; Wiśniowski, Bartosz; Gawali, Sandeep Babu; Rodríguez, Sergio; Sánchez, Miguel; Gallego, Daniel; Carpintero, Guillermo; Lamela, Horacio

    2017-03-01

    Multi-wavelength laser sources are necessary for a functional photoacoustic (PA) spectroscopy. The use of high-power diode lasers (HPDLs) has aroused great interest for their relatively low costs and small sizes if compared to solid state lasers. However, HPDLs are only available at few wavelengths and can deliver low optical energy (normally in the order of μJ), while diode laser bars (DLBs) offer more wavelengths in the market and can deliver more optical energy. We show the simulations of optical systems for beam coupling of single high-power DLBs operating at different wavelengths (i.e. 808 nm, 880 nm, 910 nm, 940 nm, and 980 nm) into 400-μm optical fibers. Then, in a separate design, the beams of the DLBs are combined in a compact system making use of dichroic mirrors and focusing lenses for beam coupling into a 400-μm optical fiber. The use of optical fibers with small core diameter (< 1 mm) is particularly suggestive for future photoacoustic endoscopy (PAE) applications that require interior examination of the body.

  18. Four generations of sodium guide star lasers for adaptive optics in astronomy and space situational awareness

    NASA Astrophysics Data System (ADS)

    d'Orgeville, Céline; Fetzer, Gregory J.

    2016-07-01

    This paper recalls the history of sodium guide star laser systems used in astronomy and space situational awareness adaptive optics, analyzing the impact that sodium laser technology evolution has had on routine telescope operations. While it would not be practical to describe every single sodium guide star laser system developed to date, it is possible to characterize their evolution in broad technology terms. The first generation of sodium lasers used dye laser technology to create the first sodium laser guide stars in Hawaii, California, and Spain in the late 1980s and 1990s. These experimental systems were turned into the first laser guide star facilities to equip mediumto- large diameter adaptive optics telescopes, opening a new era of Laser Guide Star Adaptive Optics (LGS AO)-enabled diffraction-limited imaging from the ground. Although they produced exciting scientific results, these laser guide star facilities were large, power-hungry and messy. In the USA, a second-generation of sodium lasers was developed in the 2000s that used cleaner, yet still large and complex, solid-state laser technology. These are the systems in routine operation at the 8 to 10m-class astronomical telescopes and 4m-class satellite imaging facilities today. Meanwhile in Europe, a third generation of sodium lasers was being developed using inherently compact and efficient fiber laser technology, and resulting in the only commercially available sodium guide star laser system to date. Fiber-based sodium lasers are being or will soon be deployed at three astronomical telescopes and two space surveillance stations. These highly promising systems are still relatively large to install on telescopes and they remain significantly expensive to procure and maintain. We are thus proposing to develop a fourth generation of sodium lasers: based on semiconductor technology, these lasers could provide a definitive solution to the problem of sodium LGS AO laser sources for all astronomy and space situational awareness applications.

  19. High average power laser using a transverse flowing liquid host

    DOEpatents

    Ault, Earl R.; Comaskey, Brian J.; Kuklo, Thomas C.

    2003-07-29

    A laser includes an optical cavity. A diode laser pumping device is located within the optical cavity. An aprotic lasing liquid containing neodymium rare earth ions fills the optical cavity. A circulation system that provides a closed loop for circulating the aprotic lasing liquid into and out of the optical cavity includes a pump and a heat exchanger.

  20. Development of a fiber-guided laser ultrasonic system resilient to high temperature and gamma radiation for nuclear power plant pipe monitoring

    NASA Astrophysics Data System (ADS)

    Yang, Jinyeol; Lee, Hyeonseok; Lim, Hyung Jin; Kim, Nakhyeon; Yeo, Hwasoo; Sohn, Hoon

    2013-08-01

    This study develops an embeddable optical fiber-guided laser ultrasonic system for structural health monitoring (SHM) of pipelines exposed to high temperature and gamma radiation inside nuclear power plants (NPPs). Recently, noncontact laser ultrasonics is gaining popularity among the SHM community because of its advantageous characteristics such as (a) scanning capability, (b) immunity against electromagnetic interference (EMI) and (c) applicability to high-temperature surfaces. However, its application to NPP pipelines has been hampered because pipes inside NPPs are often covered by insulators and/or target surfaces are not easily accessible. To overcome this problem, this study designs embeddable optical fibers and fixtures so that laser beams used for ultrasonic inspection can be transmitted between the laser sources and the target pipe. For guided-wave generation, an Nd:Yag pulsed laser coupled with an optical fiber is used. A high-power pulsed laser beam is guided through the optical fiber onto a target structure. Based on the principle of laser interferometry, the corresponding response is measured using a different type of laser beam guided by another optical fiber. All devices are especially designed to sustain high temperature and gamma radiation. The robustness/resilience of the proposed measurement system installed on a stainless steel pipe specimen has been experimentally verified by exposing the specimen to high temperature of up to 350 °C and optical fibers to gamma radiation of up to 125 kGy (20 kGy h-1).

  1. Laser illuminator and optical system for disk patterning

    DOEpatents

    Hackel, Lloyd A.; Dane, C. Brent; Dixit, Shamasundar N.; Everett, Mathew; Honig, John

    2000-01-01

    Magnetic recording media are textured over areas designated for contact in order to minimize friction with data transducing heads. In fabricating a hard disk, an aluminum nickel-phosphorous substrate is polished to a specular finish. A mechanical means is then used to roughen an annular area intended to be the head contact band. An optical and mechanical system allows thousands of spots to be generated with each laser pulse, allowing the textured pattern to be rapidly generated with a low repetition rate laser and an uncomplicated mechanical system. The system uses a low power laser, a beam expander, a specially designed phase plate, a prism to deflect the beam, a lens to transmit the diffraction pattern to the far field, a mechanical means to rotate the pattern and a trigger system to fire the laser when sections of the pattern are precisely aligned. The system generates an annular segment of the desired pattern with which the total pattern is generated by rotating the optical system about its optic axis, sensing the rotational position and firing the laser as the annular segment rotates into the next appropriate position. This marking system can be integrated into a disk sputtering system for manufacturing magnetic disks, allowing for a very streamlined manufacturing process.

  2. Luminescent characteristics study of Mather-type dense plasma focus and applications to short-wavelength optical pumping. Final technical report, 1 May 1984-30 September 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K.K.

    A Mather-type dense plasma focus (MDPF) system was designed, built, and tested specifically to study its luminescent characteristics and to assess its potential as a new light source of high-energy, short-wavelength lasers. The luminescence study of MDPF showed that the conversion efficiency from the electrical input to the optical output energies is at least 50%, up to the time the plasma compression is complete. Using the system, for the first time as an optical pump, laser activities were successfully obtained from a variety of liquid organic dyes. Diagnostic capabilities included an optical multichannel analyzer system complete with a computer control,more » a nitrogen-pumped tunable dye-laser system, a high-speed streak/framing camera, a digital laser energy meter, voltage and current probes, and a computer-based data-acquisition system.« less

  3. Covert laser remote sensing and vibrometry

    NASA Technical Reports Server (NTRS)

    Maleki, Lutfollah (Inventor); Yu, Nan (Inventor); Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy (Inventor)

    2012-01-01

    Designs of single-beam laser vibrometry systems and methods. For example, a method for detecting vibrations of a target based on optical sensing is provided to include operating a laser to produce a laser probe beam at a laser frequency and modulated at a modulation frequency onto a target; collecting light at or near the laser to collect light from the target while the target is being illuminated by the laser probe beam through an optical receiver aperture; using a narrow-band optical filter centered at the laser frequency to filter light collected from the optical receiver aperture to transmit light at the laser frequency while blocking light at other frequencies; using an optical detector to convert filtered light from the narrow-band optical filter to produce a receiver electrical signal; using a lock-in amplifier to detect and amplify the receiver electrical signal at the modulation frequency while rejecting signal components at other frequencies to produce an amplified receiver electrical signal; processing the amplified receiver electrical signal to extract information on vibrations of the target carried by reflected laser probe beam in the collected light; and controlling optical power of the laser probe beam at the target to follow optical power of background illumination at the target.

  4. Method and apparatus for timing of laser beams in a multiple laser beam fusion system

    DOEpatents

    Eastman, Jay M.; Miller, Theodore L.

    1981-01-01

    The optical path lengths of a plurality of comparison laser beams directed to impinge upon a common target from different directions are compared to that of a master laser beam by using an optical heterodyne interferometric detection technique. The technique consists of frequency shifting the master laser beam and combining the master beam with a first one of the comparison laser beams to produce a time-varying heterodyne interference pattern which is detected by a photo-detector to produce an AC electrical signal indicative of the difference in the optical path lengths of the two beams which were combined. The optical path length of this first comparison laser beam is adjusted to compensate for the detected difference in the optical path lengths of the two beams. The optical path lengths of all of the comparison laser beams are made equal to the optical path length of the master laser beam by repeating the optical path length adjustment process for each of the comparison laser beams. In this manner, the comparison laser beams are synchronized or timed to arrive at the target within .+-.1.times.10.sup.-12 second of each other.

  5. Holographic optical system for aberration corrections in laser Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Kim, R. C.; Case, S. K.; Schock, H. J.

    1985-01-01

    An optical system containing multifaceted holographic optical elements (HOEs) has been developed to correct for aberrations introduced by nonflat windows in laser Doppler velocimetry. The multifacet aberration correction approach makes it possible to record on one plate many sets of adjacent HOEs that address different measurement volume locations. By using 5-mm-diameter facets, it is practical to place 10-20 sets of holograms on one 10 x 12.5-cm plate, so that the procedure of moving the entire optical system to examine different locations may not be necessary. The holograms are recorded in dichromated gelatin and therefore are nonabsorptive and suitable for use with high-power argon laser beams. Low f-number optics coupled with a 90-percent efficient distortion-correcting hologram in the collection side of the system yield high optical efficiency.

  6. Laser Development for Gravitational-Wave Interferometry in Space

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2012-01-01

    We are reporting on our development work on laser (master oscillator) and optical amplifier systems for gravitational-wave interferometry in space. Our system is based on the mature, wave-guided optics technologies, which have advantages over bulk, crystal-based, free-space optics. We are investing in a new type of compact, low-noise master oscillator, called the planar-waveguide external cavity diode laser. We made measurements, including those of noise, and performed space-qualification tests.

  7. Acousto-optic laser projection systems for displaying TV information

    NASA Astrophysics Data System (ADS)

    Gulyaev, Yu V.; Kazaryan, M. A.; Mokrushin, Yu M.; Shakin, O. V.

    2015-04-01

    This review addresses various approaches to television projection imaging on large screens using lasers. Results are presented of theoretical and experimental studies of an acousto-optic projection system operating on the principle of projecting an image of an entire amplitude-modulated television line in a single laser pulse. We consider characteristic features of image formation in such a system and the requirements for its individual components. Particular attention is paid to nonlinear distortions of the image signal, which show up most severely at low modulation signal frequencies. We discuss the feasibility of improving the process efficiency and image quality using acousto-optic modulators and pulsed lasers. Real-time projectors with pulsed line imaging can be used for controlling high-intensity laser radiation.

  8. Development of Optical System for ARGO-M

    NASA Astrophysics Data System (ADS)

    Nah, Jakyoung; Jang, Jung-Guen; Jang, Bi-Ho; Han, In-Woo; Han, Jeong-Yeol; Park, Kwijong; Lim, Hyung-Chul; Yu, Sung-Yeol; Park, Eunseo; Seo, Yoon-Kyung; Moon, Il-Kwon; Choi, Byung-Kyu; Na, Eunjoo; Nam, Uk-Won

    2013-03-01

    ARGO-M is a satellite laser ranging (SLR) system developed by the Korea Astronomy and Space Science Institute with the consideration of mobility and daytime and nighttime satellite observation. The ARGO-M optical system consists of 40 cm receiving telescope, 10 cm transmitting telescope, and detecting optics. For the development of ARGO-M optical system, the structural analysis was performed with regard to the optics and optomechanics design and the optical components. To ensure the optical performance, the quality was tested at the level of parts using the laser interferometer and ultra-high-precision measuring instruments. The assembly and alignment of ARGO-M optical system were conducted at an auto-collimation facility. As the transmission and reception are separated in the ARGO-M optical system, the pointing alignment between the transmitting telescope and receiving telescope is critical for precise target pointing. Thus, the alignment using the ground target and the radiant point observation of transmitting laser beam was carried out, and the lines of sight for the two telescopes were aligned within the required pointing precision. This paper describes the design, structural analysis, manufacture and assembly of parts, and entire process related with the alignment for the ARGO-M optical system.

  9. Combined laser heating and tandem acousto-optical filter for two-dimensional temperature distribution on the surface of the heated microobject

    NASA Astrophysics Data System (ADS)

    Bykov, A. A.; Kutuza, I. B.; Zinin, P. V.; Machikhin, A. S.; Troyan, I. A.; Bulatov, K. M.; Batshev, V. I.; Mantrova, Y. V.; Gaponov, M. I.; Prakapenka, V. B.; Sharma, S. K.

    2018-01-01

    Recently it has been shown that it is possible to measure the two-dimensional distribution of the surface temperature of microscopic specimens. The main component of the system is a tandem imaging acousto-optical tunable filter synchronized with a video camera. In this report, we demonstrate that combining the laser heating system with a tandem imaging acousto-optical tunable filter allows measurement of the temperature distribution under laser heating of the platinum plates as well as a visualization of the infrared laser beam, that is widely used for laser heating in diamond anvil cells.

  10. Optical communication in free space

    NASA Technical Reports Server (NTRS)

    Plotkin, H. H.; Mcavoy, N.; Fitzmaurice, M. W.

    1974-01-01

    Two classes of laser communication systems for handling very high data rates across inter-satellite distances are considered that provide for high antenna gains, wide modulation bandwidths, and optical receiver sensitivities. System design considerations are based upon the carbon dioxide laser modulation to accommodate digital or analog information, and the neodymium doped YAG laser pulse for digital modulation.

  11. Hybrid optical and electronic laser locking using slow light due to spectral holes

    NASA Astrophysics Data System (ADS)

    Tay, Jian Wei; Farr, Warrick G.; Ledingham, Patrick M.; Korystov, Dmitry; Longdell, Jevon J.

    2013-06-01

    We report on a narrow linewidth laser diode system that is stabilized using both optical and electronic feedback to a spectral hole in cryogenic Tm:YAG. The large group delay of the spectral hole leads to a laser with very low phase noise. The laser has proved useful for quantum optics and sensing applications involving cryogenic rare-earth-ion dopants.

  12. Contamination and Radiation Effects on Nonlinear Crystals for Space Laser Systems

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossain A.; Dowdye, Edward; Jamison, Tracee; Canham, John; Jaeger, Todd

    2005-01-01

    Space Lasers are vital tools for NASA s space missions and military applications. Although, lasers are highly reliable on the ground, several past space laser missions proved to be short-lived and unreliable. In this communication, we are shedding more light on the contamination and radiation issues, which are the most common causes for optical damages and laser failures in space. At first, we will present results based on the study of liquids and subsequently correlate these results to the particulates of the laser system environment. We present a model explaining how the laser beam traps contaminants against the optical surfaces and cause optical damages and the role of gravity in the process. We also report the results of the second harmonic generation efficiency for nonlinear optical crystals irradiated with high-energy beams of protons. In addition, we are proposing to employ the technique of adsorption to minimize the presence of adsorbing molecules present in the laser compartment.

  13. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  14. In situ industrial applications of optics; Proceedings of the Meeting, Brussels, Belgium, June 25-27, 1986

    NASA Astrophysics Data System (ADS)

    Ebbeni, Jean

    Included in this volume are papers on real-time image enhancement by simple video systems, automatic identification and data collection via barcode laser scanning, the optimization of the cutting up of a strip of float glass, optical sensors for factory automation, and the use of a digital theodolite with infrared radiation. Attention is also given to ISIS (integrated shape imaging system), a new system for follow-up of scoliosis; optical diffraction extensometers; a cross-spectrum technique for high-sensitivity remote vibration analysis by optical interferometry; the compensation and measurement of any motion of three-dimensional objects in holographic interferometry; and stereoscreen. Additional papers are on holographic double pulse YAG lasers, miniature optic connectors, stress-field analysis in an adhesively bonded joint with laser photoelasticimetry, and the locking of the light pulse delay in externally triggered gas lasers.

  15. Concept for image-guided vitreo-retinal fs-laser surgery: adaptive optics and optical coherence tomography for laser beam shaping and positioning

    NASA Astrophysics Data System (ADS)

    Matthias, Ben; Brockmann, Dorothee; Hansen, Anja; Horke, Konstanze; Knoop, Gesche; Gewohn, Timo; Zabic, Miroslav; Krüger, Alexander; Ripken, Tammo

    2015-03-01

    Fs-lasers are well established in ophthalmic surgery as high precision tools for corneal flap cutting during laser in situ keratomileusis (LASIK) and increasingly utilized for cutting the crystalline lens, e.g. in assisting cataract surgery. For addressing eye structures beyond the cornea, an intraoperative depth resolved imaging is crucial to the safety and success of the surgical procedure due to interindividual anatomical disparities. Extending the field of application even deeper to the posterior eye segment, individual eye aberrations cannot be neglected anymore and surgery with fs-laser is impaired by focus degradation. Our demonstrated concept for image-guided vitreo-retinal fs-laser surgery combines adaptive optics (AO) for spatial beam shaping and optical coherence tomography (OCT) for focus positioning guidance. The laboratory setup comprises an adaptive optics assisted 800 nm fs-laser system and is extended by a Fourier domain optical coherence tomography system. Phantom structures are targeted, which mimic tractional epiretinal membranes in front of excised porcine retina within an eye model. AO and OCT are set up to share the same scanning and focusing optics. A Hartmann-Shack sensor is employed for aberration measurement and a deformable mirror for aberration correction. By means of adaptive optics the threshold energy for laser induced optical breakdown is lowered and cutting precision is increased. 3D OCT imaging of typical ocular tissue structures is achieved with sufficient resolution and the images can be used for orientation of the fs-laser beam. We present targeted dissection of the phantom structures and its evaluation regarding retinal damage.

  16. Mobile inductively coupled plasma system

    DOEpatents

    D`Silva, A.P.; Jaselskis, E.J.

    1999-03-30

    A system is described for sampling and analyzing a material located at a hazardous site. A laser located remotely from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer. 10 figs.

  17. Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen; Chan, Patrick

    2014-01-01

    The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles. This is the regular update of the Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems website.

  18. Very-Long-Distance Remote Hearing and Vibrometry

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Yu, Nan; Matsko, Andrey; Savchenkov, Anatoliy

    2009-01-01

    A proposed development of laser-based instrumentation systems would extend the art of laser Doppler vibrometry beyond the prior limits of laser-assisted remote hearing and industrial vibrometry for detecting defects in operating mechanisms. A system according to the proposal could covertly measure vibrations of objects at distances as large as thousands of kilometers and could process the measurement data to enable recognition of vibrations characteristic of specific objects of interest, thereby enabling recognition of the objects themselves. A typical system as envisioned would be placed in orbit around the Earth for use as a means of determining whether certain objects on or under the ground are of interest as potential military targets. Terrestrial versions of these instruments designed for airborne or land- or sea-based operation could be similarly useful for military or law-enforcement purposes. Prior laser-based remote-hearing systems are not capable of either covert operation or detecting signals beyond modest distances when operated at realistic laser power levels. The performances of prior systems for recognition of objects by remote vibrometry are limited by low signal-to-noise ratios and lack of filtering of optical signals returned from targets. The proposed development would overcome these limitations. A system as proposed would include a narrow-band laser as its target illuminator, a lock-in-detection receiver subsystem, and a laser-power-control subsystem that would utilize feedback of the intensity of background illumination of the target to adjust the laser power. The laser power would be set at a level high enough to enable the desired measurements but below the threshold of detectability by an imaginary typical modern photodetector located at the target and there exposed to the background illumination. The laser beam would be focused tightly on the distant target, such that the receiving optics would be exposed to only one speckle. The return signal would be extremely-narrow-band filtered (to sub-kilohertz bandwidth) in the optical domain by a whispering-gallery- mode filter so as to remove most of the background illumination. The filtered optical signal would be optically amplified. This combination of optical filtering and optical amplification would provide an optical signal that would be strong enough to be detectable but not so strong as to saturate the detector in the lock-in detection subsystem.

  19. Proposed SLR Optical Bench Required to Track Debris Using 1550 nm Lasers

    NASA Technical Reports Server (NTRS)

    Shappirio, M.; Coyle, D. B.; McGarry, J. F.; Bufton, J.; Cheek, J. W.; Clarke, G.; Hull, S. M.; Skillman, D. R.; Stysley, P. R.; Sun, X.; hide

    2015-01-01

    A previous study has indicated that by using approx.1550 nm wavelengths a laser ranging system can track debris objects in an "eye safe" manner, while increasing the expected return rate by a factor of approx. 2/unit area of the telescope. In this presentation we develop the optical bench required to use approx.1550nm lasers, and integration with a 532nm system. We will use the optical bench configuration for NGSLR as the baseline, and indicate a possible injection point for the 1550 nm laser. The presentation will include what elements may need to be changed for transmitting the required power on the approx.1550nm wavelength, supporting the alignment of the laser to the telescope, and possible concerns for the telescope optics.

  20. Laser Communications and Fiber Optics Lab Manual. High-Technology Training Module.

    ERIC Educational Resources Information Center

    Biddick, Robert

    This laboratory training manual on laser communications and fiber optics may be used in a general technology-communications course for ninth graders. Upon completion of this exercise, students achieve the following goals: match concepts with laser communication system parts; explain advantages of fiber optic cable over conventional copper wire;…

  1. Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Bastian; Ritt, Gunnar; Koerber, Michael; Eberle, Bernd

    2017-03-01

    The continuous development of laser systems toward more compact and efficient devices constitutes an increasing threat to electro-optical imaging sensors, such as complementary metal-oxide-semiconductors (CMOS) and charge-coupled devices. These types of electronic sensors are used in day-to-day life but also in military or civil security applications. In camera systems dedicated to specific tasks, micro-optoelectromechanical systems, such as a digital micromirror device (DMD), are part of the optical setup. In such systems, the DMD can be located at an intermediate focal plane of the optics and it is also susceptible to laser damage. The goal of our work is to enhance the knowledge of damaging effects on such devices exposed to laser light. The experimental setup for the investigation of laser-induced damage is described in detail. As laser sources, both pulsed lasers and continuous-wave (CW)-lasers are used. The laser-induced damage threshold is determined by the single-shot method by increasing the pulse energy from pulse to pulse or in the case of CW-lasers, by increasing the laser power. Furthermore, we investigate the morphology of laser-induced damage patterns and the dependence of the number of destructive device elements on the laser pulse energy or laser power. In addition to the destruction of single pixels, we observe aftereffects, such as persistent dead columns or rows of pixels in the sensor image.

  2. Optical ordnance system for use in explosive ordnance disposal activities

    NASA Technical Reports Server (NTRS)

    Merson, J. A.; Salas, F. J.; Helsel, F.M.

    1994-01-01

    A portable hand-held solid state rod laser system and an optically-ignited detonator have been developed for use in explosive ordnance disposal (EOD) activities. Laser prototypes from Whittaker Ordnance and Universal Propulsion have been tested and evaluated. The optical detonator contains 2-(5 cyanotetrazolato) pentaamine cobalt(III) perchlorate (CP) as the DDT column and the explosive Octahydro- 1,3,5,7 - tetrazocine (HMX) as the output charge. The laser is designed to have an output of 150 mJ in a 500 microsecond pulse. This output allows firing through 2000 meters of optical fiber. The detonator can also be ignited with a portable laser diode source through a shorter length of fiber.

  3. Optical workstation with concurrent, independent multiphoton imaging and experimental laser microbeam capabilities

    PubMed Central

    Wokosin, David L.; Squirrell, Jayne M.; Eliceiri, Kevin W.; White, John G.

    2008-01-01

    Experimental laser microbeam techniques have become established tools for studying living specimens. A steerable, focused laser beam may be used for a variety of experimental manipulations such as laser microsurgery, optical trapping, localized photolysis of caged bioactive probes, and patterned photobleaching. Typically, purpose-designed experimental systems have been constructed for each of these applications. In order to assess the consequences of such experimental optical interventions, long-term, microscopic observation of the specimen is often required. Multiphoton excitation, because of its ability to obtain high-contrast images from deep within a specimen with minimal phototoxic effects, is a preferred technique for in vivo imaging. An optical workstation is described that combines the functionality of an experimental optical microbeam apparatus with a sensitive multiphoton imaging system designed for use with living specimens. Design considerations are discussed and examples of ongoing biological applications are presented. The integrated optical workstation concept offers advantages in terms of flexibility and versatility relative to systems implemented with separate imaging and experimental components. PMID:18607511

  4. Optical workstation with concurrent, independent multiphoton imaging and experimental laser microbeam capabilities

    NASA Astrophysics Data System (ADS)

    Wokosin, David L.; Squirrell, Jayne M.; Eliceiri, Kevin W.; White, John G.

    2003-01-01

    Experimental laser microbeam techniques have become established tools for studying living specimens. A steerable, focused laser beam may be used for a variety of experimental manipulations such as laser microsurgery, optical trapping, localized photolysis of caged bioactive probes, and patterned photobleaching. Typically, purpose-designed experimental systems have been constructed for each of these applications. In order to assess the consequences of such experimental optical interventions, long-term, microscopic observation of the specimen is often required. Multiphoton excitation, because of its ability to obtain high-contrast images from deep within a specimen with minimal phototoxic effects, is a preferred technique for in vivo imaging. An optical workstation is described that combines the functionality of an experimental optical microbeam apparatus with a sensitive multiphoton imaging system designed for use with living specimens. Design considerations are discussed and examples of ongoing biological applications are presented. The integrated optical workstation concept offers advantages in terms of flexibility and versatility relative to systems implemented with separate imaging and experimental components.

  5. Carbon Dioxide Laser Fiber Optics In Endoscopy

    NASA Astrophysics Data System (ADS)

    Fuller, Terry A.

    1982-12-01

    Carbon dioxide laser surgery has been limited to a great extent to surgical application on the integument and accessible cavities such as the cervix, vagina, oral cavities, etc. This limitation has been due to the rigid delivery systems available to all carbon dioxide lasers. Articulating arms (series of hollow tubes connected by articulating mirrors) have provided an effective means of delivery of laser energy to the patient as long as the lesion was within the direct line of sight. Even direct line-of-sight applications were restricted to physical dimension of the articulating arm or associated hand probes, manipulators and hollow tubes. The many attempts at providing straight endoscopic systems to the laser only stressed the need for a fiber optic capable of carrying the carbon dioxide laser wavelength. Rectangular and circular hollow metal waveguides, hollow dielectric waveguides have proven ineffective to the stringent requirements of a flexible surgical delivery system. One large diameter (1 cm) fiber optic delivery system, incorporates a toxic thalliumAbased fiber optic material. The device is an effective alternative to an articulating arm for external or conventional laser surgery, but is too large and stiff to use as a flexible endoscopic tool. The author describes the first highly flexible inexpensive series of fiber optic systems suitable for either conventional or endoscopic carbon dioxide laser surgery. One system (IRFLEX 3) has been manufactured by Medlase, Inc. for surgical uses capable of delivering 2000w, 100 mJ pulsed energy and 15w continuous wave. The system diameter is 0.035 inches in diameter. Surgically suitable fibers as small as 120 um have been manufactured. Other fibers (IRFLEX 142,447) have a variety of transmission characteristics, bend radii, etc.

  6. ICIASF '85 - International Congress on Instrumentation in Aerospace Simulation Facilities, 11th, Stanford University, CA, August 26-28, 1985, Record

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Developments related to laser Doppler velocimetry are discussed, taking into account a three-component dual beam laser-Doppler-anemometer to be operated in large wind tunnels, a new optical system for three-dimensional laser-Doppler-anemometry using an argon-ion and a dye laser, and a two-component laser Doppler velocimeter by switching fringe orientation. Other topics studied are concerned with facilities, instrumentation, control, hot wire/thin film measurements, optical diagnostic techniques, signal and data processing, facilities and adaptive wall test sections, data acquisition and processing, ballistic instrument systems, dynamic testing and material deformation measurements, optical flow measurements, test techniques, force measurement systems, and holography. Attention is given to nonlinear calibration of integral wind tunnel balances, a microcomputer system for real time digitized image compression, and two phase flow diagnostics in propulsion systems.

  7. Acousto-optic replication of ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Yushkov, Konstantin B.; Molchanov, Vladimir Ya.; Ovchinnikov, Andrey V.; Chefonov, Oleg V.

    2017-10-01

    Precisely controlled sequences of ultrashort laser pulses are required in various scientific and engineering applications. We developed a phase-only acousto-optic pulse shaping method for replication of ultrashort laser pulses in a TW laser system. A sequence of several Fourier-transform-limited pulses is generated from a single femtosecond laser pulse by means of applying a piecewise linear phase modulation over the whole emission spectrum. Analysis demonstrates that the main factor which limits maximum delay between the pulse replicas is spectral resolution of the acousto-optic dispersive delay line used for pulse shaping. In experiments with a Cr:forsterite laser system, we obtained delays from 0.3 to 3.5 ps between two replicas of 190 fs transform-limited pulses at the central wavelength of laser emission, 1230 nm.

  8. Wavefront control system for the Keck telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brase, J. M., LLNL

    1998-03-01

    The laser guide star adaptive optics system currently being developed for the Keck 2 telescope consists of several major subsystems: the optical bench, wavefront control, user interface and supervisory control, and the laser system. The paper describes the design and implementation of the wavefront control subsystem that controls a 349 actuator deformable mirror for high order correction and tip-tilt mirrors for stabilizing the image and laser positions.

  9. Optical properties of costal cartilage and their variation in the process of non-destructive action of laser radiation with the wavelength 1.56 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuzhakov, A V; Sviridov, A P; Shcherbakov, E M

    2014-01-31

    The optical properties of costal cartilage and their variation under the action of laser radiation with the wavelength 1.56 μm are studied. The laser action regime corresponds to that used for changing the cartilage shape. The dynamics of the passed scattered laser radiation was studied by means of the optical fibre system, and the optical properties of the cartilage tissue (on the basis of Monte Carlo modelling of light propagation) – using the setup with two integrating spheres. Under the influence of radiation, the characteristics of which corresponded to those used for the cartilage shape correction, no essential changes inmore » the optical parameters were found. The results obtained in the course of studying the dynamics of optical signals in the process of costal cartilage irradiation can be used for developing control systems, providing the safety and efficiency of laser medical technologies. (biophotonics)« less

  10. Performance of laser guide star adaptive optics at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S.S.; An, J.; Avicola, K.

    1995-07-19

    A sodium-layer laser guide star adaptive optics system has been developed at Lawrence Livermore National Laboratory (LLNL) for use on the 3-meter Shane telescope at Lick Observatory. The system is based on a 127-actuator continuous-surface deformable mirror, a Hartmann wavefront sensor equipped with a fast-framing low-noise CCD camera, and a pulsed solid-state-pumped dye laser tuned to the atomic sodium resonance line at 589 nm. The adaptive optics system has been tested on the Shane telescope using natural reference stars yielding up to a factor of 12 increase in image peak intensity and a factor of 6.5 reduction in image fullmore » width at half maximum (FWHM). The results are consistent with theoretical expectations. The laser guide star system has been installed and operated on the Shane telescope yielding a beam with 22 W average power at 589 nm. Based on experimental data, this laser should generate an 8th magnitude guide star at this site, and the integrated laser guide star adaptive optics system should produce images with Strehl ratios of 0.4 at 2.2 {mu}m in median seeing and 0.7 at 2.2 {mu}m in good seeing.« less

  11. Welding of Vanadium, Tantalum, 304L and 21-6-9 Stainless Steels, and Titanium Alloys at Lawrence Livermore National Laboratory using a Fiber Delivered 2.2 kW Diode Pumped CW Nd:YAG Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, T; Elmer, J; Pong, R

    This report summarizes the results of a series of laser welds made between 2003 and 2005 at Lawrence Livermore National Laboratory (LLNL). The results are a compilation of several, previously unpublished, internal LLNL reports covering the laser welding of vanadium, tantalum, 304L stainless steel, 21-6-9 (Nitronic 40) steel, and Ti-6Al-4V. All the welds were made using a Rofin Sinar DY-022 diode pumped continuous wave Nd:YAG laser. Welds are made at sharp focus on each material at various power levels and travel speeds in order to provide a baseline characterization of the performance of the laser welder. These power levels aremore » based on measurements of the output power of the laser system, as measured by a power meter placed at the end of the optics train. Based on these measurements, it appears that the system displays a loss of approximately 10% as the beam passes through the fiber optic cable and laser optics. Since the beam is delivered to the fixed laser optics through a fiber optic cable, the effects of fiber diameter are also briefly investigated. Because the system utilizes 1:1 focusing optics, the laser spot size at sharp focus generally corresponds to the diameter of the fiber with which the laser is delivered. Differences in the resulting weld penetration in the different materials system are prevalent, with the welds produced on the Nitronic 40 material displaying the highest depths (> 5 mm) and minimal porosity. A Primes focusing diagnostic has also been installed on this laser system and used to characterize the size and power density distribution of the beams as a function of both power and focus position. Further work is planned in which this focusing diagnostic will be used to better understand the effects of changes in beam properties on the resulting weld dimensions in these and other materials systems.« less

  12. Laser tweezer actuated microphotonic array devices for high resolution imaging and analysis in chip-based biosystems

    NASA Astrophysics Data System (ADS)

    Birkbeck, Aaron L.

    A new technology is developed that functionally integrates arrays of lasers and micro-optics into microfluidic systems for the purpose of imaging, analyzing, and manipulating objects and biological cells. In general, the devices and technologies emerging from this area either lack functionality through the reliance on mechanical systems or provide a serial-based, time consuming approach. As compared to the current state of art, our all-optical design methodology has several distinguishing features, such as parallelism, high efficiency, low power, auto-alignment, and high yield fabrication methods, which all contribute to minimizing the cost of the integration process. The potential use of vertical cavity surface emitting lasers (VCSELs) for the creation of two-dimensional arrays of laser optical tweezers that perform independently controlled, parallel capture, and transport of large numbers of individual objects and biological cells is investigated. One of the primary biological applications for which VCSEL array sourced laser optical tweezers are considered is the formation of engineered tissues through the manipulation and spatial arrangement of different types of cells in a co-culture. Creating devices that combine laser optical tweezers with select micro-optical components permits optical imaging and analysis functions to take place inside the microfluidic channel. One such device is a micro-optical spatial filter whose motion and alignment is controlled using a laser optical tweezer. Unlike conventional spatial filter systems, our device utilizes a refractive optical element that is directly incorporated onto the lithographically patterned spatial filter. This allows the micro-optical spatial filter to automatically align itself in three-dimensions to the focal point of the microscope objective, where it then filters out the higher frequency additive noise components present in the laser beam. As a means of performing high resolution imaging in the microfluidic channel, we developed a novel technique that integrates the capacity of a laser tweezer to optically trap and manipulate objects in three-dimensions with the resolution-enhanced imaging capabilities of a solid immersion lens (SIL). In our design, the SIL is a free-floating device whose imaging beam, motion control and alignment is provided by a laser optical tweezer, which allows the microfluidic SIL to image in areas that are inaccessible to traditional solid immersion microscopes.

  13. Airborne Visible Laser Optical Communications (AVLOC) experiment

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A series of optical communication experiments between a high altitude aircraft at 18.3 km (60,000 ft) and a ground station were conducted by NASA from summer 1972 through winter 1973. The basic system was an optical tracker and transmitter located in each terminal. The aircraft transceiver consisted of a 5-mW HeNe laser transmitter with a 30-megabit modulator. The ground station beacon was an argon laser operating at 488 nm. A separate pulsed laser radar was used for initial acquisition. The objective of the experiment was to obtain engineering data on the precision tracking and communication system performance at both terminals. Atmospheric effects on the system performance was also an experiment objective. The system description, engineering analysis, testing, and flight results are discussed.

  14. Environmental Characterization of Mine Countermeasure Test Ranges: Hydrography and Water Column Optics

    DTIC Science & Technology

    2015-09-30

    changes in near-shore water columns and support companion laser imaging system tests. The physical, biological and optical oceanographic data...developed under this project will be used as input to optical and environmental models to assess the performance characteristics of laser imaging systems...OBJECTIVES We proposed to characterize the physical, biological and optical fields present during deployments of the Streak Tube Imaging Lidar

  15. Differential correction system of laser beam directional dithering based on symmetrical beamsplitter

    NASA Astrophysics Data System (ADS)

    Hongwei, Yang; Wei, Tao; Xiaoqia, Yin; Hui, Zhao

    2018-02-01

    This paper proposes a differential correction system with a differential optical path and a symmetrical beamsplitter for correcting the directional dithering of the laser beams. This system can split a collimated laser beam into two laser beams with equal and opposite movements. Thus, the positional averages of the two split laser beams remain constant irrespective of the dithering angle. The symmetrical beamsplitter designed based on transfer matrix principle is to balance the optical paths and irradiances of the two laser beams. Experimental results show that the directional dithering is reduced to less than one-pixel value. Finally, two examples show that this system can be widely used in one-dimensional measurement.

  16. Intensity noise properties of a compact laser device based on a miniaturized MOPA system for spectroscopic applications

    NASA Astrophysics Data System (ADS)

    Baumgärtner, S.; Juhl, S.; Opalevs, D.; Sahm, A.; Hofmann, J.; Leisching, P.; Paschke, K.

    2018-02-01

    We present a novel compact laser device based on a semiconductor master-oscillator power-amplifier (MOPA) emitting at 772 nm, suitable for quantum optic and spectroscopy. The optical performance of the laser device is characterized. For miniaturized lasers the thermal management is challenging, we therefore perform thermal simulations and measurements. The first demonstrator is emitting more than 3 W optical power with a linewidth below 2lMHz. Using this MOPA design also compact devices for quantum optics (e.g. rubidium atomic clock) and seed lasers for frequency conversion can be realized [1].

  17. Use Of Adaptive Optics Element For Wavefront Error Correction In The Gemini CO2 Laser Fusion System

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.; Parker, J. V.; Nussmier, T. A.; Swigert, C. J.; King, W.; Lau, A. S.; Price, K.

    1980-11-01

    The Gemini two beam CO2 laser fusion system incorporates a complex optical system with nearly 100 surfaces per beam, associated with the generation, transport and focusing of CO2 laser beams for irradiating laser fusion targets. Even though the system is nominally diffraction limited, in practice the departure from the ideal situation drops the Strehl ratio to 0.24. This departure is caused mostly by the imperfections in the large (34 cm optical clear aperture diameter) state-of-the-art components like the sodium chloride windows and micromachined mirrors. While the smaller optical components also contribute to this degradation, the various possible misalignments and nonlinear effects are considered to contribute very little to it. Analysis indicates that removing the static or quasi-static errors can dramatically improve the Strehl ratio. A deformable mirror which can comfortably achieve the design goal Strehl ratio of >= 0.7 is described, along with the various system trade-offs in the design of the mirror and the control system.

  18. Advances in laser and tissue interactions: laser microbeams and optical trapping (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexander A.; Makropoulou, Mersini; Papadopoulos, Dimitris; Papagiakoumou, Eirini; Pietreanu, D.

    2005-04-01

    The increasing use of lasers in biomedical research and clinical praxis leads to the development and application of new, non-invasive, therapeutic, surgical and diagnostic techniques. In laser surgery, the theory of ablation dictates that pulsed mid-infrared laser beams exhibit strong absorption by soft and hard tissues, restricting residual thermal damage to a minimum zone. Therefore, the development of high quality 3 μm lasers is considered to be an alternative for precise laser ablation of tissue. Among them are the high quality oscillator-two stages amplifier lasers developed, which will be described in this article. The beam quality delivered by these lasers to the biological tissue is of great importance in cutting and ablating operations. As the precision of the ablation is increased, the cutting laser interventions could well move to the microsurgery field. Recently, the combination of a laser scalpel with an optical trapping device, under microscopy control, is becoming increasingly important. Optical manipulation of microscopic particles by focused laser beams, is now widely used as a powerful tool for 'non-contact' micromanipulation of cells and organelles. Several laser sources are employed for trapping and varying laser powers are used in a broad range of applications of optical tweezers. For most of the lasers used, the focal spot of the trapping beam is of the order of a micron. As the trapped objects can vary in size from hundreds of nanometres to hundreds of microns, the technique has recently invaded in to the nanocosomos of genes and molecules. However, the use of optical trapping for quantitative research into biophysical processes requires accurate calculation of the optical forces and torques acting within the trap. The research and development efforts towards a mid-IR microbeam laser system, the design and realization efforts towards a visible laser trapping system and the first results obtained using a relatively new calibration method to calculate the forces experienced in the optical trap are discussed in detail in the following.

  19. Acousto-optic laser projection systems for displaying TV information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulyaev, Yu V; Kazaryan, M A; Mokrushin, Yu M

    2015-04-30

    This review addresses various approaches to television projection imaging on large screens using lasers. Results are presented of theoretical and experimental studies of an acousto-optic projection system operating on the principle of projecting an image of an entire amplitude-modulated television line in a single laser pulse. We consider characteristic features of image formation in such a system and the requirements for its individual components. Particular attention is paid to nonlinear distortions of the image signal, which show up most severely at low modulation signal frequencies. We discuss the feasibility of improving the process efficiency and image quality using acousto-optic modulatorsmore » and pulsed lasers. Real-time projectors with pulsed line imaging can be used for controlling high-intensity laser radiation. (review)« less

  20. Laser-initiated ordnance for air-to-air missiles

    NASA Technical Reports Server (NTRS)

    Sumpter, David R.

    1993-01-01

    McDonnell Douglas Missile Systems Company (MDMSC) has developed a laser ignition subsystem (LIS) for air-to-air missile applications. The MDMSC subsystem is designed to activate batteries, unlock fins, and sequence propulsion system events. The subsystem includes Pyro Zirconium Pump (PZP) lasers, mechanical Safe & Arm, fiber-optic distribution system, and optically activated pyrotechnic devices (initiators, detonators, and thermal batteries). The LIS design has incorporated testability features for the laser modules, drive electronics, fiber-optics, and pyrotechnics. Several of the LIS have been fabricated and have supported thermal battery testing, integral rocket ramjet testing, and have been integrated into integral rocket ramjet flight test vehicles as part of the flight control subsystem.

  1. Laser fusion pulse shape controller

    DOEpatents

    Siebert, Larry D.

    1977-01-01

    An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.

  2. Component-Level Selection and Qualification for the Global Ecosystem Dynamics Investigation (GEDI) Laser Altimeter Transmitter

    NASA Technical Reports Server (NTRS)

    Frese, Erich A.; Chiragh, Furqan L.; Switzer, Robert; Vasilyev, Aleksey A.; Thomes, Joe; Coyle, D. Barry; Stysley, Paul R.

    2018-01-01

    Flight quality solid-state lasers require a unique and extensive set of testing and qualification processes, both at the system and component levels to insure the laser's promised performance. As important as the overall laser transmitter design is, the quality and performance of individual subassemblies, optics, and electro-optics dictate the final laser unit's quality. The Global Ecosystem Dynamics Investigation (GEDI) laser transmitters employ all the usual components typical for a diode-pumped, solid-state laser, yet must each go through their own individual process of specification, modeling, performance demonstration, inspection, and destructive testing. These qualification processes and results for the laser crystals, laser diode arrays, electro-optics, and optics, will be reviewed as well as the relevant critical issues encountered, prior to their installation in the GEDI flight laser units.

  3. Dual frequency comb metrology with one fiber laser

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Takeshi, Yasui; Zheng, Zheng

    2016-11-01

    Optical metrology techniques based on dual optical frequency combs have emerged as a hotly studied area targeting a wide range of applications from optical spectroscopy to microwave and terahertz frequency measurement. Generating two sets of high-quality comb lines with slightly different comb-tooth spacings with high mutual coherence and stability is the key to most of the dual-comb schemes. The complexity and costs of such laser sources and the associated control systems to lock the two frequency combs hinder the wider adoption of such techniques. Here we demonstrate a very simple and rather different approach to tackle such a challenge. By employing novel laser cavity designs in a mode-locked fiber laser, a simple fiber laser setup could emit dual-comb pulse output with high stability and good coherence between the pulse trains. Based on such lasers, comb-tooth-resolved dual-comb optical spectroscopy is demonstrated. Picometer spectral resolving capability could be realized with a fiber-optic setup and a low-cost data acquisition system and standard algorithms. Besides, the frequency of microwave signals over a large range can be determined based on a simple setup. Our results show the capability of such single-fiber-laser-based dual-comb scheme to reduce the complexity and cost of dual-comb systems with excellent quality for different dual-comb applications.

  4. Precision laser processing for micro electronics and fiber optic manufacturing

    NASA Astrophysics Data System (ADS)

    Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.

    2008-02-01

    The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.

  5. Near-IR laser frequency standard stabilized using FM-spectroscopy

    NASA Astrophysics Data System (ADS)

    Ružička, Bohdan; Číp, Ondřej; Lazar, Josef

    2006-02-01

    At the present time fiber-optics and optical communication are in rapid progress. Modern technologies such as DWDM (Dense Wavelength Division Multiplex) need precise stability of laser frequencies. According to this fact, requirements of new etalons of optical frequencies in the telecommunication band is rapidly growing. Lasers working in near infrared telecommunication band (1500-1600 nm) can be stabilized to 12C IIH II or 13C IIH II (acetylene) gas absorption lines. The acetylene gas absorption has been widely studied and accepted by international bodies of standardization as a primary wavelength reference in the near infrared band around 1550nm. Our aim was to design and develop a compact fibre optics laser system generating coherent light in near-JR band with high frequency stability (at least 1.10 -8). This system should become a base for realization of a primary frequency standard for optical communications in the Czech Republic. Such an etalon will be needed for calibration of wavelength-meters and spectral analysers for DWDM communication systems. We are co-operating with CMI (Czech Metrology Institute) on this project. We present stabilized laser system based on a single frequency DFB (Distributed Feedback) laser diode with a narrow spectral profile. The laser is pre-stabilized by means of the FM-spectroscopy on a passive resonator. Thanks to a fast feed-back loop we are able to improve spectral characteristics of the laser. The laser frequency is locked by a relatively slow second feed-back loop on an absorption line of acetylene vapour which is sealed in a cell under the optimised pressure.

  6. A Fabry-Pérot electro-optic sensing system using a drive-current-tuned wavelength laser diode.

    PubMed

    Kuo, Wen-Kai; Wu, Pei-Yu; Lee, Chang-Ching

    2010-05-01

    A Fabry-Pérot enhanced electro-optic sensing system that utilizes a drive-current-tuned wavelength laser diode is presented. An electro-optic prober made of LiNbO(3) crystal with an asymmetric Fabry-Pérot cavity is used in this system. To lock the wavelength of the laser diode at resonant condition, a closed-loop power control scheme is proposed. Experiment results show that the system can keep the electro-optic prober at high sensitivity for a long working time when the closed-loop control function is on. If this function is off, the sensitivity may be fluctuated and only one-third of the best level in the worst case.

  7. Laser and optics activities at CREOL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stickley, C.M.

    1995-06-01

    CREOL is an interdisciplinary institute with a mission to foster and support research and education in the optical and laser sciences and engineering. CREOL`s principal members are its 21-strong faculty. The faculty are encouraged and supported in developing, maintaining, and expanding innovative and sponsored research programs, especially ones that are coupled to industry`s needs. The CREOL Director and Assistant Director, through empowerment by the CREOL faculty, coordinate and oversee the interactive, interdisciplinary projects of the faculty, the 85 graduate students and the 39 research staff. CREOL integrates these research efforts with the general educational mission and goals of the university,more » develops comprehensive course work in the optical and laser sciences and engineering, provides guidance and instruction to graduate students, administers MS and PhD programs, and provides facilities, funds, and administrative support to assist the faculty in carrying out CREOL`s mission and obtaining financial support for the research projects. CREOL`s specific areas of research activity include the following: IR systems; nonlinear optics; crystal growth; nonlinear integrated optics; new solid-state lasers; tunable far-infrared lasers; thin-film optics; theory; semiconductor lasers; x-ray/optical scattering; laser-induced damage; free-electron lasers; solid-state spectroscopy; x-ray sources and applications; laser propagation; laser processing of materials; optical design; optical limiting/sensor protection; diffractive optics; quantum well optoelectronics; dense plasmas/high-field physics; laser radar and remote sensing; diode-based lasers; and glass science.« less

  8. Laser Pulse-Stretching Using Multiple Optical Ring-Cavities

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet; Lee, Chi-Ming (Technical Monitor)

    2002-01-01

    We describe a simple and passive nanosecond-long (ns-long) laser 'pulse-stretcher' using multiple optical ring-cavities. We present a model of the pulse-stretching process for an arbitrary number of optical ring-cavities. Using the model, we optimize the design of a pulse-stretcher for use in a spontaneous Raman scattering excitation system that avoids laser-induced plasma spark problems. From the optimized design, we then experimentally demonstrate and verify the model with a 3-cavity pulse-stretcher system that converts a 1000 mJ, 8.4 ns-long input laser pulse into an approximately 75 ns-long (FWHM) output laser pulse with a peak power reduction of 0.10X, and an 83% efficiency.

  9. Testing and integrating the laser system of ARGOS: the ground layer adaptive optics for LBT

    NASA Astrophysics Data System (ADS)

    Loose, C.; Rabien, S.; Barl, L.; Borelli, J.; Deysenroth, M.; Gaessler, W.; Gemperlein, H.; Honsberg, M.; Kulas, M.; Lederer, R.; Raab, W.; Rahmer, G.; Ziegleder, J.

    2012-07-01

    The Laser Guide Star facility ARGOS will provide Ground Layer Adaptive Optics to the Large Binocular Telescope (LBT). The system operates three pulsed laser beacons above each of the two primary mirrors, which are Rayleigh scattered in 12km height. This enables correction over a wide field of view, using the adaptive secondary mirror of the LBT. The ARGOS laser system is designed around commercially available, pulsed Nd:YAG lasers working at 532 nm. In preparation for a successful commissioning, it is important to ascertain that the specifications are met for every component of the laser system. The testing of assembled, optical subsystems is likewise necessary. In particular it is required to confirm a high output power, beam quality and pulse stability of the beacons. In a second step, the integrated laser system along with its electronic cabinets are installed on a telescope simulator. This unit is capable of carrying the whole assembly and can be tilted to imitate working conditions at the LBT. It allows alignment and functionality testing of the entire system, ensuring that flexure compensation and system diagnosis work properly in different orientations.

  10. Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser

    PubMed Central

    Huang, Lin; Mills, Arthur K.; Zhao, Yuan; Jones, David J.; Tang, Shuo

    2016-01-01

    We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications. PMID:27231633

  11. Laser interlock system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, Steven D; Mcintyre, Dustin L

    2015-01-13

    A method and device for providing a laser interlock having a first optical source, a first beam splitter, a second optical source, a detector, an interlock control system, and a means for producing dangerous optical energy. The first beam splitter is optically connected to the first optical source, the first detector and the second optical source. The detector is connected to the interlock control system. The interlock control system is connected to the means for producing dangerous optical energy and configured to terminate its optical energy production upon the detection of optical energy at the detector from the second opticalmore » source below a predetermined detector threshold. The second optical source produces an optical energy in response to optical energy from the first optical source. The optical energy from the second optical source has a different wavelength, polarization, modulation or combination thereof from the optical energy of the first optical source.« less

  12. Development of a Flyable Acousto-Optic Laser Beam Deflection System for a Head Up Display of the Future.

    DTIC Science & Technology

    Rayleigh criteria). The system was designed for stroke writing but was demonstrated with lissajous writing. The acousto - optic deflectors employed...The report describes a laser display which is to be used in a Head-Up Display of the future. The uniqueness of the display is that it uses acousto ... optic components for the modulation and deflection of the laser beam. As a result, there are no moving parts, which increases the reliability and life

  13. Une étude d'un système optique adaptatif en temps réel pour traitement thermique superficiel par laser de puissance A study of an adaptive real-time optical system for surface thermal treatment by a powerful laser

    NASA Astrophysics Data System (ADS)

    Li, Jun Chang; Merlin, J.; Chen, Qing Hua

    1998-12-01

    An optical system permitting modulation of the repartition of the energy of a laser beam in real time has been investigated starting from the theory of Fourier optics. Comparisons of the results obtained theoretically and experimentally were made. The thermal effects induced during the surface treatment have also been simulated.

  14. Modeling of Adaptive Optics-Based Free-Space Communications Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilks, S C; Morris, J R; Brase, J M

    2002-08-06

    We introduce a wave-optics based simulation code written for air-optic laser communications links, that includes a detailed model of an adaptive optics compensation system. We present the results obtained by this model, where the phase of a communications laser beam is corrected, after it propagates through a turbulent atmosphere. The phase of the received laser beam is measured using a Shack-Hartmann wavefront sensor, and the correction method utilizes a MEMS mirror. Strehl improvement and amount of power coupled to the receiving fiber for both 1 km horizontal and 28 km slant paths are presented.

  15. Prediction performance of reservoir computing systems based on a diode-pumped erbium-doped microchip laser subject to optical feedback.

    PubMed

    Nguimdo, Romain Modeste; Lacot, Eric; Jacquin, Olivier; Hugon, Olivier; Van der Sande, Guy; Guillet de Chatellus, Hugues

    2017-02-01

    Reservoir computing (RC) systems are computational tools for information processing that can be fully implemented in optics. Here, we experimentally and numerically show that an optically pumped laser subject to optical delayed feedback can yield similar results to those obtained for electrically pumped lasers. Unlike with previous implementations, the input data are injected at a time interval that is much larger than the time-delay feedback. These data are directly coupled to the feedback light beam. Our results illustrate possible new avenues for RC implementations for prediction tasks.

  16. The theory of optical black hole lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaona-Reyes, José L., E-mail: jgaona@fis.cinvestav.mx; Bermudez, David, E-mail: dbermudez@fis.cinvestav.mx

    The event horizon of black holes and white holes can be achieved in the context of analogue gravity. It was proven for a sonic case that if these two horizons are close to each other their dynamics resemble a laser, a black hole laser, where the analogue of Hawking radiation is trapped and amplified. Optical analogues are also very successful and a similar system can be achieved there. In this work we develop the theory of optical black hole lasers and prove that the amplification is also possible. Then, we study the optical system by determining the forward propagation ofmore » modes, obtaining an approximation for the phase difference which governs the amplification, and performing numerical simulations of the pulse propagation of our system. - Highlights: • We develop the conditions to obtain the kinematics of the optical black hole laser. • We prove the amplification of Hawking radiation for the optical case. • We derive the forward propagation of modes and check the result of the backward case. • A model is proposed to calculate the phase difference and the amplification rate. • We perform numerical simulations of a pulse between two solitons forming a cavity.« less

  17. Optical communications and a comparison of optical technologies for a high data rate return link from Mars

    NASA Technical Reports Server (NTRS)

    Spence, Rodney L.

    1993-01-01

    The important principles of direct- and heterodyne-detection optical free-space communications are reviewed. Signal-to-noise-ratio (SNR) and bit-error-rate (BER) expressions are derived for both the direct-detection and heterodyne-detection optical receivers. For the heterodyne system, performance degradation resulting from received-signal and local oscillator-beam misalignment and laser phase noise is analyzed. Determination of interfering background power from local and extended background sources is discussed. The BER performance of direct- and heterodyne-detection optical links in the presence of Rayleigh-distributed random pointing and tracking errors is described. Finally, several optical systems employing Nd:YAG, GaAs, and CO2 laser sources are evaluated and compared to assess their feasibility in providing high-data-rate (10- to 1000-Mbps) Mars-to-Earth communications. It is shown that the root mean square (rms) pointing and tracking accuracy is a critical factor in defining the system transmitting laser-power requirements and telescope size and that, for a given rms error, there is an optimum telescope aperture size that minimizes the required power. The results of the analysis conducted indicate that, barring the achievement of extremely small rms pointing and tracking errors (less than 0.2 microrad), the two most promising types of optical systems are those that use an Nd:YAG laser (lambda = 1.064 microns) and high-order pulse position modulator (PPM) and direct detection, and those that use a CO2 laser (lambda = 10.6 microns) and phase shifting keying homodyne modulation and coherent detection. For example, for a PPM order of M = 64 and an rms pointing accuracy of 0.4 microrad, an Nd:YAG system can be used to implement a 100-Mbps Mars link with a 40-cm transmitting telescope, a 20-W laser, and a 10-m receiving photon bucket. Under the same conditions, a CO2 system would require 3-m transmitting and receiving telescopes and a 32-W laser to implement such a link. Other types of optical systems, such as a semiconductor laser systems, are impractical in the presence of large rms pointing errors because of the high power requirements of the 100-Mbps Mars link, even when optimal-size telescopes are used.

  18. Study of application and key technology of the high-energy laser weapon in optoelectronic countermeasure

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Xing, Hao; Wang, Dawei; Wang, Qiugui

    2015-10-01

    High-energy Laser weapon is a new-style which is developing rapidly nowadays. It is a one kind of direction energy weapon which can destroy the targets or make them invalid. High-energy Laser weapon has many merits such as concentrated energy, fast transmission, long operating range, satisfied precision, fast shift fire, anti-electromagnetic interference, reusability, cost-effectiveness. High-energy Laser weapon has huge potential for modern warfare since its laser beam launch attack to the target by the speed of light. High-energy Laser weapon can be deployed by multiple methods such as skyborne, carrier borne, vehicle-mounted, foundation, space platform. Besides the connection with command and control system, High-energy Laser weapon is consist of high-energy laser and beam steering. Beam steering is comprised of Large diameter launch system and Precision targeting systems. Meanwhile, beam steering includes the distance measurement of target location, detection system of television and infrared sensor, adaptive optical system of Laser atmospheric distortion correction. The development of laser technology is very fast in recent years. A variety of laser sources have been regarded as the key component in many optoelectronic devices. For directed energy weapon, the progress of laser technology has greatly improved the tactical effectiveness, such as increasing the range and strike precision. At the same time, the modern solid-state laser has become the ideal optical source for optical countermeasure, because it has high photoelectric conversion efficiency and small volume or weight. However, the total performance is limited by the mutual cooperation between different subsystems. The optical countermeasure is a complex technique after many years development. The key factor to evaluate the laser weapon can be formulated as laser energy density to target. This article elaborated the laser device technology of optoelectronic countermeasure and Photoelectric tracking technology. Also the allocation of optoelectronic countermeasure was discussed in this article. At last, this article prospected the future development of high-energy laser.

  19. Heterodyne interferometer with angstrom-level periodic nonlinearity

    DOEpatents

    Schmitz, Tony L.; Beckwith, John F.

    2005-01-25

    Displacement measuring interferometer systems and methods are disclosed. One or more acousto-optic modulators for receiving a laser light beam from a laser light source can be utilized to split the laser light beam into two or more laser light beams, while spatially separating frequencies thereof. One or more reflective mechanisms can be utilized to reflect one or more of the laser light beams back to the acousto-optic modulator. Interference of two or more of the laser light beams generally at the acousto-optic modulator can provide an interfered laser light beam thereof. A detector for receiving the interfered laser light beam can be utilized to provide interferometer measurement data.

  20. Excimer laser system Profile-500

    NASA Astrophysics Data System (ADS)

    Atejev, V. V.; Bukreyev, V. S.; Vartapetov, Serge K.; Semenov, A. D.; Sugrobov, V. A.; Turin, V. S.; Fedorov, Sergei N.

    1999-07-01

    The description of ophthalmological excimer laser system 'PROFILE-500' for photorefractive and physiotherapeutic keratectomy is presented. Excimer Laser Systems 'PROFILE- 500' are optical system that use ArF excimer lasers to perform photorefractive keratectomy or LASIK; surgical procedures used to correct myopia, hyperopia and astigmatism.

  1. Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices

    NASA Astrophysics Data System (ADS)

    Di Sieno, Laura; Nissinen, Jan; Hallman, Lauri; Martinenghi, Edoardo; Contini, Davide; Pifferi, Antonio; Kostamovaara, Juha; Mora, Alberto Dalla

    2017-08-01

    We validate a miniaturized pulsed laser source for use in time-domain (TD) diffuse optics, following rigorous and shared protocols for performance assessment of this class of devices. This compact source (12×6 mm2) has been previously developed for range finding applications and is able to provide short, high energy (˜100 ps, ˜0.5 nJ) optical pulses at up to 1 MHz repetition rate. Here, we start with a basic level laser characterization with an analysis of suitability of this laser for the diffuse optics application. Then, we present a TD optical system using this source and its performances in both recovering optical properties of tissue-mimicking homogeneous phantoms and in detecting localized absorption perturbations. Finally, as a proof of concept of in vivo application, we demonstrate that the system is able to detect hemodynamic changes occurring in the arm of healthy volunteers during a venous occlusion. Squeezing the laser source in a small footprint removes a key technological bottleneck that has hampered so far the realization of a miniaturized TD diffuse optics system, able to compete with already assessed continuous-wave devices in terms of size and cost, but with wider performance potentialities, as demonstrated by research over the last two decades.

  2. Hollow Core Optical Fiber Gas Lasers: Toward Novel and Practical Systems in Fused Silica

    DTIC Science & Technology

    2017-05-18

    Hollow core Optically pumped Fiber Gas LASer’s (HOFGLAS’s) based on population inversion combine advantages of fiber lasers such as long interaction...polarization dependent fiber properties. Preliminary experiments were performed toward simultaneous lasing in the visible and near infrared; lasing in...words) Hollow core Optically pumped Fiber Gas LASer’s (HOFGLAS’s) based on population inversion combine advantages of fiber lasers such as long

  3. Task five report: Laser communications for data acquisition networks. [characteristics of lasers and laser systems for optical communication applications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Laser communication technology and laser communication performance are reviewed. The subjects discussed are: (1) characteristics of laser communication systems, (2) laser technology problems, (3) means of overcoming laser technology problems, and (4) potential schedule for including laser communications into data acquisition networks. Various types of laser communication systems are described and their capabilities are defined.

  4. A study of optical design and optimization applied to lens module of laser beam shaping of advanced modern optical device

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Mu; Fang, Yi-Chin; Chen, Zhen Hsiang

    2011-10-01

    This study used the aspheric lens to realize the laser flat-top optimization, and applied the genetic algorithm (GA) to find the optimal results. Using the characteristics of aspheric lens to obtain the optimized high quality Nd: YAG 355 waveband laser flat-top optical system, this study employed the Light tools LDS (least damped square) and the GA of artificial intelligence optimization method to determine the optimal aspheric coefficient and obtain the optimal solution. This study applied the aspheric lens with GA for the flattening of laser beams using two aspheric lenses in the aspheric surface optical system to complete 80% spot narrowing under standard deviation of 0.6142.

  5. Design and manufacture of optical system for use in ultraviolet lithography with the free-electron laser

    NASA Astrophysics Data System (ADS)

    Byrd, Donald A.; Viswanathan, Vriddhachalam K.; Woodfin, Gregg L.; Horn, William W.; Lazazzera, Vito J.; Schmell, Rodney A.

    1993-08-01

    At Los Alamos National Laboratory, we are preparing to image submicrometer-size features using the Free Electron Laser (FEL) operating at 248 nm. This article describes the optical transfer systems that were designed to relay the ultraviolet (UV) optical output of the FEL, resulting in expected imaged feature sizes in the range 0.3 - 0.5 micrometers . Nearly all optical subsystems are reflective, and once the coatings were optimized any optical wavelength could be used. All refractive optics were UV-grade fused silica. The optical design, engineering, and manufacture of the various component systems are described along with some experimental results.

  6. High frequency optical communications; Proceedings of the Meeting, Cambridge, MA, Sept. 23, 24, 1986

    NASA Astrophysics Data System (ADS)

    Ramer, O. Glenn; Sierak, Paul

    Topics discussed in this volume include systems and applications, detectors, sources, and coherent communications. Papers are presented on RF fiber optic links for avionics applications, fiber optics and optoelectronics for radar and electronic warfare applications, symmetric coplanar electrodes for high-speed Ti:LiNbO3 devices, and surface wave electrooptic modulator. Attention is given to X-band RF fiber-optic links, fiber-optic links for microwave signal transmission, GaAs monolithic receiver and laser driver for GHz transmission rates, and monolithically integrable high-speed photodetectors. Additional papers are on irregular and chaotic behavior of semiconductor lasers under modulation, high-frequency laser package for microwave optical communications, receiver modeling for coherent light wave communications, and polarization sensors and controllers for coherent optical communication systems.

  7. Laser inscription of pseudorandom structures for microphotonic diffuser applications.

    PubMed

    Alqurashi, Tawfiq; Alhosani, Abdulla; Dauleh, Mahmoud; Yetisen, Ali K; Butt, Haider

    2018-04-19

    Optical diffusers provide a solution for a variety of applications requiring a Gaussian intensity distribution including imaging systems, biomedical optics, and aerospace. Advances in laser ablation processes have allowed the rapid production of efficient optical diffusers. Here, we demonstrate a novel technique to fabricate high-quality glass optical diffusers with cost-efficiency using a continuous CO2 laser. Surface relief pseudorandom microstructures were patterned on both sides of the glass substrates. A numerical simulation of the temperature distribution showed that the CO2 laser drills a 137 μm hole in the glass for every 2 ms of processing time. FFT simulation was utilized to design predictable optical diffusers. The pseudorandom microstructures were characterized by optical microscopy, Raman spectroscopy, and angle-resolved spectroscopy to assess their chemical properties, optical scattering, transmittance, and polarization response. Increasing laser exposure and the number of diffusing surfaces enhanced the diffusion and homogenized the incident light. The recorded speckle pattern showed high contrast with sharp bright spot free diffusion in the far field view range (250 mm). A model of glass surface peeling was also developed to prevent its occurrence during the fabrication process. The demonstrated method provides an economical approach in fabricating optical glass diffusers in a controlled and predictable manner. The produced optical diffusers have application in fibre optics, LED systems, and spotlights.

  8. NDT of fiber-reinforced composites with a new fiber-optic pump–probe laser-ultrasound system☆

    PubMed Central

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; O’Donnell, Matthew

    2014-01-01

    Laser-ultrasonics is an attractive and powerful tool for the non-destructive testing and evaluation (NDT&E) of composite materials. Current systems for non-contact detection of ultrasound have relatively low sensitivity compared to contact peizotransducers. They are also expensive, difficult to adjust, and strongly influenced by environmental noise. Moreover, laser-ultrasound (LU) systems typically launch only about 50 firings per second, much slower than the kHz level pulse repetition rate of conventional systems. As demonstrated here, most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive, high repetition rate nanosecond fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe beam detector. In particular, a modified fiber-optic balanced Sagnac interferometer is presented as part of a LU pump–probe system for NDT&E of aircraft composites. The performance of the all-optical system is demonstrated for a number of composite samples with different types and locations of inclusions. PMID:25302156

  9. Optical design of laser transmission system

    NASA Astrophysics Data System (ADS)

    Zhang, Yulan; Feng, Jinliang; Li, Yongliang; Yang, Jiandong

    1998-08-01

    This paper discusses a design of optical transfer system used in carbon-dioxide laser therapeutic machine. The design of this system is according to the requirement of the therapeutic machine. The therapeutic machine requires the movement of laser transfer system is similar to the movement of human beings arms, which possesses 7 rotating hinges. We use optical hinges, which is composed of 45 degree mirrors. Because the carbon-dioxide laser mode is not good, light beam diameter at focus and divergence angle dissemination are big, we use a collecting lens at the transfer system output part in order to make the light beam diameter at focus in 0.2 to approximately 0.3 mm. For whole system the focus off-axis error is less than 0.5 mm, the transfer power consumption is smaller than 10%. The system can move in three dimension space freely and satisfies the therapeutic machine requirement.

  10. Laser-induced damage threshold of camera sensors and micro-opto-electro-mechanical systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Bastian; Ritt, Gunnar; Körber, Michael; Eberle, Bernd

    2016-10-01

    The continuous development of laser systems towards more compact and efficient devices constitutes an increasing threat to electro-optical imaging sensors such as complementary metal-oxide-semiconductors (CMOS) and charge-coupled devices (CCD). These types of electronic sensors are used in day-to-day life but also in military or civil security applications. In camera systems dedicated to specific tasks, also micro-opto-electro-mechanical systems (MOEMS) like a digital micromirror device (DMD) are part of the optical setup. In such systems, the DMD can be located at an intermediate focal plane of the optics and it is also susceptible to laser damage. The goal of our work is to enhance the knowledge of damaging effects on such devices exposed to laser light. The experimental setup for the investigation of laser-induced damage is described in detail. As laser sources both pulsed lasers and continuous-wave (CW) lasers are used. The laser-induced damage threshold (LIDT) is determined by the single-shot method by increasing the pulse energy from pulse to pulse or in the case of CW-lasers, by increasing the laser power. Furthermore, we investigate the morphology of laser-induced damage patterns and the dependence of the number of destructed device elements on the laser pulse energy or laser power. In addition to the destruction of single pixels, we observe aftereffects like persisting dead columns or rows of pixels in the sensor image.

  11. Final Report: Laser-Based Optical Trap for Remote Sampling of Interplanetary and Atmospheric Particulate Matter

    NASA Technical Reports Server (NTRS)

    Stysley, Paul

    2016-01-01

    Applicability to Early Stage Innovation NIAC Cutting edge and innovative technologies are needed to achieve the demanding requirements for NASA origin missions that require sample collection as laid out in the NRC Decadal Survey. This proposal focused on fully understanding the state of remote laser optical trapping techniques for capturing particles and returning them to a target site. In future missions, a laser-based optical trapping system could be deployed on a lander that would then target particles in the lower atmosphere and deliver them to the main instrument for analysis, providing remote access to otherwise inaccessible samples. Alternatively, for a planetary mission the laser could combine ablation and trapping capabilities on targets typically too far away or too hard for traditional drilling sampling systems. For an interstellar mission, a remote laser system could gather particles continuously at a safe distance; this would avoid the necessity of having a spacecraft fly through a target cloud such as a comet tail. If properly designed and implemented, a laser-based optical trapping system could fundamentally change the way scientists designand implement NASA missions that require mass spectroscopy and particle collection.

  12. Bulk damage and absorption in fused silica due to high-power laser applications

    NASA Astrophysics Data System (ADS)

    Nürnberg, F.; Kühn, B.; Langner, A.; Altwein, M.; Schötz, G.; Takke, R.; Thomas, S.; Vydra, J.

    2015-11-01

    Laser fusion projects are heading for IR optics with high broadband transmission, high shock and temperature resistance, long laser durability, and best purity. For this application, fused silica is an excellent choice. The energy density threshold on IR laser optics is mainly influenced by the purity and homogeneity of the fused silica. The absorption behavior regarding the hydroxyl content was studied for various synthetic fused silica grades. The main absorption influenced by OH vibrational excitation leads to different IR attenuations for OH-rich and low-OH fused silica. Industrial laser systems aim for the maximum energy extraction possible. Heraeus Quarzglas developed an Yb-doped fused silica fiber to support this growing market. But the performance of laser welding and cutting systems is fundamentally limited by beam quality and stability of focus. Since absorption in the optical components of optical systems has a detrimental effect on the laser focus shift, the beam energy loss and the resulting heating has to be minimized both in the bulk materials and at the coated surfaces. In collaboration with a laser research institute, an optical finisher and end users, photo thermal absorption measurements on coated samples of different fused silica grades were performed to investigate the influence of basic material properties on the absorption level. High purity, synthetic fused silica is as well the material of choice for optical components designed for DUV applications (wavelength range 160 nm - 260 nm). For higher light intensities, e.g. provided by Excimer lasers, UV photons may generate defect centers that effect the optical properties during usage, resulting in an aging of the optical components (UV radiation damage). Powerful Excimer lasers require optical materials that can withstand photon energy close to the band gap and the high intensity of the short pulse length. The UV transmission loss is restricted to the DUV wavelength range below 300 nm and consists of three different absorption bands centered at 165 nm (peroxy radicals), 215 nm (E'-center), and 265 nm (non-bridging oxygen hole center (NBOH)), which change the transmission behavior of material.

  13. Multi-emitter laser multiplexer using a two-mirror beam shaper

    NASA Astrophysics Data System (ADS)

    Cobb, Joshua M.; Brennan, John; Bhatia, Vikram

    2014-12-01

    A system was designed and built to spatially multiplex four broad area laser diodes (BALD) and condense the light into a multi-mode fiber with a core diameter of 105 um and an NA of 0.15. The lasers were efficiently combined with an étendue aspect ratio scaler (EARS) optic. The EARS works under the principle of a two mirror beam shaper. We were able to successfully couple more than 87% of the optical energy into the fiber. The design of the optical system and the results of several built systems are discussed.

  14. SERODS optical data storage with parallel signal transfer

    DOEpatents

    Vo-Dinh, Tuan

    2003-09-02

    Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.

  15. SERODS optical data storage with parallel signal transfer

    DOEpatents

    Vo-Dinh, Tuan

    2003-06-24

    Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.

  16. Optical communication for space missions

    NASA Technical Reports Server (NTRS)

    Firtmaurice, M.

    1991-01-01

    Activities performed at NASA/GSFC (Goddard Space Flight Center) related to direct detection optical communications for space applications are discussed. The following subject areas are covered: (1) requirements for optical communication systems (data rates and channel quality; spatial acquisition; fine tracking and pointing; and transmit point-ahead correction); (2) component testing and development (laser diodes performance characterization and life testing; and laser diode power combining); (3) system development and simulations (The GSFC pointing, acquisition and tracking system; hardware description; preliminary performance analysis; and high data rate transmitter/receiver systems); and (4) proposed flight demonstration of optical communications.

  17. Electronic sideband locking of a broadly tunable 318.6 nm ultraviolet laser to an ultra-stable optical cavity

    NASA Astrophysics Data System (ADS)

    Bai, Jiandong; Wang, Jieying; He, Jun; Wang, Junmin

    2017-04-01

    We demonstrate frequency stabilization of a tunable 318.6 nm ultraviolet (UV) laser system using electronic sideband locking. By indirectly changing the frequency of a broadband electro-optic phase modulator, the laser can be continuously tuned over 4 GHz, while a 637.2 nm laser is directly stabilized to a high-finesse ultra-stable optical cavity. The doubling cavity also remains locked to the 637.2 nm light. We show that the tuning range depends mainly on the gain-flattening region of the modulator and the piezo-tunable range of the seed laser. The frequency-stabilized tunable UV laser system is able to compensate for the offset between reference and target frequencies, and has potential applications in precision spectroscopy of cold atoms.

  18. High-power diode lasers for optical communications applications

    NASA Technical Reports Server (NTRS)

    Carlin, D. B.; Goldstein, B.; Channin, D. J.

    1985-01-01

    High-power, single-mode, double-heterojunction AlGaAs diode lasers are being developed to meet source requirements for both fiber optic local area network and free space communications systems. An individual device, based on the channeled-substrate-planar (CSP) structure, has yielded single spatial and longitudinal mode outputs of up to 90 mW CW, and has maintained a single spatial mode to 150 mW CW. Phase-locked arrays of closely spaced index-guided lasers have been designed and fabricated with the aim of multiplying the outputs of the individual devices to even higher power levels in a stable, single-lobe, anastigmatic beam. The optical modes of the lasers in such arrays can couple together in such a way that they appear to be emanating from a single source, and can therefore be efficiently coupled into optical communications systems. This paper will review the state of high-power laser technology and discuss the communication system implications of these devices.

  19. Potential use of lasers for penetrating keratoplasty.

    PubMed

    Thompson, K P; Barraquer, E; Parel, J M; Loertscher, H; Pflugfelder, S; Roussel, T; Holland, S; Hanna, K

    1989-07-01

    Experimental corneal trephination has been achieved with the 193 nm argon fluoride excimer and 2.9 microns hydrogen fluoride and Er:YAG laser systems. Compared with metal blades and other lasers, the 193 nm excimer laser creates the best quality corneal excision, but has a relatively slow etch rate through the stroma, and its use requires toxic gas. The mid-infrared laser systems trephine the cornea in less than 10 seconds, but cause a 10 microns to 15 microns zone of adjacent stromal damage and create wounds that are approximately 2.5 times larger than wounds made by metal scalpels. The wavelength and laser pulse duration influence the cutting characteristics of the laser. Optical delivery systems using an axicon lens, a rotating slit, and a computer controlled scanning optical system have been developed for penetrating keratoplasty. Selection of the optimal laser system for penetrating keratoplasty must await further experimental studies. Refinements of the laser cavity and delivery system are necessary before clinical studies can begin. A carefully controlled randomized clinical trial comparing laser trephination with conventional mechanical trephines will be necessary to determine the safety and efficacy of a laser trephination system.

  20. Overview and future direction for blackbody solar-pumped lasers

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.

    1988-01-01

    A review of solar-pumped blackbody lasers is given which addresses their present status and suggests future research directions. The blackbody laser concept is one system proposed to scale to multimegawatt power levels for space-to-space power transmissions for such applications as onboard spacecraft electrical or propulsion needs. Among the critical technical issues are the scalability to high powers and the laser wavelength which impacts the transmission optics size as well as the laser-to-electric converter at the receiver. Because present blackbody solar-pumped lasers will have laser wavelengths longer than 4 microns, simple photovoltaic converters cannot be used, and transmission optics will be large. Thus, future blackbody laser systems should emphasize near visible laser wavelengths.

  1. Development of a red diode laser system for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Halkiotis, Konstantinos N.; Yova, Dido M.; Uzunoglou, Nikolaos K.; Papastergiou, Georgios; Matakias, Sotiris; Koukouvinos, Ilias

    1998-07-01

    The effectiveness of photodynamic treatment modality has been proven experimentally for a large variety of tumors, during the last years. This therapy utilizes the combined action of light and photosensitizing drug. Until now, a disadvantage of PDT has be the low tissue penetration of light, at the wavelengths of most commonly available lasers, for clinical studies. The red wavelength offers the advantage of increased penetration depth in tissue, in addition several new wavelength offers the advantage of increased penetration depth in tissue, in addition several new photosensitizers present absorption band at the region 630nm to 690nm. The development of high power red diode laser system for photodynamic therapy, has provided a cost effective alternative to existing lasers for use in PDT. This paper will describe the system design, development and performance of a diode laser system, connected with a fiber optic facility, to be used for PDT. The system was based on a high power semiconductor diode laser emitting at 655nm. The laser output power was approximately 60mW at the output of a 62.5/125/900 micron fiber optic probe. FUll technical details and optical performance characteristics of the system will be discussed in this paper.

  2. 970-nm ridge waveguide diode laser bars for high power DWBC systems

    NASA Astrophysics Data System (ADS)

    Wilkens, Martin; Erbert, Götz; Wenzel, Hans; Knigge, Andrea; Crump, Paul; Maaßdorf, Andre; Fricke, Jörg; Ressel, Peter; Strohmaier, Stephan; Schmidt, Berthold; Tränkle, Günther

    2018-02-01

    de lasers are key components in material processing laser systems. While mostly used as pump sources for solid state or fiber lasers, direct diode laser systems using dense wavelength multiplexing have come on the market in recent years. These systems are realized with broad area lasers typically, resulting in beam quality inferior to disk or fiber lasers. We will present recent results of highly efficient ridge waveguide (RW) lasers, developed for dense-wavelength-beamcombining (DWBC) laser systems expecting beam qualities comparable to solid state laser systems and higher power conversion efficiencies (PCE). The newly developed RW lasers are based on vertical structures with an extreme double asymmetric large optical cavity. Besides a low vertical divergence these structures are suitable for RW-lasers with (10 μm) broad ridges, emitting in a single mode with a good beam quality. The large stripe width enables a lateral divergence below 10° (95 % power content) and a high PCE by a comparably low series resistance. We present results of single emitters and small test arrays under different external feedback conditions. Single emitters can be tuned from 950 nm to 975 nm and reach 1 W optical power with more than 55 % PCE and a beam quality of M2 < 2 over the full wavelength range. The spectral width is below 30 pm FWHM. 5 emitter arrays were stabilized using the same setup. Up to now we reached 3 W optical power, limited by power supply, with 5 narrow spectral lines.

  3. Laser-based firing systems for prompt initiation of secondary explosives

    NASA Technical Reports Server (NTRS)

    Meeks, Kent D.; Setchell, Robert E.

    1993-01-01

    Motivated by issues of weapon safety and security, laser based firing systems for promptly initiating secondary explosives have been under active development at Sandia National Laboratories for more than four years. Such a firing system consists of miniaturized, Q-switched, solid-state laser, optical detonators, optical safety switches, and elements for splitting, coupling, and transmitting the laser output. Potential system applications pose significant challenges in terms of server mechanical and thermal environments and packaging constraints, while requiring clear demonstration of safety enhancements. The Direct Optical Initiation (DOI) Program at Sandia is addressing these challenges through progress development phases during which the design, fabrication, and testing of prototype hardware is aimed at more difficult application requirements. A brief history of the development program, and a summary of current and planned activities, will be presented.

  4. Mitigating intrinsic defects and laser damage using pulsetrain-burst (>100 MHz) ultrafast laser processing

    NASA Astrophysics Data System (ADS)

    McKinney, Luke; Frank, Felix; Graper, David; Dean, Jesse; Forrester, Paul; Rioblanc, Maxence; Nantel, Marc; Marjoribanks, Robin

    2005-09-01

    Ultrafast-laser micromachining has promise as an approach to trimming and 'healing' small laser-produced damage sites in laser-system optics--a common experience in state-of-the-art high-power laser systems. More-conventional approaches currently include mechanical micromachining, chemical modification, and treatment using cw and long-pulse lasers. Laser-optics materials of interest include fused silica, multilayer dielectric stacks for anti-reflection coatings or high-reflectivity mirrors, and inorganic crystals such as KD*P, used for Pockels cells and frequency-doubling. We report on novel efforts using ultrafast-laser pulsetrain-burst processing (microsecond bursts at 133 MHz) to mitigate damage in fused silica, dielectric coatings, and KD*P crystals. We have established the characteristics of pulsetrain-burst micromachining in fused silica, multilayer mirrors, and KD*P, and determined the etch rates and morphology under different conditions of fluence-delivery. From all of these, we have begun to identify new means to optimize the laser-repair of optics defects and damage.

  5. Precision Control Module For UV Laser 3D Micromachining

    NASA Astrophysics Data System (ADS)

    Wu, Wen-Hong; Hung, Min-Wei; Chang, Chun-Li

    2011-01-01

    UV laser has been widely used in various micromachining such as micro-scribing or patterning processing. At present, most of the semiconductors, LEDs, photovoltaic solar panels and touch panels industries need the UV laser processing system. However, most of the UV laser processing applications in the industries utilize two dimensional (2D) plane processing. And there are tremendous business opportunities that can be developed, such as three dimensional (3D) structures of micro-electromechanical (MEMS) sensor or the precision depth control of indium tin oxide (ITO) thin films edge insulation in touch panels. This research aims to develop a UV laser 3D micromachining module that can create the novel applications for industries. By special designed beam expender in optical system, the focal point of UV laser can be adjusted quickly and accurately through the optical path control lens of laser beam expender optical system. Furthermore, the integrated software for galvanometric scanner and focal point adjustment mechanism is developed as well, so as to carry out the precise 3D microstructure machining.

  6. Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices.

    PubMed

    Di Sieno, Laura; Nissinen, Jan; Hallman, Lauri; Martinenghi, Edoardo; Contini, Davide; Pifferi, Antonio; Kostamovaara, Juha; Mora, Alberto Dalla

    2017-08-01

    We validate a miniaturized pulsed laser source for use in time-domain (TD) diffuse optics, following rigorous and shared protocols for performance assessment of this class of devices. This compact source (12×6  mm2) has been previously developed for range finding applications and is able to provide short, high energy (∼100  ps, ∼0.5  nJ) optical pulses at up to 1 MHz repetition rate. Here, we start with a basic level laser characterization with an analysis of suitability of this laser for the diffuse optics application. Then, we present a TD optical system using this source and its performances in both recovering optical properties of tissue-mimicking homogeneous phantoms and in detecting localized absorption perturbations. Finally, as a proof of concept of in vivo application, we demonstrate that the system is able to detect hemodynamic changes occurring in the arm of healthy volunteers during a venous occlusion. Squeezing the laser source in a small footprint removes a key technological bottleneck that has hampered so far the realization of a miniaturized TD diffuse optics system, able to compete with already assessed continuous-wave devices in terms of size and cost, but with wider performance potentialities, as demonstrated by research over the last two decades. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  7. Optical lenses design and experimental investigations of a dynamic focusing unit for a CO2 laser scanning system

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Xu, Yue; Zhang, Huaxin; Liu, Peng; Jiao, Guohua

    2016-09-01

    Laser scanners are critical components in material processing systems, such as welding, cutting, and drilling. To achieve high-accuracy processing, the laser spot size should be small and uniform in the entire objective flat field. However, traditional static focusing method using F-theta objective lens is limited by the narrow flat field. To overcome these limitations, a dynamic focusing unit consisting of two lenses is presented in this paper. The dual-lens system has a movable plano-concave lens and a fixed convex lens. As the location of the movable optical elements is changed, the focal length is shifted to keep a small focus spot in a broad flat processing filed. The optical parameters of the two elements are theoretical analyzed. The spot size is calculated to obtain the relationship between the moving length of first lens and the shift focus length of the system. Also, the Zemax model of the optical system is built up to verify the theoretical design and optimize the optical parameter. The proposed lenses are manufactured and a test system is built up to investigate their performances. The experimental results show the spot size is smaller than 450um in all the 500*500mm 2 filed with CO2 laser. Compared with the other dynamic focusing units, this design has fewer lenses and no focusing spot in the optical path. In addition, the focal length minimal changes with the shit of incident laser beam.

  8. Backscattering measuring system for optimization of intravenous laser irradiation dose

    NASA Astrophysics Data System (ADS)

    Rusina, Tatyana V.; Popov, V. D.; Melnik, Ivan S.; Dets, Sergiy M.

    1996-11-01

    Intravenous laser blood irradiation as an effective method of biostimulation and physiotherapy becomes a more popular procedure. Optimal irradiation conditions for each patient are needed to be established individually. A fiber optics feedback system combined with conventional intravenous laser irradiation system was developed to control of irradiation process. The system consists of He-Ne laser, fiber optics probe and signal analyzer. Intravenous blood irradiation was performed in 7 healthy volunteers and 19 patients with different diseases. Measurements in vivo were related to in vitro blood irradiation which was performed in the same conditions with force-circulated venous blood. Comparison of temporal variations of backscattered light during all irradiation procedures has shown a strong discrepancy on optical properties of blood in patients with various health disorders since second procedure. The best cure effect was achieved when intensity of backscattered light was constant during at least five minutes. As a result, the optical irradiation does was considered to be equal 20 minutes' exposure of 3 mW He-Ne laser light at the end of fourth procedure.

  9. Precision Laser Development for Gravitational Wave Space Mission

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2011-01-01

    Optical fiber and semiconductor laser technologies have evolved dramatically over the last decade due to the increased demands from optical communications. We are developing a laser (master oscillator) and optical amplifier based on those technologies for interferometric space missions, such as the gravitational-wave mission LISA, and GRACE follow-on, by fully utilizing the mature wave-guided optics technologies. In space, where a simple and reliable system is preferred, the wave-guided components are advantageous over bulk, crystal-based, free-space laser, such as NPRO (Non-planar Ring Oscillator) and bulk-crystal amplifier, which are widely used for sensitive laser applications on the ground.

  10. The fiber optic system for the advanced topographic laser altimeter system instrument (ATLAS)

    NASA Astrophysics Data System (ADS)

    Ott, Melanie N.; Thomes, W. Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-09-01

    The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm.[1] The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.

  11. The fiber optic system for the Advanced Topographic Laser Altimeter System (ATLAS) instrument

    PubMed Central

    Ott, Melanie N.; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

    2017-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite – 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the “cryosphere” (as well as terrain) to provide data for assessing the earth’s global climate changes. Where ICESat’s instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm.[1] The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here. PMID:28280284

  12. The fiber optic system for the Advanced Topographic Laser Altimeter System (ATLAS) instrument.

    PubMed

    Ott, Melanie N; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-08-28

    The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm.[1] The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.

  13. The Fiber Optic System for the Advanced Topographic Laser Altimeter System (ATLAS) Instrument

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm. The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.

  14. Fiber-optic-based laser vapor screen flow visualization system for aerodynamic research in larger scale subsonic and transonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Inenaga, Andrew S.

    1994-01-01

    Laser vapor screen (LVS) flow visualization systems that are fiber-optic based were developed and installed for aerodynamic research in the Langley 8-Foot Transonic Pressure Tunnel and the Langley 7- by 10-Foot High Speed Tunnel. Fiber optics are used to deliver the laser beam through the plenum shell that surrounds the test section of each facility and to the light-sheet-generating optics positioned in the ceiling window of the test section. Water is injected into the wind tunnel diffuser section to increase the relative humidity and promote condensation of the water vapor in the flow field about the model. The condensed water vapor is then illuminated with an intense sheet of laser light to reveal features of the flow field. The plenum shells are optically sealed; therefore, video-based systems are used to observe and document the flow field. Operational experience shows that the fiber-optic-based systems provide safe, reliable, and high-quality off-surface flow visualization in smaller and larger scale subsonic and transonic wind tunnels. The design, the installation, and the application of the Langley Research Center (LaRC) LVS flow visualization systems in larger scale wind tunnels are highlighted. The efficiency of the fiber optic LVS systems and their insensitivity to wind tunnel vibration, the tunnel operating temperature and pressure variations, and the airborne contaminants are discussed.

  15. Hybrid electronic/optical synchronized chaos communication system.

    PubMed

    Toomey, J P; Kane, D M; Davidović, A; Huntington, E H

    2009-04-27

    A hybrid electronic/optical system for synchronizing a chaotic receiver to a chaotic transmitter has been demonstrated. The chaotic signal is generated electronically and injected, in addition to a constant bias current, to a semiconductor laser to produce an optical carrier for transmission. The optical chaotic carrier is photodetected to regenerate an electronic signal for synchronization in a matched electronic receiver The system has been successfully used for the transmission and recovery of a chaos masked message that is added to the chaotic optical carrier. Past demonstrations of synchronized chaos based, secure communication systems have used either an electronic chaotic carrier or an optical chaotic carrier (such as the chaotic output of various nonlinear laser systems). This is the first electronic/optical hybrid system to be demonstrated. We call this generation of a chaotic optical carrier by electronic injection.

  16. Femtosecond fibre laser stabilisation to an optical frequency standard using a KTP electro-optic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyushkov, B N; Pivtsov, V S; Koliada, N A

    2015-05-31

    A miniature intracavity KTP-based electro-optic phase modulator has been developed which can be used for effective stabilisation of an optical frequency comb of a femtosecond erbiumdoped fibre laser to an optical frequency standard. The use of such an electro-optic modulator (EOM) has made it possible to extend the working frequency band of a phase-locked loop system for laser stabilisation to several hundred kilohertz. We demonstrate that the KTP-based EOM is sufficiently sensitive even at a small optical length, which allows it to be readily integrated into cavities of femtosecond fibre lasers with high mode frequency spacings (over 100 MHz). (extrememore » light fields and their applications)« less

  17. Optical Power Transfer System for Powering a Remote Mobility System for Multiple Missions

    NASA Technical Reports Server (NTRS)

    Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)

    2016-01-01

    An optical power transfer system for powering a remote mobility system for multiple missions comprising a high power source and a chilling station connected to a laser source. The laser source transmits a high optical energy to a beam switch assembly via an optical fiber. The beam switch assembly is optically connected to actively cooled fiber spoolers. Docking stations are adapted for securing the fiber spoolers until alternatively ready for use by a remote mobility system. The remote mobility system is optically connected to the fiber spoolers and has a receiving port adapted for securing the fiber spoolers thereon. The fiber spooler transmits the optical energy to a power conversion system which converts the optical energy received to another usable form of energy. More than one power source may be used where the remote mobility system transfers from one source to another while maintaining an operational radius to each source.

  18. End-pumped 300 W continuous-wave ytterbium-doped all-fiber laser with master oscillator multi-stage power amplifiers configuration.

    PubMed

    Yin, Shupeng; Yan, Ping; Gong, Mali

    2008-10-27

    An end-pumped ytterbium-doped all-fiber laser with 300 W output in continuous regime was reported, which was based on master oscillator multi-stage power amplifiers configuration. Monolithic fiber laser system consisted of an oscillator stage and two amplifier stages. Total optical-optical efficiency of monolithic fiber laser was approximately 65%, corresponding to 462 W of pump power coupled into laser system. We proposed a new method to connect power amplifier stage, which was crucial for the application of end-pumped combiner in high power MOPAs all-fiber laser.

  19. Optical Design of Adaptive Optics Confocal Scanning Laser Ophthalmoscope with Two Deformable Mirrors.

    PubMed

    Yang, Jinsheng; Wang, Yuanyuan; Rao, Xuejun; Wei, Ling; Li, Xiqi; He, Yi

    2017-01-01

    We describe the optical design of a confocal scanning laser ophthalmoscope with two deformable mirrors. Spherical mirrors are used for pupil relay. Defocus aberration of the human eye is corrected by a Badal focusing structure and astigmatism aberration is corrected by a deformable mirror. The main optical system achieves a diffraction-limited performance through the entire scanning field (6 mm pupil, 3 degrees on pupil plane). The performance of the optical system, with correction of defocus and astigmatism, is also evaluated.

  20. SPECTRAL AND MODE PROPERTIES OF SOLID-STATE LASERS AND OPTICAL DYNAMIC EFFECTS.

    DTIC Science & Technology

    LASERS , OPTICAL PROPERTIES), THERMAL PROPERTIES, FREQUENCY, RUBY, KERR CELLS, ELECTROMAGNETIC PULSES, PHASE LOCKED SYSTEMS, GARNET, NEODYMIUM, CAVITY RESONATORS, INTERFEROMETERS, LIGHT PULSES, PROPAGATION

  1. Multi-Gigabit Free-Space Optical Data Communication and Network System

    DTIC Science & Technology

    2016-04-01

    IR), Ultraviolet ( UV ), Laser Transceiver, Adaptive Beam Tracking, Electronic Attack (EA), Cyber Attack, Multipoint-to-Multipoint Network, Adaptive...FileName.pptx Free Space Optical Datalink Timeline Phase 1 Point-to-point demonstration 2012 Future Adaptive optic & Quantum Cascade Laser

  2. Ophthalmic laser system integrated with speckle variance optical coherence tomography for real-time temperature monitoring

    NASA Astrophysics Data System (ADS)

    Lee, Soohyun; Lee, Changho; Cheon, Gyeongwoo; Kim, Jongmin; Jo, Dongki; Lee, Jihoon; Kang, Jin U.

    2018-02-01

    A commercial ophthalmic laser system (R;GEN, Lutronic Corp) was integrated with a swept-source optical coherence tomography (OCT) imaging system for real-time tissue temperature monitoring. M-scan OCT images were acquired during laser-pulse radiation, and speckle variance OCT (svOCT) images were analyzed to deduce temporal signal variations related to tissue temperature change from laser-pulse radiation. A phantom study shows that svOCT magnitude increases abruptly after laser pulse radiation and recovered exponentially, and the peak intensity of svOCT image was linearly dependent on pulse laser energy until it saturates. A study using bovine iris also showed signal variation dependence on the laser pulse radiation, and the variation was more distinctive with higher energy level.

  3. Thermomagnetic recording and magneto-optic playback system having constant intensity laser beam control

    NASA Technical Reports Server (NTRS)

    Lewicki, G. W.; Guisinger, J. E. (Inventor)

    1973-01-01

    A system is developed for maintaining the intensity of a laser beam at a constant level in a thermomagnetic recording and magneto-optic playback system in which an isotropic film is heated along a continuous path by the laser beam for recording. As each successive area of the path is heated locally to the vicinity of its Curie point in the presence of a controlled magnetic field, a magneto-optic density is produced proportional to the amplitude of the controlled magnetic field. To play back the recorded signal, the intensity of the laser beam is reduced and a Faraday or Kerr effect analyzer is used, with a photodetector, as a transducer for producing an output signal.

  4. Five Micron High Resolution MALDI Mass Spectrometry Imaging with Simple, Interchangeable, Multi-Resolution Optical System

    DOE PAGES

    Feenstra, Adam D.; Dueñas, Maria Emilia; Lee, Young Jin

    2017-01-03

    High-spatial resolution mass spectrometry imaging (MSI) is crucial for the mapping of chemical distributions at the cellular and subcellular level. Here in this work, we improved our previous laser optical system for matrix-assisted laser desorption ionization (MALDI)-MSI, from ~9 μm practical laser spot size to a practical laser spot size of ~4 μm, thereby allowing for 5 μm resolution imaging without oversampling. This is accomplished through a combination of spatial filtering, beam expansion, and reduction of the final focal length. Most importantly, the new laser optics system allows for simple modification of the spot size solely through the interchanging ofmore » the beam expander component. Using 10×, 5×, and no beam expander, we could routinely change between ~4, ~7, and ~45 μm laser spot size, in less than 5 min. We applied this multi-resolution MALDI-MSI system to a single maize root tissue section with three different spatial resolutions of 5, 10, and 50 μm and compared the differences in imaging quality and signal sensitivity. Lastly, we also demonstrated the difference in depth of focus between the optical systems with 10× and 5× beam expanders.« less

  5. Five Micron High Resolution MALDI Mass Spectrometry Imaging with Simple, Interchangeable, Multi-Resolution Optical System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feenstra, Adam D.; Dueñas, Maria Emilia; Lee, Young Jin

    High-spatial resolution mass spectrometry imaging (MSI) is crucial for the mapping of chemical distributions at the cellular and subcellular level. Here in this work, we improved our previous laser optical system for matrix-assisted laser desorption ionization (MALDI)-MSI, from ~9 μm practical laser spot size to a practical laser spot size of ~4 μm, thereby allowing for 5 μm resolution imaging without oversampling. This is accomplished through a combination of spatial filtering, beam expansion, and reduction of the final focal length. Most importantly, the new laser optics system allows for simple modification of the spot size solely through the interchanging ofmore » the beam expander component. Using 10×, 5×, and no beam expander, we could routinely change between ~4, ~7, and ~45 μm laser spot size, in less than 5 min. We applied this multi-resolution MALDI-MSI system to a single maize root tissue section with three different spatial resolutions of 5, 10, and 50 μm and compared the differences in imaging quality and signal sensitivity. Lastly, we also demonstrated the difference in depth of focus between the optical systems with 10× and 5× beam expanders.« less

  6. UV diode-pumped solid state laser for medical applications

    NASA Astrophysics Data System (ADS)

    Apollonov, Victor V.; Konstantinov, K. V.; Sirotkin, A. A.

    1999-07-01

    A compact, solid-state, high-efficiency, and safe UV laser medical system with optical fiber output was created for treatment of destructive forms of pulmonary tuberculosis. A frequency-quadruped quasi-CW Nd:YVO4 laser system pumped by laser-diode array is investigated with various resonator configurations. A longitudinal end-pumping scheme was used in a compact acousto-optical Q-switched laser for producing stable pulses of UV radiation at the repetition frequency 10-20 kHz and the duration 7-10 ns with the fiber-guide output power exceeding 10 mW.

  7. Simulations of far-field optical beam quality influenced by the thermal distortion of the secondary mirror for high-power laser system

    NASA Astrophysics Data System (ADS)

    Guo, Ruhai; Chen, Ning; Zhuang, Xinyu; Wang, Bing

    2015-02-01

    In order to research the influence on the beam quality due to thermal deformation of the secondary mirror in the high power laser system, the theoretical simulation study is performed. Firstly, three typical laser power 10kW, 50kW and 100kW with the wavelength 1.064μm are selected to analyze thermal deformation of mirror through the finite element analyze of thermodynamics instantaneous method. Then the wavefront aberration can be calculated by ray-tracing theory. Finally, focus spot radius,beam quality (BQ) of far-filed beam can be calculated and comparably analyzed by Fresnel diffraction integration. The simulation results show that with the increasing laser power, the optical aberration of beam director gets worse, the far-field optical beam quality decrease, which makes the laser focus spot broadening and the peak optical intensity of center decreasing dramatically. Comparing the clamping ring and the three-point clamping, the former is better than the latter because the former only induces the rotation symmetric deformation and the latter introduces additional astigmatism. The far-field optical beam quality can be improved partly by simply adjusting the distance between the main mirror and the secondary mirror. But the far-field power density is still the one tenth as that without the heat distortion of secondary mirror. These results can also provide the reference to the thermal aberration analyze for high power laser system and can be applied to the field of laser communication system and laser weapon etc.

  8. 14- by 22-Foot Subsonic Tunnel Laser Velocimeter Upgrade

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Lee, Joseph W.; Cavone, Angelo A.; Fletcher, Mark T.

    2012-01-01

    A long-focal length laser velocimeter constructed in the early 1980's was upgraded using current technology to improve usability, reliability and future serviceability. The original, free-space optics were replaced with a state-of-the-art fiber-optic subsystem which allowed most of the optics, including the laser, to be remote from the harsh tunnel environment. General purpose high-speed digitizers were incorporated in a standard modular data acquisition system, along with custom signal processing software executed on a desktop computer, served as the replacement for the signal processors. The resulting system increased optical sensitivity with real-time signal/data processing that produced measurement precisions exceeding those of the original system. Monte Carlo simulations, along with laboratory and wind tunnel investigations were used to determine system characteristics and measurement precision.

  9. The Modernization of a Long-Focal Length Fringe-Type Laser Velocimeter

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Lee, Joseph W.; Cavone, Angelo A.; Fletcher, Mark T.

    2012-01-01

    A long-focal length laser velocimeter constructed in the early 1980's was upgraded using current technology to improve usability, reliability and future serviceability. The original, free-space optics were replaced with a state-of-the-art fiber-optic subsystem which allowed most of the optics, including the laser, to be remote from the harsh tunnel environment. General purpose high-speed digitizers were incorporated in a standard modular data acquisition system, along with custom signal processing software executed on a desktop computer, served as the replacement for the signal processors. The resulting system increased optical sensitivity with real-time signal/data processing that produced measurement precisions exceeding those of the original system. Monte Carlo simulations, along with laboratory and wind tunnel investigations were used to determine system characteristics and measurement precision.

  10. Latest results on solarization of optical glasses with pulsed laser radiation

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Petzold, Uwe

    2017-02-01

    Femtosecond lasers are more and more used for material processing and lithography. Femtosecond laser help to generate three dimensional structures in photoresists without using masks in micro lithography. This technology is of growing importance for the field of backend lithography or advanced packaging. Optical glasses used for beam shaping and inspection tools need to withstand high laser pulse energies. Femtosecond laser radiation in the near UV wavelength range generates solarization effects in optical glasses. In this paper results are shown of femtosecond laser solarization experiments on a broad range of optical glasses from SCHOTT. The measurements have been performed by the Laser Zentrum Hannover in Germany. The results and their impact are discussed in comparison to traditional HOK-4 and UVA-B solarization measurements of the same materials. The target is to provide material selection guidance to the optical designer of beam shaping lens systems.

  11. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph S.

    1977-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  12. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph

    1982-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  13. Optical Analysis And Alignment Applications Using The Infrared Smartt Interferometer

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.; Bolen, P. D.; Liberman, I.; Seery, B. D.

    1981-12-01

    The possiblility of using the infrared Smartt interferometer for optical analysis and alignment of infrared laser systems has been discussed previously. In this paper, optical analysis of the Gigawatt Test Facility at Los Alamos, as well as a deformable mirror manufactured by Rocketdyne, are discussed as examples of the technique. The possibility of optically characterizing, as well as aligning, pulsed high energy laser systems like Helios and Antares is discussed in some detail.

  14. Optical analysis and alignment applications using the infrared Smartt interferometer

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.; Bolen, P. D.; Liberman, I.; Seery, B. D.

    The possibility of using the infrared Smartt interferometer for optical analysis and alignment of infrared laser systems has been discussed previously. In this paper, optical analysis of the Gigawatt Test Facility at Los Alamos, as well as a deformable mirror manufactured by Rocketdyne, are discussed as examples of the technique. The possibility of optically characterizing, as well as aligning, pulsed high energy laser systems like Helios and Antares is discussed in some detail.

  15. Apparatus and Method for Elimination of Polarization-Induced Fading in Fiber-optic Sensor System

    NASA Technical Reports Server (NTRS)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    The invention is an apparatus and method of eliminating polarization-induced fading in interferometric fiber-optic sensor system having a wavelength-swept laser optical signal. The interferometric return signal from the sensor arms are combined and provided to a multi-optical path detector assembly and ultimately to a data acquisition and processing unit by way of a switch that is time synchronized with the laser scan sweep cycle.

  16. Design, fabrication, and performance testing of a vacuum chamber for pulse compressor of a 150 TW Ti:sapphire laser

    NASA Astrophysics Data System (ADS)

    Tripathi, P. K.; Singh, Rajvir; Bhatnagar, V. K.; Sharma, S. D.; Sharma, Sanjay; Sisodia, B.; Yedle, K.; Kushwaha, R. P.; Sebastin, S.; Mundra, G.

    2012-11-01

    A vacuum chamber, to house the optical pulse compressor of a 150 TW Ti:sapphire laser system, has been designed, fabricated, and tested. As the intensity of the laser pulse becomes very high after pulse compression, there is phase distortion of the laser beam in air. Hence, the beam (after pulse compression) has to be transported in vacuum to avoid this distortion, which affects the laser beam focusability. A breadboard with optical gratings and reflective optics for compression of the optical pulse has to be kept inside the chamber. The chamber is made of SS 316L material in cuboidal shape with inside dimensions 1370×1030×650 mm3, with rectangular and circular demountable ports for entry and exit of the laser beam, evacuation, system cables, and ports to access optics mounted inside the chamber. The front and back sides of the chamber are kept demountable in order to insert the breadboard with optical components mounted on it. Leak tightness of 9×10-9 mbar-lit/sec in all the joints and ultimate vacuum of 6.5×10-6 mbar was achieved in the chamber using a turbo molecular pumping system. The paper describe details of the design/ features of the chamber, important procedure involved in machining, fabrication, processing and final testing.

  17. Use Of Zernike Polynomials And Interferometry In The Optical Design And Assembly Of Large Carbon-Dioxide Laser Systems

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.

    1982-02-01

    This paper describes the need for non-raytracing schemes in the optical design and analysis of large carbon-dioxide lasers like the Gigawatt,1 Gemini, 2 and Helios3 lasers currently operational at Los Alamos, and the Antares 4 laser fusion system under construction. The scheme currently used at Los Alamos involves characterizing the various optical components with a Zernike polynomial sets obtained by the digitization6 of experimentally produced interferograms of the components. A Fast Fourier Transform code then propagates the complex amplitude and phase of the beam through the whole system and computes the optical parameters of interest. The analysis scheme is illustrated through examples of the Gigawatt, Gemini, and Helios systems. A possible way of using the Zernike polynomials in optical design problems of this type is discussed. Comparisons between the computed values and experimentally obtained results are made and it is concluded that this appears to be a valid approach. As this is a review article, some previously published results are also used where relevant.

  18. Performance of a laser microsatellite network with an optical preamplifier.

    PubMed

    Arnon, Shlomi

    2005-04-01

    Laser satellite communication (LSC) uses free space as a propagation medium for various applications, such as intersatellite communication or satellite networking. An LSC system includes a laser transmitter and an optical receiver. For communication to occur, the line of sight of the transmitter and the receiver must be aligned. However, mechanical vibration and electronic noise in the control system reduce alignment between the transmitter laser beam and the receiver field of view (FOV), which results in pointing errors. The outcome of pointing errors is fading of the received signal, which leads to impaired link performance. An LSC system is considered in which the optical preamplifier is incorporated into the receiver, and a bit error probability (BEP) model is derived that takes into account the statistics of the pointing error as well as the optical amplifier and communication system parameters. The model and the numerical calculation results indicate that random pointing errors of sigma(chi)2G > 0.05 penalize communication performance dramatically for all combinations of optical amplifier gains and noise figures that were calculated.

  19. Dual-wavelength quantum cascade laser for trace gas spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jágerská, J.; Tuzson, B.; Mangold, M.

    2014-10-20

    We demonstrate a sequentially operating dual-wavelength quantum cascade laser with electrically separated laser sections, emitting single-mode at 5.25 and 6.25 μm. Based on a single waveguide ridge, this laser represents a considerable asset to optical sensing and trace gas spectroscopy, as it allows probing multiple gas species with spectrally distant absorption features using conventional optical setups without any beam combining optics. The laser capability was demonstrated in simultaneous NO and NO{sub 2} detection, reaching sub-ppb detection limits and selectivity comparable to conventional high-end spectroscopic systems.

  20. GAUSSIAN BEAM LASER RESONATOR PROGRAM

    NASA Technical Reports Server (NTRS)

    Cross, P. L.

    1994-01-01

    In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.

  1. Technology Development of a Fiber Optic-Coupled Laser Ignition System for Multi-Combustor Rocket Engines

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew E.; Bossard, John A.

    2002-01-01

    This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). The first two years of the project focus on comprehensive assessments and evaluations of a novel dual-pulse laser concept, flight- qualified laser system, and the technology required to integrate the laser ignition system to a rocket chamber. With collaborations of the Department of Energy/Los Alamos National Laboratory (LANL) and CFD Research Corporation (CFDRC), MSFC has conducted 26 hot fire ignition tests with lab-scale laser systems. These tests demonstrate the concept feasibility of dual-pulse laser ignition to initiate gaseous oxygen (GOX)/liquid kerosene (RP-1) combustion in a rocket chamber. Presently, a fiber optic- coupled miniaturized laser ignition prototype is being implemented at the rocket chamber test rig for future testing. Future work is guided by a technology road map that outlines the work required for maturing a laser ignition system. This road map defines activities for the next six years, with the goal of developing a flight-ready laser ignition system.

  2. Apparatus, system, and method for laser-induced breakdown spectroscopy

    DOEpatents

    Effenberger, Jr., Andrew J; Scott, Jill R; McJunkin, Timothy R

    2014-11-18

    In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.

  3. Wideband tunable laser phase noise reduction using single sideband modulation in an electro-optical feed-forward scheme.

    PubMed

    Aflatouni, Firooz; Hashemi, Hossein

    2012-01-15

    A wideband laser phase noise reduction scheme is introduced where the optical field of a laser is single sideband modulated with an electrical signal containing the discriminated phase noise of the laser. The proof-of-concept experiments on a commercially available 1549 nm distributed feedback laser show linewidth reduction from 7.5 MHz to 1.8 kHz without using large optical cavity resonators. This feed-forward scheme performs wideband phase noise cancellation independent of the light source and, as such, it is compatible with the original laser source tunability without requiring tunable optical components. By placing the proposed phase noise reduction system after a commercial tunable laser, a tunable coherent light source with kilohertz linewidth over a tuning range of 1530-1570 nm is demonstrated.

  4. Laser parameters, focusing optics, and side effects in femtosecond laser corneal surgery

    NASA Astrophysics Data System (ADS)

    Plamann, Karsten; Nuzzo, Valeria; Peyrot, Donald A.; Deloison, Florent; Savoldelli, Michèle; Legeais, Jean-Marc

    2008-02-01

    Nowadays, femtosecond lasers are routinely used in refractive eye surgery. Until recently, commercialised clinical systems were exclusively based on ytterbium or neodymium-doped solid state lasers emitting sub-picosecond pulses at a wavelength of about 1 μm and repetition rates of a few 10 kHz. These systems use pulse energies in the μJ range and focussing optics of NA = 0.3 to 0.5. Recent developments have provided a variety of alternative and equally viable approaches: systems are now available using nJ pulses at high numerical apertures and MHz repetition rates - an approach so far only used for femtosecond cell surgery - and fibre laser technology is now being used for femtosecond laser corneal surgery. Recent research has also provided more insight in side effects occurring in present systems: self focusing phenomena and so far unexplained periodical structures have been observed even at high numerical apertures (NA >> 0.5) and moderate pulse energies. The interaction of femtosecond laser pulses with strongly scattering tissue has been studied in view of extending the application of femtosecond lasers to keratoplasty for opaque corneas and to glaucoma surgery. The use of new laser wavelengths and adaptive optics has been proposed. Despite the reputation of femtosecond surgical systems for their precision, repeatability and the absence of secondary effects or complications, a closer examination reveals the presence of subtle phenomena which merit further investigation. We present three of these phenomena: the influence of optical aberration on the quality of the incision, the occurrence of filamentation effects, and the deposit of microscopic glass fragments when performing penetrating incisions.

  5. Optical resolution photoacoustic microscopy using novel high-repetition-rate passively Q-switched microchip and fiber lasers.

    PubMed

    Shi, Wei; Kerr, Shaun; Utkin, Ilya; Ranasinghesagara, Janaka; Pan, Lei; Godwal, Yogesh; Zemp, Roger J; Fedosejevs, Robert

    2010-01-01

    Optical-resolution photoacoustic microscopy (OR-PAM) is a novel imaging technology for visualizing optically absorbing superficial structures in vivo with lateral spatial resolution determined by optical focusing rather than acoustic detection. Since scanning of the illumination spot is required, OR-PAM imaging speed is limited by both scanning speed and laser pulse repetition rate. Unfortunately, lasers with high repetition rates and suitable pulse durations and energies are not widely available and can be cost-prohibitive and bulky. We are developing compact, passively Q-switched fiber and microchip laser sources for this application. The properties of these lasers are discussed, and pulse repetition rates up to 100 kHz are demonstrated. OR-PAM imaging was conducted using a previously developed photoacoustic probe, which enabled flexible scanning of the focused output of the lasers. Phantom studies demonstrate the ability to image with lateral spatial resolution of 7±2 μm with the microchip laser system and 15±5 μm with the fiber laser system. We believe that the high pulse repetition rates and the potentially compact and fiber-coupled nature of these lasers will prove important for clinical imaging applications where real-time imaging performance is essential.

  6. DPSSL for direct dicing and drilling of dielectrics

    NASA Astrophysics Data System (ADS)

    Ashkenasi, David; Schwagmeier, M.

    2007-02-01

    New strategies in laser micro processing of glasses and other optically transparent materials are being developed with increasing interest and intensity using diode pumped solid state laser (DPSSL) systems generating short or ultra-short pulses in the optical spectra at good beam quality. Utilizing non-linear absorption channels, it can be demonstrated that ns green (532 nm) laser light can scribe, dice, full body cut and drill (flat) borofloat and borosilicate glasses at good quality. Outside of the correct choice in laser parameters, an intelligent laser beam management plays an important role in successful micro processing of glass. This application characterizes a very interesting alternative where standard methods demonstrate severe limitations such as diamond dicing, CO2 laser treatment or water jet cutting, especially for certain type of optical materials and/or geometric conditions. Application near processing examples using different DPSSL systems generating ns pulsed light at 532 nm in TEM 00 at average powers up to 10 W are presented and discussed in respect to potential applications in display technology, micro electronics and optics.

  7. Sky coverage modeling for the whole sky for laser guide star multiconjugate adaptive optics.

    PubMed

    Wang, Lianqi; Andersen, David; Ellerbroek, Brent

    2012-06-01

    The scientific productivity of laser guide star adaptive optics systems strongly depends on the sky coverage, which describes the probability of finding natural guide stars for the tip/tilt wavefront sensor(s) to achieve a certain performance. Knowledge of the sky coverage is also important for astronomers planning their observations. In this paper, we present an efficient method to compute the sky coverage for the laser guide star multiconjugate adaptive optics system, the Narrow Field Infrared Adaptive Optics System (NFIRAOS), being designed for the Thirty Meter Telescope project. We show that NFIRAOS can achieve more than 70% sky coverage over most of the accessible sky with the requirement of 191 nm total rms wavefront.

  8. Temporal laser pulse manipulation using multiple optical ring-cavities

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor)

    2010-01-01

    An optical pulse stretcher and a mathematical algorithm for the detailed calculation of its design and performance is disclosed. The optical pulse stretcher has a plurality of optical cavities, having multiple optical reflectors such that an optical path length in each of the optical cavities is different. The optical pulse stretcher also has a plurality of beam splitters, each of which intercepts a portion of an input optical beam and diverts the portion into one of the plurality of optical cavities. The input optical beam is stretched and a power of an output beam is reduced after passing through the optical pulse stretcher and the placement of the plurality of optical cavities and beam splitters is optimized through a model that takes into account optical beam divergence and alignment in the pluralities of the optical cavities. The optical pulse stretcher system can also function as a high-repetition-rate (MHz) laser pulse generator, making it suitable for use as a stroboscopic light source for high speed ballistic projectile imaging studies, or it can be used for high speed flow diagnostics using a laser light sheet with digital particle imaging velocimetry. The optical pulse stretcher system can also be implemented using fiber optic components to realize a rugged and compact optical system that is alignment free and easy to use.

  9. Method and system for compact efficient laser architecture

    DOEpatents

    Bayramian, Andrew James; Erlandson, Alvin Charles; Manes, Kenneth Rene; Spaeth, Mary Louis; Caird, John Allyn; Deri, Robert J.

    2015-09-15

    A laser amplifier module having an enclosure includes an input window, a mirror optically coupled to the input window and disposed in a first plane, and a first amplifier head disposed along an optical amplification path adjacent a first end of the enclosure. The laser amplifier module also includes a second amplifier head disposed along the optical amplification path adjacent a second end of the enclosure and a cavity mirror disposed along the optical amplification path.

  10. DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb:YAG laser.

    PubMed

    Banerjee, Saumyabrata; Ertel, Klaus; Mason, Paul D; Phillips, P Jonathan; De Vido, Mariastefania; Smith, Jodie M; Butcher, Thomas J; Hernandez-Gomez, Cristina; Greenhalgh, R Justin S; Collier, John L

    2015-07-27

    The Diode Pumped Optical Laser for Experiments (DiPOLE) project at the Central Laser Facility aims to develop a scalable, efficient high pulse energy diode pumped laser amplifier system based on cryogenic gas cooled, multi-slab ceramic Yb:YAG technology. We present recent results obtained from a scaled down prototype laser system designed for operation at 10 Hz pulse repetition rate. At 140 K, the system generated 10.8 J of energy in a 10 ns pulse at 1029.5 nm when pumped by 48 J of diode energy at 940 nm, corresponding to an optical to optical conversion efficiency of 22.5%. To our knowledge, this represents the highest pulse energy obtained from a cryo cooled Yb laser to date and the highest efficiency achieved by a multi-Joule diode pumped solid state laser system. Additionally, we demonstrated shot-to-shot energy stability of 0.85% rms for the system operated at 7 J, 10 Hz during several runs lasting up to 6 hours, with more than 50 hours in total. We also demonstrated pulse shaping capability and report on beam, wavefront and focal spot quality.

  11. Improvements In A Laser-Speckle Surface-Strain Gauge

    NASA Technical Reports Server (NTRS)

    Lant, Christian T.

    1996-01-01

    Compact optical subsystem incorporates several improvements over optical subsystems of previous versions of laser-speckle surface-strain gauge: faster acquisition of data, faster response to transients, reduced size and weight, lower cost, and less complexity. Principle of operation described previously in "Laser System Measures Two-Dimensional Strain" (LEW-15046), and "Two-Dimensional Laser-Speckle Surface-Strain Gauge" (LEW-15337).

  12. Polarization feedback laser stabilization

    DOEpatents

    Esherick, Peter; Owyoung, Adelbert

    1988-01-01

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other.

  13. ISTC projects devoted to improving laser beam quality

    NASA Astrophysics Data System (ADS)

    Malakhov, Yu. I.

    2007-05-01

    Short overview is done about the activity of ISTC in a direction concerned with improving powerful laser beam quality by means of nonlinear and linear adaptive optics methods. Completed projects #0591 and #1929 resulted in the development of a stimulated Brillouin scattering (SBS) phase conjugation mirror of superhigh fidelity employing the kinoform optical elements (rasters of small lenses) of new generation designed for pulsed or pulse-periodic lasers with nanosecond scale pulse duration. Project #2631 is devoted to development of an adaptive optical system for phase registration and correction of laser beams with wave front vortices. The principles of operation of conventional adaptive systems are based on the assumption that the phase is a smooth continuous function in space. Therefore the solution of the Project tasks will assume a new step in adaptive optics.

  14. Optical levitation particle delivery system for a dual beam fiber optic trap.

    PubMed

    Gauthier, R C; Frangioudakis, A

    2000-01-01

    We combine a radiation-pressure-based levitation system with a dual fiber, laser trapping system to demonstrate the potential of delivering single particles into the fiber trap. The forces versus position and the trajectory of the particle subjected to the laser beams are examined with an enhanced ray optics model. A sequence of video images taken from the experimental apparatus demonstrates the principle of particle delivery, trapping, and further manipulation.

  15. Detecting Topological Defect Dark Matter Using Coherent Laser Ranging System

    PubMed Central

    Yang, Wanpeng; Leng, Jianxiao; Zhang, Shuangyou; Zhao, Jianye

    2016-01-01

    In the last few decades, optical frequency combs with high intensity, broad optical bandwidth, and directly traceable discrete wavelengths have triggered rapid developments in distance metrology. However, optical frequency combs to date have been limited to determine the absolute distance to an object (such as satellite missions). We propose a scheme for the detection of topological defect dark matter using a coherent laser ranging system composed of dual-combs and an optical clock via nongravitational signatures. The dark matter field, which comprises a defect, may interact with standard model particles, including quarks and photons, resulting in the alteration of their masses. Thus, a topological defect may function as a dielectric material with a distinctive frequency-depend index of refraction, which would cause the time delay of a periodic extraterrestrial or terrestrial light. When a topological defect passes through the Earth, the optical path of long-distance vacuum path is altered, this change in optical path can be detected through the coherent laser ranging system. Compared to continuous wavelength(cw) laser interferometry methods, dual-comb interferometry in our scheme excludes systematic misjudgement by measuring the absolute optical path length. PMID:27389642

  16. Applications of optical sensing for laser cutting and drilling.

    PubMed

    Fox, Mahlen D T; French, Paul; Peters, Chris; Hand, Duncan P; Jones, Julian D C

    2002-08-20

    Any reliable automated production system must include process control and monitoring techniques. Two laser processing techniques potentially lending themselves to automation are percussion drilling and cutting. For drilling we investigate the performance of a modification of a nonintrusive optical focus control system we previously developed for laser welding, which exploits the chromatic aberrations of the processing optics to determine focal error. We further developed this focus control system for closed-loop control of laser cutting. We show that an extension of the technique can detect deterioration in cut quality, and we describe practical trials carried out on different materials using both oxygen and nitrogen assist gas. We base our techniques on monitoring the light generated by the process, captured nonintrusively by the effector optics and processed remotely from the workpiece. We describe the relationship between the temporal and the chromatic modulation of the detected light and process quality and show how the information can be used as the basis of a process control system.

  17. Low-photon-number optical switch and AND/OR logic gates based on quantum dot-bimodal cavity coupling system.

    PubMed

    Ma, Shen; Ye, Han; Yu, Zhong-Yuan; Zhang, Wen; Peng, Yi-Wei; Cheng, Xiang; Liu, Yu-Min

    2016-01-11

    We propose a new scheme based on quantum dot-bimodal cavity coupling system to realize all-optical switch and logic gates in low-photon-number regime. Suppression of mode transmission due to the destructive interference effect is theoretically demonstrated by driving the cavity with two orthogonally polarized pulsed lasers at certain pulse delay. The transmitted mode can be selected by designing laser pulse sequence. The optical switch with high on-off ratio emerges when considering one driving laser as the control. Moreover, the AND/OR logic gates based on photon polarization are achieved by cascading the coupling system. Both proposed optical switch and logic gates work well in ultra-low energy magnitude. Our work may enable various applications of all-optical computing and quantum information processing.

  18. Low-photon-number optical switch and AND/OR logic gates based on quantum dot-bimodal cavity coupling system

    PubMed Central

    Ma, Shen; Ye, Han; Yu, Zhong-Yuan; Zhang, Wen; Peng, Yi-Wei; Cheng, Xiang; Liu, Yu-Min

    2016-01-01

    We propose a new scheme based on quantum dot-bimodal cavity coupling system to realize all-optical switch and logic gates in low-photon-number regime. Suppression of mode transmission due to the destructive interference effect is theoretically demonstrated by driving the cavity with two orthogonally polarized pulsed lasers at certain pulse delay. The transmitted mode can be selected by designing laser pulse sequence. The optical switch with high on-off ratio emerges when considering one driving laser as the control. Moreover, the AND/OR logic gates based on photon polarization are achieved by cascading the coupling system. Both proposed optical switch and logic gates work well in ultra-low energy magnitude. Our work may enable various applications of all-optical computing and quantum information processing. PMID:26750557

  19. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods

    DOEpatents

    Rinzler, Charles C.; Gray, William C.; Faircloth, Brian O.; Zediker, Mark S.

    2016-02-23

    A monitoring and detection system for use on high power laser systems, long distance high power laser systems and tools for performing high power laser operations. In particular, the monitoring and detection systems provide break detection and continuity protection for performing high power laser operations on, and in, remote and difficult to access locations.

  20. 20-Gbps optical LiFi transport system.

    PubMed

    Ying, Cheng-Ling; Lu, Hai-Han; Li, Chung-Yi; Cheng, Chun-Jen; Peng, Peng-Chun; Ho, Wen-Jeng

    2015-07-15

    A 20-Gbps optical light-based WiFi (LiFi) transport system employing vertical-cavity surface-emitting laser (VCSEL) and external light injection technique with 16-quadrature amplitude modulation (QAM)-orthogonal frequency-division multiplexing (OFDM) modulating signal is proposed. Good bit error rate (BER) performance and clear constellation map are achieved in our proposed optical LiFi transport systems. An optical LiFi transport system, delivering 16-QAM-OFDM signal over a 6-m free-space link, with a data rate of 20 Gbps, is successfully demonstrated. Such a 20-Gbps optical LiFi transport system provides the advantage of a free-space communication link for high data rates, which can accelerate the visible laser light communication (VLLC) deployment.

  1. Nd:YAG laser system for ophthalmic microsurgery

    NASA Astrophysics Data System (ADS)

    Savastru, Dan; Ristici, Esofina; Dragu, T.; Cotirlan, C.; Miclos, Sorin; Mustata, Marina

    2005-04-01

    The Nd:YAG solid state laser can be used in ophthalmologic microsurgery because of its specific wavelength of 1064 nm, which has the property to penetrate the transparent medium of the eye. We design a specific ophthalmic system, containing a Q-switch Nd:YAG laser, an optical stereomicroscope and an aiming system. This laser-stereomicroscope system is used for eye examination and for microsurgical proceedings like posterior capsulotomy and pupilar membranectomy. We had to design an optical scheme of the laser to settle the radiation route. In order to cover the medical domain of the energies, we calibrate eleven attenuation filters using ratiometric method. For a correct position of the place where the laser pulse strikes, we used an original system consisting of two red laser diodes mounted on each side of the binocular One of the advantages of this laser system is taht the output energies can be varied widely (0.8-15 mJ), making a great numbers of applications in clinical ophthalmology possible.

  2. Active optical system for advanced 3D surface structuring by laser remelting

    NASA Astrophysics Data System (ADS)

    Pütsch, O.; Temmler, A.; Stollenwerk, J.; Willenborg, E.; Loosen, P.

    2015-03-01

    Structuring by laser remelting enables completely new possibilities for designing surfaces since material is redistributed but not wasted. In addition to technological advantages, cost and time benefits yield from shortened process times, the avoidance of harmful chemicals and the elimination of subsequent finishing steps such as cleaning and polishing. The functional principle requires a completely new optical machine technology that maintains the spatial and temporal superposition and manipulation of three different laser beams emitted from two laser sources of different wavelength. The optical system has already been developed and demonstrated for the processing of flat samples of hot and cold working steel. However, since particularly the structuring of 3D-injection molds represents an application example of high innovation potential, the optical system has to take into account the elliptical beam geometry that occurs when the laser beams irradiate a curved surface. To take full advantage of structuring by remelting for the processing of 3D surfaces, additional optical functionality, called EPS (elliptical pre-shaping) has to be integrated into the existing set-up. The development of the beam shaping devices not only requires the analysis of the mechanisms of the beam projection but also a suitable optical design. Both aspects are discussed in this paper.

  3. Precision Laser Development for Interferometric Space Missions NGO, SGO, and GRACE Follow-On

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2011-01-01

    Optical fiber and semiconductor laser technologies have evolved dramatically over the last decade due to the increased demands from optical communications. We are developing a laser (master oscillator) and optical amplifier based on those technologies for interferometric space missions, including the gravitational-wave missions NGO/SGO (formerly LISA) and the climate monitoring mission GRACE Follow-On, by fully utilizing the matured wave-guided optics technologies. In space, where simpler and more reliable system is preferred, the wave-guided components are advantageous over bulk, crystal-based, free-space laser, such as NPRO (Nonplanar Ring Oscillator) and bulk-crystal amplifier.

  4. Design and characteristic analysis of shaping optics for optical trepanning

    NASA Astrophysics Data System (ADS)

    Zeng, D.; Latham, W. P.; Kar, A.

    2005-08-01

    Optical trepanning is a new laser drilling method using an annular beam. The annular beams allow numerous irradiance profiles to supply laser energy to the workpiece and thus provide more flexibility in affecting the hole quality than a traditional circular laser beam. The refractive axicon system has been designed to generating a collimated annular beam. In this article, calculations of intensity distributions produced by this refractive system are made by evaluating the Kirchhoff-Fresnel diffraction. It is shown that the refractive system is able to transform a Gaussian beam into a full Gaussian annular beam. The base angle of the axicon lens, input laser beam diameter and intensity profiles are found to be important factors for the axcion refractive system. Their effects on the annular beam profiles are analyzed based on the numerical solutions of the diffraction patterns.

  5. Development of modulated optical transmission system to determinate the cloud and freezing points in biofuels.

    PubMed

    Jaramillo-Ochoa, Liliana; Ramirez-Gutierrez, Cristian F; Sánchez-Moguel, Alonso; Acosta-Osorio, Andrés; Rodriguez-Garcia, Mario E

    2015-01-01

    This work is focused in the development of a modulated optical transmission system with temperature control to determine the thermal properties of biodiesels such as the cloud and freezing points. This system is able to determine these properties in real time without relying on the operator skills as indicated in the American Society for Testing Materials (ASTM) norms. Thanks to the modulation of the incident laser, the noise of the signal is reduced and two information channels are generated: amplitude and phase. Lasers with different wavelengths can be used in this system but the sample under study must have optical absorption at the wavelength of the laser.

  6. All-optical switching of magnetoresistive devices using telecom-band femtosecond laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Li; Chen, Jun-Yang; Wang, Jian-Ping, E-mail: jpwang@umn.edu, E-mail: moli@umn.edu

    Ultrafast all-optical switching of the magnetization of various magnetic systems is an intriguing phenomenon that can have tremendous impact on information storage and processing. Here, we demonstrate all-optical switching of GdFeCo alloy films using a telecom-band femtosecond fiber laser. We further fabricate Hall cross devices and electrically readout all-optical switching by measuring anomalous Hall voltage changes. The use of a telecom laser and the demonstrated all-optical switching of magnetoresistive devices represent the first step toward integration of opto-magnetic devices with mainstream photonic devices to enable novel optical and spintronic functionalities.

  7. Self-Mixing Thin-Slice Solid-State Laser Metrology

    PubMed Central

    Otsuka, Kenju

    2011-01-01

    This paper reviews the dynamic effect of thin-slice solid-state lasers subjected to frequency-shifted optical feedback, which led to the discovery of the self-mixing modulation effect, and its applications to quantum-noise-limited versatile laser metrology systems with extreme optical sensitivity. PMID:22319406

  8. The optical antenna system design research on earth integrative network laser link in the future

    NASA Astrophysics Data System (ADS)

    Liu, Xianzhu; Fu, Qiang; He, Jingyi

    2014-11-01

    Earth integrated information network can be real-time acquisition, transmission and processing the spatial information with the carrier based on space platforms, such as geostationary satellites or in low-orbit satellites, stratospheric balloons or unmanned and manned aircraft, etc. It is an essential infrastructure for China to constructed earth integrated information network. Earth integrated information network can not only support the highly dynamic and the real-time transmission of broadband down to earth observation, but the reliable transmission of the ultra remote and the large delay up to the deep space exploration, as well as provide services for the significant application of the ocean voyage, emergency rescue, navigation and positioning, air transportation, aerospace measurement or control and other fields.Thus the earth integrated information network can expand the human science, culture and productive activities to the space, ocean and even deep space, so it is the global research focus. The network of the laser communication link is an important component and the mean of communication in the earth integrated information network. Optimize the structure and design the system of the optical antenna is considered one of the difficulty key technologies for the space laser communication link network. Therefore, this paper presents an optical antenna system that it can be used in space laser communication link network.The antenna system was consisted by the plurality mirrors stitched with the rotational paraboloid as a substrate. The optical system structure of the multi-mirror stitched was simulated and emulated by the light tools software. Cassegrain form to be used in a relay optical system. The structural parameters of the relay optical system was optimized and designed by the optical design software of zemax. The results of the optimal design and simulation or emulation indicated that the antenna system had a good optical performance and a certain reference value in engineering. It can provide effective technical support to realize interconnection of earth integrated laser link information network in the future.

  9. Optical coupling of bare optoelectronic components and flexographically printed polymer waveguides in planar optronic systems

    NASA Astrophysics Data System (ADS)

    Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger

    2016-05-01

    Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated. Additionally, we demonstrate optical links by adopting the aforementioned processes used for defining the simulation. We verify the feasibility of the developed processes for planar optronic systems by using an active alignment and conduct discussions for further improvements of optical alignment.

  10. Quantum Optical Transistor and Other Devices Based on Nanostructures

    NASA Astrophysics Data System (ADS)

    Li, Jin-Jin; Zhu, Ka-Di

    Laser and strong coupling can coexist in a single quantum dot (QD) coupled to nanostructures. This provides an important clue toward the realization of quantum optical devices, such as quantum optical transistor, slow light device, fast light device, or light storage device. In contrast to conventional electronic transistor, a quantum optical transistor uses photons as signal carriers rather than electrons, which has a faster and more powerful transfer efficiency. Under the radiation of a strong pump laser, a signal laser can be amplified or attenuated via passing through a single quantum dot coupled to a photonic crystal (PC) nanocavity system. Such a switching and amplifying behavior can really implement the quantum optical transistor. By simply turning on or off the input pump laser, the amplified or attenuated signal laser can be obtained immediately. Based on this transistor, we further propose a method to measure the vacuum Rabi splitting of exciton in all-optical domain. Besides, we study the light propagation in a coupled QD and nanomechanical resonator (NR) system. We demonstrate that it is possible to achieve the slow light, fast light, and quantum memory for light on demand, which is based on the mechanically induced coherent population oscillation (MICPO) and exciton polaritons. These QD devices offer a route toward the use of all-optical technique to investigate the coupled QD systems and will make contributions to quantum internets and quantum computers.

  11. Optically pumped isotopic ammonia laser system

    DOEpatents

    Buchwald, Melvin I.; Jones, Claude R.; Nelson, Leonard Y.

    1982-01-01

    An optically pumped isotopic ammonia laser system which is capable of producing a plurality of frequencies in the middle infrared spectral region. Two optical pumping mechanisms are disclosed, i.e., pumping on R(J) and lasing on P(J) in response to enhancement of rotational cascade lasing including stimulated Raman effects, and, pumping on R(J) and lasing on P(J+2). The disclosed apparatus for optical pumping include a hole coupled cavity and a grating coupled cavity.

  12. Phase noise reduction by optical phase-locked loop for a coherent bichromatic laser based on the injection-locking technique.

    PubMed

    Wu, C F; Yan, X S; Huang, J Q; Zhang, J W; Wang, L J

    2018-01-01

    We present a coherent bichromatic laser system with low phase noise. An optical injection process is used to generate coherent laser beams with a frequency difference of 9.192 631 77 GHz using an electro-optical modulator. An optical phase-locked loop is then applied to reduce the phase noise. The phase noise of the beat note is -41, -81, -98, -83, and -95 dBrad 2 /Hz at the offset frequencies of 1 Hz, 100 Hz, 1 kHz, 10 kHz, and 1 MHz, respectively. Compared to a system that uses optical injection alone, the phase noise is reduced by up to 20-30 dB in the low-frequency range, and the intermodulation effect on the continuous atomic clock is reduced by an order of magnitude. This configuration can adjust the intensities and polarizations of the laser beams independently and reduce the phase noise caused by environmental disturbances and optical injection, which may be useful for application to atomic coherence experiments.

  13. Phase noise reduction by optical phase-locked loop for a coherent bichromatic laser based on the injection-locking technique

    NASA Astrophysics Data System (ADS)

    Wu, C. F.; Yan, X. S.; Huang, J. Q.; Zhang, J. W.; Wang, L. J.

    2018-01-01

    We present a coherent bichromatic laser system with low phase noise. An optical injection process is used to generate coherent laser beams with a frequency difference of 9.192 631 77 GHz using an electro-optical modulator. An optical phase-locked loop is then applied to reduce the phase noise. The phase noise of the beat note is -41, -81, -98, -83, and -95 dBrad2/Hz at the offset frequencies of 1 Hz, 100 Hz, 1 kHz, 10 kHz, and 1 MHz, respectively. Compared to a system that uses optical injection alone, the phase noise is reduced by up to 20-30 dB in the low-frequency range, and the intermodulation effect on the continuous atomic clock is reduced by an order of magnitude. This configuration can adjust the intensities and polarizations of the laser beams independently and reduce the phase noise caused by environmental disturbances and optical injection, which may be useful for application to atomic coherence experiments.

  14. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOEpatents

    Comaskey, Brian J.; Ault, Earl R.; Kuklo, Thomas C.

    2005-07-05

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  15. Optical double-locked semiconductor lasers

    NASA Astrophysics Data System (ADS)

    AlMulla, Mohammad

    2018-06-01

    Self-sustained period-one (P1) nonlinear dynamics of a semiconductor laser are investigated when both optical injection and modulation are applied for stable microwave frequency generation. Locking the P1 oscillation through modulation on the bias current, injection strength, or detuning frequency stabilizes the P1 oscillation. Through the phase noise variance, the different modulation types are compared. It is demonstrated that locking the P1 oscillation through optical modulation on the output of the master laser outperforms bias-current modulation of the slave laser. Master laser modulation shows wider P1-oscillation locking range and lower phase noise variance. The locking characteristics of the P1 oscillation also depend on the operating conditions of the optical injection system

  16. Spectral filters for laser communications

    NASA Technical Reports Server (NTRS)

    Shaik, K.

    1991-01-01

    Optical communication systems must perform reliabily under strong background light interference. Since the transmitting lasers operate within a narrow spectral band, high signal to noise ratios can be achieved when narrowband spectral optical filters can be used to reject out of band light. Here, a set of general requirements for such filters are developed, and an overview is given of suitable spectral filter technologies for optical communication systems.

  17. Material processing with fiber based ultrafast pulse delivery

    NASA Astrophysics Data System (ADS)

    Baumbach, S.; Stockburger, R.; Führa, B.; Zoller, S.; Thum, S.; Moosmann, J.; Maier, D.; Kanal, F.; Russ, S.; Kaiser, E.; Budnicki, A.; Sutter, D. H.; Pricking, S.; Killi, A.

    2018-02-01

    We report on TRUMPF's ultrafast laser systems equipped with industrialized hollow core fiber laser light cables. Beam guidance in general by means of optical fibers, e.g. for multi kilowatt cw laser systems, has become an integral part of laser-based material processing. One advantage of fiber delivery, among others, is the mechanical separation between laser and processing head. An equally important benefit is given by the fact that the fiber end acts as an opto-mechanical fix-point close to successive optical elements in the processing head. Components like lenses, diffractive optical elements etc. can thus be designed towards higher efficiency which results in better material processing. These aspects gain increasing significance when the laser system operates in fundamental mode which is usually the case for ultrafast lasers. Through the last years beam guidance of ultrafast laser pulses by means of hollow core fiber technology established very rapidly. The combination of TRUMPF's long-term stable ultrafast laser sources, passive fiber coupling, connector and packaging forms a flexible and powerful system for laser based material processing well suited for an industrial environment. In this article we demonstrate common material processing applications with ultrafast lasers realized with TRUMPF's hollow core fiber delivery. The experimental results are contrasted and evaluated against conventional free space propagation in order to illustrate the performance of flexible ultrafast beam delivery.

  18. Fiber-optic technologies in laser-based therapeutics: threads for a cure.

    PubMed

    Wang, Zheng; Chocat, Noémie

    2010-06-01

    In the past decade, novel fiber structures and material compositions have led to the introduction of new diagnostic and therapeutic tools. We review the structure, the material composition and the fabrication processes behind these novel fiber systems. Because of their structural flexibility, their compatibility with endoscopic appliances and their efficiency in laser delivery, these fiber systems have greatly extended the reach of a wide range of surgical lasers in minimally invasive procedures. Much research in novel fiber-optics delivery systems has been focused on the accommodation of higher optical powers and the extension to a broader wavelength range. Until recently, CO2 laser surgery, renowned for its precision and efficiency, was limited to open surgeries by the lack of delivery fibers. Hollow-core photonic bandgap fibers are assessed for their ability to transmit CO2 laser at surgical power level and for their applications in a range of clinical areas. Current fiber-delivery technologies for a number of laser surgery modalities and wavelengths are compared.

  19. Detrimental Effect Elimination of Laser Frequency Instability in Brillouin Optical Time Domain Reflectometer by Using Self-Heterodyne Detection

    PubMed Central

    Li, Yongqian; Li, Xiaojuan; An, Qi; Zhang, Lixin

    2017-01-01

    A useful method for eliminating the detrimental effect of laser frequency instability on Brillouin signals by employing the self-heterodyne detection of Rayleigh and Brillouin scattering is presented. From the analysis of Brillouin scattering spectra from fibers with different lengths measured by heterodyne detection, the maximum usable pulse width immune to laser frequency instability is obtained to be about 4 µs in a self-heterodyne detection Brillouin optical time domain reflectometer (BOTDR) system using a broad-band laser with low frequency stability. Applying the self-heterodyne detection of Rayleigh and Brillouin scattering in BOTDR system, we successfully demonstrate that the detrimental effect of laser frequency instability on Brillouin signals can be eliminated effectively. Employing the broad-band laser modulated by a 130-ns wide pulse driven electro-optic modulator, the observed maximum errors in temperatures measured by the local heterodyne and self-heterodyne detection BOTDR systems are 7.9 °C and 1.2 °C, respectively. PMID:28335508

  20. Ruggedized microchannel-cooled laser diode array with self-aligned microlens

    DOEpatents

    Freitas, Barry L.; Skidmore, Jay A.

    2003-11-11

    A microchannel-cooled, optically corrected, laser diode array is fabricated by mounting laser diode bars onto Si surfaces. This approach allows for the highest thermal impedance, in a ruggedized, low-cost assembly that includes passive microlens attachment without the need for lens frames. The microlensed laser diode array is usable in all solid-state laser systems that require efficient, directional, narrow bandwidth, high optical power density pump sources.

  1. Applications of lasers and electro-optics

    NASA Astrophysics Data System (ADS)

    Tan, B. C.; Low, K. S.; Chen, Y. H.; Ahmad, Harith; Tou, T. Y.

    Supported by the IRPA Programme on Laser Technology and Applications, many types of lasers have been designed, constructed and applied in various areas of science, medicine and industries. Amongst these lasers constructed were high power carbon dioxide lasers, rare gas halide excimer lasers, solid state Neodymium-YAG lasers, nitrogen lasers, flashlamp pumped dye lasers and nitrogen and excimer laser pumped dye lasers. These lasers and the associated electro-optics system, some with computer controlled, are designed and developed for the following areas of applications: (1) industrial applications of high power carbon dioxide lasers for making of i.c. components and other materials processing purposes -- prototype operational systems have been developed; (2) Medical applications of lasers for cancer treatment using the technique of photodynamic therapy -- a new and more effective treatment protocol has been proposed; (3) agricultural applications of lasers in palm oil and palm fruit-fluorescence diagnostic studies -- fruit ripeness signature has been developed and palm oil oxidation level were investigated; (4) development of atmospheric pollution monitoring systems using laser lidar techniques -- laboratory scale systems were developed; and (5) other applications of lasers including laser holographic and interferometric methods for the non destructive testing of materials.

  2. Underwater probing with laser radar

    NASA Technical Reports Server (NTRS)

    Carswell, A. I.; Sizgoric, S.

    1975-01-01

    Recent advances in laser and electro optics technology have greatly enhanced the feasibility of active optical probing techniques aimed at the remote sensing of water parameters. This paper describes a LIDAR (laser radar) that has been designed and constructed for underwater probing. The influence of the optical properties of water on the general design parameters of a LIDAR system is considered. Discussion of the specific details in the choice of the constructed LIDAR is given. This system utilizes a cavity dumped argon ion laser transmitter capable of 50 watt peak powers, 10 nanosecond pulses and megahertz pulse repetition rates at 10 different wavelengths in the blue green region of the spectrum. The performance of the system, in proving various types of water, is demonstrated by summarizing the results of initial laboratory and field experiments.

  3. All-optical logic gates and wavelength conversion via the injection locking of a Fabry-Perot semiconductor laser

    NASA Astrophysics Data System (ADS)

    Harvey, E.; Pochet, M.; Schmidt, J.; Locke, T.; Naderi, N.; Usechak, N. G.

    2013-03-01

    This work investigates the implementation of all-optical logic gates based on optical injection locking (OIL). All-optical inverting, NOR, and NAND gates are experimentally demonstrated using two distributed feedback (DFB) lasers, a multi-mode Fabry-Perot laser diode, and an optical band-pass filter. The DFB lasers are externally modulated to represent logic inputs into the cavity of the multi-mode Fabry-Perot slave laser. The input DFB (master) lasers' wavelengths are aligned with the longitudinal modes of the Fabry-Perot slave laser and their optical power is used to modulate the injection conditions in the Fabry-Perot slave laser. The optical band-pass filter is used to select a Fabry- Perot mode that is either suppressed or transmitted given the logic state of the injecting master laser signals. When the input signal(s) is (are) in the on state, injection locking, and thus the suppression of the non-injected Fabry-Perot modes, is induced, yielding a dynamic system that can be used to implement photonic logic functions. Additionally, all-optical photonic processing is achieved using the cavity-mode shift produced in the injected slave laser under external optical injection. The inverting logic case can also be used as a wavelength converter — a key component in advanced wavelength-division multiplexing networks. As a result of this experimental investigation, a more comprehensive understanding of the locking parameters involved in injecting multiple lasers into a multi-mode cavity and the logic transition time is achieved. The performance of optical logic computations and wavelength conversion has the potential for ultrafast operation, limited primarily by the photon decay rate in the slave laser.

  4. Spacecraft system study: A study to define the impact of laser communication systems on their host spacecraft

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The mutual influence of a laser communication system and its host spacecraft and the degree to which the mutual influence limited acquisition, tracking and pointing processes were investigated. A laser klink between a low earth orbiting (LEO) satellite and a geosynchronous earth orbiting (GEO) satellite was used as a baseline. The laser link between satellites was a generic channel transferring 500 Mbps data from the LEO to GEO using the GaAlAs laser as the laser light source. Major aspects of pointing and tracking with a satelliteborne optical system were evaluated including: (1) orbital aspects such as spacecraft relative motions, point ahead, and Sun snd Moon optical noise; (2) burst errors introduced by the electronic and optical noise levels; (3) servo system design and configurations, and the noise sources such as, sensor noise, base motion disturbances, gimbal friction torque noise; (4) an evaluation of the tracking and beacon link and the type of sensors used; (5) the function of the acquisition procedure and an evaluation of the sensors employed; and (6) an estimate of the size, weight and power needed for the satellite system.

  5. Manipulation of cells with laser microbeam scissors and optical tweezers: a review

    NASA Astrophysics Data System (ADS)

    Greulich, Karl Otto

    2017-02-01

    The use of laser microbeams and optical tweezers in a wide field of biological applications from genomic to immunology is discussed. Microperforation is used to introduce a well-defined amount of molecules into cells for genetic engineering and optical imaging. The microwelding of two cells induced by a laser microbeam combines their genetic outfit. Microdissection allows specific regions of genomes to be isolated from a whole set of chromosomes. Handling the cells with optical tweezers supports investigation on the attack of immune systems against diseased or cancerous cells. With the help of laser microbeams, heart infarction can be simulated, and optical tweezers support studies on the heartbeat. Finally, laser microbeams are used to induce DNA damage in living cells for studies on cancer and ageing.

  6. Theoretical model for frequency locking a diode laser with a Faraday cell

    NASA Technical Reports Server (NTRS)

    Wanninger, P.; Shay, T. M.

    1992-01-01

    A new method was developed for frequency locking a diode lasers, called 'the Faraday anomalous dispersion optical transmitter (FADOT) laser locking', which is much simpler than other known locking schemes. The FADOT laser locking method uses commercial laser diodes with no antireflection coatings, an atomic Faraday cell with a single polarizer, and an output coupler to form a compound cavity. The FADOT method is vibration insensitive and exhibits minimal thermal expansion effects. The system has a frequency pull in the range of 443.2 GHz (9 A). The method has potential applications in optical communication, remote sensing, and pumping laser excited optical filters.

  7. Design and Development of a Package for a Diluted Waveguide Electro-Absorption Modulator

    DTIC Science & Technology

    2008-11-01

    the coupling efficiency. A design including mechanical, optical and RF elements was developed. A Newport Laser Welding system was utilized for...results, a design including mechanical, optical and RF elements was developed. A Newport Laser Welding system was utilized for fiber placement and...fixation. The laser welding techniques were customized in order to meet the needs of the EAM package design. Keywords: Electroabsorption

  8. Shack-Hartmann Electron Densitometer (SHED): An Optical System for Diagnosing Free Electron Density in Laser-Produced Plasmas

    DTIC Science & Technology

    2016-11-01

    a few nanoseconds. The challenge remains to diagnose plasmas via the free electron density in this short window of time and often in a small volume ...Free Electron Density in Laser-Produced Plasmas by Anthony R Valenzuela Approved for public release; distribution is...US Army Research Laboratory Shack-Hartmann Electron Densitometer (SHED): An Optical System for Diagnosing Free Electron Density in Laser

  9. Fast Optical Hazard Detection for Planetary Rovers Using Multiple Spot Laser Triangulation

    NASA Technical Reports Server (NTRS)

    Matthies, L.; Balch, T.; Wilcox, B.

    1997-01-01

    A new laser-based optical sensor system that provides hazard detection for planetary rovers is presented. It is anticipated that the sensor can support safe travel at speeds up to 6cm/second for large (1m) rovers in full sunlight on Earth or Mars. The system overcomes limitations in an older design that require image differencing ot detect a laser stripe in full sun.

  10. Recognition of the optical packet header for two channels utilizing the parallel reservoir computing based on a semiconductor ring laser

    NASA Astrophysics Data System (ADS)

    Bao, Xiurong; Zhao, Qingchun; Yin, Hongxi; Qin, Jie

    2018-05-01

    In this paper, an all-optical parallel reservoir computing (RC) system with two channels for the optical packet header recognition is proposed and simulated, which is based on a semiconductor ring laser (SRL) with the characteristic of bidirectional light paths. The parallel optical loops are built through the cross-feedback of the bidirectional light paths where every optical loop can independently recognize each injected optical packet header. Two input signals are mapped and recognized simultaneously by training all-optical parallel reservoir, which is attributed to the nonlinear states in the laser. The recognition of optical packet headers for two channels from 4 bits to 32 bits is implemented through the simulation optimizing system parameters and therefore, the optimal recognition error ratio is 0. Since this structure can combine with the wavelength division multiplexing (WDM) optical packet switching network, the wavelength of each channel of optical packet headers for recognition can be different, and a better recognition result can be obtained.

  11. Beam shaping to provide round and square-shaped beams in optical systems of high-power lasers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2016-05-01

    Optical systems of modern high-power lasers require control of irradiance distribution: round or square-shaped flat-top or super-Gaussian irradiance profiles are optimum for amplification in MOPA lasers and for thermal load management while pumping of crystals of solid-state ultra-short pulse lasers to control heat and minimize its impact on the laser power and beam quality while maximizing overall laser efficiency, variable profiles are also important in irradiating of photocathode of Free Electron lasers (FEL). It is suggested to solve the task of irradiance re-distribution using field mapping refractive beam shapers like piShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flat-top one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with ultra-short pulse lasers having broad spectrum. Using the same piShaper device it is possible to realize beams with flat-top, inverse Gauss or super Gauss irradiance distribution by simple variation of input beam diameter, and the beam shape can be round or square with soft edges. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying in optical systems of high-power lasers. Examples of real implementations and experimental results will be presented as well.

  12. Report on the Study of Radiation Damage in Calcium Fluoride and Magnesium Fluoride Crystals for use in Excimer Laser Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1999-10-04

    A study was performed to investigate the effects of radiation damage in calcium fluoride and magnesium fluoride crystals caused by gamma rays and UV photons from excimer lasers. The purpose was to study and correlate the damage caused by these two different mechanisms in various types of material used for fabricating optical elements in high power excimer lasers and lens systems of lithography tools. These optical systems are easily damaged by the laser itself, and it is necessary to use only the most radiation resistant materials for certain key elements. It was found that a clear correlation exists between the,more » radiation induced damage caused by high energy gamma rays and that produced by UV photons from the excimer laser. This correlation allows a simple procedure to be developed to select the most radiation resistant material at the ingot level, which would be later used to fabricate various components of the optical system. This avoids incurring the additional cost of fabricating actual optical elements with material that would later be damaged under prolonged use. The result of this screening procedure can result in a considerable savings in the overall cost of the lens and laser system.« less

  13. High Efficiency End-Pumped Ho:Tm:YLF Disk Amplifier

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Singh, Upendra N.; Petros, Mulugeta; Axenson, Theresa J.; Barnes, Norman P.

    1999-01-01

    Space based coherent lidar for global wind measurement requires an all solid state laser system with high energy, high efficiency and narrow linewidth that operates in the eye safe region. A Q-switched, diode pumped Ho:Tm:YLF 2 micrometer laser with output energy of as much as 125 mJ at 6 Hz with an optical-to-optical efficiency of 3% has been reported. Single frequency operation of the laser was achieved by injection seeding. The design of this laser is being incorporated into NASA's SPARCLE (SPAce Readiness Coherent Lidar Experiment) wind lidar mission. Laser output energy ranging from 500 mJ to 2 J is required for an operational space coherent lidar. We previously developed a high energy Ho:Tm:YLF master oscillator and side pumped power amplifier system and demonstrated a 600-mJ single frequency pulse at a repetition rate of 10 Hz. Although the output energy is high, the optical-to-optical efficiency is only about 2%. Designing a high energy, highly efficient, conductively cooled 2-micrometer laser remains a challenge. In this paper, the preliminary result of an end-pumped amplifier that has a potential to provide a factor 3 of improvement in the system efficiency is reported.

  14. NONLINEAR OPTICAL EFFECTS AND FIBER OPTICS: Use of an open resonator in a parametric free-electron laser

    NASA Astrophysics Data System (ADS)

    Alekseev, V. I.; Bessonov, Evgenii G.; Serov, Alexander V.

    1988-12-01

    Parametric free-electron lasers utilizing open resonators and beams consisting of a series of identical particle bunches are analyzed theoretically. It is shown that the use of a resonator in a parametric laser system can increase the radiation intensity and its monochromaticity.

  15. Polarization feedback laser stabilization

    DOEpatents

    Esherick, P.; Owyoung, A.

    1987-09-28

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  16. Dichroic beamsplitter for high energy laser diagnostics

    DOEpatents

    LaFortune, Kai N [Livermore, CA; Hurd, Randall [Tracy, CA; Fochs, Scott N [Livermore, CA; Rotter, Mark D [San Ramon, CA; Hackel, Lloyd [Livermore, CA

    2011-08-30

    Wavefront control techniques are provided for the alignment and performance optimization of optical devices. A Shack-Hartmann wavefront sensor can be used to measure the wavefront distortion and a control system generates feedback error signal to optics inside the device to correct the wavefront. The system can be calibrated with a low-average-power probe laser. An optical element is provided to couple the optical device to a diagnostic/control package in a way that optimizes both the output power of the optical device and the coupling of the probe light into the diagnostics.

  17. Optics in engineering measurement; Proceedings of the Meeting, Cannes, France, December 3-6, 1985

    NASA Technical Reports Server (NTRS)

    Fagan, William F. (Editor)

    1986-01-01

    The present conference on optical measurement systems considers topics in the fields of holographic interferometry, speckle techniques, moire fringe and grating methods, optical surface gaging, laser- and fiber-optics-based measurement systems, and optics for engineering data evaluation. Specific attention is given to holographic NDE for aerospace composites, holographic interferometry of rotating components, new developments in computer-aided holography, electronic speckle pattern interferometry, mass transfer measurements using projected fringes, nuclear reactor photogrammetric inspection, a laser Doppler vibrometer, and optoelectronic measurements of the yaw angle of projectiles.

  18. Use of optical skin phantoms for calibration of dermatological lasers

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.; Sekowska, A.; Marchwiński, M.; Galla, S.; Cenian, A.

    2016-09-01

    A wide range of dermatological diseases can be efficiently treated using laser heating. Nevertheless, before the new laser is introduced into clinical practice, its parameters and ability to interact with human skin have to be carefully examined. In order to do that optical skin phantoms can be used. Such phantoms closely imitate the scattering and absorption properties of real human skin tissue along with its thermal properties, such as capacitance and conductivity specific heat. We have fabricated a range of optical tissue phantoms based on polyvinylchloride-plastisol PVC-P with varying optical properties, including the absorption, scattering and density of the matrix material. We have utilized a pre-clinical dermatological laser system with a 975 nm diode laser module. A range of laser settings were tested, such as laser pulse duration, laser power and number of pulses. We have studied laser irradiation efficiency on fabricated optical tissue phantoms. Measurements of the temporal and spatial temperature distribution on the phantoms' surface were performed using thermographic imaging. The comparison of results between tissues' and phantoms' optical and thermal response prove that they can be used for approximate evaluation of laser heating efficiency. This study presents a viable approach for calibration of dermatological lasers which can be utilized in practice.

  19. Analysis of Technology for Compact Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1997-01-01

    In view of the recent advances in the area of solid state and semiconductor lasers has created new possibilities for the development of compact and reliable coherent lidars for a wide range of applications. These applications include: Automated Rendezvous and Capture, wind shear and clear air turbulence detection, aircraft wake vortex detection, and automobile collision avoidance. The work performed by the UAH personnel under this Delivery Order, concentrated on design and analyses of a compact coherent lidar system capable of measuring range and velocity of hard targets, and providing air mass velocity data. The following is the scope of this work. a. Investigate various laser sources and optical signal detection configurations in support of a compact and lightweight coherent laser radar to be developed for precision range and velocity measurements of hard and fuzzy targets. Through interaction with MSFC engineers, the most suitable laser source and signal detection technique that can provide a reliable compact and lightweight laser radar design will be selected. b. Analyze and specify the coherent laser radar system configuration and assist with its optical and electronic design efforts. Develop a system design including its optical layout design. Specify all optical components and provide the general requirements of the electronic subsystems including laser beam modulator and demodulator drivers, detector electronic interface, and the signal processor. c. Perform a thorough performance analysis to predict the system measurement range and accuracy. This analysis will utilize various coherent laser radar sensitivity formulations and different target models.

  20. CO2 laser myringotomy with a hand-held otoscope and fiber optic delivery system: animal experimentation and preclinical trials

    NASA Astrophysics Data System (ADS)

    DeRowe, Ari; Ophir, Dov; Finkelstein, Y.; Katzir, Abraham

    1993-07-01

    CO2 laser myringotomy has previously been proven effective in patients with serous otitis media for short term aeration of the middle ear. However, the system based on a microscope and a coaxially aligned laser is cumbersome and expensive. Also, conventional optical fibers do not transmit CO2 laser energy ((lambda) equals 10.6 micrometers ). We have developed a silver halide optical fiber of diameter 0.9 mm and lengths of several meters, with high transmission at 10.6 micrometers . Using a hand held otoscope coupled to a fiberoptic delivery system CO2 laser myringotomies were performed first in guinea pigs and then in humans. In the animal model the feasibility of the procedure was proven. Different irradiation parameters were studied and a `dose dependent' relationship was found between the total energy used and the duration of a patent myringotomy. This system was used to perform CO2 laser myringotomies under local anesthesia in five patients with serous otitis media and conductive hearing loss. None of the patients complained of discomfort and no scarring was noted. All patients had subjective and audiometric documentation of hearing improvement. The average duration of a patent myringotomy was 21 days. In two patients the effusion recurred. CO2 laser myringotomy utilizing a hand held otoscope coupled to an optical fiber capable of transmitting CO2 laser energy may prove simple and effective in the treatment of serous otitis media.

  1. Optical frequency stabilization in infrared region using improved dual feed-back loop

    NASA Astrophysics Data System (ADS)

    Ružička, B.; Číp, O.; Lazar, J.

    2007-03-01

    Modern technologies such as DWDM (Dense Wavelength Division Multiplex) need precise stability of laser frequencies. According to this fact, requirements of new etalons of optical frequencies in the telecommunication band is rapidly growing. Lasers working in near infrared telecommunication band (1500-1600 nm) can be stabilized to 12C IIH II or 13C IIH II (acetylene) gas absorption lines. The acetylene gas absorption has been widely studied and accepted by international bodies of standardization as a primary wavelength reference in the near infrared band around 1550 nm. Our aim was to design and develop a compact fibre optics laser system generating coherent light in near-IR band with high frequency stability (at least 1.10 -8). This system should become a base for realization of a primary frequency standard for optical communications in the Czech Republic. Such an etalon will be needed for calibration of wavelengthmeters and spectral analysers for DWDM communication systems. We are co-operating with CMI (Czech Metrology Institute) on this project. We present stabilized laser system based on a single frequency DFB (Distributed Feedback) laser diode with a narrow spectral profile. The laser is pre-stabilized by means of the FM-spectroscopy on a passive resonator. Thanks to a fast feed-back loop we are able to improve spectral characteristics of the laser. The laser frequency is locked by a relatively slow second feed-back loop on an absorption line of acetylene vapour which is sealed in a cell under the optimised pressure.

  2. Development of a dual joystick-controlled laser trapping and cutting system for optical micromanipulation of chromosomes inside living cells.

    PubMed

    Harsono, Marcellinus S; Zhu, Qingyuan; Shi, Linda Z; Duquette, Michelle; Berns, Michael W

    2013-02-01

    A multi-joystick robotic laser microscope system used to control two optical traps (tweezers) and one laser scissors has been developed for subcellular organelle manipulation. The use of joysticks has provided a "user-friendly" method for both trapping and cutting of organelles such as chromosomes in live cells. This innovative design has enabled the clean severing of chromosome arms using the laser scissors as well as the ability to easily hold and pull the severed arm using the laser tweezers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. All-optical laser spectral narrowing and line fixing at atomic absorption transition by injection competition and gain knock-down techniques

    NASA Astrophysics Data System (ADS)

    Gacheva, Lazarina I.; Deneva, Margarita A.; Kalbanov, Mihail H.; Nenchev, Marin N.

    2008-12-01

    We present two original, all optical techniques, to produce a narrowline laser light, fixed at the frequency of a chosen reference atomic absorption transition. The first type of systems is an essential improvement of our method 3,4 for laser spectral locking using a control by two frequency scanned, competitive injections with disturbed power ratio by the absorption at the reference line. The new development eliminates the narrowing limiting problem, related with the fixed laser longitudinal mode structure. We have proposed an original new technique for continuously tunable single mode laser operation in combination with synchronously and equal continuous tuning of the modes of the amplifier. By adapting the laser differential rate equations, the system is analyzed theoretically in details and is shown its feasibility. The results are in agreement with previous our experiments. The essential advantage, except simplicity of realization, is that the laser line can be of order of magnitude and more narrowed than the absorption linewidth. The second system is based of the laser amplifier arrangement with a gain knock-down from the competitive frequency scanned pulse, except at the wavelength of the desired absorption reference line. The essential advantages of the last system are that the problem of fixing laser mode presence is naturally avoided. The theoretical modeling and the numerical investigations show the peculiarity and advantages of the system proposed. The developed approaches are of interest for applications in spectroscopy, in DIAL monitoring of the atmospheric pollutants, in isotope separation system and potentially - for creation of simple, all optical, frequency standards for optical communications. Also, the continuously tunable single mode laser (and the combination with the simultaneously tunable amplifier) presents itself the interest for many practical applications in spectroscopy, metrology, and holography. We compare the action and the advantages of the two systems proposed.

  4. Improved performance of the laser guide star adaptive optics system at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, J R; Avicola, K; Bauman, B J

    1999-07-20

    Results of experiments with the laser guide star adaptive optics system on the 3-meter Shane telescope at Lick Observatory have demonstrated a factor of 4 performance improvement over previous results. Stellar images recorded at a wavelength of 2 {micro}m were corrected to over 40% of the theoretical diffraction-limited peak intensity. For the previous two years, this sodium-layer laser guide star system has corrected stellar images at this wavelength to {approx}10% of the theoretical peak intensity limit. After a campaign to improve the beam quality of the laser system, and to improve calibration accuracy and stability of the adaptive optics systemmore » using new techniques for phase retrieval and phase-shifting diffraction interferometry, the system performance has been substantially increased. The next step will be to use the Lick system for astronomical science observations, and to demonstrate this level of performance with the new system being installed on the 10-meter Keck II telescope.« less

  5. TOPSAT: Global space topographic mission

    NASA Technical Reports Server (NTRS)

    Vetrella, Sergio

    1993-01-01

    Viewgraphs on TOPSAT Global Space Topographic Mission are presented. Topics covered include: polar region applications; terrestrial ecosystem applications; stereo electro-optical sensors; space-based stereoscopic missions; optical stereo approach; radar interferometry; along track interferometry; TOPSAT-VISTA system approach; ISARA system approach; topographic mapping laser altimeter; and role of multi-beam laser altimeter.

  6. Study of distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Tian, Jiajun; Zhang, Qi; Han, Ming

    2013-05-01

    Fiber-optic ultrasonic transducers are an important component of an active ultrasonic testing system for structural health monitoring. Fiber-optic transducers have several advantages such as small size, light weight, and immunity to electromagnetic interference that make them much more attractive than the current available piezoelectric transducers, especially as embedded and permanent transducers in active ultrasonic testing for structural health monitoring. In this paper, a distributed fiber-optic laser-ultrasound generation based on the ghost-mode of tilted fiber Bragg gratings is studied. The influences of the laser power and laser pulse duration on the laser-ultrasound generation are investigated. The results of this paper are helpful to understand the working principle of this laser-ultrasound method and improve the ultrasonic generation efficiency.

  7. Construction and testing of a Scanning Laser Radar (SLR), phase 2

    NASA Technical Reports Server (NTRS)

    Flom, T.; Coombes, H. D.

    1971-01-01

    The scanning laser radar overall system is described. Block diagrams and photographs of the hardware are included with the system description. Detailed descriptions of all the subsystems that make up the scanning laser radar system are included. Block diagrams, photographs, and detailed optical and electronic schematics are used to help describe such subsystem hardware as the laser, beam steerer, receiver optics and detector, control and processing electronics, visual data displays, and the equipment used on the target. Tests were performed on the scanning laser radar to determine its acquisition and tracking performance and to determine its range and angle accuracies while tracking a moving target. The tests and test results are described.

  8. Multifunctional optical correlator for picosecond ultraviolet laser pulse measurement

    DOE PAGES

    Rakhman, Abdurahim; Wang, Yang; Garcia, Frances; ...

    2014-01-01

    A compact optical correlator system that measures both the autocorrelation between two infrared (IR) lights and the cross-correlation between an IR and an ultraviolet (UV) light using a single nonlinear optical crystal has been designed and experimentally demonstrated. The rapid scanning of optical delay line, switching between auto and cross-correlations, crystal angle tuning, and data acquisition and processing are all computer controlled. Pulse widths of an IR light from a mode-locked laser are measured by the correlator and the results are compared with a direct measurement using a high-speed photodetector system. The correlator has been used to study the parametermore » dependence of the pulse width of a macropulse UV laser designed for laser-assisted hydrogen ion (H-) beam stripping for the Spallation Neutron Source at Oak Ridge National Laboratory.« less

  9. Optical Communication with Semiconductor Laser Diode. Interim Progress Report. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic; Sun, Xiaoli

    1989-01-01

    Theoretical and experimental performance limits of a free-space direct detection optical communication system were studied using a semiconductor laser diode as the optical transmitter and a silicon avalanche photodiode (APD) as the receiver photodetector. Optical systems using these components are under consideration as replacements for microwave satellite communication links. Optical pulse position modulation (PPM) was chosen as the signal format. An experimental system was constructed that used an aluminum gallium arsenide semiconductor laser diode as the transmitter and a silicon avalanche photodiode photodetector. The system used Q=4 PPM signaling at a source data rate of 25 megabits per second. The PPM signal format requires regeneration of PPM slot clock and word clock waveforms in the receiver. A nearly exact computational procedure was developed to compute receiver bit error rate without using the Gaussion approximation. A transition detector slot clock recovery system using a phase lock loop was developed and implemented. A novel word clock recovery system was also developed. It was found that the results of the nearly exact computational procedure agreed well with actual measurements of receiver performance. The receiver sensitivity achieved was the closest to the quantum limit yet reported for an optical communication system of this type.

  10. Optical components of adaptive systems for improving laser beam quality

    NASA Astrophysics Data System (ADS)

    Malakhov, Yuri I.; Atuchin, Victor V.; Kudryashov, Aleksis V.; Starikov, Fedor A.

    2008-10-01

    The short overview is given of optical equipment developed within the ISTC activity for adaptive systems of new generation allowing for correction of high-power laser beams carrying optical vortices onto the phase surface. They are the kinoform many-level optical elements of new generation, namely, special spiral phase plates and ordered rasters of microlenses, i.e. lenslet arrays, as well as the wide-aperture Hartmann-Shack sensors and bimorph deformable piezoceramics- based mirrors with various grids of control elements.

  11. Bringing PW-class lasers to XFELs (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tomizawa, Hiromitsu

    2017-06-01

    Experimental researches using high power optical lasers combined with free electron lasers (FELs) open new frontiers in high energy density (HED) sciences. Probing and pumping capabilities are dramatically improved due to the brightness of the XFEL pulses with ultrafast duration. Besides, the peak intensities of Ti:sapphire laser Chirped Pulse Amplification (CPA) systems reach petawatt (PW)-class with operating in few tens of fs and commercially available at a few Hz of repetition rate. We have been developing an experimental platform for HED sciences using high power, high intensity optical lasers at the XFEL facility, SACLA.Currently, an experimental platform with a dual 0.5 PW Ti:Sapphire laser system is under beam commissioning for experiments combined with the SACLA's x-ray beam for research objectives that require more peak power in the optical laser pulses with a few tens of fs. The optical laser system is designed to deliver two laser beams simultaneously with the maximum power of 0.5 PW in each into a target chamber located in an experimental hutch 6 (EH6) at BL2, which was recently commissioned as a SACLA's 2nd hard x-ray beamline. A focusing capability using sets of compound refractive lenses will be applied to increase the x-ray fluence on the target sample. One of the most key issues for the integrated experimental platform is development of diagnostics that meets requirements both from the high power laser (e.g. resistance to harsh environments) and from the XFEL (e.g. adaptation to the available data acquisition system). The status and future perspective of the development including automatic laser alignment systems will be reported in the presentation. We will discuss the most promising and important new physics experiments that will be enabled by the combination of PW-class lasers and the world-class FEL's x-ray beam.

  12. Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb.

    PubMed

    Inaba, Hajime; Hosaka, Kazumoto; Yasuda, Masami; Nakajima, Yoshiaki; Iwakuni, Kana; Akamatsu, Daisuke; Okubo, Sho; Kohno, Takuya; Onae, Atsushi; Hong, Feng-Lei

    2013-04-08

    We propose a novel, high-performance, and practical laser source system for optical clocks. The laser linewidth of a fiber-based frequency comb is reduced by phase locking a comb mode to an ultrastable master laser at 1064 nm with a broad servo bandwidth. A slave laser at 578 nm is successively phase locked to a comb mode at 578 nm with a broad servo bandwidth without any pre-stabilization. Laser frequency characteristics such as spectral linewidth and frequency stability are transferred to the 578-nm slave laser from the 1064-nm master laser. Using the slave laser, we have succeeded in observing the clock transition of (171)Yb atoms confined in an optical lattice with a 20-Hz spectral linewidth.

  13. Optical system for UV-laser technological equipment

    NASA Astrophysics Data System (ADS)

    Fedosov, Yuri V.; Romanova, Galina E.; Afanasev, Maxim Ya.

    2017-09-01

    Recently there has been an intensive development of intelligent industrial equipment that is highly automated and can be rapidly adjusted for certain details. This equipment can be robotics systems, automatic wrappers and markers, CNC machines and 3D printers. The work equipment considered is the system for selective curing of photopolymers using a UV-laser and UV-radiation in such equipment that leads to additional technical difficulties. In many cases for transporting the radiation from the laser to the point processed, a multi-mirror system is used: however, such systems are usually difficult to adjust. Additionally, such multi-mirror systems are usually used as a part of the equipment for laser cutting of metals using high-power IR-lasers. For the UV-lasers, using many mirrors leads to crucial radiation losses because of many reflections. Therefore, during the development of the optical system for technological equipment using UV-laser we need to solve two main problems: to transfer the radiation for the working point with minimum losses and to include the system for controlling/handling the radiation spot position. We introduce a system for working with UV-lasers with 450mW of power and a wavelength of 0.45 μm based on a fiber system. In our modelling and design, we achieve spot sizes of about 300 μm, and the designed optical and mechanical systems (prototypes) were manufactured and assembled. In this paper, we present the layout of the technological unit, the results of the theoretical modelling of some parts of the system and some experimental results.

  14. Laser beam shaping for biomedical microscopy techniques

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Kaiser, Peter; Laskin, Vadim; Ostrun, Aleksei

    2016-04-01

    Uniform illumination of a working field is very important in optical systems of confocal microscopy and various implementations of fluorescence microscopy like TIR, SSIM, STORM, PALM to enhance performance of these laser-based research techniques. Widely used TEM00 laser sources are characterized by essentially non-uniform Gaussian intensity profile which leads usually to non-uniform intensity distribution in a microscope working field or in a field of microlenses array of a confocal microscope optical system, this non-uniform illumination results in instability of measuring procedure and reducing precision of quantitative measurements. Therefore transformation of typical Gaussian distribution of a TEM00 laser to flat-top (top hat) profile is an actual technical task, it is solved by applying beam shaping optics. Due to high demands to optical image quality the mentioned techniques have specific requirements to a uniform laser beam: flatness of phase front and extended depth of field, - from this point of view the microscopy techniques are similar to holography and interferometry. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality required in discussed microscopy techniques. We suggest applying refractive field mapping beam shapers πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. The main function of a beam shaper is transformation of laser intensity profile, further beam transformation to provide optimum for a particular technique spot size and shape has to be realized by an imaging optical system which can include microscope objectives and tube lenses. This paper will describe design basics of refractive beam shapers and optical layouts of their applying in microscopy systems. Examples of real implementations and experimental results will be presented as well.

  15. Assessment of laser tracking and data transfer for underwater optical communications

    NASA Astrophysics Data System (ADS)

    Watson, Malcolm A.; Blanchard, Paul M.; Stace, Chris; Bhogul, Priya K.; White, Henry J.; Kelly, Anthony E.; Watson, Scott; Valyrakis, Manousos; Najda, Stephen P.; Marona, Lucja; Perlin, Piotr

    2014-10-01

    We report on an investigation into optical alignment and tracking for high bandwidth, laser-based underwater optical communication links. Link acquisition approaches (including scanning of narrow laser beams versus a wide-angle `beacon' approach) for different underwater laser-based communications scenarios are discussed. An underwater laserbased tracking system was tested in a large water flume facility using water whose scattering properties resembled that of a turbid coastal or harbour region. The lasers used were state-of-the-art, temperature-controlled, high modulation bandwidth gallium nitride (GaN) devices. These operate at blue wavelengths and can achieve powers up to ~100 mW. The tracking performance and characteristics of the system were studied as the light-scattering properties of the water were increased using commercial antacid (Maalox) solution, and the results are reported here. Optical tracking is expected to be possible even in high scattering water environments, assuming better components are developed commercially; in particular, more sensitive detector arrays. High speed data transmission using underwater optical links, based on blue light sources, is also reported.

  16. Effects of optical dopants and laser wavelength on atom probe tomography analyses of borosilicate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xiaonan; Schreiber, Daniel K.; Neeway, James J.

    Atom probe tomography (APT) is a novel analytical microscopy method that provides three dimensional elemental mapping with sub-nanometer spatial resolution and has only recently been applied to insulating glass and ceramic samples. In this paper, we have studied the influence of the optical absorption in glass samples on APT characterization by introducing different transition metal optical dopants to a model borosilicate nuclear waste glass (international simple glass). A systematic comparison is presented of the glass optical properties and the resulting APT data quality in terms of compositional accuracy and the mass spectra quality for two APT systems: one with amore » green laser (532 nm, LEAP 3000X HR) and one with a UV laser (355 nm, LEAP 4000X HR). These data were also compared to the study of a more complex borosilicate glass (SON68). The results show that the analysis data quality such as compositional accuracy and total ions collected, was clearly linked to optical absorption when using a green laser, while for the UV laser optical doping aided in improving data yield but did not have a significant effect on compositional accuracy. Comparisons of data between the LEAP systems suggest that the smaller laser spot size of the LEAP 4000X HR played a more critical role for optimum performance than the optical dopants themselves. The smaller spot size resulted in more accurate composition measurements due to a reduced background level independent of the material’s optical properties.« less

  17. Method and apparatus for determining the physical properties of materials using dynamic light scattering techniques

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S. (Inventor)

    1992-01-01

    A system for determining the physical properties of materials through the use of dynamic light scattering is disclosed. The system includes a probe, a laser source for directing a laser beam into the probe, and a photodetector for converting scattered light detected by the probe into electrical signals. The probe includes at least one optical fiber connected to the laser source and a second optical fiber connected to the photodetector. Each of the fibers may adjoin a gradient index microlens which is capable of providing a collimated laser beam into a scattering medium. The position of the second optical fiber with respect to the optical axis of the probe determines whether homodyne or self-beating detection is provided. Self-beating detection may be provided without a gradient index microlens. This allows a very small probe to be constructed which is insertable through a hypodermic needle or the like into a droplet extending from such a needle. A method of detecting scattered light through the use of a collimated, Gaussian laser beam is also provided. A method for controlling the waist and divergence of the optical field emanating from the free end of an optical fiber is also provided.

  18. Wavefront Tilt And Beam Walk Correction For A Pulsed Laser System

    NASA Astrophysics Data System (ADS)

    Bartosewcz, Mike; Tyburski, Joe

    1986-05-01

    The Lockheed Beam Alignment Assembly (BAA) is designed to be a space qualifiable, long life, low bandwidth beam stabilization system. The BAA will stabilize a wandering pulsed laser beam with an input beam tilt of ±750 microradians and translation of ±2.5 mm by two orders of magnitude at the bandwidth of interest. A bandwidth of three hertz was selected to remove laser and optical train thermal drifts and launch induced strain effects. The lambda over twenty RMS wavefront will be maintained in the optics at full power under vacuum test, to demonstrate space qualifiability and optical performance.

  19. System technology for laser-assisted milling with tool integrated optics

    NASA Astrophysics Data System (ADS)

    Hermani, Jan-Patrick; Emonts, Michael; Brecher, Christian

    2013-02-01

    High strength metal alloys and ceramics offer a huge potential for increased efficiency (e. g. in engine components for aerospace or components for gas turbines). However, mass application is still hampered by cost- and time-consuming end-machining due to long processing times and high tool wear. Laser-induced heating shortly before machining can reduce the material strength and improve machinability significantly. The Fraunhofer IPT has developed and successfully realized a new approach for laser-assisted milling with spindle and tool integrated, co-rotating optics. The novel optical system inside the tool consists of one deflection prism to position the laser spot in front of the cutting insert and one focusing lens. Using a fiber laser with high beam quality the laser spot diameter can be precisely adjusted to the chip size. A high dynamic adaption of the laser power signal according to the engagement condition of the cutting tool was realized in order not to irradiate already machined work piece material. During the tool engagement the laser power is controlled in proportion to the current material removal rate, which has to be calculated continuously. The needed geometric values are generated by a CAD/CAM program and converted into a laser power signal by a real-time controller. The developed milling tool with integrated optics and the algorithm for laser power control enable a multi-axis laser-assisted machining of complex parts.

  20. Attacking the information access problem with expert systems

    NASA Technical Reports Server (NTRS)

    Ragusa, James M.; Orwig, Gary W.

    1991-01-01

    The results of applications research directed at finding an improved method of storing and accessing information are presented. Twelve microcomputer-based expert systems shells and five laser-optical formats have been studied, and the general and specific methods of interfacing these technologies are being tested in prototype systems. Shell features and interfacing capabilities are discussed, and results from the study of five laser-optical formats are recounted including the video laser, compact, and WORM disks, and laser cards and film. Interfacing, including laser disk device driver interfacing, is discussed and it is pointed out that in order to control the laser device from within the expert systems application, the expert systems shell must be able to access the device driver software. Potential integrated applications are investigated and an initial list is provided including consumer services, travel, law enforcement, human resources, marketing, and education and training.

  1. Optical Device for Converting a Laser Beam into Two Co-aligned but Oppositely Directed Beams

    NASA Technical Reports Server (NTRS)

    Jennings, Donald

    2013-01-01

    Optical systems consisting of a series of optical elements require alignment from the input end to the output end. The optical elements can be mirrors, lenses, sources, detectors, or other devices. Complex optical systems are often difficult to align from end-to-end because the alignment beam must be inserted at one end in order for the beam to traverse the entire optical path to the other end. The ends of the optical train may not be easily accessible to the alignment beam. Typically, when a series of optical elements is to be aligned, an alignment laser beam is inserted into the optical path with a pick-off mirror at one end of the series of elements. But it may be impossible to insert the beam at an end-point. It can be difficult to locate the pick-off mirror at the desired position because there is not enough space, there is no mounting surface, or the location is occupied by a source, detector, or other component. Alternatively, the laser beam might be inserted at an intermediate location (not at an end-point) and sent, first in one direction and then the other, to the opposite ends of the optical system for alignment. However, in this case, alignment must be performed in two directions and extra effort is required to co-align the two beams to make them parallel and coincident, i.e., to follow the same path as an end-to-end beam. An optical device has been developed that accepts a laser beam as input and produces two co-aligned, but counter-propagating beams. In contrast to a conventional alignment laser placed at one end of the optical path, this invention can be placed at a convenient position within the optical train and aligned to send its two beams simultaneously along precisely opposite paths that, taken together, trace out exactly the same path as the conventional alignment laser. This invention allows the user the freedom to choose locations within the optical train for placement of the alignment beam. It is also self-aligned by design and requires almost no adjustment.

  2. A Conceptual Design of Omni-Directional Receiving Dual-Beam Laser Engine

    NASA Astrophysics Data System (ADS)

    Tang, Zhiping; Zhang, Qinghong

    2010-05-01

    The laser engine design is one of the key issues for laser propulsion technology. A concept of Omni-Directional Receiving Dual-Beam Laser Engine (ODLE) together with its configuration design is proposed in this paper. The ODLE is noted for its features as follows: First, the optical system is completely separated from the thrust system, the incident laser beams are reflected into the thrust chamber by the optics only twice, so the beam energy loss is small. Second, the optical system can be adjusted in all direction to track the incident laser beams, ensuring its wide applications in various kinds of launching trajectories. Third, the adoption of the dual-beam single-or double-engine configuration can reduce 50% of the power requirement for each laser, and a smooth laser relay can be carried out if needed during the launching process. The paper has proposed 2 launch plans into the LEO with the ODLE: the plane trajectory and the conic spiral trajectory. The simulated results indicate that the transmission distance of laser beams for the conic spiral trajectory is far less than that of the plane trajectory. As a result, it can reduce significantly the divergence and energy loss of laser beams, and is also of advantage for the measurement and control operation during the launch process.

  3. Laser Damage in Thin Film Optical Coatings

    DTIC Science & Technology

    1992-07-01

    10) using E- beam evaporation and laser tests performed to determine the effect of conditioning laser spot size and coating design on improvement in...1.06 pm) consisting of a 15 layer 3 quarter-wave design (HFO2/SiO 2 and ZrO2/SiO 2) were fabricated by E- beam evaporation. Sol-gel processing was used to... designers select laser damage resistant coatings for optical elements to be employed in military systems using lasers or encountering lasers used as

  4. Optical design of the National Ignition Facility main laser and switchyard/target area beam transport systems

    NASA Astrophysics Data System (ADS)

    Miller, John L.; English, R. Edward, Jr.; Korniski, Ronald J.; Rodgers, J. Michael

    1999-07-01

    The optical design of the main laser and transport mirror sections of the National Ignition Facility are described. For the main laser the configuration, layout constraints, multiple beam arrangement, pinhole layout and beam paths, clear aperture budget, ray trace models, alignment constraints, lens designs, wavefront performance, and pupil aberrations are discussed. For the transport mirror system the layout, alignment controls and clear aperture budget are described.

  5. An experimental distribution of analog and digital information in a hybrid wireless visible light communication system based on acousto-optic modulation and sinusoidal gratings

    NASA Astrophysics Data System (ADS)

    Gómez Colín, R.; García Juárez, A.; Zaldívar Huerta, I. E.; Marquina, A. Vera; García Delgado, L. A.; Leal Cruz, A. L.; Gómez Fuentes, R.

    2016-03-01

    In this paper we propose a photonic architecture as an alternative tool to distribute point to multipoint analog and digital information over a hybrid wireless visible optical communication system. The experimental set-up is composed of a red laser pointer, an acousto-optic modulator, a sinusoidal grating and a photo-detector array. By using a simple and variable interferometric system, diffraction gratings with different spatial frequencies are generated and recorded on a photoemulsion which is composed of vanilla with dichromate gelatin. Analog video and digital information are first transmitted and recovered over a wireless communication system using a microwave carrier at 4.52 GHz which is generated by distributed feedback lasers operating in the low laser threshold current region. Separately, the recovered video information and digital data are combined with a radio frequency signal of 80 MHz, obtaining a subcarrier of information that is imposed on the optical carrier of the pointer laser using an acousto-optic modulator which is operated with an angle of incident light that satisfies the Bragg condition. The modulated optical carrier is sent to a sinusoidal grating, the diffraction pattern is photo-detected using an array of PIN photo-detectors. The use of sinusoidal gratings with acousto-optic modulators allows that number of channels to be increased when both components are placed in cascade.

  6. Self-aligned spatial filtering using laser optical tweezers.

    PubMed

    Birkbeck, Aaron L; Zlatanovic, Sanja; Esener, Sadik C

    2006-09-01

    We present an optical spatial filtering device that has been integrated into a microfluidic system and whose motion and alignment is controlled using a laser optical tweezer. The lithographically patterned micro-optical spatial filter device filters out higher frequency additive noise components by automatically aligning itself in three dimensions to the focus of the laser beam. This self-alignment capability is achieved through the attachment of a refractive optical element directly over the circular aperture or pinhole of the spatial filter. A discussion of two different spatial filter designs is presented along with experimental results that demonstrate the effectiveness of the self-aligned micro-optic spatial filter.

  7. Development of multi-touch panel backlight system

    NASA Astrophysics Data System (ADS)

    Chomiczewski, J.; Długosz, M.; Godlewski, G.; Kochanowicz, M.

    2013-10-01

    The paper presents design, simulation analysis, and measurements of parameters of optical multi touch panel backlight system. Comparison of optical technology with commercially available solutions was also performed. The numerical simulation of laser based backlight system was made. The influence of the laser power, beam divergence, and placing reflective surfaces on the uniformity of illumination were examined. Optimal illumination system was used for further studies.

  8. Group III-arsenide-nitride long wavelength laser diodes

    NASA Astrophysics Data System (ADS)

    Coldren, Christopher W.

    Semiconductor laser diodes transmitting data over silica optical fiber form the backbone of modern day communications systems, enabling terabit per second data transmission over hundreds to thousands of kilometers of distance. The wavelength of emission of the transmission semiconductor laser diode is a critical parameter that determines the performance of the communications system. In high performance fiber optic communications systems, lasers emitting at 1300nm and 1550nm are used because of the low loss and distortion properties of the fiber in these spectral windows. The available lasers today that operate in these fiber optic transmission windows suffer from high cost and poor performance under the typical environmental conditions and require costly and unreliable cooling systems. This dissertation presents work that demonstrates that it is possible to make lasers devices with 1300nm laser emission that are compatible with low cost and operation under extreme operating conditions. The key enabling technology developed is a novel semiconductor material based structure. A group III-Arsenide-Nitride quantum well structure was developed that can be grown expitaxially on GaAs substrates. The properties of this group III-Arsenide-Nitride structure allowed high performance edge emitting and vertical cavity surface emitting lasers to be fabricated which exhibited low threshold currents and low sensitivity to operating temperature.

  9. Biomedical sensing and imaging for the anterior segment of the eye

    NASA Astrophysics Data System (ADS)

    Eom, Tae Joong; Yoo, Young-Sik; Lee, Yong-Eun; Kim, Beop-Min; Joo, Choun-Ki

    2015-07-01

    Eye is an optical system composed briefly of cornea, lens, and retina. Ophthalmologists can diagnose status of patient's eye from information provided by optical sensors or images as well as from history taking or physical examinations. Recently, we developed a prototype of optical coherence tomography (OCT) image guided femtosecond laser cataract surgery system. The system combined a swept-source OCT and a femtosecond (fs) laser and afford the 2D and 3D structure information to increase the efficiency and safety of the cataract procedure. The OCT imaging range was extended to achieve the 3D image from the cornea to lens posterior. A prototype of OCT image guided fs laser cataract surgery system. The surgeons can plan the laser illumination range for the nuclear division and segmentation, and monitor the whole cataract surgery procedure using the real time OCT. The surgery system was demonstrated with an extracted pig eye and in vivo rabbit eye to verify the system performance and stability.

  10. Laser beam alignment and profilometry using diagnostic fluorescent safety mirrors

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2011-03-01

    There are a wide range of laser beam delivery systems in use for various purposes; including industrial and medical applications. Virtually all such beam delivery systems for practical purposes employ optical systems comprised of mirrors and lenses to shape, focus and guide the laser beam down to the material being processed. The goal of the laser beam delivery is to set the optimum parameters and to "fold" the beam path to reduce the mechanical length of the optical system, thereby allowing a physically compact system. In many cases, even a compact system can incorporate upwards of six mirrors and a comparable number of lenses all needing alignment so they are collinear. One of the major requirements for use of such systems in industry is a method of safe alignment. The alignment process requires that the aligner determine where the beam strikes each element. The aligner should also preferably be able to determine the shape or pattern of the laser beam at that point and its relative power. These alignments are further compounded in that the laser beams generated are not visible to the unaided human eye. Such beams are also often of relatively high power levels, and are thereby a significant hazard to the eyes of the aligner. Obvious an invisible beam makes it nearly impossible to align laser system without some form of optical assistance. The predominant method of visually aligning the laser beam delivery is the use of thermal paper, paper cards or fluorescing card material. The use of paper products which have limited power handling capability or coated plastics can produce significant debris and contaminants within the beam line that ultimately damage the optics. The use of the cards can also create significant laser light scatter jeopardizing the safety of the person aligning the system. This paper covers a new safety mirror design for use with at various UV and Near IR wavelengths (193 nm to 1064 nm) within laser beam delivery systems and how its use can provide benefits covering eye safety, precise alignment and beam diagnostics.

  11. Demonstration of adaptive optics for mitigating laser propagation through a random air-water interface

    NASA Astrophysics Data System (ADS)

    Land, Phillip; Majumdar, Arun K.

    2016-05-01

    This paper describes a new concept of mitigating signal distortions caused by random air-water interface using an adaptive optics (AO) system. This is the first time the concept of using an AO for mitigating the effects of distortions caused mainly by a random air-water interface is presented. We have demonstrated the feasibility of correcting the distortions using AO in a laboratory water tank for investigating the propagation effects of a laser beam through an airwater interface. The AO system consisting of a fast steering mirror, deformable mirror, and a Shack-Hartmann Wavefront Sensor for mitigating surface water distortions has a unique way of stabilizing and aiming a laser onto an object underneath the water. Essentially the AO system mathematically takes the complex conjugate of the random phase caused by air-water interface allowing the laser beam to penetrate through the water by cancelling with the complex conjugates. The results show the improvement of a number of metrics including Strehl ratio, a measure of the quality of optical image formation for diffraction limited optical system. These are the first results demonstrating the feasibility of developing a new sensor system such as Laser Doppler Vibrometer (LDV) utilizing AO for mitigating surface water distortions.

  12. Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems

    NASA Astrophysics Data System (ADS)

    Ďurák, Michal; Velpula, Praveen Kumar; Kramer, Daniel; Cupal, Josef; Medřík, Tomáš; Hřebíček, Jan; Golasowski, Jiří; Peceli, Davorin; Kozlová, Michaela; Rus, Bedřich

    2017-01-01

    Increasing the laser-induced damage resistance of optical components is one of the major challenges in the development of Peta-watt (PW) class laser systems. The extreme light infrastructure (ELI) beamlines project will provide ultrafast laser systems with peak powers up to 10 PW available every minute and PW class beams at 10 Hz complemented by a 5-TW, 1-kHz beamline. Sustainable performance of PW class laser systems relies on the durability of the employed optical components. As part of an effort to evaluate the damage resistance of components utilized in ELI beamlines systems, damage thresholds of several optical multilayer dielectric coatings were measured with different laser parameters and in different environments. Three coatings were tested with 10 Hz and 1 kHz pulse repetition rates, and the effect of a cleaning treatment on their damage resistance was examined. To explore the damage threshold behavior at different vacuum levels, one coating was subject to tests at various residual gas pressures. No change of damage threshold in a high vacuum with respect to ambient pressure was recorded. The effect of the cleaning treatment was found to be inconsistent, suggesting that development of the optimal cleaning treatment for a given coating requires consideration of its specific properties.

  13. Laser Card For Compact Optical Data Storage Systems

    NASA Astrophysics Data System (ADS)

    Drexler, Jerome

    1982-05-01

    The principal thrust of the optical data storage industry to date has been the 10 billion bit optical disc system. Mass memory has been the primary objective. Another objective that is beginning to demand recognition is compact memory of 1 million to 40 million bits--on a wallet-size, laser recordable card. Drexler Technology has addressed this opportunity and has succeeded in demonstrating laser writing and readback using a 16 mm by 85 mm recording stripe mounted on a card. The write/read apparatus was developed by SRI International. With this unit, 5 micron holes have been recorded using a 10 milliwatt, 830 nanometer semiconductor-diode laser. Data is entered on an Apple II keyboard using the ASCII code. The recorded reflective surface is scanned with the same laser at lower power to generate a reflected bit stream which is converted into alphanumerics and which appear on the monitor. We are pleased to report that the combination of the DREXONTM laser recordable card ("Laser Card"), the semiconductor-diode laser, arrays of large recorded holes, and human interactive data rates are all mutually compatible and point the way forward to economically feasible, compact, data-storage systems.

  14. A novel optical gating method for laser gated imaging

    NASA Astrophysics Data System (ADS)

    Ginat, Ran; Schneider, Ron; Zohar, Eyal; Nesher, Ofer

    2013-06-01

    For the past 15 years, Elbit Systems is developing time-resolved active laser-gated imaging (LGI) systems for various applications. Traditional LGI systems are based on high sensitive gated sensors, synchronized to pulsed laser sources. Elbit propriety multi-pulse per frame method, which is being implemented in LGI systems, improves significantly the imaging quality. A significant characteristic of the LGI is its ability to penetrate a disturbing media, such as rain, haze and some fog types. Current LGI systems are based on image intensifier (II) sensors, limiting the system in spectral response, image quality, reliability and cost. A novel propriety optical gating module was developed in Elbit, untying the dependency of LGI system on II. The optical gating module is not bounded to the radiance wavelength and positioned between the system optics and the sensor. This optical gating method supports the use of conventional solid state sensors. By selecting the appropriate solid state sensor, the new LGI systems can operate at any desired wavelength. In this paper we present the new gating method characteristics, performance and its advantages over the II gating method. The use of the gated imaging systems is described in a variety of applications, including results from latest field experiments.

  15. Bistable optical devices with laser diodes coupled to absorbers of narrow spectral bandwidth.

    PubMed

    Maeda, Y

    1994-06-20

    An optical signal inverter was demonstrated with a combination of the following two effects: One is the decrease of the transmission of an Er-doped YAG crystal with increasing red shift of a laser diode resulting from an increase in the injection current, and the other is a negative nonlinear absorption in which the transmission decreases inversely with increasing laser intensity. Because a hysteresis characteristic exists in the relationship between the wavelength and the injection current of the laser diode, an optical bistability was observed in this system.

  16. Towards attosecond synchronization of remote mode-locked lasers using stabilized transmission of optical comb frequencies

    NASA Astrophysics Data System (ADS)

    Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Holzwarth, R.; Huang, G.

    2011-09-01

    We propose a method of synchronizing mode-locked lasers separated by hundreds of meters with the possibility of achieving sub-fs performance by locking the phases of corresponding lines in the optical comb spectrum. The optical phase from one comb line is transmitted to the remote laser over an interferometrically stabilized link by locking a single frequency laser to a comb line with high phase stability. We describe how these elements are integrated into a complete system and estimate the potential performance.

  17. Spectral ophthalmoscopy based on supercontinuum

    NASA Astrophysics Data System (ADS)

    Cheng, Yueh-Hung; Yu, Jiun-Yann; Wu, Han-Hsuan; Huang, Bo-Jyun; Chu, Shi-Wei

    2010-02-01

    Confocal scanning laser ophthalmoscope (CSLO) has been established to be an important diagnostic tool for retinopathies like age-related macular degeneration, glaucoma and diabetes. Compared to a confocal laser scanning microscope, CSLO is also capable of providing optical sectioning on retina with the aid of a pinhole, but the microscope objective is replaced by the optics of eye. Since optical spectrum is the fingerprint of local chemical composition, it is attractive to incorporate spectral acquisition into CSLO. However, due to the limitation of laser bandwidth and chromatic/geometric aberration, the scanning systems in current CSLO are not compatible with spectral imaging. Here we demonstrate a spectral CSLO by combining a diffraction-limited broadband scanning system and a supercontinuum laser source. Both optical sectioning capability and sub-cellular resolution are demonstrated on zebrafish's retina. To our knowledge, it is also the first time that CSLO is applied onto the study of fish vision. The versatile spectral CSLO system will be useful to retinopathy diagnosis and neuroscience research.

  18. Reducing beam shaper alignment complexity: diagnostic techniques for alignment and tuning

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2011-10-01

    Safe and efficient optical alignment is a critical requirement for industrial laser systems used in a high volume manufacturing environment. Of specific interest is the development of techniques to align beam shaping optics within a beam line; having the ability to instantly verify by a qualitative means that each element is in its proper position as the beam shaper module is being aligned. There is a need to reduce these types of alignment techniques down to a level where even a newbie to optical alignment will be able to complete the task. Couple this alignment need with the fact that most laser system manufacturers ship their products worldwide and the introduction of a new set of variables including cultural and language barriers, makes this a top priority for manufacturers. Tools and methodologies for alignment of complex optical systems need to be able to cross these barriers to ensure the highest degree of up time and reduce the cost of maintenance on the production floor. Customers worldwide, who purchase production laser equipment, understand that the majority of costs to a manufacturing facility is spent on system maintenance and is typically the largest single controllable expenditure in a production plant. This desire to reduce costs is driving the trend these days towards predictive and proactive, not reactive maintenance of laser based optical beam delivery systems [10]. With proper diagnostic tools, laser system developers can develop proactive approaches to reduce system down time, safe guard operational performance and reduce premature or catastrophic optics failures. Obviously analytical data will provide quantifiable performance standards which are more precise than qualitative standards, but each have a role in determining overall optical system performance [10]. This paper will discuss the use of film and fluorescent mirror devices as diagnostic tools for beam shaper module alignment off line or in-situ. The paper will also provide an overview methodology showing how it is possible to reduce complex alignment directions into a simplified set of instructions for layman service engineers.

  19. Dynamics of Superradiant Lasers

    NASA Astrophysics Data System (ADS)

    Thompson, James

    2014-05-01

    A superradiant laser has been shown to operate with less than one photon on average inside of the optical cavity. In this regime, almost all of the phase information of the laser is stored in the atoms rather than the cavity field. As a result, the laser's phase is highly insensitive to both technical and fundamental thermal cavity mirror vibrations. This vibration noise presently limits the coherence of the best lasers as well as the precision of the optical lattice clocks that these lasers interrogate. We have explored the physics of superradiant lasers utilizing Raman transitions between hyperfine states in rubidium to mimic narrow optical transitions. In this talk, we will discuss the amplitude stability of our superradiant Raman laser, and the dynamics of phase synchronization in our system. We will also consider the prospects for future superradiant lasers that would lase on the same highly-forbidden transitions used in optical lattice clocks. We acknowledge support from DARPA QUASAR, ARO, NIST, and the NSF PFC.

  20. An optical disk archive for a data base management system

    NASA Technical Reports Server (NTRS)

    Thomas, Douglas T.

    1985-01-01

    An overview is given of a data base management system that can catalog and archive data at rates up to 50M bits/sec. Emphasis is on the laser disk system that is used for the archive. All key components in the system (3 Vax 11/780s, a SEL 32/2750, a high speed communication interface, and the optical disk) are interfaced to a 100M bits/sec 16-port fiber optic bus to achieve the high data rates. The basic data unit is an autonomous data packet. Each packet contains a primary and secondary header and can be up to a million bits in length. The data packets are recorded on the optical disk at the same time the packet headers are being used by the relational data base management software ORACLE to create a directory independent of the packet recording process. The user then interfaces to the VAX that contains the directory for a quick-look scan or retrieval of the packet(s). The total system functions are distributed between the VAX and the SEL. The optical disk unit records the data with an argon laser at 100M bits/sec from its buffer, which is interfaced to the fiber optic bus. The same laser is used in the read cycle by reducing the laser power. Additional information is given in the form of outlines, charts, and diagrams.

  1. Design and realization of the optical and electron beam alignment system for the HUST-FEL oscillator

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Tan, P.; Liu, K. F.; Qin, B.; Liu, X.

    2018-06-01

    A Free Electron Laser(FEL) oscillator with radiation wavelength at 30-100 μ m is under commissioning at Huazhong University of Science and Technology (HUST). This work presents the schematic design and realization procedures for the optical and beam alignment system in the HUST FEL facility. The optical cavity misalignment effects are analyzed with the code OPC + Genesis 1.3, and the tolerance of misalignment is proposed with the simulation result. Depending on undulator mechanical benchmarks, a laser indicating system has been built up as reference datum. The alignment of both optical axis and beam trajectory were achieved by this alignment system.

  2. New trends in laser satellite communications: design and limitations

    NASA Astrophysics Data System (ADS)

    Císar, J.; Wilfert, O.; Fanjul-Vélez, F.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2008-11-01

    Optical communications offer a capable alternative to radio frequency (RF) communications for applications where high data-rate is required. This technology is particularly promising and challenging in the field of future inter-satellite communications. The term laser satellite communications (LSC) stands for optical links between satellites and/or high altitude platforms (HAPs). However, optical links between an earth station and a satellite or HAPs can be also involved. This work gives an overview of nowadays laser satellite communications. Particularly, it is focused on the factors causing degradation of the optical beam in the atmosphere. If an optical link passes through the atmosphere, it suffers from various influences such as attenuation due to absorption and scattering, intensity fluctuations due to atmospheric turbulence and background radiation. Furthermore, platform vibrations cause mispointing and following tracking losses. Suitable devices and used pointing and tracking system for laser satellite communications are discussed. At the end, various scenarios of the optical links and calculations of their power link budgets and limitations are designed. Implemented software is used for calculation of optical links. This work proves that the Free Space Optics (FSO) systems on mobile platforms, like satellites and HAPs are a promising solution for future communication networks.

  3. 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Bai, Yingxin; Yu, Jirong

    2009-01-01

    Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed in NASA Langley Research Center. This laser system is capable of making a vertical profiling of CO2 from ground and column measurement of CO2 from air and space-borne platform. The transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. A Ho:YLF laser operating in the range of 2.05 micrometers can be tuned over several characteristic lines of CO2 absorption. Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of CO2 with a repetition rate of 5 Hz and pulse energy of 75 mJ. For coherent detection, high repetition rate is required for speckle averaging to obtain highly precise measurements. However, a diode pumped Ho:Tm:YLF laser can not operate in high repetition rate due to the large heat loading and up-conversion. A Tm:fiber laser pumped Ho:YLF laser with low heat loading can operate in high repetition rate. A theoretical model has been established to simulate the performance of Tm:fiber laser pumped Ho:YLF lasers. For continuous wave (CW) operation, high pump intensity with small beam size is suitable for high efficiency. For Q-switched operation, the optimal energy extraction relies on the pump intensity, pump volume, and pump duration which is inversely proportion to the repetition rate. CW and Q-switched Ho:YLF lasers with different linear cavity configurations have been designed and demonstrated for a 30 W Tm:fiber pump laser. The CW Ho laser slope efficiency and optical-to-optical efficiencies reach 65% and 55%, respectively. The pulsed laser efficiency depends on the repetition rate. For 1 kHz operation, the optical-to-optical efficiency is 39% when the pump power is 14.5W. Currently, the injection seeding success rate is between 99.4% and 99.95%. After a ten thousand pulses, the standard deviation of the laser frequency jitter is about 3 MHz. It meets the requirements of highly precise CO2 concentration measurement. In conclusion, an injection seeded, high repetition rate, Q-switched Ho:YLF laser has been developed for a coherent CO2 differential absorption lidar. This master-slave laser system has high optical-to-optical efficiency and seeding success rate. It can potentially meet the requirements of the coherent detection of CO2 concentration by a differential absorption lidar technique.

  4. Semiconductor optoelectronic devices for free-space optical communications

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1983-01-01

    The properties of individual injection lasers are reviewed, and devices of greater complexity are described. These either include or are relevant to monolithic integration configurations of the lasers with their electronic driving circuitry, power combining methods of semiconductor lasers, and electronic methods of steering the radiation patterns of semiconductor lasers and laser arrays. The potential of AlGaAs laser technology for free-space optical communications systems is demonstrated. These solid-state components, which can generate and modulate light, combine the power of a number of sources and perform at least part of the beam pointing functions. Methods are proposed for overcoming the main drawback of semiconductor lasers, that is, their inability to emit the needed amount of optical power in a single-mode operation.

  5. Ultra-broadband tunable (0.67-2.57 µm) optical vortex parametric oscillator

    NASA Astrophysics Data System (ADS)

    Araki, Shungo; Suzuki, Kensuke; Nishida, Shigeki; Mamuti, Roukuya; Miyamoto, Katsuhiko; Omatsu, Takashige

    2017-10-01

    We demonstrate an ultra-broadband (>2-octave band) tunable optical vortex laser comprising an optical-vortex-pumped optical parametric oscillator by employing a nanosecond pulse (˜10 ns) green laser and cascaded non-critical phase-matching LiB3O5 crystals (45 mm long each). With this system, an optical vortex output was produced over an extremely wide wavelength range of 0.67-2.57 µm.

  6. An in-vacuo optical levitation trap for high-intensity laser interaction experiments with isolated microtargets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, C. J., E-mail: c.price10@imperial.ac.uk; Giltrap, S.; Stuart, N. H.

    2015-03-15

    We report on the design, construction, and characterisation of a new class of in-vacuo optical levitation trap optimised for use in high-intensity, high-energy laser interaction experiments. The system uses a focused, vertically propagating continuous wave laser beam to capture and manipulate micro-targets by photon momentum transfer at much longer working distances than commonly used by optical tweezer systems. A high speed (10 kHz) optical imaging and signal acquisition system was implemented for tracking the levitated droplets position and dynamic behaviour under atmospheric and vacuum conditions, with ±5 μm spatial resolution. Optical trapping of 10 ± 4 μm oil droplets inmore » vacuum was demonstrated, over timescales of >1 h at extended distances of ∼40 mm from the final focusing optic. The stability of the levitated droplet was such that it would stay in alignment with a ∼7 μm irradiating beam focal spot for up to 5 min without the need for re-adjustment. The performance of the trap was assessed in a series of high-intensity (10{sup 17} W cm{sup −2}) laser experiments that measured the X-ray source size and inferred free-electron temperature of a single isolated droplet target, along with a measurement of the emitted radio-frequency pulse. These initial tests demonstrated the use of optically levitated microdroplets as a robust target platform for further high-intensity laser interaction and point source studies.« less

  7. An in-vacuo optical levitation trap for high-intensity laser interaction experiments with isolated microtargets

    NASA Astrophysics Data System (ADS)

    Price, C. J.; Donnelly, T. D.; Giltrap, S.; Stuart, N. H.; Parker, S.; Patankar, S.; Lowe, H. F.; Drew, D.; Gumbrell, E. T.; Smith, R. A.

    2015-03-01

    We report on the design, construction, and characterisation of a new class of in-vacuo optical levitation trap optimised for use in high-intensity, high-energy laser interaction experiments. The system uses a focused, vertically propagating continuous wave laser beam to capture and manipulate micro-targets by photon momentum transfer at much longer working distances than commonly used by optical tweezer systems. A high speed (10 kHz) optical imaging and signal acquisition system was implemented for tracking the levitated droplets position and dynamic behaviour under atmospheric and vacuum conditions, with ±5 μm spatial resolution. Optical trapping of 10 ± 4 μm oil droplets in vacuum was demonstrated, over timescales of >1 h at extended distances of ˜40 mm from the final focusing optic. The stability of the levitated droplet was such that it would stay in alignment with a ˜7 μm irradiating beam focal spot for up to 5 min without the need for re-adjustment. The performance of the trap was assessed in a series of high-intensity (1017 W cm-2) laser experiments that measured the X-ray source size and inferred free-electron temperature of a single isolated droplet target, along with a measurement of the emitted radio-frequency pulse. These initial tests demonstrated the use of optically levitated microdroplets as a robust target platform for further high-intensity laser interaction and point source studies.

  8. Fiber optic cables for transmission of high-power laser pulses in spaceflight applications

    NASA Astrophysics Data System (ADS)

    Thomes, W. J.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2017-11-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  9. Fiber Optic Cables for Transmission of High-Power Laser Pulses in Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Thomes, W. J., Jr.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2010-01-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  10. Laser metrology and optic active control system for GAIA

    NASA Astrophysics Data System (ADS)

    D'Angelo, F.; Bonino, L.; Cesare, S.; Castorina, G.; Mottini, S.; Bertinetto, F.; Bisi, M.; Canuto, E.; Musso, F.

    2017-11-01

    The Laser Metrology and Optic Active Control (LM&OAC) program has been carried out under ESA contract with the purpose to design and validate a laser metrology system and an actuation mechanism to monitor and control at microarcsec level the stability of the Basic Angle (angle between the lines of sight of the two telescopes) of GAIA satellite. As part of the program, a breadboard (including some EQM elements) of the laser metrology and control system has been built and submitted to functional, performance and environmental tests. In the followings we describe the mission requirements, the system architecture, the breadboard design, and finally the performed validation tests. Conclusion and appraisals from this experience are also reported.

  11. Control over high peak-power laser light and laser-driven X-rays

    NASA Astrophysics Data System (ADS)

    Zhao, Baozhen; Banerjee, Sudeep; Yan, Wenchao; Zhang, Ping; Zhang, Jun; Golovin, Grigory; Liu, Cheng; Fruhling, Colton; Haden, Daniel; Chen, Shouyuan; Umstadter, Donald

    2018-04-01

    An optical system was demonstrated that enables continuous control over the peak power level of ultrashort duration laser light. The optical characteristics of amplified and compressed femtosecond-duration light from a chirped-pulse amplification laser are shown to remain invariant and maintain high-fidelity using this system. When the peak power was varied by an order-of-magnitude, up to its maximum attainable value, the phase, spectral bandwidth, polarization state, and focusability of the light remained constant. This capability led to precise control of the focused laser intensity and enabled a correspondingly high level of control over the power of an all-laser-driven Thomson X-ray light source.

  12. Construction of a Visible Diode Laser Source for Free Radical Photochemistry and Spectroscopy Experiments

    NASA Technical Reports Server (NTRS)

    Newman, Bronjelyn; Halpern, Joshua B.

    1997-01-01

    Tunable diode lasers are reliable sources of narrow-band light and comparatively cheap. Optical feedback simplifies frequency tuning of the laser diodes. We are building an inexpensive diode laser system incorporating optical feedback from a diffraction grating. The external optical cavity can be used with lasers that emit between 2 and 100 mW, and will also work if they are pulsed, although this will significantly degrade the bandwidth. The diode laser output power and bandwidth are comparable to CW dye lasers used in kinetics and dynamics experiments. However, their cost and maintenance will be much less as will alignment time. We intend to use the diode lasers to investigate CN and C2 kinetics as well as to study dissociation dynamics of atmospherically important molecules.

  13. Research on Measurement Accuracy of Laser Tracking System Based on Spherical Mirror with Rotation Errors of Gimbal Mount Axes

    NASA Astrophysics Data System (ADS)

    Shi, Zhaoyao; Song, Huixu; Chen, Hongfang; Sun, Yanqiang

    2018-02-01

    This paper presents a novel experimental approach for confirming that spherical mirror of a laser tracking system can reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy. By simplifying the optical system model of laser tracking system based on spherical mirror, we can easily extract the laser ranging measurement error caused by rotation errors of gimbal mount axes with the positions of spherical mirror, biconvex lens, cat's eye reflector, and measuring beam. The motions of polarization beam splitter and biconvex lens along the optical axis and vertical direction of optical axis are driven by error motions of gimbal mount axes. In order to simplify the experimental process, the motion of biconvex lens is substituted by the motion of spherical mirror according to the principle of relative motion. The laser ranging measurement error caused by the rotation errors of gimbal mount axes could be recorded in the readings of laser interferometer. The experimental results showed that the laser ranging measurement error caused by rotation errors was less than 0.1 μm if radial error motion and axial error motion were within ±10 μm. The experimental method simplified the experimental procedure and the spherical mirror could reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy of the laser tracking system.

  14. Novel, compact, and simple ND:YVO4 laser with 12 W of CW optical output power and good beam quality

    NASA Astrophysics Data System (ADS)

    Zimer, H.; Langer, B.; Wittrock, U.; Heine, F.; Hildebrandt, U.; Seel, S.; Lange, R.

    2017-11-01

    We present first, promising experiments with a novel, compact and simple Nd:YVO4 slab laser with 12 W of 1.06 μm optical output power and a beam quality factor M2 2.5. The laser is made of a diffusion-bonded YVO4/Nd:YVO4 composite crystal that exhibits two unique features. First, it ensures a one-dimensional heat removal from the laser crystal, which leads to a temperature profile without detrimental influence on the laser beam. Thus, the induced thermo-optical aberrations to the laser field are low, allowing power scaling with good beam quality. Second, the composite crystal itself acts as a waveguide for the 809 nm pump-light that is supplied from a diode laser bar. Pump-light shaping optics, e.g. fast- or slow-axis collimators can be omitted, reducing the complexity of the system. Pump-light redundancy can be easily achieved. Eventually, the investigated slab laser might be suitable for distortion-free high gain amplification of weak optical signals.

  15. High-speed optical feeder-link system using adaptive optics

    NASA Astrophysics Data System (ADS)

    Arimoto, Yoshinori; Hayano, Yutaka; Klaus, Werner

    1997-05-01

    We propose a satellite laser communication system between a ground station and a geostationary satellite, named high- speed optical feeder link system. It is based on the application of (a) high-speed optical devices, which have been developed for ground-based high-speed fiber-optic communications, and (b) the adaptive optics which compensates wavefront distortions due to atmospheric turbulences using a real time feedback control. A link budget study shows that a system with 10-Gbps bit-rate are available assuming the state-of-the-art device performance of the Er-doped fiber amplifier. We further discuss preliminary measurement results of the atmospheric turbulence at the telescope site in Tokyo, and present current study on the design of the key components for the feeder-link laser transceiver.

  16. [System continuity and energy distribution in laser-induced thermo therapy (LITT)].

    PubMed

    Pech, M; Werk, M; Beck, A; Stohlmann, A; Ricke, J

    2002-06-01

    Evaluation of the continuity and energy distribution of a laser system for laser-induced thermo therapy. For evaluation of the continuity of laser optical devices, laser generating units and optical fibers of three different manufactures (Dornier, Hüttinger, Somatex), we used the equipment to generate a laser beam of 25 Watt for 60 minutes. Measurements of the applied energy were done sequentially with two MY Test (Fa. Hüttinger) units. We also performed two in vitro ablations of animal liver tissue with different fiber optics [Mikrodom A 13-0540, Microflexx REF A 13-0561 (Hüttinger), Diffusor-Tip H-6111-T 3, Diffusor H-6111-T 4 (Dornier), Somaflex-Diffusor (Somatex)] over 20 minutes at- an energy flow of 25 J per second. We then evaluated the geometry of coagulation. The different equipment used for our tests showed differences of a maximum of 10 %. Some components did not work properly in certain configurations even though the manufacturer assured it would. We saw significant differences in the ablation characteristics of the different fiber optics, especially in axial and frontal directions. Knowledge of the different characteristics in energy distribution and ablation characteristics are an important factor in performing a successful laser-induced thermo therapy.

  17. Optical properties of doped sol-gel silica glasses

    NASA Astrophysics Data System (ADS)

    King, Terence A.

    1994-01-01

    Sol-gel optical composites were developed and characterized for potential applications in optics, lasers, nonlinear optics, and optoelectronics. Post-doped xerogels were index matched by in-situ polymerization of monomers to form inorganic-organic composites of low scatter and high optical quality. Characterization of the microstructure was made by visible and IR absorption and Raman Spectroscopy and optical quality by attenuation and scatter measurement. Doping techniques were optimized using hypercritical drying and vacuum impregnation and doping distribution monitored by laser-induced fluorescence. One-tenth wavelength surfaces were formed by novel optical polishing. Organic molecular dopants were tested in laser and nonlinear systems. Initial third harmonic generation and Z-scan measurements have shown the potential for saturable absorption and optical limiting.

  18. A new fiber-optic non-contact compact laser-ultrasound scanner for fast non-destructive testing and evaluation of aircraft composites

    PubMed Central

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; O'Donnell, Matthew

    2014-01-01

    Laser ultrasonic (LU) inspection represents an attractive, non-contact method to evaluate composite materials. Current non-contact systems, however, have relatively low sensitivity compared to contact piezoelectric detection. They are also difficult to adjust, very expensive, and strongly influenced by environmental noise. Here, we demonstrate that most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe scheme. In particular, a new type of a balanced fiber-optic Sagnac interferometer is presented as part of an all-optical LU pump-probe system for non-destructive testing and evaluation of aircraft composites. The performance of the LU system is demonstrated on a composite sample with known defects. Wide-band ultrasound probe signals are generated directly at the sample surface with a pulsed fiber laser delivering nanosecond laser pulses at a repetition rate up to 76 kHz rate with a pulse energy of 0.6 mJ. A balanced fiber-optic Sagnac interferometer is employed to detect pressure signals at the same point on the composite surface. A- and B-scans obtained with the Sagnac interferometer are compared to those made with a contact wide-band polyvinylidene fluoride transducer. PMID:24737921

  19. ISTC Projects from RFNC-VNIIEF Devoted to Improving Laser Beam Quality

    NASA Astrophysics Data System (ADS)

    Starikov, F.; Kochemasov, G.

    Information is given about the Projects # 1929 and # 2631 supported by ISTC and concerned with improving laser beam quality and interesting for adaptive optics community. One of them, Project # 1929 has been recently finished. It has been devoted to development of an SBS phase conjugation mirror of superhigh conjugation quality employing the kinoform optics for high-power lasers with nanosecond scale pulse duration. With the purpose of reaching ideal PC fidelity, the SBS mirror includes the raster of small lenses that has been traditionally used as the lenslet in Shack-Hartmann wavefront sensor in adaptive optics. The second of them, Project # 2631, is concerned with the development of an adaptive optical system for phase correction of laser beams with wavefront vortex. The principles of operation of modern adaptive systems are based on the assumption that the phase is a smooth continuous function in space. Therefore the solution of the Project tasks will assume a new step in adaptive optics.

  20. Investigation of possibilities for solar-powered high-energy lasers in space

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Solar pumped lasers were investigated. The literature was reviewed for possible solar laser candidates from optical pumping experiments. A baseline CO electric discharge laser system was shown to be technically feasible. The most promising direct solar pumped laser was identified to be CF3I. Using the 'STAG' solar laser concept and CF3I, it was found that such a system could be weight competitive with the baseline CO laser system.

  1. Compact Laser System for Field Deployable Ultracold Atom Sensors

    NASA Astrophysics Data System (ADS)

    Pino, Juan; Luey, Ben; Anderson, Mike

    2013-05-01

    As ultracold atom sensors begin to see their way to the field, there is a growing need for small, accurate, and robust laser systems to cool and manipulate atoms for sensing applications such as magnetometers, gravimeters, atomic clocks and inertial sensing. In this poster we present a laser system for Rb, roughly the size of a paperback novel, capable of generating and controlling light sufficient for the most complicated of cold atom sensors. The system includes >100dB of non-mechanical, optical shuttering, the ability to create short, microsecond pulses, a Demux stage to port light onto different optical paths, and an atomically referenced, frequency agile laser source. We will present data to support the system, its Size Weight and Power (SWaP) requirements, as well as laser stability and performance. funded under DARPA

  2. Laser reflector with an interference coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vol'pyan, O D; Semenov, A A; Yakovlev, P P

    1998-10-31

    An analysis was made of the reflectivity of interference coatings intended for the use in optical pumping of solid-state lasers. Ruby and Nd{sup 3+}:YAG lasers were used as models in comparative pumping efficiency measurements, carried out employing reflectors with interference and silver coatings. Estimates of the service life of reflectors with interference coatings were obtained. The power of a thermo-optical lens was reduced by the use of such coatings in cw lasers. (laser system components)

  3. Laser Ignition Technology for Bi-Propellant Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Thomas, Matt; Bossard, John; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of laser ignition technology for bipropellant rocket engines applications. The objectives of this project include: (1) the selection test chambers and flows; (2) definition of the laser ignition setup; (3) pulse format optimization; (4) fiber optic coupled laser ignition system analysis; and (5) chamber integration issues definition. The testing concludes that rocket combustion chamber laser ignition is imminent. Support technologies (multiplexing, window durability/cleaning, and fiber optic durability) are feasible.

  4. Laser System for Photoelectron and X-Ray Production in the PLEIADES Compton Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, D J; Barty, C J; Betts, S M

    2005-04-21

    The PLEIADES (Picosecond Laser-Electron Interaction for the Dynamic Evaluation of Structures) facility provides tunable short x-ray pulses with energies of 30-140 keV and pulse durations of 0.3-5 ps by scattering an intense, ultrashort laser pulse off a 35-75 MeV electron beam. Synchronization of the laser and electron beam is obtained by using a photoinjector gun, and using the same laser system to generate the electrons and the scattering laser. The Ti Ti:Sapphire, chirped pulse amplification based 500 mJ, 50 fs, 810 nm scattering laser and the similar 300 {micro}J, 5 ps, 266 nm photoinjector laser systems are detailed. Additionally, anmore » optical parametric chirped pulse amplification (OPCPA) system is studied as a replacement for part of the scattering laser front end. Such a change would significantly simplify the set-up the laser system by removing the need for active switching optics, as well as increase the pre-pulse contrast ratio which will be important when part of the scattering laser is used as a pump beam in pump-probe diffraction experiments using the ultrashort tunable x-rays generated as the probe.« less

  5. Pulsed-laser capabilities at the Laser-Hardened Materials Evaluation Laboratory (LHMEL)

    NASA Astrophysics Data System (ADS)

    Royse, Robert W.; Seibert, Daniel B., II; Lander, Michael L.; Eric, John J.

    2000-08-01

    Pulsed laser capabilities at the Laser Hardened Material Evaluation Laboratory are described relevant to optical coupling, impulse generation and laser propulsion. Capabilities of the Nd:Glass laser are presented as well as supporting test systems.

  6. The development of a low-cost laser communication system for the classroom

    NASA Astrophysics Data System (ADS)

    Sparks, Robert T.; Pompea, Stephen M.; Walker, Constance E.

    2007-06-01

    Hands-On Optics (HOO) is a National Science Foundation funded program to bring optics education to underserved middle school students. We have developed the culminating module (Module 6) on laser communication. Students learn how lasers can be modulated to carry information. The main activity of this module is the construction of a low-cost laser communication system. The system can be built using parts readily available at a local electronics store for approximately US $60. The system can be used to transmit a person's voice or music from sources such as an mp3 player or radio over a distance of 350 feet. We will provide detailed plans on how to build the system in this paper.

  7. Acousto-Optic Q-Switched Fiber Laser-Based Intra-Cavity Photoacoustic Spectroscopy for Trace Gas Detection

    PubMed Central

    Zhang, Qinduan; Chang, Jun; Wang, Zongliang; Wang, Fupeng; Qin, Zengguang

    2017-01-01

    We proposed a new method for gas detection in photoacoustic spectroscopy based on acousto-optic Q-switched fiber laser by merging a transmission PAS cell (resonant frequency f0 = 5.3 kHz) inside the fiber laser cavity. The Q-switching was achieved by an acousto-optic modulator, achieving a peak pulse power of ~679 mW in the case of the acousto-optic modulation signal with an optimized duty ratio of 10%. We used a custom-made fiber Bragg grating with a central wavelength of 1530.37 nm (the absorption peak of C2H2) to select the laser wavelength. The system achieved a linear response (R2 = 0.9941) in a concentration range from 400 to 7000 ppmv, and the minimum detection limit compared to that of a conventional intensity modulation system was enhanced by 94.2 times. PMID:29295599

  8. Acousto-Optic Q-Switched Fiber Laser-Based Intra-Cavity Photoacoustic Spectroscopy for Trace Gas Detection.

    PubMed

    Zhang, Qinduan; Chang, Jun; Wang, Qiang; Wang, Zongliang; Wang, Fupeng; Qin, Zengguang

    2017-12-25

    We proposed a new method for gas detection in photoacoustic spectroscopy based on acousto-optic Q-switched fiber laser by merging a transmission PAS cell (resonant frequency f ₀ = 5.3 kHz) inside the fiber laser cavity. The Q-switching was achieved by an acousto-optic modulator, achieving a peak pulse power of ~679 mW in the case of the acousto-optic modulation signal with an optimized duty ratio of 10%. We used a custom-made fiber Bragg grating with a central wavelength of 1530.37 nm (the absorption peak of C₂H₂) to select the laser wavelength. The system achieved a linear response (R² = 0.9941) in a concentration range from 400 to 7000 ppmv, and the minimum detection limit compared to that of a conventional intensity modulation system was enhanced by 94.2 times.

  9. Frequency locking of compact laser-diode modules at 633 nm

    NASA Astrophysics Data System (ADS)

    Nölleke, Christian; Leisching, Patrick; Blume, Gunnar; Jedrzejczyk, Daniel; Pohl, Johannes; Feise, David; Sahm, Alexander; Paschke, Katrin

    2018-02-01

    This work reports on a compact diode-laser module emitting at 633 nm. The emission frequency can be tuned with temperature and current, while optical feedback of an internal DBR grating ensures single-mode operation. The laser diode is integrated into a micro-fabricated package, which includes optics for beam shaping, a miniaturized optical isolator, and a vapor cell as frequency reference. The achieved absolute frequency stability is below 10-8 , while the output power can be more than 10 mW. This compact absolute frequency-stabilized laser system can replace gas lasers and may be integrated in future quantum technology devices.

  10. Chirped laser dispersion spectroscopy using a directly modulated quantum cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hangauer, Andreas, E-mail: hangauer@princeton.edu; Nikodem, Michal; Wysocki, Gerard, E-mail: gwysocki@princeton.edu

    2013-11-04

    Chirped laser dispersion spectroscopy (CLaDS) utilizing direct modulation of a quantum cascade laser (QCL) is presented. By controlling the laser bias nearly single- and dual-sideband CLaDS operation can be realized in an extremely simplified optical setup with no external optical modulators. Capability of direct single-sideband modulation is a unique feature of QCLs that exhibit a low linewidth enhancement factor. The developed analytical model shows excellent agreement with the experimental, directly modulated CLaDS spectra. This method overcomes major technical limitations of mid-infrared CLaDS systems by allowing significantly higher modulation frequencies and eliminating optical fringes introduced by external modulators.

  11. Advanced laser modeling with BLAZE multiphysics

    NASA Astrophysics Data System (ADS)

    Palla, Andrew D.; Carroll, David L.; Gray, Michael I.; Suzuki, Lui

    2017-01-01

    The BLAZE Multiphysics™ software simulation suite was specifically developed to model highly complex multiphysical systems in a computationally efficient and highly scalable manner. These capabilities are of particular use when applied to the complexities associated with high energy laser systems that combine subsonic/transonic/supersonic fluid dynamics, chemically reacting flows, laser electronics, heat transfer, optical physics, and in some cases plasma discharges. In this paper we present detailed cw and pulsed gas laser calculations using the BLAZE model with comparisons to data. Simulations of DPAL, XPAL, ElectricOIL (EOIL), and the optically pumped rare gas laser were found to be in good agreement with experimental data.

  12. Optical-fiber-based laser-induced breakdown spectroscopy for detection of early caries

    NASA Astrophysics Data System (ADS)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-06-01

    A laser-induced breakdown spectroscopy (LIBS) system targeting for the in vivo analysis of tooth enamel is described. The system is planned to enable real-time analysis of teeth during laser dental treatment by utilizing a hollow optical fiber that transmits both Q-switched Nd:YAG laser light for LIBS and infrared Er:YAG laser light for tooth ablation. The sensitivity of caries detection was substantially improved by expanding the spectral region under analysis to ultraviolet (UV) light and by focusing on emission peaks of Zn in the UV region. Subsequently, early caries were distinguished from healthy teeth with accuracy rates above 80% in vitro.

  13. Gold nanoparticle-based plasmonic random fiber laser

    NASA Astrophysics Data System (ADS)

    Hu, Zhijia; Liang, Yunyun; Xie, Kang; Gao, Pengfei; Zhang, Douguo; Jiang, Haiming; Shi, Fan; Yin, Leicheng; Gao, Jiangang; Ming, Hai; Zhang, Qijin

    2015-03-01

    We have reported the realization of a plasmonic random fiber laser based on the localized surface plasmonic resonance of gold nanoparticles (NPs) in the liquid core optical fiber. The liquid core material contains a dispersive solution of gold NPs and laser dye pyrromethene 597 in toluene. It was experimentally proved that the fluorescence quenching of the dye is restrained in the optical fiber, which is considered one of the main sources of loss in the traditional laser system. Meanwhile, the random lasing can be more easily obtained in the random laser system with more overlap between the plasmonic resonance of the gold NPs and the photoluminescence spectrum of the dye molecules.

  14. Micro benchtop optics by bulk silicon micromachining

    DOEpatents

    Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  15. Investigations of a Dual Seeded 1178 nm Raman Laser System

    DTIC Science & Technology

    2016-01-14

    20 W. Because of the linewidth broadening, a co- pumped second Stokes Raman laser system is not useful for the sodium guidestar laser application... pumped second Stokes Raman laser system is not useful for the sodium guidestar laser application which requires narrow linewidth. Keywords: Raman...optical efficiency of 52% when pumped with a linearly polarized 1120 nm fiber laser10,11. Because of the all-polarization maintaining configuration, a

  16. Portable remote laser sensor for methane leak detection

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Hinkley, E. D., Jr. (Inventor)

    1984-01-01

    A portable laser system for remote detection of methane gas leaks and concentrations is disclosed. The system transmitter includes first and second lasers, tuned respectively to a wavelength coincident with a strong absorption line of methane and a reference wavelength which is weakly absorbed by methane gas. The system receiver includes a spherical mirror for collecting the reflected laser radiation and focusing the collected radiation through a narrowband optical filter onto an optial detector. The filter is tuned to the wavelength of the two lasers, and rejects background noise. The output of the optical detector is processed by a lock-in detector synchronized to the chopper, and which measures the difference between the first wavelength signal and the reference wavelength signal.

  17. Laser Transmitter Aims At Laser Beacon

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Lesh, James R.

    1993-01-01

    Transmitter part of developmental optical communication system. Compact, lightweight, partially-self-aiming laser transmitter built to verify some capabilities of developmental free-space optical communication system. Design capable of providing 0.5 Mbps data return over range equal to Moon-Earth distance. Breadboard of transmitting terminal constructed and tested in laboratory. Prototype transmitter includes receiving circuitry that keeps it aimed at beacon, once brought into initial alignment within about 1.7 degrees of line of sight to beacon.

  18. Ring-laser gyroscope system using dispersive element(s)

    NASA Technical Reports Server (NTRS)

    Smith, David D. (Inventor)

    2010-01-01

    A ring-laser gyroscope system includes a ring-laser gyroscope (RLG) and at least one dispersive element optically coupled to the RLG's ring-shaped optical path. Each dispersive element has a resonant frequency that is approximately equal to the RLG's lasing frequency. A group index of refraction defined collectively by the dispersive element(s) has (i) a real portion that is greater than zero and less than one, and (ii) an imaginary portion that is less than zero.

  19. New generation all-silica based optical elements for high power laser systems

    NASA Astrophysics Data System (ADS)

    Tolenis, T.; GrinevičiÅ«tÄ--, L.; Melninkaitis, A.; Selskis, A.; Buzelis, R.; MažulÄ--, L.; Drazdys, R.

    2017-08-01

    Laser resistance of optical elements is one of the major topics in photonics. Various routes have been taken to improve optical coatings, including, but not limited by, materials engineering and optimisation of electric field distribution in multilayers. During the decades of research, it was found, that high band-gap materials, such as silica, are highly resistant to laser light. Unfortunately, only the production of anti-reflection coatings of all-silica materials are presented to this day. A novel route will be presented in materials engineering, capable to manufacture high reflection optical elements using only SiO2 material and GLancing Angle Deposition (GLAD) method. The technique involves the deposition of columnar structure and tailoring the refractive index of silica material throughout the coating thickness. A numerous analysis indicate the superior properties of GLAD coatings when compared with standard methods for Bragg mirrors production. Several groups of optical components are presented including anti-reflection coatings and Bragg mirrors. Structural and optical characterisation of the method have been performed and compared with standard methods. All researches indicate the possibility of new generation coatings for high power laser systems.

  20. Atmospheric effects on laser eye safety and damage to instrumentation

    NASA Astrophysics Data System (ADS)

    Zilberman, Arkadi; Kopeika, Natan S.

    2017-10-01

    Electro-optical sensors as well as unprotected human eyes are extremely sensitive to laser radiation and can be permanently damaged from direct or reflected beams. Laser detector/eye hazard depends on the interaction between the laser beam and the media in which it traverses. The environmental conditions including terrain features, atmospheric particulate and water content, and turbulence, may alter the laser's effect on the detector/eye. It is possible to estimate the performance of an electro-optical system as long as the atmospheric propagation of the laser beam can be adequately modeled. More recent experiments and modeling of atmospheric optics phenomena such as inner scale effect, aperture averaging, atmospheric attenuation in NIR-SWIR, and Cn2 modeling justify an update of previous eye/detector safety modeling. In the present work, the influence of the atmospheric channel on laser safety for personnel and instrumentation is shown on the basis of theoretical and experimental data of laser irradiance statistics for different atmospheric conditions. A method for evaluating the probability of damage and hazard distances associated with the use of laser systems in a turbulent atmosphere operating in the visible and NIR-SWIR portions of the electromagnetic spectrum is presented. It can be used as a performance prediction model for directed energy engagement of ground-based or air-based systems.

  1. Standard measurement procedures for the characterization of fs-laser optical components

    NASA Astrophysics Data System (ADS)

    Starke, Kai; Ristau, Detlev; Welling, Herbert

    2003-05-01

    Ultra-short pulse laser systems are considered as promising tools in the fields of precise micro-machining and medicine applications. In the course of the development of reliable table top laser systems, a rapid growth of ultra-short pulse applications could be observed during the recent years. The key for improving the performance of high power laser systems is the quality of the optical components concerning spectral characteristics, optical losses and the power handling capability. In the field of ultra-short pulses, standard measurement procedures in quality management have to be validated in respect to effects induced by the extremely high peak power densities. The present work, which is embedded in the EUREKA-project CHOCLAB II, is predominantly concentrated on measuring the multiple-pulse LIDT (ISO 11254-2) in the fs-regime. A measurement facility based on a Ti:Sapphire-CPA system was developed to investigate the damage behavior of optical components. The set-up was supplied with an improved pulse energy detector discriminating the influence of pulse-to-pulse energy fluctuations on the incidence of damage. Aditionally, a laser-calorimetric measurement facility determining the absorption (ISO 11551) utilizing a fs-Ti:Sapphire laser was accomplished. The investigation for different pulse durations between 130 fs and 1 ps revealed a drastic increase of absorption in titania coatings for ultra-short pulses.

  2. Ultra-low noise combs in the palm of your hand

    NASA Astrophysics Data System (ADS)

    Schibli, Thomas R.

    Mode-locked lasers are attractive tools for precision measurements and for photonic microwave generation. The technology around these lasers has rapidly evolved, and with the invention of optical frequency combs, fs-technology has become a ubiquitous tool science and engineering. At first, most of these combs were generated by bulky and delicate Kerr-Lens mode-locked Ti:sapphire systems, but have now been mostly replaced by the much more robust and compact fiber lasers. However, the move from table-top solid-state lasers to the fully self-contained fiber systems came with a price: the optical phase noise performance degraded due to design constraints. While this is of no concern for most spectroscopic applications, it poses a challenge for applications that require excellent short-term phase noise performance, such as, for example, required for photonic microwave generation. While much of this has been improved by ingenious laser designs, it remains a challenge to obtain ultra-low phase-noise combs from high-repetition-rate fiber lasers. Here we present a new approach consisting of a monolithic cavity design, in which the laser light is fully confined inside an optical material. Thanks to this monolithic design, these solid-state lasers are inherently robust against environmental perturbations, such as acoustics, vibrations, air pressure and humidity. Opposed to the omnipresent mode-locked fiber lasers, these monolithic lasers exhibit very low round-trip loss, dispersion and nonlinearities. As a result, they produce highly stable pulse trains, with free-running relative line-widths of the order of a few Hz in the optical domain, despite their moderately high fundamental repetition rates of 1 GHz. The compact design further simplifies integration into complex systems, and eliminates the need for an optics bench or a vibration isolated platform. These lasers produce less than 0.2 W of heat, and are fully turn-key. This work was supported by the DARPA PULSE program with a Grant from AMRDEC and by the NSF Early Career Award.

  3. Near infra-red astronomy with adaptive optics and laser guide stars at the Keck Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Max, C.E.; Gavel, D.T.; Olivier, S.S.

    1995-08-03

    A laser guide star adaptive optics system is being built for the W. M. Keck Observatory`s 10-meter Keck II telescope. Two new near infra-red instruments will be used with this system: a high-resolution camera (NIRC 2) and an echelle spectrometer (NIRSPEC). The authors describe the expected capabilities of these instruments for high-resolution astronomy, using adaptive optics with either a natural star or a sodium-layer laser guide star as a reference. They compare the expected performance of these planned Keck adaptive optics instruments with that predicted for the NICMOS near infra-red camera, which is scheduled to be installed on the Hubblemore » Space Telescope in 1997.« less

  4. Acousto-optic pointing and tracking systems for free-space laser communications

    NASA Astrophysics Data System (ADS)

    Nikulin, V.; Khandekar, R.; Sofka, J.; Tartakovsky, G.

    2005-08-01

    Implementation of long-range laser communication systems holds great promise for high-bandwidth applications. They are viewed as a technology that in the nearest future will handle most of the "last mile" communication traffic for the individual subscribers, corporate offices, military, and possibly deep space probes. Indeed, lasers allow for concentration of energy within tightly focused beams and narrow spectral interval, thus offering high throughput, information security, weight and size of components and power requirements that could not be matched by RF systems. However, the advantages of optical communication systems come in the same package with several major challenges. In particular, high data rates should be complemented by high-precision wide-bandwidth position control of a laser beam. In many applications the ability to maintain a link is affected by the complex maneuvers performed by mobile communication platforms, resident vibrations, and atmospheric effects. The search for the most effective and reliable way to shape and steer the laser beam is an on-going effort. This paper is focused on the application of acousto-optic technology as an alternative to electro-mechanical devices. With realization that an acousto-optic Bragg cell is only a component of the entire communication system, which should perform complex tasks of acquisition, pointing, and tracking of the remote terminal, we present an attempt to consider this problem from the "systems" point of view.

  5. Full-Duplex Digital Communication on a Single Laser Beam

    NASA Technical Reports Server (NTRS)

    Hazzard, D. A.; MacCannell, J. A.; Lee, G.; Selves, E. R.; Moore, D.; Payne, J. A.; Garrett, C. D.; Dahlstrom, N.; Shay, T. M.

    2006-01-01

    A proposed free-space optical communication system would operate in a full-duplex mode, using a single constant-power laser beam for transmission and reception of binary signals at both ends of the free-space optical path. The system was conceived for two-way data communication between a ground station and a spacecraft in a low orbit around the Earth. It has been estimated that in this application, a data rate of 10 kb/s could be achieved at a ground-station-to-spacecraft distance of 320 km, using a laser power of only 100 mW. The basic system concept is also applicable to terrestrial free-space optical communications. The system (see figure) would include a diode laser at one end of the link (originally, the ground station) and a liquid-crystal- based retroreflecting modulator at the other end of the link (originally, the spacecraft). At the laser end, the beam to be transmitted would be made to pass through a quarter-wave plate, which would convert its linear polarization to right circular polarization. For transmission of data from the laser end to the retroreflector end, the laser beam would be modulated with subcarrier phase-shift keying (SC-PSK). The transmitted beam would then pass through an aperture- sharing element (ASE) - basically, a mirror with a hole in it, used to separate the paths of the transmitted and received light beams. The transmitted beam would continue outward through a telescope (which, in the original application, would be equipped with a spacecraft-tracking system) that would launch the transmitted beam along the free-space optical path to the retroreflector end.

  6. Versatile optical system for static and dynamic thermomagnetic recording using a scanning laser microscope

    NASA Astrophysics Data System (ADS)

    Clegg, Warwick W.; Jenkins, David F. L.; Helian, Na; Windmill, James; Windmill, Robert

    2001-12-01

    Scanning Laser Microscopes (SLM) have been used to characterise the magnetic domain properties of various magnetic and magneto-optical materials. The SLM in our laboratory has been designed to enable both static and dynamic read-write operations to be performed on stationary media. In a conventional (static) SLM, data bits are recorded thermo-magnetically by focusing a pulse of laser light onto the sample surface. If the laser beam has a Gaussian intensity distribution (TEM00) then so will the focused laser spot. The resultant temperature profile will largely mirror the intensity distribution of the focused spot, and in the region where the temperature is sufficiently high for switching to occur, in the presence of bias field, a circular data bit will be recorded. However, in a real magneto-optical drive the bits are written onto non-stationary media, and the resultant bit will be non-circular. A versatile optical system has been developed to facilitate both recording and imaging of data bits. To simulate the action of a Magneto-Optical drive, the laser is pulsed via an Acousto-Optic Modulator, whilst being scanned across the sample using a galvanometer mounted mirror, thus imitating a storage medium rotating above a MO head with high relative velocity between the beam and medium. Static recording is simply achieved by disabling the galvanometer scan mirror. Polar magneto-optic Kerr effect images are acquired using multiple-segment photo-detectors for diffraction-limited scanned spot detection, with either specimen scanning for highest resolution or beam scanning for near real-time image acquisition. Results will be presented to illustrate the systems capabilities.

  7. Optical fiber sensor for the detection of laser-generated ultrasound in arterial tissues

    NASA Astrophysics Data System (ADS)

    Beard, Paul C.; Mills, Timothy N.

    1995-02-01

    Theoretical and experimental aspects of an extrinsic Fabry-Perot optical fiber ultrasound sensor for use in a photoacoustic-guided laser angioplasty system are described. The sensor has been characterized using laser generated thermoelastic waves as a source of wideband ultrasound. A system sensitivity of 25 mV/MPa and an acoustic noise floor of 2 Pa/Hz1/2 are reported using a transparent polymer film as the sensing element. The system demonstrates the required bandwidth for sensing thermoelastic waves containing frequency components up to 20 MHz.

  8. Long range laser traversing system

    NASA Technical Reports Server (NTRS)

    Caudill, L. O. (Inventor)

    1974-01-01

    The relative azimuth bearing between first and second spaced terrestrial points which may be obscured from each other by intervening terrain is measured by placing at one of the points a laser source for projecting a collimated beam upwardly in the vertical plane. The collimated laser beam is detected at the second point by positioning the optical axis of a receiving instrument for the laser beam in such a manner that the beam intercepts the optical axis. In response to the optical axis intercepting the beam, the beam is deflected into two different ray paths by a beam splitter having an apex located on the optical axis. The energy in the ray paths is detected by separate photoresponsive elements that drive logic networks for proving indications of: (1) the optical axis intercepting the beam; (2) the beam being on the left of the optical axis and (3) the beam being on the right side of the optical axis.

  9. Grating-based real-time smart optics for biomedicine and communications

    NASA Astrophysics Data System (ADS)

    Yaqoob, Zahid

    Novel photonic systems are proposed and experimentally validated using active as well as passive wavelength dispersive optical devices in unique fashions to solve important system level application problems in biomedicine and laser communications. Specifically for the first time are proposed, high dynamic range variable optical attenuators (VOAs) using bulk acousto-optics (AO). These AO-based architectures have excellent characteristics such as high laser damage threshold (e.g., 1 Watt CW laser power operations), large (e.g., >40 dB) dynamic range, and microsecond domain attenuation setting speed. The demonstrated architectures show potentials for compact, low static insertion loss, and low power VOA designs for wavelength division multiplexed (WDM) fiber-optic communication networks and high speed photonic signal processing for optical and radio frequency (RF) radar and electronic warfare (EW). Acoustic diffraction of light in isotropic media has been manipulated to design and demonstrate on a proof-of-principle basis, the first bulk AO-based optical coherence tomography (OCT) system for high-resolution sub-surface tissue diagnostics. As opposed to the current OCT systems that use mechanical means to generate optical delays, both free-space as well as fiber-optic AO-based OCT systems utilize unique electronically-controlled acousto-optically switched no-moving parts optical delay lines and therefore promise microsecond speed OCT data acquisition rates. The proposed OCT systems also feature high (e.g., >100 MHz) intermediate frequency for low 1/f noise heterodyne detection. For the first time, two agile laser beam steering schemes that are members of a new beam steering technology known as Multiplexed-Optical Scanner Technology (MOST) are theoretically investigated and experimentally demonstrated. The new scanner technologies are based on wavelength and space manipulations and possess remarkable features such as a no-moving parts fast (e.g., microseconds domain or less) beam switching speed option, large (e.g., several centimeters) scanner apertures for high-resolution scans, and large (e.g., >10°) angular scans in more than one dimensions. These incredible features make these scanners excellent candidates for high-end applications. Specifically discussed and experimentally analyzed for the first time are novel MOST-based systems for agile free-space lasercom links, internal and external cavity scanning biomedical probes, and high-speed optical data handling such as barcode scanners. In addition, a novel low sidelobe wavelength selection filter based on a single bulk crystal acousto-optic tunable filter device is theoretically analyzed and experimentally demonstrated showing its versatility as a scanner control fiber-optic component for interfacing with the proposed wavelength based optical scanners. In conclusion, this thesis has shown how powerful photonic systems can be realized via novel architectures using active and passive wavelength sensitive optics leading to advanced solutions for the biomedical and laser communications research communities.

  10. CO2 lasers and applications II; Proceedings of the Third European Congress on Optics, The Hague, Netherlands, Mar. 12-14, 1990

    NASA Technical Reports Server (NTRS)

    Opower, Hans (Editor)

    1990-01-01

    Recent advances in CO2 laser technology and its applications are examined. Topics discussed include the excitation of CO2 lasers by microwave discharge, a compact RF-excited 12-kW CO2 laser, a robotic laser for three-dimensional cutting and welding, three-dimensional CO2-laser material processing with gantry machine systems, and a comparison of hollow metallic waveguides and optical fibers for transmitting CO2-laser radiation. Consideration is given to an aerodynamic window with a pump cavity and a supersonic jet, cutting and welding Al using a high-repetition-rate pulsed CO2 laser, speckle reduction in CO2 heterodyne laser radar systems, high-power-laser float-zone crystal growth, melt dynamics in surface processing with laser radiation, laser hardfacing, surface melting of AlSi10Mg with CO2 laser radiation, material processing with Cu-vapor lasers, light-induced flow at a metal surface, and absorption measurements in high-power CW CO2-laser processing of materials.

  11. Link Performance Analysis of a Ship-to-Ship Laser Communication System

    DTIC Science & Technology

    2012-03-01

    the optical output by a modulating signal. Direct detection requires only the intensity, and not the phase information, of the input signal to...links have a higher signal-to-noise ratio ( ) as compared to RF link. However, at approximately 108 km, the SNR for the optical links is much... optical signal received is mixed with a light signal generated from a local oscillator laser (LO-laser). The combined signals are then impinged onto the

  12. Laser tissue coagulation and concurrent optical coherence tomography through a double-clad fiber coupler.

    PubMed

    Beaudette, Kathy; Baac, Hyoung Won; Madore, Wendy-Julie; Villiger, Martin; Godbout, Nicolas; Bouma, Brett E; Boudoux, Caroline

    2015-04-01

    Double-clad fiber (DCF) is herein used in conjunction with a double-clad fiber coupler (DCFC) to enable simultaneous and co-registered optical coherence tomography (OCT) and laser tissue coagulation. The DCF allows a single channel fiber-optic probe to be shared: i.e. the core propagating the OCT signal while the inner cladding delivers the coagulation laser light. We herein present a novel DCFC designed and built to combine both signals within a DCF (>90% of single-mode transmission; >65% multimode coupling). Potential OCT imaging degradation mechanisms are also investigated and solutions to mitigate them are presented. The combined DCFC-based system was used to induce coagulation of an ex vivo swine esophagus allowing a real-time assessment of thermal dynamic processes. We therefore demonstrate a DCFC-based system combining OCT imaging with laser coagulation through a single fiber, thus enabling both modalities to be performed simultaneously and in a co-registered manner. Such a system enables endoscopic image-guided laser marking of superficial epithelial tissues or laser thermal therapy of epithelial lesions in pathologies such as Barrett's esophagus.

  13. Laser tissue coagulation and concurrent optical coherence tomography through a double-clad fiber coupler

    PubMed Central

    Beaudette, Kathy; Baac, Hyoung Won; Madore, Wendy-Julie; Villiger, Martin; Godbout, Nicolas; Bouma, Brett E.; Boudoux, Caroline

    2015-01-01

    Double-clad fiber (DCF) is herein used in conjunction with a double-clad fiber coupler (DCFC) to enable simultaneous and co-registered optical coherence tomography (OCT) and laser tissue coagulation. The DCF allows a single channel fiber-optic probe to be shared: i.e. the core propagating the OCT signal while the inner cladding delivers the coagulation laser light. We herein present a novel DCFC designed and built to combine both signals within a DCF (>90% of single-mode transmission; >65% multimode coupling). Potential OCT imaging degradation mechanisms are also investigated and solutions to mitigate them are presented. The combined DCFC-based system was used to induce coagulation of an ex vivo swine esophagus allowing a real-time assessment of thermal dynamic processes. We therefore demonstrate a DCFC-based system combining OCT imaging with laser coagulation through a single fiber, thus enabling both modalities to be performed simultaneously and in a co-registered manner. Such a system enables endoscopic image-guided laser marking of superficial epithelial tissues or laser thermal therapy of epithelial lesions in pathologies such as Barrett’s esophagus. PMID:25909013

  14. Femtosecond laser-electron x-ray source

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  15. Large field distributed aperture laser semiactive angle measurement system design with imaging fiber bundles.

    PubMed

    Xu, Chunyun; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli

    2016-09-01

    A type of laser semiactive angle measurement system is designed for target detecting and tracking. Only one detector is used to detect target location from four distributed aperture optical systems through a 4×1 imaging fiber bundle. A telecentric optical system in image space is designed to increase the efficiency of imaging fiber bundles. According to the working principle of a four-quadrant (4Q) detector, fiber diamond alignment is adopted between an optical system and a 4Q detector. The structure of the laser semiactive angle measurement system is, we believe, novel. Tolerance analysis is carried out to determine tolerance limits of manufacture and installation errors of the optical system. The performance of the proposed method is identified by computer simulations and experiments. It is demonstrated that the linear region of the system is ±12°, with measurement error of better than 0.2°. In general, this new system can be used with large field of view and high accuracy, providing an efficient, stable, and fast method for angle measurement in practical situations.

  16. Modeling, Simulation, and Analysis of a Decoy State Enabled Quantum Key Distribution System

    DTIC Science & Technology

    2015-03-26

    through the fiber , we assume Alice and Bob have correct basis alignment and timing control for reference frame correction and precise photon detection...optical components ( laser , polarization modulator, electronic variable optical attenuator, fixed optical attenuator, fiber channel, beamsplitter...generated by the laser in the CPG propagate through multiple optical components, each with a unique propagation delay before reaching the OPM. Timing

  17. co2amp: A software program for modeling the dynamics of ultrashort pulses in optical systems with CO 2 amplifiers

    DOE PAGES

    Polyanskiy, Mikhail N.

    2015-01-01

    We describe a computer code for simulating the amplification of ultrashort mid-infrared laser pulses in CO 2 amplifiers and their propagation through arbitrary optical systems. This code is based on a comprehensive model that includes an accurate consideration of the CO 2 active medium and a physical optics propagation algorithm, and takes into account the interaction of the laser pulse with the material of the optical elements. Finally, the application of the code for optimizing an isotopic regenerative amplifier is described.

  18. Practical application of cross correlation technique to measure jitter of master-oscillator-power-amplifier laser system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Młyńczak, J.; Sawicz-Kryniger, K.; Fry, A. R.

    2014-01-01

    The Linac coherent light source (LCLS) at the SLAC National Accelerator Laboratory (SLAC) is the world’s first hard X-ray free electron laser (XFEL) and is capable of producing high-energy, femtosecond duration X-ray pulses. A common technique to study fast timescale physical phenomena, various “pump/probe” techniques are used. In these techniques there are two lasers, one optical and one X-ray, that work as a pump and as a probe to study dynamic processes in atoms and molecules. In order to resolve phenomena that occur on femtosecond timescales, it is imperative to have very precise timing between the optical lasers and X-raysmore » (on the order of ~ 20 fs or better). The lasers are synchronized to the same RF source that drives the accelerator and produces the X-ray laser. However, elements in the lasers cause some drift and time jitter, thereby de-synchronizing the system. This paper considers cross-correlation technique as a way to quantify the drift and jitter caused by the regenerative amplifier of the ultrafast optical laser.« less

  19. Design and construction of a multiple beam laser projector and dynamically refocused wavefront sensor

    NASA Astrophysics Data System (ADS)

    Stalcup, Thomas Eugene, Jr.

    Adaptive optics using natural guide stars can produce images of amazing quality, but is limited to a small fraction of the sky due to the need for a relatively bright guidestar. Adaptive optics systems using a laser generated artificial reference can be used over a majority of the sky, but these systems have some attendant problems. These problems can be reduced by increasing the altitude of the laser return, and indeed a simple, single laser source focused at an altitude of 95 km on a layer of atmospheric sodium performs well for the current generation of 8--10 m telescopes. For future giant telescopes in the 20--30 m class, however, the errors due to incorrect atmospheric sampling and spot elongation will prohibit such a simple system from working. The system presented in this dissertation provides a solution to these problems. Not only does it provide the 6.5m MMT with a relatively inexpensive laser guide star system with unique capabilities, it allows research into solving many of the problems faced by laser guide star systems on future giant telescopes. The MMT laser guidestar system projects a constellation of five doubled Nd:YAG laser beams focused at a mean height of 25 km, with a dynamic refocus system that corrects for spot elongation and allows integrating the return from a 10 km long range gate. It has produced seeing limited spot sizes in ˜1 arcsecond seeing conditions, and has enabled the first on-sky results of Ground Layer Adaptive Optics (GLAO).

  20. Advances in laser technology and fibre-optic delivery systems in lithotripsy.

    PubMed

    Fried, Nathaniel M; Irby, Pierce B

    2018-06-08

    The flashlamp-pumped, solid-state holmium:yttrium-aluminium-garnet (YAG) laser has been the laser of choice for use in ureteroscopic lithotripsy for the past 20 years. However, although the holmium laser works well on all stone compositions and is cost-effective, this technology still has several fundamental limitations. Newer laser technologies, including the frequency-doubled, double-pulse YAG (FREDDY), erbium:YAG, femtosecond, and thulium fibre lasers, have all been explored as potential alternatives to the holmium:YAG laser for lithotripsy. Each of these laser technologies is associated with technical advantages and disadvantages, and the search continues for the next generation of laser lithotripsy systems that can provide rapid, safe, and efficient stone ablation. New fibre-optic approaches for safer and more efficient delivery of the laser energy inside the urinary tract include the use of smaller-core fibres and fibres that are tapered, spherical, detachable or hollow steel, or have muzzle brake distal fibre-optic tips. These specialty fibres might provide advantages, including improved flexibility for maximal ureteroscope deflection, reduced cross section for increased saline irrigation rates through the working channel of the ureteroscope, reduced stone retropulsion for improved stone ablation efficiency, and reduced fibre degradation and burnback for longer fibre life.

  1. Optically-Based Diagnostics for Gas-Phase Laser Development

    DTIC Science & Technology

    2010-08-01

    Laser (COIL), Electric Oxygen Iodine Laser (EOIL), Diode-Pumped Alkali Laser (DPAL), and Exciplex Alkali Laser (XPAL). The papers at this Symposium... exciplex -assisted absorption and laser-induced fluorescence, and multi-photon excitation of infrared atomic alkali transitions.11,12 In this paper... EXCIPLEX LASER SYSTEMS Proper review and discussion of the DPAL and XPAL laser systems can be found elsewhere,11,12 and in the paper by Carroll and

  2. Efficient laser noise reduction method via actively stabilized optical delay line.

    PubMed

    Li, Dawei; Qian, Cheng; Li, Ye; Zhao, Jianye

    2017-04-17

    We report a fiber laser noise reduction method by locking it to an actively stabilized optical delay line, specifically a fiber-based Mach-Zehnder interferometer with a 10 km optical fiber spool. The fiber spool is used to achieve large arm imbalance. The heterodyne signal of the two arms converts the laser noise from the optical domain to several megahertz, and it is used in laser noise reduction by a phase-locked loop. An additional phase-locked loop is induced in the system to compensate the phase noise due to environmentally induced length fluctuations of the optical fiber spool. A major advantage of this structure is the efficient reduction of out-of-loop frequency noise, particularly at low Fourier frequency. The frequency noise reaches -30 dBc/Hz at 1 Hz, which is reduced by more than 90 dB compared with that of the laser in its free-running state.

  3. Beam shaping for laser-based adaptive optics in astronomy.

    PubMed

    Béchet, Clémentine; Guesalaga, Andrés; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani

    2014-06-02

    The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics system (GeMS). A beam shaping concept with two deformable mirrors is investigated in order to provide automated optimization of the laser quality for astronomical AO. This study aims at demonstrating the correction of quasi-static aberrations of the laser, in both amplitude and phase, testing a prototype of this two-deformable mirror concept on GeMS. The paper presents the results of the preparatory study before the experimental phase. An algorithm to control amplitude and phase correction, based on phase retrieval techniques, is presented with a novel unwrapping method. Its performance is assessed via numerical simulations, using aberrations measured at GeMS as reference. The results predict effective amplitude and phase correction of the laser distortions with about 120 actuators per mirror and a separation of 1.4 m between the mirrors. The spot size is estimated to be reduced by up to 15% thanks to the correction. In terms of AO noise level, this has the same benefit as increasing the photon flux by 40%.

  4. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope

    PubMed Central

    Sheehy, Christy K.; Tiruveedhula, Pavan; Sabesan, Ramkumar; Roorda, Austin

    2015-01-01

    We demonstrate a system that combines a tracking scanning laser ophthalmoscope (TSLO) and an adaptive optics scanning laser ophthalmoscope (AOSLO) system resulting in both optical (hardware) and digital (software) eye-tracking capabilities. The hybrid system employs the TSLO for active eye-tracking at a rate up to 960 Hz for real-time stabilization of the AOSLO system. AOSLO videos with active eye-tracking signals showed, at most, an amplitude of motion of 0.20 arcminutes for horizontal motion and 0.14 arcminutes for vertical motion. Subsequent real-time digital stabilization limited residual motion to an average of only 0.06 arcminutes (a 95% reduction). By correcting for high amplitude, low frequency drifts of the eye, the active TSLO eye-tracking system enabled the AOSLO system to capture high-resolution retinal images over a larger range of motion than previously possible with just the AOSLO imaging system alone. PMID:26203370

  5. Beam profile measurements for target designators

    NASA Astrophysics Data System (ADS)

    Frank, J. D.

    1985-02-01

    An American aerospace company has conducted a number of investigations with the aim to improve on the tedious slow manual methods of measuring pulsed lasers for rangefinders, giving particular attention to beam divergence which is studied by varying aperture sizes and positions in the laser beam path. Three instruments have been developed to make the involved work easier to perform. One of these, the Automatic Laser Instrumentation and Measurement System (ALIMS), consists of an optical bench, a digital computer, and three bays of associated electronic instruments. ALIMS uses the aperture method to measure laser beam alignment and divergence. The Laser Intensity Profile System (LIPS) consists of a covered optical bench and a two bay electronic equipment and control console. The Automatic Laser Test Set (ALTS) utilizes a 50 x 50 silicon photodiode array to characterize military laser systems automatically. Details regarding the conducted determinations are discussed.

  6. High resolution, high sensitivity, dynamic distributed structural monitoring using optical frequency domain reflectometry

    NASA Astrophysics Data System (ADS)

    Kreger, Stephen T.; Sang, Alex K.; Garg, Naman; Michel, Julia

    2013-05-01

    Fiber-optic ultrasonic transducers are an important component of an active ultrasonic testing system for structural health monitoring. Fiber-optic transducers have several advantages such as small size, light weight, and immunity to electromagnetic interference that make them much more attractive than the current available piezoelectric transducers, especially as embedded and permanent transducers in active ultrasonic testing for structural health monitoring. In this paper, a distributed fiber-optic laser-ultrasound generation based on the ghost-mode of tilted fiber Bragg gratings is studied. The influences of the laser power and laser pulse duration on the laser-ultrasound generation are investigated. The results of this paper are helpful to understand the working principle of this laser-ultrasound method and improve the ultrasonic generation efficiency.

  7. Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence.

    PubMed

    Dikmelik, Yamaç; Davidson, Frederic M

    2005-08-10

    High-speed free-space optical communication systems have recently used fiber-optic components. The received laser beam in such a system must be coupled into a single-mode fiber at the input of the receiver module. However, propagation through atmospheric turbulence degrades the spatial coherence of a laser beam and limits the fiber-coupling efficiency. We numerically evaluate the fiber-coupling efficiency for laser light distorted by atmospheric turbulence. We also investigate the use of a coherent fiber array as a receiver structure and find that a coherent fiber array that consists of seven subapertures would significantly increase the fiber-coupling efficiency.

  8. AlGaInN laser diode technology and systems for defence and security applications

    NASA Astrophysics Data System (ADS)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lujca; Boćkowski, Mike; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Watson, Scott; Kelly, Antony E.

    2015-10-01

    AlGaInN laser diodes is an emerging technology for defence and security applications such as underwater communications and sensing, atomic clocks and quantum information. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well. Thus AlGaInN laser diode technology is a key enabler for the development of new disruptive system level applications in displays, telecom, defence and other industries. Ridge waveguide laser diodes are fabricated to achieve single mode operation with optical powers up to 100mW with the 400-440nm wavelength range with high reliability. Visible free-space and underwater communication at frequencies up to 2.5GHz is reported using a directly modulated 422nm GaN laser diode. Low defectivity and highly uniform GaN substrates allow arrays and bars to be fabricated. High power operation operation of AlGaInN laser bars with up to 20 emitters have been demonstrated at optical powers up to 4W in a CS package with common contact configuration. An alternative package configuration for AlGaInN laser arrays allows for each individual laser to be individually addressable allowing complex free-space or optical fibre system integration with a very small form-factor.

  9. Laser beam uniformity and stability using homogenizer-based fiber optic launch method: square core fiber delivery

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2011-03-01

    Over the years, technological achievements within the laser medical diagnostic, treatment, and therapy markets have led to ever increasing requirements for greater control of critical laser beam parameters. Increased laser power/energy stabilization, temporal and spatial beam shaping and flexible laser beam delivery systems with ergonomic focusing or imaging lens systems are sought by leading medical laser system producers. With medical procedures that utilize laser energy, there is a constant emphasis on reducing adverse effects that come about by the laser itself or its optical system, but even when these variables are well controlled the medical professional will still need to deal with the multivariate nature of the human body. Focusing on the variables that can be controlled, such as accurate placement of the laser beam where it will expose a surface being treated as well as laser beam shape and uniformity is critical to minimizing adverse conditions. This paper covers the use of fiber optic beam delivery as a means of defining the beam shape (intensity/power distribution uniformity) at the target plane as well as the use of fiber delivery as a means to allow more flexible articulation of the laser beam over the surface being treated. The paper will present a new concept of using a square core fiber beam delivery design utilizing a unique micro lens array (MLA) launch method that improves the overall stability of the system, by minimizing the impact of the laser instability. The resulting performance of the prototype is presented to demonstrate its stability in comparison to simple lens launch techniques, with an emphasis on homogenization and articulated fiber delivery.

  10. Monolithic thulium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Aubrecht, J.; Peterka, P.; Honzátko, P.; Todorov, F.; Podrazký, O.; Kamrádek, M.; Proboštová, J.; Kašík, I.

    2017-12-01

    In this contribution we report and discuss the results of laser characterizations of experimental thulium-doped optical fibers. These active fibers were fabricated in house and were tested in two laser systems to verify their characteristics. The first one, a monolithic fiber laser, was of great interest to us due to its potentially lower overall resonator losses, improved laser lifetime and better robustness. The compact laser cavities with a Bragg gratings inscribed directly into the active optical fiber differs to the second laser system where the Bragg gratings were inscribed into a passive fiber which had to be spliced to the active fiber. The tested fibers were manufactured by the modified chemical vapor deposition method and a solution-doping of thulium ions with Al2O3 or alumina nanoparticles, respectively. We focused on comparison of laser output powers, slope efficiencies, and laser thresholds for particular thulium-doped fiber in different laser configurations.

  11. Laser Sources for Generation of Ultrasound

    NASA Technical Reports Server (NTRS)

    Wagner, James W.

    1996-01-01

    Two laser systems have been built and used to demonstrate enhancements beyond current technology used for laser-based generation and detection of ultrasound. The first system consisted of ten Nd:YAG laser cavities coupled electronically and optically to permit sequential bursts of up to ten laser pulses directed either at a single point or configured into a phased array of sources. Significant enhancements in overall signal-to-noise ratio for laser ultrasound incorporating this new source system was demonstrated, using it first as a source of narrowband ultrasound and secondly as a phased array source producing large enhanced signal displacements. A second laser system was implemented using ultra fast optical pulses from a Ti:Sapphire laser to study a new method for making laser generated ultrasonic measurements of thin films with thicknesses on the order of hundreds of angstroms. Work by prior investigators showed that such measurements could be made based upon fluctuations in the reflectivity of thin films when they are stressed by an arriving elastic pulse. Research performed using equipment purchased under this program showed that a pulsed interferometric system could be used as well as a piezoreflective detection system to measure pulse arrivals even in thin films with very low piezoreflective coefficients.

  12. Closed-loop wavelength stabilization of an optical parametric oscillator as a front end of a high-power iodine laser chain.

    PubMed

    Kral, L

    2007-05-01

    We present a complex stabilization and control system for a commercially available optical parametric oscillator. The system is able to stabilize the oscillator's output wavelength at a narrow spectral line of atomic iodine with subpicometer precision, allowing utilization of this solid-state parametric oscillator as a front end of a high-power photodissociation laser chain formed by iodine gas amplifiers. In such setup, a precise wavelength matching between the front end and the amplifier chain is necessary due to extremely narrow spectral lines of the gaseous iodine (approximately 20 pm). The system is based on a personal computer, a heated iodine cell, and a few other low-cost components. It automatically identifies the proper peak within the iodine absorption spectrum, and then keeps the oscillator tuned to this peak with high precision and reliability. The use of the solid-state oscillator as the front end allows us to use the whole iodine laser system as a pump laser for the optical parametric chirped pulse amplification, as it enables precise time synchronization with a signal Ti:sapphire laser.

  13. ARGOS: the laser guide star system for the LBT

    NASA Astrophysics Data System (ADS)

    Rabien, S.; Ageorges, N.; Barl, L.; Beckmann, U.; Blümchen, T.; Bonaglia, M.; Borelli, J. L.; Brynnel, J.; Busoni, L.; Carbonaro, L.; Davies, R.; Deysenroth, M.; Durney, O.; Elberich, M.; Esposito, S.; Gasho, V.; Gässler, W.; Gemperlein, H.; Genzel, R.; Green, R.; Haug, M.; Hart, M. L.; Hubbard, P.; Kanneganti, S.; Masciadri, E.; Noenickx, J.; Orban de Xivry, G.; Peter, D.; Quirrenbach, A.; Rademacher, M.; Rix, H. W.; Salinari, P.; Schwab, C.; Storm, J.; Strüder, L.; Thiel, M.; Weigelt, G.; Ziegleder, J.

    2010-07-01

    ARGOS is the Laser Guide Star adaptive optics system for the Large Binocular Telescope. Aiming for a wide field adaptive optics correction, ARGOS will equip both sides of LBT with a multi laser beacon system and corresponding wavefront sensors, driving LBT's adaptive secondary mirrors. Utilizing high power pulsed green lasers the artificial beacons are generated via Rayleigh scattering in earth's atmosphere. ARGOS will project a set of three guide stars above each of LBT's mirrors in a wide constellation. The returning scattered light, sensitive particular to the turbulence close to ground, is detected in a gated wavefront sensor system. Measuring and correcting the ground layers of the optical distortions enables ARGOS to achieve a correction over a very wide field of view. Taking advantage of this wide field correction, the science that can be done with the multi object spectrographs LUCIFER will be boosted by higher spatial resolution and strongly enhanced flux for spectroscopy. Apart from the wide field correction ARGOS delivers in its ground layer mode, we foresee a diffraction limited operation with a hybrid Sodium laser Rayleigh beacon combination.

  14. Characterization of a Hybrid Optical Microscopy/Laser Ablation Liquid Vortex Capture/Electrospray Ionization System for Mass Spectrometry Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    Herein, a commercial optical microscope, laser microdissection instrument was coupled with an electrospray ionization mass spectrometer via a low profile liquid vortex capture probe to yield a hybrid optical microscopy/mass spectrometry imaging system. The instrument has bright-field and fluorescence microscopy capabilities in addition to a highly focused UV laser beam that is utilized for laser ablation of samples. With this system, material laser ablated from a sample using the microscope was caught by a liquid vortex capture probe and transported in solution for analysis by electrospray ionization mass spectrometry. Both lane scanning and spot sampling mass spectral imaging modes weremore » used. The smallest area the system was able to ablate was ~0.544 μm × ~0.544 μm, achieved by oversampling of the smallest laser ablation spot size that could be obtained (~1.9 μm). With use of a model photoresist surface, known features as small as ~1.5 μm were resolved. The capabilities of the system with real world samples were demonstrated first with a blended polymer thin film containing poly(2-vinylpyridine) and poly(N-vinylcarbazole). Using spot sampling imaging, sub-micrometer sized features (0.62, 0.86, and 0.98 μm) visible by optical microscopy were clearly distinguished in the mass spectral images. A second real world example showed the imaging of trace amounts of cocaine in mouse brain thin tissue sections. Lastly, with use of a lane scanning mode with ~6 μm × ~6 μm data pixels, features in the tissue as small as 15 μm in size could be distinguished in both the mass spectral and optical images.« less

  15. Characterization of a Hybrid Optical Microscopy/Laser Ablation Liquid Vortex Capture/Electrospray Ionization System for Mass Spectrometry Imaging

    DOE PAGES

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    2015-10-22

    Herein, a commercial optical microscope, laser microdissection instrument was coupled with an electrospray ionization mass spectrometer via a low profile liquid vortex capture probe to yield a hybrid optical microscopy/mass spectrometry imaging system. The instrument has bright-field and fluorescence microscopy capabilities in addition to a highly focused UV laser beam that is utilized for laser ablation of samples. With this system, material laser ablated from a sample using the microscope was caught by a liquid vortex capture probe and transported in solution for analysis by electrospray ionization mass spectrometry. Both lane scanning and spot sampling mass spectral imaging modes weremore » used. The smallest area the system was able to ablate was ~0.544 μm × ~0.544 μm, achieved by oversampling of the smallest laser ablation spot size that could be obtained (~1.9 μm). With use of a model photoresist surface, known features as small as ~1.5 μm were resolved. The capabilities of the system with real world samples were demonstrated first with a blended polymer thin film containing poly(2-vinylpyridine) and poly(N-vinylcarbazole). Using spot sampling imaging, sub-micrometer sized features (0.62, 0.86, and 0.98 μm) visible by optical microscopy were clearly distinguished in the mass spectral images. A second real world example showed the imaging of trace amounts of cocaine in mouse brain thin tissue sections. Lastly, with use of a lane scanning mode with ~6 μm × ~6 μm data pixels, features in the tissue as small as 15 μm in size could be distinguished in both the mass spectral and optical images.« less

  16. Advanced Wavefront Control Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S S; Brase, J M; Avicola, K

    2001-02-21

    Programs at LLNL that involve large laser systems--ranging from the National Ignition Facility to new tactical laser weapons--depend on the maintenance of laser beam quality through precise control of the optical wavefront. This can be accomplished using adaptive optics, which compensate for time-varying aberrations that are often caused by heating in a high-power laser system. Over the past two decades, LLNL has developed a broad capability in adaptive optics technology for both laser beam control and high-resolution imaging. This adaptive optics capability has been based on thin deformable glass mirrors with individual ceramic actuators bonded to the back. In themore » case of high-power lasers, these adaptive optics systems have successfully improved beam quality. However, as we continue to extend our applications requirements, the existing technology base for wavefront control cannot satisfy them. To address this issue, this project studied improved modeling tools to increase our detailed understanding of the performance of these systems, and evaluated novel approaches to low-order wavefront control that offer the possibility of reduced cost and complexity. We also investigated improved beam control technology for high-resolution wavefront control. Many high-power laser systems suffer from high-spatial-frequency aberrations that require control of hundreds or thousands of phase points to provide adequate correction. However, the cost and size of current deformable mirrors can become prohibitive for applications requiring more than a few tens of phase control points. New phase control technologies are becoming available which offer control of many phase points with small low-cost devices. The goal of this project was to expand our wavefront control capabilities with improved modeling tools, new devices that reduce system cost and complexity, and extensions to high spatial and temporal frequencies using new adaptive optics technologies. In FY 99, the second year of this project, work was performed in four areas (1) advanced modeling tools for deformable mirrors (2) low-order wavefront correctors with Alvarez lenses, (3) a direct phase measuring heterdyne wavefront sensor, and (4) high-spatial-frequency wavefront control using spatial light modulators.« less

  17. Development of a safe ground to space laser propagation system for the optical communications telescope laboratory

    NASA Technical Reports Server (NTRS)

    Wu, Janet P.

    2003-01-01

    Furthering pursuits in high bandwidth communications to future NASA deep space and neat-Earth probes, the Jet Propulsion Laboratory (JPL) is building the Optical communications Telescope Laboratory (OCTL) atop Table Mountain in Southern California. This R&D optical antenna will be used to develop optical communication strategies for future optical ground stations. Initial experiments to be conducted include propagating high-powered, Q-switched laser beams to retro-reflecting satellites. Yet laser beam propagation from the ground to space is under the cognizance of various government agencies, namely: the Occupational Safety and Health Administration (ISHA) that is responsible for protecting workforce personnel; the Federal Aviation Administration (FAA) responsible for protecting pilots and aircraft; and the Laser Clearinghouse of Space Command responsible for protecting space assets. To ensure that laser beam propagation from the OCTL and future autonomously operated ground stations comply with the guidelines of these organizations, JPL is developing a multi-tiered safety system that will meet the coordination, monitoring, and reporting functions required by the agencies. At Tier 0, laser operators will meet OSHA safety standards for protection and access to the high power lasers area will be restricted and interlocked. Tier 1, the area defined from the telescope dome out to a range of 3.4-km, will utilize long wave infrared camera sensors to alert operators of at risk aircraft in the FAA controlled airspace. Tier 2, defined to extend from 3.4-km out to the aircraft service ceiling in FAA airspace, will detect at risk aircraft by radar. Lastly, beam propagation into space, defined as Tier 3, will require coordination with the Laser Clearinghouse. A detailed description of the four tiers is presented along with the design of the integrated monitoring and beam transmission control system.

  18. Compact atom interferometer using single laser

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-Wey; Yu, Nan

    2017-04-01

    Atom interferometer (AI) based sensors exhibit precision and accuracy unattainable with classical sensors, thanks to the inherent stability of atomic properties. The complexity of required laser system and the size of vacuum chamber driven by optical access requirement limit the applicability of such technology in size, weight, and power (SWaP) challenging environments, such as in space. For instance, a typical physics package of AI includes six viewports for laser cooling and trapping, two for AI beams, and two more for detection and a vacuum pump. Similarly, a typical laser system for an AI includes two lasers for cooling and repumping, and two for Raman transitions as AI beam splitters. In this presentation, we report our efforts in developing a miniaturized atomic accelerometer for planetary exploration. We will describe a physics package configuration having minimum optical access (thus small volume), and a laser and optics system utilizing a single laser for the sensor operation. Preliminary results on acceleration sensitivity will be discussed. We will also illustrate a path for further packaging and integration based on the demonstrated concepts. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  19. A quantum optical transistor with a single quantum dot in a photonic crystal nanocavity.

    PubMed

    Li, Jin-Jin; Zhu, Ka-Di

    2011-02-04

    Laser and strong coupling can coexist in a single quantum dot (QD) coupled to a photonic crystal nanocavity. This provides an important clue towards the realization of a quantum optical transistor. Using experimentally realistic parameters, in this work, theoretical analysis shows that such a quantum optical transistor can be switched on or off by turning on or off the pump laser, which corresponds to attenuation or amplification of the probe laser, respectively. Furthermore, based on this quantum optical transistor, an all-optical measurement of the vacuum Rabi splitting is also presented. The idea of associating a quantum optical transistor with this coupled QD-nanocavity system may achieve images of light controlling light in all-optical logic circuits and quantum computers.

  20. A tunable mid-infrared laser source for remote sensing

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    1991-01-01

    Many remote sensing needs can be effectively addressed with a tunable laser source in the mid infrared. One potential laser source is an optical parametric oscillator and amplifier system pumped by a near infrared solid state laser. Advantages of such a system and progress made at NASA Langley Research Center to date on such a system are described.

  1. Design of practical alignment device in KSTAR Thomson diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J. H., E-mail: jhlee@nfri.re.kr; University of Science and Technology; Lee, S. H.

    2016-11-15

    The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak’s Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broadmore » wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR’s Thomson scattering diagnostics.« less

  2. Design of practical alignment device in KSTAR Thomson diagnostic.

    PubMed

    Lee, J H; Lee, S H; Yamada, I

    2016-11-01

    The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak's Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broad wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR's Thomson scattering diagnostics.

  3. NASA Lidar system support and MOPA technology demonstration

    NASA Technical Reports Server (NTRS)

    Laughman, L. M.; Capuano, B.; Wayne, R. J.

    1986-01-01

    A series of lidar design and technology demonstration tasks in support of a CO2 lidar program is discussed. The first of these tasks is discussed in Section VI of this report under the heading of NASA Optical Lidar Design and it consists of detailed recommendations for the layout of a CO2 Doppler lidar incorporating then existing NASA optical components and mounts. The second phase of this work consisted of the design, development, and delivery to NASA of a novel acousto-optic laser frequency stabilization system for use with the existing NASA ring laser transmitter. The second major task in this program encompasses the design and experimental demonstration of a master oscillator-power amplifier (MOPA) laser transmitter utilizing a commercially available laser as the amplifier. The MOPA design including the low chirp master oscillator is discussed in detail. Experimental results are given for one, two and three pass amplification. The report includes operating procedures for the MOPA system.

  4. Generation of efficient 33 GHz optical combs using cascaded stimulated Brillouin scattering effects in optical fiber

    NASA Astrophysics Data System (ADS)

    Al-Mansoori, M. H.; Al-Sheriyani, A.; Al-Nassri, S.; Hasoon, F. N.

    2017-06-01

    In this paper, we demonstrate a multi-wavelength Brillouin-erbium fiber laser (BEFL) with ~33 GHz frequency spacing using cascaded stimulated Brillouin scattering effects in optical fiber. The proposed laser structure exhibits a stable output channel with a tuning range of 19 nm, from 1549 nm to 1568 nm. The number of stable output channels produced is six channels with a triple-Brillouin frequency spacing. The output channels exhibit high output power and high optical signal-to-noise ratios (OSNRs). The laser structure has the potential to be used as a multi-wavelength source for optical communication systems.

  5. Range Imaging without Moving Parts

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Scott, V. Stanley, III; Ramos-Izquierdo, Luis

    2008-01-01

    Range-imaging instruments of a type now under development are intended to generate the equivalent of three-dimensional images from measurements of the round-trip times of flight of laser pulses along known directions. These instruments could also provide information on characteristics of targets, including roughnesses and reflectivities of surfaces and optical densities of such semi-solid objects as trees and clouds. Unlike in prior range-imaging instruments based on times of flight along known directions, there would be no moving parts; aiming of the laser beams along the known directions would not be accomplished by mechanical scanning of mirrors, prisms, or other optical components. Instead, aiming would be accomplished by using solid-state devices to switch input and output beams along different fiber-optic paths. Because of the lack of moving parts, these instruments could be extraordinarily reliable, rugged, and long-lasting. An instrument of this type would include an optical transmitter that would send out a laser pulse along a chosen direction to a target. An optical receiver coaligned with the transmitter would measure the temporally varying intensity of laser light reflected from the target to determine the distance and surface characteristics of the target. The transmitter would be a combination of devices for generating precise directional laser illumination. It would include a pulsed laser, the output of which would be coupled into a fiber-optic cable with a fan-out and solid-state optical switches that would enable switching of the laser beam onto one or more optical fibers terminated at known locations in an array on a face at the focal plane of a telescope. The array would be imaged by the telescope onto the target space. The receiver optical system could share the aforementioned telescope with the transmitter or could include a separate telescope aimed in the same direction as that of the transmitting telescope. In either case, light reflected from the target would be focused by the receiver optical system onto an array of optical fibers matching the array in the transmitter. These optical fibers would couple the received light to one or more photodetector( s). Optionally, the receiver could include solid-state optical switches for choosing which optical fiber(s) would couple light to the photodetector(s). This instrument architecture is flexible and can be optimized for a wide variety of applications and levels of performance. For example, it is scalable to any number of pixels and pixel resolutions and is compatible with a variety of ranging and photodetection methodologies, including, for example, ranging by use of modulated (including pulsed and encoded) light signals. The use of fixed arrays of optical fibers to generate controlled illumination patterns would eliminate the mechanical complexity and much of the bulk of optomechanical scanning assemblies. Furthermore, digital control of the selection of the fiber-optic pathways for the transmitted beams could afford capabilities not seen in previous three-dimensional range-imaging systems. Instruments of this type could be specialized for use as, for example, proximity detectors, three-dimensional robotic vision systems, airborne terrain-mapping systems, and inspection systems.

  6. All fiber-coupled, long-term stable timing distribution for free-electron lasers with few-femtosecond jitter

    PubMed Central

    Şafak, K.; Xin, M.; Callahan, P. T.; Peng, M. Y.; Kärtner, F. X.

    2015-01-01

    We report recent progress made in a complete fiber-optic, high-precision, long-term stable timing distribution system for synchronization of next generation X-ray free-electron lasers. Timing jitter characterization of the master laser shows less than 170-as RMS integrated jitter for frequencies above 10 kHz, limited by the detection noise floor. Timing stabilization of a 3.5-km polarization-maintaining fiber link is successfully achieved with an RMS drift of 3.3 fs over 200 h of operation using all fiber-coupled elements. This all fiber-optic implementation will greatly reduce the complexity of optical alignment in timing distribution systems and improve the overall mechanical and timing stability of the system. PMID:26798814

  7. A Laser Spark Plug Ignition System for a Stationary Lean-Burn Natural Gas Reciprocating Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntyre, D. L.

    To meet the ignition system needs of large bore, high pressure, lean burn, natural gas engines a side pumped, passively Q-switched, Nd:YAG laser was developed and tested. The laser was designed to produce the optical intensities needed to initiate ignition in a lean burn, high compression engine. The laser and associated optics were designed with a passive Q-switch to eliminate the need for high voltage signaling and associated equipment. The laser was diode pumped to eliminate the need for high voltage flash lamps which have poor pumping efficiency. The independent and dependent parameters of the laser were identified and exploredmore » in specific combinations that produced consistent robust sparks in laboratory air. Prior research has shown that increasing gas pressure lowers the breakdown threshold for laser initiated ignition. The laser has an overall geometry of 57x57x152 mm with an output beam diameter of approximately 3 mm. The experimentation used a wide range of optical and electrical input parameters that when combined produced ignition in laboratory air. The results show a strong dependence of the output parameters on the output coupler reflectivity, Q-switch initial transmission, and gain media dopant concentration. As these three parameters were lowered the output performance of the laser increased leading to larger more brilliant sparks. The results show peak power levels of up to 3MW and peak focal intensities of up to 560 GW/cm 2. Engine testing was performed on a Ricardo Proteus single cylinder research engine. The goal of the engine testing was to show that the test laser performs identically to the commercially available flashlamp pumped actively Q-switched laser used in previous laser ignition testing. The engine testing consisted of a comparison of the in-cylinder, and emissions behavior of the engine using each of the lasers as an ignition system. All engine parameters were kept as constant as possilbe while the equivalence ratio (fueling), and hence the engine load, was varied between 0.8, 0.9, and 1.0. The test laser was constructed with a 30% output coupler, 32% Q-switch initial transmission, and a 0.5% Nd concentration rod all pumped by approximately 1000 Watts of optical power. The test laser single mode output pulse had an energy of approximately 23 mJ, with a pulsewidth of approximately 10 ns, and an M2 value of 6.55. This output produced focal intensity of approximately 270 GW/cm 2 with the modified on-engine optical arrangement. The commercial laser had similar output parameters and both laser systems operated the engine with similar results. Due to the shortening of the focal length of the on-engine optical setup both laser systems produced a spark well within the optical transfer cavity of the laser optics to spark plug adaptor. This shrouded spark led to a very long ignition delay and retarded combustion timing for all three values of equivalence ratio. This was evidenced by the in-cylinder pressure traces and the HRR waveforms. The emissions data indicate that both lasers produced very similar combustion. The ignition delay caused by the shrouded spark cause most of the combustion to happen after TDC which lead to poor combustion that produced high levels of CO and THC. The novelty of this work lies in the combination of the laser parameters to create a single high peak power laser output pulse for use as a spark ignition source. Similar configurations have been investigated in the literature but for different applications such as multiple output pulse trains for various industrial and communications applications. Another point of novelty is the investigation of the laser medium concentration on the output characteristics of a passively Q-switched laser system. This work has shown that lowering the Neodymium concentration in the active media within a passively Q-switched laser produces higher output energy values. This is significant because an actively Q-switched laser shows the opposite affect when the active ion concentration is varied.« less

  8. Applications of FM-CW laser radar to antenna contour mapping

    NASA Technical Reports Server (NTRS)

    Slotwinski, A. R.

    1989-01-01

    The FM-CW coherent laser radar concept, based on the FM radar principle which makes use of the coherence and lunability of injection laser diodes, is discussed. Laser radar precision/time tradeoffs, block diagrams, system performance, fiber optic system implantation, and receiver improvements are briefly described.

  9. Development of carbon dioxide laser doppler instrumentation detection of clear air turbulence

    NASA Technical Reports Server (NTRS)

    Sonnenschein, C.; Jelalian, A.; Keene, W.

    1970-01-01

    The analytical, experimental, and developmental aspects of an airborne, pulsed, carbon dioxide laser-optical radar system are described. The laser detects clear air turbulence and performs Doppler measurements of this air-motion phenomenon. Conclusions and recommendations arising from the development of the laser system are presented.

  10. Laser program annual report, 1977. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, C.F.; Jarman, B.D.

    1978-07-01

    An overview is given of the laser fusion program. The solid-state program covers the Shiva and Nova projects. Laser components, control systems, alignment systems, laser beam diagnostics, power conditioning, and optical components are described. The fusion experimental program concerns the diagnostics and data acquisition associated with Argus and Shiva. (MOW)

  11. On-chip optical phase locking of single growth monolithically integrated Slotted Fabry Perot lasers.

    PubMed

    Morrissey, P E; Cotter, W; Goulding, D; Kelleher, B; Osborne, S; Yang, H; O'Callaghan, J; Roycroft, B; Corbett, B; Peters, F H

    2013-07-15

    This work investigates the optical phase locking performance of Slotted Fabry Perot (SFP) lasers and develops an integrated variable phase locked system on chip for the first time to our knowledge using these lasers. Stable phase locking is demonstrated between two SFP lasers coupled on chip via a variable gain waveguide section. The two lasers are biased differently, one just above the threshold current of the device with the other at three times this value. The coupling between the lasers can be controlled using the variable gain section which can act as a variable optical attenuator or amplifier depending on bias. Using this, the width of the stable phase locking region on chip is shown to be variable.

  12. Experimental demonstration of a retro-reflective laser communication link on a mobile platform

    NASA Astrophysics Data System (ADS)

    Nikulin, Vladimir V.; Malowicki, John E.; Khandekar, Rahul M.; Skormin, Victor A.; Legare, David J.

    2010-02-01

    Successful pointing, acquisition, and tracking (PAT) are crucial for the implementation of laser communication links between ground and aerial vehicles. This technology has advantages over the traditional radio frequency communication, thus justifying the research efforts presented in this paper. The authors have been successful in the development of a high precision, agile, digitally controlled two-degree-of-freedom electromechanical system for positioning of optical instruments, cameras, telescopes, and communication lasers. The centerpiece of this system is a robotic manipulator capable of singularity-free operation throughout the full hemisphere range of yaw/pitch motion. The availability of efficient two-degree-of-freedom positioning facilitated the development of an optical platform stabilization system capable of rejecting resident vibrations with the angular and frequency range consistent with those caused by a ground vehicle moving on a rough terrain. This technology is being utilized for the development of a duplex mobile PAT system demonstrator that would provide valuable feedback for the development of practical laser communication systems intended for fleets of moving ground, and possibly aerial, vehicles. In this paper, a tracking system providing optical connectivity between stationary and mobile ground platforms is described. It utilizes mechanical manipulator to perform optical platform stabilization and initial beam positioning, and optical tracking for maintaining the line-of-sight communication. Particular system components and the challenges of their integration are described. The results of field testing of the resultant system under practical conditions are presented.

  13. Recent Science and Engineering Results with the Laser Guidestar Adaptive Optics System at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavel, D T; Gates, E; Max, C

    2002-10-17

    The Lick Observatory laser guide star adaptive optics system has undergone continual improvement and testing as it is being integrated as a facility science instrument on the Shane 3 meter telescope. Both Natural Guide Star (NGS) and Laser Guide Star (LGS) modes are now used in science observing programs. We report on system performance results as derived from data taken on both science and engineering nights and also describe the newly developed on-line techniques for seeing and system performance characterization. We also describe the future enhancements to the Lick system that will enable additional science goals such as long-exposure spectroscopy.

  14. Optical Design And Analysis Of Carbon Dioxide Laser Fusion Systems Using Interferometry And Fast Fourier Transform Techniques

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.

    1980-11-01

    The optical design and analysis of the LASL carbon dioxide laser fusion systems required the use of techniques that are quite different from the currently used method in conventional optical design problems. The necessity for this is explored and the method that has been successfully used at Los Alamos to understand these systems is discussed with examples. This method involves characterization of the various optical components in their mounts by a Zernike polynomial set and using fast Fourier transform techniques to propagate the beam, taking diffraction and other nonlinear effects that occur in these types of systems into account. The various programs used for analysis are briefly discussed.

  15. Robust remote-pumping sodium laser for advanced LIDAR and guide star applications

    NASA Astrophysics Data System (ADS)

    Ernstberger, Bernhard; Enderlein, Martin; Friedenauer, Axel; Schwerdt, Robin; Wei, Daoping; Karpov, Vladimir; Leisching, Patrick; Clements, Wallace R. L.; Kaenders, Wilhelm G.

    2015-10-01

    The performance of large ground-based optical telescopes is limited due to wavefront distortions induced by atmospheric turbulence. Adaptive optics systems using natural guide stars with sufficient brightness provide a practical way for correcting the wavefront errors by means of deformable mirrors. Unfortunately, the sky coverage of bright stars is poor and therefore the concept of laser guide stars was invented, creating an artificial star by exciting resonance fluorescence from the mesospheric sodium layer about 90 km above the earth's surface. Until now, mainly dye lasers or sumfrequency mixing of solid state lasers were used to generate laser guide stars. However, these kinds of lasers require a stationary laser clean room for operation and are extremely demanding in maintenance. Under a development contract with the European Southern Observatory (ESO) and W. M. Keck Observatory (WMKO), TOPTICA Photonics AG and its partner MPB Communications have finalized the development of a next-generation sodium guide star laser system which is available now as a commercial off-the-shelf product. The laser is based on a narrow-band diode laser, Raman fiber amplifier (RFA) technology and resonant second-harmonic generation (SHG), thus highly reliable and simple to operate and maintain. It emits > 22 W of narrow-linewidth (≈ 5 MHz) continuous-wave radiation at sodium resonance and includes a re-pumping scheme for boosting sodium return flux. Due to the SHG resonator acting as spatial mode filter and polarizer, the output is diffraction-limited with RMS wavefront error < λ/25. Apart from this unique optical design, a major effort has been dedicated to integrating all optical components into a ruggedized system, providing a maximum of convenience and reliability for telescope operators. The new remote-pumping architecture allows for a large spatial separation between the main part of the laser and the compact laser head. Together with a cooling-water flow of less than 5 l/min and an overall power consumption of < 700 W, the system offers a maximum of flexibility with minimal infrastructure demands on site. Each system is built in a modular way, based on the concept of line-replaceable units (LRU). A comprehensive system software, as well as an intuitive service GUI, allow for remote control and error tracking down to at least the LRU level. In case of a failure, any LRU can be easily replaced. With these fiber-based guide star lasers, TOPTICA for the first time offers a fully engineered, off-the-shelf guide star laser system for groundbased optical telescopes providing convenient, turn-key operation in remote and harsh locations. Reliability and flexibility will be beneficial in particular for advanced satellite and space debris tracking as well as LIDAR applications.

  16. Teaching lens, optical systems, and opto-mechanical systems design at the Irvine Center for Applied Competitive Technologies (CACT)

    NASA Astrophysics Data System (ADS)

    Doushkina, Valentina V.; Silberman, Donn M.

    2007-09-01

    For well over a decade, the Laser Electro-Optics Technology (LET) program has been teaching introductory laser and optics classes at Irvine Valley College (IVC). At the beginning of the telecom boom, the Irvine CACT was established to teach optics fabrication to support the many optics fabrication businesses in Southern California. In the past few years, these two programs have merged - with some help from the Optics Institute of Southern California (OISC) - and grown under the newly established Advanced Technology and Education Park (ATEP). IVC and ATEP are both operated by the South Orange County Community College District (SOCCCD). This year a new program of three courses was established to teach, in sequence, lens, optical systems and optomechanical systems design. This paper reviews the reasons for establishing these courses and their content, the students' motivations for taking them and their employers' incentives for encouraging the students.

  17. Gain anisotropy and simultaneous bidirectional emission of a Doppler-broadened MIR optically-pumped ammonia ring laser

    NASA Astrophysics Data System (ADS)

    Wazen, P.; Bourdet, G. L.

    1991-01-01

    The authors studied the Doppler-broadened 11.76-micron N-15H3 emission line optically pumped in a ring resonator by a CW CO2 laser operating on the 10R(42) line. Behavior related to the optical pumping of gas Doppler-broadened lines is found and shown to be very dependent on the laser parameters. For instance, the laser emission can occur in one direction or two directions simultaneously. A local gain model based on the interaction of two laser fields with a three-level molecular system is used to clarify the emission characteristics of this laser. Basically, the two-photon or Raman process and the Rabi splitting generate a gain anisotropy and an anomalous dispersion curve. The effects lead to a different optical path for the two directions of propagation and, consequently, a simultaneous bidirectional emission with unequal emission frequency.

  18. Dual FOV infrared lens design with the laser common aperture optics

    NASA Astrophysics Data System (ADS)

    Chang, Wei-jun; Zhang, Xuan-zhi; Luan, Ya-dong; Zhang, Bo

    2015-02-01

    With the demand of autonomous precision guidance of air defense missile, the system scheme of the IR imaging/Ladar dual-mode seeker with a common aperture was proposed, and the optical system used in was designed. The system had a common receiving aperture, and its structure was very compact, so it could meet the requirement for the miniaturization of the seeker. Besides, it also could meet the demands of a wide field of view for searching target, and the demands for accurately recognizing and tracking the target at the same time. In order to increase the narrow FOV tracking performance, the dual FOV infrared optical used the zooming mode which some components flip in or out the optical system to firm the target signal. The dual FOV optics are divided into the zooming part, with dual variable focal length, and the reimaging part which was chosen in such a way to minimize the objective lens while maintaining 100% cold shield efficiency. The final infrared optics including 4°×3°(NFOV) and 16°×12°(WFOV) was designed. The NFOV lens composed of two common IR/Ladar lens, three relay lens, a beam splitter and two reflective fold mirrors, while WFOV lens increased two lens such as Germanium and Silicon. The common IR/Ladar lens ZnS and ZnSe could refractive the IR optics and Laser optics. The beam splitter which refractived IR optics and reflected Laser optics was located in the middle of Germanium and Silicon. The designed optical system had good image quality, and fulfilled the performance requirement of seeker system.

  19. Vertical cavity surface emitting lasers based on InP and related compounds -- Bottleneck and corkscrew

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iga, K.

    1996-12-31

    Vertical optical interconnects of LSI chips and circuit boards and multiple fiber systems may be the most interesting field related to SE lasers. From this point of view, the device should be small as possible. The future process technology for it including epitaxy and etching will drastically change the situation of SE lasers. Dome optical technologies are already introduced in various subsystems, but the arrayed microoptic technology would be very helpful for advanced systems.

  20. Laser-optical methods and systems of computer-automated investigation of bio-objects (plants, seeds, food products, and others)

    NASA Astrophysics Data System (ADS)

    Lisker, Joseph S.

    1999-01-01

    A new conception of the scientific problem of information exchange in the system plant-man-environment is developed. The laser-optical methods and the system are described which allow computer automated investigation of bio-objects without damaging their vital function. The results of investigation of optical-physiological features of plants and seeds are presented. The effects of chlorophyll well and IR beg are discovered for plants and also the effects os water pumping and protein transformations are shown for seeds. The perspectives of the use of the optical methods and equipment suggested to solve scientific problems of agriculture are discussed.

  1. Developing a more useful surface quality metric for laser optics

    NASA Astrophysics Data System (ADS)

    Turchette, Quentin; Turner, Trey

    2011-02-01

    Light scatter due to surface defects on laser resonator optics produces losses which lower system efficiency and output power. The traditional methodology for surface quality inspection involves visual comparison of a component to scratch and dig (SAD) standards under controlled lighting and viewing conditions. Unfortunately, this process is subjective and operator dependent. Also, there is no clear correlation between inspection results and the actual performance impact of the optic in a laser resonator. As a result, laser manufacturers often overspecify surface quality in order to ensure that optics will not degrade laser performance due to scatter. This can drive up component costs and lengthen lead times. Alternatively, an objective test system for measuring optical scatter from defects can be constructed with a microscope, calibrated lighting, a CCD detector and image processing software. This approach is quantitative, highly repeatable and totally operator independent. Furthermore, it is flexible, allowing the user to set threshold levels as to what will or will not constitute a defect. This paper details how this automated, quantitative type of surface quality measurement can be constructed, and shows how its results correlate against conventional loss measurement techniques such as cavity ringdown times.

  2. Phase-locking of combination-cylinder discharge CO2 laser

    NASA Astrophysics Data System (ADS)

    Xu, Yonggen

    2014-05-01

    A new type of laser resonator is presented to obtained good coherent beam and the parameters of the laser beam are calculated. The principle of phase-locking is described based on the injection-locking, the properties of the injected beam in the resonator are studied in detail. The output beam from output mirror is an annular laser beam with zero central intensity. An analytical expression for the annular laser beam through the ABCD optical system is derived. Typical numerical examples are calculated to confirm our analytical results. It is shown that the good coherent beam can be obtained through phase-locking, and the central intensity of annular beam through ABCD optical system will become maximum when the parameters of laser beam are selected reasonably.

  3. The development and progress of XeCl Excimer laser system

    NASA Astrophysics Data System (ADS)

    Zhang, Yongsheng; Ma, Lianying; Wang, Dahui; Zhao, Xueqing; Zhu, Yongxiang; Hu, Yun; Qian, Hang; Shao, Bibo; Yi, Aiping; Liu, Jingru

    2015-05-01

    A large angularly multiplexed XeCl Excimer laser system is under development at the Northwest Institute of Nuclear Technology (NINT). It is designed to explore the technical issues of uniform and controllable target illumination. Short wavelength, uniform and controllable target illumination is the fundamental requirement of high energy density physics research using large laser facility. With broadband, extended light source and multi-beam overlapping techniques, rare gas halide Excimer laser facility will provide uniform target illumination theoretically. Angular multiplexing and image relay techniques are briefly reviewed and some of the limitations are examined to put it more practical. The system consists of a commercial oscillator front end, three gas discharge amplifiers, two electron beam pumped amplifiers and the optics required to relay, encode and decode the laser beam. An 18 lens array targeting optics direct and focus the laser in the vacuum target chamber. The system is operational and currently undergoing tests. The total 18 beams output energy is more than 100J and the pulse width is 7ns (FWHM), the intensities on the target will exceed 1013W/cm2. The aberration of off-axis imaging optics at main amplifier should be minimized to improve the final image quality at the target. Automatic computer controlled alignment of the whole system is vital to efficiency and stability of the laser system, an array of automatic alignment model is under test and will be incorporated in the system soon.

  4. Long-distance fiber Bragg grating sensor system with a high optical signal-to-noise ratio based on a tunable fiber ring laser configuration.

    PubMed

    Rao, Yun-Jiang; Ran, Zeng-Ling; Chen, Rong-Rui

    2006-09-15

    A novel tunable fiber ring laser configuration with a combination of bidirectional Raman amplification and dual erbium-doped fiber (EDF) amplification is proposed for realizing high optical signal-to-noise ratio (SNR), long-distance, quasi-distributed fiber Bragg grating (FBG) sensing systems with large capacities and low cost. The hybrid Raman-EDF amplification configuration arranged in the ring laser can enhance the optical SNR of FBG sensor signals significantly owing to the good combination of the high gain of the erbium-doped fiber amplifier (EDFA) and the low noise of the Raman amplification. Such a sensing system can support a large number of FBG sensors because of the use of a tunable fiber Fabry-Perot filter located within the ring laser and spatial division multiplexing for expansion of sensor channels. Experimental results show that an excellent optical SNR of approximately 60 dB has been achieved for a 50 km transmission distance with a low Raman pump power of approximately 170 mW at a wavelength of 1455 nm and a low EDFA pump power of approximately 40 mW at a wavelength of 980 nm, which is the highest optical SNR achieved so far for a 50 km long FBG sensor system, to our knowledge.

  5. Flight-Like Optical Reference Cavity for GRACE Follow-On Laser Frequency Stabilization

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; deVine, G.; Klipstein, W. M.; McKenzie, K.; Spero, R.; Thompson, R.; Yu, N.; Stephens, M.; Leitch, J.; Pierce, R.; hide

    2011-01-01

    We describe a prototype optical cavity and associated optics that has been developed to provide a stable frequency reference for a future space-based laser ranging system. This instrument is being considered for inclusion as a technology demonstration on the recently announced GRACE follow-on mission, which will monitor variations in the Earth's gravity field.

  6. Study on the characteristic and application of DFB semiconductor lasers under optical injection for microwave photonics

    NASA Astrophysics Data System (ADS)

    Pu, Tao; Wang, Wei wei

    2018-01-01

    In order to apply optical injection effect in Microwave Photonics system, The red-shift effect of the cavity mode of the DFB semiconductor laser under single-frequency optical injection is studied experimentally, and the red-shift curve of the cavity mode is measured. The wavelength-selective amplification property of the DFB semiconductor laser under multi-frequency optical injection is also investigated, and the gain curves for the injected signals in different injection ratios are measured in the experiment. A novel and simple structure to implement a single-passband MPF with wideband tunability based on the wavelength-selective amplification of a DFB semiconductor laser under optical injection is proposed and experimentally demonstrated. MPFs with center frequency tuned from 13 to 41 GHz are realized in the experiment. A wideband and frequency-tunable optoelectronic oscillator based on a directly modulated distributed feedback (DFB) semiconductor laser under optical injection is proposed and experimentally demonstrated. By optical injection, the relaxation oscillation frequency of the DFB laser is enhanced and its high modulation efficiency makes the loop oscillate without the necessary of the electrical filter. An experiment is performed; microwave signals with frequency tuned from 5.98 to 15.22 GHz are generated by adjusting the injection ratio and frequency detuning between the master and slave lasers.

  7. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    NASA Astrophysics Data System (ADS)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  8. Measuring the Refractive Index of a Laser-Plasma Optical System

    NASA Astrophysics Data System (ADS)

    Turnbull, D.; Goyon, C.; Pollock, B. B.; Mariscal, D.; Divol, L.; Ross, J. S.; Patankar, S.; Kemp, G. E.; Moody, J. D.; Michel, P. A.

    2016-10-01

    We report the first complete set of measurements of a laser-plasma optical system's refractive index, as seen by an independent probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive-index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for cross-beam energy transfer in indirect-drive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstration of a laser-plasma polarizer with 85% to 87% extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. RLE (Research Laboratory of Electronics) Progress Report Number 125.

    DTIC Science & Technology

    1983-01-01

    Optical Communications 32 7.3 Picosecond Optics 35 7.4 Ultrashort Pulse Formation 37 7.5 Femtosecond Laser System 37 7.6 Parametric Scattering with...Figure 3-2: The cross section for 4 photon ionization of atomic hydrogen as calculated by 10 Reinhardt for a single frequency laser . To facilitate...profiles produced by laser intensity I* and at five times that intensity 11 510. As the laser intensity is increased, the ionization profile becomes

  10. Applications of Optical Coherent Transient Technology to Pulse Shaping, Spectral Filtering Arbitrary Waveform Generation and RF Beamforming

    DTIC Science & Technology

    2006-04-14

    the EOPM (~1 mW) was amplified by injection locking of a high power diode laser and further amplified to ~300 mW with a semiconductor optical ...The spectra of 8 GHz CW phase modulated signals in cascaded injection locking system from (a) master laser ; (b) the first slave, and (c) the second...cascaded injection locked amplifiers at 793nm, and frequency chirped lasers at 793nm. 15. SUBJECT TERMS Optical Coherent Transients, Spatial

  11. High Power Dye Lasers

    DTIC Science & Technology

    1975-09-30

    sphere is greatly reduced when compared to the axial flow dye cell. This is because the focusing optics can only direct light from a limited angle into...Distribution in Flashlamp . . . „ [ [ TTIH Flashlamp Cooling and Thermal Limits [ [ [ ii~ik Optical Characteristics ’,,: •*••••••••••• il-ib...Tracing Program e Dye Pumping System Laser Tests ! 1 i * * TTT’I Laser Output Fall Off !!!.’!!!" ’ TTT’H Single Shot Optical Distortion TTT’I

  12. Test Port for Fiber-Optic-Coupled Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Ramos Izquierdo, Luis; Scott, V. Stanley; Rinis, Haris; Cavanaugh, John

    2011-01-01

    A test port designed as part of a fiber optic coupled laser altimeter receiver optical system allows for the back-illumination of the optical system for alignment verification, as well as illumination of the detector(s) for testing the receiver electronics and signal-processing algorithms. Measuring the optical alignment of a laser altimeter instrument is difficult after the instrument is fully assembled. The addition of a test port in the receiver aft-optics allows for the back-illumination of the receiver system such that its focal setting and boresight alignment can be easily verified. For a multiple-detector receiver system, the addition of the aft-optics test port offers the added advantage of being able to simultaneously test all the detectors with different signals that simulate the expected operational conditions. On a laser altimeter instrument (see figure), the aft-optics couple the light from the receiver telescope to the receiver detector(s). Incorporating a beam splitter in the aft-optics design allows for the addition of a test port to back-illuminate the receiver telescope and/or detectors. The aft-optics layout resembles a T with the detector on one leg, the receiver telescope input port on the second leg, and the test port on the third leg. The use of a custom beam splitter with 99-percent reflection, 1-percent transmission, and a mirrored roof can send the test port light to the receiver telescope leg as well as the detector leg, without unduly sacrificing the signal from the receiver telescope to the detector. The ability to test the receiver system alignment, as well as multiple detectors with different signals without the need to disassemble the instrument or connect and reconnect components, is a great advantage to the aft-optics test port. Another benefit is that the receiver telescope aperture is fully back-illuminated by the test port so the receiver telescope focal setting vs. pressure and or temperature can be accurately measured (as compared to schemes where the aperture is only partially illuminated). Fiber-optic coupling the test port also allows for the modularity of testing the receiver detectors with a variety of background and signal laser sources without the need of using complex optical set-ups to optimize the efficiency of each source.

  13. Aerosol mass spectrometry systems and methods

    DOEpatents

    Fergenson, David P.; Gard, Eric E.

    2013-08-20

    A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.

  14. Analysis of optical scheme for medium-range directed energy laser weapon system

    NASA Astrophysics Data System (ADS)

    Jabczyński, Jan K.; Kaśków, Mateusz; Gorajek, Łukasz; Kopczyński, Krzysztof

    2017-10-01

    The relations between range of operation and aperture of laser weapon system were investigated, taking into account diffraction and technical limitations as beam quality, accuracy of point tracking, technical quality of optical train, etc. As a result for the medium ranges of 1 - 2 km we restricted the analysis to apertures not wider than 150 mm and the optical system without adaptive optics. To choose the best laser beam shape, the minimization of aperture losses and thermooptical effects inside optics as well as the effective width of laser beam in far field should be taken into account. We have analyzed theoretically such a problem for the group of a few most interesting from that point of view profiles including for reference two limiting cases of Gaussian beam and `top hat' profile. We have found that the most promising is the SuperGaussian profile of index p = 2 for which the surfaces of beam shaper elements can be manufactured in the acceptable cost-effective way and beam quality does not decrease noticeably. Further, we have investigated the thermo-optic effects on the far field parameters of Gaussian and `top hat' beams to determine the influence of absorption in optical elements on beam quality degradation. The simplified formulae were derived for beam quality measures (parameter M2 and Strehl ratio) which enables to estimate the influence of absorption losses on degradation of beam quality.

  15. On the performance of joint iterative detection and decoding in coherent optical channels with laser frequency fluctuations

    NASA Astrophysics Data System (ADS)

    Castrillón, Mario A.; Morero, Damián A.; Agazzi, Oscar E.; Hueda, Mario R.

    2015-08-01

    The joint iterative detection and decoding (JIDD) technique has been proposed by Barbieri et al. (2007) with the objective of compensating the time-varying phase noise and constant frequency offset experienced in satellite communication systems. The application of JIDD to optical coherent receivers in the presence of laser frequency fluctuations has not been reported in prior literature. Laser frequency fluctuations are caused by mechanical vibrations, power supply noise, and other mechanisms. They significantly degrade the performance of the carrier phase estimator in high-speed intradyne coherent optical receivers. This work investigates the performance of the JIDD algorithm in multi-gigabit optical coherent receivers. We present simulation results of bit error rate (BER) for non-differential polarization division multiplexing (PDM)-16QAM modulation in a 200 Gb/s coherent optical system that includes an LDPC code with 20% overhead and net coding gain of 11.3 dB at BER = 10-15. Our study shows that JIDD with a pilot rate ⩽ 5 % compensates for both laser phase noise and laser frequency fluctuation. Furthermore, since JIDD is used with non-differential modulation formats, we find that gains in excess of 1 dB can be achieved over existing solutions based on an explicit carrier phase estimator with differential modulation. The impact of the fiber nonlinearities in dense wavelength division multiplexing (DWDM) systems is also investigated. Our results demonstrate that JIDD is an excellent candidate for application in next generation high-speed optical coherent receivers.

  16. Compact 2100 nm laser diode module for next-generation DIRCM

    NASA Astrophysics Data System (ADS)

    Dvinelis, Edgaras; Greibus, Mindaugas; TrinkÅ«nas, Augustinas; NaujokaitÄ--, Greta; Vizbaras, Augustinas; Vizbaras, Dominykas; Vizbaras, Kristijonas

    2017-10-01

    Compact high-power 2100 nm laser diode module for next-generation directional infrared countermeasure (DIRCM) systems is presented. Next-generation DIRCM systems require compact, light-weight and robust laser modules which could provide intense IR light emission capable of disrupting the tracking sensor of heat-seeking missile. Currently used solid-state and fiber laser solutions for mid-IR band are bulky and heavy making them difficult to implement in smaller form-factor DIRCM systems. Recent development of GaSb laser diode technology greatly improved optical output powers and efficiencies of laser diodes working in 1900 - 2450 nm band [1] while also maintaining very attractive size, weight, power consumption and cost characteristics. 2100 nm laser diode module presented in this work performance is based on high-efficiency broad emitting area GaSb laser diode technology. Each laser diode emitter is able to provide 1 W of CW output optical power with working point efficiency up to 20% at temperature of 20 °C. For output beam collimation custom designed fast-axis collimator and slow-axis collimator lenses were used. These lenses were actively aligned and attached using UV epoxy curing. Total 2 emitters stacked vertically were used in 2100 nm laser diode module. Final optical output power of the module goes up to 2 W at temperature of 20 °C. Total dimensions of the laser diode module are 35 x 25 x 16 mm (L x W x H) with a weight of 28 grams. Finally output beam is bore-sighted to mechanical axes of the module housing allowing for easy integration into next-generation DIRCM systems.

  17. Semiconductor ring lasers coupled by a single waveguide

    NASA Astrophysics Data System (ADS)

    Coomans, W.; Gelens, L.; Van der Sande, G.; Mezosi, G.; Sorel, M.; Danckaert, J.; Verschaffelt, G.

    2012-06-01

    We experimentally and theoretically study the characteristics of semiconductor ring lasers bidirectionally coupled by a single bus waveguide. This configuration has, e.g., been suggested for use as an optical memory and as an optical neural network motif. The main results are that the coupling can destabilize the state in which both rings lase in the same direction, and it brings to life a state with equal powers at both outputs. These are both undesirable for optical memory operation. Although the coupling between the rings is bidirectional, the destabilization occurs due to behavior similar to an optically injected laser system.

  18. Thin-film optical initiator

    DOEpatents

    Erickson, Kenneth L.

    2001-01-01

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  19. Effect of laser frequency noise on fiber-optic frequency reference distribution

    NASA Technical Reports Server (NTRS)

    Logan, R. T., Jr.; Lutes, G. F.; Maleki, L.

    1989-01-01

    The effect of the linewidth of a single longitude-mode laser on the frequency stability of a frequency reference transmitted over a single-mode optical fiber is analyzed. The interaction of the random laser frequency deviations with the dispersion of the optical fiber is considered to determine theoretically the effect on the Allan deviation (square root of the Allan variance) of the transmitted frequency reference. It is shown that the magnitude of this effect may determine the limit of the ultimate stability possible for frequency reference transmission on optical fiber, but is not a serious limitation to present system performance.

  20. Modulation response characteristics of optical injection-locked cascaded microring laser

    NASA Astrophysics Data System (ADS)

    Yu, Shaowei; Pei, Li; Liu, Chao; Wang, Yiqun; Weng, Sijun

    2014-09-01

    Modulation bandwidth and frequency chirping of the optical injection-locked (OIL) microring laser (MRL) in the cascaded configuration are investigated. The unidirectional operation of the MRL under strong injection allows simple and cost-saving monolithic integration of the OIL system on one chip as it does not need the use of isolators between the master and slave lasers. Two cascading schemes are discussed in detail by focusing on the tailorable modulation response. The chip-to-power ratio of the cascaded optical injection-locked configuration has decreased by up to two orders of magnitude, compared with the single optical injection-locked configuration.

  1. A cryo-cooled high-energy DPSSL system delivering ns-pulses at 10 J and 10 Hz

    NASA Astrophysics Data System (ADS)

    Ertel, Klaus; Banerjee, Saumyabrata; Butcher, Thomas J.; De Vido, Mariastefania; Mason, Paul D.; Phillips, P. J.; Richards, David; Shaikh, Waseem; Smith, Jodie M.; Greenhalgh, R. Justin S.; Hernandez-Gomez, Cristina; Collier, John L.

    2015-02-01

    Lasers generating multi-J to kJ ns-pulses are required for many types of laser-plasma interactions. Such lasers are either used directly for compressing matter to extreme densities or they serve as pump lasers for short-pulses laser chains based on large-aperture Ti:sapphire or parametric amplifiers. The thus generated high-energy fs-pulses are most useful for laser driven secondary sources of particles (electrons, protons) or photons (from THz to gamma). While proof-of-principle experiments have been carried out with flashlamp-pumped glass lasers, lasers with much higher efficiency and repetition rate are required to make this applications practically viable. We have developed a scalable new laser concept called DiPOLE (diode pumped optical laser for experiments) based on a gas-cooled ceramic Yb:YAG multi-slab architecture operating at cryogenic temperatures. While the viability of this concept has been shown earlier [1], we have now reached our target performance of 10 J pulse energy at 10 Hz repetition rate at an optical-to-optical efficiency of 21%. To the best of our knowledge, these are record values for average power and efficiency for lasers of this type. We have also upgraded the system by adding a fibre-based front-end system with arbitrary pulse shaping capability and by installing an image-relayed multipass system enabling up to eight passes of the main amplifier. We have then used this system to demonstrate frequency doubling with 65 % conversion efficiency and a long-term shot-to-shot stability of 0.5% rms over a total of nearly 2 million shots, achieved in runs extending over 4 to 6 hours.

  2. Evaluation and design of non-lethal laser dazzlers utilizing microcontrollers

    NASA Astrophysics Data System (ADS)

    Richardson, Keith Jack

    Current non-lethal weapons suffer from an inability to meet requirements for uses across many fields and purposes. The safety and effectiveness of these weapons are inadequate. New concepts have provided a weapon utilizing lasers to flashblind a target's visual system. Minimal research and testing have been conducted to investigate the efficiency and safety of these weapons called laser dazzlers. Essentially a laser dazzler is comprised of a laser beam that has been diverged with the use of a lens to expand the beam creating an intensely bright flashlight. All laser dazzlers to date are incapable of adjusting to external conditions automatically. This is important, because the power of these weapons need to change according to distance and light conditions. At long distances, the weapon is rendered useless because the laser beam has become diluted. At near distances, the weapon is too powerful causing permanent damage to the eye because the beam is condensed. Similarly, the eye adapts to brightness by adjusting the pupil size, which effectively limits the amount of light entering the eye. Laser eye damage is determined by the level of irradiance entering the eye. Therefore, a laser dazzler needs the ability to adjust output irradiance to compensate for the distance to the target and ambient light conditions. It was postulated if an innovative laser dazzler design could adjust the laser beam divergence then the irradiance at the eye could be optimized for maximum vision disruption with minimal risk of permanent damage. The young nature of these weapons has lead to the rushed assumptions of laser wavelengths (color) and pulsing frequencies to cause maximum disorientation. Research provided key values of irradiance, wavelength, pulsing frequency and functions for the optical lens system. In order for the laser dazzler to continuously evaluate the external conditions, luminosity and distance sensors were incorporated into the design. A control system was devised to operate the mechanical components meeting calculated values. Testing the conceptual laser dazzlers illustrated the complexities of the system. A set irradiance value could be met at any distance and light condition, although this was accomplished by less than ideal methods. The final design included two lasers and only one optical system. The optical system was only capable of providing constant irradiance of one laser or the other allowing only single laser operation. For dual laser operation, the optical system was calibrated to offset the losses of each laser as distance was changed. Ultimately, this provided a constant combined irradiance with a decreasing green irradiance and increasing red irradiance as distance was increasing. Future work should include enhancements to the mechanical components of the laser dazzler to further refine accuracy. This research was intended to provide a proof of concept and did so successfully.

  3. Optical design and development of a fiber coupled high-power diode laser system for laser transmission welding of plastics

    NASA Astrophysics Data System (ADS)

    Rodríguez-Vidal, Eva; Quintana, Iban; Etxarri, Jon; Azkorbebeitia, Urko; Otaduy, Deitze; González, Francisco; Moreno, Fernando

    2012-12-01

    Laser transmission welding (LTW) of thermoplastics is a direct bonding technique already used in different industrial applications sectors such as automobiles, microfluidics, electronics, and biomedicine. LTW evolves localized heating at the interface of two pieces of plastic to be joined. One of the plastic pieces needs to be optically transparent to the laser radiation whereas the other part has to be absorbent, being that the radiation produced by high power diode lasers is a good alternative for this process. As consequence, a tailored laser system has been designed and developed to obtain high quality weld seams with weld widths between 0.7 and 1.4 mm. The developed laser system consists of two diode laser bars (50 W per bar) coupled into an optical fiber using a nonimaging solution: equalization of the beam parameter product (BPP) in the slow and fast axes by a pair of step-mirrors. The power scaling was carried out by means of a multiplexing polarization technique. The analysis of energy balance and beam quality was performed considering ray tracing simulation (ZEMAX) and experimental validation. The welding experiments were conducted on acrylonitrile/butadiene/styrene (ABS), a thermoplastic frequently used in automotive, electronics and aircraft applications, doped with two different concentrations of carbon nanotubes (0.01% and 0.05% CNTs). Quality of the weld seams on ABS was analyzed in terms of the process parameters (welding speed, laser power and clamping pressure) by visual and optical microscope inspections. Mechanical properties of weld seams were analyzed by mechanical shear tests. High quality weld seams were produced in ABS, revealing the potential of the laser developed in this work for a wide range of plastic welding applications.

  4. Research and Development of Laser Diode Based Instruments for Applications in Space

    NASA Technical Reports Server (NTRS)

    Krainak, Michael; Abshire, James; Cornwell, Donald; Dragic, Peter; Duerksen, Gary; Switzer, Gregg

    1999-01-01

    Laser diode technology continues to advance at a very rapid rate due to commercial applications such as telecommunications and data storage. The advantages of laser diodes include, wide diversity of wavelengths, high efficiency, small size and weight and high reliability. Semiconductor and fiber optical-amplifiers permit efficient, high power master oscillator power amplifier (MOPA) transmitter systems. Laser diode systems which incorporate monolithic or discrete (fiber optic) gratings permit single frequency operation. We describe experimental and theoretical results of laser diode based instruments currently under development at NASA Goddard Space Flight Center including miniature lidars for measuring clouds and aerosols, water vapor and wind for Earth and planetary (Mars Lander) use.

  5. Highly stable multi-wavelength erbium-doped fiber linear laser based on modal interference

    NASA Astrophysics Data System (ADS)

    Herrera-Piad, L. A.; Jauregui-Vazquez, D.; Lopez-Dieguez, Y.; Estudillo-Ayala, J. M.; Hernandez-Garcia, J. C.; Sierra-Hernandez, J. M.; Bianchetti, M.; Rojas-Laguna, R.

    2018-03-01

    We report a linear fiber laser cavity based on an all-fiber Fabry-Perot interferometer and bi-tapered optical fiber for multi-wavelength emission generation. Curvature and strain are used to operate the laser system and the number of lines as well, the emission regions are stronger related to the physical effect applied, due to the phase alteration between the multiple fiber optic modes involved. The original laser emissions present zero wavelength variations, minimal power fluctuations and small spacing mode (1 nm). Additionally, a nonlinear fiber was employed trying to improve the performance of the multiple lasing lines. This system offers a low implementation cost, compactness and good laser parameters.

  6. The Laser Guide Star System for Adaptive Optics at Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Hayano, Y.; Saito, Y.; Ito, M.; Saito, N.; Akagawa, K.; Takazawa, A.; Ito, M.; Wada, S.; Takami, H.; Iye, M.

    We report on the current status of developing the new laser guide star (LGS) system for the Subaru adaptive optics (AO) system. We have three major subsystems: the laser unit, the relay optical fiber and the laser launching telescope. A 4W-class all-solid-state 589nm laser has been developed as a light source for sodium laser guide star. We use two mode-locked Nd:YAG lasers operated at the wavelength of 1064nm and 1319nm to generate sum-frequency conversion into 589nm. The side-LD pumped configuration is used for the mode-locked Nd:YAG lasers. We have carefully considered the thermal lens effect in the cavity to achieve a high beam quality with TEM00; M2 = 1.06. The mode-locked frequency is selected at 143 MHz. We obtained the output powers of 16.5 W and 5.0 W at 1064nm and 1319 nm. Sum frequency generated by mixing two synchronized Nd:YAG mode-locked pulsed beams is precisely tuned to the sodium D2 line by thermal control of the etalon in the 1064nm Nd:YAG laser by observing the maximum fluorescence intensity of heated sodium vapor cell. The maximum output power at 589.159 nm reaches to 4.6 W using a PPMgOSLT crystal as a nonlinear optical crystal. And the output power can be maintained within a stability of +/- 1.2% for more than 3 days without optical damage. We developed a single-mode photonic crystal fiber (PCF) to relay the laser beam from laser clean room, in which the laser unit is located on the Nasmyth platform, to the laser launching telescope mounted behind the secondary mirror of Subaru Telescope. The photonic crystal fiber has solid pure silica core with the mode field diameter of 14 micron, which is relatively larger than that of the conventional step-index type single mode fiber. The length of the PCF is 35m and transmission loss due to the pure silica is 10dB/km at 589nm, which means PCF transmits 92% of the laser beam. We have preliminary achieved 75% throughput in total. Small mode-locked pulse width in time allows us to transmit the high-power laser beam with no suffer from the non-linear scatter effect, i.e. stimulated Brillouin scatter, in the PCF. The laser launching telescope (LLT) has an output clear aperture as 50 cm. It is classical Cassegrain type optical configuration with tertiary mirror to insert the laser beam from the side. The wavefront error is designed to be 60 to 70nm. The LLT is a copy product what European Southern Observatory has been designed for the laser guide star system at Very Large Telescope. We succeeded to launch the laser beam to the sky on October 12, 2006. After several tests on the sky, we succeeded to get an image of the laser guide star with the size of more than 10 arc second. The larger size of the laser guide star is caused by the large optical aberration on the primary mirror of LLT due to the heat stress generated at the trigonal support points. We are making a plan to repair this problem during June and the second laser launching test will start around this summer.

  7. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography

    PubMed Central

    Eom, Jonghyun; Shin, Jun Geun; Park, Soongho; Rim, Sunghwan; Lee, Byeong Ha

    2016-01-01

    We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF) and a large-core multimode fiber (MMF). The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging. PMID:27213392

  8. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography.

    PubMed

    Eom, Jonghyun; Shin, Jun Geun; Park, Soongho; Rim, Sunghwan; Lee, Byeong Ha

    2016-05-20

    We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF) and a large-core multimode fiber (MMF). The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging.

  9. Optics for multimode lasers with elongated depth of field

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2017-02-01

    Modern multimode high-power lasers are widely used in industrial applications and control of their radiation, especially by focusing, is of great importance. Because of relatively low optical quality, characterized by high values of specifications Beam Parameter Product (BPP) or M², the depth of field by focusing of multimode laser radiation is narrow. At the same time laser technologies like deep penetration welding, cutting of thick metal sheets get benefits from elongated depth of field in area of focal plane, therefore increasing of zone along optical axis with minimized spot size is important technical task. As a solution it is suggested to apply refractive optical systems splitting an initial laser beam into several beamlets, which are focused in different foci separated along optical axis with providing reliable control of energy portions in each separate focus, independently of beam size or mode structure. With the multi-focus optics, the length of zone of material processing along optical axis is defined rather by distances between separate foci, which are determined by optical design of the optics and can be chosen according to requirements of a particular laser technology. Due to stability of the distances between foci there is provided stability of a technology process. This paper describes some design features of refractive multi-focus optics, examples of real implementations and experimental results will be presented as well.

  10. Detection system of capillary array electrophoresis microchip based on optical fiber

    NASA Astrophysics Data System (ADS)

    Yang, Xiaobo; Bai, Haiming; Yan, Weiping

    2009-11-01

    To meet the demands of the post-genomic era study and the large parallel detections of epidemic diseases and drug screening, the high throughput micro-fluidic detection system is needed urgently. A scanning laser induced fluorescence detection system based on optical fiber has been established by using a green laser diode double-pumped solid-state laser as excitation source. It includes laser induced fluorescence detection subsystem, capillary array electrophoresis micro-chip, channel identification unit and fluorescent signal processing subsystem. V-shaped detecting probe composed with two optical fibers for transmitting the excitation light and detecting induced fluorescence were constructed. Parallel four-channel signal analysis of capillary electrophoresis was performed on this system by using Rhodamine B as the sample. The distinction of different samples and separation of samples were achieved with the constructed detection system. The lowest detected concentration is 1×10-5 mol/L for Rhodamine B. The results show that the detection system possesses some advantages, such as compact structure, better stability and higher sensitivity, which are beneficial to the development of microminiaturization and integration of capillary array electrophoresis chip.

  11. A review of the development of optical countermeasures

    NASA Astrophysics Data System (ADS)

    Titterton, David H.

    2004-12-01

    Optical countermeasures have been used for several millenia to provide a defensive capability capability. The fundamental approach is to use an intense optical source to dazzle a sensor or distract an operator or target tracking system causing a weapon to miss its intended target. The development of the laser has provided a stimulus for anumber of soft-kill weapon systems used to enhance platform survivability and anti-air missile applications; in this case the laser may cause dazzle, or if the beam is sufficiently intense it may cause damage. Laser technology is also crucial for an aspect of directed energy weapons. The various aspects of optical countermeasures are considered in this paper, including defeat mechanisms of active and passive techniques. The review includes a historical perspective through to prospects for the future.

  12. NASA's current activities in free space optical communications

    NASA Astrophysics Data System (ADS)

    Edwards, Bernard L.

    2017-11-01

    NASA and other space agencies around the world are currently developing free space optical communication systems for both space-to-ground links and space-to-space links. This paper provides an overview of NASA's current activities in free space optical communications with a focus on Near Earth applications. Activities to be discussed include the Lunar Laser Communication Demonstration, the Laser Communications Relay Demonstration, and the commercialization of the underlying technology. The paper will also briefly discuss ongoing efforts and studies for Deep Space optical communications. Finally the paper will discuss the development of international optical communication standards within the Consultative Committee for Space Data Systems.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Junhwan; Hwang, Sungui; Park, Kyihwan, E-mail: khpark@gist.ac.kr

    To utilize a time-of-flight-based laser scanner as a distance measurement sensor, the measurable distance and accuracy are the most important performance parameters to consider. For these purposes, the optical system and electronic signal processing of the laser scanner should be optimally designed in order to reduce a distance error caused by the optical crosstalk and wide dynamic range input. Optical system design for removing optical crosstalk problem is proposed in this work. Intensity control is also considered to solve the problem of a phase-shift variation in the signal processing circuit caused by object reflectivity. The experimental results for optical systemmore » and signal processing design are performed using 3D measurements.« less

  14. Imprinting high-gradient topographical structures onto optical surfaces using magnetorheological finishing: manufacturing corrective optical elements for high-power laser applications.

    PubMed

    Menapace, Joseph A; Ehrmann, Paul E; Bayramian, Andrew J; Bullington, Amber; Di Nicola, Jean-Michel G; Haefner, Constantin; Jarboe, Jeffrey; Marshall, Christopher; Schaffers, Kathleen I; Smith, Cal

    2016-07-01

    Corrective optical elements form an important part of high-precision optical systems. We have developed a method to manufacture high-gradient corrective optical elements for high-power laser systems using deterministic magnetorheological finishing (MRF) imprinting technology. Several process factors need to be considered for polishing ultraprecise topographical structures onto optical surfaces using MRF. They include proper selection of MRF removal function and wheel sizes, detailed MRF tool and interferometry alignment, and optimized MRF polishing schedules. Dependable interferometry also is a key factor in high-gradient component manufacture. A wavefront attenuating cell, which enables reliable measurement of gradients beyond what is attainable using conventional interferometry, is discussed. The results of MRF imprinting a 23 μm deep structure containing gradients over 1.6 μm / mm onto a fused-silica window are presented as an example of the technique's capabilities. This high-gradient element serves as a thermal correction plate in the high-repetition-rate advanced petawatt laser system currently being built at Lawrence Livermore National Laboratory.

  15. Imprinting high-gradient topographical structures onto optical surfaces using magnetorheological finishing: Manufacturing corrective optical elements for high-power laser applications

    DOE PAGES

    Menapace, Joseph A.; Ehrmann, Paul E.; Bayramian, Andrew J.; ...

    2016-03-15

    Corrective optical elements form an important part of high-precision optical systems. We have developed a method to manufacture high-gradient corrective optical elements for high-power laser systems using deterministic magnetorheological finishing (MRF) imprinting technology. Several process factors need to be considered for polishing ultraprecise topographical structures onto optical surfaces using MRF. They include proper selection of MRF removal function and wheel sizes, detailed MRF tool and interferometry alignment, and optimized MRF polishing schedules. Dependable interferometry also is a key factor in high-gradient component manufacture. A wavefront attenuating cell, which enables reliable measurement of gradients beyond what is attainable using conventional interferometry,more » is discussed. The results of MRF imprinting a 23 μm deep structure containing gradients over 1.6 μm / mm onto a fused-silica window are presented as an example of the technique’s capabilities. As a result, this high-gradient element serves as a thermal correction plate in the high-repetition-rate advanced petawatt laser system currently being built at Lawrence Livermore National Laboratory.« less

  16. Phase Aberrations And Beam Cleanup Techniques In Carbon-Dioxide Laser Fusion Systems

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.

    1981-12-01

    This paper describes the various carbon dioxide laser fusion systems at Los Alamos from the point of view of an optical designer. The types of phase aberrations present in these systems, as well as the beam cleanup techniques that can be used to improve the beam optical quality, are discussed. As this is a review article, some previously published results are also used where relevant.

  17. Method and system for modulation of gain suppression in high average power laser systems

    DOEpatents

    Bayramian, Andrew James [Manteca, CA

    2012-07-31

    A high average power laser system with modulated gain suppression includes an input aperture associated with a first laser beam extraction path and an output aperture associated with the first laser beam extraction path. The system also includes a pinhole creation laser having an optical output directed along a pinhole creation path and an absorbing material positioned along both the first laser beam extraction path and the pinhole creation path. The system further includes a mechanism operable to translate the absorbing material in a direction crossing the first laser beam extraction laser path and a controller operable to modulate the second laser beam.

  18. RESTORATION OF ATMOSPHERICALLY DEGRADED IMAGES. VOLUME 3.

    DTIC Science & Technology

    AERIAL CAMERAS, LASERS, ILLUMINATION, TRACKING CAMERAS, DIFFRACTION, PHOTOGRAPHIC GRAIN, DENSITY, DENSITOMETERS, MATHEMATICAL ANALYSIS, OPTICAL SCANNING, SYSTEMS ENGINEERING, TURBULENCE, OPTICAL PROPERTIES, SATELLITE TRACKING SYSTEMS.

  19. Adaptive Optics Imaging in Laser Pointer Maculopathy.

    PubMed

    Sheyman, Alan T; Nesper, Peter L; Fawzi, Amani A; Jampol, Lee M

    2016-08-01

    The authors report multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO) (Apaeros retinal image system AOSLO prototype; Boston Micromachines Corporation, Boston, MA) in a case of previously diagnosed unilateral acute idiopathic maculopathy (UAIM) that demonstrated features of laser pointer maculopathy. The authors also show the adaptive optics images of a laser pointer maculopathy case previously reported. A 15-year-old girl was referred for the evaluation of a maculopathy suspected to be UAIM. The authors reviewed the patient's history and obtained fluorescein angiography, autofluorescence, optical coherence tomography, infrared reflectance, and AOSLO. The time course of disease and clinical examination did not fit with UAIM, but the linear pattern of lesions was suspicious for self-inflicted laser pointer injury. This was confirmed on subsequent questioning of the patient. The presence of linear lesions in the macula that are best highlighted with multimodal imaging techniques should alert the physician to the possibility of laser pointer injury. AOSLO further characterizes photoreceptor damage in this condition. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:782-785.]. Copyright 2016, SLACK Incorporated.

  20. Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging

    PubMed Central

    Zawadzki, Robert J.; Jones, Steven M.; Pilli, Suman; Balderas-Mata, Sandra; Kim, Dae Yu; Olivier, Scot S.; Werner, John S.

    2011-01-01

    We describe an ultrahigh-resolution (UHR) retinal imaging system that combines adaptive optics Fourier-domain optical coherence tomography (AO-OCT) with an adaptive optics scanning laser ophthalmoscope (AO-SLO) to allow simultaneous data acquisition by the two modalities. The AO-SLO subsystem was integrated into the previously described AO-UHR OCT instrument with minimal changes to the latter. This was done in order to ensure optimal performance and image quality of the AO- UHR OCT. In this design both imaging modalities share most of the optical components including a common AO-subsystem and vertical scanner. One of the benefits of combining Fd-OCT with SLO includes automatic co-registration between two acquisition channels for direct comparison between retinal structures imaged by both modalities (e.g., photoreceptor mosaics or microvasculature maps). Because of differences in the detection scheme of the two systems, this dual imaging modality instrument can provide insight into retinal morphology and potentially function, that could not be accessed easily by a single system. In this paper we describe details of the components and parameters of the combined instrument, including incorporation of a novel membrane magnetic deformable mirror with increased stroke and actuator count used as a single wavefront corrector. We also discuss laser safety calculations for this multimodal system. Finally, retinal images acquired in vivo with this system are presented. PMID:21698028

  1. Full color laser projection display using Kr-Ar laser (white laser) beam-scanning technology

    NASA Astrophysics Data System (ADS)

    Kim, Yonghoon; Lee, Hang W.; Cha, Seungnam; Lee, Jin-Ho; Park, Youngjun; Park, Jungho; Hong, Sung S.; Hwang, Young M.

    1997-07-01

    Full color laser projection display is realized on the large screen using a krypton-argon laser (white laser) as a light source, and acousto-optic devices as light modulators. The main wavelengths of red, green and blue color are 647, 515, and 488 nm separated by dichroic mirrors which are designed to obtain the best performance for the s-polarized beam with the 45 degree incident angle. The separated beams are modulated by three acousto-optic modulators driven by rf drivers which has energy level of 1 watt at 144 MHz and recombined by dichroic mirrors again. Acousto-optic modulators (AOM) are fabricated to satisfy high diffraction efficiency over 80% and fast rising time less than 50 ns at the video bandwidth of 5 MHz. The recombined three beams (RGB) are scanned by polygonal mirrors for horizontal lines and a galvanometer for vertical lines. The photodiode detection for monitoring of rotary polygonal mirrors is adopted in this system for the compensation of the tolerance in the mechanical scanning to prevent the image joggling in the horizontal direction. The laser projection display system described in this paper is expected to apply HDTV from the exploitation of the acousto- optic modulator with the video bandwidth of 30 MHz.

  2. An imaging system based on laser optical feedback for fog vision applications

    NASA Astrophysics Data System (ADS)

    Belin, E.; Boucher, V.

    2008-08-01

    The Laboratoire Régional des Ponts et Chaussées d'Angers - LRPC of Angers is currently studying the feasability of applying an optical technique based on the principle of the laser optical feedback to long distance fog vision. Optical feedback set up allows the creation of images on roadsigns. To create artificial fog conditions we used a vibrating cell that produces a micro-spray of water according to the principle of acoustic cavitation. To scale the sensitivity of the system under duplicatible conditions we also used optical densities linked to first-sight visibility distances. The current system produces, in a few seconds, 200 × 200 pixel images of a roadsign seen through dense artificial fog.

  3. Planning for optical disk technology with digital cartography.

    USGS Publications Warehouse

    Light, D.L.

    1986-01-01

    A major shortfall that still exists in digital systems is the need for very large mass storage capacity. The decade of the 1980s has introduced laser optical disk storage technology, which may be the breakthrough needed for mass storage. This paper addresses system concepts for digital cartography during the transition period. Emphasis will be placed on determining USGS mass storage requirements and introducing laser optical disk technology for handling storage problems for digital data in this decade.-from Author

  4. Annular beam shaping system for advanced 3D laser brazing

    NASA Astrophysics Data System (ADS)

    Pütsch, Oliver; Stollenwerk, Jochen; Kogel-Hollacher, Markus; Traub, Martin

    2012-10-01

    As laser brazing benefits from advantages such as smooth joints and small heat-affected zones, it has become established as a joining technology that is widely used in the automotive industry. With the processing of complex-shaped geometries, recent developed brazing heads suffer, however, from the need for continuous reorientation of the optical system and/or limited accessibility due to lateral wire feeding. This motivates the development of a laser brazing head with coaxial wire feeding and enhanced functionality. An optical system is designed that allows to generate an annular intensity distribution in the working zone. The utilization of complex optical components avoids obscuration of the optical path by the wire feeding. The new design overcomes the disadvantages of the state-of-the-art brazing heads with lateral wire feeding and benefits from the independence of direction while processing complex geometries. To increase the robustness of the brazing process, the beam path also includes a seam tracking system, leading to a more challenging design of the whole optical train. This paper mainly discusses the concept and the optical design of the coaxial brazing head, and also presents the results obtained with a prototype and selected application results.

  5. Theoretical analysis for scaling law of thermal blooming based on optical phase deference

    NASA Astrophysics Data System (ADS)

    Sun, Yunqiang; Huang, Zhilong; Ren, Zebin; Chen, Zhiqiang; Guo, Longde; Xi, Fengjie

    2016-10-01

    In order to explore the laser propagation influence of thermal blooming effect of pipe flow and to analysis the influencing factors, scaling law theoretical analysis of the thermal blooming effects in pipe flow are carry out in detail based on the optical path difference caused by thermal blooming effects in pipe flow. Firstly, by solving the energy coupling equation of laser beam propagation, the temperature of the flow is obtained, and then the optical path difference caused by the thermal blooming is deduced. Through the analysis of the influence of pipe size, flow field and laser parameters on the optical path difference, energy scaling parameters Ne=nTαLPR2/(ρɛCpπR02) and geometric scaling parameters Nc=νR2/(ɛL) of thermal blooming for the pipe flow are derived. Secondly, for the direct solution method, the energy coupled equations have analytic solutions only for the straight tube with Gauss beam. Considering the limitation of directly solving the coupled equations, the dimensionless analysis method is adopted, the analysis is also based on the change of optical path difference, same scaling parameters for the pipe flow thermal blooming are derived, which makes energy scaling parameters Ne and geometric scaling parameters Nc have good universality. The research results indicate that when the laser power and the laser beam diameter are changed, thermal blooming effects of the pipeline axial flow caused by optical path difference will not change, as long as you keep energy scaling parameters constant. When diameter or length of the pipe changes, just keep the geometric scaling parameters constant, the pipeline axial flow gas thermal blooming effects caused by optical path difference distribution will not change. That is to say, when the pipe size and laser parameters change, if keeping two scaling parameters with constant, the pipeline axial flow thermal blooming effects caused by the optical path difference will not change. Therefore, the energy scaling parameters and the geometric scaling parameters can really describe the gas thermal blooming effect in the axial pipe flow. These conclusions can give a good reference for the construction of the thermal blooming test system of laser system. Contrasted with the thermal blooming scaling parameters of the Bradley-Hermann distortion number ND and Fresnel number NF, which were derived based on the change of far field beam intensity distortion, the scaling parameters of pipe flow thermal blooming deduced from the optical path deference variation are very suitable for the optical system with short laser propagation distance, large Fresnel number and obviously changed optical path deference.

  6. Interaction dynamics of fs-laser induced cavitation bubbles and their impact on the laser-tissue-interaction of modern ophthalmic laser systems

    NASA Astrophysics Data System (ADS)

    Tinne, N.; Ripken, T.; Lubatschowski, H.; Heisterkamp, A.

    2011-07-01

    A today well-known laser based treatment in ophthalmology is the LASIK procedure which nowadays includes cutting of the corneal tissue with ultra-short laser pulses. Instead of disposing a microkeratome for cutting a corneal flap, a focused ultra-short laser pulse is scanned below the surface of biological tissue causing the effect of an optical breakdown and hence obtaining a dissection. Inside the tissue, the energy of the laser pulses is absorbed by non-linear processes; as a result a cavitation bubble expands and ruptures the tissue. Hence, positioning of several optical breakdowns side by side generates an incision. Due to a reduction of the amount of laser energy, with a moderate duration of treatment at the same time, the current development of ultra-short pulse laser systems points to higher repetition rates in the range of even Megahertz instead of tens or hundreds of Kilohertz. In turn, this results in a pulse overlap and therefor a probable occurrence of interaction between different optical breakdowns and respectively cavitation bubbles of adjacent optical breakdowns. While the interaction of one single laser pulse with biological tissue is analyzed reasonably well experimentally and theoretically, the interaction of several spatial and temporal following pulses is scarcely determined yet. Thus, the aim of this study is to analyse the dynamic and interaction of two cavitation bubbles by using high speed photography. The applied laser pulse energy, the energy ratio and the spot distance between different cavitation bubbles were varied. Depending on a change of these parameters different kinds of interactions such as a flattening and deformation of bubble shape or jet formation are observed. The effects will be discussed regarding the medical ophthalmic application of fs-lasers. Based on these results a further research seems to be inevitable to comprehend and optimize the cutting effect of ultra-short pulse laser systems with high (> 500 kHz) repetition rates.

  7. High pulse rate high resolution optical radar system

    NASA Technical Reports Server (NTRS)

    Goss, W. C.; Burns, R. H.; Chi, K. (Inventor)

    1973-01-01

    The system is composed of an optical cavity with a laser and a mode locking means to build up an optical pulse. An optical switch is also provided within the cavity to convert the polarization of the optical pulse generated within the cavity. The optical switch comprises an electro-optical crystal driven by a time delayed driver circuit which is triggered by a coincident signal made from an optical pulse signal and a gating pulse signal. The converted optical pulse strikes a polarization sensitive prism and is deflected out of the cavity toward the pending target in the form of a pulse containing most of the optical energy generated by the laser in the pulse build-up period. After striking the target, the reflected energy is picked up by a transceiver with the total travel time of the pulse being recorded.

  8. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Optimal two-mirror system for laser radiation focusing

    NASA Astrophysics Data System (ADS)

    Gitin, Andrey V.

    2009-10-01

    An optical system for laser radiation focusing, which consists of parabolic and elliptic mirrors, is considered. It is shown by the method of elementary reflections that the maximum concentration of laser radiation on the target can be achieved at a certain position of these mirrors.

  9. Semiconductor ring lasers subject to both on-chip filtered optical feedback and external conventional optical feedback

    NASA Astrophysics Data System (ADS)

    Khoder, Mulham; Van der Sande, Guy; Danckaert, Jan; Verschaffelt, Guy

    2016-05-01

    It is well known that the performance of semiconductor lasers is very sensitive to external optical feedback. This feedback can lead to changes in lasing characteristics and a variety of dynamical effects including chaos and coherence collapse. One way to avoid this external feedback is by using optical isolation, but these isolators and their packaging will increase the cost of the total system. Semiconductor ring lasers nowadays are promising sources in photonic integrated circuits because they do not require cleaved facets or mirrors to form a laser cavity. Recently, some of us proposed to combine semiconductor ring lasers with on chip filtered optical feedback to achieve tunable lasers. The feedback is realized by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifier gates are used to control the feedback strength. In this work, we investigate how such lasers with filtered feedback are influenced by an external conventional optical feedback. The experimental results show intensity fluctuations in the time traces in both the clockwise and counterclockwise directions due to the conventional feedback. We quantify the strength of the conventional feedback induced dynamics be extracting the standard deviation of the intensity fluctuations in the time traces. By using filtered feedback, we can shift the onset of the conventional feedback induced dynamics to larger values of the feedback rate [ Khoder et al, IEEE Photon. Technol. Lett. DOI: 10.1109/LPT.2016.2522184]. The on-chip filtered optical feedback thus makes the semiconductor ring laser less senstive to the effect of (long) conventional optical feedback. We think these conclusions can be extended to other types of lasers.

  10. Laser Ground System for Communication Experiments with ARTEMIS

    NASA Astrophysics Data System (ADS)

    Kuzkov, Volodymyr; Volovyk, Dmytro; Kuzkov, Sergii; Sodnik, Zoran; Pukha, Sergii; Caramia, Vincenzo

    2012-10-01

    The ARTEMIS satellite with the OPALE laser communication terminal on-board was launched on 12 July, 2001. 1789 laser communications sessions were performed between ARTEMIS and SPOT-4 (PASTEL) from 01 April 2003 to 09 January 2008 with total duration of 378 hours. Regular laser communication experiments between ESA's Optical Ground Station (OGS - altitude 2400 m above see level) and ARTEMIS in various atmosphere conditions were also performed. The Japanese Space Agency (JAXA) launched the KIRARI (OICETS) satellite with laser communication terminal called LUCE. Laser communication links between KIRARI and ARTEMIS were successfully realized and international laser communications experiments from the KIRARI satellite were also successfully performed with optical ground stations located in the USA (JPL), Spain (ESA OGS), Germany (DLR), and Japan (NICT). The German Space Agency (DLR) performed laser communication links between two LEO satellites (TerraSAR-X and NFIRE), demonstrating data transfer rates of 5.6Gbit/s and performed laser communication experiments between the satellites and the ESA optical ground station. To reduce the influence of weather conditions on laser communication between satellites and ground stations, a network of optical stations situated in different atmosphere regions needs to be created. In 2002, the Main Astronomical Observatory (MAO) started the development of its own laser communication system to be placed into the Cassegrain focus of its 0.7m AZT-2 telescope (Fe = 10.5m), located in Kyiv 190 meters above sea level. The work was supported by the National Space Agency of Ukraine and by ESA ARTEMIS has an orbital position of 21.4° E and an orbital inclination of more than 9.75°. As a result we developed a precise tracking system for AZT-2 telescope (weighing more than 2 tons) using micro-step motors. Software was developed for computer control of the telescope to track the satellite's orbit and a tracking accuracy of 0.6 arcsec was achieved. A compact terminal for Laser Atmosphere and Communication Experiments with Satellite (LACES) has been produced. The LACES terminal includes: A CMOS camera of the pointing subsystem, a CCD camera of the tracking subsystem, an avalanche photodiode receiver module with thermoelectric cooling, a laser transmitter module with thermoelectric temperature control, a tip/tilt atmospheric turbulence compensation subsystem with movable mirrors, a four-quadrant photo-detector, a bit error rate tester module and other optical and electronic components. The principal subsystems and optical elements are mounted on a platform (weight < 20kg), which is located in the Cassegrain focus of the telescope. All systems were tested with ARTEMIS. The telemetry and dump buffer information from OPALE received by the control center in Redu (Belgium) was analyzed. During the beacon scan, the acquisition phase of laser link between OPALE laser terminal of ARTEMIS and LACES laser terminal started and laser signals from AZT-2 were detected by acquisition and tracking CCD sensors of OPALE. Some of the tests were performed in cloudy conditions. A description of our laser ground system and the experimental results will be presented in the report.

  11. Optical synchronization system for femtosecond X-ray sources

    DOEpatents

    Wilcox, Russell B [El Cerrito, CA; Holzwarth, Ronald [Munich, DE

    2011-12-13

    Femtosecond pump/probe experiments using short X-Ray and optical pulses require precise synchronization between 100 meter-10 km separated lasers in a various experiments. For stabilization in the hundred femtosecond range a CW laser is amplitude modulated at 1-10 GHz, the signal retroreflected from the far end, and the relative phase used to correct the transit time with various implementations. For the sub-10 fsec range the laser frequency itself is upshifted 55 MHz with an acousto-optical modulator, retroreflected, upshifted again and phase compared at the sending end to a 110 MHz reference. Initial experiments indicate less than 1 fsec timing jitter. To lock lasers in the sub-10 fs range two single-frequency lasers separated by several teraHertz will be lock to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes.

  12. Quantitative absorption data from thermally induced wavefront distortions on UV, Vis, and NIR optics

    NASA Astrophysics Data System (ADS)

    Mann, Klaus; Schäfer, Bernd; Leinhos, Uwe; Lübbecke, Maik

    2017-11-01

    A photothermal absorption measurement system was set up, deploying a Hartmann-Shack wavefront sensor with extreme sensitivity to accomplish spatially resolved monitoring of thermally induced wavefront distortions. Photothermal absorption measurements in the near-infrared and deep ultra-violet spectral range are performed for the characterization of optical materials, utilizing a Yb fiber laser (λ = 1070 nm) and an excimer laser (193nm, 248nm) to induce thermal load. Wavefront deformations as low as 50pm (rms) can be registered, allowing for a rapid assessment of material quality. Absolute calibration of the absorption data is achieved by comparison with a thermal calculation. The method accomplishes not only to measure absorptances of plane optical elements, but also wavefront deformations and focal shifts in lenses as well as in complex optical systems, such as e.g. F-Theta objectives used in industrial high power laser applications. Along with a description of the technique we present results from absorption measurements on coated and uncoated optics at various laser wavelengths ranging from deep UV to near IR.

  13. Large optics for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baisden, P.

    2015-01-12

    The National Ignition Facility (NIF) laser with its 192 independent laser beams is not only the world’s largest laser, it is also the largest optical system ever built. With its 192 independent laser beams, the NIF requires a total of 7648 large-aperture (meter-sized) optics. One of the many challenges in designing and building NIF has been to carry out the research and development on optical materials, optics design, and optics manufacturing and metrology technologies needed to achieve NIF’s high output energies and precision beam quality. This paper describes the multiyear, multi-supplier, development effort that was undertaken to develop the advancedmore » optical materials, coatings, fabrication technologies, and associated process improvements necessary to manufacture the wide range of NIF optics. The optics include neodymium-doped phosphate glass laser amplifiers; fused silica lenses, windows, and phase plates; mirrors and polarizers with multi-layer, high-reflectivity dielectric coatings deposited on BK7 substrates; and potassium di-hydrogen phosphate crystal optics for fast optical switches, frequency conversion, and polarization rotation. Also included is a discussion of optical specifications and custom metrology and quality-assurance tools designed, built, and fielded at supplier sites to verify compliance with the stringent NIF specifications. In addition, a brief description of the ongoing program to improve the operational lifetime (i.e., damage resistance) of optics exposed to high fluence in the 351-nm (3ω) is provided.« less

  14. Airborne Systems Course Textbook. Electro-Optical Systems Test and Evaluation,

    DTIC Science & Technology

    1981-06-01

    by twice the angle between the reflecting faces. The porro - prism shown in Figure 2.2.3.1(c) is used to deflect the beam by 1800. Beam Retro-Reflection...Reflection of Electromagnetic Radiation at the Interface Between Two Media 2.13 2.2 Optics 2.15 2.2.1 The Lens 2.15 2.2.2 The Mirror 2.25 2.2.3 The Prism 2.30...2.5.2 The Optical Resonator 2.77 2.5.3 Laser Implementation 2.79 2.5.4 Laser Radiation Characteristics 2.81 2.6 Electro-Optical Sensors 2.83 2.6.1

  15. Experimental examination of frequency locking effect in acousto-optic system

    NASA Astrophysics Data System (ADS)

    Mantsevich, S. N.; Balakshy, V. I.

    2018-04-01

    The optoelectronic system containing collinear acousto-optic cell fabricated on the base of calcium molybdate crystal and positive electronic feedback circuit was examined. The feedback signal is formed due to the optical heterodyning effect that occurs on the cell output and takes place in the special regime of collinear acousto-optic diffraction. It was discovered that three operation modes that may exist in this system. The boundaries between the modes were determined. The positions of the boundaries depend on the main parameters of the system—the incident light intensity and the feedback gain value. The new for acousto-optics phenomenon of acousto-optic system self-oscillations frequency locking by the RF generator signal was discovered and examined experimentally. Such an effect has never been observed before in the acousto-optic systems. It was experimentally shown that frequency locking effect may be used to select one of the multimode semiconductor laser longitudinal modes to improve laser radiation spectral composition.

  16. Optical polymers for laser medical applications

    NASA Astrophysics Data System (ADS)

    Sultanova, Nina G.; Kasarova, Stefka N.; Nikolov, Ivan D.

    2016-01-01

    In medicine, optical polymers are used not only in ophthalmology but in many laser surgical, diagnostic and therapeutic systems. The application in lens design is determined by their refractive and dispersive properties in the considered spectral region. We have used different measuring techniques to obtain precise refractometric data in the visible and near-infrared spectral regions. Dispersive, thermal and other important optical characteristics of polymers have been studied. Design of a plastic achromatic objective, used in a surgical stereo-microscope at 1064 nm laser wavelength, is accomplished. Geometrical and wavefront aberrations are calculated. Another example of application of polymers is the designed all-mirror apochromatic micro-lens, intended for superluminescent diode fiber coupling in medical systems.

  17. Fabrication of a 20.5-inch-diameter segmented silicon annular optic prototype for the ROMA program

    NASA Astrophysics Data System (ADS)

    Hassell, Frank R.; Groark, Frank M.

    1995-10-01

    Recent advancements in single crystal silicon material science and fabrication capabilities and very low absorption (VLA) multi-layer dielectric coating technology have led to the development of uncooled, large aperture, high power mirrors for high energy laser (HEL) systems. Based on this success, a segmented single-crystal silicon substrate concept has been selected as the baseline fabrication approach for uncooled 1.2 meter diameter resonator annular optics for the Alpha space based high energy laser. The objective of this Resonator Optics Materials Assessment (ROMA) task was to demonstrate all of the key fabrication processes required to fabricate the full sized annular optics for the Alpha space based high energy laser. This paper documents the fabrication of a half-scale annular optic prototype (AOP) of the Alpha laser rear cone.

  18. Laser diode side-pumped Nd:YVO4 microchip laser with film-etched microcavity mirrors.

    PubMed

    Li, Jiyang; Niu, Yanxiong; Chen, Sanbin; Tan, Yidong

    2017-10-01

    Microchip lasers are applied as the light sources on various occasions with the end-pumping scheme. However, the vibration, the temperature drift, or the mechanical deformation of the pumping light in laser diodes in the end-pumping scheme will lead to instability in the microchip laser output, which causes errors and malfunctioning in the optic systems. In this paper, the side-pumping scheme is applied for improving the disturbance-resisting ability of the microchip laser. The transverse mode and the frequency purity of the laser output are tested. To ensure unicity in the frequency of the laser output, numerical simulations based on Fresnel-Kirchhoff diffraction theory are conducted on the parameters of the microchip laser cavity. Film-etching technique is applied to restrain the area of the film and form the microcavity mirrors. The laser output with microcavity mirrors is ensured to be in single frequency and with good beam quality, which is significant in the applications of microchip lasers as the light sources in optical systems.

  19. Continuum generation in optical fibers for high-resolution holographic coherence domain imaging application

    NASA Astrophysics Data System (ADS)

    Li, Linghui; Gruzdev, Vitaly; Yu, Ping; Chen, J. K.

    2009-02-01

    High pulse energy continuum generation in conventional multimode optical fibers has been studied for potential applications to a holographic optical coherence imaging system. As a new imaging modality for the biological tissue imaging, high-resolution holographic optical coherence imaging requires a broadband light source with a high brightness, a relatively low spatial coherence and a high stability. A broadband femtosecond laser can not be used as the light source of holographic imaging system since the laser creates a lot of speckle patterns. By coupling high peak power femtosecond laser pulses into a multimode optical fiber, nonlinear optical effects cause a continuum generation that can be served as a super-bright and broadband light source. In our experiment, an amplified femtosecond laser was coupled into the fiber through a microscopic objective. We measured the FWHM of the continuum generation as a function of incident pulse energy from 80 nJ to 800 μJ. The maximum FWHM is about 8 times higher than that of the input pulses. The stability was analyzed at different pump energies, integration times and fiber lengths. The spectral broadening and peak position show that more than two processes compete in the fiber.

  20. Development of a compact optical MEMS scanner with integrated VCSEL light source and diffractive optics

    NASA Astrophysics Data System (ADS)

    Krygowski, Thomas W.; Reyes, David; Rodgers, M. Steven; Smith, James H.; Warren, Mial E.; Sweatt, William C.; Blum-Spahn, Olga; Wendt, Joel R.; Asbill, Randolph E.

    1999-09-01

    In this work the design and initial fabrication results are reported for the components of a compact optical-MEMS laser scanning system. This system integrates a silicon MEMS laser scanner, a Vertical Cavity Surface Emitting Laser (VCSEL) and passive optical components. The MEMS scanner and VCSEL are mounted onto a fused silica substrate which serves as an optical interconnect between the devices. Two Diffractive Optical Elements (DOE's) are etched into the fused silica substrate to focus the VCSEL beam and increase the scan range. The silicon MEMS scanner consists of an actuator that continuously scans the position of a large polysilicon gold- coated shuttle containing a third DOE. Interferometric measurements show that the residual stress in the 50 micrometer X 1000 micrometer shuttle is extremely low, with a maximum deflection of only 0.18 micrometer over an 800 micrometer span for an unmetallized case and a deflection of 0.56 micrometer for the metallized case. A conservative estimate for the scan range is approximately plus or minus 4 degrees, with a spot size of about 0.5 mm, producing 50 resolvable spots. The basic system architecture, optical and MEMS design is reported in this paper, with an emphasis on the design and fabrication of the silicon MEMS scanner portion of the system.

Top