NASA Astrophysics Data System (ADS)
Ladner, S. D.; Arnone, R.; Casey, B.; Weidemann, A.; Gray, D.; Shulman, I.; Mahoney, K.; Giddings, T.; Shirron, J.
2009-05-01
Current United States Navy Mine-Counter-Measure (MCM) operations primarily use electro-optical identification (EOID) sensors to identify underwater targets after detection via acoustic sensors. These EOID sensors which are based on laser underwater imaging by design work best in "clear" waters and are limited in coastal waters especially with strong optical layers. Optical properties and in particular scattering and absorption play an important role on systems performance. Surface optical properties alone from satellite are not adequate to determine how well a system will perform at depth due to the existence of optical layers. The spatial and temporal characteristics of the 3d optical variability of the coastal waters along with strength and location of subsurface optical layers maximize chances of identifying underwater targets by exploiting optimum sensor deployment. Advanced methods have been developed to fuse the optical measurements from gliders, optical properties from "surface" satellite snapshot and 3-D ocean circulation models to extend the two-dimensional (2-D) surface satellite optical image into a three-dimensional (3-D) optical volume with subsurface optical layers. Modifications were made to an EOID performance model to integrate a 3-D optical volume covering an entire region of interest as input and derive system performance field. These enhancements extend present capability based on glider optics and EOID sensor models to estimate the system's "image quality". This only yields system performance information for a single glider profile location in a very large operational region. Finally, we define the uncertainty of the system performance by coupling the EOID performance model with the 3-D optical volume uncertainties. Knowing the ensemble spread of EOID performance field provides a new and unique capability for tactical decision makers and Navy Operations.
Throughput of Coded Optical CDMA Systems with AND Detectors
NASA Astrophysics Data System (ADS)
Memon, Kehkashan A.; Umrani, Fahim A.; Umrani, A. W.; Umrani, Naveed A.
2012-09-01
Conventional detection techniques used in optical code-division multiple access (OCDMA) systems are not optimal and result in poor bit error rate performance. This paper analyzes the coded performance of optical CDMA systems with AND detectors for enhanced throughput efficiencies and improved error rate performance. The results show that the use of AND detectors significantly improve the performance of an optical channel.
The simulation study on optical target laser active detection performance
NASA Astrophysics Data System (ADS)
Li, Ying-chun; Hou, Zhao-fei; Fan, Youchen
2014-12-01
According to the working principle of laser active detection system, the paper establishes the optical target laser active detection simulation system, carry out the simulation study on the detection process and detection performance of the system. For instance, the performance model such as the laser emitting, the laser propagation in the atmosphere, the reflection of optical target, the receiver detection system, the signal processing and recognition. We focus on the analysis and modeling the relationship between the laser emitting angle and defocus amount and "cat eye" effect echo laser in the reflection of optical target. Further, in the paper some performance index such as operating range, SNR and the probability of the system have been simulated. The parameters including laser emitting parameters, the reflection of the optical target and the laser propagation in the atmosphere which make a great influence on the performance of the optical target laser active detection system. Finally, using the object-oriented software design methods, the laser active detection system with the opening type, complete function and operating platform, realizes the process simulation that the detection system detect and recognize the optical target, complete the performance simulation of each subsystem, and generate the data report and the graph. It can make the laser active detection system performance models more intuitive because of the visible simulation process. The simulation data obtained from the system provide a reference to adjust the structure of the system parameters. And it provides theoretical and technical support for the top level design of the optical target laser active detection system and performance index optimization.
Received optical power calculations for optical communications link performance analysis
NASA Technical Reports Server (NTRS)
Marshall, W. K.; Burk, B. D.
1986-01-01
The factors affecting optical communication link performance differ substantially from those at microwave frequencies, due to the drastically differing technologies, modulation formats, and effects of quantum noise in optical communications. In addition detailed design control table calculations for optical systems are less well developed than corresponding microwave system techniques, reflecting the relatively less mature state of development of optical communications. Described below are detailed calculations of received optical signal and background power in optical communication systems, with emphasis on analytic models for accurately predicting transmitter and receiver system losses.
Laser diode technology for coherent communications
NASA Technical Reports Server (NTRS)
Channin, D. J.; Palfrey, S. L.; Toda, M.
1989-01-01
The effect of diode laser characteristics on the overall performance capabilities of coherent communication systems is discussed. In particular, attention is given to optical performance issues for diode lasers in coherent systems, measurements of key performance parameters, and optical requirements for coherent single-channel and multichannel communication systems. The discussion also covers limitations imposed by diode laser optical performance on multichannel system capabilities and implications for future developments.
Forecasting the ocean optical environment in support of Navy mine warfare operations
NASA Astrophysics Data System (ADS)
Ladner, S. D.; Arnone, R.; Jolliff, J.; Casey, B.; Matulewski, K.
2012-06-01
A 3D ocean optical forecast system called TODS (Tactical Ocean Data System) has been developed to determine the performance of underwater LIDAR detection/identification systems. TODS fuses optical measurements from gliders, surface satellite optical properties, and 3D ocean forecast circulation models to extend the 2-dimensional surface satellite optics into a 3-dimensional optical volume including subsurface optical layers of beam attenuation coefficient (c) and diver visibility. Optical 3D nowcast and forecasts are combined with electro-optical identification (EOID) models to determine the underwater LIDAR imaging performance field used to identify subsurface mine threats in rapidly changing coastal regions. TODS was validated during a recent mine warfare exercise with Helicopter Mine Countermeasures Squadron (HM-14). Results include the uncertainties in the optical forecast and lidar performance and sensor tow height predictions that are based on visual detection and identification metrics using actual mine target images from the EOID system. TODS is a new capability of coupling the 3D optical environment and EOID system performance and is proving important for the MIW community as both a tactical decision aid and for use in operational planning, improving timeliness and efficiency in clearance operations.
A Study of Synchronization Techniques for Optical Communication Systems
NASA Technical Reports Server (NTRS)
Gagliardi, R. M.
1975-01-01
The study of synchronization techniques and related topics in the design of high data rate, deep space, optical communication systems was reported. Data cover: (1) effects of timing errors in narrow pulsed digital optical systems, (2) accuracy of microwave timing systems operating in low powered optical systems, (3) development of improved tracking systems for the optical channel and determination of their tracking performance, (4) development of usable photodetector mathematical models for application to analysis and performance design in communication receivers, and (5) study application of multi-level block encoding to optical transmission of digital data.
Li, Zexiao; Liu, Xianlei; Fang, Fengzhou; Zhang, Xiaodong; Zeng, Zhen; Zhu, Linlin; Yan, Ning
2018-03-19
Multi-reflective imaging systems find wide applications in optical imaging and space detection. However, it is faced with difficulties in adjusting the freeform mirrors with high accuracy to guarantee the optical function. Motivated by this, an alignment-free manufacture approach is proposed to machine the optical system. The direct optical performance-guided manufacture route is established without measuring the form error of freeform optics. An analytical model is established to investigate the effects of machine errors to serve the error identification and compensation in machining. Based on the integrated manufactured system, an ingenious self-designed testing configuration is constructed to evaluate the optical performance by directly measuring the wavefront aberration. Experiments are carried out to manufacture a three-mirror anastigmat, surface topographical details and optical performance shows agreement to the designed expectation. The final system works as an off-axis infrared imaging system. Results validate the feasibility of the proposed method to achieve excellent optical application.
Damage modeling and statistical analysis of optics damage performance in MJ-class laser systems.
Liao, Zhi M; Raymond, B; Gaylord, J; Fallejo, R; Bude, J; Wegner, P
2014-11-17
Modeling the lifetime of a fused silica optic is described for a multiple beam, MJ-class laser system. This entails combining optic processing data along with laser shot data to account for complete history of optic processing and shot exposure. Integrating with online inspection data allows for the construction of a performance metric to describe how an optic performs with respect to the model. This methodology helps to validate the damage model as well as allows strategic planning and identifying potential hidden parameters that are affecting the optic's performance.
Optical design and tolerancing of an ophthalmological system
NASA Astrophysics Data System (ADS)
Sieber, Ingo; Martin, Thomas; Yi, Allen; Li, Likai; Rübenach, Olaf
2014-09-01
Tolerance analysis by means of simulation is an essential step in system integration. Tolerance analysis allows for predicting the performance of a system setup of real manufactured parts and for an estimation of the yield with respect to evaluation figures, such as performance requirements, systems specification or cost demands. Currently, optical freeform optics is gaining importance in optical systems design. The performance of freeform optics often strongly depends on the manufacturing accuracy of the surfaces. For this reason, a tolerance analysis with respect to the fabrication accuracy is of crucial importance. The characterization of form tolerances caused by the manufacturing process is based on the definition of straightness, flatness, roundness, and cylindricity. In case of freeform components, however, it is often impossible to define a form deviation by means of this standard classification. Hence, prediction of the impact of manufacturing tolerances on the optical performance is not possible by means of a conventional tolerance analysis. To carry out a tolerance analysis of the optical subsystem, including freeform optics, metrology data of the fabricated surfaces have to be integrated into the optical model. The focus of this article is on design for manufacturability of freeform optics with integrated alignment structures and on tolerance analysis of the optical subsystem based on the measured surface data of manufactured optical freeform components with respect to assembly and manufacturing tolerances. This approach will be reported here using an ophthalmological system as an example.
2012-03-01
EMPIRICAL ANALYSIS OF OPTICAL ATTENUATOR PERFORMANCE IN QUANTUM KEY DISTRIBUTION SYSTEMS USING A...DISTRIBUTION IS UNLIMITED AFIT/GCS/ENG/12-01 EMPIRICAL ANALYSIS OF OPTICAL ATTENUATOR PERFORMANCE IN QUANTUM KEY DISTRIBUTION SYSTEMS USING ...challenging as the complexity of actual implementation specifics are considered. Two components common to most quantum key distribution
NASA Astrophysics Data System (ADS)
Besson, Pierre; Dominguez, Cesar; Voarino, Philippe; Garcia-Linares, Pablo; Weick, Clement; Lemiti, Mustapha; Baudrit, Mathieu
2015-09-01
The optical characterization and electrical performance evaluation are essential in the design and optimization of a concentrator photovoltaic system. The geometry, materials, and size of concentrator optics are diverse and different environmental conditions impact their performance. CEA has developed a new concentrator photovoltaic system characterization bench, METHOD, which enables multi-physics optimization studies. The lens and cell temperatures are controlled independently with the METHOD to study their isolated effects on the electrical and optical performance of the system. These influences can be studied in terms of their effect on optical efficiency, focal distance, spectral sensitivity, electrical efficiency, or cell current matching. Furthermore, the irradiance map of a concentrator optic can be mapped to study its variations versus the focal length or the lens temperature. The present work shows this application to analyze the performance of a Fresnel lens linking temperature to optical and electrical performance.
Study on multiple-hops performance of MOOC sequences-based optical labels for OPS networks
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Qiu, Kun; Ma, Chunli
2009-11-01
In this paper, we utilize a new study method that is under independent case of multiple optical orthogonal codes to derive the probability function of MOOCS-OPS networks, discuss the performance characteristics for a variety of parameters, and compare some characteristics of the system employed by single optical orthogonal code or multiple optical orthogonal codes sequences-based optical labels. The performance of the system is also calculated, and our results verify that the method is effective. Additionally it is found that performance of MOOCS-OPS networks would, negatively, be worsened, compared with single optical orthogonal code-based optical label for optical packet switching (SOOC-OPS); however, MOOCS-OPS networks can greatly enlarge the scalability of optical packet switching networks.
Optical communication for space missions
NASA Technical Reports Server (NTRS)
Firtmaurice, M.
1991-01-01
Activities performed at NASA/GSFC (Goddard Space Flight Center) related to direct detection optical communications for space applications are discussed. The following subject areas are covered: (1) requirements for optical communication systems (data rates and channel quality; spatial acquisition; fine tracking and pointing; and transmit point-ahead correction); (2) component testing and development (laser diodes performance characterization and life testing; and laser diode power combining); (3) system development and simulations (The GSFC pointing, acquisition and tracking system; hardware description; preliminary performance analysis; and high data rate transmitter/receiver systems); and (4) proposed flight demonstration of optical communications.
Optical mounts for harsh environments
NASA Astrophysics Data System (ADS)
Mimovich, Mark E.; Griffee, Jonathan C.; Goodding, James C.
2009-08-01
Development and testing of a lightweight-kinematic optical mount with integrated passive vibration-and-shock mitigation technologies and simple / robust optical alignment functionality is presented. Traditionally, optical mounts are designed for use in laboratory environments where the thermal-mechanical environments are carefully controlled to preserve beam path conditions and background disturbances are minimized to facilitate precise optically based measurements. Today's weapon and surveillance systems, however, have optical sensor suites where static and dynamic alignment performance in the presence of harsh operating environments is required to nearly the same precision and where the system cannot afford the mass of laboratory-grade stabilized mounting systems. Jitter and alignment stability is particularly challenging for larger optics operating within moving vehicles and aircraft where high shock and significant temperature excursions occur. The design intent is to have the mount be suitable for integration into existing defense and security optical systems while also targeting new commercial and military components for improved structural dynamic and thermal distortion performance. A mount suitable for moderate-sized optics and an integrated disturbance-optical metrology system are described. The mount design has performance enhancements derived from the integration of proven aerospace mechanical vibration and shock mitigation technologies (i.e. multi-axis passive isolation and integral damping), precision alignment adjustment and lock-out functionality, high dimensional stability materials and design practices which provide benign optical surface figure errors under harsh thermal-mechanical loading. Optical jitter, alignment, and wave-front performance testing of an eight-inch-aperture optical mount based on this design approach are presented to validate predicted performance improvements over an existing commercial off-the-shelf (COTS) design.
Feasibility of optically interconnected parallel processors using wavelength division multiplexing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deri, R.J.; De Groot, A.J.; Haigh, R.E.
1996-03-01
New national security demands require enhanced computing systems for nearly ab initio simulations of extremely complex systems and analyzing unprecedented quantities of remote sensing data. This computational performance is being sought using parallel processing systems, in which many less powerful processors are ganged together to achieve high aggregate performance. Such systems require increased capability to communicate information between individual processor and memory elements. As it is likely that the limited performance of today`s electronic interconnects will prevent the system from achieving its ultimate performance, there is great interest in using fiber optic technology to improve interconnect communication. However, little informationmore » is available to quantify the requirements on fiber optical hardware technology for this application. Furthermore, we have sought to explore interconnect architectures that use the complete communication richness of the optical domain rather than using optics as a simple replacement for electronic interconnects. These considerations have led us to study the performance of a moderate size parallel processor with optical interconnects using multiple optical wavelengths. We quantify the bandwidth, latency, and concurrency requirements which allow a bus-type interconnect to achieve scalable computing performance using up to 256 nodes, each operating at GFLOP performance. Our key conclusion is that scalable performance, to {approx}150 GFLOPS, is achievable for several scientific codes using an optical bus with a small number of WDM channels (8 to 32), only one WDM channel received per node, and achievable optoelectronic bandwidth and latency requirements. 21 refs. , 10 figs.« less
The aero optics effect on near space laser communication optical system
NASA Astrophysics Data System (ADS)
Hu, Yuan; Fu, Yuegang; Jiang, Huilin
2013-08-01
With the developing of the space laser communication link, the performance index including higher transfer speed, extending transfer distance, and environmental adaptability, all ask the system accuracy and indexes improving. Special the developing near space platform, its environmental is extremes, the near space drone and other airplane flight speed is very quickly from the subsonic to supersonic. The aero optics effect caused by high speed will generate a thin turbulent air layer. It affects the performance of laser communication optical system by laser light vibration, deviation and so on, further more affects the performance of laser communication system working performance, even can't communication. Therefore, for achieving optical system indexes, we need do more research in optical system near space aero optics environmental adaptability. In this paper, near space link environmental characteristic are researched. And on the base of the aero optics theory, computer simulating method is applied to analyze the relationship among the altitude, the flight speed and the image dispersion. The result shows that, the aero optics effect cannot be ignored when the terminal is in low altitude or is moving with supersonic speed. The effect must be taken into considered from overall design. The result will provide the basis of research design.
NASA Astrophysics Data System (ADS)
Wang, Xuan-Yin; Du, Jia-Wei; Zhu, Shi-Qiang
2017-09-01
A bionic variable-focus lens with symmetrical layered structure was designed to mimic the crystalline lens. An optical imaging system based on this lens and with a symmetrical structure that mimics the human eye structure was proposed. The refractive index of the bionic variable-focus lens increases from outside to inside. The two PDMS lenses with a certain thickness were designed to improve the optical performance of the optical imaging system and minimise the gravity effect of liquid. The paper presents the overall structure of the optical imaging system and the detailed description of the bionic variable-focus lens. By pumping liquid in or out of the cavity, the surface curvatures of the rear PDMS lens were varied, resulting in a change in the focal length. The focal length range of the optical imaging system was 20.71-24.87 mm. The optical performance of the optical imaging system was evaluated by imaging experiments and analysed by ray tracing simulations. On the basis of test and simulation results, the optical performance of the system was quite satisfactory. Off-axis aberrations were well corrected, and the image quality was greatly improved.
Durham extremely large telescope adaptive optics simulation platform.
Basden, Alastair; Butterley, Timothy; Myers, Richard; Wilson, Richard
2007-03-01
Adaptive optics systems are essential on all large telescopes for which image quality is important. These are complex systems with many design parameters requiring optimization before good performance can be achieved. The simulation of adaptive optics systems is therefore necessary to categorize the expected performance. We describe an adaptive optics simulation platform, developed at Durham University, which can be used to simulate adaptive optics systems on the largest proposed future extremely large telescopes as well as on current systems. This platform is modular, object oriented, and has the benefit of hardware application acceleration that can be used to improve the simulation performance, essential for ensuring that the run time of a given simulation is acceptable. The simulation platform described here can be highly parallelized using parallelization techniques suited for adaptive optics simulation, while still offering the user complete control while the simulation is running. The results from the simulation of a ground layer adaptive optics system are provided as an example to demonstrate the flexibility of this simulation platform.
NASA Astrophysics Data System (ADS)
Taylor, John R.; Stolz, Christopher J.
1993-08-01
Laser system performance and reliability depends on the related performance and reliability of the optical components which define the cavity and transport subsystems. High-average-power and long transport lengths impose specific requirements on component performance. The complexity of the manufacturing process for optical components requires a high degree of process control and verification. Qualification has proven effective in ensuring confidence in the procurement process for these optical components. Issues related to component reliability have been studied and provide useful information to better understand the long term performance and reliability of the laser system.
NASA Astrophysics Data System (ADS)
Taylor, J. R.; Stolz, C. J.
1992-12-01
Laser system performance and reliability depends on the related performance and reliability of the optical components which define the cavity and transport subsystems. High-average-power and long transport lengths impose specific requirements on component performance. The complexity of the manufacturing process for optical components requires a high degree of process control and verification. Qualification has proven effective in ensuring confidence in the procurement process for these optical components. Issues related to component reliability have been studied and provide useful information to better understand the long term performance and reliability of the laser system.
Li, Kangning; Ma, Jing; Tan, Liying; Yu, Siyuan; Zhai, Chao
2016-06-10
The performances of fiber-based free-space optical (FSO) communications over gamma-gamma distributed turbulence are studied for multiple aperture receiver systems. The equal gain combining (EGC) technique is considered as a practical scheme to mitigate the atmospheric turbulence. Bit error rate (BER) performances for binary-phase-shift-keying-modulated coherent detection fiber-based free-space optical communications are derived and analyzed for EGC diversity receptions through an approximation method. To show the net diversity gain of a multiple aperture receiver system, BER performances of EGC are compared with a single monolithic aperture receiver system with the same total aperture area (same average total incident optical power on the aperture surface) for fiber-based free-space optical communications. The analytical results are verified by Monte Carlo simulations. System performances are also compared for EGC diversity coherent FSO communications with or without considering fiber-coupling efficiencies.
Photonic content-addressable memory system that uses a parallel-readout optical disk
NASA Astrophysics Data System (ADS)
Krishnamoorthy, Ashok V.; Marchand, Philippe J.; Yayla, Gökçe; Esener, Sadik C.
1995-11-01
We describe a high-performance associative-memory system that can be implemented by means of an optical disk modified for parallel readout and a custom-designed silicon integrated circuit with parallel optical input. The system can achieve associative recall on 128 \\times 128 bit images and also on variable-size subimages. The system's behavior and performance are evaluated on the basis of experimental results on a motionless-head parallel-readout optical-disk system, logic simulations of the very-large-scale integrated chip, and a software emulation of the overall system.
Design, fabrication and testing of hierarchical micro-optical structures and systems
NASA Astrophysics Data System (ADS)
Cannistra, Aaron Thomas
Micro-optical systems are becoming essential components in imaging, sensing, communications, computing, and other applications. Optically based designs are replacing electronic, chemical and mechanical systems for a variety of reasons, including low power consumption, reduced maintenance, and faster operation. However, as the number and variety of applications increases, micro-optical system designs are becoming smaller, more integrated, and more complicated. Micro and nano-optical systems found in nature, such as the imaging systems found in many insects and crustaceans, can have highly integrated optical structures that vary in size by orders of magnitude. These systems incorporate components such as compound lenses, anti-reflective lens surface structuring, spectral filters, and polarization selective elements. For animals, these hybrid optical systems capable of many optical functions in a compact package have been repeatedly selected during the evolutionary process. Understanding the advantages of these designs gives motivation for synthetic optical systems with comparable functionality. However, alternative fabrication methods that deviate from conventional processes are needed to create such systems. Further complicating the issue, the resulting device geometry may not be readily compatible with existing measurement techniques. This dissertation explores several nontraditional fabrication techniques for optical components with hierarchical geometries and measurement techniques to evaluate performance of such components. A micro-transfer molding process is found to produce high-fidelity micro-optical structures and is used to fabricate a spectral filter on a curved surface. By using a custom measurement setup we demonstrate that the spectral filter retains functionality despite the nontraditional geometry. A compound lens is fabricated using similar fabrication techniques and the imaging performance is analyzed. A spray coating technique for photoresist application to curved surfaces combined with interference lithography is also investigated. Using this technique, we generate polarizers on curved surfaces and measure their performance. This work furthers an understanding of how combining multiple optical components affects the performance of each component, the final integrated devices, and leads towards realization of biomimetically inspired imaging systems.
MTF measurements on real time for performance analysis of electro-optical systems
NASA Astrophysics Data System (ADS)
Stuchi, Jose Augusto; Signoreto Barbarini, Elisa; Vieira, Flavio Pascoal; dos Santos, Daniel, Jr.; Stefani, Mário Antonio; Yasuoka, Fatima Maria Mitsue; Castro Neto, Jarbas C.; Linhari Rodrigues, Evandro Luis
2012-06-01
The need of methods and tools that assist in determining the performance of optical systems is actually increasing. One of the most used methods to perform analysis of optical systems is to measure the Modulation Transfer Function (MTF). The MTF represents a direct and quantitative verification of the image quality. This paper presents the implementation of the software, in order to calculate the MTF of electro-optical systems. The software was used for calculating the MTF of Digital Fundus Camera, Thermal Imager and Ophthalmologic Surgery Microscope. The MTF information aids the analysis of alignment and measurement of optical quality, and also defines the limit resolution of optical systems. The results obtained with the Fundus Camera and Thermal Imager was compared with the theoretical values. For the Microscope, the results were compared with MTF measured of Microscope Zeiss model, which is the quality standard of ophthalmological microscope.
Filter performance parameters for vectorial high-aperture wave fields.
Sheppard, Colin J R; Martinez-Corral, M
2008-03-01
Performance parameters have been presented that can be used to compare the focusing performance of different optical systems, including the effect of pupil filters. These were originally given for the paraxial case and recently extended to the high-aperture scalar regime. We generalize these parameters to the full vectorial case for an aplanatic optical system illuminated by a plane-polarized wave. The behavior of different optical systems is compared.
Kodak phase-change media for optical tape applications
NASA Technical Reports Server (NTRS)
Tyan, Yuan-Sheng; Preuss, Donald R.; Olin, George R.; Vazan, Fridrich; Pan, Kee-Chuan; Raychaudhuri, Pranab. K.
1993-01-01
The SbInSn phase-change write-once optical medium developed by Eastman Kodak Company is particularly suitable for development into the next generation optical tape media. Its performance for optical recording has already been demonstrated in some of the highest performance optical disk systems. Some of the key performance features are presented.
Understanding product cost vs. performance through an in-depth system Monte Carlo analysis
NASA Astrophysics Data System (ADS)
Sanson, Mark C.
2017-08-01
The manner in which an optical system is toleranced and compensated greatly affects the cost to build it. By having a detailed understanding of different tolerance and compensation methods, the end user can decide on the balance of cost and performance. A detailed phased approach Monte Carlo analysis can be used to demonstrate the tradeoffs between cost and performance. In complex high performance optical systems, performance is fine-tuned by making adjustments to the optical systems after they are initially built. This process enables the overall best system performance, without the need for fabricating components to stringent tolerance levels that often can be outside of a fabricator's manufacturing capabilities. A good performance simulation of as built performance can interrogate different steps of the fabrication and build process. Such a simulation may aid the evaluation of whether the measured parameters are within the acceptable range of system performance at that stage of the build process. Finding errors before an optical system progresses further into the build process saves both time and money. Having the appropriate tolerances and compensation strategy tied to a specific performance level will optimize the overall product cost.
CAD Integration : new optical design possibilities
NASA Astrophysics Data System (ADS)
Haumonte, Jean-Baptiste; Venturino, Jean-Claude
2005-09-01
The development of optical design and analysis tools in a CAD software can help to optimise the design, size and performance of tomorrow's consumer products. While optics was still held back by software limitations, CAD programs were moving forward in leaps and bounds, improving manufacturing technologies and making it possible to design and produce highly innovative and sophisticated products. The problem was that in the past, 'traditional' optical design programs were only able to simulate spherical and aspherical lenses, meaning that the optical designers were limited to designing systems which were a series of imperfect lenses, each one correcting the last. That is why OPTIS has created the first optical design program to be fully integrated into a CAD program. The technology is available from OPTIS in an integrated SOLIDWORKS or CATIA V5 version. Users of this software can reduce the number of lenses needed in a system. Designers will now have access to complex surfaces such as NURBS meaning they will now be able to define free shape progressive lenses and even improve on optical performances using fewer lenses. This revolutionary technology will allow mechanical designers to work on optical systems and to share information with optical designers for the first time. Previously not possible in a CAD program you may now determine all the optical performances of any optical system, providing first order and third order performances, sequential and non-sequential ray-tracing, wavefront surfaces, point spread function, MTF, spot-diagram, using real optical surfaces and guaranteeing the mechanical precision necessary for an optical system.
Performance comparison of optical interference cancellation system architectures.
Lu, Maddie; Chang, Matt; Deng, Yanhua; Prucnal, Paul R
2013-04-10
The performance of three optics-based interference cancellation systems are compared and contrasted with each other, and with traditional electronic techniques for interference cancellation. The comparison is based on a set of common performance metrics that we have developed for this purpose. It is shown that thorough evaluation of our optical approaches takes into account the traditional notions of depth of cancellation and dynamic range, along with notions of link loss and uniformity of cancellation. Our evaluation shows that our use of optical components affords performance that surpasses traditional electronic approaches, and that the optimal choice for an optical interference canceller requires taking into account the performance metrics discussed in this paper.
Phased Array Mirror Extendible Large Aperture (PAMELA) Optics Adjustment
NASA Technical Reports Server (NTRS)
1995-01-01
Scientists at Marshall's Adaptive Optics Lab demonstrate the Wave Front Sensor alignment using the Phased Array Mirror Extendible Large Aperture (PAMELA) optics adjustment. The primary objective of the PAMELA project is to develop methods for aligning and controlling adaptive optics segmented mirror systems. These systems can be used to acquire or project light energy. The Next Generation Space Telescope is an example of an energy acquisition system that will employ segmented mirrors. Light projection systems can also be used for power beaming and orbital debris removal. All segmented optical systems must be adjusted to provide maximum performance. PAMELA is an on going project that NASA is utilizing to investigate various methods for maximizing system performance.
Estimating optical imaging system performance for space applications
NASA Technical Reports Server (NTRS)
Sinclair, K. F.
1972-01-01
The critical system elements of an optical imaging system are identified and a method for an initial assessment of system performance is presented. A generalized imaging system is defined. A system analysis is considered, followed by a component analysis. An example of the method is given using a film imaging system.
The effects of scattering on the relative LPI performance of optical and mm-wave systems
NASA Astrophysics Data System (ADS)
Oetting, John; Hampton, Jerry
1988-01-01
Previous results comparing the LPI performance of optical and millimeter-wave satellite systems is extended to include the effects of scattering on optical LPI performance. The LPI figure of merit used to compare the two media is the circular equivalent vulnerability radius (CEVR). The CEVR is calculated for typical optical and spread spectrum millimeter-wave systems, and the LPI performance tradeoffs available with each medium are compared. Attention is given to the possibility that light will be scattered into the interceptor's FOV and thereby enable detection in geometries in which interception of the main beam is impossible. The effects of daytime vs. nighttime operation of the optical LPI system are also considered. Some illustrative results for the case of a ground-to-space uplink to a low earth orbit satellite are presented, along with some conclusions and unresolved issues for further study.
NASA Astrophysics Data System (ADS)
Rogers, P. J.; Fischer, R. E.
1983-01-01
Topics considered include: optical system requirements, analysis, and system engineering; optical system design using microcomputers and minicomputers; optical design theory and computer programs; optical design methods and computer programs; optical design methods and philosophy; unconventional optical design; diffractive and gradient index optical system design; optical production and system integration; and optical systems engineering. Particular attention is given to: stray light control as an integral part of optical design; current and future directions of lens design software; thin-film technology in the design and production of optical systems; aspherical lenses in optical scanning systems; the application of volume phase holograms to avionic displays; the effect of lens defects on thermal imager performance; and a wide angle zoom for the Space Shuttle.
Feed-forward adaptive-optic correction of a weakly-compressible high-subsonic shear layer
NASA Astrophysics Data System (ADS)
Duffin, Daniel A.
Development of airborne laser systems began in the 1970s with the Airborne Laser Laboratory, a KC135 aircraft with a CO2 laser projected from a beam director mounted atop the aircraft as a hemispherical turret encased in a fairing. It was known that the turbulent air flowing around the turret and separating over the aft portions of the turret would aberrate the laser beam's wavefront (the aero-optic problem); however, the CO2 wavelength, 10.6 mum, was long enough that the aberrating turbulent flow decreased the system's performance by only about 5%. With newer airborne laser systems using wavelengths nearer 1 mum, this same turbulent flow now reduces system performance by more than 95%. It has long been known that if a conjugate waveform is used to pre-distort the outgoing laser's wavefront, the turbulence will actually correct the beam, restoring most of the system's performance. The problem with performing this compensation is that the system for performing this function, the so-called adaptive-optic system, is bandwidth limited in its conventional architecture, by orders of magnitude lower than that required to correct for the aero-optic effects. The research described in this dissertation explored changing the adaptive-optic paradigm from feedback to feed-forward by adding flow control to make the aberration environment predictable rather than unpredictable. This research demonstrated that the turbulent high-speed separated shear layer could be robustly forced into a regularized form. It was also shown that these regularized velocity patterns in the shear layer produced periodic optical aberrations. Extensive measurement and analysis of these convecting aberrations yielded the underlying structure required to produce the conjugate wavefront correction patterns required for a range of laser propagation angles through the shear layer. Ultimately, a feed-forward adaptive-optic system was developed and used to demonstrate the highest-bandwidth correction of aero-optic aberrations ever performed; the effective bandwidth of the demonstrated adaptive-optic correction was at least two orders of magnitude greater than the capabilities of existing conventional adaptive-optic systems.
An active interference projector for the electro-optical test facility
NASA Astrophysics Data System (ADS)
Crowe, D. G.; Nowak, T. M.
1980-09-01
A projection system is described which can simulate emissions from flares, muzzle-flashes, shellbursts, and other emissive agents which may degrade the performance of electro-optical systems in the 0.5-15 micron spectral range. The simulation capability obtained will allow the apparent radiance and temporal characteristics of muzzleflashes and shellbursts to be mimicked at simulated ranges as close as 23 m within the Electro-Optical Test Facility. This demonstrates that tests of electro-optical system performance in the presence of interferers can be performed under laboratory conditions with higher repeatability and lower cost than field tests.
Analysis of advanced optical glass and systems
NASA Technical Reports Server (NTRS)
Johnson, R. Barry; Feng, Chen
1991-01-01
Optical lens systems performance utilizing optical materials comprising reluctant glass forming compositions was studied. Such special glasses are being explored by NASA/Marshall Space Flight Center (MSFC) researchers utilizing techniques such as containerless processing in space on the MSFC Acoustic Levitation Furnace and on the High Temperature Acoustic Levitation Furnace in the conceptual design phase for the United States Microgravity Laboratory (USML) series of shuttle flights. The application of high refractive index and low dispersive power glasses in optical lens design was investigated. The potential benefits and the impacts to the optical lens design performance were evaluated. The results of the studies revealed that the use of these extraordinary glasses can result in significant optical performance improvements. Recommendations of proposed optical properties for potential new glasses were also made. Applications of these new glasses are discussed, including the impact of high refractive index and low dispersive power, improvements of the system performance by using glasses which are located outside of traditional glass map, and considerations in establishing glass properties beyond conventional glass map limits.
Chidley, Matthew D; Carlson, Kristen D; Richards-Kortum, Rebecca R; Descour, Michael R
2006-04-10
The design, analysis, assembly methods, and optical-bench test results for a miniature injection-molded plastic objective lens used in a fiber-optic confocal reflectance microscope are presented. The five-lens plastic objective was tested as a stand-alone optical system before its integration into a confocal microscope for in vivo imaging of cells and tissue. Changing the spacing and rotation of the individual optical elements can compensate for fabrication inaccuracies and improve performance. The system performance of the miniature objective lens is measured by use of an industry-accepted slanted-edge modulation transfer function (MTF) metric. An estimated Strehl ratio of 0.61 and a MTF value of 0.66 at the fiber-optic bundle Nyquist frequency have been obtained. The optical bench testing system is configured to permit interactive optical alignment during testing to optimize performance. These results are part of an effort to demonstrate the manufacturability of low-cost, high-performance biomedical optics for high-resolution in vivo imaging. Disposable endoscopic microscope objectives could help in vivo confocal microscopy technology mature to permit wide-scale clinical screening and detection of early cancers and precancerous lesions.
Experiment and application of soft x-ray grazing incidence optical scattering phenomena
NASA Astrophysics Data System (ADS)
Chen, Shuyan; Li, Cheng; Zhang, Yang; Su, Liping; Geng, Tao; Li, Kun
2017-08-01
For short wavelength imaging systems,surface scattering effects is one of important factors degrading imaging performance. Study of non-intuitive surface scatter effects resulting from practical optical fabrication tolerances is a necessary work for optical performance evaluation of high resolution short wavelength imaging systems. In this paper, Soft X-ray optical scattering distribution is measured by a soft X-ray reflectometer installed by my lab, for different sample mirrors、wavelength and grazing angle. Then aim at space solar telescope, combining these scattered light distributions, and surface scattering numerical model of grazing incidence imaging system, PSF and encircled energy of optical system of space solar telescope are computed. We can conclude that surface scattering severely degrade imaging performance of grazing incidence systems through analysis and computation.
Nodal aberration theory applied to freeform surfaces
NASA Astrophysics Data System (ADS)
Fuerschbach, Kyle; Rolland, Jannick P.; Thompson, Kevin P.
2014-12-01
When new three-dimensional packages are developed for imaging optical systems, the rotational symmetry of the optical system is often broken, changing its imaging behavior and making the optical performance worse. A method to restore the performance is to use freeform optical surfaces that compensate directly the aberrations introduced from tilting and decentering the optical surfaces. In order to effectively optimize the shape of a freeform surface to restore optical functionality, it is helpful to understand the aberration effect the surface may induce. Using nodal aberration theory the aberration fields induced by a freeform surface in an optical system are explored. These theoretical predications are experimentally validated with the design and implementation of an aberration generating telescope.
Optical zoom system realized by lateral shift of Alvarez freeform lenses
NASA Astrophysics Data System (ADS)
Hou, Changlun; Xin, Qing; Zang, Yue
2018-04-01
We present and characterize an optical zoom system with lateral movement of an Alvarez freeform lens for imaging. Mathematical analysis for determining the required freeform surfaces is presented, and optical simulations are performed to confirm and refine the expected zooming behavior. A 3 × optical zoom system that was equivalent to a photographic objective lens with focal length ranging from 34.5 to 103.5 mm and field of view ranging from 60 deg to 22.4 deg is developed by using two pairs of Alvarez lenses and conventional aspheric lenses. The optical performances of the Alvarez zoom system are demonstrated experimentally.
NASA Technical Reports Server (NTRS)
Reed, Robert A.; Ladbury, Ray L.; Day, John H. (Technical Monitor)
2000-01-01
Radiation effects in photonic and microelectronic components can impact the performance of high-speed digital optical data link in a variety of ways. This segment of the short course focuses on radiation effects in digital optical data links operating in the MHz to GHz regime. (Some of the information is applicable to frequencies above and below this regime) The three basic component level effects that should be considered are Total Ionizing Dose (TID), Displacement Damage Dose (DDD) and Single Event Effects (SEE). In some cases the system performance degradation can be quantified from component level tests, while in others a more holistic characterization approach must be taken. In Section 2.0 of this segment of the Short Course we will give a brief overview of the space radiation environment follow by a summary of the basic space radiation effects important for microelectronics and photonics listed above. The last part of this section will give an example of a typical mission radiation environment requirements. Section 3.0 gives an overview of intra-satellite digital optical data link systems. It contains a discussion of the digital optical data link and it's components. Also, we discuss some of the important system performance metrics that are impacted by radiation effects degradation of optical and optoelectronic component performance. Section 4.0 discusses radiation effects in optical and optoelectronic components. While each component effect will be discussed, the focus of this section is on degradation of passive optical components and SEE in photodiodes (other mechanisms are covered in segment II of this short course entitled "Photonic Devices with Complex and Multiple Failure Modes"). Section 5.0 will focus on optical data link system response to the space radiation environment. System level SEE ground testing will be discussed. Then we give a discussion of system level assessment of data link performance when operating in the space radiation environment.
NASA Astrophysics Data System (ADS)
Liu, Maw-Yang; Hsu, Yi-Kai
2017-03-01
Three-arm dual-balanced detection scheme is studied in an optical code division multiple access system. As the MAI and beat noise are the main deleterious source of system performance, we utilize optical hard-limiters to alleviate such channel impairment. In addition, once the channel condition is improved effectively, the proposed two-dimensional error correction code can remarkably enhance the system performance. In our proposed scheme, the optimal thresholds of optical hard-limiters and decision circuitry are fixed, and they will not change with other system parameters. Our proposed scheme can accommodate a large number of users simultaneously and is suitable for burst traffic with asynchronous transmission. Therefore, it is highly recommended as the platform for broadband optical access network.
Optical systems engineering - A tutorial
NASA Technical Reports Server (NTRS)
Wyman, C. L.
1979-01-01
The paper examines the use of the systems engineering approach in the design of optical systems, noting that the use of such an approach which involves an integrated interdisciplinary approach to the development of systems is most appropriate for optics. It is shown that the high precision character of optics leads to complex and subtle effects on optical system performance, resulting from structural, thermal dynamical, control system, and manufacturing and assembly considerations. Attention is given to communication problems that often occur among users and optical engineers due to the unique factors of optical systems. It is concluded that it is essential that the optics community provide leadership to resolve communication problems and fully formalize the field of optical systems engineering.
NASA Astrophysics Data System (ADS)
Li, Hanshan
2016-04-01
To enhance the stability and reliability of multi-screens testing system, this paper studies multi-screens target optical information transmission link properties and performance in long-distance, sets up the discrete multi-tone modulation transmission model based on geometric model of laser multi-screens testing system and visible light information communication principle; analyzes the electro-optic and photoelectric conversion function of sender and receiver in target optical information communication system; researches target information transmission performance and transfer function of the generalized visible-light communication channel; found optical information communication transmission link light intensity space distribution model and distribution function; derives the SNR model of information transmission communication system. Through the calculation and experiment analysis, the results show that the transmission error rate increases with the increment of transmission rate in a certain channel modulation depth; when selecting the appropriate transmission rate, the bit error rate reach 0.01.
Design and realization of adaptive optical principle system without wavefront sensing
NASA Astrophysics Data System (ADS)
Wang, Xiaobin; Niu, Chaojun; Guo, Yaxing; Han, Xiang'e.
2018-02-01
In this paper, we focus on the performance improvement of the free space optical communication system and carry out the research on wavefront-sensorless adaptive optics. We use a phase only liquid crystal spatial light modulator (SLM) as the wavefront corrector. The optical intensity distribution of the distorted wavefront is detected by a CCD. We develop a wavefront controller based on ARM and a software based on the Linux operating system. The wavefront controller can control the CCD camera and the wavefront corrector. There being two SLMs in the experimental system, one simulates atmospheric turbulence and the other is used to compensate the wavefront distortion. The experimental results show that the performance quality metric (the total gray value of 25 pixels) increases from 3037 to 4863 after 200 iterations. Besides, it is demonstrated that our wavefront-sensorless adaptive optics system based on SPGD algorithm has a good performance in compensating wavefront distortion.
1995-06-08
Scientists at Marshall's Adaptive Optics Lab demonstrate the Wave Front Sensor alignment using the Phased Array Mirror Extendible Large Aperture (PAMELA) optics adjustment. The primary objective of the PAMELA project is to develop methods for aligning and controlling adaptive optics segmented mirror systems. These systems can be used to acquire or project light energy. The Next Generation Space Telescope is an example of an energy acquisition system that will employ segmented mirrors. Light projection systems can also be used for power beaming and orbital debris removal. All segmented optical systems must be adjusted to provide maximum performance. PAMELA is an on going project that NASA is utilizing to investigate various methods for maximizing system performance.
Optical ranked-order filtering using threshold decomposition
Allebach, Jan P.; Ochoa, Ellen; Sweeney, Donald W.
1990-01-01
A hybrid optical/electronic system performs median filtering and related ranked-order operations using threshold decomposition to encode the image. Threshold decomposition transforms the nonlinear neighborhood ranking operation into a linear space-invariant filtering step followed by a point-to-point threshold comparison step. Spatial multiplexing allows parallel processing of all the threshold components as well as recombination by a second linear, space-invariant filtering step. An incoherent optical correlation system performs the linear filtering, using a magneto-optic spatial light modulator as the input device and a computer-generated hologram in the filter plane. Thresholding is done electronically. By adjusting the value of the threshold, the same architecture is used to perform median, minimum, and maximum filtering of images. A totally optical system is also disclosed.
NASA Astrophysics Data System (ADS)
Paar, Steffen; Umathum, Reiner; Jiang, Xiaoming; Majer, Charles L.; Peter, Jörg
2015-09-01
A noncontact optical detector for in vivo imaging has been developed that is compatible with magnetic resonance imaging (MRI). The optical detector employs microlens arrays and might be classified as a plenoptic camera. As a resulting of its design, the detector possesses a slim thickness and is self-shielding against radio frequency (RF) pulses. For experimental investigation, a total of six optical detectors were arranged in a cylindrical fashion, with the imaged object positioned in the center of this assembly. A purposely designed RF volume resonator coil has been developed and is incorporated within the optical imaging system. The whole assembly was placed into the bore of a 1.5 T patient-sized MRI scanner. Simple-geometry phantom studies were performed to assess compatibility and performance characteristics regarding both optical and MR imaging systems. A bimodal ex vivo nude mouse measurement was conducted. From the MRI data, the subject surface was extracted. Optical images were projected on this surface by means of an inverse mapping algorithm. Simultaneous measurements did not reveal influences from the magnetic field and RF pulses onto optical detector performance (spatial resolution, sensitivity). No significant influence of the optical imaging system onto MRI performance was detectable.
Paar, Steffen; Umathum, Reiner; Jiang, Xiaoming; Majer, Charles L; Peter, Jörg
2015-09-01
A noncontact optical detector for in vivo imaging has been developed that is compatible with magnetic resonance imaging (MRI). The optical detector employs microlens arrays and might be classified as a plenoptic camera. As a resulting of its design, the detector possesses a slim thickness and is self-shielding against radio frequency (RF) pulses. For experimental investigation, a total of six optical detectors were arranged in a cylindrical fashion, with the imaged object positioned in the center of this assembly. A purposely designed RF volume resonator coil has been developed and is incorporated within the optical imaging system. The whole assembly was placed into the bore of a 1.5 T patient-sized MRI scanner. Simple-geometry phantom studies were performed to assess compatibility and performance characteristics regarding both optical and MR imaging systems. A bimodal ex vivo nude mouse measurement was conducted. From the MRI data, the subject surface was extracted. Optical images were projected on this surface by means of an inverse mapping algorithm. Simultaneous measurements did not reveal influences from the magnetic field and RF pulses onto optical detector performance (spatial resolution, sensitivity). No significant influence of the optical imaging system onto MRI performance was detectable.
Development of Optical System for ARGO-M
NASA Astrophysics Data System (ADS)
Nah, Jakyoung; Jang, Jung-Guen; Jang, Bi-Ho; Han, In-Woo; Han, Jeong-Yeol; Park, Kwijong; Lim, Hyung-Chul; Yu, Sung-Yeol; Park, Eunseo; Seo, Yoon-Kyung; Moon, Il-Kwon; Choi, Byung-Kyu; Na, Eunjoo; Nam, Uk-Won
2013-03-01
ARGO-M is a satellite laser ranging (SLR) system developed by the Korea Astronomy and Space Science Institute with the consideration of mobility and daytime and nighttime satellite observation. The ARGO-M optical system consists of 40 cm receiving telescope, 10 cm transmitting telescope, and detecting optics. For the development of ARGO-M optical system, the structural analysis was performed with regard to the optics and optomechanics design and the optical components. To ensure the optical performance, the quality was tested at the level of parts using the laser interferometer and ultra-high-precision measuring instruments. The assembly and alignment of ARGO-M optical system were conducted at an auto-collimation facility. As the transmission and reception are separated in the ARGO-M optical system, the pointing alignment between the transmitting telescope and receiving telescope is critical for precise target pointing. Thus, the alignment using the ground target and the radiant point observation of transmitting laser beam was carried out, and the lines of sight for the two telescopes were aligned within the required pointing precision. This paper describes the design, structural analysis, manufacture and assembly of parts, and entire process related with the alignment for the ARGO-M optical system.
Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie
2015-10-20
In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.
NASA Astrophysics Data System (ADS)
Hartmann, Alfred; Redfield, Steve
1989-04-01
This paper discusses design of large-scale (1000x 1000) optical crossbar switching networks for use in parallel processing supercom-puters. Alternative design sketches for an optical crossbar switching network are presented using free-space optical transmission with either a beam spreading/masking model or a beam steering model for internodal communications. The performances of alternative multiple access channel communications protocol-unslotted and slotted ALOHA and carrier sense multiple access (CSMA)-are compared with the performance of the classic arbitrated bus crossbar of conventional electronic parallel computing. These comparisons indicate an almost inverse relationship between ease of implementation and speed of operation. Practical issues of optical system design are addressed, and an optically addressed, composite spatial light modulator design is presented for fabrication to arbitrarily large scale. The wide range of switch architecture, communications protocol, optical systems design, device fabrication, and system performance problems presented by these design sketches poses a serious challenge to practical exploitation of highly parallel optical interconnects in advanced computer designs.
Space Telescope optics. [large aperture astronomical instrument
NASA Technical Reports Server (NTRS)
Jones, C. O.
1979-01-01
The paper reviews the optical technology that has been developed over the last decade for the Space Telescope. The optical design of the telescope, the optical performance control system, and the anticipated optical performance are all presented. Consideration is also given to the initial complement of focal plane instruments.
Design of freeform optics for an ophthalmological application
NASA Astrophysics Data System (ADS)
Sieber, Ingo; Yi, Allen; Li, Likai; Beckert, Erik; Steinkopf, Ralf; Gengenbach, Ulrich
2014-05-01
Optical freeform surfaces are gaining importance in different optical applications. A huge demand arises e.g. in the fields of automotive and medical engineering. Innovative systems often need high-quality and high-volume optics. Injectionmoulded polymer optics represents a cost-efficient solution. However, it has to be ensured that the tight requirements with respect to the system's performance are met by the replicated freeform optics. To reach this goal, it is not sufficient to only characterise the manufactured optics by peak-to-valley or rms data describing a deviation from the nominal surface. Instead, optical performance of the manufactured freeform optics has to be analysed and compared with the performance of the nominal surface. This can be done by integrating the measured surface data of the manufactured freeform optics into the optical simulation model. The feedback of the measured surface data into the model allows for a simulation of the optical performance of the optical subsystem containing the real freeform optics manufactured. Hence, conclusions can be drawn as to whether the specifications with respect to e.g. imaging quality are met by the real manufactured optics. This approach will be presented using an Alvarez-Humphrey optics as an example of a tuneable optics of an ophthalmological application. The focus of this article will be on design for manufacturing the freeform optics, the integration of the measured surface data into the optical simulation model, simulation of the optical performance, and analysis in comparison to the nominal surface.
Yang, Jinsheng; Wang, Yuanyuan; Rao, Xuejun; Wei, Ling; Li, Xiqi; He, Yi
2017-01-01
We describe the optical design of a confocal scanning laser ophthalmoscope with two deformable mirrors. Spherical mirrors are used for pupil relay. Defocus aberration of the human eye is corrected by a Badal focusing structure and astigmatism aberration is corrected by a deformable mirror. The main optical system achieves a diffraction-limited performance through the entire scanning field (6 mm pupil, 3 degrees on pupil plane). The performance of the optical system, with correction of defocus and astigmatism, is also evaluated.
Systems and methods for enhancing optical information
DeVore, Peter Thomas Setsuda; Chou, Jason T.
2018-01-02
An Optical Information Transfer Enhancer System includes a first system for producing an information bearing first optical wave that is impressed with a first information having a first information strength wherein the first optical wave has a first shape. A second system produces a second optical wave. An information strength enhancer module receives the first and said second optical waves and impresses the first optical wave upon the second optical wave via cross-phase modulation (XPM) to produce an information-strength-enhanced second optical wave having a second information strength that is greater than the first information strength of the first optical wave. Following a center-wavelength changer by an Optical Information Transfer Enhancer System improves its performance.
High frame-rate en face optical coherence tomography system using KTN optical beam deflector
NASA Astrophysics Data System (ADS)
Ohmi, Masato; Shinya, Yusuke; Imai, Tadayuki; Toyoda, Seiji; Kobayashi, Junya; Sakamoto, Tadashi
2017-02-01
We developed high frame-rate en face optical coherence tomography (OCT) system using KTa1-xNbxO3 (KTN) optical beam deflector. In the imaging system, the fast scanning was performed at 200 kHz by the KTN optical beam deflector, while the slow scanning was performed at 800 Hz by the galvanometer mirror. As a preliminary experiment, we succeeded in obtaining en face OCT images of human fingerprint with a frame rate of 800 fps. This is the highest frame-rate obtained using time-domain (TD) en face OCT imaging. The 3D-OCT image of sweat gland was also obtained by our imaging system.
NASA Astrophysics Data System (ADS)
Shi, Sheng-bing; Chen, Zhen-xing; Qin, Shao-gang; Song, Chun-yan; Jiang, Yun-hong
2014-09-01
With the development of science and technology, photoelectric equipment comprises visible system, infrared system, laser system and so on, integration, information and complication are higher than past. Parallelism and jumpiness of optical axis are important performance of photoelectric equipment,directly affect aim, ranging, orientation and so on. Jumpiness of optical axis directly affect hit precision of accurate point damage weapon, but we lack the facility which is used for testing this performance. In this paper, test system which is used fo testing parallelism and jumpiness of optical axis is devised, accurate aim isn't necessary and data processing are digital in the course of testing parallelism, it can finish directly testing parallelism of multi-axes, aim axis and laser emission axis, parallelism of laser emission axis and laser receiving axis and first acuualizes jumpiness of optical axis of optical sighting device, it's a universal test system.
Optical interconnection using polyimide waveguide for multichip module
NASA Astrophysics Data System (ADS)
Koyanagi, Mitsumasa
1996-01-01
We have developed a parallel processor system with 152 RISC processor chips specific for Monte-Carlo analysis. This system has the ring-bus architecture. The performance of several Gflops is expected in this system according to the computer simulation. However, it was revealed that the data transfer speed of the bus has to be increased more dramatically in order to further increase the performance. Then, we propose to introduce the optical interconnection into the parallel processor system to increase the data transfer speed of the buses. The double ringbus architecture is employed in this new parallel processor system with optical interconnection. The free-space optical interconnection arid the optical waveguide are used for the optical ring-bus. Thin polyimide film was used to form the optical waveguide. A relatively low propagation loss was achieved in the polyimide optical waveguide. In addition, it was confirmed that the propagation direction of signal light can be easily changed by using a micro-mirror.
Optical interconnection using polyimide waveguide for multichip module
NASA Astrophysics Data System (ADS)
Koyanagi, Mitsumasa
1996-01-01
We have developed a parallel processor system with 152 RISC processor chips specific for Monte-Carlo analysis. This system has the ring-bus architecture. The performance of several Gflops is expected in this system according to the computer simulation. However, it was revealed that the data transfer speed of the bus has to be increased more dramatically in order to further increase the performance. Then, we propose to introduce the optical interconnection into the parallel processor system to increase the data transfer speed of the buses. The double ring-bus architecture is employed in this new parallel processor system with optical interconnection. The free-space optical interconnection and the optical waveguide are used for the optical ring-bus. Thin polyimide film was used to form the optical waveguide. A relatively low propagation loss was achieved in the polyimide optical waveguide. In addition, it was confirmed that the propagation direction of signal light can be easily changed by using a micro-mirror.
System engineering of complex optical systems for mission assurance and affordability
NASA Astrophysics Data System (ADS)
Ahmad, Anees
2017-08-01
Affordability and reliability are equally important as the performance and development time for many optical systems for military, space and commercial applications. These characteristics are even more important for the systems meant for space and military applications where total lifecycle costs must be affordable. Most customers are looking for high performance optical systems that are not only affordable but are designed with "no doubt" mission assurance, reliability and maintainability in mind. Both US military and commercial customers are now demanding an optimum balance between performance, reliability and affordability. Therefore, it is important to employ a disciplined systems design approach for meeting the performance, cost and schedule targets while keeping affordability and reliability in mind. The US Missile Defense Agency (MDA) now requires all of their systems to be engineered, tested and produced according to the Mission Assurance Provisions (MAP). These provisions or requirements are meant to ensure complex and expensive military systems are designed, integrated, tested and produced with the reliability and total lifecycle costs in mind. This paper describes a system design approach based on the MAP document for developing sophisticated optical systems that are not only cost-effective but also deliver superior and reliable performance during their intended missions.
Optical analysis of electro-optical systems by MTF calculus
NASA Astrophysics Data System (ADS)
Barbarini, Elisa Signoreto; Dos Santos, Daniel, Jr.; Stefani, Mário Antonio; Yasuoka, Fátima Maria Mitsue; Castro Neto, Jarbas C.; Rodrigues, Evandro Luís Linhari
2011-08-01
One of the widely used methods for performance analysis of an optical system is the determination of the Modulation Transfer Function (MTF). The MTF represents a quantitative and direct measure of image quality, and, besides being an objective test, it can be used on concatenated optical system. This paper presents the application of software called SMTF (software modulation transfer function), built in C++ and Open CV platforms for MTF calculation on electro-optical system. Through this technique, it is possible to develop specific method to measure the real time performance of a digital fundus camera, an infrared sensor and an ophthalmological surgery microscope. Each optical instrument mentioned has a particular device to measure the MTF response, which is being developed. Then the MTF information assists the analysis of the optical system alignment, and also defines its resolution limit by the MTF graphic. The result obtained from the implemented software is compared with the theoretical MTF curve from the analyzed systems.
Optical systems fabricated by printing-based assembly
Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred J; Motala, Michael; Ahn, Jong-Hyun; Park, Sang-Il; Yu, Chang-Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung
2014-05-13
Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.
Optical systems fabricated by printing-based assembly
Rogers, John [Champaign, IL; Nuzzo, Ralph [Champaign, IL; Meitl, Matthew [Durham, NC; Menard, Etienne [Durham, NC; Baca, Alfred J [Urbana, IL; Motala, Michael [Champaign, IL; Ahn, Jong-Hyun [Suwon, KR; Park, Sang-II [Savoy, IL; Yu,; Chang-Jae, [Urbana, IL; Ko, Heung-Cho [Gwangju, KR; Stoykovich,; Mark, [Dover, NH; Yoon, Jongseung [Urbana, IL
2011-07-05
Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.
Optical systems fabricated by printing-based assembly
Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred; Motala, Michael; Ahn, Jong -Hyun; Park, Sang -Il; Yu, Chang -Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung
2015-08-25
Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.
Optical systems fabricated by printing-based assembly
Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred; Motala, Michael; Ahn, Jong-Hyun; Park, Sang-Il; Yu, Chang-Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung
2017-03-21
Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.
Optical ranked-order filtering using threshold decomposition
Allebach, J.P.; Ochoa, E.; Sweeney, D.W.
1987-10-09
A hybrid optical/electronic system performs median filtering and related ranked-order operations using threshold decomposition to encode the image. Threshold decomposition transforms the nonlinear neighborhood ranking operation into a linear space-invariant filtering step followed by a point-to-point threshold comparison step. Spatial multiplexing allows parallel processing of all the threshold components as well as recombination by a second linear, space-invariant filtering step. An incoherent optical correlation system performs the linear filtering, using a magneto-optic spatial light modulator as the input device and a computer-generated hologram in the filter plane. Thresholding is done electronically. By adjusting the value of the threshold, the same architecture is used to perform median, minimum, and maximum filtering of images. A totally optical system is also disclosed. 3 figs.
Two improved coherent optical feedback systems for optical information processing
NASA Technical Reports Server (NTRS)
Lee, S. H.; Bartholomew, B.; Cederquist, J.
1976-01-01
Coherent optical feedback systems are Fabry-Perot interferometers modified to perform optical information processing. Two new systems based on plane parallel and confocal Fabry-Perot interferometers are introduced. The plane parallel system can be used for contrast control, intensity level selection, and image thresholding. The confocal system can be used for image restoration and solving partial differential equations. These devices are simpler and less expensive than previous systems. Experimental results are presented to demonstrate their potential for optical information processing.
A pump driving liquid cooling circuit method for the aperture of an infrared cold optical system
NASA Astrophysics Data System (ADS)
Xie, RongJian
2017-06-01
To enhance the optical recognition and wavelength filtering of an infrared cold optical system, some lens need to be maintained within a certain temperature range, which requires specific thermal management of the aperture. A 250K liquid cooling circuit designed for this purpose is introduced, and the experimental results established and operated in a vacuum environmental simulation chamber is carried out and analyzed. A practical cooling power source of radiation cooling equipment is adopted and the sun exposure heat load is imitated by array of planar membrane heaters attached on the specific designed structure of the aperture. Controlling the aperture temperature and improving the optical system performance are proved effective. Numerical optimization of the cooling circuit and simulation of the aperture are performed , and the factors affect the optical system performance in the mean time are also investigated.
Holographic optical elements: Fabrication and testing
NASA Technical Reports Server (NTRS)
Zech, R. G.; Shareck, M.; Ralston, L. M.
1974-01-01
The basic properties and use of holographic optical elements were investigated to design and construct wide-angle, Fourier-transform holographic optical systems for use in a Bragg-effect optical memory. The performance characteristics are described along with the construction of the holographic system.
NASA Astrophysics Data System (ADS)
Newswander, T.; Riesland, David W.; Miles, Duane; Reinhart, Lennon
2017-09-01
For space optical systems that image extended scenes such as earth-viewing systems, modulation transfer function (MTF) test data is directly applicable to system optical resolution. For many missions, it is the most direct metric for establishing the best focus of the instrument. Additionally, MTF test products can be combined to predict overall imaging performance. For fixed focus instruments, finding the best focus during ground testing is critical to achieving good imaging performance. The ground testing should account for the full-imaging system, operational parameters, and operational environment. Testing the full-imaging system removes uncertainty caused by breaking configurations and the combination of multiple subassembly test results. For earth viewing, the imaging system needs to be tested at infinite conjugate. Operational environment test conditions should include temperature and vacuum. Optical MTF testing in the presence of operational vibration and gravity release is less straightforward and may not be possible on the ground. Gravity effects are mitigated by testing in multiple orientations. Many space telescope systems are designed and built to have optimum performance in a gravity-free environment. These systems can have imaging performance that is dominated by aberration including astigmatism. This paper discusses how the slanted edge MTF test is applied to determine the best focus of a space optical telescope in ground testing accounting for gravity sag effects. Actual optical system test results and conclusions are presented.
NASA Technical Reports Server (NTRS)
Scola, Salvatore; Stavely, Rebecca; Jackson, Trevor; Boyer, Charlie; Osmundsen, Jim; Turczynski, Craig; Stimson, Chad
2016-01-01
Performance-related effects of system level temperature changes can be a key consideration in the design of many types of optical instruments. This is especially true for space-based imagers, which may require complex thermal control systems to maintain alignment of the optical components. Structural-Thermal-Optical-Performance (STOP) analysis is a multi-disciplinary process that can be used to assess the performance of these optical systems when subjected to the expected design environment. This type of analysis can be very time consuming, which makes it difficult to use as a trade study tool early in the project life cycle. In many cases, only one or two iterations can be performed over the course of a project. This limits the design space to best practices since it may be too difficult, or take too long, to test new concepts analytically. In order to overcome this challenge, automation, and a standard procedure for performing these studies is essential. A methodology was developed within the framework of the Comet software tool that captures the basic inputs, outputs, and processes used in most STOP analyses. This resulted in a generic, reusable analysis template that can be used for design trades for a variety of optical systems. The template captures much of the upfront setup such as meshing, boundary conditions, data transfer, naming conventions, and post-processing, and therefore saves time for each subsequent project. A description of the methodology and the analysis template is presented, and results are described for a simple telescope optical system.
NASA Astrophysics Data System (ADS)
Scola, Salvatore; Stavely, Rebecca; Jackson, Trevor; Boyer, Charlie; Osmundsen, Jim; Turczynski, Craig; Stimson, Chad
2016-09-01
Performance-related effects of system level temperature changes can be a key consideration in the design of many types of optical instruments. This is especially true for space-based imagers, which may require complex thermal control systems to maintain alignment of the optical components. Structural-Thermal-Optical-Performance (STOP) analysis is a multi-disciplinary process that can be used to assess the performance of these optical systems when subjected to the expected design environment. This type of analysis can be very time consuming, which makes it difficult to use as a trade study tool early in the project life cycle. In many cases, only one or two iterations can be performed over the course of a project. This limits the design space to best practices since it may be too difficult, or take too long, to test new concepts analytically. In order to overcome this challenge, automation, and a standard procedure for performing these studies is essential. A methodology was developed within the framework of the Comet software tool that captures the basic inputs, outputs, and processes used in most STOP analyses. This resulted in a generic, reusable analysis template that can be used for design trades for a variety of optical systems. The template captures much of the upfront setup such as meshing, boundary conditions, data transfer, naming conventions, and post-processing, and therefore saves time for each subsequent project. A description of the methodology and the analysis template is presented, and results are described for a simple telescope optical system.
Electro-optics laboratory evaluation: Deutsch optical waveguide connectors
NASA Technical Reports Server (NTRS)
1980-01-01
A description of a test program evaluating the performance of an optical waveguide connector system is presented. Both quality and effectiveness of connections made in an optical fiber, performance of the equipment used and applicability of equipment and components to field conditions are reviewed.
NASA Technical Reports Server (NTRS)
Divsalar, D.; Naderi, F.
1982-01-01
The nature of the optical/microwave interface aboard the relay satellite is considered. To allow for the maximum system flexibility, without overburdening either the optical or RF channel, demodulating the optical on board the relay satellite but leaving the optical channel decoding to be performed at the ground station is examined. The occurrence of erasures in the optical channel is treated. A hard decision on the erasure (i.e., the relay selecting a symbol at random in case of erasure occurrence) seriously degrades the performance of the overall system. Coding the erasure occurrences at the relay and transmitting this information via an extra bit to the ground station where it can be used by the decoder is suggested. Many examples with varying bit/photon energy efficiency and for the noisy and noiseless optical channel are considered. It is shown that coding the erasure occurrences dramatically improves the performance of the cascaded channel relative to the case of hard decision on the erasure by the relay.
Development of a precision, wide-dynamic-range actuator for use in active optical systems
NASA Technical Reports Server (NTRS)
Lorell, K. R.; Aubrun, J-N.; Zacharie, D. F.; Perez, E. O.
1989-01-01
The design, operation, and performance of a wide-dynamic-range optical-quality actuator are discussed. The actuator uses a closed-loop control system to maintain accurate positioning and has an rms noise performance of 20 nm. A unique force offloading mechanism allows the actuator coil to dissipate less than 3 mW under quiescent conditions. The operation of an experimental segmented optical system that uses 18 of the actuators is examined to show how they are integrated into an actual system.
Outer planets mission television subsystem optics study
NASA Technical Reports Server (NTRS)
1972-01-01
An optics study was performed to establish a candidate optical system design for the proposed NASA Mariner Jupiter/Saturn 77 mission. The study was performed over the 6-month period from January through June 1972. The candidate optical system contains both a wide angle (A) and a narrow angle (B) lens. An additional feature is a transfer mirror mechanism that allows image transfer from the B lens to the vidicon initially used for the A lens. This feature adds an operational redundancy to the optical system in allowing for narrow angle viewing if the narrow angle vidicon were to fail. In this failure mode, photography in the wide angle mode would be discontinued. The structure of the candidate system consists mainly of aluminum with substructures of Invar for athermalization. The total optical system weighs (excluding vidicons) approximately 30 pounds and has overall dimensions of 26.6 by 19.5 by 12.3 inches.
Ultralight Weight Optical Systems Using Nano-Layered Synthesized Materials
NASA Technical Reports Server (NTRS)
Clark, Natalie; Breckinridge, James
2014-01-01
Optical imaging is important for many NASA science missions. Even though complex optical systems have advanced, the optics, based on conventional glass and mirrors, require components that are thick, heavy and expensive. As the need for higher performance expands, glass and mirrors are fast approaching the point where they will be too large, heavy and costly for spacecraft, especially small satellite systems. NASA Langley Research Center is developing a wide range of novel nano-layered synthesized materials that enable the development and fabrication of ultralight weight optical device systems that enable many NASA missions to collect science data imagery using small satellites. In addition to significantly reducing weight, the nano-layered synthesized materials offer advantages in performance, size, and cost.
NASA Technical Reports Server (NTRS)
Dean, Bruce H. (Inventor)
2009-01-01
A method of recovering unknown aberrations in an optical system includes collecting intensity data produced by the optical system, generating an initial estimate of a phase of the optical system, iteratively performing a phase retrieval on the intensity data to generate a phase estimate using an initial diversity function corresponding to the intensity data, generating a phase map from the phase retrieval phase estimate, decomposing the phase map to generate a decomposition vector, generating an updated diversity function by combining the initial diversity function with the decomposition vector, generating an updated estimate of the phase of the optical system by removing the initial diversity function from the phase map. The method may further include repeating the process beginning with iteratively performing a phase retrieval on the intensity data using the updated estimate of the phase of the optical system in place of the initial estimate of the phase of the optical system, and using the updated diversity function in place of the initial diversity function, until a predetermined convergence is achieved.
Electro-Optic Computing Architectures: Volume II. Components and System Design and Analysis
1998-02-01
The objective of the Electro - Optic Computing Architecture (EOCA) program was to develop multi-function electro - optic interfaces and optical...interconnect units to enhance the performance of parallel processor systems and form the building blocks for future electro - optic computing architectures...Specifically, three multi-function interface modules were targeted for development - an Electro - Optic Interface (EOI), an Optical Interconnection Unit
Laser-Induced Damage Threshold and Certification Procedures for Optical Materials
NASA Technical Reports Server (NTRS)
1997-01-01
This document provides instructions for performing laser-induced-damage-threshold tests and pass-fail certification tests on optical materials used in pulsed-laser systems. The optical materials to which these procedures apply include coated and uncoated optical substrates, laser crystals, Q-switches, polarizers, and other optical components employed in pulsed-laser systems.
Calibration and Deployment of a Fiber-Optic Sensing System for Monitoring Debris Flows
Huang, Ching-Jer; Chu, Chung-Ray; Tien, Tsung-Mo; Yin, Hsiao-Yuen; Chen, Ping-Sen
2012-01-01
This work presents a novel fiber-optic sensing system, capable of monitoring debris flows or other natural hazards that produce ground vibrations. The proposed sensing system comprises a demodulator (BraggSCOPE, FS5500), which includes a broadband light source and a data logger, a four-port coupler and four Fiber Bragg Grating (FBG) accelerometers. Based on field tests, the performance of the proposed fiber-optic sensing system is compared with that of a conventional sensing system that includes a geophone or a microphone. Following confirmation of the reliability of the proposed sensing system, the fiber-optic sensing systems are deployed along the Ai-Yu-Zi and Chu-Shui Creeks in Nautou County of central Taiwan for monitoring debris flows. Sensitivity test of the deployed fiber-optic sensing system along the creek banks is also performed. Analysis results of the seismic data recorded by the systems reveal in detail the frequency characteristics of the artificially generated ground vibrations. Results of this study demonstrate that the proposed fiber-optic sensing system is highly promising for use in monitoring natural disasters that generate ground vibrations. PMID:22778616
NASA Technical Reports Server (NTRS)
Begley, David L. (Editor); Seery, Bernard D. (Editor)
1990-01-01
Various papers on free-space laser communication technologies are presented. Individual topics addressed include: optical intersatellite link experiment between the earth station and ETS-VI, the Goddard optical communications program, technologies and techniques for lasercom terminal size, weight, and cost reduction, laser beam acquisition and tracking system for ETS-VI laser communication equipment, analog dividers for acquisition and tracking signal normalization, fine pointing mechanism using multilayered piezoelectric actuator for optical ISL system, analysis of SILEX tracking sensor performance, new telescope concept for space communication, telescope considered as a very high gain antenna, design of compact transceiver optical systems for optical intersatellite links, ultralightweight optics for laser communications, highly sensitive measurement method for stray light and retroreflected light, depolarization effects on free space laser transceiver communication systems, in-orbit measurements of microaccelerations of ESA's communication satellite Olympus, high-performance laser diode transmitter for optical free space communication, diode-pumped Nd:host laser transmitter for intersatellite optical communications, single-frequency diode-pumped laser for free-space communication.
Solar adaptive optics: specificities, lessons learned, and open alternatives
NASA Astrophysics Data System (ADS)
Montilla, I.; Marino, J.; Asensio Ramos, A.; Collados, M.; Montoya, L.; Tallon, M.
2016-07-01
First on sky adaptive optics experiments were performed on the Dunn Solar Telescope on 1979, with a shearing interferometer and limited success. Those early solar adaptive optics efforts forced to custom-develop many components, such as Deformable Mirrors and WaveFront Sensors, which were not available at that time. Later on, the development of the correlation Shack-Hartmann marked a breakthrough in solar adaptive optics. Since then, successful Single Conjugate Adaptive Optics instruments have been developed for many solar telescopes, i.e. the National Solar Observatory, the Vacuum Tower Telescope and the Swedish Solar Telescope. Success with the Multi Conjugate Adaptive Optics systems for GREGOR and the New Solar Telescope has proved to be more difficult to attain. Such systems have a complexity not only related to the number of degrees of freedom, but also related to the specificities of the Sun, used as reference, and the sensing method. The wavefront sensing is performed using correlations on images with a field of view of 10", averaging wavefront information from different sky directions, affecting the sensing and sampling of high altitude turbulence. Also due to the low elevation at which solar observations are performed we have to include generalized fitting error and anisoplanatism, as described by Ragazzoni and Rigaut, as non-negligible error sources in the Multi Conjugate Adaptive Optics error budget. For the development of the next generation Multi Conjugate Adaptive Optics systems for the Daniel K. Inouye Solar Telescope and the European Solar Telescope we still need to study and understand these issues, to predict realistically the quality of the achievable reconstruction. To improve their designs other open issues have to be assessed, i.e. possible alternative sensing methods to avoid the intrinsic anisoplanatism of the wide field correlation Shack-Hartmann, new parameters to estimate the performance of an adaptive optics solar system, alternatives to the Strehl and the Point Spread Function used in night time adaptive optics but not really suitable to the solar systems, and new control strategies more complex than the ones used in nowadays solar Multi Conjugate Adaptive Optics systems. In this paper we summarize the lessons learned with past and current solar adaptive optics systems and focus on the discussion on the new alternatives to solve present open issues limiting their performance.
Evaluation of FSO System Availability in Haze Condition
NASA Astrophysics Data System (ADS)
Anis, A. A.; Rashidi, C. B. M.; Aljunid, S. A.; Rahman, A. K.
2018-03-01
In this paper, we proposed the evaluation of FSO system availability in haze condition. The atmospheric attenuation by weather conditions in the atmosphere as the most challenging problem of FSO system as the system performance is severely degraded and causing the signal optic to be transmitted poorly. The effects of haze condition on the performance of FSO system is stressed out and focused in this paper. From the evaluation of the analysis, designs of FSO system are proposed to obtain a system with improved link performance in haze conditions. The scattering coefficient and the atmospheric attenuation are determined using Beer’s Lambert equation. From the research, the link performance of the system is greatly improved using Design 2 with minimum BER of 10-127127 and maximu m Q Factor of 23.98. The FSO system using Design 2 has better performance compared to Design 1 in haze condition as the optical signals could penetrate the dense haze better without losing much optical power during the transmission to the scattering.
An optical processor for object recognition and tracking
NASA Technical Reports Server (NTRS)
Sloan, J.; Udomkesmalee, S.
1987-01-01
The design and development of a miniaturized optical processor that performs real time image correlation are described. The optical correlator utilizes the Vander Lugt matched spatial filter technique. The correlation output, a focused beam of light, is imaged onto a CMOS photodetector array. In addition to performing target recognition, the device also tracks the target. The hardware, composed of optical and electro-optical components, occupies only 590 cu cm of volume. A complete correlator system would also include an input imaging lens. This optical processing system is compact, rugged, requires only 3.5 watts of operating power, and weighs less than 3 kg. It represents a major achievement in miniaturizing optical processors. When considered as a special-purpose processing unit, it is an attractive alternative to conventional digital image recognition processing. It is conceivable that the combined technology of both optical and ditital processing could result in a very advanced robot vision system.
Optical Interconnections for VLSI Computational Systems Using Computer-Generated Holography.
NASA Astrophysics Data System (ADS)
Feldman, Michael Robert
Optical interconnects for VLSI computational systems using computer generated holograms are evaluated in theory and experiment. It is shown that by replacing particular electronic connections with free-space optical communication paths, connection of devices on a single chip or wafer and between chips or modules can be improved. Optical and electrical interconnects are compared in terms of power dissipation, communication bandwidth, and connection density. Conditions are determined for which optical interconnects are advantageous. Based on this analysis, it is shown that by applying computer generated holographic optical interconnects to wafer scale fine grain parallel processing systems, dramatic increases in system performance can be expected. Some new interconnection networks, designed to take full advantage of optical interconnect technology, have been developed. Experimental Computer Generated Holograms (CGH's) have been designed, fabricated and subsequently tested in prototype optical interconnected computational systems. Several new CGH encoding methods have been developed to provide efficient high performance CGH's. One CGH was used to decrease the access time of a 1 kilobit CMOS RAM chip. Another was produced to implement the inter-processor communication paths in a shared memory SIMD parallel processor array.
Near real-time measurement of forces applied by an optical trap to a rigid cylindrical object
NASA Astrophysics Data System (ADS)
Glaser, Joseph; Hoeprich, David; Resnick, Andrew
2014-07-01
An automated data acquisition and processing system is established to measure the force applied by an optical trap to an object of unknown composition in real time. Optical traps have been in use for the past 40 years to manipulate microscopic particles, but the magnitude of applied force is often unknown and requires extensive instrument characterization. Measuring or calculating the force applied by an optical trap to nonspherical particles presents additional difficulties which are also overcome with our system. Extensive experiments and measurements using well-characterized objects were performed to verify the system performance.
Performance Sensitivity Studies on the PIAA Implementation of the High-Contrast Imaging Testbed
NASA Technical Reports Server (NTRS)
Sidick, Erkin; Lou, John Z.; Shaklan, Stuart; Levine, Marie
2009-01-01
We have investigated the dependence of the High Contrast Imaging Testbed (HCIT) Phase Induced Amplitude Apodization (PIAA) coronagraph system performance on the rigid-body perturbations of various optics. The structural design of the optical system as well as the parameters of various optical elements used in the analysis are drawn from those of the PIAA/HCIT system that have been and will be implemented, and the simulation takes into account the surface errors of various optics. In this paper, we report our findings when the input light is a narrowband beam.
Design and Performance of the Terrestrial Planet Finder Coronagraph
NASA Technical Reports Server (NTRS)
White, Mary L.; Shaklan, Stuart; Lisman, P. Doulas; Ho, Timothy; Mouroulis, Pantazis; Basinger, Scott; Ledeboer, Bill; Kwack, Eug; Kissil, Andy; Mosier, Gary;
2004-01-01
Terrestrial Planet Finder Coronagraph, one of two potential architectures, is described. The telescope is designed to make a visible wavelength survey of the habitable zones of at least thirty stars in search of earth-like planets. The preliminary system requirements, optical parameters, mechanical and thermal design, operations scenario and predicted performance is presented. The 6-meter aperture telescope has a monolithic primary mirror, which along with the secondary tower, are being designed to meet the stringent optical tolerances of the planet-finding mission. Performance predictions include dynamic and thermal finite element analysis of the telescope optics and structure, which are used to make predictions of the optical performance of the system.
Chen, Mo; Liu, Chao; Rui, Daoman; Xian, Hao
2018-02-19
Although there is an urgent demand, it is still a tremendous challenge to use the coherent optical communication technology to the satellite-to-ground data transmission system especially at large zenith angle due to the influence of atmospheric turbulence. Adaptive optics (AO) is a considerable scheme to solve the problem. In this paper, we integrate the adaptive optics (AO) to the coherent laser communications and the performances of mixing efficiency as well as bit-error-rate (BER) at different zenith angles are studied. The analytical results show that the increasing of zenith angle can severely decrease the performances of the coherent detection, and increase the BER to higher than 10 -3 , which is unacceptable. The simulative results of coherent detection with AO compensation indicate that the larger mixing efficiency and lower BER can be performed by the coherent receiver with a high-mode AO compensation. The experiment of correcting the atmospheric turbulence wavefront distortion using a 249-element AO system at large zenith angles is carried out. The result demonstrates that the AO system has a significant improvement on satellite-to-ground coherent optical communication system at large zenith angle. It also indicates that the 249-element AO system can only meet the needs of coherent communication systems at zenith angle smaller than 65̊ for the 1.8m telescope under weak and moderate turbulence.
CATO: a CAD tool for intelligent design of optical networks and interconnects
NASA Astrophysics Data System (ADS)
Chlamtac, Imrich; Ciesielski, Maciej; Fumagalli, Andrea F.; Ruszczyk, Chester; Wedzinga, Gosse
1997-10-01
Increasing communication speed requirements have created a great interest in very high speed optical and all-optical networks and interconnects. The design of these optical systems is a highly complex task, requiring the simultaneous optimization of various parts of the system, ranging from optical components' characteristics to access protocol techniques. Currently there are no computer aided design (CAD) tools on the market to support the interrelated design of all parts of optical communication systems, thus the designer has to rely on costly and time consuming testbed evaluations. The objective of the CATO (CAD tool for optical networks and interconnects) project is to develop a prototype of an intelligent CAD tool for the specification, design, simulation and optimization of optical communication networks. CATO allows the user to build an abstract, possible incomplete, model of the system, and determine its expected performance. Based on design constraints provided by the user, CATO will automatically complete an optimum design, using mathematical programming techniques, intelligent search methods and artificial intelligence (AI). Initial design and testing of a CATO prototype (CATO-1) has been completed recently. The objective was to prove the feasibility of combining AI techniques, simulation techniques, an optical device library and a graphical user interface into a flexible CAD tool for obtaining optimal communication network designs in terms of system cost and performance. CATO-1 is an experimental tool for designing packet-switching wavelength division multiplexing all-optical communication systems using a LAN/MAN ring topology as the underlying network. The two specific AI algorithms incorporated are simulated annealing and a genetic algorithm. CATO-1 finds the optimal number of transceivers for each network node, using an objective function that includes the cost of the devices and the overall system performance.
NASA Astrophysics Data System (ADS)
Zelazny, Amy; Benson, Robert; Deegan, John; Walsh, Ken; Schmidt, W. David; Howe, Russell
2013-06-01
We describe the benefits to camera system SWaP-C associated with the use of aspheric molded glasses and optical polymers in the design and manufacture of optical components and elements. Both camera objectives and display eyepieces, typical for night vision man-portable EO/IR systems, are explored. We discuss optical trade-offs, system performance, and cost reductions associated with this approach in both visible and non-visible wavebands, specifically NIR and LWIR. Example optical models are presented, studied, and traded using this approach.
Real-time validation of receiver state information in optical space-time block code systems.
Alamia, John; Kurzweg, Timothy
2014-06-15
Free space optical interconnect (FSOI) systems are a promising solution to interconnect bottlenecks in high-speed systems. To overcome some sources of diminished FSOI performance caused by close proximity of multiple optical channels, multiple-input multiple-output (MIMO) systems implementing encoding schemes such as space-time block coding (STBC) have been developed. These schemes utilize information pertaining to the optical channel to reconstruct transmitted data. The STBC system is dependent on accurate channel state information (CSI) for optimal system performance. As a result of dynamic changes in optical channels, a system in operation will need to have updated CSI. Therefore, validation of the CSI during operation is a necessary tool to ensure FSOI systems operate efficiently. In this Letter, we demonstrate a method of validating CSI, in real time, through the use of moving averages of the maximum likelihood decoder data, and its capacity to predict the bit error rate (BER) of the system.
A Review on Spectral Amplitude Coding Optical Code Division Multiple Access
NASA Astrophysics Data System (ADS)
Kaur, Navpreet; Goyal, Rakesh; Rani, Monika
2017-06-01
This manuscript deals with analysis of Spectral Amplitude Coding Optical Code Division Multiple Access (SACOCDMA) system. The major noise source in optical CDMA is co-channel interference from other users known as multiple access interference (MAI). The system performance in terms of bit error rate (BER) degrades as a result of increased MAI. It is perceived that number of users and type of codes used for optical system directly decide the performance of system. MAI can be restricted by efficient designing of optical codes and implementing them with unique architecture to accommodate more number of users. Hence, it is a necessity to design a technique like spectral direct detection (SDD) technique with modified double weight code, which can provide better cardinality and good correlation property.
NASA Astrophysics Data System (ADS)
Huang, Wei-Ren; Huang, Shih-Pu; Tsai, Tsung-Yueh; Lin, Yi-Jyun; Yu, Zong-Ru; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Young, Hong-Tsu
2017-09-01
Spherical lenses lead to forming spherical aberration and reduced optical performance. Consequently, in practice optical system shall apply a combination of spherical lenses for aberration correction. Thus, the volume of the optical system increased. In modern optical systems, aspherical lenses have been widely used because of their high optical performance with less optical components. However, aspherical surfaces cannot be fabricated by traditional full aperture polishing process due to their varying curvature. Sub-aperture computer numerical control (CNC) polishing is adopted for aspherical surface fabrication in recent years. By using CNC polishing process, mid-spatial frequency (MSF) error is normally accompanied during this process. And the MSF surface texture of optics decreases the optical performance for high precision optical system, especially for short-wavelength applications. Based on a bonnet polishing CNC machine, this study focuses on the relationship between MSF surface texture and CNC polishing parameters, which include feed rate, head speed, track spacing and path direction. The power spectral density (PSD) analysis is used to judge the MSF level caused by those polishing parameters. The test results show that controlling the removal depth of single polishing path, through the feed rate, and without same direction polishing path for higher total removal depth can efficiently reduce the MSF error. To verify the optical polishing parameters, we divided a correction polishing process to several polishing runs with different direction polishing paths. Compare to one shot polishing run, multi-direction path polishing plan could produce better surface quality on the optics.
Design of low SWaP optical terminals for free space optical communications
NASA Astrophysics Data System (ADS)
Shubert, P.; Cline, A.; McNally, J.; Pierson, R.
2017-02-01
Along with advantages in higher data rates, spectrum contention, and security, free space optical communications can provide size, weight, and power (SWaP) advantages over radio frequency (RF) systems. SWaP is always an issue in space systems and can be critical in applying free space optical communications to small satellite platforms. The system design of small space-based free space optical terminals with Gbps data rates is addressed. System architectures and requirements are defined to ensure the terminals are capable of acquisition, establishment and maintenance of a free space optical communications link. Design trades, identification of blocking technologies, and performance analyses are used to evaluate the practical limitations to terminal SWaP. Small terminal design concepts are developed to establish their practicality and feasibility. Techniques, such as modulation formats and capacity approaching encoding, are considered to mitigate the disadvantages brought by SWaP limitations, and performance as a function of SWaP is evaluated.
NASA Astrophysics Data System (ADS)
Chambion, Bertrand; Gaschet, Christophe; Behaghel, Thibault; Vandeneynde, Aurélie; Caplet, Stéphane; Gétin, Stéphane; Henry, David; Hugot, Emmanuel; Jahn, Wilfried; Lombardo, Simona; Ferrari, Marc
2018-02-01
Over the recent years, a huge interest has grown for curved electronics, particularly for opto-electronics systems. Curved sensors help the correction of off-axis aberrations, such as Petzval Field Curvature, astigmatism, and bring significant optical and size benefits for imaging systems. In this paper, we first describe advantages of curved sensor and associated packaging process applied on a 1/1.8'' format 1.3Mpx global shutter CMOS sensor (Teledyne EV76C560) into its standard ceramic package with a spherical radius of curvature Rc=65mm and 55mm. The mechanical limits of the die are discussed (Finite Element Modelling and experimental), and electro-optical performances are investigated. Then, based on the monocentric optical architecture, we proposed a new design, compact and with a high resolution, developed specifically for a curved image sensor including optical optimization, tolerances, assembly and optical tests. Finally, a functional prototype is presented through a benchmark approach and compared to an existing standard optical system with same performances and a x2.5 reduction of length. The finality of this work was a functional prototype demonstration on the CEA-LETI during Photonics West 2018 conference. All these experiments and optical results demonstrate the feasibility and high performances of systems with curved sensors.
Advanced optical blade tip clearance measurement system
NASA Technical Reports Server (NTRS)
Ford, M. J.; Honeycutt, R. E.; Nordlund, R. E.; Robinson, W. W.
1978-01-01
An advanced electro-optical system was developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in an operating gas turbine engine. This system is applicable to fan, compressor, and turbine blade tip clearance measurement requirements, and the system probe is particularly suitable for operation in the extreme turbine environment. A study of optical properties of blade tips was conducted to establish measurement system application limitations. A series of laboratory tests was conducted to determine the measurement system's operational performance characteristics and to demonstrate system capability under simulated operating gas turbine environmental conditions. Operational and environmental performance test data are presented.
Xu, Tianhua; Karanov, Boris; Shevchenko, Nikita A; Lavery, Domaniç; Liga, Gabriele; Killey, Robert I; Bayvel, Polina
2017-10-11
Nyquist-spaced transmission and digital signal processing have proved effective in maximising the spectral efficiency and reach of optical communication systems. In these systems, Kerr nonlinearity determines the performance limits, and leads to spectral broadening of the signals propagating in the fibre. Although digital nonlinearity compensation was validated to be promising for mitigating Kerr nonlinearities, the impact of spectral broadening on nonlinearity compensation has never been quantified. In this paper, the performance of multi-channel digital back-propagation (MC-DBP) for compensating fibre nonlinearities in Nyquist-spaced optical communication systems is investigated, when the effect of signal spectral broadening is considered. It is found that accounting for the spectral broadening effect is crucial for achieving the best performance of DBP in both single-channel and multi-channel communication systems, independent of modulation formats used. For multi-channel systems, the degradation of DBP performance due to neglecting the spectral broadening effect in the compensation is more significant for outer channels. Our work also quantified the minimum bandwidths of optical receivers and signal processing devices to ensure the optimal compensation of deterministic nonlinear distortions.
Nonlinear filter based decision feedback equalizer for optical communication systems.
Han, Xiaoqi; Cheng, Chi-Hao
2014-04-07
Nonlinear impairments in optical communication system have become a major concern of optical engineers. In this paper, we demonstrate that utilizing a nonlinear filter based Decision Feedback Equalizer (DFE) with error detection capability can deliver a better performance compared with the conventional linear filter based DFE. The proposed algorithms are tested in simulation using a coherent 100 Gb/sec 16-QAM optical communication system in a legacy optical network setting.
NASA Astrophysics Data System (ADS)
Ohmi, Masato; Fukuda, Akihiro; Miyazu, Jun; Ueno, Masahiro; Toyoda, Seiji; Kobayashi, Junya
2015-02-01
We developed a novel high-speed en face optical coherence tomography (OCT) system using a KTa1-xNbxO3 (KTN) optical beam deflector. Using the imaging system, fast scanning was performed at 200 kHz by the KTN beam deflector, while slow scanning was performed at 400 Hz by the galvanometer mirror. In a preliminary experiment, we obtained en face OCT images of a human fingerprint at 400 fps. This is the highest speed reported in time-domain en face OCT imaging and is comparable to the speed of swept-source OCT. A 3D-OCT image of a sweat gland was also obtained by our imaging system.
Noncoherent Combination Of Optical-Heterodyne Outputs
NASA Technical Reports Server (NTRS)
Chen, Chien-Chung; Lesh, James R.
1990-01-01
In proposed scheme for reception of amplitude- or frequency-modulated signals transmitted optically through atmosphere, main receiver aperture divided into subapertures equipped with receivers, and outputs of receivers combined noncoherently. Multiple subaperture receivers used instead of attempting to focus all light from single large aperture onto one receiver. Outputs of receivers combined after demodulation. System will not perform as well as fully coherent system, but surpasses single-large-aperture system in presence of atmospheric turbulence. Offers superior performance in presence of distorted wavefront and/or imperfect receiver optics.
Analyses of space environment effects on active fiber optic links orbited aboard the LDEF
NASA Technical Reports Server (NTRS)
Taylor, Edward W.; Monarski, T. W.; Berry, J. N.; Sanchez, A. D.; Padden, R. J.; Chapman, S. P.
1993-01-01
The results of the 'Preliminary Analysis of WL Experiment no. 701, Space Environment Effects on Operating Fiber Optic Systems,' is correlated with space simulated post retrieval terrestrial studies performed on the M0004 experiment. Temperature cycling measurements were performed on the active optical data links for the purpose of assessing link signal to noise ratio and bit error rate performance some 69 months following the experiment deployment in low Earth orbit. The early results indicate a high correlation between pre-orbit, orbit, and post-orbit functionality of the first known and longest space demonstration of operating fiber optic systems.
A laminar optical tomography system for the early cervical cancer diagnosis
NASA Astrophysics Data System (ADS)
Cui, Shanshan; Jia, Mengyu; Chen, Xueying; Meng, Wei; Gao, Feng; Zhao, Huijuan
2014-03-01
Laminar optical tomography (LOT) is a new mesoscopic functional optical imaging technique, which is an extension of a confocal microscope and diffuse optical tomography to acquire both the coaxial and off-axis scattered light at the same time. In this paper, a LOT system with a larger detection area aiming at the in vivo detection of early cervical cancer is developed. The field of view of our system is 10 mm x 10 mm. In order to improve the image quality of the system, two methods were performed: the correction of image distortion and the restriction of returning light. The performance of the system with aperture stop was assessed by liquid phantom experiments. Comparing with the Monte Carlo simulation, the measurement results show that the average relative errors of eight different source-detector distances corresponding to 4 source points are lower than the errors of the system taking the frame of objective lens as the aperture stop by 5.7%, 4.8%, 6.1%, 6.1% respectively. Moreover, the experiment based on the phantom with specified structure and optical parameters to simulate the cervix demonstrates that the system perform well for the cervix measurement.
Robust optical sensors for safety critical automotive applications
NASA Astrophysics Data System (ADS)
De Locht, Cliff; De Knibber, Sven; Maddalena, Sam
2008-02-01
Optical sensors for the automotive industry need to be robust, high performing and low cost. This paper focuses on the impact of automotive requirements on optical sensor design and packaging. Main strategies to lower optical sensor entry barriers in the automotive market include: Perform sensor calibration and tuning by the sensor manufacturer, sensor test modes on chip to guarantee functional integrity at operation, and package technology is key. As a conclusion, optical sensor applications are growing in automotive. Optical sensor robustness matured to the level of safety critical applications like Electrical Power Assisted Steering (EPAS) and Drive-by-Wire by optical linear arrays based systems and Automated Cruise Control (ACC), Lane Change Assist and Driver Classification/Smart Airbag Deployment by camera imagers based systems.
The central pixel of the MAGIC telescope for optical observations
NASA Astrophysics Data System (ADS)
Lucarelli, F.; Barrio, J. A.; Antoranz, P.; Asensio, M.; Camara, M.; Contreras, J. L.; Fonseca, M. V.; Lopez, M.; Miranda, J. M.; Oya, I.; Reyes, R. De Los; Firpo, R.; Sidro, N.; Goebel, F.; Lorenz, E.; Otte, N.
2008-05-01
The MAGIC telescope has been designed for the observation of Cherenkov light generated in Extensive Air Showers initiated by cosmic particles. However, its 17 m diameter mirror and optical design makes the telescope suitable for direct optical observations as well. In this paper, we report about the development of a system based on the use of a dedicated photo-multiplier (PMT) for optical observations. This PMT is installed in the centre of the MAGIC camera (the so-called central pixel). An electro-to-optical system has been developed in order to transmit the PMT output signal by an optical fibre to the counting room, where it is digitized and stored for off-line analysis. The performance of the system using the optical pulsation of the Crab nebula as calibration source is presented. The time required for a 5σ detection of the Crab pulsar in the optical band is less than 20 s. The central pixel will be mainly used to perform simultaneous observations of the Crab pulsar both in the optical and γ-ray regimes. It will also allow for periodic testing of the precision of the MAGIC timing system using the Crab rotational optical pulses as a very precise timing reference.
Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope.
Burns, Stephen A; Tumbar, Remy; Elsner, Ann E; Ferguson, Daniel; Hammer, Daniel X
2007-05-01
We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide-field line scan scanning laser ophthalmoscope (SLO), and a high-resolution microelectromechanical-systems-based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point-spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the psf. The retinal image was stabilized to within 18 microm 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images.
Compensation for effects of ambient temperature on rare-earth doped fiber optic thermometer
NASA Technical Reports Server (NTRS)
Adamovsky, G.; Sotomayor, J. L.; Krasowski, M. J.; Eustace, J. G.
1989-01-01
Variations in ambient temperature have a negative effect on the performance of any fiber optic sensing system. A change in ambient temperature may alter the design parameters of fiber optic cables, connectors, sources, detectors, and other fiber optic components and eventually the performance of the entire system. The thermal stability of components is especially important in a system which employs intensity modulated sensors. Several referencing schemes have been developed to account for the variable losses that occur within the system. However, none of these conventional compensating techniques can be used to stabilize the thermal drift of the light source in a system based on the spectral properties of the sensor material. The compensation for changes in ambient temperature becomes especially important in fiber optic thermometers doped with rare earths. Different approaches to solving this problem are searched and analyzed.
Compensation for effects of ambient temperature on rare-earth doped fiber optic thermometer
NASA Technical Reports Server (NTRS)
Adamovsky, G.; Sotomayor, J. L.; Krasowski, M. J.; Eustace, J. G.
1990-01-01
Variations in ambient temperature have a negative effect on the performance of any fiber optic sensing system. A change in ambient temperature may alter the design parameters of fiber optic cables, connectors, sources, detectors, and other fiber optic components and eventually the performance of the entire system. The thermal stability of components is especially important in a system which employs intensity modulated sensors. Several referencing schemes have been developed to account for the variable losses that occur within the system. However, none of these conventional compensating techniques can be used to stabilize the thermal drift of the light source in a system based on the spectral properties of the sensor material. The compensation for changes in ambient temperature becomes especially important in fiber optic thermometers doped with rare earths. Different approaches to solving this problem are searched and analyzed.
Optoelectronic associative recall using motionless-head parallel readout optical disk
NASA Astrophysics Data System (ADS)
Marchand, P. J.; Krishnamoorthy, A. V.; Ambs, P.; Esener, S. C.
1990-12-01
High data rates, low retrieval times, and simple implementation are presently shown to be obtainable by means of a motionless-head 2D parallel-readout system for optical disks. Since the optical disk obviates mechanical head motions for access, focusing, and tracking, addressing is performed exclusively through the disk's rotation. Attention is given to a high-performance associative memory system configuration which employs a parallel readout disk.
Infrared sensor and window system issues
NASA Astrophysics Data System (ADS)
Hargraves, Charles H., Jr.; Martin, James M.
1992-12-01
EO/IR windows are a significant challenge for the weapon system sensor designer who must design for high EO performance, low radar cross section (RCS), supersonic flight, durability, producibility and affordable initial and life cycle costs. This is particularly true in the 8 to 12 micron IR band at which window materials and coating choices are limited by system design requirements. The requirements also drive the optimization of numerous mechanical, optical, materials, and electrical parameters. This paper addresses the EO/IR window as a system design challenge. The interrelationship of the optical, mechanical, and system design processes are examined. This paper presents a summary of the test results, trade studies and analyses that were performed for multi-segment, flight-worthy optical windows with superior optical performance at subsonic and supersonic aircraft velocities and reduced radar cross section. The impact of the window assembly on EO system modulation transfer function (MTF) and sensitivity will be discussed. The use of conductive coatings for shielding/signature control will be discussed.
Optical-communication systems for deep-space applications
NASA Technical Reports Server (NTRS)
Vilnrotter, V. A.; Gagliardi, R. M.
1980-01-01
The feasibility of using optical communication systems for data telemetry from deep space vehicles to Earth based receivers is evaluated. Performance analysis shows that practical, photon counting optical systems can transmit data reliably at 30 to 40 dB high rates than existing RF systems, or can be used to extend the communication range by 15 to 20 dB. The advantages of pulse-position modulation (PPM) formats are discussed, and photon counting receiver structures designed for PPM decoding are described. The effects of background interference and weather on receiver performance are evaluated. Some consideration is given to tracking and beam pointing operations, since system performance ultimately depends on the accuracy to which these operations can be carried out. An example of a tracking and pointing system utilizing an optical uplink beacon is presented, and it is shown that microradian beam pointing is within the capabilities of state-of-the-art technology. Recommendations for future theoretical studies and component development programs are presented.
NASA Astrophysics Data System (ADS)
Scaduto, L. C. N.; Carvalho, E. G.; Modugno, R. G.; Cartolano, R.; Evangelista, S. H.; Segoria, D.; Santos, A. G.; Stefani, M. A.; Castro Neto, J. C.
2017-11-01
The purpose of this paper is to present the optical system developed for the Wide Field imaging Camera - WFI that will be integrated to the CBERS 3 and 4 satellites (China Brazil Earth resources Satellite). This camera will be used for remote sensing of the Earth and it is aimed to work at an altitude of 778 km. The optical system is designed for four spectral bands covering the range of wavelengths from blue to near infrared and its field of view is +/-28.63°, which covers 866 km, with a ground resolution of 64 m at nadir. WFI has been developed through a consortium formed by Opto Electrônica S. A. and Equatorial Sistemas. In particular, we will present the optical analysis based on the Modulation Transfer Function (MTF) obtained during the Engineering Model phase (EM) and the optical tests performed to evaluate the requirements. Measurements of the optical system MTF have been performed using an interferometer at the wavelength of 632.8nm and global MTF tests (including the CCD and signal processing electronic) have been performed by using a collimator with a slit target. The obtained results showed that the performance of the optical system meets the requirements of project.
Ventana{trade mark, serif} power train features and performance
NASA Astrophysics Data System (ADS)
Mohedano, R.; Benitez, P.; Zamora, P.; Miñano, J. C.; Mendes, J.; Cvetkovic, A.; Vilaplana, J.; Hernandez, M.; Chaves, J.; Biot, G.
2013-09-01
Most CPV systems are based on Fresnel lenses. Among these, LPI-patented Fresnel-Köhler (FK) concentrator outstands owing to performance and practical reasons. The Ventana{trade mark, serif} power train is the first off-the-shelf commercial product based on the FK and comprises both the primary (POE) lenses (a 36-units 1×1 m2 acrylic panel) and glass (or silica glass) secondary optics (SOE). This high concentration optical train (Cg=1,024×, ˜250mm optical depth) fits with 5×5 mm2 (at least) solar cells. The optical train is the fruit of a 1-year development that has included design, modeling, prototyping and characterization, and through the process we had the opportunity to find out how well the actual performance correlates with models, but also learned practical aspects of a CPV system of this kind, some of which have very positive impact on system performance and reliability.
Takahashi, Yurika
2016-12-01
The performance of recently developed polydimethylsiloxane (PDMS)-based optical system was tested for measuring optical density of microbial culture. The data showed that PDMS-based spectrometer is superior to "one drop" spectrometers in the accuracy, and has an advantage over conventional spectrometers in measuring dense culture without dilution.
A Fiber-Optic Coupled Telescope for Water Vapor DIAL Receivers
NASA Technical Reports Server (NTRS)
DeYoung, Russell J.; Lonn, Frederick
1998-01-01
A fiber-optic coupled telescope of low complexity was constructed and tested. The major loss mechanisms of the optical system have been characterized. Light collected by the receiver mirror is focused onto an optical fiber, and the output of the fiber is filtered by an interference filter and then focused onto an APD detector. This system was used in lidar field measurements with a 532-nm Nd:YAG laser beam. The results were encouraging. A numerical model used for calculation of the expected return signal agreed with the lidar return signal obtained. The assembled system was easy to align and operate and weighed about 8 kg for a 30 cm (12") mirror system. This weight is low enough to allow mounting of the fiber-optic telescope receiver system in a UAV. Furthermore, the good agreement between the numerical lidar model and the performance of the actual receiver system, suggests that this model may be used for estimation of the performance of this and other lidar systems in the future. Such telescopes are relatively easy to construct and align. The fiber optic cable allows easy placement of the optical detector in any position. These telescope systems should find widespread use in aircraft and space home DIAL water vapor receiver systems.
NASA Astrophysics Data System (ADS)
Heine, Frank; Saucke, Karen; Troendle, Daniel; Motzigemba, Matthias; Bischl, Hermann; Elser, Dominique; Marquardt, Christoph; Henninger, Hennes; Meyer, Rolf; Richter, Ines; Sodnik, Zoran
2017-02-01
Optical ground stations can be an alternative to radio frequency based transmit (forward) and receive (return) systems for data relay services and other applications including direct to earth optical communications from low earth orbit spacecrafts, deep space receivers, space based quantum key distribution systems and Tbps capacity feeder links to geostationary spacecrafts. The Tesat Transportable Adaptive Optical Ground Station is operational since September 2015 at the European Space Agency site in Tenerife, Spain.. This paper reports about the results of the 2016 experimental campaigns including the characterization of the optical channel from Tenerife for an optimized coding scheme, the performance of the T-AOGS under different atmospheric conditions and the first successful measurements of the suitability of the Alphasat LCT optical downlink performance for future continuous variable quantum key distribution systems.
Computer programs simplify optical system analysis
NASA Technical Reports Server (NTRS)
1965-01-01
The optical ray-trace computer program performs geometrical ray tracing. The energy-trace program calculates the relative monochromatic flux density on a specific target area. This program uses the ray-trace program as a subroutine to generate a representation of the optical system.
Electro-optical rendezvous and docking sensors
NASA Technical Reports Server (NTRS)
Tubbs, David J.; Kesler, Lynn O.; Sirko, Robert J.
1991-01-01
Electro-optical sensors provide unique and critical functionality for space missions requiring rendezvous, docking, and berthing. McDonnell Douglas is developing a complete rendezvous and docking system for both manned and unmanned missions. This paper examines our sensor development and the systems and missions which benefit from rendezvous and docking sensors. Simulation results quantifying system performance improvements in key areas are given, with associated sensor performance requirements. A brief review of NASA-funded development activities and the current performance of electro-optical sensors for space applications is given. We will also describe current activities at McDonnell Douglas for a fully functional demonstration to address specific NASA mission needs.
Testing methodologies and systems for semiconductor optical amplifiers
NASA Astrophysics Data System (ADS)
Wieckowski, Michael
Semiconductor optical amplifiers (SOA's) are gaining increased prominence in both optical communication systems and high-speed optical processing systems, due primarily to their unique nonlinear characteristics. This in turn, has raised questions regarding their lifetime performance reliability and has generated a demand for effective testing techniques. This is especially critical for industries utilizing SOA's as components for system-in-package products. It is important to note that very little research to date has been conducted in this area, even though production volume and market demand has continued to increase. In this thesis, the reliability of dilute-mode InP semiconductor optical amplifiers is studied experimentally and theoretically. The aging characteristics of the production level devices are demonstrated and the necessary techniques to accurately characterize them are presented. In addition, this work proposes a new methodology for characterizing the optical performance of these devices using measurements in the electrical domain. It is shown that optical performance degradation, specifically with respect to gain, can be directly qualified through measurements of electrical subthreshold differential resistance. This metric exhibits a linear proportionality to the defect concentration in the active region, and as such, can be used for prescreening devices before employing traditional optical testing methods. A complete theoretical analysis is developed in this work to explain this relationship based upon the device's current-voltage curve and its associated leakage and recombination currents. These results are then extended to realize new techniques for testing semiconductor optical amplifiers and other similarly structured devices. These techniques can be employed after fabrication and during packaged operation through the use of a proposed stand-alone testing system, or using a proposed integrated CMOS self-testing circuit. Both methods are capable of ascertaining SOA performance based solely on the subthreshold differential resistance signature, and are a first step toward the inevitable integration of self-testing circuits into complex optoelectronic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yidong, E-mail: yidongyang@med.miami.edu; Wang, Ken Kang-Hsin; Wong, John W.
2015-04-15
Purpose: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is tomore » develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. Methods: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. Results: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting in a 3.0% difference between simulated and measured signal. The calibration of the entire system was confirmed through the CBCT and BLT reconstruction of a bioluminescence source placed inside a tissue-simulating optical phantom. Using a spatial region constraint, the source position was reconstructed with less than 1 mm error and the source strength reconstructed with less than 24% error. Conclusions: A practical and systematic method has been developed to calibrate an integrated x-ray and optical tomography imaging system, including the respective CBCT and optical tomography system calibration and the geometrical calibration of the entire system. The method can be modified and adopted to calibrate CBCT and optical tomography systems that are operated independently or hybrid x-ray and optical tomography imaging systems.« less
Yang, Yidong; Wang, Ken Kang-Hsin; Eslami, Sohrab; Iordachita, Iulian I.; Patterson, Michael S.; Wong, John W.
2015-01-01
Purpose: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is to develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. Methods: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. Results: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting in a 3.0% difference between simulated and measured signal. The calibration of the entire system was confirmed through the CBCT and BLT reconstruction of a bioluminescence source placed inside a tissue-simulating optical phantom. Using a spatial region constraint, the source position was reconstructed with less than 1 mm error and the source strength reconstructed with less than 24% error. Conclusions: A practical and systematic method has been developed to calibrate an integrated x-ray and optical tomography imaging system, including the respective CBCT and optical tomography system calibration and the geometrical calibration of the entire system. The method can be modified and adopted to calibrate CBCT and optical tomography systems that are operated independently or hybrid x-ray and optical tomography imaging systems. PMID:25832060
Automated site characterization for robotic sample acquisition systems
NASA Astrophysics Data System (ADS)
Scholl, Marija S.; Eberlein, Susan J.
1993-04-01
A mobile, semiautonomous vehicle with multiple sensors and on-board intelligence is proposed for performing preliminary scientific investigations on extraterrestrial bodies prior to human exploration. Two technologies, a hybrid optical-digital computer system based on optical correlator technology and an image and instrument data analysis system, provide complementary capabilities that might be part of an instrument package for an intelligent robotic vehicle. The hybrid digital-optical vision system could perform real-time image classification tasks using an optical correlator with programmable matched filters under control of a digital microcomputer. The data analysis system would analyze visible and multiband imagery to extract mineral composition and textural information for geologic characterization. Together these technologies would support the site characterization needs of a robotic vehicle for both navigational and scientific purposes.
Adaptive Optics Communications Performance Analysis
NASA Technical Reports Server (NTRS)
Srinivasan, M.; Vilnrotter, V.; Troy, M.; Wilson, K.
2004-01-01
The performance improvement obtained through the use of adaptive optics for deep-space communications in the presence of atmospheric turbulence is analyzed. Using simulated focal-plane signal-intensity distributions, uncoded pulse-position modulation (PPM) bit-error probabilities are calculated assuming the use of an adaptive focal-plane detector array as well as an adaptively sized single detector. It is demonstrated that current practical adaptive optics systems can yield performance gains over an uncompensated system ranging from approximately 1 dB to 6 dB depending upon the PPM order and background radiation level.
Development and Integration of Control System Models
NASA Technical Reports Server (NTRS)
Kim, Young K.
1998-01-01
The computer simulation tool, TREETOPS, has been upgraded and used at NASA/MSFC to model various complicated mechanical systems and to perform their dynamics and control analysis with pointing control systems. A TREETOPS model of Advanced X-ray Astrophysics Facility - Imaging (AXAF-1) dynamics and control system was developed to evaluate the AXAF-I pointing performance for Normal Pointing Mode. An optical model of Shooting Star Experiment (SSE) was also developed and its optical performance analysis was done using the MACOS software.
Beam-guidance optics for high-power fiber laser systems
NASA Astrophysics Data System (ADS)
Mohring, Bernd; Tassini, Leonardo; Protz, Rudolf; Zoz, Jürgen
2013-05-01
The realization of a high-energy laser weapon system by coupling a large number of industrial high-power fiber lasers is investigated. To perform the combination of the individual beams of the different fiber lasers within the optical path of the laser weapon, a special optical set-up is used. Each optical component is realized either as reflective component oras refractive optics. Both possibilities were investigated by simulations and experiments. From the results, the general aspects for the layout of the beam-guidance optics for a high-power fiber laser system are derived.
The PILOT optical alignment for its first flight
NASA Astrophysics Data System (ADS)
Mot, B.; Longval, Y.; Bernard, J.-Ph.; Ade, P.; André, Y.; Aumont, J.; Bautista, L.; Bray, N.; deBernardis, P.; Boulade, O.; Bousquet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Chaigneau, M.; Coudournac, C.; Crane, B.; Douchin, F.; Doumayrou, E.; Dubois, J.-P.; Engel, C.; Etcheto, P.; Gélot, P.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P.; Hughes, A.; Laureijs, R.; Lepennec, Y.; Leriche, B.; Maestre, S.; Maffei, B.; Mangilli, A.; Martignac, J.; Marty, C.; Marty, W.; Masi, S.; Mirc, F.; Misawa, R.; Montel, J.; Montier, L.; Narbonne, J.; Nicot, J.-M.; Pajot, F.; Parot, G.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Saccoccio, M.; Salatino, M.; Savini, G.; Stever, S.; Simonella, O.; Tapie, P.; Tauber, J.; Tibbs, C.; Torre, J.-P.; Tucker, C.
2017-12-01
PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 and 550 µm with an angular resolution of about two arc-min. PILOT optics is composed of an off-axis Gregorian telescope and a refractive re-imager system. All these optical elements, except the primary mirror, are in a cryostat cooled to 3K. We used optical and 3D measurements combined with thermo-elastic modeling to perform the optical alignment. This paper describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Junhwan; Hwang, Sungui; Park, Kyihwan, E-mail: khpark@gist.ac.kr
To utilize a time-of-flight-based laser scanner as a distance measurement sensor, the measurable distance and accuracy are the most important performance parameters to consider. For these purposes, the optical system and electronic signal processing of the laser scanner should be optimally designed in order to reduce a distance error caused by the optical crosstalk and wide dynamic range input. Optical system design for removing optical crosstalk problem is proposed in this work. Intensity control is also considered to solve the problem of a phase-shift variation in the signal processing circuit caused by object reflectivity. The experimental results for optical systemmore » and signal processing design are performed using 3D measurements.« less
Thermal and optical performance of encapsulation systems for flat-plate photovoltaic modules
NASA Technical Reports Server (NTRS)
Minning, C. P.; Coakley, J. F.; Perrygo, C. M.; Garcia, A., III; Cuddihy, E. F.
1981-01-01
The electrical power output from a photovoltaic module is strongly influenced by the thermal and optical characteristics of the module encapsulation system. Described are the methodology and computer model for performing fast and accurate thermal and optical evaluations of different encapsulation systems. The computer model is used to evaluate cell temperature, solar energy transmittance through the encapsulation system, and electric power output for operation in a terrestrial environment. Extensive results are presented for both superstrate-module and substrate-module design schemes which include different types of silicon cell materials, pottants, and antireflection coatings.
Model-based engineering for laser weapons systems
NASA Astrophysics Data System (ADS)
Panthaki, Malcolm; Coy, Steve
2011-10-01
The Comet Performance Engineering Workspace is an environment that enables integrated, multidisciplinary modeling and design/simulation process automation. One of the many multi-disciplinary applications of the Comet Workspace is for the integrated Structural, Thermal, Optical Performance (STOP) analysis of complex, multi-disciplinary space systems containing Electro-Optical (EO) sensors such as those which are designed and developed by and for NASA and the Department of Defense. The CometTM software is currently able to integrate performance simulation data and processes from a wide range of 3-D CAD and analysis software programs including CODE VTM from Optical Research Associates and SigFitTM from Sigmadyne Inc. which are used to simulate the optics performance of EO sensor systems in space-borne applications. Over the past year, Comet Solutions has been working with MZA Associates of Albuquerque, NM, under a contract with the Air Force Research Laboratories. This funded effort is a "risk reduction effort", to help determine whether the combination of Comet and WaveTrainTM, a wave optics systems engineering analysis environment developed and maintained by MZA Associates and used by the Air Force Research Laboratory, will result in an effective Model-Based Engineering (MBE) environment for the analysis and design of laser weapons systems. This paper will review the results of this effort and future steps.
Optical design of an in vivo laparoscopic lighting system
NASA Astrophysics Data System (ADS)
Liu, Xiaolong; Abdolmalaki, Reza Yazdanpanah; Mancini, Gregory J.; Tan, Jindong
2017-12-01
This paper proposes an in vivo laparoscopic lighting system design to address the illumination issues, namely poor lighting uniformity and low optical efficiency, existing in the state-of-the-art in vivo laparoscopic cameras. The transformable design of the laparoscopic lighting system is capable of carrying purposefully designed freeform optical lenses for achieving lighting performance with high illuminance uniformity and high optical efficiency in a desired target region. To design freeform optical lenses for extended light sources such as LEDs with Lambertian light intensity distributions, we present an effective and complete freeform optical design method. The procedures include (1) ray map computation by numerically solving a standard Monge-Ampere equation; (2) initial freeform optical surface construction by using Snell's law and a lens volume restriction; (3) correction of surface normal vectors due to accumulated errors from the initially constructed surfaces; and (4) feedback modification of the solution to deal with degraded illuminance uniformity caused by the extended sizes of the LEDs. We employed an optical design software package to evaluate the performance of our laparoscopic lighting system design. The simulation results show that our design achieves greater than 95% illuminance uniformity and greater than 89% optical efficiency (considering Fresnel losses) for illuminating the target surgical region.
Wu, Chensheng; Ko, Jonathan; Rzasa, John R; Paulson, Daniel A; Davis, Christopher C
2018-03-20
We find that ideas in optical image encryption can be very useful for adaptive optics in achieving simultaneous phase and amplitude shaping of a laser beam. An adaptive optics system with simultaneous phase and amplitude shaping ability is very desirable for atmospheric turbulence compensation. Atmospheric turbulence-induced beam distortions can jeopardize the effectiveness of optical power delivery for directed-energy systems and optical information delivery for free-space optical communication systems. In this paper, a prototype adaptive optics system is proposed based on a famous image encryption structure. The major change is to replace the two random phase plates at the input plane and Fourier plane of the encryption system, respectively, with two deformable mirrors that perform on-demand phase modulations. A Gaussian beam is used as an input to replace the conventional image input. We show through theory, simulation, and experiments that the slightly modified image encryption system can be used to achieve arbitrary phase and amplitude beam shaping within the limits of stroke range and influence function of the deformable mirrors. In application, the proposed technique can be used to perform mode conversion between optical beams, generate structured light signals for imaging and scanning, and compensate atmospheric turbulence-induced phase and amplitude beam distortions.
Kimmel, Daniel L.; Mammo, Dagem; Newsome, William T.
2012-01-01
From human perception to primate neurophysiology, monitoring eye position is critical to the study of vision, attention, oculomotor control, and behavior. Two principal techniques for the precise measurement of eye position—the long-standing sclera-embedded search coil and more recent optical tracking techniques—are in use in various laboratories, but no published study compares the performance of the two methods simultaneously in the same primates. Here we compare two popular systems—a sclera-embedded search coil from C-N-C Engineering and the EyeLink 1000 optical system from SR Research—by recording simultaneously from the same eye in the macaque monkey while the animal performed a simple oculomotor task. We found broad agreement between the two systems, particularly in positional accuracy during fixation, measurement of saccade amplitude, detection of fixational saccades, and sensitivity to subtle changes in eye position from trial to trial. Nonetheless, certain discrepancies persist, particularly elevated saccade peak velocities, post-saccadic ringing, influence of luminance change on reported position, and greater sample-to-sample variation in the optical system. Our study shows that optical performance now rivals that of the search coil, rendering optical systems appropriate for many if not most applications. This finding is consequential, especially for animal subjects, because the optical systems do not require invasive surgery for implantation and repair of search coils around the eye. Our data also allow laboratories using the optical system in human subjects to assess the strengths and limitations of the technique for their own applications. PMID:22912608
Design of an optical PPM communication link in the presence of component tolerances
NASA Technical Reports Server (NTRS)
Chen, C.-C.
1988-01-01
A systematic approach is described for estimating the performance of an optical direct detection pulse position modulation (PPM) communication link in the presence of parameter tolerances. This approach was incorporated into the JPL optical link analysis program to provide a useful tool for optical link design. Given a set of system parameters and their tolerance specifications, the program will calculate the nominal performance margin and its standard deviation. Through use of these values, the optical link can be designed to perform adequately even under adverse operating conditions.
Algorithm for Cosmic Noise Suppression in Free Space Optical Communications
NASA Astrophysics Data System (ADS)
Yuvaraj, George; Himani Sharma, Goyal, Dr.
2017-08-01
This article describes an algorithm to reduce cosmic noise in free space optical communication system. This method is intended to increase communication system’s performance and to increase the sustainability of the communication system by means of image processing technique. Apart from these, methods employed in testing the model are also presented for the communication system that uses either terrestrial or extraterrestrial medium to propagate message using optics or visible light without considering environmental impact that is turbulence, atmospheric absorption, beam dispersion and light intensity on its performance.
NASA Technical Reports Server (NTRS)
Farley, Douglas L.
2005-01-01
NASA's Aviation Safety and Security Program is pursuing research in on-board Structural Health Management (SHM) technologies for purposes of reducing or eliminating aircraft accidents due to system and component failures. Under this program, NASA Langley Research Center (LaRC) is developing a strain-based structural health-monitoring concept that incorporates a fiber optic-based measuring system for acquiring strain values. This fiber optic-based measuring system provides for the distribution of thousands of strain sensors embedded in a network of fiber optic cables. The resolution of strain value at each discrete sensor point requires a computationally demanding data reduction software process that, when hosted on a conventional processor, is not suitable for near real-time measurement. This report describes the development and integration of an alternative computing environment using dedicated computing hardware for performing the data reduction. Performance comparison between the existing and the hardware-based system is presented.
Optical fiber-based system for continuous measurement of in-bore projectile velocity.
Wang, Guohua; Sun, Jinglin; Li, Qiang
2014-08-01
This paper reports the design of an optical fiber-based velocity measurement system and its application in measuring the in-bore projectile velocity. The measurement principle of the implemented system is based on Doppler effect and heterodyne detection technique. The analysis of the velocity measurement principle deduces the relationship between the projectile velocity and the instantaneous frequency (IF) of the optical fiber-based system output signal. To extract the IF of the fast-changing signal carrying the velocity information, an IF extraction algorithm based on the continuous wavelet transforms is detailed. Besides, the performance of the algorithm is analyzed by performing corresponding simulation. At last, an in-bore projectile velocity measurement experiment with a sniper rifle having a 720 m/s muzzle velocity is performed to verify the feasibility of the optical fiber-based velocity measurement system. Experiment results show that the measured muzzle velocity is 718.61 m/s, and the relative uncertainty of the measured muzzle velocity is approximately 0.021%.
Optical fiber-based system for continuous measurement of in-bore projectile velocity
NASA Astrophysics Data System (ADS)
Wang, Guohua; Sun, Jinglin; Li, Qiang
2014-08-01
This paper reports the design of an optical fiber-based velocity measurement system and its application in measuring the in-bore projectile velocity. The measurement principle of the implemented system is based on Doppler effect and heterodyne detection technique. The analysis of the velocity measurement principle deduces the relationship between the projectile velocity and the instantaneous frequency (IF) of the optical fiber-based system output signal. To extract the IF of the fast-changing signal carrying the velocity information, an IF extraction algorithm based on the continuous wavelet transforms is detailed. Besides, the performance of the algorithm is analyzed by performing corresponding simulation. At last, an in-bore projectile velocity measurement experiment with a sniper rifle having a 720 m/s muzzle velocity is performed to verify the feasibility of the optical fiber-based velocity measurement system. Experiment results show that the measured muzzle velocity is 718.61 m/s, and the relative uncertainty of the measured muzzle velocity is approximately 0.021%.
Compact Deep-Space Optical Communications Transceiver
NASA Technical Reports Server (NTRS)
Roberts, W. Thomas; Charles, Jeffrey R.
2009-01-01
Deep space optical communication transceivers must be very efficient receivers and transmitters of optical communication signals. For deep space missions, communication systems require high performance well beyond the scope of mere power efficiency, demanding maximum performance in relation to the precious and limited mass, volume, and power allocated. This paper describes the opto-mechanical design of a compact, efficient, functional brassboard deep space transceiver that is capable of achieving megabyte-per-second rates at Mars ranges. The special features embodied to enhance the system operability and functionality, and to reduce the mass and volume of the system are detailed. System tests and performance characteristics are described in detail. Finally, lessons learned in the implementation of the brassboard design and suggestions for improvements appropriate for a flight prototype are covered.
NASA Astrophysics Data System (ADS)
Sprung, Detlev; van Eijk, Alexander M. J.; Sucher, Erik; Eisele, Christian; Seiffer, Dirk; Stein, Karin
2016-10-01
The experiment FESTER (First European South African Transmission ExpeRiment) took place in 2015 to investigate the atmospheric influence on electro-optical systems performance across False Bay / South Africa on a long term basis. Several permanent stations for monitoring electro-optical propagation and atmospheric parameters were set up around the Bay. Additional intensive observation periods (IOPs) allowed for boat runs to assess the inhomogeneous atmospheric propagation conditions over water. In this paper we focus on the distribution of optical turbulence over the Bay. The different impact of water masses originating from the Indian Ocean and the Benguela current on the development of optical turbulence is discussed. The seasonal behavior of optical turbulence is presented and its effect on electro-optical system performance examined.
The effect of laser ablation parameters on optical limiting properties of silver nanoparticles
NASA Astrophysics Data System (ADS)
Gursoy, Irmak; Yaglioglu, Halime Gul
2017-09-01
This paper presents the effect of laser ablation parameters on optical limiting properties of silver nanoparticles. The current applications of lasers such as range finding, guidance, detection, illumination and designation have increased the potential of damaging optical imaging systems or eyes temporary or permanently. The applications of lasers introduce risks for sensors or eyes, when laser power is higher than damage threshold of the detection system. There are some ways to protect these systems such as neutral density (nd) filters, shutters, etc. However, these limiters reduce the total amount of light that gets into the system. Also, response time of these limiters may not be fast enough to prevent damage and cause precipitation in performance due to deprivation of transmission or contrast. Therefore, optical limiting filters are needed that is transparent for low laser intensities and limit or block the high laser intensities. Metal nanoparticles are good candidates for such optical limiting filters for ns pulsed lasers or CW lasers due to their high damage thresholds. In this study we investigated the optical limiting performances of silver nanoparticles produced by laser ablation technique. A high purity silver target immersed in pure water was ablated with a Nd:YAG nanosecond laser at 532 nm. The effect of altering laser power and ablation time on laser ablation efficiency of nanoparticles was investigated experimentally and optimum values were specified. Open aperture Zscan experiment was used to investigate the effect of laser ablation parameters on the optical limiting performances of silver nanoparticles in pure water. It was found that longer ablation time decreases the optical limiting threshold. These results are useful for silver nanoparticles solutions to obtain high performance optical limiters.
Arnon, S; Rotman, S; Kopeika, N S
1997-08-20
The basic free-space optical communication system includes at least two satellites. To communicate between them, the transmitter satellite must track the beacon of the receiver satellite and point the information optical beam in its direction. Optical tracking and pointing systems for free space suffer during tracking from high-amplitude vibration because of background radiation from interstellar objects such as the Sun, Moon, Earth, and stars in the tracking field of view or the mechanical impact from satellite internal and external sources. The vibrations of beam pointing increase the bit error rate and jam communication between the two satellites. One way to overcome this problem is to increase the satellite receiver beacon power. However, this solution requires increased power consumption and weight, both of which are disadvantageous in satellite development. Considering these facts, we derive a mathematical model of a communication system that adapts optimally the transmitter beam width and the transmitted power to the tracking system performance. Based on this model, we investigate the performance of a communication system with discrete element optical phased array transmitter telescope gain. An example for a practical communication system between a Low Earth Orbit Satellite and a Geostationary Earth Orbit Satellite is presented. From the results of this research it can be seen that a four-element adaptive transmitter telescope is sufficient to compensate for vibration amplitude doubling. The benefits of the proposed model are less required transmitter power and improved communication system performance.
Improved performance of the laser guide star adaptive optics system at Lick Observatory
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, J R; Avicola, K; Bauman, B J
1999-07-20
Results of experiments with the laser guide star adaptive optics system on the 3-meter Shane telescope at Lick Observatory have demonstrated a factor of 4 performance improvement over previous results. Stellar images recorded at a wavelength of 2 {micro}m were corrected to over 40% of the theoretical diffraction-limited peak intensity. For the previous two years, this sodium-layer laser guide star system has corrected stellar images at this wavelength to {approx}10% of the theoretical peak intensity limit. After a campaign to improve the beam quality of the laser system, and to improve calibration accuracy and stability of the adaptive optics systemmore » using new techniques for phase retrieval and phase-shifting diffraction interferometry, the system performance has been substantially increased. The next step will be to use the Lick system for astronomical science observations, and to demonstrate this level of performance with the new system being installed on the 10-meter Keck II telescope.« less
NASA Astrophysics Data System (ADS)
Wang, Jiaoyang; Wang, Lin; Yang, Ying; Gong, Rui; Shao, Xiaopeng; Liang, Chao; Xu, Jun
2016-05-01
In this paper, an integral design that combines optical system with image processing is introduced to obtain high resolution images, and the performance is evaluated and demonstrated. Traditional imaging methods often separate the two technical procedures of optical system design and imaging processing, resulting in the failures in efficient cooperation between the optical and digital elements. Therefore, an innovative approach is presented to combine the merit function during optical design together with the constraint conditions of image processing algorithms. Specifically, an optical imaging system with low resolution is designed to collect the image signals which are indispensable for imaging processing, while the ultimate goal is to obtain high resolution images from the final system. In order to optimize the global performance, the optimization function of ZEMAX software is utilized and the number of optimization cycles is controlled. Then Wiener filter algorithm is adopted to process the image simulation and mean squared error (MSE) is taken as evaluation criterion. The results show that, although the optical figures of merit for the optical imaging systems is not the best, it can provide image signals that are more suitable for image processing. In conclusion. The integral design of optical system and image processing can search out the overall optimal solution which is missed by the traditional design methods. Especially, when designing some complex optical system, this integral design strategy has obvious advantages to simplify structure and reduce cost, as well as to gain high resolution images simultaneously, which has a promising perspective of industrial application.
Compact DFB laser modules with integrated isolator at 935 nm
NASA Astrophysics Data System (ADS)
Reggentin, M.; Thiem, H.; Tsianos, G.; Malach, M.; Hofmann, J.; Plocke, T.; Kneier, M.; Richter, L.
2018-02-01
New developments in industrial applications and applications under rough environmental conditions within the field of spectroscopy and quantum technology in the 935 nm wavelength regime demand new compact, stable and robust laser systems. Beside a stable laser source the integration of a compact optical isolator is necessary to reduce size and power consumption for the whole laser system. The integration of a suitable optical isolator suppresses back reflections from the following optical system efficiently. However, the miniaturization of the optics inside the package leads to high optical power density levels that make a more detailed analysis of the components and their laser damage threshold necessary. We present test results on compact stable DFB laser sources (butterfly style packages) with newly integrated optical isolators operating around 935 nm. The presented data includes performance and lifetime tests for the laser diodes as well as package components. Overall performance data of the packaged laser diodes will be shown as well.
Compact MEMS-based adaptive optics: optical coherence tomography for clinical use
NASA Astrophysics Data System (ADS)
Chen, Diana C.; Olivier, Scot S.; Jones, Steven M.; Zawadzki, Robert J.; Evans, Julia W.; Choi, Stacey S.; Werner, John S.
2008-02-01
We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography (OCT) system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of limitations on current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in previous AO-OCT instruments. In this instrument, we incorporate an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminates the tedious process of using trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.
Large Field of View, Modular, Stabilized, Adaptive-Optics-Based Scanning Laser Ophthalmoscope
Burns, Stephen A.; Tumbar, Remy; Elsner, Ann E.; Ferguson, Daniel; Hammer, Daniel X.
2007-01-01
We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide field line scan Scanning Laser Ophthalmocsope (SLO), and a high resolution MEMS based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x, and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the pointspread function. The retinal image was stabilized to within 18 microns 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images. PMID:17429477
Performance of a laser microsatellite network with an optical preamplifier.
Arnon, Shlomi
2005-04-01
Laser satellite communication (LSC) uses free space as a propagation medium for various applications, such as intersatellite communication or satellite networking. An LSC system includes a laser transmitter and an optical receiver. For communication to occur, the line of sight of the transmitter and the receiver must be aligned. However, mechanical vibration and electronic noise in the control system reduce alignment between the transmitter laser beam and the receiver field of view (FOV), which results in pointing errors. The outcome of pointing errors is fading of the received signal, which leads to impaired link performance. An LSC system is considered in which the optical preamplifier is incorporated into the receiver, and a bit error probability (BEP) model is derived that takes into account the statistics of the pointing error as well as the optical amplifier and communication system parameters. The model and the numerical calculation results indicate that random pointing errors of sigma(chi)2G > 0.05 penalize communication performance dramatically for all combinations of optical amplifier gains and noise figures that were calculated.
Ultra Compact Optical Pickup with Integrated Optical System
NASA Astrophysics Data System (ADS)
Nakata, Hideki; Nagata, Takayuki; Tomita, Hironori
2006-08-01
Smaller and thinner optical pickups are needed for portable audio-visual (AV) products and notebook personal computers (PCs). We have newly developed an ultra compact recordable optical pickup for Mini Disc (MD) that measures less than 4 mm from the disc surface to the bottom of the optical pickup, making the optical system markedly compact. We have integrated all the optical components into an objective lens actuator moving unit, while fully satisfying recording and playback performance requirements. In this paper, we propose an ultra compact optical pickup applicable to portable MD recorders.
Optical design of an in vivo laparoscopic lighting system.
Liu, Xiaolong; Abdolmalaki, Reza Yazdanpanah; Mancini, Gregory J; Tan, Jindong
2017-12-01
This paper proposes an in vivo laparoscopic lighting system design to address the illumination issues, namely poor lighting uniformity and low optical efficiency, existing in the state-of-the-art in vivo laparoscopic cameras. The transformable design of the laparoscopic lighting system is capable of carrying purposefully designed freeform optical lenses for achieving lighting performance with high illuminance uniformity and high optical efficiency in a desired target region. To design freeform optical lenses for extended light sources such as LEDs with Lambertian light intensity distributions, we present an effective and complete freeform optical design method. The procedures include (1) ray map computation by numerically solving a standard Monge-Ampere equation; (2) initial freeform optical surface construction by using Snell's law and a lens volume restriction; (3) correction of surface normal vectors due to accumulated errors from the initially constructed surfaces; and (4) feedback modification of the solution to deal with degraded illuminance uniformity caused by the extended sizes of the LEDs. We employed an optical design software package to evaluate the performance of our laparoscopic lighting system design. The simulation results show that our design achieves greater than 95% illuminance uniformity and greater than 89% optical efficiency (considering Fresnel losses) for illuminating the target surgical region. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Tunable Laser Development for In-Flight Fiber Optic Based Structural Health Monitoring Systems
NASA Technical Reports Server (NTRS)
Richards, Lance; Parker, Allen; Chan, Patrick
2013-01-01
Briefing based on tunable laser development for in flight fiber optic based structural health monitoring systems. The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles.
Synopsis of fiber optics in harsh environments
NASA Astrophysics Data System (ADS)
Pirich, Ronald
2014-09-01
Fiber optic technology is making significant advances for use in a number of harsh environments, such as air and space platforms. Many of these applications involve integration into systems which make extensive use of optical fiber for high bandwidth signal transmission. The large signal transmission bandwidth of optical fiber has a large and positive impact on the overall performance and weight of the cable harness. There are many benefits of fiber optic systems for air and space harsh environment applications, including minimal electromagnetic interference and environmental effects, lightweight and smaller diameter cables, greater bandwidth, integrated prognostics and diagnostics and the ability to be easily upgraded. To qualify and use a fiber optic cable in space and air harsh environments requires treatment of the cable assembly as a system and understanding the design and behavior of its parts. Many parameters affect an optical fiber's ability to withstand a harsh temperature and radiation environment. The space radiation environment is dependent on orbital altitude, inclination and time, contains energetic magnetically-trapped electrons in the outer Van Allen radiation belt, trapped protons in the inner belt and solar event protons and ions. Both transient and permanent temperature and radiation have an attenuation effect on the performance of the cable fiber. This paper presents an overview of defining fiber optic system and component performance by identifying operating and storage environmental requirements, using appropriate standards to be used in fiber optic cable assembly manufacturing and integration, developing inspection methods and fixtures compliant with the selected standards and developing a fiber optic product process that assures compliance with each design requirement.
Research on performance of three-layer MG-OXC system based on MLAG and OCDM
NASA Astrophysics Data System (ADS)
Wang, Yubao; Ren, Yanfei; Meng, Ying; Bai, Jian
2017-10-01
At present, as traffic volume which optical transport networks convey and species of traffic grooming methods increase rapidly, optical switching techniques are faced with a series of issues, such as more requests for the number of wavelengths and complicated structure management and implementation. This work introduces optical code switching based on wavelength switching, constructs the three layers multi-granularity optical cross connection (MG-OXC) system on the basis of optical code division multiplexing (OCDM) and presents a new traffic grooming algorithm. The proposed architecture can improve the flexibility of traffic grooming, reduce the amount of used wavelengths and save the number of consumed ports, hence, it can simplify routing device and enhance the performance of the system significantly. Through analyzing the network model of switching structure on multicast layered auxiliary graph (MLAG) and the establishment of traffic grooming links, and the simulation of blocking probability and throughput, this paper shows the excellent performance of this mentioned architecture.
Flynn, Richard A; Shao, Bing; Chachisvilis, Mirianas; Ozkan, Mihrimah; Esener, Sadik C
2006-01-15
We propose and demonstrate a novel approach to measure the size and refractive index of microparticles based on two beam optical trapping, where forward scattered light is detected to give information about the particle. The counter-propagating optical trap measurement (COTM) system exploits the capability of optical traps to measure pico-Newton forces for microparticles' refractive index and size characterization. Different from the current best technique for microparticles' refractive index measurement, refractometry, a bulk technique requiring changing the fluid composition of the sample, our optical trap technique works with any transparent fluid and enables single particle analysis without the use of biological markers. A ray-optics model is used to explore the physical operation of the COTM system, predict system performance and aid system design. Experiments demonstrate the accuracy of refractive index measurement of Deltan=0.013 and size measurement of 3% of diameter with 2% standard deviation. Present performance is instrumentation limited, and a potential improvement by more than two orders of magnitude can be expected in the future. With further development in parallelism and miniaturization, the system offers advantages for cell manipulation and bioanalysis compatible with lab-on-a-chip systems.
Optical Communication with Semiconductor Laser Diode. Interim Progress Report. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Davidson, Frederic; Sun, Xiaoli
1989-01-01
Theoretical and experimental performance limits of a free-space direct detection optical communication system were studied using a semiconductor laser diode as the optical transmitter and a silicon avalanche photodiode (APD) as the receiver photodetector. Optical systems using these components are under consideration as replacements for microwave satellite communication links. Optical pulse position modulation (PPM) was chosen as the signal format. An experimental system was constructed that used an aluminum gallium arsenide semiconductor laser diode as the transmitter and a silicon avalanche photodiode photodetector. The system used Q=4 PPM signaling at a source data rate of 25 megabits per second. The PPM signal format requires regeneration of PPM slot clock and word clock waveforms in the receiver. A nearly exact computational procedure was developed to compute receiver bit error rate without using the Gaussion approximation. A transition detector slot clock recovery system using a phase lock loop was developed and implemented. A novel word clock recovery system was also developed. It was found that the results of the nearly exact computational procedure agreed well with actual measurements of receiver performance. The receiver sensitivity achieved was the closest to the quantum limit yet reported for an optical communication system of this type.
Effects of fixture rotation on coating uniformity for high-performance optical filter fabrication
NASA Astrophysics Data System (ADS)
Rubin, Binyamin; George, Jason; Singhal, Riju
2018-04-01
Coating uniformity is critical in fabricating high-performance optical filters by various vacuum deposition methods. Simple and planetary rotation systems with shadow masks are used to achieve the required uniformity [J. B. Oliver and D. Talbot, Appl. Optics 45, 13, 3097 (2006); O. Lyngnes, K. Kraus, A. Ode and T. Erguder, in `Method for Designing Coating Thickness Uniformity Shadow Masks for Deposition Systems with a Planetary Fixture', 2014 Technical Conference Proceedings, Optical Coatings, August 13, 2014, DOI: 10.14332/svc14.proc.1817.]. In this work, we discuss the effect of rotation pattern and speed on thickness uniformity in an ion beam sputter deposition system. Numerical modeling is used to determine statistical distribution of random thickness errors in coating layers. The relationship between thickness tolerance and production yield are simulated theoretically and demonstrated experimentally. Production yields for different optical filters produced in an ion beam deposition system with planetary rotation are presented. Single-wavelength and broadband optical monitoring systems were used for endpoint monitoring during filter deposition. Limitations of thickness tolerances that can be achieved in systems with planetary rotation are shown. Paths for improving production yield in an ion beam deposition system are described.
Utilization of optical emission endpoint in photomask dry etch processing
NASA Astrophysics Data System (ADS)
Faure, Thomas B.; Huynh, Cuc; Lercel, Michael J.; Smith, Adam; Wagner, Thomas
2002-03-01
Use of accurate and repeatable endpoint detection during dry etch processing of photomask is very important for obtaining good mask mean-to-target and CD uniformity performance. It was found that the typical laser reflectivity endpoint detecting system used on photomask dry etch systems had several key limitations that caused unnecessary scrap and non-optimum image size performance. Consequently, work to develop and implement use of a more robust optical emission endpoint detection system for chrome dry etch processing of photomask was performed. Initial feasibility studies showed that the emission technique was sensitive enough to monitor pattern loadings on contact and via level masks down to 3 percent pattern coverage. Additional work was performed to further improve this to 1 percent pattern coverage by optimizing the endpoint detection parameters. Comparison studies of mask mean-to-target performance and CD uniformity were performed with the use of optical emission endpoint versus laser endpoint for masks built using TOK IP3600 and ZEP 7000 resist systems. It was found that an improvement in mean-to-target performance and CD uniformity was realized on several types of production masks. In addition, part-to-part endpoint time repeatability was found to be significantly improved with the use of optical emission endpoint.
NASA Astrophysics Data System (ADS)
Liu, Dachang; Wang, Zixiong; Liu, Jianguo; Tan, Jun; Yu, Lijuan; Mei, Haiping; Zhou, Yusong; Zhu, Ninghua
2017-10-01
The performance of a free-space optical communication system is highly affected by the atmospheric turbulence in terms of scintillation. An optical communication system based on intensity-modulation direct-detection was built with 1-km transmission distance to evaluate the bit error rate (BER) performance over real atmospheric turbulence. 2.5-, 5-, and 10-Gbps data rate transmissions were carried out, where error-free transmission could be achieved during over 37% of the 2.5-Gbps transmissions and over 43% of the 5-Gbps transmissions. In the rest of the transmissions, BER deteriorated as the refractive-index structure constant increased, while the two measured items have almost the same trend.
Liu, Wei; Yao, Kainan; Huang, Danian; Lin, Xudong; Wang, Liang; Lv, Yaowen
2016-06-13
The Greenwood frequency (GF) is influential in performance improvement for the coherent free space optical communications (CFSOC) system with a closed-loop adaptive optics (AO) unit. We analyze the impact of tilt and high-order aberrations on the mixing efficiency (ME) and bit-error-rate (BER) under different GF. The root-mean-square value (RMS) of the ME related to the RMS of the tilt aberrations, and the GF is derived to estimate the volatility of the ME. Furthermore, a numerical simulation is applied to verify the theoretical analysis, and an experimental correction system is designed with a double-stage fast-steering-mirror and a 97-element continuous surface deformable mirror. The conclusions of this paper provide a reference for designing the AO system for the CFSOC system.
Pierce, Mark C; Weigum, Shannon E; Jaslove, Jacob M; Richards-Kortum, Rebecca; Tkaczyk, Tomasz S
2014-01-01
One of the key elements in point-of-care (POC) diagnostic test instrumentation is the optical system required for signal detection and/or imaging. Many tests which use fluorescence, absorbance, or colorimetric optical signals are under development for management of infectious diseases in resource limited settings, where the overall size and cost of the device is of critical importance. At present, high-performance lenses are expensive to fabricate and difficult to obtain commercially, presenting barriers for developers of in vitro POC tests or microscopic image-based diagnostics. We recently described a compact "hybrid" objective lens incorporating both glass and plastic optical elements, with a numerical aperture of 1.0 and field-of-view of 250 μm. This design concept may potentially enable mass-production of high-performance, low-cost optical systems which can be easily incorporated in the readout path of existing and emerging POC diagnostic assays. In this paper, we evaluate the biological imaging performance of these lens systems in three broad POC diagnostic application areas; (1) bright field microscopy of histopathology slides, (2) cytologic examination of blood smears, and (3) immunofluorescence imaging. We also break down the fabrication costs and draw comparisons with other miniature optical systems. The hybrid lenses provided images with quality comparable to conventional microscopy, enabling examination of neoplastic pathology and infectious parasites including malaria and cryptosporidium. We describe how these components can be produced at below $10 per unit in full-scale production quantities, making these systems well suited for use within POC diagnostic instrumentation.
NASA Astrophysics Data System (ADS)
Singh, Mehtab
2017-12-01
Optical wireless communication (OWC) systems also known as Free space optics (FSO) are capable of providing high channel bandwidth, high data transmission rates, low power consumption, and high security. OWC links are being considered in different applications such as inter-satellite links, terrestrial links, and inter-aircraft communication links. This paper investigates the impact of different system parameters such as transmission power level, operating wavelength, transmitter pointing error angle, bit transmission rate, atmospheric attenuation, antenna aperture diameter, geometric losses, the responsivity of the photodetector, and link range on the performance of inter-aircraft optical wireless communication link.
Two-stage optics - High-acuity performance from low-acuity optical systems
NASA Technical Reports Server (NTRS)
Meinel, Aden B.; Meinel, Marjorie P.
1992-01-01
The concept of two-stage optics, developed under a program to enhance the performance, lower the cost, and increase the reliability of the 20-m Large Deployable Telescope, is examined. The concept permits the large primary mirror to remain as deployed or as space-assembled, with phasing and subsequent control of the system done by a small fully assembled optical active element placed at an exit pupil. The technique is being applied to correction of the fabrication/testing error in the Hubble Space Telescope primary mirror. The advantages offered by this concept for very large space telescopes are discussed.
Optical Automatic Car Identification (OACI) : Volume 1. Advanced System Specification.
DOT National Transportation Integrated Search
1978-12-01
A performance specification is provided in this report for an Optical Automatic Car Identification (OACI) scanner system which features 6% improved readability over existing industry scanner systems. It also includes the analysis and rationale which ...
NASA Astrophysics Data System (ADS)
Huang, Lei; Zhou, Chenlu; Zhao, Wenchuan; Choi, Heejoo; Graves, Logan; Kim, Daewook
2017-06-01
We present a high precision deflectometry system (DS) controlled deformable mirror (DM) solution for optical system. Different from wavefront and non-wavefront system, the DS and the DM are set to be an individual integrated DCDM unit and can be installed in one base plate. In the DCDM unit, the DS can directly provide the influence functions and surface shape of the DM to the industrial computer in any adaptive optics system. As an integrated adaptive unit, the DCDM unit could be put into various optical systems to realize aberration compensation. In this paper, the configuration and principle of the DCDM unit is introduced first. Theoretical simulation on the close-loop performance of the DCDM unit is carried out. Finally, a verification experiment is proposed to verify the compensation capability of the DCDM unit.
NASA Astrophysics Data System (ADS)
Fukuchi, Tetsuo; Nayuki, Takuya; Mori, Hideto; Goto, Naohiko; Fujii, Takashi; Nemoto, Koshichi
A differential optical absorption spectroscopy (DOAS) system for measurement of atmospheric NO2 was developed. The system uses a battery-operated, high luminance LED and a fiber-coupled spectrometer, and is portable. Laboratory experiments using a gas cell of length 0.22 m with varying NO2 concentrations were performed to evaluate the sensitivity of the DOAS system. The DOAS measurement results are in agreement with NO2 concentrations obtained simultaneously by a FT-IR (Fourier Transform Infrared) system for NO2 concentrations down to 20 ppm. Experiments with an optical path length of 93 m were also performed, and NO2 concentrations down to 0.20 ppm were measured. Since measurement of atmospheric NO2, which is in the order of several tens of ppb, requires optical path lengths of several hundred m, system improvements to improve the signal detection are necessary.
NASA Astrophysics Data System (ADS)
Chang, Huan; Yin, Xiao-li; Cui, Xiao-zhou; Zhang, Zhi-chao; Ma, Jian-xin; Wu, Guo-hua; Zhang, Li-jia; Xin, Xiang-jun
2017-12-01
Practical orbital angular momentum (OAM)-based free-space optical (FSO) communications commonly experience serious performance degradation and crosstalk due to atmospheric turbulence. In this paper, we propose a wave-front sensorless adaptive optics (WSAO) system with a modified Gerchberg-Saxton (GS)-based phase retrieval algorithm to correct distorted OAM beams. We use the spatial phase perturbation (SPP) GS algorithm with a distorted probe Gaussian beam as the only input. The principle and parameter selections of the algorithm are analyzed, and the performance of the algorithm is discussed. The simulation results show that the proposed adaptive optics (AO) system can significantly compensate for distorted OAM beams in single-channel or multiplexed OAM systems, which provides new insights into adaptive correction systems using OAM beams.
Coherent optical modulation for antenna remoting
NASA Technical Reports Server (NTRS)
Fitzmartin, D. J.; Gels, R. G.; Balboni, E. J.
1991-01-01
A coherent fiber optic link employing wideband frequency modulation (FM) of the optical carrier is used to transfer radio frequency (RF) or microwave signals. This system is used to link a remotely located antenna to a conveniently located electronics processing site. The advantages of coherent analog fiber optic systems over non-coherent intensity modulated fiber optic analog transmission systems are described. An optical FM link employing an indirect transmitter to frequency modulate the optical carrier and a microwave delay line discriminator receiver is described. Measured performance data for a video signal centered at 60 MHz is presented showing the use of wideband FM in the link.
Near Sun Free-Space Optical Communications from Space
NASA Technical Reports Server (NTRS)
Biswas, Abhijit; Khatri, F.; Boroson, D.
2006-01-01
Free-space optical communications offers expanded data return capacity, from probes distributed throughout the solar system and beyond. Space-borne and Earth-based optical transceivers used for communicating optically, will periodically encounter near Sun pointing. This will result in an increase in the scattered background light flux, often contributing to degraded link performance. The varying duration of near Sun pointing link operations relative to the location of space-probes, is discussed in this paper. The impact of near Sun pointing on link performance for a direct detection photon-counting communications system is analyzed for both ground- and space-based Earth receivers. Finally, impact of near Sun pointing on spaceborne optical transceivers is discussed.
Optical design of athermal, multispectral, radial GRIN lenses
NASA Astrophysics Data System (ADS)
Boyd, Andrew M.
2017-05-01
Military infrared systems generally must exhibit stable optical performance over a wide operating temperature range. We present a model for the first-order optical design of radial gradient-index systems, based on a form of the thermo-optic glass coefficient adapted to inhomogeneous material combinations. We find that GRIN components can significantly reduce the optical power balance of athermal, achromatic systems, which introduces the scope for a new class of broadband infrared imaging solutions. This novel first-order modelling technique is used to generate a starting point for optimisation of a SWIR/LWIR multispectral optical design.
NASA Astrophysics Data System (ADS)
Bechou, L.; Deshayes, Y.; Aupetit-Berthelemot, C.; Guerin, A.; Tronche, C.
Space missions for Earth Observation are called upon to carry a growing number of instruments in their payload, whose performances are increasing. Future space systems are therefore intended to generate huge amounts of data and a key challenge in coming years will therefore lie in the ability to transmit that significant quantity of data to ground. Thus very high data rate Payload Telemetry (PLTM) systems will be required to face the demand of the future Earth Exploration Satellite Systems and reliability is one of the major concern of such systems. An attractive approach associated with the concept of predictive modeling consists in analyzing the impact of components malfunctioning on the optical link performances taking into account the network requirements and experimental degradation laws. Reliability estimation is traditionally based on life-testing and a basic approach is to use Telcordia requirements (468GR) for optical telecommunication applications. However, due to the various interactions between components, operating lifetime of a system cannot be taken as the lifetime of the less reliable component. In this paper, an original methodology is proposed to estimate reliability of an optical communication system by using a dedicated system simulator for predictive modeling and design for reliability. At first, we present frameworks of point-to-point optical communication systems for space applications where high data rate (or frequency bandwidth), lower cost or mass saving are needed. Optoelectronics devices used in these systems can be similar to those found in terrestrial optical network. Particularly we report simulation results of transmission performances after introduction of DFB Laser diode parameters variations versus time extrapolated from accelerated tests based on terrestrial or submarine telecommunications qualification standards. Simulations are performed to investigate and predict the consequence of degradations of the Laser diode (acting as a - requency carrier) on system performances (eye diagram, quality factor and BER). The studied link consists in 4× 2.5 Gbits/s WDM channels with direct modulation and equally spaced (0,8 nm) around the 1550 nm central wavelength. Results clearly show that variation of fundamental parameters such as bias current or central wavelength induces a penalization of dynamic performances of the complete WDM link. In addition different degradation kinetics of aged Laser diodes from a same batch have been implemented to build the final distribution of Q-factor and BER values after 25 years. When considering long optical distance, fiber attenuation, EDFA noise, dispersion, PMD, ... penalize network performances that can be compensated using Forward Error Correction (FEC) coding. Three methods have been investigated in the case of On-Off Keying (OOK) transmission over an unipolar optical channel corrupted by Gaussian noise. Such system simulations highlight the impact of component parameter degradations on the whole network performances allowing to optimize various time and cost consuming sensitivity analyses at the early stage of the system development. Thus the validity of failure criteria in relation with mission profiles can be evaluated representing a significant part of the general PDfR effort in particular for aerospace applications.
Baranski, Maciej; Bargiel, Sylwester; Passilly, Nicolas; Gorecki, Christophe; Jia, Chenping; Frömel, Jörg; Wiemer, Maik
2015-08-01
This paper presents the optical design of a miniature 3D scanning system, which is fully compatible with the vertical integration technology of micro-opto-electro-mechanical systems (MOEMS). The constraints related to this integration strategy are considered, resulting in a simple three-element micro-optical setup based on an afocal scanning microlens doublet and a focusing microlens, which is tolerant to axial position inaccuracy. The 3D scanning is achieved by axial and lateral displacement of microlenses of the scanning doublet, realized by micro-electro-mechanical systems microactuators (the transmission scanning approach). Optical scanning performance of the system is determined analytically by use of the extended ray transfer matrix method, leading to two different optical configurations, relying either on a ball lens or plano-convex microlenses. The presented system is aimed to be a core component of miniature MOEMS-based optical devices, which require a 3D optical scanning function, e.g., miniature imaging systems (confocal or optical coherence microscopes) or optical tweezers.
Optical performance analysis of plenoptic camera systems
NASA Astrophysics Data System (ADS)
Langguth, Christin; Oberdörster, Alexander; Brückner, Andreas; Wippermann, Frank; Bräuer, Andreas
2014-09-01
Adding an array of microlenses in front of the sensor transforms the capabilities of a conventional camera to capture both spatial and angular information within a single shot. This plenoptic camera is capable of obtaining depth information and providing it for a multitude of applications, e.g. artificial re-focusing of photographs. Without the need of active illumination it represents a compact and fast optical 3D acquisition technique with reduced effort in system alignment. Since the extent of the aperture limits the range of detected angles, the observed parallax is reduced compared to common stereo imaging systems, which results in a decreased depth resolution. Besides, the gain of angular information implies a degraded spatial resolution. This trade-off requires a careful choice of the optical system parameters. We present a comprehensive assessment of possible degrees of freedom in the design of plenoptic systems. Utilizing a custom-built simulation tool, the optical performance is quantified with respect to particular starting conditions. Furthermore, a plenoptic camera prototype is demonstrated in order to verify the predicted optical characteristics.
Design and performance evaluation of the imaging payload for a remote sensing satellite
NASA Astrophysics Data System (ADS)
Abolghasemi, Mojtaba; Abbasi-Moghadam, Dariush
2012-11-01
In this paper an analysis method and corresponding analytical tools for design of the experimental imaging payload (IMPL) of a remote sensing satellite (SINA-1) are presented. We begin with top-level customer system performance requirements and constraints and derive the critical system and component parameters, then analyze imaging payload performance until a preliminary design that meets customer requirements. We consider system parameters and components composing the image chain for imaging payload system which includes aperture, focal length, field of view, image plane dimensions, pixel dimensions, detection quantum efficiency, and optical filter requirements. The performance analysis is accomplished by calculating the imaging payload's SNR (signal-to-noise ratio), and imaging resolution. The noise components include photon noise due to signal scene and atmospheric background, cold shield, out-of-band optical filter leakage and electronic noise. System resolution is simulated through cascaded modulation transfer functions (MTFs) and includes effects due to optics, image sampling, and system motion. Calculations results for the SINA-1 satellite are also presented.
Diagnostic methods for CW laser damage testing
NASA Astrophysics Data System (ADS)
Stewart, Alan F.; Shah, Rashmi S.
2004-06-01
High performance optical coatings are an enabling technology for many applications - navigation systems, telecom, fusion, advanced measurement systems of many types as well as directed energy weapons. The results of recent testing of superior optical coatings conducted at high flux levels will be presented. The diagnostics used in this type of nondestructive testing and the analysis of the data demonstrates the evolution of test methodology. Comparison of performance data under load to the predictions of thermal and optical models shows excellent agreement. These tests serve to anchor the models and validate the performance of the materials and coatings.
Fiber optic gyroscopes for vehicle navigation systems
NASA Astrophysics Data System (ADS)
Kumagai, Tatsuya; Soekawa, Hirokazu; Yuhara, Toshiya; Kajioka, Hiroshi; Oho, Shigeru; Sonobe, Hisao
1994-03-01
Fiber optic gyroscopes (FOGs) have been developed for vehicle navigation systems and are used in Toyota Motor Corporation models Mark II, Chaser and Cresta in Japan. Use of FOGs in these systems requires high reliability under a wide range of conditions, especially in a temperature range between -40 and 85 degree(s)C. In addition, a high cost-performance ratio is needed. We have developed optical and electrical systems that are inexpensive and can perform well. They are ready to be mass-produced. FOGs have already been installed in luxury automobiles, and will soon be included in more basic vehicles. We have developed more inexpensive FOGs for this purpose.
Video display engineering and optimization system
NASA Technical Reports Server (NTRS)
Larimer, James (Inventor)
1997-01-01
A video display engineering and optimization CAD simulation system for designing a LCD display integrates models of a display device circuit, electro-optics, surface geometry, and physiological optics to model the system performance of a display. This CAD system permits system performance and design trade-offs to be evaluated without constructing a physical prototype of the device. The systems includes a series of modules which permit analysis of design trade-offs in terms of their visual impact on a viewer looking at a display.
Dual FOV infrared lens design with the laser common aperture optics
NASA Astrophysics Data System (ADS)
Chang, Wei-jun; Zhang, Xuan-zhi; Luan, Ya-dong; Zhang, Bo
2015-02-01
With the demand of autonomous precision guidance of air defense missile, the system scheme of the IR imaging/Ladar dual-mode seeker with a common aperture was proposed, and the optical system used in was designed. The system had a common receiving aperture, and its structure was very compact, so it could meet the requirement for the miniaturization of the seeker. Besides, it also could meet the demands of a wide field of view for searching target, and the demands for accurately recognizing and tracking the target at the same time. In order to increase the narrow FOV tracking performance, the dual FOV infrared optical used the zooming mode which some components flip in or out the optical system to firm the target signal. The dual FOV optics are divided into the zooming part, with dual variable focal length, and the reimaging part which was chosen in such a way to minimize the objective lens while maintaining 100% cold shield efficiency. The final infrared optics including 4°×3°(NFOV) and 16°×12°(WFOV) was designed. The NFOV lens composed of two common IR/Ladar lens, three relay lens, a beam splitter and two reflective fold mirrors, while WFOV lens increased two lens such as Germanium and Silicon. The common IR/Ladar lens ZnS and ZnSe could refractive the IR optics and Laser optics. The beam splitter which refractived IR optics and reflected Laser optics was located in the middle of Germanium and Silicon. The designed optical system had good image quality, and fulfilled the performance requirement of seeker system.
NASA Astrophysics Data System (ADS)
Kandouci, Chahinaz; Djebbari, Ali
2018-04-01
A new family of two-dimensional optical hybrid code which employs zero cross-correlation (ZCC) codes, constructed by the balanced incomplete block design BIBD, as both time-spreading and wavelength hopping patterns are used in this paper. The obtained codes have both off-peak autocorrelation and cross-correlation values respectively equal to zero and unity. The work in this paper is a computer experiment performed using Optisystem 9.0 software program as a simulator to determine the wavelength hopping/time spreading (WH/TS) OCDMA system performances limitations. Five system parameters were considered in this work: the optical fiber length (transmission distance), the bitrate, the chip spacing and the transmitted power. This paper shows for what sufficient system performance parameters (BER≤10-9, Q≥6) the system can stand for.
NASA Technical Reports Server (NTRS)
Renner, Christoffer J.
2005-01-01
Free-space optical communication systems (also known as lasercom systems) offer several performance advantages over traditional radio frequency communication systems. These advantages include increased data rates and reduced operating power and system weight. One serious limiting factor in a lasercom system is Optical turbulence in Earth's atmosphere. This turbulence breaks up the laser beam used to transmit the information into multiple segments that interfere with each other when the beam is focused onto the receiver. This interference pattern at the receiver changes with time causing fluctuations in the received optical intensity (scintillation). Scintillation leads to intermittent losses of the signal and an overall reduction in the lasercom system's performance. Since scintillation is a coherent effect, reducing the spatial and temporal coherence of the laser beam will reduce the scintillation. Transmitting a laser beam through certain materials is thought to reduce its coherence. Materials that were tested included: sapphire, BK7 glass, fused silica and others. The spatial and temporal coherence of the laser beam was determined by examining the interference patterns (fringes) it formed when interacting with various interferometers and etalons.
Initial results from the Lick Observatory Laser Guide Star Adaptive Optics System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olivier, S.S.; An, J.; Avicola, K.
1995-11-08
A prototype adaptive optics system has been installed and tested on the 3 m Shane telescope at Lick Observatory. The adaptive optics system performance, using bright natural guide stars, is consistent with expectations based on theory. A sodium-layer laser guide star system has also been installed and tested on the Shane telescope. Operating at 15 W, the laser system produces a 9th magnitude guide star with seeing-limited size at 589 nm. Using the laser guide star, the adaptive optics system has reduced the wavefront phase variance on scales above 50 cm by a factor of 4. These results represent themore » first continuous wavefront phase correction using a sodium-layer laser guide star. Assuming tip-tilt is removed using a natural guide star, the measured control loop performance should produce images with a Strehl ratio of 0.4 at 2.2 {mu}m in 1 arc second seeing. Additional calibration procedures must be implemented in order to achieve these results with the prototype Lick adaptive optics system.« less
Grain-size considerations for optoelectronic multistage interconnection networks.
Krishnamoorthy, A V; Marchand, P J; Kiamilev, F E; Esener, S C
1992-09-10
This paper investigates, at the system level, the performance-cost trade-off between optical and electronic interconnects in an optoelectronic interconnection network. The specific system considered is a packet-switched, free-space optoelectronic shuffle-exchange multistage interconnection network (MIN). System bandwidth is used as the performance measure, while system area, system power, and system volume constitute the cost measures. A detailed design and analysis of a two-dimensional (2-D) optoelectronic shuffle-exchange routing network with variable grain size K is presented. The architecture permits the conventional 2 x 2 switches or grains to be generalized to larger K x K grain sizes by replacing optical interconnects with electronic wires without affecting the functionality of the system. Thus the system consists of log(k) N optoelectronic stages interconnected with free-space K-shuffles. When K = N, the MIN consists of a single electronic stage with optical input-output. The system design use an effi ient 2-D VLSI layout and a single diffractive optical element between stages to provide the 2-D K-shuffle interconnection. Results indicate that there is an optimum range of grain sizes that provides the best performance per cost. For the specific VLSI/GaAs multiple quantum well technology and system architecture considered, grain sizes larger than 256 x 256 result in a reduced performance, while grain sizes smaller than 16 x 16 have a high cost. For a network with 4096 channels, the useful range of grain sizes corresponds to approximately 250-400 electronic transistors per optical input-output channel. The effect of varying certain technology parameters such as the number of hologram phase levels, the modulator driving voltage, the minimum detectable power, and VLSI minimum feature size on the optimum grain-size system is studied. For instance, results show that using four phase levels for the interconnection hologram is a good compromise for the cost functions mentioned above. As VLSI minimum feature sizes decrease, the optimum grain size increases, whereas, if optical interconnect performance in terms of the detector power or modulator driving voltage requirements improves, the optimum grain size may be reduced. Finally, several architectural modifications to the system, such as K x K contention-free switches and sorting networks, are investigated and optimized for grain size. Results indicate that system bandwidth can be increased, but at the price of reduced performance/cost. The optoelectronic MIN architectures considered thus provide a broad range of performance/cost alternatives and offer a superior performance over purely electronic MIN's.
NASA Astrophysics Data System (ADS)
Maghrabi, Mahmoud M. T.; Kumar, Shiva; Bakr, Mohamed H.
2018-02-01
This work introduces a powerful digital nonlinear feed-forward equalizer (NFFE), exploiting multilayer artificial neural network (ANN). It mitigates impairments of optical communication systems arising due to the nonlinearity introduced by direct photo-detection. In a direct detection system, the detection process is nonlinear due to the fact that the photo-current is proportional to the absolute square of the electric field intensity. The proposed equalizer provides the most efficient computational cost with high equalization performance. Its performance is comparable to the benchmark compensation performance achieved by maximum-likelihood sequence estimator. The equalizer trains an ANN to act as a nonlinear filter whose impulse response removes the intersymbol interference (ISI) distortions of the optical channel. Owing to the proposed extensive training of the equalizer, it achieves the ultimate performance limit of any feed-forward equalizer (FFE). The performance and efficiency of the equalizer is investigated by applying it to various practical short-reach fiber optic communication system scenarios. These scenarios are extracted from practical metro/media access networks and data center applications. The obtained results show that the ANN-NFFE compensates for the received BER degradation and significantly increases the tolerance to the chromatic dispersion distortion.
Large High Performance Optics for Spaceborne Missions: L-3 Brashear Experience and Capability
NASA Technical Reports Server (NTRS)
Canzian, Blaise; Gardopee, George; Clarkson, Andrew; Hull, Tony; Borucki, William J.
2010-01-01
Brashear is a division of L-3 Communications, Integrated Optical Systems. Brashear is well known for the ground-based telescopes it has manufactured at its facilities and delivered to satisfied customers. Optics from meter-class up to 8.3 meters diameter have been fabricated in Brashear's facilities. Brashear has demonstrated capabilities for large spaceborne optics. We describe in this paper both legacy and new Brashear capabilities for high performance spaceborne optics.
Optical System Design and Integration of the Mercury Laser Altimeter
NASA Technical Reports Server (NTRS)
Ramos-Izquierdo, Luis; Scott, V. Stanley, III; Schmidt, Stephen; Britt, Jamie; Mamakos, William; Trunzo, Raymond; Cavanaugh, John; Miller, Roger
2005-01-01
The Mercury Laser Altimeter (MLA). developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography via laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented.
Embedded 100 Gbps Photonic Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznia, Charlie
This innovation to fiber optic component technology increases the performance, reduces the size and reduces the power consumption of optical communications within dense network systems, such as advanced distributed computing systems and data centers. VCSEL technology is enabling short-reach (< 100 m) and >100 Gbps optical interconnections over multi-mode fiber in commercial applications.
NASA Astrophysics Data System (ADS)
Balaji, K. A.; Prabu, K.
2018-03-01
There is an immense demand for high bandwidth and high data rate systems, which is fulfilled by wireless optical communication or free space optics (FSO). Hence FSO gained a pivotal role in research which has a added advantage of both cost-effective and licence free huge bandwidth. Unfortunately the optical signal in free space suffers from irradiance and phase fluctuations due to atmospheric turbulence and pointing errors which deteriorates the signal and degrades the performance of communication system over longer distance which is undesirable. In this paper, we have considered polarization shift keying (POLSK) system applied with wavelength and time diversity technique over Malaga(M)distribution to mitigate turbulence induced fading. We derived closed form mathematical expressions for estimating the systems outage probability and average bit error rate (BER). Ultimately from the results we can infer that wavelength and time diversity schemes enhances these systems performance.
Geometrical calibration of an AOTF hyper-spectral imaging system
NASA Astrophysics Data System (ADS)
Špiclin, Žiga; Katrašnik, Jaka; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2010-02-01
Optical aberrations present an important problem in optical measurements. Geometrical calibration of an imaging system is therefore of the utmost importance for achieving accurate optical measurements. In hyper-spectral imaging systems, the problem of optical aberrations is even more pronounced because optical aberrations are wavelength dependent. Geometrical calibration must therefore be performed over the entire spectral range of the hyper-spectral imaging system, which is usually far greater than that of the visible light spectrum. This problem is especially adverse in AOTF (Acousto- Optic Tunable Filter) hyper-spectral imaging systems, as the diffraction of light in AOTF filters is dependent on both wavelength and angle of incidence. Geometrical calibration of hyper-spectral imaging system was performed by stable caliber of known dimensions, which was imaged at different wavelengths over the entire spectral range. The acquired images were then automatically registered to the caliber model by both parametric and nonparametric transformation based on B-splines and by minimizing normalized correlation coefficient. The calibration method was tested on an AOTF hyper-spectral imaging system in the near infrared spectral range. The results indicated substantial wavelength dependent optical aberration that is especially pronounced in the spectral range closer to the infrared part of the spectrum. The calibration method was able to accurately characterize the aberrations and produce transformations for efficient sub-pixel geometrical calibration over the entire spectral range, finally yielding better spatial resolution of hyperspectral imaging system.
Optical Air Flow Measurements in Flight
NASA Technical Reports Server (NTRS)
Bogue, Rodney K.; Jentink, Henk W.
2004-01-01
This document has been written to assist the flight-test engineer and researcher in using optical flow measurements in flight applications. The emphasis is on describing tradeoffs in system design to provide desired measurement performance as currently understood. Optical system components are discussed with examples that illustrate the issues. The document concludes with descriptions of optical measurement systems designed for a variety of applications including aeronautics research, airspeed measurement, and turbulence hazard detection. Theoretical discussion is minimized, but numerous references are provided to supply ample opportunity for the reader to understand the theoretical underpinning of optical concepts.
Vibration Performance Comparison Study on Current Fiber Optic Connector Technologies
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Thomes Jr., William J.; LaRocca, Frank V.; Switzer, Robert C.; Chuska, Rick F.; Macmurphy, Shawn L.
2008-01-01
Fiber optic cables are increasingly being used in harsh environments where they are subjected to vibration. Understanding the degradation in performance under these conditions is essential for integration of the fibers into the given application. System constraints oftentimes require fiber optic connectors so subsystems can be removed or assembled as needed. In the present work, various types of fiber optic connectors were monitored in-situ during vibration testing to examine the transient change in optical transmission and the steady-state variation following the event. Inspection of the fiber endfaces and connectors was performed at chosen intervals throughout the testing.
Li, Ming; Cvijetic, Milorad
2015-02-20
We evaluate the performance of the coherent free space optics (FSO) employing quadrature array phase-shift keying (QPSK) modulation over the maritime atmosphere with atmospheric turbulence compensated by use of adaptive optics (AO). We have established a comprehensive FSO channel model for maritime conditions and also made a comprehensive comparison of performance between the maritime and terrestrial atmospheric links. The FSO links are modeled based on the intensity attenuation resulting from scattering and absorption effects, the log-amplitude fluctuations, and the phase distortions induced by turbulence. The obtained results show that the FSO system performance measured by the bit-error-rate (BER) can be significantly improved when the optimization of the AO system is achieved. Also, we find that the higher BER is observed in the maritime FSO channel with atmospheric turbulence, as compared to the terrestrial FSO systems if they experience the same turbulence strength.
Chen, Ming; He, Jing; Tang, Jin; Wu, Xian; Chen, Lin
2014-07-28
In this paper, a FPGAs-based real-time adaptively modulated 256/64/16QAM-encoded base-band OFDM transceiver with a high spectral efficiency up to 5.76bit/s/Hz is successfully developed, and experimentally demonstrated in a simple intensity-modulated direct-detection optical communication system. Experimental results show that it is feasible to transmit a raw signal bit rate of 7.19Gbps adaptively modulated real-time optical OFDM signal over 20km and 50km single mode fibers (SMFs). The performance comparison between real-time and off-line digital signal processing is performed, and the results show that there is a negligible power penalty. In addition, to obtain the best transmission performance, direct-current (DC) bias voltage for MZM and launch power into optical fiber links are explored in the real-time optical OFDM systems.
Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems
NASA Technical Reports Server (NTRS)
Richards, Lance; Parker, Allen; Chan, Patrick
2014-01-01
The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles. This is the regular update of the Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems website.
NASA Astrophysics Data System (ADS)
Gilles, Luc; Wang, Lianqi; Ellerbroek, Brent
2010-07-01
This paper describes the modeling efforts undertaken in the past couple of years to derive wavefront error (WFE) performance estimates for the Narrow Field Infrared Adaptive Optics System (NFIRAOS), which is the facility laser guide star (LGS) dual-conjugate adaptive optics (AO) system for the Thirty Meter Telescope (TMT). The estimates describe the expected performance of NFIRAOS as a function of seeing on Mauna Kea, zenith angle, and galactic latitude (GL). They have been developed through a combination of integrated AO simulations, side analyses, allocations, lab and lidar experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W.; Yun, G. S.; Nam, Y.
2010-10-15
Recently, two-dimensional microwave imaging diagnostics such as the electron cyclotron emission imaging (ECEI) system and microwave imaging reflectometry (MIR) have been developed to study magnetohydrodynamics instabilities and turbulence in magnetically confined plasmas. These imaging systems utilize large optics to collect passive emission or reflected radiation. The design of this optics can be classified into two different types: reflective or refractive optical systems. For instance, an ECEI/MIR system on the TEXTOR tokamak [Park et al., Rev. Sci. Instrum. 75, 3787 (2004)] employed the reflective optics which consisted of two large mirrors, while the TEXTOR ECEI upgrade [B. Tobias et al., Rev.more » Sci. Instrum. 80, 093502 (2009)] and systems on DIII-D, ASDEX-U, and KSTAR adopted refractive systems. Each system has advantages and disadvantages in the standing wave problem and optical aberrations. In this paper, a comparative study between the two optical systems has been performed in order to design a MIR system for KSTAR.« less
Polymer waveguides for electro-optical integration in data centers and high-performance computers.
Dangel, Roger; Hofrichter, Jens; Horst, Folkert; Jubin, Daniel; La Porta, Antonio; Meier, Norbert; Soganci, Ibrahim Murat; Weiss, Jonas; Offrein, Bert Jan
2015-02-23
To satisfy the intra- and inter-system bandwidth requirements of future data centers and high-performance computers, low-cost low-power high-throughput optical interconnects will become a key enabling technology. To tightly integrate optics with the computing hardware, particularly in the context of CMOS-compatible silicon photonics, optical printed circuit boards using polymer waveguides are considered as a formidable platform. IBM Research has already demonstrated the essential silicon photonics and interconnection building blocks. A remaining challenge is electro-optical packaging, i.e., the connection of the silicon photonics chips with the system. In this paper, we present a new single-mode polymer waveguide technology and a scalable method for building the optical interface between silicon photonics chips and single-mode polymer waveguides.
Electro-Optic Computing Architectures. Volume I
1998-02-01
The objective of the Electro - Optic Computing Architecture (EOCA) program was to develop multi-function electro - optic interfaces and optical...interconnect units to enhance the performance of parallel processor systems and form the building blocks for future electro - optic computing architectures...Specifically, three multi-function interface modules were targeted for development - an Electro - Optic Interface (EOI), an Optical Interconnection Unit (OW
NASA Astrophysics Data System (ADS)
Donnelly, William J., III
2012-06-01
PURPOSE: To present a commercially available optical modeling software tool to assist the development of optical instrumentation and systems that utilize and/or integrate with the human eye. METHODS: A commercially available flexible eye modeling system is presented, the Advanced Human Eye Model (AHEM). AHEM is a module that the engineer can use to perform rapid development and test scenarios on systems that integrate with the eye. Methods include merging modeled systems initially developed outside of AHEM and performing a series of wizard-type operations that relieve the user from requiring an optometric or ophthalmic background to produce a complete eye inclusive system. Scenarios consist of retinal imaging of targets and sources through integrated systems. Uses include, but are not limited to, optimization, telescopes, microscopes, spectacles, contact and intraocular lenses, ocular aberrations, cataract simulation and scattering, and twin eye model (binocular) systems. RESULTS: Metrics, graphical data, and exportable CAD geometry are generated from the various modeling scenarios.
NASA Astrophysics Data System (ADS)
Fischer, Robert E.; Smith, Warren J.; Harvey, James
1986-01-01
Papers dealing with current materials for gradient-index optics, an intelligent data-base system for optical designers; tilted mirror systems; a null-lens design approach for centrally obscured components; the use of the vector aberration theory to optimize an unobscured optical system; multizone bifocal contact lens design; and the concentric meniscus element are presented. Topics discussed include optical manufacturing in the Far East; the optical performance of molded-glass lenses for optical memory applications; through-wafer optical interconnects for multiwafer wafer-scale integrated architecture; optical thin-flim monitoring using optical fibers; aerooptical testing; optical inspection; and a system analysis program for a 32K microcomputer. Consideration is given to various theories, algorithms, and applications of diffraction, a vector formulation of a ray-equivalent method for Gaussian beam propagation; Fourier optical analysis of aberrations in focused laser beams; holography and moire interferometry; and phase-conjugate optical correctors for diffraction-limited applications.
Laser line scan performance prediction
NASA Astrophysics Data System (ADS)
Mahoney, Kevin L.; Schofield, Oscar; Kerfoot, John; Giddings, Tom; Shirron, Joe; Twardowski, Mike
2007-09-01
The effectiveness of sensors that use optical measurements for the laser detection and identification of subsurface mines is directly related to water clarity. The primary objective of the work presented here was to use the optical data collected by UUV (Slocum Glider) surveys of an operational areas to estimate the performance of an electro-optical identification (EOID) Laser Line Scan (LLS) system during RIMPAC 06, an international naval exercise off the coast of Hawaii. Measurements of optical backscattering and beam attenuation were made with a Wet Labs, Inc. Scattering Absorption Meter (SAM), mounted on a Rutgers University/Webb Research Slocum glider. The optical data universally indicated extremely clear water in the operational area, except very close to shore. The beam-c values from the SAM sensor were integrated to three attenuation lengths to provide an estimate of how well the LLS would perform in detecting and identifying mines in the operational areas. Additionally, the processed in situ optical data served as near-real-time input to the Electro-Optic Detection Simulator, ver. 3 (EODES-3; Metron, Inc.) model for EOID performance prediction. Both methods of predicting LLS performance suggested a high probability of detection and probability of identification. These predictions were validated by the actual performance of the LLS as the EOID system yielded imagery from which reliable mine identification could be made. Future plans include repeating this work in more optically challenging water types to demonstrate the utility of pre-mission UUV surveys of operational areas as a tactical decision aid for planning EOID missions.
Performance of the upgraded LTP-II at the ALS Optical Metrology Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Advanced Light Source; Yashchuk, Valeriy V; Kirschman, Jonathan L.
2008-07-14
The next generation of synchrotrons and free electron laser facilities requires x-ray optical systems with extremely high performance, generally of diffraction limited quality. Fabrication and use of such optics requires adequate, highly accurate metrology and dedicated instrumentation. Previously, we suggested ways to improve the performance of the Long Trace Profiler (LTP), a slope measuring instrument widely used to characterize x-ray optics at long spatial wavelengths. The main way is use of a CCD detector and corresponding technique for calibration of photo-response non-uniformity [J. L. Kirschman, et al., Proceedings of SPIE 6704, 67040J (2007)]. The present work focuses on the performancemore » and characteristics of the upgraded LTP-II at the ALS Optical Metrology Laboratory. This includes a review of the overall aspects of the design, control system, the movement and measurement regimes for the stage, and analysis of the performance by a slope measurement of a highly curved super-quality substrate with less than 0.3 microradian (rms)slope variation.« less
New Light Sources and Concepts for Electro-Optic Sampling
1994-03-01
Research to improve electro - optic sampling led to the development of several high performance optical phase modulators. These phase modulators serve...method of optical pulse shape measurement was demonstrated with 3 ps time resolution, excellent power sensitivity and relative system simplicity. These experiments have opened up the field of temporal optics. Electro - optic sampling.
Analysis of InP-based QCLs designed for application in optical transmitter of free-space optics
NASA Astrophysics Data System (ADS)
Pierscinski, Kamil; Mikołajczyk, Janusz; Szabra, Dariusz; Pierścińska, Dorota; Gutowski, Piotr; Bielecki, Zbigniew; Bugajski, Maciej
2017-10-01
In this paper, the study of AlInAs/InGaAs/InP Quantum Cascade Lasers application in Free Space Optical data link is performed. Implementation of such FSO link operated in long-wavelength infrared (LWIR: 8-12 μm) will be unique for construction of so-called RF/FSO hybrid communication system. The range of longer wavelengths provides better data transfer performance in the case of severe weather conditions, especially, fog, low haze or air turbulence. In the frame of this work, series of QCLs for application in FSO system were examined. They are characterized by different geometries and constructions towards best performance in optical link systems operated in the wavelength range of 8-12 μm. The preliminary test of QCLs included electrical measurements of pulsed light-current-voltage characteristics and time-resolved spectra. The obtained results made it possible to determine operation point for FSO. Their modulation performances were tested using the laboratory laser drivers. Based on measurements, both power and time parameters of QCLs pulses were investigated. These results defined critical values for FSO system. The second part of the analysis concerned the spatial parameters of QCLs radiation. Knowledge of spatial characteristics of emission is vital for FSO optics construction. To characterize spatial properties of beams, far-field patterns of emission were registered. Finally, the obtained results made it possible to optimize the optical transmitter construction and further performance of FSO laboratory model. This research was supported by The Polish National Centre for Research and Development grant DOB-BIO8/01/01/2016.
2015-09-30
changes in near-shore water columns and support companion laser imaging system tests. The physical, biological and optical oceanographic data...developed under this project will be used as input to optical and environmental models to assess the performance characteristics of laser imaging systems...OBJECTIVES We proposed to characterize the physical, biological and optical fields present during deployments of the Streak Tube Imaging Lidar
NASA Astrophysics Data System (ADS)
Kiyashko, B. V.
1995-10-01
Partially coherent optical systems for signal processing are considered. The transfer functions are formed in these systems by interference of polarised light transmitted by an anisotropic medium. It is shown that such systems can perform various integral transformations of both optical and electric signals, in particular, two-dimensional Fourier and Fresnel transformations, as well as spectral analysis of weak light sources. It is demonstrated that such systems have the highest luminosity and vibration immunity among the systems with interference formation of transfer functions. An experimental investigation is reported of the application of these systems in the processing of signals from a linear hydroacoustic antenna array, and in measurements of the optical spectrum and of the intrinsic noise.
A novel design of optical CDMA system based on TCM and FFH
NASA Astrophysics Data System (ADS)
Fang, Jun-Bin; Xu, Zhi-Hai; Huang, Hong-bin; Zheng, Liming; Chen, Shun-er; Liu, Wei-ping
2005-02-01
For the application in Passive Optical Network (PON), a novel design of OCDMA system scheme is proposed in this paper. There are two key components included in this scheme: a new kind of OCDMA encoder/decoder system based on TCM and FFH and an improved Optical Line Terminal (OLT) receiving system with improved anti-interference performance by the use of Long Period Fiber Grating (LPFG). In the encoder/decoder system, Trellis Coded Modulation (TCM) encoder is applied in front of the FFH modulator. Original signal firstly is encoded through TCM encoder, and then the redundant code out of the TCM encoder will be mapped into one of the FFH modulation signal subsets for transmission. On the receiver (decoder) side, transmitting signal is demodulated through FFH and decoded by trellis decoder. Owing to the fact that high coding gain can be acquired by TCM without adding transmitting band and reducing transmitting speed, TCM is utilized to ameliorate bit error performance and reduce multi-user interference. In the OLT receiving system, EDFA and LPFG are placed in front of decoder to get excellent gain flatness on a large bandwidth, and Optical Hard Limiter (OHL) is also deployed to improve detection performance, through which the anti-interference performance of receiving system can be greatly enhanced. At the same time, some software is used to simulate the system performance for further analysis and authentication. The related work in this paper provides a valuable reference to the research.
Meeting the challenges of developing LED-based projection displays
NASA Astrophysics Data System (ADS)
Geißler, Enrico
2006-04-01
The main challenge in developing a LED-based projection system is to meet the brightness requirements of the market. Therefore a balanced combination of optical, electrical and thermal parameters must be reached to achieve these performance and cost targets. This paper describes the system design methodology for a digital micromirror display (DMD) based optical engine using LEDs as the light source, starting at the basic physical and geometrical parameters of the DMD and other optical elements through characterization of the LEDs to optimizing the system performance by determining optimal driving conditions. LEDs have a luminous flux density which is just at the threshold of acceptance in projection systems and thus only a fully optimized optical system with a matched set of LEDs can be used. This work resulted in two projection engines, one for a compact pocket projector and the other for a rear projection television, both of which are currently in commercialization.
LEDs on the threshold for use in projection systems: challenges, limitations and applications
NASA Astrophysics Data System (ADS)
Moffat, Bryce Anton
2006-02-01
The use of coloured LEDs as light sources in digital projectors depends on an optimal combination of optical, electrical and thermal parameters to meet the performance and cost targets needed to enable these products to compete in the marketplace. This paper describes the system design methodology for a digital micromirror display (DMD) based optical engine using LEDs as the light source, starting at the basic physical and geometrical parameters of the DMD and other optical elements through characterization of the LEDs to optimizing the system performance by determining optimal driving conditions. The main challenge in using LEDs is the luminous flux density, which is just at the threshold of acceptance in projection systems and thus only a fully optimized optical system with a uniformly bright set of LEDs can be used. As a result of this work we have developed two applications: a compact pocket projector and a rear projection television.
Optical multicast system for data center networks.
Samadi, Payman; Gupta, Varun; Xu, Junjie; Wang, Howard; Zussman, Gil; Bergman, Keren
2015-08-24
We present the design and experimental evaluation of an Optical Multicast System for Data Center Networks, a hardware-software system architecture that uniquely integrates passive optical splitters in a hybrid network architecture for faster and simpler delivery of multicast traffic flows. An application-driven control plane manages the integrated optical and electronic switched traffic routing in the data plane layer. The control plane includes a resource allocation algorithm to optimally assign optical splitters to the flows. The hardware architecture is built on a hybrid network with both Electronic Packet Switching (EPS) and Optical Circuit Switching (OCS) networks to aggregate Top-of-Rack switches. The OCS is also the connectivity substrate of splitters to the optical network. The optical multicast system implementation requires only commodity optical components. We built a prototype and developed a simulation environment to evaluate the performance of the system for bulk multicasting. Experimental and numerical results show simultaneous delivery of multicast flows to all receivers with steady throughput. Compared to IP multicast that is the electronic counterpart, optical multicast performs with less protocol complexity and reduced energy consumption. Compared to peer-to-peer multicast methods, it achieves at minimum an order of magnitude higher throughput for flows under 250 MB with significantly less connection overheads. Furthermore, for delivering 20 TB of data containing only 15% multicast flows, it reduces the total delivery energy consumption by 50% and improves latency by 55% compared to a data center with a sole non-blocking EPS network.
Minimum resolvable power contrast model
NASA Astrophysics Data System (ADS)
Qian, Shuai; Wang, Xia; Zhou, Jingjing
2018-01-01
Signal-to-noise ratio and MTF are important indexs to evaluate the performance of optical systems. However,whether they are used alone or joint assessment cannot intuitively describe the overall performance of the system. Therefore, an index is proposed to reflect the comprehensive system performance-Minimum Resolvable Radiation Performance Contrast (MRP) model. MRP is an evaluation model without human eyes. It starts from the radiance of the target and the background, transforms the target and background into the equivalent strips,and considers attenuation of the atmosphere, the optical imaging system, and the detector. Combining with the signal-to-noise ratio and the MTF, the Minimum Resolvable Radiation Performance Contrast is obtained. Finally the detection probability model of MRP is given.
NASA Astrophysics Data System (ADS)
Dinten, Jean-Marc; Petié, Philippe; da Silva, Anabela; Boutet, Jérôme; Koenig, Anne; Hervé, Lionel; Berger, Michel; Laidevant, Aurélie; Rizo, Philippe
2006-03-01
Optical imaging of fluorescent probes is an essential tool for investigation of molecular events in small animals for drug developments. In order to get localization and quantification information of fluorescent labels, CEA-LETI has developed efficient approaches in classical reflectance imaging as well as in diffuse optical tomographic imaging with continuous and temporal signals. This paper presents an overview of the different approaches investigated and their performances. High quality fluorescence reflectance imaging is obtained thanks to the development of an original "multiple wavelengths" system. The uniformity of the excitation light surface area is better than 15%. Combined with the use of adapted fluorescent probes, this system enables an accurate detection of pathological tissues, such as nodules, beneath the animal's observed area. Performances for the detection of ovarian nodules on a nude mouse are shown. In order to investigate deeper inside animals and get 3D localization, diffuse optical tomography systems are being developed for both slab and cylindrical geometries. For these two geometries, our reconstruction algorithms are based on analytical expression of light diffusion. Thanks to an accurate introduction of light/matter interaction process in the algorithms, high quality reconstructions of tumors in mice have been obtained. Reconstruction of lung tumors on mice are presented. By the use of temporal diffuse optical imaging, localization and quantification performances can be improved at the price of a more sophisticated acquisition system and more elaborate information processing methods. Such a system based on a pulsed laser diode and a time correlated single photon counting system has been set up. Performances of this system for localization and quantification of fluorescent probes are presented.
Global optimization method based on ray tracing to achieve optimum figure error compensation
NASA Astrophysics Data System (ADS)
Liu, Xiaolin; Guo, Xuejia; Tang, Tianjin
2017-02-01
Figure error would degrade the performance of optical system. When predicting the performance and performing system assembly, compensation by clocking of optical components around the optical axis is a conventional but user-dependent method. Commercial optical software cannot optimize this clocking. Meanwhile existing automatic figure-error balancing methods can introduce approximate calculation error and the build process of optimization model is complex and time-consuming. To overcome these limitations, an accurate and automatic global optimization method of figure error balancing is proposed. This method is based on precise ray tracing to calculate the wavefront error, not approximate calculation, under a given elements' rotation angles combination. The composite wavefront error root-mean-square (RMS) acts as the cost function. Simulated annealing algorithm is used to seek the optimal combination of rotation angles of each optical element. This method can be applied to all rotational symmetric optics. Optimization results show that this method is 49% better than previous approximate analytical method.
Hyde, Damon; Schulz, Ralf; Brooks, Dana; Miller, Eric; Ntziachristos, Vasilis
2009-04-01
Hybrid imaging systems combining x-ray computed tomography (CT) and fluorescence tomography can improve fluorescence imaging performance by incorporating anatomical x-ray CT information into the optical inversion problem. While the use of image priors has been investigated in the past, little is known about the optimal use of forward photon propagation models in hybrid optical systems. In this paper, we explore the impact on reconstruction accuracy of the use of propagation models of varying complexity, specifically in the context of these hybrid imaging systems where significant structural information is known a priori. Our results demonstrate that the use of generically known parameters provides near optimal performance, even when parameter mismatch remains.
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Qiu, Kun; Zhou, Heng; Ling, Yun; Wang, Yawei; Xu, Bo
2010-03-01
In this paper, the tunable multiple optical orthogonal codes sequences (MOOCS)-based optical label for optical packet switching (OPS) (MOOCS-OPS) is experimentally demonstrated for the first time. The tunable MOOCS-based optical label is performed by using fiber Bragg grating (FBG)-based optical en/decoders group and optical switches configured by using Field Programmable Gate Array (FPGA), and the optical label is erased by using Semiconductor Optical Amplifier (SOA). Some waveforms of the MOOCS-based optical label, optical packet including the MOOCS-based optical label and the payloads are obtained, the switching control mechanism and the switching matrix are discussed, the bit error rate (BER) performance of this system is also studied. These experimental results show that the tunable MOOCS-OPS scheme is effective.
NASA Astrophysics Data System (ADS)
Parkash, Sooraj; Sharma, Anurag; Singh, Harsukhpreet
2016-09-01
This paper successfully demonstrates bidirectional wavelength division multiplexing passive optical network (WDM-PON) system for 32 channels, 0.8 nm (100 GHz) channels spacing with 3.5 GHz filter bandwidth. The system delivers 160 GB/s data rate and 80 GB/s data rate in downstream and upstream, respectively. The optical source for downstream data and upstream data is mode-locked laser at central office and reflective semiconductor optical amplifier (RSOA) at optical network unit. The maximum reach of designed system is 50 km without using any dispersion compensation scheme. This paper comprises comparison of series of modulation format in downstream and upstream such as SOLITON, NRZ, RZ, MANCHESTER, CSRZ and CRZ-DPSK and optimization of the performance of designed system. It has been observed that CRZ-DPSK/NRZ gives best performance in downstream and upstream transmission for designed system. The simulation work report of minimum BER is e-13 for CRZ-DPSK in downstream and e-16 for NRZ in upstream transmission in case of 32-channel bidirectional WDM-PON.
NASA Astrophysics Data System (ADS)
Singh, Sukhbir; Singh, Surinder
2017-11-01
This paper investigated the effect of FWM and its suppression using optical phase conjugation modules in dispersion managed hybrid WDM-OTDM multicast overlay system. Interaction between propagating wavelength signals at higher power level causes new FWM component generation that can significant limit the system performance. OPC module consists of the pump signal and 0.6 km HNLF implemented in midway of optical link to generate destructive phase FWM components. Investigation revealed that by use of even OPC module in optical link reduces the FWM power and mitigate the interaction between wavelength signals at variable signal input power, dispersion parameter (β2) and transmission distance. System performance comparison is also made between without DM-OPC module, with DM and with DM-OPC module in scenario of FWM tolerance. The BER performance of hybrid WDM-OTDM multicast system using OPC module is improved by multiplication factor of 2 as comparable to dispersion managed and coverage distance is increased by factor of 2 as in Singh and Singh (2016).
NASA Astrophysics Data System (ADS)
Pravdivtsev, Andrey V.
2012-06-01
The article presents the approach to the design wide-angle optical systems with special illumination and instantaneous field of view (IFOV) requirements. The unevenness of illumination reduces the dynamic range of the system, which negatively influence on the system ability to perform their task. The result illumination on the detector depends among other factors from the IFOV changes. It is also necessary to consider IFOV in the synthesis of data processing algorithms, as it directly affects to the potential "signal/background" ratio for the case of statistically homogeneous backgrounds. A numerical-analytical approach that simplifies the design of wideangle optical systems with special illumination and IFOV requirements is presented. The solution can be used for optical systems which field of view greater than 180 degrees. Illumination calculation in optical CAD is based on computationally expensive tracing of large number of rays. The author proposes to use analytical expression for some characteristics which illumination depends on. The rest characteristic are determined numerically in calculation with less computationally expensive operands, the calculation performs not every optimization step. The results of analytical calculation inserts in the merit function of optical CAD optimizer. As a result we reduce the optimizer load, since using less computationally expensive operands. It allows reducing time and resources required to develop a system with the desired characteristics. The proposed approach simplifies the creation and understanding of the requirements for the quality of the optical system, reduces the time and resources required to develop an optical system, and allows creating more efficient EOS.
Fiber optic sensors for infrastructure applications
DOT National Transportation Integrated Search
1998-02-01
Fiber optic sensor technology offers the possibility of implementing "nervous systems" for infrastructure elements that allow high performance, cost effective health and damage assessment systems to be achieved. This is possible, largely due to syner...
Suri, D; Abujam, B; Gupta, A; Rawat, A; Saikia, B; Walker Minz, R; Gupta, V; Bansal, R; Kaushik, S; Singh, S
2016-01-01
The ocular system can be affected in systemic lupus erythematosus (SLE) in one third of patients. However, optic nerve involvement is relatively uncommon, but is more so in pediatric SLE patients, where it can occur in 1% of cases. We report three children with SLE who presented with optic nerve involvement. Two children had optic neuritis, with optic neuritis being the first manifestation in one child. The third child had ischaemic optic neuropathy secondary to antiphospholipid syndrome. A careful work up for SLE should be performed in every child with optic nerve disease. Prompt diagnosis and early treatment results in a better prognosis. © The Author(s) 2015.
Characterization and optimization of an eight-channel time-multiplexed pulse-shaping system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorrer, Christophe; Bittle, Wade A.; Cuffney, Robert
High-performance optical pulse shaping is paramount to photonics and lasers applications for which high-resolution optical waveforms must be generated. We investigate the design and performance of a time-multiplexed pulse shaping (TMPS) system in which optical waveforms from a single pulse-shaping unit are demultiplexed and retimed before being sent to different optical systems. This architecture has the advantages of low cost and low relative jitter between optical waveforms because a single pulse-shaping system, e.g., a high-performance arbitrary waveform generator driving a Mach-Zehnder modulator, generates all the waveforms. We demonstrate an eight-channel TMPS system based on a 1 × 8 LiNbO 3more » demultiplexer composed of four stages of 1 × 2 Δβ phase-reversal switches that allow for demultiplexing and extinction enhancement via application of a control voltage modifying the propagation constant difference between adjacent waveguides. It is shown that optimal demultiplexing, i.e. low insertion loss and high extinction ratio between channels, requires optimization in dynamic operation because of the slow component of the switches’ response. Lastly, we demonstrate losses lower than 5 dB, extinction ratios of the order of 70 dB for a four-channel system and 50 dB for an eight-channel system, and jitter added by the demultiplexer smaller than 0.1 ps.« less
Characterization and optimization of an eight-channel time-multiplexed pulse-shaping system
Dorrer, Christophe; Bittle, Wade A.; Cuffney, Robert; ...
2016-12-06
High-performance optical pulse shaping is paramount to photonics and lasers applications for which high-resolution optical waveforms must be generated. We investigate the design and performance of a time-multiplexed pulse shaping (TMPS) system in which optical waveforms from a single pulse-shaping unit are demultiplexed and retimed before being sent to different optical systems. This architecture has the advantages of low cost and low relative jitter between optical waveforms because a single pulse-shaping system, e.g., a high-performance arbitrary waveform generator driving a Mach-Zehnder modulator, generates all the waveforms. We demonstrate an eight-channel TMPS system based on a 1 × 8 LiNbO 3more » demultiplexer composed of four stages of 1 × 2 Δβ phase-reversal switches that allow for demultiplexing and extinction enhancement via application of a control voltage modifying the propagation constant difference between adjacent waveguides. It is shown that optimal demultiplexing, i.e. low insertion loss and high extinction ratio between channels, requires optimization in dynamic operation because of the slow component of the switches’ response. Lastly, we demonstrate losses lower than 5 dB, extinction ratios of the order of 70 dB for a four-channel system and 50 dB for an eight-channel system, and jitter added by the demultiplexer smaller than 0.1 ps.« less
Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices
NASA Astrophysics Data System (ADS)
Di Sieno, Laura; Nissinen, Jan; Hallman, Lauri; Martinenghi, Edoardo; Contini, Davide; Pifferi, Antonio; Kostamovaara, Juha; Mora, Alberto Dalla
2017-08-01
We validate a miniaturized pulsed laser source for use in time-domain (TD) diffuse optics, following rigorous and shared protocols for performance assessment of this class of devices. This compact source (12×6 mm2) has been previously developed for range finding applications and is able to provide short, high energy (˜100 ps, ˜0.5 nJ) optical pulses at up to 1 MHz repetition rate. Here, we start with a basic level laser characterization with an analysis of suitability of this laser for the diffuse optics application. Then, we present a TD optical system using this source and its performances in both recovering optical properties of tissue-mimicking homogeneous phantoms and in detecting localized absorption perturbations. Finally, as a proof of concept of in vivo application, we demonstrate that the system is able to detect hemodynamic changes occurring in the arm of healthy volunteers during a venous occlusion. Squeezing the laser source in a small footprint removes a key technological bottleneck that has hampered so far the realization of a miniaturized TD diffuse optics system, able to compete with already assessed continuous-wave devices in terms of size and cost, but with wider performance potentialities, as demonstrated by research over the last two decades.
NASA Technical Reports Server (NTRS)
Cameron, R.; Aldcroft, T.; Podgorski, W. A.; Freeman, M. D.
2000-01-01
The aspect determination system of the Chandra X-ray Observatory plays a key role in realizing the full potential of Chandra's X-ray optics and detectors. We review the performance of the spacecraft hardware components and sub-systems, which provide information for both real time control of the attitude and attitude stability of the Chandra Observatory and also for more accurate post-facto attitude reconstruction. These flight components are comprised of the aspect camera (star tracker) and inertial reference units (gyros), plus the fiducial lights and fiducial transfer optics which provide an alignment null reference system for the science instruments and X-ray optics, together with associated thermal and structural components. Key performance measures will be presented for aspect camera focal plane data, gyro performance both during stable pointing and during maneuvers, alignment stability and mechanism repeatability.
Integrated Modeling of Optical Systems (IMOS): An Assessment and Future Directions
NASA Technical Reports Server (NTRS)
Moore, Gregory; Broduer, Steve (Technical Monitor)
2001-01-01
Integrated Modeling of Optical Systems (IMOS) is a finite element-based code combining structural, thermal, and optical ray-tracing capabilities in a single environment for analysis of space-based optical systems. We'll present some recent examples of IMOS usage and discuss future development directions. Due to increasing model sizes and a greater emphasis on multidisciplinary analysis and design, much of the anticipated future work will be in the areas of improved architecture, numerics, and overall performance and analysis integration.
NASA Astrophysics Data System (ADS)
Sakarya, Doǧan Uǧur
2017-10-01
Beam steering optical arrangement needs less volume envelope for same field of regard than other gimbal approaches. Both for imaging and four quadrant missile applications, volume is critical parameter limiting system performance. Therefore, a conceptual design of beam steering method has been focused on both imaging and four quadrant missiles. In this study; four different optical designs have been made by using both beam steering and regular method for mid-wave infra-red imaging and four quadrant systems. Optical designs performances have been illustrated in simulation results. By using manufactured Risley prisms, some experimental results are conducted to compare simulations results.
Alić, Nikola; Papen, George; Saperstein, Robert; Milstein, Laurence; Fainman, Yeshaiahu
2005-06-13
Exact signal statistics for fiber-optic links containing a single optical pre-amplifier are calculated and applied to sequence estimation for electronic dispersion compensation. The performance is evaluated and compared with results based on the approximate chi-square statistics. We show that detection in existing systems based on exact statistics can be improved relative to using a chi-square distribution for realistic filter shapes. In contrast, for high-spectral efficiency systems the difference between the two approaches diminishes, and performance tends to be less dependent on the exact shape of the filter used.
20-Gbps optical LiFi transport system.
Ying, Cheng-Ling; Lu, Hai-Han; Li, Chung-Yi; Cheng, Chun-Jen; Peng, Peng-Chun; Ho, Wen-Jeng
2015-07-15
A 20-Gbps optical light-based WiFi (LiFi) transport system employing vertical-cavity surface-emitting laser (VCSEL) and external light injection technique with 16-quadrature amplitude modulation (QAM)-orthogonal frequency-division multiplexing (OFDM) modulating signal is proposed. Good bit error rate (BER) performance and clear constellation map are achieved in our proposed optical LiFi transport systems. An optical LiFi transport system, delivering 16-QAM-OFDM signal over a 6-m free-space link, with a data rate of 20 Gbps, is successfully demonstrated. Such a 20-Gbps optical LiFi transport system provides the advantage of a free-space communication link for high data rates, which can accelerate the visible laser light communication (VLLC) deployment.
NASA Astrophysics Data System (ADS)
Calabretta, Nicola; Miao, Wang; Dorren, Harm
2016-03-01
Traffic in data centers networks (DCNs) is steadily growing to support various applications and virtualization technologies. Multi-tenancy enabling efficient resource utilization is considered as a key requirement for the next generation DCs resulting from the growing demands for services and applications. Virtualization mechanisms and technologies can leverage statistical multiplexing and fast switch reconfiguration to further extend the DC efficiency and agility. We present a novel high performance flat DCN employing bufferless and distributed fast (sub-microsecond) optical switches with wavelength, space, and time switching operation. The fast optical switches can enhance the performance of the DCNs by providing large-capacity switching capability and efficiently sharing the data plane resources by exploiting statistical multiplexing. Benefiting from the Software-Defined Networking (SDN) control of the optical switches, virtual DCNs can be flexibly created and reconfigured by the DCN provider. Numerical and experimental investigations of the DCN based on the fast optical switches show the successful setup of virtual network slices for intra-data center interconnections. Experimental results to assess the DCN performance in terms of latency and packet loss show less than 10^-5 packet loss and 640ns end-to-end latency with 0.4 load and 16- packet size buffer. Numerical investigation on the performance of the systems when the port number of the optical switch is scaled to 32x32 system indicate that more than 1000 ToRs each with Terabit/s interface can be interconnected providing a Petabit/s capacity. The roadmap to photonic integration of large port optical switches will be also presented.
Impacts of underwater turbulence on acoustical and optical signals and their linkage.
Hou, Weilin; Jarosz, Ewa; Woods, Sarah; Goode, Wesley; Weidemann, Alan
2013-02-25
Acoustical and optical signal transmission underwater is of vital interest for both civilian and military applications. The range and signal to noise during the transmission, as a function of system and water optical properties, in terms of absorption and scattering, determines the effectiveness of deployed electro-optical (EO) technology. The impacts from turbulence have been demonstrated to affect system performance comparable to those from particles by recent studies. This paper examines the impacts from underwater turbulence on both acoustic scattering and EO imaging degradation, and establishes a framework that can be used to correlate these. It is hypothesized here that underwater turbulence would influence the acoustic scattering cross section and the optical turbulence intensity coefficient in a similar manner. Data from a recent field campaign, Skaneateles Optical Turbulence Exercise (SOTEX, July, 2010) is used to examine the above relationship. Results presented here show strong correlation between the acoustic scattering cross-sections and the intensity coefficient related to the modulation transfer function of an EO imaging system. This significant finding will pave ways to utilize long range acoustical returns to predict EO system performance.
NASA Astrophysics Data System (ADS)
Tsai, Chun-Wei; Lyu, Bo-Han; Wang, Chen; Hung, Cheng-Chieh
2017-05-01
We have already developed multi-function and easy-to-use modulation software that was based on LabVIEW system. There are mainly four functions in this modulation software, such as computer generated holograms (CGH) generation, CGH reconstruction, image trimming, and special phase distribution. Based on the above development of CGH modulation software, we could enhance the performance of liquid crystal on silicon - spatial light modulator (LCoSSLM) as similar as the diffractive optical element (DOE) and use it on various adaptive optics (AO) applications. Through the development of special phase distribution, we are going to use the LCoS-SLM with CGH modulation software into AO technology, such as optical microscope system. When the LCOS-SLM panel is integrated in an optical microscope system, it could be placed on the illumination path or on the image forming path. However, LCOS-SLM provides a program-controllable liquid crystal array for optical microscope. It dynamically changes the amplitude or phase of light and gives the obvious advantage, "Flexibility", to the system
Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices.
Di Sieno, Laura; Nissinen, Jan; Hallman, Lauri; Martinenghi, Edoardo; Contini, Davide; Pifferi, Antonio; Kostamovaara, Juha; Mora, Alberto Dalla
2017-08-01
We validate a miniaturized pulsed laser source for use in time-domain (TD) diffuse optics, following rigorous and shared protocols for performance assessment of this class of devices. This compact source (12×6 mm2) has been previously developed for range finding applications and is able to provide short, high energy (∼100 ps, ∼0.5 nJ) optical pulses at up to 1 MHz repetition rate. Here, we start with a basic level laser characterization with an analysis of suitability of this laser for the diffuse optics application. Then, we present a TD optical system using this source and its performances in both recovering optical properties of tissue-mimicking homogeneous phantoms and in detecting localized absorption perturbations. Finally, as a proof of concept of in vivo application, we demonstrate that the system is able to detect hemodynamic changes occurring in the arm of healthy volunteers during a venous occlusion. Squeezing the laser source in a small footprint removes a key technological bottleneck that has hampered so far the realization of a miniaturized TD diffuse optics system, able to compete with already assessed continuous-wave devices in terms of size and cost, but with wider performance potentialities, as demonstrated by research over the last two decades. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Kleindienst, Roman; Kampmann, Ronald; Stoebenau, Sebastian; Sinzinger, Stefan
2011-07-01
The performance of optical systems is typically improved by increasing the number of conventionally fabricated optical components (spheres, aspheres, and gratings). This approach is automatically connected to a system enlargement, as well as potentially higher assembly and maintenance costs. Hybrid optical freeform components can help to overcome this trade-off. They merge several optical functions within fewer but more complex optical surfaces, e.g., elements comprising shallow refractive/reflective and high-frequency diffractive structures. However, providing the flexibility and precision essential for their realization is one of the major challenges in the field of optical component fabrication. In this article we present tailored integrated machining techniques suitable for rapid prototyping as well as the fabrication of molding tools for low-cost mass replication of hybrid optical freeform components. To produce the different feature sizes with optical surface quality, we successively combine mechanical machining modes (ultraprecision micromilling and fly cutting) with precisely aligned direct picosecond laser ablation in an integrated fabrication approach. The fabrication accuracy and surface quality achieved by our integrated fabrication approach are demonstrated with profilometric measurements and experimental investigations of the optical performance.
The use of optical waveguides in head up display (HUD) applications
NASA Astrophysics Data System (ADS)
Homan, Malcolm
2013-06-01
The application of optical waveguides to Head Up Displays (HUD) is an enabling technology which solves the critical issues of volume reduction (including cockpit intrusion) and mass reduction in an affordable product which retains the high performance optical capabilities associated with today's generation of digital display based HUDs. Improved operability and pilot comfort is achieved regardless of the installation by virtue of the intrinsic properties of optical waveguides and this has enabled BAE Systems Electronic Systems to develop two distinct product streams for glareshield and overhead HUD installations respectively. This paper addresses the design drivers behind the development of the next generation of Head Up Displays and their compatibility with evolving cockpit architectures and structures. The implementation of large scale optical waveguide combiners capable of matching and exceeding the display performances normally only associated with current digital display sourced HUDs has enabled BAE Systems Electronic Systems to solve the volume and installation challenges of the latest military and civil cockpits with it's LiteHUD® technology. Glareshield mounted waveguide based HUDs are compatible with the trend towards the addition of Large Area Displays (LAD) in place of the traditional multiple Head Down Displays (HDD) within military fast jet cockpits. They use an "indirect view" variant of the display which allows the amalgamation of high resolution digital display devices with the inherently small volume and low mass of the waveguide optics. This is then viewed using the more traditional technology of a conventional HUD combiner. This successful combination of technologies has resulted in the LPHUD product which is specifically designed by BAE Systems Electronic Systems to provide an ultra-low profile HUD which can be installed behind a LAD; still providing the level of performance that is at least equivalent to that of a conventional large volume glareshield mounted HUD. In many current Business Jet and Air Transport cockpits overhead mounted HUDs employ a conventional optical combiner to relay the display from a separate projector to the pilot's eyes. In BAE Systems' Electronic Systems QHUDTM configuration this combiner is replaced by the waveguide and the bulky, intrusive overhead projector completely eliminated. The result is a significant reduction in equipment volume and mass and a much greater head clearance combined with a substantially larger Head Motion Box. This latter feature is a fundamental outturn of waveguide optical solutions which removes the restrictions on pilot eye positioning associated with current conventional systems. LiteHUD®, developed by BAE Systems, Electronic Systems achieves equivalent optical performance to in-service HUDs for less cost, mass and volume.
Spillane, S M; Pati, G S; Salit, K; Hall, M; Kumar, P; Beausoleil, R G; Shahriar, M S
2008-06-13
We report the observation of low-light level optical interactions in a tapered optical nanofiber (TNF) embedded in a hot rubidium vapor. The small optical mode area plays a significant role in the optical properties of the hot vapor Rb-TNF system, allowing nonlinear optical interactions with nW level powers even in the presence of transit-time dephasing rates much larger than the intrinsic linewidth. We demonstrate nonlinear absorption and V-type electromagnetically induced transparency with cw powers below 10 nW, comparable to the best results in any Rb-optical waveguide system. The good performance and flexibility of the Rb-TNF system makes it a very promising candidate for ultralow power resonant nonlinear optical applications.
Atmospheric free-space coherent optical communications with adaptive optics
NASA Astrophysics Data System (ADS)
Ting, Chueh; Zhang, Chengyu; Yang, Zikai
2017-02-01
Free-space coherent optical communications have a potential application to offer last mile bottleneck solution in future local area networks (LAN) because of their information carrier, information security and license-free status. Coherent optical communication systems using orthogonal frequency division multiplexing (OFDM) digital modulation are successfully demonstrated in a long-haul tens Giga bits via optical fiber, but they are not yet available in free space due to atmospheric turbulence-induced channel fading. Adaptive optics is recognized as a promising technology to mitigate the effects of atmospheric turbulence in free-space optics. In this paper, a free-space coherent optical communication system using an OFDM digital modulation scheme and adaptive optics (FSO OFDM AO) is proposed, a Gamma-Gamma distribution statistical channel fading model for the FSO OFDM AO system is examined, and FSO OFDM AO system performance is evaluated in terms of bit error rate (BER) versus various propagation distances.
NASA Astrophysics Data System (ADS)
Mahmoud, Seedahmed S.; Visagathilagar, Yuvaraja; Katsifolis, Jim
2012-09-01
The success of any perimeter intrusion detection system depends on three important performance parameters: the probability of detection (POD), the nuisance alarm rate (NAR), and the false alarm rate (FAR). The most fundamental parameter, POD, is normally related to a number of factors such as the event of interest, the sensitivity of the sensor, the installation quality of the system, and the reliability of the sensing equipment. The suppression of nuisance alarms without degrading sensitivity in fiber optic intrusion detection systems is key to maintaining acceptable performance. Signal processing algorithms that maintain the POD and eliminate nuisance alarms are crucial for achieving this. In this paper, a robust event classification system using supervised neural networks together with a level crossings (LCs) based feature extraction algorithm is presented for the detection and recognition of intrusion and non-intrusion events in a fence-based fiber-optic intrusion detection system. A level crossings algorithm is also used with a dynamic threshold to suppress torrential rain-induced nuisance alarms in a fence system. Results show that rain-induced nuisance alarms can be suppressed for rainfall rates in excess of 100 mm/hr with the simultaneous detection of intrusion events. The use of a level crossing based detection and novel classification algorithm is also presented for a buried pipeline fiber optic intrusion detection system for the suppression of nuisance events and discrimination of intrusion events. The sensor employed for both types of systems is a distributed bidirectional fiber-optic Mach-Zehnder (MZ) interferometer.
Performance of an optical identification and interrogation system
NASA Astrophysics Data System (ADS)
Venugopalan, A.; Ghosh, A. K.; Verma, P.; Cheng, S.
2008-04-01
A free space optics based identification and interrogation system has been designed. The applications of the proposed system lie primarily in areas which require a secure means of mutual identification and information exchange between optical readers and tags. Conventional RFIDs raise issues regarding security threats, electromagnetic interference and health safety. The security of RF-ID chips is low due to the wide spatial spread of radio waves. Malicious nodes can read data being transmitted on the network, if they are in the receiving range. The proposed system provides an alternative which utilizes the narrow paraxial beams of lasers and an RSA-based authentication scheme. These provide enhanced security to communication between a tag and the base station or reader. The optical reader can also perform remote identification and the tag can be read from a far off distance, given line of sight. The free space optical identification and interrogation system can be used for inventory management, security systems at airports, port security, communication with high security systems, etc. to name a few. The proposed system was implemented with low-cost, off-the-shelf components and its performance in terms of throughput and bit error rate has been measured and analyzed. The range of operation with a bit-error-rate lower than 10-9 was measured to be about 4.5 m. The security of the system is based on the strengths of the RSA encryption scheme implemented using more than 1024 bits.
Completion of the Design of the Top End Optical Assembly for ATST
NASA Astrophysics Data System (ADS)
Canzian, Blaise; Barentine, J.
2013-01-01
L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to make the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakala, Maui. ATST will perform to a very high optical performance level in a difficult operational environment. The TEOA (including a 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, Lyot stop, safety interlock and control system, and support frame) operates in the “hot spot” at the prime focus of the ATST, presenting unusual challenges. L-3 IOS has passed Critical Design Review of the TEOA. In this paper, we describe L-3 IOS success meeting technical challenges, including our solutions for optic fabrication, opto-mechanical positioning, rejected and stray light control, wavefront tip-tilt compensation, and thermal management and control.
Compact MEMS-based Adaptive Optics Optical Coherence Tomography for Clinical Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, D; Olivier, S; Jones, S
2008-02-04
We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of the limitation on the current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in the previous AO-OCT instruments. In this instrument, we proposed to add an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminated the tedious process of themore » trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.« less
Optical and system engineering in the development of a high-quality student telescope kit
NASA Astrophysics Data System (ADS)
Pompea, Stephen M.; Pfisterer, Richard N.; Ellis, Scott; Arion, Douglas N.; Fienberg, Richard Tresch; Smith, Thomas C.
2010-07-01
The Galileoscope student telescope kit was developed by a volunteer team of astronomers, science education experts, and optical engineers in conjunction with the International Year of Astronomy 2009. This refracting telescope is in production with over 180,000 units produced and distributed with 25,000 units in production. The telescope was designed to be able to resolve the rings of Saturn and to be used in urban areas. The telescope system requirements, performance metrics, and architecture were established after an analysis of current inexpensive telescopes and student telescope kits. The optical design approaches used in the various prototypes and the optical system engineering tradeoffs will be described. Risk analysis, risk management, and change management were critical as was cost management since the final product was to cost around 15 (but had to perform as well as 100 telescopes). In the system engineering of the Galileoscope a variety of analysis and testing approaches were used, including stray light design and analysis using the powerful optical analysis program FRED.
Intracavity adaptive optics. 1: Astigmatism correction performance.
Spinhirne, J M; Anafi, D; Freeman, R H; Garcia, H R
1981-03-15
A detailed experimental study has been conducted on adaptive optical control methodologies inside a laser resonator. A comparison is presented of several optimization techniques using a multidither zonal coherent optical adaptive technique system within a laser resonator for the correction of astigmatism. A dramatic performance difference is observed when optimizing on beam quality compared with optimizing on power-in-the-bucket. Experimental data are also presented on proper selection criteria for dither frequencies when controlling phase front errors. The effects of hardware limitations and design considerations on the performance of the system are presented, and general conclusions and physical interpretations on the results are made when possible.
Honeywell optical investigations on FLASH program
NASA Astrophysics Data System (ADS)
O'Rourke, Ken; Peterson, Eric; Yount, Larry
1995-05-01
The increasing performance and reduction of life cycle cost requirements placed on commercial and military transport aircraft are resulting in more complex, highly integrated aircraft control and management systems. The use of fiber optic data transmission media can make significant contributions in achieving these performance and cost goals. The Honeywell portion of Task 2A on the Fly-by-Light Advanced System Hardware (FLASH) program is evaluating a Primary Flight Control System (PFCS) using pilot and copilot inputs from Active Hand Controllers (AHC) which are optically linked to the primary flight Control Computers (PFCC). Customer involvement is an important element of the Task 2A activity. Establishing customer requirements and perspectives on productization of systems developed under FLASH are key to future product success. The Honeywell elements of the PFCS demonstrator provide a command path that is optically interfaced from crew inputs to commands of distributed, smart actuation subsystems commands. Optical communication architectures are implemented using several protocols including the new AS-1773A 20 Mbps data bus standard. The interconnecting fiber optic cable plant is provided by our Task 1A teammate McDonnell Douglas Aerospace (West). Fiber optic cable plant fabrication uses processed, tools and materials reflecting necessary advances in manufacturing required to make fly-by-light avionics systems marketable.
NASA Astrophysics Data System (ADS)
Lisson, Jerold B.; Mounts, Darryl I.; Fehniger, Michael J.
1992-08-01
Localized wavefront performance analysis (LWPA) is a system that allows the full utilization of the system optical transfer function (OTF) for the specification and acceptance of hybrid imaging systems. We show that LWPA dictates the correction of wavefront errors with the greatest impact on critical imaging spatial frequencies. This is accomplished by the generation of an imaging performance map-analogous to a map of the optic pupil error-using a local OTF. The resulting performance map a function of transfer function spatial frequency is directly relatable to the primary viewing condition of the end-user. In addition to optimizing quality for the viewer it will be seen that the system has the potential for an improved matching of the optical and electronic bandpass of the imager and for the development of more realistic acceptance specifications. 1. LOCAL WAVEFRONT PERFORMANCE ANALYSIS The LWPA system generates a local optical quality factor (LOQF) in the form of a map analogous to that used for the presentation and evaluation of wavefront errors. In conjunction with the local phase transfer function (LPTF) it can be used for maximally efficient specification and correction of imaging system pupil errors. The LOQF and LPTF are respectively equivalent to the global modulation transfer function (MTF) and phase transfer function (PTF) parts of the OTF. The LPTF is related to difference of the average of the errors in separated regions of the pupil. Figure
NASA Astrophysics Data System (ADS)
Zhou, Hui; Zeng, Yuting; Chen, Ming; Shen, Yunlong
2018-03-01
We have proposed a scheme of radio-over-fiber (RoF) system employing a dual-parallel Mach-Zehnder modulator (DP-MZM) based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA). In this scheme, the pump and the signal are generated by properly adjusting the direct current bias, modulation index of the DP-MZM, and the phase difference between the sub-MZMs. Because of the pump and the signal deriving from the same optical wave, the polarization states of the two lightwaves are copolarized. The single-pump FWM is polarization insensitive. After FWM and optical filtering, the optical millimeter-wave with octuple frequency is generated. About 40-GHz RoF system with a 2.5-Gbit / s signal is implemented by numerical simulation; the result shows that it has a good performance after the signal is transmitted over 40-km single-mode fiber. Then, the effects of the SOA's injection current and the carrier-to-sideband ratio on the system performance are discussed by simulation, and the optimum value for the system is obtained.
Choosing an Optical Disc System: A Guide for Users and Resellers.
ERIC Educational Resources Information Center
Vane-Tempest, Stewart
1995-01-01
Presents a guide for selecting an optional disc system. Highlights include storage hierarchy; standards; data life cycles; security; implementing an optical jukebox system; optimizing the system; performance; quality and reliability; software; cost of online versus near-line; and growing opportunities. Sidebars provide additional information on…
NASA Astrophysics Data System (ADS)
Wilby, W. A.; Brett, A. R. H.
Frequency set on techniques used in ECM applications include repeater jammers, frequency memory loops (RF and optical), coherent digital RF memories, and closed loop VCO set on systems. Closed loop frequency set on systems using analog phase and frequency locking are considered to have a number of cost and performance advantages. Their performance is discussed in terms of frequency accuracy, bandwidth, locking time, stability, and simultaneous signals. Some experimental results are presented which show typical locking performance. Future ECM systems might require a response to very short pulses. Acoustooptic and fiber-optic pulse stretching techniques can be used to meet such requirements.
NASA Technical Reports Server (NTRS)
Davidson, Frederic M.
1992-01-01
Performance measurements are reported concerning a coherent optical communication receiver that contained an iron doped indium phosphide photorefractive beam combiner, rather than a conventional optical beam splitter. The system obtained a bit error probability of 10(exp -6) at received signal powers corresponding to less than 100 detected photons per bit. The system used phase modulated Nd:YAG laser light at a wavelength of 1.06 microns.
Fiber optic sensors for infrastructure applications : final report.
DOT National Transportation Integrated Search
1998-02-01
Fiber optic sensor technology offers the possibility of implementing "nervous systems" for infrastructure elements that allow high performance, cost effective health and damage assessment systems to be achieved. This is possible, largely due to syner...
Performance improvements of symmetry-breaking reflector structures in nonimaging devices
Winston, Roland
2004-01-13
A structure and method for providing a broken symmetry reflector structure for a solar concentrator device. The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quantity, referred to as the translational skew invariant, is conserved in rotationally symmetric optical systems. Performance limits for translationally symmetric nonimaging optical devices are derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. A numerically optimized non-tracking solar concentrator utilizing symmetry-breaking reflector structures can overcome the performance limits associated with translational symmetry.
NASA Astrophysics Data System (ADS)
Li, Yan; Li, Lin; Huang, Yi-Fan; Du, Bao-Lin
2009-07-01
This paper analyses the dynamic residual aberrations of a conformal optical system and introduces adaptive optics (AO) correction technology to this system. The image sharpening AO system is chosen as the correction scheme. Communication between MATLAB and Code V is established via ActiveX technique in computer simulation. The SPGD algorithm is operated at seven zoom positions to calculate the optimized surface shape of the deformable mirror. After comparison of performance of the corrected system with the baseline system, AO technology is proved to be a good way of correcting the dynamic residual aberration in conformal optical design.
Wave-Optics Analysis of Pupil Imaging
NASA Technical Reports Server (NTRS)
Dean, Bruce H.; Bos, Brent J.
2006-01-01
Pupil imaging performance is analyzed from the perspective of physical optics. A multi-plane diffraction model is constructed by propagating the scalar electromagnetic field, surface by surface, along the optical path comprising the pupil imaging optical system. Modeling results are compared with pupil images collected in the laboratory. The experimental setup, although generic for pupil imaging systems in general, has application to the James Webb Space Telescope (JWST) optical system characterization where the pupil images are used as a constraint to the wavefront sensing and control process. Practical design considerations follow from the diffraction modeling which are discussed in the context of the JWST Observatory.
NASA Technical Reports Server (NTRS)
1979-01-01
Optical interface losses between transmitter-to-fiber interface, connector-to-connector interface, and fiber-to-receiver interface were studied. System effects such as pulse dispersion, risetimes of the sources and detectors, type of fibers used, output power of the sources, and detector sensitivity were considered. Data bus systems such as TEE, Star, and Hybrid were analyzed. The matter of single fiber versus bundle technologies for future avionics systems was considered. The existing data bus system on Space Shuttle was examined and an optical analog was derived for a fiber bundle system, along with the associated power margin. System tests were performed on a feasibility model of a 9-port Star data bus system including BER, star losses, connector losses, etc. The same system was subjected to EMI between the range of 200 Hz to 10 GHz at 20V/m levels. A lightning test was also performed which simulated the conditions similar to those on Space Shuttle. The data bus system was found to be EMI and lightning hard. It is concluded that an optical data bus system is feasible for shuttle orbiter type vehicles.
High resolution optical surface metrology with the slope measuring portable optical test system
NASA Astrophysics Data System (ADS)
Maldonado, Alejandro V.
New optical designs strive to achieve extreme performance, and continually increase the complexity of prescribed optical shapes, which often require wide dynamic range and high resolution. SCOTS, or the Software Configurable Optical Test System, can measure a wide range of optical surfaces with high sensitivity using surface slope. This dissertation introduces a high resolution version of SCOTS called SPOTS, or the Slope measuring Portable Optical Test System. SPOTS improves the metrology of surface features on the order of sub-millimeter to decimeter spatial scales and nanometer to micrometer level height scales. Currently there is no optical surface metrology instrument with the same utility. SCOTS uses a computer controlled display (such as an LCD monitor) and camera to measure surface slopes over the entire surface of a mirror. SPOTS differs in that an additional lens is placed near the surface under test. A small prototype system is discussed in general, providing the support for the design of future SPOTS devices. Then the SCOTS instrument transfer function is addressed, which defines the way the system filters surface heights. Lastly, the calibration and performance of larger SPOTS device is analyzed with example measurements of the 8.4-m diameter aspheric Large Synoptic Survey Telescope's (LSST) primary mirror. In general optical systems have a transfer function, which filters data. In the case of optical imaging systems the instrument transfer function (ITF) follows the modulation transfer function (MTF), which causes a reduction of contrast as a function of increasing spatial frequency due to diffraction. In SCOTS, ITF is shown to decrease the measured height of surface features as their spatial frequency increases, and thus the SCOTS and SPOTS ITF is proportional to their camera system's MTF. Theory and simulations are supported by a SCOTS measurement of a test piece with a set of lithographically written sinusoidal surface topographies. In addition, an example of a simple inverse filtering technique is provided. The success of a small SPOTS proof of concept instrument paved the way for a new larger prototype system, which is intended to measure subaperture regions on large optical mirrors. On large optics, the prototype SPOTS is light weight and it rests on the surface being tested. One advantage of this SPOTS is stability over time in maintaining its calibration. Thus the optician can simply place SPOTS on the mirror, perform a simple alignment, collect measurement data, then pick the system up and repeat at a new location. The entire process takes approximately 5 to 10 minutes, of which 3 minutes is spent collecting data. SPOTS' simplicity of design, light weight, robustness, wide dynamic range, and high sensitivity make it a useful tool for optical shop use during the fabrication and testing process of large and small optics.
Range-Gated Metrology: An Ultra-Compact Sensor for Dimensional Stabilization
NASA Technical Reports Server (NTRS)
Lay, Oliver P.; Dubovitsky, Serge; Shaddock, Daniel A.; Ware, Brent; Woodruff, Christopher S.
2008-01-01
Point-to-point laser metrology systems can be used to stabilize large structures at the nanometer levels required for precision optical systems. Existing sensors are large and intrusive, however, with optical heads that consist of several optical elements and require multiple optical fiber connections. The use of point-to-point laser metrology has therefore been limited to applications where only a few gauges are needed and there is sufficient space to accommodate them. Range-Gated Metrology is a signal processing technique that preserves nanometer-level or better performance while enabling: (1) a greatly simplified optical head - a single fiber optic collimator - that can be made very compact, and (2) a single optical fiber connection that is readily multiplexed. This combination of features means that it will be straightforward and cost-effective to embed tens or hundreds of compact metrology gauges to stabilize a large structure. In this paper we describe the concept behind Range-Gated Metrology, demonstrate the performance in a laboratory environment, and give examples of how such a sensor system might be deployed.
NASA Astrophysics Data System (ADS)
Wells, Conrad; Olczak, Gene; Merle, Cormic; Dey, Tom; Waldman, Mark; Whitman, Tony; Wick, Eric; Peer, Aaron
2010-08-01
The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 m clear aperture, allreflective, three-mirror anastigmat. The 18-segment primary mirror (PM) presents unique and challenging assembly, integration, alignment and testing requirements. A full aperture center of curvature optical test is performed in cryogenic vacuum conditions at the integrated observatory level to verify PM performance requirements. The Center of Curvature Optical Assembly (CoCOA), designed and being built by ITT satisfies the requirements for this test. The CoCOA contains a multi wave interferometer, patented reflective null lens, actuation for alignment, full in situ calibration capability, coarse and fine alignment sensing systems, as well as a system for monitoring changes in the PM to CoCOA distance. Two wave front calibration tests are utilized to verify the low and Mid/High spatial frequencies, overcoming the limitations of the standard null/hologram configuration in its ability to resolve mid and high spatial frequencies. This paper will introduce the systems level architecture and optical test layout for the CoCOA.
Design and experimental verification for optical module of optical vector-matrix multiplier.
Zhu, Weiwei; Zhang, Lei; Lu, Yangyang; Zhou, Ping; Yang, Lin
2013-06-20
Optical computing is a new method to implement signal processing functions. The multiplication between a vector and a matrix is an important arithmetic algorithm in the signal processing domain. The optical vector-matrix multiplier (OVMM) is an optoelectronic system to carry out this operation, which consists of an electronic module and an optical module. In this paper, we propose an optical module for OVMM. To eliminate the cross talk and make full use of the optical elements, an elaborately designed structure that involves spherical lenses and cylindrical lenses is utilized in this optical system. The optical design software package ZEMAX is used to optimize the parameters and simulate the whole system. Finally, experimental data is obtained through experiments to evaluate the overall performance of the system. The results of both simulation and experiment indicate that the system constructed can implement the multiplication between a matrix with dimensions of 16 by 16 and a vector with a dimension of 16 successfully.
Evaluation of Contamination Inspection and Analysis Methods through Modeling System Performance
NASA Technical Reports Server (NTRS)
Seasly, Elaine; Dever, Jason; Stuban, Steven M. F.
2016-01-01
Contamination is usually identified as a risk on the risk register for sensitive space systems hardware. Despite detailed, time-consuming, and costly contamination control efforts during assembly, integration, and test of space systems, contaminants are still found during visual inspections of hardware. Improved methods are needed to gather information during systems integration to catch potential contamination issues earlier and manage contamination risks better. This research explores evaluation of contamination inspection and analysis methods to determine optical system sensitivity to minimum detectable molecular contamination levels based on IEST-STD-CC1246E non-volatile residue (NVR) cleanliness levels. Potential future degradation of the system is modeled given chosen modules representative of optical elements in an optical system, minimum detectable molecular contamination levels for a chosen inspection and analysis method, and determining the effect of contamination on the system. By modeling system performance based on when molecular contamination is detected during systems integration and at what cleanliness level, the decision maker can perform trades amongst different inspection and analysis methods and determine if a planned method is adequate to meet system requirements and manage contamination risk.
Hybrid architecture active wavefront sensing and control system, and method
NASA Technical Reports Server (NTRS)
Feinberg, Lee D. (Inventor); Dean, Bruce H. (Inventor); Hyde, Tristram T. (Inventor)
2011-01-01
According to various embodiments, provided herein is an optical system and method that can be configured to perform image analysis. The optical system can comprise a telescope assembly and one or more hybrid instruments. The one or more hybrid instruments can be configured to receive image data from the telescope assembly and perform a fine guidance operation and a wavefront sensing operation, simultaneously, on the image data received from the telescope assembly.
Optical communication system performance with tracking error induced signal fading.
NASA Technical Reports Server (NTRS)
Tycz, M.; Fitzmaurice, M. W.; Premo, D. A.
1973-01-01
System performance is determined for an optical communication system using noncoherent detection in the presence of tracking error induced signal fading assuming (1) binary on-off modulation (OOK) with both fixed and adaptive threshold receivers, and (2) binary polarization modulation (BPM). BPM is shown to maintain its inherent 2- to 3-dB advantage over OOK when adaptive thresholding is used, and to have a substantially greater advantage when the OOK system is restricted to a fixed decision threshold.
Hendrix, J.L.
1995-04-11
A laser initiated ordnance controller apparatus which provides a safe and arm scheme with no moving parts. The safe & arm apparatus provides isolation of firing energy to explosive devices using a combination of polarization isolation and control through acousto-optical deviation of laser energy pulses. The apparatus provides constant monitoring of the systems status and performs 100% built-in-test at any time prior to ordnance ignition without the risk of premature ignition or detonation. The apparatus has a computer controller, a solid state laser, an acousto-optic deflector and RF drive circuitry, built-in-test optics and electronics, and system monitoring capabilities. The optical system is completed from the laser beam power source to the pyrotechnic ordnance through fiber optic cabling, optical splitters and optical connectors. During operation of the apparatus, a command is provided by the computer controller and, simultaneous with laser flashlamp fire, the safe & arm device is opened for approximately 200 microseconds which allows the laser pulse to transmit through the device. The arm signal also energizes the laser power supply and activates the acousto-optical deflector. When the correct fire format command is received, the acousto-optic deflector moves to the selected event channel, and the channel is verified to ensure the system is pointing to the correct position. Laser energy is transmitted through the fiber where an ignitor or detonator designed to be sensitive to optical pulses is fired at the end of the fiber channel. Simultaneous event channels may also be utilized by optically splitting a single event channel. The built-in-test may be performed anytime prior to ordnance ignition. 6 figures.
Hendrix, James L.
1995-01-01
A laser initiated ordnance controller apparatus which provides a safe and m scheme with no moving parts. The safe & arm apparatus provides isolation of firing energy to explosive devices using a combination of polarization isolation and control through acousto-optical deviation of laser energy pulses. The apparatus provides constant monitoring of the systems status and performs 100% built-in-test at any time prior to ordnance ignition without the risk of premature ignition or detonation. The apparatus has a computer controller, a solid state laser, an acousto-optic deflector and RF drive circuitry, built-in-test optics and electronics, and system monitoring capabilities. The optical system is completed from the laser beam power source to the pyrotechnic ordnance through fiber optic cabling, optical splitters and optical connectors. During operation of the apparatus, a command is provided by the computer controller and, simultaneous with laser flashlamp fire, the safe & arm device is opened for approximately 200 microseconds which allows the laser pulse to transmit through the device. The arm signal also energizes the laser power supply and activates the acousto-optical deflector. When the correct fire format command is received, the acousto-optic deflector moves to the selected event channel, and the channel is verified to ensure the system is pointing to the correct position. Laser energy is transmitted through the fiber where an ignitor or detonator designed to be sensitive to optical pulses is fired at the end of the fiber channel. Simultaneous event channels may also be utilized by optically splitting a single event channel. The built-in-test may be performed anytime prior to ordnance ignition.
Harsh environment fiber optic connectors/testing
NASA Astrophysics Data System (ADS)
Parker, Douglas A.
2014-09-01
Fiber optic systems are used frequently in military, aerospace and commercial aviation programs. There is a long history of implementing fiber optic data transfer for aircraft control, for harsh environment use in local area networks and more recently for in-flight entertainment systems. The advantages of fiber optics include high data rate capacity, low weight, immunity to EMI/RFI, and security from signal tapping. Technicians must be trained particularly to install and maintain fiber systems, but it is not necessarily more difficult than wire systems. However, the testing of the fiber optic interconnection system must be conducted in a standardized manner to assure proper performance. Testing can be conducted with slight differences in the set-up and procedure that produce significantly different test results. This paper reviews various options of interconnect configurations and discusses how these options can affect the performance, maintenance required and longevity of a fiber optic system, depending on the environment. Proper test methods are discussed. There is a review of the essentials of proper fiber optic testing and impact of changing such test parameters as input launch conditions, wavelength considerations, power meter options and the basic methods of testing. This becomes important right from the start when the supplier test data differs from the user's data check upon receiving the product. It also is important in periodic testing. Properly conducting the fiber optic testing will eliminate confusion and produce meaningful test results for a given harsh environment application.
Integrated Model for Performance Analysis of All-Optical Multihop Packet Switches
NASA Astrophysics Data System (ADS)
Jeong, Han-You; Seo, Seung-Woo
2000-09-01
The overall performance of an all-optical packet switching system is usually determined by two criteria, i.e., switching latency and packet loss rate. In some real-time applications, however, in which packets arriving later than a timeout period are discarded as loss, the packet loss rate becomes the most dominant criterion for system performance. Here we focus on evaluating the performance of all-optical packet switches in terms of the packet loss rate, which normally arises from the insufficient hardware or the degradation of an optical signal. Considering both aspects, we propose what we believe is a new analysis model for the packet loss rate that reflects the complicated interactions between physical impairments and system-level parameters. On the basis of the estimation model for signal quality degradation in a multihop path we construct an equivalent analysis model of a switching network for evaluating an average bit error rate. With the model constructed we then propose an integrated model for estimating the packet loss rate in three architectural examples of multihop packet switches, each of which is based on a different switching concept. We also derive the bounds on the packet loss rate induced by bit errors. Finally, it is verified through simulation studies that our analysis model accurately predicts system performance.
Downhole fiber optic sensing: the oilfield service provider's perspective
NASA Astrophysics Data System (ADS)
Skinner, Neal G.; Maida, John L., Jr.
2004-12-01
There is increasing interest in the petroleum industry in the application of fiber-optic sensing techniques. In this paper, we review which sensing technologies are being adopted downhole and the drivers for this deployment. We describe the performance expectations (accuracy, resolution, stability and operational lifetime) that the oil companies and the oil service companies have for fiber-optic sensing systems. We also describe the environmental conditions (high hydrostatic pressures, high temperatures, shock, vibration, crush, and chemical attack) that these systems must tolerate in order to provide reliable and economically attractive reservoir-performance monitoring solutions.
Tolerance of the frequency deviation of LO sources at a MIMO system
NASA Astrophysics Data System (ADS)
Xiao, Jiangnan; Li, Xingying; Zhang, Zirang; Xu, Yuming; Chen, Long; Yu, Jianjun
2015-11-01
We analyze and simulate the tolerance of frequency offset at a W-band optical-wireless transmission system. The transmission system adopts optical polarization division multiplexing (PDM), and multiple-input multiple-output (MIMO) reception. The transmission signal adopts optical quadrature phase shift keying (QPSK) modulation, and the generation of millimeter-wave is based on the optical heterodyning technique. After 20-km single-mode fiber-28 (SMF-28) transmission, tens of Gb/s millimeter-wave signal is delivered. At the receiver, two millimeter-wave signals are down-converted into electrical intermediate-frequency (IF) signals in the analog domain by mixing with two electrical local oscillators (LOs) with different frequencies. We investigate the different frequency LO effect on the 2×2 MIMO system performance for the first time, finding that the process during DSP of implementing frequency offset estimation (FOE) before cascaded multi-modulus-algorithm (CMMA) equalization can get rid of the inter-channel interference (ICI) and improve system bit-error-ratio (BER) performance in this type of transmission system.
Performance assessment of MEMS adaptive optics in tactical airborne systems
NASA Astrophysics Data System (ADS)
Tyson, Robert K.
1999-09-01
Tactical airborne electro-optical systems are severely constrained by weight, volume, power, and cost. Micro- electrical-mechanical adaptive optics provide a solution that addresses the engineering realities without compromising spatial and temporal compensation requirements. Through modeling and analysis, we determined that substantial benefits could be gained for laser designators, ladar, countermeasures, and missile seekers. The developments potential exists for improving seeker imagery resolution 20 percent, extending countermeasures keep-out range by a factor of 5, doubling the range for ladar detection and identification, and compensating for supersonic and hypersonic aircraft boundary layers. Innovative concepts are required for atmospheric pat hand boundary layer compensation. We have developed design that perform these tasks using high speed scene-based wavefront sensing, IR aerosol laser guide stars, and extended-object wavefront beacons. We have developed a number of adaptive optics system configurations that met the spatial resolution requirements and we have determined that sensing and signal processing requirements can be met. With the help of micromachined deformable mirrors and sensor, we will be able to integrate the systems into existing airborne pods and missiles as well as next generation electro-optical systems.
Method of wavefront tilt correction for optical heterodyne detection systems under strong turbulence
NASA Astrophysics Data System (ADS)
Xiang, Jing-song; Tian, Xin; Pan, Le-chun
2014-07-01
Atmospheric turbulence decreases the heterodyne mixing efficiency of the optical heterodyne detection systems. Wavefront tilt correction is often used to improve the optical heterodyne mixing efficiency. But the performance of traditional centroid tracking tilt correction is poor under strong turbulence conditions. In this paper, a tilt correction method which tracking the peak value of laser spot on focal plane is proposed. Simulation results show that, under strong turbulence conditions, the performance of peak value tracking tilt correction is distinctly better than that of traditional centroid tracking tilt correction method, and the phenomenon of large antenna's performance inferior to small antenna's performance which may be occurred in centroid tracking tilt correction method can also be avoid in peak value tracking tilt correction method.
NASA Astrophysics Data System (ADS)
Vogt, William C.; Jia, Congxian; Wear, Keith A.; Garra, Brian S.; Pfefer, T. Joshua
2017-03-01
Recent years have seen rapid development of hybrid optical-acoustic imaging modalities with broad applications in research and clinical imaging, including photoacoustic tomography (PAT), photoacoustic microscopy, and ultrasound-modulated optical tomography. Tissue-mimicking phantoms are an important tool for objectively and quantitatively simulating in vivo imaging system performance. However, no standard tissue phantoms exist for such systems. One major challenge is the development of tissue-mimicking materials (TMMs) that are both highly stable and possess biologically realistic properties. To address this need, we have explored the use of various formulations of PVC plastisol (PVCP) based on varying mixtures of several liquid plasticizers. We developed a custom PVCP formulation with optical absorption and scattering coefficients, speed of sound, and acoustic attenuation that are tunable and tissue-relevant. This TMM can simulate different tissue compositions and offers greater mechanical strength than hydrogels. Optical properties of PVCP samples with varying composition were characterized using integrating sphere spectrophotometry and the inverse adding-doubling method. Acoustic properties were determined using a broadband pulse-transmission technique. To demonstrate the utility of this bimodal TMM, we constructed an image quality phantom designed to enable quantitative evaluation of PAT spatial resolution. The phantom was imaged using a custom combined PAT-ultrasound imaging system. Results indicated that this more biologically realistic TMM produced performance trends not captured in simpler liquid phantoms. In the future, this TMM may be broadly utilized for performance evaluation of optical, acoustic, and hybrid optical-acoustic imaging systems.
WIYN tip-tilt module performance
NASA Astrophysics Data System (ADS)
Claver, Charles F.; Corson, Charles; Gomez, R. Richard, Jr.; Daly, Philip N.; Dryden, David M.; Abareshi, Behzod
2003-02-01
The WIYN Tip-Tilt Module (WTTM) is an addition to the existing Instrument Adapter System (IAS) providing a high performance optical-NIR image stabilized port on the WIYN 3.5m telescope. The WTTM optical system uses a 3-mirror off-axis design along with a high bandwidth tilt mirror. The WTTM is a reimaging system with 15% magnification producing a 4x4 arcminute field of view and near diffraction limited imagery from 400-2000nm. The optics are diamond turned in electroless Nickel over an Aluminum substrate. The WTTM opto-mechanical assembly was designed and built using the principals of the "build-to-print" technique, where the entire system is fabricated and assembled to tolerance with no adjustments. A unique high performance error sensor, using an internal mirrorlette array that feeds 4 fiber coupled avalanche photodiode photon counters, provides the tilt signal. The system runs under the Real-Time Linux operating system providing a maximum closed loop rate of 3khz. In this paper we report on the successful lab testing, verification of the "build-to-print" technique and on telescope performance of the WTTM.
Automated and model-based assembly of an anamorphic telescope
NASA Astrophysics Data System (ADS)
Holters, Martin; Dirks, Sebastian; Stollenwerk, Jochen; Loosen, Peter
2018-02-01
Since the first usage of optical glasses there has been an increasing demand for optical systems which are highly customized for a wide field of applications. To meet the challenge of the production of so many unique systems, the development of new techniques and approaches has risen in importance. However, the assembly of precision optical systems with lot sizes of one up to a few tens of systems is still dominated by manual labor. In contrast, highly adaptive and model-based approaches may offer a solution for manufacturing with a high degree of automation and high throughput while maintaining high precision. In this work a model-based automated assembly approach based on ray-tracing is presented. This process runs autonomously, and accounts for a wide range of functionality. It firstly identifies the sequence for an optimized assembly and secondly, generates and matches intermediate figures of merit to predict the overall optical functionality of the optical system. This process also takes into account the generation of a digital twin of the optical system, by mapping key-performance-indicators like the first and the second momentum of intensity into the optical model. This approach is verified by the automatic assembly of an anamorphic telescope within an assembly cell. By continuous measuring and mapping the key-performance-indicators into the optical model, the quality of the digital twin is determined. Moreover, by measuring the optical quality and geometrical parameters of the telescope, the precision of this approach is determined. Finally, the productivity of the process is evaluated by monitoring the speed of the different steps of the process.
Optical performance of prototype horn-coupled TES bolometer arrays for SAFARI
NASA Astrophysics Data System (ADS)
Audley, Michael D.; de Lange, Gert; Gao, Jian-Rong; Khosropanah, Pourya; Hijmering, Richard; Ridder, Marcel L.
2016-07-01
The SAFARI Detector Test Facility is an ultra-low background optical testbed for characterizing ultra-sensitive prototype horn-coupled TES bolmeters for SAFARI, the grating spectrometer on board the proposed SPICA satellite. The testbed contains internal cold and hot black-body illuminators and a light-pipe for illumination with an external source. We have added reimaging optics to facilitate array optical measurements. The system is now being used for optical testing of prototype detector arrays read out with frequency-domain multiplexing. We present our latest optical measurements of prototype arrays and discuss these in terms of the instrument performance.
The DAG project, a 4m class telescope: the telescope main structure performances
NASA Astrophysics Data System (ADS)
Marchiori, G.; Busatta, A.; Ghedin, L.; Marcuzzi, E.; Manfrin, C.; Battistel, C.; Pirnay, O.; Flebus, Carlo; Yeşilyaprak, C.; Keskin, O.; Yerli, S.
2016-07-01
Dogu Anatolu Gözlemevi (DAG-Eastern Anatolia Observatory) Project is a 4m class optical, near-infrared Telescope and suitable enclosure which will be located at an altitude of 3.170m in Erzurum, Turkey. The DAG telescope is a project fully funded by Turkish Ministry of Development and the Atatürk University of Astrophysics Research Telescope - ATASAM. The Project is being developed by the Belgian company AMOS (project leader), which is also the optics supplier and EIE GROUP, the Telescope Main Structure supplier and responsible for the final site integration. The design of the Telescope Main Structure fits in the EIE TBO Program which aims at developing a Dome/Telescope systemic optimization process for both performances and competitive costs based on previous project commitments like NTT, VLT, VST and ASTRI. The optical Configuration of the DAG Telescope is a Ritchey-Chretien with two Nasmyth foci and a 4m primary thin mirror controlled in shape and position by an Active Optic System. The main characteristics of the Telescope Main Structure are an Altitude-Azimuth light and rigid structure system with Direct Drive Systems for both axis, AZ Hydrostatic Bearing System and Altitude standard bearing system; both axes are equipped with Tape Encoder System. An innovative Control System characterizes the telescope performance.
NASA Astrophysics Data System (ADS)
Tekin, Tolga; Töpper, Michael; Reichl, Herbert
2009-05-01
Technological frontiers between semiconductor technology, packaging, and system design are disappearing. Scaling down geometries [1] alone does not provide improvement of performance, less power, smaller size, and lower cost. It will require "More than Moore" [2] through the tighter integration of system level components at the package level. System-in-Package (SiP) will deliver the efficient use of three dimensions (3D) through innovation in packaging and interconnect technology. A key bottleneck to the implementation of high-performance microelectronic systems, including SiP, is the lack of lowlatency, high-bandwidth, and high density off-chip interconnects. Some of the challenges in achieving high-bandwidth chip-to-chip communication using electrical interconnects include the high losses in the substrate dielectric, reflections and impedance discontinuities, and susceptibility to crosstalk [3]. Obviously, the incentive for the use of photonics to overcome the challenges and leverage low-latency and highbandwidth communication will enable the vision of optical computing within next generation architectures. Supercomputers of today offer sustained performance of more than petaflops, which can be increased by utilizing optical interconnects. Next generation computing architectures are needed with ultra low power consumption; ultra high performance with novel interconnection technologies. In this paper we will discuss a CMOS compatible underlying technology to enable next generation optical computing architectures. By introducing a new optical layer within the 3D SiP, the development of converged microsystems, deployment for next generation optical computing architecture will be leveraged.
A smart-pixel holographic competitive learning network
NASA Astrophysics Data System (ADS)
Slagle, Timothy Michael
Neural networks are adaptive classifiers which modify their decision boundaries based on feedback from externally- or internally-generated error signals. Optics is an attractive technology for neural network implementation because it offers the possibility of parallel, nearly instantaneous computation of the weighted neuron inputs by the propagation of light through the optical system. Using current optical device technology, system performance levels of 3 × 1011 connection updates per second can be achieved. This thesis presents an architecture for an optical competitive learning network which offers advantages over previous optical implementations, including smart-pixel-based optical neurons, phase- conjugate self-alignment of a single neuron plane, and high-density, parallel-access weight storage, interconnection, and learning in a volume hologram. The competitive learning algorithm with modifications for optical implementation is described, and algorithm simulations are performed for an example problem. The optical competitive learning architecture is then introduced. The optical system is simulated using the ``beamprop'' algorithm at the level of light propagating through the system components, and results showing competitive learning operation in agreement with the algorithm simulations are presented. The optical competitive learning requires a non-linear, non-local ``winner-take-all'' (WTA) neuron function. Custom-designed smart-pixel WTA neuron arrays were fabricated using CMOS VLSI/liquid crystal technology. Results of laboratory tests of the WTA arrays' switching characteristics, time response, and uniformity are then presented. The system uses a phase-conjugate mirror to write the self-aligning interconnection weight holograms, and energy gain is required from the reflection to minimize erasure of the existing weights. An experimental system for characterizing the PCM response is described. Useful gains of 20 were obtained with a polarization-multiplexed PCM readout, and gains of up to 60 were observed when a time-sequential read-out technique was used. Finally, the optical competitive learning laboratory system is described, including some necessary modifications to the previous architectures, and the data acquisition and control system developed for the system. Experimental results showing phase conjugation of the WTA outputs, holographic interconnect storage, associative storage between input images and WTA neuron outputs, and WTA array switching are presented, demonstrating the functions necessary for the operation of the optical learning system.
NASA Technical Reports Server (NTRS)
Smith, Jeffrey, S.; Aronstein, David L.; Dean, Bruce H.; Lyon, Richard G.
2012-01-01
The performance of an optical system (for example, a telescope) is limited by the misalignments and manufacturing imperfections of the optical elements in the system. The impact of these misalignments and imperfections can be quantified by the phase variations imparted on light traveling through the system. Phase retrieval is a methodology for determining these variations. Phase retrieval uses images taken with the optical system and using a light source of known shape and characteristics. Unlike interferometric methods, which require an optical reference for comparison, and unlike Shack-Hartmann wavefront sensors that require special optical hardware at the optical system's exit pupil, phase retrieval is an in situ, image-based method for determining the phase variations of light at the system s exit pupil. Phase retrieval can be used both as an optical metrology tool (during fabrication of optical surfaces and assembly of optical systems) and as a sensor used in active, closed-loop control of an optical system, to optimize performance. One class of phase-retrieval algorithms is the iterative transform algorithm (ITA). ITAs estimate the phase variations by iteratively enforcing known constraints in the exit pupil and at the detector, determined from modeled or measured data. The Variable Sampling Mapping (VSM) technique is a new method for enforcing these constraints in ITAs. VSM is an open framework for addressing a wide range of issues that have previously been considered detrimental to high-accuracy phase retrieval, including undersampled images, broadband illumination, images taken at or near best focus, chromatic aberrations, jitter or vibration of the optical system or detector, and dead or noisy detector pixels. The VSM is a model-to-data mapping procedure. In VSM, fully sampled electric fields at multiple wavelengths are modeled inside the phase-retrieval algorithm, and then these fields are mapped to intensities on the light detector, using the properties of the detector and optical system, for comparison with measured data. Ultimately, this model-to-data mapping procedure enables a more robust and accurate way of incorporating the exit-pupil and image detector constraints, which are fundamental to the general class of ITA phase retrieval algorithms.
Care System Versus Transmitted Light Wavefront Pattern of Contact Lenses.
Chiericati, Stefano; Borghesi, Alessandro; Cozza, Federica; Ferraro, Lorenzo; Acciarri, Maurizio; Farris, Stefano; Tavazzi, Silvia
2017-05-01
This article compares the optical performance of soft contact lenses (CLs) treated with multipurpose or hydrogen peroxide care systems. The investigated care systems were (1) 3% hydrogen peroxide solution Oxysept (Abbot Medical Optics, Abbott Park, IL) and (2) multipurpose solution Regard (Vita Research, Ariccia, Italy). Three types of silicone hydrogel CLs were studied (comfilcon A, lotrafilcon B, and balafilcon A), unworn and exposed for 30 times to the solutions, which were replaced every 8 hr. The optical performance of the CLs was evaluated through the on-eye transmitted light wavefront patterns by considering new CLs as references. The surface morphology of the CLs was investigated by scanning electron microscopy. Statistically significant modifications in the range 0.1 to 0.3 μm of Zernicke coefficients and modifications of the root mean square of the wavefront aberration function were found for CLs treated with multipurpose solution, in agreement with the observed modifications of the surface morphology. Statistically significant changes were also found after exposure to the hydrogen peroxide solution, but the variation of the Zernicke coefficients was found lower than 0.1 μm, thus being negligible in CL optical performances. In addition to disinfection ability and ocular surface reactions, CL care systems are different in solution-related CL optical performance. Multipurpose solutions may affect the CL surface morphology with significant modifications of the transmitted light wavefront pattern.
Optically powered and interrogated rotary position sensor for aircraft engine control applications
NASA Astrophysics Data System (ADS)
Spillman, W. B.; Crowne, D. H.; Woodward, D. W.
A throttle level angle (TLA) sensing system is described that utilizes a capacitance based rotary position transducer that is powered and interrogated via light from a single multimode optical fiber. The system incorporates a unique GaAs device that serves as both a power converter and optical data transmitter. Design considerations are discussed, and the fabrication and performance of the sensor system are detailed.
Clock recovery for high-speed optical communication
NASA Astrophysics Data System (ADS)
Pedrotti, Kenneth D.
1996-01-01
This paper reviews recent results for clock recovery circuits operating at speeds in excess of 1 Gbit/sec or realized as multichannel arrays. The emphasis is on synchronous optical network (SONET) type systems, their requirements, and the effect of the clock recovery circuits on system performance. Clock recovery approaches include filter based, phase-locked-loops, and all-optical methods.
Clock recovery for high-speed optical communication
NASA Astrophysics Data System (ADS)
Pedrotti, Ken
1996-01-01
This paper reviews recent results for clock recovery circuits operating at speeds in excess of 1 Gbit/sec or realized as multichannel arrays. The emphasis is on Synchronous Optical NETwork (SONET) type systems, their requirements, and the effect of the clock recovery circuits on system performance. Clock recovery approaches include filter based, phase-lockcd-loops, and all-optical methods.
Status of fiberoptics technology for propulsion control systems
NASA Technical Reports Server (NTRS)
Baumbick, R. J.
1982-01-01
Optical sensors and optically controlled actuators for use in airbreathing engine control systems are discussed. The environmental conditions in which the aircraft will operate require the fiberoptic cables and optical connectors to perform reliably at temperatures over the -55 C to 260 C range. The status of fiberoptics technology for operation in this environment is reviewed.
Thermal, Structural, and Optical Analysis of a Balloon-Based Imaging System
NASA Astrophysics Data System (ADS)
Borden, Michael; Lewis, Derek; Ochoa, Hared; Jones-Wilson, Laura; Susca, Sara; Porter, Michael; Massey, Richard; Clark, Paul; Netterfield, Barth
2017-03-01
The Subarcsecond Telescope And BaLloon Experiment, STABLE, is the fine stage of a guidance system for a high-altitude ballooning platform designed to demonstrate subarcsecond pointing stability over one minute using relatively dim guide stars in the visible spectrum. The STABLE system uses an attitude rate sensor and the motion of the guide star on a detector to control a Fast Steering Mirror to stabilize the image. The characteristics of the thermal-optical-mechanical elements in the system directly affect the quality of the point-spread function of the guide star on the detector, so a series of thermal, structural, and optical models were built to simulate system performance and ultimately inform the final pointing stability predictions. This paper describes the modeling techniques employed in each of these subsystems. The results from those models are discussed in detail, highlighting the development of the worst-case cold and hot cases, the optical metrics generated from the finite element model, and the expected STABLE residual wavefront error and decenter. Finally, the paper concludes with the predicted sensitivities in the STABLE system, which show that thermal deadbanding, structural pre-loading, and self-deflection under different loading conditions, and the speed of individual optical elements were particularly important to the resulting STABLE optical performance.
Pe’eri, Shachak; Thein, May-Win; Rzhanov, Yuri; Celikkol, Barbaros; Swift, M. Robinson
2017-01-01
This paper presents a proof-of-concept optical detector array sensor system to be used in Unmanned Underwater Vehicle (UUV) navigation. The performance of the developed optical detector array was evaluated for its capability to estimate the position, orientation and forward velocity of UUVs with respect to a light source fixed in underwater. The evaluations were conducted through Monte Carlo simulations and empirical tests under a variety of motion configurations. Monte Carlo simulations also evaluated the system total propagated uncertainty (TPU) by taking into account variations in the water column turbidity, temperature and hardware noise that may degrade the system performance. Empirical tests were conducted to estimate UUV position and velocity during its navigation to a light beacon. Monte Carlo simulation and empirical results support the use of the detector array system for optics based position feedback for UUV positioning applications. PMID:28758936
Analysis and design of a mechanical system to use with the Ronchi and Fizeau tests
NASA Astrophysics Data System (ADS)
Galán-Martínez, Arturo D.; Santiago-Alvarado, Agustín.; González-García, Jorge; Cruz-Martínez, Víctor M.; Cordero-Dávila, Alberto; Granados-Agustin, Fermin S.; Robledo-Sánchez, Calos
2013-11-01
Nowadays, there is a demand for more efficient opto-mechanical mounts which allow for the implementation of robust optical arrays in a quick and simple fashion. That is to say, mounts are needed which facilitate alignment of the optical components in order to perform the desired movements of each component. Optical testing systems available in the market today are costly, heavy and sometimes require multiple kits depending on the dimensions of the optical components. In this paper, we present the design and analysis of a mechanical system with some interchangeable basic mounts which allow for the application of both Ronchi and Fizeau tests for the evaluation of concave reflective surfaces with a diameter of 2 to 10 cm. The mechanical system design is done using the methodology of product design process, while the analysis is performed using the commercial software SolidWorks.
Enabling technologies for fiber optic sensing
NASA Astrophysics Data System (ADS)
Ibrahim, Selwan K.; Farnan, Martin; Karabacak, Devrez M.; Singer, Johannes M.
2016-04-01
In order for fiber optic sensors to compete with electrical sensors, several critical parameters need to be addressed such as performance, cost, size, reliability, etc. Relying on technologies developed in different industrial sectors helps to achieve this goal in a more efficient and cost effective way. FAZ Technology has developed a tunable laser based optical interrogator based on technologies developed in the telecommunication sector and optical transducer/sensors based on components sourced from the automotive market. Combining Fiber Bragg Grating (FBG) sensing technology with the above, high speed, high precision, reliable quasi distributed optical sensing systems for temperature, pressure, acoustics, acceleration, etc. has been developed. Careful design needs to be considered to filter out any sources of measurement drifts/errors due to different effects e.g. polarization and birefringence, coating imperfections, sensor packaging etc. Also to achieve high speed and high performance optical sensing systems, combining and synchronizing multiple optical interrogators similar to what has been used with computer/processors to deliver super computing power is an attractive solution. This path can be achieved by using photonic integrated circuit (PIC) technology which opens the doors to scaling up and delivering powerful optical sensing systems in an efficient and cost effective way.
Analysis of CPolSK-based FSO system working in space-to-ground channel
NASA Astrophysics Data System (ADS)
Su, Yuwei; Sato, Takuro
2018-03-01
In this article, the transmission performance of a circle polarization shift keying (CPolSK)-based free space optical (FSO) system working in space-to-ground channel is analyzed. Formulas describing the optical polarization distortion caused by the atmospheric turbulence and the communication qualities in terms of signal-to-noise-ratio (SNR), bit-error-ratio (BER) and outage probability of the proposed system are derived. Based on the Stokes parameters data measured by a Japanese optical communication satellite, we evaluate the space-to-ground FSO link and simulate the system performance under a varying regime of turbulence strength. The proposed system provides a more efficient way to compensate scintillation effects in a comparison with the on-off-keying (OOK)-based FSO system. These results are useful to the designing and evaluating of a deep space FSO communication system.
Optical Signal Processing: Poisson Image Restoration and Shearing Interferometry
NASA Technical Reports Server (NTRS)
Hong, Yie-Ming
1973-01-01
Optical signal processing can be performed in either digital or analog systems. Digital computers and coherent optical systems are discussed as they are used in optical signal processing. Topics include: image restoration; phase-object visualization; image contrast reversal; optical computation; image multiplexing; and fabrication of spatial filters. Digital optical data processing deals with restoration of images degraded by signal-dependent noise. When the input data of an image restoration system are the numbers of photoelectrons received from various areas of a photosensitive surface, the data are Poisson distributed with mean values proportional to the illuminance of the incoherently radiating object and background light. Optical signal processing using coherent optical systems is also discussed. Following a brief review of the pertinent details of Ronchi's diffraction grating interferometer, moire effect, carrier-frequency photography, and achromatic holography, two new shearing interferometers based on them are presented. Both interferometers can produce variable shear.
NASA Astrophysics Data System (ADS)
Spencer, Harvey
2002-09-01
Helicopter mounted optical systems require compact packaging, good image performance (approaching the diffraction-limit), and must survive and operate in a rugged shock and thermal environment. The always-present requirement for low weight in an airborne sensor is paramount when considering the optical configuration. In addition, the usual list of optical requirements which must be satisfied within narrow tolerances, including field-of-view, vignetting, boresight, stray light rejection, and transmittance drive the optical design. It must be determined early in the engineering process which internal optical alignment adjustment provisions must be included, which may be included, and which will have to be omitted, since adding alignment features often conflicts with the requirement for optical component stability during operation and of course adds weight. When the system is to be modular and mates with another optical system, a telescope designed by different contractor in this case, additional alignment requirements between the two systems must be specified and agreed upon. Final delivered cost is certainly critical and "touch labor" assembly time must be determined and controlled. A clear plan for the alignment and assembly steps must be devised before the optical design can even begin to ensure that an arrangement of optical components amenable to adjustment is reached. The optical specification document should be written contemporaneously with the alignment plan to insure compatibility. The optics decisions that led to the success of this project are described and the final optical design is presented. A description of some unique pupil alignment adjustments, never performed by us in the infrared, is described.
NASA Astrophysics Data System (ADS)
Ibrahim, Selwan K.; O'Dowd, John A.; Honniball, Arthur; Bessler, Vivian; Farnan, Martin; O'Connor, Peter; Melicher, Milos; Gleeson, Danny
2017-09-01
The Future Launchers Preparatory Programme (FLPP) supported by the European Space Agency (ESA) has a goal of developing various launch vehicle system concepts and identifying the technologies required for the design of Europe's Next-Generation Launcher (NGL) while maintaining competitiveness on the commercial market. Avionics fiber optic sensing technology was investigated as part of the FLPP programme. Here we demonstrate and evaluate a high speed hybrid electrical/optical data acquisition system based on commercial off the shelf (COTS) technology capable of acquiring data from traditional electrical sensors and optical Fibre Bragg Grating (FBG) sensors. The proposed system consists of the KAM-500 data acquisition system developed by Curtis-Wright and the I4 tunable laser based fiber optic sensor interrogator developed by FAZ Technology. The key objective was to demonstrate the capability of the hybrid system to acquire data from traditional electrical sensors used in launcher applications e.g. strain, temperature and pressure in combination with optical FBG sensors, as well as data delivery to spacecraft avionics systems. The KAM-500 was configured as the main acquisition unit (MAU) and provided a 1 kHz sampling clock to the I4 interrogator that was configured as the secondary acquisition unit (SAU) to synchronize the data acquisition sample rate between both systems. The SAU acquired data from an array of optical FBG sensors, while the MAU data acquisition system acquired data from the electrical sensors. Data acquired from the optical sensors was processed by the FAZ I4 interrogation system and then encapsulated into UDP/IP packets and transferred to the KAM-500. The KAM-500 encapsulated the optical sensor data together with the data acquired from electrical sensors and transmitted the data over MIL-STD-1553 and Ethernet data interface. The temperature measurements resulted in the optical and electrical sensors performing on a par with each other, with all sensors recording an accuracy within 0.35% FS over the full temperature range of -70°C to +180°C. The pressure measurements were performed over a 0 to 5 bar absolute pressure range and over different temperatures across a -40°C to +80°C range. The tests concluded that the optical pressure sensors performed on par with the electrical pressure sensor for each temperature set, where both sensor technologies measured a pressure accuracy of 1.2% FS. As for the strain measurements, the results show the optical and electrical sensors can measure to within 1% FS (Full Scale) of measurement range +/-1,200 μstrain. The proposed hybrid system can be potentially used for next generation launcher applications delivering weight reduction, improvement in measurement coverage and reduction in Assembly, Integration and Testing (AIT) over traditional electrical systems.
Link Power Budget and Traffict QoS Performance Analysis of Gygabit Passive Optical Network
NASA Astrophysics Data System (ADS)
Ubaidillah, A.; Alfita, R.; Toyyibah
2018-01-01
Data service of telecommunication network is needed widely in the world; therefore extra wide bandwidth must be provided. For this case, PT. Telekomunikasi Tbk. applies GPON (Gigabit Passive Optical Network) as optical fibre based on telecommunication network system. GPON is a point to a multipoint technology of FTTx (Fiber to The x) that transmits information signals to the subscriber over optical fibre. In GPON trunking system, from OLT (Optical Line Terminal), the network is split to many ONT (Optical Network Terminal) of the subscribers, so it causes path loss and attenuation. In this research, the GPON performance is measured from the link power budget system and the Quality of Service (QoS) of the traffic. And the observation result shows that the link power budget system of this GPON is in good condition. The link power budget values from the mathematical calculation and direct measurement are satisfy the ITU-T G984 Class B standard, that the power level must be between -8 dBm to -27 dBm. While from the traffic performance, the observation result shows that the network resource utility of the subscribers of the observed area is not optimum. The mean of subscriber utility rate is 27.985 bps for upstream and 79.687 bps for downstream. While maximally, It should be 60.800 bps for upstream and 486.400 bps for downstream.
Self-Referenced Fiber Optic System For Remote Methane Detection
NASA Astrophysics Data System (ADS)
Zientkiewicz, Jacek K.
1989-10-01
The paper discusses a fiber optic multisensor methane detection system matched to topology and environment of the underground mine. The system involves time domain multiplexed (TDM) methane sensors based on selective absorption of source radiation by atomic/molecular species in the gas sensing heads. A two-wavelength ratiometric approach allows simple self-referencing, cancels out errors arising from other contaminants, and improves the measurement contrast. The laboratory system consists of a high radiance LED source, multimode fiber, optical sensing head, optical bandpass filters, and involves synchronous detection with low noise photodiodes and a lock-in amplifier. Detection sensitivity versus spectral resolution of the optical filters has also been investigated and described. The system performance was evaluated and the results are presented.
Comparison-based optical study on a point-line-coupling-focus system with linear Fresnel heliostats.
Dai, Yanjun; Li, Xian; Zhou, Lingyu; Ma, Xuan; Wang, Ruzhu
2016-05-16
Concentrating the concept of a beam-down solar tower with linear Fresnel heliostat (PLCF) is one of the feasible choices and has great potential in reducing spot size and improving optical efficiency. Optical characteristics of a PLCF system with the hyperboloid reflector are introduced and investigated theoretically. Taking into account solar position and optical surface errors, a Monte Carlo ray-tracing (MCRT) analysis model for a PLCF system is developed and applied in a comparison-based study on the optical performance between the PLCF system and the conventional beam-down solar tower system with flat and spherical heliostats. The optimal square facet of linear Fresnel heliostat is also proposed for matching with the 3D-CPC receiver.
NASA Astrophysics Data System (ADS)
Hechenblaikner, Gerald; Flatscher, Reinhold
2013-05-01
The LISA Pathfinder mission to space employs an optical metrology system (OMS) at its core to measure the distance and attitude between two freely floating test-masses to picometer and nanorad accuracy, respectively, within the measurement band of [1 mHz, 30 mHz]. The OMS is based upon an ultra-stable optical bench with 4 heterodyne interferometers from which interference signals are read-out and processed by a digital phase-meter. Laser frequency noise, power fluctuations and optical path-length variations are suppressed to uncritical levels by dedicated control loops so that the measurement performance approaches the sensor limit imposed by the phasemeter. The system design is such that low frequency common mode noise which affects the read-out phase of all four interferometers is generally well suppressed by subtraction of a reference phase from the other interferometer signals. However, high frequency noise directly affects measurement performance and its common mode rejection depends strongly on the relative signal phases. We discuss how the data from recent test campaigns point towards high frequency phase noise as a likely performance limiting factor which explains some important performance features.
NASA Astrophysics Data System (ADS)
Li, Xin; Hong, Yifeng; Wang, Jinfang; Liu, Yang; Sun, Xun; Li, Mi
2018-01-01
Numerous communication techniques and optical devices successfully applied in space optical communication system indicates a good portability of it. With this good portability, typical coherent demodulation technique of Costas loop can be easily adopted in space optical communication system. As one of the components of pointing error, the effect of jitter plays an important role in the communication quality of such system. Here, we obtain the probability density functions (PDF) of different jitter degrees and explain their essential effect on the bit error rate (BER) space optical communication system. Also, under the effect of jitter, we research the bit error rate of space coherent optical communication system using Costas loop with different system parameters of transmission power, divergence angle, receiving diameter, avalanche photodiode (APD) gain, and phase deviation caused by Costas loop. Through a numerical simulation of this kind of communication system, we demonstrate the relationship between the BER and these system parameters, and some corresponding methods of system optimization are presented to enhance the communication quality.
Terzenidis, Nikos; Moralis-Pegios, Miltiadis; Mourgias-Alexandris, George; Vyrsokinos, Konstantinos; Pleros, Nikos
2018-04-02
Departing from traditional server-centric data center architectures towards disaggregated systems that can offer increased resource utilization at reduced cost and energy envelopes, the use of high-port switching with highly stringent latency and bandwidth requirements becomes a necessity. We present an optical switch architecture exploiting a hybrid broadcast-and-select/wavelength routing scheme with small-scale optical feedforward buffering. The architecture is experimentally demonstrated at 10Gb/s, reporting error-free performance with a power penalty of <2.5dB. Moreover, network simulations for a 256-node system, revealed low-latency values of only 605nsec, at throughput values reaching 80% when employing 2-packet-size optical buffers, while multi-rack network performance was also investigated.
Demonstration of an 8 × 25-Gb/s optical time-division multiplexing system
NASA Astrophysics Data System (ADS)
Wang, Dong; Huo, Li; Li, Yunbo; Wang, Lei; Li, Han; Jiang, Xiangyu; Chen, Xin; Lou, Caiyun
2017-11-01
An 8 × 25-Gb/s optical time-division multiplexing (OTDM) system is demonstrated experimentally. The optical pulse source is based on optical frequency comb (OFC) generation and pulse shaping, which can generate nearly chirp-free 25-GHz 1.6-ps optical Gaussian pulse. The eightfold optical time-division demultiplexer consists of a single-driven dual-parallel Mach-Zehnder modulator (DPMZM) and a Mamyshev reshaper. Error-free demultiplexing of 8 × 25-Gb/s back-to-back (B2B) signal with a power penalty of 4.1 dB to 4.4 dB at a bit error rate (BER) of 10-9 is achieved to confirm the performance of the proposed system.
An Accurate Projector Calibration Method Based on Polynomial Distortion Representation
Liu, Miao; Sun, Changku; Huang, Shujun; Zhang, Zonghua
2015-01-01
In structure light measurement systems or 3D printing systems, the errors caused by optical distortion of a digital projector always affect the precision performance and cannot be ignored. Existing methods to calibrate the projection distortion rely on calibration plate and photogrammetry, so the calibration performance is largely affected by the quality of the plate and the imaging system. This paper proposes a new projector calibration approach that makes use of photodiodes to directly detect the light emitted from a digital projector. By analyzing the output sequence of the photoelectric module, the pixel coordinates can be accurately obtained by the curve fitting method. A polynomial distortion representation is employed to reduce the residuals of the traditional distortion representation model. Experimental results and performance evaluation show that the proposed calibration method is able to avoid most of the disadvantages in traditional methods and achieves a higher accuracy. This proposed method is also practically applicable to evaluate the geometric optical performance of other optical projection system. PMID:26492247
NASA Astrophysics Data System (ADS)
Walker, Ernest L.
1994-05-01
This paper presents results of a theoretical investigation to evaluate the performance of code division multiple access communications over multimode optical fiber channels in an asynchronous, multiuser communication network environment. The system is evaluated using Gold sequences for spectral spreading of the baseband signal from each user employing direct-sequence biphase shift keying and intensity modulation techniques. The transmission channel model employed is a lossless linear system approximation of the field transfer function for the alpha -profile multimode optical fiber. Due to channel model complexity, a correlation receiver model employing a suboptimal receive filter was used in calculating the peak output signal at the ith receiver. In Part 1, the performance measures for the system, i.e., signal-to-noise ratio and bit error probability for the ith receiver, are derived as functions of channel characteristics, spectral spreading, number of active users, and the bit energy to noise (white) spectral density ratio. In Part 2, the overall system performance is evaluated.
DISCRETE EVENT SIMULATION OF OPTICAL SWITCH MATRIX PERFORMANCE IN COMPUTER NETWORKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, Neena; Poole, Stephen W
2013-01-01
In this paper, we present application of a Discrete Event Simulator (DES) for performance modeling of optical switching devices in computer networks. Network simulators are valuable tools in situations where one cannot investigate the system directly. This situation may arise if the system under study does not exist yet or the cost of studying the system directly is prohibitive. Most available network simulators are based on the paradigm of discrete-event-based simulation. As computer networks become increasingly larger and more complex, sophisticated DES tool chains have become available for both commercial and academic research. Some well-known simulators are NS2, NS3, OPNET,more » and OMNEST. For this research, we have applied OMNEST for the purpose of simulating multi-wavelength performance of optical switch matrices in computer interconnection networks. Our results suggest that the application of DES to computer interconnection networks provides valuable insight in device performance and aids in topology and system optimization.« less
Focusing Light Beams To Improve Atomic-Vapor Optical Buffers
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy
2010-01-01
Specially designed focusing of light beams has been proposed as a means of improving the performances of optical buffers based on cells containing hot atomic vapors (e.g., rubidium vapor). There is also a companion proposal to improve performance by use of incoherent optical pumping under suitable conditions. Regarding the proposal to use focusing: The utility of atomic-vapor optical buffers as optical storage and processing devices has been severely limited by nonuniform spatial distributions of intensity in optical beams, arising from absorption of the beams as they propagate in atomic-vapor cells. Such nonuniformity makes it impossible to optimize the physical conditions throughout a cell, thereby making it impossible to optimize the performance of the cell as an optical buffer. In practical terms simplified for the sake of brevity, "to optimize" as used here means to design the cell so as to maximize the group delay of an optical pulse while keeping the absorption and distortion of the pulse reasonably small. Regarding the proposal to use incoherent optical pumping: For reasons too complex to describe here, residual absorption of light is one of the main impediments to achievement of desirably long group delays in hot atomic vapors. The present proposal is directed toward suppressing residual absorption of light. The idea of improving the performance of slow-light optical buffers by use of incoherent pumping overlaps somewhat with the basic idea of Raman-based slow-light systems. However, prior studies of those systems did not quantitatively answer the question of whether the performance of an atomic vapor or other medium that exhibits electromagnetically induced transparency (EIT) with Raman gain is superior to that of a medium that exhibits EIT without Raman gain.
NASA Astrophysics Data System (ADS)
Folley, Christopher; Bronowicki, Allen
2005-09-01
Prediction of optical performance for large, deployable telescopes under environmental conditions and mechanical disturbances is a crucial part of the design verification process of such instruments for all phases of design and operation: ground testing, commissioning, and on-orbit operation. A Structural-Thermal-Optical-Performance (STOP) analysis methodology is often created that integrates the output of one analysis with the input of another. The integration of thermal environment predictions with structural models is relatively well understood, while the integration of structural deformation results into optical analysis/design software is less straightforward. A Matlab toolbox has been created that effectively integrates the predictions of mechanical deformations on optical elements generated by, for example, finite element analysis, and computes optical path differences for the distorted prescription. The engine of the toolbox is the real ray-tracing algorithm that allows the optical surfaces to be defined in a single, global coordinate system thereby allowing automatic alignment of the mechanical coordinate system with the optical coordinate system. Therefore, the physical location of the optical surfaces is identical in the optical prescription and the finite element model. The application of rigid body displacements to optical surfaces, however, is more general than for use solely in STOP analysis, such as the analysis of misalignments during the commissioning process. Furthermore, all the functionality of Matlab is available for optimization and control. Since this is a new tool for use on flight programs, it has been verified against CODE V. The toolbox' functionality, to date, is described, verification results are presented, and, as an example of its utility, results of a thermal distortion analysis are presented using the James Webb Space Telescope (JWST) prescription.
NASA Astrophysics Data System (ADS)
Serpa-Imbett, C. M.; Marín-Alfonso, J.; Gómez-Santamaría, C.; Betancur-Agudelo, L.; Amaya-Fernández, F.
2013-12-01
Space division multiplexing in multicore fibers is one of the most promise technologies in order to support transmissions of next-generation peta-to-exaflop-scale supercomputers and mega data centers, owing to advantages in terms of costs and space saving of the new optical fibers with multiple cores. Additionally, multicore fibers allow photonic signal processing in optical communication systems, taking advantage of the mode coupling phenomena. In this work, we numerically have simulated an optical MIMO-OFDM (multiple-input multiple-output orthogonal frequency division multiplexing) by using the coded Alamouti to be transmitted through a twin-core fiber with low coupling. Furthermore, an optical OFDM is transmitted through a core of a singlemode fiber, using pilot-aided channel estimation. We compare the transmission performance in the twin-core fiber and in the singlemode fiber taking into account numerical results of the bit-error rate, considering linear propagation, and Gaussian noise through an optical fiber link. We carry out an optical fiber transmission of OFDM frames using 8 PSK and 16 QAM, with bit rates values of 130 Gb/s and 170 Gb/s, respectively. We obtain a penalty around 4 dB for the 8 PSK transmissions, after 100 km of linear fiber optic propagation for both singlemode and twin core fiber. We obtain a penalty around 6 dB for the 16 QAM transmissions, with linear propagation after 100 km of optical fiber. The transmission in a two-core fiber by using Alamouti coded OFDM-MIMO exhibits a better performance, offering a good alternative in the mitigation of fiber impairments, allowing to expand Alamouti coded in multichannel systems spatially multiplexed in multicore fibers.
Study of optimum methods of optical communication
NASA Technical Reports Server (NTRS)
Harger, R. O.
1972-01-01
Optimum methods of optical communication accounting for the effects of the turbulent atmosphere and quantum mechanics, both by the semi-classical method and the full-fledged quantum theoretical model are described. A concerted effort to apply the techniques of communication theory to the novel problems of optical communication by a careful study of realistic models and their statistical descriptions, the finding of appropriate optimum structures and the calculation of their performance and, insofar as possible, comparing them to conventional and other suboptimal systems are discussed. In this unified way the bounds on performance and the structure of optimum communication systems for transmission of information, imaging, tracking, and estimation can be determined for optical channels.
NASA Technical Reports Server (NTRS)
Mehle, Greg; Stahl, Phil (Technical Monitor)
2002-01-01
This presentation provides an overview of the development of the 1.6 meter hybrid mirror demonstrator for the NGST Mirror System Demonstrator (NMSD) program. The COI design approach for the NGST program combines the optical performance of glass, with the high specific stiffness capabilities of composite materials The foundation technologies being exploited in the development of the hybrid mirror focus upon precision Composite Materials for cryogenic operation, and non-contact optical processing (ion figuring) of the lightweight mirror surface. The NGST Mirror System Demonstrator (NMSD) has been designed and built by Composite Optics, Inc. (COI) with optical processing performed by SAGEM (REOSC). The sponsors of these efforts are the NASA Marshall and Goddard Space Flight Centers.
Yang, Yi; Foster, Mark; Khurgin, Jacob B; Cooper, A Brinton
2012-07-30
A novel coherent optical code-division multiple access (OCDMA) scheme is proposed that uses spectral line pairing to generate signals suitable for heterodyne decoding. Both signal and local reference are transmitted via a single optical fiber and a simple balanced receiver performs sourceless heterodyne detection, canceling speckle noise and multiple-access interference (MAI). To validate the idea, a 16 user fully loaded phase encoded system is simulated. Effects of fiber dispersion on system performance are studied as well. Both second and third order dispersion management is achieved by using a spectral phase encoder to adjust phase shifts of spectral components at the optical network unit (ONU).
Gilles, L; Ellerbroek, B L
2010-11-01
Real-time turbulence profiling is necessary to tune tomographic wavefront reconstruction algorithms for wide-field adaptive optics (AO) systems on large to extremely large telescopes, and to perform a variety of image post-processing tasks involving point-spread function reconstruction. This paper describes a computationally efficient and accurate numerical technique inspired by the slope detection and ranging (SLODAR) method to perform this task in real time from properly selected Shack-Hartmann wavefront sensor measurements accumulated over a few hundred frames from a pair of laser guide stars, thus eliminating the need for an additional instrument. The algorithm is introduced, followed by a theoretical influence function analysis illustrating its impulse response to high-resolution turbulence profiles. Finally, its performance is assessed in the context of the Thirty Meter Telescope multi-conjugate adaptive optics system via end-to-end wave optics Monte Carlo simulations.
NASA Astrophysics Data System (ADS)
Li, Changping; Yi, Ying; Lee, Kyujin; Lee, Kyesan
2014-08-01
Visible light communication (VLC) applied in an intelligent transportation system (ITS) has attracted growing attentions, but it also faces challenges, for example deep path loss and optical multi-path dispersion. In this work, we modelled an actual outdoor optical channel as a Rician channel and further proposed space-time block coding (STBC) orthogonal frequency-division multiplexing (OFDM) technology to reduce the influence of severe optical multi-path dispersion associated with such a mock channel for achieving the effective BER of 10-6 even at a low signal-to-noise ratio (SNR). In this case, the optical signals transmission distance can be extended as long as possible. Through the simulation results of STBC-OFDM and single-input-single-output (SISO) counterparts in bit error rate (BER) performance comparison, we can distinctly observe that the VLC-ITS system using STBC-OFDM technique can obtain a strongly improved BER performance due to multi-path dispersion alleviation.
Nozaki, Kengo; Shinya, Akihiko; Matsuo, Shinji; Sato, Tomonari; Kuramochi, Eiichi; Notomi, Masaya
2013-05-20
We experimentally and theoretically clarified that a Fano resonant system based on a coupled optical cavity has better performance when used as an all-optical switch than a single cavity in terms of switching energy, contrast, and operation bandwidth. We successfully fabricated a Fano system consisting of doubly coupled photonic-crystal (PhC) nanocavities, and demonstrated all-optical switching for the first time. A steep asymmetric transmission spectrum was clearly observed, thereby enabling a low-energy and high-contrast switching operation. We achieved the switching with a pump energy of a few fJ, a contrast of more than 10 dB, and an 18 ps switching time window. These levels of performance are actually better than those for Lorentzian resonance in a single cavity. We also theoretically investigated the achievable performance in a well-designed Fano system, which suggested a high contrast for the switching of more than 20 dB in a fJ energy regime.
NASA Astrophysics Data System (ADS)
Powell, Keith B.; Vaitheeswaran, Vidhya
2010-07-01
The MMT observatory has recently implemented and tested an optimal wavefront controller for the NGS adaptive optics system. Open loop atmospheric data collected at the telescope is used as the input to a MATLAB based analytical model. The model uses nonlinear constrained minimization to determine controller gains and optimize the system performance. The real-time controller performing the adaptive optics close loop operation is implemented on a dedicated high performance PC based quad core server. The controller algorithm is written in C and uses the GNU scientific library for linear algebra. Tests at the MMT confirmed the optimal controller significantly reduced the residual RMS wavefront compared with the previous controller. Significant reductions in image FWHM and increased peak intensities were obtained in J, H and K-bands. The optimal PID controller is now operating as the baseline wavefront controller for the MMT NGS-AO system.
NASA Astrophysics Data System (ADS)
Palmiste, Ü.; Voll, H.
2017-10-01
The development of advanced air cleaning technologies aims to reduce building energy consumption by reduction of outdoor air flow rates while keeping the indoor air quality at an acceptable level by air cleaning. Photocatalytic oxidation is an emerging technology for gas-phase air cleaning that can be applied in a standalone unit or a subsystem of a building mechanical ventilation system. Quantitative information on photocatalytic reactor performance is required to evaluate the technical and economic viability of the advanced air cleaning by PCO technology as an energy conservation measure in a building air conditioning system. Photocatalytic reactors applying optical fibers as light guide or photocatalyst coating support have been reported as an approach to address the current light utilization problems and thus, improve the overall efficiency. The aim of the paper is to present a preliminary evaluation on continuous flow optical fiber photocatalytic reactors based on performance indicators commonly applied for air cleaners. Based on experimental data, monolith-type optical fiber reactor performance surpasses annular-type optical fiber reactors in single-pass removal efficiency, clean air delivery rate and operating cost efficiency.
NASA Technical Reports Server (NTRS)
Lindensmith, Chris A.; Briggs, H. Clark; Beregovski, Yuri; Feria, V. Alfonso; Goullioud, Renaud; Gursel, Yekta; Hahn, Inseob; Kinsella, Gary; Orzewalla, Matthew; Phillips, Charles
2006-01-01
SIM Planetquest (SIM) is a large optical interferometer for making microarcsecond measurements of the positions of stars, and to detect Earth-sized planets around nearby stars. To achieve this precision, SIM requires stability of optical components to tens of picometers per hour. The combination of SIM s large size (9 meter baseline) and the high stability requirement makes it difficult and costly to measure all aspects of system performance on the ground. To reduce risks, costs and to allow for a design with fewer intermediate testing stages, the SIM project is developing an integrated thermal, mechanical and optical modeling process that will allow predictions of the system performance to be made at the required high precision. This modeling process uses commercial, off-the-shelf tools and has been validated against experimental results at the precision of the SIM performance requirements. This paper presents the description of the model development, some of the models, and their validation in the Thermo-Opto-Mechanical (TOM3) testbed which includes full scale brassboard optical components and the metrology to test them at the SIM performance requirement levels.
Wang, Jian-Feng; Liu, Hong-Lin; Zhang, Shu-Qin; Yu, Xiang-Dong; Sun, Zhong-Zhou; Jin, Shang-Zhong; Zhang, Zai-Xuan
2013-04-01
Basic principles, development trends and applications status of distributed optical fiber Raman temperature sensor (DTS) are introduced. Performance parameters of DTS system include the sensing optical fiber length, temperature measurement uncertainty, spatial resolution and measurement time. These parameters have a certain correlation and it is difficult to improve them at the same time by single technology. So a variety of key techniques such as Raman amplification, pulse coding technique, Raman related dual-wavelength self-correction technique and embedding optical switching technique are researched to improve the performance of the DTS system. A 1 467 nm continuous laser is used as pump laser and the light source of DTS system (1 550 nm pulse laser) is amplified. When the length of sensing optical fiber is 50 km the Raman gain is about 17 dB. Raman gain can partially compensate the transmission loss of optical fiber, so that the sensing length can reach 50 km. In DTS system using pulse coding technique, pulse laser is coded by 211 bits loop encoder and correlation calculation is used to demodulate temperature. The encoded laser signal is related, whereas the noise is not relevant. So that signal-to-noise ratio (SNR) of DTS system can be improved significantly. The experiments are carried out in DTS system with single mode optical fiber and multimode optical fiber respectively. Temperature measurement uncertainty can all reach 1 degrees C. In DTS system using Raman related dual-wavelength self-correction technique, the wavelength difference of the two light sources must be one Raman frequency shift in optical fiber. For example, wavelength of the main laser is 1 550 nm and wavelength of the second laser must be 1 450 nm. Spatial resolution of DTS system is improved to 2 m by using dual-wavelength self-correction technique. Optical switch is embedded in DTS system, so that the temperature measurement channel multiply extended and the total length of the sensing optical fiber effectively extended. Optical fiber sensor network is composed.
NASA Technical Reports Server (NTRS)
Rasche, R. W.
1979-01-01
General background and overview material are presented along with data from studies performed to determine the sensitivity, feasibility, and required performance of systems for a total X-ray telescope assembly. Topics covered include: optical design, mirror support concepts, mirror weight estimates, the effects of l g on mirror elements, mirror assembly resonant frequencies, optical bench considerations, temperature control of the mirror assembly, and the aspect determination system.
NASA Astrophysics Data System (ADS)
Börner, Michael; Manfletti, Chiara; Kroupa, Gerhard; Oschwald, Michael
2017-09-01
This paper reports on the repetitive laser ignition by optical breakdown within an experimental rocket combustion chamber. Ignition was performed by focusing a laser pulse generated by a miniaturized diode-pumped Nd:YAG laser system. The system, which delivers 33.2 mJ in 2.3 ns, was mounted directly to the combustion chamber. The ignition process and flame stabilization was investigated using an optical probe system monitoring the flame attachment across the 15 coaxial injector configuration. 1195 successful ignitions were performed proving the reliability of this laser ignition system and its applicability to the propellant combination LOX/hydrogen at temperatures of T_{{{H}_{ 2} }} = 120-282 K and T_{{{O}_{ 2} }} = 110-281 K.
Airborne Visible Laser Optical Communications (AVLOC) experiment
NASA Technical Reports Server (NTRS)
1974-01-01
A series of optical communication experiments between a high altitude aircraft at 18.3 km (60,000 ft) and a ground station were conducted by NASA from summer 1972 through winter 1973. The basic system was an optical tracker and transmitter located in each terminal. The aircraft transceiver consisted of a 5-mW HeNe laser transmitter with a 30-megabit modulator. The ground station beacon was an argon laser operating at 488 nm. A separate pulsed laser radar was used for initial acquisition. The objective of the experiment was to obtain engineering data on the precision tracking and communication system performance at both terminals. Atmospheric effects on the system performance was also an experiment objective. The system description, engineering analysis, testing, and flight results are discussed.
NASA Astrophysics Data System (ADS)
Doushkina, Valentina
2010-08-01
Innovative hybrid glass-polymer optical solutions on a component, module, or system level offer thermal stability of glass with low manufacturing cost of polymers reducing component weight, enhancing the safety and appeal of the products. Narrow choice of polymer materials is compensated by utilizing sophisticated optical surfaces such as refractive, reflective, and diffractive substrates with spherical, aspherical, cylindrical, and freeform prescriptions. Current advancements in polymer technology and injection molding capabilities placed polymer optics in the heart of many high tech devices and applications including Automotive Industry, Defense & Aerospace; Medical/Bio Science; Projection Displays, Sensors, Information Technology, Commercial and Industrial. This paper is about integration of polymer and glass optics for enhanced optical performance with reduced number of components, thermal stability, and low manufacturing cost. The listed advantages are not achievable when polymers or glass optics are used as stand-alone. The author demonstrates that integration of polymer and glass on component or optical system level on one hand offers high resolution and diffraction limited image quality, similar to the glass optics with stable refractive index and stable thermal performance when design is athermalized within the temperature range. On the other hand, the integrated hybrid solution significantly reduces cost, weight, and complexity, just like the polymer optics. The author will describe the design and analyzes process of combining glass and polymer optics for variety of challenging applications such as fast optics with low F/#, wide field of view lenses or systems, free form optics, etc.
Diffractive optics technology and the NASA Geostationary Earth Observatory (GEO)
NASA Technical Reports Server (NTRS)
Morris, G. Michael; Michaels, Robert L.; Faklis, Dean
1992-01-01
Diffractive (or binary) optics offers unique capabilities for the development of large-aperture, high-performance, light-weight optical systems. The Geostationary Earth Observatory (GEO) will consist of a variety of instruments to monitor the environmental conditions of the earth and its atmosphere. The aim of this investigation is to analyze the design of the GEO instrument that is being proposed and to identify the areas in which diffractive (or binary) optics technology can make a significant impact in GEO sensor design. Several potential applications where diffractive optics may indeed serve as a key technology for improving the performance and reducing the weight and cost of the GEO sensors have been identified. Applications include the use of diffractive/refractive hybrid lenses for aft-optic imagers, diffractive telescopes for narrowband imaging, subwavelength structured surfaces for anti-reflection and polarization control, and aberration compensation for reflective imaging systems and grating spectrometers.
NASA Astrophysics Data System (ADS)
Gregory, M.; Troendle, D.; Muehlnikel, G.; Heine, F.; Meyer, R.; Lutzer, M.; Czichy, R.
2013-03-01
Tesat is performing inter-satellite links (ISLs) for over 5 years now. Besides the successful demonstration of the suitability of coherent laser communication for high speed data transmission in space, Tesat has also conducted two major satellite to ground link (SGL) campaigns during the last 3 years. A transportable ground station has been developed to measure the impact of atmospheric turbulence to the coherent system. The SGLs have been performed between the Tesat optical ground station and the two LEO satellites TerraSAR-X and NFIRE, both equipped with a Tesat LCT. The capability of the LCTs of measuring the signal intensity on a direct detection sensor and on a coherent sensor simultaneously makes the system unique for investigating the atmospheric distortion impacts. In this paper the main results of the SGL campaigns are presented, including BER performance for the uplink and downlink. Measured scintillation profiles versus elevation angles at different weather conditions are illustrated. Finally preliminary results of an adaptive optics system are presented that has been developed to be used in the transportable adaptive optical ground station (T-AOGS) acting as the counter terminal for the LCT mounted on Alphasat, a geostationary satellite of the European Space Agency (ESA), in autumn 2013.
NASA Technical Reports Server (NTRS)
Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal
2016-01-01
The JWST primary mirror consists of 18 1.5 m hexagonal segments, each with 6-DoF and RoC adjustment. The telescope will be tested at its cryogenic operating temperature at Johnson Space Center. The testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The performance of these metrology systems, including hardware, software, procedures, was assessed during two cryogenic tests at JSC, using the JWST Pathfinder telescope. This paper describes the test setup, the testing performed, and the resulting metrology system performance.
NASA Astrophysics Data System (ADS)
Wang, Huiqin; Wang, Xue; Lynette, Kibe; Cao, Minghua
2018-06-01
The performance of multiple-input multiple-output wireless optical communication systems that adopt Q-ary pulse position modulation over spatial correlated log-normal fading channel is analyzed in terms of its un-coded bit error rate and ergodic channel capacity. The analysis is based on the Wilkinson's method which approximates the distribution of a sum of correlated log-normal random variables to a log-normal random variable. The analytical and simulation results corroborate the increment of correlation coefficients among sub-channels lead to system performance degradation. Moreover, the receiver diversity has better performance in resistance of spatial correlation caused channel fading.
An optimized adaptive optics experimental setup for in vivo retinal imaging
NASA Astrophysics Data System (ADS)
Balderas-Mata, S. E.; Valdivieso González, L. G.; Ramírez Zavaleta, G.; López Olazagasti, E.; Tepichin Rodriguez, E.
2012-10-01
The use of Adaptive Optics (AO) in ophthalmologic instruments to image human retinas has been probed to improve the imaging lateral resolution, by correcting both static and dynamic aberrations inherent in human eyes. Typically, the configuration of the AO arm uses an infrared beam from a superluminescent diode (SLD), which is focused on the retina, acting as a point source. The back reflected light emerges through the eye optical system bringing with it the aberrations of the cornea. The aberrated wavefront is measured with a Shack - Hartmann wavefront sensor (SHWFS). However, the aberrations in the optical imaging system can reduced the performance of the wave front correction. The aim of this work is to present an optimized first stage AO experimental setup for in vivo retinal imaging. In our proposal, the imaging optical system has been designed in order to reduce spherical aberrations due to the lenses. The ANSI Standard is followed assuring the safety power levels. The performance of the system will be compared with a commercial aberrometer. This system will be used as the AO arm of a flood-illuminated fundus camera system for retinal imaging. We present preliminary experimental results showing the enhancement.
Low-Cost High-Precision PIAA Optics for High Contrast Imaging with Exo-Planet Coronagraphs
NASA Technical Reports Server (NTRS)
Balasubramanian, Kunjithapatham; Shaklan, Stuart B.; Pueyo, Laurent; Wilson, Daniel W.; Guyon, Olivier
2010-01-01
PIAA optics for high contrast imaging present challenges in manufacturing and testing due to their large surface departures from aspheric profiles at the aperture edges. With smaller form factors and consequent smaller surface deformations (<50 microns), fabrication of these mirrors with diamond turning followed by electron beam lithographic techniques becomes feasible. Though such a design reduces the system throughput to approx.50%, it still provides good performance down to 2 lambda/D inner working angle. With new achromatic focal plane mask designs, the system performance can be further improved. We report on the design, expected performance, fabrication challenges, and initial assessment of such novel PIAA optics.
Reducing beam shaper alignment complexity: diagnostic techniques for alignment and tuning
NASA Astrophysics Data System (ADS)
Lizotte, Todd E.
2011-10-01
Safe and efficient optical alignment is a critical requirement for industrial laser systems used in a high volume manufacturing environment. Of specific interest is the development of techniques to align beam shaping optics within a beam line; having the ability to instantly verify by a qualitative means that each element is in its proper position as the beam shaper module is being aligned. There is a need to reduce these types of alignment techniques down to a level where even a newbie to optical alignment will be able to complete the task. Couple this alignment need with the fact that most laser system manufacturers ship their products worldwide and the introduction of a new set of variables including cultural and language barriers, makes this a top priority for manufacturers. Tools and methodologies for alignment of complex optical systems need to be able to cross these barriers to ensure the highest degree of up time and reduce the cost of maintenance on the production floor. Customers worldwide, who purchase production laser equipment, understand that the majority of costs to a manufacturing facility is spent on system maintenance and is typically the largest single controllable expenditure in a production plant. This desire to reduce costs is driving the trend these days towards predictive and proactive, not reactive maintenance of laser based optical beam delivery systems [10]. With proper diagnostic tools, laser system developers can develop proactive approaches to reduce system down time, safe guard operational performance and reduce premature or catastrophic optics failures. Obviously analytical data will provide quantifiable performance standards which are more precise than qualitative standards, but each have a role in determining overall optical system performance [10]. This paper will discuss the use of film and fluorescent mirror devices as diagnostic tools for beam shaper module alignment off line or in-situ. The paper will also provide an overview methodology showing how it is possible to reduce complex alignment directions into a simplified set of instructions for layman service engineers.
High-speed optical feeder-link system using adaptive optics
NASA Astrophysics Data System (ADS)
Arimoto, Yoshinori; Hayano, Yutaka; Klaus, Werner
1997-05-01
We propose a satellite laser communication system between a ground station and a geostationary satellite, named high- speed optical feeder link system. It is based on the application of (a) high-speed optical devices, which have been developed for ground-based high-speed fiber-optic communications, and (b) the adaptive optics which compensates wavefront distortions due to atmospheric turbulences using a real time feedback control. A link budget study shows that a system with 10-Gbps bit-rate are available assuming the state-of-the-art device performance of the Er-doped fiber amplifier. We further discuss preliminary measurement results of the atmospheric turbulence at the telescope site in Tokyo, and present current study on the design of the key components for the feeder-link laser transceiver.
Athermalization of infrared dual field optical system based on wavefront coding
NASA Astrophysics Data System (ADS)
Jiang, Kai; Jiang, Bo; Liu, Kai; Yan, Peipei; Duan, Jing; Shan, Qiu-sha
2017-02-01
Wavefront coding is a technology which combination of the optical design and digital image processing. By inserting a phase mask closed to the pupil plane of the optical system the wavefront of the system is re-modulated. And the depth of focus is extended consequently. In reality the idea is same as the athermalization theory of infrared optical system. In this paper, an uncooled infrared dual field optical system with effective focal as 38mm/19mm, F number as 1.2 of both focal length, operating wavelength varying from 8μm to 12μm was designed. A cubic phase mask was used at the pupil plane to re-modulate the wavefront. Then the performance of the infrared system was simulated with CODEV as the environment temperature varying from -40° to 60°. MTF curve of the optical system with phase mask are compared with the outcome before using phase mask. The result show that wavefront coding technology can make the system not sensitive to thermal defocus, and then realize the athermal design of the infrared optical system.
Robust optical wireless links over turbulent media using diversity solutions
NASA Astrophysics Data System (ADS)
Moradi, Hassan
Free-space optic (FSO) technology, i.e., optical wireless communication (OWC), is widely recognized as superior to radio frequency (RF) in many aspects. Visible and invisible optical wireless links solve first/last mile connectivity problems and provide secure, jam-free communication. FSO is license-free and delivers high-speed data rates in the order of Gigabits. Its advantages have fostered significant research efforts aimed at utilizing optical wireless communication, e.g. visible light communication (VLC), for high-speed, secure, indoor communication under the IEEE 802.15.7 standard. However, conventional optical wireless links demand precise optical alignment and suffer from atmospheric turbulence. When compared with RF, they suffer a low degree of reliability and lack robustness. Pointing errors cause optical transceiver misalignment, adversely affecting system reliability. Furthermore, atmospheric turbulence causes irradiance fluctuations and beam broadening of transmitted light. Innovative solutions to overcome limitations on the exploitation of high-speed optical wireless links are greatly needed. Spatial diversity is known to improve RF wireless communication systems. Similar diversity approaches can be adapted for FSO systems to improve its reliability and robustness; however, careful diversity design is needed since FSO apertures typically remain unbalanced as a result of FSO system sensitivity to misalignment. Conventional diversity combining schemes require persistent aperture monitoring and repetitive switching, thus increasing FSO implementation complexities. Furthermore, current RF diversity combining schemes may not be optimized to address the issue of unbalanced FSO receiving apertures. This dissertation investigates two efficient diversity combining schemes for multi-receiving FSO systems: switched diversity combining and generalized selection combining. Both can be exploited to reduce complexity and improve combining efficiency. Unlike maximum ratio combing, equal gain combining, and selective combining, switched diversity simplifies receiver design by avoiding unnecessary switching among receiving apertures. The most significant advantage of generalized combining is its ability to exclude apertures with low quality that could potentially affect the resultant output signal performance. This dissertation also investigates mobile FSO by considering a multi-receiving system in which all receiving FSO apertures are circularly placed on a platform. System mobility and performance are analyzed. Performance results confirm improvements when using angular diversity and generalized selection combining. The precis of this dissertation establishes the foundation of reliable FSO communications using efficient diversity-based solutions. Performance parameters are analyzed mathematically, and then evaluated using computer simulations. A testbed prototype is developed to facilitate the evaluation of optical wireless links via lab experiments.
Optical interconnection and packaging technologies for advanced avionics systems
NASA Astrophysics Data System (ADS)
Schroeder, J. E.; Christian, N. L.; Cotti, B.
1992-09-01
An optical backplane developed to demonstrate the advantages of high-performance optical interconnections and supporting technologies and designed to be compatible with standard avionics racks is described. The hardware demonstrates the three basic components of optical interconnects: optical sources, an optical signal distribution network, and optical receivers. Results from characterization and environmental tests, including a demonstration of the reliable transmission of serial data at a 1 Gb/s, are reported.
Low-cost space-varying FIR filter architecture for computational imaging systems
NASA Astrophysics Data System (ADS)
Feng, Guotong; Shoaib, Mohammed; Schwartz, Edward L.; Dirk Robinson, M.
2010-01-01
Recent research demonstrates the advantage of designing electro-optical imaging systems by jointly optimizing the optical and digital subsystems. The optical systems designed using this joint approach intentionally introduce large and often space-varying optical aberrations that produce blurry optical images. Digital sharpening restores reduced contrast due to these intentional optical aberrations. Computational imaging systems designed in this fashion have several advantages including extended depth-of-field, lower system costs, and improved low-light performance. Currently, most consumer imaging systems lack the necessary computational resources to compensate for these optical systems with large aberrations in the digital processor. Hence, the exploitation of the advantages of the jointly designed computational imaging system requires low-complexity algorithms enabling space-varying sharpening. In this paper, we describe a low-cost algorithmic framework and associated hardware enabling the space-varying finite impulse response (FIR) sharpening required to restore largely aberrated optical images. Our framework leverages the space-varying properties of optical images formed using rotationally-symmetric optical lens elements. First, we describe an approach to leverage the rotational symmetry of the point spread function (PSF) about the optical axis allowing computational savings. Second, we employ a specially designed bank of sharpening filters tuned to the specific radial variation common to optical aberrations. We evaluate the computational efficiency and image quality achieved by using this low-cost space-varying FIR filter architecture.
Terahertz pulse generation by the tilted pulse front technique using an M-shaped optical system
NASA Astrophysics Data System (ADS)
Morita, Ken; Shiozawa, Kento; Suizu, Koji; Ishitani, Yoshihiro
2018-05-01
To achieve the phase matching condition in terahertz (THz) pulse generation by the tilted pulse front technique, it is necessary to rebuild the entire optical setup if the optical conditions, such as excitation wavelength, temperature of nonlinear crystal, and output THz frequency, are changed. We propose THz pulse generation by the tilted pulse front technique using an M-shaped configuration. This system allows us to change the optical conditions only by tuning a few optics and without rebuilding the entire setup. We change the excitation wavelength at a fixed radiation frequency and assess the performance of the proposed system.
NASA Astrophysics Data System (ADS)
El-Sheikh, H. M.; Yakushenkov, Y. G.
2014-08-01
Formulas for determination of the interconnection between the spatial resolution from perspective distortions and the temporal resolution of the onboard electro-optical system for remote sensing application for a variety of scene viewing modes is offered. These dependences can be compared with the user's requirements, upon the permission values of the design parameters of the modern main units of the electro-optical system is discussed.
Distributed Weak Fiber Bragg Grating Vibration Sensing System Based on 3 × 3 Fiber Coupler
NASA Astrophysics Data System (ADS)
Li, Wei; Zhang, Jian
2018-06-01
A novel distributed weak fiber Bragg gratings (FBGs) vibration sensing system has been designed to overcome the disadvantages of the conventional methods for optical fiber sensing networking, which are: low signal intensity in the usually adopted time-division multiplexing (TDM) technology, insufficient quantity of multiplexed FBGs in the wavelength-division multiplexing (WDM) technology, and that the mixed WDM/TDM technology measures only the physical parameters of the FBG locations but cannot perform distributed measurement over the whole optical fiber. This novel system determines vibration events in the optical fiber line according to the intensity variation of the interference signals between the adjacent weak FBG reflected signals and locates the vibration points accurately using the TDM technology. It has been proven by tests that this system performs vibration signal detection and demodulation in a way more convenient than the conventional methods for the optical fiber sensing system. It also measures over the whole optical fiber, therefore, distributed measurement is fulfilled, and the system locating accuracy is up to 20 m, capable of detecting any signals of whose drive signals lower limit voltage is 0.2 V while the frequency range is 3 Hz‒1 000 Hz. The system has the great practical significance and application value for perimeter surveillance systems.
Performance analysis of a coherent free space optical communication system based on experiment.
Cao, Jingtai; Zhao, Xiaohui; Liu, Wei; Gu, Haijun
2017-06-26
Based on our previous study and designed experimental AO system with a 97-element continuous surface deformable mirror, we conduct the performance analysis of a coherent free space optical communication (FSOC) system for mixing efficiency (ME), bit error rate (BER) and outage probability under different Greenwood frequency and atmospheric coherent length. The results show that the influence of the atmospheric temporal characteristics on the performance is slightly stronger than that of the spatial characteristics when the receiving aperture and the number of sub-apertures are given. This analysis result provides a reference for the design of the coherent FSOC system.
Kim, Suhwan; Kwon, Hyungwoo; Yang, Injae; Lee, Seungho; Kim, Jeehyun; Kang, Shinwon
2013-11-12
A simultaneous strain and temperature measurement method using a Fabry-Perot laser diode (FP-LD) and a dual-stage fiber Bragg grating (FBG) optical demultiplexer was applied to a distributed sensor system based on Brillouin optical time domain reflectometry (BOTDR). By using a Kalman filter, we improved the performance of the FP-LD based OTDR, and decreased the noise using the dual-stage FBG optical demultiplexer. Applying the two developed components to the BOTDR system and using a temperature compensating algorithm, we successfully demonstrated the simultaneous measurement of strain and temperature distributions under various experimental conditions. The observed errors in the temperature and strain measured using the developed sensing system were 0.6 °C and 50 με, and the spatial resolution was 1 m, respectively.
Optical Observations of BQ Cam (V 0332+53) During Outburst
NASA Astrophysics Data System (ADS)
Ozbey Arabaci, Mehtap; Beklen, Elif; Donmez, Burcin; Shameoni Niaei, Mohammad
2016-10-01
Recent MAXI/GSC observations reported an X-ray brightening of the Be/X-ray system V 0332+53 (ATel #9596). Following this report, we performed optical spectroscopic and photometric observations of BQ Cam, identified as the optical counterpart of the system, with the 1.5 m Russian-Turkish telescope of TUBITAK National Observatory (Antalya, Turkey) on 2016 October 6 (MJD 57667).
WaferOptics® mass volume production and reliability
NASA Astrophysics Data System (ADS)
Wolterink, E.; Demeyer, K.
2010-05-01
The Anteryon WaferOptics® Technology platform contains imaging optics designs, materials, metrologies and combined with wafer level based Semicon & MEMS production methods. WaferOptics® first required complete new system engineering. This system closes the loop between application requirement specifications, Anteryon product specification, Monte Carlo Analysis, process windows, process controls and supply reject criteria. Regarding the Anteryon product Integrated Lens Stack (ILS), new design rules, test methods and control systems were assessed, implemented, validated and customer released for mass production. This includes novel reflowable materials, mastering process, replication, bonding, dicing, assembly, metrology, reliability programs and quality assurance systems. Many of Design of Experiments were performed to assess correlations between optical performance parameters and machine settings of all process steps. Lens metrologies such as FFL, BFL, and MTF were adapted for wafer level production and wafer mapping was introduced for yield management. Test methods for screening and validating suitable optical materials were designed. Critical failure modes such as delamination and popcorning were assessed and modeled with FEM. Anteryon successfully managed to integrate the different technologies starting from single prototypes to high yield mass volume production These parallel efforts resulted in a steep yield increase from 30% to over 90% in a 8 months period.
NASA Astrophysics Data System (ADS)
Napoli, Jay
2016-05-01
Precision fiber optic gyroscopes (FOGs) are critical components for an array of platforms and applications ranging from stabilization and pointing orientation of payloads and platforms to navigation and control for unmanned and autonomous systems. In addition, FOG-based inertial systems provide extremely accurate data for geo-referencing systems. Significant improvements in the performance of FOGs and FOG-based inertial systems at KVH are due, in large part, to advancements in the design and manufacture of optical fiber, as well as in manufacturing operations and signal processing. Open loop FOGs, such as those developed and manufactured by KVH Industries, offer tactical-grade performance in a robust, small package. The success of KVH FOGs and FOG-based inertial systems is due to innovations in key fields, including the development of proprietary D-shaped fiber with an elliptical core, and KVH's unique ThinFiber. KVH continually improves its FOG manufacturing processes and signal processing, which result in improved accuracies across its entire FOG product line. KVH acquired its FOG capabilities, including its patented E•Core fiber, when the company purchased Andrew Corporation's Fiber Optic Group in 1997. E•Core fiber is unique in that the light-guiding core - critical to the FOG's performance - is elliptically shaped. The elliptical core produces a fiber that has low loss and high polarization-maintaining ability. In 2010, KVH developed its ThinFiber, a 170-micron diameter fiber that retains the full performance characteristics of E•Core fiber. ThinFiber has enabled the development of very compact, high-performance open-loop FOGs, which are also used in a line of FOG-based inertial measurement units and inertial navigation systems.
Optical Performance Of The Gemini Carbon Dioxide Laser Fusion System
NASA Astrophysics Data System (ADS)
Viswanathan, V. K.; Hayden, J. J.; Liberman, I.
1980-11-01
The performance of the Gemini two beam carbon dioxide laser fusion system was recently upgraded by installation of optical components with improved quality in the final amplifier. A theoretical analysis was conducted in conlunction with measurements of the new performance. The analysis and experimental procedures, and results obtained are reported and compared. Good agreement was found which was within the uncertainties of the analysis and the inaccuracies of the experiments. The focal spot Strehl ratio was between 0.24 and 0.3 for both beams.
Design of tracking and detecting lens system by diffractive optical method
NASA Astrophysics Data System (ADS)
Yang, Jiang; Qi, Bo; Ren, Ge; Zhou, Jianwei
2016-10-01
Many target-tracking applications require an optical system to acquire the target for tracking and identification. This paper describes a new detecting optical system that can provide automatic flying object detecting, tracking and measuring in visible band. The main feature of the detecting lens system is the combination of diffractive optics with traditional lens design by a technique was invented by Schupmann. Diffractive lens has great potential for developing the larger aperture and lightweight lens. First, the optical system scheme was described. Then the Schupmann achromatic principle with diffractive lens and corrective optics is introduced. According to the technical features and requirements of the optical imaging system for detecting and tracking, we designed a lens system with flat surface Fresnel lens and cancels the optical system chromatic aberration by another flat surface Fresnel lens with effective focal length of 1980mm, an F-Number of F/9.9 and a field of view of 2ωω = 14.2', spatial resolution of 46 lp/mm and a working wavelength range of 0.6 0.85um. At last, the system is compact and easy to fabricate and assembly, the diffuse spot size and MTF function and other analysis provide good performance.
Surface profile measurement by using the integrated Linnik WLSI and confocal microscope system
NASA Astrophysics Data System (ADS)
Wang, Wei-Chung; Shen, Ming-Hsing; Hwang, Chi-Hung; Yu, Yun-Ting; Wang, Tzu-Fong
2017-06-01
The white-light scanning interferometer (WLSI) and confocal microscope (CM) are the two major optical inspection systems for measuring three-dimensional (3D) surface profile (SP) of micro specimens. Nevertheless, in practical applications, WLSI is more suitable for measuring smooth and low-slope surfaces. On the other hand, CM is more suitable for measuring uneven-reflective and low-reflective surfaces. As for aspect of surface profiles to be measured, the characteristics of WLSI and CM are also different. WLSI is generally used in semiconductor industry while CM is more popular in printed circuit board industry. In this paper, a self-assembled multi-function optical system was integrated to perform Linnik white-light scanning interferometer (Linnik WLSI) and CM. A connecting part composed of tubes, lenses and interferometer was used to conjunct finite and infinite optical systems for Linnik WLSI and CM in the self-assembled optical system. By adopting the flexibility of tubes and lenses, switching to perform two different optical measurements can be easily achieved. Furthermore, based on the shape from focus method with energy of Laplacian filter, the CM was developed to enhance the on focal information of each pixel so that the CM can provide all-in-focus image for performing the 3D SP measurement and analysis simultaneously. As for Linnik WLSI, eleven-step phase shifting algorithm was used to analyze vertical scanning signals and determine the 3D SP.
Solar Field Optical Characterization at Stillwater Geothermal/Solar Hybrid Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Guangdong; Turchi, Craig
Concentrating solar power (CSP) can provide additional thermal energy to boost geothermal plant power generation. For a newly constructed solar field at a geothermal power plant site, it is critical to properly characterize its performance so that the prediction of thermal power generation can be derived to develop an optimum operating strategy for a hybrid system. In the past, laboratory characterization of a solar collector has often extended into the solar field performance model and has been used to predict the actual solar field performance, disregarding realistic impacting factors. In this work, an extensive measurement on mirror slope error andmore » receiver position error has been performed in the field by using the optical characterization tool called Distant Observer (DO). Combining a solar reflectance sampling procedure, a newly developed solar characterization program called FirstOPTIC and public software for annual performance modeling called System Advisor Model (SAM), a comprehensive solar field optical characterization has been conducted, thus allowing for an informed prediction of solar field annual performance. The paper illustrates this detailed solar field optical characterization procedure and demonstrates how the results help to quantify an appropriate tracking-correction strategy to improve solar field performance. In particular, it is found that an appropriate tracking-offset algorithm can improve the solar field performance by about 15%. The work here provides a valuable reference for the growing CSP industry.« less
Solar Field Optical Characterization at Stillwater Geothermal/Solar Hybrid Plant
Zhu, Guangdong; Turchi, Craig
2017-01-27
Concentrating solar power (CSP) can provide additional thermal energy to boost geothermal plant power generation. For a newly constructed solar field at a geothermal power plant site, it is critical to properly characterize its performance so that the prediction of thermal power generation can be derived to develop an optimum operating strategy for a hybrid system. In the past, laboratory characterization of a solar collector has often extended into the solar field performance model and has been used to predict the actual solar field performance, disregarding realistic impacting factors. In this work, an extensive measurement on mirror slope error andmore » receiver position error has been performed in the field by using the optical characterization tool called Distant Observer (DO). Combining a solar reflectance sampling procedure, a newly developed solar characterization program called FirstOPTIC and public software for annual performance modeling called System Advisor Model (SAM), a comprehensive solar field optical characterization has been conducted, thus allowing for an informed prediction of solar field annual performance. The paper illustrates this detailed solar field optical characterization procedure and demonstrates how the results help to quantify an appropriate tracking-correction strategy to improve solar field performance. In particular, it is found that an appropriate tracking-offset algorithm can improve the solar field performance by about 15%. The work here provides a valuable reference for the growing CSP industry.« less
Development and manufacture of visor for helmet-mounted display
NASA Astrophysics Data System (ADS)
Krevor, David H.; McNelly, Gregg; Skubon, John; Speirs, Robert
2004-01-01
The manufacturing design and process development for the Visor for the JHMCS (Joint Helmet Mounted Cueing System) are discussed. The JHMCS system is a Helmet Mounted Display (HMD) system currently flying on the F-15, F-16 and F/A-18 aircraft. The Visor manufacturing processes are essential to both system performance and economy. The Visor functions both as the system optical combiner and personal protective equipment for the pilot. The Visor material is optical polycarbonate. For a military HMD system, the mechanical and environmental properties of the Visor are as necessary as the optical properties. The visor must meet stringent dimensional requirements to assure adequate system optical performance. Injection molding can provide dimensional fidelity to the requirements, if done properly. Concurrent design of the visor and the tool (i.e., the injection mold) is essential. The concurrent design necessarily considers manufacturing operations and the use environment of the Visor. Computer modeling of the molding process is a necessary input to the mold design. With proper attention to product design and tool development, it is possible to improve upon published standard dimensional tolerances for molded polycarbonate articles.
Design and Performance Evaluation of Sensors and Actuators for Advanced Optical Systems
NASA Technical Reports Server (NTRS)
Clark, Natalie
2011-01-01
Current state-of-the-art commercial sensors and actuators do not meet many of NASA s next generation spacecraft and instrument needs. Nor do they satisfy the DoD needs for satellite missions, especially micro/nano satellite missions. In an effort to develop advanced optical devices and instruments that meet mission requirements, NASA Langley recently completed construction of a new cleanroom housing equipment capable of fabricating high performance active optic and adaptive optic technologies including deformable mirrors, reconfigurable lenses (both refractive and diffractive), spectrometers, spectro-polarimeters, tunable filters and many other active optic devices. In addition to performance, these advanced optic technologies offer advantages in speed, size, weight, power consumption, and radiation tolerance. The active optic devices described in this paper rely on birefringent liquid crystal materials to alter either the phase or the polarization of the incoming light. Design considerations and performance evaluation results for various NASA applications are presented. Applications presented will include large space telescopes, optical communications, spacecraft windows, coronagraphs, and star trackers. Keywords: Photonics, Adaptive Optics, Tunable Filters, MEMs., MOEMs, Coronagraph, Star Tracker
2016-02-01
Maximum 200 words) LiTbF4 has the potential to replace traditional magneto-optic (MO) garnet materials as a Faraday rotator in high power laser systems...TERMS LiTbF4; magneto-optic (MO) garnet materials; Faraday rotator; high power laser; Verdet constant; Sellmeier; optical isolator 16. SECURITY... Faraday rotator in high power laser systems due to its high Verdet constant. New measurements are reported of the ordinary and extraor- dinary
Converged photonic data storage and switch platform for exascale disaggregated data centers
NASA Astrophysics Data System (ADS)
Pitwon, R.; Wang, K.; Worrall, A.
2017-02-01
We report on a converged optically enabled Ethernet storage, switch and compute platform, which could support future disaggregated data center architectures. The platform includes optically enabled Ethernet switch controllers, an advanced electro-optical midplane and optically interchangeable generic end node devices. We demonstrate system level performance using optically enabled Ethernet disk drives and micro-servers across optical links of varied lengths.
Khan, Md Rajibur Rahaman; Kang, Shin-Won
2016-07-09
In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.
Dichroic beamsplitter for high energy laser diagnostics
LaFortune, Kai N [Livermore, CA; Hurd, Randall [Tracy, CA; Fochs, Scott N [Livermore, CA; Rotter, Mark D [San Ramon, CA; Hackel, Lloyd [Livermore, CA
2011-08-30
Wavefront control techniques are provided for the alignment and performance optimization of optical devices. A Shack-Hartmann wavefront sensor can be used to measure the wavefront distortion and a control system generates feedback error signal to optics inside the device to correct the wavefront. The system can be calibrated with a low-average-power probe laser. An optical element is provided to couple the optical device to a diagnostic/control package in a way that optimizes both the output power of the optical device and the coupling of the probe light into the diagnostics.
How to assess good candidate molecules for self-activated optical power limiting
NASA Astrophysics Data System (ADS)
Lundén, Hampus; Glimsdal, Eirik; Lindgren, Mikael; Lopes, Cesar
2018-03-01
Reverse saturable absorbers have shown great potential to attenuate laser radiation. Good candidate molecules and various particles have successfully been incorporated into different glass matrices, enabling the creation of self-activated filters against damaging laser radiation. Although the performance of such filters has been impressive, work is still ongoing to improve the performance in a wider range of wavelengths and pulse widths. The purpose of this tutorial is, from an optical engineering perspective, to give an understanding of the strengths and weaknesses of this class of smart materials, how relevant photophysical parameters are measured and influence system performance and comment on the pitfalls in experimental evaluation of materials. A numerical population model in combination with simple physical formulas is used to demonstrate system behavior from a performance standpoint. Geometrical reasoning shows the advantage of reverse saturable absorption over nonlinear scattering due to a fraction of scattered light being recollected by imaging system optics. The numerical population model illustrates the importance of the optical power limiting performance during the leading edge of a nanosecond pulse, which is most strongly influenced by changes in the two-photon absorption cross section and the triplet linear absorption cross section for a modeled Pt-acetylide. This tutorial not only targets optical engineers evaluating reverse saturable absorbing materials but also aims to assist researchers with a chemistry background working on optical power limiting materials. We also present photophysical data for a series of coumarins that can be useful for the determination of quantum yields and two-photon cross sections and show examples of characterization of molecules with excited triplet states.
Study on initiative vibration absorbing technology of optics in strong disturbed environment
NASA Astrophysics Data System (ADS)
Jia, Si-nan; Xiong, Mu-di; Zou, Xiao-jie
2007-12-01
Strong disturbed environment is apt to cause irregular vibration, which seriously affects optical collimation. To improve the performance of laser beam, three-point dynamic vibration absorbing method is proposed, and laser beam initiative vibration absorbing system is designed. The maladjustment signal is detected by position sensitive device (PSD), three groups of PZT are driven to adjust optical element in real-time, so the performance of output-beam is improved. The coupling model of the system is presented. Multivariable adaptive closed-loop decoupling arithmetic is used to design three-input-three-output decoupling controller, so that high precision dynamic adjusting is realized. Experiments indicate that the system has good shock absorbing efficiency.
Performance analysis of optical wireless communication system based on two-fold turbo code
NASA Astrophysics Data System (ADS)
Chen, Jun; Huang, Dexiu; Yuan, Xiuhua
2005-11-01
Optical wireless communication (OWC) is beginning to emerge in the telecommunications market as a strategy to meet last-mile demand owing to its unique combination of features. Turbo codes have an impressive near Shannon-limit error correcting performance. Twofold turbo codes have been recently introduced as the least complex member of the multifold turbo code family. In this paper, at first, we present the mathematical model of signal and optical wireless channel with fading and bit error rate model with scintillation, then we provide a new turbo code method to use in OWC system, we can obtain a better BER curse of OWC system with twofold turbo code than with common turbo code.
Improving the Performance of Three-Mirror Imaging Systems with Freeform Optics
NASA Technical Reports Server (NTRS)
Howard, Joseph M.; Wolbach, Steven
2013-01-01
The image quality improvement for three-mirror systems by Freeform Optics is surveyed over various f-number and field specifications. Starting with the Korsch solution, we increase the surface shape degrees of freedom and record the improvements.
Optical design of an athermalised dual field of view step zoom optical system in MWIR
NASA Astrophysics Data System (ADS)
Kucukcelebi, Doruk
2017-08-01
In this paper, the optical design of an athermalised dual field of view step zoom optical system in MWIR (3.7μm - 4.8μm) is described. The dual field of view infrared optical system is designed based on the principle of passive athermalization method not only to achieve athermal optical system but also to keep the high image quality within the working temperature between -40°C and +60°C. The infrared optical system used in this study had a 320 pixel x 256 pixel resolution, 20μm pixel pitch size cooled MWIR focal plane array detector. In this study, the step zoom mechanism, which has the axial motion due to consisting of a lens group, is considered to simplify mechanical structure. The optical design was based on moving a single lens along the optical axis for changing the optical system's field of view not only to reduce the number of moving parts but also to athermalize for the optical system. The optical design began with an optimization process using paraxial optics when first-order optics parameters are determined. During the optimization process, in order to reduce aberrations, such as coma, astigmatism, spherical and chromatic aberrations, aspherical surfaces were used. As a result, athermalised dual field of view step zoom optical design is proposed and the performance of the design using proposed method was verified by providing the focus shifts, spot diagrams and MTF analyzes' plots.
NASA Technical Reports Server (NTRS)
Ahmad, Anees
1990-01-01
The development of in-house integrated optical performance modelling capability at MSFC is described. This performance model will take into account the effects of structural and thermal distortions, as well as metrology errors in optical surfaces to predict the performance of large an complex optical systems, such as Advanced X-Ray Astrophysics Facility. The necessary hardware and software were identified to implement an integrated optical performance model. A number of design, development, and testing tasks were supported to identify the debonded mirror pad, and rebuilding of the Technology Mirror Assembly. Over 300 samples of Zerodur were prepared in different sizes and shapes for acid etching, coating, and polishing experiments to characterize the subsurface damage and stresses produced by the grinding and polishing operations.
Transmission Nonreciprocity in a Mutually Coupled Circulating Structure
NASA Astrophysics Data System (ADS)
He, Bing; Yang, Liu; Jiang, Xiaoshun; Xiao, Min
2018-05-01
Breaking Lorentz reciprocity was believed to be a prerequisite for nonreciprocal transmissions of light fields, so the possibility of nonreciprocity by linear optical systems was mostly ignored. We put forward a structure of three mutually coupled microcavities or optical fiber rings to realize optical nonreciprocity. Although its couplings with the fields from two different input ports are constantly equal, such system transmits them nonreciprocally either under the saturation of an optical gain in one of the cavities or with the asymmetric couplings of the circulating fields in different cavities. The structure made up of optical fiber rings can perform nonreciprocal transmissions as a time-independent linear system without breaking Lorentz reciprocity. Optical isolation for inputs simultaneously from two different ports and even approximate optical isolator operations are implementable with the structure.
Simultaneous monitoring of multiple contrast agents using a hybrid MR-DOT system
NASA Astrophysics Data System (ADS)
Gulsen, Gultekin; Unlu, Mehmet Burcin; Birgul, Ozlem; Nalcioglu, Orhan
2007-02-01
Frequency domain diffuse optical tomography (DOT) is a recently emerging technique that uses arrays of sources and detectors to obtain spatially dependent optical parameters of tissue. Here, we describe the design of a hybrid MR-DOT system for dynamic imaging cancer. The combined system acquires both MR and optical data simultaneously. The performance of the system is tested with phantom and in-vivo studies. Gd-DTPA and ICG was used for this purpose and the enhancement kinetics of both agents are recorded using the hybrid system.
NASA Technical Reports Server (NTRS)
Joseph, M.; Keat, J.; Liu, K. S.; Plett, M. E.; Shear, M. A.; Shinohara, T.; Wertz, J. R.
1983-01-01
The Multisatellite Attitude Determination/Optical Aspect Bias Determination (MSAD/OABIAS) System, designed to determine spin axis orientation and biases in the alignment or performance of optical or infrared horizon sensors and Sun sensors used for spacecraft attitude determination, is described. MSAD/OABIAS uses any combination of eight observation models to process data from a single onboard horizon sensor and Sun sensor to determine simultaneously the two components of the attitude of the spacecraft, the initial phase of the Sun sensor, the spin rate, seven sensor biases, and the orbital in-track error associated with the spacecraft ephemeris information supplied to the system. In addition, the MSAD/OABIAS system provides a data simulator for system and performance testing, an independent deterministic attitude system for preprocessing and independent testing of biases determined, and a multipurpose data prediction and comparison system.
NASA Technical Reports Server (NTRS)
Joseph, M.; Ket, J. E.; Liu, K. S.; Plett, M. E.; Shear, M. A.; Shinohara, T.; Wertz, J. R.
1983-01-01
The Multisatellite Attitude Determination/Optical Aspect Bias Determination (MSAD/OABIAS) System, designed to determine spin axis orientation and biases in the alignment or performance of optical or infrared horizon sensors and Sun sensors used for spacecraft attitude determination is described. MSAD/OABIAS uses any combination of eight observation models to process data from a single onboard horizon sensor and Sun sensor to determine simultaneously the two components of the attitude of the spacecraft, the initial phase of the Sun sensor, the spin rate, seven sensor biases, and the orbital in-track error associated with the spacecraft ephemeris information supplied to the system. In addition, the MSAD/OABIAS System provides a data simulator for system and performance testing, an independent deterministic attitude system for preprocessing and independent testing of biases determined, and a multipurpose data prediction and comparison system.
Thermally induced distortion of a high-average-power laser system by an optical transport system
NASA Astrophysics Data System (ADS)
Chow, Robert; Ault, Linda E.; Taylor, John R.; Jedlovec, Don
1999-11-01
The atomic vapor laser isotope separation process uses high- average power lasers that have the commercial potential to enrich uranium for the electric power utilities. The transport of the laser beam through the laser system to the separation chambers requires high performance optical components, most of which have either fused silica or Zerodur as the substrate material. One of the requirements of the optical components is to preserve the wavefront quality of the laser beam that propagate over long distances. Full aperture tests with the high power process lasers and finite element analysis (FEA) have been performed on the transport optics. The wavefront distortions of the various sections of the transport path were measured with diagnostic Hartmann sensor packages. The FEA results were derived from an in-house thermal-structural- optical code which is linked to the commercially available CodeV program. In comparing the measured and predicted results, the bulk absorptance of fused silica was estimated to about 50 ppm/cm in the visible wavelength regime. Wavefront distortions will be reported on optics made from fused silica and Zerodur substrate materials.
Using neuromorphic optical sensors for spacecraft absolute and relative navigation
NASA Astrophysics Data System (ADS)
Shake, Christopher M.
We develop a novel attitude determination system (ADS) for use on nano spacecraft using neuromorphic optical sensors. The ADS intends to support nano-satellite operations by providing low-cost, low-mass, low-volume, low-power, and redundant attitude determination capabilities with quick and straightforward onboard programmability for real time spacecraft operations. The ADS is experimentally validated with commercial-off-the-shelf optical devices that perform sensing and image processing on the same circuit board and are biologically inspired by insects' vision systems, which measure optical flow while navigating in the environment. The firmware on the devices is modified to both perform the additional biologically inspired task of tracking objects and communicate with a PC/104 form-factor embedded computer running Real Time Application Interface Linux used on a spacecraft simulator. Algorithms are developed for operations using optical flow, point tracking, and hybrid modes with the sensors, and the performance of the system in all three modes is assessed using a spacecraft simulator in the Advanced Autonomous Multiple Spacecraft (ADAMUS) laboratory at Rensselaer. An existing relative state determination method is identified to be combined with the novel ADS to create a self-contained navigation system for nano spacecraft. The performance of the method is assessed in simulation and found not to match the results from its authors using only conditions and equations already published. An improved target inertia tensor method is proposed as an update to the existing relative state method, but found not to perform as expected, but is presented for others to build upon.
Coaxial fundus camera for opthalmology
NASA Astrophysics Data System (ADS)
de Matos, Luciana; Castro, Guilherme; Castro Neto, Jarbas C.
2015-09-01
A Fundus Camera for ophthalmology is a high definition device which needs to meet low light illumination of the human retina, high resolution in the retina and reflection free image1. Those constraints make its optical design very sophisticated, but the most difficult to comply with is the reflection free illumination and the final alignment due to the high number of non coaxial optical components in the system. Reflection of the illumination, both in the objective and at the cornea, mask image quality, and a poor alignment make the sophisticated optical design useless. In this work we developed a totally axial optical system for a non-midriatic Fundus Camera. The illumination is performed by a LED ring, coaxial with the optical system and composed of IR of visible LEDs. The illumination ring is projected by the objective lens in the cornea. The Objective, LED illuminator, CCD lens are coaxial making the final alignment easily to perform. The CCD + capture lens module is a CCTV camera with autofocus and Zoom built in, added to a 175 mm focal length doublet corrected for infinity, making the system easily operated and very compact.
NASA Astrophysics Data System (ADS)
Chandsawangbhuwana, Charlie; Shi, Linda Z.; Zhu, Qingyuan; Berns, Michael W.
2013-04-01
A system has been developed that allows for optical and fluidic manipulation of gametes. The optical manipulation is performed by using a single-point gradient trap with a 40× oil immersion PH3 1.3 NA objective on a Zeiss inverted microscope. The fluidic manipulation is performed by using a custom microfluidic chamber designed to fit into the short working distance between the condenser and objective. The system is validated using purple sea urchin Strongylocentrotus purpuratus gametes and has the potential to be used for mammalian in vitro fertilization and animal husbandry.
Quasi-optical grids with thin rectangular patch/aperture elements
NASA Technical Reports Server (NTRS)
Wu, Te-Kao
1993-01-01
Theoretical analysis is presented for an efficient and accurate performance evaluation of quasi-optical grids comprised of thin rectangular patch/aperture elements with/without a dielectric substrate/superstrate. The convergence rate of this efficient technique is improved by an order of magnitude with the approximate edge conditions incorporated in the basis functions of the integral equation solution. Also presented are the interesting applications of this efficient analytical technique to the design and performance evaluation of the coupling grids and beam splitters in the optical systems as well as thermal protection sunshields used in the communication systems of satellites and spacecrafts.
Analysis of a planetary-rotation system for evaporated optical coatings.
Oliver, J B
2016-10-20
The impact of planetary design considerations for optical coating deposition is analyzed, including the ideal number of planets, variations in system performance, and the deviation of planet motion from the ideal. System capacity is maximized for four planets, although substrate size can significantly influence this result. Guidance is provided in the design of high-performance deposition systems based on the relative impact of different error modes. Errors in planet mounting such that the planet surface is not perpendicular to the axis of rotation are particularly problematic, suggesting planetary design modifications would be appropriate.
Goddard Conference on Mass Storage Systems and Technologies, volume 2
NASA Technical Reports Server (NTRS)
Kobler, Ben (Editor); Hariharan, P. C. (Editor)
1993-01-01
Papers and viewgraphs from the conference are presented. Discussion topics include the IEEE Mass Storage System Reference Model, data archiving standards, high-performance storage devices, magnetic and magneto-optic storage systems, magnetic and optical recording technologies, high-performance helical scan recording systems, and low end helical scan tape drives. Additional discussion topics addressed the evolution of the identifiable unit for processing (file, granule, data set, or some similar object) as data ingestion rates increase dramatically, and the present state of the art in mass storage technology.
Full-duplex lightwave transport systems based on long-haul SMF and optical free-space transmissions.
Chen, Chia-Yi; Lu, Hai-Han; Lin, Ying-Pyng; Wu, Po-Yi; Wu, Kuan-Hung; Yaug, Wei-Yuan
2013-10-07
A full-duplex lightwave transport system employing wavelength-division-multiplexing (WDM) and optical add-drop multiplexing techniques, as well as optical free-space transmission scheme is proposed and experimentally demonstrated. Over an 80-km single-mode fiber (SMF) and 2.4 m optical free-space transmissions, impressive bit error rate (BER) performance is obtained for long-haul fiber link and finite free-space transmission distance. Such a full-duplex lightwave transport system based on long-haul SMF and optical free-space transmissions has been successfully demonstrated, which cannot only present its advancement in lightwave application, but also reveal its simplicity and convenience for the real implementation. Our proposed systems are suitable for the lightwave communication systems in wired and wireless transmissions.
Design of high-capacity fiber-optic transport systems
NASA Astrophysics Data System (ADS)
Liao, Zhi Ming
2001-08-01
We study the design of fiber-optic transport systems and the behavior of fiber amplifiers/lasers with the aim of achieving higher capacities with larger amplifier spacing. Solitons are natural candidates for transmitting short pulses for high-capacity fiber-optic networks because of its innate ability to use two of fiber's main defects, fiber dispersion and fiber nonlinearity to balance each other. In order for solitons to retain its dynamic nature, amplifiers must be placed periodically to restore powers to compensate for fiber loss. Variational analysis is used to study the long-term stability of a periodical- amplifier system. A new regime of operation is identified which allows the use of a much longer amplifier spacing. If optical fibers are the blood vessels of an optical communication system, then the optical amplifier based on erbium-doped fiber is the heart. Optical communication systems can avoid the use of costly electrical regenerators to maintain system performance by being able to optically amplify the weakened signals. The length of amplifier spacing is largely determined by the gain excursion experienced by the solitons. We propose, model, and demonstrate a distributed erbium-doped fiber amplifier which can drastically reduce the amount of gain excursion experienced by the solitons, therefore allowing a much longer amplifier spacing and superior stability. Dispersion management techniques have become extremely valuable tools in the design of fiber-optic communication systems. We have studied in depth the advantage of different arnplification schemes (lumped and distributed) for various dispersion compensation techniques. We measure the system performance through the Q factor to evaluate the added advantage of effective noise figure and smaller gain excursion. An erbium-doped fiber laser has been constructed and characterized in an effort to develop a test bed to study transmission systems. The presence of mode-partition noise in an erbium-doped fiber laser was experimentally demonstrated. A numerical model has been developed using the Langevin rate equations and its predictions are in qualitative agreement with experimental data.
Optical Closed-Loop Propulsion Control System Development
NASA Technical Reports Server (NTRS)
Poppel, Gary L.
1998-01-01
The overall objective of this program was to design and fabricate the components required for optical closed-loop control of a F404-400 turbofan engine, by building on the experience of the NASA Fiber Optic Control System Integration (FOCSI) program. Evaluating the performance of fiber optic technology at the component and system levels will result in helping to validate its use on aircraft engines. This report includes descriptions of three test plans. The EOI Acceptance Test is designed to demonstrate satisfactory functionality of the EOI, primarily fail-safe throughput of the F404 sensor signals in the normal mode, and validation, switching, and output of the five analog sensor signals as generated from validated optical sensor inputs, in the optical mode. The EOI System Test is designed to demonstrate acceptable F404 ECU functionality as interfaced with the EOI, making use of a production ECU test stand. The Optical Control Engine Test Request describes planned hardware installation, optical signal calibrations, data system coordination, test procedures, and data signal comparisons for an engine test demonstration of the optical closed-loop control.
Alignment of the Korsch type off-axis 3 mirror optical system using sensitivity table method
NASA Astrophysics Data System (ADS)
Lee, Kyoungmuk; Kim, Youngsoo; Hong, Jinsuk; Kim, Sug-Whan; Lee, Haeng-Bok; Choi, Se-Chol
2018-05-01
The optical system of the entire mechanical and optical components consist of all silicon carbide (SiC) is designed, manufactured and aligned. The Korsch type Cassegrain optical system has 3-mirrors, the primary mirror (M1), the secondary mirror (M2), the folding mirror (FM) and the tertiary mirror (M3). To assemble the M3 and the FM to the rear side of the M1 bench, the optical axis of the M3 is 65.56 mm off from the physical center. Due to the limitation of the mass budget, the M3 is truncated excluding its optical axis. The M2 was assigned to the coma compensator and the M3 the astigmatism respectively as per the result of the sensitivity analysis. Despite of the difficulty of placing these optical components in their initial position within the mechanical tolerance, the initial wave front error (WFE) performance is as large as 171.4 nm RMS. After the initial alignment, the sensitivity table method is used to reach the goal of WFE 63.3 nm RMS in all fields. We finished the alignment with the final WFE performance in all fields are as large as 55.18 nm RMS.
Fibre Optic Mechanical Sensors For Aerospace Applications
NASA Astrophysics Data System (ADS)
Batchellor, C. R.; Dakin, J. P.; Pearce, D. A. J.
1989-04-01
A fiber optic multisensor methane detection system matched to topology and environment of a coal mine is reported. The system involves time domain multiplexed (TDM) methane sensors based on selective absorption of source radiation by atomic or molecular species in the gas sensing heads. A two-wavelength ratiometric approach allows simple self referencing, cancels out errors arising from other contaminants, and improves the measurement contrast. The laboratory system consists of a high radiance LED source, multimode fiber, optical sensing head, optical bandpass filters, and involves synchronous detection with low noise photodiodes and a lock-in amplifier. Detection sensitivity upon spectral resolution of the optical filters has also been investigated and described. The system performance was evaluated and the results are presented.
Three-dimensional polarization algebra for all polarization sensitive optical systems.
Li, Yahong; Fu, Yuegang; Liu, Zhiying; Zhou, Jianhong; Bryanston-Cross, P J; Li, Yan; He, Wenjun
2018-05-28
Using three-dimensional (3D) coherency vector (9 × 1), we develop a new 3D polarization algebra to calculate the polarization properties of all polarization sensitive optical systems, especially when the incident optical field is partially polarized or un-polarized. The polarization properties of a high numerical aperture (NA) microscope objective (NA = 1.25 immersed in oil) are analyzed based on the proposed 3D polarization algebra. Correspondingly, the polarization simulation of this high NA optical system is performed by the commercial software VirtualLAB Fusion. By comparing the theoretical calculations with polarization simulations, a perfect matching relation is obtained, which demonstrates that this 3D polarization algebra is valid to quantify the 3D polarization properties for all polarization sensitive optical systems.
Dubeau-Laramée, Geneviève; Rivière, Christophe; Jean, Isabelle; Mermut, Ozzy; Cohen, Luchino Y
2014-04-01
A fiber-optic based flow cytometry platform was designed to build a portable and robust instrument for space applications. At the core of the Microflow1 is a unique fiber-optic flow cell fitted to a fluidic system and fiber coupled to the source and detection channels. A Microflow1 engineering unit was first tested and benchmarked against a commercial flow cytometer as a reference in a standard laboratory environment. Testing in parabolic flight campaigns was performed to establish Microflow1's performance in weightlessness, before operating the new platform on the International Space Station. Microflow1 had comparable performances to commercial systems, and operated remarkably and robustly in weightlessness (microgravity). Microflow1 supported immunophenotyping as well as microbead-based multiplexed cytokine assays in the space environment and independently of gravity levels. Results presented here provide evidence that this fiber-optic cytometer technology is inherently compatible with the space environment with negligible compromise to analytical performance. © 2013 International Society for Advancement of Cytometry.
Wang, Yukun; Xu, Huanyu; Li, Dayu; Wang, Rui; Jin, Chengbin; Yin, Xianghui; Gao, Shijie; Mu, Quanquan; Xuan, Li; Cao, Zhaoliang
2018-01-18
The performance of free-space optics communication (FSOC) is greatly degraded by atmospheric turbulence. Adaptive optics (AO) is an effective method for attenuating the influence. In this paper, the influence of the spatial and temporal characteristics of turbulence on the performance of AO in a FSOC system is investigated. Based on the Greenwood frequency (GF) and the ratio of receiver aperture diameter to atmospheric coherent length (D/r 0 ), the relationship between FSOC performance (CE) and AO parameters (corrected Zernike modes number and bandwidth) is derived for the first time. Then, simulations and experiments are conducted to analyze the influence of AO parameters on FSOC performance under different GF and D/r 0 . The simulation and experimental results show that, for common turbulence conditions, the number of corrected Zernike modes can be fixed at 35 and the bandwidth of the AO system should be larger than the GF. Measurements of the bit error rate (BER) for moderate turbulence conditions (D/r 0 = 10, f G = 60 Hz) show that when the bandwidth is two times that of GF, the average BER is decreased by two orders of magnitude compared with f G /f 3dB = 1. These results and conclusions can provide important guidance in the design of an AO system for FSOC.
A new precoding scheme for spectral efficient optical OFDM systems
NASA Astrophysics Data System (ADS)
Hardan, Saad Mshhain; Bayat, Oguz; Abdulkafi, Ayad Atiyah
2018-07-01
Achieving high spectral efficiency is the key requirement of 5G and optical wireless communication systems and has recently attracted much attention, aiming to satisfy the ever increasing demand for high data rates in communications systems. In this paper, we propose a new precoding/decoding algorithm for spectral efficient optical orthogonal frequency division multiplexing (OFDM) scheme based visible light communication (VLC) systems. The proposed coded modulated optical (CMO) based OFDM system can be applied for both single input single output (SISO) and multiple input multiple-output (MIMO) architectures. Firstly, the real OFDM time domain signal is obtained through invoking the precoding/decoding algorithm without the Hermitian symmetry. After that, the positive signal is achieved either by adding a DC-bias or by using the spatial multiplexing technique. The proposed CMO-OFDM scheme efficiently improves the spectral efficiency of the VLC system as it does not require the Hermitian symmetry constraint to yield real signals. A comparison of the performance improvement of the proposed scheme with other OFDM approaches is also presented in this work. Simulation results show that the proposed CMO-OFDM scheme can not only enhance the spectral efficiency of OFDM-based VLC systems but also improve bit error rate (BER) performance compared with other optical OFDM schemes.
Use of thermal sieve to allow optical testing of cryogenic optical systems.
Kim, Dae Wook; Cai, Wenrui; Burge, James H
2012-05-21
Full aperture testing of large cryogenic optical systems has been impractical due to the difficulty of operating a large collimator at cryogenic temperatures. The Thermal Sieve solves this problem by acting as a thermal barrier between an ambient temperature collimator and the cryogenic system under test. The Thermal Sieve uses a set of thermally controlled baffles with array of holes that are lined up to pass the light from the collimator without degrading the wavefront, while attenuating the thermal background by nearly 4 orders of magnitude. This paper provides the theory behind the Thermal Sieve system, evaluates the optimization for its optical and thermal performance, and presents the design and analysis for a specific system.
Performance of an improved first generation optical CT scanner for 3D dosimetry
NASA Astrophysics Data System (ADS)
Qian, Xin; Adamovics, John; Wuu, Cheng-Shie
2013-12-01
Performance analysis of a modified 3D dosimetry optical scanner based on the first generation optical CT scanner OCTOPUS is presented. The system consists of PRESAGE™ dosimeters, the modified 3D scanner, and a new developed in-house user control panel written in Labview program which provides more flexibility to optimize mechanical control and data acquisition technique. The total scanning time has been significantly reduced from initial 8 h to ∼2 h by using the modified scanner. The functional performance of the modified scanner has been evaluated in terms of the mechanical integrity uncertainty of the data acquisition process. Optical density distribution comparison between the modified scanner, OCTOPUS and the treatment plan system has been studied. It has been demonstrated that the agreement between the modified scanner and treatment plans is comparable with that between the OCTOPUS and treatment plans.
Main-Reflector Manufacturing Technology for the Deep Space Optical Communications Ground Station
NASA Technical Reports Server (NTRS)
Britcliffe, M. J.; Hoppe, D. J.
2001-01-01
The Deep Space Network (DSN) has plans to develop a 10-m-diameter optical communications receiving station. The system uses the direct detection technique, which has much different requirements from a typical astronomical telescope. The receiver must operate in daylight and nighttime conditions. This imposes special requirements on the optical system to reject stray light from the Sun and other sources. One of the biggest challenges is designing a main-reflector surface that meets these requirements and can be produced at a reasonable cost. The requirements for the performance of the reflector are presented. To date, an aspherical primary reflector has been assumed. A reflector with a spherical reflector has a major cost advantage over an aspherical design, with no sacrifice in performance. A survey of current manufacturing techniques for optical mirrors of this type was performed. Techniques including solid glass, lightweight glass, diamond-turned aluminum, and composite mirrors were investigated.
Research on conformal dome of Karman-curve shape
NASA Astrophysics Data System (ADS)
Zhang, Yunqiang; Chang, Jun; Niu, Yajun
2018-01-01
Because the conformal optical technology can obviously improve the aerodynamic performance of the infrared guidance missile, it has been studied deeply in recent years. By comparing the performance of the missiles with conformal dome and conventional missiles, the advantages of the conformal optical technology are demonstrated in the maneuverability and stealth of the missile. At present, the study of conformal optical systems focuses on ellipsoid or quadratic curve types. But in actual use, the dome using these curves is not the best choice. In this paper, the influence of different shape of the dome on aerodynamic performance, aerodynamic heating, internal space volume and other properties is discussed. The result shows infrared optical system with conformal dome of Karman-curve shape has a good application prospect, is the future direction of development. Finally, the difficult problems of conformal dome of Karman-curve shape are discussed.
All-optical reservoir computing.
Duport, François; Schneider, Bendix; Smerieri, Anteo; Haelterman, Marc; Massar, Serge
2012-09-24
Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible.
NASA Astrophysics Data System (ADS)
Aiken, John Charles
The development of a colour Spatial Light Modulator (SLM) and its application to optical information processing is described. Whilst monochrome technology has been established for many years, this is not the case for colour where commercial systems are unavailable. A main aspect of this study is therefore, how the use of colour can add an additional dimension to optical information processing. A well established route to monochrome system development has been the use of (black and white) liquid crystal televisions (LCTV) as SLM, providing useful performance at a low-cost. This study is based on the unique use of a colour display removed from a LCTV and operated as a colour SLM. A significant development has been the replacement of the original TV electronics operating the display with enhanced drive electronics specially developed for this application. Through a computer interface colour images from a drawing package or video camera can now be readily displayed on the LCD as input to an optical system. A detailed evaluation of the colour LCD optical properties, indicates that the new drive electronics have considerably improved the operation of the display for use as a colour SLM. Applications are described employing the use of colour in Fourier plane filtering, image correlation and speckle metrology. The SLM (and optical system) developed demonstrates, how the addition of colour has greatly enhanced its capabilities to implement principles of optical data processing, conventionally performed monochromatically. The hybrid combination employed, combining colour optical data processing with electronic techniques has resulted in a capable development system. Further development of the system using current colour LCDs and the move towards a portable system, is considered in the study conclusion.
Li, Hui; Liu, Liying; Lin, Zhili; Wang, Qiwei; Wang, Xiao; Feng, Lishuang
2018-01-22
A new double closed-loop control system with mean-square exponential stability is firstly proposed to optimize the detection accuracy and dynamic response characteristic of the integrated optical resonance gyroscope (IORG). The influence mechanism of optical nonlinear effects on system detection sensitivity is investigated to optimize the demodulation gain, the maximum sensitivity and the linear work region of a gyro system. Especially, we analyze the effect of optical parameter fluctuation on the parameter uncertainty of system, and investigate the influence principle of laser locking-frequency noise on the closed-loop detection accuracy of angular velocity. The stochastic disturbance model of double closed-loop IORG is established that takes the unfavorable factors such as optical effect nonlinearity, disturbed disturbance, optical parameter fluctuation and unavoidable system noise into consideration. A robust control algorithm is also designed to guarantee the mean-square exponential stability of system with a prescribed H ∞ performance in order to improve the detection accuracy and dynamic performance of IORG. The conducted experiment results demonstrate that the IORG has a dynamic response time less than 76us, a long-term bias stability 7.04°/h with an integration time of 10s over one-hour test, and the corresponding bias stability 1.841°/h based on Allan deviation, which validate the effectiveness and usefulness of the proposed detection scheme.
NASA Technical Reports Server (NTRS)
Taylor, E. W.; Berry, J. N.; Sanchez, A. D.; Padden, R. J.; Chapman, S. P.
1992-01-01
A brief overview of the analyses performed to date on WL Experiment-701 is presented. Four active digital fiber optic links were directly exposed to the space environment for a period of 2114 days. The links were situated aboard the Long Duration Exposure Facility (LDEF) with the cabled, single fiber windings atop an experimental tray containing instrumentation for exercising the experiment in orbit. Despite the unplanned and prolonged exposure to trapped and galactic radiation, wide temperature extremes, atomic oxygen interactions, and micro-meteorite and debris impacts, in most instances the optical data links performed well within the experimental limits. Analysis of the recorded orbital data clearly indicates that fiber optic applications in space will meet with success. Ongoing tests and analysis of the experiment at the Phillips Laboratory's Optoelectronics Laboratory will expand this premise, and establish the first known and extensive database of active fiber optic link performance during prolonged space exposure. WL Exp-701 was designed as a feasibility demonstration for fiber optic technology in space applications, and to study the performance of operating fiber systems exposed to space environmental factors such as galactic radiation, and wide temperature cycling. WL Exp-701 is widely acknowledged as a benchmark accomplishment that clearly demonstrates, for the first time, that fiber optic technology can be successfully used in a variety of space applications.
Integrated structural and optical modeling of the orbiting stellar interferometer
NASA Astrophysics Data System (ADS)
Shaklan, Stuart B.; Yu, Jeffrey W.; Briggs, Hugh C.
1993-11-01
The Integrated Modeling of Optical Systems (IMOS) Integration Workbench at JPL has been used to model the effects of structural perturbations on the optics in the proposed Orbiting Stellar Interferometer (OSI). OSI consists of 3 pairs of interferometers and delay lines attached to a 7.5 meter truss. They are interferometrically monitored from a separate boom by a laser metrology system. The spatially distributed nature of the science instrument calls for a high level of integration between the optics and support structure. Because OSI is designed to achieve micro-arcsecond astrometry, many of its alignment, stability, and knowledge tolerances are in the submicron regime. The spacecraft will be subject to vibrations caused by reaction wheels and on-board equipment, as well as thermal strain due to solar and terrestrial heating. These perturbations affect optical parameters such as optical path differences and beam co-parallelism which are critical to instrument performance. IMOS provides an environment that allows one to design and perturb the structure, attach optics to structural or non-structural nodes, trace rays, and analyze the impact of mechanical perturbations on optical performance. This tool makes it simple to change the structure and immediately see performance enhancement/degradation. We have employed IMOS to analyze the effect of reaction wheel disturbances on the optical path difference in both the science and metrology interferometers.
Wei, J L; Hugues-Salas, E; Giddings, R P; Jin, X Q; Zheng, X; Mansoor, S; Tang, J M
2010-05-10
Detailed numerical investigations are undertaken of wavelength reused bidirectional transmission of adaptively modulated optical OFDM (AMOOFDM) signals over a single SMF in a colorless WDM-PON incorporating a semiconductor optical amplifier (SOA) intensity modulator and a reflective SOA (RSOA) intensity modulator in the optical line termination and optical network unit, respectively. A comprehensive theoretical model describing the performance of such network scenarios is, for the first time, developed, taking into account dynamic optical characteristics of SOA and RSOA intensity modulators as well as the effects of Rayleigh backscattering (RB) and residual downstream signal-induced crosstalk. The developed model is rigorously verified experimentally in RSOA-based real-time end-to-end OOFDM systems at 7.5 Gb/s. It is shown that the RB noise and crosstalk effects are dominant factors limiting the maximum achievable downstream and upstream transmission performance. Under optimum SOA and RSOA operating conditions as well as practical downstream and upstream optical launch powers, 10 Gb/s downstream and 6 Gb/s upstream over 40 km SMF transmissions of conventional double sideband AMOOFDM signals are feasible without utilizing in-line optical amplification and chromatic dispersion compensation. In particular, the aforementioned transmission performance can be improved to 23 Gb/s downstream and 8 Gb/s upstream over 40 km SMFs when single sideband subcarrier modulation is adopted in the downstream systems. (c) 2010 Optical Society of America.
System analysis tools for an ELT at ESO
NASA Astrophysics Data System (ADS)
Mueller, Michael; Koch, Franz
2006-06-01
Engineering of complex, large scale systems like the ELT designs currently investigated and developed in Europe and Northern America require powerful and sophisticated tools within specific technical disciplines such as mechanics, optics and control engineering. However, even analyzing a certain component of the telescope like the telescope structure necessitates a system approach to evaluate the structural effects onto the optical performance. This paper shows several software tools developed by the European Southern Observatory (ESO) which focus onto the system approach in the analyses: Using modal results of a finite element analysis the SMI-toolbox allows an easy generation of structural models with different sizes and levels of accuracy for the control design and closed-loop simulations. The optical modeling code BeamWarrior was developed by ESO and Astrium GmbH, Germany) especially for integrated modeling and interfering with a structural model. Within BeamWarrior displacements and deformations can be applied in an arbitrary coordinate system, and hence also in the global coordinates of the FE model avoiding error prone transformations. In addition to this, a sparse state space model object was developed for Matlab to gain in computational efficiency and reduced memory requirements due to the sparsity pattern of both the structural models and the control architecture. As one result these tools allow building an integrated model in order to reliably simulate interactions, cross-coupling effects, system responses, and to evaluate global performance. In order to evaluate disturbance effects on the optical performance in openloop more efficiently, an optical evaluation toolbox was built in the FE software ANSYS which performs Zernike decomposition and best-fit computation of the deformations directly in the FE analysis.
Li, Ming; Gao, Wenbo; Cvijetic, Milorad
2017-01-10
As a continuation of our previous work [Appl. Opt.54, 1453 (2015)APOPAI0003-693510.1364/AO.54.001453] in which we have studied the performance of coherent free space optical (FSO) communication systems operating over a horizontal path, in this paper we study the coherent FSO system operating over a general slant path. We evaluated system bit-error-rate (BER) in the case when the quadrature phase-shift keying (QPSK) modulation format is applied and when an adaptive optics (AO) system is employed to mitigate the air turbulence effects for both maritime and terrestrial air transmission scenarios. We adopted a multiple-layer scheme to efficiently model the FSO slant-path links. The atmospheric channel fading was characterized by the wavefront phase distortions and the log-amplitude fluctuations. We derived analytical expressions to characterize log-amplitude fluctuations of air turbulence by asserting the aperture averaging within the frame of the multiple-layer model. The obtained results showed that use of AO enabled improvement of system performance for both uplinks and downlinks, and also revealed that it is more beneficial for the FSO downlinks. Also, AO employment brought larger enhancements in BER performance for the maritime slant-path FSO links than for the terrestrial ones, with an additional striking increase in performance when the AO correction is combined with the aperture averaging.
Hybrid photonic signal processing
NASA Astrophysics Data System (ADS)
Ghauri, Farzan Naseer
This thesis proposes research of novel hybrid photonic signal processing systems in the areas of optical communications, test and measurement, RF signal processing and extreme environment optical sensors. It will be shown that use of innovative hybrid techniques allows design of photonic signal processing systems with superior performance parameters and enhanced capabilities. These applications can be divided into domains of analog-digital hybrid signal processing applications and free-space---fiber-coupled hybrid optical sensors. The analog-digital hybrid signal processing applications include a high-performance analog-digital hybrid MEMS variable optical attenuator that can simultaneously provide high dynamic range as well as high resolution attenuation controls; an analog-digital hybrid MEMS beam profiler that allows high-power watt-level laser beam profiling and also provides both submicron-level high resolution and wide area profiling coverage; and all optical transversal RF filters that operate on the principle of broadband optical spectral control using MEMS and/or Acousto-Optic tunable Filters (AOTF) devices which can provide continuous, digital or hybrid signal time delay and weight selection. The hybrid optical sensors presented in the thesis are extreme environment pressure sensors and dual temperature-pressure sensors. The sensors employ hybrid free-space and fiber-coupled techniques for remotely monitoring a system under simultaneous extremely high temperatures and pressures.
NASA Technical Reports Server (NTRS)
Ambs, P.; Fainman, Y.; Esener, S.; Lee, S. H.
1988-01-01
Holographic optical elements (HOEs) of space-variant impulse response have been designed and generated using a computerized optical system. HOEs made of dichromated gelatin have been produced and used for spatial light modulator defect removal and optical interconnects. Experimental performance and characteristics are presented.
NASA Astrophysics Data System (ADS)
El-Haddad, Mohamed T.; Tao, Yuankai K.
2018-02-01
Design of optical imaging systems requires careful balancing of lens aberrations to optimize the point-spread function (PSF) and minimize field distortions. Aberrations and distortions are a result of both lens geometry and glass material. While most lens manufacturers provide optical models to facilitate system-level simulation, these models are often not reflective of true system performance because of manufacturing tolerances. Optical design can be further confounded when achromatic or proprietary lenses are employed. Achromats are ubiquitous in systems that utilize broadband sources due to their superior performance in balancing chromatic aberrations. Similarly, proprietary lenses may be custom-designed for optimal performance, but lens models are generally not available. Optical coherence tomography (OCT) provides non-contact, depth-resolved imaging with high axial resolution and sensitivity. OCT has been previously used to measure the refractive index of unknown materials. In a homogenous sample, the group refractive index is obtained as the ratio between the measured optical and geometric thicknesses of the sample. In heterogenous samples, a method called focus-tracking (FT) quantifies the effect of focal shift introduced by the sample. This enables simultaneous measurement of the thickness and refractive index of intermediate sample layers. Here, we extend the mathematical framework of FT to spherical surfaces, and describe a method based on OCT and FT for full characterization of lens geometry and refractive index. Finally, we validate our characterization method on commercially available singlet and doublet lenses.
Spectral filters for laser communications
NASA Technical Reports Server (NTRS)
Shaik, K.
1991-01-01
Optical communication systems must perform reliabily under strong background light interference. Since the transmitting lasers operate within a narrow spectral band, high signal to noise ratios can be achieved when narrowband spectral optical filters can be used to reject out of band light. Here, a set of general requirements for such filters are developed, and an overview is given of suitable spectral filter technologies for optical communication systems.
Enzyme activity assays within microstructured optical fibers enabled by automated alignment.
Warren-Smith, Stephen C; Nie, Guiying; Schartner, Erik P; Salamonsen, Lois A; Monro, Tanya M
2012-12-01
A fluorescence-based enzyme activity assay has been demonstrated within a small-core microstructured optical fiber (MOF) for the first time. To achieve this, a reflection-based automated alignment system has been developed, which uses feedback and piezoelectric actuators to maintain optical alignment. The auto-alignment system provides optical stability for the time required to perform an activity assay. The chosen assay is based on the enzyme proprotein convertase 5/6 (PC6) and has important applications in women's health.
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) spectrometer design and performance
NASA Technical Reports Server (NTRS)
Macenka, Steven A.; Chrisp, Michael P.
1987-01-01
The development of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has been completed at JPL. This paper outlines the functional requirements of the spectrometer optics subsystem, and describes the spectrometer optical design. The optical subsystem performance is shown in terms of spectral modulation transfer functions, radial energy distributions, and system transmission at selected wavelengths for the four spectrometers. An outline of the spectrometer alignment is included.
Chang, Victoria C; Tang, Shou-Jiang; Swain, C Paul; Bergs, Richard; Paramo, Juan; Hogg, Deborah C; Fernandez, Raul; Cadeddu, Jeffrey A; Scott, Daniel J
2013-08-01
The influence of endoscopic video camera (VC) image quality on surgical performance has not been studied. Flexible endoscopes are used as substitutes for laparoscopes in natural orifice translumenal endoscopic surgery (NOTES), but their optics are originally designed for intralumenal use. Manipulable wired or wireless independent VCs might offer advantages for NOTES but are still under development. To measure the optical characteristics of 4 VC systems and to compare their impact on the performance of surgical suturing tasks. VC systems included a laparoscope (Storz 10 mm), a flexible endoscope (Olympus GIF 160), and 2 prototype deployable cameras (magnetic anchoring and guidance system [MAGS] Camera and PillCam). In a randomized fashion, the 4 systems were evaluated regarding standardized optical characteristics and surgical manipulations of previously validated ex vivo (fundamentals of laparoscopic surgery model) and in vivo (live porcine Nissen model) tasks; objective metrics (time and errors/precision) and combined surgeon (n = 2) performance were recorded. Subtle differences were detected for color tests, and field of view was variable (65°-115°). Suitable resolution was detected up to 10 cm for the laparoscope and MAGS camera but only at closer distances for the endoscope and PillCam. Compared with the laparoscope, surgical suturing performances were modestly lower for the MAGS camera and significantly lower for the endoscope (ex vivo) and PillCam (ex vivo and in vivo). This study documented distinct differences in VC systems that may be used for NOTES in terms of both optical characteristics and surgical performance. Additional work is warranted to optimize cameras for NOTES. Deployable systems may be especially well suited for this purpose.
Optical design considerations for high-concentration photovoltaics
NASA Astrophysics Data System (ADS)
Garboushian, Vahan; Gordon, Robert
2006-08-01
Over the past 15 years, major advances in Concentrating Photovoltaics (CPV) have been achieved. Ultra-efficient Si solar cells have produced commercial concentration systems which are being fielded today and are competitively priced. Advanced research has primarily focused on significantly more efficient multi-junction solar cells for tomorrow's systems. This effort has produced sophisticated solar cells that significantly improve power production. Additional performance and cost improvements, especially in the optical system area and system integration, must be made before CPV can realize its ultimate commercial potential. Structural integrity and reliability are vital for commercial success. As incremental technical improvements are made in solar cell technologies, evaluation and 'fine-tuning' of optical systems properly matched to the solar cell are becoming increasingly necessary. As we move forward, it is increasingly important to optimize all of the interrelated elements of a CPV system for high performance without sacrificing the marketable cost and structural requirements of the system. Areas such as wavelength absorption of refractive optics need to be carefully matched to the solar cell technology employed. Reflective optics require advanced engineering models to insure uniform flux distribution without excessive losses. In Situ measurement of the 'fine-grain' improvements are difficult as multiple variables such as solar insolation, temperature, wind, altitude, etc. infringe on analytical data. This paper discusses design considerations based on 10 years of field trials of high concentration systems and their relevance for tomorrow's advanced CPV systems.
NASA Technical Reports Server (NTRS)
Taylor, E. W.; Padden, R. J.; Berry, J. N.; Sanchez, A. D.; Chapman, S. P.
1991-01-01
A brief overview of the analysis performed on WL Experiment number 701 is presented, highlighting the successful operation of the first know active fiber optic links orbited in space. Four operating fiber optic links were exposed to the space environment for a period exceeding five years, situated aboard and external to the Long Duration Exposure Facility (LDEF). Despite the prolonged space exposure to radiation, wide temperature extremums, atomic oxygen interactions, and micrometeorite and debris impacts, the optical data links performed well within specification limits. Early Phillips Laboratory tests and analyses performed on the experiment and its recovered magnetic tape data strongly indicate that fiber optic application in space will have a high success rate.
A motion detection system for AXAF X-ray ground testing
NASA Technical Reports Server (NTRS)
Arenberg, Jonathan W.; Texter, Scott C.
1993-01-01
The concept, implementation, and performance of the motion detection system (MDS) designed as a diagnostic for X-ray ground testing for AXAF are described. The purpose of the MDS is to measure the magnitude of a relative rigid body motion among the AXAF test optic, the X-ray source, and X-ray focal plane detector. The MDS consists of a point source, lens, centroid detector, transimpedance amplifier, and computer system. Measurement of the centroid position of the image of the optical point source provides a direct measure of the motions of the X-ray optical system. The outputs from the detector and filter/amplifier are digitized and processed using the calibration with a 50 Hz bandwidth to give the centroid's location on the detector. Resolution of 0.008 arcsec has been achieved by this system. Data illustrating the performance of the motion detection system are also presented.
Multichannel imager for littoral zone characterization
NASA Astrophysics Data System (ADS)
Podobna, Yuliya; Schoonmaker, Jon; Dirbas, Joe; Sofianos, James; Boucher, Cynthia; Gilbert, Gary
2010-04-01
This paper describes an approach to utilize a multi-channel, multi-spectral electro-optic (EO) system for littoral zone characterization. Advanced Coherent Technologies, LLC (ACT) presents their EO sensor systems for the surf zone environmental assessment and potential surf zone target detection. Specifically, an approach is presented to determine a Surf Zone Index (SZI) from the multi-spectral EO sensor system. SZI provides a single quantitative value of the surf zone conditions delivering an immediate understanding of the area and an assessment as to how well an airborne optical system might perform in a mine countermeasures (MCM) operation. Utilizing consecutive frames of SZI images, ACT is able to measure variability over time. A surf zone nomograph, which incorporates targets, sensor, and environmental data, including the SZI to determine the environmental impact on system performance, is reviewed in this work. ACT's electro-optical multi-channel, multi-spectral imaging system and test results are presented and discussed.
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Chavez Dagostino, Miguel; Arellanes, Adan Omar; Tepichin Rodriguez, Eduardo
2017-08-01
We describe a potential prototype of modern spectrometer based on acousto-optical technique with three parallel optical arms for analysis of radio-wave signals specific to astronomical observations. Each optical arm exhibits original performances to provide parallel multi-band observations with different scales simultaneously. Similar multi-band instrument is able to realize measurements within various scenarios from planetary atmospheres to attractive objects in the distant Universe. The arrangement under development has two novelties. First, each optical arm represents an individual spectrum analyzer with its individual performances. Such an approach is conditioned by exploiting various materials for acousto-optical cells operating within various regimes, frequency ranges, and light wavelengths from independent light sources. Individually produced beam shapers give both the needed incident light polarization and the required apodization for light beam to increase the dynamic range of the system as a whole. After parallel acousto-optical processing, a few data flows from these optical arms are united by the joint CCD matrix on the stage of the combined extremely high-bit rate electronic data processing that provides the system performances as well. The other novelty consists in the usage of various materials for designing wide-aperture acousto-optical cells exhibiting the best performances within each of optical arms. Here, one can mention specifically selected cuts of tellurium dioxide, bastron, and lithium niobate, which overlap selected areas within the frequency range from 40 MHz to 2.0 GHz. Thus one yields the united versatile instrument for comprehensive studies of astronomical objects simultaneously with precise synchronization in various frequency ranges.
Optics design for J-TEXT ECE imaging with field curvature adjustment lens.
Zhu, Y; Zhao, Z; Liu, W D; Xie, J; Hu, X; Muscatello, C M; Domier, C W; Luhmann, N C; Chen, M; Ren, X; Tobias, B J; Zhuang, G; Yang, Z
2014-11-01
Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas. Of particular importance has been microwave electron cyclotron emission imaging (ECEI) for imaging Te fluctuations. Key to the success of ECEI is a large Gaussian optics system constituting a major portion of the focusing of the microwave radiation from the plasma to the detector array. Both the spatial resolution and observation range are dependent upon the imaging optics system performance. In particular, it is critical that the field curvature on the image plane is reduced to decrease crosstalk between vertical channels. The receiver optics systems for two ECEI on the J-TEXT device have been designed to ameliorate these problems and provide good performance with additional field curvature adjustment lenses with a meniscus shape to correct the aberrations from several spherical surfaces.
Optical fiber sensors and signal processing for intelligent structure monitoring
NASA Technical Reports Server (NTRS)
Rogowski, Robert; Claus, R. O.; Lindner, D. K.; Thomas, Daniel; Cox, Dave
1988-01-01
The analytic and experimental performance of optical fiber sensors for the control of vibration of large aerospace and other structures are investigated. In particular, model domain optical fiber sensor systems, are being studied due to their apparent potential as distributed, low mass sensors of vibration over appropriate ranges of both low frequency and low amplitude displacements. Progress during the past three months is outlined. Progress since September is divided into work in the areas of experimental hardware development, analytical analysis, control design and sensor development. During the next six months, tests of a prototype closed-loop control system for a beam are planned which will demonstrate the solution of several optical fiber instrumentation device problems, the performance of the control system theory which incorporates the model of the modal domain sensor, and the potential for distributed control which this sensor approach offers.
Optical information processing at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Reid, Max B.; Bualat, Maria G.; Cho, Young C.; Downie, John D.; Gary, Charles K.; Ma, Paul W.; Ozcan, Meric; Pryor, Anna H.; Spirkovska, Lilly
1993-01-01
The combination of analog optical processors with digital electronic systems offers the potential of tera-OPS computational performance, while often requiring less power and weight relative to all-digital systems. NASA is working to develop and demonstrate optical processing techniques for on-board, real time science and mission applications. Current research areas and applications under investigation include optical matrix processing for space structure vibration control and the analysis of Space Shuttle Main Engine plume spectra, optical correlation-based autonomous vision for robotic vehicles, analog computation for robotic path planning, free-space optical interconnections for information transfer within digital electronic computers, and multiplexed arrays of fiber optic interferometric sensors for acoustic and vibration measurements.
Atmospheric optical calibration system
Hulstrom, Roland L.; Cannon, Theodore W.
1988-01-01
An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.
Study of optical design of three-dimensional digital ophthalmoscopes.
Fang, Yi-Chin; Yen, Chih-Ta; Chu, Chin-Hsien
2015-10-01
This study primarily involves using optical zoom structures to design a three-dimensional (3D) human-eye optical sensory system with infrared and visible light. According to experimental data on two-dimensional (2D) and 3D images, human-eye recognition of 3D images is substantially higher (approximately 13.182%) than that of 2D images. Thus, 3D images are more effective than 2D images when they are used at work or in high-recognition devices. In the optical system design, infrared and visible light wavebands were incorporated as light sources to perform simulations. The results can be used to facilitate the design of optical systems suitable for 3D digital ophthalmoscopes.
NASA Astrophysics Data System (ADS)
Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang
2017-10-01
In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.
NASA Astrophysics Data System (ADS)
Gupta, Amit; Nagpal, Shaina
2017-05-01
Inter-satellite optical wireless communication (IsOWC) systems can be chosen over existing microwave satellite systems for deploying in space in the future due to their high bandwidth, small size, light weight, low power and low cost. However, the IsOWC system suffers from various attenuations due to weather conditions, turbulence or scintillations which limit its performance and decreases its availability. So, in order to improve the performance, IsOWC system using directly modulated laser source is proposed in this work. The system is designed and evaluated to be suitable for high data rate transmissions up to 10 Gbps. The performance of the system is investigated in order to reduce the cost and complexity of link and improving the quality of information signal. Further the proposed IsOWC system is analysed using BER analyser, power meter and oscilloscope Visualizer.
NASA Technical Reports Server (NTRS)
Howard, Joseph M.; Ha, Kong Q.
2004-01-01
This is part two of a series on the optical modeling activities for JWST. Starting with the linear optical model discussed in part one, we develop centroid and wavefront error sensitivities for the special case of a segmented optical system such as JWST, where the primary mirror consists of 18 individual segments. Our approach extends standard sensitivity matrix methods used for systems consisting of monolithic optics, where the image motion is approximated by averaging ray coordinates at the image and residual wavefront error is determined with global tip/tilt removed. We develop an exact formulation using the linear optical model, and extend it to cover multiple field points for performance prediction at each instrument aboard JWST. This optical model is then driven by thermal and dynamic structural perturbations in an integrated modeling environment. Results are presented.
Wavelet-Based Processing for Fiber Optic Sensing Systems
NASA Technical Reports Server (NTRS)
Hamory, Philip J. (Inventor); Parker, Allen R., Jr. (Inventor)
2016-01-01
The present invention is an improved method of processing conglomerate data. The method employs a Triband Wavelet Transform that decomposes and decimates the conglomerate signal to obtain a final result. The invention may be employed to improve performance of Optical Frequency Domain Reflectometry systems.
NASA Astrophysics Data System (ADS)
Canzian, Blaise; Barentine, J.; Hull, T.
2012-01-01
L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to make the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakala, Maui. ATST will perform to a very high optical performance level in a difficult thermal environment. The TEOA, containing the 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, thermally managed Lyot stop, safety interlock and control system, and support frame, operates in the "hot spot” at the prime focus of the ATST and so presents special challenges. In this paper, we will describe the L-3 IOS technical approach to meet these challenges, including subsystems for opto-mechanical positioning, rejected and stray light control, wavefront tip-tilt compensation, and thermal management. Key words: ATST, TEOA, L-3 IOS, thermal management, silicon carbide (SiC) mirrors, hexapods, solar astronomy
The investigation of large field of view eyepiece with multilayer diffractive optical element
NASA Astrophysics Data System (ADS)
Fan, Changjiang
2014-11-01
In this paper, a light-small hybrid refractive/diffractive eyepiece for HMD is designed, which introduces a multilayer Diffractive Optical Element for the first time. This eyepiece optical system has a 22mm eye relief and 8mm exit pupil with 60° FOV. The multilayer DOE overcomes the difficulties of single-layer DOE and double-layer DOE using in the optical system, and improve the image contrast and the performance significantly due to the diffraction efficiency of the multilayer DOE is lager than 90% in wide waveband and large FOV range. The material of multilayer DOE are FCD1 for first layer, FD6 for second layer, PS for the filler layer. Moreover, the weight of the eyepiece system is only 8g, and the diameter of lens is 16mm. The MTF performance can satisfy the requirement of display with VGA resolution. Besides, the lateral color and distortion are 4.8% and 10μm, respectively. The properties of the helmet eyepiece system are excellent.
International Lens Design Conference, Monterey, CA, June 11-14, 1990, Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, G.N.
1990-01-01
The present conference on lens design encompasses physical and geometrical optics, diffractive optics, the optimization of optical design, software packages, ray tracing, the use of artificial intelligence, the achromatization of materials, zoom optics, microoptics and GRIN lenses, and IR lens design. Specific issues addressed include diffraction-performance calculations in lens design, the optimization of the optical transfer function, a rank-down method for automatic lens design, applications of quadric surfaces, the correction of aberrations by using HOEs in UV and visible imaging systems, and an all-refractive telescope for intersatellite communications. Also addressed are automation techniques for optics manufacturing, all-reflective phased-array imaging telescopes,more » the thermal aberration analysis of a Nd:YAG laser, the analysis of illumination systems, athermalized FLIR optics, and the design of array systems using shared symmetry.« less
El-Wakeel, Amr S; Mohammed, Nazmi A; Aly, Moustafa H
2016-09-10
In this work, a free space optical communication (FSO) link is proposed and utilized to explore and evaluate the FSO link performance under the joint occurrence of the atmospheric scattering and turbulence phenomena for 850 and 1550 nm operation. Diffraction and nondiffraction-limited systems are presented and evaluated for both wavelengths' operation, considering far-field conditions under different link distances. Bit error rate, pointing error angles, beam divergence angles, and link distance are the main performance indicators that are used to evaluate and compare the link performance under different system configurations and atmospheric phenomena combinations. A detailed study is performed to provide the merits of this work. For both far-field diffraction-limited and nondiffraction-limited systems, it is concluded that 1550 nm system operation is better than 850 nm for the whole presented joint occurrences of atmospheric scattering and turbulence.
Control algorithms and applications of the wavefront sensorless adaptive optics
NASA Astrophysics Data System (ADS)
Ma, Liang; Wang, Bin; Zhou, Yuanshen; Yang, Huizhen
2017-10-01
Compared with the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system need not to measure the wavefront and reconstruct it. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. Based on the analysis of principle and system model of the WFSless AO system, wavefront correction methods of the WFSless AO system were divided into two categories: model-free-based and model-based control algorithms. The WFSless AO system based on model-free-based control algorithms commonly considers the performance metric as a function of the control parameters and then uses certain control algorithm to improve the performance metric. The model-based control algorithms include modal control algorithms, nonlinear control algorithms and control algorithms based on geometrical optics. Based on the brief description of above typical control algorithms, hybrid methods combining the model-free-based control algorithm with the model-based control algorithm were generalized. Additionally, characteristics of various control algorithms were compared and analyzed. We also discussed the extensive applications of WFSless AO system in free space optical communication (FSO), retinal imaging in the human eye, confocal microscope, coherent beam combination (CBC) techniques and extended objects.
Development of an immersive virtual reality head-mounted display with high performance.
Wang, Yunqi; Liu, Weiqi; Meng, Xiangxiang; Fu, Hanyi; Zhang, Daliang; Kang, Yusi; Feng, Rui; Wei, Zhonglun; Zhu, Xiuqing; Jiang, Guohua
2016-09-01
To resolve the contradiction between large field of view and high resolution in immersive virtual reality (VR) head-mounted displays (HMDs), an HMD monocular optical system with a large field of view and high resolution was designed. The system was fabricated by adopting aspheric technology with CNC grinding and a high-resolution LCD as the image source. With this monocular optical system, an HMD binocular optical system with a wide-range continuously adjustable interpupillary distance was achieved in the form of partially overlapping fields of view (FOV) combined with a screw adjustment mechanism. A fast image processor-centered LCD driver circuit and an image preprocessing system were also built to address binocular vision inconsistency in the partially overlapping FOV binocular optical system. The distortions of the HMD optical system with a large field of view were measured. Meanwhile, the optical distortions in the display and the trapezoidal distortions introduced during image processing were corrected by a calibration model for reverse rotations and translations. A high-performance not-fully-transparent VR HMD device with high resolution (1920×1080) and large FOV [141.6°(H)×73.08°(V)] was developed. The full field-of-view average value of angular resolution is 18.6 pixels/degree. With the device, high-quality VR simulations can be completed under various scenarios, and the device can be utilized for simulated trainings in aeronautics, astronautics, and other fields with corresponding platforms. The developed device has positive practical significance.
AO corrected satellite imaging from Mount Stromlo
NASA Astrophysics Data System (ADS)
Bennet, F.; Rigaut, F.; Price, I.; Herrald, N.; Ritchie, I.; Smith, C.
2016-07-01
The Research School of Astronomy and Astrophysics have been developing adaptive optics systems for space situational awareness. As part of this program we have developed satellite imaging using compact adaptive optics systems for small (1-2 m) telescopes such as those operated by Electro Optic Systems (EOS) from the Mount Stromlo Observatory. We have focused on making compact, simple, and high performance AO systems using modern high stroke high speed deformable mirrors and EMCCD cameras. We are able to track satellites down to magnitude 10 with a Strehl in excess of 20% in median seeing.
Prospects for the Thomson scattering system on NSTX-Upgrade.
Diallo, A; LeBlanc, B P; Labik, G; Stevens, D
2012-10-01
The paper discusses the projected configuration of the Thomson system on the National Spherical Torus Experiment (NSTX-U). In this paper, we discuss the projected configuration of the Thomson system on NSTX-U. More specifically, we determine, through both optical modeling of the collection optics and in-vessel measurements, that the collecting fibers are to be displaced by at most 1 cm toward the imaging plane along the optical axis. Finally, we estimate the performance of the Thomson system in measuring the electron temperature for NSTX-U discharges.
Optical Communications Experiments at 6328 A and 10.6 micro.
Lucy, R F; Lang, K
1968-10-01
Diagnostic optical communication experiments were performed comparing noncoherent and coherent detection techniques. Three different receiver-transmitter configurations with variable apertures were used during the experiments that were performed over a 1-km real atmospheric path. In every case, it was found that the coherent system fading, due to atmospheric turbulence, was considerably greater than the noncoherent system fading. This result shows the greater sensitivity of the coherent system to the time-varying wavefront breakup produced by atmospheric turbulence. A coherent homodyne experiment at 10.6 micro over a 2-km round-trip path was also performed. Its results indicated that a coherent system at 10.6 micro is less susceptible to atmospheric turbulence than a coherent system at 6328 A.
Highly accurate and fast optical penetration-based silkworm gender separation system
NASA Astrophysics Data System (ADS)
Kamtongdee, Chakkrit; Sumriddetchkajorn, Sarun; Chanhorm, Sataporn
2015-07-01
Based on our research work in the last five years, this paper highlights our innovative optical sensing system that can identify and separate silkworm gender highly suitable for sericulture industry. The key idea relies on our proposed optical penetration concepts and once combined with simple image processing operations leads to high accuracy in identifying of silkworm gender. Inside the system, there are electronic and mechanical parts that assist in controlling the overall system operation, processing the optical signal, and separating the female from male silkworm pupae. With current system performance, we achieve a very highly accurate more than 95% in identifying gender of silkworm pupae with an average system operational speed of 30 silkworm pupae/minute. Three of our systems are already in operation at Thailand's Queen Sirikit Sericulture Centers.
NASA Technical Reports Server (NTRS)
Welch, Sharon S.; Clemmons, James I., Jr.; Shelton, Kevin J.; Duncan, Walter C.
1994-01-01
An optical measurement system (OMS) has been designed and tested for a large gap magnetic suspension system (LGMSS). The LGMSS will be used to study control laws for magnetic suspension systems for vibration isolation and pointing applications. The LGMSS features six degrees of freedom and consists of a planar array of electromagnets that levitate and position a cylindrical element containing a permanent magnet core. The OMS provides information on the location and orientation of the element to the LGMSS control system to stabilize suspension. The hardware design of this optical sensing system and the tracking algorithms are presented. The results of analyses and experiments are presented that define the accuracy limits of the optical sensing system and that quantify the errors in position estimation.
Materials for Concentrator Photovoltaic Systems: Optical Properties and Solar Radiation Durability
NASA Astrophysics Data System (ADS)
French, R. H.; Rodríguez-Parada, J. M.; Yang, M. K.; Lemon, M. F.; Romano, E. C.; Boydell, P.
2010-10-01
Concentrator photovoltaic (CPV) systems are designed to operate over a wide range of solar concentrations, from low concentrations of ˜1 to 12 Suns to medium concentrations in the range from 12 to 200 Suns, to high concentration CPV systems going up to 2000 Suns. Many transparent optical materials are used for a wide variety of functions ranging from refractive and reflective optics to homogenizers, encapsulants and even thermal management. The classes of materials used also span a wide spectrum from hydrocarbon polymers (HCP) and fluoropolymers (FP) to silicon containing polymers and polyimides (PI). The optical properties of these materials are essential to the optical behavior of the system. At the same time radiation durability of these materials under the extremely wide range of solar concentrations is a critical performance requirement for the required lifetime of a CPV system. As part of our research on materials for CPV we are evaluating the optical properties and solar radiation durability of various polymeric materials to define the optimum material combinations for various CPV systems.
NASA Astrophysics Data System (ADS)
1994-01-01
Summer School, 27 June to 8 July 1994, Viana do Castelo, Hotel do Parque, Portugal Optical fibres, with their extremely low transmission loss, untapped bandwidth and controllable dispersion, dominate a broad range of technologies in which applications must respond to the increasing constraints of today's specifications as well as envisage future requirements. Optical fibres dominate communications systems. In the area of sensors, fibre optics will be fully exploited for their immunity to EMI, their high sensitivity and their large dynamic range. The maturity of single mode optical technology has led to intensive R&D of a range of components based on the advantages of transmission characteristics and signal processing. Specifications and intercompatibility requests for the new generation of both analogue and digital fibre optical components and systems has created a demand for sophisticated measuring techniques based on unique and complex instruments. In recent years there has been a signification evolution in response to the explosion of applications and the tightening of specifications. These developments justify a concerted effort to focus on trends in optical fibre metrology and standards. Objective The objective of this school is to provide a progressive and comprehensive presentation of current issues concerning passive and active optical fibre characterization and measurement techniques. Passive fibre components support a variety of developments in optical fibre systems and will be discussed in terms of relevance and standards. Particular attention will be paid to devices for metrological purposes such as reference fibres and calibration artefacts. The characterization and testing of optical fibre amplifiers, which have great potential in telecommunications, data distribution networks and as a system part in instrumentation, will be covered. Methods of measurement and means of calibration with traceability will be discussed, together with the characterization requirements of the new generation of analogue and digital fibre optical systems, which require sophisticated measurement techniques employing complex instruments unique to optical measurements. The school will foster and enhance the interaction between material, devices, systems, and standards-oriented R&D communities, as well as between engineers concerned with design and manufacturers of systems and instrumentation. Topics Review of optical fibre communication technology and systems Measurement techniques for fibre characterization: Reliability and traceability Reference fibres and calibration artefacts Ribbon fibres Mechanical and environmental testing Fibre reliability Polarimetric measurements Passive components characterization: Splices and connectors Couplers, splitters, taps and WDMs Optical fibres and isolators WDM technologies and applications: WDM technologies Tunable optical filters Fibre amplifiers and sources: Performances and characterization Design and standards Nonlinear effects Subsystem design and standards: Design and fabrication techniques Performance degradation and reliability Evaluation of costs/performance/technology Sensors IR - optical fibres Plastic fibres Instrumentation Registration Participation free of charge for postgraduate students, with some grants available for travel and lodging expenses. All correspondence should be addressed to: Secretariat, Trends in Optical Fibre Metrology and Standards, a/c Prof. Olivério D D Soares, Centro de Ciências e Tecnologias Opticas, Lab. Fisica - Faculdade de Ciências, Praça Gomes Teixeira, P-4000 Porto, Portugal. Tel: 351-2-310290, 351-2-2001648; Fax: 351-2-319267.
The Durham Adaptive Optics Simulation Platform (DASP): Current status
NASA Astrophysics Data System (ADS)
Basden, A. G.; Bharmal, N. A.; Jenkins, D.; Morris, T. J.; Osborn, J.; Peng, J.; Staykov, L.
2018-01-01
The Durham Adaptive Optics Simulation Platform (DASP) is a Monte-Carlo modelling tool used for the simulation of astronomical and solar adaptive optics systems. In recent years, this tool has been used to predict the expected performance of the forthcoming extremely large telescope adaptive optics systems, and has seen the addition of several modules with new features, including Fresnel optics propagation and extended object wavefront sensing. Here, we provide an overview of the features of DASP and the situations in which it can be used. Additionally, the user tools for configuration and control are described.
Development of an optical fiber flow velocity sensor.
Harada, Toshio; Kamoto, Kenji; Abe, Kyutaro; Izumo, Masaki
2009-01-01
A new optical fiber flow velocity sensor was developed by using an optical fiber information network system in sewer drainage pipes. The optical fiber flow velocity sensor operates without electric power, and the signals from the sensor can be transmitted over a long distance through the telecommunication system in the optical fiber network. Field tests were conducted to check the performance of the sensor in conduits in the pumping station and sewage pond managed by the Tokyo Metropolitan Government. Test results confirmed that the velocity sensor can be used for more than six months without any trouble even in sewer drainage pipes.
Novel optical scanning cryptography using Fresnel telescope imaging.
Yan, Aimin; Sun, Jianfeng; Hu, Zhijuan; Zhang, Jingtao; Liu, Liren
2015-07-13
We propose a new method called modified optical scanning cryptography using Fresnel telescope imaging technique for encryption and decryption of remote objects. An image or object can be optically encrypted on the fly by Fresnel telescope scanning system together with an encryption key. For image decryption, the encrypted signals are received and processed with an optical coherent heterodyne detection system. The proposed method has strong performance through use of secure Fresnel telescope scanning with orthogonal polarized beams and efficient all-optical information processing. The validity of the proposed method is demonstrated by numerical simulations and experimental results.
New technique for simulation of optical fiber amplifiers control schemes in dynamic WDM systems
NASA Astrophysics Data System (ADS)
Freitas, Marcio; Klein, Jackson; Givigi, Sidney, Jr.; Calmon, Luiz C.
2005-04-01
One topic that has attracted attention is related to the behavior of the optical amplifiers under dynamic conditions, specifically because amplifiers working in a saturated condition produce power transients in all-optical reconfigurable WDM networks, e.g. adding/dropping channels. The goal of this work is to introduce the multiwavelength time-driven simulations technique, capable of simulation and analysis of transient effects in all-optical WDM networks with optical amplifiers, and allow the use of control schemes to avoid or minimize the impacts of transient effects in the system performance.
Correction of cell-induced optical aberrations in a fluorescence fluctuation microscope
Leroux, Charles-Edouard; Grichine, Alexei; Wang, Irène; Delon, Antoine
2013-01-01
We describe the effect of optical aberrations on fluorescence fluctuations microscopy (FFM), when focusing through a single living cell. FFM measurements are performed in an aqueous fluorescent solution, and prove to be a highly sensitive tool to assess the optical aberrations introduced by the cell. We demonstrate an adaptive optics (AO) system to remove the aberration-related bias in the FFM measurements. Our data show that AO is not only useful when imaging deep in tissues, but also when performing FFM measurements through a single cellular layer. PMID:23939061
High-density fiber-optic DNA random microsphere array.
Ferguson, J A; Steemers, F J; Walt, D R
2000-11-15
A high-density fiber-optic DNA microarray sensor was developed to monitor multiple DNA sequences in parallel. Microarrays were prepared by randomly distributing DNA probe-functionalized 3.1-microm-diameter microspheres in an array of wells etched in a 500-microm-diameter optical imaging fiber. Registration of the microspheres was performed using an optical encoding scheme and a custom-built imaging system. Hybridization was visualized using fluorescent-labeled DNA targets with a detection limit of 10 fM. Hybridization times of seconds are required for nanomolar target concentrations, and analysis is performed in minutes.
Integrated modeling: a look back
NASA Astrophysics Data System (ADS)
Briggs, Clark
2015-09-01
This paper discusses applications and implementation approaches used for integrated modeling of structural systems with optics over the past 30 years. While much of the development work focused on control system design, significant contributions were made in system modeling and computer-aided design (CAD) environments. Early work appended handmade line-of-sight models to traditional finite element models, such as the optical spacecraft concept from the ACOSS program. The IDEAS2 computational environment built in support of Space Station collected a wider variety of existing tools around a parametric database. Later, IMOS supported interferometer and large telescope mission studies at JPL with MATLAB modeling of structural dynamics, thermal analysis, and geometric optics. IMOS's predecessor was a simple FORTRAN command line interpreter for LQG controller design with additional functions that built state-space finite element models. Specialized language systems such as CAESY were formulated and prototyped to provide more complex object-oriented functions suited to control-structure interaction. A more recent example of optical modeling directly in mechanical CAD is used to illustrate possible future directions. While the value of directly posing the optical metric in system dynamics terms is well understood today, the potential payoff is illustrated briefly via project-based examples. It is quite likely that integrated structure thermal optical performance (STOP) modeling could be accomplished in a commercial off-the-shelf (COTS) tool set. The work flow could be adopted, for example, by a team developing a small high-performance optical or radio frequency (RF) instrument.
Quantification of helicopter rotor downwash effects on electro-optical defensive aids suites
NASA Astrophysics Data System (ADS)
Seiffer, Dirk P.; Eisele, Christian; Henriksson, Markus; Sjöqvist, Lars; Möller, Sebastian; Togna, Fabio; Velluet, Marie-Thérèse
2015-10-01
The performance of electro-optical platform protection systems can be degraded significantly by the propagation environment around the platform. This includes aero-optical effects and zones of severe turbulence generated by engine exhausts. For helicopters rotor tip vortices and engine exhaust gases that are pressed down by the rotor airflow form the so called downwash phenomena. The downwash is a source for perturbations. A wide range of spatial and temporal fluctuations in the refractive index of air can occur. The perturbations from the turbulent flow cause detrimental effects on energy delivery, angle of arrival fluctuations, jam-code transmission, tracking accuracy and imaging performance in general. Therefore the effects may especially have a severe impact on the performance of laser-based protection systems like directed infrared countermeasures (DIRCM). The chain from passive missile detection and warning to obtaining an optical break-lock by the use of an active laser system will be influenced. To anticipate the installed performance of an electro-optical defensive aids suite (DAS) for helicopter platforms it is necessary to develop models for the prediction of the perturbations. Modelled results have to be validated against experimental findings. However, the data available in open literature on the effects of rotor downwash from helicopters on optical propagation is very limited. To collect necessary data and to obtain a first impression about the magnitude of occurring effects the European defence agency group (EDA) on "airborne platform effects on lasers and warning sensors (ALWS)" decided to design and perform a field trial on the premises of the Italian Air Force Flight Test Center in Pratica di Mare, Italy. ALWS is a technical arrangement under the Europa MoU among France, Germany, Italy, Sweden and the United Kingdom.
Optical design applications for enhanced illumination performance
NASA Astrophysics Data System (ADS)
Gilray, Carl; Lewin, Ian
1995-08-01
Nonimaging optical design techniques have been applied in the illumination industry for many years. Recently however, powerful software has been developed which allows accurate simulation and optimization of illumination devices. Wide experience has been obtained in using such design techniques for practical situations. These include automotive lighting where safety is of greatest importance, commercial lighting systems designed for energy efficiency, and numerous specialized applications. This presentation will discuss the performance requirements of a variety of illumination devices. It will further cover design methodology and present a variety of examples of practical applications for enhanced system performance.
The numerical simulation tool for the MAORY multiconjugate adaptive optics system
NASA Astrophysics Data System (ADS)
Arcidiacono, C.; Schreiber, L.; Bregoli, G.; Diolaiti, E.; Foppiani, I.; Agapito, G.; Puglisi, A.; Xompero, M.; Oberti, S.; Cosentino, G.; Lombini, M.; Butler, R. C.; Ciliegi, P.; Cortecchia, F.; Patti, M.; Esposito, S.; Feautrier, P.
2016-07-01
The Multiconjugate Adaptive Optics RelaY (MAORY) is and Adaptive Optics module to be mounted on the ESO European-Extremely Large Telescope (E-ELT). It is an hybrid Natural and Laser Guide System that will perform the correction of the atmospheric turbulence volume above the telescope feeding the Multi-AO Imaging Camera for Deep Observations Near Infrared spectro-imager (MICADO). We developed an end-to-end Monte- Carlo adaptive optics simulation tool to investigate the performance of a the MAORY and the calibration, acquisition, operation strategies. MAORY will implement Multiconjugate Adaptive Optics combining Laser Guide Stars (LGS) and Natural Guide Stars (NGS) measurements. The simulation tool implement the various aspect of the MAORY in an end to end fashion. The code has been developed using IDL and use libraries in C++ and CUDA for efficiency improvements. Here we recall the code architecture, we describe the modeled instrument components and the control strategies implemented in the code.
Air-borne shape measurement of parabolic trough collector fields
NASA Astrophysics Data System (ADS)
Prahl, Christoph; Röger, Marc; Hilgert, Christoph
2017-06-01
The optical and thermal efficiency of parabolic trough collector solar fields is dependent on the performance and assembly accuracy of its components such as the concentrator and absorber. For the purpose of optical inspection/approval, yield analysis, localization of low performing areas, and optimization of the solar field, it is essential to create a complete view of the optical properties of the field. Existing optical measurement tools are based on ground based cameras, facing restriction concerning speed, volume and automation. QFly is an airborne qualification system which provides holistic and accurate information on geometrical, optical, and thermal properties of the entire solar field. It consists of an unmanned aerial vehicle, cameras and related software for flight path planning, data acquisition and evaluation. This article presents recent advances of the QFly measurement system and proposes a methodology on holistic qualification of the complete solar field with minimum impact on plant operation.
Neural network-based system for pattern recognition through a fiber optic bundle
NASA Astrophysics Data System (ADS)
Gamo-Aranda, Javier; Rodriguez-Horche, Paloma; Merchan-Palacios, Miguel; Rosales-Herrera, Pablo; Rodriguez, M.
2001-04-01
A neural network based system to identify images transmitted through a Coherent Fiber-optic Bundle (CFB) is presented. Patterns are generated in a computer, displayed on a Spatial Light Modulator, imaged onto the input face of the CFB, and recovered optically by a CCD sensor array for further processing. Input and output optical subsystems were designed and used to that end. The recognition step of the transmitted patterns is made by a powerful, widely-used, neural network simulator running on the control PC. A complete PC-based interface was developed to control the different tasks involved in the system. An optical analysis of the system capabilities was carried out prior to performing the recognition step. Several neural network topologies were tested, and the corresponding numerical results are also presented and discussed.
THz optical design considerations and optimization for medical imaging applications
NASA Astrophysics Data System (ADS)
Sung, Shijun; Garritano, James; Bajwa, Neha; Nowroozi, Bryan; Llombart, Nuria; Grundfest, Warren; Taylor, Zachary D.
2014-09-01
THz imaging system design will play an important role making possible imaging of targets with arbitrary properties and geometries. This study discusses design consideration and imaging performance optimization techniques in THz quasioptical imaging system optics. Analysis of field and polarization distortion by off-axis parabolic (OAP) mirrors in THz imaging optics shows how distortions are carried in a series of mirrors while guiding the THz beam. While distortions of the beam profile by individual mirrors are not significant, these effects are compounded by a series of mirrors in antisymmetric orientation. It is shown that symmetric orientation of the OAP mirror effectively cancels this distortion to recover the original beam profile. Additionally, symmetric orientation can correct for some geometrical off-focusing due to misalignment. We also demonstrate an alternative method to test for overall system optics alignment by investigating the imaging performance of the tilted target plane. Asymmetric signal profile as a function of the target plane's tilt angle indicates when one or more imaging components are misaligned, giving a preferred tilt direction. Such analysis can offer additional insight into often elusive source device misalignment at an integrated system. Imaging plane tilting characteristics are representative of a 3-D modulation transfer function of the imaging system. A symmetric tilted plane is preferred to optimize imaging performance.
NASA Technical Reports Server (NTRS)
Runnels, Tyson D.
1993-01-01
This is a case study. It deals with the use of a 'virtual file system' (VFS) for Boeing's UNIX-based Product Standards Data System (PSDS). One of the objectives of PSDS is to store digital standards documents. The file-storage requirements are that the files must be rapidly accessible, stored for long periods of time - as though they were paper, protected from disaster, and accumulative to about 80 billion characters (80 gigabytes). This volume of data will be approached in the first two years of the project's operation. The approach chosen is to install a hierarchical file migration system using optical disk cartridges. Files are migrated from high-performance media to lower performance optical media based on a least-frequency-used algorithm. The optical media are less expensive per character stored and are removable. Vital statistics about the removable optical disk cartridges are maintained in a database. The assembly of hardware and software acts as a single virtual file system transparent to the PSDS user. The files are copied to 'backup-and-recover' media whose vital statistics are also stored in the database. Seventeen months into operation, PSDS is storing 49 gigabytes. A number of operational and performance problems were overcome. Costs are under control. New and/or alternative uses for the VFS are being considered.
Silicon carbide as a basis for spaceflight optical systems
NASA Astrophysics Data System (ADS)
Curcio, Michael E.
1994-09-01
New advances in the areas of microelectronics and micro-mechanical devices have created a momentum in the development of lightweight, miniaturized, electro-optical space subsystems. The performance improvements achieved and new observational techniques developed as a result, have provided a basis for a new range of Small Explorer, Discovery-class and other low-cost mission concepts for space exploration. However, the ultimate objective of low-mass, inexpensive space science missions will only be achieved with a companion development in the areas of flight optical systems and sensor instrument benches. Silicon carbide (SiC) is currently emerging as an attractive technology to fill this need. As a material basis for reflective, flight telescopes and optical benches, SiC offers: the lightweight and stiffness characteristics of beryllium; glass-like inherent stability consistent with performance to levels of diffraction-limited visible resolution; superior thermal properties down to cryogenic temperatures; and an existing, commercially-based material and processing infrastructure like aluminum. This paper will describe the current status and results of on-going technology developments to utilize these material properties in the creation of lightweight, high- performing, thermally robust, flight optical assemblies. System concepts to be discussed range from an 18 cm aperture, 4-mirror, off-axis system weighing less than 2 kg to a 0.5 m, 15 kg reimager. In addition, results in the development of a thermally-stable, `GOES-like' scan mirror will be presented.
NASA Astrophysics Data System (ADS)
Xie, Chongjin; Möller, Lothar; Kilper, Daniel C.; Mollenauer, Linn F.
2003-12-01
Interchannel cross-phase-modulation-induced polarization scattering (XPMIPS) and its effect on the performance of optical polarization mode dispersion (PMD) compensation in wavelength-division-multiplexed (WDM) systems are studied. The level of XPMIPS in long-haul WDM transmission systems is theoretically quantified, and its effect on optical PMD compensation is evaluated with numerical simulations. We show that in 10-Gbit/s ultra-long-haul dense WDM systems XPMIPS could reduce the PMD compensation efficiency by 50%, whereas for 40-Gbit/s systems the effect of XPMIPS is smaller.
A low cost, high performance, 1.2m off-axis telescope built with NG-Xinetics silicon carbide
NASA Astrophysics Data System (ADS)
Rey, Justin J.; Wellman, John A.; Egan, Richard G.; Wollensak, Richard J.
2011-09-01
The search for extrasolar habitable planets is one of three major astrophysics priorities identified for the next decade. These missions demand very high performance visible-wavelength optical imaging systems. Such high performance space telescopes are typically extremely expensive and can be difficult for government agencies to afford in today's economic climate, and most lower cost systems offer little benefit because they fall short on at least one of the following three key performance parameters: imaging wavelength, total system-level wavefront error and aperture diameter. Northrop Grumman Xinetics has developed a simple, lightweight, low-cost telescope design that will address the near-term science objectives of this astrophysics theme with the required optical performance, while reducing the telescope cost by an order of magnitude. Breakthroughs in SiC mirror manufacturing, integrated wavefront sensing, and high TRL deformable mirror technology have finally been combined within the same organization to offer a complete end-to-end telescope system in the lower end of the Class D cost range. This paper presents the latest results of real OAP polishing and metrology data, an optimized optical design, and finite element derived WFE
NASA Astrophysics Data System (ADS)
Campos, Carmina del Rio; Horche, Paloma R.; Martin-Minguez, Alfredo
2011-03-01
Due to the fact that a metro network market is very cost sensitive, direct modulated schemes appear attractive. In this paper a CWDM (Coarse Wavelength Division Multiplexing) system is studied in detail by means of an Optical Communication System Design Software; a detailed study of the modulated current shape (exponential, sine and gaussian) for 2.5 Gb/s CWDM Metropolitan Area Networks is performed to evaluate its tolerance to linear impairments such as signal-to-noise-ratio degradation and dispersion. Point-to-point links are investigated and optimum design parameters are obtained. Through extensive sets of simulation results, it is shown that some of these shape pulses are more tolerant to dispersion when compared with conventional gaussian shape pulses. In order to achieve a low Bit Error Rate (BER), different types of optical transmitters are considered including strongly adiabatic and transient chirp dominated Directly Modulated Lasers (DMLs). We have used fibers with different dispersion characteristics, showing that the system performance depends, strongly, on the chosen DML-fiber couple.
Electronic-To-Optical-To-Electronic Packet-Data Conversion
NASA Technical Reports Server (NTRS)
Monacos, Steve
1996-01-01
Space-time multiplexer (STM) cell-based communication system designed to take advantage of both high throughput attainable in optical transmission links and flexibility and functionality of electronic processing, storage, and switching. Long packets segmented and transmitted optically by wavelength-division multiplexing. Performs optoelectronic and protocol conversion between electronic "store-and-forward" protocols and optical "hot-potato" protocols.
Thin-film designs by simulated annealing
NASA Astrophysics Data System (ADS)
Boudet, T.; Chaton, P.; Herault, L.; Gonon, G.; Jouanet, L.; Keller, P.
1996-11-01
With the increasing power of computers, new methods in synthesis of optical multilayer systems have appeared. Among these, the simulated-annealing algorithm has proved its efficiency in several fields of physics. We propose to show its performances in the field of optical multilayer systems through different filter designs.
NASA Astrophysics Data System (ADS)
De Freitas, J. M.
2011-05-01
This review looks at recent developments in seismic seabed oil reservoir monitoring techniques using fibre-optic sensing networks. After a brief introduction covering the background and scope of the review, the following section focuses on state-of-the-art fibre-optic hydrophones and accelerometers used for seismic applications. Related metrology aspects of the sensor such as measurement of sensitivity, noise and cross-axis performance are addressed. The third section focuses on interrogation systems. Two main phase-based competing systems have emerged over the past two decades for seismic applications, with a third technique showing much promise; these have been compared in terms of general performance.
NASA Astrophysics Data System (ADS)
Valdes, Pablo A.; Angelo, Joseph; Gioux, Sylvain
2015-03-01
Fluorescence imaging has shown promise as an adjunct to improve the extent of resection in neurosurgery and oncologic surgery. Nevertheless, current fluorescence imaging techniques do not account for the heterogeneous attenuation effects of tissue optical properties. In this work, we present a novel imaging system that performs real time quantitative fluorescence imaging using Single Snapshot Optical Properties (SSOP) imaging. We developed the technique and performed initial phantom studies to validate the quantitative capabilities of the system for intraoperative feasibility. Overall, this work introduces a novel real-time quantitative fluorescence imaging method capable of being used intraoperatively for neurosurgical guidance.
NASA Astrophysics Data System (ADS)
Yang, Xiaojun; Zhu, Xiaofei; Deng, Chi; Li, Junyi; Liu, Cheng; Yu, Wenpeng; Luo, Hui
2017-10-01
To improve the level of management and monitoring of leakage and abnormal disturbance of long distance oil pipeline, the distributed optical fiber temperature and vibration sensing system is employed to test the feasibility for the healthy monitoring of a domestic oil pipeline. The simulating leakage and abnormal disturbance affairs of oil pipeline are performed in the experiment. It is demonstrated that the leakage and abnormal disturbance affairs of oil pipeline can be monitored and located accurately with the distributed optical fiber sensing system, which exhibits good performance in the sensitivity, reliability, operation and maintenance etc., and shows good market application prospect.
Nyachionjeka, Kumbirayi
2014-01-01
In this paper, the performance and feasibility of a hybrid wavelength division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) system with 128 optical network units (ONUs) is analysed. In this system, triple play services (video, voice and data) are successfully communicated through a distance of up to 28 km. Moreover, we analysed and compared the performance of various modulation formats for different distances in the proposed hybrid WDM/TDM PON. NRZ rectangular emerged as the most appropriate modulation format for triple play transmission in the proposed hybrid PON. PMID:27382633
Optimization of spherical facets for parabolic solar concentrators
NASA Technical Reports Server (NTRS)
White, J. E.; Erikson, R. J.; Sturgis, J. D.; Elfe, T. B.
1986-01-01
Solar concentrator designs which employ deployable hexagonal panels are being developed for space power systems. An offset optical configuration has been developed which offers significant system level advantages over previously proposed collector designs for space applications. Optical analyses have been performed which show offset reflector intercept factors to be only slightly lower than those for symmetric reflectors with the same slope error. Fluxes on the receiver walls are asymmetric but manageable by varying the tilt angle of the receiver. Greater producibility is achieved by subdividing the hexagonal panels into triangular mirror facets of spherical contour. Optical analysis has been performed upon these to yield near-optimum sizes and radii.
NASA Technical Reports Server (NTRS)
Hertel, R. J.
1979-01-01
An electro-optical method to measure the aeroelastic deformations of wind tunnel models is examined. The multitarget tracking performance of one of the two electronic cameras comprising the stereo pair is modeled and measured. The properties of the targets at the model, the camera optics, target illumination, number of targets, acquisition time, target velocities, and tracker performance are considered. The electronic camera system is shown to be capable of locating, measuring, and following the positions of 5 to 50 targets attached to the model at measuring rates up to 5000 targets per second.
Wang, Shengqian; Rao, Changhui; Xian, Hao; Zhang, Jianlin; Wang, Jianxin; Liu, Zheng
2011-04-25
The feasibility and performance of the pyramid wavefront sensor without modulation used in closed-loop adaptive optics system is investigated in this paper. The theory concepts and some simulation results are given to describe the detection trend and the linearity range of such a sensor with the aim to better understand its properties, and then a laboratory setup of the adaptive optics system based on this sensor and the liquid-crystal spatial light modulator is built. The correction results for the individual Zernike aberrations and the Kolmogorov phase screens are presented to demonstrate that the pyramid wavefront sensor without modulation can work as expected for closed-loop adaptive optics system.
Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems
NASA Technical Reports Server (NTRS)
Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John
2011-01-01
This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.
Channel simulation for direct detection optical communication systems
NASA Technical Reports Server (NTRS)
Tycz, M.; Fitzmaurice, M. W.
1974-01-01
A technique is described for simulating the random modulation imposed by atmospheric scintillation and transmitter pointing jitter on a direct detection optical communication system. The system is capable of providing signal fading statistics which obey log normal, beta, Rayleigh, Ricean or chi-squared density functions. Experimental tests of the performance of the Channel Simulator are presented.
Channel simulation for direct-detection optical communication systems
NASA Technical Reports Server (NTRS)
Tycz, M.; Fitzmaurice, M. W.
1974-01-01
A technique is described for simulating the random modulation imposed by atmospheric scintillation and transmitter pointing jitter on a direct-detection optical communication system. The system is capable of providing signal fading statistics which obey log-normal, beta, Rayleigh, Ricean, or chi-square density functions. Experimental tests of the performance of the channel simulator are presented.
Analysis and design of optical systems by use of sensitivity analysis of skew ray tracing
NASA Astrophysics Data System (ADS)
Lin, Psang Dain; Lu, Chia-Hung
2004-02-01
Optical systems are conventionally evaluated by ray-tracing techniques that extract performance quantities such as aberration and spot size. Current optical analysis software does not provide satisfactory analytical evaluation functions for the sensitivity of an optical system. Furthermore, when functions oscillate strongly, the results are of low accuracy. Thus this work extends our earlier research on an advanced treatment of reflected or refracted rays, referred to as sensitivity analysis, in which differential changes of reflected or refracted rays are expressed in terms of differential changes of incident rays. The proposed sensitivity analysis methodology for skew ray tracing of reflected or refracted rays that cross spherical or flat boundaries is demonstrated and validated by the application of a cat's eye retroreflector to the design and by the image orientation of a system with noncoplanar optical axes. The proposed sensitivity analysis is projected as the nucleus of other geometrical optical computations.
Analysis and Design of Optical Systems by Use of Sensitivity Analysis of Skew Ray Tracing
NASA Astrophysics Data System (ADS)
Dain Lin, Psang; Lu, Chia-Hung
2004-02-01
Optical systems are conventionally evaluated by ray-tracing techniques that extract performance quantities such as aberration and spot size. Current optical analysis software does not provide satisfactory analytical evaluation functions for the sensitivity of an optical system. Furthermore, when functions oscillate strongly, the results are of low accuracy. Thus this work extends our earlier research on an advanced treatment of reflected or refracted rays, referred to as sensitivity analysis, in which differential changes of reflected or refracted rays are expressed in terms of differential changes of incident rays. The proposed sensitivity analysis methodology for skew ray tracing of reflected or refracted rays that cross spherical or flat boundaries is demonstrated and validated by the application of a cat ?s eye retroreflector to the design and by the image orientation of a system with noncoplanar optical axes. The proposed sensitivity analysis is projected as the nucleus of other geometrical optical computations.
Optomechanical stability design of space optical mapping camera
NASA Astrophysics Data System (ADS)
Li, Fuqiang; Cai, Weijun; Zhang, Fengqin; Li, Na; Fan, Junjie
2018-01-01
According to the interior orientation elements and imaging quality requirements of mapping application to mapping camera and combined with off-axis three-mirror anastigmat(TMA) system, high optomechanical stability design of a space optical mapping camera is introduced in this paper. The configuration is a coaxial TMA system used in off-axis situation. Firstly, the overall optical arrangement is described., and an overview of the optomechanical packaging is provided. Zerodurglass, carbon fiber composite and carbon-fiber reinforced silicon carbon (C/SiC) are widely used in the optomechanical structure, because their low coefficient of thermal expansion (CTE) can reduce the thermal sensitivity of the mirrors and focal plane. Flexible and unloading support are used in reflector and camera supporting structure. Epoxy structural adhesives is used for bonding optics to metal structure is also introduced in this paper. The primary mirror is mounted by means of three-point ball joint flexures system, which is attach to the back of the mirror. Then, In order to predict flexural displacements due to gravity, static finite element analysis (FEA) is performed on the primary mirror. The optical performance peak-to-valley (PV) and root-mean-square (RMS) wavefront errors are detected before and after assemble. Also, the dynamic finite element analysis(FEA) of the whole optical arrangement is carried out as to investigate the performance of optomechanical. Finally, in order to evaluate the stability of the design, the thermal vacuum test and vibration test are carried out and the Modulation Transfer Function (MTF) and elements of interior orientation are presented as the evaluation index. Before and after the thermal vacuum test and vibration test, the MTF, focal distance and position of the principal point of optical system are measured and the result is as expected.
Passive Optical Link Budget for LEO Space Surveillance
NASA Astrophysics Data System (ADS)
Wagner, P.; Hasenohr, T.; Hampf, D.; Sproll, F.; Humbert, L.; Rodmann, J.; Riede, W.
The rising space debris population is becoming an increasing risk for space assets. Even objects with the size of 10mm can cause major damages to active spacecraft. Especially the orbits around 800km high are densely populated with space debris objects. To assess the risk of collisions with active satellites, the Earth orbits need to be surveyed permanently. Space debris laser ranging systems for example can deliver highly accurate positional data for precise orbit determination. Therefor a priori information about the objects coarse trajectory is needed. Such initial orbit information can be provided by wide angle optical sensors. The Institute of Technical Physics at the German Aerospace Center in Stuttgart runs an observatory to perform passive as well as laser optical measurements to LEO objects. In order to detect unknown objects, a wide-angle imaging system with a field of view in the range of 5° to 15° equipped with an astronomical CCD camera and a commercial off the shelf (COTS) lens was designed to continuously observe the night sky for LEO objects. This paper presents the passive optical link budget for observing LEO objects to show the benefits and limits of the physical performance of an optical surveillance system. A compact COTS system is able to detect objects with a couple of decimeters in size while a large aperture telescope can detect objects with diameters below 10cm. Additionally, data captured by a passive optical staring system with a 10 cm aperture was analyzed. It is shown that 90% of all objects with a radar cross section larger than 2m² are detected with such a system during twilight conditions. The smallest detected LEO object with this system has a size of 0.32m x 0.32m x 0.26m. These measurements are compared to the developed link budget which allows an estimation of the performance of larger systems.
Analysis of a planetary-rotation system for evaporated optical coatings
Oliver, J. B.
2016-01-01
The impact of planetary-design considerations for optical coating deposition is analyzed, including the ideal number of planets, variations in system performance, and the deviation of planet motion from the ideal. System capacity is maximized for four planets, although substrate size can significantly influence this result. Guidance is provided in the design of high-performance deposition systems based on the relative impact of different error modes. As a result, errors in planet mounting such that the planet surface is not perpendicular to its axis of rotation are particularly problematic, suggesting planetary design modifications would be appropriate.
Initial Characterization of Optical Communications with Disruption-Tolerant Network Protocols
NASA Technical Reports Server (NTRS)
Schoolcraft, Joshua; Wilson, Keith
2011-01-01
Disruption-tolerant networks (DTNs) are groups of network assets connected with a suite of communication protocol technologies designed to mitigate the effects of link delay and disruption. Application of DTN protocols to diverse groups of network resources in multiple sub-networks results in an overlay network-of-networks with autonomous data routing capability. In space environments where delay or disruption is expected, performance of this type of architecture (such as an interplanetary internet) can increase with the inclusion of new communications mediums and techniques. Space-based optical communication links are therefore an excellent building block of space DTN architectures. When compared to traditional radio frequency (RF) communications, optical systems can provide extremely power-efficient and high bandwidth links bridging sub-networks. Because optical links are more susceptible to link disruption and experience the same light-speed delays as RF, optical-enabled DTN architectures can lessen potential drawbacks and maintain the benefits of autonomous optical communications over deep space distances. These environment-driven expectations - link delay and interruption, along with asymmetric data rates - are the purpose of the proof-of-concept experiment outlined herein. In recognizing the potential of these two technologies, we report an initial experiment and characterization of the performance of a DTN-enabled space optical link. The experiment design employs a point-to-point free-space optical link configured to have asymmetric bandwidth. This link connects two networked systems running a DTN protocol implementation designed and written at JPL for use on spacecraft, and further configured for higher bandwidth performance. Comparing baseline data transmission metrics with and without periodic optical link interruptions, the experiment confirmed the DTN protocols' ability to handle real-world unexpected link outages while maintaining capability of reliably delivering data at relatively high rates. Finally, performance characterizations from this data suggest performance optimizations to configuration and protocols for future optical-specific DTN space link scenarios.
Multilevel microvibration test for performance predictions of a space optical load platform
NASA Astrophysics Data System (ADS)
Li, Shiqi; Zhang, Heng; Liu, Shiping; Wang, Yue
2018-05-01
This paper presents a framework for the multilevel microvibration analysis and test of a space optical load platform. The test framework is conducted on three levels, including instrument, subsystem, and system level. Disturbance source experimental investigations are performed to evaluate the vibration amplitude and study vibration mechanism. Transfer characteristics of space camera are validated by a subsystem test, which allows the calculation of transfer functions from various disturbance sources to optical performance outputs. In order to identify the influence of the source on the spacecraft performance, a system level microvibration measurement test has been performed on the ground. From the time domain analysis and spectrum analysis of multilevel microvibration tests, we concluded that the disturbance source has a significant effect on its installation position. After transmitted through mechanical links, the residual vibration reduces to a background noise level. In addition, the angular microvibration of the platform jitter is mainly concentrated in the rotation of y-axes. This work is applied to a real practical application involving the high resolution satellite camera system.
Alayed, Mrwan; Deen, M Jamal
2017-09-14
Diffuse optical spectroscopy (DOS) and diffuse optical imaging (DOI) are emerging non-invasive imaging modalities that have wide spread potential applications in many fields, particularly for structural and functional imaging in medicine. In this article, we review time-resolved diffuse optical imaging (TR-DOI) systems using solid-state detectors with a special focus on Single-Photon Avalanche Diodes (SPADs) and Silicon Photomultipliers (SiPMs). These TR-DOI systems can be categorized into two types based on the operation mode of the detector (free-running or time-gated). For the TR-DOI prototypes, the physical concepts, main components, figures-of-merit of detectors, and evaluation parameters are described. The performance of TR-DOI prototypes is evaluated according to the parameters used in common protocols to test DOI systems particularly basic instrumental performance (BIP). In addition, the potential features of SPADs and SiPMs to improve TR-DOI systems and expand their applications in the foreseeable future are discussed. Lastly, research challenges and future developments for TR-DOI are discussed for each component in the prototype separately and also for the entire system.
High sensitivity optical molecular imaging system
NASA Astrophysics Data System (ADS)
An, Yu; Yuan, Gao; Huang, Chao; Jiang, Shixin; Zhang, Peng; Wang, Kun; Tian, Jie
2018-02-01
Optical Molecular Imaging (OMI) has the advantages of high sensitivity, low cost and ease of use. By labeling the regions of interest with fluorescent or bioluminescence probes, OMI can noninvasively obtain the distribution of the probes in vivo, which play the key role in cancer research, pharmacokinetics and other biological studies. In preclinical and clinical application, the image depth, resolution and sensitivity are the key factors for researchers to use OMI. In this paper, we report a high sensitivity optical molecular imaging system developed by our group, which can improve the imaging depth in phantom to nearly 5cm, high resolution at 2cm depth, and high image sensitivity. To validate the performance of the system, special designed phantom experiments and weak light detection experiment were implemented. The results shows that cooperated with high performance electron-multiplying charge coupled device (EMCCD) camera, precision design of light path system and high efficient image techniques, our OMI system can simultaneously collect the light-emitted signals generated by fluorescence molecular imaging, bioluminescence imaging, Cherenkov luminance and other optical imaging modality, and observe the internal distribution of light-emitting agents fast and accurately.
NASA Astrophysics Data System (ADS)
Uchiyama, Kazuharu; Nishikawa, Naoki; Nakagomi, Ryo; Kobayashi, Kiyoshi; Hori, Hirokazu
2018-02-01
To design optoelectronic functionalities in nanometer scale based on interactions of electronic system with optical near-fields, it is essential to evaluate the relationship between optical near-fields and their sources. Several theoretical studies have been performed, so far, to analyze such complex relationship to design the interaction fields of several specific scales. In this study, we have performed detailed and high-precision measurements of optical near-field structures woven by a large number of independent polarizations generated in the gold nanorods array under laser light irradiation at the resonant frequency. We have accumulated the multi-layered data of optical near-field imaging at different heights above the planar surface with the resolution of several nm by a STM-assisted scanning near-field optical microscope. Based on these data, we have performed an inverse calculation to estimate the position, direction, and strength of the local polarization buried under the flat surface of the sample. As a result of the inverse operation, we have confirmed that the complexities in the nanometer scale optical near-fields could be reconstructed by combinations of induced polarization in each gold nanorod. We have demonstrated the hierarchical properties of optical near-fields based on spatial frequency expansion and superposition of dipole fields to provide insightful information for applications such for secure multi-layered information storage.
A gantry-based tri-modality system for bioluminescence tomography
Yan, Han; Lin, Yuting; Barber, William C.; Unlu, Mehmet Burcin; Gulsen, Gultekin
2012-01-01
A gantry-based tri-modality system that combines bioluminescence (BLT), diffuse optical (DOT), and x-ray computed tomography (XCT) into the same setting is presented here. The purpose of this system is to perform bioluminescence tomography using a multi-modality imaging approach. As parts of this hybrid system, XCT and DOT provide anatomical information and background optical property maps. This structural and functional a priori information is used to guide and restrain bioluminescence reconstruction algorithm and ultimately improve the BLT results. The performance of the combined system is evaluated using multi-modality phantoms. In particular, a cylindrical heterogeneous multi-modality phantom that contains regions with higher optical absorption and x-ray attenuation is constructed. We showed that a 1.5 mm diameter bioluminescence inclusion can be localized accurately with the functional a priori information while its source strength can be recovered more accurately using both structural and the functional a priori information. PMID:22559540
NASA Astrophysics Data System (ADS)
Zhu, Hui; Shan, Xuekang; Sun, Xiaohan
2017-10-01
A method for reconstructing the vibration waveform from the optical time-domain backscattering pulses in the distributed optical fiber sensing system (DOFSS) is proposed, which allows for extracting and recovering the external vibration signal from the tested pulses by analog signal processing, so that can obtain vibration location and waveform simultaneously. We establish the response model of DOFSS to the external vibration and analyze the effects of system parameters on the operational performance. The main parts of the DOFSS are optimized, including delay fiber length and wavelength, to improve the sensitivity of the system. The experimental system is set up and the vibration amplitudes and reconstructed waveforms are fit well with the original driving signal. The experimental results demonstrate that the performance of vibration waveform reconstruction is good with SNR of 15 dB whenever the external vibrations with different intensities and frequencies exert on the sensing fiber.
Palo Alto Research Center - Smart Embedded Network of Sensors with an Optical Readout
Raghavan, Ajay; Sahu, Saroj; Bringans, Ross; Johnson, Noble; Kiesel, Peter; Saha, Bhaskar
2018-05-18
PARC is developing new fiber optic sensors that would be embedded into batteries to monitor and measure key internal parameters during charge and discharge cycles. Two significant problems with today's best batteries are their lack of internal monitoring capabilities and their design oversizing. The lack of monitoring interferes with the ability to identify and manage performance or safety issues as they arise, which are presently managed by very conservative design oversizing and protection approaches that result in cost inefficiencies. PARC's design combines low-cost, embedded optical battery sensors and smart algorithms to overcome challenges faced by today's best battery management systems. These advanced fiber optic sensing technologies have the potential to dramatically improve the safety, performance, and life-time of energy storage systems.
Vorontsov, Mikhail; Filimonov, Grigory; Ovchinnikov, Vladimir; Polnau, Ernst; Lachinova, Svetlana; Weyrauch, Thomas; Mangano, Joseph
2016-05-20
The performance of two prominent laser beam projection system types is analyzed through wave-optics numerical simulations for various atmospheric turbulence conditions, propagation distances, and adaptive optics (AO) mitigation techniques. Comparisons are made between different configurations of both a conventional beam director (BD) using a monolithic-optics-based Cassegrain telescope and a fiber-array BD that uses an array of densely packed fiber collimators. The BD systems considered have equal input power and aperture diameters. The projected laser beam power inside the Airy size disk at the target plane is used as the performance metric. For the fiber-array system, both incoherent and coherent beam combining regimes are considered. We also present preliminary results of side-by-side atmospheric beam projection experiments over a 7-km propagation path using both the AO-enhanced beam projection system with a Cassegrain telescope and the coherent fiber-array BD composed of 21 densely packed fiber collimators. Both wave-optics numerical simulation and experimental results demonstrate that, for similar system architectures and turbulence conditions, coherent fiber-array systems are more efficient in mitigation of atmospheric turbulence effects and generation of a hit spot of the smallest possible size on a remotely located target.
NASA Astrophysics Data System (ADS)
Cao, Jingtai; Zhao, Xiaohui; Li, Zhaokun; Liu, Wei; Gu, Haijun
2017-11-01
The performance of free space optical (FSO) communication system is limited by atmospheric turbulent extremely. Adaptive optics (AO) is the significant method to overcome the atmosphere disturbance. Especially, for the strong scintillation effect, the sensor-less AO system plays a major role for compensation. In this paper, a modified artificial fish school (MAFS) algorithm is proposed to compensate the aberrations in the sensor-less AO system. Both the static and dynamic aberrations compensations are analyzed and the performance of FSO communication before and after aberrations compensations is compared. In addition, MAFS algorithm is compared with artificial fish school (AFS) algorithm, stochastic parallel gradient descent (SPGD) algorithm and simulated annealing (SA) algorithm. It is shown that the MAFS algorithm has a higher convergence speed than SPGD algorithm and SA algorithm, and reaches the better convergence value than AFS algorithm, SPGD algorithm and SA algorithm. The sensor-less AO system with MAFS algorithm effectively increases the coupling efficiency at the receiving terminal with fewer numbers of iterations. In conclusion, the MAFS algorithm has great significance for sensor-less AO system to compensate atmospheric turbulence in FSO communication system.
The optical design of a far infrared imaging FTS for SPICA
NASA Astrophysics Data System (ADS)
Pastor, Carmen; Zuluaga, Pablo; Jellema, Willem; González Fernández, Luis Miguel; Belenguer, Tomas; Torres Redondo, Josefina; Kooijman, Peter Paul; Najarro, Francisco; Eggens, Martin; Roelfsema, Peter; Nakagawa, Takao
2014-08-01
This paper describes the optical design of the far infrared imaging spectrometer for the JAXA's SPICA mission. The SAFARI instrument, is a cryogenic imaging Fourier transform spectrometer (iFTS), designed to perform backgroundlimited spectroscopic and photometric imaging in the band 34-210 μm. The all-reflective optical system is highly modular and consists of three main modules; input optics module, interferometer module (FTS) and camera bay optics. A special study has been dedicated to the spectroscopic performance of the instrument, in which the spectral response and interference of the instrument have been modeled, as the FTS mechanism scans over the total desired OPD range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riot, V J; Olivier, S; Bauman, B
2012-05-24
The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, telescope design feeding a camera system that includes a set of broad-band filters and three refractive corrector lenses to produce a flat field at the focal plane with a wide field of view. Optical design of the camera lenses and filters is integrated in with the optical design of telescope mirrors to optimize performance. We discuss the rationale for the LSST camera optics design, describe the methodology for fabricating, coating, mounting and testing the lenses and filters, and present the results of detailed analyses demonstrating that the camera optics willmore » meet their performance goals.« less
Effects of Optical Artifacts in a Laser-Based Spacecraft Navigation Sensor
NASA Technical Reports Server (NTRS)
LeCroy, Jerry E.; Howard, Richard T.; Hallmark, Dean S.
2007-01-01
Testing of the Advanced Video Guidance Sensor (AVGS) used for proximity operations navigation on the Orbital Express ASTRO spacecraft exposed several unanticipated imaging system artifacts and aberrations that required correction to meet critical navigation performance requirements. Mitigation actions are described for a number of system error sources, including lens aberration, optical train misalignment, laser speckle, target image defects, and detector nonlinearity/noise characteristics. Sensor test requirements and protocols are described, along with a summary of test results from sensor confidence tests and system performance testing.
Effects of Optical Artifacts in a Laser-Based Spacecraft Navigation Sensor
NASA Technical Reports Server (NTRS)
LeCroy, Jerry E.; Hallmark, Dean S.; Howard, Richard T.
2007-01-01
Testing Of the Advanced Video Guidance Sensor (AVGS) used for proximity operations navigation on the Orbital Express ASTRO spacecraft exposed several unanticipated imaging system artifacts and aberrations that required correction, to meet critical navigation performance requirements. Mitigation actions are described for a number of system error sources, including lens aberration, optical train misalignment, laser speckle, target image defects, and detector nonlinearity/noise characteristics. Sensor test requirements and protocols are described, along with a summary ,of test results from sensor confidence tests and system performance testing.
NASA Astrophysics Data System (ADS)
Siddiqui, Aleem; Reinke, Charles; Shin, Heedeuk; Jarecki, Robert L.; Starbuck, Andrew L.; Rakich, Peter
2017-05-01
The performance of electronic systems for radio-frequency (RF) spectrum analysis is critical for agile radar and communications systems, ISR (intelligence, surveillance, and reconnaissance) operations in challenging electromagnetic (EM) environments, and EM-environment situational awareness. While considerable progress has been made in size, weight, and power (SWaP) and performance metrics in conventional RF technology platforms, fundamental limits make continued improvements increasingly difficult. Alternatively, we propose employing cascaded transduction processes in a chip-scale nano-optomechanical system (NOMS) to achieve a spectral sensor with exceptional signal-linearity, high dynamic range, narrow spectral resolution and ultra-fast sweep times. By leveraging the optimal capabilities of photons and phonons, the system we pursue in this work has performance metrics scalable well beyond the fundamental limitations inherent to all electronic systems. In our device architecture, information processing is performed on wide-bandwidth RF-modulated optical signals by photon-mediated phononic transduction of the modulation to the acoustical-domain for narrow-band filtering, and then back to the optical-domain by phonon-mediated phase modulation (the reverse process). Here, we rely on photonics to efficiently distribute signals for parallel processing, and on phononics for effective and flexible RF-frequency manipulation. This technology is used to create RF-filters that are insensitive to the optical wavelength, with wide center frequency bandwidth selectivity (1-100GHz), ultra-narrow filter bandwidth (1-100MHz), and high dynamic range (70dB), which we will present. Additionally, using this filter as a building block, we will discuss current results and progress toward demonstrating a multichannel-filter with a bandwidth of < 10MHz per channel, while minimizing cumulative optical/acoustic/optical transduced insertion-loss to ideally < 10dB. These proposed metric represent significant improvements over RF-platforms.
Giddings, R P; Hugues-Salas, E; Tang, J M
2012-08-27
Record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM (OOFDM) transmission is experimentally demonstrated, for the first time, in a simple electro-absorption modulated laser (EML)-based 25 km standard SMF system using intensity modulation and direct detection (IMDD). Adaptively modulated baseband (0-2GHz) and passband (6.125 ± 2GHz) OFDM RF sub-bands, supporting line rates of 10 Gb/s and 9.125 Gb/s respectively, are independently generated and detected with FPGA-based DSP clocked at only 100 MHz and DACs/ADCs operating at sampling speeds as low as 4GS/s. The two OFDM sub-bands are electrically frequency-division-multiplexed (FDM) for intensity modulation of a single optical carrier by an EML. To maximize and balance the signal transmission performance of each sub-band, on-line adaptive features and on-line performance monitoring is fully exploited to optimize key OOFDM transceiver and system parameters, which includes subcarrier characteristics within each individual OFDM sub-band, total and relative sub-band power as well as EML operating conditions. The achieved 19.125 Gb/s over 25 km SMF OOFDM transmission system has an optical power budget of 13.5 dB, and shows almost identical bit error rate (BER) performances for both the baseband and passband signals. In addition, experimental investigations also indicate that the maximum achievable transmission capacity of the present system is mainly determined by the EML frequency chirp-enhanced chromatic dispersion effect, and the passband BER performance is not affected by the two sub-band-induced intermixing effect, which, however, gives a 1.2dB optical power penalty to the baseband signal transmission.
The development of alignment turning system for precision len cells
NASA Astrophysics Data System (ADS)
Huang, Chien-Yao; Ho, Cheng-Fang; Wang, Jung-Hsing; Chung, Chien-Kai; Chen, Jun-Cheng; Chang, Keng-Shou; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Chen, Fong-Zhi
2017-08-01
In general, the drop-in and cell-mounted assembly are used for standard and high performance optical system respectively. The optical performance is limited by the residual centration error and position accuracy of the conventional assembly. Recently, the poker chip assembly with high precision lens barrels that can overcome the limitation of conventional assembly is widely applied to ultra-high performance optical system. ITRC also develops the poker chip assembly solution for high numerical aperture objective lenses and lithography projection lenses. In order to achieve high precision lens cell for poker chip assembly, an alignment turning system (ATS) is developed. The ATS includes measurement, alignment and turning modules. The measurement module including a non-contact displacement sensor and an autocollimator can measure centration errors of the top and the bottom surface of a lens respectively. The alignment module comprising tilt and translation stages can align the optical axis of the lens to the rotating axis of the vertical lathe. The key specifications of the ATS are maximum lens diameter, 400mm, and radial and axial runout of the rotary table < 2 μm. The cutting performances of the ATS are surface roughness Ra < 1 μm, flatness < 2 μm, and parallelism < 5 μm. After measurement, alignment and turning processes on our ATS, the centration error of a lens cell with 200mm in diameter can be controlled in 10 arcsec. This paper also presents the thermal expansion of the hydrostatic rotating table. A poker chip assembly lens cell with three sub-cells is accomplished with average transmission centration error in 12.45 arcsec by fresh technicians. The results show that ATS can achieve high assembly efficiency for precision optical systems.
Sensing systems using chip-based spectrometers
NASA Astrophysics Data System (ADS)
Nitkowski, Arthur; Preston, Kyle J.; Sherwood-Droz, Nicolás.; Behr, Bradford B.; Bismilla, Yusuf; Cenko, Andrew T.; DesRoches, Brandon; Meade, Jeffrey T.; Munro, Elizabeth A.; Slaa, Jared; Schmidt, Bradley S.; Hajian, Arsen R.
2014-06-01
Tornado Spectral Systems has developed a new chip-based spectrometer called OCTANE, the Optical Coherence Tomography Advanced Nanophotonic Engine, built using a planar lightwave circuit with integrated waveguides fabricated on a silicon wafer. While designed for spectral domain optical coherence tomography (SD-OCT) systems, the same miniaturized technology can be applied to many other spectroscopic applications. The field of integrated optics enables the design of complex optical systems which are monolithically integrated on silicon chips. The form factors of these systems can be significantly smaller, more robust and less expensive than their equivalent free-space counterparts. Fabrication techniques and material systems developed for microelectronics have previously been adapted for integrated optics in the telecom industry, where millions of chip-based components are used to power the optical backbone of the internet. We have further adapted the photonic technology platform for spectroscopy applications, allowing unheard-of economies of scale for these types of optical devices. Instead of changing lenses and aligning systems, these devices are accurately designed programmatically and are easily customized for specific applications. Spectrometers using integrated optics have large advantages in systems where size, robustness and cost matter: field-deployable devices, UAVs, UUVs, satellites, handheld scanning and more. We will discuss the performance characteristics of our chip-based spectrometers and the type of spectral sensing applications enabled by this technology.
NASA Technical Reports Server (NTRS)
Johnston, John D.; Parrish, Keith; Howard, Joseph M.; Mosier, Gary E.; McGinnis, Mark; Bluth, Marcel; Kim, Kevin; Ha, Hong Q.
2004-01-01
This is a continuation of a series of papers on modeling activities for JWST. The structural-thermal- optical, often referred to as "STOP", analysis process is used to predict the effect of thermal distortion on optical performance. The benchmark STOP analysis for JWST assesses the effect of an observatory slew on wavefront error. The paper begins an overview of multi-disciplinary engineering analysis, or integrated modeling, which is a critical element of the JWST mission. The STOP analysis process is then described. This process consists of the following steps: thermal analysis, structural analysis, and optical analysis. Temperatures predicted using geometric and thermal math models are mapped to the structural finite element model in order to predict thermally-induced deformations. Motions and deformations at optical surfaces are input to optical models and optical performance is predicted using either an optical ray trace or WFE estimation techniques based on prior ray traces or first order optics. Following the discussion of the analysis process, results based on models representing the design at the time of the System Requirements Review. In addition to baseline performance predictions, sensitivity studies are performed to assess modeling uncertainties. Of particular interest is the sensitivity of optical performance to uncertainties in temperature predictions and variations in metal properties. The paper concludes with a discussion of modeling uncertainty as it pertains to STOP analysis.
The research of conformal optical design
NASA Astrophysics Data System (ADS)
Li, Lin; Li, Yan; Huang, Yi-fan; Du, Bao-lin
2009-07-01
Conformal optical domes are characterized as having external more elongated optical surfaces that are optimized to minimize drag, increased missile velocity and extended operational range. The outer surface of the conformal domes typically deviate greatly from spherical surface descriptions, so the inherent asymmetry of conformal surfaces leads to variations in the aberration content presented to the optical sensor as it is gimbaled across the field of regard, which degrades the sensor's ability to properly image targets of interest and then undermine the overall system performance. Consequently, the aerodynamic advantages of conformal domes cannot be realized in practical systems unless the dynamic aberration correction techniques are developed to restore adequate optical imaging capabilities. Up to now, many optical correction solutions have been researched in conformal optical design, including static aberrations corrections and dynamic aberrations corrections. There are three parts in this paper. Firstly, the combination of static and dynamic aberration correction is introduced. A system for correcting optical aberration created by a conformal dome has an outer surface and an inner surface. The optimization of the inner surface is regard as the static aberration correction; moreover, a deformable mirror is placed at the position of the secondary mirror in the two-mirror all reflective imaging system, which is the dynamic aberration correction. Secondly, the using of appropriate surface types is very important in conformal dome design. Better performing optical systems can result from surface types with adequate degrees of freedom to describe the proper corrector shape. Two surface types and the methods of using them are described, including Zernike polynomial surfaces used in correct elements and user-defined surfaces used in deformable mirror (DM). Finally, the Adaptive optics (AO) correction is presented. In order to correct the dynamical residual aberration in conformal optical design, the SPGD optimization algorithm is operated at each zoom position to calculate the optimized surface shape of the MEMS DM. The communication between MATLAB and Code V established via ActiveX technique is applied in simulation analysis.
Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift.
She, Alan; Zhang, Shuyan; Shian, Samuel; Clarke, David R; Capasso, Federico
2018-02-01
Focal adjustment and zooming are universal features of cameras and advanced optical systems. Such tuning is usually performed longitudinally along the optical axis by mechanical or electrical control of focal length. However, the recent advent of ultrathin planar lenses based on metasurfaces (metalenses), which opens the door to future drastic miniaturization of mobile devices such as cell phones and wearable displays, mandates fundamentally different forms of tuning based on lateral motion rather than longitudinal motion. Theory shows that the strain field of a metalens substrate can be directly mapped into the outgoing optical wavefront to achieve large diffraction-limited focal length tuning and control of aberrations. We demonstrate electrically tunable large-area metalenses controlled by artificial muscles capable of simultaneously performing focal length tuning (>100%) as well as on-the-fly astigmatism and image shift corrections, which until now were only possible in electron optics. The device thickness is only 30 μm. Our results demonstrate the possibility of future optical microscopes that fully operate electronically, as well as compact optical systems that use the principles of adaptive optics to correct many orders of aberrations simultaneously.
Adaptive optics compensation over a 3 km near horizontal path
NASA Astrophysics Data System (ADS)
Mackey, Ruth; Dainty, Chris
2008-10-01
We present results of adaptive optics compensation at the receiver of a 3km optical link using a beacon laser operating at 635nm. The laser is transmitted from the roof of a seven-storey building over a near horizontal path towards a 127 mm optical receiver located on the second-floor of the Applied Optics Group at the National University of Ireland, Galway. The wavefront of the scintillated beam is measured using a Shack-Hartmann wavefront sensor (SHWFS) with high-speed CMOS camera capable of frame rates greater than 1kHz. The strength of turbulence is determined from the fluctuations in differential angle-of-arrival in the wavefront sensor measurements and from the degree of scintillation in the pupil plane. Adaptive optics compensation is applied using a tip-tilt mirror and 37 channel membrane mirror and controlled using a single desktop computer. The performance of the adaptive optics system in real turbulence is compared with the performance of the system in a controlled laboratory environment, where turbulence is generated using a liquid crystal spatial light modulator.
Performance limitations of translationally symmetric nonimaging devices
NASA Astrophysics Data System (ADS)
Bortz, John C.; Shatz, Narkis E.; Winston, Roland
2001-11-01
The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quality, referred to herein as the translational skew invariant, is analogous to the conventional skew invariant, which is conserved in rotationally symmetric optical systems. The invariance of both of these quantities is a consequence of Noether's theorem. We show how performance limits for translationally symmetric nonimaging optical devices can be derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. Examples of computed performance limits are provided. In addition, we show that a numerically optimized non-tracking solar concentrator utilizing symmetry-breaking surface microstructure can overcome the performance limits associated with translational symmetry. The optimized design provides a 47.4% increase in efficiency and concentration relative to an ideal translationally symmetric concentrator.
Optical Communications Study for the Next Generation Space Telescope
NASA Technical Reports Server (NTRS)
Ceniceros, Juan M.
2000-01-01
The Next Generation Space Telescope (NGST), part of NASA's Origins program, is a follow on to the Hubble Space Telescope expected to provide timely new science along with answering fundamental questions. NGST is a large diameter, infrared optimized telescope with imaging and spectrographic detectors which will be used to help study the origin of galaxies. Due to the large data NGST will collect, Goddard Space Flight Center has considered the use of optical communications for data downlink. The Optical Communications Group at the Jet Propulsion Laboratory has performed a study on optical communications systems for NGST. The objective of the study was to evaluate the benefits gained through the use of optical communication technologies. Studies were performed for each of four proposed NGST orbits. The orbits considered were an elliptical orbit about the semi stable second Lagrangian point, a 1 by 3 AU elliptic orbit around the sun, a 1 AU drift orbit, and a 1 AU drift orbit at a 15 degree incline to the ecliptic plane. An appropriate optical communications system was determined for each orbit. Systems were evaluated in terms of mass, power consumption, size, and cost for each of the four proposed orbits.
The theory of optical black hole lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaona-Reyes, José L., E-mail: jgaona@fis.cinvestav.mx; Bermudez, David, E-mail: dbermudez@fis.cinvestav.mx
The event horizon of black holes and white holes can be achieved in the context of analogue gravity. It was proven for a sonic case that if these two horizons are close to each other their dynamics resemble a laser, a black hole laser, where the analogue of Hawking radiation is trapped and amplified. Optical analogues are also very successful and a similar system can be achieved there. In this work we develop the theory of optical black hole lasers and prove that the amplification is also possible. Then, we study the optical system by determining the forward propagation ofmore » modes, obtaining an approximation for the phase difference which governs the amplification, and performing numerical simulations of the pulse propagation of our system. - Highlights: • We develop the conditions to obtain the kinematics of the optical black hole laser. • We prove the amplification of Hawking radiation for the optical case. • We derive the forward propagation of modes and check the result of the backward case. • A model is proposed to calculate the phase difference and the amplification rate. • We perform numerical simulations of a pulse between two solitons forming a cavity.« less
Thermally induced distortion of high average power laser system by an optical transport system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ault, L; Chow, R; Taylor, Jedlovec, D
1999-03-31
The atomic vapor laser isotope separation process uses high-average power lasers that have the commercial potential to enrich uranium for the electric power utilities. The transport of the laser beam through the laser system to the separation chambers requires high performance optical components, most of which have either fused silica or Zerodur as the substrate material. One of the requirements of the optical components is to preserve the wavefront quality of the laser beam that propagate over long distances. Full aperture tests with the high power process lasers and finite element analysis (FEA) have been performed on the transport optics.more » The wavefront distortions of the various sections of the transport path were measured with diagnostic Hartmann sensor packages. The FEA results were derived from an in-house thermal-structural-optical code which is linked to the commercially available CodeV program. In comparing the measured and predicted results, the bulk absorptance of fused silica was estimated to about 50 ppm/cm in the visible wavelength regime. Wavefront distortions are reported on optics made from fused silica and Zerodur substrate materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavel, D T; Gates, E; Max, C
2002-10-17
The Lick Observatory laser guide star adaptive optics system has undergone continual improvement and testing as it is being integrated as a facility science instrument on the Shane 3 meter telescope. Both Natural Guide Star (NGS) and Laser Guide Star (LGS) modes are now used in science observing programs. We report on system performance results as derived from data taken on both science and engineering nights and also describe the newly developed on-line techniques for seeing and system performance characterization. We also describe the future enhancements to the Lick system that will enable additional science goals such as long-exposure spectroscopy.
Temporal laser pulse manipulation using multiple optical ring-cavities
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor)
2010-01-01
An optical pulse stretcher and a mathematical algorithm for the detailed calculation of its design and performance is disclosed. The optical pulse stretcher has a plurality of optical cavities, having multiple optical reflectors such that an optical path length in each of the optical cavities is different. The optical pulse stretcher also has a plurality of beam splitters, each of which intercepts a portion of an input optical beam and diverts the portion into one of the plurality of optical cavities. The input optical beam is stretched and a power of an output beam is reduced after passing through the optical pulse stretcher and the placement of the plurality of optical cavities and beam splitters is optimized through a model that takes into account optical beam divergence and alignment in the pluralities of the optical cavities. The optical pulse stretcher system can also function as a high-repetition-rate (MHz) laser pulse generator, making it suitable for use as a stroboscopic light source for high speed ballistic projectile imaging studies, or it can be used for high speed flow diagnostics using a laser light sheet with digital particle imaging velocimetry. The optical pulse stretcher system can also be implemented using fiber optic components to realize a rugged and compact optical system that is alignment free and easy to use.
Development of nanostructured antireflection coatings for infrared technologies and applications
NASA Astrophysics Data System (ADS)
Pethuraja, Gopal G.; Zeller, John W.; Welser, Roger E.; Efstathiadis, Harry; Haldar, Pradeep; Wijewarnasuriya, Priyalal S.; Dhar, Nibir K.; Sood, Ashok K.
2017-09-01
Infrared (IR) sensing technologies and systems operating from the near-infrared (NIR) to long-wave infrared (LWIR) spectra are being developed for a variety of defense and commercial systems applications. Reflection losses affecting a significant portion of the incident signal limits the performance of IR sensing systems. One of the critical technologies that will overcome this limitation and enhance the performance of IR sensing systems is the development of advanced antireflection (AR) coatings. Magnolia is actively involved in the development and advancement of ultrahigh performance AR coatings for a wide variety of defense and commercial applications. Ultrahigh performance nanostructured AR coatings have been demonstrated for UV to LWIR spectral bands using various substrates. The AR coatings enhance the optical transmission through optical components and devices by significantly minimizing reflection losses, a substantial improvement over conventional thin-film AR coating technologies. Nanostructured AR coatings are fabricated using a tunable self-assembly process on substrates that are transparent for a given spectrum of interest ranging from UV to LWIR. The nanostructured multilayer structures have been designed, developed and optimized for various optoelectronic applications. The optical properties of the AR-coated optical components and sensor substrates have been measured and fine-tuned to achieve a predicted high level of performance of the coatings. In this paper, we review our latest work on high quality nanostructure-based AR coatings, including recent efforts towards the development of nanostructured AR coatings on IR-transparent substrates.
NASA Astrophysics Data System (ADS)
Fernández-Rodríguez, M.; Alvarado, C. G.; Núñez, A.; Álvarez-Herrero, A.
2017-11-01
Optical instrumentation on-board satellites suffer degradation due to the hostile conditions of space environment. Space conditions produce instrumentation performances changes causing a decrease or a cancellation of their features. Particularly, space environment conditions have a significant influence on the optical properties of glasses which are part of space optical systems. Space environment characteristics which effects on the optical system have to be taken into account are: outgassing, volatile components, gas or water vapor which form part of the spacecraft materials, vacuum, microgravity, micrometeorites, space debris, thermal, mechanical and radiation environment and effects of the high atmosphere [1]. This work is focused on analyzing temperature variations and ultraviolet (UV) and gamma radiation effects on the optical properties of several glasses used on space applications. Thermal environment is composed of radiation from the Sun, the albedo and the Earth radiation and the radiation from the spacecraft to deep space. Flux and influence of temperature on satellite materials depend on factors as the period of year or the position of them on the space system. Taking into account that the transfer mechanisms of heat are limited by the conduction and the radiation, high gradients of temperature are obtained in system elements which can cause changes of their optical properties, birefringence… Also, these thermal cycles can introduce mechanical loads into material structure due to the expansion and the contraction of the material leading to mechanical performances degradation [2]. However, it is the radiation environment the main cause of damage on optical properties of materials used on space instrumentation. This environment consists of a wide range of energetic particles between keV and MeV which are trapped by the geomagnetic field or are flux of particles that cross the Earth environment from the external of the Solar System [3]. The damage produced by the radiation environment on the optical materials can be classified in two types: ionizing or non-ionizing. This damage may produce continual or accumulative (dose) alterations on the optical material performances, or may produce alterations which not remain along the time (transitory effects). The effects of the radiation on optical materials can be summarized on changes of optical transmission and refractive index, variation of density and superficial degradation [4-6]. Two non-invasive and non-destructive techniques such as Optical Spectrum Analyzer and Spectroscopic Ellipsometry [7] have been used to characterize optically the three kinds of studied glasses, CaF2, Fused Silica and Clearceram. The study of the temperature and radiation effects on the glasses optical properties showed that the gamma radiation is the principal responsible of glasses optical degradation. The optical properties of the Clearceram glass have been affected by the gamma irradiation due to the absorption bands induced by the radiation in the visible spectral range (color centers). Therefore, an analysis about the behavior of these color centers with the gamma radiation total dose and with the time after the irradiation has been carried out in the same way that it is performed in [8].
Coagulation measurement from whole blood using vibrating optical fiber in a disposable cartridge.
Yaraş, Yusuf Samet; Gündüz, Ali Bars; Sağlam, Gökhan; Ölçer, Selim; Civitçi, Fehmi; Baris, İbrahim; Yaralioğlu, Göksenin; Urey, Hakan
2017-11-01
In clinics, blood coagulation time measurements are performed using mechanical measurements with blood plasma. Such measurements are challenging to do in a lab-on-a-chip (LoC) system using a small volume of whole blood. Existing LoC systems use indirect measurement principles employing optical or electrochemical methods. We developed an LoC system using mechanical measurements with a small volume of whole blood without requiring sample preparation. The measurement is performed in a microfluidic channel where two fibers are placed inline with a small gap in between. The first fiber operates near its mechanical resonance using remote magnetic actuation and immersed in the sample. The second fiber is a pick-up fiber acting as an optical sensor. The microfluidic channel is engineered innovatively such that the blood does not block the gap between the vibrating fiber and the pick-up fiber, resulting in high signal-to-noise ratio optical output. The control plasma test results matched well with the plasma manufacturer's datasheet. Activated-partial-thromboplastin-time tests were successfully performed also with human whole blood samples, and the method is proven to be effective. Simplicity of the cartridge design and cost of readily available materials enable a low-cost point-of-care device for blood coagulation measurements. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Development of multi-touch panel backlight system
NASA Astrophysics Data System (ADS)
Chomiczewski, J.; Długosz, M.; Godlewski, G.; Kochanowicz, M.
2013-10-01
The paper presents design, simulation analysis, and measurements of parameters of optical multi touch panel backlight system. Comparison of optical technology with commercially available solutions was also performed. The numerical simulation of laser based backlight system was made. The influence of the laser power, beam divergence, and placing reflective surfaces on the uniformity of illumination were examined. Optimal illumination system was used for further studies.
NASA Astrophysics Data System (ADS)
Hourd, Andrew C.; Grimshaw, Anthony; Scheuring, Gerd; Gittinger, Christian; Brueck, Hans-Juergen; Chen, Shiuh-Bin; Chen, Parkson W.; Hartmann, Hans; Ordynskyy, Volodymyr; Jonckheere, Rik M.; Philipsen, Vicky; Schaetz, Thomas; Sommer, Karl
2002-08-01
Critical Dimension fidelity continues to be one of the key driving parameters defining photomask quality and printing performance. The present advanced optical CD metrology systems, operating at i-line, will very soon be challenged as viable tools owing to their restricted resolution and measurement linearity impact on the ability to produce repeatable measurements. Alternative measurement technologies such as CD-SEM and -AFM have started to appear, but are also not without tier concerns in the field of reticle CD metrology. This paper introduces a new optical metrology system (MueTec /) operating at DUV wavelength (248nm), which has been specifically designed to meet the resolution and measurement repeatability requirements of reticle manufacture at the 130nm and 100nm nodes. The system is based upon a specially designed mechanical-optical platform for maximum stability and very advanced optical, illumination, alignment and software systems. The at wavelength operation of this system also makes it an ideal platform for defect printability analysis and review. The system is currently part of a European Commission funded assessment project (IST-2000-28086: McD'OR) to develop a testing strategy to verify the system performance, agree on equipment specifications and demonstrate its capability on advanced production reticles - including long-term reliability. It is the preliminary results from this evaluation that are presented here.
Lens-based wavefront sensorless adaptive optics swept source OCT
NASA Astrophysics Data System (ADS)
Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.
2016-06-01
Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.
Quantum limited performance of optical receivers
NASA Astrophysics Data System (ADS)
Farrell, Thomas C.
2018-05-01
While the fundamental performance limit for traditional radio frequency (RF) communications is often set by background noise on the channel, the fundamental limit for optical communications is set by the quantum nature of light. Both types of systems are based on electro-magnetic waves, differing only in carrier frequency. It is, in fact, the frequency that determines which of these limits dominates. We explore this in the first part of this paper. This leads to a difference in methods of analysis of the two different types of systems. While equations predicting the probability of bit error for RF systems are usually based on the signal to background noise ratio, similar equations for optical systems are often based on the physics of the quantum limit and are simply a function of the detected signal energy received per bit. These equations are derived in the second part of this paper for several frequently used modulation schemes: On-off keying (OOK), pulse position modulation (PPM), and binary differential phase shift keying (DPSK). While these equations ignore the effects of background noise and non-quantum internal noise sources in the detector and receiver electronics, they provide a useful bound for obtainable performance of optical communication systems. For example, these equations may be used in initial link budgets to assess the feasibility of system architectures, even before specific receiver designs are considered.
Atmospheric optical calibration system
Hulstrom, R.L.; Cannon, T.W.
1988-10-25
An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.
Atmospheric optical calibration system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulstrom, R.L.; Cannon, T.W.
1988-10-25
An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic devicemore » to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.« less
Final Report: Posttest Analysis of Omega II Optical Specimens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newlander, C D; Fisher, J H
Preliminary posttest analyses have been completed on optical specimens exposed during the Omega II test series conducted on 14 July 2006. The Omega Facility, located at the Laboratory for Laser Energetics (LLE) at the University of Rochester was used to produce X-ray environments through the interaction of intense pulsed laser radiation upon germanium-loaded silica aerogels. The optical specimen testing was supported by GH Systems through experiment design, pre- and post-test analyses, specimen acquisition, and overall technical experience. The test specimens were fabricated and characterized by Surface Optics Corporation (SOC), San Diego, CA and were simple protected gold coatings on silicamore » substrates. Six test specimens were exposed, five filtered with thin beryllium foil filters, and one unfiltered which was exposed directly to the raw environment. The experimental objectives were: (1) demonstrate that tests of optical specimens could be performed at the Omega facility; (2) evaluate the use and survivability of beryllium foil filters as a function of thickness; (3) obtain damage data on optical specimens which ranged from no damage to damage; (4) correlate existing thermal response models with the damage data; (5) evaluate the use of the direct raw environment upon the specimen response and the ability/desirability to conduct sensitive optical specimen tests using the raw environment; and (6) initiate the development of a protocol for performing optical coatings/mirror tests. This report documents the activities performed by GH Systems in evaluating and using the environments provided by LLNL, the PUFFTFT analyses performed using those environments, and the calculated results compared to the observed and measured posttest data.« less
Membrane dish analysis: A summary of structural and optical analysis capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, C.R.; Balch, C.D.; Jorgensen, G.J.
Research at SERI within the Department of Energy's Solar Thermal Technology Program has focused on the development of membrane dish concentrators for space and terrestrial power applications. As potentially lightweight, inexpensive, high-performance structures, they are excellent candidates for space-deployable energy sources as well as cost-effective terrestrial energy concepts. A thorough engineering research treatment of these types of structures consists primarily of two parts: (1) structural mechanics of the membrane and ring support and (2) analysis and characterization of the concentrator optical performance. It is important to understand the effects of the membrane's structure and support system on the optical performancemore » of the concentrator. This requires an interface between appropriate structural and optical models. Until recently, such models and the required interface have not existed. This report documents research that has been conducted at SERI in this area. It is a compilation of several papers describing structural models of membrane dish structures and optical models used to predict dish concentrator optical and thermal performance. The structural models were developed under SERI subcontract by Dr. Steele and Dr. Balch of Stanford University. The optical model was developed in-house by SERI staff. In addition, the interface between the models is described. It allows easy and thorough characterization of membrane dish systems from the mechanics to the resulting optical performance. The models described herein have been and continue to be extremely useful to SERI, industry, and universities involved with the modeling and analysis of lightweight membrane concentrators for solar thermal applications.« less
Development of Flight Slit-Jaw Optics for Chromospheric Lyman-Alpha SpectroPolarimeter
NASA Technical Reports Server (NTRS)
Kubo, Masahito; Suematsu, Yoshinori; Kano, Ryohei; Bando, Takamasa; Hara, Hirohisa; Narukage, Noriyuki; Katsukawa, Yukio; Ishikawa, Ryoko; Ishikawa, Shin-nosuke; Kobiki, Toshihiko;
2015-01-01
In sounding rocket experiment CLASP, I have placed a slit a mirror-finished around the focal point of the telescope. The light reflected by the mirror surface surrounding the slit is then imaged in Slit-jaw optical system, to obtain the alpha-ray Lyman secondary image. This image, not only to use the real-time image in rocket flight rocket oriented direction selection, and also used as a scientific data showing the spatial structure of the Lyman alpha emission line intensity distribution and solar chromosphere around the observation area of the polarimetric spectroscope. Slit-jaw optical system is a two off-axis mirror unit part including a parabolic mirror and folding mirror, Lyman alpha transmission filter, the optical system magnification 1x consisting camera. The camera is supplied from the United States, and the other was carried out fabrication and testing in all the Japanese side. Slit-jaw optical system, it is difficult to access the structure, it is necessary to install the low place clearance. Therefore, influence the optical performance, the fine adjustment is necessary optical elements are collectively in the form of the mirror unit. On the other hand, due to the alignment of the solar sensor in the US launch site, must be removed once the Lyman alpha transmission filter holder including a filter has a different part from the mirror unit. In order to make the structure simple, stray light measures Aru to concentrate around Lyman alpha transmission filter. To overcome the difficulties of performing optical alignment in Lyman alpha wavelength absorbed by the atmosphere, it was planned following four steps in order to reduce standing time alignment me. 1: is measured in advance refractive index at Lyman alpha wavelength of Lyman alpha transmission filter (121.567nm), to prepare a visible light Firuwo having the same optical path length in the visible light (630nm). 2: The mirror structure CLASP before mounting unit standing, dummy slit and camera standing prescribed position in leading frame is, to complete the internal alignment adjustment. 3: CLASP structure F mirror unit and by attaching the visible light filter, as will plague the focus is carried out in standing position adjustment visible flight products camera. 4: Replace the Lyman alpha transmission filter, it is confirmed by Lyman alpha wavelength (under vacuum) the requested optical performance have come. Currently, up to 3 of the steps completed, it was confirmed in the visible light optical performance that satisfies the required value sufficiently extended. Also, put in Slit-jaw optical system the sunlight through the telescope of CLASP, it is also confirmed that and that stray light rejection no vignetting is in the field of view meets request standing.
Development of Flight Slit-Jaw Optics for Chromospheric Lyman-Alpha SpectroPolarimeter
NASA Technical Reports Server (NTRS)
Kubo, Masahito; Suematsu, Yoshinori; Kano, Ryohei; Bando, Takamasa; Hara, Hirohisa; Narukage, Noriyuki; Katsukawa, Yukio; Ishikawa, Ryoko; Ishikawa, Shin-nosuke; Kobiki, Toshihiko;
2015-01-01
In sounding rocket experiment CLASP, I have placed a slit a mirror-finished around the focal point of the telescope. The light reflected by the mirror surface surrounding the slit is then imaged in Slit-jaw optical system, to obtain the a-ray Lyman secondary image. This image, not only to use the real-time image in rocket flight rocket oriented direction selection, and also used as a scientific data showing the spatial structure of the Lyman alpha emission line intensity distribution and solar chromosphere around the observation area of the polarimetric spectroscope. Slit-jaw optical system is a two off-axis mirror unit part including a parabolic mirror and folding mirror, Lyman alpha transmission filter, the optical system magnification 1x consisting camera. The camera is supplied from the United States, and the other was carried out fabrication and testing in all the Japanese side. Slit-jaw optical system, it is difficult to access the structure, it is necessary to install the low place clearance. Therefore, influence the optical performance, the fine adjustment is necessary optical elements are collectively in the form of the mirror unit. On the other hand, due to the alignment of the solar sensor in the US launch site, must be removed once the Lyman alpha transmission filter holder including a filter has a different part from the mirror unit. In order to make the structure simple, stray light measures Aru to concentrate around Lyman alpha transmission filter. To overcome the difficulties of performing optical alignment in Lyman alpha wavelength absorbed by the atmosphere, it was planned 'following four steps in order to reduce standing time alignment me. 1. is measured in advance refractive index at Lyman alpha wavelength of Lyman alpha transmission filter (121.567nm), to prepare a visible light Firuwo having the same optical path length in the visible light (630nm).2. The mirror structure CLASP before mounting unit standing, dummy slit and camera standing prescribed position in leading frame is, to complete the internal alignment adjustment. 3. CLASP structure F mirror unit and by attaching the visible light filter, as will plague the focus is carried out in standing position adjustment visible flight products camera. 4. Replace the Lyman alpha transmission filter, it is confirmed by Lyman alpha wavelength (under vacuum) the requested optical performance have come. Currently, up to 3 of the steps completed, it was confirmed in the visible light optical performance that satisfies the required value sufficiently extended. Also, put in Slit-jaw optical system the sunlight through the telescope of CLASP, it is also confirmed that and that stray light rejection no vignetting is in the field of view meets request standing.
Bit-error-rate testing of fiber optic data links for MMIC-based phased array antennas
NASA Technical Reports Server (NTRS)
Shalkhauser, K. A.; Kunath, R. R.; Daryoush, A. S.
1990-01-01
The measured bit-error-rate (BER) performance of a fiber optic data link to be used in satellite communications systems is presented and discussed. In the testing, the link was measured for its ability to carry high burst rate, serial-minimum shift keyed (SMSK) digital data similar to those used in actual space communications systems. The fiber optic data link, as part of a dual-segment injection-locked RF fiber optic link system, offers a means to distribute these signals to the many radiating elements of a phased array antenna. Test procedures, experimental arrangements, and test results are presented.
Integrated Radio and Optical Communication (iROC)
NASA Technical Reports Server (NTRS)
Raible, Daniel; Romanofsky, Robert; Pease, Gary; Kacpura, Thomas
2016-01-01
This is an overview of the Integrated Radio and Optical Communication (iROC) Project for Space Communication and Navigation Industry Days. The Goal is to develop and demonstrate new, high payoff space technologies that will promote mission utilization of optical communications, thereby expanding the capabilities of NASA's exploration, science, and discovery missions. This is an overview that combines the paramount features of select deep space RF and optical communications elements into an integrated system, scalable from deep space to near earth. It will realize Ka-band RF and 1550 nanometer optical capability. The approach is to prototype and demonstrate performance of key components to increase to TRL-5, leading to integrated hybrid communications system demonstration to increase to TRL-5, leading to integrated hybrid communications system demonstration.
A Limited Rotary-Wing Flight Investigation of Hyperstereo in Helmet-Mounted Display Designs
2009-07-01
when compared to current and near-term I2 systems with a direct optical linkage. In summary, the current binocular I2 HMD design of ANVIS, which...terms of visual and optical performance. This assessment was performed by measuring a number of system parameters and by comparing the obtained...to subject #2 who had 800 NVG flight hours. Interestingly, across all maneuvers for which the hyperstereo HMD was asked to be compared to ANVIS
Optical design for reliability and efficiency in concentrating photovoltaics
NASA Astrophysics Data System (ADS)
Leutz, Ralf; Annen, Hans Philipp; Fu, Ling
2010-08-01
Complex systems like modules in concentrating photovoltaics (CPV) are designed in a systems approach. The better the components are concerted, the better the performance goals of the system can be fulfilled. Optics are central to the CPV module's reliability and efficiency. Fresnel lens optics provide the module cover, and protect the module against the environment. Fresnel lenses on glass can provide the module's structural integrity. The secondary optical element, used to increase the collection of light, the acceptance half-angle, and the uniformity on the cell, may provide encapsulation for the receiver. This encapsulation function may be provided by some optical designs in sol gel, or silicone. Both materials are unknown in their longevity in this application. We present optical designs fulfilling structural or protective functions, discuss the optical penalties to be paid, and the innovative materials and manufacturing technologies to be tested.
NASA Astrophysics Data System (ADS)
Lacey, Ian; Adam, Jérôme; Centers, Gary P.; Gevorkyan, Gevork S.; Nikitin, Sergey M.; Smith, Brian V.; Yashchuk, Valeriy V.
2017-09-01
The research and development work on the Advanced Light Source (ALS) upgrade to a diffraction limited storage ring light source, ALS-U, has brought to focus the need for near-perfect x-ray optics, capable of delivering light to experiments without significant degradation of brightness and coherence. The desired surface quality is characterized with residual (after subtraction of an ideal shape) surface slope and height errors of <50-100 nrad (rms) and <1-2 nm (rms), respectively. The ex-situ metrology that supports the optimal usage of the optics at the beamlines has to offer even higher measurement accuracy. At the ALS X-Ray Optics Laboratory, we are developing a new surface slope profiler, the Optical Surface Measuring System (OSMS), capable of two-dimensional (2D) surface-slope metrology at an absolute accuracy below the above optical specification. In this article we provide the results of comprehensive characterization of the key elements of the OSMS, a NOM-like high-precision granite gantry system with air-bearing translation and a custom-made precision air-bearing stage for tilting and flipping the surface under test. We show that the high performance of the gantry system allows implementing an original scanning mode for 2D mapping. We demonstrate the efficiency of the developed 2D mapping via comparison with 1D slope measurements performed with the same hyperbolic test mirror using the ALS developmental long trace profiler. The details of the OSMS design and the developed measuring techniques are also provided.