Sample records for optical waveguide structure

  1. Integrated optical refractometer based on bend waveguide with air trench structure

    NASA Astrophysics Data System (ADS)

    Ryu, Jin Hwa; Park, Jaehoon; Kang, Chan-mo; Son, Youngdal; Do, Lee-Mi; Baek, Kyu-Ha

    2015-07-01

    This study proposed a novel optical sensor based on a refractometer integrating a bend waveguide and a trench structure. The optical sensor is a planar lightwave circuit (PLC) device involving a bend waveguide with maximum optical loss. A trench structure was aligned with the partially exposed core layer's sidewall of the bend waveguide, providing a quantitative measurement condition. The insertion losses of the proposed 1 x 2 single-mode optical splitter-type sensor were 4.38 dB and 8.67 dB for the reference waveguide and sensing waveguide, respectively, at a wavelength of 1,550 nm. The optical loss of the sensing waveguide depends on the change in the refractive index of the material in contact with the trench, but the reference waveguide had stable optical propagating characteristic regardless of the variations of the refractive index.

  2. Optical panel system including stackable waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSanto, Leonard; Veligdan, James T.

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, whereinmore » each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.« less

  3. Optical panel system including stackable waveguides

    DOEpatents

    DeSanto, Leonard; Veligdan, James T.

    2007-03-06

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  4. Multistage Polymeric Lens Structures Integrated into Silica Waveguides

    NASA Astrophysics Data System (ADS)

    Tate, Atsushi; Suzuki, Takanori; Tsuda, Hiroyuki

    2006-08-01

    A waveguide lens, composed of multistage polymer-filled thin grooves in a silica planar lightwave circuit (PLC) is proposed and a low-loss structure has been designed. A waveguide lens in a silica slab waveguide has been fabricated using reactive ion etching (RIE) and formed by filling with polymer. Both an imagding optical system and a Fourier-transform optical system can be configured in a PLC using a waveguide lens. It renders the PLC functional and its design flexible. To obtain a shorter focal length with a low insertion loss, it is more effective to use a multistage lens structure. An imaging optical system and a Fourier-transform optical system with a focal length of less than 1000 μm were fabricated in silica waveguides using a multistage lens structure. The lens imaging waveguides incorporate a 16-24-stage lens, with insertion losses of 4-7 dB. A 4 × 4 optical coupler, using a Fourier-transform optical system, utilizes a 6-stage lens with losses of 2-4 dB.

  5. Method for ultrafast optical deflection enabling optical recording via serrated or graded light illumination

    DOEpatents

    Heebner, John E [Livermore, CA

    2009-09-08

    In one general embodiment, a method for deflecting an optical signal input into a waveguide is provided. In operation, an optical input signal is propagated through a waveguide. Additionally, an optical control signal is applied to a mask positioned relative to the waveguide such that the application of the optical control signal to the mask is used to influence the optical input signal propagating in the waveguide. Furthermore, the deflected optical input signal output from the waveguide is detected in parallel on an array of detectors. In another general embodiment, a beam deflecting structure is provided for deflecting an optical signal input into a waveguide, the structure comprising at least one wave guiding layer for guiding an optical input signal and at least one masking layer including a pattern configured to influence characteristics of a material of the guiding layer when an optical control signal is passed through the masking layer in a direction of the guiding layer. In another general embodiment, a system is provided including a waveguide, an attenuating mask positioned on the waveguide, and an optical control source positioned to propagate pulsed laser light towards the attenuating mask and the waveguide such that a pattern of the attenuating mask is applied to the waveguide and material properties of at least a portion of the waveguide are influenced.

  6. Directional emissivity from two-dimensional infrared waveguide arrays

    NASA Astrophysics Data System (ADS)

    Burckel, D. Bruce; Davids, Paul S.; Finnegan, Patrick S.; Figueiredo, Pedro N.; Ginn, James C.

    2015-09-01

    Fabrication and optical characterization of surfaces covered with open-ended metallic waveguides are presented along with numerical modeling of these structures. Both modeling and measurement of the structures indicate that the 2-D array of 3D metallic waveguides modify both the direction and spectral content of the emissivity, resulting in directionality normal to the surface due to the optical axis of the waveguides and spectrally narrow emissivity due to the lateral dimensions of the waveguides. Furthermore, the optical behavior of these structures is placed in the broader context of other structured emission/absorption surfaces such as organ pipe modes, surface plasmon modes, and coherent thermal emission from gratings.

  7. Anti resonant reflecting optical waveguide structure based on oxidized porous silicon for label free bio sensing applications

    NASA Astrophysics Data System (ADS)

    Haji, L.; Hiraoui, M.; Lorrain, N.; Guendouz, M.

    2012-03-01

    In this letter we report on the use of an electrochemical process for the fabrication of anti resonant reflecting optical waveguide based on oxidized porous silicon. This method is known to allow the formation of various photonic structures (Bragg mirror, microcavity), thanks to the easy and in situ modulation of the porosity and thus of the refractive index. Planar anti resonant reflecting optical waveguide structure made from porous silicon is demonstrated to be very effective for low losses as compared to conventional resonant waveguide. Optical measurements carried out for TE and TM polarizations are reported and related to optical sensing.

  8. Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices

    DOEpatents

    Yang, Peidong; Law, Matt; Sirbuly, Donald J.; Johnson, Justin C.; Saykally, Richard; Fan, Rong; Tao, Andrea

    2012-10-02

    Nanoribbons and nanowires having diameters less than the wavelength of light are used in the formation and operation of optical circuits and devices. Such nanostructures function as subwavelength optical waveguides which form a fundamental building block for optical integration. The extraordinary length, flexibility and strength of these structures enable their manipulation on surfaces, including the precise positioning and optical linking of nanoribbon/wire waveguides and other nanoribbon/wire elements to form optical networks and devices. In addition, such structures provide for waveguiding in liquids, enabling them to further be used in other applications such as optical probes and sensors.

  9. Electro-optical line cards with multimode polymer waveguides for chip-to-chip interconnects

    NASA Astrophysics Data System (ADS)

    Zhu, Long Xiu; Immonen, Marika; Wu, Jinhua; Yan, Hui Juan; Shi, Ruizhi; Chen, Peifeng; Rapala-Virtanen, Tarja

    2014-10-01

    In this paper, we report developments of electro-optical PCBs (EO-PCB) with low-loss (<0.05dB/cm) polymer waveguides. Our results shows successful fabrication of complex waveguide structures part of hybrid EO-PCBs utilizing production scale process on standard board panels. Test patterns include 90° bends of varying radii (40mm - 2mm), waveguide crossing with varied crossing angles (90°-20°), cascaded bends with varying radii, splitters and tapered waveguides. Full ranges of geometric configurations are required to meet practical optical routing functions and layouts. Moreover, we report results obtained to realize structures to integrate optical connectors with waveguides. Experimental results are shown for MT in-plane and 90° out-of-plane optical connectors realized with coupling loss < 2dB and < 2.5 dB, respectively. These connectors are crucial to realize efficient light coupling from/to TX/RX chip-to-waveguide and within waveguide-to-fiber connections in practical optical PCBs. Furthermore, we show results for fabricating electrical interconnect structures e.g. tracing layers, vias, plated vias top/bottom and through optical layers. Process compatibility with accepted practices and production scale up for high volumes are key concerns to meet the yield target and cost efficiency. Results include waveguide characterization, transmission loss, misalignment tolerance, and effect of lamination. Critical link metrics are reported.

  10. Vertically-tapered optical waveguide and optical spot transformer formed therefrom

    DOEpatents

    Bakke, Thor; Sullivan, Charles T.

    2004-07-27

    An optical waveguide is disclosed in which a section of the waveguide core is vertically tapered during formation by spin coating by controlling the width of an underlying mesa structure. The optical waveguide can be formed from spin-coatable materials such as polymers, sol-gels and spin-on glasses. The vertically-tapered waveguide section can be used to provide a vertical expansion of an optical mode of light within the optical waveguide. A laterally-tapered section can be added adjacent to the vertically-tapered section to provide for a lateral expansion of the optical mode, thereby forming an optical spot-size transformer for efficient coupling of light between the optical waveguide and a single-mode optical fiber. Such a spot-size transformer can also be added to a III-V semiconductor device by post processing.

  11. Ridge Waveguide Structures in Magnesium-Doped Lithium Niobate

    NASA Technical Reports Server (NTRS)

    Himmer, Phillip; Battle, Philip; Suckow, William; Switzer, Greg

    2011-01-01

    This work proposes to establish the feasibility of fabricating isolated ridge waveguides in 5% MgO:LN. Ridge waveguides in MgO:LN will significantly improve power handling and conversion efficiency, increase photonic component integration, and be well suited to spacebased applications. The key innovation in this effort is to combine recently available large, high-photorefractive-damage-threshold, z-cut 5% MgO:LN with novel ridge fabrication techniques to achieve high-optical power, low-cost, high-volume manufacturing of frequency conversion structures. The proposed ridge waveguide structure should maintain the characteristics of the periodically poled bulk substrate, allowing for the efficient frequency conversion typical of waveguides and the high optical damage threshold and long lifetimes typical of the 5% doped bulk substrate. The low cost and large area of 5% MgO:LN wafers, and the improved performance of the proposed ridge waveguide structure, will enhance existing measurement capabilities as well as reduce the resources required to achieve high-performance specifications. The purpose of the ridge waveguides in MgO:LN is to provide platform technology that will improve optical power handling and conversion efficiency compared to existing waveguide technology. The proposed ridge waveguide is produced using standard microfabrication techniques. The approach is enabled by recent advances in inductively coupled plasma etchers and chemical mechanical planarization techniques. In conjunction with wafer bonding, this fabrication methodology can be used to create arbitrarily shaped waveguides allowing complex optical circuits to be engineered in nonlinear optical materials such as magnesium doped lithium niobate. Researchers here have identified NLO (nonlinear optical) ridge waveguide structures as having suitable value to be the leading frequency conversion structures. Its value is based on having the low-cost fabrication necessary to satisfy the challenging pricing requirements as well as achieve the power handling and other specifications in a suitably compact package.

  12. Assembly of optical fibers for the connection of polymer-based waveguide

    NASA Astrophysics Data System (ADS)

    Ansel, Yannick; Grau, Daniel; Holzki, Markus; Kraus, Silvio; Neumann, Frank; Reinhard, Carsten; Schmitz, Felix

    2003-03-01

    This paper describes the realization of polymer-based optical structures and the assembly and packaging strategy to connect optical fiber ribbons to the waveguides. For that a low cost fabrication process using the SU-8TM thick photo-resist is presented. This process consists in the deposition of two photo-structurized resist layers filled up with epoxy glue realising the core waveguide. For the assembly, a new modular vacuum gripper was realised and installed on an automatic pick and place assembly robot to mount precisely and efficiently the optical fibers in the optical structures. First results have shown acceptable optical propagation loss for the complete test structure.

  13. Nanocrystal waveguide (NOW) laser

    DOEpatents

    Simpson, John T.; Simpson, Marcus L.; Withrow, Stephen P.; White, Clark W.; Jaiswal, Supriya L.

    2005-02-08

    A solid state laser includes an optical waveguide and a laser cavity including at least one subwavelength mirror disposed in or on the optical waveguide. A plurality of photoluminescent nanocrystals are disposed in the laser cavity. The reflective subwavelength mirror can be a pair of subwavelength resonant gratings (SWG), a pair of photonic crystal structures (PC), or a distributed feedback structure. In the case of a pair of mirrors, a PC which is substantially transmissive at an operating wavelength of the laser can be disposed in the laser cavity between the subwavelength mirrors to improve the mode structure, coherence and overall efficiency of the laser. A method for forming a solid state laser includes the steps of providing an optical waveguide, creating a laser cavity in the optical waveguide by disposing at least one subwavelength mirror on or in the waveguide, and positioning a plurality of photoluminescent nanocrystals in the laser cavity.

  14. [Optical Design of Miniature Infrared Gratings Spectrometer Based on Planar Waveguide].

    PubMed

    Li, Yang-yu; Fang, Yong-hua; Li, Da-cheng; Liu, Yang

    2015-03-01

    In order to miniaturize an infrared spectrometer, we analyze the current optical design of miniature spectrometers and propose a method for designing a miniature infrared gratings spectrometer based on planar waveguide. Common miniature spectrometer uses miniature optical elements to reduce the size of system, which also shrinks the effective aperture. So the performance of spectrometer has dropped. Miniaturization principle of planar waveguide spectrometer is different from the principle of common miniature spectrometer. In planar waveguide spectrometer, the propagation of light is limited in a thin planar waveguide, which looks like the whole optical system is squashed flat. In the direction parallel to the planar waveguide, the light through the slit is collimated, dispersed and focused. And a spectral image is formed in the detector plane. This propagation of light is similar to the light in common miniature spectrometer. In the direction perpendicular to the planar waveguide, light is multiple reflected by the upper and lower surfaces of the planar waveguide and propagates in the waveguide. So the size of corresponding optical element could be very small in the vertical direction, which can reduce the size of the optical system. And the performance of the spectrometer is still good. The design method of the planar waveguide spectrometer can be separated into two parts, Czerny-Turner structure design and planar waveguide structure design. First, by using aberration theory an aberration-corrected (spherical aberration, coma, focal curve) Czerny-Turner structure is obtained. The operation wavelength range and spectral resolution are also fixed. Then, by using geometrical optics theory a planar waveguide structure is designed for reducing the system size and correcting the astigmatism. The planar waveguide structure includes a planar waveguide and two cylindrical lenses. Finally, they are modeled together in optical design software and are optimized as a whole. An infrared planar waveguide spectrometer is designed using this method. The operation wavelength range is 8 - 12 μm, the numerical aperture is 0.22, and the linear array detector contains 64 elements. By using Zemax software, the design is optimized and analyzed. The results indicate that the size of the optical system is 130 mm x 125 mm x 20 mm and the spectral resolution of spectrometer is 80 nm, which satisfy the requirements of design index. Thus it is this method that can be used for designing a miniature spectrometer without movable parts and sizes in the range of several cubic centimeters.

  15. FIBER AND INTEGRATED OPTICS: New type of heterogeneous nanophotonic silicon-on-insulator optical waveguides

    NASA Astrophysics Data System (ADS)

    Tsarev, Andrei V.

    2007-08-01

    A new type of optical waveguides in silicon-on-insulator nanostructures is proposed and studied. Their optical properties are simulated by the beam propagation method and discussed. A new design in the form of heterogeneous waveguide structures is based on the production of additionally heavily doped p+-regions on the sides of a multimode stripe waveguide (the silicon core cross section is ~200 nm × 16 μm). Such doping provides the 'single-mode' behaviour of the heterogeneous waveguide due to the decrease in the optical losses for the fundamental mode and increase in losses for higher-order modes. Single-mode heterogeneous waveguides can be used as base waveguides in photonic and integrated optical elements.

  16. Roughness measurements on coupling structures for optical interconnections integrated on a printed circuit board

    NASA Astrophysics Data System (ADS)

    Hendrickx, Nina; Van Erps, Jürgen; Suyal, Himanshu; Taghizadeh, Mohammad; Thienpont, Hugo; Van Daele, Peter

    2006-04-01

    In this paper, laser ablation (at UGent), deep proton writing (at VUB) and laser direct writing (at HWU) are presented as versatile technologies that can be used for the fabrication of coupling structures for optical interconnections integrated on a printed circuit board (PCB). The optical layer, a highly cross-linked acrylate based polymer, is applied on an FR4 substrate. Both laser ablation and laser direct writing are used for the definition of arrays of multimode optical waveguides, which guide the light in the plane of the optical layer. In order to couple light vertically in/out of the plane of the optical waveguides, coupling structures have to be integrated into the optical layer. Out-of-plane turning mirrors, that deflect the light beam over 90°, are used for this purpose. The surface roughness and angle of three mirror configurations are evaluated: a laser ablated one that is integrated into the optical waveguide, a laser direct written one that is also directly written onto the waveguide and a DPW insert that is plugged into a cavity into the waveguiding layer.

  17. Numerical model of the polymer electro-optic waveguide

    NASA Astrophysics Data System (ADS)

    Fan, Guofang; Li, Yuan; Han, Bing; Wang, Qi; Liu, Xinhou; Zhen, Zhen

    2012-09-01

    A numerical design model is presented for the polymer waveguide in an electro-optic modulator. The effective index method is used to analyze the height of the core waveguide and rib waveguide, an improved Marcatili method is presented to design the rib waveguide width in order to keep the strong single mode operation and have a good match with the standard fiber. Also, the thickness of the upper cladding layer is discussed through calculating the effective index of the multilayer planar waveguide structure has been obtained by setting the optical loss due to the metallic absorption to an acceptable value (<0.1 dB/cm). As a consequence, we take the EO polymer waveguide structure of UV15:CLD/APC:UFC170 as an example, an optimized design is reported.

  18. FIBER AND INTEGRATED OPTICS: Photodetector waveguide structures made of epitaxial InGaAs films and intended for integrated circuits manufactured from III-V semiconductor compounds

    NASA Astrophysics Data System (ADS)

    Shmal'ko, A. V.; Lamekin, V. F.; Smirnov, V. L.; Polyantsev, A. S.; Kogan, Yu I.; Babushkina, T. S.; Kuntsevich, T. S.; Peshkovskaya, O. G.

    1990-08-01

    Photodetector waveguide structures made of epitaxial InxGa1 - xAs solid-solution films were developed and investigated. These structures were intended for optical integrated circuits manufactured from III-V semiconductor compounds for operation in the wavelength range 1.0-1.5 μm. Two types of photodetector waveguide p-i-n structures were developed. They consisted of a composite waveguide and tunnel-coupled waveguides, respectively. A study was made of structural parameters, responsivity, spectral and time characteristics, and dark currents in photodetectors made of the waveguide structures. This investigation was carried out in the wavelength range 1.0-1.3 μm. The maximum spectral responsivity of one of the types of the waveguide photodetector was ~ 0.5 ± 0.1 A/W and the dark current did not exceed 10 - 7-10 - 8 A.

  19. Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: a promising prototype for integrated lasers.

    PubMed

    Liu, Hongliang; Chen, Feng; Vázquez de Aldana, Javier R; Jaque, D

    2013-09-01

    We report on the design and implementation of a prototype of optical waveguides fabricated in Nd:YAG crystals by using femtosecond-laser irradiation. In this prototype, two concentric tubular structures with nearly circular cross sections of different diameters have been inscribed in the Nd:YAG crystals, generating double-cladding waveguides. Under 808 nm optical pumping, waveguide lasers have been realized in the double-cladding structures. Compared with single-cladding waveguides, the concentric tubular structures, benefiting from the large pump area of the outermost cladding, possess both superior laser performance and nearly single-mode beam profile in the inner cladding. Double-cladding waveguides of the same size were fabricated and coated by a thin optical film, and a maximum output power of 384 mW and a slope efficiency of 46.1% were obtained. Since the large diameters of the outer claddings are comparable with those of the optical fibers, this prototype paves a way to construct an integrated single-mode laser system with a direct fiber-waveguide configuration.

  20. Near-field optical technique applied for investigation of the characteristics of polymer fiber and waveguide structures.

    PubMed

    Ming, Hai; Tang, Lin; Sun, Xiaohong; Zhang, Jiangying; Wang, Pei; Lu, Yonghua; Bai, Ming; Guo, Yang; Xie, Aifang; Zhang, Zebo

    2004-01-01

    This article summarizes the near-field optical technique applied for investigating the characteristics of polymer fiber and waveguide structures. The near-field optical technique is used to analyze multimode interference structures of fiber. The localized fluctuation of the transmission caused by fractal cluster is carried out in Nd3+- and Eu3+-doped polymer fiber and film by means of a scanning near-field optical microscopy. The near-field optical spectrum of Nd3+-doped polymer fiber is investigated. The topography and near-field intensity images of Azo-polymer liquid crystal film for waveguide are obtained simultaneously.

  1. Chalcogenide based rib waveguide for compact on-chip supercontinuum sources in mid-infrared domain

    NASA Astrophysics Data System (ADS)

    Saini, Than Singh; Tiwari, Umesh Kumar; Sinha, Ravindra Kumar

    2017-08-01

    We have designed and analysed a rib waveguide structure in recently reported Ga-Sb-S based highly nonlinear chalcogenide glass for nonlinear applications. The proposed waveguide structure possesses a very high nonlinear coefficient and can be used to generate broadband supercontinuum in mid-infrared domain. The reported design of the chalcogenide waveguide offers two zero dispersion values at 1800 nm and 2900 nm. Such rib waveguide structure is suitable to generate efficient supercontinuum generation ranging from 500 - 7400 μm. The reported waveguide can be used for the realization of the compact on-chip supercontinuum sources which are highly applicable in optical imaging, optical coherence tomography, food quality control, security and sensing.

  2. Waveguide metatronics: Lumped circuitry based on structural dispersion.

    PubMed

    Li, Yue; Liberal, Iñigo; Della Giovampaola, Cristian; Engheta, Nader

    2016-06-01

    Engineering optical nanocircuits by exploiting modularization concepts and methods inherited from electronics may lead to multiple innovations in optical information processing at the nanoscale. We introduce the concept of "waveguide metatronics," an advanced form of optical metatronics that uses structural dispersion in waveguides to obtain the materials and structures required to construct this class of circuitry. Using numerical simulations, we demonstrate that the design of a metatronic circuit can be carried out by using a waveguide filled with materials with positive permittivity. This includes the implementation of all "lumped" circuit elements and their assembly in a single circuit board. In doing so, we extend the concepts of optical metatronics to frequency ranges where there are no natural plasmonic materials available. The proposed methodology could be exploited as a platform to experimentally validate optical metatronic circuits in other frequency regimes, such as microwave frequency setups, and/or to provide a new route to design optical nanocircuitry.

  3. Optical lattice-like cladding waveguides by direct laser writing: fabrication, luminescence, and lasing.

    PubMed

    Nie, Weijie; He, Ruiyun; Cheng, Chen; Rocha, Uéslen; Rodríguez Vázquez de Aldana, Javier; Jaque, Daniel; Chen, Feng

    2016-05-15

    We report on the fabrication of optical lattice-like waveguide structures in an Nd:YAP laser crystal by using direct femtosecond laser writing. With periodically arrayed laser-induced tracks, the waveguiding cores can be located in either the regions between the neighbored tracks or the central zone surrounded by a number of tracks as outer cladding. The polarization of the femtosecond laser pulses for the inscription has been found to play a critical role in the anisotropic guiding behaviors of the structures. The confocal photoluminescence investigations reveal different stress-induced modifications of the structures inscribed by different polarization of the femtosecond laser beam, which are considered to be responsible for the refractive index changes of the structures. Under optical pump at 808 nm, efficient waveguide lasing at ∼1  μm wavelength has been realized from the optical lattice-like structure, which exhibits potential applications as novel miniature light sources.

  4. Strong field localization in subwavelength metal-dielectric optical waveguides

    NASA Astrophysics Data System (ADS)

    Kozina, O. N.; Mel'Nikov, L. A.; Nefedov, I. S.

    2011-08-01

    Detailed calculations of eigenmodes of waveguiding structures made of silver and glass and containing coaxial cables with a nanoscale cross section of different configurations are conducted. In particular, the study focuses on optical coaxial waveguides with the core made in the form of a thin metallic cylinder filled with a dielectric. We show that these waveguides support relatively low-loss propagation of radiation that is strongly localized in the central region, has phase velocity approaching the speed of light and predominant electric-field orientation (dipole type). Optical characteristics of such waveguides are compared with those of coaxial-type waveguides containing a continuous central filament made of metal and with a multilayer structure. Using numeric modeling, we established that the proposed type of the waveguide enables the transmission of an optical image with relatively low losses with a submicron resolution over a distance considerably longer than its cross section. A typical propagation length in the waveguides based on silver and glass with the refractive index of about 1.5 at a wavelength of 500 nm is about 1700 nm.

  5. Optical resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  6. Cross-linked polyimides for integrated optics

    NASA Astrophysics Data System (ADS)

    Singer, Kenneth D.; Kowalczyk, Tony C.; Nguyen, Hung D.; Beuhler, Allyson J.; Wargowski, David A.

    1997-01-01

    We have investigated a promising class of polyimide materials for both passive and active electro-optic devices, namely crosslinkable polyimides. These fluorinated polyimides are soluble in the imidized form and are both thermally and photo-crosslinkable leading to easy processability into waveguide structures and the possibility of stable electro-optic properties. We have fabricated channel and slab waveguides and investigated the mechanism of optical propagation loss using photothermal deflection spectroscopy and waveguide loss spectroscopy, and found the losses to arise from residual absorption due to the formation of charge transfer states. The absorption is inhibited by fluorination leading to propagation losses as low as 0.3 dB/cm in the near infrared. Because of the ability to photocrosslink, channel waveguides are fabricated using a simple wet-etch process. Channel waveguides so formed are observed to have no excess loss over slab structures. Solubility followed by thermal cross-linking allows the formation of multilayer structures. We have produced electro-optic polymers by doping with the nonlinear optical chromophores, DCM and DADC; and a process of concurrent poling and thermal crosslinking. Multilayer structures have been investigated and poling fields optimized in the active layer by doping the cladding with an anti-static agent. The high glass-transition temperature and cross-linking leads to very stable electro-optic properties. We are currently building electro-optic modulators based on these materials. Progress and results in this area also are reported.

  7. Compact and low power operation optical switch using silicon-germanium/silicon hetero-structure waveguide.

    PubMed

    Sekiguchi, Shigeaki; Kurahashi, Teruo; Zhu, Lei; Kawaguchi, Kenichi; Morito, Ken

    2012-04-09

    We proposed a silicon-based optical switch with a carrier-plasma-induced phase shifter which employs a silicon-germanium (SiGe) / silicon (Si) hetero-structure in the waveguide core. A type-I hetero-interface formed by SiGe and Si is expected to confine carriers effectively in the SiGe waveguide core. The fabricated Mach-Zehnder optical switch shows a low switching power of only 1.53 mW with a compact phase shifter length of 250 μm. The switching time of the optical switch is less than 4.6 ns for the case of a square waveform driving condition, and 1 ns for the case of a pre-emphasis electric driving condition. These results show that our proposed SiGe/Si waveguide structure holds promise for active devices with compact size and low operation power.

  8. Waveguide metatronics: Lumped circuitry based on structural dispersion

    PubMed Central

    Li, Yue; Liberal, Iñigo; Della Giovampaola, Cristian; Engheta, Nader

    2016-01-01

    Engineering optical nanocircuits by exploiting modularization concepts and methods inherited from electronics may lead to multiple innovations in optical information processing at the nanoscale. We introduce the concept of “waveguide metatronics,” an advanced form of optical metatronics that uses structural dispersion in waveguides to obtain the materials and structures required to construct this class of circuitry. Using numerical simulations, we demonstrate that the design of a metatronic circuit can be carried out by using a waveguide filled with materials with positive permittivity. This includes the implementation of all “lumped” circuit elements and their assembly in a single circuit board. In doing so, we extend the concepts of optical metatronics to frequency ranges where there are no natural plasmonic materials available. The proposed methodology could be exploited as a platform to experimentally validate optical metatronic circuits in other frequency regimes, such as microwave frequency setups, and/or to provide a new route to design optical nanocircuitry. PMID:27386566

  9. Polymer taper bridge for silicon waveguide to single mode waveguide coupling

    NASA Astrophysics Data System (ADS)

    Kruse, Kevin; Middlebrook, Christopher T.

    2016-03-01

    Coupling of optical power from high-density silicon waveguides to silica optical fibers for signal routing can incur high losses and often requires complex end-face preparation/processing. Novel coupling device taper structures are proposed for low coupling loss between silicon photonic waveguides and single mode fibers are proposed and devices are fabricated and measured in terms of performance. Theoretical mode conversion models for waveguide tapers are derived for optimal device structure design and performance. Commercially viable vertical and multi-layer taper designs using polymer waveguide materials are proposed as innovative, cost-efficient, and mass-manufacturable optical coupling devices. The coupling efficiency for both designs is determined to evaluate optimal device dimensions and alignment tolerances with both silicon rib waveguides and silicon nanowire waveguides. Propagation loss as a function of waveguide roughness and metallic loss are determined and correlated to waveguide dimensions to obtain total insertion loss for the proposed taper designs. Multi-layer tapers on gold-sputtered substrates are fabricated through photolithography as proof-of-concept devices and evaluated for device loss optimization. Tapered waveguide coupling loss with Si WGs (2.74 dB) was experimentally measured with high correlation to theoretical results.

  10. High-speed electro-optic switch based on nonlinear polymer-clad waveguide incorporated with quasi-in-plane coplanar waveguide electrodes

    NASA Astrophysics Data System (ADS)

    Jiang, Ming-Hui; Wang, Xi-Bin; Xu, Qiang; Li, Ming; Niu, Dong-Hai; Sun, Xiao-Qiang; Wang, Fei; Li, Zhi-Yong; Zhang, Da-Ming

    2018-01-01

    Nonlinear optical (NLO) polymer is a promising material for active waveguide devices that can provide large bandwidth and high-speed response time. However, the performance of the active devices is not only related to the waveguide materials, but also related to the waveguide and electrode structures. In this paper, a high-speed Mach-Zehnder interferometer (MZI) type of electro-optic (EO) switch based on NLO polymer-clad waveguide was fabricated. The quasi-in-plane coplanar waveguide electrodes were also introduced to enhance the poling and modulating efficiency. The characteristic parameters of the waveguide and electrode were carefully designed and simulated. The switches were fabricated by the conventional micro-fabrication process. Under 1550-nm operating wavelength, a typical fabricated switch showed a low insertion loss of 10.2 dB, and the switching rise time and fall time were 55.58 and 57.98 ns, respectively. The proposed waveguide and electrode structures could be developed into other active EO devices and also used as the component in the polymer-based large-scale photonic integrated circuit.

  11. Optical resonator and laser applications

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  12. Low- and high-index sol-gel films for planar and channel-doped waveguides

    NASA Astrophysics Data System (ADS)

    Canva, Michael; Chaput, Frederic; Lahlil, Khalid; Rachet, Vincent; Goudket, Helene; Boilot, Jean-Pierre; Levy, Yves

    2001-11-01

    In view of realizing integrated optic components based on effects such as electro-optic, chi(2):chi(2) cascading, stimulated emission,... one has to first synthesize materials with the proper functionality; this may be achieved by doping solid state matrices by the appropriate organic chromophores. Second, and as important, these materials have to be properly structured into the final optical guiding structures. We shall report on issues related to the realization of chromophore-doped planar waveguides as well as channel waveguides. These structures were realized by either photo-transformation such as photo- chromism and photo-bleaching or reactive ion etching technique, starting with chromophore doped sol-gel materials at high loading contents for which optical index may be controlled via the local dopant concentration. With these materials and techniques, waveguides and components characterized by propagation losses of the order of a cm-1, measured off the edge of the absorption band of the doping species, were fabricated. In order to be also able to study and use waveguide functionalized with low concentration of chromophore species, we developed new sol-gel materials of high optical index, yet low temperature processed. These new films are under study to evaluate their potential as host for organic doped waveguides devices.

  13. Optical microwave filter based on spectral slicing by use of arrayed waveguide gratings.

    PubMed

    Pastor, Daniel; Ortega, Beatriz; Capmany, José; Sales, Salvador; Martinez, Alfonso; Muñoz, Pascual

    2003-10-01

    We have experimentally demonstrated a new optical signal processor based on the use of arrayed waveguide gratings. The structure exploits the concept of spectral slicing combined with the use of an optical dispersive medium. The approach presents increased flexibility from previous slicing-based structures in terms of tunability, reconfiguration, and apodization of the samples or coefficients of the transversal optical filter.

  14. Microfabricated Waveguide Atom Traps.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jau, Yuan-Yu

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading coldmore » atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.« less

  15. Investigation of semiconductor clad optical waveguides

    NASA Technical Reports Server (NTRS)

    Batchman, T. E.; Carson, R. F.

    1985-01-01

    A variety of techniques have been proposed for fabricating integrated optical devices using semiconductors, lithium niobate, and glasses as waveguides and substrates. The use of glass waveguides and their interaction with thin semiconductor cladding layers was studied. Though the interactions of these multilayer waveguide structures have been analyzed here using glass, they may be applicable to other types of materials as well. The primary reason for using glass is that it provides a simple, inexpensive way to construct waveguides and devices.

  16. Waveguide structures in anisotropic nonlinear crystals

    NASA Astrophysics Data System (ADS)

    Li, Da; Hong, Pengda; Meissner, Helmuth E.

    2017-02-01

    We report on the design and manufacturing parameters of waveguiding structures of anisotropic nonlinear crystals that are employed for harmonic conversions, using Adhesive-Free Bonding (AFB®). This technology enables a full range of predetermined refractive index differences that are essential for the design of single mode or low-mode propagation with high efficiency in anisotropic nonlinear crystals which in turn results in compact frequency conversion systems. Examples of nonlinear optical waveguides include periodically bonded walk-off corrected nonlinear optical waveguides and periodically poled waveguide components, such as lithium triborate (LBO), beta barium borate (β-BBO), lithium niobate (LN), potassium titanyl phosphate (KTP), zinc germanium phosphide (ZGP) and silver selenogallate (AGSE). Simulation of planar LN waveguide shows that when the electric field vector E lies in the k-c plane, the power flow is directed precisely along the propagation direction, demonstrating waveguiding effect in the planar waveguide. Employment of anisotropic nonlinear optical waveguides, for example in combination with AFB® crystalline fiber waveguides (CFW), provides access to the design of a number of novel high power and high efficiency light sources spanning the range of wavelengths from deep ultraviolet (as short as 200 nm) to mid-infrared (as long as about 18 μm). To our knowledge, the technique is the only generally applicable one because most often there are no compatible cladding crystals available to nonlinear optical cores, especially not with an engineer-able refractive index difference and large mode area.

  17. Optical properties of new wide heterogeneous waveguides with thermo optical shifters.

    PubMed

    De Leonardis, Francesco; Tsarev, Andrei V; Passaro, Vittorio M

    2008-12-22

    We present analysis and simulation of novel silicon-on-insulator (SOI) heterogeneous waveguides with thermo-optic phase shifters. New structure design contains a p-n junction on both sides of SOI ridge waveguide with 220 nm x 35 microm silicon core. Strongly mode-dependent optical losses (by additional free charge absorption) provide quasi-singe-mode behavior of wide waveguide with mode size approximately 10 microm. Local heater produces an efficient phase shifting by small temperature increase (DeltaT approximately 2K), switching power (< 40 mW) and switching time (< 10 micros). Mode optical losses are significantly decreased at high heating (DeltaT approximately 120 K).

  18. FIBER AND INTEGRATED OPTICS: Reflection of electromagnetic radiation from a multilayer waveguide structure with an absorbing metal layer

    NASA Astrophysics Data System (ADS)

    Chernushich, A. P.; Shkerdin, G. N.; Shukin, Yu M.

    1992-10-01

    The angular distribution of the reflection coefficient of an asymmetric multilayer planar structure containing a thin metal film and a planar optical waveguide has been found by accurate numerical calculations. There are resonances in the reflection coefficient associated with hybrid modes of the structure. The cases of strong and weak coupling of the surface polariton modes with the waveguide modes are discussed. The results of the numerical analysis agree with solutions of Maxwell's equations for a multilayer planar structure.

  19. Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides.

    PubMed

    Chmielak, Bartos; Matheisen, Christopher; Ripperda, Christian; Bolten, Jens; Wahlbrink, Thorsten; Waldow, Michael; Kurz, Heinrich

    2013-10-21

    We present detailed investigations of the local strain distribution and the induced second-order optical nonlinearity within strained silicon waveguides cladded with a Si₃N₄ strain layer. Micro-Raman Spectroscopy mappings and electro-optic characterization of waveguides with varying width w(WG) show that strain gradients in the waveguide core and the effective second-order susceptibility χ(2)(yyz) increase with reduced w(WG). For 300 nm wide waveguides a mean effective χ(2)(yyz) of 190 pm/V is achieved, which is the highest value reported for silicon so far. To gain more insight into the origin of the extraordinary large optical second-order nonlinearity of strained silicon waveguides numerical simulations of edge induced strain gradients in these structures are presented and discussed.

  20. Optical coupling of bare optoelectronic components and flexographically printed polymer waveguides in planar optronic systems

    NASA Astrophysics Data System (ADS)

    Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger

    2016-05-01

    Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated. Additionally, we demonstrate optical links by adopting the aforementioned processes used for defining the simulation. We verify the feasibility of the developed processes for planar optronic systems by using an active alignment and conduct discussions for further improvements of optical alignment.

  1. Photonic crystal slab waveguides in moderate index contrast media: Generalized transverse Bragg waveguides

    NASA Astrophysics Data System (ADS)

    Burckel, David Bruce

    One of the anticipated advantages of photonic crystal waveguides is the ability to tune waveguide dispersion and propagation characteristics to achieve desired properties. The majority of research into photonic crystal waveguides centers around high index contrast photonic crystal waveguides with complete in-plane bandgaps in the photonic crystal cladding. This work focuses on linear photonic crystal waveguides in moderate index materials, with insufficient index contrast to guarantee a complete in-plane bandgap. Using a technique called Interferometric Lithography (IL) as well as standard semiconductor processing steps, a process flow for creating large area (˜cm 2), linear photonic crystal waveguides in a spin-deposited photocurable polymer is outlined. The study of such low index contrast photonic crystal waveguides offers a unique opportunity to explore the mechanisms governing waveguide confinement and photonic crystal behavior in general. Results from two optical characterization experiments are provided. In the first set of experiments, rhodamine 590 organic laser dye was incorporated into the polymer prior to fabrication of the photonic crystal slab. Emission spectra from waveguide core modes exhibit no obvious spectral selectivity owing to variation in the periodicity or geometry of the photonic crystal. In addition, grating coupled waveguides were fabricated, and a single frequency diode laser was coupled into the waveguide in order to study the transverse mode structure. To this author's knowledge, the optical mode profile images are the first taken of photonic crystal slab waveguides, exhibiting both simple low order mode structure as well as complex high order mode structure inconsistent with effective index theory. However, no obvious correlation between the mode structure and photonic crystal period or geometry was evident. Furthermore, in both the laser dye-doped and grating coupled waveguides, low loss waveguiding was observed regardless of wavelength to period ratio. These optical results indicated a need for a deeper understanding of the confinement/guiding mechanisms in such waveguide structures. A simplification of the full 2-D problem to a more tractable "tilted 1-D" geometry led to the proposal of a new waveguide geometry, Generalized Transverse Bragg Waveguides (GTBW), as well as a new propagation mode characterized by spatial variation in both the transverse direction as well as the direction of propagation. GTBW demonstrate many of the same dispersion tunability traits exhibited in complete bandgap photonic crystal waveguides, under more modest fabrication demands, and moreover provide much insight into photonic crystal waveguide modes of all types. Generalized Transverse Bragg Waveguides are presented in terms of the standard physical properties associated with waveguides, including the dispersion relation, expressions for the spatial field profile, and the concepts of phase and group velocity. In addition, the proposal of at least one obvious application, semiconductor optical amplifiers, is offered.

  2. Optical waveguides in magneto-optical glasses fabricated by proton implantation

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Xiao; Li, Yu-Wen; Zheng, Rui-Lin; Fu, Li-Li; Zhang, Liao-Lin; Guo, Hai-Tao; Zhou, Zhi-Guang; Li, Wei-Nan; Lin, She-Bao; Wei, Wei

    2016-11-01

    Planar waveguides in magneto-optical glasses (Tb3+-doped aluminum borosilicate glasses) have been produced by a 550-keV proton implantation at a dose of 4.0×1016 ions/cm2 for the first time to our knowledge. After annealing at 260 °C for 1.0 h, the dark-mode spectra and near-field intensity distributions are measured by the prism-coupling and end-face coupling methods. The damage profile, refractive index distribution and light propagation mode of the planar waveguide are numerically calculated by SRIM 2010, RCM and FD-BPM, respectively. The effects of implantation on the structural and optical properties are investigated by Raman and absorption spectra. It suggests that the proton-implanted Tb3+-doped aluminum borosilicate glass waveguide is a good candidate for a waveguide isolator in optical fiber communication and all-optical communication.

  3. Polymer waveguide grating sensor integrated with a thin-film photodetector

    PubMed Central

    Song, Fuchuan; Xiao, Jing; Xie, Antonio Jou; Seo, Sang-Woo

    2014-01-01

    This paper presents a planar waveguide grating sensor integrated with a photodetector (PD) for on-chip optical sensing systems which are suitable for diagnostics in the field and in-situ measurements. III–V semiconductor-based thin-film PD is integrated with a polymer based waveguide grating device on a silicon platform. The fabricated optical sensor successfully discriminates optical spectral characteristics of the polymer waveguide grating from the on-chip PD. In addition, its potential use as a refractive index sensor is demonstrated. Based on a planar waveguide structure, the demonstrated sensor chip may incorporate multiple grating waveguide sensing regions with their own optical detection PDs. In addition, the demonstrated processing is based on a post-integration process which is compatible with silicon complementary metal-oxide semiconductor (CMOS) electronics. Potentially, this leads a compact, chip-scale optical sensing system which can monitor multiple physical parameters simultaneously without need for external signal processing. PMID:24466407

  4. Ultra-large nonlinear parameter in graphene-silicon waveguide structures.

    PubMed

    Donnelly, Christine; Tan, Dawn T H

    2014-09-22

    Mono-layer graphene integrated with optical waveguides is studied for the purpose of maximizing E-field interaction with the graphene layer, for the generation of ultra-large nonlinear parameters. It is shown that the common approach used to minimize the waveguide effective modal area does not accurately predict the configuration with the maximum nonlinear parameter. Both photonic and plasmonic waveguide configurations and graphene integration techniques realizable with today's fabrication tools are studied. Importantly, nonlinear parameters exceeding 10(4) W(-1)/m, two orders of magnitude larger than that in silicon on insulator waveguides without graphene, are obtained for the quasi-TE mode in silicon waveguides incorporating mono-layer graphene in the evanescent part of the optical field. Dielectric loaded surface plasmon polariton waveguides incorporating mono-layer graphene are observed to generate nonlinear parameters as large as 10(5) W(-1)/m, three orders of magnitude larger than that in silicon on insulator waveguides without graphene. The ultra-large nonlinear parameters make such waveguides promising platforms for nonlinear integrated optics at ultra-low powers, and for previously unobserved nonlinear optical effects to be studied in a waveguide platform.

  5. The formation and optical properties of planar waveguide in laser crystal Nd:YGG by carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Jin-Hua; Qin, Xi-Feng; Wang, Feng-Xiang; Jiao, Yang; Guan, Jing; Fu, Gang

    2017-10-01

    As one kind of prominent laser crystal, Nd:Y3Ga5O12 (Nd:YGG) crystal has outstanding performance on laser excitation at multi-wavelength which have shown promising applications in optical communication field. In addition, Nd:YGG crystal has potential applications in medical field due to its ability of emit the laser at 1110 nm. Optical waveguide structure with high quality could improve the efficiency of laser emission. In this work, we fabricated the optical planar waveguide on Nd:YGG crystal by medium mass ion implantation which was convinced an effective method to realize a waveguide structure with superior optical properties. The sample is implanted by C ions at energy of 5.0 MeV with the fluence of 1 × 1015 ions/cm2. We researched the optical propagation properties in the Nd:YGG waveguide by end-face coupling and prism coupling method. The Nd ions fluorescent properties are obtained by a confocal micro-luminescence measurement. The fluorescent properties of Nd ions obtained good reservation after C ion implantation. Our work has reference value for the application of Nd:YGG crystal in the field of optical communication.

  6. Fabrication of raised and inverted SU8 polymer waveguides

    NASA Astrophysics Data System (ADS)

    Holland, Anthony S.; Mitchell, Arnan; Balkunje, Vishal S.; Austin, Mike W.; Raghunathan, Mukund K.

    2005-01-01

    Polymer films with high optical transmission have been investigated for making optical devices for several years. SU8 photoresist and optical adhesives have been investigated for use as thin films for optical devices, not what they were originally designed for. Optical adhesives are typically a one component thermoset polymer and are convenient to use for making thin film optical devices such as waveguides. They are prepared in minutes as thin films unlike SU8, which has to be carefully thermally cured over several hours for optimum results. However SU8 can be accurately patterned to form the geometry of structures required for single mode optical waveguides. SU8 in combination with the lower refractive index optical adhesive films such as UV15 from Master Bond are used to form single and multi mode waveguides. SU8 is photopatternable but we have also used dry etching of the SU8 layer or the other polymer layers e.g. UV15 to form the ribs, ridges or trenches required to guide single modes of light. Optical waveguides were also fabricated using only optical adhesives of different refractive indices. The resolution obtainable is poorer than with SU8 and hence multi mode waveguides are obtained. Loss measurements have been obtained for waveguides of different geometries and material combinations. The process for making polymer waveguides is demonstrated for making large multi mode waveguides and microfluidic channels by scaling the process up in size.

  7. Optical sensor in planar configuration based on multimode interference

    NASA Astrophysics Data System (ADS)

    Blahut, Marek

    2017-08-01

    In the paper a numerical analysis of optical sensors based on multimode interference in planar one-dimensional step-index configuration is presented. The structure consists in single-mode input and output waveguides and multimode waveguide which guide only few modes. Material parameters discussed refer to a SU8 polymer waveguide on SiO2 substrate. The optical system described will be designed to the analysis of biological substances.

  8. Capillary waveguide optrodes: an approach to optical sensing in medical diagnostics

    NASA Astrophysics Data System (ADS)

    Lippitsch, Max E.; Draxler, Sonja; Kieslinger, Dietmar; Lehmann, Hartmut; Weigl, Bernhard H.

    1996-07-01

    Glass capillaries with a chemically sensitive coating on the inner surface are used as optical sensors for medical diagnostics. A capillary simultaneously serves as a sample compartment, a sensor element, and an inhomogeneous optical waveguide. Various detection schemes based on absorption, fluorescence intensity, or fluorescence lifetime are described. In absorption-based capillary waveguide optrodes the absorption in the sensor layer is analyte dependent; hence light transmission along the inhomogeneous waveguiding structure formed by the capillary wall and the sensing layer is a function of the analyte concentration. Similarly, in fluorescence-based capillary optrodes the fluorescence intensity or the fluorescence lifetime of an indicator dye fixed in the sensing layer is analyte dependent; thus the specific property of fluorescent light excited in the sensing layer and thereafter guided along the inhomogeneous waveguiding structure is a function of the analyte concentration. Both schemes are experimentally demonstrated, one with carbon dioxide as the analyte and the other one with oxygen. The device combines optical sensors with the standard glass capillaries usually applied to gather blood drops from fingertips, to yield a versatile diagnostic instrument, integrating the sample compartment, the optical sensor, and the light-collecting optics into a single piece. This ensures enhanced sensor performance as well as improved handling compared with other sensors. waveguide, blood gases, medical diagnostics.

  9. Low-cost fabrication of optical waveguides, interconnects and sensing structures on all-polymer-based thin foils

    NASA Astrophysics Data System (ADS)

    Rezem, Maher; Kelb, Christian; Günther, Axel; Rahlves, Maik; Reithmeier, Eduard; Roth, Bernhard

    2016-03-01

    Micro-optical sensors based on optical waveguides are widely used to measure temperature, force and strain but also to detect biological and chemical substances such as explosives or toxins. While optical micro-sensors based on silicon technology require complex and expensive process technologies, a new generation of sensors based completely on polymers offer advantages especially in terms of low-cost and fast production techniques. We have developed a process to integrate micro-optical components such as embedded waveguides and optical interconnects into polymer foils with a thickness well below one millimeter. To enable high throughput production, we employ hot embossing technology, which is capable of reel-to-reel fabrication with a surface roughness in the optical range. For the waveguide fabrication, we used the thermoplastic polymethylmethacrylate (PMMA) as cladding and several optical adhesives as core materials. The waveguides are characterized with respect to refractive indices and propagation losses. We achieved propagation losses are as low as 0.3 dB/cm. Furthermore, we demonstrate coupling structures and their fabrication especially suited to integrate various light sources such as vertical-cavity surface-emitting lasers (VCSEL) and organic light emitting diodes (OLED) into thin polymer foils. Also, we present a concept of an all-polymer and waveguide based deformation sensor based on intensity modulation, which can be fabricated by utilizing our process. For future application, we aim at a low-cost and high-throughput reel-to-reel production process enabling the fabrication of large sensor arrays or disposable single-use sensing structures, which will open optical sensing to a large variety of application fields ranging from medical diagnosis to automotive sensing.

  10. Planar polymer and glass graded index waveguides for data center applications

    NASA Astrophysics Data System (ADS)

    Pitwon, Richard; Yamauchi, Akira; Brusberg, Lars; Wang, Kai; Ishigure, Takaaki; Schröder, Henning; Neitz, Marcel; Worrall, Alex

    2016-03-01

    Embedded optical waveguide technology for optical printed circuit boards (OPCBs) has advanced considerably over the past decade both in terms of materials and achievable waveguide structures. Two distinct classes of planar graded index multimode waveguide have recently emerged based on polymer and glass materials. We report on the suitability of graded index polymer waveguides, fabricated using the Mosquito method, and graded index glass waveguides, fabricated using ion diffusion on thin glass foils, for deployment within future data center environments as part of an optically disaggregated architecture. To this end, we first characterize the wavelength dependent performance of different waveguide types to assess their suitability with respect to two dominant emerging multimode transceiver classes based on directly modulated 850 nm VCSELs and 1310 silicon photonics devices. Furthermore we connect the different waveguide types into an optically disaggregated data storage system and characterize their performance with respect to different common high speed data protocols used at the intra and inter rack level including 10 Gb Ethernet and Serial Attached SCSI.

  11. Acrylic and metal based Y-branch plastic optical fiber splitter with optical NOA63 polymer waveguide taper region

    NASA Astrophysics Data System (ADS)

    Ehsan, Abang Annuar; Shaari, Sahbudin; Rahman, Mohd Kamil Abd.

    2011-01-01

    We proposed a simple low-cost acrylic and metal-based Y-branch plastic optical fiber (POF) splitter which utilizes a low cost optical polymer glue NOA63 as the main waveguiding medium at the waveguide taper region. The device is composed of three sections: an input POF waveguide, a middle waveguide taper region and output POF waveguides. A desktop high speed CNC engraver is utilized to produce the mold inserts used for the optical devices. Short POF fibers are inserted into the engraved slots at the input and output ports. UV curable optical polymer glue NOA63 is injected into the waveguide taper region and cured. The assembling is completed when the top plate is positioned to enclose the device structure and connecting screws are secured. Both POF splitters have an average insertion loss of 7.8 dB, coupling ratio of 55: 45 and 57: 43 for the acrylic and metal-based splitters respectively. The devices have excess loss of 4.82 and 4.73 dB for the acrylic and metal-based splitters respectively.

  12. Photorefractive waveguides in oxide crystals: fabrication, properties, and applications

    NASA Astrophysics Data System (ADS)

    Kip, D.

    1998-08-01

    In several oxide crystals the refractive index can be changed by inhomogeneous illumination, and these photorefractive properties have allowed for a wide variety of applications in optical data storage and dynamic holography. The high light intensities that are inherent in waveguide geometries make it relatively easy to observe photorefractive effects in waveguide structures, too. On the one hand, these effects are feared as optical damage, as they can degrade the performance of integrated optical devices. On the other hand, optical wave mixing in photorefractive waveguides is of considerable interest for the development of nonlinear optical components. A review of the results of recent research on the fabrication, investigation, and applications of photorefractive waveguides is given. The formation and photorefractive properties of LiNbO3, LiTaO3, BaTiO3, KNbO3, SrxBa1-xNb2O6 (0.25hxА.75, SBN), and Bi12(Si,Ti,Ge)O20 (BSO, BTO, BGO) waveguides are discussed. Furthermore, the suitability of photorefractive waveguides for nonlinear optical components is demonstrated in some examples.

  13. Integrated narrowband optical filter based on embedded subwavelength resonant grating structures

    DOEpatents

    Grann, Eric B.; Sitter, Jr., David N.

    2000-01-01

    A resonant grating structure in a waveguide and methods of tuning the performance of the grating structure are described. An apparatus includes a waveguide; and a subwavelength resonant grating structure embedded in the waveguide. The systems and methods provide advantages including narrowband filtering capabilities, minimal sideband reflections, spatial control, high packing density, and tunability.

  14. Microfiber Optical Sensors: A Review

    PubMed Central

    Lou, Jingyi; Wang, Yipei; Tong, Limin

    2014-01-01

    With diameter close to or below the wavelength of guided light and high index contrast between the fiber core and the surrounding, an optical microfiber shows a variety of interesting waveguiding properties, including widely tailorable optical confinement, evanescent fields and waveguide dispersion. Among various microfiber applications, optical sensing has been attracting increasing research interest due to its possibilities of realizing miniaturized fiber optic sensors with small footprint, high sensitivity, fast response, high flexibility and low optical power consumption. Here we review recent progress in microfiber optical sensors regarding their fabrication, waveguide properties and sensing applications. Typical microfiber-based sensing structures, including biconical tapers, optical gratings, circular cavities, Mach-Zehnder interferometers and functionally coated/doped microfibers, are summarized. Categorized by sensing structures, microfiber optical sensors for refractive index, concentration, temperature, humidity, strain and current measurement in gas or liquid environments are reviewed. Finally, we conclude with an outlook for challenges and opportunities of microfiber optical sensors. PMID:24670720

  15. Polymer electro-optic waveguide devices: Low-loss etchless fabrication techniques and passive-to-active integration

    NASA Astrophysics Data System (ADS)

    Geary, Kevin

    The development of high-frequency polymer electro-optic modulators has seen steady and significant progress in recent years, yet applications of these promising materials to more complicated integrated optic structures and arrays of devices have been limited primarily due to high optical waveguide loss characteristics. This is unfortunate since a major advantage of polymers as photonic materials is their compatibility with photolithographic processing of large components. In this Dissertation, etchless waveguide writing techniques are presented in order to improve the overall optical insertion loss of electro-optic polymer waveguide devices. These techniques include poling-induced writing, stress-induced waveguide writing, and photobleaching. Using these waveguide writing mechanisms, we have demonstrated straight waveguides, phase modulators, Mach-Zehnder intensity modulators, variable optical attenuators, and multimode interference (MMI) power splitters, all with improved loss characteristics over their etched rib waveguide counterparts. Ultimately, the insertion loss of an integrated optic device is limited by the actual material loss of the core waveguide material. In this Dissertation, passive-to-active polymer waveguide transitions are proposed to circumvent this problem. These transitions are compact, in-plane, self-aligned, and require no tapering of any physical dimensions of the waveguides. By utilizing both the time-dependent and intensity-dependent photobleaching characteristics of electro-optic polymer materials, adiabatic refractive index tapers can be seamlessly coupled to in-plane butt couple transitions, resulting in losses as low as 0.1 dB per interface. By integrating passive polymer planar lightwave circuits with the high-speed phase shifting capability of electro-optic polymers, active wideband photonic devices of increased size and complexity can be realized. Optical fiber-to-device coupling can also result in significant contributions to the overall insertion loss of an integrated electro-optic polymer device. In this Dissertation, we leverage the photobleached refractive index taper component of our proposed passive-to-active polymer waveguide transitions in order to realize a two-dimensional optical mode transformer for improved overall fiber-to-device coupling of electro-optic polymer waveguide devices.

  16. On-chip optical mode conversion based on dynamic grating in photonic-phononic hybrid waveguide

    PubMed Central

    Chen, Guodong; Zhang, Ruiwen; Sun, Junqiang

    2015-01-01

    We present a scheme for reversible and tunable on-chip optical mode conversion based on dynamic grating in a hybrid photonic-phononic waveguide. The dynamic grating is built up through the acousto-optic effect and the theoretical model of the optical mode conversion is developed by considering the geometrical deformation and refractive index change. Three kinds of mode conversions are able to be realized using the same hybrid waveguide structure in a large bandwidth by only changing the launched acoustic frequency. The complete mode conversion can be achieved by choosing a proper acoustic power under a given waveguide length. PMID:25996236

  17. Propagation of eigenmodes and transfer functions in waveguide WDM structures

    NASA Astrophysics Data System (ADS)

    Mashkov, Vladimir A.; Francoeur, S.; Geuss, U.; Neiser, K.; Temkin, Henryk

    1998-02-01

    A method of propagation functions and transfer amplitudes suitable for the design of integrated optical circuits is presented. The method is based on vectorial formulation of electrodynamics: the distributions and propagation of electromagnetic fields in optical circuits is described by equivalent surface sources. This approach permits a division of complex optical waveguide structures into sets of primitive blocks and to separately calculate the transfer function and the transfer amplitude for each block. The transfer amplitude of the entire optical system is represented by a convolution of transfer amplitudes of its primitive blocks. The eigenvalues and eigenfunctions of arbitrary waveguide structure are obtained in the WKB approximation and compared with other methods. The general approach is illustrated with the transfer amplitude calculations for Dragone's star coupler and router.

  18. Design of a hybrid As₂S₃-Ti:LiNbO₃ optical waveguide for phase-matched difference frequency generation at mid-infrared.

    PubMed

    Wang, Xin; Madsen, Christi K

    2014-11-03

    Based on arsenic tri-sulfide films on titanium-diffused lithium niobate, we designed a hybrid optical waveguide for efficient mid-infrared emission by phase-matched difference frequency generation (DFG). The hybrid waveguide structure possesses a low-index magnesium fluoride buffer layer sandwiched between two high-index As(2)S(3) slabs, so that pump and signal waves are tightly confined by titanium-diffused waveguide while the DFG output idler wave at mid-infrared is confined by the whole hybrid waveguide structure. On a 1 mm-long hybrid waveguide pumped at 50 mW powers, a normalized power conversion efficiency of 20.52%W(-1)cm(-2) was theoretically predicted, which is the highest record for mid-infrared DFG waveguides based on lithium niobate crystal, to the best of our knowledge. Using a tunable near-infrared pump laser at 1.38-1.47 µm or a tunable signal laser at 1.95-2.15 µm, a broad mid-infrared tuning range from 4.0 µm to 4.9 µm can be achieved. Such hybrid optical waveguides are feasible for mid-infrared emission with mW powers and sub-nanometer linewidths.

  19. Design of a compact static Fourier transform spectrometer in integrated optics based on a leaky loop structure.

    PubMed

    Martin, Bruno; Morand, Alain; Benech, Pierre; Leblond, Gregory; Blaize, Sylvain; Lerondel, Gilles; Royer, Pascal; Kern, Pierre; Le Coarer, Etienne

    2009-01-15

    A compact static Fourier transform spectrometer for integrated optics is proposed. It is based on a plane leaky loop structure combined with a plane waveguide. The interference pattern produced in the loop structure leaks outside of it and is guided in the plane waveguide to the photodetector array. This configuration allows one to control the shape of the field pattern at the end of the plane waveguide. A large fringe pattern with a high interference fringe contrast is obtained. A two-dimensional model based on an aperiodic Fourier modal method is used to modelize the coupling between the bent and the plane waveguides, completed with the Helmholtz-Kirchhoff propagation. This concept gives access to plan and compact spectrometers requiring only a single low-cost realization process step. The simulation has been done to realize a spectrometer in glass integrated optics (Deltalambda=6.1 nm at 1500 nm).

  20. FIBER AND INTEGRATED OPTICS: Integrated optical passive ring resonator for optical gyroscopes

    NASA Astrophysics Data System (ADS)

    Baĭborodin, Yu V.; Dyadin, S. S.; Lyadenko, A. F.; Mashchenko, A. I.; Ul'yanov, I. A.; Fatin, Yu L.

    1992-02-01

    A passive ring resonator based on channel waveguides, formed in a K8 glass substrate by diffusion ion exchange in molten potassium nitrate, was made and investigated. The waveguide structure of the resonator included a ring waveguide as well as two Y-type couplers, whose symmetric arms were coupled to the ring waveguide, whereas homogeneous arms were coupled to an external laser and a photodetector. The coupling of the external devices to the channel waveguides was implemented by prisms and butt (end face) contacts. The transfer function of the ring resonator was determined experimentally in order to illustrate its resonant properties and sharpness. Estimates were obtained of the ultimate sensitivity of an optical gyroscope utilizing a ring resonator with the properties described above and ways of improving this sensitivity were analyzed.

  1. Efficient transportation of nano-sized particles along slotted photonic crystal waveguide.

    PubMed

    Lin, Pin-Tso; Lee, Po-Tsung

    2012-01-30

    We design a slotted photonic crystal waveguide (S-PhCW) and numerically propose that it can efficiently transport polystyrene particle with diameter as small as 50 nm in a 100 nm slot. Excellent optical confinement and slow light effect provided by the photonic crystal structure greatly enhance the optical force exerted on the particle. The S-PhCW can thus transport the particle with optical propulsion force as strong as 5.3 pN/W, which is over 10 times stronger than that generated by the slotted strip waveguide (S-SW). In addition, the vertical optical attraction force induced in the S-PhCW is over 2 times stronger than that of the S-SW. Therefore, the S-PhCW transports particles not only efficiently but also stably. We anticipate this waveguide structure will be beneficial for the future lab-on-chip development.

  2. Metal slit array Fresnel lens for wavelength-scale optical coupling to nanophotonic waveguides.

    PubMed

    Jung, Young Jin; Park, Dongwon; Koo, Sukmo; Yu, Sunkyu; Park, Namkyoo

    2009-10-12

    We propose a novel metal slit array Fresnel lens for wavelength-scale optical coupling into a nanophotonic waveguide. Using the plasmonic waveguide structure in Fresnel lens form, a much wider beam acceptance angle and wavelength-scale working distance of the lens was realized compared to a conventional dielectric Fresnel lens. By applying the plasmon waveguide dispersion relation to a phased antenna array model, we also develop and analyze design rules and parameters for the suggested metal slit Fresnel lens. Numerical assessment of the suggested structure shows excellent coupling efficiency (up to 59%) of the 10 mum free-space Gaussian beam to the 0.36 mum Si waveguide within a working distance of a few mum.

  3. Waveguide bends from nanometric silica wires

    NASA Astrophysics Data System (ADS)

    Tong, Limin; Lou, Jingyi; Mazur, Eric

    2005-02-01

    We propose to use bent silica wires with nanometric diameters to guide light as optical waveguide bend. We bend silica wires with scanning tunneling microscope probes under an optical microscope, and wire bends with bending radius smaller than 5 μm are obtained. Light from a He-Ne laser is launched into and guided through the wire bends, measured bending loss of a single bend is on the order of 1 dB. Brief introductions to the optical wave guiding and elastic bending properties of silica wires are also provided. Comparing with waveguide bends based on photonic bandgap structures, the waveguide bends from silica nanometric wires show advantages of simple structure, small overall size, easy fabrication and wide useful spectral range, which make them potentially useful in the miniaturization of photonic devices.

  4. Fabrication and Characterization of Thin Film Ion Implanted Composite Materials for Integrated Nonlinear Optical Devices

    NASA Technical Reports Server (NTRS)

    Sarkisov, S.; Curley, M.; Williams, E. K.; Wilkosz, A.; Ila, D.; Poker, D. B.; Hensley, D. K.; Smith, C.; Banks, C.; Penn, B.; hide

    1998-01-01

    Ion implantation has been shown to produce a high density of metal colloids within the layer regions of glasses and crystalline materials. The high-precipitate volume fraction and small size of metal nanoclusters formed leads to values for the third-order susceptibility much greater than those for metal doped solids. This has stimulated interest in use of ion implantation to make nonlinear optical materials. On the other side, LiNbO3 has proved to be a good material for optical waveguides produced by MeV ion implantation. Light confinement in these waveguides is produced by refractive index step difference between the implanted region and the bulk material. Implantation of LiNbO3 with MeV metal ions can therefore result into nonlinear optical waveguide structures with great potential in a variety of device applications. We describe linear and nonlinear optical properties of a waveguide structure in LiNbO3-based composite material produced by silver ion implantation in connection with mechanisms of its formation.

  5. Forecast analysis of optical waveguide bus performance

    NASA Technical Reports Server (NTRS)

    Ledesma, R.; Rourke, M. D.

    1979-01-01

    Elements to be considered in the design of a data bus include: architecture; data rate; modulation, encoding, detection; power distribution requirements; protocol, work structure; bus reliability, maintainability; interterminal transmission medium; cost; and others specific to application. Fiber- optic data bus considerations for a 32 port transmissive star architecture, are discussed in a tutorial format. General optical-waveguide bus concepts, are reviewed. The electrical and optical performance of a 32 port transmissive star bus, and the effects of temperature on the performance of optical-waveguide buses are examined. A bibliography of pertinent references and the bus receiver test results are included.

  6. A submillimeter tripler using a quasi-waveguide structure

    NASA Technical Reports Server (NTRS)

    Erickson, Neal R.; Cortes-Medellin, German

    1992-01-01

    A new type of frequency multiplier structure is being developed which is suitable for application at frequencies above 1 THz. This structure preserves some of the properties of waveguide for mode control, yet is not truly single mode. The device resembles a sectoral horn, with a varactor diode mounted near the throat. Input and output coupling are through the same aperture, requiring a quasi-optical diplexer. Initial tests are directed at building a tripler at 500 GHz, for comparison with waveguide structures. The diplexer is a blazed diffraction grating with appropriate focusing optics. Model studies show that the impedance match to a varactor should be good, and initial tests of the beam patterns of the prototype indicate that optical coupling efficiency should be very high. The structure also has the potential for use as a fundamental mixer, or as a third harmonic mixer.

  7. Optical temperature sensing on flexible polymer foils

    NASA Astrophysics Data System (ADS)

    Sherman, Stanislav; Xiao, Yanfen; Hofmann, Meike; Schmidt, Thomas; Gleissner, Uwe; Zappe, Hans

    2016-04-01

    In contrast to established semiconductor waveguide-based or glass fiber-based integrated optical sensors, polymerbased optical systems offer tunable material properties, such as refractive index or viscosity, and thus provide additional degrees of freedom for sensor design and fabrication. Of particular interest in sensing applications are fully-integrated optical waveguide-based temperature sensors. These typically rely on Bragg gratings which induce a periodic refractive index variation in the waveguide so that a resonant wavelength of the structure is reflected.1,2 With broad-band excitation, a dip in the spectral output of the waveguide is thus generated at a precisely-defined wavelength. This resonant wavelength depends on the refractive index of the waveguide and the grating period, yet both of these quantities are temperature dependent by means of the thermo-optic effect (change in refractive index with temperature) and thermal expansion (change of the grating period with temperature). We show the design and fabrication of polymer waveguide-integrated temperature sensors based on Bragggratings, fabricated by replication technology on flexible PMMA foil substrates. The 175 μm thick foil serves as lower cladding for a polymeric waveguide fabricated from a custom-made UV-crosslinkable co-monomer composition. The fabrication of the grating structure includes a second replication step into a separate PMMA-foil. The dimensions of the Bragg-gratings are determined by simulations to set the bias point into the near infrared wavelength range, which allows Si-based detectors to be used. We present design considerations and performance data for the developed structures. The resulting sensor's signal is linear to temperature changes and shows a sensitivity of -306 nm/K, allowing high resolution temperature measurements.

  8. The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure

    NASA Astrophysics Data System (ADS)

    Sun, Feiying; Xia, Liangping; Nie, Changbin; Shen, Jun; Zou, Yixuan; Cheng, Guiyu; Wu, Hao; Zhang, Yong; Wei, Dongshan; Yin, Shaoyun; Du, Chunlei

    2018-04-01

    All-optical modulators based on graphene show great promise for on-chip optical interconnects. However, the modulation performance of all-optical modulators is usually based on the interaction between graphene and the fiber, limiting their potential in high integration. Based on this point, an all-optical modulator in a dielectric-loaded waveguide (DLW) with a graphene-silicon heterojunction structure (GSH) is proposed. The DLW raises the waveguide mode, which provides a strong light-graphene interaction. Sufficient tuning of the graphene Fermi energy beyond the Pauli blocking effect is obtained with the presented GSH structure. Under the modulation light with a wavelength of 532 nm and a power of 60 mW, a modulation efficiency of 0.0275 dB µm-1 is achieved for light with a communication wavelength of 1.55 µm in the experiment. This modulator has the advantage of having a compact footprint, which may make it a candidate for achieving a highly integrated all-optical modulator.

  9. Characterizations of SiN and AlN microfabricated waveguides for evanescent-field atom-trap applications

    NASA Astrophysics Data System (ADS)

    Lee, Jongmin; Eichenfield, Matt; Douglas, Erica; Mudrick, John; Biedermann, Grant; Jau, Yuan-Yu

    2017-04-01

    Trapping neutral atoms in the evanescent fields generated by microfabricated nano-waveguides will provide a new platform for neutral atom quantum controls via strong atom-photon interactions. At Sandia National Labs, we are aiming at developing the related technology that can enable the efficient optical coupling to the waveguide at multiple wavelengths, fabrication nano-waveguides to handle required optical power, more robust waveguide structure, and the new fabrication geometry to facilitate the cold-atom experiments. We will report our latest results on the related subjects. Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.

  10. Polarization modulation based on the hybrid waveguide of graphene sandwiched structure

    NASA Astrophysics Data System (ADS)

    Yang, Junbo; Chen, Dingbo; Zhang, Jingjing; Zhang, Zhaojian; Huang, Jie

    2017-09-01

    Polarization beam splitter (PBS) plays an important role to realize beam control and modulation. A novel hybrid structure of graphene sandwiched waveguide is proposed to fulfill polarization manipulation and selection based on the refractive index engineering techniques. The fundamental mode of TM cannot be supported in this case. However, both TE and TM mode are excited and transmitting in the hybrid waveguide if the design parameters, including the waveguide width and the waveguide height, are changed. The incident wavelength largely affects the effective index, which results in supporting/not supporting the TM mode. The proposed design exhibits high extinction ratio, compact in size, flexible to control, compatible with CMOS process, and easy to be integrated with other optoelectronic devices, allowing it to be used in optical communication and optical information processing.

  11. Influence of pump-field scattering on nonclassical-light generation in a photonic-band-gap nonlinear planar waveguide

    NASA Astrophysics Data System (ADS)

    Peřina, Jan, Jr.; Sibilia, Concita; Tricca, Daniela; Bertolotti, Mario

    2005-04-01

    Optical parametric process occurring in a nonlinear planar waveguide can serve as a source of light with nonclassical properties. The properties of the generated fields are substantially modified by scattering of the nonlinearly interacting fields in a photonic-band-gap structure inside the waveguide. A general quantum model of linear operator amplitude corrections to the amplitude mean values and its numerical analysis provide conditions for efficient squeezed-light generation as well as generation of light with sub-Poissonian photon-number statistics. The destructive influence of phase mismatch of the nonlinear interaction can fully be compensated using a suitable photonic-band-gap structure inside the waveguide. Also an increase of the signal-to-noise ratio of the incident optical field can be reached in the waveguide.

  12. Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands.

    PubMed

    Tyszka-Zawadzka, Anna; Janaszek, Bartosz; Szczepański, Paweł

    2017-04-03

    The tunability of slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands is investigated. For the first time it has been shown that proper design of a GHMM structure forming waveguide layer and the geometry of the waveguide itself allows stopped light to be obtained in an almost freely selected range of wavelengths within SCLU bands. In particular, the possibility of controlling light propagation in GHMM waveguides by external biasing has been presented. The change of external electric field enables the stop light of the selected wavelength as well as the control of a number of modes, which can be stopped, cut off or supported. Proposed GHMM waveguides could offer great opportunities in the field of integrated photonics that are compatible with CMOS technology, especially since such structures can be utilized as photonic memory cells, tunable optical buffers, delays, optical modulators etc.

  13. A systematic optimization of design parameters in strained silicon waveguides to further enhance the linear electro-optic effect

    NASA Astrophysics Data System (ADS)

    Olivares, Irene; Angelova, Todora I.; Pinilla-Cienfuegos, Elena; Sanchis, Pablo

    2016-05-01

    The electro-optic Pockels effect may be generated in silicon photonics structures by breaking the crystal symmetry by means of a highly stressing cladding layer (typically silicon nitride, SiN) deposited on top of the silicon waveguide. In this work, the influence of the waveguide parameters on the strain distribution and its overlap with the optical mode to enhance the Pockels effect has been analyzed. The optimum waveguide structure have been designed based on the definition and quantification of a figure of merit. The fabrication of highly stressing SiN layers by PECVD has also been optimized to characterize the designed structures. The residual stress has been controlled during the growth process by analyzing the influence of the main deposition parameters. Therefore, two identical samples with low and high stress conditions were fabricated and electro-optically characterized to test the induced Pockels effect and the influence of carrier effects. Electro-optical modulation was only measured in the sample with the high stressing SiN layer that could be attributed to the Pockels effect. Nevertheless, the influence of carriers were also observed thus making necessary additional experiments to decouple both effects.

  14. On-chip non-reciprocal optical devices based on quantum inspired photonic lattices

    NASA Astrophysics Data System (ADS)

    El-Ganainy, R.; Eisfeld, A.; Levy, Miguel; Christodoulides, D. N.

    2013-10-01

    We propose integrated optical structures that can be used as isolators and polarization splitters based on engineered photonic lattices. Starting from optical waveguide arrays that mimic Fock space (quantum state with a well-defined particle number) representation of a non-interacting two-site Bose Hubbard Hamiltonian, we show that introducing magneto-optic nonreciprocity to these structures leads to a superior optical isolation performance. In the forward propagation direction, an input TM polarized beam experiences a perfect state transfer between the input and output waveguide channels while surface Bloch oscillations block the backward transmission between the same ports. Our analysis indicates a large isolation ratio of 75 dB after a propagation distance of 8 mm inside seven coupled waveguides. Moreover, we demonstrate that, a judicious choice of the nonreciprocity in this same geometry can lead to perfect polarization splitting.

  15. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhaoyi; Kim, Myoung -Hwan; Wang, Cheng

    Here, research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-lossmore » photonic integrated devices.« less

  16. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces

    DOE PAGES

    Li, Zhaoyi; Kim, Myoung -Hwan; Wang, Cheng; ...

    2017-04-17

    Here, research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-lossmore » photonic integrated devices.« less

  17. FIBER AND INTEGRATED OPTICS: Directional pattern and other output properties of a quantum-well injection laser for the 780-nm spectral region

    NASA Astrophysics Data System (ADS)

    Davydova, Evgeniya I.; Drakin, A. E.; Eliseev, P. G.; Pak, G. T.; Popovichev, V. V.; Uspenskiĭ, M. B.; Khlopotin, S. E.; Shishkin, Viktor A.

    1992-10-01

    An optical model is constructed for a GaAlAs/GaAs stripe-geometry laser heterostructure with a ridge-waveguide configuration in the p-type emitter layer. This waveguide configuration provides lateral optical confinement. The directional characteristics of the output are found as a function of the parameters of the structure. The quantum-well active layer is in a three-layer waveguide (in a separate-confinement structure). Laser structures were fabricated experimentally by MOCVD epitaxy followed by ion-chemical etching and vacuum deposition of zinc selenide on the mesa stripes. Low-threshold lasers with a cw, single-frequency power up to 40 μW were obtained. In single-spatial-mode operation, a power up to 80 μW was achieved at a wavelength of 780 nm. Windows of ZnSe were grown on the laser facets to improve the optical strength.

  18. Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide

    NASA Astrophysics Data System (ADS)

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Jeong Kim, Un; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won

    2015-07-01

    We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a “plasmonic via” in plasmonic nanocircuits.

  19. Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide.

    PubMed

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Kim, Un Jeong; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won

    2015-07-02

    We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a "plasmonic via" in plasmonic nanocircuits.

  20. Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide

    PubMed Central

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Jeong Kim, Un; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won

    2015-01-01

    We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a “plasmonic via” in plasmonic nanocircuits. PMID:26135115

  1. Buried anti resonant reflecting optical waveguide based on porous silicon material for an integrated Mach Zehnder structure

    NASA Astrophysics Data System (ADS)

    Hiraoui, M.; Guendouz, M.; Lorrain, N.; Haji, L.; Oueslati, M.

    2012-11-01

    A buried anti resonant reflecting optical waveguide for an integrated Mach Zehnder structure based on porous silicon material is achieved using a classical photolithography process. Three distinct porous silicon layers are then elaborated in a single step, by varying the porosity (thus the refractive index) and the thickness while respecting the anti-resonance conditions. Simulations and experimental results clearly show the antiresonant character of the buried waveguides. Significant variation of the reflectance and light propagation with different behavior depending on the polarization and the Mach Zehnder dimensions is obtained. Finally, we confirm the feasibility of this structure for sensing applications.

  2. Polished polymide substrate

    DOEpatents

    Farah, John; Sudarshanam, Venkatapuram S.

    2003-05-13

    Polymer substrates, in particular polyimide substrates, and polymer laminates for optical applications are described. Polyimide substrates are polished on one or both sides depending on their thickness, and single-layer or multi-layer waveguide structures are deposited on the polished polyimide substrates. Optical waveguide devices are machined by laser ablation using a combination of IR and UV lasers. A waveguide-fiber coupler with a laser-machined groove for retaining the fiber is also disclosed.

  3. Femtosecond writing of near-surface waveguides in lithium niobate for low-loss electro-optical modulators of broadband emission

    NASA Astrophysics Data System (ADS)

    Bukharin, Mikhail A.; Skryabin, Nikolay N.; Khudyakov, Dmitriy V.; Vartapetov, Sergey K.

    2016-05-01

    In the investigation we demonstrated technique of direct femtosecond laser writing of tracks with induced refractive index at record low depth under surface of lithium niobate (3-15 μm). It was shown that with the help of proposed technique one can be written claddings of near surface optical waveguides that plays a key role in fabrication of fast electro-optical modulators with low operating voltage. Fundamental problem resolved in the investigation consists in suppression of negative factors impeding femtosecond inscription of waveguides at low depths. To prevent optical breakdown of crystal surface we used high numerical aperture objectives for focusing of light. It was shown, that advanced heat accumulation regime of femtosecond inscription is inapplicable for writing of near-surface waveguides, and near the surface waveguides should be written in non-thermal regime in contrast to widespread femtosecond writing at depths of tens micrometers. Inscribed waveguides were examined for optical losses and polarization properties. It was experimentally shown, that femtosecond written near surface waveguides have such advantages over widely used proton exchanged and Ti-diffusion waveguides as lower optical losses (down to 0.3 dB/cm) and maintaining of all polarization states of propagation light, which is crucial for development of electro-optical modulators for broadband and ultrashort laser emission. Novelty of the results consists in technique of femtosecond inscription of waveguides at record low depths under the surface of crystals. As compared to previous investigations in the field (structures at depths near 50 um with buried electrodes), the obtained waveguides could be used with simple closely adjacent on-surface electrodes.

  4. Electrical Transfer Function and Poling Mechanisms for Nonlinear Optical Polymer Modulators

    NASA Technical Reports Server (NTRS)

    Watson, Michael Dale

    2004-01-01

    Electro-Optic Polymers hold great promise in increased electro-optic coefficients as compared to their inorganic corollaries. Many researchers have focused on quantum chemistry to describe how the dipoles respond to temperature and electric fields. Much work has also been done for single layer films to confirm these results. For optical applications, waveguide structures are utilized to guide the optical waves in 3 layer stacks. Electrode poling is the only practical poling method for these structures. This research takes an electrical engineering approach to develop poling models and electrical and optical transfer functions of the waveguide structure. The key aspect of the poling model is the large boundary charge density deposited during the poling process. The boundary charge density also has a large effect on the electrical transfer function which is used to explain the transient response of the system. These models are experimentally verified. Exploratory experiment design is used to study poling parameters including time, temperature, and voltage. These studies verify the poling conditions for CLDX/APC and CLDZ/APEC guest host electro optic polymer films in waveguide stacks predicted by the theoretical developments.

  5. Perforated hollow-core optical waveguides for on-chip atomic spectroscopy and gas sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giraud-Carrier, M., E-mail: mgeecee@byu.edu; Hill, C.; Decker, T.

    2016-03-28

    A hollow-core waveguide structure for on-chip atomic spectroscopy is presented. The devices are based on Anti-Resonant Reflecting Optical Waveguides and may be used for a wide variety of applications which rely on the interaction of light with gases and vapors. The designs presented here feature short delivery paths of the atomic vapor into the hollow waveguide. They also have excellent environmental stability by incorporating buried solid-core waveguides to deliver light to the hollow cores. Completed chips were packaged with an Rb source and the F = 3 ≥ F′ = 2, 3, 4 transitions of the D2 line in {sup 85}Rb were monitored formore » optical absorption. Maximum absorption peak depths of 9% were measured.« less

  6. High intersubband absorption in long-wave quantum well infrared photodetector based on waveguide resonance

    NASA Astrophysics Data System (ADS)

    Zheng, Yuanliao; Chen, Pingping; Ding, Jiayi; Yang, Heming; Nie, Xiaofei; Zhou, Xiaohao; Chen, Xiaoshuang; Lu, Wei

    2018-06-01

    A hybrid structure consisting of periodic gold stripes and an overlaying gold film has been proposed as the optical coupler of a long-wave quantum well infrared photodetector. Absorption spectra and field distributions of the structure at back-side normal incidence are calculated by the finite difference time-domain method. The results indicate that the intersubband absorption can be greatly enhanced based on the waveguide resonance as well as the surface plasmon polariton (SPP) mode. With the optimized structural parameters of the periodic gold stripes, the maximal intersubband absorption can exceed 80%, which is much higher than the SPP-enhanced intersubband absorption (<50%) and about 6 times the one of the standard device. The relationship between the structural parameters and the waveguide resonant wavelength is derived. Other advantages of the efficient optical coupling based on waveguide resonance are also discussed.

  7. Modes in light wave propagating in semiconductor laser

    NASA Technical Reports Server (NTRS)

    Manko, Margarita A.

    1994-01-01

    The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.

  8. On-chip photonic-phononic emitter-receiver apparatus

    DOEpatents

    Cox, Jonathan Albert; Jarecki, Jr., Robert L.; Rakich, Peter Thomas; Wang, Zheng; Shin, Heedeuk; Siddiqui, Aleem; Starbuck, Andrew Lea

    2017-07-04

    A radio-frequency photonic devices employs photon-phonon coupling for information transfer. The device includes a membrane in which a two-dimensionally periodic phononic crystal (PnC) structure is patterned. The device also includes at least a first optical waveguide embedded in the membrane. At least a first line-defect region interrupts the PnC structure. The first optical waveguide is embedded within the line-defect region.

  9. An acousto-optic sensor based on resonance grating waveguide structure

    PubMed Central

    Xie, Antonio Jou; Song, Fuchuan; Seo, Sang-Woo

    2014-01-01

    This paper presents an acousto-optic (AO) sensor based on resonance grating waveguide structure. The sensor is fabricated using elastic polymer materials to achieve a good sensitivity to ultrasound pressure waves. Ultrasound pressure waves modify the structural parameters of the sensor and result in the optical resonance shift of the sensor. This converts into a light intensity modulation. A commercial ultrasound transducer at 20 MHz is used to characterize a fabricated sensor and detection sensitivity at different optical source wavelength within a resonance spectrum is investigated. Practical use of the sensor at a fixed optical source wavelength is presented. Ultimately, the geometry of the planar sensor structure is suitable for two-dimensional, optical pressure imaging applications such as pressure wave detection and mapping, and ultrasound imaging. PMID:25045203

  10. Structural and optical studies of porous silicon buried waveguides: Effects of oxidation and pore filling using DR1 dyes

    NASA Astrophysics Data System (ADS)

    Charrier, J.; Kloul, M.; Pirasteh, P.; Bardeau, J.-F.; Guendouz, M.; Bulou, A.; Haji, L.

    2007-11-01

    This paper deals with the structural and optical properties of buried waveguides manufactured from mesoporous silicon films (as-formed porous silicon layers, after oxidation, after filling with active DR1 dyes). It is shown that the oxidation process only induced a weak morphology transformation. The 2D profiles of cross-sections of the waveguides by micro-Raman mapping were done in order to check the oxidation rate and to probe the DR1 filling of the layers. This latter appeared homogeneous but surprisingly is greater in the weaker porosity layer. The light propagation through these different waveguides was observed and losses were measured and analyzed. The losses decreased after oxidation but they increased after filling.

  11. A tunable optofluidic circular liquid fiber

    NASA Astrophysics Data System (ADS)

    Li, Lei; Wu, Wei; Shi, Yang; Gong, Enze; Yang, Yi

    2016-01-01

    This paper presents a tunable optofluidic circular liquid fiber through the numerical simulation. Fiber is a significant optical device and has been widely applied on optical fiber communication. But the fiber based solid has limited tunability. Compared to solid fiber, the fiber based liquid material is relatively infrequent. Cause for the liquid optical device has more freedom tunable properties than solid counterpart, it has attracted more interest. The traditional optofluidic waveguide is designed like a sandwich in planar channel. This two-dimensional (2D) structure liquid waveguide will face huge transmission loss in the perpendicular direction of the flow streams. In this paper, a curving microchannel is designed inside the microchip to produce centrifugal effect. Two different liquids are injected into the chip by external pumps. In a particular situation, the core flow will be totally surrounded by the cladding flow. So the liquid can form an optical waveguide. Its structure is similar to an optical fiber which high refractive index (RI) liquid is core of the waveguide and the low RI liquid is cladding of the waveguide. Profit from the reconfigurability of liquid material, this liquid fiber has excellent tunability. The diameter of the core flow can be tuned in a wider range by changing the volume ratio of the flows through the finite element analysis. It is predictable that such a tunable liquid fiber may find wider applications in lab-on-a-chip systems and integrated optical devices.

  12. Dispersion characteristics of plasmonic waveguides for THz waves

    NASA Astrophysics Data System (ADS)

    Markides, Christos; Viphavakit, Charusluk; Themistos, Christos; Komodromos, Michael; Kalli, Kyriacos; Quadir, Anita; Rahman, Azizur

    2013-05-01

    Today there is an increasing surge in Surface Plasmon based research and recent studies have shown that a wide range of plasmon-based optical elements and techniques have led to the development of a variety of active switches, passive waveguides, biosensors, lithography masks, to name just a few. The Terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, the metal-clad waveguides supporting surface plasmon modes waves and specifically hollow core structures, coated with insulating material are showing the greatest promise as low-loss waveguides for their use in active components and as well as passive waveguides. The H-field finite element method (FEM) based full-vector formulation is used to study the vectorial modal field properties and the complex propagation characteristics of Surface Plasmon modes of a hollow-core dielectric coated rectangular waveguide structure. Additionally, the finite difference time domain (FDTD) method is used to estimate the dispersion parameters and the propagation loss of the rectangular waveguide.

  13. Electrically driven hybrid Si/III-V Fabry-Pérot lasers based on adiabatic mode transformers.

    PubMed

    Ben Bakir, B; Descos, A; Olivier, N; Bordel, D; Grosse, P; Augendre, E; Fulbert, L; Fedeli, J M

    2011-05-23

    We report the first demonstration of an electrically driven hybrid silicon/III-V laser based on adiabatic mode transformers. The hybrid structure is formed by two vertically superimposed waveguides separated by a 100-nm-thick SiO2 layer. The top waveguide, fabricated in an InP/InGaAsP-based heterostructure, serves to provide optical gain. The bottom Si-waveguides system, which supports all optical functions, is constituted by two tapered rib-waveguides (mode transformers), two distributed Bragg reflectors (DBRs) and a surface-grating coupler. The supermodes of this hybrid structure are controlled by an appropriate design of the tapers located at the edges of the gain region. In the middle part of the device almost all the field resides in the III-V waveguide so that the optical mode experiences maximal gain, while in regions near the III-V facets, mode transformers ensure an efficient transfer of the power flow towards Si-waveguides. The investigated device operates under quasi-continuous wave regime. The room temperature threshold current is 100 mA, the side-mode suppression ratio is as high as 20 dB, and the fiber-coupled output power is ~7 mW.

  14. Optical clock signal distribution and packaging optimization

    NASA Astrophysics Data System (ADS)

    Wu, Linghui

    Polymer-based waveguides for optoelectronic interconnects and packagings were fabricated by a fabrication process that is compatible with the Si CMOS packaging process. An optoelectronic interconnection layer (OIL) for the high-speed massive clock signal distribution for the Cray T-90 supercomputer board employing optical multimode channel waveguides in conjunction with surface-normal waveguide grating couplers and a 1-to-2 3 dB splitter was constructed. Equalized optical paths were realized using an optical H-tree structure having 48 optical fanouts. This device could be increased to 64 without introducing any additional complications. A 1-to-48 fanout H-tree structure using Ultradel 9000D series polyimide was fabricated. The propagation loss and splitting loss have been measured as 0.21 dB/cm and 0.4 dB/splitter at 850 nm. The power budget was discussed, and the H-tree waveguide fully satisfies the power budget requirement. A tapered waveguide coupler was employed to match the mode profile between the single-mode fiber and the multimode channel waveguides of the OIL. A thermo-optical based multimode switch was designed, fabricated, and tested. The finite difference method was used to simulate the thermal distribution in the polymer waveguide. Both stable and transient conditions have been calculated. The thermo-optical switch was fabricated and tested. The switching speed of 1 ms was experimentally confirmed, fitting well with the simulation results. Thermo-optic switching for randomly polarized light at wavelengths of 850 nm was experimental confirmed, as was a stable attenuation of 25 dB. The details of tapered waveguide fabrication were investigated. Compression-molded 3-D tapered waveguides were demonstrated for the first time. Not only the vertical depth variation but also the linear dimensions of the molded waveguides were well beyond the limits of what any other conventional waveguide fabrication method is capable of providing. Molded waveguides with vertical depths of 100 mum at one end and 5 mum at the other end and lengths of 1.0 cm were fabricated using a photolime gel polymer. A propagation loss of 0.5 dB/cm was achieved when light was coupled from the 5 mum x 5 mum end to the 100 mum x 100 mum end and that of 1.1 dB/cm was observed when light was coupled from the 100 mum x 100 mum end to the 5 mum x 5 mum. By confining the energy to the fundamental mode when coupling from the large end to the small end, low-loss packaging can be achieved bi-directionally. 3-D compression-molded polymeric waveguides present a promising solution to bridging the huge dynamic range of different optoelectronic device-depths varying from a few microns to several hundred microns.

  15. A Photonic 1 × 4 Power Splitter Based on Multimode Interference in Silicon-Gallium-Nitride Slot Waveguide Structures.

    PubMed

    Malka, Dror; Danan, Yossef; Ramon, Yehonatan; Zalevsky, Zeev

    2016-06-25

    In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)-gallium nitride (GaN) slot waveguide structure is presented-to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM). Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530-1565 nm) into four output ports with low insertion losses (0.07 dB).

  16. Transverse magnetic field impact on waveguide modes of photonic crystals.

    PubMed

    Sylgacheva, Daria; Khokhlov, Nikolai; Kalish, Andrey; Dagesyan, Sarkis; Prokopov, Anatoly; Shaposhnikov, Alexandr; Berzhansky, Vladimir; Nur-E-Alam, Mohammad; Vasiliev, Mikhail; Alameh, Kamal; Belotelov, Vladimir

    2016-08-15

    This Letter presents a theoretical and experimental study of waveguide modes of one-dimensional magneto-photonic crystals magnetized in the in-plane direction. It is shown that the propagation constants of the TM waveguide modes are sensitive to the transverse magnetization and the spectrum of the transverse magneto-optical Kerr effect has resonant features at mode excitation frequencies. Two types of structures are considered: a non-magnetic photonic crystal with an additional magnetic layer on top and a magneto-photonic crystal with a magnetic layer within each period. We found that the magneto-optical non-reciprocity effect is greater in the first case: it has a magnitude of δ∼10-4, while the second structure type demonstrates δ∼10-5 only, due to the higher asymmetry of the claddings of the magnetic layer. Experimental observations show resonant features in the optical and magneto-optical Kerr effect spectra. The measured dispersion properties are in good agreement with the theoretical predictions. An amplitude of light intensity modulation of up to 2.5% was observed for waveguide mode excitation within the magnetic top layer of the non-magnetic photonic crystal structure. The presented theoretical approach may be utilized for the design of magneto-optical sensors and modulators requiring pre-determined spectral features.

  17. Optical fiber endface biosensor based on resonances in dielectric waveguide gratings

    NASA Astrophysics Data System (ADS)

    Wawro, Debra D.; Tibuleac, Sorin; Magnusson, Robert; Liu, Hanli

    2000-05-01

    A new fiber optic sensor integrating dielectric diffraction gratings and thin films on optical fiber endfaces is prosed for biomedical sensing applications. This device utilizes a resonant dielectric waveguide grating structure fabricated on an optical fiber endface to probe reactions occurring in a sensing layer deposited on its surface. The operation of this sensor is based upon a fundamental resonance effect that occurs in waveguide gratings. An incident broad- spectrum signal is guided within an optical fiber and is filtered to reflect or transmit a desired spectral band by the diffractive thin film structure on its endface. Slight changes in one or more parameters of the waveguide grating, such as refractive index or thickness, can result in a responsive shift of the reflected or transmitted spectral peak that can be detected with spectroscopic instruments. This new sensor concept combines improved sensitivity and accuracy with attractive features found separately in currently available fiber optic sensors, such as large dynamic range, small sensing proximity, real time operation, and remote sensing. Diffractive elements of this type consisting of a photoresist grating on a Si3N4 waveguide have been fabricated on multimode optical fiber endfaces with 100 micrometers cores. Preliminary experimental tests using a tunable Ti:sapphire laser indicate notches of 18 percent in the transmission spectrum of the fiber endface guided-mode resonance devices. A theoretical analysis of the device performance capabilities is presented and applied to evaluate the feasibility and potential advantages of this bioprobe.

  18. Nonlinear dynamics of solitary and optically injected two-element laser arrays with four different waveguide structures: a numerical study.

    PubMed

    Li, Nianqiang; Susanto, H; Cemlyn, B R; Henning, I D; Adams, M J

    2018-02-19

    We study the nonlinear dynamics of solitary and optically injected two-element laser arrays with a range of waveguide structures. The analysis is performed with a detailed direct numerical simulation, where high-resolution dynamic maps are generated to identify regions of dynamic instability in the parameter space of interest. Our combined one- and two-parameter bifurcation analysis uncovers globally diverse dynamical regimes (steady-state, oscillation, and chaos) in the solitary laser arrays, which are greatly influenced by static design waveguiding structures, the amplitude-phase coupling factor of the electric field, i.e. the linewidth-enhancement factor, as well as the control parameter, e.g. the pump rate. When external optical injection is introduced to one element of the arrays, we show that the whole system can be either injection-locked simultaneously or display rich, different dynamics outside the locking region. The effect of optical injection is to significantly modify the nature and the regions of nonlinear dynamics from those found in the solitary case. We also show similarities and differences (asymmetry) between the oscillation amplitude of the two elements of the array in specific well-defined regions, which hold for all the waveguiding structures considered. Our findings pave the way to a better understanding of dynamic instability in large arrays of lasers.

  19. Integrated amorphous silicon-aluminum long-range surface plasmon polariton (LR-SPP) waveguides

    NASA Astrophysics Data System (ADS)

    Sturlesi, Boaz; Grajower, Meir; Mazurski, Noa; Levy, Uriel

    2018-03-01

    We demonstrate the design, fabrication, and experimental characterization of a long range surface plasmon polariton waveguide that is compatible with complementary metal-oxide semiconductor backend technology. The structure consists of a thin aluminum strip embedded in amorphous silicon. This configuration offers a symmetric environment in which surface plasmon polariton modes undergo minimal loss. Furthermore, the plasmonic mode profile matches the modes of the dielectric (amorphous silicon) waveguide, thus allowing efficient coupling between silicon photonics and plasmonic platforms. The propagation length of the plasmonic waveguide was measured to be about 27 μm at the telecom wavelength around 1550 nm, in good agreement with numerical simulations. As such, the waveguide features both tight mode confinement and decent propagation length. On top of its photonic properties, placing a metal within the structure may also allow for additional functionalities such as photo-detection, thermo-optic tuning, and electro-optic control to be implemented.

  20. Coupling and Switching in Optically Resonant Periodic Electrode Structures

    NASA Astrophysics Data System (ADS)

    Bieber, Amy Erica

    This thesis describes coupling and switching of optical radiation using metal-semiconductor-metal (MSM) structures, specifically in a metal-on-silicon waveguide configuration. The structures which are the subject of this research have the special advantage of being VLSI -compatible; this is very important for the ultimate acceptance of any integrated optoelectronics technology by the mainstream semiconductor community. To date, research efforts in VLSI electronics, MSM detectors, metal devices, and optical switching have existed as separate entities with decidedly different goals. This work attempts to unite these specialties; an interdigitated array of metal fingers on a silicon waveguide allows for (1) fabrication processes which are well-understood and compatible with current or next-generation semiconductor manufacturing standards, (2) electrical bias capability which can potentially provide modulation, tuning, and enhanced speed, and (3) potentially efficient waveguide coupling which takes advantage of TM coupling. The latter two items are made possible by the use of metallic gratings, which sets this work apart from previous optical switching results. This MSM structure represents an important step in uniting four vital technologies which, taken together, can lead to switching performance and operational flexibility which could substantially advance the capabilities of current optoelectronic devices. Three different designs were successfully used to examine modulation and optical switching based upon nonlinear interactions in the silicon waveguide. First, a traditional Bragg reflector design with input and output couplers on either side was used to observe switching of nanosecond-regime Nd:YAG pulses. This structure was thermally tuned to obtain a variety of switching dynamics. Next, a phase-shift was incorporated into the Bragg reflector, and again thermally-tunable switching dynamics were observed, but with the added advantage of a reduction in the energy requirements for optical switching. Finally, the roles of the coupler and Bragg reflector were combined in a normal -incidence structure which exhibited nonlinear reflectivity modulation. This has not only been the first experimental demonstration of optical switching in a metal-semiconductor waveguide structure, but, to our knowledge, one of the first such demonstrations using a nonlinear phase-shifted or normal incidence grating of any kind.

  1. High efficiency all-optical plasmonic diode based on a nonlinear side-coupled waveguide-cavity structure with broken symmetry

    NASA Astrophysics Data System (ADS)

    Liang, Hong-Qin; Liu, Bin; Hu, Jin-Feng; He, Xing-Dao

    2018-05-01

    An all-optical plasmonic diode, comprising a metal-insulator-metal waveguide coupled with a stub cavity, is proposed based on a nonlinear Fano structure. The key technique used is to break structural spatial symmetry by a simple reflector layer in the waveguide. The spatial asymmetry of the structure gives rise to the nonreciprocity of coupling efficiencies between the Fano cavity and waveguides on both sides of the reflector layer, leading to a nonreciprocal nonlinear response. Transmission properties and dynamic responses are numerically simulated and investigated by the nonlinear finite-difference time-domain method. In the proposed structure, high-efficiency nonreciprocal transmission can be achieved with a low power threshold and an ultrafast response time (subpicosecond level). A high maximum transmittance of 89.3% and an ultra-high transmission contrast ratio of 99.6% can also be obtained. The device can be flexibly adjusted for working wavebands by altering the stub cavity length.

  2. Design and analysis of photonic optical switches with improved wavelength selectivity

    NASA Astrophysics Data System (ADS)

    Wielichowski, Marcin; Patela, Sergiusz

    2005-09-01

    Efficient optical modulators and switches are the key elements of the future all-optical fiber networks. Aside from numerous advantages, the integrated optical devices suffer from excessive longitudinal dimensions. The dimensions may be significantly reduced with help of periodic structures, such as Bragg gratings, arrayed waveguides or multilayer structures. In this paper we describe methods of analysis and example of analytical results of a photonic switch with properties modified by the application of periodic change of effective refractive index. The switch is composed of a strip-waveguide directional coupler and a transversal Bragg grating.

  3. Optical ridge waveguides in Er3+/Yb3+ co-doped phosphate glass produced by ion irradiation combined with femtosecond laser ablation for guided-wave green and red upconversion emissions

    NASA Astrophysics Data System (ADS)

    Chen, Chen; He, Ruiyun; Tan, Yang; Wang, Biao; Akhmadaliev, Shavkat; Zhou, Shengqiang; de Aldana, Javier R. Vázquez; Hu, Lili; Chen, Feng

    2016-01-01

    This work reports on the fabrication of ridge waveguides in Er3+/Yb3+ co-doped phosphate glass by the combination of femtosecond laser ablation and following swift carbon ion irradiation. The guiding properties of waveguides have been investigated at 633 and 1064 nm through end face coupling arrangement. The refractive index profile on the cross section of the waveguide has been constructed. The propagation losses can be reduced considerably after annealing treatment. Under the optical pump laser at 980 nm, the upconversion emission of both green and red fluorescence has been realized through the ridge waveguide structures.

  4. Narrowband resonant transmitter

    DOEpatents

    Hutchinson, Donald P.; Simpson, Marcus L.; Simpson, John T.

    2004-06-29

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  5. Transverse-longitudinal integrated resonator

    DOEpatents

    Hutchinson, Donald P [Knoxville, TN; Simpson, Marcus L [Knoxville, TN; Simpson, John T [Knoxville, TN

    2003-03-11

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  6. Optical waveguiding properties of colloidal quantum dots doped polymer microfibers.

    PubMed

    Yu, Jiahao; Wang, Xiongbin; Chen, Rui

    2018-05-14

    QDs-doped polymer microfibers are fabricated through direct drawing method. By adding the polymethylmethacrylate into polystyrene, the surface quality and flexibility of microfiber are improved. Under direct excitation by the focused laser, the polymer microfibers doped with different quantum dots emit different colors and act as an optical waveguide. The waveguide properties of the microfiber are studied in detail. It is found that refractive index of the substrate and diameter of microfiber are the most important factors that affect the optical loss of this waveguide. The microfiber does not produce significant polarization after being deposited on the substrate. Moreover, exciting the QDs-doped polymer microfiber through a blue LED is demonstrated. This structure may find widespread applications in integrated photonic devices.

  7. Magneto-optical mode conversion in a hybrid glass waveguide made by sol-gel and ion-exchange techniques

    NASA Astrophysics Data System (ADS)

    Royer, François; Amata, Hadi; Parsy, François; Jamon, Damien; Ghibaudo, Elise; Broquin, Jean-Emmanuel; Neveu, Sophie

    2012-01-01

    The integration of magneto-optical materials with classical technologies being still a difficult problem, this study explores the possibility to realize a mode converter based on a hybrid structure. A composite magneto-optical layer made of a silica/zirconia matrix doped by magnetic nanoparticles is coated on the top face of ion-exchanged glass waveguides. Optical characterizations that have been carried out demonstrated the efficiency of these hybrid structures in terms of lateral confinement. Furthermore, TE to TM mode conversion has been observed when a longitudinal magnetic field is applied to the device. The amount of this conversion is analysed taking into account the magneto-optical confinement and the modal birefringence of the structure.

  8. Silicone polymer waveguide bridge for Si to glass optical fibers

    NASA Astrophysics Data System (ADS)

    Kruse, Kevin L.; Riegel, Nicholas J.; Middlebrook, Christopher T.

    2015-03-01

    Multimode step index polymer waveguides achieve high-speed, (<10 Gb/s) low bit-error-rates for onboard and embedded circuit applications. Using several multimode waveguides in parallel enables overall capacity to reach beyond 100 Gb/s, but the intrinsic bandwidth limitations due to intermodal dispersion limit the data transmission rates within multimode waveguides. Single mode waveguides, where intermodal dispersion is not present, have the potential to further improve data transmission rates. Single mode waveguide size is significantly less than their multimode counterparts allowing for greater density of channels leading to higher bandwidth capacity per layer. Challenges in implementation of embedded single mode waveguides within printed circuit boards involves mass production fabrication techniques to create precision dimensional waveguides, precision alignment tolerances necessary to launch a mode, and effective coupling between adjoining waveguides and devices. An emerging need in which single mode waveguides can be utilized is providing low loss fan out techniques and coupling between on-chip transceiver devices containing Si waveguide structures to traditional single mode optical fiber. A polymer waveguide bridge for Si to glass optical fibers can be implemented using silicone polymers at 1310 nm. Fabricated and measured prototype devices with modeling and simulation analysis are reported for a 12 member 1-D tapered PWG. Recommendations and designs are generated with performance factors such as numerical aperture and alignment tolerances.

  9. A novel optical waveguide LP01/LP02 mode converter

    NASA Astrophysics Data System (ADS)

    Shen, Dongya; Wang, Changhui; Ma, Chuan; Mellah, Hakim; Zhang, Xiupu; Yuan, Hong; Ren, Wenping

    2018-07-01

    A novel optical waveguide LP01 /LP02 mode converter is proposed using combination of bicone structure based on the coupled-mode theory. It is composed of a cladding, a tapered core and combined bicone structure. It is found that this mode converter can have operating bandwidth of 1350-1700 nm, i.e. 350 nm, with a conversion efficiency of ∼90% (∼0.5 dB) and low crosstalk from other modes

  10. Optical planar waveguides in photo-thermal-refractive glasses fabricated by single- or double-energy carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Shen, Xiao-Liang; Zheng, Rui-Lin; Guo, Hai-Tao; Lv, Peng; Liu, Chun-Xiao

    2018-01-01

    Ion implantation has demonstrated to be an efficient and reliable technique for the fabrication of optical waveguides in a diversity of transparent materials. Photo-thermal-refractive glass (PTR) is considered to be durable and stable holographic recording medium. Optical planar waveguide structures in the PTR glasses were formed, for the first time to our knowledge, by the C3+-ion implantation with single-energy (6.0 MeV) and double-energy (5.5+6.0 MeV), respectively. The process of the carbon ion implantation was simulated by the stopping and range of ions in matter code. The morphologies of the waveguides were recorded by a microscope operating in transmission mode. The guided beam distributions of the waveguides were measured by the end-face coupling technique. Comparing with the single-energy implantation, the double-energy implantation improves the light confinement for the dark-mode spectrum. The guiding properties suggest that the carbon-implanted PTR glass waveguides have potential for the manufacture of photonic devices.

  11. Optical properties of amorphous Ba0.7Sr0.3TiO3 thin films obtained by metal organic decomposition technique

    NASA Astrophysics Data System (ADS)

    Qiu, Fei; Xu, Zhimou

    2009-08-01

    In this study, the amorphous Ba0.7Sr0.3TiO3 (BST0.7) thin films were grown onto fused quartz and silicon substrates at low temperature by using a metal organic decomposition (MOD)-spin-coating procedure. The optical transmittance spectrum of amorphous BST0.7 thin films on fused quartz substrates has been recorded in the wavelength range 190~900 nm. The films were highly transparent for wavelengths longer than 330 nm; the transmission drops rapidly at 330 nm, and the cutoff wavelength occurs at about 260 nm. In addition, we also report the amorphous BST0.7 thin film groove-buried type waveguides with 90° bent structure fabricated on Si substrates with 1.65 μm thick SiO2 thermal oxide layer. The design, fabrication and optical losses of amorphous BST0.7 optical waveguides were presented. The amorphous BST0.7 thin films were grown onto the SiO2/Si substrates by using a metal organic decomposition (MOD)-spin-coating procedure. The optical propagation losses were about 12.8 and 9.4 dB/cm respectively for the 5 and 10 μm wide waveguides at the wavelength of 632.8 nm. The 90° bent structures with a small curvature of micrometers were designed on the basis of a double corner mirror structure. The bend losses were about 1.2 and 0.9 dB respectively for 5 and 10 μm wide waveguides at the wavelength of 632.8 nm. It is expected for amorphous BST0.7 thin films to be used not only in the passive optical interconnection in monolithic OEICs but also in active waveguide devices on the Si chip.

  12. Thermal-structural modeling of polymer Bragg grating waveguides illuminated by a light emitting diode.

    PubMed

    Joon Kim, Kyoung; Bar-Cohen, Avram; Han, Bongtae

    2012-02-20

    This study reports both analytical and numerical thermal-structural models of polymer Bragg grating (PBG) waveguides illuminated by a light emitting diode (LED). A polymethyl methacrylate (PMMA) Bragg grating (BG) waveguide is chosen as an analysis vehicle to explore parametric effects of incident optical powers and substrate materials on the thermal-structural behavior of the BG. Analytical models are verified by comparing analytically predicted average excess temperatures, and thermally induced axial strains and stresses with numerical predictions. A parametric study demonstrates that the PMMA substrate induces more adverse effects, such as higher excess temperatures, complex axial temperature profiles, and greater and more complicated thermally induced strains in the BG compared with the Si substrate. © 2012 Optical Society of America

  13. A Photonic 1 × 4 Power Splitter Based on Multimode Interference in Silicon–Gallium-Nitride Slot Waveguide Structures

    PubMed Central

    Malka, Dror; Danan, Yossef; Ramon, Yehonatan; Zalevsky, Zeev

    2016-01-01

    In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)–gallium nitride (GaN) slot waveguide structure is presented—to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM). Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530–1565 nm) into four output ports with low insertion losses (0.07 dB). PMID:28773638

  14. Dimensional effects on the magnetic domains in planar magnetophotonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoyue

    2007-05-01

    The application of photonic crystal technology in magneto-optic media can yield significant improvements in polarization rotation efficiency and optical switching capability and an overall reduction in magneto-optic device dimensions. Resonant photonic crystal structures in planar ferrimagnetic film waveguides are of interest because they may lead to the development of on-chip magneto-optical switches and isolators for photonic device integration. In the present work, two different methods for the fabrication of on-chip waveguide magnetophotonic crystals, through electron beam lithography and focused ion beam milling, are discussed and demonstrated. A high precision photonic measurement system was set up for testing and analysis of the waveguide devices. The results obtained show photonic band gaps with resonant transmission in the gap, and enhanced magneto-optic rotation efficiency. The character of waveguide modes therein, birefringence effects, and structural variation effects were studied extensively and are presented in this thesis. Planar magnetization control produced by manipulation of the magnetic shape anisotropy in the photonic crystal micro-cavity was demonstrated in this work. By introducing strip structures into the resonant cavity formed on magnetic garnet films with in-plane anisotropy, a bi-stable magnetic state and an enhanced magnetic field reversal mechanism were demonstrated. This effect was extensively studied through experimental and micromagnetic simulation analysis of the polarization rotation hysteresis. The results discussed herein show that domain closure loops between the strips limit the magnification of the coercivity in the resonant cavity and that these limitations can be overcome by the formation of isolated single-domain magnetic microstrips in the cavity.

  15. Propagation and switching of light in rectangular waveguiding structures

    NASA Astrophysics Data System (ADS)

    Sala, Anca L.

    1998-10-01

    In this dissertation, we investigate the conditions for the propagation and processing of temporal optical solitons in the rectangular geometry waveguides which are expected to play an important role as processing elements in optical communication systems. It is anticipated that the optical signals carrying information through optical fibers will be in the form of temporal soliton pulses, which can propagate undistorted for long distances under the condition that the dispersion is balanced by a nonlinearity in the optical fiber. An important parameter in the equation that governs temporal soliton propagation in a waveguide is the second derivative of the propagation vector with respect to the angular frequency, /omega, denoted by β/prime'. We evaluate β/prime' for rectangular waveguides using a channel model of the waveguide, which takes into account the two transverse dimensions of the rectangular channel. Significant differences are found in the values of β/prime' obtained from our model and those obtained from the more traditional, one dimensional slab model. A major additional effort in the present thesis relates to the development of a theory of temporal soliton switching in a planar geometry nonlinear directional coupler. The theory is formulated in terms of the supermodes of the total structure, and again accounts for the two transverse dimensions of the channels. To accurately determine the coupling length and switching power of the nonlinear coupler, we apply corrections to the propagation constants of the supermodes that account for the non-zero electromagnetic fields in the outer corner regions of the waveguide channels. It is shown for the case of a SiO2 based nonlinear directional coupler operating at the central wavelength of 1.55 μm, that these corrections have a significant effect on both the coupling length and the switching power. Finally, we develop the conditions under which single mode rectangular waveguides can have zero dispersion at the optical communications wavelengths 1.31 μm or 1.55 μm, and discuss the end-to-end coupling of rectangular waveguides to the standard optical fibers used in optical communications. Our results are expected to serve as a guide for the design of planar geometry based processing elements in a variety of optical communications devices.

  16. Low-loss multimode interference couplers for terahertz waves

    NASA Astrophysics Data System (ADS)

    Themistos, Christos; Kalli, Kyriacos; Komodromos, Michael; Markides, Christos; Quadir, Anita; Rahman, B. M. Azizur; Grattan, Kenneth T. V.

    2012-04-01

    The terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, metal-clad plasmonic waveguides and specifically hollow core structures, coated with insulating material are the most promising low-loss waveguides used in both active and passive devices. Optical power splitters are important components in the design of optoelectronic systems and optical communication networks such as Mach-Zehnder Interferometric switches, polarization splitter and polarization scramblers. Several designs for the implementation of the 3dB power splitters have been proposed in the past, such as the directional coupler-based approach, the Y-junction-based devices and the MMI-based approach. In the present paper a novel MMI-based 3dB THz wave splitter is implemented using Gold/polystyrene (PS) coated hollow glass rectangular waveguides. The H-field FEM based full-vector formulation is used here to calculate the complex propagation characteristics of the waveguide structure and the finite element beam propagation method (FE-BPM) and finite difference time domain (FDTD) approach to demonstrate the performance of the proposed 3dB splitter.

  17. FIBRE AND INTEGRATED OPTICS. OPTICAL PROCESSING OF INFORMATION: Feasibility of using waveguide holograms in systems for the transfer of amplitude—phase information along fibre communication lines

    NASA Astrophysics Data System (ADS)

    Dianov, Evgenii M.; Zubov, Vladimir A.; Putilin, A. N.

    1995-02-01

    An analysis is made of a variant of a system for spatial—temporal transformation of spatially one-dimensional information for its transfer along a single-mode fibre waveguide. Information is coupled into a fibre by a waveguide hologram. This hologram forms a light-beam structure which matches the fibre-guided mode. A report is given of the use of ion-exchange planar glass waveguides as waveguide holograms. An amorphous chalcogenide semiconductor film or a photoresist was deposited by evaporation on such a planar waveguide. Reconstruction of the waveguide hologram made it possible to achieve a high read rate, up to 1011 pixels per second, when a short radiation pulse was used. Multisectioned injection semiconductor lasers, operating under Q-switching conditions, were used as the radiation sources.

  18. Near field optical probe for critical dimension measurements

    DOEpatents

    Stallard, Brian R.; Kaushik, Sumanth

    1999-01-01

    A resonant planar optical waveguide probe for measuring critical dimensions on an object in the range of 100 nm and below. The optical waveguide includes a central resonant cavity flanked by Bragg reflector layers with input and output means at either end. Light is supplied by a narrow bandwidth laser source. Light resonating in the cavity creates an evanescent electrical field. The object with the structures to be measured is translated past the resonant cavity. The refractive index contrasts presented by the structures perturb the field and cause variations in the intensity of the light in the cavity. The topography of the structures is determined from these variations.

  19. High-Performance Flexible Waveguiding Photovoltaics

    PubMed Central

    Chou, Chun-Hsien; Chuang, Jui-Kang; Chen, Fang-Chung

    2013-01-01

    The use of flat-plane solar concentrators is an effective approach toward collecting sunlight economically and without sun trackers. The optical concentrators are, however, usually made of rigid glass or plastics having limited flexibility, potentially restricting their applicability. In this communication, we describe flexible waveguiding photovoltaics (FWPVs) that exhibit high optical efficiencies and great mechanical flexibility. We constructed these FWPVs by integrating poly-Si solar cells, a soft polydimethylsiloxane (PDMS) waveguide, and a TiO2-doped backside reflector. Optical microstructures that increase the light harvesting ability of the FWPVs can be fabricated readily, through soft lithography, on the top surface of the PDMS waveguide. Our optimized structure displayed an optical efficiency of greater than 42% and a certified power conversion efficiency (PCE) of 5.57%, with a projected PCE as high as approximately 18%. This approach might open new avenues for the harvesting of solar energy at low cost with efficient, mechanically flexible photovoltaics. PMID:23873225

  20. Coupling Single-Mode Fiber to Uniform and Symmetrically Tapered Thin-Film Waveguide Structures Using Gadolinium Gallium Garnet

    NASA Technical Reports Server (NTRS)

    Gadi, Jagannath; Yalamanchili, Raj; Shahid, Mohammad

    1995-01-01

    The need for high efficiency components has grown significantly due to the expanding role of fiber optic communications for various applications. Integrated optics is in a state of metamorphosis and there are many problems awaiting solutions. One of the main problems being the lack of a simple and efficient method of coupling single-mode fibers to thin-film devices for integrated optics. In this paper, optical coupling between a single-mode fiber and a uniform and tapered thin-film waveguide is theoretically modeled and analyzed. A novel tapered structure presented in this paper is shown to produce perfect match for power transfer.

  1. Compound semiconductor optical waveguide switch

    DOEpatents

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  2. Micro-laser

    DOEpatents

    Hutchinson, Donald P.; Richards, Roger K.

    2003-07-22

    A micro-laser is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide and at least one amplifying medium in the waveguide. PBG features are positioned between the first and second subwavelength resonant gratings and allow introduction of amplifying mediums into the highly resonant guided micro-laser microcavity. The micro-laser may be positioned on a die of a bulk substrate material with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a micro-laser is disclosed. A method for tuning the micro-laser is also disclosed. The micro-laser may be used as an optical regenerator, or a light source for data transfer or for optical computing.

  3. Novel optical waveguides by in-depth controlled electronic damage with swift ions

    NASA Astrophysics Data System (ADS)

    Olivares, J.; García-Navarro, A.; Méndez, A.; Agulló-López, F.; García, G.; García-Cabañes, A.; Carrascosa, M.

    2007-04-01

    We review recent results on a novel method to modify crystalline dielectric materials and fabricate optical waveguides and integrated optics devices. It relies on irradiation with medium-mass high-energy ions (2-50 MeV) where the electronic stopping power is dominant over that one associated to nuclear collisions. By exploiting the processing capabilities of the method, novel optical structures can be achieved at moderate (1014 cm-2) and even low and ultralow (1012 cm-2) fluences. In particular, step-like waveguides with a high index jump Δn ∼ 0.1-0.2, guiding both ordinary and extraordinary modes, have been prepared with F and O ions (20 MeV) at moderate fluences. They present good non-linear and electrooptic perfomance and low losses. (1 dB/cm). Moreover, useful optical waveguiding has been also achieved at ultralow frequencies (isolated track regime), using Cl and Si ions (40-45 MeV). In this latter case, the individual amorphous nanotracks, whose radius increases with depth, create an effective optical medium causing optical trapping.

  4. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription

    PubMed Central

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R.; Chen, Feng

    2016-01-01

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions. PMID:26924255

  5. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription.

    PubMed

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng

    2016-02-29

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.

  6. Fully optical backplane system using novel optical plug and slot

    NASA Astrophysics Data System (ADS)

    Cho, In-Kui; Ahn, Seung-Ho; Lee, Woo-Jin; Han, Sang-Pil; Kim, Jin-Tae; Choi, Chun-Ki; Shin, Kyung-Up; Yoon, Keun Byoung; Jeong, Myung-Yung; Park, Hyo Hoon

    2005-10-01

    A fully optical PCB with transmitter/receiver system boards and optical bakcplane was prepared, which is board-to-board interconnection by an optical slot. We report a 10 Gb/s PRBS NRZ data transmission between transmitter system board and optical backplane embedded multimode polymeric waveguide arrays. The basic concept of the optical PCB is as follows; 1) Metal optical bench is integrated with optoelectronic devices, driver and receiver circuits, polymeric waveguide and access line PCB module. 2) Multimode polymeric waveguide inside an optical backplane, which is embedded into PCB, 3) Optical slot and plug for high-density (channel pitch : 500 um) board-to-board interconnection. The polymeric waveguide technology can be used for transmission of data between transmitter/receiver processing boards and backplane boards. The main components are low-loss tapered polymeric waveguides and a novel optical plug and slot for board-to-board interconnections, respectively. The transmitter/receiver processing boards are designed as plug types, and can be easily plugged-in and -out at an optical backplane board. The optical backplane boards are prepared by employing the lamination processes for conventional electrical PCBs. A practical optical backplane system was implemented with two processing boards and an optical backplane. As connection components between the transmitter/receiver processing boards and backplane board, optical slots made of a 90°-bending structure-embedded optical plug was used. A 10 Gb/s data link was successfully demonstrated. The bit error rate (BER) was determined and is 5.6×10 -9(@10Gb/s) and the BER of 8 Gb/s is < 10 -12.

  7. Optical NOR logic gate design on square lattice photonic crystal platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’souza, Nirmala Maria, E-mail: nirmala@cukerala.ac.in; Mathew, Vincent, E-mail: vincent@cukerala.ac.in

    We numerically demonstrate a new configuration of all-optical NOR logic gate with square lattice photonic crystal (PhC) waveguide using finite difference time domain (FDTD) method. The logic operations are based on interference effect of optical waves. We have determined the operating frequency range by calculating the band structure for a perfectly periodic PhC using plane wave expansion (PWE) method. Response time of this logic gate is 1.98 ps and it can be operated with speed about 513 GB/s. The proposed device consists of four linear waveguides and a square ring resonator waveguides on PhC platform.

  8. Optical waveguide device with an adiabatically-varying width

    DOEpatents

    Watts,; Michael R. , Nielson; Gregory, N [Albuquerque, NM

    2011-05-10

    Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.

  9. Nanoaquarium: integrated microchips fabricated by ultrafast laser for understanding phenomena and functions of microorganisms

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Hanada, Yasutaka; Midorikawa, Katsumi; Kawano, Hiroyuki; Ishikawa, Ikuko S.; Miyawaki, Atsushi

    2011-12-01

    We demonstrate to fabricate microfluidic chips integrated with some functional microcomponents such as optical attenuators and optical waveguides by femtosecond laser direct writing for understanding phenomena and functions of microorganisms. Femtosecond laser irradiation followed by annealing and wet etching in dilute hydrofluoric acid solution resulted in fabrication of three-dimensional microfludic structures embedded in a photosensitive glass. The embedded microfludic structures enabled us to easily and efficiently observe Phormidium gliding to the seedling root, which accelerates growth of the vegetable. In addition, integration of optical attenuators and optical waveguides into the microfluidic structures clarified the mechanism of the gliding movement of Phormidium. We termed such integrated microchips nanoaquariums, realizing the highly efficient and functional observation and analysis of various microorganisms.

  10. Optimization of figure of merit in magnetoplasmonic waveguides with Fe/Au multilayer for optical isolator based on nonreciprocal coupling on Si waveguides

    NASA Astrophysics Data System (ADS)

    Shimizu, Hiromasa; Shimodaira, Takahiro

    2018-04-01

    We report on magnetoplasmonic Si waveguides with a ferromagnetic Fe/conductive metal Au multilayer for realizing a sizable magnetooptic effect with a low propagation loss for integrated optical isolators. By combining the ferromagnetic metal Fe with a highly conductive Au layer, the largest nonreciprocal differences in effective index were estimated for propagation lengths of 1-20 µm. Mode analysis with and without a Au layer clarified that the insertion of a Au layer on an Fe layer improves the optical confinement in the Fe layer with reduced propagation loss and is effective in enlarging the magnetooptic effect for the same propagation length. On the basis of the optimized Fe/Au multilayer structure, we designed waveguide optical isolators based on nonreciprocal coupling by the finite difference time domain (FDTD) method. We estimated an optical isolation of 10.8 dB with a forward insertion loss of 13.4 dB in a 34-µm-long nonreciprocal directional coupler.

  11. Tapered rib fiber coupler for semiconductor optical devices

    DOEpatents

    Vawter, Gregory A.; Smith, Robert Edward

    2001-01-01

    A monolithic tapered rib waveguide for transformation of the spot size of light between a semiconductor optical device and an optical fiber or from the fiber into the optical device. The tapered rib waveguide is integrated into the guiding rib atop a cutoff mesa type semiconductor device such as an expanded mode optical modulator or and expanded mode laser. The tapered rib acts to force the guided light down into the mesa structure of the semiconductor optical device instead of being bound to the interface between the bottom of the guiding rib and the top of the cutoff mesa. The single mode light leaving or entering the output face of the mesa structure then can couple to the optical fiber at coupling losses of 1.0 dB or less.

  12. Optical fiber having wave-guiding rings

    DOEpatents

    Messerly, Michael J [Danville, CA; Dawson, Jay W [Livermore, CA; Beach, Raymond J [Livermore, CA; Barty, Christopher P. J. [Hayward, CA

    2011-03-15

    A waveguide includes a cladding region that has a refractive index that is substantially uniform and surrounds a wave-guiding region that has an average index that is close to the index of the cladding. The wave-guiding region also contains a thin ring or series of rings that have an index or indices that differ significantly from the index of the cladding. The ring or rings enable the structure to guide light.

  13. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, B.R.; Ashley, P.R.; Buchal, C.J.

    1987-03-24

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO/sub 3/ crystals are implanted with high concentrations of Ti dopant at ion energies of about 360 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000/degree/C produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguiding properties.

  14. A novel graphene oxide-polyimide as optical waveguide material: Synthesis and thermo-optic switch properties

    NASA Astrophysics Data System (ADS)

    Cao, Tianlin; Zhao, Fanyu; Da, Zulin; Qiu, Fengxian; Yang, Dongya; Guan, Yijun; Cao, Guorong; Zhao, Zerun; Li, Jiaxin; Guo, Xiaotong

    2016-10-01

    In this work, a novel graphene oxide-polyimide (GOPI) as optical waveguide material was prepared. The structure, mechanical, thermal property and morphology of the GOPI was characterized by using fourier transform infrared, UV-visible spectroscopy, near-infrared spectrum, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscope and transmission electron microscopy. The thermo-optic coefficients (dn/dT) are -9.16 × 10-4 (532 nm), -7.56 × 10-4 (650 nm) and -4.82 × 10-4 (850 nm) °C-1, respectively. Based on the thermo-optic effect of prepared GOPI as waveguide material, a Y-branch with branching angle of 0.143° and Mach-Zehnder thermo-optic switches were designed. Using finite difference beam propagation method (FD-BPM) method, the simulation results such as power consumptions and response times of two different thermo-optic switches were obtained.

  15. A three-dimensional wide-angle BPM for optical waveguide structures.

    PubMed

    Ma, Changbao; Van Keuren, Edward

    2007-01-22

    Algorithms for effective modeling of optical propagation in three- dimensional waveguide structures are critical for the design of photonic devices. We present a three-dimensional (3-D) wide-angle beam propagation method (WA-BPM) using Hoekstra's scheme. A sparse matrix algebraic equation is formed and solved using iterative methods. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation, along with a technique for shifting the simulation window to reduce the dimension of the numerical equation and a threshold technique to further ensure its convergence. These techniques can ensure the implementation of iterative methods for waveguide structures by relaxing the convergence problem, which will further enable us to develop higher-order 3-D WA-BPMs based on Padé approximant operators.

  16. A three-dimensional wide-angle BPM for optical waveguide structures

    NASA Astrophysics Data System (ADS)

    Ma, Changbao; van Keuren, Edward

    2007-01-01

    Algorithms for effective modeling of optical propagation in three- dimensional waveguide structures are critical for the design of photonic devices. We present a three-dimensional (3-D) wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme. A sparse matrix algebraic equation is formed and solved using iterative methods. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation, along with a technique for shifting the simulation window to reduce the dimension of the numerical equation and a threshold technique to further ensure its convergence. These techniques can ensure the implementation of iterative methods for waveguide structures by relaxing the convergence problem, which will further enable us to develop higher-order 3-D WA-BPMs based on Padé approximant operators.

  17. Laser printed glass planar lightwave circuits with integrated fiber alignment structures

    NASA Astrophysics Data System (ADS)

    Desmet, A.; Radosavljevic, A.; Missinne, J.; Van Thourhout, D.; Van Steenberge, G.

    2018-02-01

    Femtosecond laser inscription allows straightforward manufacturing of glass planar lightwave circuits such as waveguides, interferometers, directional couplers, resonators and more complex structures. Fiber alignment structures are needed to facilitate communication with the glass planar lightwave circuit. In this study, a technique is described to create optical waveguides and alignment structures in the same laser exposure step. Using an industrial ytterbium-doped 1030 nm fiber laser pulses of 400 fs were focused into glass with a 0.4 NA objective causing permanent alteration of the material. Depending on laser parameters this modification allows direct writing of waveguides or the creation of channels after exposing the irradiated volumes to an etchant such as KOH. Writing of channels and waveguides with different laser powers, frequencies, polarisations, stage translation speeds and scan densities were investigated in fused silica and borosilicate glass. Waveguides with controlled dimensions were created, as well as etched U-grooves with a diameter of 126 μm and a sidewall roughness Ra of 255 nm. Cut back measurements were performed giving a waveguide propagation loss of 1.1 dB/cm in borosilicate glass. A coupling loss of 0.7 dB was measured for a transition between the waveguide and standard single mode fiber at 1550 nm, using index matching liquid. The described technique eliminates active alignment requirements and is useful for many applications such as microfluidic sensing, PLCs, fan-out connectors for multicore fibers and quantum optical networks.

  18. Design and investigation of properties of nanocrystalline diamond optical planar waveguides.

    PubMed

    Prajzler, Vaclav; Varga, Marian; Nekvindova, Pavla; Remes, Zdenek; Kromka, Alexander

    2013-04-08

    Diamond thin films have remarkable properties comparable with natural diamond. Because of these properties it is a very promising material for many various applications (sensors, heat sink, optical mirrors, chemical and radiation wear, cold cathodes, tissue engineering, etc.) In this paper we report about design, deposition and measurement of properties of optical planar waveguides fabricated from nanocrystalline diamond thin films. The nanocrystalline diamond planar waveguide was deposited by microwave plasma enhanced chemical vapor deposition and the structure of the deposited film was studied by scanning electron microscopy and Raman spectroscopy. The design of the presented planar waveguides was realized on the bases of modified dispersion equation and was schemed for 632.8 nm, 964 nm, 1 310 nm and 1 550 nm wavelengths. Waveguiding properties were examined by prism coupling technique and it was found that the diamond based planar optical element guided one fundamental mode for all measured wavelengths. Values of the refractive indices of our NCD thin film measured at various wavelengths were almost the same as those of natural diamond.

  19. Two-dimensional interferometric characterization of laser-induced refractive index profiles in bulk Topas polymer

    NASA Astrophysics Data System (ADS)

    Hessler, Steffen; Rosenberger, Manuel; Schmauss, Bernhard; Hellmann, Ralf

    2018-01-01

    In this paper we precisely determine laser-induced refractive index profiles created in cyclic olefin copolymer Topas 6017 employing a sophisticated phase shifting Mach-Zehnder interferometry approach. Beyond the usual one-dimensional modification depth measurement we highlight that for straight waveguide structures also a two-dimensional refractive index distribution can be directly obtained providing full information of a waveguide's exact cross section and its gradient refractive index contrast. Deployed as direct data input in optical waveguide simulation, the evaluated 2D refractive index profiles permit a detailed calculation of the waveguides' actual mode profiles. Furthermore, conventional one-dimensional interferometric measurements for refractive index depth profiles with varying total imposed laser fluence of a 248 nm KrF excimer laser are included to investigate the effect on refractive index modification depth. Maximum surface refractive index increase turns out to attain up to 1.86 ·10-3 enabling laser-written optical waveguide channels. Additionally, a comprehensive optical material characterization in terms of dispersion, thermo-optic coefficient and absorption measurement of unmodified and UV-modified Topas 6017 is carried out.

  20. Photovoltaic modules with cylindrical waveguides in a system for the secondary concentration of solar radiation

    NASA Astrophysics Data System (ADS)

    Andreev, V. M.; Davidyuk, N. Yu.; Ionova, E. A.; Rumyantsev, V. D.

    2013-09-01

    The parameters of the concentrating photoelectric modules with triple-junction (InGaP/GaAs/Ge) solar cells whose focusing system contains an original secondary optical element are studied. The element consists of a plane-convex lens in optical contact with the front surface of an intermediate glass plate and a cylindrical waveguide that is located on the rear side of the glass plate above the surface of the solar element. It is demonstrated that the structure of the secondary optical element provides a wide misorientation characteristic of the concentrator and the cylindrical waveguide allows a more uniform radiation density over the surface of the solar cell. The effect of chromatic aberration in the primary and secondary optical systems on the parameters of photoelectric modules is analyzed. It is demonstrated that the presence of waveguides with a length of 3-5 mm leads to effective redistribution of radiation over the surface of the solar cell whereas shorter and longer waveguides provide the local concentration of radiation at the center of the photodetecting area.

  1. Optical clock distribution in supercomputers using polyimide-based waveguides

    NASA Astrophysics Data System (ADS)

    Bihari, Bipin; Gan, Jianhua; Wu, Linghui; Liu, Yujie; Tang, Suning; Chen, Ray T.

    1999-04-01

    Guided-wave optics is a promising way to deliver high-speed clock-signal in supercomputer with minimized clock-skew. Si- CMOS compatible polymer-based waveguides for optoelectronic interconnects and packaging have been fabricated and characterized. A 1-to-48 fanout optoelectronic interconnection layer (OIL) structure based on Ultradel 9120/9020 for the high-speed massive clock signal distribution for a Cray T-90 supercomputer board has been constructed. The OIL employs multimode polymeric channel waveguides in conjunction with surface-normal waveguide output coupler and 1-to-2 splitters. Surface-normal couplers can couple the optical clock signals into and out from the H-tree polyimide waveguides surface-normally, which facilitates the integration of photodetectors to convert optical-signal to electrical-signal. A 45-degree surface- normal couplers has been integrated at each output end. The measured output coupling efficiency is nearly 100 percent. The output profile from 45-degree surface-normal coupler were calculated using Fresnel approximation. the theoretical result is in good agreement with experimental result. A total insertion loss of 7.98 dB at 850 nm was measured experimentally.

  2. Design and analysis of a silicon-based antiresonant reflecting optical waveguide chemical sensor

    NASA Astrophysics Data System (ADS)

    Remley, Kate A.; Weisshaar, Andreas

    1996-08-01

    The design of a silicon-based antiresonant reflecting optical waveguide (ARROW) chemical sensor is presented, and its theoretical performance is compared with that of a conventional structure. The use of an ARROW structure permits incorporation of a thick guiding region for efficient coupling to a single-mode fiber. A high-index overlay is added to fine tune the sensitivity of the ARROW chemical sensor. The sensitivity of the sensor is presented, and design trade-offs are discussed.

  3. Strongly-guided indium phosphide/indium gallium arsenic phosphide Mach-Zehnder modulator for optical communications

    NASA Astrophysics Data System (ADS)

    Betty, Ian Brian

    2006-12-01

    The development of strongly-guided InP/In1-x GaxAsyP 1-y based Mach-Zehnder optical modulators for 10Gb/s telecommunications is detailed. The modulators have insertion losses including coupling as low as 4.5dB, due to the incorporation of monolithically integrated optical mode spot-size converters (SSC's). The modulators are optimized to produce system performance that is independent of optical coupling alignment and for wavelength operation between 1525nm and 1565nm. A negatively chirped Mach-Zehnder modulator design is demonstrated, giving optimal dispersion-limited reach for 10Gb/s ON/OFF-keying modulation. It is shown that the optical system performance for this design can be determined from purely DC based optical measurements. A Mach-Zehnder modulator design invoking nearly no transient frequency shifts under intensity modulation is also presented, for the first time, using phase-shifter implementations based on the Quantum-Confined-Stark-Effect (QCSE). The performance impact on the modulator from the higher-order vertical and lateral waveguide modes found in strongly-guided waveguides has been determined. The impact of these higher-order modes has been minimized using the design of the waveguide bends, MMI structures, and doping profiles. The fabrication process and optical design for the spot-size mode converters are also thoroughly explored. The SSC structures are based on butt-joined vertically tapered passive waveguide cores within laterally flared strongly-guided ridges, making them compatible with any strong-guiding waveguide structure. The flexibility of the SSC process is demonstrated by the superior performance it has also enabled in a 40Gb/s electro-absorption modulator. The presented electro-absorption modulator has 3.6dB fiber-to-fiber insertion loss, polarization dependent loss (PDL) of only 0.3dB over 15dB extinction, and low absolute chirp (|alpha H| < 0.6) over the full dynamic range.

  4. Amorphous silicon as high index photonic material

    NASA Astrophysics Data System (ADS)

    Lipka, T.; Harke, A.; Horn, O.; Amthor, J.; Müller, J.

    2009-05-01

    Silicon-on-Insulator (SOI) photonics has become an attractive research topic within the area of integrated optics. This paper aims to fabricate SOI-structures for optical communication applications with lower costs compared to standard fabrication processes as well as to provide a higher flexibility with respect to waveguide and substrate material choice. Amorphous silicon is deposited on thermal oxidized silicon wafers with plasma-enhanced chemical vapor deposition (PECVD). The material is optimized in terms of optical light transmission and refractive index. Different a-Si:H waveguides with low propagation losses are presented. The waveguides were processed with CMOS-compatible fabrication technologies and standard DUV-lithography enabling high volume production. To overcome the large mode-field diameter mismatch between incoupling fiber and sub-μm waveguides three dimensional, amorphous silicon tapers were fabricated with a KOH etched shadow mask for patterning. Using ellipsometric and Raman spectroscopic measurements the material properties as refractive index, layer thickness, crystallinity and material composition were analyzed. Rapid thermal annealing (RTA) experiments of amorphous thin films and rib waveguides were performed aiming to tune the refractive index of the deposited a-Si:H waveguide core layer after deposition.

  5. Design of ultra-broadband terahertz polymer waveguide emitters for telecom wavelengths using coupled mode theory.

    PubMed

    Vallejo, Felipe A; Hayden, L Michael

    2013-03-11

    We use coupled mode theory, adequately incorporating optical losses, to model ultra-broadband terahertz (THz) waveguide emitters (0.1-20 THz) based on difference frequency generation of femtosecond infrared (IR) optical pulses. We apply the model to a generic, symmetric, five-layer, metal/cladding/core waveguide structure using transfer matrix theory. We provide a design strategy for an efficient ultra-broadband THz emitter and apply it to polymer waveguides with a nonlinear core composed of a poled guest-host electro-optic polymer composite and pumped by a pulsed fiber laser system operating at 1567 nm. The predicted bandwidths are greater than 15 THz and we find a high conversion efficiency of 1.2 × 10(-4) W(-1) by balancing both the modal phase-matching and effective mode attenuation.

  6. System and method for ultrafast optical signal detecting via a synchronously coupled anamorphic light pulse encoded laterally

    DOEpatents

    Heebner, John E [Livermore, CA

    2010-08-03

    In one general embodiment, a method for ultrafast optical signal detecting is provided. In operation, a first optical input signal is propagated through a first wave guiding layer of a waveguide. Additionally, a second optical input signal is propagated through a second wave guiding layer of the waveguide. Furthermore, an optical control signal is applied to a top of the waveguide, the optical control signal being oriented diagonally relative to the top of the waveguide such that the application is used to influence at least a portion of the first optical input signal propagating through the first wave guiding layer of the waveguide. In addition, the first and the second optical input signals output from the waveguide are combined. Further, the combined optical signals output from the waveguide are detected. In another general embodiment, a system for ultrafast optical signal recording is provided comprising a waveguide including a plurality of wave guiding layers, an optical control source positioned to propagate an optical control signal towards the waveguide in a diagonal orientation relative to a top of the waveguide, at least one optical input source positioned to input an optical input signal into at least a first and a second wave guiding layer of the waveguide, and a detector for detecting at least one interference pattern output from the waveguide, where at least one of the interference patterns results from a combination of the optical input signals input into the first and the second wave guiding layer. Furthermore, propagation of the optical control signal is used to influence at least a portion of the optical input signal propagating through the first wave guiding layer of the waveguide.

  7. Near field optical probe for critical dimension measurements

    DOEpatents

    Stallard, B.R.; Kaushik, S.

    1999-05-18

    A resonant planar optical waveguide probe for measuring critical dimensions on an object in the range of 100 nm and below is disclosed. The optical waveguide includes a central resonant cavity flanked by Bragg reflector layers with input and output means at either end. Light is supplied by a narrow bandwidth laser source. Light resonating in the cavity creates an evanescent electrical field. The object with the structures to be measured is translated past the resonant cavity. The refractive index contrasts presented by the structures perturb the field and cause variations in the intensity of the light in the cavity. The topography of the structures is determined from these variations. 8 figs.

  8. The characterization of GH shifts of surface plasmon resonance in a waveguide using the FDTD method.

    PubMed

    Oh, Geum-Yoon; Kim, Doo Gun; Choi, Young-Wan

    2009-11-09

    We have explicated the Goos-Hänchen (GH) shift in a mum-order Kretchmann-Raether configuration embedded in an optical waveguide structure by using the finite-difference time-domain method. For optical waveguide-type surface plasmon resonance (SPR) devices, the precise derivation of the GH shift has become critical. Artmann's equation, which is accurate enough for bulk optics, is difficult to apply to waveguide-type SPR devices. This is because Artmann's equation, based on the differentiation of the phase shift, is inaccurate at the critical and resonance angles where drastic phase changes occur. In this study, we accurately identified both the positive and the negative GH shifts around the incidence angle of resonance. In a waveguide-type Kretchmann-Raether configuration with an Au thin film of 50 nm, positive and negative lateral shifts of -0.75 and + 1.0 microm are obtained on the SPR with the incident angles of 44.4 degrees and 47.5 degrees, respectively, at a wavelength of 632.8 nm.

  9. Structural, mechanical and optical studies on ultrafast laser inscribed chalcogenide glass waveguide

    NASA Astrophysics Data System (ADS)

    Ayiriveetil, Arunbabu; Varma, G. Sreevidya; Chaturvedi, Abhishek; Sabapathy, Tamilarasan; Ramamurty, Upadrasta; Asokan, Sundarrajan

    2017-04-01

    Multi-scan waveguides have been inscribed in GeS2 glass sample with different pulse energies and translation speeds. Mechanical and structural changes on GeS2 binary glass in response to irradiation to 1047 nm femto-second laser pulses have been investigated. The optical characterization of these waveguides has been done at 1550 nm of laser wavelength and the material response to laser exposure is characterized by both nanoindentation studies and micro-Raman spectroscopy. Nanoindentation investigations show a decrease in hardness (H) and elastic modulus (E) upon laser irradiation. The change in E and H are found to be varying with the translational speed, pulse energy and hence the net-fluence at the sample. These changes are correlated with variations in the Raman response of photo-exposed glass which is interpreted in terms of structural modifications made by the laser inscriptions to the glassy network. The mechanical behavior and local structural changes on waveguide writing is found to be dependent on net-fluence and it is correlated with the preparation conditions like melt temperature and cooling rate.

  10. 3D microstructuring inside glass by ultrafast laser

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Hanada, Yasutaka; Midorikawa, Katsumi; Kawano, Hiroyuki; Ishikawa, Ikuko S.; Miyawaki, Atsushi

    2012-01-01

    We demonstrate three-dimensional (3D) microstructuring inside glass by ultrafast laser to fabricate microfluidic chips integrated with some functional microcomponents such as optical attenuators and optical waveguides. The fabricated microchips are applied to understand phenomena and functions of microorganisms and cyanobacteria. Ultrafast laser irradiation followed by thermal treatment and wet etching in dilute hydrofluoric acid solution resulted in fabrication of 3D microfludic structures embedded in a photosensitive glass. The embedded microfludic structures enabled us to easily and efficiently observe Phormidium gliding to the seedling root, which accelerates growth of the vegetable. In addition, integration of optical attenuators and optical waveguides into the microfluidic structures clarified the mechanism of the gliding movement of Phormidium. We termed such integrated microchips nanoaquariums, realizing the highly efficient and functional observation and analysis of various microorganisms.

  11. Investigation of semiconductor clad optical waveguides

    NASA Technical Reports Server (NTRS)

    Batchman, T. E.; Mcwright, G.

    1981-01-01

    The properties of semiconductor-clad optical waveguides based on glass substrates were investigated. Computer modeling studies on four-layer silicon-clad planar dielectric waveguides indicated that the attenuation and mode index should behave as exponentially damped sinusoids as the silicon thickness is decreased below one micrometer. This effect can be explained as a periodic coupling between the guided modes of the lossless structure and the lossy modes supported by the high refractive index silicon. The computer studies also show that both the attenuation and mode index of the propagating mode are significantly altered by conductivity charges in the silicon. Silicon claddings were RF sputtered onto AgNO3-NaNO3 ion exchanged waveguides and preliminary measurements of attenuation were made. An expression was developed which predicts the attenuation of the silicon clad waveguide from the attenuation and phase characteristics of a silicon waveguide. Several applications of these clad waveguides are suggested and methods for increasing the photo response of the RF sputtered silicon films are described.

  12. 24-ch microlens-integrated no-polish connector for optical interconnection with polymer waveguides

    NASA Astrophysics Data System (ADS)

    Shiraishi, Takashi; Yagisawa, Takatoshi; Ikeuchi, Tadashi; Daikuhara, Osamu; Tanaka, Kazuhiro

    2013-02-01

    We successfully developed a new 24-ch optical connector for polymer waveguides. The connector consists of a transparent thermoplastic resin that has two rectangular slits on one side for alignment of the waveguide films and integrated microlens arrays on the other side for coupling to the MT connector. Two 12-ch waveguide films were cut to a 3-mm width. The thickness of each waveguide film was controlled at 100 μm. The waveguide films were inserted into the slits until they touched the bottom face of the slit. Ultraviolet curing adhesive was used to achieve a short hardening process. The expanded beam in the transparent material is focused by the microlens arrays formed on the connector surface. This lens structure enables assembly without the need for a polishing process. We designed the lens for coupling between a step-index 40-μm rectangular waveguide and a graded-index 50-μm fiber. We achieved low-loss optical coupling by designing a method of providing asymmetric magnification between the horizontal and vertical directions in order to compensate for the asymmetric numerical aperture of the waveguide. The typical measured coupling losses from/to the waveguide to/from the fiber were 1.2 dB and 0.6 dB, respectively. The total coupling loss was as small as that of a physical contact connection.

  13. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, Bill R.; Ashley, Paul R.; Buchal, Christopher J.

    1989-01-01

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO.sub.3 crystals are implanted with high concentrations of Ti dopant at ion energies of about 350 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000.degree. C. produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality single crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguides properties.

  14. Fabrication of submicron-scale rectangular bar of transparent In-Ga-Zn-O: A study of the possible application of transparent In-Ga-Zn-O optical waveguide

    NASA Astrophysics Data System (ADS)

    Shimizu, Takashi; Kuwahara, Masashi

    2014-05-01

    We studied the optical properties of In-Ga-Zn-O (IGZO) films and found a very low extinction coefficient of the films. For the potential application of the films, we propose an optical waveguide device made of IGZO. We have succeeded in producing a submicron-scale rectangular-bar structure of IGZO using our newly developed dry etching process. Simulation results showed an ˜5 dB/cm propagation loss of a 400 × 400 nm2 square optical waveguide device of amorphous IGZO at a wavelength of 1.55 µm, when a standard deviation of ˜4 nm and a correlation length of ˜100 nm of sidewall roughness were achieved.

  15. Projecting light beams with 3D waveguide arrays

    NASA Astrophysics Data System (ADS)

    Crespi, Andrea; Bragheri, Francesca

    2017-01-01

    Free-space light beams with complex intensity patterns, or non-trivial phase structure, are demanded in diverse fields, ranging from classical and quantum optical communications, to manipulation and imaging of microparticles and cells. Static or dynamic spatial light modulators, acting on the phase or intensity of an incoming light wave, are the conventional choices to produce beams with such non-trivial characteristics. However, interfacing these devices with optical fibers or integrated optical circuits often requires difficult alignment or cumbersome optical setups. Here we explore theoretically and with numerical simulations the potentialities of directly using the output of engineered three-dimensional waveguide arrays, illuminated with linearly polarized light, to project light beams with peculiar structures. We investigate through a collection of illustrative configurations the far field distribution, showing the possibility to achieve orbital angular momentum, or to produce elaborate intensity or phase patterns with several singularity points. We also simulate the propagation of the projected beam, showing the possibility to concentrate light. We note that these devices should be at reach of current technology, thus perspectives are open for the generation of complex free-space optical beams from integrated waveguide circuits.

  16. Toward a biophotonic MEMS cell sensor

    NASA Astrophysics Data System (ADS)

    Powers, Michael A.; Koev, Stephan T.; Schleunitz, Arne; Yi, Hyunmin; Hodzic, Vildana; Bentley, William E.; Payne, Gregory F.; Rubloff, Gary W.; Ghodssi, Reza

    2005-06-01

    We present a new platform for the optical analysis of biomolecules based upon the polysaccharide chitosan. The versatile, stable, and compatible nature of chitosan makes it an ideal material for integrating biological materials in microfabricated systems. Chitosan"s pH-responsive solubility allows electrochemical deposition, while its chemical reactivity enables facile coupling of proteins, oligonucleotides, and other biomolecules by covalent bonds. This work demonstrates the spatially selective assembly of a fluorescent molecule on chitosan and its applicability to microscale optical transducers. We define multimode waveguides and fluidic channels on a Pyrex wafer using a single layer of SU-8. Our implementation of sidewall patterning of transparent electrodes (indium tin oxide) on SU-8 structures is demonstrated and can be highly beneficial to fluorescent signal transduction. In this optical configuration, normally incident excitation light illuminates a chitosan surface on the vertical face of a collector waveguide intersected by a microfluidic channel. We demonstrate the collection of the optical signal in the integrated waveguide and analyze the signal by coupling the waveguide to a grating spectrometer.

  17. Bulk diamond optical waveguides fabricated by focused femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Hadden, J. P.; Sotillo, Belén.; Bharadwaj, Vibhav; Rampini, Stefano; Bosia, Federico; Picollo, Federico; Sakakura, Masaaki; Chiappini, Andrea; Fernandez, Toney T.; Osellame, Roberto; Miura, Kiyotaka; Ferrari, Maurizio; Ramponi, Roberta; Olivero, Paolo; Barclay, Paul E.; Eaton, Shane M.

    2017-02-01

    Diamond's nitrogen-vacancy (NV) centers show great promise in sensing applications and quantum computing due to their long electron spin coherence time and their ability to be located, manipulated and read out using light. The electrons of the NV center, largely localized at the vacancy site, combine to form a spin triplet, which can be polarized with 532- nm laser light, even at room temperature. The NV's states are isolated from environmental perturbations making their spin coherence comparable to trapped ions. An important breakthrough would be in connecting, using waveguides, multiple diamond NVs together optically. However, the inertness of diamond is a significant hurdle for the fabrication of integrated optics similar to those that revolutionized silicon photonics. In this work we show the possibility of buried waveguide fabrication in diamond, enabled by focused femtosecond high repetition rate laser pulses. We use μRaman spectroscopy to gain better insight into the structure and refractive index profile of the optical waveguides.

  18. Effects of surface roughness and absorption on light propagation in graded-profile waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danilenko, S S; Osovitskii, A N

    2011-06-30

    This paper examines the effects of surface roughness and absorption on laser light propagation in graded-profile waveguiding structures. We derive analytical expressions for the scattering and absorption coefficients of guided waves and analyse these coefficients in relation to parameters of the waveguiding structure and the roughness of its boundary. A new approach is proposed to measuring roughness parameters of precision dielectric surfaces. Experimental evidence is presented which supports the main conclusions of the theory. (integraled-optical waweguides)

  19. Multistage polymeric lens structure in silica-waveguides for photonic functional circuits

    NASA Astrophysics Data System (ADS)

    Tate, Atsushi; Suzuki, Takanori; Tsuda, Hiroyuki

    2005-04-01

    A waveguide lens composed of multistage polymer-filled thin grooves in a silica planar lightwave circuit (PLC) is proposed and the low-loss structure is designed. Both an imaging optical system and a Fourier-Transform optical system can be configured in a PLC by use of a waveguide lens. It makes a PLC functional and its design flexible. Moreover, a focal length of a lens is tunable with large thermo-optic effect of the polymer. A concatenated lens is formed to attain a desirable focal length with low-loss. The thickness of each lens and the spacing are about 10-50 microns. The simulation showed that the radiation loss of the light propagate through 20-stage grooves filled with a polymer was only 0.868 dB when the refractive index of the polymer was 1.57, the groove width was 30 microns, and the spacing between adjacent grooves was 15 microns. For example, the single lens structure that the center thickness is 30 microns, the diameter is 300 microns, and the refractive index of the polymer was 1.57, have a focal length of 4600 microns. The focal length of 450 microns can be obtained with 20-stage concatenated lens structure. The larger numerical aperture can be realized with a polymer of higher refractive index. We have applied the concatenated lens structure to various photonic circuits including optical couplers, a variable optical attenuator.

  20. CMOS-compatible spot-size converter for optical fiber to sub-μm silicon waveguide coupling with low-loss low-wavelength dependence and high tolerance to misalignment

    NASA Astrophysics Data System (ADS)

    Picard, Marie-Josée.; Latrasse, Christine; Larouche, Carl; Painchaud, Yves; Poulin, Michel; Pelletier, François; Guy, Martin

    2016-03-01

    One of the biggest challenges of silicon photonics is the efficient coupling of light between the sub-micron SiP waveguides and a standard optical fiber (SMF-28). We recently proposed a novel approach based on a spot-size converter (SSC) that fulfills this need. The SSC integrates a tapered silicon waveguide and a superimposed structure made of a plurality of rods of high index material, disposed in an array-like configuration and embedded in a cladding of lower index material. This superimposed structure defines a waveguide designed to provide an efficient adiabatic transfer, through evanescent coupling, to a 220 nm thick Si waveguide tapered down to a narrow tip on one side, while providing a large mode overlap to the optical fiber on the other side. An initial demonstration was made using a SSC fabricated with post-processing steps. Great coupling to a SMF-28 fiber with a loss of 0.6 dB was obtained for TEpolarized light at 1550 nm with minimum wavelength dependence. In this paper, SSCs designed for operation at 1310 and 1550 nm for TE/TM polarizations and entirely fabricated in a CMOS fab are presented.

  1. Plasmon-assisted optical vias for photonic ASICS

    DOEpatents

    Skogen, Erik J.; Vawter, Gregory A.; Tauke-Pedretti, Anna

    2017-03-21

    The present invention relates to optical vias to optically connect multilevel optical circuits. In one example, the optical via includes a surface plasmon polariton waveguide, and a first optical waveguide formed on a first substrate is coupled to a second optical waveguide formed on a second substrate by the surface plasmon polariton waveguide. In some embodiments, the first optical waveguide includes a transition region configured to convert light from an optical mode to a surface plasmon polariton mode or from a surface plasmon polariton mode to an optical mode.

  2. Interfacing ion-exchanged waveguide for the efficient excitation of surface plasmons (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Beltran Madrigal, Josslyn; Berthel, Martin; Gardillou, Florent; Tellez Limon, Ricardo; Couteau, Christophe; Barbier, Denis; Drezet, Aurelien; Salas-Montiel, Rafael; Huant, Serge; Blaize, Sylvain

    2015-09-01

    Several works have already shown that the excitation of plasmonic structures through waveguides enables a strong light confinement and low propagation losses [1]. This kind of excitation is currently exploited in areas such as biosensing [2], nanocircuits[3] and spectroscopy[4]. Efficient excitation of surface plasmon modes (SPP) with guided modes supported by high-index-contrast waveguides, such as silicon-on-insulator waveguides, had already been shown [1,5], however, the use of weak-confined guided modes of an ion exchanged waveguide on glass as a source of excitation of SPP represents a scientific and technological breakthrough. This is because the integration of plasmonic structures into low-index-contrast waveguide increases the bandwidth of operation and compatibility with conventional optical fibers. In this work, we describe how an adiabatic tapered coupler formed by an intermediate high-index-contrast layer placed between a plasmonic structure and an ion-exchanged waveguide decreases the mismatch between effective indices, size, and shape of the guided modes. This hybrid structure concentrates the electromagnetic energy from the micrometer to the nanometer scale with low coupling losses to radiative modes. The electromagnetic mode confined to the high-index-contrast waveguide then works as an efficient source of SPP supported by metallic nanostructures placed on its surface. We theoretically studied the modal properties and field distribution along the adiabatic coupler structure. In addition, we fabricated a high-index-contrast waveguide by electron beam lithography and thermal evaporation on top of an ion-exchanged waveguide on glass. This structure was characterized with the use of near field scanning optical microscopy (NSOM). Numerical simulations were compared with the experimental results. [1] N. Djaker, R. Hostein, E. Devaux, T. W. Ebbesen, and H. Rigneault, and J. Wenger, J. Phys. Chem. C 114, 16250 (2010). [2] P. Debackere, S. Scheerlinck, P. Bienstman, R. Baets, Opt. Express 14, 7063 (2006).] [3] A. A. Reiserer, J.-S. Huang, B. Hecht, and T. Brixner. Opt. Express 18(11), 11810-11820 (2010). [4] R. Salas-Montiel, A. Apuzzo, C. Delacour, Z. Sedaghat, A. Bruyant et al. Appl. Phys Lett 100, 231109 (2012) [5] A. Apuzzo M. Févier, M. Salas-Montiel et al. Nano letters, 13, 1000-1006

  3. Optical waveguides in lithium niobate: Recent developments and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazzan, Marco, E-mail: marco.bazzan@unipd.it; Sada, Cinzia, E-mail: cinzia.sada@unipd.it

    The state of the art of optical waveguide fabrication in lithium niobate is reviewed, with particular emphasis on new technologies and recent applications. The attention is mainly devoted to recently developed fabrication methods, such as femtosecond laser writing, ion implantation, and smart cut waveguides as well as to the realization of waveguides with tailored functionalities, such as photorefractive or domain engineered structures. More exotic systems, such as reconfigurable and photorefractive soliton waveguides, are also considered. Classical techniques, such as Ti in-diffusion and proton exchange, are cited and briefly reviewed as a reference standpoint to highlight the recent developments. In allmore » cases, the application-oriented point of view is preferred, in order to provide the reader with an up-to date panorama of the vast possibilities offered by lithium niobate to integrated photonics.« less

  4. Facile design of red-emitting waveguides using hybrid nanocomposites made of inorganic clusters dispersed in SU8 photoresist host

    NASA Astrophysics Data System (ADS)

    Huby, Nolwenn; Bigeon, John; Lagneaux, Quentin; Amela-Cortes, Maria; Garreau, Alexandre; Molard, Yann; Fade, Julien; Desert, Anthony; Faulques, Eric; Bêche, Bruno; Duvail, Jean-Luc; Cordier, Stéphane

    2016-02-01

    Integration of stable emissive entities into organic waveguide with minimum scattering is essential to design efficient optically active devices. Here we present a new class of doped nanocomposite waveguides exploiting 1-nm diameter metallic cluster-based building blocks as red-NIR luminescent dyes embedded in a SU8 polymeric matrix, a reference photoresist for organic photonics. These building blocks are [Mo6Ii8(OOCC2F5)a6]2- cluster anionic units with unique chemical and physical features well suited for optical nanocomposites such as a ligand-promoted dispersibility, a large Stokes shift with a broad absorption window and an emission window in the range 600-900 nm. A whole investigation of the nanocomposite has been first performed. Optical characterizations of Cs2[Mo6Ii8(OOCCnF2n+1)a6]@SU8 nanocomposites thin film and waveguiding structures show their relevance as active layers in integrated structures with a significant increase of the refractive index of 3 × 10-2 when the cluster concentration increases up to 4 wt%, while keeping high values for the transmitted power, as shown for different waveguide dimensions and clusters concentrations. The efficiency of photoluminescence propagation is investigated as a function of clusters concentration in the excitation area for several waveguides dimensions. Attenuation coefficient ranges between 5 and 18 dB/cm, values of the same order of magnitude as those obtained in polymeric waveguide doped with QDs or organic dyes. This original, stable and efficient nanocomposite is promising for downscaling complex nanosources and active waveguides in the visible and NIR range.

  5. Manufacturing of embedded multimode waveguides by reactive lamination of cyclic olefin polymer and polymethylmethacrylate

    NASA Astrophysics Data System (ADS)

    Kelb, Christian; Rother, Raimund; Schuler, Anne-Katrin; Hinkelmann, Moritz; Rahlves, Maik; Prucker, Oswald; Müller, Claas; Rühe, Jürgen; Reithmeier, Eduard; Roth, Bernhard

    2016-03-01

    We demonstrate the manufacturing of embedded multimode optical waveguides through linking of polymethylmethacrylate (PMMA) foils and cyclic olefin polymer (COP) filaments based on a lamination process. Since the two polymeric materials cannot be fused together through interdiffusion of polymer chains, we utilize a reactive lamination agent based on PMMA copolymers containing photoreactive 2-acryloyloxyanthraquinone units, which allows the creation of monolithic PMMA-COP substrates through C-H insertion reactions across the interface between the two materials. We elucidate the lamination process and evaluate the chemical link between filament and foils by carrying out extraction tests with a custom-built tensile testing machine. We also show attenuation measurements of the manufactured waveguides for different manufacturing parameters. The lamination process is in particular suited for large-scale and low-cost fabrication of board-level devices with optical waveguides or other micro-optical structures, e.g., optofluidic devices.

  6. Direct write fabrication of waveguides and interconnects for optical printed wiring boards

    NASA Astrophysics Data System (ADS)

    Dingeldein, Joseph C.

    Current copper based circuit technology is becoming a limiting factor in high speed data transfer applications as processors are improving at a faster rate than are developments to increase on board data transfer. One solution is to utilize optical waveguide technology to overcome these bandwidth and loss restrictions. The use of this technology virtually eliminates the heat and cross-talk loss seen in copper circuitry, while also operating at a higher bandwidth. Transitioning current fabrication techniques from small scale laboratory environments to large scale manufacturing presents significant challenges. Optical-to-electrical connections and out-of-plane coupling are significant hurdles in the advancement of optical interconnects. The main goals of this research are the development of direct write material deposition and patterning tools for the fabrication of waveguide systems on large substrates, and the development of out-of-plane coupler components compatible with standard fiber optic cabling. Combining these elements with standard printed circuit boards allows for the fabrication of fully functional optical-electrical-printed-wiring-boards (OEPWBs). A direct dispense tool was designed, assembled, and characterized for the repeatable dispensing of blanket waveguide layers over a range of thicknesses (25-225 μm), eliminating waste material and affording the ability to utilize large substrates. This tool was used to directly dispense multimode waveguide cores which required no UV definition or development. These cores had circular cross sections and were comparable in optical performance to lithographically fabricated square waveguides. Laser direct writing is a non-contact process that allows for the dynamic UV patterning of waveguide material on large substrates, eliminating the need for high resolution masks. A laser direct write tool was designed, assembled, and characterized for direct write patterning waveguides that were comparable in quality to those produced using standard lithographic practices (0.047 dB/cm loss for laser written waveguides compared to 0.043 dB/cm for lithographic waveguides). Straight waveguides, and waveguide turns were patterned at multimode and single mode sizes, and the process was characterized and documented. Support structures such as angled reflectors and vertical posts were produced, showing the versatility of the laser direct write tool. Commercially available components were implanted into the optical layer for out-of-plane routing of the optical signals. These devices featured spherical lenses on the input and output sides of a total internal reflection (TIR) mirror, as well as alignment pins compatible with standard MT design. Fully functional OEPWBs were fabricated featuring input and output out-of-plane optical signal routing with total optical losses not exceeding 10 dB. These prototypes survived thermal cycling (-40°C to 85°C) and humidity exposure (95±4% humidity), showing minimal degradation in optical performance. Operational failure occurred after environmental aging life testing at 110°C for 216 hours.

  7. Synthetic Engineering of Spider Silk Fiber as Implantable Optical Waveguides for Low-Loss Light Guiding.

    PubMed

    Qiao, Xin; Qian, Zhigang; Li, Junjie; Sun, Hongji; Han, Yao; Xia, Xiaoxia; Zhou, Jin; Wang, Chunlan; Wang, Yan; Wang, Changyong

    2017-05-03

    A variety of devices used for biomedical engineering have been fabricated using protein polymer because of their excellent properties, such as strength, toughness, biocompatibility, and biodegradability. In this study, we fabricated an optical waveguide using genetically engineered spider silk protein. This method has two significant advantages: (1) recombinant spider silk optical waveguide exhibits excellent optical and biological properties and (2) biosynthesis of spider silk protein can overcome the limitation to the research on spider silk optical waveguide due to the low yield of natural spider silk. In detail, two kinds of protein-based optical waveguides made from recombinant spider silk protein and regenerative silkworm silk protein were successfully prepared. Results suggested that the recombinant spider silk optical waveguide showed a smoother surface and a higher refractive index when compared with regenerative silkworm silk protein. The optical loss of recombinant spider silk optical waveguide was 0.8 ± 0.1 dB/cm in air and 1.9 ± 0.3 dB/cm in mouse muscles, which were significantly lower than those of regenerative silkworm silk optical waveguide. Moreover, recombinant spider silk optical waveguide can meet the demand to guide and efficiently deliver light through biological tissue. In addition, recombinant spider silk optical waveguide showed low toxicity to cells in vitro and low-level inflammatory reaction with surrounding tissue in vivo. Therefore, recombinant spider silk optical waveguide is a promising implantable device to guide and deliver light with low loss.

  8. All optical controlled photonic integrated circuits using azo dye functionized sol-gel material

    NASA Astrophysics Data System (ADS)

    Ke, Xianjun

    The main focus of this dissertation is development and characterization of all-optical controllable azo dye functionized sol gel material, demonstrating a PIC fabrication technique on glass substrate using such material, and exploration and feasibility demonstration of three PIC functional devices namely optical variable attenuator, optical switches, and optical tunable filters using the material. The realization of all the devices in this dissertation are based on one material: dye functionalized sol-gel material. A photochromic sol-gel material functionalized with azo dye was synthesized and characterized. It possesses a photochromic characteristic under the control of green laser beam illumination. The material characteristics suggest the possibility of a new promising material platform candidate for the fabrication of alloptical controlled photonic integrated circuits. As the first potential application of the dye functionalized sol-gel material, an alloptical variable attenuator was designed and demonstrated. The optical variable attenuation is achieved in Mach-Zehnder interferometric configuration through all-optical modulation of sol-gel waveguide phase shifters. A 2 x 2 optical switch based on multimode interference (MMI) waveguide structure is proposed in the dissertation. The schematic configuration of the optical switch consists of a cascade of two identical MMIs with two all-optical controlled phase shifters realized by using the photochromic sol-gel material. The cross or bar switch state of the optical switch is determined by the phase difference between the two sol-gel waveguide phase shifters. An all-optical tunable filter is designed and its feasibility demonstrated by using the sol-gel photochromic material. Except for the phase change demonstrated on sol-gel waveguide phase shifters, dynamic gratings were observed on sol-gel film when exposed to two interference beams. This reveals the possibility of realizing Bragg grating-based tunable filters. The schematic configuration of proposed tunable filters consists of a single straight waveguide embedded with a sol-gel waveguide. The wavelength tuning of the tunable filters is accomplished by varying the grating period.

  9. Shaping ultrafast laser inscribed optical waveguides using a deformable mirror.

    PubMed

    Thomson, R R; Bockelt, A S; Ramsay, E; Beecher, S; Greenaway, A H; Kar, A K; Reid, D T

    2008-08-18

    We use a two-dimensional deformable mirror to shape the spatial profile of an ultrafast laser beam that is then used to inscribe structures in a soda-lime silica glass slide. By doing so we demonstrate that it is possible to control the asymmetry of the cross section of ultrafast laser inscribed optical waveguides via the curvature of the deformable mirror. When tested using 1.55 mum light, the optimum waveguide exhibited coupling losses of approximately 0.2 dB/facet to Corning SMF-28 single mode fiber and propagation losses of approximately 1.5 dB.cm(-1). This technique promises the possibility of combining rapid processing speeds with the ability to vary the waveguide cross section along its length.

  10. Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-IR supercontinuum sources: Design and analysis

    NASA Astrophysics Data System (ADS)

    Saini, Than Singh; Tiwari, Umesh Kumar; Sinha, Ravindra Kumar

    2017-08-01

    Recently, highly nonlinear Ga-Sb-S chalcogenide glasses have been reported for promising mid-infrared applications such as thermal imaging, nonlinear optics, and infrared lasers. However, the nonlinear optical fiber and waveguide geometries in Ga-Sb-S chalcogenide glasses have not been reported to date. In this paper, we numerically investigate the design of the dual zero dispersion engineered rib waveguide in Ga8Sb32S60 chalcogenide glass by employing MgF2 glass as a lower and upper cladding material. The waveguide structure possesses nonlinearity as high as 24 100 W-1 Km-1 and 14 000 W-1 Km-1 at 2050 and 2800 nm, respectively. The reported waveguide is able to generate a mid-infrared supercontinuum spectrum spanning from 1000 to 7800 nm when it pumped with 97 femtosecond laser pulses of a peak power of 1 kW at 2050 nm. We have also showed that the supercontinuum spectrum can be extended to the spectral range of 1000-9700 nm using pumping with 497 fs pulses of a peak power of 6.4 kW at 2800 nm. To the best of our knowledge, the proposed rib waveguide structure in Ga8Sb32S60 chalcogenide glass has been reported first time for nonlinear applications. Such a dispersion engineered rib waveguide structure has potential applications for the low-cost, power efficient, and compact on-chip mid-infrared supercontinuum sources and other nonlinear photonic devices.

  11. Controlled waveguide coupling for photon emission from colloidal PbS quantum dot using tunable microcavity made of optical polymer and silicon

    NASA Astrophysics Data System (ADS)

    Nozaka, Takahiro; Mukai, Kohki

    2016-04-01

    A tunable microcavity device composed of optical polymer and Si with a colloidal quantum dot (QD) is proposed as a single-photon source for planar optical circuit. Cavity size is controlled by electrostatic micromachine behavior with the air bridge structure to tune timing of photon injection into optical waveguide from QD. Three-dimensional positioning of a QD in the cavity structure is available using a nanohole on Si processed by scanning probe microscope lithography. We fabricated the prototype microcavity with PbS-QD-mixed polymenthyl methacrylate on a SOI (semiconductor-on-insulator) substrate to show the tunability of cavity size as the shift of emission peak wavelength of QD ensemble.

  12. Highly efficient coupler for dielectric slot waveguides and hybrid plasmonic waveguides

    NASA Astrophysics Data System (ADS)

    Yu, Jiyao; Ohtera, Yasuo; Yamada, Hirohito

    2018-05-01

    A compact, highly efficient optical coupler for dielectric slot waveguides and hybrid plasmonic waveguides based on transition layers (air slot grooves) was investigated. The power-coupling efficiency of 75% for the direct coupling case increased to 90% following the insertion of an intermediate section. By performing time-averaged Poynting vector analysis, we successfully separated the factors of transmission, reflection, and radiation at the coupler interface. We found that the insertion of optimal air grooves into the coupler structure contributed to the improvement of coupling performance. The proposed compact structure is characterized by a high transmission efficiency, low reflection, small length, and broad-band spectrum response.

  13. Direct Wafer Bonding and Its Application to Waveguide Optical Isolators

    PubMed Central

    Mizumoto, Tetsuya; Shoji, Yuya; Takei, Ryohei

    2012-01-01

    This paper reviews the direct bonding technique focusing on the waveguide optical isolator application. A surface activated direct bonding technique is a powerful tool to realize a tight contact between dissimilar materials. This technique has the potential advantage that dissimilar materials are bonded at low temperature, which enables one to avoid the issue associated with the difference in thermal expansion. Using this technique, a magneto-optic garnet is successfully bonded on silicon, III-V compound semiconductors and LiNbO3. As an application of this technique, waveguide optical isolators are investigated including an interferometric waveguide optical isolator and a semileaky waveguide optical isolator. The interferometric waveguide optical isolator that uses nonreciprocal phase shift is applicable to a variety of waveguide platforms. The low refractive index of buried oxide layer in a silicon-on-insulator (SOI) waveguide enhances the magneto-optic phase shift, which contributes to the size reduction of the isolator. A semileaky waveguide optical isolator has the advantage of large fabrication-tolerance as well as a wide operation wavelength range. PMID:28817020

  14. Light-propagation management in coupled waveguide arrays: Quantitative experimental and theoretical assessment from band structures to functional patterns

    NASA Astrophysics Data System (ADS)

    Moison, Jean-Marie; Belabas, Nadia; Levenson, Juan Ariel; Minot, Christophe

    2012-09-01

    We assess the band structure of arrays of coupled optical waveguides both by ab initio calculations and by experiments, with an excellent quantitative agreement without any adjustable physical parameter. The band structures we obtain can deviate strongly from the expectations of the standard coupled mode theory approximation, but we describe them efficiently by a few parameters within an extended coupled mode theory. We also demonstrate that this description is in turn a firm and simple basis for accurate beam management in functional patterns of coupled waveguides, in full accordance with their design.

  15. Evaluation of hybrid polymers for high-precision manufacturing of 3D optical interconnects by two-photon absorption lithography

    NASA Astrophysics Data System (ADS)

    Schleunitz, A.; Klein, J. J.; Krupp, A.; Stender, B.; Houbertz, R.; Gruetzner, G.

    2017-02-01

    The fabrication of optical interconnects has been widely investigated for the generation of optical circuit boards. Twophoton absorption (TPA) lithography (or high-precision 3D printing) as an innovative production method for direct manufacture of individual 3D photonic structures gains more and more attention when optical polymers are employed. In this regard, we have evaluated novel ORMOCER-based hybrid polymers tailored for the manufacture of optical waveguides by means of high-precision 3D printing. In order to facilitate future industrial implementation, the processability was evaluated and the optical performance of embedded waveguides was assessed. The results illustrate that hybrid polymers are not only viable consumables for industrial manufacture of polymeric micro-optics using generic processes such as UV molding. They also are potential candidates to fabricate optical waveguide systems down to the chip level where TPA-based emerging manufacturing techniques are engaged. Hence, it is shown that hybrid polymers continue to meet the increasing expectations of dynamically growing markets of micro-optics and optical interconnects due to the flexibility of the employed polymer material concept.

  16. Quantum light in novel systems

    NASA Astrophysics Data System (ADS)

    Rai, Amit

    2011-12-01

    In this thesis we have focused on the study of various systems which are presently widely studied in different areas of quantum optics and quantum information sciences. These, for example, include the coupled system of photonic waveguides which are known to be highly efficient in manipulating the flow of light. The Hamiltonian describing the evolution of field mode in coupled waveguides is effectively identical to the well-known tight binding Hamiltonian used in solid state physics. The advantage of waveguide system is the possibility to control various interactions by design and their low decoherence rate. The excellent stability offered by coupled waveguides has led to the observation of many key coherent effects such as quantum walk, Bloch oscillation, and discrete Talbot effect. For example, Bloch oscillations have been investigated in coupled waveguides using coherent beam of light. We wanted to inquire whether coherent phenomena such as Bloch oscillations can be possible with incoherent single photon sources. We discovered that Bloch oscillations are indeed possible with single photons provided we prepare single photons in a W state. Moreover, coupled waveguides also find applications in the field of quantum information processing. Since entanglement plays a prominent role in all these applications, it is important to understand the entanglement dynamics in these structures. We considered the case of squeezed input in one of the waveguide and showed that one can generate entanglement between the waveguide modes. We further continued our work on the entanglement generation in coupled waveguides by incorporating the effect of loss in the waveguide structure for the squeezed and photon number input states. We considered relevant experimental parameters and showed that waveguide structures are reasonably robust against the effect of loss. Another system which has attracted a great deal of interest is the optomechanical system. We consider an optomechanical system where an optical cavity mode is coupled to the square of the position of a mechanical oscillator. The optomechanical system can then be regarded as a quantum optical spring, i.e., a spring whose spring constant depends on the quantum state of another system. In particular, we consider the situation where the field inside the cavity is in a coherent state and the oscillator is prepared in its ground state. The quantized nature of the field produces new features in the optomechanical system.

  17. Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform.

    PubMed

    Barrios, C A; Sánchez, B; Gylfason, K B; Griol, A; Sohlström, H; Holgado, M; Casquel, R

    2007-05-28

    We report on the first demonstration of guiding light in vertical slot-waveguides on silicon nitride/silicon oxide material system. Integrated ring resonators and Fabry-Perot cavities have been fabricated and characterized in order to determine optical features of the slot-waveguides. Group index behavior evidences guiding and confinement in the low-index slot region at O-band (1260-1370nm) telecommunication wavelengths. Propagation losses of <20 dB/cm have been measured for the transverse-electric mode of the slot-waveguides.

  18. Development of a wavelength tunable filter using MEMS technology

    NASA Astrophysics Data System (ADS)

    Liu, Junting

    Microelectromechanical systems (MEMS) for optical applications have received intensive attention in recent years because of their potential applications in optical telecommunication. Traditional wavelength division multiplexing (WDM) offers high capacity but requires the fabrication of selective add-drop filters. MEMS technology offers an effective way to fabricate these components at low cost. This thesis presents the development of a device that tunes the Bragg wavelength by coupling into the evanescent field of the grating. A Bragg grating is a periodic perturbation of the refractive index along a fiber or a periodic perturbation of the structure of a planar waveguide. The Bragg wavelength can be tuned by changing the degree to which a dielectric slab couples into the evanescent field. The result is a change in the effective index of the grating, and thus a change in the wavelength that which it reflects. In this thesis Bragg gratings were successfully written into an optical fiber using phase mask technique. Mechanical polishing was used to side-polish the fiber and remove cladding to expose the core. Grating structures were also fabricated in planar waveguide using E-beam writing and dry etching. In order to achieve the smoothest possible morphology of the waveguide, plasma dry etching of transparent substrates was studied in great detail. It is found that the pre-etch cleaning procedure greatly influences the ability to obtain a smooth etched surface. Upper limits of evanescent field tuning were investigated by applying different index liquids such as D. I. water and index matching oils or by positioning different dielectric materials such as glass and silicon close to the grating. Planar waveguides were found to be more sensitive to effective index change. Two kinds of computer simulation were carried out to understand the mode profile and to estimate the value of effective index of planar waveguide under "dry" and "wet" conditions. The first one used an average depth of grating approximation. The second explicitly considered the corrugated structure of the waveguide. Results of both simulations were compared with the experimental results in order to find the proper simulation approach. The fiber or planar waveguide gratings were "device" integrated and their pro and cons were compared. Devices using an optical fiber employed a microactuator driven by electrothermal vibromotor to change the degree of coupling between fiber and "tuning block". Device using planar waveguides used an electrostatic force actuated membrane, flip-chip mounted atop the waveguide. All devices were fabricated using polysilicon surface micromachining processes. I concluded that devices driven by electrostatic force were easier to actuate and their integration with waveguide less challenging.

  19. Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing.

    PubMed

    Ródenas, Airán; Nejadmalayeri, Amir H; Jaque, Daniel; Herman, Peter

    2008-09-01

    We report on the confocal Raman characterization of the micro-structural lattice changes induced during the high-repetition rate ultrafast laser writing of buried optical waveguides in lithium niobate (LiNbO(3)) crystals. While the laser beam focal volume is characterized by a significant lattice expansion together with a high defect concentration, the adjacent waveguide zone is largely free of defects, undergoing only slight rearrangement of the oxygen octahedron in the LiNbO(3) lattice. The close proximity of these two zones has been found responsible for the propagation losses of the guided light. Subjacent laser-induced periodic micro-structures have been also observed inside the laser focal volume, and identified with a strong periodic distribution of lattice defects.

  20. Polymer optical waveguide with multiple graded-index cores for on-board interconnects fabricated using soft-lithography.

    PubMed

    Ishigure, Takaaki; Nitta, Yosuke

    2010-06-21

    We successfully fabricate a polymer optical waveguide with multiple graded-index (GI) cores directly on a substrate utilizing the soft-lithography method. A UV-curable polymer (TPIR-202) supplied from Tokyo Ohka Kogyo Co., Ltd. is used, and the GI cores are formed during the curing process of the core region, which is similar to the preform process we previously reported. We experimentally confirm that near parabolic refractive index profiles are formed in the parallel cores (more than 50 channels) with 40 microm x 40 microm size at 250-microm pitch. Although the loss is still as high as 0.1 approximately 0.3 dB/cm at 850 nm, which is mainly due to scattering loss inherent to the polymer matrix, the scattering loss attributed to the waveguide's structural irregularity could be sufficiently reduced by a graded refractive index profile. For comparison, we fabricate step-index (SI)-core waveguides with the same materials by means of the same process. Then, we evaluate the inter-channel crosstalk in the SI- and GI-core waveguides under almost the same conditions. It is noteworthy that remarkable crosstalk reduction (5 dB and beyond) is confirmed in the GI-core waveguides, since the propagating modes in GI-cores are tightly confined near the core center and less optical power is found near the core cladding boundary. This significant improvement in the inter-channel crosstalk allows the GI-core waveguides to be utilized for extra high-density on-board optical interconnections.

  1. Low-loss optical waveguides in β-BBO crystal fabricated by femtosecond-laser writing

    NASA Astrophysics Data System (ADS)

    Li, Ziqi; Cheng, Chen; Romero, Carolina; Lu, Qingming; Vázquez de Aldana, Javier Rodríguez; Chen, Feng

    2017-11-01

    We report on the fabrication and characterization of β-BBO depressed cladding waveguides fabricated by femtosecond-laser writing with no significant changes in the waveguide lattice microstructure. The waveguiding properties and the propagation losses of the cladding structures are investigated, showing good transmission properties at wavelengths of 400 and 800 nm along TM polarization. The minimum propagation losses are measured to be as low as 0.19 dB/cm at wavelength of 800 nm. The well-preserved waveguide lattice microstructure and good guiding performances with low propagation losses suggest the potential applications of the cladding waveguides in β-BBO crystal as novel integrated photonic devices.

  2. Chemical-assisted femtosecond laser writing of lab-in-fibers.

    PubMed

    Haque, Moez; Lee, Kenneth K C; Ho, Stephen; Fernandes, Luís A; Herman, Peter R

    2014-10-07

    The lab-on-chip (LOC) platform has presented a powerful opportunity to improve functionalization, parallelization, and miniaturization on planar or multilevel geometries that has not been possible with fiber optic technology. A migration of such LOC devices into the optical fiber platform would therefore open the revolutionary prospect of creating novel lab-in-fiber (LIF) systems on the basis of an efficient optical transport highway for multifunctional sensing. For the LIF, the core optical waveguide inherently offers a facile means to interconnect numerous types of sensing elements along the optical fiber, presenting a radical opportunity for optimizing the packaging and densification of diverse components in convenient geometries beyond that available with conventional LOCs. In this paper, three-dimensional patterning inside the optical fiber by femtosecond laser writing, together with selective chemical etching, is presented as a powerful tool to form refractive index structures such as optical waveguides and gratings as well as to open buried microfluidic channels and optical resonators inside the flexible and robust glass fiber. In this approach, optically smooth surfaces (~12 nm rms) are introduced for the first time inside the fiber cladding that precisely conform to planar nanograting structures when formed by aberration-free focusing with an oil-immersion lens across the cylindrical fiber wall. This process has enabled optofluidic components to be precisely embedded within the fiber to be probed by either the single-mode fiber core waveguide or the laser-formed optical circuits. We establish cladding waveguides, X-couplers, fiber Bragg gratings, microholes, mirrors, optofluidic resonators, and microfluidic reservoirs that define the building blocks for facile interconnection of inline core-waveguide devices with cladding optofluidics. With these components, more advanced, integrated, and multiplexed fiber microsystems are presented demonstrating fluorescence detection, Fabry-Perot interferometric refractometry, and simultaneous sensing of refractive index, temperature, and bending strain. The flexible writing technique and multiplexed sensors described here open powerful prospects to migrate the benefits of LOCs into a more flexible and miniature LIF platform for highly functional and distributed sensing capabilities. The waveguide backbone of the LIF inherently provides an efficient exchange of information, combining sensing data that are attractive in telecom networks, smart catheters for medical procedures, compact sensors for security and defense, shape sensors, and low-cost health care products.

  3. Observation of extraordinary optical activity in planar chiral photonic crystals.

    PubMed

    Konishi, Kuniaki; Bai, Benfeng; Meng, Xiangfeng; Karvinen, Petri; Turunen, Jari; Svirko, Yuri P; Kuwata-Gonokami, Makoto

    2008-05-12

    Control of light polarization is a key technology in modern photonics including application to optical manipulation of quantum information. The requisite is to obtain large rotation in isotropic media with small loss. We report on extraordinary optical activity in a planar dielectric on-waveguide photonic crystal structure, which has no in-plane birefringence and shows polarization rotation of more than 25 degrees for transmitted light. We demonstrate that in the planar chiral photonic crystal, the coupling of the normally incident light wave with low-loss waveguide and Fabry-Pérot resonance modes results in a dramatic enhancement of the optical activity.

  4. Silicon photonics thermal phase shifter with reduced temperature range

    DOEpatents

    Lentine, Anthony L; Kekatpure, Rohan D; DeRose, Christopher; Davids, Paul; Watts, Michael R

    2013-12-17

    Optical devices, phased array systems and methods of phase-shifting an input signal are provided. An optical device includes a microresonator and a waveguide for receiving an input optical signal. The waveguide includes a segment coupled to the microresonator with a coupling coefficient such that the waveguide is overcoupled to the microresonator. The microresonator received the input optical signal via the waveguide and phase-shifts the input optical signal to form an output optical signal. The output optical signal is coupled into the waveguide via the microresonator and transmitted by the waveguide. At an operating point of the optical device, the coupling coefficient is selected to reduce a change in an amplitude of the output optical signal and to increase a change in a phase of the output optical signal, relative to the input optical signal.

  5. Theoretical description and design of nanomaterial slab waveguides: application to compensation of optical diffraction.

    PubMed

    Kivijärvi, Ville; Nyman, Markus; Shevchenko, Andriy; Kaivola, Matti

    2018-04-02

    Planar optical waveguides made of designable spatially dispersive nanomaterials can offer new capabilities for nanophotonic components. As an example, a thin slab waveguide can be designed to compensate for optical diffraction and provide divergence-free propagation for strongly focused optical beams. Optical signals in such waveguides can be transferred in narrow channels formed by the light itself. We introduce here a theoretical method for characterization and design of nanostructured waveguides taking into account their inherent spatial dispersion and anisotropy. Using the method, we design a diffraction-compensating slab waveguide that contains only a single layer of silver nanorods. The waveguide shows low propagation loss and broadband diffraction compensation, potentially allowing transfer of optical information at a THz rate.

  6. Distributed meandering waveguides (DMWs) for novel photonic circuits (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dag, Ceren B.; Anil, Mehmet Ali; Serpengüzel, Ali

    2017-05-01

    Meandering waveguide distributed feedback structures are novel integrated photonic lightwave and microwave circuit elements. Meandering waveguide distributed feedback structures with a variety of spectral responses can be designed for a variety of lightwave and microwave circuit element functions. Distributed meandering waveguide (DMW) structures [1] show a variety of spectral behaviors with respect to the number of meandering loop mirrors (MLMs) [2] used in their composition as well as their internal coupling constants (Cs). DMW spectral behaviors include Fano resonances, coupled resonator induced transparency (CRIT), notch, add-drop, comb, and hitless filters. What makes the DMW special is the self-coupling property intrinsic to the DMW's nature. The basic example of DMW's nature is motivated through the analogy between the so-called symmetric meandering resonator (SMR), which consists of two coupled MLMs, and the resonator enhanced Mach-Zehnder interferometer (REMZI) [3]. A SMR shows the same spectral characteristics of Fano resonances with its self-coupling property, similar to the single, distributed and binary self coupled optical waveguide (SCOW) resonators [4]. So far DMWs have been studied for their electric field intensity, phase [5] and phasor responses [6]. The spectral analysis is performed using the coupled electric field analysis and the generalization of single meandering loop mirrors to multiple meandering distributed feedback structures is performed with the transfer matrix method. The building block of the meandering waveguide structures, the meandering loop mirror (MLM), is the integrated analogue of the fiber optic loop mirrors. The meandering resonator (MR) is composed of two uncoupled MLM's. The meandering distributed feedback (MDFB) structure is the DFB of the MLM. The symmetric MR (SMR) is composed of two coupled MLM's, and has the characteristics of a Fano resonator in the general case, and tunable power divider or tunable hitless filter in special cases. The antisymmetric MR (AMR) is composed of two coupled MLM's. The AMR has the characteristics of an add-drop filter in the general case, and coupled resonator induced transparency (CRIT) filter in a special case. The symmetric MDFB (SMDFB) is composed of multiple coupled MLM's. The antisymmetric MDFB (AMDFB) is composed of multiple coupled MLM's. The SMDFB and AMDFB can be utilized as band-pass, Fano, or Lorentzian filters, or Rabi splitters. Distributed meandering waveguide elements with extremely rich spectral and phase responses can be designed with creative combinations of distributed meandering waveguides structures for various novel photonic circuits. References [1 ] C. B. Dağ, M. A. Anıl, and A. Serpengüzel, "Meandering Waveguide Distributed Feedback Lightwave Circuits," J. Lightwave Technol, vol. 33, no. 9, pp. 1691-1702, May 2015. [2] N. J. Doran and D. Wood, "Nonlinear-optical loop mirror," Opt. Lett. vol. 13, no. 1, pp. 56-58, Jan. 1988. [3] L. Zhou and A. W. Poon, "Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers," Opt. Lett. vol. 32, no. 7, pp. 781-783, Apr. 2007. [4] Z. Zou, L. Zhou, X. Sun, J. Xie, H. Zhu, L. Lu, X. Li, and J. Chen, "Tunable two-stage self-coupled optical waveguide resonators," Opt. Lett. vol. 38, no. 8, pp. 1215-1217, Apr. 2013. [5] C. B. Dağ, M. A. Anıl, and A. Serpengüzel, "Novel distributed feedback lightwave circuit elements," in Proc. SPIE, San Francisco, 2015, vol. 9366, p. 93660A. [6] C. B. Dağ, M. A. Anıl, and A. Serpengüzel, "Meandering Waveguide Distributed Feedback Lightwave Elements: Phasor Diagram Analysis," in Proc. PIERS, Prague, 1986-1990 (2015).

  7. Modal analysis and cut-off conditions of multichannel surface-acoustic-waveguide structures.

    PubMed

    Griffel, G; Golan, G; Ruschin, S; Seidman, A; Croitoru, N

    1988-01-01

    Multichannel guides for surface acoustic waves can improve the efficiency of SAW (surface acoustic-wave) devices significantly. Focusing, steering, and modulating the propagating acoustical modes can be achieved similarly to optical waveguided devices. A general formulation is presented for the analysis of the lateral waveguiding properties of Rayleigh modes in surfaces loaded with deposited strips of different materials. General expressions are obtained for the number of modes and cutoff conditions in these structures. As examples of applications, a simple directional coupler and an electrically controlled coupler are proposed.

  8. An investigation for the development of an integrated optical data preprocessor. [preprocessing remote sensor outputs

    NASA Technical Reports Server (NTRS)

    Verber, C. M.; Kenan, R. P.; Hartman, N. F.; Chapman, C. M.

    1980-01-01

    A laboratory model of a 16 channel integrated optical data preprocessor was fabricated and tested in response to a need for a device to evaluate the outputs of a set of remote sensors. It does this by accepting the outputs of these sensors, in parallel, as the components of a multidimensional vector descriptive of the data and comparing this vector to one or more reference vectors which are used to classify the data set. The comparison is performed by taking the difference between the signal and reference vectors. The preprocessor is wholly integrated upon the surface of a LiNbO3 single crystal with the exceptions of the source and the detector. He-Ne laser light is coupled in and out of the waveguide by prism couplers. The integrated optical circuit consists of a titanium infused waveguide pattern, electrode structures and grating beam splitters. The waveguide and electrode patterns, by virtue of their complexity, make the vector subtraction device the most complex integrated optical structure fabricated to date.

  9. Coupled resonator optical waveguides based on silicon-on-insulator photonic wires

    NASA Astrophysics Data System (ADS)

    Xia, Fengnian; Sekaric, Lidija; O'Boyle, Martin; Vlasov, Yurii

    2006-07-01

    Coupled resonator optical waveguides (CROWs) comprised of up to 16 racetrack resonators based on silicon-on-insulator (SOI) photonic wires were fabricated and characterized. The optical properties of the CROWs were simulated using measured single resonator parameters based on a matrix approach. The group delay property of CROWs was also analyzed. The SOI based CROWs consisting of multiple resonators have extremely small footprints and can find applications in optical filtering, dispersion compensation, and optical buffering. Moreover, such CROW structure is a promising candidate for exploration of low light level nonlinear optics due to its resonant nature and compact mode size (˜0.1μm2) in photonic wire.

  10. Dielectric waveguide gas-filled stark shift modulator

    DOEpatents

    Hutchinson, Donald P.; Richards, Roger K.

    2003-07-22

    An optical modulator includes a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide. At least one Stark material is provided in the waveguide. A bias circuit generates a bias signal to produce an electrical field across the Stark material to shift at least one of the Stark absorption frequencies towards the frequency of the optical beam. A circuit for producing a time varying electric field across the Stark material modulates the optical beam. At least a portion of the bias field can be generated by an alternating bias signal, such as a square wave. A method of modulating optical signals includes the steps of providing a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide, the waveguide having at least one Stark material disposed therein, and varying an electric field imposed across the Stark material.

  11. Semiconductor Nonlinear Waveguide Devices and Integrated-Mirror Etalons

    NASA Astrophysics Data System (ADS)

    Chuang, Chih-Li.

    This dissertation investigates different III-V semiconductor devices for applications in nonlinear photonics. These include passive and active nonlinear directional couplers, current-controlled optical phase shifter, and integrated -mirror etalons. A novel method to find the propagation constants of an optical waveguide is introduced. The same method is applied, with minor modifications, to find the coupling length of a directional coupler. The method presented provides a tool for the design of optical waveguide devices. The design, fabrication, and performance of a nonlinear directional coupler are presented. This device uses light intensity to control the direction of light coming out. This is achieved through photo-generated-carriers mechanism in the picosecond regime and through the optical Stark effect in the femtosecond regime. A two-transverse -dimensions beam-propagation computation is used to model the switching behavior in the nonlinear directional coupler. It is found that, by considering the pulse degradation effect, the computation agrees well with experiments. The possibility of operating a nonlinear directional coupler with gain is investigated. It is concluded that by injecting current into the nonlinear directional coupler does not provide the advantages hoped for and the modelling using 2-D beam -propagation methods verifies that. Using current injection to change the refractive index of a waveguide, an optical phase shifter is constructed. This device has the merit of delivering large phase shift with almost no intensity modulation. A phase shift as large as 3pi is produced in a waveguide 400 μm in length. Finally, a new structure, grown by the molecular beam epitaxy machine, is described. The structure consists of two quarter-wave stacks and a spacer layer to form an integrated-mirror etalon. The theory, design principles, spectral analyses are discussed with design examples to clarify the ideas. Emphasis is given to the vertical-cavity surface-emitting laser constructed from this structure. Here we demonstrated the cw operation of the VCSEL at room temperature.

  12. Optical ridge waveguides in Nd:LGS crystal produced by combination of swift C5+ ion irradiation and precise diamond blade dicing

    NASA Astrophysics Data System (ADS)

    Cheng, Yazhou; Lv, Jinman; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2016-07-01

    We report on the fabrication of optical ridge waveguides in Nd:LGS crystal by using combination of swift C5+ ion irradiation and precise diamond blade dicing. The ridge structures support guidance both at 632.8 nm and 1064 nm wavelength along the TE and TM polarizations. The lowest propagation losses of the ridge waveguide for the TM mode are ~1.6 dB/cm at 632.8 nm and ~1.2 dB/cm at 1064 nm, respectively. The investigation of micro-fluorescence spectra and micro-Raman spectra indicates that the Nd3+ luminescence features have been well preserved and the microstructure of the waveguide region has no significant change after C5+ ion irradiation.

  13. Nonlinear optical coupler using a doped optical waveguide

    DOEpatents

    Pantell, Richard H.; Sadowski, Robert W.; Digonnet, Michel J. F.; Shaw, Herbert J.

    1994-01-01

    An optical mode coupling apparatus includes an Erbium-doped optical waveguide in which an optical signal at a signal wavelength propagates in a first spatial propagation mode and a second spatial propagation mode of the waveguide. The optical signal propagating in the waveguide has a beat length. The coupling apparatus includes a pump source of perturbational light signal at a perturbational wavelength that propagates in the waveguide in the first spatial propagation mode. The perturbational signal has a sufficient intensity distribution in the waveguide that it causes a perturbation of the effective refractive index of the first spatial propagation mode of the waveguide in accordance with the optical Kerr effect. The perturbation of the effective refractive index of the first spatial propagation mode of the optical waveguide causes a change in the differential phase delay in the optical signal propagating in the first and second spatial propagation modes. The change in the differential phase delay is detected as a change in the intensity distribution between two lobes of the optical intensity distribution pattern of an output signal. The perturbational light signal can be selectively enabled and disabled to selectively change the intensity distribution in the two lobes of the optical intensity distribution pattern.

  14. Three-Dimensional Self-Assembled Photonic Crystal Waveguide

    NASA Astrophysics Data System (ADS)

    Baek, Kang-Hyun

    Photonic crystals (PCs), two- or three-dimensionally periodic, artificial, and dielectric structures, have a specific forbidden band for electromagnetic waves, referred to as photonic bandgap (PBG). The PBG is analogous to the electronic bandgap in natural crystal structures with periodic atomic arrangement. A well-defined and embedded planar, line, or point defect within the PCs causes a break in its structural periodicity, and introduces a state in the PBG for light localization. It offers various applications in integrated optics and photonics including optical filters, sharp bending light guides and very low threshold lasers. Using nanofabrication processes, PCs of the 2-D slab-type and 3-D layer-by-layer structures have been investigated widely. Alternatively, simple and low-cost self-assembled PCs with full 3-D PBG, inverse opals, have been suggested. A template with face centered cubic closed packed structure, opal, may initially be built by self-assembly of colloidal spheres, and is selectively removed after infiltrating high refractive index materials into the interstitials of spheres. In this dissertation, the optical waveguides utilizing the 3-D self-assembled PCs are discussed. The waveguides were fabricated by microfabrication technology. For high-quality colloidal silica spheres and PCs, reliable synthesis, self-assembly, and characterization techniques were developed. Its theoretical and experimental demonstrations are provided and correlated. They suggest that the self-assembled PCs with PBG are feasible for the applications in integrated optics and photonics.

  15. Peptide Integrated Optics.

    PubMed

    Handelman, Amir; Lapshina, Nadezda; Apter, Boris; Rosenman, Gil

    2018-02-01

    Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to β-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Theory of absorption integrated optical sensor of gaseous materials

    NASA Astrophysics Data System (ADS)

    Egorov, A. A.

    2010-10-01

    The eigen and noneigen (leaky) modes of a three-layer planar integrated optical waveguide are described. The dispersion relation of a three-layer planar waveguide and other dependences are derived, and the cutoff conditions are analyzed. The diagram of propagation constants of the guided and radiation modes of an irregular asymmetric three-layer waveguide and the dependence of the electric field amplitudes of radiation modes of substrate on vertical coordinate in a tantalum integrated optical waveguide are presented. The operating principles of an absorption integrated optical waveguide sensor are investigated. The dependences of sensitivity of an integrated optical waveguide sensor on the sensory cell length, the coupling efficiency of the laser radiation into the waveguide, the absorption cross-section of the studied material, and the level of additive statistical noise are investigated. Some of the prospective areas of application of integrated-optical waveguide sensors are outlined.

  17. Active control of electromagnetic radiation through an enhanced thermo-optic effect

    PubMed Central

    Sheng, Chong; Liu, Hui; Zhu, Shining; Genov, Dentcho A.

    2015-01-01

    The control of electromagnetic radiation in transformation optical metamaterials brings the development of vast variety of optical devices. Of a particular importance is the possibility to control the propagation of light with light. In this work, we use a structured planar cavity to enhance the thermo-optic effect in a transformation optical waveguide. In the process, a control laser produces apparent inhomogeneous refractive index change inside the waveguides. The trajectory of a second probe laser beam is then continuously tuned in the experiment. The experimental results agree well with the developed theory. The reported method can provide a new approach toward development of transformation optical devices where active all-optical control of the impinging light can be achieved. PMID:25746689

  18. Y-junctions based on circular depressed-cladding waveguides fabricated with femtosecond pulses in Nd:YAG crystal: A route to integrate complex photonic circuits in crystals

    NASA Astrophysics Data System (ADS)

    Ajates, Javier G.; Romero, Carolina; Castillo, Gabriel R.; Chen, Feng; Vázquez de Aldana, Javier R.

    2017-10-01

    We have designed and fabricated photonic structures such as, Y-junctions (one of the basic building blocks for construction any integrated photonic devices) and Mach-Zehnder interferometers, based on circular depressed-cladding waveguides by direct femtosecond laser irradiation in Nd:YAG crystal. The waveguides were optically characterized at 633 nm, showing nearly mono-modal behaviour for the selected waveguide radius (9 μm). The effect of the splitting angle in the Y structures was investigated finding a good preservation of the modal profiles up to more than 2°, with 1 dB of additional losses in comparison with straight waveguides. The dependence with polarization of these splitters keeps in a reasonable low level. Our designs pave the way for the fabrication of arbitrarily complex 3D photonic circuits in crystals with cladding waveguides.

  19. Integrated optical interrogation of micro-structures

    DOEpatents

    Evans, III, Boyd M.; Datskos, Panagiotis G.; Rajic, Slobodan

    2003-01-01

    The invention is an integrated optical sensing element for detecting and measuring changes in position or deflection. A deflectable member, such as a microcantilever, is configured to receive a light beam. A waveguide, such as an optical waveguide or an optical fiber, is positioned to redirect light towards the deflectable member. The waveguide can be incorporated into the deflectable member or disposed adjacent to the deflectable member. Means for measuring the extent of position change or deflection of the deflectable member by receiving the light beam from the deflectable member, such as a photodetector or interferometer, receives the reflected light beam from the deflectable member. Changes in the light beam are correlated to the changes in position or deflection of the deflectable member. A plurality of deflectable members can be arranged in a matrix or an array to provide one or two-dimensional imaging or sensing capabilities.

  20. Theoretical investigation of intensity-dependent optical nonlinearity in graphene-aided D-microfiber

    NASA Astrophysics Data System (ADS)

    Shah, Manoj Kumar; Lu, Rongguo; Zhang, Yali; Ye, Shengwei; Zhang, Shangjian; Liu, Yong

    2018-01-01

    We theoretically investigate the intensity-dependent optical nonlinearity in graphene-aided D-microfiber, by tuning the chemical potential of graphene and varying radial distance and radii of the D-microfiber. Utilizing an interplay between graphene and the enhanced evanescent field of a guided mode in the waveguide of interest, the net utility of nonlinear coefficient is harnessed up to a very high value of 106 W-1m-1. Importantly, which is ∼ two orders of magnitude larger than in PMMA-graphene-PMMA waveguide. The highly dispersive nature of the waveguide, D ∼ 103 ps/nm-km, and large nonlinear figure-of-merit, FOMNL ∼ 1.29, have raised the possibilities of utilizing slow light structures to operate devices at few watts power level with microscale length. These studies have opened one window towards the next-generation all fiber-optic graphene nonlinear optical devices.

  1. The waveguide laser - A review

    NASA Technical Reports Server (NTRS)

    Degnan, J. J.

    1976-01-01

    The present article reviews the fundamental physical principles essential to an understanding of waveguide gas and liquid lasers, and the current technological state of these devices. At the present time, waveguide laser transitions span the visible through submillimeter regions of the wavelength spectrum. The introduction discusses the many applications of waveguide lasers and the wide variety of laser configurations that are possible. Section 1 summarizes the properties of modes in hollow dielectric waveguides of circular, rectangular, and planar cross section. Section 2 considers various approaches to optical feedback including internal and external mirror Fabry-Perot type resonators, hollow waveguide distributed feedback structures, and ring-resonant configurations. Section 3 discusses those aspects of molecular kinetic and laser theory pertinent to the design and optimization of waveguide gas lasers.

  2. Optical Forces on Non-Spherical Nanoparticles Trapped by Optical Waveguides

    NASA Astrophysics Data System (ADS)

    Hasan Ahmed, Dewan; Sung, Hyung Jin

    2011-07-01

    Numerical simulations of a solid-core polymer waveguide structure were performed to calculate the trapping efficiencies of particles with nanoscale dimensions smaller than the wavelength of the trapping beam. A three-dimensional (3-D) finite element method was employed to calculate the electromagnetic field. The inlet and outlet boundary conditions were obtained using an eigenvalue solver to determine the guided and evanescent mode profiles. The Maxwell stress tensor was considered for the calculation of the transverse and downward trapping efficiencies. A particle at the center of the waveguide showed minimal transverse trapping efficiency and maximal downward trapping efficiency. This trend gradually reversed as the particle moved away from the center of the waveguide. Particles with larger surface areas exhibited higher trapping efficiencies and tended to be trapped near the waveguide. Particles displaced from the wave input tended to be trapped at the waveguide surface. Simulation of an ellipsoidal particle showed that the orientation of the major axis along the waveguide's lateral z-coordinate significantly influenced the trapping efficiency. The particle dimensions along the z-coordinate were more critical than the gap distance (vertical displacement from the floor of the waveguide) between the ellipsoid particle and the waveguide. The present model was validated using the available results reported in the literature for different trapping efficiencies.

  3. Transverse single-mode edge-emitting lasers based on coupled waveguides.

    PubMed

    Gordeev, Nikita Yu; Payusov, Alexey S; Shernyakov, Yuri M; Mintairov, Sergey A; Kalyuzhnyy, Nikolay A; Kulagina, Marina M; Maximov, Mikhail V

    2015-05-01

    We report on the transverse single-mode emission from InGaAs/GaAs quantum well edge-emitting lasers with broadened waveguide. The lasers are based on coupled large optical cavity (CLOC) structures where high-order vertical modes of the broad active waveguide are suppressed due to their resonant tunneling into a coupled single-mode passive waveguide. The CLOC lasers have shown stable Gaussian-shaped vertical far-field profiles with a reduced divergence of ∼22° FWHM (full width at half-maximum) in CW (continuous-wave) operation.

  4. Design and simulation of a planar micro-optic free-space receiver

    NASA Astrophysics Data System (ADS)

    Nadler, Brett R.; Hallas, Justin M.; Karp, Jason H.; Ford, Joseph E.

    2017-11-01

    We propose a compact directional optical receiver for free-space communications, where a microlens array and micro-optic structures selectively couple light from a narrow incidence angle into a thin slab waveguide and then to an edge-mounted detector. A small lateral translation of the lenslet array controls the coupled input angle, enabling the receiver to select the transmitter source direction. We present the optical design and simulation of a 10mm x 10mm aperture receiver using a 30μm thick silicon waveguide able to couple up to 2.5Gbps modulated input to a 10mm x 30μm wide detector.

  5. Monolithically integrated solid state laser and waveguide using spin-on glass

    DOEpatents

    Ashby, C.I.H.; Hohimer, J.P.; Neal, D.R.; Vawter, G.A.

    1995-10-31

    A monolithically integrated photonic circuit is disclosed combining a semiconductor source of excitation light with an optically active waveguide formed on the substrate. The optically active waveguide is preferably formed of a spin-on glass to which are added optically active materials which can enable lasing action, optical amplification, optical loss, or frequency conversion in the waveguide, depending upon the added material. 4 figs.

  6. Waveguide couplers with new power splitting ratios made possible by cascading of short multimode interference sections

    NASA Astrophysics Data System (ADS)

    Feng, David J. Y.; Lay, T. S.; Chang, T. Y.

    2007-02-01

    We show that it is possible to obtain 2 x 2 waveguide couplers with new power splitting ratios for cross coupling of 7%, 64%, 80% and 93% by cascading two short MMI sections. These couplers have simple geometry and low loss. They offer valuable new possibilities for designing waveguide power taps, high-Q ring resonators, ladder-structure optical filters, and loop-mirror partial reflectors.

  7. Nano-structured wild moth cocoon fibers as radiative cooling and waveguiding optical materials

    NASA Astrophysics Data System (ADS)

    Shi, Norman Nan; Tsai, Cheng-Chia; Bernard, Gary D.; Craig, Catherine; Yu, Nanfang

    2017-09-01

    The study shows that comet moth cocoon fibers exhibit radiative cooing properties with enhanced solar reflectivity and thermal emissivity. Nanostructured voids inside the cocoon fiber enables the cocoons to exhibit strong scattering in the visible and near-infrared. These structures also allow the fibers to exhibit strong shape birefringence and directional reflectivity. Optical waveguiding due to transverse Anderson localization is observed in these natural fibers, where the invariance and large concentration of the voids in the longitudinal direction allow the fiber to confine light in the transverse direction. To mimic the optical effects generated by these natural silk fibers, nanostructured voids are introduced into regenerated silk fibers through wet spinning to enhance reflectivity in the solar spectrum.

  8. Optical analysis of AlGaInP laser diodes with real refractive index guided self-aligned structure

    NASA Astrophysics Data System (ADS)

    Xu, Yun; Zhu, Xiaopeng; Ye, Xiaojun; Kang, Xiangning; Cao, Qing; Guo, Liang; Chen, Lianghui

    2004-05-01

    Optical modes of AlGaInP laser diodes with real refractive index guided self-aligned (RISA) structure were analyzed theoretically on the basis of two-dimension semivectorial finite-difference methods (SV-FDMs) and the computed simulation results were presented. The eigenvalue and eigenfunction of this two-dimension waveguide were obtained and the dependence of the confinement factor and beam divergence angles in the direction of parallel and perpendicular to the pn junction on the structure parameters such as the number of quantum wells, the Al composition of the cladding layers, the ridge width, the waveguide thickness and the residual thickness of the upper P-cladding layer were investigated. The results can provide optimized structure parameters and help us design and fabricate high performance AlGaInP laser diodes with a low beam aspect ratio required for optical storage applications.

  9. Direct-patterned optical waveguides on amorphous silicon films

    DOEpatents

    Vernon, Steve; Bond, Tiziana C.; Bond, Steven W.; Pocha, Michael D.; Hau-Riege, Stefan

    2005-08-02

    An optical waveguide structure is formed by embedding a core material within a medium of lower refractive index, i.e. the cladding. The optical index of refraction of amorphous silicon (a-Si) and polycrystalline silicon (p-Si), in the wavelength range between about 1.2 and about 1.6 micrometers, differ by up to about 20%, with the amorphous phase having the larger index. Spatially selective laser crystallization of amorphous silicon provides a mechanism for controlling the spatial variation of the refractive index and for surrounding the amorphous regions with crystalline material. In cases where an amorphous silicon film is interposed between layers of low refractive index, for example, a structure comprised of a SiO.sub.2 substrate, a Si film and an SiO.sub.2 film, the formation of guided wave structures is particularly simple.

  10. Integrated optical gyroscope using active Long-range surface plasmon-polariton waveguide resonator

    PubMed Central

    Zhang, Tong; Qian, Guang; Wang, Yang-Yang; Xue, Xiao-Jun; Shan, Feng; Li, Ruo-Zhou; Wu, Jing-Yuan; Zhang, Xiao-Yang

    2014-01-01

    Optical gyroscopes with high sensitivity are important rotation sensors for inertial navigation systems. Here, we present the concept of integrated resonant optical gyroscope constructed by active long-range surface plasmon-polariton (LRSPP) waveguide resonator. In this gyroscope, LRSPP waveguide doped gain medium is pumped to compensate the propagation loss, which has lower pump noise than that of conventional optical waveguide. Peculiar properties of single-polarization of LRSPP waveguide have been found to significantly reduce the polarization error. The metal layer of LRSPP waveguide is electro-optical multiplexed for suppression of reciprocal noises. It shows a limited sensitivity of ~10−4 deg/h, and a maximum zero drift which is 4 orders of magnitude lower than that constructed by conventional single-mode waveguide. PMID:24458281

  11. Analytical approach for modeling and performance analysis of microring resonators as optical filters with multiple output bus waveguides

    NASA Astrophysics Data System (ADS)

    Lakra, Suchita; Mandal, Sanjoy

    2017-06-01

    A quadruple micro-optical ring resonator (QMORR) with multiple output bus waveguides is mathematically modeled and analyzed by making use of the delay-line signal processing approach in Z-domain and Mason's gain formula. The performances of QMORR with two output bus waveguides with vertical coupling are analyzed. This proposed structure is capable of providing wider free spectral response from both the output buses with appreciable cross talk. Thus, this configuration could provide increased capacity to insert a large number of communication channels. The simulated frequency response characteristic and its dispersion and group delay characteristics are graphically presented using the MATLAB environment.

  12. 100 GHz pulse waveform measurement based on electro-optic sampling

    NASA Astrophysics Data System (ADS)

    Feng, Zhigang; Zhao, Kejia; Yang, Zhijun; Miao, Jingyuan; Chen, He

    2018-05-01

    We present an ultrafast pulse waveform measurement system based on an electro-optic sampling technique at 1560 nm and prepare LiTaO3-based electro-optic modulators with a coplanar waveguide structure. The transmission and reflection characteristics of electrical pulses on a coplanar waveguide terminated with an open circuit and a resistor are investigated by analyzing the corresponding time-domain pulse waveforms. We measure the output electrical pulse waveform of a 100 GHz photodiode and the obtained rise times of the impulse and step responses are 2.5 and 3.4 ps, respectively.

  13. Nanoaquariums Fabricated by Femtosecond Laser for Exploration of Dynamics and Functions of Microorganisms

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Hanada, Yasutaka; Kawano, Hiroyuki; Ishikawa, Ikuko S.; Miyawaki, Atsushi; Midorikawa, Katsumi

    2010-10-01

    We demonstrate to fabricate microfluidic chips integrated with some functional elements such as optical attenuators and optical waveguides by femtosecond (fs) laser direct writing for mechanism study of gliding movement of Phormidium to a seedling root. Femtosecond laser irradiation followed by annealing and wet etching in dilute hydrofluoric (HF) acid solution resulted in formation of three-dimensional (3D) hollow microstructures embedded in a photosensitive glass. The embedded microfludic structures enabled us to easily and efficiently observe Phormidium gliding to the seedling root, which accelerates growth of the vegetable seedling. In addition, integration of optical attenuators and optical waveguides into the microfluidic structures in the microchip clarified the mechanism of the gliding movement of Phormidium. Such microchips, referred to as nanoaquariums, realized the highly efficient and functional observation and analysis of various microorganisms.

  14. Nano-aquarium fabrication with cut-off filter for mechanism study of Phormidium assemblage

    NASA Astrophysics Data System (ADS)

    Hanada, Y.; Sugioka, K.; Ishikawa, I.; Kawano, H.; Miyawaki, A.; Midorikawa, K.

    2010-02-01

    We demonstrate fabrication of microfluidic chips integrated with different functional elements such as optical filters and optical waveguide for mechanism study of gliding movement of Phormidium to a seedling root using a femtosecond (fs) laser. Fs laser direct writing followed by annealing and successive wet etching in dilute hydrofluoric (HF) acid solution resulted in formation of three dimensional (3D) hollow microstructures embedded in a photostructurable glass. The embedded microfludic structures enabled us to easily and efficiently observe Phormidium gliding to the seedling root, which accelerates growth of the seedling. In addition, fabrication of optical filter and optical waveguide integrated with the microfluidic structures in the microchip clarified the mechanism of the gliding movement. Such microchips, referred to as a nano-aquarium, realize the efficient and highly functional observation and analysis of the gliding movement of Phormidium.

  15. Special types of FBG and CoaxBG structures for telecommunication and monitoring systems

    NASA Astrophysics Data System (ADS)

    Morozov, Oleg G.; Nasybullin, Aidar R.; Morozov, Gennady A.; Danilaev, Maxim P.; Zastela, Mikhail Y.; Farkhutdinov, Rafael V.; Faskhutdinov, Lenar M.

    2015-03-01

    The technology of fiber Bragg gratings is used as one of the most applicable technologies for construction of fiber optic sensors and telecommunication systems. Periodic irregular wave resistance located in the guiding waveguide can be regarded as analog of the fiber Bragg grating structure in the field of radio-frequency. Coaxial waveguide can be used as a guide system, so a special case of this structure is the Bragg grating on coaxial cable. Recently, the special structure of sensors were beginning to be used with heterogeneity as a discrete phase π-shift. Based on the properties analysis of the Bragg reflection characteristics of structures with a phase shift in the optical and microwave range shown advantage of using these devices in measuring systems.

  16. Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides

    NASA Astrophysics Data System (ADS)

    Tsilipakos, Odysseas; Kriezis, Emmanouil E.; Bozhevolnyi, Sergey I.

    2011-04-01

    Thermo-optic switching elements made of dielectric-loaded plasmonic (DLSPP) waveguides are theoretically investigated by utilizing the three-dimensional vector finite element method. The configurations considered employ microring resonators, whose resonant frequency is varied by means of thermal tuning. First, a classic add-drop filter with parallel access waveguides is examined. Such a component features very poor drop port extinction ratio (ER). We therefore extend the analysis to add-drop filters with perpendicular access waveguides, which are found to exhibit superior drop port ERs, due to interference effects associated with the drop port transmission. In the process, the performance of a DLSPP waveguide crossing is also assessed, since it is a building block of those filters whose bus waveguides intersect. An elliptic tapering scheme is proposed for minimizing cross talk and its effect on the filter performance is explored. The dual-resonator add-drop filter with perpendicular bus waveguides and an untreated waveguide crossing of Sec. V can act as an efficient 2×2 switching element (the single-resonator variant can only act as a 1×2 switch due to structure asymmetry), possessing two equivalent input ports and featuring high ERs for both output ports over a broad wavelength range. Specifically, an extinction ratio of at least 8 dB can be attained for both output ports over a wavelength range of 3.2 nm, accommodating four 100-GHz-spaced channels. Switching times are in the order of a few microseconds, rendering the aforementioned structure capable of handling real-world routing scenarios.

  17. Enhancement of coupling ratios in SOI based asymmetrical optical directional couplers

    NASA Astrophysics Data System (ADS)

    Pendam, Nagaraju; Vardhani, Chunduru Parvatha

    2017-11-01

    A novel design of slab structured asymmetrical optical directional coupler with S-bend waveguides on silicon-on-insulator (SOI) platform has been designed by using R-Soft CAD tool. Beam propagation method (BPM) is used for light propagation analysis. The simulation results of asymmetrical optical directional couplers are reported. We find that the asymmetrical directional coupler has lower coupling ratios and higher extinction ratios with waveguide parameters such as width, wavelength, waveguide spacing, and coupling length. Simulation results designate that the coupling efficiency for transverse electric (TE) and transverse magnetic (TM) modes can reach about more than 95% and extinction ratio about 6 dB when the coupling length is 6 mm for both the polarization modes and insertion loss is 17 dB with same coupling length 6 mm at central wavelength 1550 nm.

  18. Optical modulation in silicon waveguides via charge state control of deep levels.

    PubMed

    Logan, D F; Jessop, P E; Knights, A P; Wojcik, G; Goebel, A

    2009-10-12

    The control of defect mediated optical absorption at a wavelength of 1550 nm via charge state manipulation is demonstrated using optical absorption measurements of indium doped Silicon-On-Insulator (SOI) rib waveguides. These measurements introduce the potential for modulation of waveguide transmission by using the local depletion and injection of free-carriers to change deep-level occupancy. The extinction ratio and modulating speed are simulated for a proposed device structure. A 'normally-off' depletion modulator is described with an extinction coefficient limited to 5 dB/cm and switching speeds in excess of 1 GHz. For a carrier injection modulator a fourfold enhancement in extinction ratio is provided relative to free carrier absorption alone. This significant improvement in performance is achieved with negligible increase in driving power but slightly degraded switching speed.

  19. Transmission and group-delay characterization of coupled resonator optical waveguides apodized through the longitudinal offset technique.

    PubMed

    Doménech, J D; Muñoz, P; Capmany, J

    2011-01-15

    In this Letter, the amplitude and group delay characteristics of coupled resonator optical waveguides apodized through the longitudinal offset technique are presented. The devices have been fabricated in silicon-on-insulator technology employing deep ultraviolet lithography. The structures analyzed consisted of three racetracks resonators uniform (nonapodized) and apodized with the aforementioned technique, showing a delay of 5 ± 3 ps and 4 ± 0.5 ps over 1.6 and 1.4 nm bandwidths, respectively.

  20. Supersymmetric oscillator in optics

    NASA Technical Reports Server (NTRS)

    Chumakov, Sergey M.; Wolf, Kurt Bernardo

    1995-01-01

    We show that the supersymmetric structure (in the sense of supersymmetric quantum mechanics) appears in Helmholtz optics describing light propagation in waveguides. For the case of elliptical waveguides, with the accuracy of paraxial approximation it admits a simple physical interpretation. The supersymmetry connects light beams of different colors. The difference in light frequencies for the supersymmetric beams is determined by the transverse gradient of the refractive index. These beams have the save wavelength in the propagation direction and can form a stable interference pattern.

  1. Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Jenkins, M.; Measor, P.; Leake, K.; Liu, S.; Schmidt, H.; Hawkins, A. R.

    2011-02-01

    A type of integrated hollow core waveguide with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films is demonstrated. Hollow core waveguides made with a combination of plasma-enhanced chemical vapor deposition SiO2 and sputtered Ta2O5 provide a nearly optimal structure for optofluidic biofluorescence measurements with low optical loss, high fabrication yield, and low background photoluminescence. Compared to earlier structures made using Si3N4, the photoluminescence background of Ta2O5 based hollow core waveguides is decreased by a factor of 10 and the signal-to-noise ratio for fluorescent nanobead detection is improved by a factor of 12.

  2. Periodically modulated single-photon transport in one-dimensional waveguide

    NASA Astrophysics Data System (ADS)

    Li, Xingmin; Wei, L. F.

    2018-03-01

    Single-photon transport along a one-dimension waveguide interacting with a quantum system (e.g., two-level atom) is a very useful and meaningful simplified model of the waveguide-based optical quantum devices. Thus, how to modulate the transport of the photons in the waveguide structures by adjusting certain external parameters should be particularly important. In this paper, we discuss how such a modulation could be implemented by periodically driving the energy splitting of the interacting atom and the atom-photon coupling strength. By generalizing the well developed time-independent full quantum mechanical theory in real space to the time-dependent one, we show that various sideband-transmission phenomena could be observed. This means that, with these modulations the photon has certain probabilities to transmit through the scattering atom in the other energy sidebands. Inversely, by controlling the sideband transmission the periodic modulations of the single photon waveguide devices could be designed for the future optical quantum information processing applications.

  3. Tunable high-channel-count bandstop graphene plasmonic filters based on plasmon induced transparency

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengren; Long, Yang; Ma, Pengyu; Li, Hongqiang

    2017-11-01

    A high-channel-count bandstop graphene plasmonic filter based on ultracompact plasmonic structure is proposed in this paper. It consists of graphene waveguide side-coupled with a series of graphene filtering units. The study shows that the waveguide-resonator system performs a multiple plasmon induced transparency (PIT) phenomenon. By carefully adjusting the Fermi level of the filtering units, any two adjacent transmitted dips which belong to different PIT units can produce coherent coupling superposition enhancement. This property prevents the attenuation of the high-frequency transmission dips of multiple PIT and leads to an excellent bandstop filter with multiple channels. Specifically, the bandwidth and modulation depth of the filters can be flexibly adjusted by tuning the Fermi energy of the graphene waveguide. This ultracompact plasmonic structure contributes to the achievement of frequency division multiplexing systems for optical computing and communications in highly integrated optical circuits.

  4. Optical keyboard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veligdan, James T.; Feichtner, John D.; Phillips, Thomas E.

    2001-01-01

    An optical keyboard includes an optical panel having optical waveguides stacked together. First ends of the waveguides define an inlet face, and opposite ends thereof define a screen. A projector transmits a light beam outbound through the waveguides for display on the screen as a keyboard image. A light sensor is optically aligned with the inlet face for sensing an inbound light beam channeled through the waveguides from the screen upon covering one key of the keyboard image.

  5. The serpentine optical waveguide: engineering the dispersion relations and the stopped light points.

    PubMed

    Scheuer, Jacob; Weiss, Ori

    2011-06-06

    We present a study a new type of optical slow-light structure comprising a serpentine shaped waveguide were the loops are coupled. The dispersion relation, group velocity and GVD are studied analytically using a transfer matrix method and numerically using finite difference time domain simulations. The structure exhibits zero group velocity points at the ends of the Brillouin zone, but also within the zone. The position of mid-zone zero group velocity point can be tuned by modifying the coupling coefficient between adjacent loops. Closed-form analytic expressions for the dispersion relations, group velocity and the mid-zone zero v(g) points are found and presented.

  6. Design of thin-film photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Silvestre, E.; Pottage, J. M.; Russell, P. St. J.; Roberts, P. J.

    2000-08-01

    We present numerical designs for single-mode leak-free photonic crystal waveguides exhibiting strongly anisotropic spatial and temporal dispersion. These structures may be produced quite simply by drilling regular arrays of holes into thin films of high refractive index, and permit the realization of highly compact optical elements and wavelength division multiplexing devices.

  7. Numerical simulation studies of nano-scale surface plasmon components: waveguides, splitters, and filters

    NASA Astrophysics Data System (ADS)

    Lin, Xian-Shi; Huang, Xu-Guang

    2008-12-01

    In this paper, we theoretically and numerically demonstrate a two-dimensional Metal-Dielectric-Metal (MDM) waveguide based on finite-difference time-domain simulation of the propagation characteristics of surface plasmon polaritons (SPPs). For practical applications, we propose a plasmonic Y-branch waveguide based on MDM structure for high integration. The simulation results show that the Y-branch waveguide proposed here makes optical splitter with large branching angle (~180 degree) come true. We also introduce a finite array of periodic tooth structure on one surface of the MDM waveguide which is in a similar way as FBGs or Bragg reflectors, potentially as filters for WDM applications. Our results show that the novel structure not only can realize filtering function of wavelength with a high transmittance over 92%, but also with an ultra-compact size in the length of a few hundred nanometers, in comparison with other grating-like SPPs filters. The MDM waveguide splitters and filters could be utilized to achieve ultra-compact photonic filtering devices for high integration in SPPs-based flat metallic surfaces.

  8. Planar waveguide sensor of ammonia

    NASA Astrophysics Data System (ADS)

    Rogoziński, Roman; Tyszkiewicz, Cuma; Karasiński, Paweł; Izydorczyk, Weronika

    2015-12-01

    The paper presents the concept of forming ammonia sensor based on a planar waveguide structure. It is an amplitude sensor produced on the basis of the multimode waveguide. The technological base for this kind of structure is the ion exchange method and the sol-gel method. The planar multimode waveguide of channel type is produced in glass substrate (soda-lime glass of Menzel-Glaser company) by the selective Ag+↔Na+ ion exchange. On the surface of the glass substrate a porous (~40%) silica layer is produced by the sol-gel method. This layer is sensitized to the presence of ammonia in the surrounding atmosphere by impregnation with Bromocresol Purple (BCP) dye. Therefore it constitutes a sensor layer. Spectrophotometric tests carried out showed about 50% reduction of cross-transmission changes of such sensor layer for a wave λ=593 nm caused by the presence of 25% ammonia water vapor in its ambience. The radiation source used in this type of sensor structure is a light emitting diode LED. The gradient channel waveguide is designed for frontal connection (optical glue) with a standard multimode telecommunications waveguide 62.5/125μm.

  9. Micromanipulation and microfabrication for optical microrobotics

    NASA Astrophysics Data System (ADS)

    Palima, Darwin; Bañas, Andrew Rafael; Vizsnyiczai, Gaszton; Kelemen, Lóránd; Aabo, Thomas; Ormos, Pál.; Glückstad, Jesper

    2012-10-01

    Robotics can use optics feedback in vision-based control of intelligent robotic guidance systems. With light's miniscule momentum, shrinking robots down to the microscale regime creates opportunities for exploiting optical forces and torques in microrobotic actuation and control. Indeed, the literature on optical trapping and micromanipulation attests to the possibilities for optical microrobotics. This work presents an optical microrobotics perspective on the optical microfabrication and micromanipulation work that we performed. We designed different three-dimensional microstructures and fabricated them by two-photon polymerization. These microstructures were then handled using our biophotonics workstation (BWS) for proof-of-principle demonstrations of optical actuation, akin to 6DOF actuation of robotic micromanipulators. Furthermore, we also show an example of dynamic behavior of the trapped microstructure that can be achieved when using static traps in the BWS. This can be generalized, in the future, towards a structural shaping optimization strategy for optimally controlling microstructures to complement approaches based on lightshaping. We also show that light channeled to microfabricated, free-standing waveguides can be used not only to redirect light for targeted delivery of optical energy but can also for targeted delivery of optical force, which can serve to further extend the manipulation arms in optical robotics. Moreover, light deflection with waveguide also creates a recoil force on the waveguide, which can be exploited for controlling the optical force.

  10. Optically-controlled extinction ratio and Q-factor tunable silicon microring resonators based on optical forces

    NASA Astrophysics Data System (ADS)

    Long, Yun; Wang, Jian

    2014-06-01

    Tunability is a desirable property of microring resonators to facilitate superior performance. Using light to control light, we present an alternative simple approach to tuning the extinction ratio (ER) and Q-factor of silicon microring resonators based on optical forces. We design an opto-mechanical tunable silicon microring resonator consisting of an add-drop microring resonator and a control-light-carrying waveguide (``controlling'' waveguide). One of the two bus waveguides of the microring resonator is a deformable nanostring put in parallel with the ``controlling'' waveguide. The tuning mechanism relies on the optical force induced deflection of suspended nanostring, leading to the change of coupling coefficient of microring and resultant tuning of ER and Q-factor. Two possible geometries, i.e. double-clamped nanostring and cantilever nanostring, are studied in detail for comparison. The obtained results imply a favorable structure with the microring positioned at the end of the cantilever nanostring. It features a wide tuning range of ER from 5.6 to 39.9 dB and Q-factor from 309 to 639 as changing the control power from 0 to 1.4 mW.

  11. Study of the pulse characteristics of semiconductor lasers with a broadened waveguide at low temperatures (110–120 K)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veselov, D. A.; Shashkin, I. S.; Bobretsova, Yu. K.

    2016-10-15

    Pulse-pumped MOVPE-fabricated (metal-organic vapor-phase epitaxy) semiconductor lasers emitting in the spectral ranges 1000–1100 and 1400–1600 nm at temperatures of 110–120 K are studied. It is found that cooling the lasers for both spectral ranges to low temperature results in their light–current curves approaching linearity, and an optical power of, respectively, 110 and 20 W can be attained. The low-temperature effect is reduced for lasers emitting in the spectral range 1400–1600 nm. The processes affecting a rise in the internal optical loss in semiconductor lasers are considered. It is shown that an increase in the carrier concentration in the waveguide ofmore » a laser structure greatly depends on temperature and is determined by the noninstantaneous capture (capture rate) of carriers from the waveguide into the active region. It is demonstrated that, upon lowering the temperature to 115K, the concentration of electrons and holes in the waveguide becomes lower, which leads to a significant decrease in the internal optical loss and to an increase in the output optical power of the semiconductor laser.« less

  12. Fiberless multicolor neural optoelectrode for in vivo circuit analysis.

    PubMed

    Kampasi, Komal; Stark, Eran; Seymour, John; Na, Kyounghwan; Winful, Herbert G; Buzsáki, György; Wise, Kensall D; Yoon, Euisik

    2016-08-03

    Maximizing the potential of optogenetic approaches in deep brain structures of intact animals requires optical manipulation of neurons at high spatial and temporal resolutions, while simultaneously recording electrical data from those neurons. Here, we present the first fiber-less optoelectrode with a monolithically integrated optical waveguide mixer that can deliver multicolor light at a common waveguide port to achieve multicolor modulation of the same neuronal population in vivo. We demonstrate successful device implementation by achieving efficient coupling between a side-emitting injection laser diode (ILD) and a dielectric optical waveguide mixer via a gradient-index (GRIN) lens. The use of GRIN lenses attains several design features, including high optical coupling and thermal isolation between ILDs and waveguides. We validated the packaged devices in the intact brain of anesthetized mice co-expressing Channelrhodopsin-2 and Archaerhodopsin in pyramidal cells in the hippocampal CA1 region, achieving high quality recording, activation and silencing of the exact same neurons in a given local region. This fully-integrated approach demonstrates the spatial precision and scalability needed to enable independent activation and silencing of the same or different groups of neurons in dense brain regions while simultaneously recording from them, thus considerably advancing the capabilities of currently available optogenetic toolsets.

  13. Robust light transport in non-Hermitian photonic lattices

    PubMed Central

    Longhi, Stefano; Gatti, Davide; Valle, Giuseppe Della

    2015-01-01

    Combating the effects of disorder on light transport in micro- and nano-integrated photonic devices is of major importance from both fundamental and applied viewpoints. In ordinary waveguides, imperfections and disorder cause unwanted back-reflections, which hinder large-scale optical integration. Topological photonic structures, a new class of optical systems inspired by quantum Hall effect and topological insulators, can realize robust transport via topologically-protected unidirectional edge modes. Such waveguides are realized by the introduction of synthetic gauge fields for photons in a two-dimensional structure, which break time reversal symmetry and enable one-way guiding at the edge of the medium. Here we suggest a different route toward robust transport of light in lower-dimensional (1D) photonic lattices, in which time reversal symmetry is broken because of the non-Hermitian nature of transport. While a forward propagating mode in the lattice is amplified, the corresponding backward propagating mode is damped, thus resulting in an asymmetric transport insensitive to disorder or imperfections in the structure. Non-Hermitian asymmetric transport can occur in tight-binding lattices with an imaginary gauge field via a non-Hermitian delocalization transition, and in periodically-driven superlattices. The possibility to observe non-Hermitian delocalization is suggested using an engineered coupled-resonator optical waveguide (CROW) structure. PMID:26314932

  14. Robust light transport in non-Hermitian photonic lattices.

    PubMed

    Longhi, Stefano; Gatti, Davide; Della Valle, Giuseppe

    2015-08-28

    Combating the effects of disorder on light transport in micro- and nano-integrated photonic devices is of major importance from both fundamental and applied viewpoints. In ordinary waveguides, imperfections and disorder cause unwanted back-reflections, which hinder large-scale optical integration. Topological photonic structures, a new class of optical systems inspired by quantum Hall effect and topological insulators, can realize robust transport via topologically-protected unidirectional edge modes. Such waveguides are realized by the introduction of synthetic gauge fields for photons in a two-dimensional structure, which break time reversal symmetry and enable one-way guiding at the edge of the medium. Here we suggest a different route toward robust transport of light in lower-dimensional (1D) photonic lattices, in which time reversal symmetry is broken because of the non-Hermitian nature of transport. While a forward propagating mode in the lattice is amplified, the corresponding backward propagating mode is damped, thus resulting in an asymmetric transport insensitive to disorder or imperfections in the structure. Non-Hermitian asymmetric transport can occur in tight-binding lattices with an imaginary gauge field via a non-Hermitian delocalization transition, and in periodically-driven superlattices. The possibility to observe non-Hermitian delocalization is suggested using an engineered coupled-resonator optical waveguide (CROW) structure.

  15. Polymer thermal optical switch for a flexible photonic circuit.

    PubMed

    Sun, Yue; Cao, Yue; Wang, Qi; Yi, Yunji; Sun, Xiaoqiang; Wu, Yuanda; Wang, Fei; Zhang, Daming

    2018-01-01

    Flexible and wearable optoelectronic devices are the new trend for an active lifestyle. These devices are polymer-based for flexibility. We demonstrated flexible polymer waveguide optical switches for a flexible photonic integrated circuit. The optical switches are composed of a single-mode inverted waveguide with dimensions of 5 μm waveguide width, 3 μm ridge height, and 3 μm slab height. A Mach-Zehnder structure was used in the device, with the Y-branch horizontal length of 0.1 cm, the distance between two heating branches of 30 μm, and the heating branch length of 1 cm. The optical field of the device was simulated by beam propagation to optimize the electrode position. The switching properties of the flexible optical switch with different working conditions, such as contact to the polymer, silicon, and skin, were simulated. The device was prepared based on the photo curved polymer and lithography method. The end faces of the flexible film device were processed using an excimer laser with optimized parameters of 28  mJ/cm 2 and 15 Hz. The response rise time and fall time on the PMMA substrate were measured as 1.98 ms and 2.71 ms, respectively. The power consumption was 16 mW and the extinction ratio was 11 dB. The response rise and fall times on the Si substrate were measured as 1.08 ms and 1.62 ms, respectively. The power consumption was 17 mW and the extinction ratio was 11 dB. The demonstrated properties indicate that this flexible optical waveguide structure can be used in the light control area of a wearable device.

  16. Magneto-optical non-reciprocal devices in silicon photonics

    PubMed Central

    Shoji, Yuya; Mizumoto, Tetsuya

    2014-01-01

    Silicon waveguide optical non-reciprocal devices based on the magneto-optical effect are reviewed. The non-reciprocal phase shift caused by the first-order magneto-optical effect is effective in realizing optical non-reciprocal devices in silicon waveguide platforms. In a silicon-on-insulator waveguide, the low refractive index of the buried oxide layer enhances the magneto-optical phase shift, which reduces the device footprints. A surface activated direct bonding technique was developed to integrate a magneto-optical garnet crystal on the silicon waveguides. A silicon waveguide optical isolator based on the magneto-optical phase shift was demonstrated with an optical isolation of 30 dB and insertion loss of 13 dB at a wavelength of 1548 nm. Furthermore, a four port optical circulator was demonstrated with maximum isolations of 15.3 and 9.3 dB in cross and bar ports, respectively, at a wavelength of 1531 nm. PMID:27877640

  17. Background-free balanced optical cross correlator

    DOEpatents

    Nejadmalayeri, Amir Hossein; Kaertner, Franz X

    2014-12-23

    A balanced optical cross correlator includes an optical waveguide, a first photodiode including a first n-type semiconductor and a first p-type semiconductor positioned about the optical waveguide on a first side of the optical waveguide's point of symmetry, and a second photodiode including a second n-type semiconductor and a second p-type semiconductor positioned about the optical waveguide on a second side of the optical waveguide's point of symmetry. A balanced receiver including first and second inputs is configured to produce an output current or voltage that reflects a difference in currents or voltages, originating from the first and the second photodiodes of the balanced cross correlator and fed to the first input and to the second input of the balanced receiver.

  18. Polarization-insensitive optical gain characteristics of highly stacked InAs/GaAs quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kita, Takashi; Suwa, Masaya; Kaizu, Toshiyuki

    2014-06-21

    The polarized optical gain characteristics of highly stacked InAs/GaAs quantum dots (QDs) with a thin spacer layer fabricated on an n{sup +}-GaAs (001) substrate were studied in the sub-threshold gain region. Using a 4.0-nm-thick spacer layer, we realized an electronically coupled QD superlattice structure along the stacking direction, which enabled the enhancement of the optical gain of the [001] transverse-magnetic (TM) polarization component. We systematically studied the polarized electroluminescence properties of laser devices containing 30 and 40 stacked InAs/GaAs QDs. The net modal gain was analyzed using the Hakki-Paoli method. Owing to the in-plane shape anisotropy of QDs, the polarizationmore » sensitivity of the gain depends on the waveguide direction. The gain showing polarization isotropy between the TM and transverse-electric polarization components is high for the [110] waveguide structure, which occurs for higher amounts of stacked QDs. Conversely, the isotropy of the [−110] waveguide is easily achieved even if the stacking is relatively low, although the gain is small.« less

  19. Highly integrated 3×3 silicon thermo-optical switch using a single combined phase shifter for optical interconnects.

    PubMed

    Wang, Wanjun; Zhou, Haifeng; Yang, Jianyi; Wang, Minghua; Jiang, Xiaoqing

    2012-06-15

    We report on an experimental 3×3 thermo-optical switch on silicon on insulator. By controlling a single combined phase shifter, light from any input waveguide can be directed to any output waveguide, showing a simple control method and highly integrated structure as compared to the conventional multiway optical switches. Furthermore, the proposed optical switch can be generalized to be a 1×N and N×N optical switch without an extra phase shifter. The switch is fabricated by complementary metal oxide semiconductor technology. By experiment, full 3×3 switching functionality is demonstrated at a wavelength of 1.55 μm, with an average cross talk of -11.1  dB and a power consumption of 97.5 mW.

  20. Brillouin gain enhancement in nano-scale photonic waveguide

    NASA Astrophysics Data System (ADS)

    Nouri Jouybari, Soodabeh

    2018-05-01

    The enhancement of stimulated Brillouin scattering in nano-scale waveguides has a great contribution in the improvement of the photonic devices technology. The key factors in Brillouin gain are the electrostriction force and radiation pressure generated by optical waves in the waveguide. In this article, we have proposed a new scheme of nano-scale waveguide in which the Brillouin gain is considerably improved compared to the previously-reported schemes. The role of radiation pressure in the Brillouin gain was much higher than the role of the electrostriction force. The Brillouin gain strongly depends on the structural parameters of the waveguide and the maximum value of 12127 W-1 m-1 is obtained for the Brillouin gain.

  1. Microminiature optical waveguide structure and method for fabrication

    DOEpatents

    Strand, O.T.; Deri, R.J.; Pocha, M.D.

    1998-12-08

    A method for manufacturing low-cost, nearly circular cross section waveguides comprises starting with a substrate material that a molten waveguide material can not wet or coat. A thin layer is deposited of an opposite material that the molten waveguide material will wet and is patterned to describe the desired surface-contact path pedestals for a waveguide. A waveguide material, e.g., polymer or doped silica, is deposited. A resist material is deposited and unwanted excess is removed to form pattern masks. The waveguide material is etched away to form waveguide precursors and the masks are removed. Heat is applied to reflow the waveguide precursors into near-circular cross-section waveguides that sit atop the pedestals. The waveguide material naturally forms nearly circular cross sections due to the surface tension effects. After cooling, the waveguides will maintain the round shape. If the width and length are the same, then spherical ball lenses are formed. Alternatively, the pedestals can be patterned to taper along their lengths on the surface of the substrate. This will cause the waveguides to assume a conical taper after reflowing by heat. 32 figs.

  2. Microminiature optical waveguide structure and method for fabrication

    DOEpatents

    Strand, Oliver T.; Deri, Robert J.; Pocha, Michael D.

    1998-01-01

    A method for manufacturing low-cost, nearly circular cross section waveguides comprises starting with a substrate material that a molten waveguide material can not wet or coat. A thin layer is deposited of an opposite material that the molten waveguide material will wet and is patterned to describe the desired surface-contact path pedestals for a waveguide. A waveguide material, e.g., polymer or doped silica, is deposited. A resist material is deposited and unwanted excess is removed to form pattern masks. The waveguide material is etched away to form waveguide precursors and the masks are removed. Heat is applied to reflow the waveguide precursors into near-circular cross-section waveguides that sit atop the pedestals. The waveguide material naturally forms nearly circular cross sections due to the surface tension effects. After cooling, the waveguides will maintain the round shape. If the width and length are the same, then spherical ball lenses are formed. Alternatively, the pedestals can be patterned to taper along their lengths on the surface of the substrate. This will cause the waveguides to assume a conical taper after reflowing by heat.

  3. The use of optical waveguides in head up display (HUD) applications

    NASA Astrophysics Data System (ADS)

    Homan, Malcolm

    2013-06-01

    The application of optical waveguides to Head Up Displays (HUD) is an enabling technology which solves the critical issues of volume reduction (including cockpit intrusion) and mass reduction in an affordable product which retains the high performance optical capabilities associated with today's generation of digital display based HUDs. Improved operability and pilot comfort is achieved regardless of the installation by virtue of the intrinsic properties of optical waveguides and this has enabled BAE Systems Electronic Systems to develop two distinct product streams for glareshield and overhead HUD installations respectively. This paper addresses the design drivers behind the development of the next generation of Head Up Displays and their compatibility with evolving cockpit architectures and structures. The implementation of large scale optical waveguide combiners capable of matching and exceeding the display performances normally only associated with current digital display sourced HUDs has enabled BAE Systems Electronic Systems to solve the volume and installation challenges of the latest military and civil cockpits with it's LiteHUD® technology. Glareshield mounted waveguide based HUDs are compatible with the trend towards the addition of Large Area Displays (LAD) in place of the traditional multiple Head Down Displays (HDD) within military fast jet cockpits. They use an "indirect view" variant of the display which allows the amalgamation of high resolution digital display devices with the inherently small volume and low mass of the waveguide optics. This is then viewed using the more traditional technology of a conventional HUD combiner. This successful combination of technologies has resulted in the LPHUD product which is specifically designed by BAE Systems Electronic Systems to provide an ultra-low profile HUD which can be installed behind a LAD; still providing the level of performance that is at least equivalent to that of a conventional large volume glareshield mounted HUD. In many current Business Jet and Air Transport cockpits overhead mounted HUDs employ a conventional optical combiner to relay the display from a separate projector to the pilot's eyes. In BAE Systems' Electronic Systems QHUDTM configuration this combiner is replaced by the waveguide and the bulky, intrusive overhead projector completely eliminated. The result is a significant reduction in equipment volume and mass and a much greater head clearance combined with a substantially larger Head Motion Box. This latter feature is a fundamental outturn of waveguide optical solutions which removes the restrictions on pilot eye positioning associated with current conventional systems. LiteHUD®, developed by BAE Systems, Electronic Systems achieves equivalent optical performance to in-service HUDs for less cost, mass and volume.

  4. Color waveguide transparent screen using lens array holographic optical element

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Sun, Peng; Wang, Chang; Zheng, Zhenrong

    2017-11-01

    A color transparent screen was designed in this paper, a planar glass was used as a waveguide structure and the lens array holographic optical element (HOE) was used as a display unit. The lens array HOE was exposed by two coherent beams. One was the reference wave which directly illuminated on the holographic material and the other was modulated by the micro lens array. The lens array HOE can display the images with see-through abilities. Unlike the conventional lens array HOE, a planar glass was adopted as the waveguide in the experiment. The projecting light was totally internal-reflected in the planar glass to eliminate the undesired zero-order diffracted light. By using waveguide, it also brings advantage of compact structure. Colorful display can be realized in our system as the holographic materials were capable for multi-wavelength display. In this paper, a color transparent screen utilizing the lens array HOE and waveguide were designed. Experiment results showed a circular display area on the transparent screen. The diameter of the area is 20 mm and it achieved the pixel resolution of 100 μm. This simple and effective method could be an alternative in the augment reality (AR) applications, such as transparent phone and television.

  5. Methods and apparatus for vertical coupling from dielectric waveguides

    DOEpatents

    Yaacobi, Ami; Cordova, Brad Gilbert

    2014-06-17

    A frequency-chirped nano-antenna provides efficient sub-wavelength vertical emission from a dielectric waveguide. In one example, this nano-antenna includes a set of plasmonic dipoles on the opposite side of a SiYV.sub.4 waveguide from a ground plane. The resulting structure, which is less than half a wavelength long, emits a broadband beam (e.g., >300 nm) that can be coupled into an optical fiber. In some embodiments, a diffractive optical element with unevenly shaped regions of high- and low-index dielectric material collimates the broadband beam for higher coupling efficiency. In some cases, a negative lens element between the nano-antenna and the diffractive optical element accelerates the emitted beam's divergence (and improves coupling efficiency), allowing for more compact packaging. Like the diffractive optical element, the negative lens element includes unevenly shaped regions of high- and low-index dielectric material that can be designed to compensate for aberrations in the beam emitted by the nano-antenna.

  6. Towards Fieldable Rapid Bioagent Detection: advanced Resonant Optical Waveguide and Biolayer Structures for Integrated Biosensing

    DTIC Science & Technology

    2007-11-01

    waveguide approach in which a right-angled gadolinium gallium garnet (GGG) glass prism of index 1.965 at 633 nm is used to couple light from a HeNe laser of...SPARROW sensor consists of two planar, single mode aluminum oxide waveguides separated vertically by a lower refractive index silicon dioxide layer...and high stability could be formed on aluminum oxide, the binding of an alkyl carboxylic acid, stearic acid (n-octadecanoic acid), was investigated

  7. FIBER AND INTEGRATED OPTICS: Optimization of optical film waveguides

    NASA Astrophysics Data System (ADS)

    Adamson, P. V.

    1990-10-01

    Theoretical investigations were made of the possibility of optimization of the effective thickness, of the optical confinement factor Γ1, and of the birefringence of a planar dielectric waveguide as a function of the waveguide parameter V and the waveguide asymmetry. For a given value of V it is possible to ensure higher values of Γ1, for an asymmetric waveguide than for a symmetric one. An approximate expression is proposed for the factor Γ1, of an asymmetric waveguide directly in terms of its thickness and the refractive indices of the layers.

  8. Process development for waveguide chemical sensors with integrated polymeric sensitive layers

    NASA Astrophysics Data System (ADS)

    Amberkar, Raghu; Gao, Zhan; Park, Jongwon; Henthorn, David B.; Kim, Chang-Soo

    2008-02-01

    Due to the proper optical property and flexibility in the process development, an epoxy-based, high-aspect ratio photoresist SU-8 is now attracting attention in optical sensing applications. Manipulation of the surface properties of SU-8 waveguides is critical to attach functional films such as chemically-sensitive layers. We describe a new integration process to immobilize fluorescence molecules on SU-8 waveguide surface for application to intensity-based optical chemical sensors. We use two polymers for this application. Spin-on, hydrophobic, photopatternable silicone is a convenient material to contain fluorophore molecules and to pattern a photolithographically defined thin layer on the surface of SU-8. We use fumed silica powders as an additive to uniformly disperse the fluorophores in the silicone precursor. In general, additional processes are not critically required to promote the adhesion between the SU-8 and silicone. The other material is polyethylene glycol diacrylate (PEGDA). Recently we demonstrated a novel photografting method to modify the surface of SU-8 using a surface bound initiator to control its wettability. The activated surface is then coated with a monomer precursor solution. Polymerization follows when the sample is exposed to UV irradiation, resulting in a grafted PEGDA layer incorporating fluorophores within the hydrogel matrix. Since this method is based the UV-based photografting reaction, it is possible to grow off photolithographically defined hydrogel patterns on the waveguide structures. The resulting films will be viable integrated components in optical bioanalytical sensors. This is a promising technique for integrated chemical sensors both for planar type waveguide and vertical type waveguide chemical sensors.

  9. Comparison of distributed Bragg reflector ridge waveguide diode lasers and monolithic master oscillator power amplifiers

    NASA Astrophysics Data System (ADS)

    Werner, Nils; Wegemund, Jan; Gerke, Sebastian; Feise, David; Bugge, Frank; Paschke, Katrin; Tränkle, Günther

    2018-02-01

    Diode lasers with ridge waveguide structures and wavelength stabilization by a distributed Bragg-reflector (DBR) are key components for many different applications. These lasers provide diffraction limited laser emission in a single spectral mode, while an arbitrary emission wavelength can be chosen as long as the semiconductor allows for amplification. Furthermore, the DBR grating can be fabricated during the lateral structuring of the device which makes them well suited for mass production. A variety of different concepts can be used for the actual realization of the laser. While standard DBR ridge waveguide lasers (DBR-RWL) with a DBR as reflection grating provide up to 1W optical output power, the DBR can be also used as transmission grating for improved efficiency. Furthermore, more complex structures like monolithic master oscillator power amplifiers (MOPA), which show less spectral mode hops than DBR-RWLs, have been fabricated. The wide range of possible applications have different requirements on the emission characteristic of the used lasers. While the lasers can fulfill the requirements on the emission spectrum and the optical output power, the effects due to optical feedback from optical elements of the setup may limit their practical use in the respective application. Thus, it is of high importance to analyze the emission behavior of the different laser designs at various operation conditions with and without optical feedback. Here, the detailed investigation of the emission characteristics of lasers at an exemplary emission wavelength of 1120 nm is be presented.

  10. Weak-guidance-theory review of dispersion and birefringence management by laser inscription

    NASA Astrophysics Data System (ADS)

    Zheltikov, A. M.; Reid, D. T.

    2008-01-01

    A brief review of laser inscription of micro- and nanophotonic structures in transparent materials is provided in terms of a compact and convenient formalism based on the theory of weak optical waveguides. We derive physically instructive approximate expressions allowing propagation constants of laser-inscribed micro- and nanowaveguides to be calculated as functions of the transverse waveguide size, refractive index step, and dielectric properties of the host material. Based on this analysis, we demonstrate that dispersion engineering capabilities of laser micromachining techniques are limited by the smallness of the refractive index step typical of laser-inscribed structures. However, a laser inscription of waveguides in pre-formed micro- and nanostructures suggests a variety of interesting options for a fine dispersion and birefringence tuning of small-size waveguides and photonic wires.

  11. Deoxyribonucleic acid (DNA)-based optical materials

    NASA Astrophysics Data System (ADS)

    Grote, James G.; Heckman, Emily M.; Hagen, Joshua A.; Yaney, Perry P.; Subramanyam, Guru; Clarson, Stephen J.; Diggs, Darnell E.; Nelson, Robert L.; Zetts, John S.; Hopkins, F. Kenneth; Ogata, Naoya

    2004-12-01

    Optical materials for waveguiding applications must possess the desired optical and electromagnetic properties for optimal device performance. Purified deoxyribonucleic acid (DNA), derived from salmon sperm, has been investigated for use as an optical waveguide material. In this paper we present the materials processing and optical and electromagnetic characterization of this purified DNA to render a high quality, low loss optical waveguide material.

  12. Colloidal PbS nanocrystals integrated to Si-based photonics for applications at telecom wavelengths

    NASA Astrophysics Data System (ADS)

    Humer, M.; Guider, R.; Jantsch, W.; Fromherz, T.

    2013-05-01

    In the last decade, Si based photonics has made major advances in terms of design, fabrication, and device implementation. But due to Silicon's indirect bandgap, it still remains a challenge to create efficient Si-based light emitting devices. In order to overcome this problem, an approach is to develop hybrid systems integrating light-emitting materials into Si. A promising class of materials for this purpose is the class of semiconducting nanocrystal quantum dots (NCs) that are synthesized by colloidal chemistry. As their absorption and emission wavelength depends on the dot size, which can easily be controlled during synthesis, they are extremely attractive as building blocks for nanophotonic applications. For applications in telecom wavelength, Lead chalcogenide colloidal NCs are optimum materials due to their unique optical, electronic and nonlinear properties. In this work, we experimentally demonstrate the integration of PbS nanocrystals into Si-based photonic structures like slot waveguides and ring resonators as optically pumped emitters for room temperature applications. In order to create such hybrid structures, the NCs were dissolved into polymer resists and drop cast on top of the device. Upon optical pumping, intense photoluminescence emission from the resonating modes is recorded at the output of the waveguide with transmission quality factors up to 14000. The polymer host material was investigated with respect to its ability to stabilize the NC's photoluminescence emission against degradation under ambient conditions. The waveguide-ring coupling efficiency was also investigated as function of the NCs concentrations blended into the polymer matrix. The integration of colloidal quantum dots into Silicon photonic structures as demonstrated in this work is a very versatile technique and thus opens a large range of applications utilizing the linear and nonlinear optical properties of PbS NCs at telecom wavelengths.

  13. Nonlinear digital out-of-plane waveguide coupler based on nonlinear scattering of a single graphene layer

    NASA Astrophysics Data System (ADS)

    Asadi, Reza; Ouyang, Zhengbiao

    2018-03-01

    A new mechanism for out-of-plane coupling into a waveguide is presented and numerically studied based on nonlinear scattering of a single nano-scale Graphene layer inside the waveguide. In this mechanism, the refractive index nonlinearity of Graphene and nonhomogeneous light intensity distribution occurred due to the interference between the out-of-plane incident pump light and the waveguide mode provide a virtual grating inside the waveguide, coupling the out-of-plane pump light into the waveguide. It has been shown that the coupling efficiency has two distinct values with high contrast around a threshold pump intensity, providing suitable condition for digital optical applications. The structure operates at a resonance mode due to band edge effect, which enhances the nonlinearity and decreases the required threshold intensity.

  14. Planar waveguide microlenses for nonblocking photonic switches and optical interconnects

    NASA Astrophysics Data System (ADS)

    Glebov, Alexei L.; Huang, Lidu; Lee, Michael; Aoki, Shigenori; Yokouchi, Kishio

    2004-09-01

    Different types of planar waveguide microlenses are fabricated with PLC technologies from a variety of optical materials such as silica, photo-definable epoxy resins, and a number of other optical polymers. Hybrid microlenses are also fabricated in which the base of the lens, with a double concave gap, is formed from silica and the gap is filled with an optical polymer. The optimized lens structures provide the maximum coupling efficiencies between the input and output channels at distances up to 100 mm with a minimum channel pitch of 0.5-0.7 mm. Experimental and theoretical studies provide results on collimation and focusing properties of single and double microlenses made of silica, polymer, and silica/polymer. The evaluation of the temperature and wavelength effects on the collimation characteristics of the lenses demonstrate that the single lenses are more stable and, thus, more suitable for operations under varying conditions. Examples of the planar waveguide microlens applications are presented. In one application the microlens arrays are integrated in fast electrooptic photonic switching modules. In the other application the microlenses are embedded in the backplanes with nonblocking optical interconnects.

  15. FIBER AND INTEGRATED OPTICS: Waveguide characteristics of real optical strip waveguides

    NASA Astrophysics Data System (ADS)

    Shmal'ko, A. V.; Frolov, V. V.

    1990-01-01

    A study is reported of the influence of the parameters of real thin-film optical strip waveguides on their waveguide characteristics (propagation constants, localization of the mode field, etc.) allowing for the presence of transition layers in a transverse cross section of the base planar waveguide, for the real geometry of this section (which is nearly trapezoidal), and for the thickness of the guiding strip. Analytic expressions are obtained for the optical confinement coefficient and the effective mode format of a weakly guiding symmetric strip waveguide. It is shown that the coefficient representing the fundamental E11x(y) mode is practically independent of the relative thickness t /h (h is the thickness of the base planar waveguide) of the guiding strip provided t /h>=0.5. The corrections to the normalized effective refractive indices of the base planar and strip waveguides are found in order to allow for the real geometry and for the refractive index profile in the strip waveguide.

  16. Integrated Optical Dipole Trap for Cold Neutral Atoms with an Optical Waveguide Coupler

    NASA Astrophysics Data System (ADS)

    Lee, J.; Park, D. H.; Mittal, S.; Meng, Y.; Dagenais, M.; Rolston, S. L.

    2013-05-01

    Using an optical waveguide, an integrated optical dipole trap uses two-color (red and blue-detuned) traveling evanescent wave fields for trapping cold neutral atoms. To achieve longitudinal confinement, we propose using an integrated optical waveguide coupler, which provides a potential gradient along the beam propagation direction sufficient to confine atoms. This integrated optical dipole trap can support an atomic ensemble with a large optical depth due to its small mode area. Its quasi-TE0 waveguide mode has an advantage over the HE11 mode of a nanofiber, with little inhomogeneous Zeeman broadening at the trapping region. The longitudinal confinement eliminates the need for a 1D optical lattice, reducing collisional blockaded atomic loading, potentially producing larger ensembles. The waveguide trap allows for scalability and integrability with nano-fabrication technology. We analyze the potential performance of such integrated atom traps and present current research progress towards a fiber-coupled silicon nitride optical waveguide integrable with atom chips. Work is supported by the ARO Atomtronics MURI. Work is supported by the ARO Atomtronics MURI.

  17. Characterization of Si3N4/SiO2 optical channel waveguides by photon scanning tunneling microscopy

    NASA Technical Reports Server (NTRS)

    Wang, Yan; Chudgar, Mona H.; Jackson, Howard E.; Miller, Jeffrey S.; De Brabander, Gregory N.; Boyd, Joseph T.

    1993-01-01

    Photon scanning tunneling microscopy (PSTM) is used to characterize Si3N4/Si02 optical channel waveguides being used for integrated optical-micromechanical sensors. PSTM utilizes an optical fiber tapered to a fine point which is piezoelectrically positioned to measure the decay of the evanescent field intensity associated with the waveguide propagating mode. Evanescent field decays are recorded for both ridge channel waveguides and planar waveguide regions. Values for the local effective refractive index are calculated from the data for both polarizations and compared to model calculations.

  18. Self-reflection of extremely short light pulses in nonlinear optical waveguides

    NASA Astrophysics Data System (ADS)

    Kurasov, Alexander E.; Kozlov, Sergei A.

    2004-07-01

    An equation describing the generation of reflected radiation during the propagation of high-intensity extremely short pulses in a nonlinear optical waveguide is derived. The phenomena taking place during the strong self-inducted changes of the temporal structure of the forward wave are studied. It is shown that the duration of the backward pulse is much greater than the duration of the forward pulse and that the main part of the energy of the backward wave is carried by lower frequencies than the central frequency of the forward wave.

  19. FIBER AND INTEGRATED OPTICS: Emission properties of graded-index corrugated waveguides with a metal or semiconductor coating

    NASA Astrophysics Data System (ADS)

    Ataya, B. A.; Osovitskiĭ, A. N.

    1992-02-01

    A numerical method was used to investigate the emission of TE-polarized light from a graded-index corrugated waveguide coated with a metal or semiconductor and either with or without a buffer layer. The main emission characteristics of these systems were analyzed. In the case of metallized dielectric structures an optimal corrugation depth was established for which the emitted power is a maximum. It was found that when the parameters of a structure with a buffer layer were correctly chosen and a highly reflective metal coating was used, practically all the power in the waveguide wave could be emitted along a specified direction. A structure with a buffer layer and an aluminum coating was investigated experimentally.

  20. Engineered Quasi-Phase Matching for Nonlinear Quantum Optics in Waveguides

    NASA Astrophysics Data System (ADS)

    Van Camp, Mackenzie A.

    Entanglement is the hallmark of quantum mechanics. Quantum entanglement--putting two or more identical particles into a non-factorable state--has been leveraged for applications ranging from quantum computation and encryption to high-precision metrology. Entanglement is a practical engineering resource and a tool for sidestepping certain limitations of classical measurement and communication. Engineered nonlinear optical waveguides are an enabling technology for generating entangled photon pairs and manipulating the state of single photons. This dissertation reports on: i) frequency conversion of single photons from the mid-infrared to 843nm as a tool for incorporating quantum memories in quantum networks, ii) the design, fabrication, and test of a prototype broadband source of polarization and frequency entangled photons; and iii) a roadmap for further investigations of this source, including applications in quantum interferometry and high-precision optical metrology. The devices presented herein are quasi-phase-matched lithium niobate waveguides. Lithium niobate is a second-order nonlinear optical material and can mediate optical energy conversion to different wavelengths. This nonlinear effect is the basis of both quantum frequency conversion and entangled photon generation, and is enhanced by i) confining light in waveguides to increase conversion efficiency, and ii) quasi-phase matching, a technique for engineering the second-order nonlinear response by locally altering the direction of a material's polarization vector. Waveguides are formed by diffusing titanium into a lithium niobate wafer. Quasi-phase matching is achieved by electric field poling, with multiple stages of process development and optimization to fabricate the delicate structures necessary for broadband entangled photon generation. The results presented herein update and optimize past fabrication techniques, demonstrate novel optical devices, and propose future avenues for device development. Quantum frequency conversion from 1848nm to 843nm is demonstrated for the first time, with >75% single-photon conversion efficiency. A new electric field poling methodology is presented, combining elements from multiple historical techniques with a new fast-feedback control system. This poling technique is used to fabricate the first chirped-and-apodized Type-II quasi-phase-matched structures in titanium-diffused lithium niobate waveguides, culminating in a measured phasematching spectrum that is predominantly Gaussian ( R2 = 0.80), nearly eight times broader than the unchirped spectrum, and agrees well with simulations.

  1. Method and apparatus of wide-angle optical beamsteering from a nanoantenna phased array

    DOEpatents

    Davids, Paul; DeRose, Christopher; Rakich, Peter Thomas

    2015-08-11

    An optical beam-steering apparatus is provided. The apparatus includes one or more optical waveguides and at least one row of metallic nanoantenna elements overlying and electromagnetically coupled to a respective waveguide. In each such row, individual nanoantenna elements are spaced apart along an optical propagation axis of the waveguide so that there is an optical propagation phase delay between successive pairs of nanoantenna elements along the row. The apparatus also includes a respective single electric heating element in thermal contact with each of the waveguides. Each heating element is arranged to heat, substantially uniformly, at least that portion of its waveguide that directly underlies the corresponding row of nanoantenna elements.

  2. Wavelength selective switch array employing silica-based waveguide frontend with integrated polarization diversity optics.

    PubMed

    Sakamaki, Yohei; Shikama, Kota; Ikuma, Yuichiro; Suzuki, Kenya

    2017-08-21

    We propose a waveguide frontend with integrated polarization diversity optics for a wavelength selective switch (WSS) array with a liquid crystal on silicon switching engine to simplify the free space optics configuration and the alignment process in optical modules. The polarization diversity function is realized by the integration of a waveguide-type polarization beam splitter and a polarization rotating half-wave plate in a beam launcher using silica-based planar lightwave circuit technology. We confirmed experimentally the feasibility of using our proposed waveguide frontend in a two-in-one 1 × 20 WSS. The experimental results show that the fabricated waveguide frontend provides a polarization diversity function without any degradation in optical performance.

  3. Spatially Modulated Gain Waveguide Electro-Optic Laser

    DTIC Science & Technology

    2013-08-09

    1997, pp 1223-1226. 5. Y. Li, S. M. Goldwasser, P. Herczfeld, L.M. Narducci, "Dynamics of an electro-optically tunable microchip laser ", IEEE...TYPE Final 3. DATES COVERED (From 7/2/2010-5-10-2013 To) 4. TITLE AND SUBTITLE Spatially modulated gain waveguide electro-optic laser 5a...optical waveguides laser on LiNb03 substrate. The main goal of this work is to implement an active LiNb03 waveguide with the desired spatially modulated

  4. Ten inch Planar Optic Display

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiser, L.; Veligdan, J.

    A Planar Optic Display (POD) is being built and tested for suitability as a high brightness replacement for the cathode ray tube, (CRT). The POD display technology utilizes a laminated optical waveguide structure which allows a projection type of display to be constructed in a thin (I to 2 inch) housing. Inherent in the optical waveguide is a black cladding matrix which gives the display a black appearance leading to very high contrast. A Digital Micromirror Device, (DMD) from Texas Instruments is used to create video images in conjunction with a 100 milliwatt green solid state laser. An anamorphic opticalmore » system is used to inject light into the POD to form a stigmatic image. In addition to the design of the POD screen, we discuss: image formation, image projection, and optical design constraints.« less

  5. Design of compact surface optical coupler based on vertically curved silicon waveguide for high-numerical-aperture single-mode optical fiber

    NASA Astrophysics Data System (ADS)

    Atsumi, Yuki; Yoshida, Tomoya; Omoda, Emiko; Sakakibara, Youichi

    2017-09-01

    A surface optical coupler based on a vertically curved Si waveguide was designed for coupling with high-numerical aperture single-mode optical fibers with a mode-field diameter of 5 µm. This coupler has a quite small device size, with a height of approximately 12 µm, achieved by introducing an effective spot-size converter configured with the combination of an extremely short Si exponential-inverse taper and a dome-structured SiO2 lens formed on the coupler top. The designed coupler shows high-efficiency optical coupling, with a loss of 0.8 dB for TE polarized light, as well as broad-band coupling with a 0.5-dB-loss band of 420 nm.

  6. Optical trapping and propulsion of red blood cells on waveguide surfaces.

    PubMed

    Ahluwalia, Balpreet Singh; McCourt, Peter; Huser, Thomas; Hellesø, Olav Gaute

    2010-09-27

    We have studied optical trapping and propulsion of red blood cells in the evanescent field of optical waveguides. Cell propulsion is found to be highly dependent on the biological medium and serum proteins the cells are submerged in. Waveguides made of tantalum pentoxide are shown to be efficient for cell propulsion. An optical propulsion velocity of up to 
6 µm/s on a waveguide with a width of ~6 µm is reported. Stable optical trapping and propulsion of cells during transverse flow is also reported.

  7. Optical hysteresis in SPR structures with amorphous As2S3 film under low-power laser irradiation

    NASA Astrophysics Data System (ADS)

    Stafe, M.; Popescu, A. A.; Savastru, D.; Negutu, C.; Vasile, G.; Mihailescu, M.; Ducariu, A.; Savu, V.; Tenciu, D.; Miclos, S.; Baschir, L.; Verlan, V. V.; Bordian, O.; Puscas, N. N.

    2018-03-01

    Optical hysteresis is a fundamental phenomenon that can lead to optical bistability and high-speed signal processing. Here, we present a theoretical and experimental study of the optical hysteresis phenomenon in amorphous As2S3 chalcogenide based waveguide structures under surface plasmon resonance (SPR) conditions. The SPR structure is irradiated with low power CW Ar laser radiation at 514 nm wavelength, with photon energy near the optical band-gap of As2S3, in a Kretschmann-Raether configuration. First, we determined the incidence angle on the SPR structure for resonant coupling of the laser radiation within the waveguide structure. Subsequently, by setting the near resonance incidence angle, we analyzed the variation of the laser power reflected on the SPR structure with incident power. We demonstrated that, by setting the incidence angle at a value slightly smaller than the resonance angle, the increase followed by the decrease of the incident power lead to a wide (up to 60%) hysteresis loop of the reflected power. This behavior is related to the slow and persistent photo-induced modification of the complex refractive index of As2S3 under 514 nm laser irradiation. The experimental and theoretical results are in good agreement, demonstrating the validity of the theoretical model presented here.

  8. Optical NAND gate

    DOEpatents

    Skogen, Erik J [Albuquerque, NM; Raring, James [Goleta, CA; Tauke-Pedretti, Anna [Albuquerque, NM

    2011-08-09

    An optical NAND gate is formed from two pair of optical waveguide devices on a substrate, with each pair of the optical waveguide devices consisting of an electroabsorption modulator and a photodetector. One pair of the optical waveguide devices is electrically connected in parallel to operate as an optical AND gate; and the other pair of the optical waveguide devices is connected in series to operate as an optical NOT gate (i.e. an optical inverter). The optical NAND gate utilizes two digital optical inputs and a continuous light input to provide a NAND function output. The optical NAND gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  9. Far infrared pump injection using an alumina waveguide

    NASA Astrophysics Data System (ADS)

    Nedvidek, F. J.; Kucerovsky, Z.; Brannen, Eric

    1987-01-01

    An alumina waveguide extension is employed to channel infrared radiation from a CO2 waveguide laser into an optically pumped far IR waveguide laser resonator in order to obtain far IR lasing with methyl alcohol and other media. Low pump transmission losses and efficient free space coupling are possible with proper choice of waveguide bore. The technique compares favorably with other injection schemes using refractive optics, and it offers greater flexibility, easier alignment, and less expense than optical arrangements using lenses.

  10. Extraction film for optical waveguide and method of producing same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarsa, Eric J.; Durkee, John W.

    2017-05-16

    An optical waveguide includes a waveguide body and a film disposed on a surface of the waveguide body. The film includes a base and a plurality of undercut light extraction elements disposed between the base and the surface.

  11. Integrated resonant micro-optical gyroscope and method of fabrication

    DOEpatents

    Vawter, G Allen [Albuquerque, NM; Zubrzycki, Walter J [Sandia Park, NM; Guo, Junpeng [Albuquerque, NM; Sullivan, Charles T [Albuquerque, NM

    2006-09-12

    An integrated optic gyroscope is disclosed which is based on a photonic integrated circuit (PIC) having a bidirectional laser source, a pair of optical waveguide phase modulators and a pair of waveguide photodetectors. The PIC can be connected to a passive ring resonator formed either as a coil of optical fiber or as a coiled optical waveguide. The lasing output from each end of the bidirectional laser source is phase modulated and directed around the passive ring resonator in two counterpropagating directions, with a portion of the lasing output then being detected to determine a rotation rate for the integrated optical gyroscope. The coiled optical waveguide can be formed on a silicon, glass or quartz substrate with a silicon nitride core and a silica cladding, while the PIC includes a plurality of III V compound semiconductor layers including one or more quantum well layers which are disordered in the phase modulators and to form passive optical waveguides.

  12. Mode structure of a quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Bogdanov, A. A.; Suris, R. A.

    2011-03-01

    We analyze the mode structure of a quantum cascade laser (QCL) cavity considering the surface plasmon-polariton modes and familiar modes of hollow resonator jointly, within a single model. We present a comprehensive mode structure analysis of the laser cavity, varying its geometric parameters and free electron concentration inside cavity layers within a wide range. Our analysis covers, in particular, the cases of metal-insulator-metal and insulator-metal-insulator waveguides. We discuss the phenomenon of negative dispersion for eigenmodes in detail and explain the nature of this phenomenon. We specify a waveguide parameters domain in which negative dispersion exists. The mode structure of QCL cavity is considered in the case of the anisotropic electrical properties of the waveguide materials. We show that anisotropy of the waveguide core results in propagation of Langmuir modes that are degenerated in the case of the isotropic core. Comparative analysis of optical losses due to free carrier absorption is presented for different modes within the frequency range from terahertz to ultraviolet frequencies.

  13. Electro-optical phenomena based on ionic liquids in an optofluidic waveguide.

    PubMed

    He, Xiaodong; Shao, Qunfeng; Cao, Pengfei; Kong, Weijie; Sun, Jiqian; Zhang, Xiaoping; Deng, Youquan

    2015-03-07

    An optofluidic waveguide with a simple two-terminal electrode geometry, when filled with an ionic liquid (IL), forms a lateral electric double-layer capacitor under a direct current (DC) electric field, which allows the realization of an extremely high carrier density in the vicinity of the electrode surface and terminals to modulate optical transmission at room temperature under low voltage operation (0 to 4 V). The unique electro-optical phenomenon of ILs was investigated at three wavelengths (663, 1330 and 1530 nm) using two waveguide geometries. Strong electro-optical modulations with different efficiencies were observed at the two near-infrared (NIR) wavelengths, while no detectable modulation was observed at 663 nm. The first waveguide geometry was used to investigate the position-dependent modulation along the waveguide; the strongest modulation was observed in the vicinity of the electrode terminal. The modulation phase is associated with the applied voltage polarity, which increases in the vicinity of the negative electrode and decreases at the positive electrode. The second waveguide geometry was used to improve the modulation efficiency. Meanwhile, the electro-optical modulations of seven ILs were compared at an applied voltage ranging from ±2 V to ±3.5 V. The results reveal that the modulation amplitude and response speed increase with increasing applied voltage, as well as the electrical conductivity of ILs. Despite the fact that the response speed isn't fast due to the high ionic density of ILs, the modulation amplitude can reach up to 6.0 dB when a higher voltage (U = ±3.5 V) is applied for the IL [Emim][BF4]. Finally, the physical explanation of the phenomenon was discussed. The effect of the change in IL structure on the electro-optical phenomena was investigated in another new experiment. The results reveal that the electro-optical phenomenon is probably caused mainly by the change in carrier concentration (ion redistribution near charged electrodes), which induces the enhancement and suppression of NIR optical absorption (contributed by C-H and N-H groups) in the vicinity of the negative electrode and positive electrode, respectively.

  14. Optical pumping in a whispering mode optical waveguide

    DOEpatents

    Kurnit, Norman A.

    1984-01-01

    A device and method for optical pumping in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction pathlengths which are achieved in a small volume.

  15. 1.5  kW efficient CW Nd:YAG planar waveguide MOPA laser.

    PubMed

    Wang, Juntao; Wu, Zhenhai; Su, Hua; Zhou, Tangjian; Lei, Jun; Lv, Wenqiang; He, Jing; Xu, Liu; Chen, Yuejian; Wang, Dan; Tong, Lixin; Hu, Hao; Gao, Qingsong; Tang, Chun

    2017-08-15

    In this Letter, we report a 1064 nm continuous wave Nd:YAG planar waveguide laser with an output power of 1544 W based on the structure of the master oscillator power amplification. A fiber laser is used as the master oscillator, and diode laser arrays are used as the pump source of the waveguide laser amplifier. The dimension of the waveguide is 1  mm (T)×10  mm (W)×60  mm (L), and the dual end oblique pumping is adopted with different angles. After a single-pass amplification, the power is scaled from 323 to 1544 W with the pump power of 2480 W, leading to an optical-to-optical efficiency of 49%. At the maximum output, the beam quality M 2 are measured to be 2.8 and 7.0 in the guided direction and the unguided direction, respectively. To the best of our knowledge, this is the highest output power of a Nd:YAG planar waveguide laser to date.

  16. Single-mode glass waveguide technology for optical interchip communication on board level

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a hybrid packaging process and design issues are discussed.

  17. Reflective coherent spatial light modulator

    DOEpatents

    Simpson, John T.; Richards, Roger K.; Hutchinson, Donald P.; Simpson, Marcus L.

    2003-04-22

    A reflective coherent spatial light modulator (RCSLM) includes a subwavelength resonant grating structure (SWS), the SWS including at least one subwavelength resonant grating layer (SWL) have a plurality of areas defining a plurality of pixels. Each pixel represents an area capable of individual control of its reflective response. A structure for modulating the resonant reflective response of at least one pixel is provided. The structure for modulating can include at least one electro-optic layer in optical contact with the SWS. The RCSLM is scalable in both pixel size and wavelength. A method for forming a RCSLM includes the steps of selecting a waveguide material and forming a SWS in the waveguide material, the SWS formed from at least one SWL, the SWL having a plurality of areas defining a plurality of pixels.

  18. Board-to-board optical interconnection using novel optical plug and slot

    NASA Astrophysics Data System (ADS)

    Cho, In K.; Yoon, Keun Byoung; Ahn, Seong H.; Kim, Jin Tae; Lee, Woo Jin; Shin, Kyoung Up; Heo, Young Un; Park, Hyo Hoon

    2004-10-01

    A novel optical PCB with transmitter/receiver system boards and optical bakcplane was prepared, which is board-to-board interconnection by optical plug and slot. We report an 8Gb/s PRBS NRZ data transmission between transmitter system board and optical backplane embedded multimode polymeric waveguide arrays. The basic concept of ETRI's optical PCB is as follows; 1) Metal optical bench is integrated with optoelectronic devices, driver and receiver circuits, polymeric waveguide and access line PCB module. 2) Multimode polymeric waveguide inside an optical backplane, which is embedded into PCB. 3) Optical slot and plug for high-density(channel pitch : 500um) board-to-board interconnection. The polymeric waveguide technology can be used for transmission of data on transmitter/ receiver system boards and for backplane interconnections. The main components are low-loss tapered polymeric waveguides and a novel optical plug and slot for board-to-board interconnections, respectively. The optical PCB is characteristic of low coupling loss, easy insertion/extraction of the boards and, especially, reliable optical coupling unaffected from external environment after board insertion.

  19. Application of microstructural optical waveguides with hollow core for enzyme immunoassay

    NASA Astrophysics Data System (ADS)

    Pidenko, Pavel S.; Pidenko, Sergei A.; Burmistrova, Natalia A.; Shuvalov, Andrei A.; Chibrova, Anastasiya A.; Skibina, Yulia S.; Goryacheva, Irina Y.

    2018-04-01

    Microstructural optical waveguides with the hollow core are actively studied as a promising support for heterogeneous immunoassay in development of new optical biosensor elements for medicine and biology. Overcoming of the limitations associated with the low sorption capacity of glass used for the waveguides production is a crucial step for this assay format. In this work the possibility of silanization of microstructural optical waveguides with the hollow core using (3-glycidyloxypropyl) trimethoxysilane and their further application to enzymatic immunoassay was studied.

  20. Fluorescent fluid interface position sensor

    DOEpatents

    Weiss, Jonathan D.

    2004-02-17

    A new fluid interface position sensor has been developed, which is capable of optically determining the location of an interface between an upper fluid and a lower fluid, the upper fluid having a larger refractive index than a lower fluid. The sensor functions by measurement, of fluorescence excited by an optical pump beam which is confined within a fluorescent waveguide where that waveguide is in optical contact with the lower fluid, but escapes from the fluorescent waveguide where that waveguide is in optical contact with the upper fluid.

  1. All-optical diode structure based on asymmetrical coupling by a micro-cavity and FP cavity at two sides of photonic crystal waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin, E-mail: liubin-d@126.com; Liu, Yun-Feng; He, Xing-Dao

    2016-06-15

    A high efficiency all-optical diode based on photonic crystal (PC) waveguide has been proposed and numerically investigated by finite-difference time-domain (FDTD) method. The structure is asymmetrically coupled by a micro-cavity containing nonlinear Kerr medium and a FP cavity at sides of PC waveguide. Because of interference between two cavities, Fano peak and FP peak can both appear in transmission spectra and unidirectional transmission can be achieved. The working wavelength can set between two peaks and near to the Fano peak. For forward launch with suitable light intensity, nonlinear Kerr effect of micro-cavity can been excited. It will result in redmore » shift of Fano peak and achieving forward transmission. But for backward launch, a stronger incidence light is needed to the excite Kerr effect due to the design of asymmetric structure. This design has many advantages, including high maximum transmittance, high transmittance contrast ratio, low power threshold, short response time, and ease of integration.« less

  2. High-performance polymer waveguide devices via low-cost direct photolithography process

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Shustack, Paul J.; Garner, Sean M.

    2002-09-01

    All-optical networks provide unique opportunities for polymer waveguide devices because of their excellent mechanical, thermo-optic, and electro-optic properties. Polymer materials and components have been viewed as a viable solution for metropolitan and local area networks where high volume and low cost components are needed. In this paper, we present our recent progress on the design and development of photoresist-like highly fluorinated maleimide copolymers including waveguide fabrication and optical testing. We have developed and synthesized a series of thermally stable, (Tg>150 oC, Td>300 oC) highly fluorinated (>50%) maleimide copolymers by radical co-polymerization of halogenated maleimides with various halogenated co-monomers. A theoretical correlation between optical loss and different co-polymer structures has been quantitatively established from C-H overtone analysis. We studied this correlation through design and manipulation of the copolymer structure by changing the primary properties such as molecular weight, copolymer composition, copolymer sequence distribution, and variations of the side chain including photochemically functional side units. Detailed analysis has been obtained using various characterization methods such as (H, C13, F19) NMR, UV-NIR, FTIR, GPC and so forth. The co-polymers exhibit excellent solubility in ketone solvents and high quality thin films can be prepared by spin coating. The polymer films were found to have a refractive index range of 1.42-1.67 and optical loss in the range of 0.2 to 0.4 dB/cm at 1550nm depending on the composition as extrapolated from UV-NIR spectra. When glycidyl methacrylate is incorporated into the polymer backbone, the material behaves like a negative photoresist with the addition of cationic photoinitiator. The final crosslinked waveguides show excellent optical and thermal properties. The photolithographic processing of the highly fluorinated copolymer material was examined in detail using in-situ FTIR. The influence of various polymer

  3. Fiberless multicolor neural optoelectrode for in vivo circuit analysis

    PubMed Central

    Kampasi, Komal; Stark, Eran; Seymour, John; Na, Kyounghwan; Winful, Herbert G.; Buzsáki, György; Wise, Kensall D.; Yoon, Euisik

    2016-01-01

    Maximizing the potential of optogenetic approaches in deep brain structures of intact animals requires optical manipulation of neurons at high spatial and temporal resolutions, while simultaneously recording electrical data from those neurons. Here, we present the first fiber-less optoelectrode with a monolithically integrated optical waveguide mixer that can deliver multicolor light at a common waveguide port to achieve multicolor modulation of the same neuronal population in vivo. We demonstrate successful device implementation by achieving efficient coupling between a side-emitting injection laser diode (ILD) and a dielectric optical waveguide mixer via a gradient-index (GRIN) lens. The use of GRIN lenses attains several design features, including high optical coupling and thermal isolation between ILDs and waveguides. We validated the packaged devices in the intact brain of anesthetized mice co-expressing Channelrhodopsin-2 and Archaerhodopsin in pyramidal cells in the hippocampal CA1 region, achieving high quality recording, activation and silencing of the exact same neurons in a given local region. This fully-integrated approach demonstrates the spatial precision and scalability needed to enable independent activation and silencing of the same or different groups of neurons in dense brain regions while simultaneously recording from them, thus considerably advancing the capabilities of currently available optogenetic toolsets. PMID:27485264

  4. Glass Solder Approach for Robust, Low-Loss, Fiber-to-Waveguide Coupling

    NASA Technical Reports Server (NTRS)

    McNeil, Shirley; Battle, Philip; Hawthorne, Todd; Lower, John; Wiley, Robert; Clark, Brett

    2012-01-01

    The key advantages of this approach include the fact that the index of interface glass (such as Pb glass n = 1.66) greatly reduces Fresnel losses at the fiber-to-waveguide interface, resulting in lower optical losses. A contiguous structure cannot be misaligned and readily lends itself for use on aircraft or space operation. The epoxy-free, fiber-to-waveguide interface provides an optically pure, sealed interface for low-loss, highpower coupling. Proof of concept of this approach has included successful attachment of the low-melting-temperature glass to the x-y plane of the crystal, successful attachment of the low-meltingtemperature glass to the end face of a standard SMF (single-mode fiber), and successful attachment of a wetted lowmelting- temperature glass SMF to the end face of a KTP crystal. There are many photonic components on the market whose performance and robustness could benefit from this coupling approach once fully developed. It can be used in a variety of fibercoupled waveguide-based components, such as frequency conversion modules, and amplitude and phase modulators. A robust, epoxy-free, contiguous optical interface lends itself to components that require low-loss, high-optical-power handling capability, and good performance in adverse environments such as flight or space operation.

  5. Photonic crystal based 1-bit full-adder optical circuit by using ring resonators in a nonlinear structure

    NASA Astrophysics Data System (ADS)

    Alipour-Banaei, Hamed; Seif-Dargahi, Hamed

    2017-05-01

    In this paper we proposed a novel design for realizing all optical 1*bit full-adder based on photonic crystals. The proposed structure was realized by cascading two optical 1-bit half-adders. The final structure is consisted of eight optical waveguides and two nonlinear resonant rings, created inside rod type two dimensional photonic crystal with square lattice. The structure has ;X;, ;Y; and ;Z; as input and ;SUM; and ;CARRY; as output ports. The performance and functionality of the proposed structure was validated by means of finite difference time domain method.

  6. Simulation of light propagation in the thin-film waveguide lens

    NASA Astrophysics Data System (ADS)

    Malykh, M. D.; Divakov, D. V.; Sevastianov, L. A.; Sevastianov, A. L.

    2018-04-01

    In this paper we investigate the solution of the problem of modeling the propagation of electromagnetic radiation in three-dimensional integrated optical structures, such as waveguide lenses. When propagating through three-dimensional waveguide structures the waveguide modes can be hybridized, so the mathematical model of their propagation must take into account the connection of TE- and TM-mode components. Therefore, an adequate consideration of hybridization of the waveguide modes is possible only in vector formulation of the problem. An example of three-dimensional structure that hybridizes waveguide modes is the Luneburg waveguide lens, which also has focusing properties. If the waveguide lens has a radius of the order of several tens of wavelengths, its variable thickness at distances of the order of several wavelengths is almost constant. Assuming in this case that the electromagnetic field also varies slowly in the direction perpendicular to the direction of propagation, one can introduce a small parameter characterizing this slow varying and decompose the solution in powers of the small parameter. In this approach, in the zeroth approximation, scalar diffraction problems are obtained, the solution of which is less resource-consuming than the solution of vector problems. The calculated first-order corrections of smallness describe the connection of TE- and TM-modes, so the solutions obtained are weakly-hybridized modes. The formulation of problems and methods for their numerical solution in this paper are based on the authors' research on waveguide diffraction on a lens in a scalar formulation.

  7. Theoretical and experimental investigations of efficient light coupling with spatially varied all dielectric striped waveguides

    NASA Astrophysics Data System (ADS)

    Yilmaz, Y. A.; Tandogan, S. E.; Hayran, Z.; Giden, I. H.; Turduev, M.; Kurt, H.

    2017-07-01

    Integrated photonic systems require efficient, compact, and broadband solutions for strong light coupling into and out of optical waveguides. The present work investigates an efficient optical power transferring the problem between optical waveguides having different widths of in/out terminals. We propose a considerably practical and feasible concept to implement and design an optical coupler by introducing gradually index modulation to the coupler section. The index profile of the coupler section is modulated with a Gaussian function by the help of striped waveguides. The effective medium theory is used to replace the original spatially varying index profile with dielectric stripes of a finite length/width having a constant effective refractive index. 2D and 3D finite-difference time-domain analyzes are utilized to investigate the sampling effect of the designed optical coupler and to determine the parameters that play a crucial role in enhancing the optical power transfer performance. Comparing the coupling performance of conventional benchmark adiabatic and butt couplers with the designed striped waveguide coupler, the corresponding coupling efficiency increases from approximately 30% to 95% over a wide frequency interval. In addition, to realize the realistic optical coupler appropriate to integrated photonic applications, the proposed structure is numerically designed on a silicon-on-insulator wafer. The implemented SOI platform based optical coupler operates in the telecom wavelength regime (λ = 1.55 μm), and the dimensions of the striped coupler are kept as 9.77 μm (along the transverse to propagation direction) and 7.69 μm (along the propagation direction) where the unit distance is fixed to be 465 nm. Finally, to demonstrate the operating design principle, the microwave experiments are conducted and the spot size conversion ratio as high as 7.1:1 is measured, whereas a coupling efficiency over 60% in the frequency range of 5.0-16.0 GHz has been also demonstrated.

  8. Integration of GaN/AlN all-optical switch with SiN/AlN waveguide utilizing spot-size conversion.

    PubMed

    Iizuka, Norio; Yoshida, Haruhiko; Managaki, Nobuto; Shimizu, Toshimasa; Hassanet, Sodabanlu; Cumtornkittikul, Chiyasit; Sugiyama, Masakazu; Nakano, Yoshiaki

    2009-12-07

    Spot-size converters for an all-optical switch utilizing the intersubband transition in GaN/AlN multiple quantum wells are studied with the purpose of reducing operation power by improving the coupling efficiency between the input fiber and the switch. With a stair-like spot-size converter, the absorption saturation of 5 dB is achieved with a pulse energy of 25 pJ. The switch is integrated with a SiN/AlN waveguide and spot-size converters, and the structure provides the possibility of an integration of the switch with other functional devices. To further improve the coupling loss between the waveguide and the switch, triangular-shaped converters are investigated, demonstrating losses as low as 2 dB/facet.

  9. Fabrication of planar optical waveguides by 6.0 MeV silicon ion implantation in Nd-doped phosphate glasses

    NASA Astrophysics Data System (ADS)

    Shen, Xiao-Liang; Dai, Han-Qing; Zhang, Liao-Lin; Wang, Yue; Zhu, Qi-Feng; Guo, Hai-Tao; Li, Wei-Nan; Liu, Chun-Xiao

    2018-04-01

    We report the fabrication of a planar optical waveguide by silicon ion implantation into Nd-doped phosphate glass at an energy of 6.0 MeV and a dose of 5.0 × 1014 ions/cm2. The change in the surface morphology of the glass after the implantation can be clearly observed by scanning electron microscopy. The measurement of the dark mode spectrum of the waveguide is conducted using a prism coupler at 632.8 nm. The refractive index distribution of the waveguide is reconstructed by the reflectivity calculation method. The near-field optical intensity profile of the waveguide is measured using an end-face coupling system. The waveguide with good optical properties on the glass matrix may be valuable for the application of the Nd-doped phosphate glass in integrated optical devices.

  10. International Conference on Integrated Optical Circuit Engineering, 1st, Cambridge, MA, October 23-25, 1984, Proceedings

    NASA Astrophysics Data System (ADS)

    Ostrowsky, D. B.; Sriram, S.

    Aspects of waveguide technology are explored, taking into account waveguide fabrication techniques in GaAs/GaAlAs, the design and fabrication of AlGaAs/GaAs phase couplers for optical integrated circuit applications, ion implanted GaAs integrated optics fabrication technology, a direct writing electron beam lithography based process for the realization of optoelectronic integrated circuits, and advances in the development of semiconductor integrated optical circuits for telecommunications. Other subjects examined are related to optical signal processing, optical switching, and questions of optical bistability and logic. Attention is given to acousto-optic techniques in integrated optics, acousto-optic Bragg diffraction in proton exchanged waveguides, optical threshold logic architectures for hybrid binary/residue processors, integrated optical modulation and switching, all-optic logic devices for waveguide optics, optoelectronic switching, high-speed photodetector switching, and a mechanical optical switch.

  11. Polymer/silica hybrid waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Niu, Donghai; Wang, Xibin; Sun, Shiqi; Jiang, Minghui; Xu, Qiang; Wang, Fei; Wu, Yuanda; Zhang, Daming

    2018-04-01

    A highly sensitive waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer was designed and experimentally demonstrated. The interferometer is based on the polymer/silica hybrid waveguide structure, and Norland Optical Adhesive 73 (NOA 73) was employed as the waveguide core to enhance the temperature sensitivity. The influence of the different length differences between the two interferometer arms on the sensitivity of the sensor was systemically studied. It is shown that the maximum temperature sensitivity of -431 pm °C-1 can be obtained in the range of 25 °C-75 °C, while the length difference is 92 μm. Moreover, the temperature sensitivity contributions from different core materials were also investigated experimentally. It is shown that the waveguide material and microstructure of the device have significant influences on the sensitivity of the waveguide temperature sensor.

  12. Mid-Infrared Spectroscopy Platform Based on GaAs/AlGaAs Thin-Film Waveguides and Quantum Cascade Lasers.

    PubMed

    Sieger, Markus; Haas, Julian; Jetter, Michael; Michler, Peter; Godejohann, Matthias; Mizaikoff, Boris

    2016-03-01

    The performance and versatility of GaAs/AlGaAs thin-film waveguide technology in combination with quantum cascade lasers for mid-infrared spectroscopy in comparison to conventional FTIR spectroscopy is presented. Infrared radiation is provided by a quantum cascade laser (QCL) spectrometer comprising four tunable QCLs providing a wavelength range of 5-11 μm (1925-885 cm(-1)) within a single collimated beam. Epitaxially grown GaAs slab waveguides serve as optical transducer for tailored evanescent field absorption analysis. A modular waveguide mounting accessory specifically designed for on-chip thin-film GaAs waveguides is presented serving as a flexible analytical platform in lieu of conventional attenuated total reflection (ATR) crystals uniquely facilitating macroscopic handling and alignment of such microscopic waveguide structures in real-world application scenarios.

  13. Imaging optical fields below metal films and metal-dielectric waveguides by a scanning microscope

    NASA Astrophysics Data System (ADS)

    Zhu, Liangfu; Wang, Yong; Zhang, Douguo; Wang, Ruxue; Qiu, Dong; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Rosenfeld, Mary; Lakowicz, Joseph R.

    2017-09-01

    Laser scanning confocal fluorescence microscopy (LSCM) is now an important method for tissue and cell imaging when the samples are located on the surfaces of glass slides. In the past decade, there has been extensive development of nano-optical structures that display unique effects on incident and transmitted light, which will be used with novel configurations for medical and consumer products. For these applications, it is necessary to characterize the light distribution within short distances from the structures for efficient detection and elimination of bulky optical components. These devices will minimize or possibly eliminate the need for free-space light propagation outside of the device itself. We describe the use of the scanning function of a LSCM to obtain 3D images of the light intensities below the surface of nano-optical structures. More specifically, we image the spatial distributions inside the substrate of fluorescence emission coupled to waveguide modes after it leaks through thin metal films or dielectric-coated metal films. The observed spatial distribution were in general agreement with far-field calculations, but the scanning images also revealed light intensities at angles not observed with classical back focal plane imaging. Knowledge of the subsurface optical intensities will be crucial in the combination of nano-optical structures with rapidly evolving imaging detectors.

  14. [Study on Strain Detection with Si Based on Bicyclic Cascade Optical Microring Resonator].

    PubMed

    Tang, Jun; Lei, Long-hai; Zhang, Wei; Zhang, Tian-en; Xue, Chen-yang; Zhang, Wen-dong; Liu, Jun

    2016-03-01

    Optical micro-ring resonator prepared on Silicon-On-Insulator (SOI) has high sensitivity, small size and low mode volume. Its high sensitivity has been widely applied to the optical information transmission and inertial navigation devices field, while it is rarely applied in the testing of Mechanics. This paper presents a cantilever stress/strain gauge with an optical microring resonator. It is proposed the using of radius change of ring waveguide for the sensing element. When external stress is put on the structure, the radius of the SOI ring waveguide will be subjected to variation, which causes the optical resonant parameters to change. This ultimately leads to a red-shift of resonant spectrum, and shows the excellent characteristics of the structure's stress/strain sensitivity. Designed a bicyclic cascade embedded optical micro-cavity structure, which was prepared by employing MEMS lithography and ICP etching process. The characteristic of stress/strain sensitivity was calculated theoretically. Two values of 0.185 pm x kPa(-1) and 18.04 pm x microstrain(-1) were obtained experimentally, which also was verified by theoretical simulations. Comparing with the single-loop micro-cavity structure, its measuring range and stress sensitivity increased by nearly 50.3%, 10.6%, respectively. This paper provides a new method to develop micro-opto-electromechanical system (MOEMS) sensors.

  15. Broadband and scalable optical coupling for silicon photonics using polymer waveguides

    NASA Astrophysics Data System (ADS)

    La Porta, Antonio; Weiss, Jonas; Dangel, Roger; Jubin, Daniel; Meier, Norbert; Horst, Folkert; Offrein, Bert Jan

    2018-04-01

    We present optical coupling schemes for silicon integrated photonics circuits that account for the challenges in large-scale data processing systems such as those used for emerging big data workloads. Our waveguide based approach allows to optimally exploit the on-chip optical feature size, and chip- and package real-estate. It further scales well to high numbers of channels and is compatible with state-of-the-art flip-chip die packaging. We demonstrate silicon waveguide to polymer waveguide coupling losses below 1.5 dB for both the O- and C-bands with a polarisation dependent loss of <1 dB. Over 100 optical silicon waveguide to polymer waveguide interfaces were assembled within a single alignment step, resulting in a physical I/O channel density of up to 13 waveguides per millimetre along the chip-edge, with an average coupling loss of below 3.4 dB measured at 1310 nm.

  16. Optical pumping in a whispering-mode optical waveguide

    DOEpatents

    Kurnit, N.A.

    1981-08-11

    A device and method for optical pumping in a whispering mode optical waveguide are described. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.

  17. Optical-fiber-to-waveguide coupling using carbon-dioxide-laser-induced long-period fiber gratings.

    PubMed

    Bachim, Brent L; Ogunsola, Oluwafemi O; Gaylord, Thomas K

    2005-08-15

    Optical fibers are expected to play a role in chip-level and board-level optical interconnects because of limitations on the bandwidth and level of integration of electrical interconnects. Therefore, methods are needed to couple optical fibers directly to waveguides on chips and on boards. We demonstrate optical-fiber-to-waveguide coupling using carbon-dioxide laser-induced long-period fiber gratings (LPFGs). Such gratings can be written in standard fiber and offer wavelength multiplexing-demultiplexing performance. The coupler fabrication process and the characterization apparatus are presented. The operation and the wavelength response of a LPFG-based optical-fiber-to-waveguide directional coupler are demonstrated.

  18. Wavelength-addressed intra-board optical interconnection by plug-in alignment with a micro hole array

    NASA Astrophysics Data System (ADS)

    Nakama, Kenichi; Tokiwa, Yuu; Mikami, Osamu

    2010-09-01

    Intra-board interconnection between optical waveguide channels is suitable for assembling high-speed optoelectronic printed wiring boards (OE-PWB). Here, we propose a novel optical interconnection method combining techniques for both wavelength-based optical waveguide addressing and plug-in optical waveguide alignment with a micro-hole array (MHA). This array was fabricated by the mask transfer method. For waveguide addressing, we used a micro passive wavelength selector (MPWS) module, which is a type of Littrow mount monochromator consisting of an optical diffraction grating, a focusing lens, and the MHA. From the experimental results, we found that the wavelength addressing operation of the MPWS module was effective for intra-board optical interconnection.

  19. Coupling system to a microsphere cavity

    NASA Technical Reports Server (NTRS)

    Iltchenko, Vladimir (Inventor)

    2004-01-01

    At technique for holding a resonator relative to an optical fiber at a specified distance. Structures including a rectangular indentation may be formed in the end of the optical fiber. The resonator may be placed against edges of the structures, to hold a different portion of the resonator spaced from an area where the waveguide modes will emanate.

  20. Propagation Characteristics Of Weakly Guiding Optical Fibers

    NASA Technical Reports Server (NTRS)

    Manshadi, Farzin

    1992-01-01

    Report discusses electromagnetic propagation characteristics of weakly guiding optical-fiber structures having complicated shapes with cross-sectional dimensions of order of wavelength. Coupling, power-dividing, and transition dielectric-waveguide structures analyzed. Basic data computed by scalar-wave, fast-Fourier-transform (SW-FFT) technique, based on numerical solution of scalar version of wave equation by forward-marching fast-Fourier-transform method.

  1. Board-level optical clock signal distribution using Si CMOS-compatible polyimide-based 1- to 48-fanout H-tree

    NASA Astrophysics Data System (ADS)

    Wu, Linghui; Bihari, Bipin; Gan, Jianhua; Chen, Ray T.; Tang, Suning

    1998-08-01

    Si-CMOS compatible polymer-based waveguides for optoelectronic interconnects and packaging have been fabricated and characterized. A 1-to-48 fanout optoelectronic interconnection layer (OIL) structure based on Ultradel 9120/9020 for the high-speed massive clock signal distribution for a Cray T-90 supercomputer board has been constructed. The OIL employs multimode polymeric channel waveguides in conjunction with surface-normal waveguide output coupler and 1-to-2 splitter. A total insertion loss of 7.98 dB at 850 nm was measured experimentally.

  2. FIBER AND INTEGRATED OPTICS: Detection of the optical anisotropy in KTP:Rb waveguides

    NASA Astrophysics Data System (ADS)

    Buritskiĭ, K. S.; Dianov, Evgenii M.; Maslov, Vladislav A.; Chernykh, V. A.; Shcherbakov, E. A.

    1990-10-01

    The optical characteristics of channel waveguides made of rubidium-activated potassium titanyl phosphate (KTP:Rb) were determined. The refractive index increment of such waveguides was found to exhibit a considerable anisotropy: Δnx / Δnz approx 2. A deviation of the distribution of the refractive index in a channel waveguide from the model distribution was observed for ion-exchange times in excess of 1 h.

  3. Optical waveguides with memory effect using photochromic material for neural network

    NASA Astrophysics Data System (ADS)

    Tanimoto, Keisuke; Amemiya, Yoshiteru; Yokoyama, Shin

    2018-04-01

    An optical neural network using a waveguide with a memory effect, a photodiode, CMOS circuits and LEDs was proposed. To realize the neural network, optical waveguides with a memory effect were fabricated using a cladding layer containing the photochromic material “diarylethene”. The transmittance of green light was decreased by UV light irradiation and recovered by the passage of green light through the waveguide. It was confirmed that the transmittance versus total energy of the green light that passed through the waveguide well fit the universal exponential curve.

  4. Integrated optical gyroscopes offering low cost, small size and vibration immunity

    NASA Astrophysics Data System (ADS)

    Monovoukas, Christos; Swiecki, Andrew; Maseeh, Fariborz

    2000-03-01

    IntelliSense has developed an integrated optic gyro technology that provides the sensitivity of fiber optic gyros while utilizing batch microfabrication techniques to achieve the low cost of mechanical MEMS gyros. The base technology consists of an optical resonating waveguide chip, sensor electronics and an optical bench. The sensing element is based on an integrated optic waveguide chip in which counter-propagating optical fields are used to sense rotation in the plane of the waveguide through the Sagnac effect. It is powered by a semiconductor laser light source, which is coupled into a waveguide and split into two waveguide arms. Both signals are probed through the out coupled light at each waveguide arm, and rate information is derived from the difference in phase between these two signals. Measuring angular rotation is important for proper operation of a variety of systems such as: missile guidance systems, satellites, energy exploration, camera stabilization, robotics positioning, platform stabilization and space craft guidance to mention a few. This technology overcomes the limitations that previous commercially available gyros for this purpose have had including limitations in size, sensitivity, durability, and premium price.

  5. Analysis and design of planar waveguide elements for use in filters and sensors

    NASA Astrophysics Data System (ADS)

    Chen, Guangzhou

    In this dissertation we present both theoretical analysis and practical design considerations for planar optical waveguide devices. The analysis takes into account both transverse dimensions of the waveguides and is based on supermode theory combined with the resonance method for the determination of the propagation constants and field profiles of the supermodes. An improved accuracy has been achieved by including corrections due to the fields in the corner regions of the waveguides using perturbation theory. We analyze in detail two particular devices, an optical filter/combiner and an optical sensor. An optical wavelength filter/combiner is a common element in an integrated optical circuit. A new "bend free" filter/combiner is proposed and analyzed. The new wavelength filter consists of only straight parallel channels, which considerably simplify both the analysis and fabrication of the device. We show in detail how the operation of the device depends upon each of the design parameters. The intrinsic power loss in the proposed filter/combiner is minimized. The optical sensor is another important device and the sensitivity of measurement is an important issue in its design. Two operating mechanisms used in prior optical sensors are evanescent wave sensing or surface plasmon excitation. In this dissertation, we present a sensor with a directional coupler structure in which a measurand to be detected is interfaced with one side of the cladding. The analysis shows that it is possible to make a high resolution device by adjusting the design parameters. The dimensions and materials used in an optimized design are presented.

  6. Design, Fabrication, and Packaging of Mach-Zehnder Interferometers for Biological Sensing Applications

    NASA Astrophysics Data System (ADS)

    Novak, Joseph

    Optical biological sensors are widely used in the fields of medical testing, water treatment and safety, gene identification, and many others due to advances in nanofabrication technology. This work focuses on the design of fiber-coupled Mach-Zehnder Interferometer (MZI) based biosensors fabricated on silicon-on-insulator (SOI) wafer. Silicon waveguide sensors are designed with multimode and single-mode dimensions. Input coupling efficiency is investigated by design of various taper structures. Integration processing and packaging is performed for fiber attachment and enhancement of input coupling efficiency. Optical guided-wave sensors rely on single-mode operation to extract an induced phase-shift from the output signal. A silicon waveguide MZI sensor designed and fabricated for both multimode and single-mode dimensions. Sensitivity of the sensors is analyzed for waveguide dimensions and materials. An s-bend structure is designed for the multimode waveguide to eliminate higher-order mode power as an alternative to single-mode confinement. Single-mode confinement is experimentally demonstrated through near field imaging of waveguide output. Y-junctions are designed for 3dB power splitting to the MZI arms and for power recombination after sensing to utilize the interferometric function of the MZI. Ultra-short 10microm taper structures with curved geometries are designed to improve insertion loss from fiber-to-chip without significantly increasing device area and show potential for applications requiring misalignment tolerance. An novel v-groove process is developed for self-aligned integration of fiber grooves for attachment to sensor chips. Thermal oxidation at temperatures from 1050-1150°C during groove processing creates an SiO2 layer on the waveguide end facet to protect the waveguide facet during integration etch processing without additional e-beam lithography processing. Experimental results show improvement of insertion loss compared to dicing preparation and Focused Ion Beam methods using the thermal oxidation process.

  7. Passively aligned multichannel fiber-pigtailing of planar integrated optical waveguides

    NASA Astrophysics Data System (ADS)

    Kremmel, Johannes; Lamprecht, Tobias; Crameri, Nino; Michler, Markus

    2017-02-01

    A silicon device to simplify the coupling of multiple single-mode fibers to embedded single-mode waveguides has been developed. The silicon device features alignment structures that enable a passive alignment of fibers to integrated waveguides. For passive alignment, precisely machined V-grooves on a silicon device are used and the planar lightwave circuit board features high-precision structures acting as a mechanical stop. The approach has been tested for up to eight fiber-to-waveguide connections. The alignment approach, the design, and the fabrication of the silicon device as well as the assembly process are presented. The characterization of the fiber-to-waveguide link reveals total coupling losses of (0.45±0.20 dB) per coupling interface, which is significantly lower than the values reported in earlier works. Subsequent climate tests reveal that the coupling losses remain stable during thermal cycling but increases significantly during an 85°C/85 Rh-test. All applied fabrication and bonding steps have been performed using standard MOEMS fabrication and packaging processes.

  8. Hybrid plasmonic electro-optical absorption modulator based on epsilon-near-zero characteristics of ITO

    NASA Astrophysics Data System (ADS)

    Abdelatty, M. Y.; Badr, M. M.; Swillam, M. A.

    2018-03-01

    Using transparent conducting oxides (TCOs), like indium-tin-oxide (ITO), for optical modulation attracted research interest because of their epsilon-near-zero (ENZ) characteristics at telecom wavelengths. Utilizing indium-tin-oxide (ITO) in multilayer structure modulators, optical absorption of the active ITO layer can be electrically modulated over a large spectrum range. Although they show advances over common silicon electro-optical modulators (EOMs), they suffer from high insertion losses. To reduce insertion losses and device footprints without sacrificing bandwidth and modulation strength, slot waveguides are promising options because of their high optical confinement. In this paper, we present the study and the design of an electro-optical absorption modulator based on electrically tuning ITO carrier density inside a MOS structure. The device structure is based on dielectric slot waveguide with an ITO plasmonic waveguide modulation section. By changing the dimensions, the effective refractive indices for the slot mode and the off-sate mode of the plasmonic section can be matched. When applying electric field to the plasmonic section (on-state), carriers are generated at the ITO-dielectric interface that result in changing the layer where the electric field is confined from a transparent layer into a lossy layer. A finite difference time domain method with perfect matching layer (PML) absorbing boundary conditions is taken up to simulate and analyze this design. An extinction ratio of 2.3 dB is achieved for a 1-μm-short modulation section, at the telecommunications wavelength (1.55 μm). This EOM has advantages of simple design, easy fabrication, compact size, compatibility with existing silicon photonics platforms, as well as broadband performance.

  9. The Physics of Ultracold Sr2 Molecules: Optical Production and Precision Measurement

    NASA Astrophysics Data System (ADS)

    Osborn, Christopher Butler

    Colloidal quantum dots have desirable optical properties which can be exploited to realize a variety of photonic devices and functionalities. However, colloidal dots have not had a pervasive utility in photonic devices because of the absence of patterning methods. The electronic chip industry is highly successful due to the well-established lithographic procedures. In this thesis we borrow ideas from the semiconductor industry to develop lithographic techniques that can be used to pattern colloidal quantum dots while ensuring that the optical properties of the quantum dots are not affected by the process. In this thesis we have developed colloidal quantum dot based waveguide structures for amplification and switching applications for all-optical signal processing. We have also developed colloidal quantum dot based light emitting diodes. We successfully introduced CdSe/ZnS quantum dots into a UV curable photo-resist, which was then patterned to realize active devices. In addition, "passive" devices (devices without quantum dots) were integrated to "active" devices via waveguide couplers. Use of photo-resist devices offers two distinct advantages. First, they have low scattering loss and secondly, they allow good fiber to waveguide coupling efficiency due to the low refractive index which allows for large waveguide cross-sections while supporting single mode operation. Practical planar photonic devices and circuits incorporating both active and passive structures can now be realized, now that we have patterning capabilities of quantum dots while maintaining the original optical attributes of the system. In addition to the photo-resist host, we also explored the incorporation of colloidal quantum dots into a dielectric silicon dioxide and silicon nitride one-dimensional microcavity structures using low temperature plasma enhanced chemical vapor deposition. This material system can be used to realize microcavity light emitting diodes that can be realized on any substrate. As a proof of concept demonstration we show a 1550 nm emitting all-dielectric vertical cavity structure embedded with PbS quantum dots. Enhancement in spontaneous emission from the dots embedded in the microcavity is also demonstrated.

  10. Integrated optical isolators using magnetic surface plasmon (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Shimizu, Hiromasa; Kaihara, Terunori; Umetsu, Saori; Hosoda, Masashi

    2015-09-01

    Optical isolators are one of the essential components to protect semiconductor laser diodes (LDs) from backward reflected light in integrated optics. In order to realize optical isolators, nonreciprocal propagation of light is necessary, which can be realized by magnetic materials. Semiconductor optical isolators have been strongly desired on Si and III/V waveguides. We have developed semiconductor optical isolators based on nonreciprocal loss owing to transverse magneto-optic Kerr effect, where the ferromagnetic metals are deposited on semiconductor optical waveguides1). Use of surface plasmon polariton at the interface of ferromagnetic metal and insulator leads to stronger optical confinement and magneto-optic effect. It is possible to modulate the optical confinement by changing the magnetic field direction, thus optical isolator operation is proposed2, 3). We have investigated surface plasmons at the interfaces between ferrimagnetic garnet/gold film, and applications to waveguide optical isolators. We assumed waveguides composed of Au/Si(38.63nm)/Ce:YIG(1700nm)/Si(220nm)/Si , and calculated the coupling lengths between Au/Si(38.63nm)/Ce:YIG plasmonic waveguide and Ce:YIG/Si(220nm)/Si waveguide for transversely magnetized Ce:YIG with forward and backward directions. The coupling length was calculated to 232.1um for backward propagating light. On the other hand, the coupling was not complete, and the length was calculated to 175.5um. The optical isolation by using the nonreciprocal coupling and propagation loss was calculated to be 43.7dB when the length of plasmonic waveguide is 700um. 1) H. Shimizu et al., J. Lightwave Technol. 24, 38 (2006). 2) V. Zayets et al., Materials, 5, 857-871 (2012). 3) J. Montoya, et al, J. Appl. Phys. 106, 023108, (2009).

  11. Electro-optical backplane demonstrator with integrated multimode gradient-index thin glass waveguide panel

    NASA Astrophysics Data System (ADS)

    Schröder, Henning; Brusberg, Lars; Pitwon, Richard; Whalley, Simon; Wang, Kai; Miller, Allen; Herbst, Christian; Weber, Daniel; Lang, Klaus-Dieter

    2015-03-01

    Optical interconnects for data transmission at board level offer increased energy efficiency, system density, and bandwidth scalability compared to purely copper driven systems. We present recent results on manufacturing of electrooptical printed circuit board (PCB) with integrated planar glass waveguides. The graded index multi-mode waveguides are patterned inside commercially available thin-glass panels by performing a specific ion-exchange process. The glass waveguide panel is embedded within the layer stack-up of a PCB using proven industrial processes. This paper describes the design, manufacture, assembly and characterization of the first electro-optical backplane demonstrator based on integrated planar glass waveguides. The electro-optical backplane in question is created by laminating the glass waveguide panel into a conventional multi-layer electronic printed circuit board stack-up. High precision ferrule mounts are automatically assembled, which will enable MT compliant connectors to be plugged accurately to the embedded waveguide interfaces on the glass panel edges. The demonstration platform comprises a standardized sub-rack chassis and five pluggable test cards each housing optical engines and pluggable optical connectors. The test cards support a variety of different data interfaces and can support data rates of up to 32 Gb/s per channel.

  12. Customization of Protein Single Nanowires for Optical Biosensing.

    PubMed

    Sun, Yun-Lu; Sun, Si-Ming; Wang, Pan; Dong, Wen-Fei; Zhang, Lei; Xu, Bin-Bin; Chen, Qi-Dai; Tong, Li-Min; Sun, Hong-Bo

    2015-06-24

    An all-protein single-nanowire optical biosensor is constructed by a facile and general femtosecond laser direct writing approach with nanoscale structural customization. As-formed protein single nanowires show excellent optical properties (fine waveguiding performance and bio-applicable transmission windows), and are utilized as evanescent optical nanobiosensors for label-free biotin detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Femtosecond laser processing of optical fibres for novel sensor development

    NASA Astrophysics Data System (ADS)

    Kalli, Kyriacos; Theodosiou, Antreas; Ioannou, Andreas; Lacraz, Amedee

    2017-04-01

    We present results of recent research where we have utilized a femtosecond laser to micro-structure silica and polymer optical fibres in order to realize versatile optical components such as diffractive optical elements on the fibre end face, the inscription of integrated waveguide circuits in the fibre cladding and novel optical fibre sensors designs based on Bragg gratings in the core. A major hurdle in tailoring or modifying the properties of optical fibres is the development of an inscription method that can prove to be a flexible and reliable process that is generally applicable to all optical fibre types; this requires careful matching of the laser parameters and optics in order to examine the spatial limits of direct laser writing, whether the application is structuring at the surface of the optical fibre or inscription in the core and cladding of the fibre. We demonstrate a variety of optical components such as two-dimensional grating structures, Bessel, Airy and vortex beam generators; moreover, optical bridging waveguides inscribed in the cladding of single-mode fibre as a means to selectively couple light from single-core to multi-core optical fibres, and demonstrate a grating based sensor; finally, we have developed a novel femtosecond laser inscription method for the precise inscription of tailored Bragg grating sensors in silica and polymer optical fibres. We also show that this novel fibre Bragg grating inscription technique can be used to modify and add versatility to an existing, encapsulated optical fibre pressure sensor.

  14. Optical ridge waveguides preserving the thermo-optic features in LiNbO3 crystals fabricated by combination of proton implantation and selective wet etching.

    PubMed

    Tan, Yang; Chen, Feng

    2010-05-24

    We report on a new, simple method to fabricate optical ridge waveguides in a z-cut LiNbO3 wafer by using proton implantation and selective wet etching. The measured modal field is well confined in the ridge waveguide region, which is also confirmed by the numerical simulation. With thermal annealing treatment at 400 degrees C, the propagation loss of the ridge waveguides is determined to be as low as approximately 0.9 dB/cm. In addition, the measured thermo-optic coefficients of the waveguides are in good agreement with those of the bulk, suggesting potential applications in integrated photonics.

  15. Continuously tunable optical buffer with a dual silicon waveguide design.

    PubMed

    Horak, Peter; Stewart, Will; Loh, Wei H

    2011-06-20

    We propose a design for an optical buffer that comprises two coupled silicon waveguides, which is capable of generating a large continuously tunable change in the propagation delay time. The optical delay can be varied by more than 100% through varying the spacing between the waveguides.

  16. Planar optical waveguides for optical panel having gradient refractive index core

    DOEpatents

    Veligdan, James T.

    2001-01-01

    An optical panel is disclosed. A plurality of stacked planar optical waveguides are used to guide light from an inlet face to an outlet face of an optical panel. Each of the optical waveguides comprises a planar sheet of core material having a central plane. The core material has an index of refraction which decreases as the distance from the central plane increases. The decrease in the index of refraction occurs gradually and continuously.

  17. Planar optical waveguides for optical panel having gradient refractive index core

    DOEpatents

    Veligdan, James T.

    2004-08-24

    An optical panel is disclosed. A plurality of stacked planar optical waveguides are used to guide light from an inlet face to an outlet face of an optical panel. Each of the optical waveguides comprises a planar sheet of core material having a central plane. The core material has an index of refraction which decreases as the distance from the central plane increases. The decrease in the index of refraction occurs gradually and continuously.

  18. Low loss poly-silicon for high performance capacitive silicon modulators.

    PubMed

    Douix, Maurin; Baudot, Charles; Marris-Morini, Delphine; Valéry, Alexia; Fowler, Daivid; Acosta-Alba, Pablo; Kerdilès, Sébastien; Euvrard, Catherine; Blanc, Romuald; Beneyton, Rémi; Souhaité, Aurélie; Crémer, Sébastien; Vulliet, Nathalie; Vivien, Laurent; Boeuf, Frédéric

    2018-03-05

    Optical properties of poly-silicon material are investigated to be integrated in new silicon photonics devices, such as capacitive modulators. Test structure fabrication is done on 300 mm wafer using LPCVD deposition: 300 nm thick amorphous silicon layers are deposited on thermal oxide, followed by solid phase crystallization anneal. Rib waveguides are fabricated and optical propagation losses measured at 1.31 µm. Physical analysis (TEM ASTAR, AFM and SIMS) are used to assess the origin of losses. Optimal deposition and annealing conditions have been defined, resulting in 400 nm-wide rib waveguides with only 9.2-10 dB/cm losses.

  19. Analytic few-photon scattering in waveguide QED

    NASA Astrophysics Data System (ADS)

    Hurst, David L.; Kok, Pieter

    2018-04-01

    We develop an approach to light-matter coupling in waveguide QED based upon scattering amplitudes evaluated via Dyson series. For optical states containing more than single photons, terms in this series become increasingly complex, and we provide a diagrammatic recipe for their evaluation, which is capable of yielding analytic results. Our method fully specifies a combined emitter-optical state that permits investigation of light-matter entanglement generation protocols. We use our expressions to study two-photon scattering from a Λ -system and find that the pole structure of the transition amplitude is dramatically altered as the two ground states are tuned from degeneracy.

  20. Alumina or Semiconductor Ribbon Waveguides at 30 to 1,000 GHz

    NASA Technical Reports Server (NTRS)

    Yeh, Cavour; Rascoe, Daniel; Shimabukuro, Fred; Tope, Michael; Siegel, Peter

    2005-01-01

    Ribbon waveguides made of alumina or of semiconductors (Si, InP, or GaAs) have been proposed as low-loss transmission lines for coupling electronic components and circuits that operate at frequencies from 30 to 1,000 GHz. In addition to low losses (and a concomitant ability to withstand power levels higher than would otherwise be possible), the proposed ribbon waveguides would offer the advantage of compatibility with the materials and structures now commonly incorporated into integrated circuits. Heretofore, low-loss transmission lines for this frequency range have been unknown, making it necessary to resort to designs that, variously, place circuits and components to be coupled in proximity of each other and/or provide for coupling via free space through bulky and often lossy optical elements. Even chip-to-chip interconnections have been problematic in this frequency range. Metal wave-guiding structures (e.g., microstriplines and traditional waveguides) are not suitable for this frequency range because the skin depths of electromagnetic waves in this frequency range are so small as to give rise to high losses. Conventional rod-type dielectric waveguide structures are also not suitable for this frequency range because dielectric materials, including ones that exhibit ultralow losses at lower frequencies, exhibit significant losses in this frequency range. Unlike microstripline structures or metallic waveguides, the proposed ribbon waveguides would be free of metal and would therefore not be subject to skin-depth losses. Moreover, although they would be made of materials that are moderately lossy in the frequency range of interest, the proposed ribbon waveguides would cause the propagating electromagnetic waves to configure themselves in a manner that minimizes losses.

  1. Incorporating an optical waveguide into a neural interface

    DOEpatents

    Tolosa, Vanessa; Delima, Terri L.; Felix, Sarah H.; Pannu, Satinderpall S.; Shah, Kedar G.; Sheth, Heeral; Tooker, Angela C.

    2016-11-08

    An optical waveguide integrated into a multielectrode array (MEA) neural interface includes a device body, at least one electrode in the device body, at least one electrically conducting lead coupled to the at least one electrode, at least one optical channel in the device body, and waveguide material in the at least one optical channel. The fabrication of a neural interface device includes the steps of providing a device body, providing at least one electrode in the device body, providing at least one electrically conducting lead coupled to the at least one electrode, providing at least one optical channel in the device body, and providing a waveguide material in the at least one optical channel.

  2. High Bandwidth Optical Links for Micro-Satellite Support

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Wilson, Keith E. (Inventor); Coste, Keith (Inventor)

    2016-01-01

    A method, systems, apparatus and device enable high bandwidth satellite communications. An onboard tracking detector, installed in a low-earth orbit satellite, detects a position of an incoming optical beam received/transmitted from a first ground station of one or more ground stations. Tracker electronics determine orientation information of the incoming optical beam based on the position. Control electronics receive the orientation information from the tracker electronics, and control a waveguide drive electronics. The waveguide drive electronics control a voltage that is provided to an electro-optic waveguide beam steering device. The electro-optic waveguide beam steering device steers an outgoing optical beam to one of the one or more ground stations based on the voltage.

  3. Low-index discontinuity terahertz waveguides

    NASA Astrophysics Data System (ADS)

    Nagel, Michael; Marchewka, Astrid; Kurz, Heinrich

    2006-10-01

    A new type of dielectric THz waveguide based on recent approaches in the field of integrated optics is presented with theoretical and experimental results. Although the guiding mechanism of the low-index discontinuity (LID) THz waveguide is total internal reflection, the THz wave is predominantly confined in the virtually lossless low-index air gap within a high-index dielectric waveguide due to the continuity of electric flux density at the dielectric interface. Attenuation, dispersion and single-mode confinement properties of two LID structures are discussed and compared with other THz waveguide solutions. The new approach provides an outstanding combination of high mode confinement and low transmission losses currently not realizable with any other metal-based or photonic crystal approach. These exceptional properties might enable the breakthrough of novel integrated THz systems or endoscopy applications with sub-wavelength resolution.

  4. A low-threshold nanolaser based on hybrid plasmonic waveguides at the deep subwavelength scale

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Quan; Piao, Rui-Qi; Zhao, Jing-Jing; Meng, Xiao-Yun; Tong, Kai

    2015-07-01

    A novel nanolaser structure based on a hybrid plasmonic waveguide is proposed and investigated. The coupling between the metal nanowire and the high-index semiconductor nanowire with optical gain leads to a strong field enhancement in the air gap region and low propagation loss, which enables the realization of lasing at the deep subwavelength scale. By optimizing the geometric parameters of the structure, a minimal lasing threshold is achieved while maintaining the capacity of ultra-deep subwavelength mode confinement. Compared with the previous coupled nanowire pair based hybrid plasmonic structure, a lower threshold can be obtained with the same geometric parameters. The proposed nanolaser can be integrated into a miniature chip as a nanoscale light source and has the potential to be widely used in optical communication and optical sensing technology. Project supported by the National Natural Science Foundation of China (Grant No. 61172044) and the Natural Science Foundation of Hebei Province, China (Grant No. F2014501150).

  5. Optical XOR gate

    DOEpatents

    Vawter, G. Allen

    2013-11-12

    An optical XOR gate is formed as a photonic integrated circuit (PIC) from two sets of optical waveguide devices on a substrate, with each set of the optical waveguide devices including an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical XOR gate utilizes two digital optical inputs to generate an XOR function digital optical output. The optical XOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  6. Optical NOR gate

    DOEpatents

    Skogen, Erik J [Albuquerque, NM; Tauke-Pedretti, Anna [Albuquerque, NM

    2011-09-06

    An optical NOR gate is formed from two pair of optical waveguide devices on a substrate, with each pair of the optical waveguide devices consisting of an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical NOR gate utilizes two digital optical inputs and a continuous light input to provide a NOR function digital optical output. The optical NOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  7. Method and apparatus for use of III-nitride wide bandgap semiconductors in optical communications

    DOEpatents

    Hui, Rongqing [Lenexa, KS; Jiang, Hong-Xing [Manhattan, KS; Lin, Jing-Yu [Manhattan, KS

    2008-03-18

    The present disclosure relates to the use of III-nitride wide bandgap semiconductor materials for optical communications. In one embodiment, an optical device includes an optical waveguide device fabricated using a III-nitride semiconductor material. The III-nitride semiconductor material provides for an electrically controllable refractive index. The optical waveguide device provides for high speed optical communications in an infrared wavelength region. In one embodiment, an optical amplifier is provided using optical coatings at the facet ends of a waveguide formed of erbium-doped III-nitride semiconductor materials.

  8. Ultrafast modulators based on nonlinear photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Liu, Zhifu; Li, Jianheng; Tu, Yongming; Ho, Seng-Tiong; Wessels, Bruce W.

    2011-03-01

    Nonlinear photonic crystal (PhC) waveguides are being developed for ultrafast modulators. To enable phase velocity matching we have investigated one- and two-dimensional structures. Photonic crystal (PhC) waveguides based on epitaxial barium titanate (BTO) thin film in a Si3N4/BTO/MgO multilayer structure were fabricated by electron beam lithography or focused ion beam (FIB) milling. For both one- and two-dimensional PhCs, simulation shows that sufficient refractive index contrast is achieved to form a stop band. For one-dimensional Bragg reflector, we measured its slow light properties and the group refractive index of optical wave. For a millimeter long waveguide a 27 nm wide stop band was obtained at 1550 nm. A slowing of the light was observed, the group refractive indices at the mid band gap and at the band edges were estimated to be between 8.0 and 12 for the transverse electric (TE) mode, and 6.9 and 13 for the transverse magnetic (TM) mode. For TE optical modes, the enhancement factor of EO coefficient ranges from 7 to 13, and for the TM mode, the factor ranges from 5.9 to 15. Measurements indicate that near velocity phase matching can be realized. Upon realizing the phase velocity matching condition, devices with a small foot print with bandwidths at 490 GHz can be attained. Two-dimensional PhC crystal with a hexagonal lattice was also investigated. The PhCs were fabricated from epitaxial BTO thin film multilayers using focused ion beam milling. The PhCs are based on BTO slab waveguide and air hole arrays defined within Si3N4 and BTO thin films. A refractive index contrast of 0.4 between the barium titanate thin film multilayers and the air holes enables strong light confinement. For the TE optical mode, the hexagonal photonic crystal lattice with a diameter of 155 nm and a lattice constant of 740 nm yields a photonic bandgap over the wavelength range from 1525 to 1575 nm. The transmission spectrum of the PhC waveguide exhibits stronger Fabry Perot resonance compared to that of conventional waveguide. Measured transmission spectra show a bandgap in the ΓM direction in the reciprocal lattice that is in agreement with the simulated results using the finite-difference time-domain (FDTD) method. Compared to polarization intensity EO modulator with a half-wave voltage length product of 4.7 V•mm. The PhC based EO modulator has a factor of 6.6 improvement in the figure of merit performance. The thin film PhC waveguide devices show considerable potential for ultra-wide bandwidth electro-optic modulators as well as tunable optical filters and switches.

  9. Slow-light transmission with high group index and large normalized delay bandwidth product through successive defect rods on intrinsic photonic crystal waveguide

    NASA Astrophysics Data System (ADS)

    Elshahat, Sayed; Khan, Karim; Yadav, Ashish; Bibbò, Luigi; Ouyang, Zhengbiao

    2018-07-01

    We proposed a strategy with successive cavities as energy reservoirs of electromagnetic energy and light-speed reducers introduced in the first and second rows of rods on the walls of an intrinsic photonic crystal waveguide (PCW) for slow-light transmission in the PCW concerning applications for optical communication, optical computation and optical signal processing. Subsequently, plane-wave expansion method (PWE) is used for studying slow-light properties and finite-difference time-domain (FDTD) method to demonstrate the slow-light propagating property of our proposed structure. We obtained group index as exceedingly large as 6123 with normalized delay bandwidth product (NDBP) as high as 0.48. We designed a facile but more generalized structure that may provide a vital theoretical basis for further enhancing the storage capacity properties of slow light with wideband and high NDBP.

  10. Compact photonic crystal circulator with flat-top transmission band created by cascading magneto-optical resonance cavities.

    PubMed

    Wang, Qiong; Ouyang, Zhengbiao; Lin, Mi; Liu, Qiang

    2015-11-20

    A new type of compact three-port circulator with flat-top transmission band (FTTB) in a two-dimensional photonic crystal has been proposed, through coupling the cascaded magneto-optical resonance cavities to waveguides. The coupled-mode theory is applied to investigate the coupled structure and analyze the condition to achieve FTTB. According to the theoretical analysis, the structure is further optimized to ensure that the condition for achieving FTTB can be satisfied for both cavity-cavity coupling and cavity-waveguide coupling. Through the finite-element method, it is demonstrated that the design can realize a high quality, nonreciprocal circulating propagation of waves with an insertion loss of 0.023 dB and an isolation of 23.3 dB, covering a wide range of operation frequency. Such a wideband circulator has potential applications in large-scale integrated photonic circuits for guiding or isolating harmful optical reflections from load elements.

  11. Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd:YAP crystal by direct femtosecond laser writing.

    PubMed

    Nie, Weijie; Cheng, Chen; Jia, Yuechen; Romero, Carolina; Vázquez de Aldana, Javier R; Chen, Feng

    2015-05-15

    Low-loss depressed cladding waveguides have been produced in Nd:YAP laser crystal by using direct femtosecond laser writing. Under optical pump at 812 nm at room temperature, continuous-wave simultaneous dual-wavelength laser oscillations at 1064 and 1079 nm, both along TM polarization, have been realized in the waveguiding structures. It has been found that, with the variation of pump polarization, the intensity ratio of 1064 and 1079 nm emissions varies periodically, while the polarization of output dual-wavelength laser remains unchanged. The maximum output power achieved for the Nd:YAP waveguide lasers is ∼200  mW with a slope efficiency of 33.4%.

  12. The hybrid photonic planar integrated receiver with a polymer optical waveguide

    NASA Astrophysics Data System (ADS)

    Busek, Karel; Jerábek, Vitezslav; Armas Arciniega, Julio; Prajzler, Václav

    2008-11-01

    This article describes design of the photonic receiver composed of the system polymer planar waveguides, InGaAs p-i-n photodiode and integrated HBT amplifier on a low loss composite substrate. The photonic receiver was the main part of the hybrid integrated microwave optoelectronic transceiver TRx (transciever TRx) for the optical networks PON (passive optical networks) with FTTH (fiber-to-the-home) topology. In this article are presented the research results of threedimensional field between output facet of a optical waveguide and p-i-n photodiode. In terms of our research, there was optimized the optical coupling among the facet waveguide and pi-n photodiode and the electrical coupling among p-i-n photodiode and input of HBT amplifier. The hybrid planar lightwave circuit (PLC) of the transceiver TRx will be composed from a two parts - polymer optical waveguide including VHGT filter section and a optoelectronic microwave section.

  13. Optical waveguide circuit board with a surface-mounted optical receiver array

    NASA Astrophysics Data System (ADS)

    Thomson, J. E.; Levesque, Harold; Savov, Emil; Horwitz, Fred; Booth, Bruce L.; Marchegiano, Joseph E.

    1994-03-01

    A photonic circuit board is fabricated for potential application to interchip and interboard parallel optical links. The board comprises photolithographically patterned polymer optical waveguides on a conventional glass-epoxy electrical circuit board and a surface-mounted integrated circuit (IC) package that optically and electrically couples to an optoelectronic IC. The waveguide circuits include eight-channel arrays of straights, cross-throughs, curves, self- aligning interconnects to multi-fiber ribbon, and out-of-plane turning mirrors. A coherent, fused bundle of optical fibers couples light between 45-deg waveguide mirrors and a GaAs receiver array in the IC package. The fiber bundle is easily aligned to the mirrors and the receivers and is amenable to surface mounting and hermetic sealing. The waveguide-receiver- array board achieved error-free data rates up to 1.25 Gbits/s per channel, and modal noise was shown to be negligible.

  14. Thermo-optic characteristics and switching power limit of slow-light photonic crystal structures on a silicon-on-insulator platform.

    PubMed

    Chahal, Manjit; Celler, George K; Jaluria, Yogesh; Jiang, Wei

    2012-02-13

    Employing a semi-analytic approach, we study the influence of key structural and optical parameters on the thermo-optic characteristics of photonic crystal waveguide (PCW) structures on a silicon-on-insulator (SOI) platform. The power consumption and spatial temperature profile of such structures are given as explicit functions of various structural, thermal and optical parameters, offering physical insight not available in finite-element simulations. Agreement with finite-element simulations and experiments is demonstrated. Thermal enhancement of the air-bridge structure is analyzed. The practical limit of thermo-optic switching power in slow light PCWs is discussed, and the scaling with key parameters is analyzed. Optical switching with sub-milliwatt power is shown viable.

  15. Metal–Dielectric Waveguides for High Efficiency Fluorescence Imaging

    PubMed Central

    Zhu, Liangfu; Zhang, Douguo; Wang, Ruxue; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Du, Luping; Yuan, Xiaocong; Lakowicz, Joseph R.

    2015-01-01

    We demonstrate that Metal–Dielectric Waveguide structures (MDWs) with high efficiency of fluorescence coupling can be suitable as substrates for fluorescence imaging. This hybrid MDWs consists of a continuous metal film and a dielectric top layer. The optical modes sustaining inside this structure can be excited with a high numerical aperture (N.A) objective, and then focused into a virtual optical probe with high intensity, leading to efficient excitation of fluorophores deposited on top of the MDWs. The emitted fluorophores couple with the optical modes thus enabling the directional emission, which is verified by the back focal plane (BFP) imaging. These unique properties of MDWs have been adopted in a scanning laser confocal optical microscopy, and show the merit of high efficiency fluorescence imaging. MDWs can be easily fabricated by vapor deposition and/or spin coating, the silica surface of the MDWs is suitable for biomolecule tethering, and will offer new opportunities for cell biology and biophysics research. PMID:26525494

  16. Traveling-wave photodetector

    DOEpatents

    Hietala, V.M.; Vawter, G.A.

    1993-12-14

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.

  17. Traveling-wave photodetector

    DOEpatents

    Hietala, Vincent M.; Vawter, Gregory A.

    1993-01-01

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

  18. Mechanical Kerr nonlinearities due to bipolar optical forces between deformable silicon waveguides.

    PubMed

    Ma, Jing; Povinelli, Michelle L

    2011-05-23

    We use an analytical method based on the perturbation of effective index at fixed frequency to calculate optical forces between silicon waveguides. We use the method to investigate the mechanical Kerr effect in a coupled-waveguide system with bipolar forces. We find that a positive mechanical Kerr coefficient results from either an attractive or repulsive force. An enhanced mechanical Kerr coefficient several orders of magnitude larger than the intrinsic Kerr coefficient is obtained in waveguides for which the optical mode approaches the air light line, given appropriate design of the waveguide dimensions.

  19. Modeling of Slot Waveguide Sensors Based on Polymeric Materials

    PubMed Central

    Bettotti, Paolo; Pitanti, Alessandro; Rigo, Eveline; De Leonardis, Francesco; Passaro, Vittorio M. N.; Pavesi, Lorenzo

    2011-01-01

    Slot waveguides are very promising for optical sensing applications because of their peculiar spatial mode profile. In this paper we have carried out a detailed analysis of mode confinement properties in slot waveguides realized in very low refractive index materials. We show that the sensitivity of a slot waveguide is not directly related to the refractive index contrast of high and low materials forming the waveguide. Thus, a careful design of the structures allows the realization of high sensitivity devices even in very low refractive index materials (e.g., polymers) to be achieved. Advantages of low index dielectrics in terms of cost, functionalization and ease of fabrication are discussed while keeping both CMOS compatibility and integrable design schemes. Finally, applications of low index slot waveguides as substitute of bulky fiber capillary sensors or in ring resonator architectures are addressed. Theoretical results of this work are relevant to well established polymer technologies. PMID:22164020

  20. Design and fabrication of hybrid SPP waveguides for ultrahigh-bandwidth low-penalty terabit-scale data transmission.

    PubMed

    Du, Jing; Wang, Jian

    2017-11-27

    Here we design and fabricate a hybrid surface plasmon polarities (SPP) waveguide on the silicon-on-insulator (SOI) photonics platform. The designed hybrid SPP waveguide is composed of a metal ridge, an air gap, and a silicon ridge. We simulate the mode characteristics in the structure and design the waveguide with a wide air gap that can simplify the fabrication process and maintain the advantages of the hybrid SPP mode. The performance of ultrahigh-bandwidth data transmission through the proposed waveguide is then investigated using 161 wavelength-division multiplexing (WDM) channels, each carrying a 11.2-Gbit/s orthogonal frequency-division multiplexing (OFDM) 16-ary quadrature amplitude modulation (16-QAM) signal. The bit-error rates (BERs) of all 161 channels are less than 1e-3. The favorable results show the prospect of on-chip optical interconnection using the proposed hybrid SPP waveguide.

  1. Optofluidic waveguides: I. Concepts and implementations

    PubMed Central

    Schmidt, Holger; Hawkins, Aaron R.

    2011-01-01

    We review recent developments and current status of liquid-core optical waveguides in optofluidics with emphasis on suitability for creating fully planar optofluidic labs-on-a-chip. In this first of two contributions, we give an overview of the different waveguide types that are being considered for effectively combining micro and nanofluidics with integrated optics. The large number of approaches is separated into conventional index-guided waveguides and more recent implementations using wave interference. The underlying principle for waveguiding and the current status are described for each type. We then focus on reviewing recent work on microfabricated liquid-core antiresonant reflecting optical (ARROW) waveguides, including the development of intersecting 2D waveguide networks and optical fluorescence and Raman detection with planar beam geometry. Single molecule detection capability and addition of electrical control for electrokinetic manipulation and analysis of single bioparticles are demonstrated. The demonstrated performance of liquid-core ARROWs is representative of the potential of integrated waveguides for on-chip detection with ultrahigh sensitivity, and points the way towards the next generation of high-performance, low-cost and portable biomedical instruments. PMID:21442048

  2. Specific features of waveguide recombination in laser structures with asymmetric barrier layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polubavkina, Yu. S., E-mail: polubavkina@mail.ru; Zubov, F. I.; Moiseev, E. I.

    2017-02-15

    The spatial distribution of the intensity of the emission caused by recombination appearing at a high injection level (up to 30 kA/cm{sup 2}) in the waveguide layer of a GaAs/AlGaAs laser structure with GaInP and AlGaInAs asymmetric barrier layers is studied by means of near-field scanning optical microscopy. It is found that the waveguide luminescence in such a laser, which is on the whole less intense as compared to that observed in a similar laser without asymmetric barriers, is non-uniformly distributed in the waveguide, so that the distribution maximum is shifted closer to the p-type cladding layer. This can bemore » attributed to the ability of the GaInP barrier adjoining the quantum well on the side of the n-type cladding layer to suppress the hole transport.« less

  3. Optical pulling force and conveyor belt effect in resonator-waveguide system.

    PubMed

    Intaraprasonk, Varat; Fan, Shanhui

    2013-09-01

    We present the theoretical condition and actual numerical design that achieves an optical pulling force in resonator-waveguide systems, where the direction of the force on the resonator is in the opposite direction to the input light in the waveguide. We also show that this pulling force can occur in conjunction with the lateral optical equilibrium effect, such that the resonator is maintained at the fixed distance from the waveguide while experiencing the pulling force.

  4. InGaAsP/InP optical waveguide switch operated by a carrier-induced change in the refractive index

    NASA Astrophysics Data System (ADS)

    Mikami, O.; Nakagome, H.

    1985-11-01

    Waveguided semiconductor optical switches operated by a carrier-induced change in the refractive-index associated with the plasma dispersion are proposed. InGaAsP/InP four-port switches having two intersecting single-mode channel waveguides are fabricated by selective liquid-phase epitaxy and investigated at 1.5 microns wavelength. Optical switching is observed as a result of mode interference in the waveguide intersection region.

  5. Characterization of passive polymer optical waveguides

    NASA Astrophysics Data System (ADS)

    Joehnck, Matthias; Kalveram, Stefan; Lehmacher, Stefan; Pompe, Guido; Rudolph, Stefan; Neyer, Andreas; Hofstraat, Johannes W.

    1999-05-01

    The characterization of monomode passive polymer optical devices fabricated according to the POPCORN technology by methods originated from electron, ion and optical spectroscopy is summarized. Impacts of observed waveguide perturbations on the optical characteristics of the waveguide are evaluated. In the POPCORN approach optical components for telecommunication applications are fabricated by photo-curing of liquid halogenated (meth)acrylates which have been applied on moulded thermoplastic substrates. For tuning of waveguide material refractive indices with respect to the substrate refractive index frequently comonomer mixtures are used. The polymerization characteristics, especially the polymerization kinetics of individual monomers, determine the formation of copolymers. Therefore the unsaturation as function of UV-illumination time in the formation of halogenated homo- and copolymers has been examined. From different suitable copolymer system, after characterization of their glass transition temperatures, their curing behavior and their refractive indices as function of the monomer ratios, monomode waveguides applying PMMA substrates have been fabricated. To examine the materials composition also in the 6 X 6 micrometers 2 waveguides they have been visualized by transmission electron microscopy. With this method e.g. segregation phenomena could be observed in the waveguide cross section characterization as well. The optical losses in monomode waveguides caused by segregation and other materials induce defects like micro bubbles formed as a result of shrinkage have been quantized by return loss measurements. Defects causing scattering could be observed by convocal laser scanning microscopy and by conventional light microscopy.

  6. INTEGRATED AND FIBER OPTICS: Threshold of photoinduced conversion of the polarization of radiation in lithium niobate optical waveguides

    NASA Astrophysics Data System (ADS)

    Kazanskiĭ, P. G.

    1989-02-01

    A threshold of photoinduced conversion of an ordinary wave into an extraordinary one was discovered for lithium niobate optical waveguides. The threshold intensity of the radiation was determined for waveguides prepared under different conditions. The experimental results were compared with theoretical estimates.

  7. Photo-induced reduction of graphene oxide coating on optical waveguide and consequent optical intermodulation

    PubMed Central

    Chong, W. Y.; Lim, W. H.; Yap, Y. K.; Lai, C. K.; De La Rue, R. M.; Ahmad, H.

    2016-01-01

    Increased absorption of transverse-magnetic (TM) - polarised light by a graphene-oxide (GO) coated polymer waveguide has been observed in the presence of transverse-electric (TE) - polarised light. The GO-coated waveguide exhibits very strong photo-absorption of TE-polarised light - and acts as a TM-pass waveguide polariser. The absorbed TE-polarised light causes a significant temperature increase in the GO film and induces thermal reduction of the GO, resulting in an increase in optical-frequency conductivity and consequently increased optical propagation loss. This behaviour in a GO-coated waveguide gives the action of an inverted optical switch/modulator. By varying the incident TE-polarised light power, a maximum modulation efficiency of 72% was measured, with application of an incident optical power level of 57 mW. The GO-coated waveguide was able to respond clearly to modulated TE-polarised light with a pulse duration of as little as 100 μs. In addition, no wavelength dependence was observed in the response of either the modulation (TE-polarised light) or the signal (TM-polarised light). PMID:27034015

  8. Controlling soliton refraction in optical lattices.

    PubMed

    Prilepsky, Jaroslaw E; Derevyanko, Stanislav A; Gredeskul, Sergey A

    2011-08-19

    We show in the framework of the 1D nonlinear Schrödinger equation that the value of the refraction angle of a fundamental soliton beam passing through an optical lattice can be controlled by adjusting either the shape of an individual waveguide or the relative positions of the waveguides. In the case of the shallow refractive index modulation, we develop a general approach for the calculation of the refraction angle change. The shape of a single waveguide crucially affects the refraction direction due to the appearance of a structural form factor in the expression for the density of emitted waves. For a lattice of scatterers, wave-soliton interference inside the lattice leads to the appearance of an additional geometric form factor. As a result, the soliton refraction is more pronounced for the disordered lattices than for the periodic ones. © 2011 American Physical Society

  9. Fast wavelength calibration method for spectrometers based on waveguide comb optical filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhengang; Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240; Huang, Meizhen, E-mail: mzhuang@sjtu.edu.cn

    2015-04-15

    A novel fast wavelength calibration method for spectrometers based on a standard spectrometer and a double metal-cladding waveguide comb optical filter (WCOF) is proposed and demonstrated. By using the WCOF device, a wide-spectrum beam is comb-filtered, which is very suitable for spectrometer wavelength calibration. The influence of waveguide filter’s structural parameters and the beam incident angle on the comb absorption peaks’ wavelength and its bandwidth are also discussed. The verification experiments were carried out in the wavelength range of 200–1100 nm with satisfactory results. Comparing with the traditional wavelength calibration method based on discrete sparse atomic emission or absorption lines,more » the new method has some advantages: sufficient calibration data, high accuracy, short calibration time, fit for produce process, stability, etc.« less

  10. Optimization of H2 thermal annealing process for the fabrication of ultra-low loss sub-micron silicon-on-insulator rib waveguides

    NASA Astrophysics Data System (ADS)

    Bellegarde, Cyril; Pargon, Erwine; Sciancalepore, Corrado; Petit-Etienne, Camille; Lemonnier, Olivier; Ribaud, Karen; Hartmann, Jean-Michel; Lyan, Philippe

    2018-02-01

    The superior confinement of light provided by the high refractive index contrast in Si/SiO2 waveguides allows the use of sub-micron photonic waveguides. However, when downscaling waveguides to sub-micron dimensions, propagation losses become dominated by sidewall roughness scattering. In a previous study, we have shown that hydrogen annealing after waveguide patterning yielded smooth silicon sidewalls. Our optimized silicon patterning process flow allowed us to reduce the sidewall roughness down to 0.25 nm (1σ) while maintaining rectangular Strip waveguides. As a result, record low optical losses of less than 1 dB/cm were measured at telecom wavelengths for waveguides with dimensions larger than 350 nm. With Rib waveguides, losses are expected to be even lower. However, in this case the Si reflow during the H2 anneal leads to the formation of a foot at the bottom of the structure and to a rounding of its top. A compromise is thus to be found between low losses and conservation of the rectangular shape of the Rib waveguide. This work proposes to investigate the impact of temperature and duration of the H2 anneal on the Rib profile, sidewalls roughness and optical performances. The impact of a Si/SiO2 interface is also studied. The introduction of H2 thermal annealing allows to obtain very low losses of 0.5 dB/cm at 1310 nm wavelength for waveguide dimensions of 300-400 nm, but it comes along an increase of the pattern bottom width of 41%, with a final bottom width of 502 nm.

  11. Metal-capped silicon organic micro-ring electro-optical modulator (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zaki, Aya O.; Kirah, Khaled A.; Swillam, Mohamed A.

    2017-02-01

    An ultra-compact hybrid plasmonic waveguide ring electro-optical modulator is designed to be easily fabricated on silicon on insulator (SOI) substrates using standard silicon photonics technology. The proposed waveguide is based on a buried standard silicon waveguide of height 220 nm topped with polymer and metal. The key advantage of this novel design is that only the silicon layer of the waveguide is structured as a coupled ring resonator. Then, the device is covered with electro-optical polymer and metal in post processes with no need for lithography or accurate mask alignment techniques. The simple fabrication method imposes many design challenges to obtain a resonator of reasonable loaded quality factor and high extinction ratio. Here, the performance of the resonator is optimized in the telecom wavelength range around 1550 nm using 3D FDTD simulations. The design of the coupling junction between the access waveguide and the tightly bent ring is thoroughly studied. The extension of the metal over the coupling region is exploited to make the critical dimension of the design geometry at least 2.5 times larger than conventional plasmonic resonators and the design is thus more robust. In this paper, we demonstrate an electro-optical modulator that offers an insertion loss < 1 dB, a modulation depth of 12 dB for an applied peak to peak voltage of only 2 V and energy consumption of 1.74 fJ/bit. The performance is superior to previously reported hybrid plasmonic ring resonator based modulators while the design shows robustness and low fabrication cost.

  12. Combined raman and IR fiber-based sensor for gas detection

    DOEpatents

    Carter, Jerry C; Chan, James W; Trebes, James E; Angel, Stanley M; Mizaikoff, Boris

    2014-06-24

    A double-pass fiber-optic based spectroscopic gas sensor delivers Raman excitation light and infrared light to a hollow structure, such as a hollow fiber waveguide, that contains a gas sample of interest. A retro-reflector is placed at the end of this hollow structure to send the light back through the waveguide where the light is detected at the same end as the light source. This double pass retro reflector design increases the interaction path length of the light and the gas sample, and also reduces the form factor of the hollow structure.

  13. Temporal waveguides for optical pulses

    DOE PAGES

    Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.

    2016-05-12

    Here we discuss, temporal total internal reflection (TIR), in analogy to the conventional TIR of an optical beam at a dielectric interface, is the total reflection of an optical pulse inside a dispersive medium at a temporal boundary across which the refractive index changes. A pair of such boundaries separated in time acts as the temporal analog of planar dielectric waveguides. We study the propagation of optical pulses inside such temporal waveguides, both analytically and numerically, and show that the waveguide supports a finite number of temporal modes. We also discuss how a single-mode temporal waveguide can be created inmore » practice. In contrast with the spatial case, the confinement can occur even when the central region has a lower refractive index.« less

  14. WGM resonators for studying orbital angular momentum of a photon, and methods

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy A. (Inventor); Maleki, Lute (Inventor); Strekalov, Dmitry V. (Inventor)

    2009-01-01

    An optical system, device, and method that are capable of generating high-order Bessel beams and determining the orbital angular momentum of at least one of the photons of a Bessel beam are provided. The optical system and device include a tapered waveguide having an outer surface defined by a diameter that varies along a longitudinal axis of the waveguide from a first end to an opposing second end. The optical system and device include a resonator that is arranged in optical communication with the first end of the tapered waveguide such that an evanescent field emitted from (i) the waveguide can be coupled with the resonator, or (ii) the resonator can be coupled with the waveguide.

  15. Design of optical metamaterial waveguide structures (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ortega-Moñux, Alejandro; Halir, Robert; Sánchez-Postigo, Alejandro; Soler-Penadés, Jordi; Ctyroký, Jirí; Luque-González, José Manuel; Sarmiento-Merenguel, José Darío.; Wangüemert-Pérez, Juan Gonzalo; Schmid, Jens H.; Xu, Dan-Xia; Janz, Sigfried; Lapointe, Jean; Molina-Fernández, Iñigo; Nedeljkovic, Milos; Mashanovich, Goran Z.; Cheben, Pavel

    2017-05-01

    Subwavelength gratings (SWGs) are periodic structures with a pitch (Λ) smaller than the wavelength of the propagating wave (λ), so that diffraction effects are suppressed. These structures thus behave as artificial metamaterials where the refractive index and the dispersion profile can be controlled with a proper design of the geometry of the structure. SWG waveguides have found extensive applications in the field of integrated optics, such as efficient fiber-chip couplers, broadband multimode interference (MMI) couplers, polarization beam splitters or evanescent field sensors, among others. From the point of view of nano-fabrication, the subwavelength condition (Λ << λ) is much easier to meet for long, mid-infrared wavelengths than for the comparatively short near-infrared wavelengths. Since most of the integrated devices based on SWGs have been proposed for the near-infrared, the true potential of subwavelength structures has not yet been completely exploited. In this talk we summarize some valuable guidelines for the design of high performance SWG integrated devices. We will start describing some practical aspects of the design, such as the range of application of semi-analytical methods, the rigorous electromagnetic simulation of Floquet modes, the relevance of substrate leakage losses and the effects of the random jitter, inherent to any fabrication process, on the performance of SWG structures. Finally, we will show the possibilities of the design of SWG structures with two different state-of-the-art applications: i) ultra-broadband MMI beam splitters with an operation bandwidth greater than 300nm for telecom wavelengths and ii) a set of suspended waveguides with SWG lateral cladding for mid-infrared applications, including low loss waveguides, MMI couplers and Mach-Zehnder interferometers.

  16. Methods of producing strain in a semiconductor waveguide and related devices

    DOEpatents

    Cox, Johathan Albert; Rakich, Peter Thomas

    2016-02-16

    Quasi-phase matched (QPM), semiconductor photonic waveguides include periodically-poled alternating first and second sections. The first sections exhibit a high degree of optical coupling (abbreviated "X.sup.2"), while the second sections have a low X.sup.2. The alternating first and second sections may comprise high-strain and low-strain sections made of different material states (such as crystalline and amorphous material states) that exhibit high and low X.sup.2 properties when formed on a particular substrate, and/or strained corrugated sections of different widths. The QPM semiconductor waveguides may be implemented as silicon-on-insulator (SOI), or germanium-on-silicon structures compatible with standard CMOS processes, or as silicon-on-sapphire (SOS) structures.

  17. Evaluation of polymer based third order nonlinear integrated optics devices

    NASA Astrophysics Data System (ADS)

    Driessen, A.; Hoekstra, H. J. W. M.; Blom, F. C.; Horst, F.; Krijnen, G. J. M.; van Schoot, J. B. P.; Lambeck, P. V.; Popma, Th. J. A.; Diemeer, M. B.

    1998-01-01

    Nonlinear polymers are promising materials for high speed active integrated optics devices. In this paper we evaluate the perspectives polymer based nonlinear optical devices can offer. Special attention is directed to the materials aspects. In our experimental work we applied mainly Akzo Nobel DANS side-chain polymer that exhibits large second and third order coefficients. This material has been characterized by third harmonic generation, z-scan and pump-probe measurements. In addition, various waveguiding structures have been used to measure the nonlinear absorption (two photon absorption) on a ps time-scale. Finally an integrated optics Mach Zehnder interferometer has been realized and evaluated. It is shown that the DANS side-chain polymer has many of the desired properties: the material is easily processable in high-quality optical waveguiding structures, has low linear absorption and its nonlinearity has a pure electronic origin. More materials research has to be done to arrive at materials with higher nonlinear coefficients to allow switching at moderate light intensity ( < 1 W peak power) and also with lower nonlinear absorption coefficients.

  18. Comparison of self-written waveguide techniques and bulk index matching for low-loss polymer waveguide interconnects

    NASA Astrophysics Data System (ADS)

    Burrell, Derek; Middlebrook, Christopher

    2016-03-01

    Polymer waveguides (PWGs) are used within photonic interconnects as inexpensive and versatile substitutes for traditional optical fibers. The PWGs are typically aligned to silica-based optical fibers for coupling. An epoxide elastomer is then applied and cured at the interface for index matching and rigid attachment. Self-written waveguides (SWWs) are proposed as an alternative to further reduce connection insertion loss (IL) and alleviate marginal misalignment issues. Elastomer material is deposited after the initial alignment, and SWWs are formed by injecting ultraviolet (UV) light into the fiber or waveguide. The coupled UV light cures a channel between the two differing structures. A suitable cladding layer can be applied after development. Such factors as longitudinal gap distance, UV cure time, input power level, polymer material selection and choice of solvent affect the resulting SWWs. Experimental data are compared between purely index-matched samples and those with SWWs at the fiber-PWG interface. It is shown that < 1 dB IL per connection can be achieved by either method and results indicate lowest potential losses associated with a fine-tuned self-writing process. Successfully fabricated SWWs reduce overall processing time and enable an effectively continuous low-loss rigid interconnect.

  19. Flexible integration of free-standing nanowires into silicon photonics.

    PubMed

    Chen, Bigeng; Wu, Hao; Xin, Chenguang; Dai, Daoxin; Tong, Limin

    2017-06-14

    Silicon photonics has been developed successfully with a top-down fabrication technique to enable large-scale photonic integrated circuits with high reproducibility, but is limited intrinsically by the material capability for active or nonlinear applications. On the other hand, free-standing nanowires synthesized via a bottom-up growth present great material diversity and structural uniformity, but precisely assembling free-standing nanowires for on-demand photonic functionality remains a great challenge. Here we report hybrid integration of free-standing nanowires into silicon photonics with high flexibility by coupling free-standing nanowires onto target silicon waveguides that are simultaneously used for precise positioning. Coupling efficiency between a free-standing nanowire and a silicon waveguide is up to ~97% in the telecommunication band. A hybrid nonlinear-free-standing nanowires-silicon waveguides Mach-Zehnder interferometer and a racetrack resonator for significantly enhanced optical modulation are experimentally demonstrated, as well as hybrid active-free-standing nanowires-silicon waveguides circuits for light generation. These results suggest an alternative approach to flexible multifunctional on-chip nanophotonic devices.Precisely assembling free-standing nanowires for on-demand photonic functionality remains a challenge. Here, Chen et al. integrate free-standing nanowires into silicon waveguides and show all-optical modulation and light generation on silicon photonic chips.

  20. Observation and investigation of narrow optical transitions of 167Er3+ ions in femtosecond laser printed waveguides in 7LiYF4 crystal

    NASA Astrophysics Data System (ADS)

    Minnegaliev, M. M.; Dyakonov, I. V.; Gerasimov, K. I.; Kalinkin, A. A.; Kulik, S. P.; Moiseev, S. A.; Saygin, M. Yu; Urmancheev, R. V.

    2018-04-01

    We produced optical waveguides in the 167Er3+:7 LiYF4 crystal with diameters ranging from 30 to 100 μm by using the depressed-cladding approach with femtosecond laser. Stationary and coherent spectroscopy was performed on the 809 nm optical transitions between the hyperfine sublevels of 4I15/2 and 4I9/2 multiplets of 167Er3+ ions both inside and outside of waveguides. It was found that the spectra of 167Er3+ were slightly broadened and shifted inside the waveguides compared to the bulk crystal spectra. We managed to observe a two-pulse photon echo on this transition and determined phase relaxation times for each waveguide. The experimental results show that the created crystal waveguides doped by rare-earth ions can be used in optical quantum memory and integrated quantum schemes.

  1. Silicon-on-insulator multimode-interference waveguide-based arrayed optical tweezers (SMART) for two-dimensional microparticle trapping and manipulation.

    PubMed

    Lei, Ting; Poon, Andrew W

    2013-01-28

    We demonstrate two-dimensional optical trapping and manipulation of 1 μm and 2.2 μm polystyrene particles in an 18 μm-thick fluidic cell at a wavelength of 1565 nm using the recently proposed Silicon-on-insulator Multimode-interference (MMI) waveguide-based ARrayed optical Tweezers (SMART) technique. The key component is a 100 μm square-core silicon waveguide with mm length. By tuning the fiber-coupling position at the MMI waveguide input facet, we demonstrate various patterns of arrayed optical tweezers that enable optical trapping and manipulation of particles. We numerically simulate the physical mechanisms involved in the arrayed trap, including the optical force, the heat transfer and the thermal-induced microfluidic flow.

  2. Biolayer modeling and optimization for the SPARROW biosensor

    NASA Astrophysics Data System (ADS)

    Feng, Ke

    2007-12-01

    Biosensor direct detection of molecular binding events is of significant interest in applications from molecular screening for cancer drug design to bioagent detection for homeland security and defense. The Stacked Planar Affinity Regulated Resonant Optical Waveguide (SPARROW) structure based on coupled waveguides was recently developed to achieve increased sensitivity within a fieldable biosensor device configuration. Under ideal operating conditions, modification of the effective propagation constant of the structure's sensing waveguide through selective attachment of specific targets to probes on the waveguide surface results in a change in the coupling characteristics of the guide over a specifically designed interaction length with the analyte. Monitoring the relative power in each waveguide after interaction enables 'recognition' of those targets which have selectively bound to the surface. However, fabrication tolerances, waveguide interface roughness, biolayer surface roughness and biolayer partial coverage have an effect on biosensor behavior and achievable limit of detection (LOD). In addition to these influences which play a role in device optimization, the influence of the spatially random surface loading of molecular binding events has to be considered, especially for low surface coverage. In this dissertation an analytic model is established for the SPARROW biosensor which accounts for these nonidealities with which the design of the biosensor can be guided and optimized. For the idealized case of uniform waveguide transducer layers and biolayer, both theoretical simulation (analytical expression) and computer simulation (numerical calculation) are completed. For the nonideal case of an inhomogeneous transducer with nonideal waveguide and biolayer surfaces, device output power is affected by such physical influences as surface scattering, coupling length, absorption, and percent coverage of binding events. Using grating and perturbation techniques we explore the influence of imperfect surfaces and random surface loading on scattering loss and coupling length. Results provide a range of achievable limits of detection in the SPARROW device for a given target size, surface loading, and detectable optical power.

  3. Fast and Scalable Fabrication of Microscopic Optical Surfaces and its Application for Optical Interconnect Devices

    NASA Astrophysics Data System (ADS)

    Summitt, Christopher Ryan

    The use of optical interconnects is a promising solution to the increasing demand for high speed mass data transmission used in integrated circuits as well as device to device data transfer applications. For the purpose, low cost polymer waveguides are a popular choice for routing signal between devices due to their compatibility with printed circuit boards. In optical interconnect, coupling from an external light source to such waveguides is a critical step, thus a variety of couplers have been investigated such as grating based couplers [1,2], evanescent couplers [3], and embedded mirrors [4-6]. These couplers are inherently micro-optical components which require fast and scalable fabrication for mass production with optical quality surfaces/structures. Low NA laser direct writing has been used for fast fabrication of structures such as gratings and Fresnel lenses using a linear laser direct writing scheme, though the length scale of such structures are an order of magnitude larger than the spot size of the focused laser of the tool. Nonlinear writing techniques such as with 2-photon absorption offer increased write resolution which makes it possible to fabricate sub-wavelength structures as well as having a flexibility in feature shape. However it does not allow a high speed fabrication and in general are not scalable due to limitations of speed and area induced by the tool's high NA optics. To overcome such limitations primarily imposed by NA, we propose a new micro-optic fabrication process which extends the capabilities of 1D, low NA, and thus fast and scalable, laser direct writing to fabricate a structure having a length scale close to the tool's spot size, for example, a mirror based and 45 degree optical coupler with optical surface quality. The newly developed process allows a high speed fabrication with a write speed of 2600 mm²/min by incorporating a mask based lithography method providing a blank structure which is critical to creating a 45 degree slope to form the coupler surface. In this method, instead of using an entire exposure in a pixelated manner, only a portion of the Gaussian profile is used, allowing a reduced surface roughness and better control of the surface shape than previously possible with this low NA beam. The surface figure of the mirror is well controlled below 0.04 waves in root-mean-square (RMS) at 1.55 mum wavelength, with mirror angle of 45+/-1 degrees. The coupling efficiency is evaluated using a set of polymer waveguides fabricated on the same substrate as the complete proof of concept device. Device insertion loss was measured using a custom built optical test station and a detailed loss analysis was completed to characterize the optical coupling efficiency of the mirror. Surface roughness and angle were also experimentally confirmed. This process opens up a pathway towards large volume fabrication of free-form and high aspect ratio optical components which have not yet pursued, along with well-defined optical structures on a single substrate. In this dissertation, in Chapter 1, we provide an overview of optical surface fabrication in conjunction with current state of the art on fabrication of free form surfaces in macro and microscopic length scale. The need for optical interconnects is introduced and fabrication methods of micro-optical couplers are reviewed in Chapter 2. In Chapter 3, the complete fabrication process of a mirror based coupler is presented including a custom alignment procedure. In Chapter 4, we provide the integration procedure of the optical couplers with waveguides. In Chapter 5, the alignment of two-lithographic methods is discussed. In Chapter 6, we provide the fabrication procedure used for the waveguides. In Chapter 7, the experimental evaluation and testing of the optical coupler is described. We present a custom test station used for angle verification and optical coupler efficiency measurement. In Chapter 8, a detailed loss analysis of the device is presented including suggestions for future reductions in loss. Conclusions and future work considerations are addressed in Chapter 9.

  4. FIBER AND INTEGRATED OPTICS: New method for determination of the parameters of a channel waveguide

    NASA Astrophysics Data System (ADS)

    Galechyan, M. G.; Dianov, Evgenii M.; Lyndin, N. M.; Sychugov, V. A.; Tishchenko, A. V.; Usievich, B. A.

    1992-02-01

    A new method for the determination of the parameters of channel integrated optical waveguides is proposed. This method is based on measuring the spectral transmission of a system comprising the investigated waveguide and single-mode fiber waveguides, which are brought into contact with the channel waveguide. The results are reported of an investigation of two channel waveguides formed in glass by a variety of methods and characterized by different refractive index profiles. The proposed method is found to be suitable for determination of the parameters of the refractive index profile of the investigated channel waveguides.

  5. Experimental Verification of Guided-Wave Lumped Circuits Using Waveguide Metamaterials

    NASA Astrophysics Data System (ADS)

    Li, Yue; Zhang, Zhijun

    2018-04-01

    Through the construction and characterization in microwave frequencies, we experimentally demonstrate our recently developed theory of waveguide lumped circuits, i.e., waveguide metatronics [Sci. Adv. 2, e1501790 (2016), 10.1126/sciadv.1501790], as a method to design subwavelength-scaled analog circuits. In the paradigm of waveguide metatronics, numbers of lumped inductors and capacitors are easily integrated functionally inside the waveguide, which is an irreplaceable transmission line in millimeter-wave and terahertz systems with the advantages of low radiation loss and low crosstalk. An example of multiple-ordered metatronic filters with layered structures is fabricated utilizing the technique of substrate integrated waveguides, which can be easily constructed by the printed-circuit-board process. The materials used in the construction are also typical microwave materials with positive permittivity, low loss, and negligible dispersion, imitating the plasmonic materials with negative permittivity in the optical domain. The results verify the theory of waveguide metatronics, which provides an efficient platform of functional lumped circuit design for guided-wave processing.

  6. Waveguide device and method for making same

    DOEpatents

    Forman, Michael A [San Francisco, CA

    2007-08-14

    A monolithic micromachined waveguide device or devices with low-loss, high-power handling, and near-optical frequency ranges is set forth. The waveguide and integrated devices are capable of transmitting near-optical frequencies due to optical-quality sidewall roughness. The device or devices are fabricated in parallel, may be mass produced using a LIGA manufacturing process, and may include a passive component such as a diplexer and/or an active capping layer capable of particularized signal processing of the waveforms propagated by the waveguide.

  7. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam

    PubMed Central

    Liao, Yang; Qi, Jia; Wang, Peng; Chu, Wei; Wang, Zhaohui; Qiao, Lingling; Cheng, Ya

    2016-01-01

    We report on fabrication of tubular optical waveguides buried in ZBLAN glass based on transverse femtosecond laser direct writing. Irradiation in ZBLAN with focused femtosecond laser pulses leads to decrease of refractive index in the modified region. Tubular optical waveguides of variable mode areas are fabricated by forming the four sides of the cladding with slit-shaped femtosecond laser pulses, ensuring single mode waveguiding with a mode field dimension as small as ~4 μm. PMID:27346285

  8. Low-cost integrated-optic fiber couplers

    NASA Astrophysics Data System (ADS)

    Sheem, Sang K.; Zhang, Feng; Choi, Jong-Ho; Lee, Yong-Woo; Low, Sarah; Lu, Shih-Yau

    1997-04-01

    In an effort to lower the cost of fiber optic couplers, integrated optic channel waveguide circuits are made of a UV-curable polymer using a molding technique, and then a novel fiber-to-channel connecting approach is employed in which UV light radiating from an optical fiber core cures the polymer in the channel, thus accomplishing a 'touchdown' of the core-extension waveguide onto the walls of the channel waveguide.

  9. Methods and devices for maintaining a resonant wavelength of a photonic microresonator

    DOEpatents

    Jones, Adam; Zortman, William A.

    2015-07-14

    A photonic microresonator incorporates a localized heater element within a section of an optical bus waveguide that is in proximity to the resonator structure. The application of an adjustable control voltage to the heater element provides a localized change in the refractive index value of the bus waveguide, compensating for temperature-induced wavelength drift and maintaining a stabilized value of the microresonator's resonant wavelength.

  10. Waveguide apparatuses and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, James E.

    2016-05-10

    Optical fiber waveguides and related approaches are implemented to facilitate communication. As may be implemented in accordance with one or more embodiments, a waveguide has a substrate including a lattice structure having a plurality of lattice regions with a dielectric constant that is different than that of the substrate, a defect in the lattice, and one or more deviations from the lattice. The defect acts with trapped transverse modes (e.g., magnetic and/or electric modes) and facilitates wave propagation along a longitudinal direction while confining the wave transversely. The deviation(s) from the lattice produces additional modes and/or coupling effects.

  11. FIBER AND INTEGRATED OPTICS: Radiative losses in single-mode fiber waveguides with a depressed cladding

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Kurkov, Andrei S.; Miroshnichenko, S. I.; Semenov, V. A.

    1989-11-01

    A comparison was made of the calculated and measured radiative losses suffered by the fundamental and first higher modes in real waveguide structures with a depressed cladding. It was found that in determination of the operating range of single-mode waveguides with a depressed cladding it is essential to allow not only for the increase in the losses due to leaking of the fundamental HE11 mode at long wavelengths, but also for the shift of the cutoff wavelength of the first higher HE21 mode for shorter wavelengths.

  12. Optical properties of in-vitro biomineralised silica.

    PubMed

    Polini, Alessandro; Pagliara, Stefano; Camposeo, Andrea; Cingolani, Roberto; Wang, Xiaohong; Schröder, Heinz C; Müller, Werner E G; Pisignano, Dario

    2012-01-01

    Silicon is the second most common element on the Earth's crust and its oxide (SiO(2)) the most abundant mineral. Silica and silicates are widely used in medicine and industry as well as in micro- and nano-optics and electronics. However, the fabrication of glass fibres and components requires high temperature and non-physiological conditions, in contrast to biosilica structures in animals and plants. Here, we show for the first time the use of recombinant silicatein-α, the most abundant subunit of sponge proteins catalyzing biosilicification reactions, to direct the formation of optical waveguides in-vitro through soft microlithography. The artificial biosilica fibres mimic the natural sponge spicules, exhibiting refractive index values suitable for confinement of light within waveguides, with optical losses in the range of 5-10 cm(-1), suitable for application in lab-on-chips systems. This method extends biosilicification to the controlled fabrication of optical components by physiological processing conditions, hardly addressed by conventional technologies.

  13. A four-port vertical-coupling optical interface based on two-dimensional grating coupler

    NASA Astrophysics Data System (ADS)

    Zhang, Zan; Zhang, Zanyun; Huang, Beiju; Cheng, Chuantong; Gao, Tianxi; Hu, Xiaochuan; Zhang, Lin; Chen, Hongda

    2016-10-01

    In this work, a fiber-to-chip optical interface with four output ports is proposed. External lights irradiate vertically from single mode fiber to the center of optical interface can be coupled into silicon photonic chips and split into four siliconon- insulator (SOI) waveguides. If the light is circular polarized, the power of light will be equally split into four ports. Meanwhile, all lights travel in the four channel will be converted into TE polarization. The optical interface is based on a two-dimensional grating coupler with carefully designed duty cycle and period. Simulation results show that the coupling efficiency of each port can reach 11.6% so that the total coupling efficiency of the interface is 46.4%. And Lights coupled into four waveguides are all converted into TE polarization. Further, the optical interface has a simple grating structure allowing for easy fabrication.

  14. Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator.

    PubMed

    Wülbern, Jan Hendrik; Petrov, Alexander; Eich, Manfred

    2009-01-05

    We present a novel concept of a compact, ultra fast electro-optic modulator, based on photonic crystal resonator structures that can be realized in two dimensional photonic crystal slabs of silicon as core material employing a nonlinear optical polymer as infiltration and cladding material. The novel concept is to combine a photonic crystal heterostructure cavity with a slotted defect waveguide. The photonic crystal lattice can be used as a distributed electrode for the application of a modulation signal. An electrical contact is hence provided while the optical wave is kept isolated from the lossy metal electrodes. Thereby, well known disadvantages of segmented electrode designs such as excessive scattering are avoided. The optical field enhancement in the slotted region increases the nonlinear interaction with an external electric field resulting in an envisaged switching voltage of approximately 1 V at modulation speeds up to 100 GHz.

  15. Optical Study of 2D Photonic Crystals in an InP/GaInAsP Slab Waveguide Structure

    DTIC Science & Technology

    2002-01-01

    the values n,,,,. = 3.35 and n, ,, = 3.17 are assumed for the refraction index of GaInAsP and InP, respectively. The resulting structure is a multimode...contributes to increase out-of- plane scattering. On the other hand, when entering the PC, the hole pattern is felt as a low refractive index contrast...in an InP/GaInAsP step- index waveguide. Transmission (T) measurements through simple PC slabs and through one-dimensional (1D) Fabry-P6rot (FP

  16. Polymer multimode waveguide optical and electronic PCB manufacturing

    NASA Astrophysics Data System (ADS)

    Selviah, David R.

    2009-02-01

    The paper describes the research in the Â#1.3 million IeMRC Integrated Optical and Electronic Interconnect PCB Manufacturing (OPCB) Flagship Project in which 8 companies and 3 universities carry out collaborative research and which was formed and is technically led by the author. The consortium's research is aimed at investigating a range of fabrication techniques, some established and some novel, for fabricating polymer multimode waveguides from several polymers, some formulations of which are being developed within the project. The challenge is to develop low cost waveguide manufacturing techniques compatible with commercial PCB manufacturing and to reduce their alignment cost. The project aims to take the first steps in making this hybrid optical waveguide and electrical copper track printed circuit board disruptive technology widely available by establishing and incorporating waveguide design rules into commercial PCB layout software and transferring the technology for fabricating such boards to a commercial PCB manufacturer. To focus the research the project is designing an optical waveguide backplane to tight realistic constraints, using commercial layout software with the new optical design rules, for a demonstrator into which 4 daughter cards are plugged, each carrying an aggregate of 80 Gb/s data so that each waveguide carries 10 Gb/s.

  17. Optical Waveguides Written in Silicon with Femtosecond Laser

    NASA Astrophysics Data System (ADS)

    Pavlov, Ihor; Tokel, Onur; Pavlova, Svitlana; Kadan, Viktor; Makey, Ghaith; Turnali, Ahmed; Ilday, Omer

    Silicon is one of the most widely used materials in modern technology, ranging from electronics and Si-photonics to microfluidic and sensor applications. Despite the long history of Si-based devices, and the strong demand for opto-electronical integration, 3D Si laser processing technology is still challenging. Recently, nanosecond-pulsed laser was used to fabricate embedded holographic elements in Si. However, until now, there was no demonstration of femtosecond-laser-written optical elements inside Si. In this paper, we present optical waveguides written deep inside Si with 1.5 um femtosecond laser. The laser beam, with 2 uJ pulse energy and 350 fs pulse duration focused inside Si sample, produces permanent modification of Si. By moving the lens along the beam direction we were able to produce optical waveguides up to 5 mm long. The diameter of the waveguide is measured to be 10 um. The waveguides were characterized with both optical shadowgraphy and far field imaging after CW light coupling. We observed nearly single mode propagation of light inside of the waveguide. The obtained difference of refractive index inside of the waveguide, is 2.5*10-4. TUBITAK Grant 113M930, TUBITAK Grant 114F256.

  18. A proposal for digital electro-optic switches with free-carrier dispersion effect and Goos-Hanchen shift in silicon-on-insulator waveguide corner mirror

    NASA Astrophysics Data System (ADS)

    Sun, DeGui

    2013-09-01

    In a silicon-on-insulator (SOI) waveguide corner mirror (WCM) structure, with the quantum process of a frustrated total internal reflection (FTIR) phenomenon and the time delay principle in the two-dimensional potential barrier tunneling process of a mass of particles, we derive an accurate physical model for the Goos-Hanchen (GH) shift of optical guided-mode in the FTIR process, and in principle match the GH shift jumping states with the independent guided-modes. Then, we propose and demonstrate a new regime of 1 × N digital optical switches with a matching state between the free-carrier dispersion (FCD) based refractive index modulation (RIM) of silicon to create a GH shift jumping function of a photonic signal at the reflecting interface and the independent guided-modes in the FTIR process, where a MOS-capacitor type electro-optic modulation regime is proposed and discussed to realize an effective FCD-based RIM. At the critical matching state, i.e., the incident of an optical beam is at the vicinity of Brewster angle in the WCM, a mini-change of refractive index of waveguide material can cause a great jump of GH shift along the FTIR reflecting interface, and further a 1 × N digital optical switching process could be realized. For a 350-500 nm single-mode rib waveguide made on the 220 nm CMOS-compatible SOI substrate and with the FCD effect based RIM of silicon crystal, a concentration variation of 1018-1019 cm-3 has caused a 0.5-2.5 μm GH shift of reflected beam, which is at 2-5 times of a mode-size and hence radically convinces an optical switching function with a 1 × 3-1 × 10 scale.

  19. Electro-Optic Analog/Digital Converter.

    DTIC Science & Technology

    electro - optic material and a source of linearly polarized light is arranged to transmit its light energy along each of the optical waveguides. Electrodes are disposed contiguous to the optical waveguides for impressing electric fields thereacross. An input signal potential is applied to the electrodes to produce electric fields of intensity relative to each of the waveguides such that causes phase shift and resultant change of polarization which can be detected as representative of a binary ’one’ or binary ’zero’ for each of the channel optical

  20. Resonant optical device with a microheater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentine, Anthony L.; DeRose, Christopher

    2017-04-04

    A resonant photonic device is provided. The device comprises an optical waveguiding element, such as an optical resonator, that includes a diode junction region, two signal terminals configured to apply a bias voltage across the junction region, and a heater laterally separated from the optical waveguiding element. A semiconductor electrical barrier element is juxtaposed to the heater. A metallic strip is electrically and thermally connected at one end to a signal terminal of the optical waveguiding element and thermally connected at another end to the barrier element.

  1. FIBER AND INTEGRATED OPTICS: Matching of fiber and strip optical waveguides by graded-index optical matching components

    NASA Astrophysics Data System (ADS)

    Shmal'ko, A. V.; Gordova, M. R.; Lamekin, V. F.; Nikolaev, I. V.; Sakharov, V. V.; Smirnov, V. L.; Polyantsev, A. S.

    1990-01-01

    A method for selection and calculation of the parameters of axisymmetric and anamorphic graded-index lenses for optical matching devices is developed and tested. These devices are intended for detachable connectors joining single-mode fibers to strip optical waveguides and are characterized by a greater tolerance to a mismatch between these waveguides. An experimental study is reported of a prototype of an optical matching device based on graded-index lenses characterized by insertion losses from 1-3 dB.

  2. Chemical Sensors Based on Optical Ring Resonators

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Manfreda, Allison; Mansour, Kamjou; Lin, Ying; Ksendzov, Alexander

    2005-01-01

    Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring res

  3. Production and characterization of femtosecond laser-written double line waveguides in heavy metal oxide glasses

    NASA Astrophysics Data System (ADS)

    da Silva, Diego Silvério; Wetter, Niklaus Ursus; de Rossi, Wagner; Kassab, Luciana Reyes Pires; Samad, Ricardo Elgul

    2018-01-01

    We report the fabrication and characterization of double line waveguides directly written in tellurite and germanate glasses using a femtosecond laser delivering 30 μJ, 80 fs pulses at 4 kHz repetition rate. The double line waveguides produced presented internal losses inferior to 2.0 dB/cm. The output mode profile and the M2 measurements indicate multimodal guiding behavior. A better beam quality for the GeO2 - PbO waveguide was observed when compared with TeO2 - ZnO glass. Raman spectroscopy of the waveguides showed structural modification of the glassy network and indicates that a negative refractive index modification occurs at the focus of the laser beam, therefore allowing for light guiding in between two closely spaced laser written lines. The refractive index change at 632 nm is around 10-4, and the structural changes in the laser focal region of the writing, evaluated by Raman spectroscopy, corroborated our findings that these materials are potential candidates for optical waveguides and passive components. To the best of our knowledge, the two double line configuration demonstrated in the present work was not reported before for germanate or tellurite glasses.

  4. Surface transport and stable trapping of particles and cells by an optical waveguide loop.

    PubMed

    Hellesø, Olav Gaute; Løvhaugen, Pål; Subramanian, Ananth Z; Wilkinson, James S; Ahluwalia, Balpreet Singh

    2012-09-21

    Waveguide trapping has emerged as a useful technique for parallel and planar transport of particles and biological cells and can be integrated with lab-on-a-chip applications. However, particles trapped on waveguides are continuously propelled forward along the surface of the waveguide. This limits the practical usability of the waveguide trapping technique with other functions (e.g. analysis, imaging) that require particles to be stationary during diagnosis. In this paper, an optical waveguide loop with an intentional gap at the centre is proposed to hold propelled particles and cells. The waveguide acts as a conveyor belt to transport and deliver the particles/cells towards the gap. At the gap, the diverging light fields hold the particles at a fixed position. The proposed waveguide design is numerically studied and experimentally implemented. The optical forces on the particle at the gap are calculated using the finite element method. Experimentally, the method is used to transport and trap micro-particles and red blood cells at the gap with varying separations. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip, e.g. microfluidics or optical detection, to make an on-chip system for single cell analysis and to study the interaction between cells.

  5. Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler

    NASA Astrophysics Data System (ADS)

    Lee, J.; Park, D. H.; Mittal, S.; Dagenais, M.; Rolston, S. L.

    2013-04-01

    An integrated optical dipole trap uses two-color (red and blue-detuned) traveling evanescent wave fields for trapping cold neutral atoms. To achieve longitudinal confinement, we propose using an integrated optical waveguide coupler, which provides a potential gradient along the beam propagation direction sufficient to confine atoms. This integrated optical dipole trap can support an atomic ensemble with a large optical depth due to its small mode area. Its quasi-TE0 waveguide mode has an advantage over the HE11 mode of a nanofiber, with little inhomogeneous Zeeman broadening at the trapping region. The longitudinal confinement eliminates the need for a one dimensional optical lattice, reducing collisional blockaded atomic loading, potentially producing larger ensembles. The waveguide trap allows for scalability and integrability with nano-fabrication technology. We analyze the potential performance of such integrated atom traps.

  6. Integrated optical tamper sensor with planar waveguide

    DOEpatents

    Carson, Richard F.; Casalnuovo, Stephen A.

    1993-01-01

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  7. Integrated optical tamper sensor with planar waveguide

    DOEpatents

    Carson, R.F.; Casalnuovo, S.A.

    1993-01-05

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  8. Improved silica-PLC Mach-Zehnder interferometer type optical switches with error dependence compensation of directional coupler

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Yi, Jia; Guo, Lijun; Liu, Peng; Hall, Trevor J.; Sun, DeGui

    2017-03-01

    For the most popular structure of planer lightwave circuit (PLC) 2×2 thermo-optic switches, Mach-Zehnder interferometer (MZI), a full range of splitting ratio errors of directional coupler (DC) are investigated. All the parameters determining the splitting ratio are the dimensions and the refractive indices of the waveguide core and cladding layers. In this work, the coherent relationships between the waveguide size and the refractive indices are analyzed and then the error compensation between the width and the refractive index of waveguide core, and the controllable effect of over clad layer refractive index error upon the MZI-type optical switch are all discovered with numerical calculation and BPM simulations. Then, an MZI-type 2×2 thermo-optic switch having a higher error tolerance is established with the efficient optimizations of all the 3 dB-DC parameters. As a result, for the symmetric MZI switch, an insertion loss of 1.5 dB and optical extinction ratio of over 20 dB are realized for the average tolerance of±5.0%. An asymmetric arm optical phase and unequal arm lengths is also employed to improve the uniformities of insertion loss. The agreements between the designs and the experiments are recognized, leading to a wide adoption of practical silica-PLC optical switch products.

  9. Application of photonic crystal defects in constructing all-optical switches, optical delay lines and low-cross-talk waveguide intersections for ultrashort optical pulses

    NASA Astrophysics Data System (ADS)

    Lan, Sheng; Sugimoto, Yoshimasa; Nishikawa, Satoshi; Ikeda, Naoki; Yang, Tao; Kanamoto, Kozyo; Ishikawa, Hiroshi; Asakawa, Kiyoshi

    2002-07-01

    We present a systematic study of coupled defects in photonic crystals (PCs) and explore their applications in constructing optical components and devices for ultrafast all-optical signal processing. First, we find that very deep band gaps can be generated in the impurity bands of coupled cavity waveguides (CCWs) by a small periodic modulation of defect modes. This phenomenon implies a high-efficiency all-optical switching mechanism. The switching mechanism can be easily extended from one-dimensional (1D) to two-dimensional and three-dimensional PC structures by utilizing the coupling of defect pairs which are generally present in PCs. Second, we suggest that CCWs with quasiflat and narrow impurity bands can be employed as efficient delay lines for ultrashort pulses. Criteria for designing such kind of CCWs have been derived from the analysis of defect coupling and the investigation of pulse transmission through various CCWs. It is found that the availability of quasiflat impurity bands depends not only on the intrinsic properties of the constituting defects but also on the detailed configuration of CCWs. In experiments, optical delay lines based on 1D monorail CCWs have been successfully fabricated and characterized. Finally, we have proposed a new mechanism for constructing waveguide intersections with broad bandwidth and low cross-talk.

  10. Polymer waveguides for electro-optical integration in data centers and high-performance computers.

    PubMed

    Dangel, Roger; Hofrichter, Jens; Horst, Folkert; Jubin, Daniel; La Porta, Antonio; Meier, Norbert; Soganci, Ibrahim Murat; Weiss, Jonas; Offrein, Bert Jan

    2015-02-23

    To satisfy the intra- and inter-system bandwidth requirements of future data centers and high-performance computers, low-cost low-power high-throughput optical interconnects will become a key enabling technology. To tightly integrate optics with the computing hardware, particularly in the context of CMOS-compatible silicon photonics, optical printed circuit boards using polymer waveguides are considered as a formidable platform. IBM Research has already demonstrated the essential silicon photonics and interconnection building blocks. A remaining challenge is electro-optical packaging, i.e., the connection of the silicon photonics chips with the system. In this paper, we present a new single-mode polymer waveguide technology and a scalable method for building the optical interface between silicon photonics chips and single-mode polymer waveguides.

  11. Steering and filtering white light with resonant waveguide gratings

    NASA Astrophysics Data System (ADS)

    Quaranta, Giorgio; Basset, Guillaume; Martin, Olivier J. F.; Gallinet, Benjamin

    2017-08-01

    A novel thin-film single-layer structure based on resonant waveguide gratings (RWGs) allows to engineer selective color filtering and steering of white light. The unit cell of the structure consists of two adjacent finite-length and cross-talking RWGs, where the former acts as in-coupler and the latter acts as out-coupler. The structure is made by only one nano-imprint lithography replication and one thin film layer deposition, making it fully compatible with up-scalable fabrication processes. We characterize a fabricated optical security element designed to work with the flash and the camera of a smartphone in off-axis light steering configuration, where the pattern is revealed only by placing the smartphone in the proper position. Widespread applications are foreseen in a variety of fields, such as multifocal or monochromatic lenses, solar cells, biosensors, security devices and seethrough optical combiners for near-eye displays.

  12. Asymmetric light transmission based on coupling between photonic crystal waveguides and L1/L3 cavity

    NASA Astrophysics Data System (ADS)

    Zhang, Jinqiannan; Chai, Hongyu; Yu, Zhongyuan; Cheng, Xiang; Ye, Han; Liu, Yumin

    2017-09-01

    A compact design of all-optical diode with mode conversion function based on a two-dimensional photonic crystal waveguide and an L1 or L3 cavity is theoretically investigated. The proposed photonic crystal structures comprise a triangular arrangement of air holes embedded in a silicon substrate. Asymmetric light propagation is achieved via the spatial mode match/mismatch in the coupling region. The simulations show that at each cavity's resonance frequency, the transmission efficiency of the structure with the L1 and L3 cavities reach 79% and 73%, while the corresponding unidirectionalities are 46 and 37 dB, respectively. The functional frequency can be controlled by simply adjusting the radii of specific air holes in the L1 and L3 cavities. The proposed structure can be used as a frequency filter, a beam splitter and has potential applications in all-optical integrated circuits.

  13. Terahertz orbital angular momentum modes with flexible twisted hollow core antiresonant fiber

    NASA Astrophysics Data System (ADS)

    Stefani, Alessio; Fleming, Simon C.; Kuhlmey, Boris T.

    2018-05-01

    THz radiation is a more commonplace in research laboratories as well as in everyday life, with applications ranging from body scanners at airport security to short range wireless communications. In the optical domain, waveguides and other devices to manipulate radiation are well established. This is not yet the case in the THz regime because of the strong interaction of THz radiation with matter, leading to absorption, and the millimeter size of the wavelength and therefore of the required waveguides. We propose the use of a new material, polyurethane, for waveguides that allows high flexibility, overcoming the problem that large sizes otherwise result in rigid structures. With this material, we realize antiresonant hollow-core waveguides and we use the flexibility of the material to mechanically twist the waveguide in a tunable and reversible manner, with twist periods as short as tens of wavelengths. Twisting the waveguide, we demonstrate the generation of modes carrying orbital angular momentum. We use THz time domain spectroscopy to measure and clearly visualize the vortex nature of the mode, which is difficult in the optical domain. The proposed waveguide is a new platform offering new perspectives for THz guidance and particularly mode manipulation. The demonstrated ability to generate modes with an orbital angular momentum within a waveguide, in a controllable manner, will be beneficial to both fundamental, e.g., matter-radiation interaction, and applied, e.g., THz telecommunications, advances of THz research and technology. Moreover, this platform is not limited to the THz domain and could be scaled for other electromagnetic wavelengths.

  14. Non-contact printing of optical waveguides using capillary bridges.

    PubMed

    Theiler, Pius M; Lütolf, Fabian; Ferrini, Rolando

    2018-04-30

    Non-contact printing methods such as inkjet, electro hydrodynamic, and aerosol printing have attracted attention for their precise deposition of functional materials that are needed in printed electronics, optoelectronics, photonics, biotechnology, and microfluidics. In this article, we demonstrate printing of tapered optical waveguides with losses of 0.61 ± 0.26 dB/cm, with the best performing structure achieving 0.19 dB/cm. Such continuous features are indispensable for successfully printing functional patterns, but they are often corrupted by capillary forces. The proposed inkjet printing method uses these forces to align liquid bridges into continuous features, enabling the printing of smooth lines on substrates with arbitrary contact angles.

  15. Two-dimensional complex source point solutions: application to propagationally invariant beams, optical fiber modes, planar waveguides, and plasmonic devices.

    PubMed

    Sheppard, Colin J R; Kou, Shan S; Lin, Jiao

    2014-12-01

    Highly convergent beam modes in two dimensions are considered based on rigorous solutions of the scalar wave (Helmholtz) equation, using the complex source point formalism. The modes are applicable to planar waveguide or surface plasmonic structures and nearly concentric microcavity resonator modes in two dimensions. A novel solution is that of a vortex beam, where the direction of propagation is in the plane of the vortex. The modes also can be used as a basis for the cross section of propagationally invariant beams in three dimensions and bow-tie-shaped optical fiber modes.

  16. Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation.

    PubMed

    Yang, Y; Liu, A Q; Chin, L K; Zhang, X M; Tsai, D P; Lin, C L; Lu, C; Wang, G P; Zheludev, N I

    2012-01-31

    Transformation optics represents a new paradigm for designing light-manipulating devices, such as cloaks and field concentrators, through the engineering of electromagnetic space using materials with spatially variable parameters. Here we analyse liquid flowing in an optofluidic waveguide as a new type of controllable transformation optics medium. We show that a laminar liquid flow in an optofluidic channel exhibits spatially variable dielectric properties that support novel wave-focussing and interference phenomena, which are distinctively different from the discrete diffraction observed in solid waveguide arrays. Our work provides new insight into the unique optical properties of optofluidic waveguides and their potential applications.

  17. Interactive optical panel

    DOEpatents

    Veligdan, J.T.

    1995-10-03

    An interactive optical panel assembly includes an optical panel having a plurality of ribbon optical waveguides stacked together with opposite ends thereof defining panel first and second faces. A light source provides an image beam to the panel first face for being channeled through the waveguides and emitted from the panel second face in the form of a viewable light image. A remote device produces a response beam over a discrete selection area of the panel second face for being channeled through at least one of the waveguides toward the panel first face. A light sensor is disposed across a plurality of the waveguides for detecting the response beam therein for providing interactive capability. 10 figs.

  18. Three-Dimensional Waveguide Arrays for Coupling Between Fiber-Optic Connectors and Surface-Mounted Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Seiki; Kinoshita, Masao

    2005-09-01

    This paper describes the fabrication of novel surface-mountable waveguide connectors and presents test results for them. To ensure more highly integrated and low-cost fabrication, we propose new three-dimensional (3-D) waveguide arrays that feature two-dimensionally integrated optical inputs/outputs and optical path redirection. A wafer-level stack and lamination process was used to fabricate the waveguide arrays. Vertical-cavity surface-emitting lasers (VCSELs) and photodiodes were directly mounted on the arrays and combined with mechanical transferable ferrule using active alignment. With the help of a flip-chip bonder, the waveguide connectors were mounted on a printed circuit board by solder bumps. Using mechanical transferable connectors, which can easily plug into the waveguide connectors, we obtained multi-gigabits-per-second transmission performance.

  19. Nano-optical conveyor belt with waveguide-coupled excitation.

    PubMed

    Wang, Guanghui; Ying, Zhoufeng; Ho, Ho-pui; Huang, Ying; Zou, Ningmu; Zhang, Xuping

    2016-02-01

    We propose a plasmonic nano-optical conveyor belt for peristaltic transport of nano-particles. Instead of illumination from the top, waveguide-coupled excitation is used for trapping particles with a higher degree of precision and flexibility. Graded nano-rods with individual dimensions coded to have resonance at specific wavelengths are incorporated along the waveguide in order to produce spatially addressable hot spots. Consequently, by switching the excitation wavelength sequentially, particles can be transported to adjacent optical traps along the waveguide. The feasibility of this design is analyzed using three-dimensional finite-difference time-domain and Maxwell stress tensor methods. Simulation results show that this system is capable of exciting addressable traps and moving particles in a peristaltic fashion with tens of nanometers resolution. It is the first, to the best of our knowledge, report about a nano-optical conveyor belt with waveguide-coupled excitation, which is very important for scalability and on-chip integration. The proposed approach offers a new design direction for integrated waveguide-based optical manipulation devices and its application in large scale lab-on-a-chip integration.

  20. Optical waveguide loop for planar trapping of blood cells and microspheres

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Balpreet S.; Hellesø, Olav G.

    2013-09-01

    The evanescent field from a waveguide can be used to trap and propel a particle. An optical waveguide loop with an intentional gap at the center is used for planar transport and stable trapping of particles. The waveguide acts as a conveyor belt to trap and deliver spheres towards the gap. At the gap, the counter-diverging light fields hold the sphere at a fixed position. Numerical simulation based on the finite element method was performed in three dimensions using a computer cluster. The field distribution and optical forces for rib and strip waveguide designs are compared and discussed. The optical force on a single particle was computed for various positions of the particle in the gap. Simulation predicted stable trapping of particles in the gap. Depending on the gap separation (2-50 μm) a single or multiple spheres and red blood cells were trapped at the gap. Waveguides were made of tantalum pentaoxide material. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip.

  1. Effect of structural evolution of ZnO/HfO2 nanocrystals on Eu2+/Eu3+ emission in glass-ceramic waveguides for photonic applications

    NASA Astrophysics Data System (ADS)

    Ghosh, Subhabrata; N, Shivakiran Bhaktha B.

    2018-06-01

    Eu-doped 70SiO2–23HfO2–7ZnO (mol%) glass-ceramic waveguides have been fabricated by sol-gel method as a function of heat-treatment temperatures for on-chip blue-light emitting source applications. Structural evolution of spherical ZnO and spherical as well as rod-like HfO2 nanocrystalline structures have been observed with heat-treatments at different temperatures. Initially, in the as-prepared samples at 900 ◦C, both, Eu2+ as well as Eu3+ ions are found to be present in the ternary matrix. With controlled heat-treatments of up to 1000 ◦C for 2 h, local environment of Eu-ions become more crystalline in nature and the reduction of Eu3+ to Eu2+ takes place in such ZnO/HfO2 crystalline environments. In these ternary glass-ceramic waveguides, heat-treated at higher temperatures, the blue-light emission characteristic, which is the signature of 4f 65d \\to 4f 7 energy level transition of Eu2+ ions is found to be greatly enhanced. The as-prepared glass-ceramic waveguides exhibit a propagation loss of 0.4 ± 0.2 dB cm‑1 at 632.8 nm. Though the propagation losses increase with the growth of nanocrystals, the added functionalities achieved in the optimally heat-treated Eu-doped 70SiO2–23HfO2–7ZnO (mol%) waveguides, make them a viable functional optical material for the fabrication of on-chip blue-light emitting sources for integrated optic applications.

  2. Low-loss single mode light waveguides in polymer

    NASA Astrophysics Data System (ADS)

    Sieber, Heinrich; Boehm, Hans-Jürgen; Hollenbach, Uwe; Mohr, Jürgen; Ostrzinski, Ute; Pfeiffer, Karl; Szczurowski, Marcin; Urbanczyk, Waclaw

    2012-06-01

    We report on the development of a UV-lithography manufacturing process for low loss single mode light waveguides in a novel polymer and the characterization of the fabricated components in a broad wavelength range from 808 nm to 1550 nm. The main focus of this work lies in providing a quick and cost efficient production technique for single mode waveguides and low loss integrated optical circuits. To achieve this goal we chose a novel photo-structurable polymer host-guest-system consisting of SU8 and a low refractive dopant monomer. Near and far-field measurements at different wavelengths show that the mode propagating within a well designed integrated waveguide structure and the mode of a standard fiber can exhibit a mode overlap value of approximately 1 and suffer only very low coupling losses. We demonstrate excess loss of 0.14 dB/cm for 808 nm, 0.33 dB/cm for 1310 nm and 2.86 dB/cm for 1550 nm. Typical insertion loss values of straight waveguides with a length of 36 mm are 0.9 dB for 808 nm, 1.5 dB for 1310 nm and 10.4 dB for 1550 nm. Polarization dependent loss was found to be less than 0.2 dB on sets of test structures of 36 mm length. We measured material attenuation in the novel polymer material before cross-linking of approximately 0.04 dB/cm for 808 nm and around 0.20 dB/cm for 1310 nm respectively. The presented production technique is suitable to provide low loss and low cost integrated optical circuits for sensor and communication applications in a broad wavelength range.

  3. Effect of structural evolution of ZnO/HfO2 nanocrystals on Eu2+/Eu3+ emission in glass-ceramic waveguides for photonic applications.

    PubMed

    Ghosh, Subhabrata; Bhaktha B N, Shivakiran

    2018-06-01

    Eu-doped 70SiO 2 -23HfO 2 -7ZnO (mol%) glass-ceramic waveguides have been fabricated by sol-gel method as a function of heat-treatment temperatures for on-chip blue-light emitting source applications. Structural evolution of spherical ZnO and spherical as well as rod-like HfO 2 nanocrystalline structures have been observed with heat-treatments at different temperatures. Initially, in the as-prepared samples at 900 ◦ C, both, Eu 2+ as well as Eu 3+ ions are found to be present in the ternary matrix. With controlled heat-treatments of up to 1000 ◦ C for 2 h, local environment of Eu-ions become more crystalline in nature and the reduction of Eu 3+ to Eu 2+ takes place in such ZnO/HfO 2 crystalline environments. In these ternary glass-ceramic waveguides, heat-treated at higher temperatures, the blue-light emission characteristic, which is the signature of 4f 6 5d [Formula: see text] 4f 7 energy level transition of Eu 2+ ions is found to be greatly enhanced. The as-prepared glass-ceramic waveguides exhibit a propagation loss of 0.4 ± 0.2 dB cm -1 at 632.8 nm. Though the propagation losses increase with the growth of nanocrystals, the added functionalities achieved in the optimally heat-treated Eu-doped 70SiO 2 -23HfO 2 -7ZnO (mol%) waveguides, make them a viable functional optical material for the fabrication of on-chip blue-light emitting sources for integrated optic applications.

  4. Invisibility Cloak Printed on a Photonic Chip

    PubMed Central

    Feng, Zhen; Wu, Bing-Hong; Zhao, Yu-Xi; Gao, Jun; Qiao, Lu-Feng; Yang, Ai-Lin; Lin, Xiao-Feng; Jin, Xian-Min

    2016-01-01

    Invisibility cloak capable of hiding an object can be achieved by properly manipulating electromagnetic field. Such a remarkable ability has been shown in transformation and ray optics. Alternatively, it may be realistic to create a spatial cloak by means of confining electromagnetic field in three-dimensional arrayed waveguides and introducing appropriate collective curvature surrounding an object. We realize the artificial structure in borosilicate by femtosecond laser direct writing, where we prototype up to 5,000 waveguides to conceal millimeter-scale volume. We characterize the performance of the cloak by normalized cross correlation, tomography analysis and continuous three-dimensional viewing angle scan. Our results show invisibility cloak can be achieved in waveguide optics. Furthermore, directly printed invisibility cloak on a photonic chip may enable controllable study and novel applications in classical and quantum integrated photonics, such as invisualising a coupling or swapping operation with on-chip circuits of their own. PMID:27329510

  5. Merged beam laser design for reduction of gain-saturation and two-photon absorption in high power single mode semiconductor lasers.

    PubMed

    Lysevych, M; Tan, H H; Karouta, F; Fu, L; Jagadish, C

    2013-04-08

    In this paper we report a method to overcome the limitations of gain-saturation and two-photon absorption faced by developers of high power single mode InP-based lasers and semiconductor optical amplifiers (SOA) including those based on wide-waveguide or slab-coupled optical waveguide laser (SCOWL) technology. The method is based on Y-coupling design of the laser cavity. The reduction in gain-saturation and two-photon absorption in the merged beam laser structures (MBL) are obtained by reducing the intensity of electromagnetic field in the laser cavity. Standard ridge-waveguide lasers and MBLs were fabricated, tested and compared. Despite a slightly higher threshold current, the reduced gain-saturation in MBLs results in higher output power. The MBLs also produced a single spatial mode, as well as a strongly dominating single spectral mode which is the inherent feature of MBL-type cavity.

  6. Optical isolation with nonlinear topological photonics

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Wang, You; Leykam, Daniel; Chong, Y. D.

    2017-09-01

    It is shown that the concept of topological phase transitions can be used to design nonlinear photonic structures exhibiting power thresholds and discontinuities in their transmittance. This provides a novel route to devising nonlinear optical isolators. We study three representative designs: (i) a waveguide array implementing a nonlinear 1D Su-Schrieffer-Heeger model, (ii) a waveguide array implementing a nonlinear 2D Haldane model, and (iii) a 2D lattice of coupled-ring waveguides. In the first two cases, we find a correspondence between the topological transition of the underlying linear lattice and the power threshold of the transmittance, and show that the transmission behavior is attributable to the emergence of a self-induced topological soliton. In the third case, we show that the topological transition produces a discontinuity in the transmittance curve, which can be exploited to achieve sharp jumps in the power-dependent isolation ratio.

  7. Invisibility Cloak Printed on a Photonic Chip

    NASA Astrophysics Data System (ADS)

    Feng, Zhen; Wu, Bing-Hong; Zhao, Yu-Xi; Gao, Jun; Qiao, Lu-Feng; Yang, Ai-Lin; Lin, Xiao-Feng; Jin, Xian-Min

    2016-06-01

    Invisibility cloak capable of hiding an object can be achieved by properly manipulating electromagnetic field. Such a remarkable ability has been shown in transformation and ray optics. Alternatively, it may be realistic to create a spatial cloak by means of confining electromagnetic field in three-dimensional arrayed waveguides and introducing appropriate collective curvature surrounding an object. We realize the artificial structure in borosilicate by femtosecond laser direct writing, where we prototype up to 5,000 waveguides to conceal millimeter-scale volume. We characterize the performance of the cloak by normalized cross correlation, tomography analysis and continuous three-dimensional viewing angle scan. Our results show invisibility cloak can be achieved in waveguide optics. Furthermore, directly printed invisibility cloak on a photonic chip may enable controllable study and novel applications in classical and quantum integrated photonics, such as invisualising a coupling or swapping operation with on-chip circuits of their own.

  8. Correlation between optical return loss and transmission fringe noise in high-index contrast waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Chi; Martin, Yves; Khater, Marwan

    2017-05-15

    We present a phenomenological model correlating optical return loss and amplitude of fringes in transmission spectrum due to distributed backscattering in high-index-contrast waveguides. The model is validated experimentally using four different waveguide cross sections.

  9. Practical microstructured and plasmonic terahertz waveguides

    NASA Astrophysics Data System (ADS)

    Markov, Andrey

    The terahertz frequency range, with frequencies lying between 100 GHz and 10 THz, has strong potential for various technological and scientific applications such as sensing, imaging, communications, and spectroscopy. Most terahertz (THz) sources are immobile and THz systems use free-space propagation in dry air where losses are minimal. Designing efficient THz waveguides for flexible delivery of broadband THz radiation is an important step towards practical applications of terahertz techniques. THz waveguides can be very useful on the system integration level when used for connection of the diverse THz point devices, such as sources, filters, sensor cells, detectors, etc. The most straightforward application of waveguides is to deliver electromagnetic waves from the source to the point of detection. Cumbersome free-space optics can be replaced by waveguides operating in the THz range, which could lead to the development of compact THz time domain spectroscopy systems. Other promising applications of THz waveguides are in sensing and imaging. THz waveguides have also been shown to operate in subwavelength regimes, offering mode confinement in waveguide structures with a size smaller than the diffraction limit, and thus, surpassing the resolution of free-space THz imaging systems. In order to design efficient terahertz waveguides, the frequency dependent loss and dispersion of the waveguide must be minimized. A possible solution would be to increase the fraction of mode power propagating through air. In this thesis, the usage of planar porous air/dielectric waveguides and metal wire/dielectric hybrid terahertz fibers will be discussed. First, I present a novel design of a planar porous low-loss waveguide, describe its fabrication, and characterize it in view of its potential applications as a low-loss waveguide and sensor in the THz spectral range. The waveguide structure features a periodic sequence of layers of thin (25-50 mum) polyethylene film that are separated by low-loss air layers of comparable thickness. A large fraction of the modal fields in these waveguides is guided in the low-loss air region, thus effectively reducing the waveguide transmission losses. I consider that such waveguides can be useful not only for low-loss THz wave delivery, but also for sensing of biological and chemical specimens in the terahertz region, by placing the recognition elements directly into the waveguide microstructure. The main advantage of the proposed planar porous waveguide is the convenient access to its optical mode, since the major portion of THz power launched into such a waveguide is confined within the air layers. Moreover, small spacing between the layers promotes rapid loading of the analyte into the waveguide due to strong capillary effect (< 1 s filling of a 10 cm long waveguide with an analyte). The transmission and absorption properties of such waveguides have been investigated both experimentally using THz-TDS spectroscopy and theoretically using finite element software. The modal refractive index of porous waveguides is smaller compared to pure polymer and it is easy to adjust by changing the air spacing between the layers, as well as the number of layers in the core. The porous waveguide exhibits considerably smaller transmission losses than bulk material. In the following chapters I review another promising approach towards designing of low-loss, low-dispersion THz waveguides. The hybrid metal/dielectric waveguides use a plasmonic mode guided in the gap between two parallel wires that are, in turn, encapsulated inside a low-loss, low-refractive index, micro-structured cladding that provides mechanical stability and isolation from the environment. I describe several promising techniques that can be used to encapsulate the two-wire waveguides, while minimizing the negative impact of dielectric cladding on the waveguide optical properties. In particular, I detail the use of low-density foams and microstructured plastic claddings as two enabling materials for the two-wire waveguide encapsulation. The hybrid fiber design is more convenient for practical applications than a classic two metal wire THz waveguide as it allows direct manipulations of the fiber without the risk of perturbing its core-guided mode. I present a detailed analysis of the modal properties of the hybrid metal/dielectric waveguides, compare them with the properties of a classic two-wire waveguide, and then present strategies for the improvement of hybrid waveguide performance by using higher cladding porosity or utilizing inherently porous cladding material. I study coupling efficiency into hybrid waveguides and conclude that it can be relatively high (>50%) in the broad frequency range ˜0.5 THz. Not surprisingly, optical properties of such fibers are inferior to those of a classic two-wire waveguide due to the presence of lossy dielectric near an inter-wire gap. At the same time, composite fibers outperform porous fibers of the same geometry both in bandwidth of operation and in lower dispersion. I demonstrate that hybrid metal/dielectric porous waveguides can have a very large operational bandwidth, while supporting tightly confined, air-bound modes both at high and low frequencies. This is possible as, at higher frequencies, hybrid fibers can support ARROW-like low-loss air-bound modes, while changing their guidance mechanism to plasmonic confinement in the inter-wire air gap at lower frequencies. Finally, I describe an intriguing resonant property of some hybrid plasmonic modes of metal / dielectric waveguides that manifests itself in the strong frequency dependent change in the modal confinement from dielectric-bound to air-bound. I discuss how this property can be used to construct THz refractometers. Introduction of even lossless analytes into the fiber core leads to significant changes in the modal losses, which is used as a transduction mechanism. The resolution of the refractometer has been investigated numerically as a function of the operation frequency and the geometric parameters of the fiber. With a refractive index resolution on the order of ˜10-3 RIU, the composite fiber-based sensor is capable of identifying various gaseous analytes and aerosols or measuring the concentration of dust particles in the air.

  10. Performance of ultracompact copper-capped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths.

    PubMed

    Zhu, Shiyang; Lo, G Q; Kwong, D L

    2012-07-02

    Ultracompact Cu-capped Si hybrid plasmonic waveguide-ring resonators (WRRs) with ring radii of 1.09-2.59 μm are fabricated on silicon on insulator substrates using standard complementary metal-oxide-semiconductor technology and characterized over the telecom wavelength range of 1.52-1.62 μm. The dependence of the spectral characteristics on the key structural parameters such as the Si core width, the ring radius, the separation gap between the ring and bus waveguides, and the ring configuration is systematically studied. A WRR with 2.59-μm radius and 0.250-μm nominal gap exhibits good performances such as normalized insertion loss of ~0.1 dB, extinction ratio of ~12.8 dB, free spectral range of ~47 nm, and quality factor of ~275. The resonance wavelength is redshifted by ~4.6 nm and an extinction ratio of ~7.5 dB is achieved with temperature increasing from 27 to 82°C. The corresponding effective thermo-optical coefficient (dn(g)/dT) is estimated to be ~1.6 × 10(-4) K(-1), which is contributed by the thermo-optical effect of both the Si core and the Cu cap, as revealed by numerical simulations. Combined with the compact size and the high thermal conductivity of Cu, various effective thermo-optical devices based on these Cu-capped plasmonic WRRs could be realized for seamless integration in existing Si electronic-photonic integrated circuits.

  11. Planar waveguide solar concentrator with couplers fabricated by laser-induced backside wet etching

    NASA Astrophysics Data System (ADS)

    Zhang, Nikai

    Solar radiation can be converted directly into electricity by using the photovoltaic effect, which represents the principle of operation of solar cells. Currently, most solar cells are made of crystalline silicon and have a conversion efficiency of about 20% or less. Multi-junction solar cells, made of III-V compound semiconductors, can have efficiencies in excess of 40%. The main factor that prohibits such high-efficiency technologies from wider acceptance is the cost. An alternative approach to using large-area expensive solar cells is to employ lower cost optics and concentrate the solar radiation to smaller cell area, which is the basic principle of solar concentrators. In this thesis, we consider a solar concentrator module that consists of a combination of a lens array and a slab waveguide with etched conical holes on one side of the waveguide, which are aligned with the lenslets. Sunlight coming through each of these lenslets is focused on the backside of the waveguide, where a coupling structure (an etched cone) is fabricated. This coupler changes the propagation direction of the incident light in such a way that light is guided through total internal reflection (TIR) within the glass slab and eventually reaches a solar cell, which is properly mounted on the side of the slab. The concept of this concentrated photovoltaic (CPV) system is based on a planar light guide solar concentrator module, proposed earlier by another group. This project builds on the original idea by including the following substantial modifications. The lens array is to be made of solid glass by a mold technology and provided to us by our industrial partner, Libbey, Inc., as opposed to silicone on glass technology, in which the lenses are made out of silicone and sit on a glass substrate. The coupling structures are cone-shaped holes etched directly into the solid glass waveguide, as opposed to coupling structures that are formed by addition of polymeric layer and consequent patterning. The fabrication of the etched holes in the glass is proposed to be based on a self-aligned process using a laser-induced backside etching (LIBWE) method, which is discussed in this project and its feasibility is examined. The role of different parameters to the concentration level and the optical efficiency of the CPV system are studied by simulations in ZEMAX (which is a leading optical analysis/design software) using non-sequential ray tracing. The optical efficiency of this design under different light concentration level is studied and discussed. The main contributions of this research consist of a new design of a waveguide-based CPV system which can be made entirely of glass by a low-cost glass fabrication method, and a feasibility study in terms of critical fabrication steps and optical performance.

  12. Device-packaging method and apparatus for optoelectronic circuits

    DOEpatents

    Zortman, William A.; Henry, Michael David; Jarecki, Jr., Robert L.

    2017-04-25

    An optoelectronic device package and a method for its fabrication are provided. The device package includes a lid die and an active die that is sealed or sealable to the lid die and in which one or more optical waveguides are integrally defined. The active die includes one or more active device regions, i.e. integral optoelectronic devices or etched cavities for placement of discrete optoelectronic devices. Optical waveguides terminate at active device regions so that they can be coupled to them. Slots are defined in peripheral parts of the active dies. At least some of the slots are aligned with the ends of integral optical waveguides so that optical fibers or optoelectronic devices inserted in the slots can optically couple to the waveguides.

  13. Two different ways for waveguides and optoelectronics components on top of C-MOS

    NASA Astrophysics Data System (ADS)

    Fedeli, J. M.; Jeannot, S.; Kostrzewa, M.; Di Cioccio, L.; Jousseaume, V.; Orobtchouk, R.; Maury, P.; Zussy, M.

    2006-02-01

    While fabrication of photonic components at the wafer level is a long standing goal of integrated optics, new applications such as optical interconnects are introducing new challenges for waveguides and optoelectronic component fabrication. Indeed, global interconnects are expected to face severe limitations in the near future. To face this problem, optical links on top of a CMOS circuits could be an alternative. The critical points to perform an optical link on a chip are firstly the realization of compact passive optical distribution and secondly the report of optoelectronic components for the sources and detectors. This paper presents two different approaches for the integration of both waveguides and optoelectronic components. In a first "total bonding" approach, waveguides have been elaborated using classical "Silicon On Insulators" technology and then reported using molecular bonding on top off Si wafers. The S0I substrate was then chemically etched, after what InP dies were moleculary bonded on top of the waveguides. With this approach, optical components with low loses and a good equilibrium are demonsrated. Using molecular bonding, InP dies were reported with no degradation of the optoelectronic properties of the films. In a second approach, using PECVD silicon nitride or amorphous silicon coupled to PECVD silicon oxide, basic optical components are demonstrated. This low temperature technology is compatible with a microelectronic Back End process, allowing an integration of the waveguides directly on top of CMOS circuits. InP dies can then be bonded on top of the waveguides.

  14. Solitonic guides in photopolymerizable materials for optical devices

    NASA Astrophysics Data System (ADS)

    Dorkenoo, Kokou D.; Cregut, Olivier; Fort, Alain

    2003-11-01

    These last twenty years, advanced studies in integrated optics have demonstrated the capacity to elaborate optical circuits in planar substrates. Most of the optical integrated devices are realized on glass substrate and the guide areas are usually obtained by photolithography techniques. We present here a new approach based on the use of compounds photopolymerizable in the visible range. The conditions of self written channel creation by solitonic propagation inside the bulk of the photopolymerizable formulation are analyzed. Waveguides can be self-written in photopolymerizable materials1,2 due to the dependence of their refractive index on intensity and duration of the active light. This process results from the competition between the diffraction of the incident Gaussian beam and the photopolymerization which tends to increase the refractive index where light intensity is the highest. By controlling the difference between the refractive index values of the polymerized and non polymerized zones, the beam can be self-trapped along the propagation axis giving rise to a waveguide over distances as large as 10 cm without any broadening. Such permanent waveguides can be structured by inscription of gratings and doped with a dye in a plastic cell leading to the elaboration of a completely plastic laser.

  15. Transfer of micro and nano-photonic silicon nanomembrane waveguide devices on flexible substrates.

    PubMed

    Ghaffari, Afshin; Hosseini, Amir; Xu, Xiaochuan; Kwong, David; Subbaraman, Harish; Chen, Ray T

    2010-09-13

    This paper demonstrates transfer of optical devices without extra un-patterned silicon onto low-cost, flexible plastic substrates using single-crystal silicon nanomembranes. Employing this transfer technique, stacking two layers of silicon nanomembranes with photonic crystal waveguide in the first layer and multi mode interference couplers in the second layer is shown, respectively. This technique is promising to realize high density integration of multilayer hybrid structures on flexible substrates.

  16. Nanoscale devices based on plasmonic coaxial waveguide resonators

    NASA Astrophysics Data System (ADS)

    Mahigir, A.; Dastmalchi, P.; Shin, W.; Fan, S.; Veronis, G.

    2015-02-01

    Waveguide-resonator systems are particularly useful for the development of several integrated photonic devices, such as tunable filters, optical switches, channel drop filters, reflectors, and impedance matching elements. In this paper, we introduce nanoscale devices based on plasmonic coaxial waveguide resonators. In particular, we investigate threedimensional nanostructures consisting of plasmonic coaxial stub resonators side-coupled to a plasmonic coaxial waveguide. We use coaxial waveguides with square cross sections, which can be fabricated using lithography-based techniques. The waveguides are placed on top of a silicon substrate, and the space between inner and outer coaxial metals is filled with silica. We use silver as the metal. We investigate structures consisting of a single plasmonic coaxial resonator, which is terminated either in a short or an open circuit, side-coupled to a coaxial waveguide. We show that the incident waveguide mode is almost completely reflected on resonance, while far from the resonance the waveguide mode is almost completely transmitted. We also show that the properties of the waveguide systems can be accurately described using a single-mode scattering matrix theory. The transmission and reflection coefficients at waveguide junctions are either calculated using the concept of the characteristic impedance or are directly numerically extracted using full-wave three-dimensional finite-difference frequency-domain simulations.

  17. Integrated Miniature Arrays of Optical Biomolecule Detectors

    NASA Technical Reports Server (NTRS)

    Iltchenko, Vladimir; Maleki, Lute; Lin, Ying; Le, Thanh

    2009-01-01

    Integrated miniature planar arrays of optical sensors for detecting specific biochemicals in extremely small quantities have been proposed. An array of this type would have an area of about 1 cm2. Each element of the array would include an optical microresonator that would have a high value of the resonance quality factor (Q . 107). The surface of each microresonator would be derivatized to make it bind molecules of a species of interest, and such binding would introduce a measurable change in the optical properties of the microresonator. Because each microresonator could be derivatized for detection of a specific biochemical different from those of the other microresonators, it would be possible to detect multiple specific biochemicals by simultaneous or sequential interrogation of all the elements in the array. Moreover, the derivatization would make it unnecessary to prepare samples by chemical tagging. Such interrogation would be effected by means of a grid of row and column polymer-based optical waveguides that would be integral parts of a chip on which the array would be fabricated. The row and column polymer-based optical waveguides would intersect at the elements of the array (see figure). At each intersection, the row and column waveguides would be optically coupled to one of the microresonators. The polymer-based waveguides would be connected via optical fibers to external light sources and photodetectors. One set of waveguides and fibers (e.g., the row waveguides and fibers) would couple light from the sources to the resonators; the other set of waveguides and fibers (e.g., the column waveguides and fibers) would couple light from the microresonators to the photodetectors. Each microresonator could be addressed individually by row and column for measurement of its optical transmission. Optionally, the chip could be fabricated so that each microresonator would lie inside a microwell, into which a microscopic liquid sample could be dispensed.

  18. Design of high-speed optical transmission module with an integrated Ti:Er:LiNbO3 waveguide laser/ LiNbO3 electro-optic modulator

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Chen, Shufen; Fu, Li; Fang, Wei; Lu, Junjun

    2005-01-01

    A high bit rate more than 10Gbit/s optical pulse generation device is the key to achieving high-speed and broadband optical fiber communication network system .Now, we propose a novel high-speed optical transmission module(TM) consisting of a Ti:Er:LiNbO3 waveguide laser and a Mach-Zehnder-type encoding modulator on the same Er-doped substrate. According to the standard of ITU-T, we design the 10Gbit/ s transmission module at 1.53μm on the Z cut Y propagation LiNbO3 slice. A dynamic model and the corresponding numerical code are used to analyze the waveguide laser while the electrooptic effect to design the modulator. Meanwhile, the working principle, key technology, typical characteristic parameters of the module are given. The transmission module has a high extinction ratio and a low driving voltage, which supplies the efficient, miniaturized light source for wavelength division multiplexing(WDM) system. In additional, the relation of the laser gain with the cavity parameter, as well as the relation of the bandwidth of the electrooptic modulator with some key factors are discussed .The designed module structure is simulated by BPM software and HFSS software.

  19. Nanophotonic Devices in Silicon for Nonlinear Optics

    DTIC Science & Technology

    2010-10-15

    record performance  Demonstration of world‟s lowest loss slot waveguides, made in a DOD-trusted foundry (BAE Systems)  Design study showing...highly-cited design study.  Design study on analog links using the above modulators.  Demonstration of the first silicon waveguides for the mid...Hochberg. Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links. Optics Express 2010

  20. Integrated optical transceiver with electronically controlled optical beamsteering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davids, Paul; DeRose, Christopher; Tauke-Pedretti, Anna

    A beam-steering optical transceiver is provided. The transceiver includes one or more modules, each comprising an antenna chip and a control chip bonded to the antenna chip. Each antenna chip has a feeder waveguide, a plurality of row waveguides that tap off from the feeder waveguide, and a plurality of metallic nanoantenna elements arranged in a two-dimensional array of rows and columns such that each row overlies one of the row waveguides. Each antenna chip also includes a plurality of independently addressable thermo-optical phase shifters, each configured to produce a thermo-optical phase shift in a respective row. Each antenna chipmore » also has, for each row, a row-wise heating circuit configured to produce a respective thermo-optic phase shift at each nanoantenna element along its row. The control chip includes controllable current sources for the independently addressable thermo-optical phase shifters and the row-wise heating circuits.« less

  1. Wavelength-division multiplexed optical integrated circuit with vertical diffraction grating

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor); Forouhar, Siamak (Inventor)

    1994-01-01

    A semiconductor optical integrated circuit for wave division multiplexing has a semiconductor waveguide layer, a succession of diffraction grating points in the waveguide layer along a predetermined diffraction grating contour, a semiconductor diode array in the waveguide layer having plural optical ports facing the succession of diffraction grating points along a first direction, respective semiconductor diodes in the array corresponding to respective ones of a predetermined succession of wavelengths, an optical fiber having one end thereof terminated at the waveguide layer, the one end of the optical fiber facing the succession of diffraction grating points along a second direction, wherein the diffraction grating points are spatially distributed along the predetermined contour in such a manner that the succession of diffraction grating points diffracts light of respective ones of the succession of wavelengths between the one end of the optical fiber and corresponding ones of the optical ports.

  2. Optical modulator including grapene

    DOEpatents

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  3. Novel optical interconnect devices applying mask-transfer self-written method

    NASA Astrophysics Data System (ADS)

    Ishizawa, Nobuhiko; Matsuzawa, Yusuke; Tokiwa, Yu; Nakama, Kenichi; Mikami, Osamu

    2012-01-01

    The introduction of optical interconnect technology is expected to solve problems of conventional electric wiring. One of the promising technologies realizing optical interconnect is the self-written waveguide (SWW) technology with lightcurable resin. We have developed a new technology of the "Mask-Transfer Self-Written (MTSW)" method. This new method enables fabrication of arrayed M x N optical channels at one shot of UV-light. Using this technology, several new optical interconnect devices and connection technologies have been proposed and investigated. In this paper, first, we introduce MTSW method briefly. Next, we show plug-in alignment approach using optical waveguide plugs (OWP) and a micro-hole array (MHA) which are made of the light-curable resin. Easy and high efficiency plug-in alignment between fibers and an optoelectronic-printed wiring board (OE-PWB), between a fiber and a VCSEL, so on will be feasible. Then, we propose a new three-dimensional (3D) branch waveguide. By controlling the irradiating angle through the photomask aperture, it will be possible to fabricate 2-branch and 4-branch waveguides with a certain branch angle. The 3D branch waveguide will be very promising in the future optical interconnects and coupler devices of the multicore optical fiber.

  4. Ultrafast direct laser writing of cladding waveguides in the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass doped with Nd3+ ions

    NASA Astrophysics Data System (ADS)

    Martínez de Mendívil, J.; Sola, D.; Vázquez de Aldana, J. R.; Lifante, G.; de Aza, A. H.; Pena, P.; Peña, J. I.

    2015-01-01

    We report on tubular cladding optical waveguides fabricated in Neodymium doped Wollastonite-Tricalcium Phosphate glass in the eutectic composition. The glass samples were prepared by melting the eutectic powder mixture in a Pt-Rh crucible at 1600 °C and pouring it in a preheated brass mould. Afterwards, the glass was annealed to relieve the inner stresses. Cladding waveguides were fabricated by focusing beneath the sample surface using a pulsed Ti:sapphire laser with a pulsewidth of 120 fs working at 1 kHz. The optical properties of these waveguides have been assessed in terms of near-field intensity distribution and transmitted power, and these results have been compared to previously reported waveguides with double-line configuration. Optical properties have also been studied as function of the temperature. Heat treatments up to 700 °C were carried out to diminish colour centre losses where waveguide's modes and transmitted power were compared in order to establish the annealing temperature at which the optimal optical properties were reached. Laser experiments are in progress to evaluate the ability of the waveguides for 1064 nm laser light generation under 800 nm optical pumping.

  5. Integrating cell on chip—Novel waveguide platform employing ultra-long optical paths

    NASA Astrophysics Data System (ADS)

    Fohrmann, Lena Simone; Sommer, Gerrit; Pitruzzello, Giampaolo; Krauss, Thomas F.; Petrov, Alexander Yu.; Eich, Manfred

    2017-09-01

    Optical waveguides are the most fundamental building blocks of integrated optical circuits. They are extremely well understood, yet there is still room for surprises. Here, we introduce a novel 2D waveguide platform which affords a strong interaction of the evanescent tail of a guided optical wave with an external medium while only employing a very small geometrical footprint. The key feature of the platform is its ability to integrate the ultra-long path lengths by combining low propagation losses in a silicon slab with multiple reflections of the guided wave from photonic crystal (PhC) mirrors. With a reflectivity of 99.1% of our tailored PhC-mirrors, we achieve interaction paths of 25 cm within an area of less than 10 mm2. This corresponds to 0.17 dB/cm effective propagation which is much lower than the state-of-the-art loss of approximately 1 dB/cm of single mode silicon channel waveguides. In contrast to conventional waveguides, our 2D-approach leads to a decay of the guided wave power only inversely proportional to the optical path length. This entirely different characteristic is the major advantage of the 2D integrating cell waveguide platform over the conventional channel waveguide concepts that obey the Beer-Lambert law.

  6. Slot silicon-gallium nitride waveguide in MMI structures based 1x8 wavelength demultiplexer

    NASA Astrophysics Data System (ADS)

    Ben Zaken, Bar Baruch; Zanzury, Tal; Malka, Dror

    2017-06-01

    We propose a novel 8-channel wavelength multimode interference (MMI) demultiplexer in slot waveguide structures that operated at 1530 nm, 1535 nm, 1540 nm, 1545 nm, 1550 nm, 1555 nm, 1560 nm and 1565 nm wavelengths. Gallium nitride (GaN) surrounded by silicon (Si) was founded as suitable materials for the slot-waveguide structures. The proposed device was designed by seven 1x2 MMI couplers, fourteen S-band and one input taper. Numerical investigations were carried out on the geometrical parameters by using a full vectorial-beam propagation method (FVBPM). Simulation results show that the proposed device can transmit 8-channel that works in the whole C-band (1530- 1565 nm) with low crosstalk ((-19.97)-(-13.77) dB) and bandwidth (1.8-3.6 nm). Thus, the device can be very useful in optical networking systems that work on dense wavelength division multiplexing (DWDM) technology.

  7. 1 × 4 MMI visible light wavelength demultiplexer based on a GaN slot-waveguide structure

    NASA Astrophysics Data System (ADS)

    Shoresh, Tamir; Katanov, Nadav; Malka, Dror

    2018-07-01

    High transmission losses are the key problem that limits the performance of visible light communication systems, which work on wavelength division multiplexing (WDM) technology. To overcome this problem, we propose a novel design for a 1 × 4 optical demultiplexer based on the multimode interference in a slot-waveguide structure that operates at 547 nm, 559 nm, 566 nm, and 584 nm. Gallium nitride and silicon oxide were found to be excellent materials for the slot-waveguide structure. Simulation results showed that the proposed device can transmit four channels that work in the visible light range with a low transmission loss of 0.983-1.423 dB, crosstalk of 13.8-18.3 dB, and bandwidth of 1.8-3.2 nm. Thus, this device can be very useful in visible light networking systems, which work on the WDM technology.

  8. Characterization and Power Scaling of Beam-Combinable Ytterbium-Doped Microstructured Fiber Amplifier

    NASA Astrophysics Data System (ADS)

    Mart, Cody W.

    In this dissertation, high-power ytterbium-doped fiber amplifiers designed with advanced waveguide concepts are characterized and power scaled. Fiber waveguides utilizing cladding microstructures to achieve wave guidance via the photonic bandgap (PBG) effect and a combination of PBG and modified total internal reflection (MTIR) have been proposed as viable single-mode waveguides. Such novel structures allow larger core diameters (>35 ?m diameters) than conventional step-index fibers while still maintaining near-diffraction limited beam quality. These microstructured fibers are demonstrated as robust single-mode waveguides at low powers and are power scaled to realize the thermal power limits of the structure. Here above a certain power threshold, these coiled few-mode fibers have been shown to be limited by modal instability (MI); where energy is dynamically transferred between the fundamental mode and higher-order modes. Nonlinear effects such as stimulated Brillouin scattering (SBS) are also studied in these fiber waveguides as part of this dissertation. Suppressing SBS is critical towards achieving narrow optical bandwidths (linewidths) necessary for efficient fiber amplifier beam combining. Towards that end, new effects that favorably reduce acoustic wave dispersion to increase the SBS threshold are discovered and reported. The first advanced waveguide examined is a Yb-doped 50/400 mum diameter core/clad PBGF. The PBGF is power scaled with a single-frequency 1064 nm seed to an MI-limited 410 W with 79% optical-to-optical efficiency and near-diffraction limited beam quality (M-Squared < 1.25) before MI onset. To this author's knowledge, this represents 2.4x improvement in power output from a PBGF amplifier without consideration for linewidth and a 16x improvement in single-frequency power output from a PBGF amplifier. During power scaling of the PBGF, a remarkably low Brillouin response was elicited from the fiber even when the ultra large diameter 50 mum core is accounted for in the SBS threshold equation. Subsequent interrogation of the Brillouin response in a pump probe Brillouin gain spectrum diagnostic estimated a Brillouin gain coefficient, gB, of 0.62E-11 m/W; which is 4x reduced from standard silica-based fiber. A finite element numerical model that solves the inhomogenous Helmholtz equation that governs the acoustic and optical coupling in SBS is utilized to verify experimental results with an estimated gB = 0.68E-11 m/W. Consequently, a novel SBS-suppression mechanism based on inclusion of sub-optical wavelength acoustic features in the core is proposed. The second advanced waveguide analyzed is a 35/350 mum diameter core/clad fiber that achieved wave guidance via both PBG and MTIR, and is referred to as a hybrid fiber. The waveguide benefits mutually from the amenable properties of PBG and MTIR wave guidance because robust single-mode propagation with minimal confinement loss is assured due to MTIR effects, and the waveguide spectrally filters unwanted wavelengths via the PBG effect. The waveguide employs annular Yb-doped gain tailoring to reduce thermal effects and mitigate MI. Moreover, it is designed to suppress Raman processes for a 1064 nm signal by attenuating wavelengths > 1110 nm via the PBG effect. When seeded with a 1064 nm signal deterministically broadened to ˜1 GHz, the hybrid fiber was power scaled to a MI-limited 820 W with 78% optical-to-optical efficiency and near diffraction limited beam quality of M_Squared ˜1.2 before MI onset. This represents a 14x improvement in power output from a hybrid fiber, and demonstrates that this type of fiber amplifier is a quality candidate for further power scaling for beam combining.

  9. Realization of optical multimode TSV waveguides for Si-Interposer in 3D-chip-stacks

    NASA Astrophysics Data System (ADS)

    Killge, S.; Charania, S.; Richter, K.; Neumann, N.; Al-Husseini, Z.; Plettemeier, D.; Bartha, J. W.

    2017-05-01

    Optical connectivity has the potential to outperform copper-based TSVs in terms of bandwidth at the cost of more complexity due to the required electro-optical and opto-electrical conversion. The continuously increasing demand for higher bandwidth pushes the breakeven point for a profitable operation to shorter distances. To integrate an optical communication network in a 3D-chip-stack optical through-silicon vertical VIAs (TSV) are required. While the necessary effort for the electrical/optical and vice versa conversion makes it hard to envision an on-chip optical interconnect, a chip-to-chip optical link appears practicable. In general, the interposer offers the potential advantage to realize electro-optical transceivers on affordable expense by specific, but not necessarily CMOS technology. We investigated the realization and characterization of optical interconnects as a polymer based waveguide in high aspect ratio (HAR) TSVs proved on waferlevel. To guide the optical field inside a TSV as optical-waveguide or fiber, its core has to have a higher refractive index than the surrounding material. Comparing different material / technology options it turned out that thermal grown silicon dioxide (SiO2) is a perfect candidate for the cladding (nSiO2 = 1.4525 at 850 nm). In combination with SiO2 as the adjacent polymer layer, the negative resist SU-8 is very well suited as waveguide material (nSU-8 = 1.56) for the core. Here, we present the fabrication of an optical polymer based multimode waveguide in TSVs proved on waferlevel using SU-8 as core and SiO2 as cladding. The process resulted in a defect-free filling of waveguide TSVs with SU-8 core and SiO2 cladding up to aspect ratio (AR) 20:1 and losses less than 3 dB.

  10. Demonstration of an optical phased array using electro-optic polymer phase shifters

    NASA Astrophysics Data System (ADS)

    Hirano, Yoshikuni; Motoyama, Yasushi; Tanaka, Katsu; Machida, Kenji; Yamada, Toshiki; Otomo, Akira; Kikuchi, Hiroshi

    2018-03-01

    We have been investigating an optical phased array (OPA) using electro-optic (EO) polymers in phase shifters to achieve ultrafast optical beam steering. In this paper, we describe the basic structures of the OPA using EO polymer phase shifters and show the beam steering capability of the OPA. The designed OPA has a multimode interference (MMI) beam splitter and 8-channel polymer waveguides with EO polymer phase shifters. We compare 1 × 8 MMI and cascaded 1 × 2 MMI beam splitters numerically and experimentally, and then obtain uniform intensity outputs from the 1 × 8 beam splitter. We fabricate the EO polymer OPA with a 1 × 8 MMI beam splitter to prevent intensity dispersion due to radiation loss in bending waveguides. We also evaluate the optical beam steering capability of the fabricated OPA and found a 2.7° deflection of far-field patterns when applying a voltage difference of 25 V in adjacent phase shifters.

  11. Long-wavelength stimulated emission and carrier lifetimes in HgCdTe-based waveguide structures with quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rumyantsev, V. V., E-mail: rumyantsev@ipm.sci-nnov.ru; Fadeev, M. A.; Morozov, S. V.

    2016-12-15

    The interband photoconductivity and photoluminescence in narrow-gap HgCdTe-based waveguide structures with quantum wells (QWs) (designed for long-wavelength stimulated emission under optical pumping) are investigated. The photoconductivity relaxation times in n-type structures reach several microseconds, due to which stimulated emission at a wavelength of 10.2 μm occurs at a low threshold pump intensity (~100 W/cm{sup 2}) at 20 K. In the p-type structures obtained by annealing (to increase the mercury vacancy concentration), even spontaneous emission from the QWs is not detected because of a dramatic decrease in the carrier lifetime with respect to Shockley–Read–Hall nonradiative recombination.

  12. All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications.

    PubMed

    Li, Lingqi; Nie, Weijie; Li, Ziqi; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R; Chen, Feng

    2017-08-01

    The femtosecond laser micromachining of transparent optical materials offers a powerful and feasible solution to fabricate versatile photonic components towards diverse applications. In this work, we report on a new design and fabrication of ridge waveguides in LiNbO 3 crystal operating at the mid-infrared (MIR) band by all-femtosecond-laser microfabrication. The ridges consist of laser-ablated sidewalls and laser-written bottom low-index cladding tracks, which are constructed for horizontal and longitudinal light confinement, respectively. The ridge waveguides are found to support good guidance at wavelength of 4 μm. By applying this configuration, Y-branch waveguiding structures (1 × 2 beam splitters) have been produced, which reach splitting ratios of ∼1:1 at 4 μm. This work paves a simple and feasible way to construct novel ridge waveguide devices in dielectrics through all-femtosecond-laser micro-processing.

  13. Influence of gold nanoparticles on the 805 nm gain in Tm3+/Yb3+ codoped PbO-GeO2 pedestal waveguides

    NASA Astrophysics Data System (ADS)

    de Assumpção, T. A. A.; Camilo, M. E.; Alayo, M. I.; da Silva, D. M.; Kassab, L. R. P.

    2017-10-01

    The production and characterization of pedestal waveguides based on PbO-GeO2 amorphous thin films codoped with Tm3+/Yb3+, with and without gold nanoparticles (NPs), are reported. Pedestal structure was obtained by conventional photolithography and plasma etching. Tm3+/Yb3+ codoped PGO amorphous thin film was obtained by RF Magnetron Sputtering deposition and used as core layer in the pedestal optical waveguide. The minimum propagation losses in the waveguide were 3.6 dB/cm at 1068 nm. The internal gain at 805 nm was enhanced and increased to 8.67 dB due to the presence of gold NPs. These results demonstrate for the first time that Tm3+/Yb3+ codoped PbO-GeO2 waveguides are promising for first telecom window and integrated photonics, especially for applications on fiber network at short distances.

  14. Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides

    PubMed Central

    Holmes, Matthew R.; Shang, Tao; Hawkins, Aaron R.; Rudenko, Mikhail; Measor, Philip; Schmidt, Holger

    2011-01-01

    We demonstrate the fabrication of micropore and nanopore features in hollow antiresonant reflecting optical waveguides to create an electrical and optical analysis platform that can size select and detect a single nanoparticle. Micropores (4 μm diameter) are reactive-ion etched through the top SiO2 and SiN layers of the waveguides, leaving a thin SiN membrane above the hollow core. Nanopores are formed in the SiN membranes using a focused ion-beam etch process that provides control over the pore size. Openings as small as 20 nm in diameter are created. Optical loss measurements indicate that micropores did not significantly alter the loss along the waveguide. PMID:21922035

  15. Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides.

    PubMed

    Holmes, Matthew R; Shang, Tao; Hawkins, Aaron R; Rudenko, Mikhail; Measor, Philip; Schmidt, Holger

    2010-01-01

    We demonstrate the fabrication of micropore and nanopore features in hollow antiresonant reflecting optical waveguides to create an electrical and optical analysis platform that can size select and detect a single nanoparticle. Micropores (4 μm diameter) are reactive-ion etched through the top SiO(2) and SiN layers of the waveguides, leaving a thin SiN membrane above the hollow core. Nanopores are formed in the SiN membranes using a focused ion-beam etch process that provides control over the pore size. Openings as small as 20 nm in diameter are created. Optical loss measurements indicate that micropores did not significantly alter the loss along the waveguide.

  16. ZnO nanotube waveguide arrays on graphene films for local optical excitation on biological cells

    NASA Astrophysics Data System (ADS)

    Baek, Hyeonjun; Kwak, Hankyul; Song, Minho S.; Ha, Go Eun; Park, Jongwoo; Tchoe, Youngbin; Hyun, Jerome K.; Park, Hye Yoon; Cheong, Eunji; Yi, Gyu-Chul

    2017-04-01

    We report on scalable and position-controlled optical nanoprobe arrays using ZnO nanotube waveguides on graphene films for use in local optical excitation. For the waveguide fabrication, position-controlled and well-ordered ZnO nanotube arrays were grown on chemical vapor deposited graphene films with a submicron patterned mask layer and Au prepared between the interspace of nanotubes. Mammalian cells were cultured on the nanotube waveguide arrays and were locally excited by light illuminated through the nanotubes. Fluorescence and optogenetic signals could be excited through the optical nanoprobes. This method offers the ability to investigate cellular behavior with a high spatial resolution that surpasses the current limitation.

  17. Process technologies of MPACVD planar waveguide devices and fiber attachment

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Chung; Qian, Fan; Boudreau, Robert A.; Rowlette, John R., Sr.; Bowen, Terry P.

    1999-03-01

    Optical circuits based on low-loss glass waveguide on silicon are a practical and promising approach to integrate different functional components. Fiber attachment to planar waveguide provides a practical application for optical communications. Microwave Plasma Assisted Chemical Vapor Deposition (MPACVD) produces superior quality, low birefringence, low-loss, planar waveguides for integrated optical devices. Microwave plasma initiates the chemical vapor of SiCl4, GeCl4 and oxygen. A Ge-doped silica layer is thus deposited with a compatible high growth rate (i.e. 0.4 - 0.5 micrometer/min). Film properties are based on various parameters, such as chemical flow rates, chamber pressure and temperature, power level and injector design. The resultant refractive index can be varied between 1.46 (i.e. pure silica) and 1.60 (i.e. pure germania). Waveguides can be fabricated with any desired refractive index profile. Standard photolithography defines the waveguide pattern on a mask layer. The core layer is removed by plasma dry etch which has been investigated by both reactive ion etch (RIE) and inductively coupled plasma (ICP) etch. Etch rates of 3000 - 4000 angstrom/min have been achieved using ICP compared to typical etch rates of 200 - 300 angstrom/min using conventional RIE. Planar waveguides offer good mode matching to optical fiber. A polished fiber end can be glued to the end facet of waveguide with a very low optical coupling loss. In addition, anisotropic etching of silicon V- grooves provides a passive alignment capability. Epoxy and solder were used to fix the fiber within the guiding groove. Several designs of waveguide-fiber attachment will be discussed.

  18. All-optical switch with two periodically modulated nonlinear waveguides.

    PubMed

    Xie, Qiongtao; Luo, Xiaobing; Wu, Biao

    2010-02-01

    We propose a type of all-optical switch which consists of two periodically modulated nonlinear optical waveguides placed in parallel. Compared to the all-optical switch based on the traditional nonlinear directional coupler without periodic modulation, this all-optical switch has much lower switching threshold power and sharper switching width.

  19. 60-nm-thick basic photonic components and Bragg gratings on the silicon-on-insulator platform.

    PubMed

    Zou, Zhi; Zhou, Linjie; Li, Xinwan; Chen, Jianping

    2015-08-10

    We demonstrate integrated basic photonic components and Bragg gratings using 60-nm-thick silicon-on-insulator strip waveguides. The ultra-thin waveguides exhibit a propagation loss of 0.61 dB/cm and a bending loss of approximately 0.015 dB/180° with a 30 μm bending radius (including two straight-bend waveguide junctions). Basic structures based on the ultra-thin waveguides, including micro-ring resonators, 1 × 2 MMI couplers, and Mach-Zehnder interferometers are realized. Upon thinning-down, the waveguide effective refractive index is reduced, making the fabrication of Bragg gratings possible using the standard 248-nm deep ultra-violet (DUV) photolithography process. The Bragg grating exhibits a stopband width of 1 nm and an extinction ratio of 35 dB, which is practically applicable as an optical filter or a delay line. The transmission spectrum can be thermally tuned via an integrated resistive micro-heater formed by a heavily doped silicon slab beside the waveguide.

  20. Polydimethylsiloxane-based optical waveguides for tetherless powering of floating microstimulators

    NASA Astrophysics Data System (ADS)

    Ersen, Ali; Sahin, Mesut

    2017-05-01

    Neural electrodes and associated electronics are powered either through percutaneous wires or transcutaneous powering schemes with energy harvesting devices implanted underneath the skin. For electrodes implanted in the spinal cord and the brain stem that experience large displacements, wireless powering may be an option to eliminate device failure by the breakage of wires and the tethering of forces on the electrodes. We tested the feasibility of using optically clear polydimethylsiloxane (PDMS) as a waveguide to collect the light in a subcutaneous location and deliver to deeper regions inside the body, thereby replacing brittle metal wires tethered to the electrodes with PDMS-based optical waveguides that can transmit energy without being attached to the targeted electrode. We determined the attenuation of light along the PDMS waveguides as 0.36±0.03 dB/cm and the transcutaneous light collection efficiency of cylindrical waveguides as 44%±11% by transmitting a laser beam through the thenar skin of human hands. We then implanted the waveguides in rats for a month to demonstrate the feasibility of optical transmission. The collection efficiency and longitudinal attenuation values reported here can help others design their own waveguides and make estimations of the waveguide cross-sectional area required to deliver sufficient power to a certain depth in tissue.

  1. Active multiple plasmon-induced transparencies with detuned asymmetric multi-rectangle resonators

    NASA Astrophysics Data System (ADS)

    Liu, Dongdong; Wang, Jicheng; Lu, Jian

    2016-11-01

    The phenomenon of plasmon-induced transparency (PIT) is realized in surface plasmon polariton waveguide at the visible and near-infrared ranges. By adding one and two resonant cavities, the PIT peak(s) was (were) achieved due to destructive interference between the side-coupled rectangle cavity and the bus waveguide. The proposed structures were demonstrated by the finite element method. The simulation results showed that for three rectangle resonators system, not only can we manipulate each single PIT window, but also the double PIT windows simultaneously by adjusting one of the geometrical parameters of the system; for four rectangle resonators system, by changing the widths, the lengths and the refractive index of three cavities simultaneously, we would realize treble PIT peaks and induce an off-to-on PIT optical response. Our novel plasmonic structures and the findings pave the way for new design and engineering of highly integrated optical circuit such as nanoscale optical switching, nanosensor and wavelength-selecting nanostructure.

  2. Polymer based resonant waveguide grating photonic filter with on-chip thermal tuning

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Ritesh Ray; Enemuo, Amarachukwu N.; Song, Youngsik; Seo, Sang-Woo

    2018-07-01

    In this paper, we present the development of a multilayer polymer resonant waveguide grating (RWG)-based optical filter with an integrated microheater for on-chip thermal spectral tuning. RWG optical filter is fabricated using polymer-based materials. Therefore, its integration can be applied to different material platforms. Typical RWG structure is sensitive to back optical reflection from the structures below. To reduce the effect of back reflection from the metal heater and improve the quality of the integrated RWG filter output, an intermediate absorption layer was implemented utilizing an epoxy based carbon coating. This approach effectively suppresses the background noise in the RWG characteristics. The central wavelength of the reported filter was designed around 1550 nm. Experimentally, wavelength tuning of 21.96 nm was achieved for operating temperature range of 81 °C with approximately 150mW power consumption. Based on the layer-by-layer fabrication approach, the presented thermally tunable RWG filter on a chip has potential for use in low cost hybrid communication systems and spectral sensing applications.

  3. Fabrication of 2D and 3D photonic structures using laser lithography

    NASA Astrophysics Data System (ADS)

    Gaso, P.; Jandura, D.; Pudis, D.

    2016-12-01

    In this paper we demonstrate possibilities of three-dimensional (3D) printing technology based on two photon polymerization. We used three-dimensional dip-in direct-laser-writing (DLW) optical lithography to fabricate 2D and 3D optical structures for optoelectronics and for optical sensing applications. DLW lithography allows us use a non conventional way how to couple light into the waveguide structure. We prepared ring resonator and we investigated its transmission spectral characteristic. We present 3D inverse opal structure from its design to printing and scanning electron microscope (SEM) imaging. Finally, SEM images of some prepared photonic crystal structures were performed.

  4. Application de la technologie des materiaux sol-gel et polymere a l'optique integree

    NASA Astrophysics Data System (ADS)

    Saddiki, Zakaria

    2002-01-01

    With the advancement of optical telecommunication systems, "integrated optics" and "optical interconnect" technology are becoming more and more important. The major components of these two technologies are photonic integrated circuits (PICs), optoelectronic integrated circuits (OEICs), and optoelectronic multichip modules ( OE-MCMs). Optical signals are transmitted through optical waveguides that interconnect such components. The principle of optical transmission in waveguides is the same as that in optical fibres. To implement these technologies, both passive and active optical devices are needed. A wide variety of optical materials has been studied, e.g., glasses, lithium niobate, III-V semiconductors, sol-gel and polymers. In particular, passive optical components have been fabricated using glass optical waveguides by ion-exchange, or by flame hydrolysis deposition and reactive ion etching (FHD and RIE ). When using FHD and RIE, a very high temperatures (up to 1300°C) are needed to consolidate silica. This work reports on the fabrication and characterization of a new photo-patternable hybrid organic-inorganic glass sol-gel and polymer materials for the realisation of integrated optic and opto-electronic devices. They exhibit low losses in the NIR range, especially at the most important wavelengths windows for optical communications (1320 nm and 1550 nm). The sol-gel and polymer process is based on photo polymerization and thermo polymerization effects to create the wave-guide. The single-layer film is at low temperature and deep UV-light is employed to make the wave-guide by means of the well-known photolithography process. Like any photo-imaging process, the UV energy should exceed the threshold energy of chemical bonds in the photoactive component of hybrid glass material to form the expected integrated optic pattern with excellent line width control and vertical sidewalls. To achieve optical wave-guide, a refractive index difference Delta n occurred between the isolated (guiding layer) and the surrounding region (buffer and cladding). Accordingly, the refractive index emerges as a fundamental device performance material parameter and it is investigated using slab wave-guide. (Abstract shortened by UMI.)

  5. Deterministic photon-emitter coupling in chiral photonic circuits.

    PubMed

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  6. Deterministic photon-emitter coupling in chiral photonic circuits

    NASA Astrophysics Data System (ADS)

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  7. Optofluidic refractive-index sensors employing bent waveguide structures for low-cost, rapid chemical and biomedical sensing.

    PubMed

    Liu, I-Chen; Chen, Pin-Chuan; Chau, Lai-Kwan; Chang, Guo-En

    2018-01-08

    We propose and develop an intensity-detection-based refractive-index (RI) sensor for low-cost, rapid RI sensing. The sensor is composed of a polymer bent ridge waveguide (BRWG) structure on a low-cost glass substrate and is integrated with a microfluidic channel. Different-RI solutions flowing through the BRWG sensing region induce output optical power variations caused by optical bend losses, enabling simple and real-time RI detection. Additionally, the sensors are fabricated using rapid and cost-effective vacuum-less processes, attaining the low cost and high throughput required for mass production. A good RI solution of 5.31 10 -4 × RIU -1 is achieved from the RI experiments. This study demonstrates mass-producible and compact RI sensors for rapid and sensitive chemical analysis and biomedical sensing.

  8. Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Xu, Yuehong; Tian, Chunxiu; Xu, Quan; Zhang, Xueqian; Li, Yanfeng; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2018-01-01

    In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 μm was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.

  9. Natural Silk as a Photonics Component: a Study on Its Light Guiding and Nonlinear Optical Properties

    NASA Astrophysics Data System (ADS)

    Kujala, Sami; Mannila, Anna; Karvonen, Lasse; Kieu, Khanh; Sun, Zhipei

    2016-03-01

    Silk fibers are expected to become a pathway to biocompatible and bioresorbable waveguides, which could be used to deliver localized optical power for various applications, e.g., optical therapy or imaging inside living tissue. Here, for the first time, the linear and nonlinear optical properties of natural silk fibers have been studied. The waveguiding properties of silk fibroin of largely unprocessed Bombyx mori silkworm silk are assessed using two complementary methods, and found to be on the average 2.8 dB mm-1. The waveguide losses of degummed silk are to a large extent due to scattering from debris on fiber surface and helical twisting of the fiber. Nonlinear optical microscopy reveals both configurational defects such as torsional twisting, and strong symmetry breaking at the center of the fiber, which provides potential for various nonlinear applications. Our results show that nonregenerated B. mori silk can be used for delivering optical power over short distances, when the waveguide needs to be biocompatible and bioresorbable, such as embedding the waveguide inside living tissue.

  10. THz-wave generation via difference frequency mixing in strained silicon based waveguide utilizing its second order susceptibility χ((2)).

    PubMed

    Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka

    2014-07-14

    Terahertz (THz) wave generation via difference frequency mixing (DFM) process in strain silicon membrane waveguides by introducing the straining layer is theoretically investigated. The Si(3)N(4) straining layer induces anisotropic compressive strain in the silicon core and results in the appearance of the bulk second order nonlinear susceptibility χ((2)) by breaking the crystal symmetry. We have proposed waveguide structures for THz wave generation under the DFM process by .using the modal birefringence in the waveguide core. Our simulations show that an output power of up to 0.95 mW can be achieved at 9.09 THz. The strained silicon optical device may open a widow in the field of the silicon-based active THz photonic device applications.

  11. FIBER AND INTEGRATED OPTICS: Influence of diffraction-induced emission of light on resonant conversion of surface waves in diffraction-coupled optical waveguides

    NASA Astrophysics Data System (ADS)

    Kiselev, V. A.; Shaposhnikov, S. N.

    1989-09-01

    An investigation is reported of diffraction-induced emission of surface waves under conditions of resonant transfer of light between different regular and corrugated waveguides. It is shown that the part of the emitted light flux carried by surface waves along diffraction-coupled waveguides depends strongly on the ratio of the effective refractive indices of the guides. The dependences of the optical coupling length and of the corresponding emitted light flux on the distance between the waveguides and on the difference between their refractive indices are given.

  12. Hybrid Dielectric-loaded Nanoridge Plasmonic Waveguide for Low-Loss Light Transmission at the Subwavelength Scale

    PubMed Central

    Zhang, Bin; Bian, Yusheng; Ren, Liqiang; Guo, Feng; Tang, Shi-Yang; Mao, Zhangming; Liu, Xiaomin; Sun, Jinju; Gong, Jianying; Guo, Xiasheng; Huang, Tony Jun

    2017-01-01

    The emerging development of the hybrid plasmonic waveguide has recently received significant attention owing to its remarkable capability of enabling subwavelength field confinement and great transmission distance. Here we report a guiding approach that integrates hybrid plasmon polariton with dielectric-loaded plasmonic waveguiding. By introducing a deep-subwavelength dielectric ridge between a dielectric slab and a metallic substrate, a hybrid dielectric-loaded nanoridge plasmonic waveguide is formed. The waveguide features lower propagation loss than its conventional hybrid waveguiding counterpart, while maintaining strong optical confinement at telecommunication wavelengths. Through systematic structural parameter tuning, we realize an efficient balance between confinement and attenuation of the fundamental hybrid mode, and we demonstrate the tolerance of its properties despite fabrication imperfections. Furthermore, we show that the waveguide concept can be extended to other metal/dielectric composites as well, including metal-insulator-metal and insulator-metal-insulator configurations. Our hybrid dielectric-loaded nanoridge plasmonic platform may serve as a fundamental building block for various functional photonic components and be used in applications such as sensing, nanofocusing, and nanolasing. PMID:28091583

  13. Microfabricated ommatidia using a laser induced self-writing process for high resolution artificial compound eye optical systems.

    PubMed

    Jung, Hyukjin; Jeong, Ki-Hun

    2009-08-17

    A microfabricated compound eye, comparable to a natural compound eye shows a spherical arrangement of integrated optical units called artificial ommatidia. Each consists of a self-aligned microlens and waveguide. The increase of waveguide length is imperative to obtain high resolution images through an artificial compound eye for wide field-of - view imaging as well as fast motion detection. This work presents an effective method for increasing the waveguide length of artificial ommatidium using a laser induced self-writing process in a photosensitive polymer resin. The numerical and experimental results show the uniform formation of waveguides and the increment of waveguide length over 850 microm. (c) 2009 Optical Society of America

  14. Long-range propagation of plasmon and phonon polaritons in hyperbolic-metamaterial waveguides

    NASA Astrophysics Data System (ADS)

    Babicheva, Viktoriia E.

    2017-12-01

    We study photonic multilayer waveguides that include layers of materials and metamaterials with a hyperbolic dispersion (HMM). We consider the long-range propagation of plasmon and phonon polaritons at the dielectric-HMM interface in different waveguide geometries (single boundary or different layers of symmetric cladding). In contrast to the traditional analysis of geometrical parameters, we make an emphasis on the optical properties of constituent materials: solving dispersion equations, we analyze how dielectric and HMM permittivities affect propagation length and mode size of waveguide eigenmodes. We derive figures of merit that should be used for each waveguide in a broad range of permittivity values as well as compare them with plasmonic waveguides. We show that the conventional plasmonic quality factor, which is the ratio of real to imaginary parts of permittivity, is not applicable to the case of waveguides with complex structure. Both telecommunication wavelengths and mid-infrared spectral ranges are of interest considering recent advances in van der Waals materials, such as hexagonal boron nitride. We evaluate the performance of the waveguides with hexagonal boron nitride in the range where it possesses hyperbolic dispersion (wavelength 6.3-7.3 μm), and we show that these waveguides with natural hyperbolic properties have higher propagation lengths than metal-based HMM waveguides.

  15. Electro-optics laboratory evaluation: Deutsch optical waveguide connectors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A description of a test program evaluating the performance of an optical waveguide connector system is presented. Both quality and effectiveness of connections made in an optical fiber, performance of the equipment used and applicability of equipment and components to field conditions are reviewed.

  16. Optical interconnection using polyimide waveguide for multichip module

    NASA Astrophysics Data System (ADS)

    Koyanagi, Mitsumasa

    1996-01-01

    We have developed a parallel processor system with 152 RISC processor chips specific for Monte-Carlo analysis. This system has the ring-bus architecture. The performance of several Gflops is expected in this system according to the computer simulation. However, it was revealed that the data transfer speed of the bus has to be increased more dramatically in order to further increase the performance. Then, we propose to introduce the optical interconnection into the parallel processor system to increase the data transfer speed of the buses. The double ringbus architecture is employed in this new parallel processor system with optical interconnection. The free-space optical interconnection arid the optical waveguide are used for the optical ring-bus. Thin polyimide film was used to form the optical waveguide. A relatively low propagation loss was achieved in the polyimide optical waveguide. In addition, it was confirmed that the propagation direction of signal light can be easily changed by using a micro-mirror.

  17. Optical interconnection using polyimide waveguide for multichip module

    NASA Astrophysics Data System (ADS)

    Koyanagi, Mitsumasa

    1996-01-01

    We have developed a parallel processor system with 152 RISC processor chips specific for Monte-Carlo analysis. This system has the ring-bus architecture. The performance of several Gflops is expected in this system according to the computer simulation. However, it was revealed that the data transfer speed of the bus has to be increased more dramatically in order to further increase the performance. Then, we propose to introduce the optical interconnection into the parallel processor system to increase the data transfer speed of the buses. The double ring-bus architecture is employed in this new parallel processor system with optical interconnection. The free-space optical interconnection and the optical waveguide are used for the optical ring-bus. Thin polyimide film was used to form the optical waveguide. A relatively low propagation loss was achieved in the polyimide optical waveguide. In addition, it was confirmed that the propagation direction of signal light can be easily changed by using a micro-mirror.

  18. Theoretical modeling of a coupled plasmon waveguide resonance sensor based on multimode optical fiber

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Xue, Meng; Jiang, Junfeng; Wang, Tao; Chang, Pengxiang; Liu, Tiegen

    2018-03-01

    A coupled plasmon waveguide resonance (CPWR) sensor based on metal/dielectric-coated step index multimode optical fiber is proposed. Theoretical simulations using the four-layer Fresnel equations based on a bi-dimensional optical fiber model were implemented on four structures: Ag-ZnO, Au-ZnO, Ag-TiO2 and Au-TiO2. By controlling the thickness of dielectric layer, we managed to manipulate the CPWR resonance wavelengths. When a CPWR resonance dip is in the short wavelength region, it is insensitive to the change of surrounding refractive index (SRI) and can be used as a reference to improve the sensing accuracy of surface plasmon resonance (SPR) mode. With the increase of the thickness of the dielectric layer, the CPWR resonance dips shift to longer wavelength and the corresponding sensitivities increase. When the 1st CPWR resonance wavelength is near 1550 nm and SRI is around 1.333, the sensitivities of four structures reach 1360.61 nm/RIU, 1375.76 nm/RIU, 1048.48 nm/RIU and 1015.15 nm/RIU, respectively. The values are close to that of the conventional SPR optical fiber sensor while the spectral bandwidths of the optical fiber CPWR sensors are narrower.

  19. Waveguide Grating For Polarization Preprocessing Circuits

    NASA Astrophysics Data System (ADS)

    Voirin, Guy; Gradisnik, F.; Parriaux, Olivier M.; Gale, Michael T.; Kunz, Rino E.; Curtis, B. J.; Lehmann, Hans W.

    1989-12-01

    Periodically corrugated optical waveguides on glass with non-collinear coupling have been investigated both theoretically and experimentally. For a TE or TM polarized guided mode of a planar waveguide obliquely incident on a grating pad, there are four characteristic angles corresponding to the coupling with TE and TM reflected modes fulfilling the Bragg condition. The reflectivity is obtained by solving the coupled mode equations for the non-collinear case. The modelling shows that integrated passive functions such as polarization splitting and interference can be achieved. The polarization interference element uses the property that the coupling coefficients TM-TE and TE-TE are equal at defined incidence angles. Since the angle between the two reflected TE beams is only a few minutes of arc, the two beams can interfere. The waveguides are made by K+ ion exchange in BK7 glass for 3 hours at 380°C. The structure was designed for use at a wavelength of 633 nm and uses a 485 nm period grating which was fabricated by holographic exposure and plasma etching techniques in a 50 nm TiO2 layer e-beam evaporated onto the glass surface. The reflectivity of the grating structure was studied experimentally and compared with theory. The diffraction angles are within 30 " of arc of the predicted angles. The measured reflectivities reached 20 %. The feasibility of realizing an integrated optic preprocessing circuit for polarization interferometry has been demonstrated.

  20. Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides

    NASA Astrophysics Data System (ADS)

    Favreau, Julien; Durantin, Cédric; Fédéli, Jean-Marc; Boutami, Salim; Duan, Guang-Hua

    2016-03-01

    Silicon photonics has taken great importance owing to the applications in optical communications, ranging from short reach to long haul. Originally dedicated to telecom wavelengths, silicon photonics is heading toward circuits handling with a broader spectrum, especially in the short and mid-infrared (MIR) range. This trend is due to potential applications in chemical sensing, spectroscopy and defense in the 2-10 μm range. We previously reported the development of a MIR photonic platform based on buried SiGe/Si waveguide with propagation losses between 1 and 2 dB/cm. However the low index contrast of the platform makes the design of efficient grating couplers very challenging. In order to achieve a high fiber-to-chip efficiency, we propose a novel grating coupler structure, in which the grating is locally suspended in air. The grating has been designed with a FDTD software. To achieve high efficiency, suspended structure thicknesses have been jointly optimized with the grating parameters, namely the fill factor, the period and the grating etch depth. Using the Efficient Global Optimization (EGO) method we obtained a configuration where the fiber-to-waveguide efficiency is above 57 %. Moreover the optical transition between the suspended and the buried SiGe waveguide has been carefully designed by using an Eigenmode Expansion software. Transition efficiency as high as 86 % is achieved.

  1. Epitaxial ZnO/LiNbO{sub 3}/ZnO stacked layer waveguide for application to thin-film Pockels sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akazawa, Housei, E-mail: akazawa.housei@lab.ntt.co.jp; Fukuda, Hiroshi

    We produced slab waveguides consisting of a LiNbO{sub 3} (LN) core layer that was sandwiched with Al-doped ZnO cladding layers. The ZnO/LN/ZnO stacked layers were grown on sapphire C-planes by electron cyclotron resonance (ECR) plasma sputtering and were subjected to structural, electrical, and optical characterizations. X-ray diffraction confirmed that the ZnO and LN layers were epitaxial without containing misoriented crystallites. The presence of 60°-rotational variants of ZnO and LN crystalline domains were identified from X-ray pole figures. Cross-sectional transmission electron microscopy images revealed a c-axis orientated columnar texture for LN crystals, which ensured operation as electro-optic sensors based on opticalmore » anisotropy along longitudinal and transversal directions. The interfacial roughness between the LN core and ZnO bottom layers as well as that between the ZnO top and the LN core layers was less than 20 nm, which agreed with surface images observed with atomic force microscopy. Outgrowth of triangular LN crystalline domains produced large roughness at the LN film surface. The RMS roughness of the LN film surface was twice that of the same structure grown on sapphire A-planes. Vertical optical transmittance of the stacked films was higher than 85% within the visible and infrared wavelength range. Following the approach adopted by Teng and Man [Appl. Phys. Lett. 56, 1734 (1990)], ac Pockels coefficients of r{sub 33} = 24-28 pm/V were derived for c-axis oriented LN films grown on low-resistive Si substrates. Light propagation within a ZnO/LN/ZnO slab waveguide as well as within a ZnO single layer waveguide was confirmed. The birefringence of these waveguides was 0.11 for the former and 0.05 for the latter.« less

  2. High Efficiency Quantum Well Waveguide Solar Cells and Methods for Constructing the Same

    NASA Technical Reports Server (NTRS)

    Sood, Ashok K. (Inventor); Welser, Roger E. (Inventor)

    2014-01-01

    Photon absorption, and thus current generation, is hindered in conventional thin-film solar cell designs, including quantum well structures, by the limited path length of incident light passing vertically through the device. Optical scattering into lateral waveguide structures provides a physical mechanism to increase photocurrent generation through in-plane light trapping. However, the insertion of wells of high refractive index material with lower energy gap into the device structure often results in lower voltage operation, and hence lower photovoltaic power conversion efficiency. The voltage output of an InGaAs quantum well waveguide photovoltaic device can be increased by employing a III-V material structure with an extended wide band gap emitter heterojunction. Analysis of the light IV characteristics reveals that non-radiative recombination components of the underlying dark diode current have been reduced, exposing the limiting radiative recombination component and providing a pathway for realizing solar-electric conversion efficiency of 30% or more in single junction cells.

  3. High voltage photo switch package module

    DOEpatents

    Sullivan, James S; Sanders, David M; Hawkins, Steven A; Sampayan, Stephen E

    2014-02-18

    A photo-conductive switch package module having a photo-conductive substrate or wafer with opposing electrode-interface surfaces, and at least one light-input surface. First metallic layers are formed on the electrode-interface surfaces, and one or more optical waveguides having input and output ends are bonded to the substrate so that the output end of each waveguide is bonded to a corresponding one of the light-input surfaces of the photo-conductive substrate. This forms a waveguide-substrate interface for coupling light into the photo-conductive wafer. A dielectric material such as epoxy is then used to encapsulate the photo-conductive substrate and optical waveguide so that only the metallic layers and the input end of the optical waveguide are exposed. Second metallic layers are then formed on the first metallic layers so that the waveguide-substrate interface is positioned under the second metallic layers.

  4. Scattering of a cross-polarized linear wave by a soliton at an optical event horizon in a birefringent nanophotonic waveguide.

    PubMed

    Ciret, Charles; Gorza, Simon-Pierre

    2016-06-15

    The scattering of a linear wave on an optical event horizon, induced by a cross-polarized soliton, is experimentally and numerically investigated in integrated structures. The experiments are performed in a dispersion-engineered birefringent silicon nanophotonic waveguide. In stark contrast with copolarized waves, the large difference between the group velocity of the two cross-polarized waves enables a frequency conversion almost independent of the soliton wavelength. It is shown that the generated idler is only shifted by 10 nm around 1550 nm over a pump tuning range of 350 nm. Simulations using two coupled full vectorial nonlinear Schrödinger equations fully support the experimental results.

  5. Optical data latch

    DOEpatents

    Vawter, G Allen [Corrales, NM

    2010-08-31

    An optical data latch is formed on a substrate from a pair of optical logic gates in a cross-coupled arrangement in which optical waveguides are used to couple an output of each gate to an photodetector input of the other gate. This provides an optical bi-stability which can be used to store a bit of optical information in the latch. Each optical logic gate, which can be an optical NOT gate (i.e. an optical inverter) or an optical NOR gate, includes a waveguide photodetector electrically connected in series with a waveguide electroabsorption modulator. The optical data latch can be formed on a III-V compound semiconductor substrate (e.g. an InP or GaAs substrate) from III-V compound semiconductor layers. A number of optical data latches can be cascaded to form a clocked optical data shift register.

  6. Ultrafast direct laser writing of cladding waveguides in the 0.8CaSiO{sub 3}-0.2Ca{sub 3}(PO{sub 4}){sub 2} eutectic glass doped with Nd{sup 3+} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez de Mendívil, J., E-mail: jon.martinez@uam.es; Lifante, G.; Sola, D.

    2015-01-28

    We report on tubular cladding optical waveguides fabricated in Neodymium doped Wollastonite-Tricalcium Phosphate glass in the eutectic composition. The glass samples were prepared by melting the eutectic powder mixture in a Pt-Rh crucible at 1600 °C and pouring it in a preheated brass mould. Afterwards, the glass was annealed to relieve the inner stresses. Cladding waveguides were fabricated by focusing beneath the sample surface using a pulsed Ti:sapphire laser with a pulsewidth of 120 fs working at 1 kHz. The optical properties of these waveguides have been assessed in terms of near-field intensity distribution and transmitted power, and these results have been comparedmore » to previously reported waveguides with double-line configuration. Optical properties have also been studied as function of the temperature. Heat treatments up to 700 °C were carried out to diminish colour centre losses where waveguide's modes and transmitted power were compared in order to establish the annealing temperature at which the optimal optical properties were reached. Laser experiments are in progress to evaluate the ability of the waveguides for 1064 nm laser light generation under 800 nm optical pumping.« less

  7. Stepped inlet optical panel

    DOEpatents

    Veligdan, James T.

    2001-01-01

    An optical panel includes stacked optical waveguides having stepped inlet facets collectively defining an inlet face for receiving image light, and having beveled outlet faces collectively defining a display screen for displaying the image light channeled through the waveguides by internal reflection.

  8. Reconfigurable optical interconnection network for multimode optical fiber sensor arrays

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.

    1992-01-01

    A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.

  9. A new method for multi-bit and qudit transfer based on commensurate waveguide arrays

    NASA Astrophysics Data System (ADS)

    Petrovic, J.; Veerman, J. J. P.

    2018-05-01

    The faithful state transfer is an important requirement in the construction of classical and quantum computers. While the high-speed transfer is realized by optical-fibre interconnects, its implementation in integrated optical circuits is affected by cross-talk. The cross-talk between densely packed optical waveguides limits the transfer fidelity and distorts the signal in each channel, thus severely impeding the parallel transfer of states such as classical registers, multiple qubits and qudits. Here, we leverage on the suitably engineered cross-talk between waveguides to achieve the parallel transfer on optical chip. Waveguide coupling coefficients are designed to yield commensurate eigenvalues of the array and hence, periodic revivals of the input state. While, in general, polynomially complex, the inverse eigenvalue problem permits analytic solutions for small number of waveguides. We present exact solutions for arrays of up to nine waveguides and use them to design realistic buses for multi-(qu)bit and qudit transfer. Advantages and limitations of the proposed solution are discussed in the context of available fabrication techniques.

  10. Low loss GaN waveguides at the visible spectral wavelengths for integrated photonics applications.

    PubMed

    Chen, Hong; Fu, Houqiang; Huang, Xuanqi; Zhang, Xiaodong; Yang, Tsung-Han; Montes, Jossue A; Baranowski, Izak; Zhao, Yuji

    2017-12-11

    We perform comprehensive studies on the fundamental loss mechanisms in III-nitride waveguides in the visible spectral region. Theoretical analysis shows that free carrier loss dominates for GaN under low photon power injection. When optical power increases, the two photon absorption loss becomes important and eventually dominates when photon energy above half-bandgap of GaN. When the dimensions of the waveguides reduce, the sidewall scattering loss will start to dominate. To verify the theoretical results, a high performance GaN-on-sapphire waveguide was fabricated and characterized. Experimental results are consistent with the theoretical findings, showing that under high power injection the optical loss changed significantly for GaN waveguides. A low optical loss ~2 dB/cm was achieved on the GaN waveguide, which is the lowest value ever reported for the visible spectral range. The results and fabrication processes developed in this work pave the way for the development of III-nitride integrated photonics in the visible and potentially ultraviolet spectral range for nonlinear optics and quantum photonics applications.

  11. Optical properties of in-vitro biomineralised silica

    PubMed Central

    Polini, Alessandro; Pagliara, Stefano; Camposeo, Andrea; Cingolani, Roberto; Wang, Xiaohong; Schröder, Heinz C.; Müller, Werner E. G.; Pisignano, Dario

    2012-01-01

    Silicon is the second most common element on the Earth's crust and its oxide (SiO2) the most abundant mineral. Silica and silicates are widely used in medicine and industry as well as in micro- and nano-optics and electronics. However, the fabrication of glass fibres and components requires high temperature and non-physiological conditions, in contrast to biosilica structures in animals and plants. Here, we show for the first time the use of recombinant silicatein-α, the most abundant subunit of sponge proteins catalyzing biosilicification reactions, to direct the formation of optical waveguides in-vitro through soft microlithography. The artificial biosilica fibres mimic the natural sponge spicules, exhibiting refractive index values suitable for confinement of light within waveguides, with optical losses in the range of 5–10 cm−1, suitable for application in lab-on-chips systems. This method extends biosilicification to the controlled fabrication of optical components by physiological processing conditions, hardly addressed by conventional technologies. PMID:22934130

  12. Low-power, ultrafast, and dynamic all-optical tunable plasmon induced transparency in two stub resonators side-coupled with a plasmonic waveguide system

    NASA Astrophysics Data System (ADS)

    Wang, Boyun; Zeng, Qingdong; Xiao, Shuyuan; Xu, Chen; Xiong, Liangbin; Lv, Hao; Du, Jun; Yu, Huaqing

    2017-11-01

    We theoretically and numerically investigate a low-power, ultrafast, and dynamic all-optical tunable plasmon induced transparency (PIT) in two stub resonators side-coupled with a metal-dielectric-metal (MDM) plasmonic waveguide system. The optical Kerr effect is enhanced by the local electromagnetic field of surface plasmon polaritons (SPPs) and the plasmonic waveguide based on graphene-Ag composite material structures with large effective Kerr nonlinear coefficient. An ultrafast response time of the order of 1 ps is reached because of ultrafast carrier relaxation dynamics of graphene. With dynamically tuning the propagation phase of the plasmonic waveguide, π-phase shift of the transmission spectrum in the PIT system is achieved under excitation of a pump light with an intensity as low as 5.8 MW cm-2. The group delay is controlled between 0.14 and 0.67 ps. Moreover, the tunable bandwidth of about 42 nm is obtained. For the indirect coupling between two stub cavities or the phase coupling scheme, the phase shift multiplication effect of the PIT effect is found. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and coupled-mode formalism. This work not only paves the way towards the realization of on-chip integrated nanophotonic devices but also opens the possibility of the construction of ultrahigh-speed information processing chips based on plasmonic circuits.

  13. Efficient active waveguiding properties of Mo6 nano-cluster-doped polymer nanotubes

    NASA Astrophysics Data System (ADS)

    Bigeon, J.; Huby, N.; Amela-Cortes, M.; Molard, Y.; Garreau, A.; Cordier, S.; Bêche, B.; Duvail, J.-L.

    2016-06-01

    We investigate 1D nanostructures based on a Mo6@SU8 hybrid nanocomposite in which photoluminescent Mo6 clusters are embedded in the photosensitive SU8 resist. Tens of micrometers long Mo6@SU8-based tubular nanostructures were fabricated by the wetting template method, enabling the control of the inner and outer diameter to about 190 nm and 240 nm respectively, as supported by structural and optical characterizations. The image plane optical study of these nanotubes under optical pumping highlights the efficient waveguiding phenomenon of the red luminescence emitted by the clusters. Moreover, the wave vector distribution in the Fourier plane determined by leakage radiation microscopy gives additional features of the emission and waveguiding. First, the anisotropic red luminescence of the whole system can be attributed to the guided mode along the nanotube. Then, a low-loss propagation behavior is evidenced in the Mo6@SU8-based nanotubes. This result contrasts with the weaker waveguiding signature in the case of UV210-based nanotubes embedding PFO (poly(9,9-di-n-octylfluorenyl-2,7-diyl)). It is attributed to the strong reabsorption phenomenon, owing to overlapping between absorption and emission bands in the semi-conducting conjugated polymer PFO. These results make this Mo6@SU8 original class of nanocomposite a promising candidate as nanosources for submicronic photonic integration.

  14. Efficient active waveguiding properties of Mo6 nano-cluster-doped polymer nanotubes.

    PubMed

    Bigeon, J; Huby, N; Amela-Cortes, M; Molard, Y; Garreau, A; Cordier, S; Bêche, B; Duvail, J-L

    2016-06-24

    We investigate 1D nanostructures based on a Mo6@SU8 hybrid nanocomposite in which photoluminescent Mo6 clusters are embedded in the photosensitive SU8 resist. Tens of micrometers long Mo6@SU8-based tubular nanostructures were fabricated by the wetting template method, enabling the control of the inner and outer diameter to about 190 nm and 240 nm respectively, as supported by structural and optical characterizations. The image plane optical study of these nanotubes under optical pumping highlights the efficient waveguiding phenomenon of the red luminescence emitted by the clusters. Moreover, the wave vector distribution in the Fourier plane determined by leakage radiation microscopy gives additional features of the emission and waveguiding. First, the anisotropic red luminescence of the whole system can be attributed to the guided mode along the nanotube. Then, a low-loss propagation behavior is evidenced in the Mo6@SU8-based nanotubes. This result contrasts with the weaker waveguiding signature in the case of UV210-based nanotubes embedding PFO (poly(9,9-di-n-octylfluorenyl-2,7-diyl)). It is attributed to the strong reabsorption phenomenon, owing to overlapping between absorption and emission bands in the semi-conducting conjugated polymer PFO. These results make this Mo6@SU8 original class of nanocomposite a promising candidate as nanosources for submicronic photonic integration.

  15. Thin glass based packaging and photonic single-mode waveguide integration by ion-exchange technology on board and module level

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Lang, Günter; Schröder, Henning

    2011-01-01

    The proposed novel packaging approach merges micro-system packaging and glass integrated optics. It provides 3D optical single-mode intra system links to bridge the gap between novel photonic integrated circuits and the glass fibers for inter system interconnects. We introduce our hybrid 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip links. Optical mirrors and lenses provide optical mode matching for photonic IC assemblies and optical fiber interconnects. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties as reviewed in the paper. That makes it perfect for micro-system packaging. The adopted planar waveguide process based on ion-exchange technology is capable for high-volume manufacturing. This ion-exchange process and the optical propagation are described in detail for thin glass substrates. An extensive characterization of all basic circuit elements like straight and curved waveguides, couplers and crosses proves the low attenuation of the optical circuit elements.

  16. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics.

    PubMed

    Cheng, Dewen; Wang, Yongtian; Xu, Chen; Song, Weitao; Jin, Guofan

    2014-08-25

    Small thickness and light weight are two important requirements for a see-through near-eye display which are achieved in this paper by using two advanced technologies: geometrical waveguide and freeform optics. A major problem associated with the geometrical waveguide is the stray light which can severely degrade the display quality. The causes and solutions to this problem are thoroughly studied. A mathematical model of the waveguide is established and a non-sequential ray tracing algorithm is developed, which enable us to carefully examine the stray light of the planar waveguide and explore a global searching method to find an optimum design with the least amount of stray light. A projection optics using freeform surfaces on a wedge shaped prism is also designed. The near-eye display integrating the projection optics and the waveguide has a field of view of 28°, an exit pupil diameter of 9.6mm and an exit pupil distance of 20mm. In our final design, the proportion of the stray light energy over the image output energy of the waveguide is reduced to 2%, the modulation transfer function values across the entire field of the eyepiece are above 0.5 at 30 line pairs/mm (lps/mm). A proof-of-concept prototype of the proposed geometrical waveguide near-eye display is developed and demonstrated.

  17. Dimension-sensitive optical responses of electromagnetically induced transparency vapor in a waveguide

    NASA Astrophysics Data System (ADS)

    Qi Shen, Jian; He, Sailing

    2006-12-01

    A three-level EIT (electromagnetically induced transparency) vapor is used to manipulate the transparency and absorption properties of the probe light in a waveguide. The most remarkable feature of the present scheme is such that the optical responses resulting from both electromagnetically induced transparency and large spontaneous emission enhancement are very sensitive to the frequency detunings of the probe light as well as to the small changes of the waveguide dimension. The potential applications of the dimension- and dispersion-sensitive EIT responses are discussed, and the sensitivity limits of some waveguide-based sensors, including electric absorption modulator, optical switch, wavelength sensor, and sensitive magnetometer, are analyzed.

  18. Investigation of single lateral mode for 852nm diode lasers with ridge waveguide design

    NASA Astrophysics Data System (ADS)

    Liu, Chu; Guan, Baolu; Mi, Guoxin; Liao, Yiru; Liu, Zhenyang; Li, Jianjun; Xu, Chen

    2016-11-01

    852nm Narrow linewidth lasers can be widely used in the field of ultra-fine spectrum measurement, Cs atomic clock control, satellite and optical fiber communication and so on. Furthermore, the stability of the single lateral mode is a very important condition to guarantee the narrow linewidth lasers. Here we investigate experimentally the influence of the narrow ridge structure and asymmetrical waveguide design on the stability single lateral mode of an 852nm diode laser. According to the waveguide theoretical analysis, ridge mesa etch depth (Δη , related to the refractive index difference of parallel to the junction) and ridge mesa width (the narrower the more control force to low order mode) are the main elements for lateral modes. In this paper, we designed different structures to investigate and verify major factors for lateral mode by experiment, and to confirm our thought. Finally, the 5μm mesa ridge laser, 800nm etch depth, with groove structure obtains excellent steady single lateral mode output by 150mA operating current and 30°C temperature. The optical spectrum FWHM is 0.5nm and side mode suppression ratio is 27dBm with uncoated. The laser with 1mm cavity length showed the threshold current of 50mA, a lasing wavelength of λ = 852.6nm, slope efficiency of above 0.7mW/mA. We accomplished single lateral mode of ridge waveguide edge-emitting lasers which can also be used as a laser source in the ultra-narrow linewidth external cavity laser system.

  19. Method of making a small inlet optical panel

    DOEpatents

    Veligdan, James T.; Slobodin, David E.

    2004-02-03

    An optical panel having a small inlet, and a method of making a small inlet optical panel, are disclosed, which optical panel includes a individually coating, stacking, and cutting a first plurality of stacked optical waveguides to form an outlet face body with an outlet face, individually coating, stacking, and cutting a second plurality of stacked optical waveguides to form an inlet face body with an inlet face, and connecting an optical coupling element to the first plurality and second plurality of stacked optical waveguides, wherein the optical coupling element redirects light along a parallel axis of the inlet face to a parallel axis of the outlet face. In the preferred embodiment of the present invention, the inlet face is disposed obliquely with and askew from the outlet face.

  20. Independent control of beam astigmatism and ellipticity using a SLM for fs-laser waveguide writing.

    PubMed

    Ruiz de la Cruz, A; Ferrer, A; Gawelda, W; Puerto, D; Sosa, M Galván; Siegel, J; Solis, J

    2009-11-09

    We have used a low repetition rate (1 kHz), femtosecond laser amplifier in combination with a spatial light modulator (SLM) to write optical waveguides with controllable cross-section inside a phosphate glass sample. The SLM is used to induce a controllable amount of astigmatism in the beam wavefront while the beam ellipticity is controlled through the propagation distance from the SLM to the focusing optics of the writing set-up. The beam astigmatism leads to the formation of two separate disk-shaped foci lying in orthogonal planes. Additionally, the ellipticity has the effect of enabling control over the relative peak irradiances of the two foci, making it possible to bring the peak irradiance of one of them below the material transformation threshold. This allows producing a single waveguide with controllable cross-section. Numerical simulations of the irradiance distribution at the focal region under different beam shaping conditions are compared to in situ obtained experimental plasma emission images and structures produced inside the glass, leading to a very satisfactory agreement. Finally, guiding structures with controllable cross-section are successfully produced in the phosphate glass using this approach.

  1. Ultra-fast pulse propagation in nonlinear graphene/silicon ridge waveguide

    NASA Astrophysics Data System (ADS)

    Liu, Ken; Zhang, Jian Fa; Xu, Wei; Zhu, Zhi Hong; Guo, Chu Cai; Li, Xiu Jian; Qin, Shi Qiao

    2015-11-01

    We report the femtosecond laser propagation in a hybrid graphene/silicon ridge waveguide with demonstration of the ultra-large Kerr coefficient of graphene. We also fabricated a slot-like graphene/silicon ridge waveguide which can enhance its effective Kerr coefficient 1.5 times compared with the graphene/silicon ridge waveguide. Both transverse-electric-like (TE-like) mode and transverse-magnetic-like (TM-like) mode are experimentally measured and numerically analyzed. The results show nonlinearity dependence on mode polarization not in graphene/silicon ridge waveguide but in slot-like graphene/silicon ridge waveguide. Great spectral broadening was observed due to self-phase modulation (SPM) after propagation in the hybrid waveguide with length of 2 mm. Power dependence property of the slot-like hybrid waveguide is also measured and numerically analyzed. The results also confirm the effective Kerr coefficient estimation of the hybrid structures. Spectral blue shift of the output pulse was observed in the slot-like graphene/silicon ridge waveguide. One possible explanation is that the blue shift was caused by the ultra-fast free carrier effect with the optical absorption of the doped graphene. This interesting effect can be used for soliton compression in femtosecond region. We also discussed the broadband anomalous dispersion of the Kerr coefficient of graphene.

  2. Raman scattering in a whispering mode optical waveguide

    DOEpatents

    Kurnit, Norman A.

    1982-01-01

    A device and method for Raman scattering in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature .rho. p for confining the beam to increase intensity. A Raman scattering medium is disposed in the optical path of the beam as it propagates along the waveguide. Raman scattering is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.

  3. Large-core single-mode rib SU8 waveguide using solvent-assisted microcontact molding.

    PubMed

    Huang, Cheng-Sheng; Wang, Wei-Chih

    2008-09-01

    This paper describes a novel fabrication technique for constructing a polymer-based large-core single-mode rib waveguide. A negative tone SU8 photoresist with a high optical transmission over a large wavelength range and stable mechanical properties was used as a waveguide material. A waveguide was constructed by using a polydimethylsiloxane stamp combined with a solvent-assisted microcontact molding technique. The effects on the final pattern's geometry of four different process conditions were investigated. Optical simulations were performed using beam propagation method software. Single-mode beam propagation was observed at the output of the simulated waveguide as well as the actual waveguide through the microscope image.

  4. Polarized micro-Raman studies of femtosecond laser written stress-induced optical waveguides in diamond

    NASA Astrophysics Data System (ADS)

    Sotillo, B.; Chiappini, A.; Bharadwaj, V.; Hadden, J. P.; Bosia, F.; Olivero, P.; Ferrari, M.; Ramponi, R.; Barclay, P. E.; Eaton, S. M.

    2018-01-01

    Understanding the physical mechanisms of the refractive index modulation induced by femtosecond laser writing is crucial for tailoring the properties of the resulting optical waveguides. In this work, we apply polarized Raman spectroscopy to study the origin of stress-induced waveguides in diamond, produced by femtosecond laser writing. The change in the refractive index induced by the femtosecond laser in the crystal is derived from the measured stress in the waveguides. The results help to explain the waveguide polarization sensitive guiding mechanism, as well as provide a technique for their optimization.

  5. Femtosecond laser writing of new type of waveguides in silver containing glasses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Abou Khalil, Alain; Bérubé, Jean-Philippe; Danto, Sylvain; Desmoulin, Jean-Charles; Cardinal, Thierry; Petit, Yannick G.; Canioni, Lionel; Vallée, Réal

    2017-03-01

    Femtosecond laser writing in glasses is a growing field of research and development in photonics, since it provides a versatile, robust and efficient approach to directly address 3D material structuring. Laser-glass interaction process has been studied for many years, especially the local changes of the refractive index that have been classified by three distinct types (types I, II and III, respectively). These refractive index modifications are widely used for the creation of photonics devices such as waveguides [1], couplers, photonic crystals to fabricate integrated optical functions in glasses for photonic applications as optical circuits or integrated sensors. Femtosecond laser writing in a home-developed silver containing zinc phosphate glasses induces the creation of fluorescent silver clusters distributed around the laser-glass interaction voxel [2]. In this paper, we introduce a new type of refractive index modification in glasses. It is based on the creation of these photo-induced silver clusters allowing a local change in the refractive index Δn = 5×10-3, which is sufficient for the creation of waveguides and photonics devices. The wave guiding process in our glasses along these structures with original geometry is demonstrated for wavelengths from visible to NIR [3], giving a promising access to integrated optical circuits in these silver containing glasses. Moreover, the characterization of the waveguides is presented, including their original geometry, the refractive index change, the mode profile, the estimation of propagation losses and a comparison with simulation results. 1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729-1731 (1996). 2. M. Bellec, A. Royon, K. Bourhis, J. Choi, B. Bousquet, M. Treguer, T. Cardinal, J.-J. Videau, M. Richardson, and L. Canioni, The Journal of Physical Chemistry C 114, 15584-15588 (2010). 3. S. Danto, F. Désévédavy, Y. Petit, J.-C. Desmoulin, A. Abou Khalil, C. Strutynski, M. Dussauze, F. Smektala, T. Cardinal, and L. Canioni, Advanced Optical Materials 4, 162-168 (2016).

  6. Manufacturing of polymer optical waveguides using self-assembly effect on pre-conditioned 3D-thermoformed flexible substrates

    NASA Astrophysics Data System (ADS)

    Hoffmann, Gerd-Albert; Wolfer, Tim; Zeitler, Jochen; Franke, Jörg; Suttmann, Oliver; Overmeyer, Ludger

    2017-02-01

    Optical data communication is increasingly interesting for many applications in industrial processes. Therefore mass production is required to meet the requested price and lot sizes. Polymer optical waveguides show great promises to comply with price requirements while providing sufficient optical quality for short range data transmission. A high efficient fabrication technology using polymer materials could be able to create the essential backbone for 3D-optical data transmission in the future. The approach for high efficient fabrication technology of micro optics described in this paper is based on a self-assembly effect of fluids on preconditioned 3D-thermoformed polymer foils. Adjusting the surface energy on certain areas on the flexible substrate by flexographic printing mechanism is presented in this paper. With this technique conditioning lines made of silicone containing UV-varnish are printed on top of the foils and create gaps with the exposed substrate material in between. Subsequent fabrication processes are selected whether the preconditioned foil is coated with acrylate containing waveguide material prior or after the thermoforming process. Due to the different surface energy this material tends to dewet from the conditioning lines. It acts like regional barriers and sets the width of the arising waveguides. With this fabrication technology it is possible to produce multiple waveguides with a single coating process. The relevant printing process parameters that affect the quality of the generated waveguides are discussed and results of the produced waveguides with width ranging from 10 to 300 μm are shown.

  7. High-bandwidth and low-loss multimode polymer waveguides and waveguide components for high-speed board-level optical interconnects

    NASA Astrophysics Data System (ADS)

    Bamiedakis, N.; Chen, J.; Penty, R. V.; White, I. H.

    2016-03-01

    Multimode polymer waveguides are being increasingly considered for use in short-reach board-level optical interconnects as they exhibit favourable optical properties and allow direct integration onto standard PCBs with conventional methods of the electronics industry. Siloxane-based multimode waveguides have been demonstrated with excellent optical transmission performance, while a wide range of passive waveguide components that offer routing flexibility and enable the implementation of complex on-board interconnection architectures has been reported. In recent work, we have demonstrated that these polymer waveguides can exhibit very high bandwidth-length products in excess of 30 GHz×m despite their highly-multimoded nature, while it has been shown that even larger values of > 60 GHz×m can be achieved by adjusting their refractive index profile. Furthermore, the combination of refractive index engineering and launch conditioning schemes can ensure high bandwidth (> 100 GHz×m) and high coupling efficiency (<1 dB) with standard multimode fibre inputs with relatively large alignment tolerances (~17×15 μm2). In the work presented here, we investigate the effects of refractive index engineering on the performance of passive waveguide components (crossings, bends) and provide suitable design rules for their on-board use. It is shown that, depending on the interconnection layout and link requirements, appropriate choice of refractive index profile can provide enhanced component performance, ensuring low loss interconnection and adequate link bandwidth. The results highlight the strong potential of this versatile optical technology for the formation of high-performance board-level optical interconnects with high routing flexibility.

  8. Measurement of ultrafast optical Kerr effect of Ge-Sb-Se chalcogenide slab waveguides by the beam self-trapping technique

    NASA Astrophysics Data System (ADS)

    Kuriakose, Tintu; Baudet, Emeline; Halenkovič, Tomáš; Elsawy, Mahmoud M. R.; Němec, Petr; Nazabal, Virginie; Renversez, Gilles; Chauvet, Mathieu

    2017-11-01

    We present a reliable and original experimental technique based on the analysis of beam self-trapping to measure ultrafast optical nonlinearities in planar waveguides. The technique is applied to the characterization of Ge-Sb-Se chalcogenide films that allow Kerr induced self-focusing and soliton formation. Linear and nonlinear optical constants of three different chalcogenide waveguides are studied at 1200 and 1550 nm in femtosecond regime. Waveguide propagation loss and two photon absorption coefficients are determined by transmission analysis. Beam broadening and narrowing results are compared with simulations of the nonlinear Schrödinger equation solved by BPM method to deduce the Kerr n2 coefficients. Kerr optical nonlinearities obtained by our original technique compare favorably with the values obtained by Z-scan technique. Nonlinear refractive index as high as (69 ± 11) × 10-18m2 / W is measured in Ge12.5Sb25Se62.5 at 1200 nm with low nonlinear absorption and low propagation losses which reveals the great characteristics of our waveguides for ultrafast all optical switching and integrated photonic devices.

  9. Light coupling for on-chip optical interconnects

    NASA Astrophysics Data System (ADS)

    Gao, Xumin; Yuan, Jialei; Yang, Yongchao; Li, Yuanhang; Cai, Wei; Li, Xin; Wang, Yongjin

    2017-12-01

    An on-chip optical interconnect of a light emitter, waveguide and photodetector based on p-n junction InGaN/GaN multiple quantum wells (MQWs) is fabricated to investigate the light coupling efficiency of suspended waveguides connecting the light emitter and photodetector. Optical characterizations indicate that the photocurrent of the photodetector is mainly induced by the emitted light that is transmitted through the waveguides. Suspended waveguides with and without air gaps are reported in this paper. A 1 mA current injection into the light emitter induces a photocurrent of 17.3 nA and 205.5 nA for the photodetector connected to the waveguides that with 10 μm air gaps and without air gaps, respectively. Finite-difference time-domain simulations are performed to analyze the gap effect on the coupling efficiency of the light transmission. Both the gap distance and the index variation of the gap materials are analyzed to verify the potential optical sensing functions of the on-chip optical interconnect. A possible strategy for increasing the light coupling efficiency is proven by simulations.

  10. Silicon Photonics: All-Optical Devices for Linear and Nonlinear Applications

    NASA Astrophysics Data System (ADS)

    Driscoll, Jeffrey B.

    Silicon photonics has grown rapidly since the first Si electro-optic switch was demonstrated in 1987, and the field has never grown more quickly than it has over the past decade, fueled by milestone achievements in semiconductor processing technologies for low loss waveguides, high-speed Si modulators, Si lasers, Si detectors, and an enormous toolbox of passive and active integrated devices. Silicon photonics is now on the verge of major commercialization breakthroughs, and optical communication links remain the force driving integrated and Si photonics towards the first commercial telecom and datacom transceivers; however other potential and future applications are becoming uncovered and refined as researchers reveal the benefits of manipulating photons on the nanoscale. This thesis documents an exploration into the unique guided-wave and nonlinear properties of deeply-scaled high-index-contrast sub-wavelength Si waveguides. It is found that the tight confinement inherent to single-mode channel waveguides on the silicon-on-insulator platform lead to a rich physics, which can be leveraged for new devices extending well beyond simple passive interconnects and electro-optic devices. The following chapters will concentrate, in detail, on a number of unique physical features of Si waveguides and extend these attributes towards new and interesting devices. Linear optical properties and nonlinear optical properties are investigated, both of which are strongly affected by tight optical confinement of the guided waveguide modes. As will be shown, tight optical confinement directly results in strongly vectoral modal components, where the electric and magnetic fields of the guided modes extend into all spatial dimensions, even along the axis of propagation. In fact, the longitudinal electric and magnetic field components can be just as strong as the transverse fields, directly affecting the modal group velocity and energy transport properties since the longitudinal fields are shown to contribute no time-averaged momentum. Furthermore, the vectoral modal components, in conjunction with the tensoral nature of the third-order susceptibility of Si, lead to nonlinear properties which are dependent on waveguide orientation with respect to the Si parent crystal and the construction of the modal electric field components. This consideration is used to maximize effective nonlinearity and realize nonlinear Kerr gratings along specific waveguide trajectories. Tight optical confinement leads to a natural enhancement of the intrinsically large effective nonlinearty of Si waveguides, and in fact, the effective nonlinearty can be made to be almost 106 times greater in Si waveguides than that of standard single-mode fiber. Such a large nonlinearity motivates chip-scale all-optical signal processing techniques. Wavelength conversion by both four-wave-mixing (FWM) and cross-phase-modulation (XPM) will be discussed, including a technique that allows for enhanced broadband discrete FWM over arbitrary spectral spans by modulating both the linear and nonlinear waveguide properties through periodic changes in waveguide geometry. This quasi-phase-matching approach has very real applications towards connecting mature telecom sources detectors and components to other spectral regimes, including the mid-IR. Other signal processing techniques such as all-optical modulation format conversion via XPM will also be discussed. This thesis will conclude by looking at ways to extend the bandwidth capacity of Si waveguide interconnects on chip. As the number of processing cores continues to scale as a means for computational performance gains, on-chip link capacity will become an increasingly important issue. Metallic traces have severe limitations and are envisioned to eventually bow to integrated photonic links. The aggregate bandwidth supported by a single waveguide link will therefore become a crucial consideration as integrated photonics approaches the CPU. One way to increase aggregate bandwidth is to utilize different eigen-modes of a multimode waveguide, and integrated waveguide mode-muxes and demuxes for achieving simultaneous mode-division-multiplexing and wavelength-division-multiplexing will be demonstrated.

  11. Femtosecond laser-written double line waveguides in germanate and tellurite glasses

    NASA Astrophysics Data System (ADS)

    S. da Silva, Diego; Wetter, Niklaus U.; de Rossi, Wagner; Samad, Ricardo E.; Kassab, Luciana R. P.

    2018-02-01

    The authors report the fabrication and characterization of passive waveguides in GeO2-PbO and TeO2-ZnO glasses written with a femtosecond laser delivering pulses with 3μJ, 30μJ and 80fs at 4kHz repetition rate. Permanent refractive index change at the focus of the laser beam was obtained and waveguides were formed by two closely spaced laser written lines, where the light guiding occurs between them. The refractive index change at 632 nm is around 10-4 . The value of the propagation losses was around 2.0 dB/cm. The output mode profiles indicate multimodal guiding behavior. Raman measurements show structural modification of the glassy network. The results show that these materials are potential candidates for passive waveguides applications as low-loss optical components.

  12. Characterization of long-range plasmonic waveguides at visible to near-infrared regime

    NASA Astrophysics Data System (ADS)

    Huang, Sheng-Ting; Lai, Chien-Chih; Sheu, Fang-Wen; Tsai, Wan-Shao

    2017-12-01

    Long-range surface plasmon polariton waveguides composed with thin gold stripes embedded in SU-8 polymer cladding with various stripe widths were fabricated. Material properties of the polymer cladding layer, gold thin film, and the device structures were discussed. Optical properties based on modal propagation were characterized at visible to near-infrared wavelengths. The measured propagation losses of waveguide widths from 3 to 9 μm at 633, 785, and 1550 nm are 7.5-18.8, 6.8-12.5, and 1.9-3.9 dB/mm, respectively. Guiding mode properties such as overlap integrals between the simulated and the measured fields and the polarization extinction ratios of the waveguides with different stripe widths were investigated at the telecommunication wavelength. Good accordance between the measurement and simulation results was presented.

  13. Buffering capability and limitations in low dispersion photonic crystal waveguides with elliptical airholes.

    PubMed

    Long, Fang; Tian, Huiping; Ji, Yuefeng

    2010-09-01

    A low dispersion photonic crystal waveguide with triangular lattice elliptical airholes is proposed for compact, high-performance optical buffering applications. In the proposed structure, we obtain a negligible-dispersion bandwidth with constant group velocity ranging from c/41 to c/256, by optimizing the major and minor axes of bulk elliptical holes and adjusting the position and the hole size of the first row adjacent to the defect. In addition, the limitations of buffer performance in a dispersion engineering waveguide are well studied. The maximum buffer capacity and the maximum data rate can reach as high as 262bits and 515 Gbits/s, respectively. The corresponding delay time is about 255.4ps.

  14. Integrated-optic current sensors with a multimode interference waveguide device.

    PubMed

    Kim, Sung-Moon; Chu, Woo-Sung; Kim, Sang-Guk; Oh, Min-Cheol

    2016-04-04

    Optical current sensors based on polarization-rotated reflection interferometry are demonstrated using polymeric integrated optics and various functional optical waveguide devices. Interferometric sensors normally require bias feedback control for maintaining the operating point, which increases the cost. In order to resolve this constraint of feedback control, a multimode interference (MMI) waveguide device is integrated onto the current-sensor optical chip in this work. From the multiple outputs of the MMI, a 90° phase-shifted transfer function is obtained. Using passive quadrature demodulation, we demonstrate that the sensor could maintain the output signal regardless of the drift in the operating bias-point.

  15. Disorder-induced transparency in a one-dimensional waveguide side coupled with optical cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yongyou, E-mail: yyzhang@bit.edu.cn; Dong, Guangda; Zou, Bingsuo

    2014-05-07

    Disorder influence on photon transmission behavior is theoretically studied in a one-dimensional waveguide side coupled with a series of optical cavities. For this sake, we propose a concept of disorder-induced transparency appearing on the low-transmission spectral background. Two kinds of disorders, namely, disorders of optical cavity eigenfrequencies and relative phases in the waveguide side coupled with optical cavities are considered to show the disorder-induced transparency. They both can induce the optical transmission peaks on the low-transmission backgrounds. The statistical mean value of the transmission also increases with increasing the disorders of the cavity eigenfrequencies and relative phases.

  16. Active phase correction of high resolution silicon photonic arrayed waveguide gratings

    DOE PAGES

    Gehl, M.; Trotter, D.; Starbuck, A.; ...

    2017-03-10

    Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Thus, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. We present the design and fabrication of compact siliconmore » photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm 2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. In addition, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.« less

  17. Active phase correction of high resolution silicon photonic arrayed waveguide gratings.

    PubMed

    Gehl, M; Trotter, D; Starbuck, A; Pomerene, A; Lentine, A L; DeRose, C

    2017-03-20

    Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.

  18. Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links.

    PubMed

    Kim, Hyunseok; Farrell, Alan C; Senanayake, Pradeep; Lee, Wook-Jae; Huffaker, Diana L

    2016-03-09

    Monolithically integrated III-V semiconductors on a silicon-on-insulator (SOI) platform can be used as a building block for energy-efficient on-chip optical links. Epitaxial growth of III-V semiconductors on silicon, however, has been challenged by the large mismatches in lattice constants and thermal expansion coefficients between epitaxial layers and silicon substrates. Here, we demonstrate for the first time the monolithic integration of InGaAs nanowires on the SOI platform and its feasibility for photonics and optoelectronic applications. InGaAs nanowires are grown not only on a planar SOI layer but also on a 3D structured SOI layer by catalyst-free metal-organic chemical vapor deposition. The precise positioning of nanowires on 3D structures, including waveguides and gratings, reveals the versatility and practicality of the proposed platform. Photoluminescence measurements exhibit that the composition of ternary InGaAs nanowires grown on the SOI layer has wide tunability covering all telecommunication wavelengths from 1.2 to 1.8 μm. We also show that the emission from an optically pumped single nanowire is effectively coupled and transmitted through an SOI waveguide, explicitly showing that this work lays the foundation for a new platform toward energy-efficient optical links.

  19. Electro-optic Waveguide Beam Deflector.

    DTIC Science & Technology

    beam deflection by variation in the electro - optic effect produced within the waveguide region in response to known or determinable magnitude variations in the electrical potential of an applied signal source.

  20. Glass light pipes for solar concentration

    NASA Astrophysics Data System (ADS)

    Madsen, C. K.; Dogan, Y.; Morrison, M.; Hu, C.; Atkins, R.

    2018-02-01

    Glass waveguides are fabricated using laser processing techniques that have low optical loss with >90% optical throughput. Advanced light pipes are demonstrated, including angled facets for turning mirrors used for lens-to-light pipe coupling, tapers that increase the concentration, and couplers for combining the outputs from multiple lens array elements. Because they are fabricated from glass, these light pipes can support large optical concentrations and propagate broadband solar over long distances with minimal loss and degradation compared to polymer waveguides. Applications include waveguiding solar concentrators using multi-junction PV cells, solar thermal applications and remoting solar energy, such as for daylighting. Ray trace simulations are used to estimate the surface smoothness required to achieve low loss. Optical measurements for fabricated light pipes are reported for use in waveguiding solar concentrator architectures.

Top