Sample records for optical zone diameter

  1. Corneal Power Distribution and Functional Optical Zone Following Small Incision Lenticule Extraction for Myopia.

    PubMed

    Qian, Yishan; Huang, Jia; Zhou, Xingtao; Hanna, Rewais Benjamin

    2015-08-01

    To evaluate corneal power distribution using the ray tracing method (corneal power) in eyes undergoing small incision lenticule extraction (SMILE) surgery and compare the functional optical zone with two lenticular sizes. This retrospective study evaluated 128 patients who underwent SMILE for the correction of myopia and astigmatism with a lenticular diameter of 6.5 mm (the 6.5-mm group) and 6.2 mm (the 6.2-mm group). The data include refraction, correction, and corneal power obtained via a Scheimpflug camera from the pupil center to 8 mm. The surgically induced changes in corneal power (Δcorneal power) were compared to correction and Δrefraction. The functional optical zone was defined as the largest ring diameter when the difference between the ring power and the pupil center power was 1.50 diopters or less. The functional optical zone was compared between two lenticular diameter groups. Corneal power distribution was measured by the ray tracing method. In the 6.5-mm group (n=100), Δcorneal power at 5 mm showed the smallest difference from Δrefraction and Δcorneal power at 0 mm exhibited the smallest difference from correction. In the 6.2-mm group (n=28), Δcorneal power at 2 mm displayed the lowest dissimilarity from Δrefraction and Δcorneal power at 4 mm demonstrated the lowest dissimilarity from correction. There was no significant difference between the mean postoperative functional optical zones in either group when their spherical equivalents were matched. Total corneal refactive power can be used in the evaluation of surgically induced changes following SMILE. A lenticular diameter of 6.2 mm should be recommended for patients with high myopia because there is no functional difference in the optical zone. Copyright 2015, SLACK Incorporated.

  2. [Study on the change of optical zone after femtosecond laser assisted laser in situ keratomileusis].

    PubMed

    Li, H; Chen, M; Tian, L; Li, D W; Peng, Y S; Zhang, F F

    2018-01-11

    Objective: To explore the change of optical zone after femtosecond laser assisted laser in sitn keratomileusis(FS-LASIK) so as to provide the reference for measurement and design of clinical optical zone. Methods: This retrospective case series study covers 41 eyes of 24 patients (7 males and 17 females, aged from 18 to 42 years old) with myopia and myopic astigmatism who have received FS-LASIK surgery at Corneal Refractive Department of Qingdao Eye Hospital and completed over 6 months of clinical follow-up. Pentacam system (with the application of 6 corneal topographic map modes including: the pure axial curvature topographic map, the pure tangential curvature topographic map, the axial curvature difference topographic map, the tangential curvature difference topographic map, the postoperative front elevation map and the corneal thickness difference topographic map), combined with transparent concentric software (a system independently developed by Qingdao Eye Hospital) was used to measure the optical zone at 1, 3 and 6 months postoperatively, the optical zone diameters measurement results among different follow-up times in group were analyzed with the repeated measures analysis of variance, and the actual measured values and the theoretical design values of the optical zone were analyzed with independent-samples t-testing. Spearman correlation coefficient ( r(s) ) have been applied to evaluate the relationship between postoperative optical zone measurement values and the potential influencing factors. Results: The optical zone diameters measured by pure axial curvature topographic map at 1, 3 and 6 months after FS-LASIK showed (6.55±0.50)mm, (6.50±0.53)mm and (6.48±0.53)mm respectively. The differences between values are of no statistical significance ( F= 1.60, P= 0.21), the optical zone diameter measured by pure tangential curvature topographic map at 1, 3 and 6 months after FS-LASIK showed (5.44±0.46)mm, (5.46±0.52)mm and (5.44±0.50)mm respectively, the differences between values are of no statistical significance ( F= 0.17, P= 0.85). The optical zone diameters measured by postoperative front elevation map at 1, 3 and 6 months after FS-LASIK showed (5.06±0.28)mm, (5.12±0.32)mm and (5.17±0.28)mm respectively. The differences between the values of 3 and 6 months postoperatively are of no statistical significance ( F= 6.14, P= 0.15), the optical zone diameters measured by axial curvature difference topographic map at 1, 3 and 6 months after FS-LASIK showed (6.51±0.37)mm, (6.45±0.41)mm and (6.41±0.40)mm respectively, and the differences between the values of 3 and 6 months postoperatively are of no statistical significance ( F= 7.25, P= 0.05). The optical zone diameters measured by tangential curvature difference topographic map at 1, 3 and 6 months after FS-LASIK showed (5.21±0.23)mm, (5.16±0.19)mm and (5.17±0.20) mm respectively, and the differences between the values of 1 and 3 months postoperatively are of statistical significance ( F= 1.75, P= 0.04). The optical zone diameters measured by corneal thickness difference topographic map at 1, 3 and 6 months after FS-LASIK showed (6.53±0.40)mm, (6.39±0.43)mm and (6.41±0.47)mm respectively, and the differences between the values of 1 and 3 months postoperatively are of statistical significance ( F= 1.67, P= 0.032). The actual measured optical zone values from the 6 different modes of Pentacam system are less than the theoretical design values (7.75 mm), and the differences were statistical significance ( t= -15.42, -29.39, -59.27, -21.47, -81.69, -18.22, P< 0.01). Conclusions: The optical zone measurement values tend to be stable at 3 months after FS-LASIK. The actual measured values from all the 6 different modes of Pentacam system were less than the theoretical design values. The results from pure tangential curvature topographic map, the tangential curvature difference topographic map and the postoperative front elevation map showed greater variation with clear border, which was beneficial for eccentric research. The results from pure axial curvature topographic map, the axial curvature difference topographic map and the corneal thickness difference topographic map were close to the theoretically designed values. Furthermore, the axial curvature difference topographic map showed clearer border and less variation thus maybe more favorable for measuring optical zone in clinical application. (Chin J Ophthalmol, 2018, 54: 39-47) .

  3. Predicted accommodative response from image quality in young eyes fitted with different dual-focus designs.

    PubMed

    Faria-Ribeiro, Miguel; Amorim-de-Sousa, Ana; González-Méijome, José M

    2018-05-01

    To investigate the separated and combined influences of inner zone (IZ) diameter and effective add power of dual-focus contact lenses (CL) in the image quality at distance and near viewing, in a functional accommodating model eye. Computational wave-optics methods were used to define zonal bifocal pupil functions, representing the optic zones of nine dual-focus centre-distance CLs. The dual-focus pupil functions were defined having IZ diameters of 2.10 mm, 3.36 mm and 4.00 mm, with add powers of 1.5 D, 2.0 D and 2.5 D (dioptres), for each design, that resulted in a ratio of 64%/36% between the distance and treatment zone areas, bounded by a 6 mm entrance pupil. A through-focus routine was implemented in MATLAB to simulate the changes in image quality, calculated from the Visual Strehl ratio, as the eye with the dual-focus accommodates, from 0 to -3.00 D target vergences. Accommodative responses were defined as the changes in the defocus coefficient, combined with a change in fourth and sixth order spherical aberration, which produced a peak in image quality at each target vergence. Distance viewing image quality was marginally affected by IZ diameter but not by add power. Near image quality obtained when focussing the image formed by the near optics was only higher by a small amount compared to the other two IZ diameters. The mean ± standard deviation values obtained with the three adds were 0.28 ± 0.02, 0.23 ± 0.02 and 0.22 ± 0.02, for the small, medium and larger IZ diameters, respectively. On the other hand, near image quality predicted by focussing the image formed by the distance optics was considerably lower relatively to the other two IZ diameters. The mean ± standard deviation values obtained with the three adds were 0.15 ± 0.01, 0.38 ± 0.00 and 0.54 ± 0.01, for the small, medium and larger IZ diameters, respectively. During near viewing through dual-focus CLs, image quality depends on the diameter of the most inner zone of the CL, while add power only affects the range of clear focus when focussing the image formed by the CL near optics. When only image quality gain is taken into consideration, medium and large IZ diameters designs are most likely to promote normal accommodative responses driven by the CL distance optics, while a smaller IZ diameter design is most likely to promote a reduced accommodative response driven by the dual-focus CL near optics. © 2018 The Authors Ophthalmic & Physiological Optics © 2018 The College of Optometrists.

  4. Controlled reshaping of the front surface of the cornea through its full-area ablation outside of the optical zone with a Gaussian ArF excimer laser beam

    NASA Astrophysics Data System (ADS)

    Semchishen, A. V.; Semchishen, V. A.

    2014-01-01

    We studied in vitro the response of the topography of the cornea to its full-area laser ablation (the laser beam spot diameter is commensurable with the size of the interface) outside of the central zone with an excimer laser having a Gaussian fluence distribution across the beam. Subject to investigation were the topographically controlled surface changes of the anterior cornea in 60 porcine eyes with a 5 ± 1.25-diopter artificially induced astigmatism, the changes being caused by laser ablation of the stromal collagen in two 3.5-mm-dia. circular areas along the weaker astigmatism axis. Experimental relationships are presented between the actual astigmatism correction and the expected correction for the intact optical zones 1, 2, 3, and 4 mm in diameter. The data for each zone were approximated by the least-squares method with the function d = a + bx. The coefficient b is given with the root-mean-square error. The statistical processing of the data yielded the following results: d = (0.14 ± 0.037)x for the 1-mm-dia. optical zone, (1.10 ± 0.036)x for the 2-mm-dia. optical zone, (1.04 ± 0.020)x for the 3-mm-dia. optical zone, and (0.55 ± 0.04)x for the 4-mm-dia. optical zone. Full astigmatism correction was achieved with ablation effected outside of the 3-mm-dia. optical zone. The surface changes of the cornea are shown to be due not only to the removal of the corneal tissue, but also to the biomechanical topographic response of the cornea to its strain caused by the formation of a dense pseudomembrane in the ablation area.

  5. The assessment of the stability of the corneal structure after LASIK correction of myopia by different optical zone diameters.

    PubMed

    Milivojević, Milorad; Petrović, Vladimir; Vukosavljević, Miroslav; Marjanović, Ivan; Resan, Mirko

    2016-06-01

    Enlargement of optical zone (OZ) diameter during laser in situ keratomileusis (LASIK) correction of myopia postoperatively improves the optical outcome, however, it also leads to the increased stroma tissue consumption--progressive corneal thinning. The aim of this investigation was to present the possibility of safe OZ enlargement without impairing the structural stability of the cornea, while obtaining an improved optical outcome with LASIK treatment of short-sightedness. Preoperative assessment of the cornea structure and prediction of the ablated stroma tissue consumption was conducted in 37 patients (74 eyes) treated for short-sightedness by means of the LASIK method. With the eyes that, according to their cornea structure, had the capacity for OZ diameter enlargement of 0.5 mm, LASIK treatment was performed within the wider OZ diameter of 7.0 mm compared to the standard 6.5 mm. The following two groups were formed, depending on the diameter of the utilized OZ: the group I (the eyes treated with the OZ 6.5 mm, n = 37) and the group II (the eyes treated with the OZ 7.0 mm, n = 37). No significant difference in the observed structural parameters of the cornea was detected between the groups of patients treated with different OZ diameters. The values of all the parameters were significantly bellow the threshold values for the development of postoperative ectasia. Diameter enlargement of the treated OZ, if there is a preoperative cornea capacity for such enlargement, will not impair the postoperative stability of the cornea structure, and will significantly improve the optical outcome.

  6. Optical comparison of multizone and single-zone photorefractive keratectomy

    NASA Astrophysics Data System (ADS)

    Gonzalez-Cirre, Xochitl; Manns, Fabrice; Rol, Pascal O.; Parel, Jean-Marie A.

    1997-05-01

    The purpose is to calculate and compare the point-spread function and the central ablation depth (CAD) of a paraxial eye model after photo-refractive keratectomy (PRK), with single and multizone treatments. A modified Le Grand-El Hage paraxial eye model, with a pupil diameter ranging from 2 to 8 mm was used. Ray-tracing was performed for initial myopia ranging from 1 to 10D; after single zone PRK; after double zone PRK; and after tripe zone PRK. The ray-tracing of a parallel incident beam was calculated by using the paraxial matrix method. At equal CAD, the optical image quality is better after single zone treatments. Multizone treatments do not seem to be advantageous optically.

  7. Contribution of Optical Zone Decentration and Pupil Dilation on the Change of Optical Quality After Myopic Photorefractive Keratectomy in a Cat Model

    PubMed Central

    Bühren, Jens; Yoon, Geunyoung; MacRae, Scott; Huxlin, Krystel

    2010-01-01

    PURPOSE To simulate the simultaneous contribution of optical zone decentration and pupil dilation on retinal image quality using wavefront error data from a myopic photorefractive keratectomy (PRK) cat model. METHODS Wavefront error differences were obtained from five cat eyes 19±7 weeks (range: 12 to 24 weeks) after spherical myopic PRK for −6.00 diopters (D) (three eyes) and −10.00 D (two eyes). A computer model was used to simulate decentration of a 6-mm sub-aperture relative to the measured wavefront error difference. Changes in image quality (visual Strehl ratio based on the optical transfer function [VSOTF]) were computed for simulated decentrations from 0 to 1500 μm over pupil diameters of 3.5 to 6.0 mm in 0.5-mm steps. For each eye, a bivariate regression model was applied to calculate the simultaneous contribution of pupil dilation and decentration on the pre- to postoperative change of the log VSOTF. RESULTS Pupil diameter and decentration explained up to 95% of the variance of VSOTF change (adjusted R2=0.95). Pupil diameter had a higher impact on VSOTF (median β=−0.88, P<.001) than decentration (median β= −0.45, P<.001). If decentration-induced lower order aberrations were corrected, the impact of decentration further decreased (β= −0.26) compared to the influence of pupil dilation (β= −0.95). CONCLUSIONS Both pupil dilation and decentration of the optical zone affected the change of retinal image quality (VSOTF) after myopic PRK with decentration exerting a lower impact on VSOTF change. Thus, under physiological conditions pupil dilation is likely to have more effect on VSOTF change after PRK than optical zone decentration. PMID:20229950

  8. Contribution of optical zone decentration and pupil dilation on the change of optical quality after myopic photorefractive keratectomy in a cat model.

    PubMed

    Bühren, Jens; Yoon, Geunyoung; MacRae, Scott; Huxlin, Krystel

    2010-03-01

    To simulate the simultaneous contribution of optical zone decentration and pupil dilation on retinal image quality using wavefront error data from a myopic photorefractive keratectomy (PRK) cat model. Wavefront error differences were obtained from five cat eyes 19+/-7 weeks (range: 12 to 24 weeks) after spherical myopic PRK for -6.00 diopters (D) (three eyes) and -10.00 D (two eyes). A computer model was used to simulate decentration of a 6-mm sub-aperture relative to the measured wavefront error difference. Changes in image quality (visual Strehl ratio based on the optical transfer function [VSOTF]) were computed for simulated decentrations from 0 to 1500 mum over pupil diameters of 3.5 to 6.0 mm in 0.5-mm steps. For each eye, a bivariate regression model was applied to calculate the simultaneous contribution of pupil dilation and decentration on the pre- to postoperative change of the log VSOTF. Pupil diameter and decentration explained up to 95% of the variance of VSOTF change (adjusted R(2)=0.95). Pupil diameter had a higher impact on VSOTF (median beta=-0.88, P<.001) than decentration (median beta=-0.45, P<.001). If decentration-induced lower order aberrations were corrected, the impact of decentration further decreased (beta=-0.26) compared to the influence of pupil dilation (beta=-0.95). Both pupil dilation and decentration of the optical zone affected the change of retinal image quality (VSOTF) after myopic PRK with decentration exerting a lower impact on VSOTF change. Thus, under physiological conditions pupil dilation is likely to have more effect on VSOTF change after PRK than optical zone decentration. Copyright 2010, SLACK Incorporated.

  9. Parapapillary Gamma Zone and Progression of Myopia in School Children: The Beijing Children Eye Study.

    PubMed

    Guo, Yin; Liu, Li Juan; Tang, Ping; Feng, Yi; Lv, Yan Yun; Wu, Min; Xu, Liang; Jonas, Jost B

    2018-03-01

    To assess the development and enlargement of the parapapillary gamma zone in school children. This school-based prospective longitudinal study included Chinese children attending grade 1 in 2011 and returning for yearly follow-up examinations until 2016. These examinations consisted of a comprehensive ocular examination with biometry and color fundus photographs. The parents underwent a standardized interview. The parapapillary gamma zone was defined as the area with visible sclera at the temporal optic disc margin, and the optic disc itself was measured on fundus photographs. The study included 294 children (mean age in 2016, 11.4 ± 0.5 years [range, 10-13 years]; mean axial length, 24.1 ± 1.1 mm [range, 21.13-27.29 mm]). In multivariate analysis, larger increases in the gamma zone area during the study period were correlated (coefficient of determination for bivariate analysis [r2], r2 = 0.69) with larger increases in the vertical-to-horizontal disc diameter ratios (P < 0.001; standardized regression coefficient beta [beta], 0.53; nonstandardized regression coefficient B [B], 4.05; 95% confidence intervals [CI], 3.37-4.73), larger axial elongation (P < 0.001; beta, 0.32; B, 0.37; 95% CI, 0.26-0.47), a larger vertical disc diameter at baseline (P < 0.001; beta, 0.22; B, 0.98; 95% CI, 0.62-1.33), a larger gamma zone area at baseline (P < 0.001; beta, 0.14; B, 0.41; 95% CI, 0.17-0.64), and more time spent indoors studying (P = 0.015; beta, 0.10; B, 0.09; 95% CI, 0.02-0.17). The development and enlargement of the gamma zone in the temporal parapapillary region were associated with an optic disc rotation around the vertical disc axis as indicated by an increasing vertical-to-horizontal disc diameter ratio. These morphologic findings fit with the notion of a backward pull of the temporal peripapillary sclera through the optic nerve dura mater in axially elongated eyes.

  10. Incidence and Outcomes of Optical Zone Enlargement and Recentration After Previous Myopic LASIK by Topography-Guided Custom Ablation.

    PubMed

    Reinstein, Dan Z; Archer, Timothy J; Carp, Glenn I; Stuart, Alastair J; Rowe, Elizabeth L; Nesbit, Andrew; Moore, Tara

    2018-02-01

    To report the incidence, visual and refractive outcomes, optical zone enlargement, and recentration using topography-guided CRS-Master TOSCA II software with the MEL 80 excimer laser (Carl Zeiss Meditec AG, Jena, Germany) after primary myopic laser refractive surgery. Retrospective analysis of 73 eyes (40 patients) with complaints of night vision disturbances due to either a decentration or small optical zone following a primary myopic laser refractive surgery procedure using the MEL 80 laser. Multiple ATLAS topography scans were imported into the CRS-Master software for topography-guided ablation planning. The topography-guided re-treatment procedure was performed as either a LASIK flap lift, a new LASIK flap, a side cut only, or photorefractive keratectomy. Axial curvature maps were analyzed using a fixed grid and set of concentric circles superimposed to measure the topographic optical zone diameter and centration. Follow-up was 12 months. The incidence of use in the population of myopic treatments during the study period was 0.79% (73 of 9,249). The optical zone diameter was increased by 11% from a mean of 5.65 to 6.32 mm, with a maximum change of 2 mm in one case. Topographic decentration was reduced by 64% from a mean of 0.58 to 0.21 mm. There was a 44% reduction in spherical aberration, 53% reduction in coma, and 39% reduction in total higher order aberrations. A subjective improvement in night vision symptoms was reported by 93%. Regarding efficacy, 82% of eyes reached 20/20 and 100% reached 20/32 (preoperative CDVA was 20/20 or better in 90%). Regarding safety, no eyes lost two lines of CDVA and 27% gained one line. Regarding predictability, 71% of re-treatments were within ±0.50 diopters. Topography-guided ablation was effective in enlarging the optical zone, recentering the optical zone, and reducing higher order aberrations. Topography-guided custom ablation appears to be an effective method for re-treatment procedures of symptomatic patients after myopic LASIK. [J Refract Surg. 2018;34(2):121-130.]. Copyright 2018, SLACK Incorporated.

  11. Fabrication of an Optical Fiber Micro-Sphere with a Diameter of Several Tens of Micrometers.

    PubMed

    Yu, Huijuan; Huang, Qiangxian; Zhao, Jian

    2014-06-25

    A new method to fabricate an integrated optical fiber micro-sphere with a diameter within 100 µm, based on the optical fiber tapering technique and the Taguchi method is proposed. Using a 125 µm diameter single-mode (SM) optical fiber, an optical fiber taper with a cone angle is formed with the tapering technique, and the fabrication optimization of a micro-sphere with a diameter of less than 100 µm is achieved using the Taguchi method. The optimum combination of process factors levels is obtained, and the signal-to-noise ratio (SNR) of three quality evaluation parameters and the significance of each process factors influencing them are selected as the two standards. Using the minimum zone method (MZM) to evaluate the quality of the fabricated optical fiber micro-sphere, a three-dimensional (3D) numerical fitting image of its surface profile and the true sphericity are subsequently realized. From the results, an optical fiber micro-sphere with a two-dimensional (2D) diameter less than 80 µm, 2D roundness error less than 0.70 µm, 2D offset distance between the micro-sphere center and the fiber stylus central line less than 0.65 µm, and true sphericity of about 0.5 µm, is fabricated.

  12. Multimodal imaging of central retinal disease progression in a 2 year mean follow up of Retinitis Pigmentosa

    PubMed Central

    Sujirakul, Tharikarn; Lin, Michael K.; Duong, Jimmy; Wei, Ying; Lopez-Pintado, Sara; Tsang, Stephen H.

    2015-01-01

    Purpose To determine the rate of progression and optimal follow up time in patients with advanced stage retinitis pigmentosa (RP) comparing the use of fundus autofluorescence imaging and spectral domain optical coherence tomography. Design Retrospective analysis of progression rate. Methods Longitudinal imaging follow up in 71 patients with retinitis pigmentosa was studied using the main outcome measurements of hyperautofluoresent ring horizontal diameter and vertical diameter along with ellipsoid zone line width from spectral domain optical coherence tomography. Test-retest reliability and the rate of progression were calculated. The interaction between the progression rates was tested for sex, age, mode of inheritance, and baseline measurement size. Symmetry of left and right eye progression rate was also tested. Results Significant progression was observed in >75% of patients during the 2 year mean follow up. The mean annual progression rates of ellipsoid zone line, and hyperautofluorescent ring horizontal diameter and vertical diameter were 0.45° (4.9%), 0.51° (4.1%), and 0.42° (4.0%), respectively. The e llipsoid zone line width, and hyperautofluorescent ring horizontal diameter and vertical diameter had low test-retest variabilities of 8.9%, 9.5% and 9.6%, respectively. This study is the first to demonstrate asymmetrical structural progression rate between right and left eye, which was found in 19% of patients. The rate of progression was significantly slower as the disease approached the fovea, supporting the theory that RP progresses in an exponential fashion. No significant interaction between progression rate and patient age, sex, or mode of inheritance was observed. Conclusions Fundus autofluorescence and optical coherence tomography detect progression in patients with RP reliably and with strong correlation. These parameters may be useful alongside functional assessments as the outcome measurements for future therapeutic trials. Follow-up at 1 year intervals should be adequate to efficiently detect progression. PMID:26164827

  13. Imaging Foveal Microvasculature: Optical Coherence Tomography Angiography Versus Adaptive Optics Scanning Light Ophthalmoscope Fluorescein Angiography.

    PubMed

    Mo, Shelley; Krawitz, Brian; Efstathiadis, Eleni; Geyman, Lawrence; Weitz, Rishard; Chui, Toco Y P; Carroll, Joseph; Dubra, Alfredo; Rosen, Richard B

    2016-07-01

    To compare the use of optical coherence tomography angiography (OCTA) and adaptive optics scanning light ophthalmoscope fluorescein angiography (AOSLO FA) for characterizing the foveal microvasculature in healthy and vasculopathic eyes. Four healthy controls and 11 vasculopathic patients (4 diabetic retinopathy, 4 retinal vein occlusion, and 3 sickle cell retinopathy) were imaged with OCTA and AOSLO FA. Foveal perfusion maps were semiautomatically skeletonized for quantitative analysis, which included foveal avascular zone (FAZ) metrics (area, perimeter, acircularity index) and vessel density in three concentric annular regions of interest. On each set of OCTA and AOSLO FA images, matching vessel segments were used for lumen diameter measurement. Qualitative image comparisons were performed by visual identification of microaneurysms, vessel loops, leakage, and vessel segments. Adaptive optics scanning light ophthalmoscope FA and OCTA showed no statistically significant differences in FAZ perimeter, acircularity index, and vessel densities. Foveal avascular zone area, however, showed a small but statistically significant difference of 1.8% (P = 0.004). Lumen diameter was significantly larger on OCTA (mean difference 5.7 μm, P < 0.001). Microaneurysms, fine structure of vessel loops, leakage, and some vessel segments were visible on AOSLO FA but not OCTA, while blood vessels obscured by leakage were visible only on OCTA. Optical coherence tomography angiography is comparable to AOSLO FA at imaging the foveal microvasculature except for differences in FAZ area, lumen diameter, and some qualitative features. These results, together with its ease of use, short acquisition time, and avoidance of potentially phototoxic blue light, support OCTA as a tool for monitoring ocular pathology and detecting early disease.

  14. Relationship between the Foveal Avascular Zone and Foveal Pit Morphology

    PubMed Central

    Dubis, Adam M.; Hansen, Benjamin R.; Cooper, Robert F.; Beringer, Joseph; Dubra, Alfredo; Carroll, Joseph

    2012-01-01

    Purpose. To assess the relationship between foveal pit morphology and size of the foveal avascular zone (FAZ). Methods. Forty-two subjects were recruited. Volumetric images of the macula were obtained using spectral domain optical coherence tomography. Images of the FAZ were obtained using either a modified fundus camera or an adaptive optics scanning light ophthalmoscope. Foveal pit metrics (depth, diameter, slope, volume, and area) were automatically extracted from retinal thickness data, whereas the FAZ was manually segmented by two observers to extract estimates of FAZ diameter and area. Results. Consistent with previous reports, the authors observed significant variation in foveal pit morphology. The average foveal pit volume was 0.081 mm3 (range, 0.022 to 0.190 mm3). The size of the FAZ was also highly variable between persons, with FAZ area ranging from 0.05 to 1.05 mm2 and FAZ diameter ranging from 0.20 to 1.08 mm. FAZ area was significantly correlated with foveal pit area, depth, and volume; deeper and broader foveal pits were associated with larger FAZs. Conclusions. Although these results are consistent with predictions from existing models of foveal development, more work is needed to confirm the developmental link between the size of the FAZ and the degree of foveal pit excavation. In addition, more work is needed to understand the relationship between these and other anatomic features of the human foveal region, including peak cone density, rod-free zone diameter, and Henle fiber layer. PMID:22323466

  15. Large-aperture interferometer using local reference beam

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1982-01-01

    A large-aperture interferometer was devised by adding a local-reference-beam-generating optical system to a schlieren system. Two versions of the interferometer are demonstrated, one employing 12.7 cm (5 in.) diameter schlieren optics, the other employing 30.48 cm (12 in.) diameter parabolic mirrors in an off-axis system. In the latter configuration a cylindrical lens is introduced near the light source to correct for astigmatism. A zone plate is a satisfactory decollimating element in the reference-beam arm of the interferometer. Attempts to increase the flux and uniformity of irradiance in the reference beam by using a diffuser are discussed.

  16. Generation of the Submicron Soft X-Ray Beam Using a Fresnel Zone Plate

    NASA Astrophysics Data System (ADS)

    Nishikino, M.; Kawazome, H.; Tanaka, M.; Kishimoto, M.; Hasegawa, N.; Ochi, Y.; Kawachi, T.; Sukegawa, K.; Yamatani, H.; Nagashima, K.; Kato, Y.

    We have developed a fully coherent x-ray laser at 13.9 nm and the application research has been started. The generation of submicron x-ray beam is important for the application of high intensity x-ray beam, such as the non-linear optics, the material science, and the biology. The submicron x-ray bee am is generated by the soft x-ray laser with using a Fresnel zone plate. The spot diameter is estimated about 680 nm (290 nm at FWHM) by the theoretical calculation. In this experiment, the diameter of the x-ray beam is measured by the knife-edge scan. The diameter and the intensity are estimated 730 nm (310 nm at FWHM) and 3x1011 W/cm2, respectively.

  17. Zone-boundary optimization for direct laser writing of continuous-relief diffractive optical elements.

    PubMed

    Korolkov, Victor P; Nasyrov, Ruslan K; Shimansky, Ruslan V

    2006-01-01

    Enhancing the diffraction efficiency of continuous-relief diffractive optical elements fabricated by direct laser writing is discussed. A new method of zone-boundary optimization is proposed to correct exposure data only in narrow areas along the boundaries of diffractive zones. The optimization decreases the loss of diffraction efficiency related to convolution of a desired phase profile with a writing-beam intensity distribution. A simplified stepped transition function that describes optimized exposure data near zone boundaries can be made universal for a wide range of zone periods. The approach permits a similar increase in the diffraction efficiency as an individual-pixel optimization but with fewer computation efforts. Computer simulations demonstrated that the zone-boundary optimization for a 6 microm period grating increases the efficiency by 7% and 14.5% for 0.6 microm and 1.65 microm writing-spot diameters, respectively. The diffraction efficiency of as much as 65%-90% for 4-10 microm zone periods was obtained experimentally with this method.

  18. Glaucoma in high myopia and parapapillary delta zone

    PubMed Central

    Weber, Pascal; Nagaoka, Natsuko; Ohno-Matsui, Kyoko

    2017-01-01

    Purpose To examine the prevalence of glaucomatous optic neuropathy (GON) in a medium myopic to highly myopic group of patients and its association with parapapillary gamma zone and parapapillary delta zone. Methods The retrospective observational hospital-based study included patients who had attended the Tokyo High Myopia Clinics within January 2012 and December 2012 and for whom fundus photographs were available. GON was defined based on the appearance of the optic nerve head on the fundus photographs. Results The study included 519 eyes (262 individuals) with a mean age of 62.0±14.3 years (range:13–89 years) and mean axial length of 29.5±2.2 mm (range:23.2–35.3mm). GON was present in 141 (27.2%; 95% confidence intervals (CI): 23.3, 31.0%) eyes. Prevalence of GON increased from 12.2% (1.7, 22.7) in eyes with an axial length of <26.5mm to 28.5% (24.4, 32.5) in eyes with an axial length of ≥26.5mm, to 32.6% (27.9, 37.2) in eyes with an axial length of ≥28mm, to 36.0% (30.5, 41.4) in eyes with an axial length of ≥29mm, and GON prevalence increased to 42.1% (35.5, 48.8) in eyes with an axial length of ≥30mm. In multivariate analysis, higher GON prevalence was associated (Nagelkerke r2: 0.28) with larger parapapillary delta zone diameter (P<0.001; odds ratio (OR):1.86;95%CI:1.33,2.61), longer axial length (P<0.001;OR:1.45;95%CI:1.26,1.67) and older age (P = 0.01;OR:1.03;95%CI:1.01,1.05). If parapapillary delta zone width was replaced by the vertical disc diameter, higher GON prevalence was associated (r2:0.24) with larger vertical optic disc diameter (P = 0.04;OR:1.70;95%CI:1.03,2.81), after adjusting for longer axial length (P<0.001;OR:1.44;95%CI:1.26,1.64) and older age (P<0.001;OR:1.04;95%CI:1.02,1.06). Conclusions Axial elongation associated increase in GON prevalence (mean: 28.1% in a medium to highly myopic study population) was associated with parapapillary delta zone as surrogate for an elongated peripapillary scleral flange and with larger optic disc size. PMID:28380081

  19. Production of fibers by a floating zone fiber drawing technique

    NASA Technical Reports Server (NTRS)

    Haggerty, J. S.

    1972-01-01

    A CO2 laser heated, floating zone fiber growth process was developed. The resulting Al2O3 fibers exhibited the high room temperature strengths for large diameter fibers as well as high specific creep rupture strengths observed at 1093 C and 1316 C (2000 F and 2400 F). Single crystal fibers of TiC and Y2O3 were also grown. An optical system was developed to focus four CO2 laser beams onto the surface of a feed rod permitting the formation of highly controllable molten zones. The optical system permitted energy densities and angle of incidence of the beams to be adjusted over wide ranges. This optical system was incorporated into a controlled atmosphere, fiber growth furnace. The two principal advantages of a CO2 laser heat source are that ambient atmospheres may be freely selected to optimize fiber properties and the laser has no inherent temperature limit, so extremely high melting point materials can be melted. Both advantages were demonstrated.

  20. C-reactive protein and chitinase 3-like protein 1 as biomarkers of spatial redistribution of retinal blood vessels on digital retinal photography in patients with diabetic retinopathy.

    PubMed

    Cekić, Sonja; Cvetković, Tatjana; Jovanović, Ivan; Jovanović, Predrag; Pesić, Milica; Stanković Babić, Gordana; Milenković, Svetislav; Risimić, Dijana

    2014-08-20

    The aim of the study was to investigate the correlation between the levels of C-reactive protein (CRP) and chitinase 3-like protein 1 (YKL-40) in blood samples with morpohometric parameters of retinal blood vessels in patients with diabetic retinopathy. Blood laboratory examination of 90 patients included the measurement of glycemia, HbA1C, total cholesterol, LDL-C, HDL-C, triglycerides and CRP. Levels of YKL-40 were detected and measured in serum by ELISA (Micro VueYKL-40 EIA Kit, Quidel Corporation, San Diego, USA). YKL-40 correlated positively with diameter and negatively with number of retinal blood vessels. The average number of the blood vessels per retinal zone was significantly higher in the group of patients with mild non-proliferative diabetic retinopathy than in the group with severe form in the optic disc and all five retinal zones. The average outer diameter of the evaluated retinal zones and optic disc vessels was significantly higher in the group with severe compared to the group with mild diabetic retinopathy. Morphological analysis of the retinal vessels on digital fundus photography and correlation with YKL-40 may be valuable for the follow-up of diabetic retinopathy.

  1. Detonation corner turning in vapor-deposited explosives using the micromushroom test

    NASA Astrophysics Data System (ADS)

    Tappan, Alexander S.; Yarrington, Cole D.; Knepper, Robert

    2017-06-01

    Detonation corner turning describes the ability of a detonation wave to propagate into unreacted explosive that is not immediately in the path normal to the wave. The classic example of corner turning is cylindrical and involves a small diameter explosive propagating into a larger diameter explosive as described by Los Alamos' Mushroom test (e.g. (Hill, Seitz et al. 1998)), where corner turning is inferred from optical breakout of the detonation wave. We present a complimentary method to study corner turning in millimeter-scale explosives through the use of vapor deposition to prepare the slab (quasi-2D) analog of the axisymmetric mushroom test. Because the samples are in a slab configuration, optical access to the explosive is excellent and direct imaging of the detonation wave and ``dead zone'' that results during corner turning is possible. Results are compared for explosives that demonstrate a range of behaviors, from pentaerythritol tetranitrate (PETN), which has corner turning properties that are nearly ideal; to HNAB (hexanitroazobenzene), which has corner turning properties that reveal a substantial dead zone. Results are discussed in the context of microstructure and detonation failure thickness.

  2. Characterized Brillouin scattering in silica optical fiber tapers based on Brillouin optical correlation domain analysis.

    PubMed

    Zou, Weiwen; Jiang, Wenning; Chen, Jianping

    2013-03-11

    This paper demonstrates stimulated Brillouin scattering (SBS) characterization in silica optical fiber tapers drawn from commercial single mode optical fibers by hydrogen flame. They have different waist diameters downscaled from 5 μm to 42 μm. The fully-distributed SBS measurement along the fiber tapers is implemented by Brillouin optical correlation domain analysis technique with millimeter spatial resolution. It is found that the Brillouin frequency shift (BFS) in the waist of all fiber tapers is approximately the same (i.e., ~11.17 GHz at 1550 nm). However, the BFS is gradually reduced and the Brillouin gain decreases from the waist to the untapered zone in each fiber taper.

  3. Optimizing alignment and growth of low-loss YAG single crystal fibers using laser heated pedestal growth technique.

    PubMed

    Bera, Subhabrata; Nie, Craig D; Soskind, Michael G; Harrington, James A

    2017-12-10

    The effect of misalignments of different optical components in the laser heated pedestal growth apparatus have been modeled using Zemax optical design software. By isolating the misalignments causing the non-uniformity in the melt zone, the alignment of the components was fine-tuned. Using this optimized alignment, low-loss YAG single crystal fibers of 120 μm diameter were grown, with total attenuation loss as low as 0.5 dB/m at 1064 nm.

  4. High efficiency x-ray nanofocusing by the blazed stacking of binary zone plates

    NASA Astrophysics Data System (ADS)

    Mohacsi, I.; Karvinen, P.; Vartiainen, I.; Diaz, A.; Somogyi, A.; Kewish, C. M.; Mercere, P.; David, C.

    2013-09-01

    The focusing efficiency of binary Fresnel zone plate lenses is fundamentally limited and higher efficiency requires a multi step lens profile. To overcome the manufacturing problems of high resolution and high efficiency multistep zone plates, we investigate the concept of stacking two different binary zone plates in each other's optical near-field. We use a coarse zone plate with π phase shift and a double density fine zone plate with π/2 phase shift to produce an effective 4- step profile. Using a compact experimental setup with piezo actuators for alignment, we demonstrated 47.1% focusing efficiency at 6.5 keV using a pair of 500 μm diameter and 200 nm smallest zone width. Furthermore, we present a spatially resolved characterization method using multiple diffraction orders to identify manufacturing errors, alignment errors and pattern distortions and their effect on diffraction efficiency.

  5. Characterization of CdGeAs 2 grown by the float zone technique under microgravity

    NASA Astrophysics Data System (ADS)

    Labrie, D.; George, A. E.; Simpson, A. M.; Paton, B. E.; Ginovker, A.; Saghir, M. Z.

    2000-01-01

    One polycrystalline and one single-crystal CdGeAs 2 feed rods with 9 mm diameter were processed by the float-zone technique under microgravity on SPACEHAB-SH04 during the STS-77 Space Shuttle Endeavour mission. An eutectic salt of LiCl and KCl was used as an encapsulant to suppress Cd and As evaporation from the melt. Post-flight chemical, structural, electronic, and optical characterization of the two samples is presented. Single-crystal growth was achieved using a seed crystal.

  6. Influence of the corneal optical zone on the point-spread function of the human eye

    NASA Astrophysics Data System (ADS)

    Rol, Pascal O.; Parel, Jean-Marie A.

    1992-08-01

    In refractive surgery, a number of surgical techniques have been developed to correct ametropia (refractive defaults) of the eye by changing the exterior shape of the cornea. Because the air-cornea interface makes up for about two thirds of the refractive power of the eye, a refractive correction can be obtained by a suitable reshaping of the cornea. Postoperatively, it is usually observed that the corneal region consists of two or more zones which are characterized by different optical parameters exhibiting in particular different focal distances. Under normal circumstances, only the central area of the cornea is involved in the formation of the retinal image. However, if part of the light entering the eye through peripheral portions of the cornea with refractive properties different from the central area can pass the pupil, an out-of-focus `ghost' image may be overlaid on the retina causing a blur. In such a case the resolution, and the contrast performance of the eye which is expected from a successful operation, may be reduced. This study is an attempt to quantify the vision blur as a function of the diameter of the central zone, i.e., the optical zone which is of importance for vision.

  7. Protection of extreme ultraviolet lithography masks. II. Showerhead flow mitigation of nanoscale particulate contamination [Protection of EUV lithography masks II: Showerhead flow mitigation of nanoscale particulate contamination

    DOE PAGES

    Klebanoff, Leonard E.; Torczynski, John R.; Geller, Anthony S.; ...

    2015-03-27

    An analysis is presented of a method to protect the reticle (mask) in an extreme ultraviolet (EUV) mask inspection tool using a showerhead plenum to provide a continuous flow of clean gas over the surface of a reticle. The reticle is suspended in an inverted fashion (face down) within a stage/holder that moves back and forth over the showerhead plenum as the reticle is inspected. It is essential that no particles of 10-nm diameter or larger be deposited on the reticle during inspection. Particles can originate from multiple sources in the system, and mask protection from each source is explicitlymore » analyzed. The showerhead plate has an internal plenum with a solid conical wall isolating the aperture. The upper and lower surfaces of the plate are thin flat sheets of porous-metal material. These porous sheets form the top and bottom showerheads that supply the region between the showerhead plate and the reticle and the region between the conical aperture and the Optics Zone box with continuous flows of clean gas. The model studies show that the top showerhead provides robust reticle protection from particles of 10-nm diameter or larger originating from the Reticle Zone and from plenum surfaces contaminated by exposure to the Reticle Zone. Protection is achieved with negligible effect on EUV transmission. Furthermore, the bottom showerhead efficiently protects the reticle from nanoscale particles originating from the Optics Zone.« less

  8. Progression of lamellar hole-associated epiretinal proliferation and retinal changes during long-term follow-up.

    PubMed

    Compera, Denise; Schumann, Ricarda G; Cereda, Matteo G; Acquistapace, Alessandra; Lita, Viviane; Priglinger, Siegfried G; Staurenghi, Giovanni; Bottoni, Ferdinando

    2018-01-01

    To report on progression of lamellar hole-associated epiretinal proliferation (LHEP) in eyes with lamellar macular holes (LMH) using spectral-domain optical coherence tomography (SD-OCT), and to correlate with intraretinal changes and visual function. From a retrospectively reviewed series of 167 eyes with non-full-thickness macular holes, we exclusively included a subgroup of 34 eyes with LMH and LHEP by SD-OCT evaluation. In these eyes, area of LHEP, intraretinal changes of defect diameter, central retinal thickness, defects of the ellipsoid zone and occurrence of a contractive epiretinal membrane were analysed. Additionally, clinical data were documented. Area of LHEP significantly increased during a mean follow-up period of 40.5 months (median 52 months). Analysing intraretinal changes, a significant enlargement of minimum and maximum horizontal lamellar hole diameter was found that correlated with the area of LHEP. Defects of the ellipsoid zone were seen in 65% of the eyes at baseline and in 85% at the end of follow-up. Increase of maximum horizontal hole diameter and ellipsoid zone defects correlated with a decline of visual acuity. Fifty per cent of patients with LMH and LHEP also demonstrated extrafoveal typical contractive epiretinal membranes with retinal folds. Long-term follow-up revealed an increase of the area of LHEP in eyes with LMH that correlated with the enlargement of lamellar hole diameter and ellipsoid zone defects. Our data delineate the progression of intraretinal changes in association with a decline of visual function in this subgroup of LMH eyes. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Functional optical zone of the cornea.

    PubMed

    Tabernero, Juan; Klyce, Stephen D; Sarver, Edwin J; Artal, Pablo

    2007-03-01

    When keratorefractive surgery is used to treat a central corneal diameter smaller than the resting pupil, visual symptoms of polyopia, ghosting, blur, haloes, and glare can be experienced. Progress has been made to enlarge the area of surgical treatment to extend beyond the photopic pupil; however, geometric limitations can pose restrictions to extend the treatment beyond the mesopic pupil diameter and can lead to impediments in night vision. The size of the treated area that has achieved good optical performance has been defined as the functional optical zone (FOZ). In this study the authors developed three objective methods to measure the FOZ. Corneal topography examination results from 1 eye of 34 unoperated normal eyes and 32 myopic eyes corrected by laser in situ keratomileusis (LASIK) were evaluated in three ways. First, a uniform axial power method (FOZ(A)) assessed the area of the postoperative cornea that was within a +/-0.5-D window centered on the mathematical mode. Second, FOZ was determined based on the corneal wavefront true RMS error as a function of the simulated pupil size (FOZ(R)). Third, FOZ was determined from the radial MTF, established at the retinal plane as a function of pupil size (FOZ(M)). Means for each of the FOZ methods (FOZ(A), FOZ(R), and FOZ(M)) were 7.6, 9.1, and 7.7 mm, respectively, for normal eyes. For LASIK-corrected eyes, these means were 6.0, 6.9, and 6.0 mm. Overall, an average decrease of 1.8 mm in the functional optical zone was found after the LASIK procedure. Correlations between the FOZ methods after LASIK showed acceptable and statistically significant values (R = 0.71, 0.70, and 0.61; P < 0.01). These methods will be useful to more fully characterize corneal treatment profiles after keratorefractive surgery. Because of its ease of implementation, direct spatial correspondence to corneal topography, and good correlation to the other more computationally intensive methods, the semiempiric uniform axial power method (FOZ(A)) appears to be most practical in use. The ability to measure the size of the FOZ should permit further evolution of keratorefractive surgical lasers and their algorithms to reduce the night vision impediments that can arise from functional optical zones that do not encompass the entire mesopic pupil.

  10. Optical properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Gugang

    This thesis addresses the optical properties of novel carbon filamentary nanomaterials: single-walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs), and SWNTs with interior C60 molecules ("peapods"). Optical reflectance spectra of bundled SWNTs are discussed in terms of their electronic energy band structure. An Effective Medium Model for a composite material was found to provide a reasonable description of the spectra. Furthermore, we have learned from optical absorption studies of DWNTs and C60-peapods that the host tube and the encapsulant interact weakly; small shifts in interband absorption structure were observed. Resonant Raman scattering studies on SWNTs synthesized via the HiPCO process show that the "zone-folding" approximation for phonons and electrons works reasonably well, even for small diameter (d < 1 nm) tubes. The energy of optical transitions between van Hove singularities in the electronic density of states computed from the "zone-folding" model (with gamma0 = 2.9 eV) agree well with the resonant conditions for Raman scattering. Small diameter tubes were found to exhibit additional sharp Raman bands in the frequency range 500-1200 cm-1 with an, as yet, undetermined origin. The Raman spectrum of a DWNT was found to be well described by a superposition of the Raman spectra expected for inner and outer tubes, i.e., no charge transfer occurs and the weak van der Waals (vdW) interaction between tubes does not have significant impact on the phonons. A ˜7 cm-1 downshift of the small diameter, inner-tube tangential mode frequency was observed, however, but attributed to a tube wall curvature effect, rather than the vdW interaction. Finally, we studied the chemical doping of DWNTs, where the dopant (Br anions) is chemically bound to the outside of the outer tube. The doped DWNT system is a model for a cylindrical molecular capacitor. We found experimentally that 90% of the positive charge resides on the outer tube, so that most of electric field on the inner tube is screened, i.e., we have observed a molecular Faraday cage effect. A self-consistent theoretical model in the tight-binding approximation with a classical electrostatic energy term is in good agreement with our experimental results.

  11. Effect of shoulder to pin ratio on magnesium alloy Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Othman, N. H.; Ishak, M.; Shah, L. H.

    2017-09-01

    This study focuses on the effect of shoulder to pin diameter ratio on friction stir welding of magnesium alloy AZ31. Two pieces of AZ31 alloy with thickness of 2 mm were friction stir welded by using conventional milling machine. The shoulder to pin diameter ratio used in this experiment are 2.25, 2.5, 2.75, 3, 3.33, 3.66, 4.5, 5 and 5.5. The rotational speed and welding speed used in this study are 1000 rpm and 100 mm/min, respectively. Microstructure observation of welded area was studied by using optical microscope. Equiaxed grains were observed at the TMAZ and stir zone indicating fully plastic deformation. The grain size of stir zone increased with decreasing shoulder to pin ratio from ratio 3.33 to 5.5 due to higher heat input. It is observed that, surface galling and faying surface defect is produced when excessive heat input is applied. To evaluate the mechanical properties of this specimen, tensile test was used in this study. Shoulder to pin ratio 5.5 shows lowest tensile strength while shoulder to pin diameter ratio 3.33 shows highest tensile strength with weld efficiency 91 % from based metal.

  12. Fracture process zone in granite

    USGS Publications Warehouse

    Zang, A.; Wagner, F.C.; Stanchits, S.; Janssen, C.; Dresen, G.

    2000-01-01

    In uniaxial compression tests performed on Aue granite cores (diameter 50 mm, length 100 mm), a steel loading plate was used to induce the formation of a discrete shear fracture. A zone of distributed microcracks surrounds the tip of the propagating fracture. This process zone is imaged by locating acoustic emission events using 12 piezoceramic sensors attached to the samples. Propagation velocity of the process zone is varied by using the rate of acoustic emissions to control the applied axial force. The resulting velocities range from 2 mm/s in displacement-controlled tests to 2 ??m/s in tests controlled by acoustic emission rate. Wave velocities and amplitudes are monitored during fault formation. P waves transmitted through the approaching process zone show a drop in amplitude of 26 dB, and ultrasonic velocities are reduced by 10%. The width of the process zone is ???9 times the grain diameter inferred from acoustic data but is only 2 times the grain size from optical crack inspection. The process zone of fast propagating fractures is wider than for slow ones. The density of microcracks and acoustic emissions increases approaching the main fracture. Shear displacement scales linearly with fracture length. Fault plane solutions from acoustic events show similar orientation of nodal planes on both sides of the shear fracture. The ratio of the process zone width to the fault length in Aue granite ranges from 0.01 to 0.1 inferred from crack data and acoustic emissions, respectively. The fracture surface energy is estimated from microstructure analysis to be ???2 J. A lower bound estimate for the energy dissipated by acoustic events is 0.1 J. Copyright 2000 by the American Geophysical Union.

  13. Corneal Epithelium Thickness Profile in 614 Normal Chinese Children Aged 7-15 Years Old.

    PubMed

    Ma, Yingyan; He, Xiangui; Zhu, Xiaofeng; Lu, Lina; Zhu, Jianfeng; Zou, Haidong

    2016-03-23

    The purpose of the study is to describe the values and distribution of corneal epithelium thickness (CET) in normal Chinese school-aged children, and to explore associated factors with CET. CET maps were measured by Fourier-domain optical coherence tomography (FD-OCT) in normal Chinese children aged 7 to 15 years old from two randomly selected schools in Shanghai, China. Children with normal intraocular pressure were further examined for cycloplegic autorefraction, corneal curvature radius (CCR) and axial length. Central (2-mm diameter area), para-central (2- to 5-mm diameter area), and peripheral (5- to 6-mm diameter area) CET in the superior, superotemporal, temporal, inferotemporal, inferior, inferonasal, nasal, superonasal cornea; minimum, maximum, range, and standard deviation of CET within the 5-mm diameter area were recorded. The CET was thinner in the superior than in the inferior and was thinner in the temporal than in the nasal. The maximum CET was located in the inferior zone, and the minimum CET was in the superior zone. A thicker central CET was associated with male gender (p = 0.009) and older age (p = 0.037) but not with CCR (p = 0.061), axial length (p = 0.253), or refraction (p = 0.351) in the multiple regression analyses. CCR, age, and gender were correlated with para-central and peripheral CET.

  14. Optical Plasma Control During ARC Carbon Nanotube Growth

    NASA Technical Reports Server (NTRS)

    Hinkov, I.; Farhat, S.; DeLaChapelle, M. Lamy; Fan, S. S.; Han, H. X.; Li, G. H.; Scott, C. D.

    2001-01-01

    To improve nanotube production, we developed a novel optical control technique, based on the shape of the visible plasma zone created between the anode and the cathode in the direct current (DC) arc process. For a given inert gas, we adjust the anode to cathode distance (ACD) in order to obtain strong visible vortices around the cathode. This enhance anode vaporization, which improve nanotubes formation. In light of our experimental results, we focus our discussion on the relationship between plasma parameters and nanotube growth. Plasma temperature control during arc process is achieved using argon, helium, and their mixtures as a buffer gases. The variation of the gas mixture from pure argon to pure helium changes plasma temperature. As a consequence, the microscopic characteristics of nanotubes as diameter distribution is changed moving from smaller values for argon to higher diameters for helium. We also observe a dependence of the macroscopic characteristics of the final products as Brunauer-Emmett-Teller (BET) surface area.

  15. Growth and Study of Nonlinear Optical Materials for Frequency Conversion Devices with Applications in Defense and Security

    DTIC Science & Technology

    2015-03-01

    contemporary heat seeking missiles are rather flying computers—they cannot be fooled easily but can see the target in fog and clouds and even...usually not protected. Obviously, the IR countermeasure development is a step behind the heat seeking missile development, which means...horizontal reactor customized for low pressure operation (Fig. 3). The 3-inch diameter quartz tube was heated in a 3-zone resistive furnace. Quartz boat

  16. Laser treatment of female stress urinary incontinence: optical, thermal, and tissue damage simulations

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Chang, Chun-Hung; Myers, Erinn M.; Kennelly, Michael J.; Fried, Nathaniel M.

    2016-02-01

    Treatment of female stress urinary incontinence (SUI) by laser thermal remodeling of subsurface tissues is studied. Light transport, heat transfer, and thermal damage simulations were performed for transvaginal and transurethral methods. Monte Carlo (MC) provided absorbed photon distributions in tissue layers (vaginal wall, endopelvic fascia, urethral wall). Optical properties (n,μa,μs,g) were assigned to each tissue at λ=1064 nm. A 5-mm-diameter laser beam and power of 5 W for 15 s was used, based on previous experiments. MC output was converted into absorbed energy, serving as input for ANSYS finite element heat transfer simulations of tissue temperatures over time. Convective heat transfer was simulated with contact cooling probe set at 0 °C. Thermal properties (κ,c,ρ) were assigned to each tissue layer. MATLAB code was used for Arrhenius integral thermal damage calculations. A temperature matrix was constructed from ANSYS output, and finite sum was incorporated to approximate Arrhenius integral calculations. Tissue damage properties (Ea,A) were used to compute Arrhenius sums. For the transvaginal approach, 37% of energy was absorbed in endopelvic fascia layer with 0.8% deposited beyond it. Peak temperature was 71°C, treatment zone was 0.8-mm-diameter, and almost all of 2.7-mm-thick vaginal wall was preserved. For transurethral approach, 18% energy was absorbed in endopelvic fascia with 0.3% deposited beyond it. Peak temperature was 80°C, treatment zone was 2.0-mm-diameter, and only 0.6 mm of 2.4-mm-thick urethral wall was preserved. A transvaginal approach is more feasible than transurethral approach for laser treatment of SUI.

  17. High pressure fiber optic sensor system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guida, Renato; Xia, Hua; Lee, Boon K

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  18. Comparison of Aberrations After Standard and Customized Refractive Surgery

    NASA Astrophysics Data System (ADS)

    Fang, L.; He, X.; Wang, Y.

    2013-09-01

    To detect possible differences in residual wavefront aberrations between standard and customized laser refractive surgery based onmathematical modeling, the residual optical aberrations after conventional and customized laser refractive surgery were compared accordingto the ablation profile with transition zone. The results indicated that ablation profile has a significant impact on the residual aberrations.The amount of residual aberrations for conventional correction is higher than that for customized correction. Additionally, the residualaberrations for high myopia eyes are markedly larger than those for moderate myopia eyes. For a 5 mm pupil, the main residual aberrationterm is coma and yet it is spherical aberration for a 7 mm pupil. When the pupil diameter is the same as optical zone or greater, themagnitudes of residual aberrations is obviously larger than that for a smaller pupil. In addition, the magnitudes of the residual fifth orsixth order aberrations are relatively large, especially secondary coma in a 6 mm pupil and secondary spherical aberration in a 7 mm pupil.Therefore, the customized ablation profile may be superior to the conventional correction even though the transition zone and treatmentdecentration are taken into account. However, the customized ablation profile will still induce significant amount of residual aberrations.

  19. The historical trend in float zone crystal diameters and power requirements for float zoned silicon crystals

    NASA Technical Reports Server (NTRS)

    Kramer, H. G.

    1981-01-01

    The power needed to zone silicon crystals by radio frequency heating was analyzed. The heat loss mechanisms are examined. Curves are presented for power as a function of crystal diameter for commercial silicon zoning.

  20. Exoplanets in the M2K Survey

    NASA Astrophysics Data System (ADS)

    Boyajian, Tabetha; Fischer, Debra; Gaidos, Eric; Giguere, Matt

    2013-07-01

    Late type stars are ideal targets for the detection of low-mass planets residing in habitable zones. In such systems, not only is the stellar noise a minimum, but the lower stellar mass affords larger reflex velocities and the lower stellar luminosity moves the habitable zone inward. The M2K program is a high precision Doppler survey monitoring a couple hundred late-type stars over the past few years in search for such important exoplanetary systems. We present updated orbits of known exoplanet systems and newly detected exoplanet systems that have resulted from this program. We also advertise the Planethunters.org "Guest Scientist" program as well as our survey to measure stellar diameters and temperatures with long baseline optical interferometry.

  1. Effect of age, decentration, aberrations and pupil size on subjective image quality with concentric bifocal optics.

    PubMed

    Rio, David; Woog, Kelly; Legras, Richard

    2016-07-01

    We investigated the impact of lens centration, wearer aberrations, pupil size and age on the optics of two bifocal contact lenses using image simulation. Fourteen conditions (i.e. two optical profiles with two and eight concentric zones; two conditions of centration: centred and 0.77 mm decentred; and three conditions of aberrations: 0, 0.15 and 0.35 μm RMS; three pupil sizes: 3, 4.5 and 6 mm) were tested on two populations (i.e. 20-40 and 40-60 years old) using a numerical simulation method. For each condition, images were calculated for proximities ranging from -4D to + 2D with steps of 0.25D. Subjects graded the quality of each simulated image (i.e. a target 'HEV' of 0.4 logMAR) on a continuous scale from 0 to 5. To limit the effect of the observer's own aberrations, subjects viewed the displayed images through a 3-mm pupil and their optimal correction. Both populations reported similar image quality (i.e. average absolute difference of 0.23) except for sharp and low contrast images, which obtained slightly higher grades with younger subjects, probably due to a better contrast sensitivity in this population. Typical decentration had no effect on bifocal contact lenses wearers' vision, as the ratio between areas dedicated to near and distance vision did not change. Aberrations (i.e. mainly 0.24 μm of spherical aberration on a 4.5-mm pupil) reduced the addition of the two radial zones bifocal optics and introduced a hyperopic shift (i.e. 0.50D) of the through-focus image quality for the eight radial zone bifocal lens. The combination of typical aberrations with typical decentration created the same effect as typical aberrations alone, meaning that aberration impact was stronger than decentration impact. The two radial zone bifocal lens was dependent on the pupil whereas the eight radial zone lens was not. When fitting new bifocal optics, the aberrations of the patients, as well as their pupil diameter, are the main subject dependent parameters influencing quality of vision. Typical contact lens decentration and lower cortical treatment efficiency of retinal images of older subjects had relatively little impact. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  2. Utility of optical heterodyne displacement sensing and laser ultrasonics as in situ process control diagnostic for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Manzo, Anthony J.; Helvajian, Henry

    2018-04-01

    An in situ process control monitor is presented by way of experimental results and simulations, which utilizes a pulsed laser ultrasonic source as a probe and an optical heterodyne displacement meter as a sensor. The intent is for a process control system that operates in near real time, is nonintrusive, and in situ: A necessary requirement for a serial manufacturing technology such as additive manufacturing (AM). We show that the diagnostic approach has utility in characterizing the local temperature, the area of the heat-affected zone, and the surface roughness (Ra ˜ 0.4 μm). We further demonstrate that it can be used to identify solitary defects (i.e., holes) on the order of 10 to 20 μm in diameter. Moreover, the technique shows promise in measuring properties of materials with features that have a small radius of curvature. We present results for a thin wire of ˜650 μm in diameter. By applying multiple pairs of probe-sensor systems, the diagnostic could also measure the local cooling rate on the scale of 1 μs. Finally, while an obvious application is used in AM technology, then all optical diagnostics could be applied to other manufacturing technologies.

  3. Fiber sensor on the basis of Ge26As17Se25Te32 glass for FEWS analysis

    NASA Astrophysics Data System (ADS)

    Velmuzhov, A. P.; Shiryaev, V. S.; Sukhanov, M. V.; Kotereva, T. V.; Churbanov, M. F.; Zernova, N. S.; Plekhovich, A. D.

    2018-01-01

    The high-purity Ge26As17Se25Te32 glass sample was prepared by chemical distillation purification method. This glass is characterized by high value of glass transition temperature (263°С), high optical transparency in the spectral range of 2-10 μm, and low content of residual impurities. The Ge26As17Se25Te32 glass rods were drawn into single-index fibers using the "rod" method and the single crucible technique. The optical losses in the 400 μm diameter fiber, fabricated by the "rod" method, were within 0.3-1 dB/m in the spectral range 5.2-9.3 μm. The minimum optical losses in the 320 μm diameter fiber, fabricated by the "crucible" technique, were 1.6-1.7 dB/m in the spectral range 6-8.5 μm. Using these Ge26As17Se25Te32 glass fibers as a sensor, the aqueous solutions of acetone (0-20 mol.%) and ethanol (0-90 mol.%) were analyzed by fiber evanescent wave spectroscopy. Peculiarities in the change of the integrated intensity and spectral position of absorption bands of these organic substances in dependence on the analyte composition and the length of the sensitive zone were established.

  4. Calculation of laser pulse distribution maps for corneal reshaping with a scanning beam

    NASA Astrophysics Data System (ADS)

    Manns, Fabrice; Shen, Jin-Hui; Soederberg, Per G.; Matsui, Takaaki; Parel, Jean-Marie A.

    1995-05-01

    A method for calculating pulse distribution maps for scanning laser corneal surgery is presented. The accuracy, the smoothness of the corneal shape, and the duration of surgery were evaluated for corrections of myopia by using computer simulations. The accuracy and the number of pulses were computed as a function of the beam diameter, the diameter of the treatment zone, and the amount of attempted flattening. The ablation is smooth when the spot overlap is 80% or more. The accuracy does not depend on the beam diameter or on the diameter of the ablation zone when the ablation zone is larger than 5 mm. With an overlap of 80% and an ablation zone larger than 5 mm, the error is 5% of the attempted flattening, and 610 pulses are needed per Diopter of correction with a beam diameter of 1 mm. Pulse maps for the correction of astigmatism were computed and evaluated. The simulations show that with 60% overlap, a beam diameter of 1 mm, and a 5 mm treatment zone, 6 D of astigmatism can be corrected with an accuracy better than 1.8 D. This study shows that smooth and accurate ablations can be produced with a scanning spot.

  5. Development of the vertical Bridgman technique for 6-inch diameter c-axis sapphire growth supported by numerical simulation

    NASA Astrophysics Data System (ADS)

    Miyagawa, Chihiro; Kobayashi, Takumi; Taishi, Toshinori; Hoshikawa, Keigo

    2014-09-01

    Based on the growth of 3-inch diameter c-axis sapphire using the vertical Bridgman (VB) technique, numerical simulations were made and used to guide the growth of a 6-inch diameter sapphire. A 2D model of the VB hot-zone was constructed, the seeding interface shape of the 3-inch diameter sapphire as revealed by green laser scattering was estimated numerically, and the temperature distributions of two VB hot-zone models designed for 6-inch diameter sapphire growth were numerically simulated to achieve the optimal growth of large crystals. The hot-zone model with one heater was selected and prepared, and 6-inch diameter c-axis sapphire boules were actually grown, as predicted by the numerical results.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baines, Ellyn K.; Armstrong, J. Thomas, E-mail: ellyn.baines@nrl.navy.mil, E-mail: tarmstr@crater.nrl.navy.mil

    We measured the angular diameter of the exoplanet host star {epsilon} Eridani using the Navy Optical Interferometer. We determined its physical radius, effective temperature, and mass by combining our measurement with the star's parallax, photometry from the literature, and the Yonsei-Yale isochrones, respectively. We used the resulting stellar mass of 0.82 {+-} 0.05 M{sub Sun} plus the mass function from Benedict et al. to calculate the planet's mass, which is 1.53 {+-} 0.22 M{sub Jupiter}. Using our new effective temperature, we also estimated the extent of the habitable zone for the system.

  7. Effect of process parameters on microstructure and mechanical properties of friction stir welded joints: A review

    NASA Astrophysics Data System (ADS)

    Wanare, S. P.; Kalyankar, V. D.

    2018-04-01

    Friction stir welding is emerging as a promising technique for joining of lighter metal alloys due to its several advantages over conventional fusion welding processes such as low thermal distortion, good mechanical properties, fine weld joint microstructure, etc. This review article mainly focuses on analysis of microstructure and mechanical properties of friction stir welded joints. Various microstructure characterization techniques used by previous researchers such as optical microscopes, x-ray diffraction, electron probe microscope, transmission electron microscope, scanning electron microscopes with electron back scattered diffraction, electron dispersive microscopy, etc. are thoroughly overviewed and their results are discussed. The effects of friction stir welding process parameters such as tool rotational speed, welding speed, tool plunge depth, axial force, tool shoulder diameter to tool pin diameter ratio, tool geometry etc. on microstructure and mechanical properties of welded joints are studied and critical observations are noted down. The microstructure examination carried out by previous researchers on various zones of welded joints such as weld zone, heat affected zone and base metal are studied and critical remarks have been presented. Mechanical performances of friction stir welded joints based on tensile test, micro-hardness test, etc. are discussed. This article includes exhaustive literature review of standard research articles which may become ready information for subsequent researchers to establish their line of action.

  8. X-Ray Diffractive Optics

    NASA Technical Reports Server (NTRS)

    Dennis, Brian; Li, Mary; Skinner, Gerald

    2013-01-01

    X-ray optics were fabricated with the capability of imaging solar x-ray sources with better than 0.1 arcsecond angular resolution, over an order of magnitude finer than is currently possible. Such images would provide a new window into the little-understood energy release and particle acceleration regions in solar flares. They constitute one of the most promising ways to probe these regions in the solar atmosphere with the sensitivity and angular resolution needed to better understand the physical processes involved. A circular slit structure with widths as fine as 0.85 micron etched in a silicon wafer 8 microns thick forms a phase zone plate version of a Fresnel lens capable of focusing approx. =.6 keV x-rays. The focal length of the 3-cm diameter lenses is 100 microns, and the angular resolution capability is better than 0.1 arcsecond. Such phase zone plates were fabricated in Goddard fs Detector Development Lab. (DDL) and tested at the Goddard 600-microns x-ray test facility. The test data verified that the desired angular resolution and throughput efficiency were achieved.

  9. Bimodal electric tissue ablation (BETA) - in-vivo evaluation of the effect of applying direct current before and during radiofrequency ablation of porcine liver.

    PubMed

    Cockburn, J F; Maddern, G J; Wemyss-Holden, S A

    2007-03-01

    To examine the effect of applying increasing amounts of direct current (DC) before and during alternating current radiofrequency ablation of porcine liver. Using a Radiotherapeutics RF3000 generator, a 9 V AC/DC transformer and a 16 G plain aluminium tube as an electrode, a control group of 24 porcine hepatic radiofrequency ablation zones was compared with 24 zones created using a bimodal electric tissue ablation (BETA) technique in three pigs. All ablations were terminated when tissue impedance rose to greater than 999 Omega or radiofrequency energy input fell below 5 W on three successive measurements taken at 1 min intervals. BETA ablations were performed in two phases: an initial phase of variable duration DC followed by a second phase during which standard radiofrequency ablation was applied simultaneously with DC. During this second phase, radiofrequency power input was regulated by the feedback circuitry of the RF3000 generator according to changes in tissue impedance. The diameters (mm) of each ablation zone were measured by two observers in two planes perpendicular to the plane of needle insertion. The mean short axis diameter of each ablation zone was subjected to statistical analysis. With increased duration of prior application of DC, there was a progressive increase in the diameter of the ablation zone (p<0.001). This effect increased sharply up to 300 s of pre-treatment after which a further increase in diameter occurred, but at a much lesser rate. A maximum ablation zone diameter of 32 mm was produced (control diameters 10-13 mm). Applying a 9 V DC to porcine liver in vivo, and continuing this DC application during subsequent radiofrequency ablation, results in larger ablation zone diameters compared with radiofrequency ablation alone.

  10. Numerical calculation and experimental research on crack arrest by detour effect and joule heating of high pulsed current in remanufacturing

    NASA Astrophysics Data System (ADS)

    Yu, Jing; Zhang, Hongchao; Deng, Dewei; Hao, Shengzhi; Iqbal, Asif

    2014-07-01

    The remanufacturing blanks with cracks were considered as irreparable. With utilization of detour effect and Joule heating of pulsed current, a technique to arrest the crack in martensitic stainless steel FV520B is developed. According to finite element theory, the finite element(FE) model of the cracked rectangular specimen is established firstly. Then, based on electro-thermo-structure coupled theory, the distributions of current density, temperature field, and stress field are calculated for the instant of energizing. Furthermore, the simulation results are verified by some corresponding experiments performed on high pulsed current discharge device of type HCPD-I. Morphology and microstructure around the crack tip before and after electro pulsing treatment are observed by optical microscope(OM) and scanning electron microscope(SEM), and then the diameters of fusion zone and heat affected zone(HAZ) are measured in order to contrast with numerical calculation results. Element distribution, nano-indentation hardness and residual stress in the vicinity of the crack tip are surveyed by energy dispersive spectrometer(EDS), scanning probe microscopy(SPM) and X-ray stress gauge, respectively. The results show that the obvious partition and refined grain around the crack tip can be observed due to the violent temperature change. The contents of carbon and oxygen in fusion zone and HAZ are higher than those in matrix, and however the hardness around the crack tip decreases. Large residual compressive stress is induced in the vicinity of the crack tip and it has the same order of magnitude for measured results and numerical calculation results that is 100 MPa. The relational curves between discharge energies and diameters of the fusion zone and HAZ are obtained by experiments. The difference of diameter of fusion zone between measured and calculated results is less than 18.3%. Numerical calculation is very useful to define the experimental parameters. An effective method to prevent further extension of the crack is presented and can provide a reference for the compressor rotor blade remanufacturing.

  11. SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY REVEALS INTERNAL LIMITING MEMBRANE PEELING ALTERS DEEP RETINAL VASCULATURE.

    PubMed

    Michalewska, Zofia; Nawrocki, Jerzy

    2018-04-30

    To describe morphology of retinal and choroidal vessels in swept-source optical coherence tomography angiography before and after vitrectomy with the temporal inverted internal limiting membrane (ILM) flap technique for full-thickness macular holes. Prospective, observational study of 36 eyes of 33 patients with full-thickness macular holes swept-source optical coherence tomography angiography was performed in patients before and 1 month after vitrectomy. Vitrectomy with the temporal inverted ILM flap technique was performed. In this method, ILM is peeled only at one side of the fovea. An ILM flap is created to cover the macular hole. Comparison of retina vasculature in the areas of ILM peeling vs. no ILM peeling at 1 and 3 months after successful vitrectomy was performed. The study demonstrated lower density of vessels in the deep retinal plexus in the area where ILM was peeled as compared to the rest of the fovea. Visual acuity and central retinal thickness 1 month after surgery correlates with fovea avascular zone diameter in deep retinal layers at the same time point (P = 0.001). This study confirmed that ILM peeling might alter blood flow in deep retinal vessels below the peeling area in the early postoperative period. The area of the fovea avascular zone corresponds to functional results at the same time point.

  12. Studying the non-thermal plasma jet characteristics and application on bacterial decontamination

    NASA Astrophysics Data System (ADS)

    Al-rawaf, Ali F.; Fuliful, Fadhil Khaddam; Khalaf, Mohammed K.; Oudah, Husham. K.

    2018-04-01

    Non-thermal atmospheric-pressure plasma jet represents an excellent approach for the decontamination of bacteria. In this paper, we want to improve and characterize a non-thermal plasma jet to employ it in processes of sterilization. The electrical characteristics was studied to describe the discharge of the plasma jet and the development of plasma plume has been characterized as a function of helium flow rate. Optical emission spectroscopy was employed to detect the active species inside the plasma plume. The inactivation efficiency of non-thermal plasma jet was evaluated against Staphylococcus aureus bacteria by measuring the diameter of inhibition zone and the number of surviving cells. The results presented that the plasma plume temperature was lower than 34° C at a flow rate of 4 slm, which will not cause damage to living tissues. The diameter of inhibition zone is directly extended with increased exposure time. We confirmed that the inactivation mechanism was unaffected by UV irradiation. In addition, we concluded that the major reasons for the inactivation process of bacteria is because of the action of the reactive oxygen and nitrogen species which formed from ambient air, while the charged particles played a minor role in the inactivation process.

  13. Correlation of MIC value and disk inhibition zone diameters in clinical Legionella pneumophila serogroup 1 isolates.

    PubMed

    Bruin, Jacob P; Diederen, Bram M W; Ijzerman, Ed P F; Den Boer, Jeroen W; Mouton, Johan W

    2013-07-01

    Routine use of disk diffusion tests for detecting antibiotic resistance in Legionella pneumophila has not been described. The goal of this study was to determine the correlation of MIC values and inhibition zone diameter (MDcorr) in clinical L. pneumophila isolates. Inhibition zone diameter of 183 L. pneumophila clinical isolates were determined for ten antimicrobials. Disk diffusion results were correlated with MICs as determined earlier with E-tests. Overall the correlation of MIC values and inhibition zone diameters (MDcorr) of the tested antimicrobials is good, and all antimicrobials showed a WT distribution. Of the tested fluoroquinolones levofloxacin showed the best MDcorr. All macrolides showed a wide MIC distribution and good MDcorr. The MDcorr for cefotaxim, doxycycline and tigecycline was good, while for rifampicin and moxifloxacin, they were not. Overall good correlation between MIC value and disk inhibition zone were found for the fluoroquinolones, macrolides and cefotaxim. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Variable photonic crystal fiber optical attenuator combining air hole reduction induced radiation and bending loss

    NASA Astrophysics Data System (ADS)

    Yokota, Hirohisa; Sano, Tomohiko; Imai, Yoh

    2018-06-01

    Recently, an optical attenuator has been important in fiber optic communication systems, because a transmission power in fiber has become higher due to a channel increment in wavelength division multiplexing transmission. A photonic crystal fiber (PCF) optical attenuator is fabricated by air hole diameter reduction in a part of PCF in which radiations are caused in the air hole diameter reduced part of PCF. A PCF optical attenuator has a high power resistance feature due to its radiation-induced operation of optical attenuation. In this paper, we proposed a variable PCF optical attenuator in which a bend was applied to the air hole diameter reduced part in PCF optical attenuator that was fabricated by CO2 laser irradiation. In PCF optical attenuator fabrication, the attenuation was adjusted by the reduced air hole diameter with laser irradiation time control. It was demonstrated that 10.6-13.5 dB of variable attenuation was obtained at 1550 nm-wavelength with 0°-90° bending angle applied to the air hole diameter reduced part in PCF optical attenuator.

  15. Variable photonic crystal fiber optical attenuator combining air hole reduction induced radiation and bending loss

    NASA Astrophysics Data System (ADS)

    Yokota, Hirohisa; Sano, Tomohiko; Imai, Yoh

    2018-02-01

    Recently, an optical attenuator has been important in fiber optic communication systems, because a transmission power in fiber has become higher due to a channel increment in wavelength division multiplexing transmission. A photonic crystal fiber (PCF) optical attenuator is fabricated by air hole diameter reduction in a part of PCF in which radiations are caused in the air hole diameter reduced part of PCF. A PCF optical attenuator has a high power resistance feature due to its radiation-induced operation of optical attenuation. In this paper, we proposed a variable PCF optical attenuator in which a bend was applied to the air hole diameter reduced part in PCF optical attenuator that was fabricated by CO2 laser irradiation. In PCF optical attenuator fabrication, the attenuation was adjusted by the reduced air hole diameter with laser irradiation time control. It was demonstrated that 10.6-13.5 dB of variable attenuation was obtained at 1550 nm-wavelength with 0°-90° bending angle applied to the air hole diameter reduced part in PCF optical attenuator.

  16. Four-zone varifocus mirrors with adaptive control of primary and higher-order spherical aberration

    PubMed Central

    Lukes, Sarah J.; Downey, Ryan D.; Kreitinger, Seth T.; Dickensheets, David L.

    2017-01-01

    Electrostatically actuated deformable mirrors with four concentric annular electrodes can exert independent control over defocus as well as primary, secondary, and tertiary spherical aberration. In this paper we use both numerical modeling and physical measurements to characterize recently developed deformable mirrors with respect to the amount of spherical aberration each can impart, and the dependence of that aberration control on the amount of defocus the mirror is providing. We find that a four-zone, 4 mm diameter mirror can generate surface shapes with arbitrary primary, secondary, and tertiary spherical aberration over ranges of ±0.4, ±0.2, and ±0.15 μm, respectively, referred to a non-normalized Zernike polynomial basis. We demonstrate the utility of this mirror for aberration-compensated focusing of a high NA optical system. PMID:27409212

  17. Contralateral eye comparison on changes in visual field following laser in situ keratomileusis vs photorefractive keratectomy for myopia: a randomized clinical trial.

    PubMed

    Mostafaei, A; Sedgipour, M R; Sadeghi-Bazargani, H

    2009-12-01

    Study purpose was to compare the changes of Visual Field (VF) during laser in situ Keratomileusis (LASIK) VS photorefractive keratectomy (PRK). This randomized, double blind, study involved 54 eyes of 27 Myopia patients who underwent LASIK or PRK procedures for contralateral eyes in each patient. Using Humphrey 30-2 SITA standard, the Mean Defect (MD) and Pattern Standard Deviation (PSD) were evaluated preoperatively and three months after surgery. At the same examination optical zone size, papillary and corneal diameters were also evaluated. There was no clinically significant difference in PSD and MD measurements between treated eyes with LASIK or PRK in any zone pre and postoperatively. VF may not be affected by corneal changes induced by LASIK or PRK three months after surgery.

  18. How the optic nerve allocates space, energy capacity, and information

    PubMed Central

    Perge, Janos A.; Koch, Kristin; Miller, Robert; Sterling, Peter; Balasubramanian, Vijay

    2009-01-01

    Fiber tracts should use space and energy efficiently because both resources constrain neural computation. We found for a myelinated tract (optic nerve) that astrocytes use nearly 30% of the space and more than 70% of the mitochondria, establishing the significance of astrocytes for the brain’s space and energy budgets. Axons are mostly thin with a skewed distribution peaking at 0.7µm, near the lower limit set by channel noise. This distribution is matched closely by the distribution of mean firing rates measured under naturalistic conditions, suggesting that firing rate increases proportionally with axon diameter. In axons thicker than 0.7µm mitochondria occupy a constant fraction of axonal volume -- thus, mitochondrial volumes rise as the diameter squared. These results imply a law of diminishing returns: twice the information rate requires more than twice the space and energy capacity. We conclude that the optic nerve conserves space and energy by sending most information at low rates over fine axons with small terminal arbors, and sending some information at higher rates over thicker axons with larger terminal arbors – but only where more bits/s are needed for a specific purpose. Thicker axons seem to be needed, not for their greater conduction velocity (nor other intrinsic electrophysiological purpose), but instead to support larger terminal arbors and more active zones that transfer information synaptically at higher rates. PMID:19535603

  19. The Effect of Spectacle Lenses Containing Peripheral Defocus on Refractive Error and Horizontal Eye Shape in the Guinea Pig

    PubMed Central

    E. Bowrey, Hannah; Zeng, Guang; Y. Tse, Dennis; J. Leotta, Amelia; Wu, Yi; To, Chi-Ho; F. Wildsoet, Christine; McFadden, Sally A.

    2017-01-01

    Purpose It has been proposed that the peripheral retina, responding to local optical defocus, contributes to myopia and associated altered eye growth in humans. To test this hypothesis, we measured the changes in central (on-axis) and peripheral ocular dimensions in guinea pigs wearing a concentric bifocal spectacle lens design with power restricted to the periphery. Methods Five groups of guinea pigs (n = 83) wore either a unifocal (UF) spectacle lens (−4, 0, or +4 Diopters [D]), or a peripheral defocus (PF) spectacle lens that had a plano center (diameter of 5 mm) with either −4 or +4 D in the surround (−4/0 or +4/0 D). The overall optical diameter of all lenses was 12 mm. Lenses were worn over one eye from 8 to 18 days of age for negative and plano lenses, or from 8 to 22 days of age for positive lenses. Refractive error was measured centrally and 30° off-axis in the temporal and nasal retina. The shape of the eye was analyzed from images of sectioned eyes. Results Lenses of −4 D UF induced myopia, reflecting enhanced ocular elongation, which was centered on the optic nerve head and included the surrounding peripapillary zone (PPZ, 18° in diameter). Some ocular expansion, including within the PPZ, also was recorded with −4/0 and +4/0 D PF lenses while the +4 D UF lens inhibited rather than enhanced elongation, centrally and peripherally. Conclusions Peripheral defocus-induced ocular expansion encompasses the PPZ, irrespective of the sign of the inducing defocus. Understanding the underlying mechanism potentially has important implications for designing multifocal lenses for controlling myopia in humans and also potentially for understanding the link between myopia and glaucoma. PMID:28549092

  20. Assessing Photoreceptor Structure in Retinitis Pigmentosa and Usher Syndrome.

    PubMed

    Sun, Lynn W; Johnson, Ryan D; Langlo, Christopher S; Cooper, Robert F; Razeen, Moataz M; Russillo, Madia C; Dubra, Alfredo; Connor, Thomas B; Han, Dennis P; Pennesi, Mark E; Kay, Christine N; Weinberg, David V; Stepien, Kimberly E; Carroll, Joseph

    2016-05-01

    The purpose of this study was to examine cone photoreceptor structure in retinitis pigmentosa (RP) and Usher syndrome using confocal and nonconfocal split-detector adaptive optics scanning light ophthalmoscopy (AOSLO). Nineteen subjects (11 RP, 8 Usher syndrome) underwent ophthalmic and genetic testing, spectral-domain optical coherence tomography (SD-OCT), and AOSLO imaging. Split-detector images obtained in 11 subjects (7 RP, 4 Usher syndrome) were used to assess remnant cone structure in areas of altered cone reflectivity on confocal AOSLO. Despite normal interdigitation zone and ellipsoid zone appearance on OCT, foveal and parafoveal cone densities derived from confocal AOSLO images were significantly lower in Usher syndrome compared with RP. This was due in large part to an increased prevalence of non-waveguiding cones in the Usher syndrome retina. Although significantly correlated to best-corrected visual acuity and foveal sensitivity, cone density can decrease by nearly 38% before visual acuity becomes abnormal. Aberrantly waveguiding cones were noted within the transition zone of all eyes and corresponded to intact inner segment structures. These remnant cones decreased in density and increased in diameter across the transition zone and disappeared with external limiting membrane collapse. Foveal cone density can be decreased in RP and Usher syndrome before visible changes on OCT or a decline in visual function. Thus, AOSLO imaging may allow more sensitive monitoring of disease than current methods. However, confocal AOSLO is limited by dependence on cone waveguiding, whereas split-detector AOSLO offers unambiguous and quantifiable visualization of remnant cone inner segment structure. Confocal and split-detector thus offer complementary insights into retinal pathology.

  1. Assessing Photoreceptor Structure in Retinitis Pigmentosa and Usher Syndrome

    PubMed Central

    Sun, Lynn W.; Johnson, Ryan D.; Langlo, Christopher S.; Cooper, Robert F.; Razeen, Moataz M.; Russillo, Madia C.; Dubra, Alfredo; Connor, Thomas B.; Han, Dennis P.; Pennesi, Mark E.; Kay, Christine N.; Weinberg, David V.; Stepien, Kimberly E.; Carroll, Joseph

    2016-01-01

    Purpose The purpose of this study was to examine cone photoreceptor structure in retinitis pigmentosa (RP) and Usher syndrome using confocal and nonconfocal split-detector adaptive optics scanning light ophthalmoscopy (AOSLO). Methods Nineteen subjects (11 RP, 8 Usher syndrome) underwent ophthalmic and genetic testing, spectral-domain optical coherence tomography (SD-OCT), and AOSLO imaging. Split-detector images obtained in 11 subjects (7 RP, 4 Usher syndrome) were used to assess remnant cone structure in areas of altered cone reflectivity on confocal AOSLO. Results Despite normal interdigitation zone and ellipsoid zone appearance on OCT, foveal and parafoveal cone densities derived from confocal AOSLO images were significantly lower in Usher syndrome compared with RP. This was due in large part to an increased prevalence of non-waveguiding cones in the Usher syndrome retina. Although significantly correlated to best-corrected visual acuity and foveal sensitivity, cone density can decrease by nearly 38% before visual acuity becomes abnormal. Aberrantly waveguiding cones were noted within the transition zone of all eyes and corresponded to intact inner segment structures. These remnant cones decreased in density and increased in diameter across the transition zone and disappeared with external limiting membrane collapse. Conclusions Foveal cone density can be decreased in RP and Usher syndrome before visible changes on OCT or a decline in visual function. Thus, AOSLO imaging may allow more sensitive monitoring of disease than current methods. However, confocal AOSLO is limited by dependence on cone waveguiding, whereas split-detector AOSLO offers unambiguous and quantifiable visualization of remnant cone inner segment structure. Confocal and split-detector thus offer complementary insights into retinal pathology. PMID:27145477

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Scott I.

    As detonation is a coupled fluid-chemical process, flow divergence inside the detonation reaction zone can strongly influence detonation velocity and energy release. Such divergence is responsible for the diameter-effect and failure-diameter phenomena in condensed-phase explosives and particularly dominant in detonation of nonideal explosives such as Ammonium Nitrate and Fuel Oil (ANFO). In this study, the effect of reaction zone flow divergence on ANFO detonation was explored through variation of the inert confinement and explosive diameter in the rate-stick geometry with cylinder expansion experiments. New tests are discussed and compared to prior experiments. Presented results include the detonation velocity as amore » function of diameter and confinement, reaction zone times, detonation product isentropes and energies, as well as sonic surface pressures and velocities. Product energy densities and isentropes were found to increase with detonation velocity, indicating more complete chemical reaction with increased detonation velocity. In addition, detonation reaction zone times were found to scale with the acoustic transit time of the confiner wall and used to show that the ANFO diameter effect scaled with the reaction zone time for a particle along the flow centerline, regardless of the confinement. Such a result indicates that the ANFO reaction mechanisms are sufficiently slow that the centerline fluid expansion timescale is a limiting factor controlling detonation velocity and energy release.« less

  3. High-sensitivity bend angle measurements using optical fiber gratings.

    PubMed

    Rauf, Abdul; Zhao, Jianlin; Jiang, Biqiang

    2013-07-20

    We present a high-sensitivity and more flexible bend measurement method, which is based on the coupling of core mode to the cladding modes at the bending region in concatenation with optical fiber grating serving as band reflector. The characteristics of a bend sensing arm composed of bending region and optical fiber grating is examined for different configurations including single fiber Bragg grating (FBG), chirped FBG (CFBG), and double FBGs. The bend loss curves for coated, stripped, and etched sections of fiber in the bending region with FBG, CFBG, and double FBG are obtained experimentally. The effect of separation between bending region and optical fiber grating on loss is measured. The loss responses for single FBG and CFBG configurations are compared to discover the effectiveness for practical applications. It is demonstrated that the sensitivity of the double FBG scheme is twice that of the single FBG and CFBG configurations, and hence acts as sensitivity multiplier. The bend loss response for different fiber diameters obtained through etching in 40% hydrofluoric acid, is measured in double FBG scheme that resulted in a significant increase in the sensitivity, and reduction of dead-zone.

  4. Whispering Gallery Optical Resonator Spectroscopic Probe and Method

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S. (Inventor)

    2014-01-01

    Disclosed herein is a spectroscopic probe comprising at least one whispering gallery mode optical resonator disposed on a support, the whispering gallery mode optical resonator comprising a continuous outer surface having a cross section comprising a first diameter and a second diameter, wherein the first diameter is greater than the second diameter. A method of measuring a Raman spectrum and an Infra-red spectrum of an analyte using the spectroscopic probe is also disclosed.

  5. Impact of contact lens zone geometry and ocular optics on bifocal retinal image quality

    PubMed Central

    Bradley, Arthur; Nam, Jayoung; Xu, Renfeng; Harman, Leslie; Thibos, Larry

    2014-01-01

    Purpose To examine the separate and combined influences of zone geometry, pupil size, diffraction, apodisation and spherical aberration on the optical performance of concentric zonal bifocals. Methods Zonal bifocal pupil functions representing eye + ophthalmic correction were defined by interleaving wavefronts from separate optical zones of the bifocal. A two-zone design (a central circular inner zone surrounded by an annular outer-zone which is bounded by the pupil) and a five-zone design (a central small circular zone surrounded by four concentric annuli) were configured with programmable zone geometry, wavefront phase and pupil transmission characteristics. Using computational methods, we examined the effects of diffraction, Stiles Crawford apodisation, pupil size and spherical aberration on optical transfer functions for different target distances. Results Apodisation alters the relative weighting of each zone, and thus the balance of near and distance optical quality. When spherical aberration is included, the effective distance correction, add power and image quality depend on zone-geometry and Stiles Crawford Effect apodisation. When the outer zone width is narrow, diffraction limits the available image contrast when focused, but as pupil dilates and outer zone width increases, aberrations will limit the best achievable image quality. With two-zone designs, balancing near and distance image quality is not achieved with equal area inner and outer zones. With significant levels of spherical aberration, multi-zone designs effectively become multifocals. Conclusion Wave optics and pupil varying ocular optics significantly affect the imaging capabilities of different optical zones of concentric bifocals. With two-zone bifocal designs, diffraction, pupil apodisation spherical aberration, and zone size influence both the effective add power and the pupil size required to balance near and distance image quality. Five-zone bifocal designs achieve a high degree of pupil size independence, and thus will provide more consistent performance as pupil size varies with light level and convergence amplitude. PMID:24588552

  6. A simple fiber-optic microprobe for high resolution light measurements: application in marine sediment

    NASA Technical Reports Server (NTRS)

    Jorgensen, B. B.; Des Marais, D. J.

    1986-01-01

    A fiber-optic microphobe is described which is inexpensive and simple to build and use. It consists of an 80-micrometers optical fiber which at the end is tapered down to a rounded sensing tip of 20-30-micrometers diameter. The detector is a hybrid photodiode/amplifier. The probe has a sensitivity of 0.01 microEinst m-2 s-1 and a spectral range of 300-1,100 nm. Spectral light gradients were measured in fine-grained San Francisco Bay sediment that had an undisturbed diatom coating on the surface. The photic zone of the mud was only 0.4 mm deep. Measured in situ spectra showed extinction maxima at 430-520, 620-630, 670, and 825-850 nm due to absorption by chlorophyll a, carotenoids, phycocyanin, and bacterio-chlorophyll a. Maximum light penetration in the visible range was found in both the violet and the red < or = 400 and > or = 700 nm.

  7. Bedside Optic Nerve Sheath Diameter Assessment in the Identification of Increased Intracranial Pressure in Suspected Idiopathic Intracranial Hypertension.

    PubMed

    Irazuzta, Jose E; Brown, Martha E; Akhtar, Javed

    2016-01-01

    We determined whether the bedside assessment of the optic nerve sheath diameter could identify elevated intracranial pressure in individuals with suspected idiopathic intracranial hypertension. This was a single-center, prospective, rater-blinded study performed in a freestanding pediatric teaching hospital. Patients aged 12 to 18 years scheduled for an elective lumbar puncture with the suspicion of idiopathic intracranial hypertension were eligible to participate. Optic nerve sheath diameter was measured via ultrasonography before performing a sedated lumbar puncture for measuring cerebrospinal fluid opening pressure. Abnormal measurements were predefined as optic nerve sheath diameter ≥4.5 mm and a cerebrospinal fluid opening pressure greater than 20 cmH2O. Thirteen patients participated in the study, 10 of whom had elevated intracranial pressure. Optic nerve sheath diameter was able to predict or rule out elevated intracranial pressure in all patients. Noninvasive assessment of the optic nerve sheath diameter could help to identify patients with elevated intracranial pressure when idiopathic intracranial hypertension is suspected. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Ignition and growth modeling of detonation reaction zone experiments on single crystals of PETN and HMX

    NASA Astrophysics Data System (ADS)

    White, Bradley W.; Tarver, Craig M.

    2017-01-01

    It has long been known that detonating single crystals of solid explosives have much larger failure diameters than those of heterogeneous charges of the same explosive pressed or cast to 98 - 99% theoretical maximum density (TMD). In 1957, Holland et al. demonstrated that PETN single crystals have failure diameters of about 8 mm, whereas heterogeneous PETN charges have failure diameters of less than 0.5 mm. Recently, Fedorov et al. quantitatively determined nanosecond time resolved detonation reaction zone profiles of single crystals of PETN and HMX by measuring the interface particle velocity histories of the detonating crystals and LiF windows using a PDV system. The measured reaction zone time durations for PETN and HMX single crystal detonations were approximately 100 and 260 nanoseconds, respectively. These experiments provided the necessary data to develop Ignition and Growth (I&G) reactive flow model parameters for the single crystal detonation reaction zones. Using these parameters, the calculated unconfined failure diameter of a PETN single crystal was 7.5 +/- 0.5 mm, close to the 8 mm experimental value. The calculated failure diameter of an unconfined HMX single crystal was 15 +/- 1 mm. The unconfined failure diameter of an HMX single crystal has not yet been determined precisely, but Fedorov et al. detonated 14 mm diameter crystals confined by detonating a HMX-based plastic bonded explosive (PBX) without initially overdriving the HMX crystals.

  9. Fixed, object-specific intensity compensation for cone beam optical CT radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Dekker, Kurtis H.; Hazarika, Rubin; Silveira, Matheus A.; Jordan, Kevin J.

    2018-03-01

    Optical cone beam computed tomography (CT) scanning of radiochromic gel dosimeters, using a CCD camera and a low stray light convergent source, provides fast, truly 3D radiation dosimetry with high accuracy. However, a key limiting factor in radiochromic gel dosimetry at large (⩾10 cm diameter) volumes is the initial attenuation of the dosimeters. It is not unusual to observe a 5–10×  difference in signal intensity through the dosimeter center versus through the surrounding medium in pre-irradiation images. Thus, all dosimetric information in a typical experiment is measured within the lower 10%–20% of the camera sensor’s range, and re-use of gels is often not possible due to a lack of transmission. To counteract this, in this note we describe a simple method to create source compensators by printing on transparent films. This technique, which is easily implemented and inexpensive, is an optical analogue to the bowtie filter in x-ray CT. We present transmission images and solution phantom reconstructions to demonstrate that (1) placing compensators beyond the focal zone of the imaging lens prevents high spatial frequency features of the printed films from generating reconstruction artifacts, and (2) object-specific compensation considerably reduces the range of intensities measured in projection images. This will improve the measurable dose range in optical CT dosimetry, and will enable imaging of larger gel volumes (∼15 cm diameter). Additionally, it should enable re-use of dosimeters by printing a new compensator for a second experiment.

  10. Zone specific fractal dimension of retinal images as predictor of stroke incidence.

    PubMed

    Aliahmad, Behzad; Kumar, Dinesh Kant; Hao, Hao; Unnikrishnan, Premith; Che Azemin, Mohd Zulfaezal; Kawasaki, Ryo; Mitchell, Paul

    2014-01-01

    Fractal dimensions (FDs) are frequently used for summarizing the complexity of retinal vascular. However, previous techniques on this topic were not zone specific. A new methodology to measure FD of a specific zone in retinal images has been developed and tested as a marker for stroke prediction. Higuchi's fractal dimension was measured in circumferential direction (FDC) with respect to optic disk (OD), in three concentric regions between OD boundary and 1.5 OD diameter from its margin. The significance of its association with future episode of stroke event was tested using the Blue Mountain Eye Study (BMES) database and compared against spectrum fractal dimension (SFD) and box-counting (BC) dimension. Kruskal-Wallis analysis revealed FDC as a better predictor of stroke (H = 5.80, P = 0.016, α = 0.05) compared with SFD (H = 0.51, P = 0.475, α = 0.05) and BC (H = 0.41, P = 0.520, α = 0.05) with overall lower median value for the cases compared to the control group. This work has shown that there is a significant association between zone specific FDC of eye fundus images with future episode of stroke while this difference is not significant when other FD methods are employed.

  11. Combustion chamber and thermal vapor stream producing apparatus and method

    DOEpatents

    Sperry, John S.; Krajicek, Richard W.; Cradeur, Robert R.

    1978-01-01

    A new and improved method and apparatus for burning a hydrocarbon fuel for producing a high pressure thermal vapor stream comprising steam and combustion gases for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, wherein a high pressure combustion chamber having multiple refractory lined combustion zones of varying diameters is provided for burning a hydrocarbon fuel and pressurized air in predetermined ratios injected into the chamber for producing hot combustion gases essentially free of oxidizing components and solid carbonaceous particles. The combustion zones are formed by zones of increasing diameters up a final zone of decreasing diameter to provide expansion zones which cause turbulence through controlled thorough mixing of the air and fuel to facilitate complete combustion. The high pressure air and fuel is injected into the first of the multiple zones where ignition occurs with a portion of the air injected at or near the point of ignition to further provide turbulence and more complete combustion.

  12. MSFC Optical Metrology: A National Resource

    NASA Technical Reports Server (NTRS)

    Burdine, Robert

    1998-01-01

    A national need exists for Large Diameter Optical Metrology Services. These services include the manufacture, testing, and assurance of precision and control necessary to assure the success of large optical projects. "Best Practices" are often relied on for manufacture and quality controls while optical projects are increasingly more demanding and complex. Marshall Space Flight Center (MSFC) has acquired unique optical measurement, testing and metrology capabilities through active participation in a wide variety of NASA optical programs. An overview of existing optical facilities and metrology capabilities is given with emphasis on use by other optical projects. Cost avoidance and project success is stressed through use of existing MSFC facilities and capabilities for measurement and metrology controls. Current issues in large diameter optical metrology are briefly reviewed. The need for a consistent and long duration Large Diameter Optical Metrology Service Group is presented with emphasis on the establishment of a National Large Diameter Optical Standards Laboratory. Proposals are made to develop MSFC optical standards and metrology capabilities as the primary national standards resource, providing access to MSFC Optical Core Competencies for manufacturers and researchers. Plans are presented for the development of a national lending library of precision optical standards with emphasis on cost avoidance while improving measurement assurance.

  13. Control of optical bandgap energy and optical absorption coefficient by geometric parameters in sub-10 nm silicon-nanodisc array structure

    NASA Astrophysics Data System (ADS)

    Fairuz Budiman, Mohd; Hu, Weiguo; Igarashi, Makoto; Tsukamoto, Rikako; Isoda, Taiga; Itoh, Kohei M.; Yamashita, Ichiro; Murayama, Akihiro; Okada, Yoshitaka; Samukawa, Seiji

    2012-02-01

    A sub-10 nm, high-density, periodic silicon-nanodisc (Si-ND) array has been fabricated using a new top-down process, which involves a 2D array bio-template etching mask made of Listeria-Dps with a 4.5 nm diameter iron oxide core and damage-free neutral-beam etching (Si-ND diameter: 6.4 nm). An Si-ND array with an SiO2 matrix demonstrated more controllable optical bandgap energy due to the fine tunability of the Si-ND thickness and diameter. Unlike the case of shrinking Si-ND thickness, the case of shrinking Si-ND diameter simultaneously increased the optical absorption coefficient and the optical bandgap energy. The optical absorption coefficient became higher due to the decrease in the center-to-center distance of NDs to enhance wavefunction coupling. This means that our 6 nm diameter Si-ND structure can satisfy the strict requirements of optical bandgap energy control and high absorption coefficient for achieving realistic Si quantum dot solar cells.

  14. Rapid sealing of porcine renal blood vessels, ex vivo, using a high power, 1470-nm laser, and laparoscopic prototype

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Hutchens, Thomas C.; Larson, Eric R.; Gonzalez, David A.; Chang, Chun-Hung; Nau, William H.; Fried, Nathaniel M.

    2017-05-01

    Energy-based, radiofrequency (RF) and ultrasonic (US) devices currently provide rapid sealing of blood vessels during laparoscopic procedures. We are exploring infrared lasers as an alternate energy modality for vessel sealing, capable of generating less collateral thermal damage. Previous studies demonstrated feasibility of sealing vessels in an in vivo porcine model using a 1470-nm laser. However, the initial prototype was designed for testing in open surgery and featured tissue clasping and light delivery mechanisms incompatible with laparoscopic surgery. In this study, a laparoscopic prototype similar to devices currently in surgical use was developed, and performance tests were conducted on porcine renal blood vessels, ex vivo. The 5-mm outer-diameter laparoscopic prototype featured a traditional Maryland jaw configuration that enables tissue manipulation and blunt dissection. Laser energy was delivered through a 550-μm-core-diameter optical fiber with side-delivery from the lower jaw and beam dimensions of 18-mm length×1.2-mm width. The 1470-nm diode laser delivered 68 W with 3-s activation time, consistent with vessel seal times associated with RF and US-based devices. A total of 69 fresh porcine renal vessels with mean diameter of 3.3±1.7 mm were tested, ex vivo. Vessels smaller than 5-mm diameter were consistently sealed (48/51) with burst pressures greater than malignant hypertension blood pressure (180 mmHg), averaging 1038±474 mmHg. Vessels larger than 5 mm were not consistently sealed (6/18), yielding burst pressures of only 174±221 mmHg. Seal width, thermal damage zone, and thermal spread averaged 1.7±0.8, 3.4±0.7, and 1.0±0.4 mm, respectively. Results demonstrated that the 5-mm optical laparoscopic prototype consistently sealed vessels less than 5-mm diameter with low thermal spread. Further in vivo studies are planned to test the performance across a variety of vessels and tissues.

  15. Polyhedral protein cages encase synaptic vesicles and participate in their attachment to the active zone.

    PubMed

    Zampighi, G A; Fisher, R S

    1997-08-01

    In an effort to elucidate the interactions between synaptic vesicles and the membrane of the active zone, we have investigated the structure of interneuronal asymmetric synapses in the neocortex of adult rats using thin-sectioning, freeze-fracture, and negative staining electron microscopy. We identified three subtypes of spherical synaptic vesicles. Type I were agranular vesicles of 47.5 +/- 3.8 nm (mean SD, n = 24) in diameter usually seen aggregated in clusters in the presynaptic bouton. Type II synaptic vesicles were composed of a approximately 45-nm-diameter lipid bilayer sphere encased in a cage 77 +/- 4.6 nm (mean SD, n = 42) in diameter. The cage was composed of open-faced pentamers 20-22 nm/side arranged as a regular polyhedron. Type II caged vesicles were found in clusters at the boutons, adhered to the active zone, and were also present in axons. Type III synaptic vesicles appeared as electron-dense spheres 60-75 nm in diameter abutted to the membrane of the active zone. Clathrin-coated vesicles and pits of 116.6 +/- 9 nm (mean SD, n = 14) in diameter were also present in both the pre- and postsynaptic sides. Freeze-fracture showed that some intrinsic membrane proteins in the active zone were arranged as pentamers exhibiting the same dimension of those forming cages (approximately 22 nm/side). From these data, we concluded that: (a) the presynaptic bouton contains a heterogeneous population of "caged" and "plain" synaptic vesicles and (b) type II synaptic vesicles bind to receptors in the active zone. Therefore, current models of transmitter release should take into account the substantial heterogeneity of the vesicle population and the binding of vesicular cages to the membrane of the active zone.

  16. The dependence of Ammonium-Nitrate Fuel-Oil (ANFO) detonation on confinement

    DOE PAGES

    Jackson, Scott I.

    2016-11-17

    As detonation is a coupled fluid-chemical process, flow divergence inside the detonation reaction zone can strongly influence detonation velocity and energy release. Such divergence is responsible for the diameter-effect and failure-diameter phenomena in condensed-phase explosives and particularly dominant in detonation of nonideal explosives such as Ammonium Nitrate and Fuel Oil (ANFO). In this study, the effect of reaction zone flow divergence on ANFO detonation was explored through variation of the inert confinement and explosive diameter in the rate-stick geometry with cylinder expansion experiments. New tests are discussed and compared to prior experiments. Presented results include the detonation velocity as amore » function of diameter and confinement, reaction zone times, detonation product isentropes and energies, as well as sonic surface pressures and velocities. Product energy densities and isentropes were found to increase with detonation velocity, indicating more complete chemical reaction with increased detonation velocity. In addition, detonation reaction zone times were found to scale with the acoustic transit time of the confiner wall and used to show that the ANFO diameter effect scaled with the reaction zone time for a particle along the flow centerline, regardless of the confinement. Such a result indicates that the ANFO reaction mechanisms are sufficiently slow that the centerline fluid expansion timescale is a limiting factor controlling detonation velocity and energy release.« less

  17. Trapping and Propelling Microparticles at Long Range by Using an Entirely Stripped and Slightly Tapered No-Core Optical Fiber

    PubMed Central

    Sheu, Fang-Wen; Huang, Yen-Si

    2013-01-01

    A stripped no-core optical fiber with a 125 μm diameter was transformed into a symmetric and unbroken optical fiber that tapers slightly to a 45-μm-diameter waist. The laser light can be easily launched into the no-core optical fiber. The enhanced evanescent wave of the slightly tapered no-core optical fiber can attract nearby 5-μm-diameter polystyrene microparticles onto the surface of the tapered multimode optical fiber within fast flowing fluid and propel the trapped particles in the direction of the light propagation to longer delivery range than is possible using a slightly tapered telecom single-mode optical fiber. PMID:23449118

  18. Trapping and propelling microparticles at long range by using an entirely stripped and slightly tapered no-core optical fiber.

    PubMed

    Sheu, Fang-Wen; Huang, Yen-Si

    2013-02-28

    A stripped no-core optical fiber with a 125 µm diameter was transformed into a symmetric and unbroken optical fiber that tapers slightly to a 45-µm-diameter waist. The laser light can be easily launched into the no-core optical fiber. The enhanced evanescent wave of the slightly tapered no-core optical fiber can attract nearby 5-µm-diameter polystyrene microparticles onto the surface of the tapered multimode optical fiber within fast flowing fluid and propel the trapped particles in the direction of the light propagation to longer delivery range than is possible using a slightly tapered telecom single-mode optical fiber.

  19. Study of polarization properties of fiber-optics probes with use of a binary phase plate.

    PubMed

    Alferov, S V; Khonina, S N; Karpeev, S V

    2014-04-01

    We conduct a theoretical and experimental study of the distribution of the electric field components in the sharp focal domain when rotating a zone plate with a π-phase jump placed in the focused beam. Comparing the theoretical and experimental results for several kinds of near-field probes, an analysis of the polarization sensitivity of different types of metal-coated aperture probes is conducted. It is demonstrated that with increasing diameter of the non-metal-coated tip part there occurs an essential redistribution of sensitivity in favor of the transverse electric field components and an increase of the probe's energy throughput.

  20. Optical diamagnetic biosensor for immunocomplexes on beads

    NASA Astrophysics Data System (ADS)

    Norina, Svetlana B.

    2000-12-01

    In the present work, diamagnetic separation parameters for the porous beads are studied using optical video recording microscopy. The possible direct amount determination of single or double macromolecular layers immobilized in the meshes of the porous beads is demonstrated for the concentrations' range used in heterogenic immunotest and the affinity chromatography, where the direct rapid detection of ligands within sorbent particles is known to be the actual task. A gradient diamagnetic biosensor is described as suitable for rapid quantitative detection of single or double macromolecular layers in porous nonmagnetic beads. Measurements of capture traveling time or accumulation radius in gradient magnetic field have shown that it is possible to determine 0.20 mg/ml of macromolecular amount within several seconds. The portative devices were made on the base of the fabre optic technique to detect accumulation radius of collected beads in two gradient magnetic positions: diamagnetic and paramagnetic zones of magnetized wire with 55 μm in diameter and to registrate with a lot of fabre wires having 30 μm in diameters. The successive procedures of the present method can be described by: the obtaining of agarose immuno-beads, the incubation of beads with the ligand sample or the injection of sample through affinity mini-column, the submerging of the loaded beads into the glass cell containing Ni-wire or the narrow gap of magnetic poles; the computational obtaining of immuno- parameters; binding constants, accumulation radius. Several biotechnological applications of the biosensor are presented on sorbent beads, human lymphocytes.

  1. Analytics of crystal growth in space

    NASA Technical Reports Server (NTRS)

    Chang, C. E.; Lefever, R. A.; Wilcox, W. R.

    1975-01-01

    The variation of radial impurity distribution induced by surface tension driven flow increases as the zone length decreases in silicon crystals grown by floating zone melting. In combined buoyancy driven and surface tension driven convection at the gravity of earth, the buoyancy contribution becomes relatively smaller as the zone diameter decreases and eventually convection is dominated by the surface tension driven flow (in the case of silicon, for zones of less than about 0.8 cm in diameter). Preliminary calculations for sapphire suggest the presence of an oscillatory surface tension driven convection as a result of an unstable melt surface temperature that results when the zone is heated by a radiation heater.

  2. Preclinical Assessment of a 980-nm Diode Laser Ablation System in a Large Animal Tumor Model

    PubMed Central

    Ahrar, Kamran; Gowda, Ashok; Javadi, Sanaz; Borne, Agatha; Fox, Matthew; McNichols, Roger; Ahrar, Judy U.; Stephens, Clifton; Stafford, R. Jason

    2010-01-01

    Purpose To characterize the performance of a 980-nm diode laser ablation system in an in vivo tumor model. Materials and Methods This study was approved by the Institutional Animal Care and Use Committee. The ablation system consisted of a 15-W, 980-nm diode laser, flexible diffusing tipped fiber optic, and 17-gauge internally cooled catheter. Ten immunosuppressed dogs were inoculated subcutaneously with canine transmissible venereal tumor fragments in eight dorsal locations. Laser ablations were performed at 79 sites where inoculations were successful (99%) using powers of 10 W, 12.5 W, and 15 W, with exposure times between 60 and 180 seconds. In 20 cases, multiple overlapping ablations were performed. After the dogs were euthanized, the tumors were harvested, sectioned along the applicator track, measured and photographed. Measurements of ablation zone were performed on gross specimen. Histopathology and viability staining was performed using hematoxylin and eosin (H&E) and nicotinamide adenine dinucleotide hydrogen (NADH) staining. Results Gross pathology confirmed well-circumscribed ablation zone with sharp boundaries between thermally ablated tumor in the center surrounded by viable tumor tissue. When a single applicator was used, the greatest ablation diameters ranged from 12 mm at the lowest dose (10 W, 60 sec) to 26 mm at the highest dose (15 W, 180 sec). Multiple applicators created ablation zones of up to 42 mm in greatest diameter (with the lasers operating at 15 W for 120 sec). Conclusions The new 980-nm diode laser and internally cooled applicator effectively creates large ellipsoid thermal ablations in less than 3 minutes. PMID:20346883

  3. Near-infrared fiber delivery systems for interstitial photothermal therapy

    NASA Astrophysics Data System (ADS)

    Slatkine, Michael; Mead, Douglass S.; Konwitz, Eli; Rosenberg, Zvi

    1995-05-01

    Interstitial photothermal coagulation has long been recognized as a potential important, minimally invasive modality for treating a variety of pathologic conditions. We present two different technologies for interstitial photothermal coagulation of tissue with infrared lasers: An optical fiber with a radially symmetric diffusing tip for deep coagulation, and a flat bare fiber for the coagulation of thin and long lesions by longitudinally moving the fiber while lasing in concert. Urology and Gynecology Fibers: The fibers are 600 microns diameter with 20 - 40 mm frosted distal tips protected by a smooth transparent cover. When used with a Neodymium:YAG (Nd:YAG) laser, the active fiber surface diffuses optical radiation in a radial pattern, delivering up to 40 W power, and thus providing consistent and uniform interstitial photothermal therapy. Coagulation depth ranges from 4 to 15 mm. Animal studies in the United States and clinical studies in Europe have demonstrated the feasibility of using these fibers to treat benign prostatic hyperplasia and endometrial coagulation. Rhinology Fiber: The fiber is an 800 micron diameter flat fiber operated at 8 W power level while being interstitially pushed and pulled along its axis. A long and thin coagulated zone is produced. The fiber is routinely used for the shrinking of hypertrophic turbinates without surrounding and bone mucusal damage in ambulatory environments.

  4. Power Profiles of Commercial Multifocal Soft Contact Lenses.

    PubMed

    Kim, Eon; Bakaraju, Ravi C; Ehrmann, Klaus

    2017-02-01

    To evaluate the optical power profiles of commercially available soft multifocal contact lenses and compare their optical designs. The power profiles of 38 types of multifocal contact lenses-three lenses each-were measured in powers +6D, +3D, +1D, -1D, -3D, and -6D using NIMO TR1504 (Lambda-X, Belgium). All lenses were measured in phosphate buffered saline across 8 mm optic zone diameter. Refractive index of each lens material was measured using CLR 12-70 (Index Instruments, UK), which was used for converting measured power in the medium to in-air radial power profiles. Three basic types of power profiles were identified: center-near, center-distance, and concentric-zone ring-type designs. For most of the lens types, the relative plus with respect to prescription power was lower than the corresponding spectacle add. For some lens types, the measured power profiles were shifted by up to 1D across the power range relative to their labeled power. Most of the lenses were designed with noticeable amounts of spherical aberration. The sign and magnitude of spherical aberration can either be power dependent or consistent across the power range. Power profiles can vary widely between the different lens types; however, certain similarities were also observed between some of the center-near designs. For the more recently released lens types, there seems to be a trend emerging to reduce the relative plus with respect to prescription power, include negative spherical aberration, and keep the power profiles consistent across the power range.

  5. Remote sensing and the optical properties of the narrow cylindrical leaves of Juncus roemerianus

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, A.

    2004-01-01

    To develop a more complete foundation for remote sensing of the marsh grass Juncus roemerianus, we measured the optical properties of its cylindrical leaves at sites of different canopy height, biomass composition and amount, and connectivity to ocean flushing. To measure the leaf optical properties, we adapted a technique used for conifer needles. After establishing the reliability and limits of the adapted technique to the wider J.roemerianus leaves, mean transmittance and reflectance spectra were compared to associated leaf diameters from two dates in 1999 and 2002 and at each site. Transmittance was inversely related to leaf diameter. Mean transmittance and reflectance generated from reoccupation of many field sites in 2002 indicated little or no difference in transmittance between years, a slight reflectance difference in the visible (<2%) and a slightly higher reflectance difference in the near infrared (NIR) (<4%). Site comparison indicated limited ability to separate leaf transmittance but not reflectance by marsh type (e.g., low, medium, high) or biomass. Excluding one outlier, we found leaf transmittances could be adequately represented as 1% ?? 0.2% in the visible and 9% ?? 1% in the NIR and leaf reflectances represented from 14% to 16% in the visible and 71% to 75% in the NIR (the reflectance ranges represent 1999 and 2002 means). Reflectance and transmittance spectra associated with the dead J. roemerianus leaves displayed a spectrally flat increase from the visible to the NIR wavelengths. In total, we documented the atypical optical properties of the cylindrical J. roemerianus leaves and showed that to a first approximation, single means could represent leaf transmittance and visible leaf reflectance across all marsh zones and, after accounting for sample standardization, possibly the NIR reflectance as well.

  6. Realization of arbitrarily long focus-depth optical vortices with spiral area-varying zone plates

    NASA Astrophysics Data System (ADS)

    Zheng, Chenglong; Zang, Huaping; Du, Yanli; Tian, Yongzhi; Ji, Ziwen; Zhang, Jing; Fan, Quanping; Wang, Chuanke; Cao, Leifeng; Liang, Erjun

    2018-05-01

    We provide a methodology to realize an optical vortex with arbitrarily long focus-depth. With a technique of varying each zone area of a phase spiral zone plate one can obtain optics capable of generating ultra-long focus-depth optical vortex from a plane wave. The focal property of such optics was analysed using the Fresnel diffraction theory, and an experimental demonstration was performed to verify its effectiveness. Such optics may bring new opportunity and benefits for optical vortex application such as optical manipulation and lithography.

  7. Coronal Axis Measurement of the Optic Nerve Sheath Diameter Using a Linear Transducer.

    PubMed

    Amini, Richard; Stolz, Lori A; Patanwala, Asad E; Adhikari, Srikar

    2015-09-01

    The true optic nerve sheath diameter cutoff value for detecting elevated intracranial pressure is variable. The variability may stem from the technique used to acquire sonographic measurements of the optic nerve sheath diameter as well as sonographic artifacts inherent to the technique. The purpose of this study was to compare the traditional visual axis technique to an infraorbital coronal axis technique for assessing the optic nerve sheath diameter using a high-frequency linear array transducer. We conducted a cross-sectional study at an academic medical center. Timed optic nerve sheath diameter measurements were obtained on both eyes of healthy adult volunteers with a 10-5-MHz broadband linear array transducer using both traditional visual axis and coronal axis techniques. Optic nerve sheath diameter measurements were obtained by 2 sonologists who graded the difficulty of each technique and were blinded to each other's measurements for each participant. A total of 42 volunteers were enrolled, yielding 84 optic nerve sheath diameter measurements. There were no significant differences in the measurements between the techniques on either eye (P = .23 [right]; P = .99 [left]). Additionally, there was no difference in the degree of difficulty obtaining the measurements between the techniques (P = .16). There was a statistically significant difference in the time required to obtain the measurements between the traditional and coronal techniques (P < .05). Infraorbital coronal axis measurements are similar to measurements obtained in the traditional visual axis. The infraorbital coronal axis technique is slightly faster to perform and is not technically challenging. © 2015 by the American Institute of Ultrasound in Medicine.

  8. Hybrid RF / Optical Communication Terminal with Spherical Primary Optics for Optical Reception

    NASA Technical Reports Server (NTRS)

    Charles, Jeffrey R.; Hoppe, Daniel H.; Sehic, Asim

    2011-01-01

    Future deep space communications are likely to employ not only the existing RF uplink and downlink, but also a high capacity optical downlink. The Jet Propulsion Laboratory (JPL) is currently investigating the benefits of a ground based hybrid RF and deep space optical terminal based on limited modification of existing 34 meter antenna designs. The ideal design would include as large an optical aperture as technically practical and cost effective, cause minimal impact to RF performance, and remain cost effective even when compared to a separate optical terminal of comparable size. Numerous trades and architectures have been considered, including shared RF and optical apertures having aspheric optics and means to separate RF and optical signals, plus, partitioned apertures in which various zones of the primary are dedicated to optical reception. A design based on the latter is emphasized in this paper, employing spherical primary optics and a new version of a "clamshell" corrector that is optimized to fit within the limited space between the antenna sub-reflector and the existing apex structure that supports the subreflector. The mechanical design of the hybrid accommodates multiple spherical primary mirror panels in the central 11 meters of the antenna, and integrates the clamshell corrector and optical receiver modules with antenna hardware using existing attach points to the maximum extent practical. When an optical collection area is implemented on a new antenna, it is possible to design the antenna structure to accommodate the additional weight of optical mirrors providing an equivalent aperture of several meters diameter. The focus of our near term effort is to use optics with the 34 meter DSS-13 antenna at Goldstone to demonstrate spatial optical acquisition and tracking capability using an optical system that is temporarily integrated into the antenna.

  9. Measurement Sensitivity Of Liquid Droplet Parameters Using Optical Fibers

    NASA Astrophysics Data System (ADS)

    Das, Alok K.; Mandal, Anup K.

    1990-02-01

    A new clad probing technique is used to measure the size, number, refractive index and viscosity of liquid droplets sprayed from a pressure nozzle on an uncoated core-clad fiber. The probe monitors the clad mode power loss within the leaky ray zone represented as a three region fiber. Liquid droplets measured are Glycerine, commercial grade Turpentine, Linseed oil and some oil mixtures. The measurement sensitivity depends on probing conditions and clad diameter which is observed experimentally and verified analytically. A maximum sensitivity is obtained for the tapered probe-fiber diameter made equal to the clad thickness. A slowly tapered probe-fiber and a small end angle as well as separation of the sensor-fiber and the probe-fiber further improve the sensitivity. Under the best probing condition for 90-percent Glycerine droplets of - 50 micron diameter and a 50/125 micron sensor fiber with clad refractive index of 1.465 and 0.2 NA, the measured sensitivity per drop is 0.015 and 0.006 dB, respectively, for (10-20) and (100-200) droplets. Sensitivities for different systems are shown. The sensitivity is optimized by choosing proper fiber for known liquids.

  10. Room temperature synthesis and optical properties of small diameter (5 nm) ZnO nanorod arrays.

    PubMed

    Cho, Seungho; Jang, Ji-Wook; Lee, Jae Sung; Lee, Kun-Hong

    2010-10-01

    We report a simple wet-chemical synthesis of ∼5 nm diameter ZnO nanorod arrays at room temperature (20 °C) and normal atmospheric pressure (1 atm) and their optical properties. They were single crystalline in nature, and grew in the [001] direction. These small diameter ZnO nanorod arrays can also be synthesized at 0 °C. Control experiments were also conducted. On the basis of the results, we propose a mechanism for the spontaneous growth of the small diameter ZnO structures. The optical properties of the 5 nm diameter ZnO nanorod arrays synthesized using this method were probed by UV-Visible diffuse reflectance spectroscopy. A clear blue-shift, relative to the absorption band from 50 nm diameter ZnO nanorod arrays, was attributed to the quantum confinement effects caused by the small nanocrystal size in the 5 nm diameter ZnO nanorods.

  11. Submicron diameter single crystal sapphire optical fiber

    DOE PAGES

    Hill, Cary; Homa, Daniel; Liu, Bo; ...

    2014-10-02

    In this work, a submicron-diameter single crystal sapphire optical fiber was demonstrated via wet acid etching at elevated temperatures. Etch rates on the order 2.3 µm/hr were achievable with a 3:1 molar ratio sulfuric-phosphoric acid solution maintained at a temperature of 343°C. A sapphire fiber with an approximate diameter of 800 nm was successfully fabricated from a commercially available fiber with an original diameter of 50 µm. The simple and controllable etching technique provides a feasible approach to the fabrication of unique waveguide structures via traditional silica masking techniques. The ability to tailor the geometry of sapphire optical fibers ismore » the first step in achieving optical and sensing performance on par with its fused silica counterpart.« less

  12. SUB 1-Millimeter Size Fresnel Micro Spectrometer

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; Koch, Laura; Song, Kyo D.; Park, Sangloon; King, Glen; Choi, Sang

    2010-01-01

    An ultra-small micro spectrometer with less than 1mm diameter was constructed using Fresnel diffraction. The fabricated spectrometer has a diameter of 750 nmicrometers and a focal length of 2.4 mm at 533nm wavelength. The micro spectrometer was built with a simple negative zone plate that has an opaque center with an ecliptic shadow to remove the zero-order direct beam to the aperture slit. Unlike conventional approaches, the detailed optical calculation indicates that the ideal spectral resolution and resolving power do not depend on the miniaturized size but only on the total number of rings. We calculated 2D and 3D photon distribution around the aperture slit and confirmed that improved micro-spectrometers below 1mm size can be built with Fresnel diffraction. The comparison between mathematical simulation and measured data demonstrates the theoretical resolution, measured performance, misalignment effect, and improvement for the sub-1mm Fresnel micro-spectrometer. We suggest the utilization of an array of micro spectrometers for tunable multi-spectral imaging in the ultra violet range.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baines, Ellyn K.; Armstrong, J. Thomas; Van Belle, Gerard T., E-mail: ellyn.baines@nrl.navy.mil

    We used the Navy Precision Optical Interferometer to measure the limb-darkened angular diameter of the exoplanet host star {kappa} CrB and obtained a value of 1.543 {+-} 0.009 mas. We calculated its physical radius (5.06 {+-} 0.04 R{sub Sun }) and used photometric measurements from the literature with our diameter to determine {kappa} CrB's effective temperature (4788 {+-} 17 K) and luminosity (12.13 {+-} 0.09 L{sub Sun }). We then placed the star on an Hertzsprung-Russell diagram to ascertain the star's age (3.42{sup +0.32}{sub -0.25} Gyr) and mass (1.47 {+-} 0.04 M{sub Sun }) using a metallicity of [Fe/H] =more » +0.15. With this mass, we calculated the system's mass function with the orbital elements from a variety of sources, which produced a range of planetary masses: m{sub p}sin i = 1.61-1.88 M{sub Jup}. We also updated the extent of the habitable zone for the system using our new temperature.« less

  14. [Gradient-index (GRIN) endoscopic examinations from the inner structures of the optic nerve meninges].

    PubMed

    Sens, Frank Michael; Killer, Hanspeter Esriel; Meyer, Peter

    2003-03-01

    Due to the excellent image quality and the small outer diameter of the GRIN-(gradient index) endoscope tips we were able to examine the subdural and the subarachnoidal space of the optic nerve meninges by endoscopy. This examination was performed to obtain more information about the inner structure of the optic nerve meninges. In this post-mortem study 7 optic nerves were examined from the chiasm to the globe by GRIN endoscopy (Volpi, Schlieren, Switzerland), with an outer diameter of 0.89 mm, integrated optic of 0.5 mm diameter and an integrated fluid channel of 0.2 mm diameter. In all cases the endoscopic examination of the optic nerve meninges was technically easy to perform. It was possible to study the inner surface of the nerve sheaths and the nerve sheath spaces in close-up. We found horizontal and vertical cords on the inner surface of the dura mater, which could tighten by movements of the optic nerve. With a gradient-index (GRIN) endoscope we obtained new information about the inner structure of the optic nerve meninges. New theories about the changes of the optic nerve meninges during movements of the optic nerve may evolve from this study. Further studies with this new method should be encouraged.

  15. Using a slightly tapered optical fiber to attract and transport microparticles.

    PubMed

    Sheu, Fang-Wen; Wu, Hong-Yu; Chen, Sy-Hann

    2010-03-15

    We exploit a fiber puller to transform a telecom single-mode optical fiber with a 125 microm diameter into a symmetric and unbroken slightly tapered optical fiber with a 50 microm diameter at the minimum waist. When the laser light is launched into the optical fiber, we can observe that, due to the evanescent wave of the slightly tapered fiber, the nearby polystyrene microparticles with 10 microm diameters will be attracted onto the fiber surface and roll separately in the direction of light propagation. We have also simulated and compared the optical propulsion effects on the microparticles when the laser light is launched into a slightly tapered fiber and a heavily tapered (subwavelength) fiber, respectively.

  16. Atomistic Tight-Binding Theory Applied to Structural and Optical Properties of Silicon Nanodisks

    NASA Astrophysics Data System (ADS)

    Sukkabot, Worasak

    2018-05-01

    The use of ultrathin crystalline silicon (c-Si) wafers in solar cells necessitates a highly effective light absorber to compensate for poor light absorption. One route to overcoming this problem is to use a periodic array of Si nanodisks on ultrathin c-Si. In the present manuscript, we numerically investigate the effects of the geometrical parameters of the Si nanodisks, including disk diameter (D) and length (L), on the structural and optical properties, using atomistic tight-binding theory. These computations confirm that the electronic structure and optical properties are sensitive to the structural parameters. As the disk diameter and length increase, the single-electron energies decrease, and the single-hole energies increase. These calculations also reveal that, because of the quantum confinement effect, the optical band gaps gradually decrease independently of the increasing disk diameter and length. The optical spectra can be tuned across the visible region by varying the disk diameter and length, which is a useful feature for optimizing light absorption in solar cell applications. As the disk diameter and length increased, the optical intensities also increased; however, the atomistic electron-hole interactions and ground electron-hole wave function overlap progressively decreased. The ground electron-hole wave function overlap, Stokes shift, and fine structure splitting decreased as the disk diameter and length were increased. Thus, Si nanodisks with a large diameter and length might be a suitable candidate source of entangled photons. The Si nanodisks in this study also show promise for applications to solar cells based on ultrathin c-Si wafers.

  17. Willy: A prize noble Ur-Fremdling - Its history and implications for the formation of Fremdlinge and CAI

    NASA Technical Reports Server (NTRS)

    Armstrong, J. T.; El Goresy, A.; Wasserburg, G. J.

    1985-01-01

    The structure and composition of Willy, a 150-micron-diameter Fremdling in CAI 5241 from the Allende meteorite, are investigated using optical, secondary-electron, and electron-backscatter microscopy and electron-microprobe analysis. The results are presented in diagrams, maps, tables, graphs, and micrographs and compared with those for other Allende Fremdlinge. Willy is found to have a concentric-zone structure comprising a complex porous core of magnetite, metal, sulfide, scheelite, and other minor phases; a compact magnetite-apatite mantle; a thin (20 microns or less) reaction-assemblage zone; and a dense outer rim of fassaite with minor spinel. A multistage formation sequence involving changes in T and fO2 and preceding the introduction of Willy into the CAI (which itself preceded CAI spinel and silicate formation) is postulated, and it is inferred from the apparent lack of post-capture recrystallization that Willy has not been subjected to temperatures in excess of 600 C and may represent the precursor material for many other Fremdlinge.

  18. Investigation on the growth and characterization of 4-aminobenzophenone single crystal by the vertical dynamic gradient freeze technique

    NASA Astrophysics Data System (ADS)

    Prabhakaran, SP.; Ramesh Babu, R.; Sukumar, M.; Bhagavannarayana, G.; Ramamurthi, K.

    2014-03-01

    Growth of bulk single crystal of 4-Aminobenzophenone (4-ABP) from the vertical dynamic gradient freeze (VDGF) setup designed with eight zone furnace was investigated. The experimental parameters for the growth of 4-ABP single crystal with respect to the design of VDGF setup are discussed. The eight zones were used to generate multiple temperature gradients over the furnace, and video imaging system helped to capture the real time growth and solid-liquid interface. 4-ABP single crystal with the size of 18 mm diameter and 40 mm length was grown from this investigation. Structural and optical quality of grown crystal was examined by high resolution X-ray diffraction and UV-visible spectral analysis, respectively and the blue emission was also confirmed from the photoluminescence spectrum. Microhardness number of the crystal was estimated at different loads using Vicker's microhardness tester. The size and quality of single crystal grown from the present investigation are compared with the vertical Bridgman grown 4-ABP.

  19. Measurement centration and zone diameter in anterior, posterior and total corneal astigmatism in keratoconus.

    PubMed

    Fredriksson, Anneli; Behndig, Anders

    2017-12-01

    To investigate the central and paracentral astigmatism and the significance of centration and measurement zone diameter compared to a 3-mm pupil-centred measurement zone in keratoconus and in healthy eyes. Twenty-eight right eyes from 28 KC patients with an inferotemporal cone were selected according to specified criteria based on Oculus Pentacam HR ® measurements and were matched with healthy control eyes. The flat (K1) and steep (K2) keratometry readings were registered from the 'Total Corneal Refractive Power' (TCRP) display as well as the anterior and posterior corneal astigmatism displays (ACA and PCA, respectively). Astigmatic power vectors KP0 and KP45 were calculated and analysed for a 6-mm and two 3-mm zones centred on the corneal apex and the pupil, and for 8 paracentral 3-mm zones. The astigmatism was generally higher in KC. Many astigmatic values in KC differed between the 3-mm pupil-centred and the 3- and 6-mm apex-centred zones in KC. In the controls, no corresponding differences between measurement zones were seen, apart from PCA, which differed. The magnitude and direction of KP0 and KP45 varied greatly between the paracentral measurements in KC. Centration and measurement zone diameter have great impacts on the astigmatic values in KC. A small pupil-centred measurement zone should be considered when evaluating the astigmatism in KC. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  20. Morphometric analysis of torso arterial anatomy with implications for resuscitative aortic occlusion.

    PubMed

    Stannard, Adam; Morrison, Jonathan J; Sharon, Danny J; Eliason, Jonathan L; Rasmussen, Todd E

    2013-08-01

    Hemorrhage is a leading cause of death in military and civilian trauma. Despite the importance of the aorta as a site of hemorrhage control and resuscitative occlusion, detailed knowledge of its morphometry is lacking. The objective of this study was to characterize aortic morphometry in a trauma population, including quantification of distances as well as and diameters and definition of relevant aortic zones. Center line measures were made (Volume Viewer) from contrast computed tomography (CT) scans of male trauma patients (18-45 years). Aortic zones were defined based on branch arteries. Zone I includes left subclavian to celiac; Zone II includes celiac to caudal renal; Zone III includes caudal renal to aortic bifurcation. Zone lengths were calculated and correlated to a novel external measure of torso extent (symphysis pubis to sternal notch). Eighty-eight males (mean [SD], 28 [4] years) had CT scans for the study. The median (interquartile range) lengths (mm) of Zones I, II, and III were 210 mm (202-223 mm), 33 mm (28-38 mm), and 97 mm (91-103 mm), respectively. Median aortic diameters at the left subclavian, celiac, and lowest renal arteries were 21 mm (20-23 mm), 18 mm (16-19 mm), and 15 mm (14-16 mm), respectively, and the terminal aortic diameter was 14 mm (13-15 mm). The correlation of determination for descending aortic length (all zones) against torso extend was r = 0.454. This study provides a morphometric analysis of the aorta in a male population, demonstrating consistency of length and diameter while defining distinct axial zones. Findings suggest that center line aortic distances correlate with a simple, external measure of torso extent. Morphometric study of the aorta using CT data may facilitate the development and implementation of occlusion techniques to manage noncompressible torso, pelvic, and junctional femoral hemorrhage.

  1. Linear optical pulse compression based on temporal zone plates.

    PubMed

    Li, Bo; Li, Ming; Lou, Shuqin; Azaña, José

    2013-07-15

    We propose and demonstrate time-domain equivalents of spatial zone plates, namely temporal zone plates, as alternatives to conventional time lenses. Both temporal intensity zone plates, based on intensity-only temporal modulation, and temporal phase zone plates, based on phase-only temporal modulation, are introduced and studied. Temporal zone plates do not exhibit the limiting tradeoff between temporal aperture and frequency bandwidth (temporal resolution) of conventional linear time lenses. As a result, these zone plates can be ideally designed to offer a time-bandwidth product (TBP) as large as desired, practically limited by the achievable temporal modulation bandwidth (limiting the temporal resolution) and the amount of dispersion needed in the target processing systems (limiting the temporal aperture). We numerically and experimentally demonstrate linear optical pulse compression by using temporal zone plates based on linear electro-optic temporal modulation followed by fiber-optics dispersion. In the pulse-compression experiment based on temporal phase zone plates, we achieve a resolution of ~25.5 ps over a temporal aperture of ~5.77 ns, representing an experimental TBP larger than 226 using a phase-modulation amplitude of only ~0.8π rad. We also numerically study the potential of these devices to achieve temporal imaging of optical waveforms and present a comparative analysis on the performance of different temporal intensity and phase zone plates.

  2. Ocriplasmin for treatment of stage 2 macular holes: early clinical results.

    PubMed

    Miller, John B; Kim, Leo A; Wu, David M; Vavvas, Demetrios G; Eliott, Dean; Husain, Deeba

    2014-01-01

    To review clinical and structural outcomes of ocriplasmin for treatment of stage 2 macular holes. A retrospective review of the first patients with stage 2 macular holes to be treated with ocriplasmin at Massachusetts Eye and Ear Infirmary. All patients were imaged with spectral-domain optical coherence tomography (SD-OCT). Eight patients with stage 2 macular holes received a single injection of 125 μg of ocriplasmin. One patient (12.5%) demonstrated macular hole closure. The posterior hyaloid separated from the macula in six eyes (75%). All seven holes that remained open showed enlargement in hole diameters (narrowest, apical, and basal) at 1 week and 1 month. All seven were successfully closed with surgery. Ellipsoid zone disruptions were observed by OCT in four eyes (50%) and persisted throughout follow-up (more than 6 months on average). In early clinical results, the authors found a lower macular hole closure rate with ocriplasmin than previously reported. Enlargement was observed in all holes that failed to close with ocriplasmin. The authors found ellipsoid zone disruptions that persisted through 6 months of follow-up after ocriplasmin injection. Further work is needed to investigate the cause for these ellipsoid zone changes. Copyright 2014, SLACK Incorporated.

  3. Effects of Iron Administration on the Diameter of Cells of Growth Cartilage of Rat Pups During Pregnancy.

    PubMed

    Umbreen, Faiza; Qamar, Khadija; Shaukat, Sadia; Tasawar, Amna

    2017-07-01

    To determine the effect of oral iron administration on pregnant rats on the diameter of cells of growth plate of rat pups. Experimental study. Anatomy Department, Army Medical College, Rawalpindi in collaboration with National Institute of Health (NIH), Islamabad from March to November 2016. Group Acontaining 8 pregnant rats was control group, and group B containing same number of pregnant rats was the study group. Control group Awas on standard diet throughout pregnancy. Iron was given to the experimental group B for 21 days (throughout pregnancy) in the form of syrup 0.5ml daily (2.75 mg of elemental iron) given in water. Rat infants were born via spontaneous vaginal delivery. Inclusion criteria for infants was pups born at term which were active and taking feed. Femur from each rat infant of right side was removed for the growth plate investigation. Processing, embedding and staining with Hematoxylin and Eosin, Perl's stain for histological study was done. The cell diameter in hypertrophy and proliferative zone was evaluated. Mean values of the diameter of chondrocytes in both the zones of growth cartilage of femur were measured. Diameter of the cells in hypertrophy and proliferative zones was considerably decreased in group B as compared to group A. Administration of iron during pregnancy with normal iron status can disturb growth of the rat infant through its accumulation in the epiphyseal plate of femur. The cell diameter of the hypertrophy and proliferative zones was markedly reduced in iron administered group as compared to the control group.

  4. Process and continuous apparatus for chemical conversion of materials

    DOEpatents

    Rugg, Barry; Stanton, Robert

    1983-01-01

    A process and apparatus for the acid hydrolysis of waste cellulose to glucose of the type wherein waste cellulose is continuously fed into an inlet port of a twin screw extruder, water is continuously fed into reaction zone in the extruder, downstream of the inlet port, the cellulose is continuously reacted with water in the presence of an acid catalyst at elevated temperature and pressure in the reaction zone while being continuously conveyed to an outlet port of the extruder having a given diameter and the reacted cellulose is discharged from the extruder while the elevated temperature and pressure in the reaction zone is maintained. The elevated pressure is maintained by forming a dynamic seal zone at the upstream end of the reaction and continuously discharging the reacted material downstream of the outlet port at a predetermined volume rate of flow to maintain the pressure by passing the discharge through an orifice pipe having a smaller diameter than the given diameter of the outlet port.

  5. Fresnel zone plate with apodized aperture for hard X-ray Gaussian beam optics.

    PubMed

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio; Itabashi, Seiichi; Oda, Masatoshi

    2017-05-01

    Fresnel zone plates with apodized apertures [apodization FZPs (A-FZPs)] have been developed to realise Gaussian beam optics in the hard X-ray region. The designed zone depth of A-FZPs gradually decreases from the center to peripheral regions. Such a zone structure forms a Gaussian-like smooth-shouldered aperture function which optically behaves as an apodization filter and produces a Gaussian-like focusing spot profile. Optical properties of two types of A-FZP, i.e. a circular type and a one-dimensional type, have been evaluated by using a microbeam knife-edge scan test, and have been carefully compared with those of normal FZP optics. Advantages of using A-FZPs are introduced.

  6. A nanostructure based on metasurfaces for optical interconnects

    NASA Astrophysics Data System (ADS)

    Lin, Shulang; Gu, Huarong

    2017-08-01

    Optical-electronic Integrated Neural Co-processor takes vital part in optical neural network, which is mainly realized by optical interconnects. Because of the accuracy requirement and long-term goal of integration, optical interconnects should be effective and pint-size. In traditional solutions of optical interconnects, holography built on crystalloid or law of Fresnel diffraction exploited on zone plate was used. However, holographic method cannot meet the efficiency requirement and zone plate is too bulk to make the optical neural unit miniaturization. Thus, this paper aims to find a way to replace holographic method or zone plate with enough diffraction efficiency and smaller size. Metasurfaces are composed of subwavelength-spaced phase shifters at an interface of medium. Metasurfaces allow for unprecedented control of light properties. They also have advanced optical technology of enabling versatile functionalities in a planar structure. In this paper, a nanostructure is presented for optical interconnects. The comparisons of light splitting ability and simulated crosstalk between nanostructure and zone plate are also made.

  7. Specific CT 3D rendering of the treatment zone after Irreversible Electroporation (IRE) in a pig liver model: the “Chebyshev Center Concept” to define the maximum treatable tumor size

    PubMed Central

    2014-01-01

    Background Size and shape of the treatment zone after Irreversible electroporation (IRE) can be difficult to depict due to the use of multiple applicators with complex spatial configuration. Exact geometrical definition of the treatment zone, however, is mandatory for acute treatment control since incomplete tumor coverage results in limited oncological outcome. In this study, the “Chebyshev Center Concept” was introduced for CT 3d rendering to assess size and position of the maximum treatable tumor at a specific safety margin. Methods In seven pig livers, three different IRE protocols were applied to create treatment zones of different size and shape: Protocol 1 (n = 5 IREs), Protocol 2 (n = 5 IREs), and Protocol 3 (n = 5 IREs). Contrast-enhanced CT was used to assess the treatment zones. Technique A consisted of a semi-automated software prototype for CT 3d rendering with the “Chebyshev Center Concept” implemented (the “Chebyshev Center” is the center of the largest inscribed sphere within the treatment zone) with automated definition of parameters for size, shape and position. Technique B consisted of standard CT 3d analysis with manual definition of the same parameters but position. Results For Protocol 1 and 2, short diameter of the treatment zone and diameter of the largest inscribed sphere within the treatment zone were not significantly different between Technique A and B. For Protocol 3, short diameter of the treatment zone and diameter of the largest inscribed sphere within the treatment zone were significantly smaller for Technique A compared with Technique B (41.1 ± 13.1 mm versus 53.8 ± 1.1 mm and 39.0 ± 8.4 mm versus 53.8 ± 1.1 mm; p < 0.05 and p < 0.01). For Protocol 1, 2 and 3, sphericity of the treatment zone was significantly larger for Technique A compared with B. Conclusions Regarding size and shape of the treatment zone after IRE, CT 3d rendering with the “Chebyshev Center Concept” implemented provides significantly different results compared with standard CT 3d analysis. Since the latter overestimates the size of the treatment zone, the “Chebyshev Center Concept” could be used for a more objective acute treatment control. PMID:24410997

  8. Small diameter, deep bore optical inspection system

    DOEpatents

    Lord, David E.; Petrini, Richard R.; Carter, Gary W.

    1981-01-01

    An improved rod optic system for inspecting small diameter, deep bores. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90.degree. to minimize optical distortion in examining the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable of examining 1/16 inch diameter and up to 4 inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and right angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.

  9. Rapid infrared laser sealing and cutting of porcine renal vessels, ex vivo

    NASA Astrophysics Data System (ADS)

    Giglio, Nicholas C.; Hutchens, Thomas C.; Perkins, William C.; Latimer, Cassandra; Ward, Arlen; Nau, William H.; Fried, Nathaniel M.

    2014-03-01

    Suture ligation with subsequent cutting of blood vessels to maintain hemostasis during surgery is time consuming and skill intensive. Energy-based, electrosurgical and ultrasonic devices are often used to replace sutures and mechanical clips to provide rapid hemostasis, and decrease surgical time. Some of these devices may create undesirably large collateral zones of thermal damage and tissue necrosis, or require separate mechanical blades for cutting. Infrared lasers are currently being explored as alternative energy sources for vessel sealing applications. In a previous study, a 1470-nm laser was used to seal vessels of 1-6 mm in diameter in 5 s, yielding burst pressures of ~ 500 mmHg. The purpose of this study was to provide faster sealing, incorporate transection of the sealed vessels, and increase the burst pressure. A 110-Watt, 1470-nm laser beam was transmitted through a fiber and beam shaping optics, producing a linear beam 3.0 mm by 9.5 mm for sealing, and 1.1 mm by 9.6 mm for cutting (FWHM). A twostep process sealed then transected ex vivo porcine renal vessels (1-8.5 mm diameter) in a bench top setup. Seal and cut times were 1.0 s each. A standard burst pressure system measured resulting seal strength, and gross and histologic thermal damage measurements were also recorded. All blood vessels tested (n = 30) were sealed and cut, with total irradiation times of 2.0 s, mean burst pressures > 1000 mmHg (compared to normal systolic blood pressure of 120 mmHg), and combined seal/collateral thermal coagulation zones of 2-3 mm. The results of this study demonstrated that an optical-based system is capable of precisely sealing and cutting a wide range of porcine renal vessel sizes, and with further development, may provide an alternative to radiofrequency and ultrasound-based vessel sealing devices.

  10. MASTER: a model to improve and standardize clinical breakpoints for antimicrobial susceptibility testing using forecast probabilities.

    PubMed

    Blöchliger, Nicolas; Keller, Peter M; Böttger, Erik C; Hombach, Michael

    2017-09-01

    The procedure for setting clinical breakpoints (CBPs) for antimicrobial susceptibility has been poorly standardized with respect to population data, pharmacokinetic parameters and clinical outcome. Tools to standardize CBP setting could result in improved antibiogram forecast probabilities. We propose a model to estimate probabilities for methodological categorization errors and defined zones of methodological uncertainty (ZMUs), i.e. ranges of zone diameters that cannot reliably be classified. The impact of ZMUs on methodological error rates was used for CBP optimization. The model distinguishes theoretical true inhibition zone diameters from observed diameters, which suffer from methodological variation. True diameter distributions are described with a normal mixture model. The model was fitted to observed inhibition zone diameters of clinical Escherichia coli strains. Repeated measurements for a quality control strain were used to quantify methodological variation. For 9 of 13 antibiotics analysed, our model predicted error rates of < 0.1% applying current EUCAST CBPs. Error rates were > 0.1% for ampicillin, cefoxitin, cefuroxime and amoxicillin/clavulanic acid. Increasing the susceptible CBP (cefoxitin) and introducing ZMUs (ampicillin, cefuroxime, amoxicillin/clavulanic acid) decreased error rates to < 0.1%. ZMUs contained low numbers of isolates for ampicillin and cefuroxime (3% and 6%), whereas the ZMU for amoxicillin/clavulanic acid contained 41% of all isolates and was considered not practical. We demonstrate that CBPs can be improved and standardized by minimizing methodological categorization error rates. ZMUs may be introduced if an intermediate zone is not appropriate for pharmacokinetic/pharmacodynamic or drug dosing reasons. Optimized CBPs will provide a standardized antibiotic susceptibility testing interpretation at a defined level of probability. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Interlaced zone plate optics for hard X-ray imaging in the 10 nm range

    DOE PAGES

    Mohacsi, Istvan; Vartiainen, Ismo; Rosner, Benedikt; ...

    2017-03-08

    Multi-keV X-ray microscopy has been particularly successful in bridging the resolution gap between optical and electron microscopy. However, resolutions below 20 nm are still considered challenging, as high throughput direct imaging methods are limited by the availability of suitable optical elements. In order to bridge this gap, we present a new type of Fresnel zone plate lenses aimed at the sub-20 and the sub-10 nm resolution range. By extending the concept of double-sided zone plate stacking, we demonstrate the doubling of the effective line density and thus the resolution and provide large aperture, single- chip optical devices with 15 andmore » 7 nm smallest zone widths. The detailed characterization of these lenses shows excellent optical properties with focal spots down to 7.8 nm. Furthermore, beyond wave front characterization, the zone plates also excel in typical imaging scenarios, verifying their resolution close to their diffraction limited optical performance.« less

  12. Interlaced zone plate optics for hard X-ray imaging in the 10 nm range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohacsi, Istvan; Vartiainen, Ismo; Rosner, Benedikt

    Multi-keV X-ray microscopy has been particularly successful in bridging the resolution gap between optical and electron microscopy. However, resolutions below 20 nm are still considered challenging, as high throughput direct imaging methods are limited by the availability of suitable optical elements. In order to bridge this gap, we present a new type of Fresnel zone plate lenses aimed at the sub-20 and the sub-10 nm resolution range. By extending the concept of double-sided zone plate stacking, we demonstrate the doubling of the effective line density and thus the resolution and provide large aperture, single- chip optical devices with 15 andmore » 7 nm smallest zone widths. The detailed characterization of these lenses shows excellent optical properties with focal spots down to 7.8 nm. Furthermore, beyond wave front characterization, the zone plates also excel in typical imaging scenarios, verifying their resolution close to their diffraction limited optical performance.« less

  13. Interlaced zone plate optics for hard X-ray imaging in the 10 nm range

    PubMed Central

    Mohacsi, Istvan; Vartiainen, Ismo; Rösner, Benedikt; Guizar-Sicairos, Manuel; Guzenko, Vitaliy A.; McNulty, Ian; Winarski, Robert; Holt, Martin V.; David, Christian

    2017-01-01

    Multi-keV X-ray microscopy has been particularly successful in bridging the resolution gap between optical and electron microscopy. However, resolutions below 20 nm are still considered challenging, as high throughput direct imaging methods are limited by the availability of suitable optical elements. In order to bridge this gap, we present a new type of Fresnel zone plate lenses aimed at the sub-20 and the sub-10 nm resolution range. By extending the concept of double-sided zone plate stacking, we demonstrate the doubling of the effective line density and thus the resolution and provide large aperture, singlechip optical devices with 15 and 7 nm smallest zone widths. The detailed characterization of these lenses shows excellent optical properties with focal spots down to 7.8 nm. Beyond wave front characterization, the zone plates also excel in typical imaging scenarios, verifying their resolution close to their diffraction limited optical performance.

  14. Interlaced zone plate optics for hard X-ray imaging in the 10 nm range

    NASA Astrophysics Data System (ADS)

    Mohacsi, Istvan; Vartiainen, Ismo; Rösner, Benedikt; Guizar-Sicairos, Manuel; Guzenko, Vitaliy A.; McNulty, Ian; Winarski, Robert; Holt, Martin V.; David, Christian

    2017-03-01

    Multi-keV X-ray microscopy has been particularly successful in bridging the resolution gap between optical and electron microscopy. However, resolutions below 20 nm are still considered challenging, as high throughput direct imaging methods are limited by the availability of suitable optical elements. In order to bridge this gap, we present a new type of Fresnel zone plate lenses aimed at the sub-20 and the sub-10 nm resolution range. By extending the concept of double-sided zone plate stacking, we demonstrate the doubling of the effective line density and thus the resolution and provide large aperture, singlechip optical devices with 15 and 7 nm smallest zone widths. The detailed characterization of these lenses shows excellent optical properties with focal spots down to 7.8 nm. Beyond wave front characterization, the zone plates also excel in typical imaging scenarios, verifying their resolution close to their diffraction limited optical performance.

  15. Birth weight and optic nerve head parameters.

    PubMed

    Samarawickrama, Chameen; Huynh, Son C; Liew, Gerald; Burlutsky, George; Mitchell, Paul

    2009-06-01

    To assess the relationship of birth weight, birth length, and head circumference as proxy markers of intrauterine growth, cup/disc ratio, and other optic disc parameters measured using optical coherence tomography (OCT). Population-based cross sectional analysis. The Sydney Childhood Eye Study examined 2353 primarily 12-year-old children from 21 randomly selected secondary schools during 2003 to 2005. Of 2353 children examined, 2134 (90.7%) had OCT scans (Zeiss Stratus OCT, Carl Zeiss Meditec, Dublin, CA) and are included in this study. The "fast" optic disc scan protocol was used. Birth weight, birth length, and head circumference were ascertained from health records. Height and weight were measured using standardized protocols, body mass index (BMI) was defined as weight (kilograms)/ height squared (meters), and sociodemographic information was collected in a questionnaire completed by parents. Low birth weight was defined as birth weight

  16. Meaning of visualizing retinal cone mosaic on adaptive optics images.

    PubMed

    Jacob, Julie; Paques, Michel; Krivosic, Valérie; Dupas, Bénédicte; Couturier, Aude; Kulcsar, Caroline; Tadayoni, Ramin; Massin, Pascale; Gaudric, Alain

    2015-01-01

    To explore the anatomic correlation of the retinal cone mosaic on adaptive optics images. Retrospective nonconsecutive observational case series. A retrospective review of the multimodal imaging charts of 6 patients with focal alteration of the cone mosaic on adaptive optics was performed. Retinal diseases included acute posterior multifocal placoid pigment epitheliopathy (n = 1), hydroxychloroquine retinopathy (n = 1), and macular telangiectasia type 2 (n = 4). High-resolution retinal images were obtained using a flood-illumination adaptive optics camera. Images were recorded using standard imaging modalities: color and red-free fundus camera photography; infrared reflectance scanning laser ophthalmoscopy, fluorescein angiography, indocyanine green angiography, and spectral-domain optical coherence tomography (OCT) images. On OCT, in the marginal zone of the lesions, a disappearance of the interdigitation zone was observed, while the ellipsoid zone was preserved. Image recording demonstrated that such attenuation of the interdigitation zone co-localized with the disappearance of the cone mosaic on adaptive optics images. In 1 case, the restoration of the interdigitation zone paralleled that of the cone mosaic after a 2-month follow-up. Our results suggest that the interdigitation zone could contribute substantially to the reflectance of the cone photoreceptor mosaic. The absence of cones on adaptive optics images does not necessarily mean photoreceptor cell death. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. An interlaboratory comparison of sizing and counting of subvisible particles mimicking protein aggregates.

    PubMed

    Ripple, Dean C; Montgomery, Christopher B; Hu, Zhishang

    2015-02-01

    Accurate counting and sizing of protein particles has been limited by discrepancies of counts obtained by different methods. To understand the bias and repeatability of techniques in common use in the biopharmaceutical community, the National Institute of Standards and Technology has conducted an interlaboratory comparison for sizing and counting subvisible particles from 1 to 25 μm. Twenty-three laboratories from industry, government, and academic institutions participated. The circulated samples consisted of a polydisperse suspension of abraded ethylene tetrafluoroethylene particles, which closely mimic the optical contrast and morphology of protein particles. For restricted data sets, agreement between data sets was reasonably good: relative standard deviations (RSDs) of approximately 25% for light obscuration counts with lower diameter limits from 1 to 5 μm, and approximately 30% for flow imaging with specified manufacturer and instrument setting. RSDs of the reported counts for unrestricted data sets were approximately 50% for both light obscuration and flow imaging. Differences between instrument manufacturers were not statistically significant for light obscuration but were significant for flow imaging. We also report a method for accounting for differences in the reported diameter for flow imaging and electrical sensing zone techniques; the method worked well for diameters greater than 15 μm. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. The Optical Design of a System using a Fresnel Lens that Gathers Light for a Solar Concentrator and that Feeds into Solar Alignment Optics

    NASA Technical Reports Server (NTRS)

    Wilkerson, Gary W.; Huegele, Vinson

    1998-01-01

    The Marshall Space Flight Center (MSFC) has been developing a space deployable, lightweight membrane concentrator to focus solar energy into a solar furnace while remaining aligned to the sun. For an inner surface, this furnace has a cylindrical heat exchanger cavity coaligned to the optical axis; the furnace warms gas to propel the spacecraft. The membrane concentrator is a 1727 mm (68.00 in.) diameter, F/1.7 Fresnel lens. This large membrane is made from polyimide and is 0.076 mm (0.0030 in.) thick; it has the Fresnel grooves cast into it. The solar concentrator system has a super fast paraboloid reflector near the lens focus and immediately adjacent to the cylindrical exchanger cavity. The paraboloid collects the wide bandwidth and some of the solar energy scattered by the Fresnel lens. Finally, the paraboloid feeds the light into the cylinder. The Fresnel lens also possesses a narrow annular zone that focuses a reference beam toward four detectors that keep the optical system aligned to the sun; thus, occurs a refracting lens that focuses two places! The result can be summarized as a composite Fresnel lens for solar concentration and alignment.

  19. A numerical study of zone-melting process for the thermoelectric material of Bi2Te3

    NASA Astrophysics Data System (ADS)

    Chen, W. C.; Wu, Y. C.; Hwang, W. S.; Hsieh, H. L.; Huang, J. Y.; Huang, T. K.

    2015-06-01

    In this study, a numerical model has been established by employing a commercial software; ProCAST, to simulate the variation/distribution of temperature and the subsequent microstructure of Bi2Te3 fabricated by zone-melting technique. Then an experiment is conducted to measure the temperature variation/distribution during the zone-melting process to validate the numerical system. Also, the effects of processing parameters on crystallization microstructure such as moving speed and temperature of heater are numerically evaluated. In the experiment, the Bi2Te3 powder are filled into a 30mm diameter quartz cylinder and the heater is set to 800°C with a moving speed 12.5 mm/hr. A thermocouple is inserted in the Bi2Te3 powder to measure the temperature variation/distribution of the zone-melting process. The temperature variation/distribution measured by experiment is compared to the results of numerical simulation. The results show that our model and the experiment are well matched. Then the model is used to evaluate the crystal formation for Bi2Te3 with a 30mm diameter process. It's found that when the moving speed is slower than 17.5 mm/hr, columnar crystal is obtained. In the end, we use this model to predict the crystal formation of zone-melting process for Bi2Te3 with a 45 mm diameter. The results show that it is difficult to grow columnar crystal when the diameter comes to 45mm.

  20. Small diameter, deep bore optical inspection system

    DOEpatents

    Lord, D.E.; Petrini, R.R.; Carter, G.W.

    An improved rod optic system for inspecting small diameter, deep bores is described. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90/sup 0/ to minimize optical distortion in examing the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable if examing 1/16 inch diameter and up to 4-inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and righ angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.

  1. Axial contraction in etched optical fiber due to internal stress reduction.

    PubMed

    Lim, Kok-Sing; Yang, Hang-Zhou; Chong, Wu-Yi; Cheong, Yew-Ken; Lim, Chin-Hong; Ali, Norfizah M; Ahmad, Harith

    2013-02-11

    When an optical fiber is dipped in an etching solution, the internal stress profile in the fiber varies with the fiber diameter. We observed a physical contraction as much as 0.2% in the fiber axial dimension when the fiber was reduced from its original diameter to ~6 µm through analysis using high resolution microscope images of the grating period of an etched FBG at different fiber diameters. This axial contraction is related to the varying axial stress profile in the fiber when the fiber diameter is reduced. On top of that, the refractive index of fiber core increases with reducing fiber diameter due to stress-optic effect. The calculated index increment is as much as 1.8 × 10(-3) at the center of fiber core after the diameter is reduced down to ~6 µm. In comparison with the conventional model that assumes constant grating period and neglects the variation in stress-induced index change in fiber core, our proposed model indicates a discrepancy as much as 3nm in Bragg wavelength at a fiber diameter of ~6 µm.

  2. Nearby Exo-Earth Astrometric Telescope (NEAT)

    NASA Technical Reports Server (NTRS)

    Shao, M.; Nemati, B.; Zhai, C.; Goullioud, R.

    2011-01-01

    NEAT (Nearby Exo ]Earths Astrometric Telescope) is a modest sized (1m diameter telescope) It will be capable of searching approx 100 nearby stars down to 1 Mearth planets in the habitable zone, and 200 @ 5 Mearth, 1AU. The concept addresses the major issues for ultra -precise astrometry: (1) Photon noise (0.5 deg dia field of view) (2) Optical errors (beam walk) with long focal length telescope (3) Focal plane errors , with laser metrology of the focal plane (4) PSF centroiding errors with measurement of the "True" PSF instead of using a "guess " of the true PSF, and correction for intra pixel QE non-uniformities. Technology "close" to complete. Focal plane geometry to 2e-5 pixels and centroiding to approx 4e -5 pixels.

  3. Characteristics of surface sterilization using electron cyclotron resonance plasma

    NASA Astrophysics Data System (ADS)

    Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya

    2016-07-01

    The characteristics of surface sterilization using electron cyclotron resonance (ECR) plasma were investigated. High-energy electrons and oxygen radicals were observed in the ECR zone using electric probe and optical emission spectroscopic methods. A biological indicator (BI), Geobacillus stearothermophilus, containing 1 × 106 spores was sterilized in 120 s by exposure to oxygen discharges while maintaining a temperature of approximately 55 °C at the BI installation position. Oxygen radicals and high-energy electrons were found to be the sterilizing species in the ECR region. It was demonstrated that the ECR plasma could be produced in narrow tubes with an inner diameter of 5 mm. Moreover, sterilization tests confirmed that the spores present inside the narrow tube were successfully inactivated by ECR plasma irradiation.

  4. Sensitivity optimization of ZnO clad-modified optical fiber humidity sensor by means of tuning the optical fiber waist diameter

    NASA Astrophysics Data System (ADS)

    Azad, Saeed; Sadeghi, Ebrahim; Parvizi, Roghaieh; Mazaheri, Azardokht; Yousefi, M.

    2017-05-01

    In this work, the multimode optical fiber size effects on the performances of the clad-modified fiber with ZnO nanorods relative humidity (RH) sensor were experimentally investigated. Simple and controlled chemical etching method through on line monitoring was used to prepare different fiber waist diameter with long length of 15 mm. More precisely, the competition behavior of sensor performances with varying fiber waist diameter was studied to find appropriate size of maximizing evanescent fields. The obtained results revealed that evanescent wave absorption coefficient (γ) enhanced more than 10 times compare to bare fiber at the proposed optimum fiber diameter of 28 μm. Also, high linearity and fast recovery time about 7 s was obtained at the proposed fiber waist diameter. Applicable features of the proposed sensor allow this device to be used for humidity sensing applications, especially to be applied in remote sensing technologies.

  5. Decreasing diameter fluctuation of polymer optical fiber with optimized drawing conditions

    NASA Astrophysics Data System (ADS)

    Çetinkaya, Onur; Wojcik, Grzegorz; Mergo, Pawel

    2018-05-01

    The diameter fluctuations of poly(methyl methacrylate) based polymer optical fibers, during drawing processes, have been comprehensively studied. In this study, several drawing parameters were selected for investigation; such as drawing tensions, preform diameters, preform feeding speeds, and argon flows. Varied drawing tensions were used to draw fibers, while other parameters were maintained at constant. At a later stage in the process, micro-structured polymer optical fibers were drawn under optimized drawing conditions. Fiber diameter deviations were reduced to 2.2%, when a 0.2 N drawing tension was employed during the drawing process. Higher drawing tensions led to higher diameter fluctuations. The Young’s modulus of fibers drawn with different tensions was also measured. Our results showed that fiber elasticity increased as drawing tensions decreased. The inhomogeneity of fibers was also determined by comparing the deviation of Young’s modulus.

  6. DARLA: Data Assimilation and Remote Sensing for Littoral Applications

    DTIC Science & Technology

    2011-09-30

    measurements from the Surf Zone Optics (SZO) experiment in September, 2011. Since optical reflectance saturates for surf zone bubble depths greater than...Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents...pilot experiment at Duck, NC during the Surf Zone Optics DRI Experiment in September, 2010 and participated in planning of the upcoming RIVET DRI

  7. Adaptive optics and the eye (super resolution OCT).

    PubMed

    Miller, D T; Kocaoglu, O P; Wang, Q; Lee, S

    2011-03-01

    The combination of adaptive optics (AO) and optical coherence tomography (OCT) was first reported 8 years ago and has undergone tremendous technological advances since then. The technical benefits of adding AO to OCT (increased lateral resolution, smaller speckle, and enhanced sensitivity) increase the imaging capability of OCT in ways that make it well suited for three-dimensional (3D) cellular imaging in the retina. Today, AO-OCT systems provide ultrahigh 3D resolution (3 × 3 × 3 μm³) and ultrahigh speed (up to an order of magnitude faster than commercial OCT). AO-OCT systems have been used to capture volume images of retinal structures, previously only visible with histology, and are being used for studying clinical conditions. Here, we present representative examples of cellular structures that can be visualized with AO-OCT. We overview three studies from our laboratory that used ultrahigh-resolution AO-OCT to measure the cross-sectional profiles of individual bundles in the retinal nerve fiber layer; the diameters of foveal capillaries that define the terminal rim of the foveal avascular zone; and the spacing and length of individual cone photoreceptor outer segments as close as 0.5° from the fovea center.

  8. [The estimation of systemic chemotherapy treatment administered in breast cancer on lysozyme activity in tears--preliminary report].

    PubMed

    Wojciechowska, Katarzyna; Jurowski, Piotr; Wieckowska-Szakiel, Marzena; Rózalska, Barbara

    2012-01-01

    Estimation of cytostatics influence used in breast cancer treatment on lysozyme activity in human tears depend on time of treatment. 8 women were treated at the base of chemotherapy schema: docetaxel with doxorubicin and 4 women treated with schema CMF: cyclophosphamide, methotrexate, 5-fluorouracil. Lysozyme activity in tears was assessed by measurement of diameter zone of Micrococcus lysodeicticus growth inhibition. It was revealed that both chemotherapy schema caused statistically significant reduction of diameter zone of M. lysodeicticus growth inhibition, after first and second course of chemotherapy treatment. After second chemotherapy course CMF schema induced loss of lysozyme activity in patient's tears (zero mm of M. lysodeicticus diameter zone growth inhibition). Systemic chemotherapy administered in breast cancer induce reduction of lysozyme activity in tears, that may cause higher morbidity of ocular surface infections caused by Gram-positive bacteria.

  9. [Meningococcus profilaxis (author's transl)].

    PubMed

    Pérez Trallero, E; Pérez-Yarza, E; Ruíz Benito, C; Muñóz Baroja, I

    1979-11-25

    In a General Hospital in San Sebastian, 96 cases of Neisseria meningitidis infections were detected in a two years period. By the use of the disk diffusion method, we found that all causative meningococcal strains but 4 were resistant to sulfonamide (with a 300 microgram sulfadiazine disk, all isolates with a zone diameter of less than 20 mm were considered to be resistant of sulfadiazine, whereas those with zone diameters of greater than 30 mm were considered susceptible). No rifampin nor minocycline-resistant meningococci were isolated. All strains had a disk zone diameter (30 micrograms rifampin and 30 micrograms tetracycline) of greater than 20 mm. The serogroups of meningococcal strains were as follows: group A, 1; group B, 67; group C, 5 and 23 were no typed. Children less than four years of age were most frequently attacked (67,7%). The attack rate was only slightly higher in males than in females (52 and 44).

  10. Starshade mechanical design for the Habitable Exoplanet imaging mission concept (HabEx)

    NASA Astrophysics Data System (ADS)

    Arya, Manan; Webb, David; McGown, James; Lisman, P. Douglas; Shaklan, Stuart; Bradford, S. Case; Steeves, John; Hilgemann, Evan; Trease, Brian; Thomson, Mark; Warwick, Steve; Freebury, Gregg; Gull, Jamie

    2017-09-01

    An external occulter for starlight suppression - a starshade - flying in formation with the Habitable Exoplanet Imaging Mission Concept (HabEx) space telescope could enable the direct imaging and spectrographic characterization of Earthlike exoplanets in the habitable zone. This starshade is flown between the telescope and the star, and suppresses stellar light sufficiently to allow the imaging of the faint reflected light of the planet. This paper presents a mechanical architecture for this occulter, which must stow in a 5 m-diameter launch fairing and then deploy to about a 80 m-diameter structure. The optical performance of the starshade requires that the edge profile is accurate and stable. The stowage and deployment of the starshade to meet these requirements present unique challenges that are addressed in this proposed architecture. The mechanical architecture consists of a number of petals attached to a deployable perimeter truss, which is connected to central hub using tensioned spokes. The petals are furled around the stowed perimeter truss for launch. Herein is described a mechanical design solution that supports an 80 m-class starshade for flight as part of HabEx.

  11. Investigation of transient dynamics of capillary assisted particle assembly yield

    NASA Astrophysics Data System (ADS)

    Virganavičius, D.; Juodėnas, M.; Tamulevičius, T.; Schift, H.; Tamulevičius, S.

    2017-06-01

    In this paper, the transient behavior of the particle assembly yield dynamics when switching from low yield to high yield deposition at different velocity and thermal regimes is investigated. Capillary force assisted particle assembly (CAPA) using colloidal suspension of green fluorescent 270 nm diameter polystyrene beads was performed on patterned poly (dimethyl siloxane) substrates using a custom-built deposition setup. Two types of patterns with different trapping site densities were used to assess CAPA process dynamics and the influence of pattern density and geometry on the deposition yield transitions. Closely packed 300 nm diameter circular pits ordered in hexagonal arrangement with 300 nm pitch, and 2 × 2 mm2 square pits with 2 μm spacing were used. 2-D regular structures of the deposited particles were investigated by means of optical fluorescence and scanning electron microscopy. The fluorescence micrographs were analyzed using a custom algorithm enabling to identify particles and calculate efficiency of the deposition performed at different regimes. Relationship between the spatial distribution of particles in transition zone and ambient conditions was evaluated and quantified by approximation of the yield profile with a logistic function.

  12. Diameter measurement of optical nanofiber based on high-order Bragg reflections using a ruled grating.

    PubMed

    Zhu, Ming; Wang, Yao-Ting; Sun, Yi-Zhi; Zhang, Lijian; Ding, Wei

    2018-02-01

    A convenient method using a commercially available ruled grating for precise and overall diameter measurement of optical nanofibers (ONFs) is presented. We form a composite Bragg reflector with a micronscale period by dissolving aluminum coating, slicing the grating along ruling lines, and mounting it on an ONF. The resonant wavelengths of high-order Bragg reflections possess fiber diameter dependence, enabling nondestructive measurement of the ONF diameter profile. This method provides an easy and economic diagnostic tool for wide varieties of ONF-based applications.

  13. Optically induced melting of colloidal crystals and their recrystallization.

    PubMed

    Harada, Masashi; Ishii, Masahiko; Nakamura, Hiroshi

    2007-04-15

    Colloidal crystals melt by applying focused light of optical tweezers and recrystallize after removing it. The disturbed zone by the light grows radially from the focus point and the ordering starts from the interface with the crystal. Although the larger disturbed zone is observed for the higher power optical tweezers, a master curve is extracted by normalization of the disturbed zone. The temporal changes of the normalized disturbed zone are well described with exponential functions, indicating that the melting and recrystallization process is governed by a simple relaxation mechanism.

  14. Pre-Finishing of SiC for Optical Applications

    NASA Technical Reports Server (NTRS)

    Rozzi, Jay; Clavier, Odile; Gagne, John

    2011-01-01

    13 Manufacturing & Prototyping A method is based on two unique processing steps that are both based on deterministic machining processes using a single-point diamond turning (SPDT) machine. In the first step, a high-MRR (material removal rate) process is used to machine the part within several microns of the final geometry. In the second step, a low-MRR process is used to machine the part to near optical quality using a novel ductile regime machining (DRM) process. DRM is a deterministic machining process associated with conditions under high hydrostatic pressures and very small depths of cut. Under such conditions, using high negative-rake angle cutting tools, the high-pressure region near the tool corresponds to a plastic zone, where even a brittle material will behave in a ductile manner. In the high-MRR processing step, the objective is to remove material with a sufficiently high rate such that the process is economical, without inducing large-scale subsurface damage. A laser-assisted machining approach was evaluated whereby a CO2 laser was focused in advance of the cutting tool. While CVD (chemical vapor deposition) SiC was successfully machined with this approach, the cutting forces were substantially higher than cuts at room temperature under the same machining conditions. During the experiments, the expansion of the part and the tool due to the heating was carefully accounted for. The higher cutting forces are most likely due to a small reduction in the shear strength of the material compared with a larger increase in friction forces due to the thermal softening effect. The key advantage is that the hybrid machine approach has the potential to achieve optical quality without the need for a separate optical finishing step. Also, this method is scalable, so one can easily progress from machining 50-mm-diameter samples to the 250-mm-diameter mirror that NASA desires.

  15. Critical Coupling Between Optical Fibers and WGM Resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Maleki, Lute; Itchenko, Vladimir; Savchenkov, Anatoliy

    2009-01-01

    Two recipes for ensuring critical coupling between a single-mode optical fiber and a whispering-gallery-mode (WGM) optical resonator have been devised. The recipes provide for phase matching and aperture matching, both of which are necessary for efficient coupling. There is also a provision for suppressing intermodal coupling, which is detrimental because it drains energy from desired modes into undesired ones. According to one recipe, the tip of the single-mode optical fiber is either tapered in diameter or tapered in effective diameter by virtue of being cleaved at an oblique angle. The effective index of refraction and the phase velocity at a given position along the taper depend on the diameter (or effective diameter) and the index of refraction of the bulk fiber material. As the diameter (or effective diameter) decreases with decreasing distance from the tip, the effective index of refraction also decreases. Critical coupling and phase matching can be achieved by placing the optical fiber and the resonator in contact at the proper point along the taper. This recipe is subject to the limitation that the attainable effective index of refraction lies between the indices of refraction of the bulk fiber material and the atmosphere or vacuum to which the resonator and fiber are exposed. The other recipe involves a refinement of the previously developed technique of prism coupling, in which the light beam from the optical fiber is collimated and focused onto one surface of a prism that has an index of refraction greater than that of the resonator. Another surface of the prism is placed in contact with the resonator. The various components are arranged so that the collimated beam is focused at the prism/resonator contact spot. The recipe includes the following additional provisions:

  16. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Spun microstructured optical fibresfor Faraday effect current sensors

    NASA Astrophysics Data System (ADS)

    Chamorovsky, Yury K.; Starostin, Nikolay I.; Morshnev, Sergey K.; Gubin, Vladimir P.; Ryabko, Maksim V.; Sazonov, Aleksandr I.; Vorob'ev, Igor'L.

    2009-11-01

    We report a simple design of spun holey fibres and the first experimental study of the magneto-optical response of spun microstructured fibres with high built-in birefringence. Such fibres enable the Faraday-effect-induced phase shift to effectively accumulate in a magnetic field even at very small coiling diameters. For example, the magneto-optical sensitivity of a 5-mm-diameter fibre coil consisting of 100 turns is ~70% that of an ideal fibre, in good agreement with theoretical predictions.

  17. Geology of the Selk crater region on Titan from Cassini VIMS observations

    USGS Publications Warehouse

    Soderblom, J.M.; Brown, R.H.; Soderblom, L.A.; Barnes, J.W.; Jaumann, R.; Le Mouélic, Stéphane; Sotin, Christophe; Stephan, K.; Baines, K.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.

    2010-01-01

    Observations of Titan obtained by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) have revealed Selk crater, a geologically young, bright-rimmed, impact crater located ???800. km north-northwest of the Huygens landing site. The crater rim-crest diameter is ???90. km; its floor diameter is ???60. km. A central pit/peak, 20-30. km in diameter, is seen; the ratio of the size of this feature to the crater diameter is consistent with similarly sized craters on Ganymede and Callisto, all of which are dome craters. The VIMS data, unfortunately, are not of sufficient resolution to detect such a dome. The inner rim of Selk crater is fluted, probably by eolian erosion, while the outer flank and presumed ejecta blanket appear dissected by drainages (particularly to the east), likely the result of fluvial erosion. Terracing is observed on the northern and western walls of Selk crater within a 10-15. km wide terrace zone identified in VIMS data; the terrace zone is bright in SAR data, consistent with it being a rough surface. The terrace zone is slightly wider than those observed on Ganymede and Callisto and may reflect differences in thermal structure and/or composition of the lithosphere. The polygonal appearance of the crater likely results from two preexisting planes of weakness (oriented at azimuths of 21?? and 122?? east of north). A unit of generally bright terrain that exhibits similar infrared-color variation and contrast to Selk crater extends east-southeast from the crater several hundred kilometers. We informally refer to this terrain as the Selk "bench." Both Selk and the bench are surrounded by the infrared-dark Belet dune field. Hypotheses for the genesis of the optically bright terrain of the bench include: wind shadowing in the lee of Selk crater preventing the encroachment of dunes, impact-induced cryovolcanism, flow of a fluidized-ejecta blanket (similar to the bright crater outflows observed on Venus), and erosion of a streamlined upland formed in the lee of Selk crater by fluid flow. Vestigial circular outlines in this feature just east of Selk's ejecta blanket suggest that this might be a remnant of an ancient, cratered crust. Evidently the southern margin of the feature has sufficient relief to prevent the encroachment of dunes from the Belet dune field. We conclude that this feature either represents a relatively high-viscosity, fluidized-ejecta flow (a class intermediate to ejecta blankets and long venusian-style ejecta flows) or a streamlined upland remnant that formed downstream from the crater by erosive fluid flow from the west-northwest. ?? 2010 Elsevier Inc.

  18. Correlation analysis of the optics of progressive addition lenses.

    PubMed

    Sheedy, James E

    2004-05-01

    To investigate the relations between selected key optical parameters and the sizes of the clear viewing areas of progressive addition lenses (PALs). The optics of 28 PALs (plano with +2.00 D add) currently on the market were measured with a Rotlex Class Plus lens analyzer. Horizontal cross sections were analyzed in 1 mm vertical steps with respect to the fitting cross. Distance, intermediate, and near viewing zone widths and areas were calculated from the measurements. The maximum amount of unwanted astigmatism, minimum zone width (0.50 DC limit), and maximum power rate in the corridor were also recorded for each lens. Correlation coefficients were determined for all relations. Each of the three viewing zone areas had a significant negative relation with the other (r of -0.4 to -0.8), indicating design tradeoff. Maximum power rate was significantly related to minimum zone width (r = -0.695), which was significantly related to maximum astigmatism (r = -0.616), but there was not a significant relation between maximum power rate and maximum astigmatism. Higher power rates and narrower minimum zones were significantly related to smaller intermediate and larger near zones (r = 0.4 to 0.9). Maximum astigmatism was related to distance zone width (r = 0.42) and to intermediate zone size (r = -0.4 to -0.56), but not significantly related to near viewing zone. Power rate and astigmatism each vary relatively uniformly across each lens. The fundamental relation appears to be between power rate and zone width, each of which is highly related to sizes of the intermediate and near viewing zones. The maximum amount of astigmatism is related to zone width, but not to maximum power rate. The amount of astigmatism is unrelated to the size of the near zone. The pattern of correlations between the optical and viewing zone parameters help identify the underlying optical relations of PALs.

  19. Size effect of optical silica microsphere pressure sensors

    NASA Astrophysics Data System (ADS)

    Jiao, Xinbing; Hao, Ruirui; Pan, Qian; Zhao, Xinwei; Bai, Xue

    2018-07-01

    Two types of optical pressure sensors with silica microspheres are proposed. The size effect of optical silica microsphere pressure sensors is studied by using a single-wavelength laser beam and polarimeters. The silica microspheres with diameters of 1.0 μm, 1.5 μm and 2.0 μm are prepared on garnet substrates by a self-assembly method. The pressure and the optical properties of the silica microspheres are measured by a resistance strain sensor and Thorlabs Stokes polarimeters as a function of the external direct current (DC) voltage. The optical silica microsphere sensor in transmission mode is suitable for pressure measuring. The results show that the pressure increases, while the diameter of the silica microspheres decreases. The maximum internal pressure can reach up to 7.3 × 107 Pa when the diameter of the silica microspheres is 1.0 μm.

  20. Superior ophthalmic vein enlargement and increased muscle index in dysthyroid optic neuropathy.

    PubMed

    Lima, Breno da Rocha; Perry, Julian D

    2013-01-01

    To compare superior ophthalmic vein diameter and extraocular muscle index in patients with thyroid eye disease with or without optic neuropathy. High-resolution CT scan images of 40 orbits of 20 patients with history of thyroid eye disease (with or without optic neuropathy), who underwent orbital decompression surgery from January 2007 to November 2009, were retrospectively reviewed. Superior ophthalmic vein diameter was measured in coronal and axial planes. Extraocular muscle index was calculated according to the method proposed by Barrett et al. The clinical diagnosis of optic neuropathy was based on characteristic signs that included afferent pupillary defect, decreased visual acuity, visual field defects, and dyschromatopsia. Orbits were divided in 2 groups based on presence or absence of optic neuropathy. Superior ophthalmic vein diameter was significantly higher in orbits with concomitant optic neuropathy (mean 2.4 ± 0.4mm, p < 0.0001). Increased muscle index was also related to optic neuropathy (mean 57.9% ± 5.7%, p = 0.0002). Muscle index greater than 50% was present in all patients with dysthyroid optic neuropathy. This study suggests that patients with thyroid eye disease with enlarged superior ophthalmic vein and increased extraocular muscle index are more likely to have concomitant optic neuropathy.

  1. Micro/Nanofibre Optical Sensors: Challenges and Prospects

    PubMed Central

    Tong, Limin

    2018-01-01

    Micro/nanofibres (MNFs) are optical fibres with diameters close to or below the vacuum wavelength of visible or near-infrared light. Due to its wavelength- or sub-wavelength scale diameter and relatively large index contrast between the core and cladding, an MNF can offer engineerable waveguiding properties including optical confinement, fractional evanescent fields and surface intensity, which is very attractive to optical sensing on the micro and nanometer scale. In particular, the waveguided low-loss tightly confined large fractional evanescent fields, enabled by atomic level surface roughness and extraordinary geometric and material uniformity in a glass MNF, is one of its most prominent merits in realizing optical sensing with high sensitivity and great versatility. Meanwhile, the mesoporous matrix and small diameter of a polymer MNF, make it an excellent host fibre for functional materials for fast-response optical sensing. In this tutorial, we first introduce the basics of MNF optics and MNF optical sensors, and review the progress and current status of this field. Then, we discuss challenges and prospects of MNF sensors to some extent, with several clues for future studies. Finally, we conclude with a brief outlook for MNF optical sensors.

  2. Diameter-dependent optical constants of gold mesoparticles electrodeposited on aluminum films containing copper.

    PubMed

    Brevnov, Dmitri A; Bungay, Corey

    2005-08-04

    Electrodeposition of gold mesoparticles on anodized and chemically etched aluminum/copper films deposited on silicon wafers proceeds by instantaneous nucleation and with no diffusion limitations. Both of these phenomena favor the formation of relatively monodispersed gold particles. Under the reported electrodeposition conditions, the relative standard deviation of the particle diameter is 25%. The particle coverage is 7 x 10(8) particles cm(-2). The mean particle diameter varies as a function of electrodeposition time in the range of 40-80 nm. Optical constants of gold mesoparticles are resolved by spectroscopic ellipsometry. A two-layer optical model is constructed to determine both extinction coefficients and refractive indexes of gold mesoparticles as a function of the mean particle diameter. The absorption peak, associated with surface plasmons, is modeled with two Lorentz oscillators. Absorption peak maximums shift from 610 to 675 nm as the mean particle diameter increases from 42 to 74 nm. Electrodeposition of gold particles on technologically relevant substrates, such as aluminum/copper films, is expected to increase the utility of gold particles and facilitate their incorporation in nanostructured materials and a variety of electronic and optical devices.

  3. Biosensing operations based on whispering-gallery-mode optical cavities in single 1.0-µm diameter hexagonal GaN microdisks grown by radio-frequency plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kouno, Tetsuya; Sakai, Masaru; Kishino, Katsumi; Hara, Kazuhiko

    2016-05-01

    Biosensing operations based on a whispering-gallery-mode optical cavity in a single hexagonal GaN microdisk of approximately 1.0 µm diameter were demonstrated here. The sharp resonant peak in the photoluminescence spectrum obtained from the microdisk in aqueous sucrose solution redshifts with a change in sucrose concentration. The results indicate that an extremely small microdisk could be used as an optical transducer for sensing sugar, namely, as a biosensor. Furthermore, we investigate the relationship between the diameter of the microdisk and the sensitivity of the biosensor.

  4. Very high-resolution spectroscopy for extremely large telescopes using pupil slicing and adaptive optics.

    PubMed

    Beckers, Jacques M; Andersen, Torben E; Owner-Petersen, Mette

    2007-03-05

    Under seeing limited conditions very high resolution spectroscopy becomes very difficult for extremely large telescopes (ELTs). Using adaptive optics (AO) the stellar image size decreases proportional with the telescope diameter. This makes the spectrograph optics and hence its resolution independent of the telescope diameter. However AO for use with ELTs at visible wavelengths require deformable mirrors with many elements. Those are not likely to be available for quite some time. We propose to use the pupil slicing technique to create a number of sub-pupils each of which having its own deformable mirror. The images from all sub-pupils are combined incoherently with a diameter corresponding to the diffraction limit of the sub-pupil. The technique is referred to as "Pupil Slicing Adaptive Optics" or PSAO.

  5. Quantitative relations between the eyeball, the optic nerve, and the optic canal important for intracranial pressure monitoring

    PubMed Central

    2014-01-01

    Objective To find correlations between diameters of the optic nerve sheath (ONSD), the eyeball, and the optic canal that might be important for intracranial pressure monitoring. Methods In a prospective cohort study, the CT data of consecutive 400 adults (18+) with healthy eyes and optic nerves and absence of neurological diseases were collected and analyzed. When the CT scans were obtained, the diameters of the optic nerve sheath, the eyeball, and the optic canal were measured and statistically analyzed. The data obtained from the left and from the right eyeballs and optic nerves were compared. The correlation analysis was performed within these variables, with the gender, and the age. Results In healthy persons, the ONSD varies from 3.65 mm to 5.17 mm in different locations within the intraorbital space with no significant difference between sexes and age groups. There is a strong correlation between the eyeball transverse diameter (ETD) and ONSD that can be presented as ONSD/ETD index. In healthy subjects, the ONSD/ETD index equals 0.19. Conclusion The calculation of an index when ONSD is divided by the ETD of the eyeball presents precise normative database for ONSD intracranial pressure measurement technique. When the ONSD is measured for intracranial pressure monitoring, the most stable results can be obtained if the diameter is measured 10 mm from the globe. These data might serve as a normative database at emergency departments and in general neurological practice. PMID:25130267

  6. Quantitative relations between the eyeball, the optic nerve, and the optic canal important for intracranial pressure monitoring.

    PubMed

    Vaiman, Michael; Gottlieb, Paul; Bekerman, Inessa

    2014-08-17

    To find correlations between diameters of the optic nerve sheath (ONSD), the eyeball, and the optic canal that might be important for intracranial pressure monitoring. In a prospective cohort study, the CT data of consecutive 400 adults (18+) with healthy eyes and optic nerves and absence of neurological diseases were collected and analyzed. When the CT scans were obtained, the diameters of the optic nerve sheath, the eyeball, and the optic canal were measured and statistically analyzed. The data obtained from the left and from the right eyeballs and optic nerves were compared. The correlation analysis was performed within these variables, with the gender, and the age. In healthy persons, the ONSD varies from 3.65 mm to 5.17 mm in different locations within the intraorbital space with no significant difference between sexes and age groups. There is a strong correlation between the eyeball transverse diameter (ETD) and ONSD that can be presented as ONSD/ETD index. In healthy subjects, the ONSD/ETD index equals 0.19. The calculation of an index when ONSD is divided by the ETD of the eyeball presents precise normative database for ONSD intracranial pressure measurement technique. When the ONSD is measured for intracranial pressure monitoring, the most stable results can be obtained if the diameter is measured 10 mm from the globe. These data might serve as a normative database at emergency departments and in general neurological practice.

  7. Evaluation of primary and secondary stability of titanium implants using different surgical techniques.

    PubMed

    Tabassum, Afsheen; Meijer, Gert J; Walboomers, X Frank; Jansen, John A

    2014-04-01

    To investigate the influence of different surgical techniques on the primary and secondary implant stability using trabecular bone of goats as an implantation model. In the iliac crest of eight goats, 48 cylindrical-screw-type implants with a diameter of 4.2 mm (Dyna(®) ; Bergen op Zoom, the Netherlands) were installed, using three different surgical techniques: (i) 5% undersized, using a final drill diameter of 4 mm; (ii) 15% undersized, using a final drill diameter of 3.6 mm; and (iii) 25% undersized, using a final drill diameter of 3.2 mm. Peak insertion torque values were measured by a Digital(®) (MARK-10 Corporation, New York, NY, USA) torque gauge instrument during placement. At 3 weeks after implantation, removal torque was measured. Histomorphometrically, the peri-implant bone volume was measured in three zones; the inner zone (0-500 μm), the middle zone (500-1000 μm) and the outer zone (1000-1500 μm). Evaluation of the obtained data demonstrated no statistically significant difference between different surgical techniques regarding removal torque values. With respect to the percentage peri-implant bone volume (%BV), also no significant difference could be observed between all three applied surgical techniques for both the inner, middle and outer zone. However, irrespective of the surgical technique, it was noticed that the %BV was significantly higher for the inner zone as compared to middle and outer zone (P < 0.05) around the implant. At 3 weeks after implant installation, independent of the used undersized surgical technique, the %BV in the inner zone (0-500 μm) peri-implant area was improved due to both condensation of the surrounding bone as also the translocation of host bone particles along the implant surface. Surprisingly, no mechanical beneficial effect of the 25% undersized surgical technique could be observed as compared to the 5% or 15% undersized surgical technique to improve primary or secondary implant stability. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Multichannel imager for littoral zone characterization

    NASA Astrophysics Data System (ADS)

    Podobna, Yuliya; Schoonmaker, Jon; Dirbas, Joe; Sofianos, James; Boucher, Cynthia; Gilbert, Gary

    2010-04-01

    This paper describes an approach to utilize a multi-channel, multi-spectral electro-optic (EO) system for littoral zone characterization. Advanced Coherent Technologies, LLC (ACT) presents their EO sensor systems for the surf zone environmental assessment and potential surf zone target detection. Specifically, an approach is presented to determine a Surf Zone Index (SZI) from the multi-spectral EO sensor system. SZI provides a single quantitative value of the surf zone conditions delivering an immediate understanding of the area and an assessment as to how well an airborne optical system might perform in a mine countermeasures (MCM) operation. Utilizing consecutive frames of SZI images, ACT is able to measure variability over time. A surf zone nomograph, which incorporates targets, sensor, and environmental data, including the SZI to determine the environmental impact on system performance, is reviewed in this work. ACT's electro-optical multi-channel, multi-spectral imaging system and test results are presented and discussed.

  9. Optical design of soft multifocal contact lens with uniform optical power in center-distance zone with optimized NURBS.

    PubMed

    Vu, Lien T; Chen, Chao-Chang A; Yu, Chia-Wei

    2018-02-05

    This study aims to develop a new optical design method of soft multifocal contact lens (CLs) to obtain uniform optical power in large center-distance zone with optimized Non-Uniform Rational B-spline (NURBS). For the anterior surface profiles of CLs, the NURBS design curves are optimized to match given optical power distributions. Then, the NURBS in the center-distance zones are fitted in the corresponding spherical/aspheric curves for both data points and their centers of curvature to achieve the uniform power. Four cases of soft CLs have been manufactured by casting in shell molds by injection molding and then measured to verify the design specifications. Results of power profiles of these CLs are concord with the given clinical requirements of uniform powers in larger center-distance zone. The developed optical design method has been verified for multifocal CLs design and can be further applied for production of soft multifocal CLs.

  10. Future float zone development in industry

    NASA Technical Reports Server (NTRS)

    Sandfort, R. M.

    1980-01-01

    The present industrial requirements for float zone silicon are summarized. Developments desired by the industry in the future are reported. The five most significant problems faced today by the float zone crystal growth method in industry are discussed. They are economic, large diameter, resistivity uniformity, control of carbon, and swirl defects.

  11. Method for continuous synthesis of metal oxide powders

    DOEpatents

    Berry, David A.; Haynes, Daniel J.; Shekhawat, Dushyant; Smith, Mark W.

    2015-09-08

    A method for the rapid and continuous production of crystalline mixed-metal oxides from a precursor solution comprised of a polymerizing agent, chelated metal ions, and a solvent. The method discharges solution droplets of less than 500 .mu.m diameter using an atomizing or spray-type process into a reactor having multiple temperature zones. Rapid evaporation occurs in a first zone, followed by mixed-metal organic foam formation in a second zone, followed by amorphous and partially crystalline oxide precursor formation in a third zone, followed by formation of the substantially crystalline mixed-metal oxide in a fourth zone. The method operates in a continuous rather than batch manner and the use of small droplets as the starting material for the temperature-based process allows relatively high temperature processing. In a particular embodiment, the first zone operates at 100-300.degree. C., the second zone operates at 300-700.degree. C., and the third operates at 700-1000.degree. C., and fourth zone operates at at least 700.degree. C. The resulting crystalline mixed-metal oxides display a high degree of crystallinity and sphericity with typical diameters on the order of 50 .mu.m or less.

  12. Comparison of standing volume estimates using optical dendrometers

    Treesearch

    Neil A. Clark; Stanley J. Zarnoch; Alexander Clark; Gregory A. Reams

    2001-01-01

    This study compared height and diameter measurements and volume estimates on 20 hardwood and 20 softwood stems using traditional optical dendrometers, an experimental camera instrument, and mechanical calipers. Multiple comparison tests showed significant differences among the means for lower stem diameters when the camera was used. There were no significant...

  13. Comparison of Standing Volume Estimates Using Optical Dendrometers

    Treesearch

    Neil A. Clark; Stanley J. Zarnoch; Alexander Clark; Gregory A. Reams

    2001-01-01

    This study compared height and diameter measurements and volume estimates on 20 hardwood and 20 softwood stems using traditional optical dendrometers, an experimental camera instrument, and mechanical calipers. Multiple comparison tests showed significant differences among the means for lower stem diameters when the camera was used. There were no significant...

  14. Controlling diameter distribution of catalyst nanoparticles in arc discharge.

    PubMed

    Li, Jian; Volotskova, Olga; Shashurin, Alexey; Keidar, Michael

    2011-11-01

    It is demonstrated that the diameter distribution of catalyst nanoparticles in arc discharge can be controlled by a magnetic field. The magnetic field affects the arc shape, shortens the diffusing time of the catalyst nanoparticles through the nucleation zone, and consequentially reduces the average diameters of nanoparticles. The average diameter is reduced from about 7.5 nm without magnetic field to about 5 nm is the case of a magnetic field. Decrease of the catalyst nanoparticle diameter with magnetic field correlates well with decrease in the single-wall carbon nanotube and their bundles diameters.

  15. Correlation between retinal nerve fibre layer thickness and optic nerve head size: an optical coherence tomography study.

    PubMed

    Savini, G; Zanini, M; Carelli, V; Sadun, A A; Ross-Cisneros, F N; Barboni, P

    2005-04-01

    To investigate the correlation between retinal nerve fibre layer (RNFL) thickness and optic nerve head (ONH) size in normal white subjects by means of optical coherence tomography (OCT). 54 eyes of 54 healthy subjects aged between 15 and 54 underwent peripapillary RNFL thickness measurement by a series of three circular scans with a 3.4 mm diameter (Stratus OCT, RNFL Thickness 3.4 acquisition protocol). ONH analysis was performed by means of six radial scans centred on the optic disc (Stratus OCT, Fast Optic Disc acquisition protocol). The mean RNFL values were correlated with the data obtained by ONH analysis. The superior, nasal, and inferior quadrant RNFL thickness showed a significant correlation with the optic disc area (R = 0.3822, p = 0.0043), (R = 0.3024, p = 0.026), (R = 0.4048, p = 0.0024) and the horizontal disc diameter (R = 0.2971, p = 0.0291), (R = 0.2752, p = 0.044), (R = 0.3970, p = 0.003). The superior and inferior quadrant RNFL thickness was also positively correlated with the vertical disc diameter (R = 0.3774, p = 0.0049), (R = 0.2793, p = 0.0408). A significant correlation was observed between the 360 degrees average RNFL thickness and the optic disc area and the vertical and horizontal disc diameters of the ONH (R = 0.4985, p = 0.0001), (R = 0.4454, p = 0.0007), (R = 0.4301, p = 0.0012). RNFL thickness measurements obtained by Stratus OCT increased significantly with an increase in optic disc size. It is not clear if eyes with large ONHs show a thicker RNFL as a result of an increased amount of nerve fibres or to the shorter distance between the circular scan and the optic disc edge.

  16. High-density fiber-optic DNA random microsphere array.

    PubMed

    Ferguson, J A; Steemers, F J; Walt, D R

    2000-11-15

    A high-density fiber-optic DNA microarray sensor was developed to monitor multiple DNA sequences in parallel. Microarrays were prepared by randomly distributing DNA probe-functionalized 3.1-microm-diameter microspheres in an array of wells etched in a 500-microm-diameter optical imaging fiber. Registration of the microspheres was performed using an optical encoding scheme and a custom-built imaging system. Hybridization was visualized using fluorescent-labeled DNA targets with a detection limit of 10 fM. Hybridization times of seconds are required for nanomolar target concentrations, and analysis is performed in minutes.

  17. Effects of season, rainfall, and hydrogeomorphic setting on mangrove tree growth in Micronesia

    USGS Publications Warehouse

    Krauss, K.W.; Keeland, B.D.; Allen, J.A.; Ewel, K.C.; Johnson, Daniel J.

    2007-01-01

    Seasonal patterns of tree growth are often related to rainfall, temperature, and relative moisture regimes. We asked whether diameter growth of mangrove trees in Micronesia, where seasonal changes are minimal, is continuous throughout a year or conforms to an annual cycle. We installed dendrometer bands on Sonneratia alba and Bruguiera gymnorrhiza trees growing naturally within mangrove swamps on the islands of Kosrae, Federated States of Micronesia (FSM), Pohnpei, FSM, and Butaritari, Republic of Kiribati, in the eastern Caroline Islands of the western Pacific Ocean. Trees were remeasured monthly or quarterly for as long as 6 yr. Annual mean individual tree basal area increments ranged from 7.0 to 79.6 cm2/yr for all S. alba trees and from 4.8 to 27.4 cm2/yr for all B. gymnorrhiza trees from Micronesian high islands. Diameter increment for S. alba on Butaritari Atoll was lower at 7.8 cm 2/yr for the one year measured. Growth rates differed significantly by hydrogeomorphic zone. Riverine and interior zones maintained up to seven times the annual diameter growth rate of fringe forests, though not on Pohnpei, where basal area increments for both S. alba and B. gymnorrhiza were approximately 1.5 times greater in the fringe zone than in the interior zone. Time-series modeling indicated that there were no consistent and statistically significant annual diameter growth patterns. Although rainfall has some seasonality in some years on Kosrae and Pohnpei and overall growth of mangroves was sometimes related positively to quarterly rainfall depths, seasonal diameter growth patterns were not distinctive. A reduced chance of moisture-related stress in high-rainfall, wetland environments may serve to buffer growth of Micronesian mangroves from climatic extremes. ?? 2007 The Author(s) Journal compilation ?? 2007 by The Association for Tropical Biology and Conservation.

  18. Distributed strain measurements using fiber Bragg gratings in small-diameter optical fiber and low-coherence reflectometry.

    PubMed

    Coric, Dragan; Lai, Marco; Botsis, John; Luo, Aiping; Limberger, Hans G

    2010-12-06

    Optical low coherence reflectometry and fiber Bragg gratings written in small diameter (50 micrometer) optical fibers were used for measurements of non-homogenous internal strain fields inside an epoxy specimen with sub-grating length resolution. The results were compared with measurements using Fiber Bragg gratings in standard size (125 micrometer) single mode fibers and show that smaller fibers are less intrusive at stress heterogeneities.

  19. Bark factors for Douglas-fir.

    Treesearch

    Floyd. Johnson

    1966-01-01

    Recent emphasis on the measurement of upper stem tree diameters with optical dendrometers has directed attention to procedures for converting these outside-bark diameters to inside-bark diameters. One procedure that has been used requires an assumption that the ratio of diameter inside bark to diameter outside bark (henceforth called bark factor) remains the same up...

  20. Submucosal nerve diameter of greater than 40 μm is not a valid diagnostic index of transition zone pull-through.

    PubMed

    Kapur, Raj P

    2016-10-01

    Submucosal nerve hypertrophy is a feature of the transition zone in Hirschsprung disease and has been used as a primary diagnostic feature of transition zone pull-through for patients with persistent obstructive symptoms after their initial surgery. Most published criteria for identification of hypertrophy rely on a nerve diameter of greater than 40μm, based primarily on data from a relatively small number of infants with Hirschsprung disease and controls. The validity of these objective measures has not been validated in appropriate controls for post-pull-through patients. The primary pull-through specimens and post pull-through biopsies +/- redo pull-through resections from a series of 9 patients with Hirschsprung disease were reviewed to assess the prevalence of submucosal nerves >40μm in diameter and 400× microscopic fields containing two or more such nerves. Similar data from multiple colonic locations were collected from a series of 40 non-Hirschsprung autopsy and surgical controls. The overwhelming majority of Hirschsprung patients harbored submucosal nerves >40μm in their post-pull-through specimens independent of other features of transition zone pathology, and despite normal innervation at the proximal margins of their initial resections. Measurement of submucosal nerve diameters in autopsy and surgical non-Hirschsprung control samples indicated that nerves >40μm are normal in the distal rectum after 1year of age and are found in more proximal colon at older ages. These results suggest that diagnostic criteria currently used to recognize submucosal nerve hypertrophy in the neorectum after a pull-through for Hirschsprung disease are not justified and should not be regarded as definitive evidence for transition zone pull-through. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Regression analysis and categorical agreement of fluconazole disk zone diameters and minimum inhibitory concentration by broth microdilution of clinical isolates of Candida.

    PubMed

    Aggarwal, P; Kashyap, B

    2017-06-01

    Rampant use of fluconazole in Candida infections has led to predominance of less susceptible non-albicans Candida over Candida albicans. The aim of the study was to determine if zone diameters around fluconazole disk can be used to estimate the minimum inhibitory concentration (MIC) for clinical isolates of Candida species and vice versa. Categorical agreement between the Clinical & Laboratory Standards Institute (CLSI) recommended disk diffusion and CLSI broth microdilution method was sought for. Antifungal susceptibility testing by disk diffusion and Broth microdilution was done as per CLSI document M44-S3 and CLSI document M27-S4 for Candida isolates respectively. Regression analysis correlating zone diameters to MIC value was done. Pearson's correlation coefficient was calculated to determine correlation between disk zone diameters and MICs. Candida albicans (33.3%) was clearly outnumbered by other non-albicans species predominantly Candida tropicalis (42.5%) and Candida glabrata (18.4%). Ten percent of the strains were resistant to fluconazole by disk diffusion and 13% by broth microdilution. MIC range for Candida albicans and Candida tropicalis ranged from≤0.25-64μg/ml while that of Candida glabrata ranged from≤0.25-128μg/ml. Categorical agreement between disk diffusion and broth microdilution was 86.8%. Pearson's coefficient of correlation was -0.5975 indicating moderate negative correlation between the two variables. Zone sizes can be used to estimate the MIC values, although with limited accuracy. There should be a constant effort to upgrade the guidelines in view of new clinical data, and laboratories should make an active effort to incorporate them. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Bread board float zone experiment system for high purity silicon

    NASA Technical Reports Server (NTRS)

    Kern, E. L.; Gill, G. L., Jr.

    1982-01-01

    A breadboard float zone experimental system has been established at Westech Systems for use by NASA in the float zone experimental area. A used zoner of suitable size and flexibility was acquired and installed with the necessary utilities. Repairs, alignments and modifications were made to provide for dislocation free zoning of silicon. The zoner is capable of studying process parameters used in growing silicon in gravity and is flexible to allow trying of new features that will test concepts of zoning in microgravity. Characterizing the state of the art molten zones of a growing silicon crystal will establish the data base against which improvements of zoning in gravity or growing in microgravity can be compared. 25 mm diameter was chosen as the reference size, since growth in microgravity will be at that diameter or smaller for about the next 6 years. Dislocation free crystals were growtn in the 100 and 111 orientations, using a wide set of growth conditions. The zone shape at one set of conditions was measured, by simultaneously aluminum doping and freezing the zone, lengthwise slabbing and delineating by etching. The whole set of crystals, grown under various conditions, were slabbed, polished and striation etched, revealing the growth interface shape and the periodic and aperiodic natures of the striations.

  3. Ion optics for high power 50-cm-diam ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.; Millis, Marc G.

    1989-01-01

    The process used at the NASA-Lewis to fabricate 30 and 50-cm-diameter ion optics is described. The ion extraction capabilities of the 30 and 50-cm diameter ion optics were evaluated on divergent field and ring-cusp discharge chambers and compared. Perveance was found to be sensitive to the effects of the type and power of the discharge chamber and to the accelerator electrode hole diameter. Levels of up to 0.64 N and 20 kW for thrust and input power, respectively, were demonstrated with the divergent-field discharge chamber. Thruster efficiencies and specific impulse values up to 79 percent and 5000 sec., respectively, were achieved with the ring-cusp discharge chamber.

  4. Sensitivity Enhancement in Low Cutoff Wavelength Long-Period Fiber Gratings by Cladding Diameter Reduction.

    PubMed

    Del Villar, Ignacio; Partridge, Matthew; Rodriguez, Wenceslao Eduardo; Fuentes, Omar; Socorro, Abian Bentor; Diaz, Silvia; Corres, Jesus Maria; James, Stephen Wayne; Tatam, Ralph Peter

    2017-09-13

    The diameter of long-period fiber gratings (LPFGs) fabricated in optical fibers with a low cutoff wavelength was be reduced by hydrofluoric acid etching, enhancing the sensitivity to refractive index by more than a factor of 3, to 2611 nm/refractive index unit in the range from 1.333 to 1.4278. The grating period selected for the LPFGs allowed access to the dispersion turning point at wavelengths close to the visible range of the optical spectrum, where optical equipment is less expensive. As an example of an application, a pH sensor based on the deposition of a polymeric coating was analyzed in two situations: with an LPFG without diameter reduction and with an LPFG with diameter reduction. Again, a sensitivity increase of a factor of near 3 was obtained, demonstrating the ability of this method to enhance the sensitivity of thin-film-coated LPFG chemical sensors.

  5. Transbulbar B-Mode Sonography in Multiple Sclerosis: Clinical and Biological Relevance.

    PubMed

    De Masi, Roberto; Orlando, Stefania; Conte, Aldo; Pasca, Sergio; Scarpello, Rocco; Spagnolo, Pantaleo; Muscella, Antonella; De Donno, Antonella

    2016-12-01

    Optic nerve sheath diameter quantification by transbulbar B-mode sonography is a recently validated technique, but its clinical relevance in relapse-free multiple sclerosis patients remains unexplored. In an open-label, comparative, cross-sectional study, we aimed to assess possible differences between patients and healthy controls in terms of optic nerve sheath diameter and its correlation with clinical/paraclinical parameters in this disease. Sixty unselected relapse-free patients and 35 matched healthy controls underwent transbulbar B-mode sonography. Patients underwent routine neurologic examination, brain magnetic resonance imaging and visual evoked potential tests. The mean optic nerve sheath diameter 3 and 5 mm from the eyeball was 22-25% lower in patients than controls and correlated with the Expanded Disability Status Scale (r = -0.34, p = 0.048, and r = -0.32, p = 0.042, respectively). We suggest that optic nerve sheath diameter quantified by transbulbar B-mode sonography should be included in routine assessment of the disease as an extension of the neurologic examination. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Optimization of refractive liquid crystal lenses using an efficient multigrid simulation.

    PubMed

    Milton, Harry; Brimicombe, Paul; Morgan, Philip; Gleeson, Helen; Clamp, John

    2012-05-07

    A multigrid computational model has been developed to assess the performance of refractive liquid crystal lenses, which is up to 40 times faster than previous techniques. Using this model, the optimum geometries producing an ideal parabolic voltage distribution were deduced for refractive liquid crystal lenses with diameters from 1 to 9 mm. The ratio of insulation thickness to lens diameter was determined to be 1:2 for small diameter lenses, tending to 1:3 for larger lenses. The model is used to propose a new method of lens operation with lower operating voltages needed to induce specific optical powers. The operating voltages are calculated for the induction of optical powers between + 1.00 D and + 3.00 D in a 3 mm diameter lens, with the speed of the simulation facilitating the optimization of the refractive index profile. We demonstrate that the relationship between additional applied voltage and optical power is approximately linear for optical powers under + 3.00 D. The versatility of the computational simulation has also been demonstrated by modeling of in-plane electrode liquid crystal devices.

  7. Effect of Electrical Current Stimulation on Pseudomonas Aeruginosa Growth

    NASA Astrophysics Data System (ADS)

    Alneami, Auns Q.; Khalil, Eman G.; Mohsien, Rana A.; Albeldawi, Ali F.

    2018-05-01

    The present study evaluates the effect of electrical current with different frequencies stimulation to kill pathogenic Pseudomonas aeruginosa (PA) bacteria in vitro using human safe level of electricity controlled by function generator. A wide range of frequencies has been used from 0.5 Hz-1.2 MHz to stimulate the bacteria at a voltage of 20 p-p volt for different periods of time (5 to 30) minutes. The culture of bacteria used Nickel, Nichrome, or Titanium electrode using agarose in phosphate buffer saline (PBS) and mixed with bacterial stock activated by trypticase soy broth (TSB). The results of frequencies between 0.5-1 KHz show the inhibition zone diameter of 20 mm in average at 30 minutes of stimulation. At frequencies between 3-60 KHz the inhibition zone diameter was only 10mm for 30 minutes of stimulation. While the average of inhibition zone diameter increased to more than 30mm for 30 minutes of stimulation at frequencies between 80-120 KHz. From this study we conclude that at specific frequency (resonance frequency) (frequencies between 0.5-1 KHz) there was relatively large inhibition zone because the inductive reactance effect is equal to the value of capacitive reactance effect (XC = XL). At frequencies over than 60 KHz, maximum inhibition zone noticed because the capacitance impedance becomes negligible (only the small resistivity of the bacterial internal organs).

  8. Performance of 10-kW class xenon ion thrusters

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Rawlin, Vincent K.

    1988-01-01

    Presented are performance data for laboratory and engineering model 30 cm-diameter ion thrusters operated with xenon propellant over a range of input power levels from approximately 2 to 20 kW. Also presented are preliminary performance results obtained from laboratory model 50 cm-diameter cusp- and divergent-field ion thrusters operating with both 30 cm- amd 50 cm-diameter ion optics up to a 20 kW input power. These data include values of discharge chamber propellant and power efficiencies, as well as values of specific impulse, thruster efficiency, thrust and power. The operation of the 30 cm- and 50 cm-diameter ion optics are also discussed.

  9. Focal Hydrothermal Ablation: Preliminary Investigation of a New Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Sumit, E-mail: sumit.roy@online.no

    2013-08-01

    PurposeTo determine whether focal tissue ablation is possible with interstitial instillation of steam.MethodsFresh swine livers were used. Through a 20 gauge needle, steam was instilled every 5 s, 3 (n = 5), 6 (n = 5), 9 (n = 5), or 12 (n = 5 + 5) times in a liver lobe. The ablated zones were sectioned parallel (n = 20) or perpendicular (n = 5) to the needle track. The longitudinal long and short axis diameters, or transverse long and short axis diameters of areas with discoloration on macroscopic examination, were measured. The experiment was repeated in vivo onmore » a pig. Steam instillation was performed once every 5 s for 5 min in the liver (n = 3) and in muscle (n = 4), and temperature changes at three neighboring sites were monitored. Long and short axis diameters of the discolored areas were measured.ResultsA well-defined area of discoloration was invariably present at the site of steam instillation. The median longitudinal long axis diameter were 2.0, 2.5, 2.5, and 3.5 cm for 3, 6, 9, and 12 steam instillations in vitro, while median short axis diameters were 1.0, 1.5, 1.5, and 1.5 cm, respectively. Six attempts at ablation in vivo could be successfully completed. The long axis diameters of the ablated zones in the liver were 7.0 and 8.0 cm, while in muscle it ranged from 5.5 to 7.0 cm.ConclusionInstillation of steam in the liver in vitro and in vivo, and in muscle in vivo rapidly leads to circumscribed zones of coagulation necrosis.« less

  10. Fibonacci-like zone plate

    NASA Astrophysics Data System (ADS)

    Cheng, Shubo; Liu, Mengsi; Xia, Tian; Tao, Shaohua

    2018-06-01

    We present a new family of diffractive lenses, Fibonacci-like zone plates, generated with a modified Fibonacci sequence. The focusing properties and the evolution of transverse diffraction pattern for the Fibonacci-like zone plates have been analytically investigated both theoretically and experimentally and compared with the corresponding Fresnel zone plates of the same resolution. The results demonstrate that the Fibonacci-like zone plates possess the self-similar property and the multifocal behavior. Furthermore, the Fibonacci-like zone plate beams are found to possess the self-reconstruction property, and would be promising for 3D optical tweezers, laser machining, and optical imaging.

  11. Polarized Optical Scattering Measurements of Metallic Nanoparticles on a Thin Film Silicon Wafer

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang; Liu, Tze-An; Fu, Wei-En

    2009-09-01

    Light scattering has shown its powerful diagnostic capability to characterize optical quality surfaces. In this study, the theory of bidirectional reflectance distribution function (BRDF) was used to analyze the metallic nanoparticles' sizes on wafer surfaces. The BRDF of a surface is defined as the angular distribution of radiance scattered by the surface normalized by the irradiance incident on the surface. A goniometric optical scatter instrument has been developed to perform the BRDF measurements on polarized light scattering on wafer surfaces for the diameter and distribution measurements of metallic nanoparticles. The designed optical scatter instrument is capable of distinguishing various types of optical scattering characteristics, which are corresponding to the diameters of the metallic nanoparticles, near surfaces by using the Mueller matrix calculation. The metallic nanoparticle diameter of measurement is 60 nm on 2 inch thin film wafers. These measurement results demonstrate that the polarization of light scattered by metallic particles can be used to determine the size of metallic nanoparticles on silicon wafers.

  12. Changes of propagation light in optical fiber submicron wires

    NASA Astrophysics Data System (ADS)

    Stasiewicz, K. A.; Łukowski, A.; Jaroszewicz, L. R.

    2013-05-01

    At the moment technology allows to miniaturize measurement system to several micrometers. Application of an optical fiber taper in such system needs to manufacture a new one with diameters below single micrometers which is very difficult and expensive. Another way to obtain this level of diameters is the process of tapering from the existing fibers. In the paper, experimental results of propagation light from a supercontinnum sources of the wavelength generates the wavelength of 350-2000 nm, in different optical fiber submicron wires made from tapers manufactured from single mode fibers are presented. Biconical optical fibers' tapers were manufactured in low pressure gas burner technique. There are presented spectral characteristics of a propagated beam. For the test, there was manufactured an optical fiber submicron wires with a different length of waist region with a diameter near one micrometer. We put to the test a taper made from a standard telecommunication fiber SMF-28 with a cutoff wavelength equal to 1260.

  13. Development of reaction-sintered SiC mirror for space-borne optics

    NASA Astrophysics Data System (ADS)

    Yui, Yukari Y.; Kimura, Toshiyoshi; Tange, Yoshio

    2017-11-01

    We are developing high-strength reaction-sintered silicon carbide (RS-SiC) mirror as one of the new promising candidates for large-diameter space-borne optics. In order to observe earth surface or atmosphere with high spatial resolution from geostationary orbit, larger diameter primary mirrors of 1-2 m are required. One of the difficult problems to be solved to realize such optical system is to obtain as flat mirror surface as possible that ensures imaging performance in infrared - visible - ultraviolet wavelength region. This means that homogeneous nano-order surface flatness/roughness is required for the mirror. The high-strength RS-SiC developed and manufactured by TOSHIBA is one of the most excellent and feasible candidates for such purpose. Small RS-SiC plane sample mirrors have been manufactured and basic physical parameters and optical performances of them have been measured. We show the current state of the art of the RS-SiC mirror and the feasibility of a large-diameter RS-SiC mirror for space-borne optics.

  14. Different effects of astrocytes and Schwann cells on regenerating retinal axons.

    PubMed

    Campbell, Gregor; Kitching, Juliet; Anderson, Patrick N; Lieberman, A Robert

    2003-11-14

    Following a crush injury of the optic nerve in adult rats, the axons of retinal ganglion cells, stimulated to regenerate by a lens injury and growing within the optic nerve, are associated predominantly with astrocytes: they remain of small diameter (0.1-0.5 microm) and unmyelinated for > or = 2 months after the operation. In contrast, when the optic nerve is cut and a segment of a peripheral nerve is grafted to the ocular stump of the optic nerve, the regenerating retinal axons are associated predominantly with Schwann cells: they are of larger diameter than in the previous experiment and include unmyelinated axons (0.2-2.5 microm) and myelinated axons (mean diameter 2.3 microm). Thus, the grafted peripheral nerve, and presumably its Schwann cells, stimulate enlargement of the regenerating retinal axons leading to partial myelination, whereas the injured optic nerve itself, and presumably its astrocytes, does not. The result points to a marked difference of peripheral (Schwann cells) and central (astrocytes) glia in their effect on regenerating retinal axons.

  15. Testing and Improving Theories of Radiative Transfer for Determining the Mineralogy of Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Gudmundsson, E.; Ehlmann, B. L.; Mustard, J. F.; Hiroi, T.; Poulet, F.

    2012-12-01

    Two radiative transfer theories, the Hapke and Shkuratov models, have been used to estimate the mineralogic composition of laboratory mixtures of anhydrous mafic minerals from reflected near-infrared light, accurately modeling abundances to within 10%. For this project, we tested the efficacy of the Hapke model for determining the composition of mixtures (weight fraction, particle diameter) containing hydrous minerals, including phyllosilicates. Modal mineral abundances for some binary mixtures were modeled to +/-10% of actual values, but other mixtures showed higher inaccuracies (up to 25%). Consequently, a sensitivity analysis of selected input and model parameters was performed. We first examined the shape of the model's error function (RMS error between modeled and measured spectra) over a large range of endmember weight fractions and particle diameters and found that there was a single global minimum for each mixture (rather than local minima). The minimum was sensitive to modeled particle diameter but comparatively insensitive to modeled endmember weight fraction. Derivation of the endmembers' k optical constant spectra using the Hapke model showed differences with the Shkuratov-derived optical constants originally used. Model runs with different sets of optical constants suggest that slight differences in the optical constants used significantly affect the accuracy of model predictions. Even for mixtures where abundance was modeled correctly, particle diameter agreed inconsistently with sieved particle sizes and varied greatly for individual mix within suite. Particle diameter was highly sensitive to the optical constants, possibly indicating that changes in modeled path length (proportional to particle diameter) compensate for changes in the k optical constant. Alternatively, it may not be appropriate to model path length and particle diameter with the same proportionality for all materials. Across mixtures, RMS error increased in proportion to the fraction of the darker endmember. Analyses are ongoing and further studies will investigate the effect of sample hydration, permitted variability in particle size, assumed photometric functions and use of different wavelength ranges on model results. Such studies will advance understanding of how to best apply radiative transfer modeling to geologically complex planetary surfaces. Corresponding authors: eyjolfur88@gmail.com, ehlmann@caltech.edu

  16. [Characteristics of soil organic carbon and enzyme activities in soil aggregates under different vegetation zones on the Loess Plateau].

    PubMed

    Li, Xin; Ma, Rui-ping; An, Shao-shan; Zeng, Quan-chao; Li, Ya-yun

    2015-08-01

    In order to explore the distribution characteristics of organic carbon of different forms and the active enzymes in soil aggregates with different particle sizes, soil samples were chosen from forest zone, forest-grass zone and grass zone in the Yanhe watershed of Loess Plateau to study the content of organic carbon, easily oxidized carbon, and humus carbon, and the activities of cellulase, β-D-glucosidase, sucrose, urease and peroxidase, as well as the relations between the soil aggregates carbon and its components with the active soil enzymes were also analyzed. It was showed that the content of organic carbon and its components were in order of forest zone > grass zone > forest-grass zone, and the contents of three forms of organic carbon were the highest in the diameter group of 0.25-2 mm. The content of organic carbon and its components, as well as the activities of soil enzymes were higher in the soil layer of 0-10 cm than those in the 10-20 cm soil layer of different vegetation zones. The activities of cellulase, β-D-glucosidase, sucrose and urease were in order of forest zone > grass zone > forest-grass zone. The peroxidase activity was in order of forest zone > forest-grass zone > grass zone. The activities of various soil enzymes increased with the decreasing soil particle diameter in the three vegetation zones. The activities of cellulose, peroxidase, sucrose and urease had significant positive correlations with the contents of various forms of organic carbon in the soil aggregates.

  17. High-Resolution Flow Logging for Hydraulic Characterization of Boreholes and Aquifer Flow Zones at Contaminated Bedrock Sites

    NASA Astrophysics Data System (ADS)

    Williams, J. H.; Johnson, C. D.; Paillet, F. L.

    2004-05-01

    In the past, flow logging was largely restricted to the application of spinner flowmeters to determine flow-zone contributions in large-diameter production wells screened in highly transmissive aquifers. Development and refinement of tool-measurement technology, field methods, and analysis techniques has greatly extended and enhanced flow logging to include the hydraulic characterization of boreholes and aquifer flow zones at contaminated bedrock sites. State-of-the-art in flow logging will be reviewed, and its application to bedrock-contamination investigations will be presented. In open bedrock boreholes, vertical flows are measured with high-resolution flowmeters equipped with flexible rubber-disk diverters fitted to the nominal borehole diameters to concentrate flow through the measurement throat of the tools. Heat-pulse flowmeters measure flows in the range of 0.05 to 5 liters per minute, and electromagnetic flowmeters measure flows in the range of 0.3 to 30 liters per minute. Under ambient and low-rate stressed (either extraction or injection) conditions, stationary flowmeter measurements are collected in competent sections of the borehole between fracture zones identified on borehole-wall images. Continuous flow, fluid-resistivity, and temperature logs are collected under both sets of conditions while trolling with a combination electromagnetic flowmeter and fluid tool. Electromagnetic flowmeters are used with underfit diverters to measure flow rates greater than 30 liters per minute and suppress effects of diameter variations while trolling. A series of corrections are applied to the flow-log data to account for the zero-flow response, bypass, trolling, and borehole-diameter biases and effects. The flow logs are quantitatively analyzed by matching simulated flows computed with a numerical model to measured flows by varying the hydraulic properties (transmissivity and hydraulic head) of the flow zones. Several case studies will be presented that demonstrate the integration of flow logging in site-characterization activities framework; 2) evaluate cross-connection effects and determine flow-zone contributions to water-quality samples from open boreholes; and 3) design discrete-zone hydraulic tests and monitoring-well completions.

  18. Theory and Modeling of Liquid Explosive Detonation

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.; Urtiew, Paul A.

    2010-10-01

    The current understanding of the detonation reaction zones of liquid explosives is discussed in this article. The physical and chemical processes that precede and follow exothermic chemical reaction within the detonation reaction zone are discussed within the framework of the nonequilibrium Zeldovich-von Neumann-Doring (NEZND) theory of self-sustaining detonation. Nonequilibrium chemical and physical processes cause finite time duration induction zones before exothermic chemical energy release occurs. This separation between the leading shock wave front and the chemical energy release needed to sustain it results in shock wave amplification and the subsequent formation of complex three-dimensional cellular structures in all liquid detonation waves. To develop a practical Zeldovich-von Neumann-Doring (ZND) reactive flow model for liquid detonation, experimental data on reaction zone structure, confined failure diameter, unconfined failure diameter, and failure wave velocity in the Dremin-Trofimov test for detonating nitromethane are calculated using the ignition and growth reactive flow model.

  19. Adaptive optical system for writing large holographic optical elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyutchev, M.V.; Kalyashov, E.V.; Pavlov, A.P.

    1994-11-01

    This paper formulates the requirements imposed on systems for correcting the phase-difference distribution of recording waves over the field of a large-diameter photographic plate ({le}1.5 m) when writing holographic optical elements (HOEs). A technique is proposed for writing large HOEs, based on the use of an adaptive phase-correction optical system of the first type, controlled by the self-diffraction signal from a latent image. The technique is implemented by writing HOEs on photographic plates with an effective diameter of 0.7 m on As{sub 2}S{sub 3} layers. 13 refs., 4 figs.

  20. Fan-beam scanning laser optical computed tomography for large volume dosimetry

    NASA Astrophysics Data System (ADS)

    Dekker, K. H.; Battista, J. J.; Jordan, K. J.

    2017-05-01

    A prototype scanning-laser fan beam optical CT scanner is reported which is capable of high resolution, large volume dosimetry with reasonable scan time. An acylindrical, asymmetric aquarium design is presented which serves to 1) generate parallel-beam scan geometry, 2) focus light towards a small acceptance angle detector, and 3) avoid interference fringe-related artifacts. Preliminary experiments with uniform solution phantoms (11 and 15 cm diameter) and finger phantoms (13.5 mm diameter FEP tubing) demonstrate that the design allows accurate optical CT imaging, with optical CT measurements agreeing within 3% of independent Beer-Lambert law calculations.

  1. Stone retropulsion during holmium:YAG lithotripsy.

    PubMed

    Lee, Ho; Ryan, R Tres; Teichman, Joel M H; Kim, Jeehyun; Choi, Bernard; Arakeri, Navanit V; Welch, A J

    2003-03-01

    We modeled retropulsion during holmium:YAG lithotripsy on the conservation of momentum, whereby the force of ejected fragment debris off of the calculous surface should equal the force of retropulsion displacing the stone. We tested the hypothesis that retropulsion occurs as a result of ejected stone debris. Uniform calculous phantoms were irradiated with holmium:YAG energy in air and in water. Optical fiber diameter and pulse energy were varied. Motion of the phantom was monitored with high speed video imaging. Laser induced crater volume and geometry were characterized by optical coherence tomography. To determine the direction of plume laser burn paper was irradiated at various incident angles. Retropulsion was greater for phantoms irradiated in air versus water. Retropulsion increased as fiber diameter increased and as pulse energy increased (p <0.001). Crater volumes increased as pulse energy increased (p <0.05) and generally increased as fiber diameter increased. Crater geometry was wide and shallow for larger fibers, and narrow and deeper for smaller fibers. The ejected plume propagated in the direction normal to the burn paper surface regardless of the laser incident angle. Retropulsion increases as pulse energy and optical fiber diameter increase. Vector analysis of the ejected plume and crater geometry explains increased retropulsion using larger optical fibers. Holmium:YAG lithotripsy should be performed with small optical fibers to limit retropulsion.

  2. Crystalline lens changes in porcine eyes with implanted phakic IOL (ICL) with a central hole

    PubMed Central

    Shimizu, Kimiya; Fujisawa, Kunitoshi; Uga, Shigekazu; Nagano, Koichi; Murakami, Yuuki

    2008-01-01

    Background We calculated the smallest diameter of a hole in the center of the optic at which the optical character of a phakic IOL (ICL) may be maintained. The changes induced in the aqueous humor dynamics and the pathology of cataract development with such a hole were investigated. Methods A simulation was performed using ZEMAX software to calculate the hole diameter that makes possible the maintenance of a stable optical character of a phakic IOL. After a hole of calculated diameter was trepanned in the center of the optic of the ICL, the latter was implanted into one eye of a 5-month-old minipig, and an unperforated ICL into the other. The postoperative course was observed for 3 months. Then, Evans blue was injected into the vitreous body under general anesthesia to stain the anterior capsule of the crystalline lens. Within 30 min, the eye was enucleated and the tissues removed were fixed. Results The MTF of the perforated ICL (hole diameter, 1.0 mm) in the center of the optic resembled that of the unperforated ICL. In all cases with non-perforated ICLs, subcapsular turbidity developed, but no staining caused by EB was observed in the anterior capsule. On the other hand, the anterior capsules of the eyes fitted with ICLs with a 1.0-mm hole were stained, but exhibited no turbidity. Conclusion An ICL with a central hole of diameter 1.0 mm in the optic is similar to an unperforated ICL. The size of the hole influenced the aqueous humor dynamics and increased the aqueous humor perfusion volume over the entire anterior surface of the crystalline lens. The possibility of preventing cataracts was therefore suggested. PMID:18299877

  3. Design and fabrication of engineering model fiber-optics detector

    NASA Technical Reports Server (NTRS)

    Mcsweeney, A.

    1972-01-01

    The design and fabrication of an annular ring detector consisting of optical fibers terminated with photodetectors is described. The maximum width of each concentric ring has to be small enough to permit the resolution of a Ronchi ruling transform with a dot spacing of 150 microns. A minimum of 100 concentric rings covering a circular area of 2.54 cm diameter also is necessary. A fiber-optic array consisting of approximately 89,000 fibers of 76 microns diameter was fabricated to meet the above requirements. The fibers within a circular area of 2.5 cm diameter were sorted into 168 adjacent rings concentric with the center fiber. The response characteristics of several photodetectors were measured, and the data used to compare their linearity of response and dynamic range. Also, coupling loss measurements were made for three different methods of terminating the optical fibers with a photodetector.

  4. The Influence of the Aspheric Profiles for Transition Zone on Optical Performance of Human Eye After Conventional Ablation

    NASA Astrophysics Data System (ADS)

    Fang, L.

    2014-12-01

    The analysis in the impact of transition zone on the optical performance of human eye after laser refractive surgery is important for improving visual correction technology. By designing the ablation profiles of aspheric transition zone and creating the ablation profile for conventional refractive surgery in optical zone, the influence of aspheric transition zone on residual aberrations was studied. The results indicated that the ablation profiles of transition zone had a significant influence on the residual wavefront aberrations. For a hyperopia correction, the profile #9 shows a larger induced coma and spherical aberration when the translation of the centre of pupil remains constant. However, for a myopia astigmatism correction, the induced coma and spherical aberration in profile #1 shows relatively larger RMS values than those in other profiles. Therefore, the residual higher order aberrations may be decreased by optimizing ablation profiles of transition zone, but they cannot be eliminated. In order to achieve the best visual performance, the design of ablation pattern of transition zone played a crucial role.

  5. Vectorial structures of linear-polarized Butterfly-Gauss vortex beams in the far zone

    NASA Astrophysics Data System (ADS)

    Cheng, Ke; Zhou, Yan; Lu, Gang; Yao, Na; Zhong, Xianqiong

    2018-05-01

    By introducing the Butterfly catastrophe to optics, the far-zone vectorial structures of Butterfly-Gauss beam with vortex and non-vortex are studied using the angular spectrum representation and stationary phase method. The influence of topological charge, linear-polarized angle, off-axis distance and scaling length on the far-zone vectorial structures, especially in the Poynting vector and angular momentum density of the corresponding beam is emphasized. The results show that the embedded optical vortex at source plane lead to special dark zones in the far zone, where the number of dark zone equals the absolute value of topological charge of optical vortex. Furthermore, the symmetry and direction of the special dark zones can be controlled by off-axis distance and scaling length, respectively. The linear-polarized angle adjusts only the Poynting vectors of TE and TM terms, but it does not affect those of whole beam. Finally, the vectorial expressions also indicate that the total angular momentum density is certainly zero owing to the far-zone stable structures rather than rotation behaviors.

  6. Effect of hole size on fluid dynamics of a posterior-chamber phakic intraocular lens with a central perforation by using computational fluid dynamics.

    PubMed

    Kawamorita, Takushi; Shimizu, Kimiya; Shoji, Nobuyuki

    2016-04-01

    A modified implantable collamer lens (ICL) with a central hole with a diameter of 0.36 mm, referred to as a hole-ICL, was created to improve aqueous humour circulation. The aim of this study is to investigate the ideal hole size in a hole-ICL from the standpoint of the fluid dynamic characteristics of the aqueous humour using computational fluid dynamics. Fluid dynamics simulation using an ICL was performed with thermal-hydraulic analysis software FloEFD V 12.2 (Mentor Graphics Corp.). In the simulation, three-dimensional eye models based on a modified Liou-Brennan model eye with a conventional ICL (Model ICM, Staar Surgical) and a hole-ICL were used. The hole-ICL was -9.0 dioptres (D) and 12.0 mm in length, with an optic zone of 5.5 mm. The vaulting was 0.50 mm. The quantity of aqueous humour produced by the ciliary body was set at 2.80 μL/min. Flow distribution between the anterior surface of the crystalline lens and the posterior surface of the ICL was calculated, and trajectory analysis was performed. With an increase in the central hole size, the velocity of the aqueous humour increased, with the peak velocity occurring at a diameter of approximately 0.4 mm. Once the diameter had increased above 0.4 mm, the velocity then decreased. The velocity difference between the cases of a central hole size of 0.1 mm and 0.2 mm was significant. The desirable central hole size was 0.2 mm or larger in terms of flow dynamics. The current model, based on a central hole size of 0.36 mm, was close to ideal. The optimisation of the hole size should be performed based on results from a long-term clinical study so as to analyse the incidence rate of secondary cataract and optical performance.

  7. A cost-performance model for ground-based optical communications receiving telescopes

    NASA Technical Reports Server (NTRS)

    Lesh, J. R.; Robinson, D. L.

    1986-01-01

    An analytical cost-performance model for a ground-based optical communications receiving telescope is presented. The model considers costs of existing telescopes as a function of diameter and field of view. This, coupled with communication performance as a function of receiver diameter and field of view, yields the appropriate telescope cost versus communication performance curve.

  8. Fabrication of Submillimeter Axisymmetric Optical Components

    NASA Technical Reports Server (NTRS)

    Grudinin, Ivan; Savchenkov, Anatoliy; Strekalov, Dmitry

    2007-01-01

    It is now possible to fashion transparent crystalline materials into axisymmetric optical components having diameters ranging from hundreds down to tens of micrometers, whereas previously, the smallest attainable diameter was 500 m. A major step in the fabrication process that makes this possible can be characterized as diamond turning or computer numerically controlled machining on an ultrahigh-precision lathe.

  9. Computer programs for optical dendrometer measurements of standing tree profiles

    Treesearch

    Jacob R. Beard; Thomas G. Matney; Emily B. Schultz

    2015-01-01

    Tree profile equations are effective volume predictors. Diameter data for building these equations are collected from felled trees using diameter tapes and calipers or from standing trees using optical dendrometers. Developing and implementing a profile function from the collected data is a tedious and error prone task. This study created a computer program, Profile...

  10. Note: computer controlled rotation mount for large diameter optics.

    PubMed

    Rakonjac, Ana; Roberts, Kris O; Deb, Amita B; Kjærgaard, Niels

    2013-02-01

    We describe the construction of a motorized optical rotation mount with a 40 mm clear aperture. The device is used to remotely control the power of large diameter laser beams for a magneto-optical trap. A piezo-electric ultrasonic motor on a printed circuit board provides rotation with a precision better than 0.03° and allows for a very compact design. The rotation unit is controlled from a computer via serial communication, making integration into most software control platforms straightforward.

  11. Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks.

    PubMed

    Park, Kyoung-Duck; Park, Doo Jae; Lee, Seung Gol; Choi, Geunchang; Kim, Dai-Sik; Byeon, Clare Chisu; Choi, Soo Bong; Jeong, Mun Seok

    2014-02-21

    A resonant shift and a decrease of resonance quality of a tuning fork attached to a conventional fiber optic probe in the vicinity of liquid is monitored systematically while varying the protrusion length and immersion depth of the probe. Stable zones where the resonance modification as a function of immersion depth is minimized are observed. A wet near-field scanning optical microscope (wet-NSOM) is operated for a sample within water by using such a stable zone.

  12. Environmental Perturbations Caused by the Impacts of Comets and Asteroids on Earth

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Lawless, James G. (Technical Monitor)

    1994-01-01

    The extinction mechanisms proposed at the Cretaceous-Tertiary geological boundary are reviewed and related to the impact of asteroids or comets in general. For impact energies below 10(exp 4) Megatons (less than 6 x 10(exp 4) years; asteroid diameter less than 650 m), blast, earthquake, and fire may destroy local areas up to 10(exp 5) square m. Tidal waves could flood a kilometer inland over entire ocean basins. The energy range from 105 to 106 Megatons (less than 2 x 10(exp 6) years; asteroid diameter less than 3 km) is transitional. Dust lifted, sulfur released from within impacting asteroids, and soot from fires started by comets can produce climatologically significant optical depths of 10. At energies beyond 10(exp 7) Megatons, blast and earthquake damage is regional (10(exp 6) square cm). Tsunami cresting to 100 m and flooding 20 km inland will sweep the coastal zones of the world's oceans. Fires will be set globally. Light levels may drop so low from the smoke, dust and sulfate that vision is not possible. At energies approaching 10(exp 9) Megatons the ocean surface waters may be acidified by sulfur. The combination of these effects would be devastating.

  13. A small-diameter NMR logging tool for groundwater investigations

    USGS Publications Warehouse

    Walsh, David; Turner, Peter; Grunewald, Elliot; Zhang, Hong; Butler, James J.; Reboulet, Ed; Knobbe, Steve; Christy, Tom; Lane, John W.; Johnson, Carole D.; Munday, Tim; Fitzpatrick, Andrew

    2013-01-01

    A small-diameter nuclear magnetic resonance (NMR) logging tool has been developed and field tested at various sites in the United States and Australia. A novel design approach has produced relatively inexpensive, small-diameter probes that can be run in open or PVC-cased boreholes as small as 2 inches in diameter. The complete system, including surface electronics and various downhole probes, has been successfully tested in small-diameter monitoring wells in a range of hydrogeological settings. A variant of the probe that can be deployed by a direct-push machine has also been developed and tested in the field. The new NMR logging tool provides reliable, direct, and high-resolution information that is of importance for groundwater studies. Specifically, the technology provides direct measurement of total water content (total porosity in the saturated zone or moisture content in the unsaturated zone), and estimates of relative pore-size distribution (bound vs. mobile water content) and hydraulic conductivity. The NMR measurements show good agreement with ancillary data from lithologic logs, geophysical logs, and hydrogeologic measurements, and provide valuable information for groundwater investigations.

  14. Scanning ion imaging - a potent tool in SIMS U -Pb zircon geochronology

    NASA Astrophysics Data System (ADS)

    Whitehouse, M. J.; Fedo, C.; Kusiak, M.; Nemchin, A.

    2012-12-01

    The application of high spatial resolution (< 15-20 μm lateral) U-Pb data obtained by sec-ondary ion mass spectrometers (SIMS) coupled with textural information from scanning electron microscope (SEM) based cathodoluminescence (CL) and/or back-scattered elec-tron (BSE) characterisation, has revolutionised geochronology over the past 25 years, re-vealing complexities of crustal evolution from zoned zircons. In addition to ge-ochronology, such studies now commonly form the basis of broader investigations using O- and Hf- isotopes and trace elements obtained from the same growth zone as age, circumventing ambiguities commonly present in bulk-rock isotope studies. The choice of analytical beam diameter is often made to maximise the precision of data obtained from a given area of analysis within an identifiable growth zone. In cases where zircons yield poorly constrained internal structures in SEM, high spatial resolution spot analyses may yield uninterpretable and/or meaningless mixed ages by inadvertent sampling across regions with real age differences. Scanning ion imaging (SII) has the potential to generate accurate and precise geochrono-logical data with a spatial resolution down to ca. 2 μm, much higher than that of a normal spot analysis. SII acquisition utilises a rastered primary beam to image an area of the sample with a spatial resolution dependent on the selected primary beam diameter. On the Cameca ims1270/80 instruments, the primary beam scanning is coupled with the dynamic transfer optical system (DTOS) which deflects the secondary ions back on to the ion optical axis of the instrument regardless of where in the raster illuminated area the ions originated. This feature allows retention of a high field magnification (= high transmission) mode and the ability to operate the mass spectrometer at high mass resolution without any compromise in the quality of the peak shape. Secondary ions may be detected either in a sequential (peak hopping) mono-collection mode or simultaneous multicollection mode using low-noise pulse counting electron multipliers. Regardless of the detection mode, data are acquired over sufficient cycles to generate usable counting statistics from selected sub-areas of the image. In two case studies from southern west Greenland and Antarctica, Pb-isotope maps gen-erated using SII reveal considerable complexities of internal structure, age and isotope systematics that were not predictable from CL imaging of the grains (Fig. 1). Fig. 1. Scanning ion images of the 207Pb/206Pb ratio in zircons from (a) W. Greenland and (b) Antarctica (inset shows rastered area of grain corresponding to the image).

  15. A Fresnel zone plate collimator: potential and aberrations

    NASA Astrophysics Data System (ADS)

    Menz, Benedikt; Bräuninger, Heinrich; Burwitz, Vadim; Hartner, Gisela; Predehl, Peter

    2015-09-01

    A collimator, that parallelizes an X-ray beam, provides a significant improvement of the metrology to characterize X-ray optics for space instruments at MPE's PANTER X-ray test facility. A Fresnel zone plate was selected as a collimating optic, as it meets a good angular resolution < 0.1n combined with a large active area > 10 cm2. Such an optic is ideally suited to illuminate Silicon Pore Optic (SPO) modules as proposed for ATHENA. This paper provides the theoretic description of such a Fresnel zone plate especially considering resolution and efficiency. Based on the theoretic results the collimator setup performance is analyzed and requirements for fabrication and alignment are calculated.

  16. Photoacoustic spectral characterization of perfluorocarbon droplets

    NASA Astrophysics Data System (ADS)

    Strohm, Eric; Gorelikov, Ivan; Matsuura, Naomi; Kolios, Michael

    2012-02-01

    Perfluorocarbon droplets containing optical absorbing nanoparticles have been developed for use as theranostic agents (for both imaging and therapy) and as dual-mode contrast agents. Droplets can be used as photoacoustic contrast agents, vaporized via optical irradiation, then the resulting bubbles can be used as ultrasound imaging and therapeutic agents. The photoacoustic signals from micron-sized droplets containing silica coated gold nanospheres were measured using ultra-high frequencies (100-1000 MHz). The spectra of droplets embedded in a gelatin phantom were compared to a theoretical model which calculates the pressure wave from a spherical homogenous liquid undergoing thermoelastic expansion resulting from laser absorption. The location of the spectral features of the theoretical model and experimental spectra were in agreement after accounting for increases in the droplet sound speed with frequency. The agreement between experiment and model indicate that droplets (which have negligible optical absorption in the visible and infrared spectra by themselves) emitted pressure waves related to the droplet composition and size, and was independent of the physical characteristics of the optical absorbing nanoparticles. The diameter of individual droplets was calculated using three independent methods: the time domain photoacoustic signal, the time domain pulse echo ultrasound signal, and a fit to the photoacoustic model, then compared to the diameter as measured by optical microscopy. It was found the photoacoustic and ultrasound methods calculated diameters an average of 2.6% of each other, and 8.8% lower than that measured using optical microscopy. The discrepancy between the calculated diameters and the optical measurements may be due to the difficulty in resolving the droplet edges after being embedded in the translucent gelatin medium.

  17. Effect of pulsed current GTA welding parameters on the fusion zone microstructure of AA 6061 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Kumar, T. Senthil; Balasubramanian, V.; Babu, S.; Sanavullah, M. Y.

    2007-08-01

    AA6061 aluminium alloy (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of food processing equipment, chemical containers, passenger cars, road tankers, and railway transport systems. The preferred process for welding these aluminium alloys is frequently Gas Tungsten Arc (GTA) welding due to its comparatively easy applicability and lower cost. In the case of single pass GTA welding of thinner sections of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current processes. The use of pulsed current parameters has been found to improve the mechanical properties of the welds compared to those of continuous current welds of this alloy due to grain refinement occurring in the fusion zone. In this investigation, an attempt has been made to develop a mathematical model to predict the fusion zone grain diameter incorporating pulsed current welding parameters. Statistical tools such as design of experiments, analysis of variance, and regression analysis are used to develop the mathematical model. The developed model can be effectively used to predict the fusion grain diameter at a 95% confidence level for the given pulsed current parameters. The effect of pulsed current GTA welding parameters on the fusion zone grain diameter of AA 6061 aluminium alloy welds is reported in this paper.

  18. Oxidation at through-hole defects in fused slurry silicide coated columbium alloys FS-85 and Cb-752

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1973-01-01

    Metal recession and interstitial contamination at 0.08-centimeter-diameter through-hole intentional defects in fused slurry silicide coated FS-85 and Cb-752 columbium alloys were studied to determine the tolerance of these materials to coating defects. Five external pressure reentry simulation exposures to 1320 C and 4.7 x 1,000 N/sq m (maximum pressure) resulted in a consumed metal zone having about twice the initial defect diameter for both alloys with an interstitial contamination zone extending about three to four initial defect diameters. Self-healing occurred in the 1.33 x 10 N/sq m, 1320 C exposures and to a lesser extent in internal pressure reentry cycles to 1320 C and 1.33 x 100 N/sq m (maximum pressure).

  19. Optic Nerve Sheath Mechanics in VIIP Syndrome

    NASA Technical Reports Server (NTRS)

    Raykin, Julia; Forte, Taylor E.; Wang, Roy; Feola, Andrew; Samuels, Brian; Myers, Jerry; Nelson, Emily; Gleason, Rudy; Ethier, C. Ross

    2016-01-01

    Visual Impairment Intracranial Pressure (VIIP) syndrome is a major concern in current space medicine research. While the exact pathology of VIIP is not yet known, it is hypothesized that the microgravity-induced cephalad fluid shift increases intracranial pressure (ICP) and drives remodeling of the optic nerve sheath. To investigate this possibility, we are culturing optic nerve sheath dura mater samples under different pressures and investigating changes in tissue composition. To interpret results from this work, it is essential to first understand the biomechanical response of the optic nerve sheath dura mater to loading. Here, we investigated the effects of mechanical loading on the porcine optic nerve sheath.Porcine optic nerves (number: 6) were obtained immediately after death from a local abattoir. The optic nerve sheath (dura mater) was isolated from the optic nerve proper, leaving a hollow cylinder of connective tissue that was used for biomechanical characterization. We developed a custom mechanical testing system that allowed for unconfined lengthening, twisting, and circumferential distension of the dura mater during inflation and under fixed axial loading. To determine the effects of variations in ICP, the sample was inflated (0-60 millimeters Hg) and circumferential distension was simultaneously recorded. These tests were performed under variable axial loads (0.6 grams - 5.6 grams at increments of 1 gram) by attaching different weights to one end of the dura mater. Results and Conclusions: The samples demonstrated nonlinear behavior, similar to other soft connective tissue (Figure 1). Large increases in diameter were observed at lower transmural pressures (approximately 0 to 5 millimeters Hg), whereas only small diameter changes were observed at higher pressures. Particularly interesting was the existence of a cross-over point at a pressure of approximately 11 millimeters Hg. At this pressure, the same diameter is obtained for all axial loads applied to the tissue; i.e., as the axial load is varied, the diameter of the dura mater remains constant. This cross-over in the pressure-diameter curves occurred in all optic nerve sheaths that were tested, and may correspond with in vivo ICP levels for pigs. These data suggest that diameter of the dura mater of the optic nerve remains nearly constant in vivo despite being stretched axially. This may be a homeostatic mechanism aimed at maintaining target stresses/strains on the cells in the dura mater, and deviations from these stresses may play an important role in optic nerve sheath remodeling. Future studies will involve subjecting the dura mater to varying pressures and axial tensions for extended periods of time, while monitoring changes in the biomechanical properties. The data can then be used to study the effects of changes in ICP on the remodeling of the dura mater.

  20. Dry contact transfer printing of aligned carbon nanotube patterns and characterization of their optical properties for diameter distribution and alignment.

    PubMed

    Pint, Cary L; Xu, Ya-Qiong; Moghazy, Sharief; Cherukuri, Tonya; Alvarez, Noe T; Haroz, Erik H; Mahzooni, Salma; Doorn, Stephen K; Kono, Junichiro; Pasquali, Matteo; Hauge, Robert H

    2010-02-23

    A scalable and facile approach is demonstrated where as-grown patterns of well-aligned structures composed of single-walled carbon nanotubes (SWNT) synthesized via water-assisted chemical vapor deposition (CVD) can be transferred, or printed, to any host surface in a single dry, room-temperature step using the growth substrate as a stamp. We demonstrate compatibility of this process with multiple transfers for large-scale device and specifically tailored pattern fabrication. Utilizing this transfer approach, anisotropic optical properties of the SWNT films are probed via polarized absorption, Raman, and photoluminescence spectroscopies. Using a simple model to describe optical transitions in the large SWNT species present in the aligned samples, polarized absorption data are demonstrated as an effective tool for accurate assignment of the diameter distribution from broad absorption features located in the infrared. This can be performed on either well-aligned samples or unaligned doped samples, allowing simple and rapid feedback of the SWNT diameter distribution that can be challenging and time-consuming to obtain in other optical methods. Furthermore, we discuss challenges in accurately characterizing alignment in structures of long versus short carbon nanotubes through optical techniques, where SWNT length makes a difference in the information obtained in such measurements. This work provides new insight to the efficient transfer and optical properties of an emerging class of long, large diameter SWNT species typically produced in the CVD process.

  1. High-quality single crystal growth and magnetic property of Mn4Ta2O9

    NASA Astrophysics Data System (ADS)

    Cao, Yiming; Xu, Kun; Yang, Ya; Yang, Wangfan; Zhang, Yuanlei; Kang, Yanru; He, Xijia; Zheng, Anmin; Liu, Mian; Wei, Shengxian; Li, Zhe; Cao, Shixun

    2018-06-01

    A large-size single crystal of Mn4Ta2O9 with ∼3.5 mm in diameter and ∼65 mm in length was successfully grown for the first time by a newly designed one-step method based on the optical floating zone technique. Both the clear Laue spots and sharp XRD Bragg reflections suggest the high quality of the single crystal. In Mn4Ta2O9 single crystal, an antiferromagnetic phase transition was observed below Néel temperature 102 K along c axis, which is similar to the isostructural compound Mn4Nb2O9, but differs from the isostructural Co4Nb2O9. Relative dielectric constant at 30 kOe suggests that no magnetoelectric coupling exists in Mn4Ta2O9.

  2. Donor-Site Morbidity After DIEAP Flap Breast Reconstruction—A 2-Year Postoperative Computed Tomography Comparison

    PubMed Central

    Bosse, Gerhard; Mynarek, Georg Karl; Berg, Thomas; Tindholdt, Tyge Tind; Tønseth, Kim Alexander

    2017-01-01

    Background: The study was undertaken to provide a more complete picture of donor-site morbidity following the deep inferior epigastric artery perforator (DIEAP) flap harvest in breast reconstruction. Most studies evaluating this subject have been performed using ultrasonography. Computed tomography (CT) might provide valuable information. Methods: In 14 patients who were reconstructed with a DIEAP flap, donor-site morbidity was assessed by comparing routine preoperative CT abdomen with CT abdomen performed 2 years postoperatively. The anteroposterior diameter and transverse diameter (TD) of the rectus muscle were measured bilaterally within 4 standardized zones. Diastasis recti abdominis (DRA) was measured in the same zones. The abdominal wall was assessed for hernias, bulging, and seromas. Results: The operated rectus muscle had a significantly increased anteroposterior diameter in 2 zones and decreased TD in 1 zone compared with preoperative measurements. Comparing the operated and nonoperated rectus muscles, the former had a significantly decreased TD in 1 zone. Supraumbilical DRA was significantly decreased with surgery, whereas infraumbilical DRA was significantly increased. No new hernias or bulging were found. Two patients had seroma formation in the abdominal wall. Conclusions: Symmetry of the 2 hemiabdomens is well preserved after DIEAP flap harvest; however, significant changes to the rectus muscles and DRA were observed. Hernia formation does not seem to be a postoperative complication of importance. The study indicates that DIEAP flaps result in limited donor-site morbidity, which for most patients does not outweigh the benefits of free perforator flap breast reconstruction. PMID:28831346

  3. Effect of hydrogen addition on soot formation in an ethylene/air premixed flame

    NASA Astrophysics Data System (ADS)

    De Iuliis, S.; Maffi, S.; Migliorini, F.; Cignoli, F.; Zizak, G.

    2012-03-01

    The effect of hydrogen addition to fuel in soot formation and growth mechanisms is investigated in a rich ethylene/air premixed flame. To this purpose, three-angle scattering and extinction measurements are carried out in flames with different hydrogen contents. By applying the Rayleigh-Debye-Gans theory and the fractal-like description, soot concentration and morphology, with the evaluation of radius of gyration, volume-mean diameter and primary particle diameter are retrieved. To derive fractal parameters such as fractal dimension and fractal prefactor to be used for optical measurements, sampling technique and TEM analysis are performed. In addition, data concerning soot morphology obtained from TEM analysis are compared with the optical results. A good agreement in the value of the primary particle diameter between optical and ex-situ measurements is found. Significant effects of hydrogen addition are detected and presented in this work. In particular, hydrogen addition to fuel is responsible for a reduction in soot concentration, radius of gyration and primary particle diameter.

  4. Hot zone design for controlled growth to mitigate cracking in laser crystal growth

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zheng, Lili; Fang, Haisheng

    2011-03-01

    Cracking is a major problem during large diameter crystal growth. The objective of this work is to design an effective hot zone for a controlled growth of Yb:S-FAP [Yb3+:Sr5(PO4)3F] laser crystal by the Czochralski technology and effective cooling that can reduce stress. Theoretical and numerical analyses are performed to study the causes of cracking, mitigate the major cracking, as well as reduce cooling time. In the current system, three locations in the crystal are prone to crack, such as the top shoulder of the crystal, the middle portion above the crucible edge, and the bottom tail portion. Based on numerical simulations, we propose a new hot zone design and cooling procedure to grow and cool large diameter crystal without cracking.

  5. Tularosa Basin Play Fairway Analysis: Partial Basin and Range Heat and Zones of Critical Stress Maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam Brandt

    Interpolated maps of heat flow, temperature gradient, and quartz geothermometers are included as TIF files. Zones of critical stress map is also included as a TIF file. The zones are given a 5km diameter buffer. The study area is only a part of the Basin and Range, but it does includes the Tularosa Basin.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shcheglova, L S; Maryakhina, V S; Abramova, L L

    The differences in optical and biophysical properties between the cells of mammary gland tumour extracted from tumours of different diameter are described. It is shown that the spectral and spectrokinetic properties of fluorescent probes in the cells extracted from the tumours 1 – 3 cm in diameter are essentially different. Thus, the extinction coefficient of rhodamine 6G gradually increases with the pathology development. At the same time the rate of interaction of the triplet states of molecular probes with the oxygen, diluted in the tumour cells cytoplasm, decreases with the growth of the tumour capsule diameter. The observed regularities canmore » be due to the changes in the cell structure, biochemical and biophysical properties. The reported data may be useful for developing optical methods of diagnostics of biotissue pathological conditions. (optical methods in biology and medicine)« less

  7. Large core fiber optic cleaver

    DOEpatents

    Halpin, John M.

    1996-01-01

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 .mu.m.

  8. Evaluation of enamel surface modification using PS-OCT after laser treatment to increase resistance to demineralization

    NASA Astrophysics Data System (ADS)

    Kim, Jin Wan; Chan, Kenneth H.; Fried, Daniel

    2016-02-01

    At laser intensities below ablation, carbonated hydroxyapatite in enamel is converted into a purer phase hydroxyapatite with increased acid resistance. Previous studies suggested the possibility of achieving the conversion without surface modification. This study attempts to evaluate the thresholds for the modification without additional changes in physical and optical properties of the enamel. Bovine specimens were irradiated using an RF-excited CO2 laser operating at 9.4-μm with a pulse duration of 26- μs, pulse repetition rates of 100-1000 Hz, with a Gaussian spatial beam profile - 1.4 mm in diameter. After laser treatment, the samples were subjected to acid demineralization for 48 hours to simulate acidic intraoral conditions of a caries attack. The resulting demineralization and erosion were assessed using polarization sensitive OCT (PS-OCT) and 3D digital microscopy. The images from digital microscopy demonstrated a clear delineation between laser protected zones without visual changes and zones with higher levels of demineralization and erosion. Distinct changes in the surface morphology were found within the laser treated area in accordance with the Gaussian spatial beam profile. There was significant protection from the laser in areas that were not visually altered.

  9. Multimode fiber for high-density optical interconnects

    NASA Astrophysics Data System (ADS)

    Bickham, Scott R.; Ripumaree, Radawan; Chalk, Julie A.; Paap, Mark T.; Hurley, William C.; McClure, Randy L.

    2017-02-01

    Data centers (DCs) are facing the challenge of delivering more capacity over longer distances. As line rates increase to 25 Gb/s and higher, DCs are being challenged with signal integrity issues due to the long electrical traces that require retiming. In addition, the density of interconnects on the front panel is limited by the size and power dissipation requirements of the pluggable modules. One proposal to overcome these issues is to use embedded optical transceivers in which optical fibers are used to transport data to and from the front panel. These embedded modules will utilize arrays of VCSEL or silicon-photonic transceivers, and in both cases, the capacity may be limited by the density of the optical connections on the chip. To address this constraint, we have prototyped optical fibers in which the glass and coating diameters are reduced to 80 and 125 microns, respectively. These smaller diameters enable twice as many optical interconnects in the same footprint, and this in turn will allow the transceiver arrays to be collinearly located on small chips with dimensions on the order of (5x5mm2)1,2. We have also incorporated these reduced diameter fibers into small, flexible 8-fiber ribbon cables which can simplify routing constraints inside modules and optical backplanes.

  10. Developing system for delivery of optical radiation in medicobiological researches

    NASA Astrophysics Data System (ADS)

    Loschenov, Victor B.; Taraz, Majid

    2004-06-01

    Methods of optical diagnostics and methods of photodynamic therapy are actively used in medico-biological researches. The system for delivery of optical radiation is one of the key methods in these researches. Usually these systems use flexible optical fibers with diameters from 200 to 1000 micron. Two types of systems for delivery are subdivided, first for diagnostic researches, second for therapeutic procedures. Existing diagnostic catheters, which have most widely applied in medicine, have bifurcated with diameter of the tip equal 1.8 mm. These devices, which are called fiber-optical catheters, satisfy the majority endoscopes researches. However, till now the problem of optical-diagnostics inside tissue is not soled. Especially it is important at diagnostics of a mammary gland, livers, thyroid glands tumor, tumor of a brain and some other studies connected with punctures. In these cases, it is necessary that diameter of fiber-optical catheters be less than one millimeter. This work is devoted to the development of these catheters. Also in clinical procedures such as photodynamic therapy (PDT) and interstitial laser photocoagulation (ILP), cylindrical light diffusing tips are rapidly becoming a popular device for the administration of the desired light dose for the illumination of hollow organs, such as bronchus, trachea and oesophagus. This work is devoted to the development of these catheters.

  11. Remote Measurement of Atmospheric Temperatures By Raman Lidar

    NASA Technical Reports Server (NTRS)

    Salzman, Jack A.; Coney, Thom A.

    1973-01-01

    The Raman shifted return of a lidar, or optical radar, system has been utilized to make atmospheric temperature measurements. These measurements were made along a horizontal path at temperatures between -20 C and +30 C and at ranges of about 100 meters. The temperature data were acquired by recording the intensity ratio of two portions of the Raman spectrum which were simultaneously sampled from a preset range. The lidar unit employed in this testing consisted of a 4 joule-10ppm laser operating at 694.3 nm, a 10-inch Schmidt-Cassegrain telescope, and a system of time-gated detection and signal processing electronics. The detection system processed three return signal wavelength intervals - two intervals along the rotational Raman scattered spectrum and one interval centered at the Rayleigh-Mie scattered wavelength. The wavelength intervals were resolved by using a pellicle beam splitter and three optical interference filters. Raman return samples were taken from one discrete range segment during each test shot and the signal intensities were displayed in digital format. The Rayleigh-Mie techniques. The test site utilized to evaluate this measurement technique encompassed a total path length of 200 meters. Major components of the test site included a trailer-van housing the lidar unit, a controlled environment test zone, and a beam terminator. The control zone which was located about 100 meters from the trailer was 12 meters in length, 2.4 meters in diameter, and was equipped with hinged doors at each end. The temperature of the air inside the zone could be either raised or lowered with respect to ambient air through the use of infrared heaters or a liquid-nitrogen cooling system. Conditions inside the zone were continuously monitored with a thermocouple rake assembly. The test path length was terminated by a 1.2 meter square array of energy absorbing cones and a flat black screen. Tests were initially conducted at strictly ambient conditions utilizing the normal outside air temperatures as a test parameter. These tests provided a calibration of the Raman intensity ratio as a function of' temperature for the particular optical-filter arrangement used in this system while also providing a test of' the theoretical prediction formulated in the design of the system. Later tests utilized zone temperatures above and below ambient to provide temperature gradient data. These tests indicate that ten shots, or one minute of' data acquisition, from a 100 meter range can provide absolute temperature measurements with an accuracy of + 30 C and a range resolution of about 5 meters. Because this measurement accuracy compares well with that predicted for this particular unit, it is suggested that a field-application system could be built with signif'icant improvements in both absolute accuracy and range.

  12. Characterization of multilayer coated replicated Wolter optics for imaging x-ray emission from pulsed power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ames, Andrew; Ampleford, David; Bourdon, Chris

    Here, we have developed a process for indirectly coating small diameter electroformed nickel replicated optics with multilayers to increase their response at high energy (i.e. >10 keV). The ability to fabricate small diameter multilayer-coated full-shell Wolter X-ray optics with narrow bandpass opens the door to several applications within astronomy and also provides a path for cross-fertilization to other fields. We report on the characterization and evaluation of the first two prototype X-ray Wolter optics to be delivered to the Z Pulsed Power Facility at Sandia National Laboratories. The intent is to develop and field several optics as part of anmore » imaging system with targeted spectral ranges.« less

  13. Characterization of multilayer coated replicated Wolter optics for imaging x-ray emission from pulsed power

    DOE PAGES

    Ames, Andrew; Ampleford, David; Bourdon, Chris; ...

    2017-08-29

    Here, we have developed a process for indirectly coating small diameter electroformed nickel replicated optics with multilayers to increase their response at high energy (i.e. >10 keV). The ability to fabricate small diameter multilayer-coated full-shell Wolter X-ray optics with narrow bandpass opens the door to several applications within astronomy and also provides a path for cross-fertilization to other fields. We report on the characterization and evaluation of the first two prototype X-ray Wolter optics to be delivered to the Z Pulsed Power Facility at Sandia National Laboratories. The intent is to develop and field several optics as part of anmore » imaging system with targeted spectral ranges.« less

  14. Testing of Large Diameter Fresnel Optics for Space Based Observations of Extensive Air Showers

    NASA Technical Reports Server (NTRS)

    Adams, James H.; Christl, Mark J.; Young, Roy M.

    2011-01-01

    The JEM-EUSO mission will detect extensive air showers produced by extreme energy cosmic rays. It operates from the ISS looking down on Earth's night time atmosphere to detect the nitrogen fluorescence and Cherenkov produce by the charged particles in the EAS. The JEM-EUSO science objectives require a large field of view, sensitivity to energies below 50 EeV, and must fit within available ISS resources. The JEM-EUSO optic module uses three large diameter, thin plastic lenses with Fresnel surfaces to meet the instrument requirements. A bread-board model of the optic has been manufactured and has undergone preliminary tests. We report the results of optical performance tests and evaluate the present capability to manufacture these optical elements.

  15. Characterization of multilayer coated replicated Wolter optics for imaging x-ray emission from pulsed power

    NASA Astrophysics Data System (ADS)

    Ames, A.; Ampleford, D.; Bourdon, C.; Bruni, R.; Kilaru, K.; Kozioziemski, B.; Pivovaroff, M.; Ramsey, B.; Romaine, S.; Vogel, J.; Walton, C.; Wu, M.

    2017-08-01

    We have developed a process for indirectly coating arbitrarily small diameter electroformed nickel replicated optics with multilayers to increase their response at high energy (i.e. >10 keV). The ability to fabricate small diameter multilayer coated full shell Wolter X-ray optics with narrow bandpass opens the door to several applications within astronomy and also provides a path for cross-fertilization to other fields. We report on the characterization and evaluation of the first two prototype X-ray Wolter optics to be delivered to the Z Pulsed Power Facility at Sandia National Laboratories. The intent is to develop and field several optics as part of an imaging system with targeted spectral ranges.

  16. Thermal lens elimination by gradient-reduced zone coupling of optical beams

    DOEpatents

    Page, Ralph H.; Beach, Raymond J.

    2000-01-01

    A thermal gradient-reduced-zone laser includes a laser medium and an optically transparent plate with an index of refraction that is less than the index of refraction of the laser medium. The pump face of the laser medium is bonded to a surface of the optically transparent member. Pump light is directed through the transparent plate to optically pump the solid state laser medium. Heat conduction is mainly through the surface of the laser medium where the heat is introduced by the pump light. Heat flows in a direction opposite to that of the pump light because the side of the laser medium that is opposite to that of the pump face is not in thermal contact with a conductor and thus there is no heat flux (and hence, no temperature gradient), thus producing a thermal gradient-reduced zone. A laser cavity is formed around the laser medium such that laser light oscillating within the laser cavity reflects by total-internal-reflection from the interface between the pump face and the optically transparent plate and enters and exits through a thermal gradient-reduced zone.

  17. Four-plate piezoelectric actuator driving a large-diameter special optical fiber for nonlinear optical microendoscopy.

    PubMed

    Wang, Ying; Li, Zhi; Liang, Xiaobao; Fu, Ling

    2016-08-22

    In nonlinear optical microendoscope (NOME), a fiber with excellent optical characteristics and a miniature scanning mechanism at the distal end are two key components. Double-clad fibers (DCFs) and double-clad photonic crystal fibers (DCPCFs) have shown great optical characteristics but limited vibration amplitude due to large diameter. Besides reducing the damping of fiber cantilever, optimizing the structural of the actuator for lower energy dissipation also contributes to better driving capability. This paper presented an optimized actuator for driving a particular fiber cantilever in the view point of energy. Firstly, deformation energy of a bending fiber cantilever operating in resonant mode is investigated. Secondly, strain and stress analyses revealed that the four-plate actuator achieved lower energy dissipation. Then, finite-element simulations showed that the large-diameter fiber yielded an adequate vibration amplitude driven by a four-plate actuator, which was confirmed by experiments of our home-made four-plate actuator prototypes. Additionally, a NOME based on a DCPCF with a diameter of 350 μm driven by four-plate piezoelectric actuator has been developed. The NOME can excite and collect intrinsic second-harmonic and two-photon fluorescence signals with the excitation power of 10-30 mW and an adequate field of view of 200 μm, which suggest great potential applications in neuroscience and clinical diagnoses.

  18. Studies on Creep Deformation and Rupture Behavior of 316LN SS Multi-Pass Weld Joints Fabricated with Two Different Electrode Sizes

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Kumar, J. Ganesh; Parida, P. K.; Ganesan, V.; Laha, K.

    2017-02-01

    Effect of electrode size on creep deformation and rupture behavior has been assessed by carrying out creep tests at 923 K (650 °C) over the stress range 140 to 225 MPa on 316LN stainless steel weld joints fabricated employing 2.5 and 4 mm diameter electrodes. The multi-pass welding technique not only changes the morphology of delta ferrite from vermicular to globular in the previous weld bead region near to the weld bead interface, but also subjects the region to thermo-mechanical heat treatment to generate appreciable strength gradient. Electron backscatter diffraction analysis revealed significant localized strain gradients in regions adjoining the weld pass interface for the joint fabricated with large electrode size. Larger electrode diameter joint exhibited higher creep rupture strength than the smaller diameter electrode joint. However, both the joints had lower creep rupture strength than the base metal. Failure in the joints was associated with microstructural instability in the fusion zone, and the vermicular delta ferrite zone was more prone to creep cavitation. Larger electrode diameter joint was found to be more resistant to failure caused by creep cavitation than the smaller diameter electrode joint. This has been attributed to the larger strength gradient between the beads and significant separation between the cavity prone vermicular delta ferrite zones which hindered the cavity growth. Close proximity of cavitated zones in smaller electrode joint facilitated their faster coalescence leading to more reduction in creep rupture strength. Failure location in the joints was found to depend on the electrode size and applied stress. The change in failure location has been assessed on performing finite element analysis of stress distribution across the joint on incorporating tensile and creep strengths of different constituents of joints, estimated by ball indentation and impression creep testing techniques.

  19. Ion Propulsion Thruster Including a Plurality of Ion Optic Electrode Pairs

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor)

    2016-01-01

    Ion optics for use in a conventional or annular or other shaped ion thruster are disclosed including a plurality of planar, spaced apart ion optic electrode pairs sized to include a diameter smaller than the diameter of thruster exhaust and retained in, on or otherwise associated with a frame across the thruster exhaust. An electrical connection may be provided for establishing electrical connectivity among a set of first upstream electrodes and an electrical connection may be provided for establishing electrical connectivity among the second downstream electrodes.

  20. Lamping process and application of ultra small U-shaped, whispery gallery mode (WGM) based optic fiber sensors

    NASA Astrophysics Data System (ADS)

    Chang, Yuan Cheng; Chiang, Chia Chin

    2015-07-01

    This study success to smaller and control the diameter of single mode optical fiber whispery gallery mode (WGM) to diameter 0.8 mm nonetching and nontaping treated. The sensitivity of this type ultra-small U-shape WGM strengthens neither etching nor taping fibre. The sensitivity we apply to thermo test depends on wavelength shift from 40 ~ 96°C (R2 = 0.99 ). The specially characteristics of the optical fiber could be tested for temperature, refraction, vibration, concussion, and CO2 detection.

  1. Applications Of Measurement Techniques To Develop Small-Diameter, Undersea Fiber Optic Cables

    NASA Astrophysics Data System (ADS)

    Kamikawa, Neil T.; Nakagawa, Arthur T.

    1984-12-01

    Attenuation, strain, and optical time domain reflectometer (OTDR) measurement techniques were applied successfully in the development of a minimum-diameter, electro-optic sea floor cable. Temperature and pressure models for excess attenuation in polymer coated, graded-index fibers were investigated analytically and experimentally using these techniques in the laboratory. The results were used to select a suitable fiber for the cable. Measurements also were performed on these cables during predeployment and sea-trial testing to verify laboratory results. Application of the measurement techniques and results are summarized in this paper.

  2. Dark zone in the centre of the Arago-Poisson diffraction spot of a helical laser beam

    NASA Astrophysics Data System (ADS)

    Emile, O.; Voisin, A.; Niemiec, R.; Viaris de Lesegno, B.; Pruvost, L.; Ropars, G.; Emile, J.; Brousseau, C.

    2013-03-01

    We report on the diffraction of non-zero Laguerre Gaussian laser beams by an opaque disk. We observe a tiny circular dark zone at the centre of the usual Arago-Poisson diffraction bright spot. For such non-diffracting dark hollow beams, we have measured diameters as small as 20 μm on distances of the order of ten metres, without focalization. Diameters depend on the diffracting object size and on the topological charge of the input Laguerre Gaussian beam. These results are in good agreement with theoretical considerations. Potential applications are then discussed.

  3. Single Mode Air-Clad Single Crystal Sapphire Optical Fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Cary; Homa, Dan; Yu, Zhihao

    The observation of single mode propagation in an air-clad single crystal sapphire optical fiber at wavelengths at and above 783 nm is presented for the first time. A high-temperature wet acid etching method was used to reduce the diameter of a 10 cm length of commercially-sourced sapphire fiber from 125 micrometers to 6.5 micrometers, and far-field imaging provided modal information at intervals as the fiber diameter decreased. Modal volume was shown to decrease with decreasing diameter, and single mode behavior was observed at the minimum diameter achieved. While weakly-guiding approximations are generally inaccurate for low modal volume optical fiber withmore » high core-cladding refractive index disparity, consistency between these approximations and experimental results was observed when the effective numerical aperture was measured and substituted for the theoretical numerical aperture in weakly-guiding approximation calculations. With the demonstration of very low modal volume in sapphire at fiber diameters much larger than anticipated by legacy calculations, the resolution of sapphire fiber distributed sensors may be increased and other sensing schemes requiring very low modal volume, such as fiber Bragg gratings, may be realized in extreme environment applications.« less

  4. Single Mode Air-Clad Single Crystal Sapphire Optical Fiber

    DOE PAGES

    Hill, Cary; Homa, Dan; Yu, Zhihao; ...

    2017-05-03

    The observation of single mode propagation in an air-clad single crystal sapphire optical fiber at wavelengths at and above 783 nm is presented for the first time. A high-temperature wet acid etching method was used to reduce the diameter of a 10 cm length of commercially-sourced sapphire fiber from 125 micrometers to 6.5 micrometers, and far-field imaging provided modal information at intervals as the fiber diameter decreased. Modal volume was shown to decrease with decreasing diameter, and single mode behavior was observed at the minimum diameter achieved. While weakly-guiding approximations are generally inaccurate for low modal volume optical fiber withmore » high core-cladding refractive index disparity, consistency between these approximations and experimental results was observed when the effective numerical aperture was measured and substituted for the theoretical numerical aperture in weakly-guiding approximation calculations. With the demonstration of very low modal volume in sapphire at fiber diameters much larger than anticipated by legacy calculations, the resolution of sapphire fiber distributed sensors may be increased and other sensing schemes requiring very low modal volume, such as fiber Bragg gratings, may be realized in extreme environment applications.« less

  5. Phototoxic maculopathy induced by quartz infrared heat lamp

    PubMed Central

    Zheng, Xinhua; Xie, Ping; Hu, Zizhong; Zhang, Weiwei; Liang, Kang; Wang, Xiuying; Liu, Qinghuai

    2017-01-01

    Abstract Rationale: A large proportion of the output of quartz infrared heat lamps is emitted as infrared radiation (IR). Retinal damage induced by IR-A and visible light on arc welders has been reported. However, case reports of retinal damage caused by quartz infrared heat lamps are rare. To the best of our knowledge, this is the first reported case of phototoxic maculopathy induced by quartz infrared heat lamps. Patient concerns: We report a female with a 1-month history of progressive blurred vision and dysmorphopsia in her right eye after improper staring at the tubes of a quartz infrared heater. Her best corrected visual acuity of the right eye was 20/32. Optical coherence tomography revealed a defect from the ellipsoid zone to retinal pigment epithelium (RPE)/Bruch's complex layer with a diameter of 360mmat its widest. P1 amplitudes in the two central concentric rings were reduced as assessed by multifocal electroretinography. Diagnoses: The patient was diagnosed with phototoxic maculopathy. Interventions: The patient was advised to cease all exposure to the infrared heater and was treated with peribulbar injections of methylprednisolone, oral Pancreatic Kininogenase, and oral Mecobalamin. Outcomes: Ten months later, her BCVA improved to 20/20. All examination results returned to normal except for a small residual defect in the interdigitation zone and RPE/Bruch's complex layer in her optical coherence tomography. Lessons: Light emitted by quartz infrared heat lamps may cause damage to the retina through photothermal and photochemical means. The public is insufficiently aware of the hazard potential of infrared heat lamps and other IR-A sources on human retina. PMID:28099337

  6. Phototoxic maculopathy induced by quartz infrared heat lamp: A clinical case report.

    PubMed

    Zheng, Xinhua; Xie, Ping; Hu, Zizhong; Zhang, Weiwei; Liang, Kang; Wang, Xiuying; Liu, Qinghuai

    2017-01-01

    A large proportion of the output of quartz infrared heat lamps is emitted as infrared radiation (IR). Retinal damage induced by IR-A and visible light on arc welders has been reported. However, case reports of retinal damage caused by quartz infrared heat lamps are rare. To the best of our knowledge, this is the first reported case of phototoxic maculopathy induced by quartz infrared heat lamps. We report a female with a 1-month history of progressive blurred vision and dysmorphopsia in her right eye after improper staring at the tubes of a quartz infrared heater. Her best corrected visual acuity of the right eye was 20/32. Optical coherence tomography revealed a defect from the ellipsoid zone to retinal pigment epithelium (RPE)/Bruch's complex layer with a diameter of 360mmat its widest. P1 amplitudes in the two central concentric rings were reduced as assessed by multifocal electroretinography. The patient was diagnosed with phototoxic maculopathy. The patient was advised to cease all exposure to the infrared heater and was treated with peribulbar injections of methylprednisolone, oral Pancreatic Kininogenase, and oral Mecobalamin. Ten months later, her BCVA improved to 20/20. All examination results returned to normal except for a small residual defect in the interdigitation zone and RPE/Bruch's complex layer in her optical coherence tomography. Light emitted by quartz infrared heat lamps may cause damage to the retina through photothermal and photochemical means. The public is insufficiently aware of the hazard potential of infrared heat lamps and other IR-A sources on human retina.

  7. In situ observation of lubricant film formation in THR considering real conformity: The effect of diameter, clearance and material.

    PubMed

    Nečas, D; Vrbka, M; Urban, F; Gallo, J; Křupka, I; Hartl, M

    2017-05-01

    The aim of the present study is to provide an analysis of protein film formation in hip joint replacements considering real conformity based on in situ observation of the contact zone. The main attention is focused on the effect of implant nominal diameter, diametric clearance and material. For this purpose, a pendulum hip joint simulator equipped with electromagnetic motors enabling to apply continuous swinging flexion-extension motion was employed. The experimental configuration consists of femoral component (CoCrMo, BIOLOX®forte, BIOLOX®delta) and acetabular cup from optical glass fabricated according to the dimensions of real cups. Two nominal diameters were studied, 28 and 36mm, respectively, while different diametric clearances were considered. Initially, a static test focused on the protein adsorption onto rubbing surfaces was performed with 36mm implants. It was found that the development of adsorbed layer is much more stable in the case of metal head, indicating that the adsorption forces are stronger compared to ceramic. A consequential swinging test revealed that the fundamental parameter influencing the protein film formation is diametric clearance. Independently of implant diameter, film was much thicker when a smaller clearance was considered. An increase of implant size from 28mm to 36mm did not cause a substantial difference in film formation; however, the total film thickness was higher for smaller implant. In terms of material, metal heads formed a thicker film, while this fact can be, among others, also attributed to clearance, which is more than two times higher in the case of ceramic implant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Ceramic backup ring prevents undesirable weld-metal buildup

    NASA Technical Reports Server (NTRS)

    Leonard, G. E.

    1971-01-01

    Removable ceramic backup material butted against weld zone back prevents weld metal buildup at that site. Method is successful with manual tungsten-inert gas /TIG/ welding of 316 corrosion resistant steel /CRES/ pieces with 0.76 cm throat diameter and 1.57 cm pipe internal diameter.

  9. Large core fiber optic cleaver

    DOEpatents

    Halpin, J.M.

    1996-03-26

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 {micro}m. 30 figs.

  10. Opto-mechanical design and gravity-deformation analysis on optical telescope in laser communication system

    NASA Astrophysics Data System (ADS)

    Fu, Sen; Du, Jindan; Song, Yiwei; Gao, Tianyu; Zhang, Daqing; Wang, Yongzhi

    2017-11-01

    In space laser communication, optical antennas are one of the main components and the precision of optical antennas is very high. In this paper, it is based on the R-C telescope and it is carried out that the design and simulation of optical lens and supporting truss, according to the parameters of the systems. And a finite element method (FEM) was used to analyze the deformation of the optical lens. Finally, the Zernike polynomial was introduced to fit the primary mirror with a diameter of 250mm. The objective of this study is to determine whether the wave-front aberration of the primary mirror can meet the imaging quality. The results show that the deterioration of the imaging quality caused by the gravity deformation of primary and secondary mirrors. At the same time, the optical deviation of optical antenna increase with the diameter of the pupil.

  11. The influence of the blood vessel diameter on the full scattering profile from cylindrical tissues: experimental evidence for the shielding effect.

    PubMed

    Feder, Idit; Duadi, Hamootal; Dreifuss, Tamar; Fixler, Dror

    2016-10-01

    Optical methods for detecting physiological state based on light-tissue interaction are noninvasive, inexpensive, simplistic, and thus very useful. The blood vessels in human tissue are the main cause of light absorbing and scattering. Therefore, the effect of blood vessels on light-tissue interactions is essential for optically detecting physiological tissue state, such as oxygen saturation, blood perfusion and blood pressure. We have previously suggested a new theoretical and experimental method for measuring the full scattering profile, which is the angular distribution of light intensity, of cylindrical tissues. In this work we will present experimental measurements of the full scattering profile of heterogenic cylindrical phantoms that include blood vessels. We show, for the first time that the vessel diameter influences the full scattering profile, and found higher reflection intensity for larger vessel diameters accordance to the shielding effect. For an increase of 60% in the vessel diameter the light intensity in the full scattering profile above 90° is between 9% to 40% higher, depending on the angle. By these results we claim that during respiration, when the blood-vessel diameter changes, it is essential to consider the blood-vessel diameter distribution in order to determine the optical path in tissues. A CT scan of the measured silicon-based phantoms. The phantoms contain the same blood volume in different blood-vessel diameters. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Sub-25-nm laboratory x-ray microscopy using a compound Fresnel zone plate.

    PubMed

    von Hofsten, Olov; Bertilson, Michael; Reinspach, Julia; Holmberg, Anders; Hertz, Hans M; Vogt, Ulrich

    2009-09-01

    Improving the resolution in x-ray microscopes is of high priority to enable future applications in nanoscience. However, high-resolution zone-plate optics often have low efficiency, which makes implementation in laboratory microscopes difficult. We present a laboratory x-ray microscope based on a compound zone plate. The compound zone plate utilizes multiple diffraction orders to achieve high resolution while maintaining reasonable efficiency. We analyze the illumination conditions necessary for this type of optics in order to suppress stray light and demonstrate microscopic imaging resolving 25 nm features.

  13. Fire control method and analytical model for large liquid hydrocarbon pool fires

    NASA Technical Reports Server (NTRS)

    Fenton, D. L.

    1986-01-01

    The dominate parameter governing the behavior of a liquid hydrocarbon (JP-5) pool fire is wind speed. The most effective method of controlling wind speed in the vicinity of a large circular (10 m dia.) pool fire is a set of concentric screens located outside the perimeter. Because detailed behavior of the pool fire structure within one pool fire diameter is unknown, an analytical model supported by careful experiments is under development. As a first step toward this development, a regional pool fire model was constructed for the no-wind condition consisting of three zones -- liquid fuel, combustion, and plume -- where the predicted variables are mass burning rate and characteristic temperatures of the combustion and plume zones. This zone pool fire model can be modified to incorporate plume bending by wind, radiation absorption by soot particles, and a different ambient air flow entrainment rate. Results from the zone model are given for a pool diameter of 1.3 m and are found to reproduce values in the literature.

  14. 1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner.

    PubMed

    Seo, Yeong-Hyeon; Hwang, Kyungmin; Jeong, Ki-Hun

    2018-02-19

    We report a 1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner. Lissajous scanning was implemented by the electrothermal MEMS fiber scanner. The Lissajous scanned MEMS fiber scanner was precisely fabricated to facilitate flip-chip connection, and bonded with a printed circuit board. The scanner was successfully combined with a fiber-based confocal imaging system. A two-dimensional reflectance image of the metal pattern 'OPTICS' was successfully obtained with the scanner. The flip-chip bonded scanner minimizes electrical packaging dimensions. The inner diameter of the flip-chip bonded MEMS fiber scanner is 1.3 mm. The flip-chip bonded MEMS fiber scanner is fully packaged with a 1.65 mm diameter housing tube, 1 mm diameter GRIN lens, and a single mode optical fiber. The packaged confocal endomicroscopic catheter can provide a new breakthrough for diverse in-vivo endomicroscopic applications.

  15. Band gaps in periodically magnetized homogeneous anisotropic media

    NASA Astrophysics Data System (ADS)

    Merzlikin, A. M.; Levy, M.; Vinogradov, A. P.; Wu, Z.; Jalali, A. A.

    2010-11-01

    In [A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, M. Inoue, M. Levy, A. B. Granovsky, Physica B 394 (2007) 277] it is shown that in anisotropic magnetophotonic crystal made of anisotropic dielectric layers and isotropic magneto-optical layers the magnetization leads to formation of additional band gaps (BG) inside the Brillouin zones. Due to the weakness of the magneto-optical effects the width of these BG is much smaller than that of usual BG forming on the boundaries of Brillouin zones. In the present communication we show that though the anisotropy suppresses magneto-optical effects. An anisotropic magnetophotonic crystal made of anisotropic dielectric layers and anisotropic magneto-optical; the width of additional BG may be much greater than the width of the usual Brillouin BG. Anisotropy tends to suppress Brillouin zone boundary band gap formation because the anisotropy suppresses magneto-optical properties, while degenerate band gap formation occurs around points of effective isotropy and is not suppressed.

  16. Evaluation of white-to-white distance and anterior chamber depth measurements using the IOL Master, slit-lamp adapted optical coherence tomography and digital photographs in phakic eyes.

    PubMed

    Wilczyński, Michał; Pośpiech-Zabierek, Aleksandra

    2015-01-01

    The accurate measurement of the anterior chamber internal diameter and depth is important in ophthalmic diagnosis and before some eye surgery procedures. The purpose of the study was to compare the white-to-white distance measurements performed using the IOL-Master and photography with internal anterior chamber diameter determined using slit lamp adapted optical coherence tomography in healthy eyes, and to compare anterior chamber depth measurements by IOL-Master and slit lamp adapted optical coherence tomography. The data were gathered prospectively from a non-randomized consecutive series of patients. The examined group consisted of 46 eyes of 39 patients. White-to-white was measured using IOL-Master and photographs of the eye were taken with a digital camera. Internal anterior chamber diameter was measured with slit-lamp adapted optical coherence tomography. Anterior chamber depth was measured using the IOL Master and slit-lamp adapted optical coherence tomography. Statistical analysis was performed using parametric tests. A Bland-Altman plot was drawn. White-to-white distance by the IOL Master was 11.8 +/- 0.40 mm, on photographs it was 11.29 +/- 0.58 mm and internal anterior chamber diameter by slit-lamp adapted optical coherence tomography was 11.34?0.54 mm. A significant difference was found between IOL-Master and slit-lamp adapted optical coherence tomography (p<0.01), as well as between IOL Master and digital photographs (p<0.01). There was no difference between SL-OCT and digital photographs (p>0.05). All measurements were correlated (Spearman p<0.001). Mean anterior chamber depth determined using the IOL-Master was 2.99 +/- 0.50 mm and by slit-lamp adapted optical coherence tomography was 2.56 +/- 0.46 mm. The difference was statistically significant (p<0.001). The correlation between the values was also statistically significant (Spearman, p<0.001). Automated measurements using IOL-Master yield constantly higher values than measurements based on direct eye visualization slit-lamp adapted optical coherence tomography and digital photographs. In order to obtain accurate measurements of the internal anterior chamber diameter and anterior chamber depth, a method involving direct visualization of intraocular structures should be used.

  17. Assessment of Metronidazole Susceptibility in Helicobacter pylori: Statistical Validation and Error Rate Analysis of Breakpoints Determined by the Disk Diffusion Test

    PubMed Central

    Chaves, Sandra; Gadanho, Mário; Tenreiro, Rogério; Cabrita, José

    1999-01-01

    Metronidazole susceptibility of 100 Helicobacter pylori strains was assessed by determining the inhibition zone diameters by disk diffusion test and the MICs by agar dilution and PDM Epsilometer test (E test). Linear regression analysis was performed, allowing the definition of significant linear relations, and revealed correlations of disk diffusion results with both E-test and agar dilution results (r2 = 0.88 and 0.81, respectively). No significant differences (P = 0.84) were found between MICs defined by E test and those defined by agar dilution, taken as a standard. Reproducibility comparison between E-test and disk diffusion tests showed that they are equivalent and with good precision. Two interpretative susceptibility schemes (with or without an intermediate class) were compared by an interpretative error rate analysis method. The susceptibility classification scheme that included the intermediate category was retained, and breakpoints were assessed for diffusion assay with 5-μg metronidazole disks. Strains with inhibition zone diameters less than 16 mm were defined as resistant (MIC > 8 μg/ml), those with zone diameters equal to or greater than 16 mm but less than 21 mm were considered intermediate (4 μg/ml < MIC ≤ 8 μg/ml), and those with zone diameters of 21 mm or greater were regarded as susceptible (MIC ≤ 4 μg/ml). Error rate analysis applied to this classification scheme showed occurrence frequencies of 1% for major errors and 7% for minor errors, when the results were compared to those obtained by agar dilution. No very major errors were detected, suggesting that disk diffusion might be a good alternative for determining the metronidazole sensitivity of H. pylori strains. PMID:10203543

  18. Evaluation of an Automated System for Reading and Interpreting Disk Diffusion Antimicrobial Susceptibility Testing of Fastidious Bacteria.

    PubMed

    Idelevich, Evgeny A; Becker, Karsten; Schmitz, Janne; Knaack, Dennis; Peters, Georg; Köck, Robin

    2016-01-01

    Results of disk diffusion antimicrobial susceptibility testing depend on individual visual reading of inhibition zone diameters. Therefore, automated reading using camera systems might represent a useful tool for standardization. In this study, the ADAGIO automated system (Bio-Rad) was evaluated for reading disk diffusion tests of fastidious bacteria. 144 clinical isolates (68 β-haemolytic streptococci, 28 Streptococcus pneumoniae, 18 viridans group streptococci, 13 Haemophilus influenzae, 7 Moraxella catarrhalis, and 10 Campylobacter jejuni) were tested on Mueller-Hinton agar supplemented with 5% defibrinated horse blood and 20 mg/L β-NAD (MH-F, Oxoid) according to EUCAST. Plates were read manually with a ruler and automatically using the ADAGIO system. Inhibition zone diameters, indicated by the automated system, were visually controlled and adjusted, if necessary. Among 1548 isolate-antibiotic combinations, comparison of automated vs. manual reading yielded categorical agreement (CA) without visual adjustment of the automatically determined zone diameters in 81.4%. In 20% (309 of 1548) of tests it was deemed necessary to adjust the automatically determined zone diameter after visual control. After adjustment, CA was 94.8%; very major errors (false susceptible interpretation), major errors (false resistant interpretation) and minor errors (false categorization involving intermediate result), calculated according to the ISO 20776-2 guideline, accounted to 13.7% (13 of 95 resistant results), 3.3% (47 of 1424 susceptible results) and 1.4% (21 of 1548 total results), respectively, compared to manual reading. The ADAGIO system allowed for automated reading of disk diffusion testing in fastidious bacteria and, after visual validation of the automated results, yielded good categorical agreement with manual reading.

  19. In vitro antibacterial activity of doripenem against clinical isolates from French teaching hospitals: proposition of zone diameter breakpoints.

    PubMed

    Lascols, C; Legrand, P; Mérens, A; Leclercq, R; Armand-Lefevre, L; Drugeon, H B; Kitzis, M D; Muller-Serieys, C; Reverdy, M E; Roussel-Delvallez, M; Moubareck, C; Lemire, A; Miara, A; Gjoklaj, M; Soussy, C-J

    2011-04-01

    The aims of the study were to determine the in vitro activity of doripenem, a new carbapenem, against a large number of bacterial pathogens and to propose zone diameter breakpoints for clinical categorization in France according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) minimum inhibitory concentration (MIC) breakpoints. The MICs of doripenem were determined by the broth microdilution method against 1,547 clinical isolates from eight French hospitals. The disk diffusion test was performed (10-μg discs) according to the Comité de l'Antibiogramme de la Société Française de Microbiologie (CASFM) method. The MIC(50/90) (mg/L) values were as follows: methicillin-susceptible Staphylococcus aureus (MSSA) (0.03/0.25), methicillin-resistant Staphylococcus aureus (MRSA) (1/2), methicillin-susceptible coagulase-negative staphylococci (MSCoNS) (0.03/0.12), methicillin-resistant coagulase-negative staphylococci (MRCoNS) (2/8), Streptococcus pneumoniae (0.016/0.25), viridans group streptococci (0.016/2), β-hemolytic streptococci (≤0.008/≤0.008), Enterococcus faecalis (2/4), Enterococcus faecium (128/>128), Enterobacteriaceae (0.06/0.25), Pseudomonas aeruginosa (0.5/8), Acinetobacter baumannii (0.25/2), Haemophilus influenzae (0.12/0.25), and Moraxella catarrhalis (0.03/0.06). According to the regression curve, the zone diameter breakpoints were 24 and 19 mm for MICs of 1 and 4 mg/L, respectively. This study confirms the potent in vitro activity of doripenem against Pseudomonas aeruginosa, Acinetobacter, Enterobacteriaceae, MSSA, MSCoNS, and respiratory pathogens. According to the EUCAST MIC breakpoints (mg/L) ≤1/>4 for Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter, and ≤1/>1 for streptococci, pneumococci, and Haemophilus, the zone diameter breakpoints could be (mm) ≥24/<19 and ≥24/<24, respectively.

  20. Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides

    PubMed Central

    Holmes, Matthew R.; Shang, Tao; Hawkins, Aaron R.; Rudenko, Mikhail; Measor, Philip; Schmidt, Holger

    2011-01-01

    We demonstrate the fabrication of micropore and nanopore features in hollow antiresonant reflecting optical waveguides to create an electrical and optical analysis platform that can size select and detect a single nanoparticle. Micropores (4 μm diameter) are reactive-ion etched through the top SiO2 and SiN layers of the waveguides, leaving a thin SiN membrane above the hollow core. Nanopores are formed in the SiN membranes using a focused ion-beam etch process that provides control over the pore size. Openings as small as 20 nm in diameter are created. Optical loss measurements indicate that micropores did not significantly alter the loss along the waveguide. PMID:21922035

  1. Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides.

    PubMed

    Holmes, Matthew R; Shang, Tao; Hawkins, Aaron R; Rudenko, Mikhail; Measor, Philip; Schmidt, Holger

    2010-01-01

    We demonstrate the fabrication of micropore and nanopore features in hollow antiresonant reflecting optical waveguides to create an electrical and optical analysis platform that can size select and detect a single nanoparticle. Micropores (4 μm diameter) are reactive-ion etched through the top SiO(2) and SiN layers of the waveguides, leaving a thin SiN membrane above the hollow core. Nanopores are formed in the SiN membranes using a focused ion-beam etch process that provides control over the pore size. Openings as small as 20 nm in diameter are created. Optical loss measurements indicate that micropores did not significantly alter the loss along the waveguide.

  2. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays.

    PubMed

    Steemers, F J; Ferguson, J A; Walt, D R

    2000-01-01

    We have developed a randomly ordered fiber-optic gene array for rapid, parallel detection of unlabeled DNA targets with surface immobilized molecular beacons (MB) that undergo a conformational change accompanied by a fluorescence change in the presence of a complementary DNA target. Microarrays are prepared by randomly distributing MB-functionalized 3-microm diameter microspheres in an array of wells etched in a 500-microm diameter optical imaging fiber. Using several MBs, each designed to recognize a different target, we demonstrate the selective detection of genomic cystic fibrosis related targets. Positional registration and fluorescence response monitoring of the microspheres was performed using an optical encoding scheme and an imaging fluorescence microscope system.

  3. Sensitivity to Antibiotics of Bacteria Exposed to Gamma Radiation Emitted from Hot Soils of the High Background Radiation Areas of Ramsar, Northern Iran.

    PubMed

    Mortazavi, Seyed Mohammad Javad; Zarei, Samira; Taheri, Mohammad; Tajbakhsh, Saeed; Mortazavi, Seyed Alireza; Ranjbar, Sahar; Momeni, Fatemeh; Masoomi, Samaneh; Ansari, Leila; Movahedi, Mohammad Mehdi; Taeb, Shahram; Zarei, Sina; Haghani, Masood

    2017-04-01

    Over the past several years our laboratories have investigated different aspects of the challenging issue of the alterations in bacterial susceptibility to antibiotics induced by physical stresses. To explore the bacterial susceptibility to antibiotics in samples of Salmonella enterica subsp. enterica serovar Typhimurium ( S. typhimurium ), Staphylococcus aureus , and Klebsiella pneumoniae after exposure to gamma radiation emitted from the soil samples taken from the high background radiation areas of Ramsar, northern Iran. Standard Kirby-Bauer test, which evaluates the size of the zone of inhibition as an indicator of the susceptibility of different bacteria to antibiotics, was used in this study. The maximum alteration of the diameter of inhibition zone was found for K. pneumoniae when tested for ciprofloxacin. In this case, the mean diameter of no growth zone in non-irradiated control samples of K. pneumoniae was 20.3 (SD 0.6) mm; it was 14.7 (SD 0.6) mm in irradiated samples. On the other hand, the minimum changes in the diameter of inhibition zone were found for S. typhimurium and S. aureus when these bacteria were tested for nitrofurantoin and cephalexin, respectively. Gamma rays were capable of making significant alterations in bacterial susceptibility to antibiotics. It can be hypothesized that high levels of natural background radiation can induce adaptive phenomena that help microorganisms better cope with lethal effects of antibiotics.

  4. Probing Subsurface and Stream Particle Composition Through Optical Analysis at the Eel River Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Nghiem, A.; Thurnhoffer, B. M.; Bishop, J. K. B.; Kim, H.

    2014-12-01

    Particles constitute a significant portion of the flux weathered material from continents to ocean basins but little is understood about their seasonal dynamics particularly in subsurface and headwater stream environments. At the Eel River Critical Zone Observatory, located near the headwaters of the South Fork Eel River in the Angelo Coast Range Reserve (Northern California), groundwater from weathered bedrock and stream waters are sampled at a frequency of one to three days from three wells (Well 1 down-slope, Well 3 mid-slope, Well 10 upper-slope) and Elder Creek. Approximately one thousand samples collected by automated ISCO Gravity Filtration System (GFS; Kim et al. 2012, EST) since 2011 have been filtered through 0.45 μm 25 mm diameter Supor filters. Filters imaged under controlled lighting are analyzed for red, green, and blue optical density (OD) to enable rapid assessment of sample loading and color as a prelude to and selection aid for more labor-intensive ICP-MS and Scanning Electron Microscopic analysis. For example, samples with lower red OD relative to green and blue may correspond to samples high in Mn/Fe oxides. Optical imaging of the loaded filters provides a time-series over three years and color anomalies in these filters along with chemical analysis of dissolved and particulate filtrate is used to establish a method for calibrating optical data to interpret chemical composition of water and particles. Results are interpreted within a framework of environmental data such as rainfall, stream discharge and turbidity, and water table depth measured at the heavily monitored forested hillslope. Data from the four locations range up to 0.6 OD units with a typical detection limit of better than 0.01 OD units. At Well 10, wet season filter samples exhibit highest particle loading (OD ~ 0.3) with values rapidly decreasing during the dry season (OD < D.L.) water table recession. At Well 1, particle loads instantaneously reflect intense rain events. Applied at a larger scale, this method - if proven - may be used to estimate basin level particulate flux with an estimation of chemical composition in a highly efficient manner.

  5. Retinal nerve fiber layer thickness measured with optical coherence tomography is related to visual function in glaucomatous eyes.

    PubMed

    El Beltagi, Tarek A; Bowd, Christopher; Boden, Catherine; Amini, Payam; Sample, Pamela A; Zangwill, Linda M; Weinreb, Robert N

    2003-11-01

    To determine the relationship between areas of glaucomatous retinal nerve fiber layer thinning identified by optical coherence tomography and areas of decreased visual field sensitivity identified by standard automated perimetry in glaucomatous eyes. Retrospective observational case series. Forty-three patients with glaucomatous optic neuropathy identified by optic disc stereo photographs and standard automated perimetry mean deviations >-8 dB were included. Participants were imaged with optical coherence tomography within 6 months of reliable standard automated perimetry testing. The location and number of optical coherence tomography clock hour retinal nerve fiber layer thickness measures outside normal limits were compared with the location and number of standard automated perimetry visual field zones outside normal limits. Further, the relationship between the deviation from normal optical coherence tomography-measured retinal nerve fiber layer thickness at each clock hour and the average pattern deviation in each visual field zone was examined by using linear regression (R(2)). The retinal nerve fiber layer areas most frequently outside normal limits were the inferior and inferior temporal regions. The least sensitive visual field zones were in the superior hemifield. Linear regression results (R(2)) showed that deviation from the normal retinal nerve fiber layer thickness at optical coherence tomography clock hour positions 6 o'clock, 7 o'clock, and 8 o'clock (inferior and inferior temporal) was best correlated with standard automated perimetry pattern deviation in visual field zones corresponding to the superior arcuate and nasal step regions (R(2) range, 0.34-0.57). These associations were much stronger than those between clock hour position 6 o'clock and the visual field zone corresponding to the inferior nasal step region (R(2) = 0.01). Localized retinal nerve fiber layer thinning, measured by optical coherence tomography, is topographically related to decreased localized standard automated perimetry sensitivity in glaucoma patients.

  6. Sub-mm Scale Fiber Guided Deep/Vacuum Ultra-Violet Optical Source for Trapped Mercury Ion Clocks

    NASA Technical Reports Server (NTRS)

    Yi, Lin; Burt, Eric A.; Huang, Shouhua; Tjoelker, Robert L.

    2013-01-01

    We demonstrate the functionality of a mercury capillary lamp with a diameter in the sub-mm range and deep ultraviolet (DUV)/ vacuum ultraviolet (VUV) radiation delivery via an optical fiber integrated with the capillary. DUV spectrum control is observed by varying the fabrication parameters such as buffer gas type and pressure, capillary diameter, electrical resonator design, and temperature. We also show spectroscopic data of the 199Hg+ hyper-fine transition at 40.5GHz when applying the above fiber optical design. We present efforts toward micro-plasma generation in hollow-core photonic crystal fiber with related optical design and theoretical estimations. This new approach towards a more practical DUV optical interface could benefit trapped ion clock developments for future ultra-stable frequency reference and time-keeping applications.

  7. A Linear Ion Trap with an Expanded Inscribed Diameter to Improve Optical Access for Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rajagopal, Vaishnavi; Stokes, Chris; Ferzoco, Alessandra

    2018-02-01

    We report a custom-geometry linear ion trap designed for fluorescence spectroscopy of gas-phase ions at ambient to cryogenic temperatures. Laser-induced fluorescence from trapped ions is collected from between the trapping rods, orthogonal to the excitation laser that runs along the axis of the linear ion trap. To increase optical access to the ion cloud, the diameter of the round trapping rods is 80% of the inscribed diameter, rather than the roughly 110% used to approximate purely quadrupolar electric fields. To encompass as much of the ion cloud as possible, the first collection optic has a 25.4 mm diameter and a numerical aperture of 0.6. The choice of geometry and collection optics yields 107 detected photons/s from trapped rhodamine 6G ions. The trap is coupled to a closed-cycle helium refrigerator, which in combination with two 50 Ohm heaters enables temperature control to below 25 K on the rod electrodes. The purpose of the instrument is to broaden the applicability of fluorescence spectroscopy of gas-phase ions to cases where photon emission is a minority relaxation pathway. Such studies are important to understand how the microenvironment of a chromophore influences excited state charge transfer processes.

  8. The use of optical fiber bundles combined with electrochemistry for chemical imaging.

    PubMed

    Szunerits, Sabine; Walt, David R

    2003-02-17

    The present Review describes the progress made in using imaging optical fiber bundles for fluorescence and electrochemical-initiated chemiluminescence imaging. A novel optoelectrochemical micro-ring array has been fabricated and demonstrated for concurrent electrochemical and optical measurements. The device comprises optical fibers coated with gold via electroless gold deposition and assembled in a random array format. The design yielded an array of approximately 200 micro-ring electrodes, where interdiffusional problems were minimized. The inner diameter of the ring electrode is fixed by the diameter of the individual optical fibers (25 microns), while the outer radius is determined by the thickness of the deposited gold. While all the fibers are optically addressable, they are not all electrochemically addressable. The resolution of this device is in the tens of micrometers range, determined by the diameter of the optical fiber (25 microns) and by the spacing between each electrically connected fiber. For the purpose of having well-behaved microelectrode characteristics, this spacing was designed to be larger than 60 microns. The array was characterized using ferrocyanide in aqueous solution as a model electroactive species to demonstrate that this microelectrode array format exhibits steady-state currents at short response times. This device has potential application to be used as an optoelectronic sensor, especially for the electrolytic generation and transmission of electrochemiluminescence, and was used to demonstrate that electrochemically generated luminescent products can be detected with the fiber assembly.

  9. Optical Couplers

    DTIC Science & Technology

    1975-12-01

    FUNNEL DIAMETER 250 DIA FUNNEL DIAMETER, Df SHOWN IN LIST 375 FUNNEL DIAMETER Df . 043 ,060 .173 .044 .062 .175 .045 .063 .176 .046...Physical Dimensions Nom . Size (mil) Fiber Count V (mi 1) d (mil) [ (nr ) 1) 1 (m- Df 1) 46 285 41 .58 2.463 45 79 46 .71 ^/2x46 570 58

  10. High power 938 nanometer fiber laser and amplifier

    DOEpatents

    Dawson, Jay W [Livermore, CA; Liao, Zhi Ming [Pleasanton, CA; Beach, Raymond J [Livermore, CA; Drobshoff, Alexander D [Livermore, CA; Payne, Stephen A [Castro Valley, CA; Pennington, Deanna M [Livermore, CA; Hackenberg, Wolfgang [Munich, DE; Calia, Domenico Bonaccini [Garching, DE; Taylor, Luke [Montauban de Bretagne, FR

    2006-05-02

    An optical fiber amplifier includes a length of silica optical fiber having a core doped with neodymium, a first cladding and a second cladding each with succeeding lower refractive indices, where the first cladding diameter is less than 10 times the diameter of the core. The doping concentration of the neodymium is chosen so that the small signal absorption for 816 nm light traveling within the core is less than 15 dB/m above the other fiber losses. The amplifier is optically pumped with one laser into the fiber core and with another laser into the first cladding.

  11. Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastengren, A.; Ilavsky, J.; Viera, Juan Pablo

    Measurements of droplet size in optically-thick, non-evaporating, shear-driven sprays have been made using ultra-small angle x-ray scattering (USAXS). The sprays are produced by orifice-type nozzles coupled to diesel injectors, with measurements conducted from 1 – 24 mm from the orifice, spanning from the optically-dense near-nozzle region to more dilute regions where optical diagnostics are feasible. The influence of nozzle diameter, liquid injection pressure, and ambient density were examined. The USAXS measurements reveal few if any nanoscale droplets, in conflict with a popular computational model of diesel spray breakup. The average droplet diameter rapidly decreases with downstream distance from the nozzlemore » until a plateau value is reached, after which only small changes are seen in droplet diameter. This plateau droplet size is consistent with the droplets being small enough to be stable with respect to further breakup. As a result, liquid injection pressure and nozzle diameter have the biggest impact on droplet size, while ambient density has a smaller effect.« less

  12. Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering

    DOE PAGES

    Kastengren, A.; Ilavsky, J.; Viera, Juan Pablo; ...

    2017-03-16

    Measurements of droplet size in optically-thick, non-evaporating, shear-driven sprays have been made using ultra-small angle x-ray scattering (USAXS). The sprays are produced by orifice-type nozzles coupled to diesel injectors, with measurements conducted from 1 – 24 mm from the orifice, spanning from the optically-dense near-nozzle region to more dilute regions where optical diagnostics are feasible. The influence of nozzle diameter, liquid injection pressure, and ambient density were examined. The USAXS measurements reveal few if any nanoscale droplets, in conflict with a popular computational model of diesel spray breakup. The average droplet diameter rapidly decreases with downstream distance from the nozzlemore » until a plateau value is reached, after which only small changes are seen in droplet diameter. This plateau droplet size is consistent with the droplets being small enough to be stable with respect to further breakup. As a result, liquid injection pressure and nozzle diameter have the biggest impact on droplet size, while ambient density has a smaller effect.« less

  13. Damage zone development and failure sequence in glass fibre mat-reinforced polypropylene under static loading conditions

    NASA Astrophysics Data System (ADS)

    Karger-Kocsis, J.; Fejes-Kozma, Zs.

    1994-01-01

    The size of the damage zone in glass mat-reinforced PP (GMT—PP) can well be estimated by locating the acoustic emission (AE) events monitored during loading. It was shown that the extension of this zone can be adequately approximated by a circle of about 30-mm diameter, the half of which penetrates into the free ligament of the specimen.

  14. Pulse height response of an optical particle counter to monodisperse aerosols

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.; Grice, S. S.; Cuda, V.

    1976-01-01

    The pulse height response of a right angle scattering optical particle counter has been investigated using monodisperse aerosols of polystyrene latex spheres, di-octyl phthalate and methylene blue. The results confirm previous measurements for the variation of mean pulse height as a function of particle diameter and show good agreement with the relative response predicted by Mie scattering theory. Measured cumulative pulse height distributions were found to fit reasonably well to a log normal distribution with a minimum geometric standard deviation of about 1.4 for particle diameters greater than about 2 micrometers. The geometric standard deviation was found to increase significantly with decreasing particle diameter.

  15. Optical absorption and thermal transport of individual suspended carbon nanotube bundles.

    PubMed

    Hsu, I-Kai; Pettes, Michael T; Bushmaker, Adam; Aykol, Mehmet; Shi, Li; Cronin, Stephen B

    2009-02-01

    A focused laser beam is used to heat individual single-walled carbon nanotube bundles bridging two suspended microthermometers. By measurement of the temperature rise of the two thermometers, the optical absorption of 7.4-10.3 nm diameter bundles is found to be between 0.03 and 0.44% of the incident photons in the 0.4 microm diameter laser spot. The thermal conductance of the bundle is obtained with the additional measurement of the temperature rise of the nanotubes in the laser spot from shifts in the Raman G band frequency. According to the nanotube bundle diameter determined by transmission electron microscopy, the thermal conductivity is obtained.

  16. Assessment of the Accuracy of the Conventional Ray-Tracing Technique: Implications in Remote Sensing and Radiative Transfer Involving Ice Clouds.

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Liu, Chao; Yi, Bingqi; Baum, Bryan A.; Van Diedenhoven, Bastiaan; Iwabuchi, Hironobu

    2014-01-01

    A fundamental problem in remote sensing and radiative transfer simulations involving ice clouds is the ability to compute accurate optical properties for individual ice particles. While relatively simple and intuitively appealing, the conventional geometric-optics method (CGOM) is used frequently for the solution of light scattering by ice crystals. Due to the approximations in the ray-tracing technique, the CGOM accuracy is not well quantified. The result is that the uncertainties are introduced that can impact many applications. Improvements in the Invariant Imbedding T-matrix method (II-TM) and the Improved Geometric-Optics Method (IGOM) provide a mechanism to assess the aforementioned uncertainties. The results computed by the II-TMþIGOM are considered as a benchmark because the IITM solves Maxwell's equations from first principles and is applicable to particle size parameters ranging into the domain at which the IGOM has reasonable accuracy. To assess the uncertainties with the CGOM in remote sensing and radiative transfer simulations, two independent optical property datasets of hexagonal columns are developed for sensitivity studies by using the CGOM and the II-TMþIGOM, respectively. Ice cloud bulk optical properties obtained from the two datasets are compared and subsequently applied to retrieve the optical thickness and effective diameter from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Additionally, the bulk optical properties are tested in broadband radiative transfer (RT) simulations using the general circulation model (GCM) version of the Rapid Radiative Transfer Model (RRTMG) that is adopted in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM, version 5.1). For MODIS retrievals, the mean bias of uncertainties of applying the CGOM in shortwave bands (0.86 and 2.13 micrometers) can be up to 5% in the optical thickness and as high as 20% in the effective diameter, depending on cloud optical thickness and effective diameter. In the MODIS infrared window bands centered at 8.5, 11, and 12 micrometers biases in the optical thickness and effective diameter are up to 12% and 10%, respectively. The CGOM-based simulation errors in ice cloud radiative forcing calculations are on the order of 10Wm(exp 2).

  17. Potential productivity benefits of float-zone versus Czochralski crystal growth

    NASA Technical Reports Server (NTRS)

    Abe, T.

    1985-01-01

    Efficient mass production of single-crystal silicon is necessary for the efficient silicon solar arrays needed in the coming decade. However, it is anticipated that there will be difficulty growing such volumes of crystals using conventional Czochralski (Cz) methods. While the productivity of single crystals might increase with a crystal diameter increase, there are two obstacles to the mass production of large diameter Czochralski crystals, the long production cycle due to slow growth rate and the high heat requirements of the furnaces. Also counterproductive would be the large resistivity gradient along the growth direction of the crystals due to impurity concentration. Comparison between Float zone (FZ) and Cz crystal growth on the basis of a crystal 150 mm in diameter is on an order of two to four times in favor of the FZ method. This advantage results from high growth rates and steady-state growth while maintaining a dislocation-free condition and impurity segregation.

  18. In vitro power profiles of daily disposable contact lenses.

    PubMed

    Belda-Salmerón, Lurdes; Madrid-Costa, David; Ferrer-Blasco, Teresa; García-Lázaro, Santiago; Montés-Micó, Robert

    2013-10-01

    To evaluate and compare the distribution of refractive power within the optic zone of different soft contact lenses and to investigate the effect of lens decentration on the power profiles. The Nimo TR1504 instrument was used to measure the optical power across different aperture diameters (from 1.5mm to 5.5mm in steps of 0.5mm) of four daily disposable contact lenses: DAILIES TOTAL1, Proclear 1-Day, SofLens daily disposable and 1-DAY ACUVUE MOIST. Measurements were performed using a wet cell. Power data were evaluated when contact lenses were in its centered position and after inducing different amounts of lens decentration (from 0.2mm to 1.0mm in steps of 0.2mm). All contact lenses showed an increase - more negative - in lens power with distance from the lens center. The amount of change varied depending on the lens. It was about 10% of lens power for DAILIES TOTAL1 (-0.29diopters (D)), SofLens daily disposable (-0.36D), and Proclear 1-Day (-0.32D) whereas 1-DAY ACUVUE MOIST showed a percentage variation of 3.3% (-0.10D). After inducing a lens decentration up to 1mm, the power curves were shifted in the negative direction. However, the change obtained in lens power compared with well-centered position was always lower than a quarter of diopter both for all the lenses and aperture diameters. Our results showed a variation of the refractive power from the lens center, becoming more negative toward the periphery, with a negligible effect of the decentration for all disposable contact lenses studied. Copyright © 2013 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  19. Biomass utilization for bioenergy in the Western United States

    Treesearch

    D.L. Nicholls; R. Monserud; D. Dykstra

    2008-01-01

    Wildfires, hazardous fuel buildups, small-diameter timber, wildland-urban interface zones, biomass. These are some of the terms becoming familiar to communities throughout the Western United States after the record-breaking fire seasons of the past decade. Although small-diameter stems are generally expensive to remove and often have limited utilization options, the...

  20. Asteroid taxonomy and the distribution of the compositional types

    NASA Technical Reports Server (NTRS)

    Zellner, B.

    1979-01-01

    Physical observations of minor planets documented in the TRIAD computer file are used to classify 752 objects into the broad compositional types C, S, M, E, R, and U (unclassifiable) according to the prescriptions adopted by Bowell et al. (1978). Diameters are computed from the photometric magnitude using radiometric and/or polarimetric data where available, or else from albedos characteristic of the indicated type. An analysis of the observational selection effects leads to tabulation of the actual number of asteroids, as a function of type and diameter, in each of 15 orbital element zones. For the whole main belt the population is 75% of type C, 15% of type S, and 10% of other types, with no belt-wide dependence of the mixing ratios on diameter. In some zones the logarithmic diameter-frequency relations are decidedly nonlinear. The relative frequency of S-type objects decreases smoothly outward through the main belt, with exponential scale length 0.5 AU. The rarer types show a more chaotic, but generally flatter, distribution over distance. Characteristic type distributions, contrasting with the background population, are found for the Eos, Koronis, Nysa and Themis families.

  1. Effects of control parameters of three-point initiation on the formation of an explosively formed projectile with fins

    NASA Astrophysics Data System (ADS)

    Li, R.; Li, W. B.; Wang, X. M.; Li, W. B.

    2018-03-01

    The effects of the initiation diameter and synchronicity error on the formation of fins and stable-flight velocity of an explosively formed projectile (EFP) with three-point initiation are investigated. The pressure and area of the Mach wave acting on the metal liner at different initiation diameters are calculated employing the Whitham method. LS-DYNA software is used to investigate the asymmetric collision of detonation waves resulting from three-point initiation synchronicity error, the distortion characteristics of the liner resulting from the composite detonation waves, and the performance parameters of the EFP with fins. Results indicate that deviations of the Y-shaped high-pressure zone and central ultrahigh-pressure zone from the liner center can be attributed to the error of three-point initiation, which leads to the irregular formation of EFP fins. It is noted that the area of the Mach wave decreases, but the pressure of the Mach wave and the final speed and length-to-diameter ( L/ D) ratio of the EFP increase, benefiting the formation of the EFP fins, as the initiation diameter increases.

  2. En-face imaging of the ellipsoid zone in the retina from optical coherence tomography B-scans

    NASA Astrophysics Data System (ADS)

    Holmes, T.; Larkin, S.; Downing, M.; Csaky, K.

    2015-03-01

    It is generally believed that photoreceptor integrity is related to the ellipsoid zone appearance in optical coherence tomography (OCT) B-scans. Algorithms and software were developed for viewing and analyzing the ellipsoid zone. The software performs the following: (a), automated ellipsoid zone isolation in the B-scans, (b), en-face view of the ellipsoid-zone reflectance, (c), alignment and overlay of (b) onto reflectance images of the retina, and (d), alignment and overlay of (c) with microperimetry sensitivity points. Dataset groups were compared from normal and dry age related macular degeneration (DAMD) subjects. Scalar measurements for correlation against condition included the mean and standard deviation of the ellipsoid zone's reflectance. The imageprocessing techniques for automatically finding the ellipsoid zone are based upon a calculation of optical flow which tracks the edges of laminated structures across an image. Statistical significance was shown in T-tests of these measurements with the population pools separated as normal and DAMD subjects. A display of en-face ellipsoid-zone reflectance shows a clear and recognizable difference between any of the normal and DAMD subjects in that they show generally uniform and nonuniform reflectance, respectively, over the region near the macula. Regions surrounding points of low microperimetry (μP) sensitivity have nonregular and lower levels of ellipsoid-zone reflectance nearby. These findings support the idea that the photoreceptor integrity could be affecting both the ellipsoid-zone reflectance and the sensitivity measurements.

  3. Determination of Graphite-Liquid-Vapor Triple Point by Laser Heating

    DTIC Science & Technology

    1976-01-30

    difficulties in the temperature measure- ments, which were made with an optical pyrometer . He considered that the failure of graphite rod was caused by...temperature measurements were made with a calibrated optical pyrometer . Spherical shiny frozen droplets of graphite, 1 to 3 mm in diameter, indicated...0.8 mm in diameter and 10 mm long in argon until failure by rupture occurred. They measured the tempera- ture with a two-color pyrometer . The

  4. Phase matched parametric amplification via four-wave mixing in optical microfibers.

    PubMed

    Abdul Khudus, Muhammad I M; De Lucia, Francesco; Corbari, Costantino; Lee, Timothy; Horak, Peter; Sazio, Pier; Brambilla, Gilberto

    2016-02-15

    Four-wave mixing (FWM) based parametric amplification in optical microfibers (OMFs) is demonstrated over a wavelength range of over 1000 nm by exploiting their tailorable dispersion characteristics to achieve phase matching. Simulations indicate that for any set of wavelengths satisfying the FWM energy conservation condition there are two diameters at which phase matching in the fundamental mode can occur. Experiments with a high-power pulsed source working in conjunction with a periodically poled silica fiber (PPSF), producing both fundamental and second harmonic signals, are undertaken to investigate the possibility of FWM parametric amplification in OMFs. Large increases of idler output power at the third harmonic wavelength were recorded for diameters close to the two phase matching diameters. A total amplification of more than 25 dB from the initial signal was observed in a 6 mm long optical microfiber, after accounting for the thermal drift of the PPSF and other losses in the system.

  5. Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film.

    PubMed

    Zhang, Lei; Gu, Fuxing; Lou, Jingyi; Yin, Xuefeng; Tong, Limin

    2008-08-18

    A subwavelength-diameter tapered optical fiber coated with gelatin layer for fast relative humidity (RH) sensing is reported. The sensing element is composed of a 680-nm-diameter fiber taper coated with a 80-nm-thickness 8-mm-length gelatin layer, and is operated at a wavelength of 1550 nm. When exposed to moisture, the change in refractive index of the gelatin layer changes the mode field of the guided mode of the coated fiber, and converts a portion of power from guided mode to radiation mode, resulting in RH-dependent loss for optical sensing. The sensor is operated within a wide humidity range (9-94% RH) with high sensitivity and good reversibility. Measured response time is about 70 ms, which is one or two orders of magnitude faster than other types of RH sensors relying on conventional optical fibers or films.

  6. Thin ice clouds in the Arctic: cloud optical depth and particle size retrieved from ground-based thermal infrared radiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, Yann; Royer, Alain; O'Neill, Norman T.

    Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookupmore » table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation ( R 2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.« less

  7. Thin ice clouds in the Arctic: cloud optical depth and particle size retrieved from ground-based thermal infrared radiometry

    NASA Astrophysics Data System (ADS)

    Blanchard, Yann; Royer, Alain; O'Neill, Norman T.; Turner, David D.; Eloranta, Edwin W.

    2017-06-01

    Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookup table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation (R2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21 µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.

  8. Thin ice clouds in the Arctic: cloud optical depth and particle size retrieved from ground-based thermal infrared radiometry

    DOE PAGES

    Blanchard, Yann; Royer, Alain; O'Neill, Norman T.; ...

    2017-06-09

    Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookupmore » table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation ( R 2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.« less

  9. Fabrication of a 20.5-inch-diameter segmented silicon annular optic prototype for the ROMA program

    NASA Astrophysics Data System (ADS)

    Hassell, Frank R.; Groark, Frank M.

    1995-10-01

    Recent advancements in single crystal silicon material science and fabrication capabilities and very low absorption (VLA) multi-layer dielectric coating technology have led to the development of uncooled, large aperture, high power mirrors for high energy laser (HEL) systems. Based on this success, a segmented single-crystal silicon substrate concept has been selected as the baseline fabrication approach for uncooled 1.2 meter diameter resonator annular optics for the Alpha space based high energy laser. The objective of this Resonator Optics Materials Assessment (ROMA) task was to demonstrate all of the key fabrication processes required to fabricate the full sized annular optics for the Alpha space based high energy laser. This paper documents the fabrication of a half-scale annular optic prototype (AOP) of the Alpha laser rear cone.

  10. Saturated-unsaturated flow in a compressible leaky-unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, Phoolendra K.; Vesselinov, Velimir V.; Kuhlman, Kristopher L.

    2012-06-01

    An analytical solution is developed for three-dimensional flow towards a partially penetrating large-diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.

  11. Radial flow towards well in leaky unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, P. K.; Kuhlman, K. L.

    2012-12-01

    An analytical solution is developed for three-dimensional flow towards a partially penetrating large- diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.

  12. Fiber Optic Microphone

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.; George, Thomas; Norvig, Peter (Technical Monitor)

    1999-01-01

    Research into advanced pressure sensors using fiber-optic technology is aimed at developing compact size microphones. Fiber optic sensors are inherently immune to electromagnetic noise, and are very sensitive, light weight, and highly flexible. In FY 98, NASA researchers successfully designed and assembled a prototype fiber-optic microphone. The sensing technique employed was fiber optic Fabry-Perot interferometry. The sensing head is composed of an optical fiber terminated in a miniature ferrule with a thin, silicon-microfabricated diaphragm mounted on it. The optical fiber is a single mode fiber with a core diameter of 8 micron, with the cleaved end positioned 50 micron from the diaphragm surface. The diaphragm is made up of a 0.2 micron thick silicon nitride membrane whose inner surface is metallized with layers of 30 nm titanium, 30 nm platinum, and 0.2 micron gold for efficient reflection. The active sensing area is approximately 1.5 mm in diameter. The measured differential pressure tolerance of this diaphragm is more than 1 bar, yielding a dynamic range of more than 100 dB.

  13. Determination of ion mobility in EHD flow zone of plasma generator

    NASA Astrophysics Data System (ADS)

    Sumariyah, Kusminarto, Hermanto, Arief; Nuswantoro, Pekik

    2015-12-01

    Determination has been carried out for ion mobility in EHD flow zone generated using a pin-concentric multiple ring electrodes and a pin-single ring electrode used as a comparator. The pin needle was made from stainless steel with a tip diameter of 0.18 mm. The concentris multiple ring electrode in form three/two concentric ring electrodes which made of metal material connected to each other. Each ring of three concentric ring electrode has a diameter of 24 mm, 16 mm and 8 mm. And each ring of two concentric ring electrode has a diameter of 24 mm and 16 mm. Single ring electrode has a diameter24 mm. The all ring has same of width and thickness were 2 mm and 3 mm. EHD was generated by using a DC high voltage of 10 kV. Pin functional as an active electrode of corona discharge while the all ring electrodes acted as ions collector and passive electrodes. The experimental results show that the ion current is proportional to V2 according to calculations by Chouelo for hyperbolic-field approach. Ion mobility obtained from the quadratic polynomial fitting of experimental data were current and voltage as well as Choelo formulation. The results showed that the mobility of ions in the EHD flow zones utilizing pin-consentric multiple ring electrode larger than utilizing pin-single ring electrode. Pin-three Consentic ring electrode has the largest of ion mobility

  14. Noncontact measurement of high temperature using optical fiber sensors

    NASA Technical Reports Server (NTRS)

    Claus, R. O.

    1990-01-01

    The primary goal of this research program was the investigation and application of noncontact temperature measurement techniques using optical techniques and optical fiber methods. In particular, a pyrometer utilizing an infrared optical light pipe and a multiwavelength filtering approach was designed, revised, and tested. This work was motivated by the need to measure the temperatures of small metallic pellets (approximately 3 mm diameter) in free fall at the Microgravity Materials Processing Drop Tube at NASA Marshall Space Flight Center. In addition, research under this program investigated the adaptation of holography technology to optical fiber sensors, and also examined the use of rare-earth dopants in optical fibers for use in measuring temperature. The pyrometer development effort involved both theoretical analysis and experimental tests. For the analysis, a mathematical model based on radiative transfer principles was derived. Key parameter values representative of the drop tube system, such as particle size, tube diameter and length, and particle temperature, were used to determine an estimate of the radiant flux that will be incident on the face of an optical fiber or light pipe used to collect radiation from the incandescent falling particle. An extension of this work examined the advantage of inclining or tilting the collecting fiber to increase the time that the falling particle remains in the fiber field-of-view. Those results indicate that increases in total power collected of about 15 percent may be realized by tilting the fiber. In order to determine the suitability of alternative light pipes and optical fibers, and experimental set-up for measuring the transmittance and insertion loss of infrared fibers considered for use in the pyrometer was assembled. A zirconium fluoride optical fiber and several bundles of hollow core fiber of varying diameters were tested. A prototype two-color pyrometer was assembled and tested at Virginia Tech, and then tested on the Drop Tube at Marshall Space Flight Center. Radiation from 5 mm diameter niobium drops falling in the Drop Tube was successfully detected, and recorded for later analysis. Subsequent analysis indicated that the imaging of light output from the light pipe onto the detector active areas was not identical for both detectors.

  15. Energetic and dynamical instability of spin-orbit coupled Bose-Einstein condensate in a deep optical lattice

    NASA Astrophysics Data System (ADS)

    Yu, Zi-Fa; Chai, Xu-Dan; Xue, Ju-Kui

    2018-05-01

    We investigate the energetic and dynamical instability of spin-orbit coupled Bose-Einstein condensate in a deep optical lattice via a tight-binding model. The stability phase diagram is completely revealed in full parameter space, while the dependence of superfluidity on the dispersion relation is illustrated explicitly. In the absence of spin-orbit coupling, the superfluidity only exists in the center of the Brillouin zone. However, the combination of spin-orbit coupling, Zeeman field, nonlinearity and optical lattice potential can modify the dispersion relation of the system, and change the position of Brillouin zone for generating the superfluidity. Thus, the superfluidity can appear in either the center or the other position of the Brillouin zone. Namely, in the center of the Brillouin zone, the system is either superfluid or Landau unstable, which depends on the momentum of the lowest energy. Therefore, the superfluidity can occur at optional position of the Brillouin zone by elaborating spin-orbit coupling, Zeeman splitting, nonlinearity and optical lattice potential. For the linear case, the system is always dynamically stable, however, the nonlinearity can induce the dynamical instability, and also expand the superfluid region. These predicted results can provide a theoretical evidence for exploring the superfluidity of the system experimentally.

  16. Lamina cribrosa position and Bruch's membrane opening differences between anterior ischemic optic neuropathy and open-angle glaucoma.

    PubMed

    Rebolleda, Gema; Pérez-Sarriegui, Ane; Díez-Álvarez, Laura; De Juan, Victoria; Muñoz-Negrete, Francisco J

    2018-06-01

    To compare the optic nerve head morphology among primary open-angle glaucoma, non-arteritic anterior ischemic optic neuropathy eyes, their fellow healthy eyes and control eyes, using spectral-domain optical coherence tomography with enhanced depth imaging. Observational cross-sectional study including 88 eyes of 68 patients. In this study, 23 non-arteritic anterior ischemic optic neuropathy eyes, 17 fellow unaffected eyes, 25 primary open-angle glaucoma eyes, and 23 age-matched control eyes were included. Peripapillary retinal nerve fiber layer thickness and optic disk area were evaluated. Bruch's membrane opening diameter, optic cup depth, anterior lamina cribrosa depth, and prelaminar tissue thickness were assessed. Non-arteritic anterior ischemic optic neuropathy and primary open-angle glaucoma eyes had similar visual field mean deviation and peripapillary retinal nerve fiber layer thickness (P = 0.6 and P = 0.56, respectively). Bruch's membrane opening diameter was significantly larger in primary open-angle glaucoma eyes than in control eyes (P = 0.02). Lamina cribrosa and disk cup were deeper in eyes with primary open-angle glaucoma than both control and non-arteritic anterior ischemic optic neuropathy eyes (P < 0.001). Prelaminar tissue thickness was significantly thinner in primary open-angle glaucoma eyes than in non-arteritic anterior ischemic optic neuropathy eyes (P < 0.001). Lamina cribrosa was shallower in both non-arteritic anterior ischemic optic neuropathy and unaffected fellow eyes compared to healthy eyes (P < 0.001 and P = 0.04, respectively). No differences were found in the optic disk area. A forward lamina cribrosa placement and not a smaller disk could be involved in the pathogenesis of non-arteritic anterior ischemic optic neuropathy. A significantly larger Bruch's membrane opening diameter was found in primary open-angle glaucoma eyes compared with control eyes. This issue has clinical implications because Bruch's membrane opening has been considered a stable reference for disk-related measures.

  17. Evaluation of Rhizophora Mucronata Growth at first-year Mangrove Restoration at Abandoned Ponds, Langkat, North Sumatra

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Telaumbanua, TFC; Wati, R.; Sulistyono, N.; Putri, LAP

    2018-03-01

    Degraded mangrove areas can be restored and rehabilitated. In Indonesia, one of the main recommended of mangrove species for restoration of degraded was Rhizophora mucronata. The purpose of the study was to evaluate R. mucronata growth at first-year mangrove restoration at abandoned shrimp ponds, Pulau Sembilan village, Langkat, North Sumatera, Indonesia. The recovery area divided into three zones based on the salinity concentration, landward, middle, and seaward zones. The evaluation parameters of mangrove reforestation consist of seedling diameter and height, leaves number, and seedling growth rate. Results showed that 3 of 4 evaluation parameters of R. mucronata growth belong to landward zone, namely seedlings diameter, the number of leaves, and percentage of growth. By contrast, height R. mucronata seedlings dominated in the middle area. The study also found that the proper zone for mangrove restoration with R. mucronata was in the landward with 96% growth rate and 30 part per thousand salinity concentration. The present study, therefore, suggested that the recommended species for the degraded area was the prerequisite for successful mangrove restoration.

  18. Vertical interferometer workstation for testing large spherical optics

    NASA Astrophysics Data System (ADS)

    Truax, B.

    2013-09-01

    The design of an interferometer workstation for the testing of large concave and convex spherical optics is presented. The workstation handles optical components and mounts up to 425 mm in diameter with mass of up to 40 kg with 6 axes of adjustment. A unique method for the implementation of focus, roll and pitch was used allowing for extremely precise adjustment. The completed system includes transmission spheres with f-numbers from f/1.6 to f/0.82 incorporating reference surface diameters of up to 306 mm and surface accuracies of better than 63 nm PVr. The design challenges and resulting solutions are discussed. System performance results are presented.

  19. Measurement and modelization of silica opal optical properties

    NASA Astrophysics Data System (ADS)

    Avoine, Amaury; Hong, Phan Ngoc; Frederich, Hugo; Aregahegn, Kifle; Bénalloul, Paul; Coolen, Laurent; Schwob, Catherine; Thu Nga, Pham; Gallas, Bruno; Maître, Agnès

    2014-03-01

    We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflection spectra and we validate it by comparison with two independent infrared methods for the index and, scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements for the spheres diameter.

  20. Low temperature monitoring system for subsurface barriers

    DOEpatents

    Vinegar, Harold J [Bellaire, TX; McKinzie, II Billy John [Houston, TX

    2009-08-18

    A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.

  1. Trait-based characterisation of soil exploitation strategies of banana, weeds and cover plant species

    PubMed Central

    Tardy, Florence; Damour, Gaëlle; Dorel, Marc; Moreau, Delphine

    2017-01-01

    Cover plants can be introduced in cropping systems to provide agroecosystem services, including weed control via competition for resources. There is currently no consensus on how to identify the best cover plant species, while trait-based approaches are promising for screening plant species due to their agroecosystem service provision potential. This study was carried out to characterize soil exploitation strategies of cover plant species in banana agroecosystems using a trait-based approach, and in turn identify cover plant species with a high weed control potential via competition for soil resources in banana cropping systems. A field experiment was conducted on 17 cover plant species, two weed species and two banana cultivars grown individually. Four functional traits were measured. Two of them (i.e., the size of the zone explored by roots and the root impact density) were used to characterize root system soil exploration patterns. Two other traits (i.e., specific root length and root diameter) were used to characterize resource acquisition within the soil zone explored by the roots. All studied traits exhibited marked variations among species. The findings suggested a trade-off between the abilities of species to develop a limited number of large diameter roots exploring a large soil zone versus many thin roots exploring a smaller soil zone. Three soil-resource exploitation strategies were identified among species: (i) with large diameter roots that explore a large soil zone; (ii) with small diameter roots and a high specific length that explore a smaller soil zone; and (iii) with a high total root-impact density and an intermediate specific root length that explore the uppermost soil layers. Interestingly, in our panel of species, no correlations with regard to belowground and aboveground strategies were noted: species with an acquisitive belowground strategy could display an acquisitive or a conservative aboveground strategy. The findings of this study illustrated that a trait-based approach could be used to identify plant species with potential for competing with weeds, while minimising competition with banana. Six of the 17 studied cover crop species were identified as having this potential. The next step will be to assess them for their weed control performances in banana cropping systems with low reliance on herbicides. PMID:28257454

  2. Trait-based characterisation of soil exploitation strategies of banana, weeds and cover plant species.

    PubMed

    Tardy, Florence; Damour, Gaëlle; Dorel, Marc; Moreau, Delphine

    2017-01-01

    Cover plants can be introduced in cropping systems to provide agroecosystem services, including weed control via competition for resources. There is currently no consensus on how to identify the best cover plant species, while trait-based approaches are promising for screening plant species due to their agroecosystem service provision potential. This study was carried out to characterize soil exploitation strategies of cover plant species in banana agroecosystems using a trait-based approach, and in turn identify cover plant species with a high weed control potential via competition for soil resources in banana cropping systems. A field experiment was conducted on 17 cover plant species, two weed species and two banana cultivars grown individually. Four functional traits were measured. Two of them (i.e., the size of the zone explored by roots and the root impact density) were used to characterize root system soil exploration patterns. Two other traits (i.e., specific root length and root diameter) were used to characterize resource acquisition within the soil zone explored by the roots. All studied traits exhibited marked variations among species. The findings suggested a trade-off between the abilities of species to develop a limited number of large diameter roots exploring a large soil zone versus many thin roots exploring a smaller soil zone. Three soil-resource exploitation strategies were identified among species: (i) with large diameter roots that explore a large soil zone; (ii) with small diameter roots and a high specific length that explore a smaller soil zone; and (iii) with a high total root-impact density and an intermediate specific root length that explore the uppermost soil layers. Interestingly, in our panel of species, no correlations with regard to belowground and aboveground strategies were noted: species with an acquisitive belowground strategy could display an acquisitive or a conservative aboveground strategy. The findings of this study illustrated that a trait-based approach could be used to identify plant species with potential for competing with weeds, while minimising competition with banana. Six of the 17 studied cover crop species were identified as having this potential. The next step will be to assess them for their weed control performances in banana cropping systems with low reliance on herbicides.

  3. The serpentine optical waveguide: engineering the dispersion relations and the stopped light points.

    PubMed

    Scheuer, Jacob; Weiss, Ori

    2011-06-06

    We present a study a new type of optical slow-light structure comprising a serpentine shaped waveguide were the loops are coupled. The dispersion relation, group velocity and GVD are studied analytically using a transfer matrix method and numerically using finite difference time domain simulations. The structure exhibits zero group velocity points at the ends of the Brillouin zone, but also within the zone. The position of mid-zone zero group velocity point can be tuned by modifying the coupling coefficient between adjacent loops. Closed-form analytic expressions for the dispersion relations, group velocity and the mid-zone zero v(g) points are found and presented.

  4. Correlations Among Near-Infrared and Short-Wavelength Autofluorescence and Spectral-Domain Optical Coherence Tomography in Recessive Stargardt Disease

    PubMed Central

    Duncker, Tobias; Marsiglia, Marcela; Lee, Winston; Zernant, Jana; Tsang, Stephen H.; Allikmets, Rando; Greenstein, Vivienne C.; Sparrow, Janet R.

    2014-01-01

    Purpose. Short-wavelength (SW) fundus autofluorescence (AF) is considered to originate from lipofuscin in retinal pigment epithelium (RPE) and near-infrared (NIR) AF from melanin. In patients with recessive Stargardt disease (STGD1), we correlated SW-AF and NIR-AF with structural information obtained by spectral-domain optical coherence tomography (SD-OCT). Methods. Twenty-four STGD1 patients (45 eyes; age 8 to 61 years) carrying confirmed disease-associated ABCA4 mutations were studied prospectively. Short-wavelength AF, NIR-AF, and SD-OCT images were acquired. Results. Five phenotypes were identified according to features of the central lesion and extent of fundus change. Central zones of reduced NIR-AF were typically larger than areas of diminished SW-AF and reduced NIR-AF usually approximated areas of ellipsoid zone (EZ) loss identified by SD-OCT (group 1; r, 0.93, P < 0.0001). In patients having a central lesion with overlapping parafoveal rings of increased NIR-AF and SW-AF (group 3), the extent of EZ loss was strongly correlated with the inner diameter of the NIR-AF ring (r, 0.89, P < 0.0001) and the eccentricity of the outer border of the NIR-AF ring was greater than that of the SW-AF ring. Conclusions. Lesion areas were more completely delineated in NIR-AF images than with SW-AF. In most cases, EZ loss was observed only at locations where NIR-AF was reduced or absent, indicating that RPE cell atrophy occurs in advance of photoreceptor cell degeneration. Because SW-AF was often increased within the central area of EZ disruption, degenerating photoreceptor cells may produce lipofuscin at accelerated levels. Consideration is given to mechanisms underlying hyper–NIR-AF in conjunction with increased SW-AF. PMID:25342616

  5. Multimodal Imaging of Photoreceptor Structure in Choroideremia

    PubMed Central

    Johnson, Ryan D.; Williams, Vesper; Summerfelt, Phyllis; Dubra, Alfredo; Weinberg, David V.; Stepien, Kimberly E.; Fishman, Gerald A.; Carroll, Joseph

    2016-01-01

    Purpose Choroideremia is a progressive X-linked recessive dystrophy, characterized by degeneration of the retinal pigment epithelium (RPE), choroid, choriocapillaris, and photoreceptors. We examined photoreceptor structure in a series of subjects with choroideremia with particular attention to areas bordering atrophic lesions. Methods Twelve males with clinically-diagnosed choroideremia and confirmed hemizygous mutations in the CHM gene were examined. High-resolution images of the retina were obtained using spectral domain optical coherence tomography (SD-OCT) and both confocal and non-confocal split-detector adaptive optics scanning light ophthalmoscope (AOSLO) techniques. Results Eleven CHM gene mutations (3 novel) were identified; three subjects had the same mutation and one subject had two mutations. SD-OCT findings included interdigitation zone (IZ) attenuation or loss in 10/12 subjects, often in areas with intact ellipsoid zones; RPE thinning in all subjects; interlaminar bridges in the imaged areas of 10/12 subjects; and outer retinal tubulations (ORTs) in 10/12 subjects. Only split-detector AOSLO could reliably resolve cones near lesion borders, and such cones were abnormally heterogeneous in morphology, diameter and density. On split-detector imaging, the cone mosaic terminated sharply at lesion borders in 5/5 cases examined. Split-detector imaging detected remnant cone inner segments within ORTs, which were generally contiguous with a central patch of preserved retina. Conclusions Early IZ dropout and RPE thinning on SD-OCT are consistent with previously published results. Evidence of remnant cone inner segments within ORTs and the continuity of the ORTs with preserved retina suggests that these may represent an intermediate state of retinal degeneration prior to complete atrophy. Taken together, these results supports a model of choroideremia in which the RPE degenerates before photoreceptors. PMID:27936069

  6. Characterization of soot properties in two-meter JP-8 pool fires.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suo-Anttila, Jill Marie; Jensen, Kirk A.; Blevins, Linda Gail

    2005-02-01

    The thermal hazard posed by large hydrocarbon fires is dominated by the radiative emission from high temperature soot. Since the optical properties of soot, especially in the infrared region of the electromagnetic spectrum, as well as its morphological properties, are not well known, efforts are underway to characterize these properties. Measurements of these soot properties in large fires are important for heat transfer calculations, for interpretation of laser-based diagnostics, and for developing soot property models for fire field models. This research uses extractive measurement diagnostics to characterize soot optical properties, morphology, and composition in 2 m pool fires. For measurementmore » of the extinction coefficient, soot extracted from the flame zone is transported to a transmission cell where measurements are made using both visible and infrared lasers. Soot morphological properties are obtained by analysis via transmission electron microscopy of soot samples obtained thermophoretically within the flame zone, in the overfire region, and in the transmission cell. Soot composition, including carbon-to-hydrogen ratio and polycyclic aromatic hydrocarbon concentration, is obtained by analysis of soot collected on filters. Average dimensionless extinction coefficients of 8.4 {+-} 1.2 at 635 nm and 8.7 {+-} 1.1 at 1310 nm agree well with recent measurements in the overfire region of JP-8 and other fuels in lab-scale burners and fires. Average soot primary particle diameters, radius of gyration, and fractal dimensions agree with these recent studies. Rayleigh-Debye-Gans theory of scattering applied to the measured fractal parameters shows qualitative agreement with the trends in measured dimensionless extinction coefficients. Results of the density and chemistry are detailed in the report.« less

  7. Multimodal Imaging of Photoreceptor Structure in Choroideremia.

    PubMed

    Sun, Lynn W; Johnson, Ryan D; Williams, Vesper; Summerfelt, Phyllis; Dubra, Alfredo; Weinberg, David V; Stepien, Kimberly E; Fishman, Gerald A; Carroll, Joseph

    2016-01-01

    Choroideremia is a progressive X-linked recessive dystrophy, characterized by degeneration of the retinal pigment epithelium (RPE), choroid, choriocapillaris, and photoreceptors. We examined photoreceptor structure in a series of subjects with choroideremia with particular attention to areas bordering atrophic lesions. Twelve males with clinically-diagnosed choroideremia and confirmed hemizygous mutations in the CHM gene were examined. High-resolution images of the retina were obtained using spectral domain optical coherence tomography (SD-OCT) and both confocal and non-confocal split-detector adaptive optics scanning light ophthalmoscope (AOSLO) techniques. Eleven CHM gene mutations (3 novel) were identified; three subjects had the same mutation and one subject had two mutations. SD-OCT findings included interdigitation zone (IZ) attenuation or loss in 10/12 subjects, often in areas with intact ellipsoid zones; RPE thinning in all subjects; interlaminar bridges in the imaged areas of 10/12 subjects; and outer retinal tubulations (ORTs) in 10/12 subjects. Only split-detector AOSLO could reliably resolve cones near lesion borders, and such cones were abnormally heterogeneous in morphology, diameter and density. On split-detector imaging, the cone mosaic terminated sharply at lesion borders in 5/5 cases examined. Split-detector imaging detected remnant cone inner segments within ORTs, which were generally contiguous with a central patch of preserved retina. Early IZ dropout and RPE thinning on SD-OCT are consistent with previously published results. Evidence of remnant cone inner segments within ORTs and the continuity of the ORTs with preserved retina suggests that these may represent an intermediate state of retinal degeneration prior to complete atrophy. Taken together, these results supports a model of choroideremia in which the RPE degenerates before photoreceptors.

  8. Communication: electronic band gaps of semiconducting zig-zag carbon nanotubes from many-body perturbation theory calculations.

    PubMed

    Umari, P; Petrenko, O; Taioli, S; De Souza, M M

    2012-05-14

    Electronic band gaps for optically allowed transitions are calculated for a series of semiconducting single-walled zig-zag carbon nanotubes of increasing diameter within the many-body perturbation theory GW method. The dependence of the evaluated gaps with respect to tube diameters is then compared with those found from previous experimental data for optical gaps combined with theoretical estimations of exciton binding energies. We find that our GW gaps confirm the behavior inferred from experiment. The relationship between the electronic gap and the diameter extrapolated from the GW values is also in excellent agreement with a direct measurement recently performed through scanning tunneling spectroscopy.

  9. Career Directions--Fiber Optic Installer

    ERIC Educational Resources Information Center

    Tech Directions, 2012

    2012-01-01

    Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of light through an optical fiber that is roughly the diameter of a human hair. The light forms an electromagnetic carrier wave that is modulated to carry information. Each optical fiber is capable of carrying an enormous amount of…

  10. Light extinction by aerosols during summer air pollution

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Fraser, R. S.

    1983-01-01

    In order to utilize satellite measurements of optical thickness over land for estimating aerosol properties during air pollution episodes, the optical thickness was measured from the surface and investigated. Aerosol optical thicknesses have been derived from solar transmission measurements in eight spectral bands within the band lambda 440-870 nm during the summers of 1980 and 1981 near Washington, DC. The optical thicknesses for the eight bands are strongly correlated. It was found that first eigenvalue of the covariance matrix of all observations accounts for 99 percent of the trace of the matrix. Since the measured aerosol optical thickness was closely proportional to the wavelength raised to a power, the aerosol size distribution derived from it is proportional to the diameter (d) raised to a power for the range of diameters between 0.1 to 1.0 micron. This power is insensitive to the total optical thickness. Changes in the aerosol optical thickness depend on several aerosol parameters, but it is difficult to identify the dominant one. The effects of relative humidity and accumulation mode concentration on the optical thickness are analyzed theoretically, and compared with the measurements.

  11. [Calculation of optic system of superfine medical endoscopes based on gradient elements].

    PubMed

    Díakonov, S Iu; Korolev, A V

    1994-01-01

    The application of gradient optic elements to rigid endoscopes decreases their diameter to 1.5-2.0 mm. The given mathematical dependences determine aperture and field characteristics, focus and focal segments, resolution of the optic systems based on gradient optics. Parameters of the gradient optic systems for superfine medical endoscopes are characterized and their practical application is shown.

  12. Hepatic radiofrequency ablation: in vivo and ex vivo comparisons of 15-gauge (G) and 17-G internally cooled electrodes

    PubMed Central

    Song, K D; Park, H J; Cha, D I; Kang, T W; Lee, J; Moon, J Y; Rhim, H

    2015-01-01

    Objective: To compare the performance of the 15-G internally cooled electrode with that of the conventional 17-G internally cooled electrode. Methods: A total of 40 (20 for each electrode) and 20 ablation zones (10 for each electrode) were made in extracted bovine livers and in in vivo porcine livers, respectively. Technical parameters, three dimensions [long-axis diameter (Dl), vertical-axis diameter (Dv) and short-axis diameter (Ds)], volume and the circularity (Ds/Dl) of the ablation zone were compared. Results: The total delivered energy was higher in the 15-G group than in the 17-G group in both ex vivo and in vivo studies (8.78 ± 1.06 vs 7.70 ± 0.98 kcal, p = 0.033; 11.20 ± 1.13 vs 8.49 ± 0.35 kcal, p = 0.001, respectively). The three dimensions of the ablation zone had a tendency to be larger in the 15-G group than in the 17-G group in both studies. The ablation volume was larger in the 15-G group than in the 17-G group in both ex vivo and in vivo studies (29.61 ± 7.10 vs 23.86 ± 3.82 cm3, p = 0.015; 10.26 ± 2.28 vs 7.79 ± 1.68 cm3, p = 0.028, respectively). The circularity of ablation zone was not significantly different in both the studies. Conclusion: The size of ablation zone was larger in the 15-G internally cooled electrode than in the 17-G electrode in both ex vivo and in vivo studies. Advances in knowledge: Radiofrequency ablation of hepatic tumours using 15-G electrode is useful to create larger ablation zones. PMID:25882688

  13. Visibility of bony structures around hip prostheses in dual-energy CT: With or without metal artefact reduction software.

    PubMed

    Jeong, Jewon; Kim, Hyun-Joo; Oh, Eunsun; Cha, Jang Gyu; Hwang, Jiyoung; Hong, Seong Sook; Chang, Yun Woo

    2018-05-23

    The development of dual-energy CT and metal artefact reduction software provides a further chance of reducing metal-related artefacts. However, there have been only a few studies regarding whether MARs practically affect visibility of structures around a metallic hip prosthesis on post-operative CT evaluation. Twenty-seven patients with 42 metallic hip prostheses underwent DECT. The datasets were reconstructed with 70, 90 and 110 keV with and without MARs. The areas were classified into 10 zones according to the reference zone. All the images were reviewed in terms of the severity of the beam-hardening artefacts, differentiation of the bony cortex and trabeculae and visualization of trabecular patterns with a three-point scale. The metallic screw diameter was measured in the acetabulum with 110 keV images. The scores were the worst on 70 keV images without MARs [mean scores:1.84-4.22 (p < 0.001-1.000)]. The structures in zone II were best visualized on 110 keV (p < 0.001-0.011, mean scores: 2.86-5.22). In other zones, there is general similarity in mean scores whether applying MARs or not (p < 0.001-0.920). The mean diameter of the screw was 5.85 mm without MARs and 3.44 mm with MARs (mean reference diameter: 6.48 mm). The 110 keV images without MARs are best for evaluating acetabular zone II. The visibility of the bony structures around the hip prosthesis is similar in the other zones with or without MARs regardless of keV. MARS may not be needed for the evaluation of the metallic hip prosthesis itself at sufficient high-energy levels; however, MARS still has a role in the evaluation of other soft tissues around the prosthesis. © 2018 The Royal Australian and New Zealand College of Radiologists.

  14. Visualisation of collagen fibrils in joint cartilage using STIM

    NASA Astrophysics Data System (ADS)

    Reinert, T.; Reibetanz, U.; Vogt, J.; Butz, T.; Werner, A.; Gründer, W.

    2001-07-01

    The scanning transmission ion microscopy (STIM) method was used to investigate the collagen network structure of the articular cartilage from a pig's knee in comparison with high resolution nuclear magnetic resonance imaging (microscopic NMR-tomography) and polarised light microscopy (PLM). Single collagen fibrils down to 200 nm in diameter were visualised. It was proved that the cartilage collagen network consists partly of zones of oriented fibrils as suggested by NMR measurements. Radially oriented fibrils were found in the zone near the calcified zone (hypertrophic zone) of both tibia and femur, and in the tibial radial zone. Tangentially oriented fibrils were found in the femoral and tibial superficial zone and in a second zone of the femoral cartilage. Polarisation light microscopy reveals broader zones of orientation than it was found with STIM.

  15. Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre

    PubMed Central

    Beugnot, Jean-Charles; Lebrun, Sylvie; Pauliat, Gilles; Maillotte, Hervé; Laude, Vincent; Sylvestre, Thibaut

    2014-01-01

    Brillouin scattering in optical fibres is a fundamental interaction between light and sound with important implications ranging from optical sensors to slow and fast light. In usual optical fibres, light both excites and feels shear and longitudinal bulk elastic waves, giving rise to forward-guided acoustic wave Brillouin scattering and backward-stimulated Brillouin scattering. In a subwavelength-diameter optical fibre, the situation changes dramatically, as we here report with the first experimental observation of Brillouin light scattering from surface acoustic waves. These Rayleigh-type surface waves travel the wire surface at a specific velocity of 3,400 m s−1 and backscatter the light with a Doppler shift of about 6 GHz. As these acoustic resonances are sensitive to surface defects or features, surface acoustic wave Brillouin scattering opens new opportunities for various sensing applications, but also in other domains such as microwave photonics and nonlinear plasmonics. PMID:25341638

  16. Scaling laws for light-weight optics

    NASA Technical Reports Server (NTRS)

    Valente, Tina M.

    1990-01-01

    Scaling laws for light-weight optical systems are examined. A cubic relationship between mirror diameter and weight has been suggested and used by many designers of optical systems as the best description for all light-weight mirrors. A survey of existing light-weight systems in the open literature has been made to clarify this issue. Fifty existing optical systems were surveyed with all varieties of light-weight mirrors including glass and beryllium structured mirrors, contoured mirrors, and very thin solid mirrors. These mirrors were then categorized and weight to diameter ratio was plotted to find a best fit curve for each case. A best fitting curve program tests nineteen different equations and ranks a 'goodness of fit' for each of these equations. The resulting relationship found for each light-weight mirror category helps to quantify light-weight optical systems and methods of fabrication and provides comparisons between mirror types.

  17. Fabrication of micro/nano optical fiber by mechano-electrospinning

    NASA Astrophysics Data System (ADS)

    Chen, Qinnan; Wu, Dezhi; Yu, Zhe; Mei, Xuecui; Fang, Ke; Sun, Daoheng

    2017-10-01

    We study a novel fabrication method of micro/nano optical fiber by mechano-electrospinning (MES) direct-written technology. MES process is able to precisely manipulate the position and diameter of the electro-spun micro/nano fiber by adjusting the mechanical drawing force, which through changing the speed of motion stage (substrate). By adjusting the substrate speed, the nozzle-to-substrate distance and the applied voltage, the poly(methyl methacrylate) (PMMA) micro/nano optical fibers (MNOF) with controlled diameter are obtained and the tapered MNOF are fabricated by continuously changing the substrate speed. The transmission characteristics of PMMA micro/nano fiber is experimentally demonstrated, and a PMMA micro/nano fiber based refractive index sensor is designed. Our works shows the new fabrication method of MNOF by MES has the potential in the field of light mode conversion, optical waveguide coupling, refractive index detection and new micro/nano optical fiber components.

  18. One-Dimensional Scanning Approach to Shock Sensing

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Adamovsky, Girgory; Floyd, Bertram

    2009-01-01

    Measurement tools for high speed air flow are sought both in industry and academia. Particular interest is shown in air flows that exhibit aerodynamic shocks. Shocks are accompanied by sudden changes in density, pressure, and temperature. Optical detection and characterization of such shocks can be difficult because the medium is normally transparent air. A variety of techniques to analyze these flows are available, but they often require large windows and optical components as in the case of Schlieren measurements and/or large operating powers which precludes their use for in-flight monitoring and applications. The one-dimensional scanning approach in this work is a compact low power technique that can be used to non-intrusively detect shocks. The shock is detected by analyzing the optical pattern generated by a small diameter laser beam as it passes through the shock. The optical properties of a shock result in diffraction and spreading of the beam as well as interference fringes. To investigate the feasibility of this technique a shock is simulated by a 426 m diameter optical fiber. Analysis of results revealed a direct correlation between the optical fiber or shock location and the beam s diffraction pattern. A plot of the width of the diffraction pattern vs. optical fiber location reveals that the width of the diffraction pattern was maximized when the laser beam is directed at the center of the optical fiber. This work indicates that the one-dimensional scanning approach may be able to determine the location of an actual shock. Near and far field effects associated with a small diameter laser beam striking an optical fiber used as a simulated shock are investigated allowing a proper one-dimensional scanning beam technique.

  19. Miniature laser ignited bellows motor

    NASA Technical Reports Server (NTRS)

    Renfro, Steven L.; Beckman, Tom M.

    1994-01-01

    A miniature optically ignited actuation device has been demonstrated using a laser diode as an ignition source. This pyrotechnic driven motor provides between 4 and 6 lbs of linear force across a 0.090 inch diameter surface. The physical envelope of the device is 1/2 inch long and 1/8 inch diameter. This unique application of optical energy can be used as a mechanical link in optical arming systems or other applications where low shock actuation is desired and space is limited. An analysis was performed to determine pyrotechnic materials suitable to actuate a bellows device constructed of aluminum or stainless steel. The aluminum bellows was chosen for further development and several candidate pyrotechnics were evaluated. The velocity profile and delivered force were quantified using an non-intrusive optical motion sensor.

  20. Ultra-low-loss optical fiber nanotapers.

    PubMed

    Brambilla, Gilberto; Finazzi, Vittoria; Richardson, David

    2004-05-17

    Optical fiber tapers with a waist size larger than 1microm are commonplace in telecommunications and sensor applications. However the fabrication of low-loss optical fiber tapers with subwavelength diameters was previously thought to be impractical due to difficulties associated with control of the surface roughness and diameter uniformity. In this paper we show that very-long ultra-low-loss tapers can in fact be produced using a conventional fiber taper rig incorporating a simple burner configuration. For single-mode operation, the optical losses we achieve at 1.55microm are one order of magnitude lower than losses previously reported in the literature for tapers of a similar size. SEM images confirm excellent taper uniformity. We believe that these low-loss structures should pave the way to a whole range of fiber nanodevices.

  1. A High-Resolution Endoscope of Small Diameter Using Electromagnetically Vibration of Single Fiber

    NASA Astrophysics Data System (ADS)

    Matsunaga, Tadao; Hino, Ryunosuke; Makishi, Wataru; Esashi, Masayoshi; Haga, Yoichi

    For high resolution visual inspection in the narrow space of the human body, small diameter endoscope has been developed which utilize electromagnetically vibration of single fiber. Thin endoscopes are effective for inspection in the narrow space of the human body, for example, in the blood vessel, lactiferous duct for detection infiltration of breast cancer, and periodontal gap between gingiva and tooth. This endoscope consists of single optical fiber and photofabricated driving coils. A collimator lens and a cylindrical permanent magnet are fixed on the optical fiber, and the tilted driving coils have been patterned on a 1.08 mm outer diameter thin tube. The fiber is positioned at the center of the tube which is patterned the coils. When an electrical alternating current at the resonance frequency is supplied to the coils, the permanent magnet which is fixed to the fiber is vibrated electromagnetically and scanned one or two dimensionally. This paper reports small diameter endoscope by using electromagnetically vibration of single fiber. Optical coherence tomography imaging has also been carried out with the fabricated endoscope and cross-section image of sub-surface skin of thumb was observed.

  2. Real-time ultrasound imaging of irreversible electroporation in a porcine liver model adequately characterizes the zone of cellular necrosis.

    PubMed

    Schmidt, Carl R; Shires, Peter; Mootoo, Mary

    2012-02-01

      Irreversible electroporation (IRE) is a largely non-thermal method for the ablation of solid tumours. The ability of ultrasound (US) to measure the size of the IRE ablation zone was studied in a porcine liver model.   Three normal pig livers were treated in vivo with a total of 22 ablations using IRE. Ultrasound was used within minutes after ablation and just prior to liver harvest at either 6 h or 24 h after the procedure. The area of cellular necrosis was measured after staining with nitroblue tetrazolium and the percentage of cell death determined by histomorphometry.   Visible changes in the hepatic parenchyma were apparent by US after all 22 ablations using IRE. The mean maximum diameter of the ablation zone measured by US during the procedure was 20.1 ± 2.7 mm. This compared with a mean cellular necrosis zone maximum diameter of 20.3 ± 2.9 mm as measured histologically. The mean percentage of dead cells within the ablation zone was 77% at 6 h and 98% at 24 h after ablation.   Ultrasound is a useful modality for measuring the ablation zone within minutes of applying IRE to normal liver tissue. The area of parenchymal change measured by US correlates with the area of cellular necrosis. © 2011 International Hepato-Pancreato-Biliary Association.

  3. Viewing zone duplication of multi-projection 3D display system using uniaxial crystal.

    PubMed

    Lee, Chang-Kun; Park, Soon-Gi; Moon, Seokil; Lee, Byoungho

    2016-04-18

    We propose a novel multiplexing technique for increasing the viewing zone of a multi-view based multi-projection 3D display system by employing double refraction in uniaxial crystal. When linearly polarized images from projector pass through the uniaxial crystal, two possible optical paths exist according to the polarization states of image. Therefore, the optical paths of the image could be changed, and the viewing zone is shifted in a lateral direction. The polarization modulation of the image from a single projection unit enables us to generate two viewing zones at different positions. For realizing full-color images at each viewing zone, a polarization-based temporal multiplexing technique is adopted with a conventional polarization switching device of liquid crystal (LC) display. Through experiments, a prototype of a ten-view multi-projection 3D display system presenting full-colored view images is implemented by combining five laser scanning projectors, an optically clear calcite (CaCO3) crystal, and an LC polarization rotator. For each time sequence of temporal multiplexing, the luminance distribution of the proposed system is measured and analyzed.

  4. Determination of critical diameters for intrinsic carrier diffusion-length of GaN nanorods with cryo-scanning near-field optical microscopy

    PubMed Central

    Chen, Y. T.; Karlsson, K. F.; Birch, J.; Holtz, P. O.

    2016-01-01

    Direct measurements of carrier diffusion in GaN nanorods with a designed InGaN/GaN layer-in-a-wire structure by scanning near-field optical microscopy (SNOM) were performed at liquid-helium temperatures of 10 K. Without an applied voltage, intrinsic diffusion lengths of photo-excited carriers were measured as the diameters of the nanorods differ from 50 to 800 nm. The critical diameter of nanorods for carrier diffusion is concluded as 170 nm with a statistical approach. Photoluminescence spectra were acquired for different positions of the SNOM tip on the nanorod, corresponding to the origins of the well-defined luminescence peaks, each being related to recombination-centers. The phenomenon originated from surface oxide by direct comparison of two nanorods with similar diameters in a single map has been observed and investigated. PMID:26876009

  5. Retinal arteriolar remodeling evaluated with adaptive optics camera: Relationship with blood pressure levels.

    PubMed

    Gallo, A; Mattina, A; Rosenbaum, D; Koch, E; Paques, M; Girerd, X

    2016-06-01

    To research a retinal arterioles wall-to-lumen ratio or lumen diameter cut-off that would discriminate hypertensive from normal subjects using adaptive optics camera. One thousand and five hundred subjects were consecutively recruited and Adaptive Optics Camera rtx1™ (Imagine-Eyes, Orsay, France) was used to measure wall thickness, internal diameter, to calculate wall-to-lumen ratio (WLR) and wall cross-sectional area of retinal arterioles. Sitting office blood pressure was measured once, just before retinal measurements and office blood pressure was defined as systolic blood pressure>=140mmHg and diastolic blood pressure>=90mmHg. ROC curves were constructed to determine cut-off values for retinal parameters to diagnose office hypertension. In another population of 276 subjects office BP, retinal arterioles evaluation and home blood pressure monitoring were obtained. The applicability of retinal WLR or diameter cut-off values were compared in patients with controlled, masked, white-coat and sustained hypertension. In 1500 patients, a WLR>0.31 discriminated office hypertensive subjects with a 0.57 sensitivity and 0.71 specificity. Lumen diameter<78.2μm discriminated office hypertension with a 0.73 sensitivity and a 0.52 specificity. In the other 276 patients, WLR was higher in sustained hypertension vs normotensive patients (0.330±0.06 vs 0.292±0.05; P<0.001) and diameter was narrower in masked hypertensive vs normotensive subjects (73.0±11.2 vs 78.5±11.6μm; P<0.005). A WLR higher than 0.31 is in favour of office arterial hypertension; a diameter under<78μm may indicate a masked hypertension. Retinal arterioles analysis through adaptive optics camera may help the diagnosis of arterial hypertension, in particular in case of masked hypertension. Copyright © 2016. Published by Elsevier SAS.

  6. Size-effect of oligomeric cholesteric liquid-crystal microlenses on the optical specifications.

    PubMed

    Bayon, Chloé; Agez, Gonzague; Mitov, Michel

    2015-10-15

    In cholesteric liquid-crystalline microlenses, we have studied the role of the microlens size on the focused light intensity and the focal length. We have found that the intensity is maximized by aiming a specific range for the diameter and the thickness of microlenses and that the focal length is adjusted by controlling the diameter and the annealing time of the optical film. Cholesteric microlenses may be used as wavelength-tunable directional light sources in organic soft-matter circuits.

  7. Update on the SKA Offset Optics Design for the U.S. Technology Development Project

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Cortes-Medellin, German; Baker, Lynn

    2011-01-01

    The U.S. design concept for the Square Kilometre Array (SKA) program is based on utilizing a large number of small-diameter dish antennas in the 12 to 15 meter diameter range. The Technology Development Project (TDP) is planning to design and build the first of these antennas to provide a demonstration of the technology and a solid base on which to estimate costs. The latest considerations for selecting both the optics and feed design are presented.

  8. Optical properties of armchair (7, 7) single walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gharbavi, K.; Badehian, H., E-mail: hojatbadehian@gmail.com

    2015-07-15

    Full potential linearized augmented plane waves method with the generalized gradient approximation for the exchange-correlation potential was applied to calculate the optical properties of (7, 7) single walled carbon nanotubes. The both x and z directions of the incident photons were applied to estimate optical gaps, dielectric function, electron energy loss spectroscopies, optical conductivity, optical extinction, optical refractive index and optical absorption coefficient. The results predict that dielectric function, ε (ω), is anisotropic since it has higher peaks along z-direction than x-direction. The static optical refractive constant were calculated about 1.4 (z-direction) and 1.1 (x- direction). Moreover, the electron energymore » loss spectroscopy showed a sharp π electron plasmon peaks at about 6 eV and 5 eV for z and x-directions respectively. The calculated reflection spectra show that directions perpendicular to the tube axis have further optical reflection. Moreover, z-direction indicates higher peaks at absorption spectra in low range energies. Totally, increasing the diameter of armchair carbon nanotubes cause the optical band gap, static optical refractive constant and optical reflectivity to decrease. On the other hand, increasing the diameter cause the optical absorption and the optical conductivity to increase. Moreover, the sharp peaks being illustrated at optical spectrum are related to the 1D structure of CNTs which confirm the accuracy of the calculations.« less

  9. Interactive display system having a scaled virtual target zone

    DOEpatents

    Veligdan, James T.; DeSanto, Leonard

    2006-06-13

    A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. A projector and imaging device cooperate with the panel for projecting a video image thereon. An optical detector bridges at least a portion of the waveguides for detecting a location on the outlet face within a target zone of an inbound light spot. A controller is operatively coupled to the imaging device and detector for displaying a cursor on the outlet face corresponding with the detected location of the spot within the target zone.

  10. Experimental Evaluation of the Heat Sink Effect in Hepatic Microwave Ablation.

    PubMed

    Ringe, Kristina I; Lutat, Carolin; Rieder, Christian; Schenk, Andrea; Wacker, Frank; Raatschen, Hans-Juergen

    2015-01-01

    To demonstrate and quantify the heat sink effect in hepatic microwave ablation (MWA) in a standardized ex vivo model, and to analyze the influence of vessel distance and blood flow on lesion volume and shape. 108 ex vivo MWA procedures were performed in freshly harvested pig livers. Antennas were inserted parallel to non-perfused and perfused (700,1400 ml/min) glass tubes (diameter 5mm) at different distances (10, 15, 20mm). Ablation zones (radius, area) were analyzed and compared (Kruskal-Wallis Test, Dunn's multiple comparison Test). Temperature changes adjacent to the tubes were measured throughout the ablation cycle. Maximum temperature decreased significantly with increasing flow and distance (p<0.05). Compared to non-perfused tubes, ablation zones were significantly deformed by perfused tubes within 15 mm distance to the antenna (p<0.05). At a flow rate of 700 ml/min ablation zone radius was reduced to 37.2% and 80.1% at 10 and 15 mm tube distance, respectively; ablation zone area was reduced to 50.5% and 89.7%, respectively. Significant changes of ablation zones were demonstrated in a pig liver model. Considerable heat sink effect was observed within a diameter of 15 mm around simulated vessels, dependent on flow rate. This has to be taken into account when ablating liver lesions close to vessels.

  11. Microstructure and Mechanical Characterization of Friction-Stir-Welded Dual-Phase Brass

    NASA Astrophysics Data System (ADS)

    Ramesh, R.; Dinaharan, I.; Akinlabi, E. T.; Murugan, N.

    2018-03-01

    Friction stir welding (FSW) is an ideal process to join brass to avoid the evaporation of zinc. In the present investigation, 6-mm-thick dual-phase brass plates were joined efficiently using FSW at various tool rotational speeds. The microstructures were studied using optical microscopy, electron backscattered diffraction and transmission electron microscopy. The optical micrographs revealed the evolution of various zones across the joint line. The microstructure of the heat-affected zone was similar to that of base metal. The weld zone exhibited finer grains due to dynamic recrystallization. The recrystallization was inhomogeneous and the inhomogeneity reduced with increased tool rotational speed. The dual phase was preserved in the weld zone due to the retention of zinc. The severe plastic deformation created a lot of dislocations in the weld zone. The weld zone was strengthened after welding. The role of tool rotational speed on the joint strength is further reported.

  12. Pharmacodynamics of Doxycycline and Tetracycline against Staphylococcus pseudintermedius: Proposal of Canine-Specific Breakpoints for Doxycycline

    PubMed Central

    Papich, Mark G.; Turnidge, John; Guardabassi, Luca

    2013-01-01

    Doxycycline is a tetracycline that has been licensed for veterinary use in some countries, but no clinical breakpoints are available for veterinary pathogens. The objectives of this study were (i) to establish breakpoints for doxycycline and (ii) to evaluate the use of tetracycline as a surrogate to predict the doxycycline susceptibility of Staphylococcus pseudintermedius isolates. MICs and inhibition zone diameters were determined for 168 canine S. pseudintermedius isolates according to Clinical and Laboratory Standards Institute (CLSI) standards. Tetracycline resistance genes were detected by PCR, and time-kill curves were determined for representative strains. In vitro pharmacodynamic and target animal pharmacokinetic data were analyzed by Monte Carlo simulation (MCS) for the development of MIC interpretive criteria. Optimal zone diameter breakpoints were defined using the standard error rate-bounded method. The two drugs displayed bacteriostatic activity and bimodal MIC distributions. Doxycycline was more active than tetracycline in non-wild-type strains. MCS and target attainment analysis indicated a certainty of ≥90% for attaining an area under the curve (AUC)/MIC ratio of >25 with a standard dosage of doxycycline (5 mg/kg of body weight every 12 h) for strains with MICs of ≤0.125 μg/ml. Tetracycline predicted doxycycline susceptibility, but current tetracycline breakpoints were inappropriate for the interpretation of doxycycline susceptibility results. Accordingly, canine-specific doxycycline MIC breakpoints (susceptible, ≤0.125 μg/ml; intermediate, 0.25 μg/ml; resistant, ≥0.5 μg/ml) and zone diameter breakpoints (susceptible, ≥25 mm; intermediate, 21 to 24 mm; resistant, ≤20 mm) and surrogate tetracycline MIC breakpoints (susceptible, ≤0.25 μg/ml; intermediate, 0.5 μg/ml; resistant, ≥1 μg/ml) and zone diameter breakpoints (susceptible, ≥23 mm; intermediate, 18 to 22 mm; resistant, ≤17 mm) were proposed based on the data generated in this study. PMID:23966509

  13. Development of a probe for inner profile measurement and flaw detection

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Toru; Wakayama, Toshitaka; Kamakura, Yoshihisa

    2011-08-01

    It is one of the important necessities to precisely measure the inner diameter and/or the inner profile of pipes, tubes and other objects similar in shape. Especially in mechanical engineering field, there are many requests from automobile industry because the inner surface of engine blocks and other die casts are strongly required to be inspected and measured by non-contact methods (not by the naked eyes inspection using a borescope). If the inner diameter is large enough like water pipes or drain pipes, complicated and large equipment may be applicable. However, small pipes with a diameter ranging from 10mm to 100mm are difficult to be inspected by such a large instrument as is used for sewers inspection. And we have proposed an instrument which has no moving elements such as a rotating mirror or a prism for scanning a beam. Our measurement method is based on optical sectioning using triangulation. This optically sectioned profile of an inner wall of pipe-like objects is analyzed to produce numerical data of inner diameter or profile. Here, we report recent development of the principle and applications of the optical instrument with a simple and compact configuration. In addition to profile measurement, we found flaws and defects on the inner wall were also detected by using the similar principle. Up to now, we have developed probes with the diameter of 8mm to 25mm for small size objects and another probe (80 mm in diameter) for such a larger container with the dimensional size of 600mm.

  14. Active Correction of Aberrations of Low-Quality Telescope Optics

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Chen, Yijian

    2007-01-01

    A system of active optics that includes a wavefront sensor and a deformable mirror has been demonstrated to be an effective means of partly correcting wavefront aberrations introduced by fixed optics (lenses and mirrors) in telescopes. It is envisioned that after further development, active optics would be used to reduce wavefront aberrations of about one wave or less in telescopes having aperture diameters of the order of meters or tens of meters. Although this remaining amount of aberration would be considered excessive in scientific applications in which diffraction-limited performance is required, it would be acceptable for free-space optical- communication applications at wavelengths of the order of 1 m. To prevent misunderstanding, it is important to state the following: The technological discipline of active optics, in which the primary or secondary mirror of a telescope is directly and dynamically tilted, distorted, and/or otherwise varied to reduce wavefront aberrations, has existed for decades. The term active optics does not necessarily mean the same thing as does adaptive optics, even though active optics and adaptive optics are related. The term "adaptive optics" is often used to refer to wavefront correction at speeds characterized by frequencies ranging up to between hundreds of hertz and several kilohertz high enough to enable mitigation of adverse effects of fluctuations in atmospheric refraction upon propagation of light beams. The term active optics usually appears in reference to wavefront correction at significantly lower speeds, characterized by times ranging from about 1 second to as long as minutes. Hence, the novelty of the present development lies, not in the basic concept of active or adaptive optics, but in the envisioned application of active optics in conjunction with a deformable mirror to achieve acceptably small wavefront errors in free-space optical communication systems that include multi-meter-diameter telescope mirrors that are relatively inexpensive because their surface figures are characterized by errors as large as about 10 waves. Figure 1 schematically depicts the apparatus used in an experiment to demonstrate such an application on a reduced scale involving a 30-cm-diameter aperture.

  15. Age, ocular magnification, and circumpapillary retinal nerve fiber layer thickness

    NASA Astrophysics Data System (ADS)

    Wang, Mengyu; Elze, Tobias; Li, Dian; Baniasadi, Neda; Wirkner, Kerstin; Kirsten, Toralf; Thiery, Joachim; Loeffler, Markus; Engel, Christoph; Rauscher, Franziska G.

    2017-12-01

    Optical coherence tomography (OCT) manufacturers graphically present circumpapillary retinal nerve fiber layer thickness (cpRNFLT) together with normative limits to support clinicians in diagnosing ophthalmic diseases. The impact of age on cpRNFLT is typically implemented by linear models. cpRNFLT is strongly location-specific, whereas previously published norms are typically restricted to coarse sectors and based on small populations. Furthermore, OCT devices neglect impacts of lens or eye size on the diameter of the cpRNFLT scan circle so that the diameter substantially varies over different eyes. We investigate the impact of age and scan diameter reported by Spectralis spectral-domain OCT on cpRNFLT in 5646 subjects with healthy eyes. We provide cpRNFLT by age and diameter at 768 angular locations. Age/diameter were significantly related to cpRNFLT on 89%/92% of the circle, respectively (pointwise linear regression), and to shifts in cpRNFLT peak locations. For subjects from age 42.1 onward but not below, increasing age significantly decreased scan diameter (r=-0.28, p<0.001), which suggests that pathological cpRNFLT thinning over time may be underestimated in elderly compared to younger subjects, as scan diameter decrease correlated with cpRNFLT increase. Our detailed numerical results may help to generate various correction models to improve diagnosing and monitoring optic neuropathies.

  16. Space Science

    NASA Image and Video Library

    1999-04-20

    NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for the solar concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.

  17. Space Science

    NASA Image and Video Library

    1999-04-20

    NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for solar the concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine, that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.

  18. Measurement of the Absolute Raman Cross Sections of Diethyl Phthalate, Dimethyl Phthalate, Ethyl Cinnamate, Propylene Carbonate, Tripropyl Phosphate, 1,3-Cyclohexanedione, 3’-Aminoacetophenone, 3’-Hydroxyacetophenone, Diethyl Acetamidomalonate, Isovanillin, Lactide, Meldrum’s Acid, p-Tolyl Sulfoxide, and Vanillin

    DTIC Science & Technology

    2013-09-13

    Germany/Buena Park, California). The HWP is Edmund Optics part number 46-561 (Edmund Optics, Barrington, New Jersey). The BS is Semrock part number...LPD01-785RS-25×36×1.1 with 803– 1214 nm passband ( Semrock , Rochester, New York). The lens L1 is a 12-mm-diameter, 20-mm-effective- focal-length (EFL...near-infrared (NIR) achromat Edmund Optics part number 45-792. The long-wave- pass filters are 25-mm-diameter Semrock part number LP02-785RE-25 with

  19. Momentum and Heat Transfer Models for Detonation in Nitromethane with Metal Particles

    NASA Astrophysics Data System (ADS)

    Ripley, Robert; Zhang, Fan; Lien, Fue-Sang

    2009-06-01

    Models for momentum and heat exchange have been derived from the results of previous 3D mesoscale simulations of detonation in packed aluminum particles saturated with nitromethane, where the shock interaction timescale was resolved. In these models, particle acceleration and heating within the shock and detonation zone have been expressed in terms of velocity and temperature transmission factors, which are a function of metal to explosive density ratio, metal volume fraction and ratio of particle size to detonation zone thickness. These models are incorporated as source terms in the governing equations for continuum dense two-phase flow and macroscopic simulation is then applied to detonation of nitromethane/aluminum in lightly-cased cylinders. Heterogeneous detonation features such as velocity deficit, enhanced pressure, and critical diameter effects are reproduced. Various spherical particle diameters from 3 -- 30 μm are utilized where most of the particles react in the expanding detonation products. Results for detonation velocity, pressure history, failure and U-shaped critical diameter behavior are compared to the existing experiments.

  20. Momentum and Heat Transfer Models for Detonation in Nitromethane with Metal Particles

    NASA Astrophysics Data System (ADS)

    Ripley, R. C.; Zhang, F.; Lien, F.-S.

    2009-12-01

    Models for momentum and heat exchange have been derived from the results of previous 3D mesoscale simulations of detonation in packed aluminum particles saturated with nitromethane, where the shock interaction timescale was resolved. In these models, particle acceleration and heating within the shock and detonation zone are expressed in terms of velocity and temperature transmission factors, which are a function of the metal to explosive density ratio, solid volume fraction and ratio of particle size to detonation zone thickness. These models are incorporated as source terms in the governing equations for continuum dense two-phase flow, and then applied to macroscopic simulation of detonation of nitromethane/aluminum in lightly-cased cylinders. Heterogeneous detonation features such as velocity deficit, enhanced pressure, and critical diameter effects are demonstrated. Various spherical particle diameters from 3-350 μm are utilized where most of the particles react in the expanding detonation products. Results for detonation velocity, pressure history, failure and U-shaped critical diameter behavior are compared to existing experiments.

  1. Ultrathin forward-imaging short multimode fiber probe for full-field optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Sato, Manabu; Saito, Daisuke; Shouji, Kou; Kurotani, Reiko; Abe, Hiroyuki; Nishidate, Izumi

    2016-12-01

    To extend the applications of optical coherence tomography (OCT) to the fields of physiology and clinical medicine, less invasive, robust, and reliable optical probes are required. Thus, we demonstrate an ultrathin forward-imaging short multimode fiber (SMMF) optical coherence microscopy (OCM) probe with a 50 μm core diameter, 125 μm total diameter, and 5.12 mm length. Imaging conditions and magnification were analyzed, and they correspond closely to the measured results. The dispersion of the SMMF was investigated, and the modal dispersion coefficient was found to be 2.3% of the material dispersion coefficient. The axial resolution was minimized at 2.15 μm using a 0.885-mm-thick dispersion compensator. The lateral resolution was evaluated to be 4.38 μm using a test pattern. The contrast of the OCM images was 5.7 times higher than that of the signal images owing to the coherence gate. The depth of focus and diameter of the field of view were measured to be 60 μm and 40-50 μm, respectively. OCM images of the dried fins of small fish (Medaka) were measured and internal structures could be recognized.

  2. Optical performance of toric intraocular lenses in the presence of decentration.

    PubMed

    Zhang, Bin; Ma, Jin-Xue; Liu, Dan-Yan; Du, Ying-Hua; Guo, Cong-Rong; Cui, Yue-Xian

    2015-01-01

    To evaluate the optical performance of toric intraocular lenses (IOLs) after decentration and with different pupil diameters, but with the IOL astigmatic axis aligned. Optical performances of toric T5 and SN60AT spherical IOLs after decentration were tested on a theoretical pseudophakic model eye based on the Hwey-Lan Liou schematic eye using the Zemax ray-tracing program. Changes in optical performance were analyzed in model eyes with 3-mm, 4-mm, and 5-mm pupil diameters and decentered from 0.25 mm to 0.75 mm with an interval of 5° at the meridian direction from 0° to 90°. The ratio of the modulation transfer function (MTF) between a decentered and a centered IOL (MTFDecentration/MTFCentration) was calculated to analyze the decrease in optical performance. Optical performance of the toric IOL remained unchanged when IOLs were decentered in any meridian direction. The MTFs of the two IOLs decreased, whereas optical performance remained equivalent after decentration. The MTFDecentration/MTFCentration ratios of the IOLs at a decentration from 0.25 mm to 0.75 mm were comparable in the toric and SN60AT IOLs. After decentration, MTF decreased further, with the MTF of the toric IOL being slightly lower than that of the SN60AT IOL. Imaging qualities of the two IOLs decreased when the pupil diameter and the degree of decentration increased, but the decrease was similar in the toric and spherical IOLs. Toric IOLs were comparable to spherical IOLs in terms of tolerance to decentration at the correct axial position.

  3. Optical performance of toric intraocular lenses in the presence of decentration

    PubMed Central

    Zhang, Bin; Ma, Jin-Xue; Liu, Dan-Yan; Du, Ying-Hua; Guo, Cong-Rong; Cui, Yue-Xian

    2015-01-01

    AIM To evaluate the optical performance of toric intraocular lenses (IOLs) after decentration and with different pupil diameters, but with the IOL astigmatic axis aligned. METHODS Optical performances of toric T5 and SN60AT spherical IOLs after decentration were tested on a theoretical pseudophakic model eye based on the Hwey-Lan Liou schematic eye using the Zemax ray-tracing program. Changes in optical performance were analyzed in model eyes with 3-mm, 4-mm, and 5-mm pupil diameters and decentered from 0.25 mm to 0.75 mm with an interval of 5° at the meridian direction from 0° to 90°. The ratio of the modulation transfer function (MTF) between a decentered and a centered IOL (MTFDecentration/MTFCentration) was calculated to analyze the decrease in optical performance. RESULTS Optical performance of the toric IOL remained unchanged when IOLs were decentered in any meridian direction. The MTFs of the two IOLs decreased, whereas optical performance remained equivalent after decentration. The MTFDecentration/MTFCentration ratios of the IOLs at a decentration from 0.25 mm to 0.75 mm were comparable in the toric and SN60AT IOLs. After decentration, MTF decreased further, with the MTF of the toric IOL being slightly lower than that of the SN60AT IOL. Imaging qualities of the two IOLs decreased when the pupil diameter and the degree of decentration increased, but the decrease was similar in the toric and spherical IOLs. CONCLUSIONS Toric IOLs were comparable to spherical IOLs in terms of tolerance to decentration at the correct axial position. PMID:26309871

  4. Fourier Domain Optical Coherence Tomography With 3D and En Face Imaging of the Punctum and Vertical Canaliculus: A Step Toward Establishing a Normative Database.

    PubMed

    Kamal, Saurabh; Ali, Mohammad Javed; Ali, Mohammad Hasnat; Naik, Milind N

    2016-01-01

    To report the features of Fourier domain optical coherence tomography imaging of the normal punctum and vertical canaliculus. Prospective, interventional series of consecutive healthy and asymptomatic adults, who volunteered for optical coherence tomography imaging, were included in the study. Fourier domain optical coherence tomography images of the punctum and vertical canaliculus along with 3D and En face images were captured using the RTVue scanner with a corneal adaptor module and a wide-angled lens. Maximum punctal diameter, mid-canalicular diameter, and vertical canalicular height were calculated. Statistical analysis was performed using Pearson correlation test, and scatter plot matrices were analyzed. A total of 103 puncta of 52 healthy subjects were studied. Although all the images could depict the punctum and vertical canaliculus and all the desired measurements could be obtained, occasional tear debris within the canaliculus was found to be interfering with the imaging. The mean maximum punctal diameter, mid-canalicular diameter, and vertical canalicular height were recorded as 214.71 ± 73 μm, 125.04 ± 60.69 μm, and 890.41 ± 154.76 μm, respectively, with an insignificant correlation between them. The maximum recorded vertical canalicular height in all the cases was far less than the widely reported depth of 2 mm. High-resolution 3D and En face images provided a detailed topography of punctal surface and overview of vertical canaliculus. Fourier domain optical coherence tomography with 3D and En face imaging is a useful noninvasive modality to image the proximal lacrimal system with consistently reproducible high-resolution images. This is likely to help clinicians in the management of proximal lacrimal disorders.

  5. Alcohol sensor based on u-bent hetero-structured fiber optic

    NASA Astrophysics Data System (ADS)

    Patrialova, Sefi N.; Hatta, Agus M.; Sekartedjo, Sekartedjo

    2016-11-01

    A sensor based on a fiber optic hetero-structure to determine the concentration of alcohol has been proposed. The structure of the sensing probe in this research is a singlemode-multimode-singlemode (SMS) which bent into Ushaped and soon called as SMS u-bent. The SMS structure was chosen to get a higher sensitivity. This research utilizes the principle of multimode interference and evanescent field by modifying the cladding with various alcohol concentration. Testing of the sensor's performance has been done by measuring the sensor's power output response to the length of the SMS fiber optic, bending diameter, and alcohol concentration. Based on the experiment result, the ubent SMS fiber optic with 50 mm bending diameter and 63 mm MMF lenght has the highest sensitivity, 3.87 dB/% and the minimum resolution, 0.26 x 10-3 %.

  6. Environmental performance of an elliptical core polarization maintaining optical fiber for fiber optic gyro applications

    NASA Astrophysics Data System (ADS)

    Martinelli, Vincent P.; Squires, Emily M.; Watkins, James J.

    1994-03-01

    Corning has introduced a new polarization-maintaining optical fiber to satisfy customer requirements for a range of commercial and military FOG applications. This fiber has an elliptical core, matched-clad design, and is intended for operation in the 780 to 850 nm wavelength region. The fiber has a beat length less than 1.5 mm, attenuation rate less than 10 dB/km, and a typical coiled h-parameter less than 1.5 X 10-4 m-1 in the designated operating wavelength range. It has a cladding diameter of 80 micrometers and a coating diameter of 185 micrometers . The coating is an acrylate system, similar to that used in telecommunications optical fibers. We report on the performance of this elliptical core fiber for a variety of environmental exposures representative of an automotive application.

  7. Empirical Relationships Between Optical Properties and Equivalent Diameters of Fractal Soot Aggregates at 550 Nm Wavelength.

    NASA Technical Reports Server (NTRS)

    Pandey, Apoorva; Chakrabarty, Rajan K.; Liu, Li; Mishchenko, Michael I.

    2015-01-01

    Soot aggregates (SAs)-fractal clusters of small, spherical carbonaceous monomers-modulate the incoming visible solar radiation and contribute significantly to climate forcing. Experimentalists and climate modelers typically assume a spherical morphology for SAs when computing their optical properties, causing significant errors. Here, we calculate the optical properties of freshly-generated (fractal dimension Df = 1.8) and aged (Df = 2.6) SAs at 550 nm wavelength using the numericallyexact superposition T-Matrix method. These properties were expressed as functions of equivalent aerosol diameters as measured by contemporary aerosol instruments. This work improves upon previous efforts wherein SA optical properties were computed as a function of monomer number, rendering them unusable in practical applications. Future research will address the sensitivity of variation in refractive index, fractal prefactor, and monomer overlap of SAs on the reported empirical relationships.

  8. Advanced optical disk storage technology

    NASA Technical Reports Server (NTRS)

    Haritatos, Fred N.

    1996-01-01

    There is a growing need within the Air Force for more and better data storage solutions. Rome Laboratory, the Air Force's Center of Excellence for C3I technology, has sponsored the development of a number of operational prototypes to deal with this growing problem. This paper will briefly summarize the various prototype developments with examples of full mil-spec and best commercial practice. These prototypes have successfully operated under severe space, airborne and tactical field environments. From a technical perspective these prototypes have included rewritable optical media ranging from a 5.25-inch diameter format up to the 14-inch diameter disk format. Implementations include an airborne sensor recorder, a deployable optical jukebox and a parallel array of optical disk drives. They include stand-alone peripheral devices to centralized, hierarchical storage management systems for distributed data processing applications.

  9. Light scattering in optical CT scanning of Presage dosimeters

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Adamovics, J.; Cheeseborough, J. C.; Chao, K. S.; Wuu, C. S.

    2010-11-01

    The intensity of the scattered light from the Presage dosimeters was measured using a Thorlabs PM100D optical power meter (Thorlabs Inc, Newton, NJ) with an optical sensor of 1 mm diameter sensitive area. Five Presage dosimeters were made as cylinders of 15.2 cm, 10 cm, 4 cm diameters and irradiated with 6 MV photons using a Varian Clinac 2100EX. Each dosimeter was put into the scanning tank of an OCTOPUS" optical CT scanner (MGS Research Inc, Madison, CT) filled with a refractive index matching liquid. A laser diode was positioned at one side of the water tank to generate a stationary laser beam of 0.8 mm width. On the other side of the tank, an in-house manufactured positioning system was used to move the optical sensor in the direction perpendicular to the outgoing laser beam from the dosimeters at an increment of 1 mm. The amount of scattered photons was found to be more than 1% of the primary light signal within 2 mm from the laser beam but decreases sharply with increasing off-axis distance. The intensity of the scattered light increases with increasing light attenuations and/or absorptions in the dosimeters. The scattered light at the same off-axis distance was weaker for dosimeters of larger diameters and for larger detector-to-dosimeter distances. Methods for minimizing the effect of the light scattering in different types of optical CT scanners are discussed.

  10. The impact of frequency on the performance of microwave ablation.

    PubMed

    Sawicki, James F; Shea, Jacob D; Behdad, Nader; Hagness, Susan C

    2017-02-01

    The use of higher frequencies in percutaneous microwave ablation (MWA) may offer compelling interstitial antenna design advantages over the 915 MHz and 2.45 GHz frequencies typically employed in current systems. To evaluate the impact of higher frequencies on ablation performance, we conducted a comprehensive computational and experimental study of microwave absorption and tissue heating as a function of frequency. We performed electromagnetic and thermal simulations of MWA in ex vivo and in vivo porcine muscle at discrete frequencies in the 1.9-26 GHz range. Ex vivo ablation experiments were performed in the 1.9-18 GHz range. We tracked the size of the ablation zone across frequency for constant input power and ablation duration. Further, we conducted simulations to investigate antenna feed line heating as a function of frequency, input power, and cable diameter. As the frequency was increased from 1.9 to 26 GHz the resulting ablation zone dimensions decreased in the longitudinal direction while remaining relatively constant in the radial direction; thus at higher frequencies the overall ablation zone was more spherical. However, cable heating at higher frequencies became more problematic for smaller diameter cables at constant input power. Comparably sized ablation zones are achievable well above 1.9 GHz, despite increasingly localised power absorption. Specific absorption rate alone does not accurately predict ablation performance, particularly at higher frequencies where thermal diffusion plays an important role. Cable heating due to ohmic losses at higher frequencies may be controlled through judicious choices of input power and cable diameter.

  11. High-aspect ratio zone plate fabrication for hard x-ray nanoimaging

    NASA Astrophysics Data System (ADS)

    Parfeniukas, Karolis; Giakoumidis, Stylianos; Akan, Rabia; Vogt, Ulrich

    2017-08-01

    We present our results in fabricating Fresnel zone plate optics for the NanoMAX beamline at the fourth-generation synchrotron radiation facility MAX IV, to be used in the energy range of 6-10 keV. The results and challenges of tungsten nanofabrication are discussed, and an alternative approach using metal-assisted chemical etching (MACE) of silicon is showcased. We successfully manufactured diffraction-limited zone plates in tungsten with 30 nm outermost zone width and an aspect ratio of 21:1. These optics were used for nanoimaging experiments at NanoMAX. However, we found it challenging to further improve resolution and diffraction efficiency using tungsten. High efficiency is desirable to fully utilize the advantage of increased coherence on the optics at MAX IV. Therefore, we started to investigate MACE of silicon for the nanofabrication of high-resolution and high-efficiency zone plates. The first type of structures we propose use the silicon directly as the phase-shifting material. We have achieved 6 μm deep dense vertical structures with 100 nm linewidth. The second type of optics use iridium as the phase material. The structures in the silicon substrate act as a mold for iridium coating via atomic layer deposition (ALD). A semi-dense pattern is used with line-to-space ratio of 1:3 for a so-called frequency-doubled zone plate. This way, it is possible to produce smaller structures with the tradeoff of the additional ALD step. We have fabricated 45 nm-wide and 3.6 μm-tall silicon/iridium structures.

  12. The importance of coherence in inverse problems in optics

    NASA Astrophysics Data System (ADS)

    Ferwerda, H. A.; Baltes, H. P.; Glass, A. S.; Steinle, B.

    1981-12-01

    Current inverse problems of statistical optics are presented with a guide to relevant literature. The inverse problems are categorized into four groups, and the Van Cittert-Zernike theorem and its generalization are discussed. The retrieval of structural information from the far-zone degree of coherence and the time-averaged intensity distribution of radiation scattered by a superposition of random and periodic scatterers are also discussed. In addition, formulas for the calculation of far-zone properties are derived within the framework of scalar optics, and results are applied to two examples.

  13. Observation of transverse Anderson localization in an optical fiber.

    PubMed

    Karbasi, Salman; Mirr, Craig R; Yarandi, Parisa Gandomkar; Frazier, Ryan J; Koch, Karl W; Mafi, Arash

    2012-06-15

    We utilize transverse Anderson localization as the waveguiding mechanism in optical fibers with random transverse refractive index profiles. Using experiments and numerical simulations, we show that the transverse localization results in an effective propagating beam diameter that is comparable to that of a typical index-guiding optical fiber.

  14. Modeling of the fracture behavior of spot welds using advanced micro-mechanical damage models

    NASA Astrophysics Data System (ADS)

    Sommer, Silke

    2010-06-01

    This paper presents the modeling of deformation and fracture behavior of resistance spot welded joints in DP600 steel sheets. Spot welding is still the most commonly used joining technique in automotive engineering. In overloading situations like crash joints are often the weakest link in a structure. For those reasons, crash simulations need reliable and applicable tools to predict the load bearing capacity of spot welded components. Two series of component tests with different spot weld diameters have shown that the diameter of the weld nugget is the main influencing factor affecting fracture mode (interfacial or pull-out fracture), load bearing capacity and energy absorption. In order to find a correlation between nugget diameter, load bearing capacity and fracture mode, the spot welds are simulated with detailed finite element models containing base metal, heat affected zone and weld metal in lap-shear loading conditions. The change in fracture mode from interfacial to pull-out or peel-out fracture with growing nugget diameter under lap-shear loading was successfully modeled using the Gologanu-Leblond model in combination with the fracture criteria of Thomason and Embury. A small nugget diameter is identified to be the main cause for interfacial fracture. In good agreement with experimental observations, the calculated pull-out fracture initiates in the base metal at the boundary to the heat affected zone.

  15. Nanotomography endstation at the P05 beamline: Status and perspectives

    NASA Astrophysics Data System (ADS)

    Greving, I.; Ogurreck, M.; Marschall, F.; Last, A.; Wilde, F.; Dose, T.; Burmester, H.; Lottermoser, L.; Müller, M.; David, C.; Beckmann, F.

    2017-06-01

    The Imaging Beamline IBL/P05 at the DESY storage ring PETRA III, operated by the Helmholtz-Zentrum Geesthacht, has two dedicated endstations optimized for micro- and nanotomography experiments [1-3]. Here we present the status of the nanotomography endstation, highlight the latest instrumentation upgrades and present first experimental results. In particular in materials science, where structures with ceramics or metallic materials are of interest, X-ray energies of 15 keV and above are required even for sample sizes of several 10 μm in diameter. The P05 imaging beamline is dedicated to materials science and is designed to allow for imaging applications with X-ray energies of 10 to 50 keV. In addition to the full field X-ray microscopy setup, the layout of the nanotomography endstation allows switching to cone-beam configuration. Kinematics for X-ray optics like compound refractive lenses (CRLs), Fresnel zone plates (FZP) or beam-shaping optics are implemented and the installation of a Kirkpatrick Baez-mirror (KB mirror) system is foreseen at a later stage of the beamline development. Altogether this leads to a high flexibility of the nanotomography setup such that the instrument can be tailored to the specific experimental requirements of a range of sample systems.

  16. Realization of a fiber optic sensor detecting the presence of a liquid

    NASA Astrophysics Data System (ADS)

    Guzowski, B.; Łakomski, M.; Nowogrodzki, K.

    2016-11-01

    Over the past thirty years, optical fibers have revolutionized the telecommunication market. Fiber optics play also important roles in other numerous applications. One of these applications is fiber sensing - very fast developing area. In this paper, realization of different configurations of a fiber optic sensor detecting the presence of liquid is presented. In the presented sensor, two multimode fibers (MMF) are placed opposite each other, where the first one transmits the light radiation, while the second one is a receiver. Due to the small size of the core (50 μm diameter), they had to be precisely positioned. Therefore the optical fibers were placed in the etched channels in the silicon substrate. In order to make sensors more sensitive, ball-lensed optical fibers were used. Four different diameters of lenses were examined. Sensitivity to the presence of liquids was compared in all realized sensors. Moreover, the influence of distance between the transmitting and receiving optical fiber on the received optical power is also described in this paper. All developed sensors were tested at 1300 nm wavelength. In the last part of this paper the detailed discussion is given.

  17. Cohesive detachment of an elastic pillar from a dissimilar substrate

    NASA Astrophysics Data System (ADS)

    Fleck, N. A.; Khaderi, S. N.; McMeeking, R. M.; Arzt, E.

    The adhesion of micron-scale surfaces due to intermolecular interactions is a subject of intense interest spanning electronics, biomechanics and the application of soft materials to engineering devices. The degree of adhesion is sensitive to the diameter of micro-pillars in addition to the degree of elastic mismatch between pillar and substrate. Adhesion-strength-controlled detachment of an elastic circular cylinder from a dissimilar substrate is predicted using a Dugdale-type of analysis, with a cohesive zone of uniform tensile strength emanating from the interface corner. Detachment initiates when the opening of the cohesive zone attains a critical value, giving way to crack formation. When the cohesive zone size at crack initiation is small compared to the pillar diameter, the initiation of detachment can be expressed in terms of a critical value Hc of the corner stress intensity. The estimated pull-off force is somewhat sensitive to the choice of stick/slip boundary condition used on the cohesive zone, especially when the substrate material is much stiffer than the pillar material. The analysis can be used to predict the sensitivity of detachment force to the size of pillar and to the degree of elastic mismatch between pillar and substrate.

  18. Ultrastructural and cytochemical evidence for single impulse initiation zones in vestibular macular nerve fibers of rat

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Chee, Oliver; Black, Samuel; Cutler, Lynn

    1991-01-01

    Cupric ion-ferricyanide labeling methods and related ferrocyanide-stained tissues were used to locate the characterize, at the ultrastructural level, presumptive impulse initiation zones in the three types of vestibular macular nerve fibers. Large-diameter, M-type vestibular nerve fibers terminate in a calyx at the heminode, and labeling is coextensive with the base of the calyx. Intermediate, M/U-type nerve fibers have short, unmyelinated preterminal segments that sometimes bifurcate intamacularly, and small-diameter, U-type nerve fibers have long, unmyelinated preterminal axons and up to three branches. Preterminals of these nerve fibers display ultrastructural heterogeneity that is correlated with labeling patterns for sodium channels and/or associated polyanionic sites. They have a nodelike ultrastructure and label heavily from near the heminode to the base of the macula. Their intramacular branches, less organized ultrastructurally, label only slightly. Results indicate that vestibular nerve fibers have one impulse initiation zone, located near the heminode, that varies in length according to nerve fiber type. Structural heterogeneity may favor impulse conduction in the central direction, and length of the impulse initiation zone could influence nerve discharge patterns.

  19. Management Zone Delineation for Winegrape Selective Harvesting Based on Fluorescence-Sensor Mapping of Grape Skin Anthocyanins.

    PubMed

    Agati, Giovanni; Soudani, Kamel; Tuccio, Lorenza; Fierini, Elisa; Ben Ghozlen, Naïma; Fadaili, El Mostafa; Romani, Annalisa; Cerovic, Zoran G

    2018-06-13

    We analyzed the potential of non-destructive optical sensing of grape skin anthocyanins for selective harvesting in precision viticulture. We measured anthocyanins by a hand-held fluorescence optical sensor on a 7 ha Sangiovese vineyard plot in central Italy. Optical indices obtained by the sensor were calibrated for the transformation in units of anthocyanins per berry mass, i.e., milligrams per gram of berry fresh weight. A full protocol for optimal data filtration, interpolation, and homogeneous zone delineation based on a very large number of optical measurements is proposed. Both the single signal-based fluorescence index (ANTH R ) and the two signal ratio-based index (ANTH RG ) can be used for Sangiovese grapes. Significant separations of grape-quality batches were obtained by several methods of data classification and zone delineations. Basic statistical criteria were as efficient as the K-means clustering. The best separations were obtained for three classes of grape skin anthocyanin.

  20. Infrared zone-scanning system.

    PubMed

    Belousov, Aleksandr; Popov, Gennady

    2006-03-20

    Challenges encountered in designing an infrared viewing optical system that uses a small linear detector array based on a zone-scanning approach are discussed. Scanning is performed by a rotating refractive polygon prism with tilted facets, which, along with high-speed line scanning, makes the scanning gear as simple as possible. A method of calculation of a practical optical system to compensate for aberrations during prism rotation is described.

  1. Fiber optic sensor based on reflectivity configurations to detect heart rate

    NASA Astrophysics Data System (ADS)

    Yunianto, M.; Marzuki, A.; Riyatun, R.; Lestari, D.

    2016-11-01

    Research of optical fiber-based heart rate detection sensor has been conducted using the reflection configurationon the thorax motion modified. Optical fiber used in this research was Plastic Optical Fiber (POF) with a diameter of 0.5. Optical fiber system is made with two pieces of fiber, the first fiber is to serve as a transmitter transmitting light from the source to the reflector membrane, the second fiber serves as a receiver. One of the endsfrom the two fibersis pressed and positioned perpendicular of reflector membrane which is placed on the surface of the chest. The sensor works on the principle of intensity changes captured by the receiver fiber when the reflector membrane gets the vibe from the heart. The light source used is in the form of Light Emitting Diode (LED) and Light Dependent Resistor (LDR) as a light sensor. Variations are performed on the reflector membrane diameter. The light intensity received by the detector increases along with the increasing width of the reflector membrane diameter. The results show that this sensor can detect the harmonic peak at a frequency of 1.5 Hz; 7.5 Hz; 10.5 Hz; and 22.5 Hz in a healthy human heart with an average value of Beat Per Minute (BPM) by 78 times, a prototype sensor that is made can work and function properly.

  2. Performance and safety of holmium: YAG laser optical fibers.

    PubMed

    Knudsen, Bodo E; Glickman, Randolph D; Stallman, Kenneth J; Maswadi, Saher; Chew, Ben H; Beiko, Darren T; Denstedt, John D; Teichman, Joel M H

    2005-11-01

    Lower-pole ureteronephroscopy requires transmission of holmium:YAG energy along a deflected fiber. Current ureteroscopes are capable of high degrees of deflection, which may stress laser fibers beyond safe limits during lower-pole use. We hypothesized that optical fiber and safety measures differ among manufacturers. Small (200-273-microm) and medium-diameter (300-400-microm) Ho:YAG fibers were tested in a straight and 180 degrees bent configuration. Energy transmission was measured by an energy detector. Fiber durability was assessed by firing the laser in sequentially tighter bending diameters. The fibers were bent to 180 degrees with a diameter of 6 cm and run at 200- to 4000-mJ pulse energy to determine the minimum energy required to fracture the fiber. The bending diameter was decreased by 1-cm increments and testing repeated until a bending diameter of 1 cm was reached. The maximum deflection of the ACMI DUR-8E ureteroscope with each fiber in the working channel was recorded. The flow rate through the working channel of the DUR-8E was measured for each fiber. The mean energy transmission differed among fibers (P < 0.001). The Lumenis SL 200 and the InnovaQuartz 400 were the best small and medium-diameter fibers, respectively, in resisting thermal breakdown (P < 0.01). The Dornier Lightguide Super 200 fractured repeatedly at a bend diameter of 2 cm and with the lowest energy (200 mJ). The other small fibers fractured only at a bend diameter of 1 cm. The Sharplan 200 and InnovaQuartz Sureflex 273T were the most flexible fibers, the Lumenis SL 365 the least. The flow rate was inversely proportional to four times the power of the diameter of the fiber. Optical performance and safety differ among fibers. Fibers transmit various amounts of energy to their cladding when bent. During lower-pole nephroscopy with the fiber deflected, there is a risk of fiber fracture from thermal breakdown and laser-energy transmission to the endoscope. Some available laser fibers carry a risk of ureteroscope damage.

  3. Diameter growth and phenology of trees on sites with high water tables

    Treesearch

    D.C. McClurkin

    1965-01-01

    On a site where the water table always was within the root zone, thinning had little effect on diameter growth of white ash or sweetgum but increased the growth of baldcypress. Thinning did not extend durating of growth into the fall, nor was growth related to seasonal fluctuations in the water table. In ash and sweetgum, growth initiation seemed related to soil...

  4. 1-mm catheterscope

    NASA Astrophysics Data System (ADS)

    Seibel, Eric J.

    2008-02-01

    Flexible endoscopes use one sensor element per display pixel. When diameter is reduced to the size of a catheter, there is a significant reduction in the number of pixels within the image. By placing a sub-millimeter microscanner at the tip of a catheter, image quality can be significantly improved. The microscanner consists of a 0.4 mm diameter piezoelectric tube with quadrant electrodes, surrounding a cantilevered singlemode optical fiber. At the distal end, the fiber microscanner is sealed with a 0.9 mm diameter lens assembly, creating a rigid length less than 10 mm at the tip of a highly flexible shaft. The cantilevered fiber is vibrated at the first mode of resonance for bending to generate a circular scan pattern. A spiral scan pattern is generated that constitutes an image frame by modulating the piezoelectric drive signals. By using a custom optical fiber at 80 microns cladding diameter, >10 KHz resonant scanning is achieved, resulting in a 30 Hz frame rate. Red (635 nm), green (532 nm), and blue (442 nm) laser light is scanned by coupling to the fiber scanner. The scanned illumination is detected in a non-confocal arrangement by having one or more optical fibers collecting the backscattered light at MHz pixel rates. Current 1-mm diameter catheterscopes generate 500-line images at maximum fields of view of 100 degrees and spatial resolutions of <20 microns with image zooming. Shaft length of four meters have been fabricated with flexibility of <10 mm bending radius to image previously inaccessible regions of the body.

  5. Miniaturized CARS microendoscope probe design for label-free intraoperative imaging

    NASA Astrophysics Data System (ADS)

    Chen, Xu; Wang, Xi; Xu, Xiaoyun; Cheng, Jie; Liu, Zhengfan; Weng, Sheng; Thrall, Michael J.; Goh, Alvin C.; McCormick, Daniel T.; Wong, Kelvin; Wong, Stephen T. C.

    2014-03-01

    A Coherent Anti-Stokes Raman Scattering (CARS) microendoscope probe for early stage label-free prostate cancer diagnosis at single cell resolution is presented. The handheld CARS microendoscope probe includes a customized micro-electromechanical systems (MEMS) scanning mirror as well as miniature optical and mechanical components. In our design, the excitation laser (pump and stokes beams) from the fiber is collimated, reflected by the reflecting mirror, and transmitted via a 2D MEMS scanning mirror and a micro-objective system onto the sample; emission in the epi-direction is returned through the micro-objective lens, MEMS and reflecting mirror, and collimation system, and finally the emission signal is collected by a photomultiplier tube (PMT). The exit pupil diameter of the collimator system is designed to match the diameter of the MEMS mirror and the entrance pupil diameter of the micro-objective system. The back aperture diameter of the micro-objective system is designed according to the largest MEMS scanning angle and the distance between the MEMS mirror and the back aperture. To increase the numerical aperture (NA) of the micro-objective system in order to enhance the signal collection efficiency, the back aperture diameter of the micro-objective system is enlarged with an upfront achromatic wide angle Keplerian telescope beam expander. The integration of a miniaturized micro-optics probe with optical fiber CARS microscopy opens up the possibility of in vivo molecular imaging for cancer diagnosis and surgical intervention.

  6. Fresnel Lenses for Wide-Aperture Optical Receivers

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    2004-01-01

    Wide-aperture receivers for freespace optical communication systems would utilize Fresnel lenses instead of conventional telescope lenses, according to a proposal. Fresnel lenses weigh and cost much less than conventional lenses having equal aperture widths. Plastic Fresnel lenses are commercially available in diameters up to 5 m large enough to satisfy requirements for aperture widths of the order of meters for collecting sufficient light in typical long-distance free-space optical communication systems. Fresnel lenses are not yet suitable for high-quality diffraction-limited imaging, especially in polychromatic light. However, optical communication systems utilize monochromatic light, and there is no requirement for high-quality imaging; instead, the basic requirement for an optical receiver is to collect the incoming monochromatic light over a wide aperture and concentrate the light onto a photodetector. Because of lens aberrations and diffraction, the light passing through any lens is focused to a blur circle rather than to a point. Calculations for some representative cases of wide-aperture non-diffraction-limited Fresnel lenses have shown that it should be possible to attain blur-circle diameters of less than 2 mm. Preferably, the blur-circle diameter should match the width of the photodetector. For most high-bandwidth communication applications, the required photodetector diameters would be about 1 mm. In a less-preferable case in which the blur circle was wider than a single photodetector, it would be possible to occupy the blur circle with an array of photodetectors. As an alternative to using a single large Fresnel lens, one could use an array of somewhat smaller lenses to synthesize the equivalent aperture area. Such a configuration might be preferable in a case in which a single Fresnel lens of the requisite large size would be impractical to manufacture, and the blur circle could not be made small enough. For example one could construct a square array of four 5-m-diameter Fresnel lenses to obtain the same light-collecting area as that of a single 10-m-diameter lens. In that case (see figure), the light collected by each Fresnel lens could be collimated, the collimated beams from the four Fresnel lenses could be reflected onto a common offaxis paraboloidal reflector, and the paraboloidal reflector would focus the four beams onto a single photodetector. Alternatively, detected signal from each detector behind each lens would be digitized before summing the signals.

  7. Neural Organization of the Optic Lobe Changes Steadily from Late Embryonic Stage to Adulthood in Cuttlefish Sepia pharaonis

    PubMed Central

    Liu, Yung-Chieh; Liu, Tsung-Han; Su, Chia-Hao; Chiao, Chuan-Chin

    2017-01-01

    The optic lobe is the largest structure in the cuttlefish brain. While the general morphology of the optic lobe in adult cuttlefish has been well described, the 3D structure and ontogenetic development of its neural organization have not been characterized. To correlate observed behavioral changes within the brain structure along the development of this animal, optic lobes from the late embryonic stage to adulthood were examined systematically in the present study. The MRI scan revealed that the so called “cell islands” in the medulla of the cephalopod's optic lobe (Young, 1962, 1974) are in fact a contiguous tree-like structure. Quantification of the neural organizational development of optic lobes showed that structural features of the cortex and radial column zone were established earlier than those of the tangential zone during embryonic and post-hatching stages. Within the cell islands, the density of nuclei was decreased while the size of nuclei was increased during the development. Furthermore, the visual processing area in the optic lobe showed a significant variation in lateralization during embryonic and juvenile stages. Our observation of a continuous increase in neural fibers and nucleus size in the tangential zone of the optic lobe from late embryonic stage to adulthood indicates that the neural organization of the optic lobe is modified along the development of cuttlefish. These findings thus support that the ontogenetic change of the optic lobe is responsible for their continuously increased complexity in body patterning and visuomotor behaviors. PMID:28798695

  8. Fresnel Lens

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Scott, Steve; Lamb, David; Zimmerman, Joe E. (Technical Monitor)

    2001-01-01

    Fresnel lenses span the full range of sizes from lens a few micrometers in diameter to lens several meters in diameter. These lenses are utilized in various fields including optical communication, theatrical lighting, office equipment, video entertainment systems, solar concentrators, and scientific research instruments. These lenses function either as diffractive or refractive optical elements depending on the geometrical feature size of the lens. The basic functions of these lenses is described followed by an overview of fabrication methods. A summary of applications is then provided illustrating the rich variety of applications for which fresnel lenses may be designed to fulfill.

  9. Direct optical transitions at K- and H-point of Brillouin zone in bulk MoS2, MoSe2, WS2, and WSe2

    NASA Astrophysics Data System (ADS)

    Kopaczek, J.; Polak, M. P.; Scharoch, P.; Wu, K.; Chen, B.; Tongay, S.; Kudrawiec, R.

    2016-06-01

    Modulated reflectance (contactless electroreflectance (CER), photoreflectance (PR), and piezoreflectance (PzR)) has been applied to study direct optical transitions in bulk MoS2, MoSe2, WS2, and WSe2. In order to interpret optical transitions observed in CER, PR, and PzR spectra, the electronic band structure for the four crystals has been calculated from the first principles within the density functional theory for various points of Brillouin zone including K and H points. It is clearly shown that the electronic band structure at H point of Brillouin zone is very symmetric and similar to the electronic band structure at K point, and therefore, direct optical transitions at H point should be expected in modulated reflectance spectra besides the direct optical transitions at the K point of Brillouin zone. This prediction is confirmed by experimental studies of the electronic band structure of MoS2, MoSe2, WS2, and WSe2 crystals by CER, PR, and PzR spectroscopy, i.e., techniques which are very sensitive to critical points of Brillouin zone. For the four crystals besides the A transition at K point, an AH transition at H point has been observed in CER, PR, and PzR spectra a few tens of meV above the A transition. The spectral difference between A and AH transition has been found to be in a very good agreement with theoretical predictions. The second transition at the H point of Brillouin zone (BH transition) overlaps spectrally with the B transition at K point because of small energy differences in the valence (conduction) band positions at H and K points. Therefore, an extra resonance which could be related to the BH transition is not resolved in modulated reflectance spectra at room temperature for the four crystals.

  10. Pulsed and CW adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser system for surgical laser soft tissue ablation applications.

    PubMed

    Huang, Yize; Jivraj, Jamil; Zhou, Jiaqi; Ramjist, Joel; Wong, Ronnie; Gu, Xijia; Yang, Victor X D

    2016-07-25

    A surgical laser soft tissue ablation system based on an adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser operating in pulsed or CW mode with nitrogen assistance is demonstrated. Ex vivo ablation on soft tissue targets such as muscle (chicken breast) and spinal cord (porcine) with intact dura are performed at different ablation conditions to examine the relationship between the system parameters and ablation outcomes. The maximum laser average power is 14.4 W, and its maximum peak power is 133.1 W with 21.3 μJ pulse energy. The maximum CW power density is 2.33 × 106 W/cm2 and the maximum pulsed peak power density is 2.16 × 107 W/cm2. The system parameters examined include the average laser power in CW or pulsed operation mode, gain-switching frequency, total ablation exposure time, and the input gas flow rate. The ablation effects were measured by microscopy and optical coherence tomography (OCT) to evaluate the ablation depth, superficial heat-affected zone diameter (HAZD) and charring diameter (CD). Our results conclude that the system parameters can be tailored to meet different clinical requirements such as ablation for soft tissue cutting or thermal coagulation for future applications of hemostasis.

  11. Thermal Analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8 Meter Primary Mirror

    NASA Technical Reports Server (NTRS)

    Hornsby, Linda; Stahl, H. Philip; Hopkins, Randall C.

    2010-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The primary mirror will be maintained at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop(R) SINDA/FLUINT(R) was used for the thermal analysis and the radiation environment was analyzed using RADCAD(R). A XX node model was executed in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew or 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the environment which influences the thermal performance. All assumptions that were used in the analysis are also documented. Parametric analyses are summarized for design parameters including primary mirror coatings and sunshade configuration. Estimates of mirror heater power requirements are reported. The thermal model demonstrates results for the primary mirror heated from the back side and edges using a heater system with multiple independently controlled zones.

  12. Twelve Channel Optical Fiber Connector Assembly: From Commercial Off the Shelf to Space Flight Use

    NASA Technical Reports Server (NTRS)

    Ott, Melaine N.

    1998-01-01

    The commercial off the shelf (COTS) twelve channel optical fiber MTP array connector and ribbon cable assembly is being validated for space flight use and the results of this study to date are presented here. The interconnection system implemented for the Parallel Fiber Optic Data Bus (PFODB) physical layer will include a 100/140 micron diameter optical fiber in the cable configuration among other enhancements. As part of this investigation, the COTS 62.5/125 microns optical fiber cable assembly has been characterized for space environment performance as a baseline for improving the performance of the 100/140 micron diameter ribbon cable for the Parallel FODB application. Presented here are the testing and results of random vibration and thermal environmental characterization of this commercial off the shelf (COTS) MTP twelve channel ribbon cable assembly. This paper is the first in a series of papers which will characterize and document the performance of Parallel FODB's physical layer from COTS to space flight worthy.

  13. Scaling laws for light weight optics, studies of light weight mirrors mounting and dynamic mirror stress, and light weight mirror and mount designs

    NASA Technical Reports Server (NTRS)

    Vukobratovich, Daniel; Richard, Ralph M.; Valente, Tina M.; Cho, Myung K.

    1990-01-01

    Scaling laws for light-weight optical systems are examined. A cubic relationship between mirror diameter and weight has been suggested and used by many designers of optical systems as the best description for all light-weight mirrors. A survey of existing light-weight systems in the open literature was made to clarify this issue. Fifty existing optical systems were surveyed with all varieties of light-weight mirrors including glass and beryllium structured mirrors, contoured mirrors, and very thin solid mirrors. These mirrors were then categorized and weight to diameter ratio was plotted to find a best curve for each case. A best fitting curve program tests nineteen different equations and ranks a goodness-to-fit for each of these equations. The resulting relationship found for each light-weight mirror category helps to quantify light-weight optical systems and methods of fabrication and provides comparisons between mirror types.

  14. Design and fabrication of a microlens on the sidewall of an optical fiber with a metallized 45 degrees end face.

    PubMed

    Kim, Myun-Sik; Jo, Kyoung-Woo; Lee, Jong-Hyun

    2005-07-01

    We propose a method for designing a self-aligned microlens. We have improved its fabrication by employing metallization on a 45 degrees angled surface of the optical fiber. We designed the focal length of the microlens to be 14.0 microm, considering the dimensions of a scanning near-field optical microscopy (SNOM) probe, and we calculated possible dimensions of diameter and height by the ray-tracing method. The modeling of lens formation was also carried out with two assumptions: no volume change and no movement of peripheral parts of the photoresist (PR) on the substrate during reflow. To fabricate a microlens of diameter 16.0 microm and height 5.0 microm we exposed a coated PR to UV light guided into the optical fiber, followed by optimized reflow of 150 degrees C for 2 min. For this microlens the focal length and the beam waist were 14.0 and 1.4 microm, respectively. This lens can be used for compact optical data storage.

  15. Self-healing gold mirrors and filters at liquid-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Smirnov, Evgeny; Peljo, Pekka; Scanlon, Micheál D.; Gumy, Frederic; Girault, Hubert H.

    2016-03-01

    The optical and morphological properties of lustrous metal self-healing liquid-like nanofilms were systematically studied for different applications (e.g., optical mirrors or filters). These nanofilms were formed by a one-step self-assembly methodology of gold nanoparticles (AuNPs) at immiscible water-oil interfaces, previously reported by our group. We investigated a host of experimental variables and herein report their influence on the optical properties of nanofilms: AuNP mean diameter, interfacial AuNP surface coverage, nature of the organic solvent, and nature of the lipophilic organic molecule that caps the AuNPs in the interfacial nanofilm. To probe the interfacial gold nanofilms we used in situ (UV-vis-NIR spectroscopy and optical microscopy) as well as ex situ (SEM and TEM of interfacial gold nanofilms transferred to silicon substrates) techniques. The interfacial AuNP surface coverage strongly influenced the morphology of the interfacial nanofilms, and in turn their maximum reflectance and absorbance. We observed three distinct morphological regimes; (i) smooth 2D monolayers of ``floating islands'' of AuNPs at low surface coverages, (ii) a mixed 2D/3D regime with the beginnings of 3D nanostructures consisting of small piles of adsorbed AuNPs even under sub-full-monolayer conditions and, finally, (iii) a 3D regime characterised by the 2D full-monolayer being covered in significant piles of adsorbed AuNPs. A maximal value of reflectance reached 58% in comparison with a solid gold mirror, when 38 nm mean diameter AuNPs were used at a water-nitrobenzene interface. Meanwhile, interfacial gold nanofilms prepared with 12 nm mean diameter AuNPs exhibited the highest extinction intensities at ca. 690 nm and absorbance around 90% of the incident light, making them an attractive candidate for filtering applications. Furthermore, the interparticle spacing, and resulting interparticle plasmon coupling derived optical properties, varied significantly on replacing tetrathiafulvalene with neocuproine as the AuNP capping ligand in the nanofilm. These interfacial nanofilms formed with neocuproine and 38 nm mean diameter AuNPs, at monolayer surface coverages and above, were black due to aggregation and broadband absorbance.The optical and morphological properties of lustrous metal self-healing liquid-like nanofilms were systematically studied for different applications (e.g., optical mirrors or filters). These nanofilms were formed by a one-step self-assembly methodology of gold nanoparticles (AuNPs) at immiscible water-oil interfaces, previously reported by our group. We investigated a host of experimental variables and herein report their influence on the optical properties of nanofilms: AuNP mean diameter, interfacial AuNP surface coverage, nature of the organic solvent, and nature of the lipophilic organic molecule that caps the AuNPs in the interfacial nanofilm. To probe the interfacial gold nanofilms we used in situ (UV-vis-NIR spectroscopy and optical microscopy) as well as ex situ (SEM and TEM of interfacial gold nanofilms transferred to silicon substrates) techniques. The interfacial AuNP surface coverage strongly influenced the morphology of the interfacial nanofilms, and in turn their maximum reflectance and absorbance. We observed three distinct morphological regimes; (i) smooth 2D monolayers of ``floating islands'' of AuNPs at low surface coverages, (ii) a mixed 2D/3D regime with the beginnings of 3D nanostructures consisting of small piles of adsorbed AuNPs even under sub-full-monolayer conditions and, finally, (iii) a 3D regime characterised by the 2D full-monolayer being covered in significant piles of adsorbed AuNPs. A maximal value of reflectance reached 58% in comparison with a solid gold mirror, when 38 nm mean diameter AuNPs were used at a water-nitrobenzene interface. Meanwhile, interfacial gold nanofilms prepared with 12 nm mean diameter AuNPs exhibited the highest extinction intensities at ca. 690 nm and absorbance around 90% of the incident light, making them an attractive candidate for filtering applications. Furthermore, the interparticle spacing, and resulting interparticle plasmon coupling derived optical properties, varied significantly on replacing tetrathiafulvalene with neocuproine as the AuNP capping ligand in the nanofilm. These interfacial nanofilms formed with neocuproine and 38 nm mean diameter AuNPs, at monolayer surface coverages and above, were black due to aggregation and broadband absorbance. Electronic supplementary information (ESI) available: Interfacial tension measurements for various water-organic solvent systems, step-by-step optical microscopy and SEM characterization of the obtained film, optical photographs of all tested solvents and molecules, and influence of the interfacial tension on optical responses of AuNPs assemblies. See DOI: 10.1039/c6nr00371k

  16. Effect of Number of Zones on Subjective Vision in Concentric Bifocal Optics.

    PubMed

    Legras, Richard; Rio, David

    2015-11-01

    To evaluate the influence of the number of concentric zones of a center-near bifocal optics on the subjective quality of vision. Twenty-two subjects scored with a five-item continuous grading scale the quality of vision of calculated images (i.e., three high-contrast 20/50 letters) viewed through their best sphero-cylindrical correction and a 3-mm pupil to limit the impact of their aberrations. Through-focus images were calculated from -4 to +2 diopters (D), each 0.25 D, in the presence of center-near bifocal optics (Add 2.5 D) varying by their number of concentric zones (from 2 to 20). To compare the results obtained with these profiles, we calculated the area under the (through-focus) curve (AUC) higher than 2 out of 5 (i.e., limit between a poor and a fair image quality, considered as the limit of acceptability). This value was normalized by the naked eye condition and divided into distance, intermediate, and near AUC. The results showed large interindividual variations. Distance AUC remained quite similar whatever the profile, near AUC decreased with the number of concentric zones, and intermediate AUC rose with the number of concentric zones. With 10 and 20 concentric zones, diffraction phenomenon induced constructive interferences at intermediate proximities and destructive interferences at distance and near proximities. To balance distance, intermediate, and near quality of vision, a number of zones between 8 and 10 should be chosen. If the subject does not need intermediate quality of vision, then a profile with two to five zones should be favored.

  17. Modeling Czochralski growth of oxide crystals for piezoelectric and optical applications

    NASA Astrophysics Data System (ADS)

    Stelian, C.; Duffar, T.

    2018-05-01

    Numerical modeling is applied to investigate the impact of crystal and crucible rotation on the flow pattern and crystal-melt interface shape in Czochralski growth of oxide semi-transparent crystals used for piezoelectric and optical applications. Two cases are simulated in the present work: the growth of piezoelectric langatate (LGT) crystals of 3 cm in diameter in an inductive furnace, and the growth of sapphire crystals of 10 cm in diameter in a resistive configuration. The numerical results indicate that the interface shape depends essentially on the internal radiative heat exchanges in the semi-transparent crystals. Computations performed by applying crystal/crucible rotation show that the interface can be flattened during LGT growth, while flat-interface growth of large diameter sapphire crystals may not be possible.

  18. Optical fibers for FTTH application

    NASA Astrophysics Data System (ADS)

    Guzowski, Bartlomiej; Tosik, Grzegorz; Lisik, Zbigniew; Bedyk, Michal; Kubiak, Andrzej

    2013-07-01

    In this paper the specifics of FTTH (Fiber To The Home) networks in terms of requirements for optical fibers has been presented. Optical fiber samples used in FTTH applications acquired from the worldwide leading manufacturers were subjected to small diameter mandrel wraps tests. The detailed procedures of performed tests and the measurement results has been presented.

  19. Fresnel zone plate stacking in the intermediate field for high efficiency focusing in the hard X-ray regime

    DOE PAGES

    Gleber, Sophie -Charlotte; Wojcik, Michael; Liu, Jie; ...

    2014-11-05

    Focusing efficiency of Fresnel zone plates (FZPs) for X-rays depends on zone height, while the achievable spatial resolution depends on the width of the finest zones. FZPs with optimal efficiency and sub-100-nm spatial resolution require high aspect ratio structures which are difficult to fabricate with current technology especially for the hard X-ray regime. A possible solution is to stack several zone plates. To increase the number of FZPs within one stack, we first demonstrate intermediate-field stacking and apply this method by stacks of up to five FZPs with adjusted diameters. Approaching the respective optimum zone height, we maximized efficiencies formore » high resolution focusing at three different energies, 10, 11.8, and 25 keV.« less

  20. Clinical in vivo dosimetry using optical fibers.

    PubMed

    Gripp, S; Haesing, F W; Bueker, H; Schmitt, G

    1998-01-01

    Discoloring of glass due to ionizing radiation depends on the absorbed dose. The radiation-induced light attenuation in optical fibers may be used as a measure of the dose. In high-energy photon beams (6 MV X rays), a lead-doped silica fiber can be calibrated. A dosimeter based on an optical fiber was developed for applications in radiation therapy. The diameter of the mounted fiber is 0.25 mm, whereas the length depends on the sensitivity required. To demonstrate the applicability, a customized fiber device was used to determine scattered radiation close to the lens of the eye. Measurements were compared with TLDs (LiF) in an anthropomorphic phantom. The comparison with TLD measurements shows good agreement. In contrast to TLD, optical fibers provide immediate dose values, and the readout procedure is much easier. Owing to its small size and diameter, interesting invasive dose measurements are feasible.

  1. Blood platelets: computerized morphometry applied on optical images

    NASA Astrophysics Data System (ADS)

    Korobova, Farida V.; Ivanova, Tatyana V.; Gusev, Alexander A.; Shmarov, Dmitry A.; Kozinets, Gennady I.

    2000-11-01

    The new technology of computerized morphometric image analysis of platelets on blood smears was developed. In a basis of the device is included analysis of cytophotometric and morphometric parameters of platelets. Geometrical and optical parameters of platelets on 35 donors, platelet concentrates and 15 patients with haemorrhagic thrombocythaemia were investigated, average meanings for the area, diameter, its logarithms and optical density of platelets in norm were received. Distribution of the areas, diameters and optical densities of platelets of patients with haemorrhagic thrombocythaemia differed from those at the healthy people. After a course of treatment these meanings came nearer to normal. The important characteristics of platelets in platelet concentrates after three days of storage were in limits of normal meanings, but differed from those in whole blood platelets. Obtained data allow to enter the quantitative standards into investigation of platelets of the healthy people and at various alteration of thrombocytopoieses.

  2. Photonic jet: key role of injection for etchings with a shaped optical fiber tip.

    PubMed

    Pierron, Robin; Zelgowski, Julien; Pfeiffer, Pierre; Fontaine, Joël; Lecler, Sylvain

    2017-07-15

    We demonstrate the key role of the laser injection into a multimode fiber to obtain a photonic jet (PJ). PJ, a high concentrated propagating beam with a full width at half-maximum smaller than the diffraction limit, is here generated with a shaped optical fiber tip using a pulsed laser source (1064 nm, 100 ns, 35 kHz). Three optical injection systems of light are compared. For similar etched marks on silicon with diameters around 1 μm, we show that the required ablation energy is minimum when the injected light beam is close to the fundamental mode diameter of the fiber. Thus, we confirm experimentally that to obtain a PJ out of an optical fiber, light injection plays a role as important as that of the tip shape and, therefore, the role of the fundamental mode in the process.

  3. Gas refractometry based on an all-fiber spatial optical filter.

    PubMed

    Silva, Susana; Coelho, L; André, R M; Frazão, O

    2012-08-15

    A spatial optical filter based on splice misalignment between optical fibers with different diameters is proposed for gas refractometry. The sensing head is formed by a 2 mm long optical fiber with 50 μm diameter that is spliced with a strong misalignment between two single-mode fibers (SMF28) and interrogated in transmission. The misalignment causes a Fabry-Perot behavior along the reduced-size fiber and depending on the lead-out SMF28 position, it is possible to obtain different spectral responses, namely, bandpass or band-rejection filters. It is shown that the spatial filter device is highly sensitive to refractive index changes on a nitrogen environment by means of the gas pressure variation. A maximum sensitivity of -1390 nm/RIU for the bandpass filter was achieved. Both devices have shown similar temperature responses with an average sensitivity of 25.7 pm/°C.

  4. Designing a Small-Sized Engineering Model of Solar EUV Telescopr for a Korean Satellite

    NASA Astrophysics Data System (ADS)

    Han, Jung-Hoon; Jang, Min-Hwan; Kim, Sang-Joon

    2001-11-01

    For the research of solar EUV (extreme ultraviolet) radiation, we have designed a small-sized engineering model of solar EUV telescope, which is suitable for a Korean satellite. The EUV solar telescope was designed to observe the sun at 584.3Å (He¥°) and 629.7Å (O¥´). The optical system is an f/8 Ritchey-Chrètien, and the effective diameter and focal length are 80§® and 640§®, respectively. The He¥°and O¥´ filters are loaded in a filter wheel. In the detection part, the MCP (MicroChannel Plate) type is Z-stack, and the channel-to-diameter ratio is 40:1. MCP and CCD are connected by fiber optic taper. A commercial optical design software is used for the analysis of the optical system design.

  5. Modal noise investigation in multimode polymer waveguides

    NASA Astrophysics Data System (ADS)

    Beals, Joseph, IV; Bamiedakis, Nikos; Penty, Richard V.; White, Ian H.; DeGroot, Jon V., Jr.; Clapp, Terry V.

    2007-11-01

    In this work the recent interest in waveguides for use in short optical links has motivated a study of the modal noise dependence on launch conditions in short-reach step-index multimode polymer waveguides. Short optical links, especially those with several connection interfaces and utilising a restricted launch are likely to be subject to a modal noise power penalty. We therefore experimentally study the modal noise impact of restricted launches for a short-reach optical link employing a 50 x 50 μm polymer multimode waveguide. Lens launches resulting in small diameter input spots are investigated as are restricted launches from an 8 μm core optical fibre. For a launch spot of 10 μm diameter no impairment is observed for up to 9 dBo of mode selective loss, and for a fibre launch with a dynamic input movement of 6 μm no impairment is seen for up to 8 dBo of mode selective loss.

  6. Advanced Wavefront Sensor Concepts.

    DTIC Science & Technology

    1981-01-01

    internal optics (a) Characteristics (see Figure 47) - Intensification with a 256 element linear self scanned diode array - Optical input; lenticular ...34 diameter - Lenticular array input to fiber optics which spread out to tubes - Photon counting for low noise fac- tor (b) Pe r fo rmance - Bialkali...problem in making the lenslet arrays in the pupil divider rectangular. The last optical elements are the lenticular lens arrays. In this group, the first

  7. Application of carbon nanotubes to topographical resolution enhancement of tapered fiber scanning near field optical microscopy probes

    NASA Astrophysics Data System (ADS)

    Huntington, S. T.; Jarvis, S. P.

    2003-05-01

    Scanning near field optical microscopy (SNOM) probes are typically tapered optical fibers with metallic coatings. The tip diameters are generally in excess of 300 nm and thus provide poor topographical resolution. Here we report on the attachment multiwalled carbon nanotubes to the probes in order to substantially enhance the topographical resolution, without adversely affecting the optical resolution.

  8. Optimization of laser-induced breakdown spectroscopy for coal powder analysis with different particle flow diameters

    NASA Astrophysics Data System (ADS)

    Yao, Shunchun; Xu, Jialong; Dong, Xuan; Zhang, Bo; Zheng, Jianping; Lu, Jidong

    2015-08-01

    The on-line measurement of coal is extremely useful for emission control and combustion process optimization in coal-fired plant. Laser-induced breakdown spectroscopy was employed to directly analyze coal particle flow. A set of tapered tubes were proposed for beam-focusing the coal particle flow to different diameters. For optimizing the measurement of coal particle flow, the characteristics of laser-induced plasma, including optical breakdown, the relative standard deviation of repeated measurement, partial breakdown spectra ratio and line intensity, were carefully analyzed. The comparison of the plasma characteristics among coal particle flow with different diameters showed that air breakdown and the random change in plasma position relative to the collection optics could significantly influence on the line intensity and the reproducibility of measurement. It is demonstrated that the tapered tube with a diameter of 5.5 mm was particularly useful to enrich the coal particles in laser focus spot as well as to reduce the influence of air breakdown and random changes of plasma in the experiment.

  9. The Nature, Significance, and Evaluation of the Schwarzschild-Villiger (SV) Effect in Photometric Procedures

    PubMed Central

    Howling, D. H.; Fitzgerald, P. J.

    1959-01-01

    The Schwarzschild-Villiger effect has been experimentally demonstrated with the optical system used in this laboratory. Using a photographic mosaic specimen as a model, it has been shown that the conclusions of Naora are substantiated and that the SV effect, in large or small magnitude, is always present in optical systems. The theoretical transmission error arising from the presence of the SV effect has been derived for various optical conditions of measurement. The results have been experimentally confirmed. The SV contribution of the substage optics of microspectrophotometers has also been considered. A simple method of evaluating a flare function f(A) is advanced which provides a measure of the SV error present in a system. It is demonstrated that measurements of specimens of optical density less than unity can be made with less than 1 per cent error, when using illuminating beam diameter/specimen diameter ratios of unity and uncoated optical surfaces. For denser specimens it is shown that care must be taken to reduce the illuminating beam/specimen diameter ratio to a value dictated by the magnitude of a flare function f(A), evaluated for a particular optical system, in order to avoid excessive transmission error. It is emphasized that observed densities (transmissions) are not necessarily true densities (transmissions) because of the possibility of SV error. The ambiguity associated with an estimation of stray-light error by means of an opaque object has also been demonstrated. The errors illustrated are not necessarily restricted to microspectrophotometry but may possibly be found in such fields as spectral analysis, the interpretation of x-ray diffraction patterns, the determination of ionizing particle tracks and particle densities in photographic emulsions, and in many other types of photometric analysis. PMID:14403512

  10. Experimental Evaluation of the Heat Sink Effect in Hepatic Microwave Ablation

    PubMed Central

    Ringe, Kristina I.; Lutat, Carolin; Rieder, Christian; Schenk, Andrea; Wacker, Frank; Raatschen, Hans-Juergen

    2015-01-01

    Purpose To demonstrate and quantify the heat sink effect in hepatic microwave ablation (MWA) in a standardized ex vivo model, and to analyze the influence of vessel distance and blood flow on lesion volume and shape. Materials and Methods 108 ex vivo MWA procedures were performed in freshly harvested pig livers. Antennas were inserted parallel to non-perfused and perfused (700,1400 ml/min) glass tubes (diameter 5mm) at different distances (10, 15, 20mm). Ablation zones (radius, area) were analyzed and compared (Kruskal-Wallis Test, Dunn’s multiple comparison Test). Temperature changes adjacent to the tubes were measured throughout the ablation cycle. Results Maximum temperature decreased significantly with increasing flow and distance (p<0.05). Compared to non-perfused tubes, ablation zones were significantly deformed by perfused tubes within 15mm distance to the antenna (p<0.05). At a flow rate of 700ml/min ablation zone radius was reduced to 37.2% and 80.1% at 10 and 15mm tube distance, respectively; ablation zone area was reduced to 50.5% and 89.7%, respectively. Conclusion Significant changes of ablation zones were demonstrated in a pig liver model. Considerable heat sink effect was observed within a diameter of 15mm around simulated vessels, dependent on flow rate. This has to be taken into account when ablating liver lesions close to vessels. PMID:26222431

  11. Autostereoscopic 3D display system with dynamic fusion of the viewing zone under eye tracking: principles, setup, and evaluation [Invited].

    PubMed

    Yoon, Ki-Hyuk; Kang, Min-Koo; Lee, Hwasun; Kim, Sung-Kyu

    2018-01-01

    We study optical technologies for viewer-tracked autostereoscopic 3D display (VTA3D), which provides improved 3D image quality and extended viewing range. In particular, we utilize a technique-the so-called dynamic fusion of viewing zone (DFVZ)-for each 3D optical line to realize image quality equivalent to that achievable at optimal viewing distance, even when a viewer is moving in a depth direction. In addition, we examine quantitative properties of viewing zones provided by the VTA3D system that adopted DFVZ, revealing that the optimal viewing zone can be formed at viewer position. Last, we show that the comfort zone is extended due to DFVZ. This is demonstrated by a viewer's subjective evaluation of the 3D display system that employs both multiview autostereoscopic 3D display and DFVZ.

  12. Laser Assisted Micro Wire GMAW and Droplet Welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FUERSCHBACH, PHILLIP W.; LUCK, D. L.; BERTRAM, LEE A.

    2002-03-01

    Laser beam welding is the principal welding process for the joining of Sandia weapon components because it can provide a small fusion zone with low overall heating. Improved process robustness is desired since laser energy absorption is extremely sensitive to joint variation and filler metal is seldom added. This project investigated the experimental and theoretical advantages of combining a fiber optic delivered Nd:YAG laser with a miniaturized GMAW system. Consistent gas metal arc droplet transfer employing a 0.25 mm diameter wire was only obtained at high currents in the spray transfer mode. Excessive heating of the workpiece in this modemore » was considered an impractical result for most Sandia micro-welding applications. Several additional droplet detachment approaches were investigated and analyzed including pulsed tungsten arc transfer(droplet welding), servo accelerated transfer, servo dip transfer, and electromechanically braked transfer. Experimental observations and rigorous analysis of these approaches indicate that decoupling droplet detachment from the arc melting process is warranted and may someday be practical.« less

  13. Structure and physics of solar faculae

    NASA Astrophysics Data System (ADS)

    Pecker, J.-C.; Dumont, S.; Mouradian, Z.

    1992-04-01

    The optical depths of layers in the chromosphere-corona transition (CCT) zone, which is responsible for resolved structures in CII, CIII, OIV, and OVI lines, were determined using a new method that takes into account the effect of roughness (or local departures from sphericity) of the emitting layers in the CCT zone. The method allows determination of the angle alpha typical of the roughness (in case of availability of resolved data) and the two optical depths tau-1 and tau-2. It is shown that, even in unresolved cases, the new method gives a more realistic determination of the optical depths than previously determined.

  14. Compensating additional optical power in the central zone of a multifocal contact lens forminimization of the shrinkage error of the shell mold in the injection molding process.

    PubMed

    Vu, Lien T; Chen, Chao-Chang A; Lee, Chia-Cheng; Yu, Chia-Wei

    2018-04-20

    This study aims to develop a compensating method to minimize the shrinkage error of the shell mold (SM) in the injection molding (IM) process to obtain uniform optical power in the central optical zone of soft axial symmetric multifocal contact lenses (CL). The Z-shrinkage error along the Z axis or axial axis of the anterior SM corresponding to the anterior surface of a dry contact lens in the IM process can be minimized by optimizing IM process parameters and then by compensating for additional (Add) powers in the central zone of the original lens design. First, the shrinkage error is minimized by optimizing three levels of four IM parameters, including mold temperature, injection velocity, packing pressure, and cooling time in 18 IM simulations based on an orthogonal array L 18 (2 1 ×3 4 ). Then, based on the Z-shrinkage error from IM simulation, three new contact lens designs are obtained by increasing the Add power in the central zone of the original multifocal CL design to compensate for the optical power errors. Results obtained from IM process simulations and the optical simulations show that the new CL design with 0.1 D increasing in Add power has the closest shrinkage profile to the original anterior SM profile with percentage of reduction in absolute Z-shrinkage error of 55% and more uniform power in the central zone than in the other two cases. Moreover, actual experiments of IM of SM for casting soft multifocal CLs have been performed. The final product of wet CLs has been completed for the original design and the new design. Results of the optical performance have verified the improvement of the compensated design of CLs. The feasibility of this compensating method has been proven based on the measurement results of the produced soft multifocal CLs of the new design. Results of this study can be further applied to predict or compensate for the total optical power errors of the soft multifocal CLs.

  15. Measurement of retinal blood flow in the rat by combining Doppler Fourier-domain optical coherence tomography with fundus imaging

    NASA Astrophysics Data System (ADS)

    Werkmeister, René M.; Vietauer, Martin; Knopf, Corinna; Fürnsinn, Clemens; Leitgeb, Rainer A.; Reitsamer, Herbert; Gröschl, Martin; Garhöfer, Gerhard; Vilser, Walthard; Schmetterer, Leopold

    2014-10-01

    A wide variety of ocular diseases are associated with abnormalities in ocular circulation. As such, there is considerable interest in techniques for quantifying retinal blood flow, among which Doppler optical coherence tomography (OCT) may be the most promising. We present an approach to measure retinal blood flow in the rat using a new optical system that combines the measurement of blood flow velocities via Doppler Fourier-domain optical coherence tomography and the measurement of vessel diameters using a fundus camera-based technique. Relying on fundus images for extraction of retinal vessel diameters instead of OCT images improves the reliability of the technique. The system was operated with an 841-nm superluminescent diode and a charge-coupled device camera that could be operated at a line rate of 20 kHz. We show that the system is capable of quantifying the response of 100% oxygen breathing on the retinal blood flow. In six rats, we observed a decrease in retinal vessel diameters of 13.2% and a decrease in retinal blood velocity of 42.6%, leading to a decrease in retinal blood flow of 56.7%. Furthermore, in four rats, the response of retinal blood flow during stimulation with diffuse flicker light was assessed. Retinal vessel diameter and blood velocity increased by 3.4% and 28.1%, respectively, leading to a relative increase in blood flow of 36.2%;. The presented technique shows much promise to quantify early changes in retinal blood flow during provocation with various stimuli in rodent models of ocular diseases in rats.

  16. Controlled laser production of elongated articles from particulates

    DOEpatents

    Dixon, Raymond D.; Lewis, Gary K.; Milewski, John O.

    2002-01-01

    It has been discovered that wires and small diameter rods can be produced using laser deposition technology in a novel way. An elongated article such as a wire or rod is constructed by melting and depositing particulate material into a deposition zone which has been designed to yield the desired article shape and dimensions. The article is withdrawn from the deposition zone as it is formed, thus enabling formation of the article in a continuous process. Alternatively, the deposition zone is moved along any of numerous deposition paths away from the article being formed.

  17. Design and evaluation of capillary coupled with optical fiber light-emitting diode induced fluorescence detection for capillary electrophoresis.

    PubMed

    Ji, Hongyun; Li, Meng; Guo, Lihong; Yuan, Hongyan; Wang, Chunling; Xiao, Dan

    2013-09-01

    A new detector, capillary coupled with optical fiber LED-induced fluorescence detector (CCOF-LED-IFD, using CCOF for short), is introduced for CE. The strategy of the present work was that the optical fiber and separation capillary were, in the parallel direction, fastened in a fixation capillary with larger inner diameter. By employing larger inner diameter, the fixation capillary allowed the large diameter of the optical fiber to be inserted into it. By transmitting an enhanced excitation light through the optical fiber, the detection sensitivity was improved. The advantages of the CCOF-CE system were validated by the detection of riboflavin, and the results were compared to those obtained by the in-capillary common optical fiber LED-induced fluorescence detector (IC-COF-LED-IFD, using COF for short). The LODs of CCOF-CE and COF-CE were 0.29 nM and 11.0 nM (S/N = 3), respectively. The intraday (n = 6) repeatability and interday (n = 6) reproducibility of migration time and corresponding peak area for both types of CE were all less than 1.10 and 3.30%, respectively. The accuracy of the proposed method was judged by employing standard addition method, and recoveries obtained were in the range of 98.0-102.4%. The results indicated that the sensitivity of the proposed system was largely improved, and that its reproducibility and accuracy were satisfactory. The proposed system was successfully applied to separate and determine riboflavin in real sample. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Multiple capillary biochemical analyzer

    DOEpatents

    Dovichi, N.J.; Zhang, J.Z.

    1995-08-08

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibers to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands. 21 figs.

  19. Double high refractive-index contrast grating VCSEL

    NASA Astrophysics Data System (ADS)

    Gebski, Marcin; Dems, Maciej; Wasiak, Michał; Sarzała, Robert P.; Lott, J. A.; Czyszanowski, Tomasz

    2015-03-01

    Distributed Bragg reflectors (DBRs) are typically used as the highly reflecting mirrors of vertical-cavity surface-emitting lasers (VCSELs). In order to provide optical field confinement, oxide apertures are often incorporated in the process of the selective wet oxidation of high aluminum-content DBR layers. This technology has some potential drawbacks such as difficulty in controlling the uniformity of the oxide aperture diameters across a large-diameter (≥ 6 inch) production wafers, high DBR series resistance especially for small diameters below about 5 μm despite elaborate grading and doping schemes, free carrier absorption at longer emission wavelengths in the p-doped DBRs, reduced reliability for oxide apertures placed close to the quantum wells, and low thermal conductivity for transporting heat away from the active region. A prospective alternative mirror is a high refractive index contrast grating (HCG) monolithically integrated with the VCSEL cavity. Two HCG mirrors potentially offer a very compact and simplified VCSEL design although the problems of resistance, heat dissipation, and reliability are not completely solved. We present an analysis of a double HCG 980 nm GaAs-based ultra-thin VCSEL. We analyze the optical confinement of such a structure with a total optical thickness is ~1.0λ including the optical cavity and the two opposing and parallel HCG mirrors.

  20. Multiple capillary biochemical analyzer

    DOEpatents

    Dovichi, Norman J.; Zhang, Jian Z.

    1995-01-01

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibres to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands.

  1. Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jansen, Sanne M.; de Bruin, Daniel M.; Faber, Dirk J.; Dobbe, Iwan J. G. G.; Heeg, Erik; Milstein, Dan M. J.; Strackee, Simon D.; van Leeuwen, Ton G.

    2017-08-01

    Patient morbidity and mortality due to hemodynamic complications are a major problem in surgery. Optical techniques can image blood flow in real-time and high-resolution, thereby enabling perfusion monitoring intraoperatively. We tested the feasibility and validity of laser speckle contrast imaging (LSCI), optical coherence tomography (OCT), and sidestream dark-field microscopy (SDF) for perfusion diagnostics in a phantom model using whole blood. Microvessels with diameters of 50, 100, and 400 μm were constructed in a scattering phantom. Perfusion was simulated by pumping heparinized human whole blood at five velocities (0 to 20 mm/s). Vessel diameter and blood flow velocity were assessed with LSCI, OCT, and SDF. Quantification of vessel diameter was feasible with OCT and SDF. LSCI could only visualize the 400-μm vessel, perfusion units scaled nonlinearly with blood velocity. OCT could assess blood flow velocity in terms of inverse OCT speckle decorrelation time. SDF was not feasible to measure blood flow; however, for diluted blood the measurements were linear with the input velocity up to 1 mm/s. LSCI, OCT, and SDF were feasible to visualize blood flow. Validated blood flow velocity measurements intraoperatively in the desired parameter (mL·g-1) remain challenging.

  2. Quantitative Evaluation of Adult Subglottic Stenosis Using Intraoperative Long-range Optical Coherence Tomography

    PubMed Central

    Sharma, Giriraj K.; Loy, Anthony Chin; Su, Erica; Jing, Joe; Chen, Zhongping; Wong, Brian J-F.; Verma, Sunil

    2016-01-01

    Objectives To determine the feasibility of long-range optical coherence tomography (LR-OCT) as a tool to intraoperatively image and measure the subglottis and trachea during suspension microlaryngoscopy before and after endoscopic treatment of subglottic stenosis (SGS). Methods Long-range optical coherence tomography of the adult subglottis and trachea was performed during suspension microlaryngoscopy before and after endoscopic treatment for SGS. The anteroposterior and transverse diameters, cross-sectional area (CSA), distance from the vocal cords, and length of the SGS were measured using a MATLAB software. Pre-intervention and postintervention airway dimensions were compared. Three-dimensional volumetric airway reconstructions were generated using medical image processing software (MIMICS). Results Intraoperative LR-OCT imaging was performed in 3 patients undergoing endoscopic management of SGS. Statistically significant differences in mean anteroposterior diameter (P < .01), transverse diameter (P < .001), and CSA (P < .001) were noted between pre-intervention and postintervention data. Three-dimensional airway models were viewed in cross-sectional format and via virtual “fly through” bronchoscopy. Conclusions This is the first report of intraoperative LR-OCT of the subglottic and tracheal airway before and after surgical management of SGS in humans. Long-range optical coherence tomography offers a practical means to measure the dimensions of SGS and acquire objective data on the response to endoscopic treatment of SGS. PMID:27354215

  3. Biodistribution of Encapsulated Indocyanine Green in Healthy Mice

    PubMed Central

    Yaseen, Mohammad A.; Yu, Jie; Jung, Bongsu; Wong, Michael S.; Anvari, Bahman

    2009-01-01

    Indocyanine Green (ICG) is a fluorescent probe used in various optically-mediated diagnostic and therapeutic applications. However, utility of ICG remains limited by its unstable optical properties and non-specific localization. We have encapsulated ICG within electrostatically-assembled mesocapsules (MCs) to explore its potential for targeted optical diagnosis and therapy. In this study, we investigate how the surface coating and size of the MCs influences ICG's biodistribution in vivo. ICG was administered intravenously to Swiss Webster mice as a free solution or encapsulated within either 100 nm diameter MCs coated with dextran; 500 nm diameter MCs coated with dextran; or 100 nm diameter MCs coated with 10 nm ferromagnetic iron oxide nanoparticles, themselves coated with polyethylene glycol. ICG was extracted from harvested blood and organs at various times and its amount quantified with fluorescence measurements. MCs containing ICG accumulated in organs of the reticuloendothelial system, namely the liver and spleen, as well as the lungs. The circulation kinetics of ICG remained unaffected by encapsulation; however, the deposition within organs other than the liver suggests a different biodistribution mechanism. Results suggest that the capsules' coating influences their biodistribution to a greater extent than their size. The MC encapsulation system allows for delivery of ICG to organs other than the liver, enabling the potential development of new optical imaging and therapeutic strategies. PMID:19799463

  4. Influence of pitting defects on quality of high power laser light field

    NASA Astrophysics Data System (ADS)

    Ren, Huan; Zhang, Lin; Yang, Yi; Shi, Zhendong; Ma, Hua; Jiang, Hongzhen; Chen, Bo; Yang, XiaoYu; Zheng, Wanguo; Zhu, Rihong

    2018-01-01

    With the split-step-Fourier-transform method for solving the nonlinear paraxial wave equation, the intensity distribution of the light field when the pits diameter or depth change is obtained by using numerical simulation, include the intensity distribution inside optical element, the beam near-field, the different distances behind the element and the beam far-field. Results show that with the increase of pits diameter or depth, the light field peak intensity and the contrast inside of element corresponding enhancement. The contrast of the intensity distribution of the rear surface of the element will increase slightly. The peak intensity produced by a specific location element downstream of thermal effect will continue to increase, the damage probability in optics placed here is greatly increased. For the intensity distribution of the far-field, increase the pitting diameter or depth will cause the focal spot intensity distribution changes, and the energy of the spectrum center region increase constantly. This work provide a basis for quantitative design and inspection for pitting defects, which provides a reference for the design of optical path arrangement.

  5. Self-Sensing Composites: In-Situ Detection of Fibre Fracture

    PubMed Central

    Malik, Shoaib A.; Wang, Liwei; Curtis, Paul T.; Fernando, Gerard F.

    2016-01-01

    The primary load-bearing component in a composite material is the reinforcing fibres. This paper reports on a technique to study the fracture of individual reinforcing fibres or filaments in real-time. Custom-made small-diameter optical fibres with a diameter of 12 (±2) micrometres were used to detect the fracture of individual filaments during tensile loading of unreinforced bundles and composites. The unimpregnated bundles were end-tabbed and tensile tested to failure. A simple technique based on resin-infusion was developed to manufacture composites with a negligible void content. In both cases, optical fibre connectors were attached to the ends of the small-diameter optical fibre bundles to enable light to be coupled into the bundle via one end whilst the opposite end was photographed using a high-speed camera. The feasibility of detecting the fracture of each of the filaments in the bundle and composite was demonstrated. The in-situ damage detection technique was also applied to E-glass bundles and composites; this will be reported in a subsequent publication. PMID:27136555

  6. Environment modelling in near Earth space: Preliminary LDEF results

    NASA Technical Reports Server (NTRS)

    Coombs, C. R.; Atkinson, D. R.; Wagner, J. D.; Crowell, L. B.; Allbrooks, M.; Watts, A. J.

    1992-01-01

    Hypervelocity impacts by space debris cause not only local cratering or penetrations, but also cause large areas of damage in coated, painted or laminated surfaces. Features examined in these analyses display interesting morphological characteristics, commonly exhibiting a concentric ringed appearance. Virtually all features greater than 0.2 mm in diameter possess a spall zone in which all of the paint was removed from the aluminum surface. These spall zones vary in size from approximately 2 - 5 crater diameters. The actual craters in the aluminum substrate vary from central pits without raised rims, to morphologies more typical of craters formed in aluminum under hypervelocity laboratory conditions for the larger features. Most features also possess what is referred to as a 'shock zone' as well. These zones vary in size from approximately 1 - 20 crater diameters. In most cases, only the outer-most layer of paint was affected by this impact related phenomenon. Several impacts possess ridge-like structures encircling the area in which this outer-most paint layer was removed. In many ways, such features resemble the lunar impact basins, but on an extremely reduced scale. Overall, there were no noticeable penetrations, bulges or spallation features on the backside of the tray. On Row 12, approximately 85 degrees from the leading edge (RAM direction), there was approximately one impact per 15 cm(exp 2). On the trailing edge, there was approximately one impact per 72 cm(exp 2). Currently, craters on four aluminum experiment trays from Bay E09, directly on the leading edge are being measured and analyzed. Preliminary results have produced more than 2200 craters on approximately 1500 cm(exp 2) - or approximately 1 impact per 0.7 cm(exp 2).

  7. Large High Performance Optics for Spaceborne Missions: L-3 Brashear Experience and Capability

    NASA Technical Reports Server (NTRS)

    Canzian, Blaise; Gardopee, George; Clarkson, Andrew; Hull, Tony; Borucki, William J.

    2010-01-01

    Brashear is a division of L-3 Communications, Integrated Optical Systems. Brashear is well known for the ground-based telescopes it has manufactured at its facilities and delivered to satisfied customers. Optics from meter-class up to 8.3 meters diameter have been fabricated in Brashear's facilities. Brashear has demonstrated capabilities for large spaceborne optics. We describe in this paper both legacy and new Brashear capabilities for high performance spaceborne optics.

  8. Analysis of dead zone sources in a closed-loop fiber optic gyroscope.

    PubMed

    Chong, Kyoung-Ho; Choi, Woo-Seok; Chong, Kil-To

    2016-01-01

    Analysis of the dead zone is among the intensive studies in a closed-loop fiber optic gyroscope. In a dead zone, a gyroscope cannot detect any rotation and produces a zero bias. In this study, an analysis of dead zone sources is performed in simulation and experiments. In general, the problem is mainly due to electrical cross coupling and phase modulation drift. Electrical cross coupling is caused by interference between modulation voltage and the photodetector. The cross-coupled signal produces spurious gyro bias and leads to a dead zone if it is larger than the input rate. Phase modulation drift as another dead zone source is due to the electrode contamination, the piezoelectric effect of the LiNbO3 substrate, or to organic fouling. This modulation drift lasts for a short or long period of time like a lead-lag filter response and produces gyro bias error, noise spikes, or dead zone. For a more detailed analysis, the cross-coupling effect and modulation phase drift are modeled as a filter and are simulated in both the open-loop and closed-loop modes. The sources of dead zone are more clearly analyzed in the simulation and experimental results.

  9. Weyl semimetals in optical lattices: moving and merging of Weyl points, and hidden symmetry at Weyl points

    PubMed Central

    Hou, Jing-Min; Chen, Wei

    2016-01-01

    We propose to realize Weyl semimetals in a cubic optical lattice. We find that there exist three distinct Weyl semimetal phases in the cubic optical lattice for different parameter ranges. One of them has two pairs of Weyl points and the other two have one pair of Weyl points in the Brillouin zone. For a slab geometry with (010) surfaces, the Fermi arcs connecting the projections of Weyl points with opposite topological charges on the surface Brillouin zone is presented. By adjusting the parameters, the Weyl points can move in the Brillouin zone. Interestingly, for two pairs of Weyl points, as one pair of them meet and annihilate, the originial two Fermi arcs coneect into one. As the remaining Weyl points annihilate further, the Fermi arc vanishes and a gap is opened. Furthermore, we find that there always exists a hidden symmetry at Weyl points, regardless of anywhere they located in the Brillouin zone. The hidden symmetry has an antiunitary operator with its square being −1. PMID:27644114

  10. The dispersion of particles in a separated backward-facing step flow

    NASA Astrophysics Data System (ADS)

    Ruck, B.; Makiola, B.

    1991-05-01

    Flows in technical and natural circuits often involve a particulate phase. To measure the dynamics of suspended, naturally resident or artificially seeded particles in the flow, optical measuring techniques, e.g., laser Doppler anemometry (LDA) can be used advantageously. In this paper the dispersion of particles in a single-sided backward-facing step flow is investigated by LDA. The investigation is of relevance for both, two-phase flow problems in separated flows with the associated particle diameter range of 1-70 μm and the accuracy of LDA with tracer particles of different sizes. The latter is of interest for all LDA applications to measure continuous phase properties, where interest for experimental restraints require tracer diameters in the upper micrometer range, e.g., flame resistant particles for measurements inside reactors, cylinders, etc. For the experiments, a closed-loop wind tunnel with a step expansion was used. Part of this tunnel, the test section, was made of glass. The step had a height H=25 mm (channel height before the step 25 mm, after 50 mm, i.e., an expansion ratio of 2). The width of the channel was 500 mm. The length of the glass test section was chosen as 116 step heights. The wind tunnel, driven by a radial fan, allowed flow velocities up to 50 m/sec which is equivalent to ReH=105. Seeding was performed with particles of well-known size: 1, 15, 30, and 70 μm in diameter. As 1 μm tracers oil droplets were used, whereas for the upper micron range starch particles (density 1.500 kg/m3) were chosen. Starch particles have a spherical shape and are not soluble in cold water. Particle velocities were measured locally using a conventional 1-D LDA system. The measurements deliver the resultant ``flow'' field information stemming from different particle size classes. Thus, the particle behavior in the separated flow field can be resolved. The results show that with increasing particle size, the particle velocity field differs increasingly from the flow field of the continuous phase (inferred from the smallest tracers used). The velocity fluctuations successively decrease with increasing particle diameter. In separation zones, bigger particles have a lower mean velocity than smaller ones. The opposite holds for the streamwise portions of the particle velocity field, where bigger particles show a higher velocity. The measurements give detailed insight into the particle dynamics in separated flow regions. LDA-measured dividing streamlines and lines of zero velocity of different particle classes in the recirculation region have been plotted and compared. In LDA the use of tracer particles in the upper micrometer size range leads to erroneous determinations of continuous phase flow characteristics. It turned out that the dimensions of the measured recirculation zones are reduced with increasing particle diameter. The physical reasons for these findings (relaxation time of particles, Stokes numbers, etc.) are explained in detail.

  11. Grain size and shape evolution of experimentally deformed sediments: the role of slip rate

    NASA Astrophysics Data System (ADS)

    Balsamo, Fabrizio; Storti, Fabrizio; De Paola, Nicola

    2016-04-01

    Sediment deformation within fault zones occurs with a broad spectrum of mechanisms which, in turn, depend on intrinsic material properties (porosity, grain size and shape, etc.) and external factors (burial depth, fluid pressure, stress configuration, etc.). Fieldworks and laboratory measurements conducted in the last years in sediments faulted at shallow depth showed that cataclasis and grain size reduction can occur very close to the Earth surface (<1-2 km), and that fault displacement is one of the parameters controlling the amount of grain size, shape, and microtextural modifications in fault cores. In this contribution, we present a new set of microstructural observations combined with grain size and shape distribution data obtained from quart-feldspatic loose sediments (mean grain diameter 0.2 mm) experimentally deformed at different slip rates from subseismic (0.01 mm/s, 0.1 mm/s, 1 mm/s, 1 cm/s, and 10 cm/s) to coseismic slip rates (1 m/s). The experiments were originally performed at sigma n=14 MPa, with the same amount of slip (1.3 m), to constrain the frictional properties of such sediments at shallow confining pressures (<1 km). After the experiments, the granular materials deformed in the 0.1-1 mm-thick slip zones were prepared for both grain size distribution analyses and microstructural and textural analyses in thin sections. Grain size distribution analyses were obtained with a Malvern Mastersizer 3000 particle size laser-diffraction analyser, whereas grain shape data (angularity) were obtained by using image analysis technique on selected SEM-photomicrographs. Microstructural observations were performed at different scales with a standard optical microscope and with a SEM. Results indicate that mean grain diameter progressively decreases with increasing slip rates up to ~20-30 m, and that granulometric curves systematically modify as well, shifting toward finer grain sizes. Obtained fractal dimensions (D) indicate that D increases from ~2.3 up to >3 moving from subseismic to coseismic slip rates. Grain angularity also changes with increasing slip rates, being particles more smoothed and rounded in sediments deformed at coseismic slip rates. As a whole, our results indicate that both grain size and shape distributions of experimentally deformed sediments progressively changes from subseismic to coseismic slip rate, thus helping to understand the deformation mechanisms in natural fault zones and to predict frictional and permeability properties of faults affecting shallow sediments.

  12. Note: Measurement of synchrotron radiation phase-space beam properties to verify astigmatism compensation in Fresnel zone plate focusing optics

    NASA Astrophysics Data System (ADS)

    Kagoshima, Yasushi; Miyagawa, Takamasa; Kagawa, Saki; Takeda, Shingo; Takano, Hidekazu

    2017-08-01

    The intensity distribution in phase space of an X-ray synchrotron radiation beamline was measured using a pinhole camera method, in order to verify astigmatism compensation by a Fresnel zone plate focusing optical system. The beamline is equipped with a silicon double crystal monochromator. The beam size and divergence at an arbitrary distance were estimated. It was found that the virtual source point was largely different between the vertical and horizontal directions, which is probably caused by thermal distortion of the monochromator crystal. The result is consistent with our astigmatism compensation by inclining a Fresnel zone plate.

  13. A photoacoustic technique to measure the properties of single cells

    NASA Astrophysics Data System (ADS)

    Strohm, Eric M.; Berndl, Elizabeth S. L.; Kolios, Michael C.

    2013-03-01

    We demonstrate a new technique to non-invasively determine the diameter and sound speed of single cells using a combined ultrasonic and photoacoustic technique. Two cell lines, B16-F1 melanoma cells and MCF7 breast cancer cells were examined using this technique. Using a 200 MHz transducer, the ultrasound backscatter from a single cell in suspension was recorded. Immediately following, the cell was irradiated with a 532 nm laser and the resulting photoacoustic wave recorded by the same transducer. The melanoma cells contain optically absorbing melanin particles, which facilitated photoacoustic wave generation. MCF7 cells have negligible optical absorption at 532 nm; the cells were permeabilized and stained with trypan blue prior to measurements. The measured ultrasound and photoacoustic power spectra were compared to theoretical equations with the cell diameter and sound speed as variables (Anderson scattering model for ultrasound, and a thermoelastic expansion model for photoacoustics). The diameter and sound speed were extracted from the models where the spectral shape matched the measured signals. However the photoacoustic spectrum for the melanoma cell did not match theory, which is likely because melanin particles are located around the cytoplasm, and not within the nucleus. Therefore a photoacoustic finite element model of a cell was developed where the central region was not used to generate a photoacoustic wave. The resulting power spectrum was in better agreement with the measured signal than the thermoelastic expansion model. The MCF7 cell diameter obtained using the spectral matching method was 17.5 μm, similar to the optical measurement of 16 μm, while the melanoma cell diameter obtained was 22 μm, similar to the optical measurement of 21 μm. The sound speed measured from the MCF7 and melanoma cell was 1573 and 1560 m/s, respectively, which is within acceptable values that have been published in literature.

  14. Effects of Corrugated Temperature Sheets on Optical Propagation along Quasi-Horizontal Paths in the Stably Stratified Atmosphere

    DTIC Science & Technology

    2015-12-11

    diameter) are consistent with theoretical predictions based on Taylor’s frozen- turbulence hypothesis and the geometrical - optics approximation. Short...theoretical predictions based on Taylor’s frozen- turbulence hypothesis and the geometrical - optics approximation. Short-term (less than a few seconds... turbulent , quasi-horizontal interfaces, or “sheets”. Collocated in- situ and optical field measurements conducted in the atmospheric surface layer

  15. Halting the fuse discharge propagation using optical fiber microwires.

    PubMed

    Rocha, A M; Fernandes, G; Domingues, F; Niehus, M; Pinto, A N; Facão, M; André, P S

    2012-09-10

    We report and analyze the halting of the fuse effect propagation in optical fiber microwires. The increase of the mode field diameter in the tapered region decreases the optical intensity resulting in the extinction of the fuse effect. This fiber element presents a low insertion loss and can be introduced in the optical network in order to protect the active equipment from the damage caused by the fuse effect.

  16. DETECTION OF MICROVASCULAR CHANGES IN EYES OF PATIENTS WITH DIABETES BUT NOT CLINICAL DIABETIC RETINOPATHY USING OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.

    PubMed

    de Carlo, Talisa E; Chin, Adam T; Bonini Filho, Marco A; Adhi, Mehreen; Branchini, Lauren; Salz, David A; Baumal, Caroline R; Crawford, Courtney; Reichel, Elias; Witkin, Andre J; Duker, Jay S; Waheed, Nadia K

    2015-11-01

    To evaluate the ability of optical coherence tomography angiography to detect early microvascular changes in eyes of diabetic individuals without clinical retinopathy. Prospective observational study of 61 eyes of 39 patients with diabetes mellitus and 28 control eyes of 22 age-matched healthy subjects that received imaging using optical coherence tomography angiography between August 2014 and March 2015. Eyes with concomitant retinal, optic nerve, and vitreoretinal interface diseases and/or poor-quality images were excluded. Foveal avascular zone size and irregularity, vessel beading and tortuosity, capillary nonperfusion, and microaneurysm were evaluated. Foveal avascular zone size measured 0.348 mm² (0.1085-0.671) in diabetic eyes and 0.288 mm² (0.07-0.434) in control eyes (P = 0.04). Foveal avascular zone remodeling was seen more often in diabetic than control eyes (36% and 11%, respectively; P = 0.01). Capillary nonperfusion was noted in 21% of diabetic eyes and 4% of control eyes (P = 0.03). Microaneurysms and venous beading were noted in less than 10% of both diabetic and control eyes. Both diabetic and healthy control eyes demonstrated tortuous vessels in 21% and 25% of eyes, respectively. Optical coherence tomography angiography was able to image foveal microvascular changes that were not detected by clinical examination in diabetic eyes. Changes to the foveal avascular zone and capillary nonperfusion were more prevalent in diabetic eyes, whereas vessel tortuosity was observed with a similar frequency in normal and diabetic eyes. Optical coherence tomography angiography may be able to detect diabetic eyes at risk of developing retinopathy and to screen for diabetes quickly and noninvasively before the systemic diagnosis is made.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ice, G.E.; Barbee, T.; Bionta, R.

    The increasing availability of synchrotron x-ray sources has stimulated the development of advanced hard x-ray (E{>=}5 keV) microprobes. New x-ray optics have been demonstrated which show promise for achieving intense submicron hard x-ray probes. These probes will be used for extraordinary elemental detection by x-ray fluorescence/absorption and for microdiffraction to identify phase and strain. The inherent elemental and crystallographic sensitivity of an x-ray microprobe and its inherently nondestructive and penetrating nature makes the development of an advanced hard x-ray microprobe an important national goal. In this workshop state-of-the-art hard x-ray microprobe optics were described and future directions were discussed. Genemore » Ice, Oak Ridge National Laboratory (ORNL), presented an overview of the current status of hard x-ray microprobe optics and described the use of crystal spectrometers to improve minimum detectable limits in fluorescent microprobe experiments. Al Thompson, Lawrence Berkeley Laboratory (LBL), described work at the Center for X-ray Optics to develop a hard x-ray microprobe based on Kirkpatrick-Baez (KB) optics. Al Thompson also showed the results of some experimental measurements with their KB optics. Malcolm Howells presented a method for bending elliptical mirrors and Troy Barbee commented on the use of graded d spacings to achieve highest efficiency in KB multilayer microfocusing. Richard Bionta, Lawrence Livermore National Laboratory (LLNL), described the development of the first hard x-ray zone plates and future promise of so called {open_quotes}jelly roll{close_quotes} or sputter slice zone plates. Wenbing Yun, Argonne National Laboratory (ANL), described characterization of jelly roll and lithographically produced zone plates and described the application of zone plates to focus extremely narrow bandwidths by nuclear resonance. This report summarizes the presentations of the workshop subgroup on hard x-ray microprobes.« less

  18. Hexagonal Hollow Tube Based Energy Absorbing Crash Buffers for Roadside Fixed Objects

    NASA Astrophysics Data System (ADS)

    Uddin, M. S.; Amirah Shafie, Nurul; Zivkovic, Grad

    2017-03-01

    The purpose of this study was to investigate the deformation of the energy absorbing hexagonal hollow tubes in a lateral compression. The aim is to design cost effective and high energy-absorbing buffer systems, which are capable of controlling out-of-control vehicles in high-speed zones. A nonlinear quasi-static finite element analysis was applied to determine the deformation and energy absorption capacity. The main parameters in the design were diameter and wall thickness of the tubes. Experimental test simulating the lateral compressive loading on a single tube was performed. Results show that as the diameter and the thickness increase, the deformation strength increases. Hexagonal tube with diameter of 219 mm and thickness of 4 mm is shown to have the highest energy absorption capability. Compared to existing cylindrical and octagonal shapes, the hexagonal tubes show the highest energy absorption capacity. Hexagonal tubes therefore can be regarded as a potential candidate for buffer designs in high speed zones. In addition, they would be compact, cost effective and facilitate ease of installation.

  19. Melanocytoma of the optic disk in the Korean population.

    PubMed

    Lee, Christopher S; Bae, Jeong H; Jeon, Ik H; Byeon, Suk H; Koh, Hyoung J; Lee, Sung C

    2010-01-01

    To report on the clinical features and the natural course of optic disk melanocytoma in the Korean population. A retrospective review of medical records was performed on 27 consecutive patients with optic disk melanocytoma. In cases with tumor enlargement, surface area and diameter of tumors were measured from fundus images using computer software. The median age at diagnosis was 46 years with a slight female predominance (63%). The median tumor diameter and height were 3.1 mm and 1.9 mm, respectively. There were no cases with tumor-related visual loss for a median follow-up of 2 years. Tumor enlargement was observed in 4 of 21 patients (19%) that had follow-up of 1 year or more with no malignant transformation. The mean change of tumor surface area was 2.4 mm (52% increase), and the mean change of tumor diameter was 1.8 mm over a mean follow-up of 53 months in 4 cases with tumor growth. Only tumor vascularization on fluorescent angiography correlated with tumor growth (Log-rank test; P = 0.049). Kaplan-Meier survival estimated that the tumor growth was 0% at 1 year, 14% at 5 years, and 57% at 8 years. Optic disk melanocytoma in the Korean population tends to be superiorly located in the optic disk, and visual prognosis was excellent. Periodic ocular examination is warranted because 57% of patients were estimated to show tumor enlargement by 8 years of follow-up.

  20. An integrated optics microfluidic device for detecting single DNA molecules.

    PubMed

    Krogmeier, Jeffrey R; Schaefer, Ian; Seward, George; Yantz, Gregory R; Larson, Jonathan W

    2007-12-01

    A fluorescence-based integrated optics microfluidic device is presented, capable of detecting single DNA molecules in a high throughput and reproducible manner. The device integrates microfluidics for DNA stretching with two optical elements for single molecule detection (SMD): a plano-aspheric refractive lens for fluorescence excitation (illuminator) and a solid parabolic reflective mirror for fluorescence collection (collector). Although miniaturized in size, both optical components were produced and assembled onto the microfluidic device by readily manufacturable fabrication techniques. The optical resolution of the device is determined by the small and relatively low numerical aperture (NA) illuminator lens (0.10 effective NA, 4.0 mm diameter) that delivers excitation light to a diffraction limited 2.0 microm diameter spot at full width half maximum within the microfluidic channel. The collector (0.82 annular NA, 15 mm diameter) reflects the fluorescence over a large collection angle, representing 71% of a hemisphere, toward a single photon counting module in an infinity-corrected scheme. As a proof-of-principle experiment for this simple integrated device, individual intercalated lambda-phage DNA molecules (48.5 kb) were stretched in a mixed elongational-shear microflow, detected, and sized with a fluorescence signal to noise ratio of 9.9 +/-1.0. We have demonstrated that SMD does not require traditional high numerical aperture objective lenses and sub-micron positioning systems conventionally used in many applications. Rather, standard manufacturing processes can be combined in a novel way that promises greater accessibility and affordability for microfluidic-based single molecule applications.

  1. Evaluation of data from test application of optical speed bars to highway work zones

    DOT National Transportation Integrated Search

    2004-08-01

    The proximity of traffic and workers in highway work zones demand that safety be a high priority. : The issue of traffic speeds in highway work zones has long been an issue receiving much attention. Over the : past three decades, many different measu...

  2. All-optical intensity modulation based on graphene-coated microfibre waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Ruiduo; Li, Diao; Jiang, Man; Wu, Hao; Xu, Xiang; Ren, Zhaoyu

    2018-03-01

    We investigate graphene-covered microfibre (GCM) waveguides, and analyse the microfibres' evanescent field distributions in different diameters and lengths by numerically simulation. According to the simulation results, we designed a graphene-based all-optical modulator using 980 nm and Amplified Spontaneous Emission (ASE) lasers, employing the microfibre's evanescent field induced light-graphene interaction. We studied the modulation effect that is influenced by the microfibre's diameter, number of graphene layers, and effective graphene length. Compared to a single graphene layer of shorter length, the double graphene layer with longer length presents stronger absorption and higher modulation depth. Using a 2- μm diameter microfibre covered by ∼0.3 cm double graphene sheets, we achieved a modulation depth of 8.45 dB. This modulator features ease of fabrication, low cost, and a controllable modulation depth.

  3. Transmission characteristics of femtosecond optical pulses in hollow-core fibers

    NASA Astrophysics Data System (ADS)

    Mohebbi, Mohammad

    2005-09-01

    Hollow-core fibers with fused silica and metal claddings are studied for transmission of femtosecond optical pulses at a wavelength of 800 nm. The measured transmission loss of a silver-coated hollow fiber with a core diameter of 250 μm is 0.44 dB/m. A bending loss of 1.1 dB/m was measured for this waveguide with a radius of curvature of 1 m. It is shown that the fundamental hybrid mode HE 11 has negligible pulse spreading. In the presence of higher order modes modal dispersion becomes dominant and depends strongly on the core diameter.

  4. Sensitivity Study of Ice Crystal Optical Properties in the 874 GHz Submillimeter Band

    NASA Technical Reports Server (NTRS)

    Tang, Guanglin; Yang, Ping; Wu, Dong L.

    2015-01-01

    Testing of an 874 GHz submillimeter radiometer on meteorological satellites is being planned to improve ice water content retrievals. In this paper we study the optical properties of ice cloud particles in the 874 GHz band. The results show that the bulk scattering and absorption coefficients of an ensemble of ice cloud particles are sensitive to the particle shape and effective diameter, whereas the latter is also sensitive to temperature. The co-polar back scattering cross-section is not sensitive to particle shape, temperature, and the effective diameter in the range of 50200 m.

  5. 5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station

    NASA Astrophysics Data System (ADS)

    Fields, Renny A.; Kozlowski, David A.; Yura, Harold T.; Wong, Robert L.; Wicker, Josef M.; Lunde, Carl T.; Gregory, Mark; Wandernoth, Bernhard K.; Heine, Frank F.; Luna, Joseph J.

    2011-11-01

    5.625 Gbps bidirectional laser communication at 1064 nm has been demonstrated on a repeatable basis between a Tesat coherent laser communication terminal with a 6.5 cm diameter ground aperture mounted inside the European Space Agency Optical Ground Station dome at Izana, Tenerife and a similar space-based terminal (12.4 cm diameter aperture) on the Near-Field InfraRed Experiment (NFIRE) low-earth-orbiting spacecraft. Both night and day bidirectional links were demonstrated with the longest being 177 seconds in duration. Correlation with atmospheric models and preliminary atmospheric r0 and scintillation measurements have been made for the conditions tested, suggesting that such coherent systems can be deployed successfully at still lower altitudes without resorting to the use of adaptive optics for compensation.

  6. Generation of diffraction-free optical beams using wrinkled membranes

    PubMed Central

    Li, Ran; Yi, Hui; Hu, Xiao; Chen, Leng; Shi, Guangsha; Wang, Weimin; Yang, Tian

    2013-01-01

    Wrinkling has become a well developed bottom-up technique to make artificial surface textures in about the last decade. However, application of the optical properties of long range ordered wrinkles has been limited to one dimensional gratings to date. We report the demonstration of macroscopic optical focusing using wrinkled membranes, in which concentric wrinkle rings on a gold-PDMS bilayer membrane convert collimated illuminations to diffraction-free focused beams. Beam diameters of 300–400 μm have been observed in the visible range, which are dominantly limited by the eccentricity of the current devices. Based upon agreement between theoretical and experimental results on eccentricity effects, we predict a decrease of the beam diameter to no more than around 50 μm, if eccentricity is eliminated. PMID:24072139

  7. Chaotic Zones around Rotating Small Bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lages, José; Shevchenko, Ivan I.; Shepelyansky, Dima L., E-mail: jose.lages@utinam.cnrs.fr

    Small bodies of the solar system, like asteroids, trans-Neptunian objects, cometary nuclei, and planetary satellites, with diameters smaller than 1000 km usually have irregular shapes, often resembling dumb-bells or contact binaries. The spinning of such a gravitating dumb-bell creates around it a zone of chaotic orbits. We determine its extent analytically and numerically. We find that the chaotic zone swells significantly if the rotation rate is decreased; in particular, the zone swells more than twice if the rotation rate is decreased 10 times with respect to the “centrifugal breakup” threshold. We illustrate the properties of the chaotic orbital zones in examples ofmore » the global orbital dynamics about asteroid 243 Ida (which has a moon, Dactyl, orbiting near the edge of the chaotic zone) and asteroid 25143 Itokawa.« less

  8. Radar-visible wind streaks in the Altiplano of Bolivia

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Christensen, P.

    1984-01-01

    Isolated knobs that are erosional remnants of central volcanoes or of folded rocks occur in several areas of the Altiplano are visible on both optical and images. The optically visible streaks occur in the immediate lee of the knobs, whereas the radar visible streaks occur in the zone downwind between the knobs. Aerial reconnaissance and field studies showed that the optically visible streaks consist of a series of small ( 100 m wide) barchan and barchanoid dunes, intradune sand sheets, and sand hummocks (large shrub coppice dunes) up to 15 m across and 5 m high. On LANDSAT images these features are poorly resolved but combine to form a bright streak. On the radar image, this area also appears brighter than the zone of the radar dark streak; evidently, the dunes and hummocks serve as radar reflectors. The radar dark streak consists of a relatively flat, smooth sand sheet which lacks organized aerolian bedforms, other than occasional ripples. Wind velocity profiles show a greater U value in the optically bright streak zone than in the radar dark streak.

  9. Detection of relatively penicillin G-resistant Neisseria meningitidis by disk susceptibility testing.

    PubMed Central

    Campos, J; Mendelman, P M; Sako, M U; Chaffin, D O; Smith, A L; Sáez-Nieto, J A

    1987-01-01

    Beginning in 1985, relatively penicillin G-resistant (Penr) meningococci which did not produce beta-lactamase were isolated from the blood and cerebrospinal fluid of patients in Spain. We identified 16 Penr (mean MIC, 0.3 microgram/ml; range, 0.1 to 0.7 microgram/ml) and 12 penicillin-susceptible (Pens; mean MIC, less than or equal to 0.06 microgram/ml) strains of Neisseria meningitidis by the agar dilution technique using an inoculum of 10(4) CFU and questioned which disk susceptibility test would best differentiate these two populations. We compared the disk susceptibility of these strains using disks containing 2 (P2) and 10 (P10) U of penicillin G, 2 (Am2) and 10 (Am10) micrograms of ampicillin, and 1 microgram of oxacillin (OX1). We also investigated susceptibility with disks containing 30 micrograms of each of cephalothin (CF30), cefoxitin (FOX30), cefuroxime (CXM30), and cefotaxime (CTX30) and 75 micrograms of cefoperazone (CFP75) and determined by cluster analysis any correlation with the zone diameters obtained with P2 disks. Using the P2 and AM2 disks (in contrast to the P10 and AM10 disks), we correctly differentiated all the Penr from Pens isolates. In addition, the zone diameters with the P2 disk gave the best correlation with the penicillin G MIC determinations. All 16 Penr strains and 3 of 12 Pens strains showed zone diameters of 6 mm around OX1 disks, limiting the usefulness of OX1 disks. The zone diameters obtained with CF30, CXM30, and OX1 disks correlated with those obtained with the P2 disk, which suggests that these antibiotics have similar effects on these strains. In contrast, the data obtained with FOX30, CTX30, and CFP75 disks did not cluster with those obtained with the P2 disk, which suggests that there was a difference in the bacterial target or reflects their greater activity. We conclude that the P2 disk tests more readily identify Penr meningococci than do the standard P10 disk tests. PMID:3124729

  10. Laser-induced retinal injury studies with wavefront correction

    NASA Astrophysics Data System (ADS)

    Lund, Brian J.; Lund, David J.; Edsall, Peter R.

    2007-02-01

    The ability of a laser beam to damage the retina of the eye depends on the accuracy to which the optics of the eye focuses the beam onto the retina. Data acquired through retinal injury threshold studies indicate that the focus achieved by the eye of an anesthetized non-human primate (NHP) is worse than theoretical predictions, and therefore the measured injury threshold will decrease with decreasing retinal irradiance area until the beam diameter at the retina is less than 10 μm. However, a number of investigations over a range of wavelengths and exposure durations show that the incident energy required to produce a retinal injury in a NHP eye does not decrease for retinal irradiance diameters smaller than ~100 μm, but reaches a minimum at that diameter and remains nearly constant for smaller diameters. A possible explanation is that uncompensated aberrations of the eye of the anesthetized NHP are larger than predicted. Focus is a dynamic process which is purposely defeated while performing measurements of retinal injury thresholds. Optical wavefront correction systems have become available which have the capability to compensate for ocular aberrations. This paper will report on an injury threshold experiment which incorporates an adaptive optics system to compensate for the aberrations of a NHP eye during exposure to a collimated laser beam, therefore producing a near diffraction limited beam spot on the retina.

  11. Automatic retinal blood vessel parameter calculation in spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wehbe, Hassan; Ruggeri, Marco; Jiao, Shuliang; Gregori, Giovanni; Puliafito, Carmen A.

    2007-02-01

    Measurement of retinal blood vessel parameters like the blood blow in the vessels may have significant impact on the study and diagnosis of glaucoma, a leading blinding disease worldwide. Optical coherence tomography (OCT) is a noninvasive imaging technique that can provide not only microscopic structural imaging of the retina but also functional information like the blood flow velocity in the retina. The aim of this study is to automatically extract the parameters of retinal blood vessels like the 3D orientation, the vessel diameters, as well as the corresponding absolute blood flow velocity in the vessel. The parameters were extracted from circular OCT scans around the optic disc. By removing the surface reflection through simple segmentation of the circular OCT scans a blood vessel shadowgram can be generated. The lateral coordinates and the diameter of each blood vessel are extracted from the shadowgram through a series of signal processing. Upon determination of the lateral position and the vessel diameter, the coordinate in the depth direction of each blood vessel is calculated in combination with the Doppler information for the vessel. The extraction of the vessel coordinates and diameter makes it possible to calculate the orientation of the vessel in reference to the direction of the incident sample light, which in turn can be used to calculate the absolute blood flow velocity and the flow rate.

  12. Observation of Burial and Migration of Instrumented Surrogate Munitions Deployed in the Swash Zone

    NASA Astrophysics Data System (ADS)

    Cristaudo, D.; Puleo, J. A.; Bruder, B. L.

    2017-12-01

    Munitions (also known as unexploded ordnance; UXO) in the nearshore environment due to past military activities, may be found on the beach, constituting a risk for beach users. Munitions may be transported from offshore to shallower water and/or migrate along the coast. In addition, munitions may bury in place or be exhumed due to hydrodynamic forcing. Observations on munitions mobility have generally been collected offshore, while observations in the swash zone are scarce. The swash zone is the region of the beach alternately covered by wave runup where hydrodynamic processes may be intense. Studies of munitions mobility require the use of realistic surrogates to quantify mobility/burial and hydrodynamic forcing conditions. Four surrogates (BLU-61 Cluster Bomb, 81 mm Mortar, M151-70 Hydra Rocket and M107 155 mm High Explosive Howitzer) were developed and tested during large-scale laboratory and field studies. Surrogates house sensors that measure different components of motion. Errors between real munitions and surrogate parameters (mass, center of gravity and axial moment of inertia) are all within an absolute error of 20%. Internal munitions sensors consist of inertial motion units (for acceleration and angular velocity in and around the three directions and orientation), pressure transducers (for water depth above surrogate), shock recorders (for high frequency acceleration to detect wave impact on the surrogate), and an in-house designed array of optical sensors (for burial/exposure and rolling). An in situ array of sensors to measure hydrodynamics, bed morphology and sediment concentrations, was deployed in the swash zone, aligned with the surrogate deployment. Data collected during the studies will be shown highlighting surrogate sensor capabilities. Sensors response will be compared with GPS measurements and imagery from cameras overlooking the study sites of surrogate position as a function of time. Examples of burial/exposure and migration of surrogates will be discussed. Relationships between burial/migration and incoming forcing conditions, bed slope and munitions characteristics (such as specific density, length/diameter) will all be shown.

  13. Close-in characteristics of LH2/LOX reactions

    NASA Technical Reports Server (NTRS)

    Riehl, W. A.; Ullian, L. J.

    1985-01-01

    In deriving shock overpressures from space vehicles employing LH2 and LOX, separate methods of analyses and prediction are recommended, as a function of the distance. Three methods of treatment are recommended. For the Far Field - where the expected shock overpressure is less than 40 psi (lambda = 5) - use the classical PYRO approach to determine TNT yield, and employ classical ordnance (Kingery) curve to obtain the overall value. For the Close-In Range, a suggested limit is 3D, or a zone from a distance of three times the tank diameter to the tank wall. Rather than estimate a specific distance from the center of explosion to the target, it is only necessary to estimate whether this could be within one, two, or three diameters away from the wall; i.e., in the 1, 2, or 3D zone. Then assess whether mixing mode is by the PYRO CBGS (spill) mode or CBM (internal mixing) mode. From the zone and mixing mode, the probability of attaining various shock overpressures is determined from the plots provided herein. For the transition zone, between 40 psi and the 3D distance, it is tentatively recommended that both of the preceding methods be used, and to be conservative, the higher resulting value be used.

  14. Antimicrobial activity of lactobacillus strains against uropathogens.

    PubMed

    Shim, Yoon Hee; Lee, Seung Joo; Lee, Jung Won

    2016-10-01

    The use of lactobacillus probiotics has been proposed as an alternative to prophylactic antibiotics for preventing urinary tract infection (UTI) in the era of antibiotic resistance. In this study, the antimicrobial activity of lactobacillus strains against uropathogens, was evaluated and compared with that of antibiotics. To evaluate inhibitory activities of lactobacilli against uropathogens, six lactobacillus strains (L. gasseri, L. rhamnosus, L. acidophilus, L. plantarum, L. paracasei, L. acidophilus) and four representative uropathogens of infantile UTI (extended-spectrum beta-lactamase [ESBL](-) Escherichia coli, ESBL(+) E. coli, Proteus vulgaris, Enterococcus fecalis) were selected. Lactobacillus strain in vitro inhibition of each uropathogen was evaluated on MRS agar well diffusion assay and compared with that of commercial antibiotic discs. Average inhibitory zone for each of the six lactobacillus strains against the four uropathogens showed slightly different but consistent inhibition (inhibitory zone diameter, 10.5-20.0 mm). This was different to that of the antibiotic discs, which had a wider range of inhibition (inhibitory zone diameter, <6.0-27.5 mm) depending on the uropathogen resistance pattern. The inhibitory zone of the six lactobacillus strains was between that of sensitive and resistant antibiotics (P < 0.05). Lactobacillus strains had similar moderate antimicrobial activities against uropathogens. Further research is needed to ascertain the strains with the best probiotic potential. © 2016 Japan Pediatric Society.

  15. Automatic development of normal zone in composite MgB2/CuNi wires with different diameters

    NASA Astrophysics Data System (ADS)

    Jokinen, A.; Kajikawa, K.; Takahashi, M.; Okada, M.

    2010-06-01

    One of the promising applications with superconducting technology for hydrogen utilization is a sensor with a magnesium-diboride (MgB2) superconductor to detect the position of boundary between the liquid hydrogen and the evaporated gas stored in a Dewar vessel. In our previous experiment for the level sensor, the normal zone has been automatically developed and therefore any energy input with the heater has not been required for normal operation. Although the physical mechanism for such a property of the MgB2 wire has not been clarified yet, the deliberate application might lead to the realization of a simpler superconducting level sensor without heater system. In the present study, the automatic development of normal zone with increasing a transport current is evaluated for samples consisting of three kinds of MgB2 wires with CuNi sheath and different diameters immersed in liquid helium. The influences of the repeats of current excitation and heat cycle on the normal zone development are discussed experimentally. The aim of this paper is to confirm the suitability of MgB2 wire in a heater free level sensor application. This could lead to even more optimized design of the liquid hydrogen level sensor and the removal of extra heater input.

  16. Implementation of digital optical capillaroscopy for quantifying and estimating the microvascular abnormalities in type 2 diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Gurfinkel, Yu. I.; Suchkova, O. V.; Sasonko, M. L.; Priezzhev, A. V.

    2016-04-01

    This study is aimed to define the extent of digital capillaroscopy possibilities for the quantification and estimation of microvascular abnormalities in type 2 diabetes mellitus (T2DM). A total of 196 adult persons were enrolled in the study including the group of compensated T2DM (n = 52), decompensated diabetics (n = 68), and healthy volunteers (n = 76) with normal blood glucose and without signs of cardiovascular pathology. All participants of the study were examined with the digital optical capillaroscope ("AET", Russia). This instrument is equipped with an image-processing program allowing for quantifying the diameters of the arterial and venous segments of the capillaries and their ratio (coefficient of remodeling), perivascular zone size, capillary blood velocity, and the degree of arterial loops narrowing and the density of the capillary network. Also we estimated the relative amount of coil-shaped capillaries. The study revealed significant difference in the capillary density and the remodeling coefficient in comparison of T2DM patients with non-diabetic individuals. Significant changes are found in the decompensated T2DM group compared to the compensated group of diabetic patients. Furthermore, the number of coil-shaped capillaries differed greatly in T2DM patients as compared to the healthy subjects. The study did not reveal any statistically significant differences in the capillary density between the patients with compensated and decompensated T2DM. The digital optical capillaroscope equipped with the advanced image-processing algorithm opens up new possibilities for obtaining clinically important information on microvascular abnormalities in patients suffering from diabetes mellitus.

  17. [The possibilities for determining the shooting distance by means of inductively coupled plasma optical emission spectrometry].

    PubMed

    Svetlolobov, D Yu; Luzanova, I S; Zorin, Yu V; Makarov, I Yu; Lorents, A S

    The objective of the present study was to evaluate the possibilities for determining the shooting distance for the MR-79-9 Makarych non-lethal pistol (diameter 9 mm, rubber bullet, shot energy 50 J) by means of inductively coupled plasma optical emission spectrometry. The experiments were carried under the conditions of a ballistic shooting range making the shots from a distance of 0 to 120 cm. The 15×15 cm pieces of muslin fabric and biomaterials (leather) were used as the targets. The morphological signs of the damages inflicted to the targets were evaluated either with the unassisted eye, a criminalistical magnifying glass or the SMT-4 binocular stereoscopic microscope (Germany). The shot products, the area and boundaries of their dispersion were determined in reflected IR and filtered UV rays. Inductively coupled plasma optical emission spectrometry was applied for the qualitative and quantitative analysis of various shot products from the entry hole zone with the contamination (wipedown) bands and contusion collars being 0.2-0.5 cm (group 1) and 2-3 cm (group 2) in width, with special reference to the identification of Ba, Cu, Cr, Fe, K, Ni, Pb, Sb, Sn and Zn. The results of the study give evidence that the detection of Ba, Pb, and Sb among the products of a shot fired from the MR-79-9 Makarych non-lethal pistol is of especially high informative value for determining the shooting distance whereas the detection of Cr, K, Sn and Ni is of a minimum value for this purpose.

  18. A New Optical Oxygen Sensor Reveals Spatial and Temporal Variations of Dissolved Oxygen at Ecohydrological Interfaces

    NASA Astrophysics Data System (ADS)

    Brandt, T.; Schmidt, C.; Fleckenstein, J. H.; Vieweg, M.; Harjung, A.

    2015-12-01

    The spatial and temporal distribution of dissolved oxygen (DO) at highly reactive aquatic interfaces, e.g. in the hyporheic zone (HZ), is a primary indicator of redox and interlinked biogeochemical zonations. However, continuous measuring of DO over time and depths is challenging due to the dynamic and potentially heterogenic nature of the HZ. We further developed a novel technology for spatially continuous in situ vertical oxygen profiling based on optical sensing (Vieweg et al, 2013). Continuous vertical measurements to a depth of 50 cm are obtained by the motor-controlled insertion of a side-firing Polymer Optical Fiber (POF) into tubular DO probes. Our technology allows minimally invasive DO measurements without DO consumption at high spatial resolution in the mm range. The reduced size of the tubular probe (diameter 5 mm) substantially minimizes disturbance of flow conditions. We tested our technology in situ in the HZ of an intermittent stream during the drying period. Repeated DO measurements were taken over a total duration of six weeks at two locations up- and downstream of a pool-cascade sequence. We were able to precisely map the spatial DO distribution which exhibited sharp gradients and rapid temporal changes as a function of changing hydrologic conditions. Our new vertical oxygen sensing technology will help to provide new insights to the coupling of transport of DO and biogeochemical reactions at aquatic interfaces. Vieweg, M., Trauth, N., Fleckenstein, J. H., Schmidt, C. (2013): Robust Optode-Based Method for Measuring in Situ Oxygen Profiles in Gravelly Streambeds. Environmental Science & Technology. doi:10.1021/es401040w

  19. Albedos of Jovian Trojans, Hildas and Centaurs

    NASA Astrophysics Data System (ADS)

    Romanishin, William; Tegler, Stephen C.

    2017-10-01

    We present distributions of optical V band albedos for samples of outer solar system minor bodies including Centaurs, Jovian Trojans and Hildas. Diameters come almost entirely from the NEOWISE catalog (Mainzer etal 2016- Planetary Data System). Optical photometry (H values) for about 2/3 of the approximately 2700 objects studied are from PanStarrrs (Veres et al 2015 Icarus 261, 34). The PanStarrs optical photometry is supplemented by H values from JPL Horizons (corrected to be on the same photometric system as the PanStarrs data) for the objects in the NEOWISE catalog that are not in the PanStarrs catalog. We compare the albedo distributions of various pairs of subsamples using the nonparametric Wilcoxon rank sum test. Examples of potentially interesting comparisons include: (1) The Hildas are 15-25% darker than the Trojans at a very high level of statistical significance. If the Hildas and Trojans started out with similar surfaces, the Hildas may have darkened due to the effects of gardening as they pass through zone III of the asteroid belt. (2) The median albedo of the gray Centaurs lies between that of the L4 and L5 Trojan groups (3) The median L5 Trojan cloud albedo is about 10% darker than that of the L4 cloud at a high level of significance. However, the modes of the L4 and L5 albedo distributions are very similar, perhaps indicating the presence of a distinct brighter component in the L4 cloud that is not found in the L5 cloud.

  20. [In vitro testing of yeast resistance to antimycotic substances].

    PubMed

    Potel, J; Arndt, K

    1982-01-01

    Investigations have been carried out in order to clarify the antibiotic susceptibility determination of yeasts. 291 yeast strains of different species were tested for sensitivity to 7 antimycotics: amphotericin B, flucytosin, nystatin, pimaricin, clotrimazol, econazol and miconazol. Additionally to the evaluation of inhibition zone diameters and MIC-values the influence of pH was examined. 1. The dependence of inhibition zone diameters upon pH-values varies due to the antimycotic tested. For standardizing purposes the pH 6.0 is proposed; moreover, further experimental parameters, such as nutrient composition, agar depth, cell density, incubation time and -temperature, have to be normed. 2. The relation between inhibition zone size and logarythmic MIC does not fit a linear regression analysis when all species are considered together. Therefore regression functions have to be calculated selecting the individual species. In case of the antimycotics amphotericin B, nystatin and pimaricin the low scattering of the MIC-values does not allow regression analysis. 3. A quantitative susceptibility determination of yeasts--particularly to the fungistatical substances with systemic applicability, flucytosin and miconazol, -- is advocated by the results of the MIC-tests.

  1. Monitoring techniques for the manufacture of tapered optical fibers.

    PubMed

    Mullaney, Kevin; Correia, Ricardo; Staines, Stephen E; James, Stephen W; Tatam, Ralph P

    2015-10-01

    The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 μm and with waist lengths of 20 mm using single-mode SMF-28 fiber.

  2. Float-zone crystal growth of CdGeAs 2 in microgravity: numerical simulation and experiment

    NASA Astrophysics Data System (ADS)

    Saghir, M. Z.; Labrie, D.; Ginovker, A.; Paton, B. E.; George, A. E.; Olson, K.; Simpson, A. M.

    2000-01-01

    Two CdGeAs 2 samples have been successfully grown under microgravity on SPACEHAB-SH04 during the STS-77 Space Shuttle Endeavour mission. One polycrystalline and one single crystal CdGeAs 2 feed rods with 9 mm diameter were processed by the float-zone method. An eutectic salt of LiCl and KCl was used as an encapsulant to suppress Cd and As evaporation from the melt. Numerical modeling of the float zone shows that salt encapsulation plays an important role in reducing Marangoni convection. The interface between the salt and CdGeAs 2 was shown not to deform in the float zone due to the weak capillary pressure.

  3. Testing vision with angular and radial multifocal designs using Adaptive Optics.

    PubMed

    Vinas, Maria; Dorronsoro, Carlos; Gonzalez, Veronica; Cortes, Daniel; Radhakrishnan, Aiswaryah; Marcos, Susana

    2017-03-01

    Multifocal vision corrections are increasingly used solutions for presbyopia. In the current study we have evaluated, optically and psychophysically, the quality provided by multizone radial and angular segmented phase designs. Optical and relative visual quality were evaluated using 8 subjects, testing 6 phase designs. Optical quality was evaluated by means of Visual Strehl-based-metrics (VS). The relative visual quality across designs was obtained through a psychophysical paradigm in which images viewed through 210 pairs of phase patterns were perceptually judged. A custom-developed Adaptive Optics (AO) system, including a Hartmann-Shack sensor and an electromagnetic deformable mirror, to measure and correct the eye's aberrations, and a phase-only reflective Spatial Light Modulator, to simulate the phase designs, was developed for this study. The multizone segmented phase designs had 2-4 zones of progressive power (0 to +3D) in either radial or angular distributions. The response of an "ideal observer" purely responding on optical grounds to the same psychophysical test performed on subjects was calculated from the VS curves, and compared with the relative visual quality results. Optical and psychophysical pattern-comparison tests showed that while 2-zone segmented designs (angular & radial) provided better performance for far and near vision, 3- and 4-zone segmented angular designs performed better for intermediate vision. AO-correction of natural aberrations of the subjects modified the response for the different subjects but general trends remained. The differences in perceived quality across the different multifocal patterns are, in a large extent, explained by optical factors. AO is an excellent tool to simulate multifocal refractions before they are manufactured or delivered to the patient, and to assess the effects of the native optics to their performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Fiber Optic Communications Technology. A Status Report.

    ERIC Educational Resources Information Center

    Hull, Joseph A.

    Fiber optic communications (communications over very pure glass transmission channels of diameter comparable to a human hair) is an emerging technology which promises most improvements in communications capacity at reasonable cost. The fiber transmission system offers many desirable characteristics representing improvements over conventional…

  5. The Effect of Age on Optic Nerve Axon Counts, SDOCT Scan Quality, and Peripapillary Retinal Nerve Fiber Layer Thickness Measurements in Rhesus Monkeys

    PubMed Central

    Fortune, Brad; Reynaud, Juan; Cull, Grant; Burgoyne, Claude F.; Wang, Lin

    2014-01-01

    Purpose To evaluate the effect of age on optic nerve axon counts, spectral-domain optical coherence tomography (SDOCT) scan quality, and peripapillary retinal nerve fiber layer thickness (RNFLT) measurements in healthy monkey eyes. Methods In total, 83 healthy rhesus monkeys were included in this study (age range: 1.2–26.7 years). Peripapillary RNFLT was measured by SDOCT. An automated algorithm was used to count 100% of the axons and measure their cross-sectional area in postmortem optic nerve tissue samples (N = 46). Simulation experiments were done to determine the effects of optical changes on measurements of RNFLT. An objective, fully-automated method was used to measure the diameter of the major blood vessel profiles within each SDOCT B-scan. Results Peripapillary RNFLT was negatively correlated with age in cross-sectional analysis (P < 0.01). The best-fitting linear model was RNFLT(μm) = −0.40 × age(years) + 104.5 μm (R2 = 0.1, P < 0.01). Age had very little influence on optic nerve axon count; the result of the best-fit linear model was axon count = −1364 × Age(years) + 1,210,284 (R2 < 0.01, P = 0.74). Older eyes lost the smallest diameter axons and/or axons had an increased diameter in the optic nerve of older animals. There was an inverse correlation between age and SDOCT scan quality (R = −0.65, P < 0.0001). Simulation experiments revealed that approximately 17% of the apparent cross-sectional rate of RNFLT loss is due to reduced scan quality associated with optical changes of the aging eye. Another 12% was due to thinning of the major blood vessels. Conclusions RNFLT declines by 4 μm per decade in healthy rhesus monkey eyes. This rate is approximately three times faster than loss of optic nerve axons. Approximately one-half of this difference is explained by optical degradation of the aging eye reducing SDOCT scan quality and thinning of the major blood vessels. Translational Relevance Current models used to predict retinal ganglion cell losses should be reconsidered. PMID:24932430

  6. Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers.

    PubMed

    Cao, Yingchun; Jin, Wei; Ho, Lut Hoi; Liu, Zhibo

    2012-01-15

    We demonstrate gas detection based on evanescent-wave photoacoustic (PA) spectroscopy with tapered optical fibers. Evanescent-field instead of open-path absorption is exploited for PA generation, and a quartz tuning fork is used for PA detection. A tapered optical fiber with a diameter down to the wavelength scale demonstrates detection sensitivity similar to an open-path system but with the advantages of easier optical alignment, smaller insertion loss, and multiplexing capability.

  7. From optics testing to micro optics testing

    NASA Astrophysics Data System (ADS)

    Brock, Christian; Dorn, Ralf; Pfund, Johannes

    2017-10-01

    Testing micro optics, i.e. lenses with dimensions down to 0.1mm and less, with high precision requires a dedicated design of the testing device, taking into account propagation and wave-optical effects. In this paper, we discuss testing methods based on Shack-Hartmann wavefront technology for functional testing in transmission and for the measurement of surface shape in reflection. As a first example of more conventional optics testing, i.e. optics in the millimeter range, we present the measurement of binoculars in transmission, and discuss the measured wave aberrations and imaging quality. By repeating the measurement at different wavelengths, information on chromatic effects is retrieved. A task that is often tackled using Shack-Hartman wavefront sensors is the alignment of collimation optics in front of a light source. In case of a micro-optical collimation unit with a 1/e² beam diameter of ca. 1mm, we need adapted relay optics for suitable beam expansion and well-defined imaging conditions. In this example, we will discuss the alignment process and effects of the relay optics magnification, as well as typical performance data. Oftentimes, micro optics are fabricated not as single pieces, but as mass optics, e.g. by lithographic processes. Thus, in order to reduce tooling and alignment time, an automated test procedure is necessary. We present an approach for the automated testing of wafer- or tray-based micro optics, and discuss transmission and reflection measurement capabilities. Exemplary performance data is shown for a sample type with 30 microns in diameter, where typical repeatabilities of a few nanometers (rms) are reached.

  8. Diffractive micro-optical element with nonpoint response

    NASA Astrophysics Data System (ADS)

    Soifer, Victor A.; Golub, Michael A.

    1993-01-01

    Common-use diffractive lenses have microrelief zones in the form of simple rings that provide only an optical power but do not contain any image information. They have a point-image response under point-source illumination. We must use a more complicated non-point response to focus a light beam into different light marks, letter-type images as well as for optical pattern recognition. The current presentation describes computer generation of diffractive micro- optical elements with complicated curvilinear zones of a regular piecewise-smooth structure and grey-level or staircase phase microrelief. The manufacture of non-point response elements uses the steps of phase-transfer calculation and orthogonal-scan masks generation or lithographic glass etching. Ray-tracing method is shown to be applicable in this task. Several working samples of focusing optical elements generated by computer and photolithography are presented. Using the experimental results we discuss here such applications as laser branding.

  9. Source Apportionment of PM2.5 Mass and Optical Attenuation Over an Ecologically Sensitive Zone in Central India by Positive Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Nirmalkar, J.; Raman, R. S.

    2016-12-01

    Ambient PM2.5 samples (N=366) were collected over an ecologically sensitive zone (Van Vihar National Park) in Bhopal, Central India for two years (01 January, 2012 to 31 December, 2013). Samples were collected using three co-located Mini-Vol® samplers on Teflon, Nylon, and Quartz filter substrates. The aerosol was then chemically characterized for water-soluble inorganic ions, elements, and carbon fractions (elemental carbon and organic carbon) using ion chromatography, ED-XRF, and thermal-optical EC/OC analyzer, respectively. The optical attenuation (at 370 nm and 800 nm) of PM2.5 aerosols was also determined by optical transmissometry (OT-21). The application of Positive matrix factorization (PMF) to a combination of PM2.5 mass, its ions, elements, carbon fractions, and optical attenuation and its outcomes will be discussed.

  10. Bio-optical profile data report coastal transition zone program, R/V Thomas Washington, June 24 - July 21, 1988

    NASA Technical Reports Server (NTRS)

    Davis, Curtiss O.; Rhea, W. Joseph

    1990-01-01

    Twenty-three vertical profiles of the bio-optical properties of the ocean were made during a research cruise on the R/V Thomas Washington, June 24 to July 21, 1988, as part of the Coastal Transition Zone Program off Point Arena, California. A summary is given, to provide investigators with an overview of the data collected. The entire data set is available in digital form for interested researchers.

  11. Morphology, topography, and optics of the orthokeratology cornea

    NASA Astrophysics Data System (ADS)

    Faria-Ribeiro, Miguel; Belsue, Rafael Navarro; López-Gil, Norberto; González-Méijome, José Manuel

    2016-07-01

    The goal of this work was to objectively characterize the external morphology, topography, and optics of the cornea after orthokeratology (ortho-k). A number of 24 patients between the ages of 17 and 30 years (median=24 years) were fitted with Corneal Refractive Therapy® contact lenses to correct myopia between -2.00 and -5.00 diopters (D) (median=-3.41 D). A classification algorithm was applied to conduct an automatic segmentation based on the mean local curvature. As a result, three zones (optical zone, transition zone, and peripheral zone) were delimited. Topographical analysis was provided through global and zonal fit to a general ellipsoid. Ray trace on partially customized eye models provided wave aberrations and retinal image quality. Monozone topographic description of the ortho-k cornea loses accuracy when compared with zonal description. Primary (C40) and secondary (C60) spherical aberration (SA) coefficients for a 5-mm pupil increased 3.68 and 19 times, respectively, after the treatments. The OZ area showed a strong correlation with C40 (r=-0.49, p<0.05) and a very strong correlation with C60 (r=0.78, p<0.01). The OZ, as well as the TZ, areas did not correlate with baseline refraction. The increase in the eye's positive SA after ortho-k is the major factor responsible for the decreased retinal optical quality of the unaccommodated eye.

  12. Optical Design of the LSST Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S S; Seppala, L; Gilmore, K

    2008-07-16

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, modified Paul-Baker design, with an 8.4-meter primary mirror, a 3.4-m secondary, and a 5.0-m tertiary feeding a camera system that includes a set of broad-band filters and refractive corrector lenses to produce a flat focal plane with a field of view of 9.6 square degrees. Optical design of the camera lenses and filters is integrated with optical design of telescope mirrors to optimize performance, resulting in excellent image quality over the entire field from ultra-violet to near infra-red wavelengths. The LSST camera optics design consists of three refractive lenses withmore » clear aperture diameters of 1.55 m, 1.10 m and 0.69 m and six interchangeable, broad-band, filters with clear aperture diameters of 0.75 m. We describe the methodology for fabricating, coating, mounting and testing these lenses and filters, and we present the results of detailed tolerance analyses, demonstrating that the camera optics will perform to the specifications required to meet their performance goals.« less

  13. Large aperture segmented optics for space-to-ground communications.

    PubMed

    Lucy, R F

    1968-08-01

    A large aperture, moderate quality segmented optical array for use in noncoherent space-to-ground laser communications is determined as a function of resolution, diameter, focal length, and number of segments in the array. Secondary optics and construction tolerances are also discussed. Performance predictions show a typical receiver to be capable of megahertz communications at Mars distances during daylight operation.

  14. A finite element method model to simulate laser interstitial thermo therapy in anatomical inhomogeneous regions

    PubMed Central

    Mohammed, Yassene; Verhey, Janko F

    2005-01-01

    Background Laser Interstitial ThermoTherapy (LITT) is a well established surgical method. The use of LITT is so far limited to homogeneous tissues, e.g. the liver. One of the reasons is the limited capability of existing treatment planning models to calculate accurately the damage zone. The treatment planning in inhomogeneous tissues, especially of regions near main vessels, poses still a challenge. In order to extend the application of LITT to a wider range of anatomical regions new simulation methods are needed. The model described with this article enables efficient simulation for predicting damaged tissue as a basis for a future laser-surgical planning system. Previously we described the dependency of the model on geometry. With the presented paper including two video files we focus on the methodological, physical and mathematical background of the model. Methods In contrast to previous simulation attempts, our model is based on finite element method (FEM). We propose the use of LITT, in sensitive areas such as the neck region to treat tumours in lymph node with dimensions of 0.5 cm – 2 cm in diameter near the carotid artery. Our model is based on calculations describing the light distribution using the diffusion approximation of the transport theory; the temperature rise using the bioheat equation, including the effect of microperfusion in tissue to determine the extent of thermal damage; and the dependency of thermal and optical properties on the temperature and the injury. Injury is estimated using a damage integral. To check our model we performed a first in vitro experiment on porcine muscle tissue. Results We performed the derivation of the geometry from 3D ultrasound data and show for this proposed geometry the energy distribution, the heat elevation, and the damage zone. Further on, we perform a comparison with the in-vitro experiment. The calculation shows an error of 5% in the x-axis parallel to the blood vessel. Conclusions The FEM technique proposed can overcome limitations of other methods and enables an efficient simulation for predicting the damage zone induced using LITT. Our calculations show clearly that major vessels would not be damaged. The area/volume of the damaged zone calculated from both simulation and in-vitro experiment fits well and the deviation is small. One of the main reasons for the deviation is the lack of accurate values of the tissue optical properties. In further experiments this needs to be validated. PMID:15631630

  15. Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers.

    PubMed

    Lee, H W; Schmidt, M A; Russell, R F; Joly, N Y; Tyagi, H K; Uebel, P; Russell, P St J

    2011-06-20

    We report a novel splicing-based pressure-assisted melt-filling technique for creating metallic nanowires in hollow channels in microstructured silica fibers. Wires with diameters as small as 120 nm (typical aspect ration 50:1) could be realized at a filling pressure of 300 bar. As an example we investigate a conventional single-mode step-index fiber with a parallel gold nanowire (wire diameter 510 nm) running next to the core. Optical transmission spectra show dips at wavelengths where guided surface plasmon modes on the nanowire phase match to the glass core mode. By monitoring the side-scattered light at narrow breaks in the nanowire, the loss could be estimated. Values as low as 0.7 dB/mm were measured at resonance, corresponding to those of an ultra-long-range eigenmode of the glass-core/nanowire system. By thermal treatment the hollow channel could be collapsed controllably, permitting creation of a conical gold nanowire, the optical properties of which could be monitored by side-scattering. The reproducibility of the technique and the high optical quality of the wires suggest applications in fields such as nonlinear plasmonics, near-field scanning optical microscope tips, cylindrical polarizers, optical sensing and telecommunications.

  16. Multi-Instrument Manager Tool for Data Acquisition and Merging of Optical and Electrical Mobility Size Distributions

    NASA Astrophysics Data System (ADS)

    Tritscher, Torsten; Koched, Amine; Han, Hee-Siew; Filimundi, Eric; Johnson, Tim; Elzey, Sherrie; Avenido, Aaron; Kykal, Carsten; Bischof, Oliver F.

    2015-05-01

    Electrical mobility classification (EC) followed by Condensation Particle Counter (CPC) detection is the technique combined in Scanning Mobility Particle Sizers(SMPS) to retrieve nanoparticle size distributions in the range from 2.5 nm to 1 μm. The detectable size range of SMPS systems can be extended by the addition of an Optical Particle Sizer(OPS) that covers larger sizes from 300 nm to 10 μm. This optical sizing method reports an optical equivalent diameter, which is often different from the electrical mobility diameter measured by the standard SMPS technique. Multi-Instrument Manager (MIMTM) software developed by TSI incorporates algorithms that facilitate merging SMPS data sets with data based on optical equivalent diameter to compile single, wide-range size distributions. Here we present MIM 2.0, the next-generation of the data merging tool that offers many advanced features for data merging and post-processing. MIM 2.0 allows direct data acquisition with OPS and NanoScan SMPS instruments to retrieve real-time particle size distributions from 10 nm to 10 μm, which we show in a case study at a fireplace. The merged data can be adjusted using one of the merging options, which automatically determines an overall aerosol effective refractive index. As a result an indirect and average characterization of aerosol optical and shape properties is possible. The merging tool allows several pre-settings, data averaging and adjustments, as well as the export of data sets and fitted graphs. MIM 2.0 also features several post-processing options for SMPS data and differences can be visualized in a multi-peak sample over a narrow size range.

  17. Controllable photoinduced optical attenuation in a single-mode optical fiber by irradiation of a femtosecond pulse laser.

    PubMed

    Himei, Yusuke; Qiu, Jianrong; Nakajima, Sotohiro; Sakamoto, Akihiko; Hirao, Kazuyuki

    2004-12-01

    Novel optical attenuation fibers were fabricated by the irradiation of a focused infrared femtosecond pulsed laser onto the core of a silica glass single-mode optical fiber. Optical attenuation at a wavelength of 1.55 microm proportionally increased with increasing numbers of irradiation points and was controllable under laser irradiation conditions. The single-mode property of the waveguide and the mode-field diameter of the optical fiber were maintained after irradiation of the femtosecond laser. It is suggested that the attenuation results from optical scattering at photoinduced spots formed inside the fiber core.

  18. Self-weight effect in the measurement of the volume of silicon spheres

    NASA Astrophysics Data System (ADS)

    Mari, D.; Massa, E.; Kuramoto, N.; Mana, G.

    2018-04-01

    The volume of 28Si spheres about 94 mm in diameter is an input datum for the determination of the Avogadro constant. We report a finite element analysis of the self-weight effect on the volume determination via optical interferometric measurements of the sphere diameters. The self-weight expansion or shrinkage of the equatorial diameters, which ranges from  -31 pm to  +180 pm, depends on the southern latitude of the supports.

  19. Studies on low-loss coupling of non-node anti-resonant hollow-core fiber and tapered fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Naiqian; Wang, Zefeng; Liu, Wenbo; Xi, Xiaoming

    2017-10-01

    Up to now, near almost optical fiber gas lasers employ/adopt the scheme of free-space coupling, which increases the difficulty to adjust the optical path, and has poor stability. All-fiber structure fiber-gas lasers are important development directions in the future. We established the numerical model of SMF-28 type tapered single-mode fiber and non-node hollow-core fiber. When the SMF-28 type single-mode fiber has a waist diameter of 40μm when the light source is LP01 fundamental mode with 1550nm wavelength, the mode field diameter is the largest. Meanwhile, we simulated that the equivalent mode field diameter of non-node anti-resonant hollow-core fiber is about 75μm at the same 1550nm wavelength light source. Then, we use different waist diameters of SMF-28 type tapered fibers injected to the non-node anti-resonant hollow-core fiber in simulation and experiments. In the scheme of the single-ended low-loss coupling, the simulation results indicate that the best waist diameter of tapered fiber is 40μm, and the calculated maximum coupling efficiency is 83.55%. Meanwhile, the experimental result of maximum coupling efficiency is 80.74% when the best waist diameter of tapered fiber is also 40μm. As for the double-ended low-loss coupling, the calculated maximum coupling efficiency is near 83.38%.

  20. Local zone-wise elastic-plastic constitutive parameters of Laser-welded aluminium alloy 6061 using digital image correlation

    NASA Astrophysics Data System (ADS)

    Bai, Ruixiang; Wei, Yuepeng; Lei, Zhenkun; Jiang, Hao; Tao, Wang; Yan, Cheng; Li, Xiaolei

    2018-02-01

    The mechanical properties of aluminium alloys can be affected by the local high temperature in laser welding. In this paper, an inversion identification method of local zone-wise elastic-plastic constitutive parameters for laser welding of aluminium alloy 6061 was proposed based on full-field optical measurement data using digital image correlation (DIC). Three regions, i.e., the fusion zone, heat-affected zone, and base zone, of the laser-welded joint were distinguished by means of microstructure optical observation and micrometer hardness measurement. The stress data were obtained using a laser-welded specimen via a uniaxial tensile test. Meanwhile, the local strain data of the laser-welded specimen were obtained by the DIC technique. Thus, the stress-strain relationship for different local regions was established. Finally, the constitutive parameters of the Ramberg-Osgood model were identified by least-square fitting to the experimental stress-strain data. Experimental results revealed that the mechanical properties of the local zones of the welded joints clearly weakened, and these results are consistent with the results of the hardness measurement.

  1. How coagulation zone size is underestimated in computer modeling of RF ablation by ignoring the cooling phase just after RF power is switched off.

    PubMed

    Irastorza, Ramiro M; Trujillo, Macarena; Berjano, Enrique

    2017-11-01

    All the numerical models developed for radiofrequency ablation so far have ignored the possible effect of the cooling phase (just after radiofrequency power is switched off) on the dimensions of the coagulation zone. Our objective was thus to quantify the differences in the minor radius of the coagulation zone computed by including and ignoring the cooling phase. We built models of RF tumor ablation with 2 needle-like electrodes: a dry electrode (5 mm long and 17G in diameter) with a constant temperature protocol (70°C) and a cooled electrode (30 mm long and 17G in diameter) with a protocol of impedance control. We observed that the computed coagulation zone dimensions were always underestimated when the cooling phase was ignored. The mean values of the differences computed along the electrode axis were always lower than 0.15 mm for the dry electrode and 1.5 mm for the cooled electrode, which implied a value lower than 5% of the minor radius of the coagulation zone (which was 3 mm for the dry electrode and 30 mm for the cooled electrode). The underestimation was found to be dependent on the tissue characteristics: being more marked for higher values of specific heat and blood perfusion and less marked for higher values of thermal conductivity. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Swept-source optical coherence tomography of lower limb wound healing with histopathological correlation

    NASA Astrophysics Data System (ADS)

    Barui, Ananya; Banerjee, Provas; Patra, Rusha; Das, Raunak Kumar; Dhara, Santanu; Dutta, Pranab K.; Chatterjee, Jyotirmoy

    2011-02-01

    Direct noninvasive visualization of wound bed with depth information is important to understand the tissue repair. We correlate skin swept-source-optical coherence tomography (OCT) with histopathological and immunohistochemical evaluation on traumatic lower limb wounds under honey dressing to compare and assess the tissue repair features acquired noninvasively and invasively. Analysis of optical biopsy identifies an uppermost brighter band for stratum corneum with region specific thickness (p < 0.0001) and gray-level intensity (p < 0.0001) variation. Below the stratum corneum, variation in optical intensities is remarkable in different regions of the wound bed. Correlation between OCT and microscopic observations are explored especially in respect to progressive growth and maturation of the epithelial and subepithelial components. Characteristic transition of uniform hypolucid band in OCT image for depigmented zone to wavy highly lucid band in the pigmented zone could be directly correlated with the microscopic findings. The transformation of prematured epithelium of depigmented area, with low expression of E-cadherin, to matured epithelium with higher E-cadherin expression in pigmented zone, implicated plausible change in their optical properties as depicted in OCT. This correlated evaluation of multimodal images demonstrates applicability of swept-source-OCT in wound research and importance of integrated approach in validation of new technology.

  3. Power profiles and short-term visual performance of soft contact lenses.

    PubMed

    Papas, Eric; Dahms, Anne; Carnt, Nicole; Tahhan, Nina; Ehrmann, Klaus

    2009-04-01

    To investigate the manner in which contemporary soft contact lenses differ in the distribution of optical power within their optic zones and establish if these variations affect the vision of wearers or the prescribing procedure for back vertex power (BVP). By using a Visionix VC 2001 contact lens power analyzer, power profiles were measured across the optic zones of the following contemporary contact lenses ACUVUE 2, ACUVUE ADVANCE, O2OPTIX, NIGHT & DAY and PureVision. Single BVP measures were obtained using a Nikon projection lensometer. Visual performance was assessed in 28 masked subjects who wore each lens type in random order. Measurements taken were high and low contrast visual acuity in normal illumination (250 Cd/m), high contrast acuity in reduced illumination (5 Cd/m), subjective visual quality using a numerical rating scale, and visual satisfaction rating using a Likert scale. Marked differences in the distribution of optical power across the optic zone were evident among the lens types. No significant differences were found for any of the visual performance variables (p > 0.05, analysis of variance with repeated measures and Friedman test). Variations in power profile between contemporary soft lens types exist but do not, in general, result in measurable visual performance differences in the short term, nor do they substantially influence the BVP required for optimal correction.

  4. Collection Efficiencies of Various Airborne Spray Flux Samplers Used in Aerial Application Research

    DTIC Science & Technology

    2008-01-01

    Nonimaging Light-Scattering Instruments 21. Droplet sizing data measured included volume median diameter DV0.5, the 10 and 90 % diameters DV0.1 and DV0.9...Liquid Drop Size Characteristics in a Spray Using Optical Nonimaging Light-Scattering Instruments,” Annual Book of ASTM Stan- dards, ASTM

  5. Single-Pixel Optical Fluctuation Analysis of Calcium Channel Function in Active Zones of Motor Nerve Terminals

    PubMed Central

    Luo, Fujun; Dittrich, Markus; Stiles, Joel R.; Meriney, Stephen D.

    2011-01-01

    We used high-resolution fluorescence imaging and single-pixel optical fluctuation analysis to estimate the opening probability of individual voltage-gated calcium (Ca2+) channels during an action potential and the number of such Ca2+ channels within active zones of frog neuromuscular junctions. Analysis revealed ~36 Ca2+ channels within each active zone, similar to the number of docked synaptic vesicles but far less than the total number of transmembrane particles reported based on freeze-fracture analysis (~200–250). The probability that each channel opened during an action potential was only ~0.2. These results suggest why each active zone averages only one quantal release event during every other action potential, despite a substantial number of docked vesicles. With sparse Ca2+ channels and low opening probability, triggering of fusion for each vesicle is primarily controlled by Ca2+ influx through individual Ca2+ channels. In contrast, the entire synapse is highly reliable because it contains hundreds of active zones. PMID:21813687

  6. Optical properties of ordered ZnO/Ag thin films on polystyrene spheres

    NASA Astrophysics Data System (ADS)

    Li, Xiu; Chen, Xiuyan; Xin, Zhiqing; Li, Luhai; Xu, Yanfang

    2017-08-01

    A thorough research of the optical properties of ZnO/Ag structures sputtered by RF on PS colloidal crystal molds with different diameters is reported. The influences of the period of the substrates on the performance of ZnO thin films were studied. The results of scanning electron microscopic, X-ray diffraction patterns and UV-vis absorption spectroscopy indicated that the ZnO/Ag thin films were well-covering on PS colloidal crystal molds. The diameter of the polystyrene particles significantly influenced the PL spectrum intensity of ZnO/Ag by affecting the interferences of light. After adding PS colloidal crystal molds with different diameters, all the samples show two luminescent regions, namely a strong, narrow UV emission peak and a wide, weak visible emission band. However, the signal of UV emission increases more significantly. In particular, the maximum enhancement occurs when the diameter is 300 nm. This work proposes an effective way to improve ZnO light emission based on a simple, rapid and cost effective method to fabricate ordered periodic substrates by preparing single layer polystyrene microspheres masks.

  7. Strong focusing effect of 660 nm laser by microsized tapered glass tubes with different diameters

    NASA Astrophysics Data System (ADS)

    Lin, Chongnan; Luo, Xujia; Zhu, Xiaoyang; Zhu, Li; Wang, Hongcheng; Zhang, Ao; Xu, Runyu; Qu, Zheng; Chen, Ximeng; Zhang, Weiyi; Shao, Jianxiong

    2017-09-01

    A laser with a wavelength of 660 nm was focused by microsized tapered glass tubes with different diameters of the exit. By using the 3-μm optical fiber and micrometer displacement stages, we measured the light intensity distribution around the focal spot, the focal distance, and the transmission coefficient of the light transmitted through these tubes. The focusing effect for the glass tubes with smaller outlet diameters of the exit was found to be much stronger than those with larger diameters of the exit. Furthermore, the dependence of the size and distance and the maximum intensity of the focal spot on the tubes' diameter of exit are obtained.

  8. Multiple-electrode radiofrequency ablation: simultaneous production of separate zones of coagulation in an in vivo porcine liver model.

    PubMed

    Laeseke, Paul F; Sampson, Lisa A; Haemmerich, Dieter; Brace, Chris L; Fine, Jason P; Frey, Tina M; Winter, Thomas C; Lee, Fred T

    2005-12-01

    A multiple-electrode radiofrequency (RF) system was developed based on switching between electrodes that allows for the simultaneous use of as many as three electrically independent electrodes. The purpose of this study was to determine if each multiple-electrode ablation zone is identical to an ablation zone created with conventional single-electrode mode. Nine female domestic pigs (mean weight, 90 kg) were used for this study. A prototype monopolar multiple-electrode RF ablation system was created with use of an RF generator and an electronic switching algorithm. A maximum of three electrodes can be used simultaneously by switching between electrodes at each impedance spike (30 omega greater than baseline levels). A total of 39 zones of ablation were created at open laparotomy in pig livers with use of a conventional single electrode (n = 9), two single electrodes simultaneously (n = 6 ablations; 12 ablation zones), or three single electrodes simultaneously (n = 6 ablations; 18 ablation zones). RF electrodes were spaced in separate lobes of the liver when multiple zones of coagulation were created simultaneously. Animals were euthanized after RF ablation, livers were removed, and ablation zones were sectioned and measured. Zones of coagulation created simultaneously with two or three electrodes were equivalent to ablation zones created with use of conventional single-electrode ablation. No significant differences were observed among control animals treated with a single electrode, those with two separate zones of ablation created simultaneously, and those with three simultaneously created ablation zones in terms of mean (+/-SD) minimum diameter (1.6 cm +/- 0.6, 1.6 cm +/- 0.5, and 1.7 cm +/- 0.4, respectively), maximum diameter (2.0 cm +/- 0.5, 2.3 cm +/- 0.5, 2.2 cm +/- 0.5, respectively), and volume (6.7 cm3 +/- 3.7, 7.4 cm3 +/- 3.8, and 7.8 cm3 +/- 3.9; P > .30, analysis of variance, pairwise t-test comparisons). A rapid-switching multiple-electrode RF system was able to simultaneously create as many as three separate ablation zones of equivalent size compared with single-electrode controls. This system would allow physicians to simultaneously treat multiple tumors, substantially reducing procedure time and anesthesia risk.

  9. Evaluating Primary Dendrite Trunk Diameters in Directionally Solidified Al-Si Alloys

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2014-01-01

    The primary dendrite trunk diameters of Al-Si alloys that were directionally solidified over a range of processing conditions have been measured. These data are analyzed with a model based primarily on an assessment of secondary dendrite arm dissolution in the mushy zone. Good fit with the experimental data is seen and it is suggested that the primary dendrite trunk diameter is a useful metric that correlates well with the actual solidification processing parameters. These results are placed in context with the limited results from the aluminium - 7 wt. % silicon samples directionally solidified aboard the International Space Station as part of the MICAST project.

  10. Interferometers adaptations to lidars

    NASA Technical Reports Server (NTRS)

    Porteneuve, J.

    1992-01-01

    To perform daytime measurements of the density and temperature by Rayleigh lidar, it is necessary to select the wavelength with a very narrow spectral system. This filter is composed by an interference filter and a Fabry Perot etalon. The Fabry Perot etalon is the more performent compound, and it is necessary to build a specific optic around it. The image of the entrance pupil or the field diaphragm is at the infinite and the other diaphragm is on the etalon. The optical quality of the optical system is linked to the spectral resolution of the system to optimize the reduction of the field of view. The resolution is given by the formula: R = 8(xD/Fd)exp 2 where R = lambda/delta(lambda), x = diameter of the field diaphragm, D = diameter of the reception mirror, F = focal length of the telescope, and d = useful diameter of the etalon. In the Doppler Rayleigh lidars, the PF interferometer is the main part of the experiment and the exact spectral adaptation is the most critical problem. In the spectral adaptation of interferometers, the transmittance of the system will be acceptable if the etalon is exactly adjusted to the wavelength of the laser. It is necessary to work with a monomode laser, and adjust the shift to the bandpass of the interferometer. We are working with an interferometer built with molecular optical contact. This interferometer is put in a special pressure closed chamber.

  11. A fiber-optic technique for the measurement of contact angle in a clearance-fit pin-loaded hole

    NASA Technical Reports Server (NTRS)

    Prabhakaran, R.; Naik, R. A.

    1987-01-01

    A fiber-optic technique for measuring contact angle during pin loading of a specimen is proposed. The experimental design and procedures for loading a 49.8-mm-diameter instrumented pin into an quasi-isotropic graphite-epoxy specimen are described. The optical fiber was located just above the surface of the pin outer diameter in order to obtain accurate pin-hole contact-angle measurements at increasing load levels. The movement of the optical fiber through the no-contact, contact, and no-contact regions is discussed; the photodiode output decreased monotonically as the fiber moved from the no-contact to the contact region and then decreased monotonically as the fiber moved from the contact region to the no-contact region. Variations in the contact angle measurements are examined as function of applied load level. The measurements are compared to contact angle values obtained using a finite element analysis and an electrical technique; it is determined that the data correlate well.

  12. Coupling quantum dots to optical fiber: Low pump threshold laser in the red with a near top hat beam profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, H., E-mail: harvey6117@gmail.com; Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801; Mironov, A. E.

    2015-02-23

    Direct coupling of the optical field in a ∼244 nm thick, CdSe/ZnS quantum dot film to an optical fiber has yielded lasing in the red (λ ∼ 644 nm) with a threshold pump energy density < 2.6 mJ cm{sup −2}. Comprising 28–31 layers of ∼8 nm diameter quantum dots deposited onto the exterior surface of a 125 μm diameter coreless silica fiber, this free-running oscillator produces 134 nJ in 3.6 ns FWHM pulses which correspond to 37 W of peak power from an estimated gain volume of ∼4.5 × 10{sup −7} cm{sup 3}. Lasing was confirmed by narrowing of the output optical radiation in both the spectral and temporal domains, and the lasermore » beam intensity profile approximates a top hat.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsutani, Takaomi; Taya, Masaki; Ikuta, Takashi

    A parallel image detection system using an annular pupil for electron optics were developed to realize an increase in the depth of focus, aberration-free imaging and separation of amplitude and phase images under scanning transmission electron microscopy (STEM). Apertures for annular pupils able to suppress high-energy electron scattering were developed using a focused ion beam (FIB) technique. The annular apertures were designed with outer diameter of oe 40 {mu}m and inner diameter of oe32 {mu}m. A taper angle varying from 20 deg. to 1 deg. was applied to the slits of the annular apertures to suppress the influence of high-energymore » electron scattering. Each azimuth angle image on scintillator was detected by a multi-anode photomultiplier tube assembly through 40 optical fibers bundled in a ring shape. To focus the image appearing on the scintillator on optical fibers, an optical lens relay system attached with CCD camera was developed. The system enables the taking of 40 images simultaneously from different scattered directions.« less

  14. Simulation and experimental study of aspect ratio limitation in Fresnel zone plates for hard-x-ray optics.

    PubMed

    Liu, Jianpeng; Shao, Jinhai; Zhang, Sichao; Ma, Yaqi; Taksatorn, Nit; Mao, Chengwen; Chen, Yifang; Deng, Biao; Xiao, Tiqiao

    2015-11-10

    For acquiring high-contrast and high-brightness images in hard-x-ray optics, Fresnel zone plates with high aspect ratios (zone height/zone width) have been constantly pursued. However, knowledge of aspect ratio limits remains limited. This work explores the achievable aspect ratio limit in polymethyl methacrylate (PMMA) by electron-beam lithography (EBL) under 100 keV, and investigates the lithographic factors for this limitation. Both Monte Carlo simulation and EBL on thick PMMA are applied to investigate the profile evolution with exposure doses over 100 nm wide dense zones. A high-resolution scanning electron microscope at low acceleration mode for charging free is applied to characterize the resultant zone profiles. It was discovered for what we believe is the first time that the primary electron-beam spreading in PMMA and the proximity effect due to extra exposure from neighboring areas could be the major causes of limiting the aspect ratio. Using the optimized lithography condition, a 100 nm zone plate with aspect ratio of 15/1 was fabricated and its focusing property was characterized at the Shanghai Synchrotron Radiation Facility. The aspect ratio limit found in this work should be extremely useful for guiding further technical development in nanofabrication of high-quality Fresnel zone plates.

  15. First Point-Spread Function and X-Ray Phase Contrast Imaging Results with an 88-mm Diameter Single Crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Garson, A. B.; Anastasio, M. A.

    In this study, we report initial demonstrations of the use of single crystals in indirect x-ray imaging with a benchtop implementation of propagation-based (PB) x-ray phase contrast imaging. Based on single Gaussian peak fits to the x-ray images, we observed a four times smaller system point-spread function (PSF) with the 50-μm thick single crystal scintillators than with the reference polycrystalline phosphor/scintillator. Fiber-optic plate depth-of-focus and Al reflective-coating aspects are also elucidated. Guided by the results from the 25-mm diameter crystal samples, we report additionally the first results with a unique 88-mm diameter single crystal bonded to a fiber optic platemore » and coupled to the large format CCD. Both PSF and x-ray phase contrast imaging data are quantified and presented.« less

  16. Morphometric measurement of Schlemm's canal in normal human eye using anterior segment swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Shi, Guohua; Wang, Fei; Li, Xiqi; Lu, Jing; Ding, Zhihua; Sun, Xinghuai; Jiang, Chunhui; Zhang, Yudong

    2012-01-01

    We have used anterior segment swept source optical coherence tomography to measure Schlemm's canal (SC) morphometric values in the living human eye. Fifty healthy volunteers with 100 normal eyes were measured in the nasal and temporal side. Comparison with the published SC morphometric values of histologic sections proves the reliability of our results. The statistical results show that there are no significant differences between nasal and temporal SC with respect to their diameter, perimeter, and area in our study (diameter: t=0.122, p=0.903; perimeter: t=-0.003, p=0.998; area: t=-1.169, p=0.244); further, no significant differences in SC morphometric values are found between oculus sinister and oculus dexter (diameter: t=0.943, p=0.35; perimeter: t=1.346, p=0.18; area: t=1.501, p=0.135).

  17. Pulse compression using a tapered microstructure optical fiber.

    PubMed

    Hu, Jonathan; Marks, Brian S; Menyuk, Curtis R; Kim, Jinchae; Carruthers, Thomas F; Wright, Barbara M; Taunay, Thierry F; Friebele, E J

    2006-05-01

    We calculate the pulse compression in a tapered microstructure optical fiber with four layers of holes. We show that the primary limitation on pulse compression is the loss due to mode leakage. As a fiber's diameter decreases due to the tapering, so does the air-hole diameter, and at a sufficiently small diameter the guided mode loss becomes unacceptably high. For the four-layer geometry we considered, a compression factor of 10 can be achieved by a pulse with an initial FWHM duration of 3 ps in a tapered fiber that is 28 m long. We find that there is little difference in the pulse compression between a linear taper profile and a Gaussian taper profile. More layers of air-holes allows the pitch to decrease considerably before losses become unacceptable, but only a moderate increase in the degree of pulse compression is obtained.

  18. Spectral features and antibacterial properties of Cu-doped ZnO nanoparticles prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Alireza, Samavati; A, F. Ismail; Hadi, Nur; Z, Othaman; M, K. Mustafa

    2016-07-01

    Zn1-x Cu x O (x = 0.00, 0.01, 0.03, and 0.05) nanoparticles are synthesized via the sol-gel technique using gelatin and nitrate precursors. The impact of copper concentration on the structural, optical, and antibacterial properties of these nanoparticles is demonstrated. Powder x-ray diffraction investigations have illustrated the organized Cu doping into ZnO nanoparticles up to Cu concentration of 5% (x = 0.05). However, the peak corresponding to CuO for x = 0.01 is not distinguishable. The images of field emission scanning electron microscopy demonstrate the existence of a nearly spherical shape with a size in the range of 30-52 nm. Doping Cu creates the Cu-O-Zn on the surface and results in a decrease in the crystallite size. Photoluminescence and absorption spectra display that doping Cu causes an increment in the energy band gap. The antibacterial activities of the nanoparticles are examined against Escherichia coli (Gram negative bacteria) cultures using optical density at 600 nm and a comparison of the size of inhibition zone diameter. It is found that both pure and doped ZnO nanoparticles indicate appropriate antibacterial activity which rises with Cu doping. Project supported by the Universiti Teknologi Malaysia (UTM) (Grant No. R. J1300000.7809.4F626). Dr. Samavati is thankful to RMC for postdoctoral grants.

  19. Tissue imaging using full field optical coherence microscopy with short multimode fiber probe

    NASA Astrophysics Data System (ADS)

    Sato, Manabu; Eto, Kai; Goto, Tetsuhiro; Kurotani, Reiko; Abe, Hiroyuki; Nishidate, Izumi

    2018-03-01

    In achieving minimally invasive accessibility to deeply located regions the size of the imaging probes is important. We demonstrated full-field optical coherence tomography (FF-OCM) using an ultrathin forward-imaging short multimode fiber (SMMF) probe of 50 μm core diameter, 125 μm diameter, and 7.4 mm length for optical communications. The axial resolution was measured to be 2.14 μm and the lateral resolution was also evaluated to be below 4.38 μm using a test pattern (TP). The spatial mode and polarization characteristics of SMMF were evaluated. Inserting SMMF to in vivo rat brain, 3D images were measured and 2D information of nerve fibers was obtained. The feasibility of an SMMF as an ultrathin forward-imaging probe in FF-OCM has been demonstrated.

  20. A Wafer Transfer Technology for MEMS Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Wiberg, Dean V.

    2001-01-01

    Adaptive optics systems require the combination of several advanced technologies such as precision optics, wavefront sensors, deformable mirrors, and lasers with high-speed control systems. The deformable mirror with a continuous membrane is a key component of these systems. This paper describes a new technique for transferring an entire wafer-level silicon membrane from one substrate to another. This technology is developed for the fabrication of a compact deformable mirror with a continuous facet. A 1 (mu)m thick silicon membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers (i.e. wax, epoxy, or photoresist). Smaller or larger diameter membranes can also be transferred using this technique. The fabricated actuator membrane with an electrode gap of 1.5 (mu)m shows a vertical deflection of 0.37 (mu)m at 55 V.

  1. Post-Test Inspection of NASA's Evolutionary Xenon Thruster Long Duration Test Hardware: Ion Optics

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Shastry, Rohit

    2016-01-01

    A Long Duration Test (LDT) was initiated in June 2005 as a part of NASA's Evolutionary Xenon Thruster (NEXT) service life validation approach. Testing was voluntarily terminated in February 2014, with the thruster accumulating 51,184 hours of operation, processing 918 kg of xenon propellant, and delivering 35.5 MN-s of total impulse. The post-test inspection objectives for the ion optics were derived from the original NEXT LDT test objectives, such as service life model validation, and expanded to encompass other goals that included verification of in situ measurements, test issue root causes, and past design changes. The ion optics cold grid gap had decreased only by an average of 7% of pretest center grid gap, so efforts to stabilize NEXT grid gap were largely successful. The upstream screen grid surface exhibited a chamfered erosion pattern. Screen grid thicknesses were = 86% of the estimated pretest thickness, indicating that the screen grid has substantial service life remaining. Deposition was found on the screen aperture walls and downstream surfaces that was primarily composed of grid material and back-sputtered carbon, and this deposition likely caused the minor decreases in screen grid ion transparency during the test. Groove depths had eroded through up to 35% of the accelerator grid thickness. Minimum accelerator aperture diameters increased only by about 5-7% of the pretest values and downstream surface diameters increased by about 24-33% of the pretest diameters. These results suggest that increasing the accelerator aperture diameters, improving manufacturing tolerances, and masking down the perforated diameter to 36 cm were successful in reducing the degree of accelerator aperture erosion at larger radii.

  2. Statistical properties of the Strehl ratio as a function of pupil diameter and level of adaptive optics correction following atmospheric propagation.

    PubMed

    Shellan, Jeffrey B

    2004-08-01

    The propagation of an optical beam through atmospheric turbulence produces wave-front aberrations that can reduce the power incident on an illuminated target or degrade the image of a distant target. The purpose of the work described here was to determine by computer simulation the statistical properties of the normalized on-axis intensity--defined as (D/r0)2 SR--as a function of D/r0 and the level of adaptive optics (AO) correction, where D is the telescope diameter, r0 is the Fried coherence diameter, and SR is the Strehl ratio. Plots were generated of (D/r0)2 (SR) and sigmaSR/(SR), where (SR) and sigma(SR) are the mean and standard deviation, respectively, of the SR versus D/r0 for a wide range of both modal and zonal AO correction. The level of modal correction was characterized by the number of Zernike radial modes that were corrected. The amount of zonal AO correction was quantified by the number of actuators on the deformable mirror and the resolution of the Hartmann wave-front sensor. These results can be used to determine the optimum telescope diameter, in units of r0, as a function of the AO design. For the zonal AO model, we found that maximum on-axis intensity was achieved when the telescope diameter was sized so that the actuator spacing was equal to approximately 2r0. For modal correction, we found that the optimum value of D/r0 (maximum mean on-axis intensity) was equal to 1.79Nr + 2.86, where Nr is the highest Zernike radial mode corrected.

  3. Recognition of Fossil Prokaryotes in Cretaceous Methane Seep Carbonates: Relevance to Astrobiology

    NASA Astrophysics Data System (ADS)

    Shapiro, Russell Scott

    2004-12-01

    Recovery of prokaryotic body fossils from methane seep carbonates such as those of the Cretaceous Tepee Buttes of Colorado serves as a model for sampling in future astrobiological missions. The fossils, found primarily at the interface between paragenetic fabrics, suggest a sharp physicochemical gradient. Evidence of these microbial fossils occurs at a variety of scales. In the field, microbialite is found as meter-scale thrombolitic zones and centimeterscale stromatolitic crusts lining voids inferred to be the sites of ancient methane seepage. Petrographic fabrics suggestive of microbialite include indistinct peloids (0.1-1 mm in diameter) and crusts of authigenic micrite. Primary evidence obtained from scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy analysis comprises pinnate bacteria (0.3 µm in diameter and 1-1.5 µm long), sheaths (2-4 µm in diameter), coccoids (0.5-1 µm in diameter, up to 40 per cluster), and the presence of framboidal pyrite (6-8 µm in diameter). These results are in agreement with studies of other ancient and modern seeps and suggest a morphological conservatism of microbial form that can be incorporated into studies of extraterrestrial environments where it is presumed that reduced gases drive the metabolic activity of prokaryote-like organisms. Target areas that could serve as conduits for reduced gas seeps include tectonic or impact-driven faulting, zones of cryosphere melting, or other disruptions in crustal coherence. Ancient seeps, preserved as localized anomalous evaporite deposits in the sedimentary cover, could be detected by remote sensing. Astrobiology 4, 438-449.

  4. Predictors of Reintervention After Endovascular Repair of Isolated Iliac Artery Aneurysm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zayed, Hany A., E-mail: hany.zayed@gstt.nhs.uk; Attia, Rizwan; Modarai, Bijan

    2011-02-15

    The objective of this study was to identify factors predicting the need for reintervention after endovascular repair of isolated iliac artery aneurysm (IIAA). We reviewed prospectively collected database records of all patients who underwent endovascular repair of IIAA between 1999 and 2008. Detailed assessment of the aneurysms was performed using computed tomography angiography (CTA). Follow-up protocol included CTA at 3 months. If this showed no complication, then annual duplex scan was arranged. Multivariate analysis and analysis of patient survival and freedom from reintervention were performed using Kaplan-Meier life tables. Forty IIAAs (median diameter 44 mm) in 38 patients were treatedmore » (all men; median age 75 years), and median follow-up was 27 months. Endovascular repair of IIAA was required in 14 of 40 aneurysms (35%). The rate of type I endoleak was significantly higher with proximal landing zone (PLZ) diameter >30 mm in the aorta or >24 mm in the common iliac artery or distal landing zone (DLZ) diameter >24 mm (P = 0.03, 0.03, and 0.0014, respectively). Reintervention rate (RR) increased significantly with increased diameter or decreased length of PLZ; increased DLZ diameter; and endovascular IIAA repair (P = 0.005, 0.005, 0.02, and 0.02 respectively); however, RR was not significantly affected by length of PLZ or DLZ. Freedom-from-reintervention was 97, 93, and 86% at 12, 24, and 108 months. There was no in-hospital or aneurysm-related mortality. Endovascular IIAA repair is a safe treatment option. Proper patient selection is essential to decrease the RR.« less

  5. Optical manipulation of lipid and polymer nanotubes with optical tweezers

    NASA Astrophysics Data System (ADS)

    Reiner, Joseph E.; Kishore, Rani; Pfefferkorn, Candace; Wells, Jeffrey; Helmerson, Kristian; Howell, Peter; Vreeland, Wyatt; Forry, Samuel; Locascio, Laurie; Reyes-Hernandez, Darwin; Gaitan, Michael

    2004-10-01

    Using optical tweezers and microfluidics, we stretch either the lipid or polymer membranes of liposomes or polymersomes, respectively, into long nanotubes. The membranes can be grabbed directly with the optical tweezers to produce sub-micron diameter tubes that are several hundred microns in length. We can stretch tubes up to a centimeter in length, limited only by the travel of our microscope stage. We also demonstrate the cross linking of a pulled polymer nanotube.

  6. Optical Epitaxial Growth of Gold Nanoparticle Arrays.

    PubMed

    Huang, Ningfeng; Martínez, Luis Javier; Jaquay, Eric; Nakano, Aiichiro; Povinelli, Michelle L

    2015-09-09

    We use an optical analogue of epitaxial growth to assemble gold nanoparticles into 2D arrays. Particles are attracted to a growth template via optical forces and interact through optical binding. Competition between effects determines the final particle arrangements. We use a Monte Carlo model to design a template that favors growth of hexagonal particle arrays. We experimentally demonstrate growth of a highly stable array of 50 gold particles with 200 nm diameter, spaced by 1.1 μm.

  7. Optical Analysis of Cassegrainian Point Focus Concentrators

    NASA Technical Reports Server (NTRS)

    Waterbury, S. S.; Schwinkendorf, W. E.

    1984-01-01

    A Cassegrainian solar concentrator, using a 7-meter diameter primary reflector, was analyzed in three forms: (1) an unmodified Cassegrainian, (2) the Ritchey-Chretien configuration, and (3) the unmodified Cassegrainian with a non-imaging tertiary reflector. Optical performance was not significantly improved with the Ritchey-Chretien; however, the tertiary resulted in significant improvement in intercept factor and optical efficiency. The effects of misalignment of the secondary and tertiary reflectors on the optical performance of the collector were also analyzed.

  8. Fabrication and characterization of disordered polymer optical fibers for transverse Anderson localization of light.

    PubMed

    Karbasi, Salman; Frazier, Ryan J; Mirr, Craig R; Koch, Karl W; Mafi, Arash

    2013-07-29

    We develop and characterize a disordered polymer optical fiber that uses transverse Anderson localization as a novel waveguiding mechanism. The developed polymer optical fiber is composed of 80,000 strands of poly (methyl methacrylate) (PMMA) and polystyrene (PS) that are randomly mixed and drawn into a square cross section optical fiber with a side width of 250 μm. Initially, each strand is 200 μm in diameter and 8-inches long. During the mixing process of the original fiber strands, the fibers cross over each other; however, a large draw ratio guarantees that the refractive index profile is invariant along the length of the fiber for several tens of centimeters. The large refractive index difference of 0.1 between the disordered sites results in a small localized beam radius that is comparable to the beam radius of conventional optical fibers. The input light is launched from a standard single mode optical fiber using the butt-coupling method and the near-field output beam from the disordered fiber is imaged using a 40X objective and a CCD camera. The output beam diameter agrees well with the expected results from the numerical simulations. The disordered optical fiber presented in this work is the first device-level implementation of 2D Anderson localization, and can potentially be used for image transport and short-haul optical communication systems.

  9. Fabrication and Characterization of Disordered Polymer Optical Fibers for Transverse Anderson Localization of Light

    PubMed Central

    Karbasi, Salman; Frazier, Ryan J.; Mirr, Craig R.; Koch, Karl W.; Mafi, Arash

    2013-01-01

    We develop and characterize a disordered polymer optical fiber that uses transverse Anderson localization as a novel waveguiding mechanism. The developed polymer optical fiber is composed of 80,000 strands of poly (methyl methacrylate) (PMMA) and polystyrene (PS) that are randomly mixed and drawn into a square cross section optical fiber with a side width of 250 μm. Initially, each strand is 200 μm in diameter and 8-inches long. During the mixing process of the original fiber strands, the fibers cross over each other; however, a large draw ratio guarantees that the refractive index profile is invariant along the length of the fiber for several tens of centimeters. The large refractive index difference of 0.1 between the disordered sites results in a small localized beam radius that is comparable to the beam radius of conventional optical fibers. The input light is launched from a standard single mode optical fiber using the butt-coupling method and the near-field output beam from the disordered fiber is imaged using a 40X objective and a CCD camera. The output beam diameter agrees well with the expected results from the numerical simulations. The disordered optical fiber presented in this work is the first device-level implementation of 2D Anderson localization, and can potentially be used for image transport and short-haul optical communication systems. PMID:23929276

  10. Bio-optical profile data report coastal transition zone program, R/V Point Sur, June 15-28, 1987

    NASA Technical Reports Server (NTRS)

    Davis, Curtiss O.; Rhea, W. Joseph

    1990-01-01

    Twenty vertical profiles of the bio-optical properties of the ocean were made during a research cruise on the R/V Point Sur, June 15 to 28, 1987, as part of the Coastal Transition Zone Program off Point Arena, California. Extracted chlorophyll values were also measured at some stations to provide calibration data for the in situ fluorometer. This summary provides investigators with an overview of the data collected. The entire data set is available in digital form.

  11. Radar Remote Sensing of Waves and Currents in the Nearshore Zone

    DTIC Science & Technology

    2006-01-01

    and application of novel microwave, acoustic, and optical remote sensing techniques. The objectives of this effort are to determine the extent to which...Doppler radar techniques are useful for nearshore remote sensing applications. Of particular interest are estimates of surf zone location and extent...surface currents, waves, and bathymetry. To date, optical (video) techniques have been the primary remote sensing technology used for these applications. A key advantage of the radar is its all weather day-night operability.

  12. Fresnel Lens Solar Concentrator Design Based on Geometric Optics and Blackbody Radiation Equations

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Jayroe, Robert, Jr.

    1999-01-01

    Fresnel lenses have been used for years as solar concentrators in a variety of applications. Several variables effect the final design of these lenses including: lens diameter, image spot distance from the lens, and bandwidth focused in the image spot. Defining the image spot as the geometrical optics circle of least confusion and applying blackbody radiation equations the spot energy distribution can be determined. These equations are used to design a fresnel lens to produce maximum flux for a given spot size, lens diameter, and image distance. This approach results in significant increases in solar efficiency over traditional single wavelength designs.

  13. Wide-angle Optical Telescope for the EUSO Experiments

    NASA Technical Reports Server (NTRS)

    Hillman, L. W.; Takahaski, Y.; Zuccaro, A.; Lamb, D.; Pitalo, K.; Lopado, A.; Keys, A.

    2003-01-01

    Future spacebased air shower experiments, including the planned Extreme Universe Space Observatory (EUSO) mission, require a wide-angle telescope in the near-UV wavelengths 330 - 400 nm. Widest possible target aperture of earth's atmosphere, such as greater than 10(exp 5) square kilometers sr, can be viewed within the field-of-view of 30 degrees from space. EUSO's optical design is required to be compact, being constrained by the allocated mass and diameter for use in space. Two doublesided Fresnel lenses with 2.5-m diameter are chosen for the baseline design. It satisfies the imaging resolution of 0.1 degree over the 30-degree field of view.

  14. X-ray optics made from thin plastic foils

    NASA Astrophysics Data System (ADS)

    Schnopper, Herbert W.; Silver, Eric H.; Ingram, Russell H.; Christensen, Finn E.; Hussain, Ahsen M.; Barbera, Marco; Romaine, Suzanne E.; Collura, Alfonso; Kenter, Almus T.; Bandler, Simon; Murray, Stephen S.

    1999-09-01

    New design concepts and materials can be used to produce very lightweight, thin foil approximations, to Wolter I and other x-ray optics. Structures are designed around a central hub and spacers that connect one spoked wheels. Figure defining, thin pins span the distance between the wheels. Thin, metal coated or multilayered, plastic foils can be formed into cones, cylinders or spirals for x-ray telescopes or lenses. Imaging and spectroscopic data obtained with x- ray lenses are presented and they indicate that a 60 cm diameter, 4.65 m focal length x-ray telescope can have a half power diameter of < 2 arcmin.

  15. Cryogenic Optical Performance of the Cassini Composite InfraRed Spectrometer (CIRS) Flight Telescope

    NASA Technical Reports Server (NTRS)

    Losch, Patricia; Lyons, James J., III; Hagopian, John

    1998-01-01

    The CIRS half-meter diameter beryllium flight telescope's optical performance was tested at the instrument operating temperature of 170 Kelvin. The telescope components were designed at Goddard Space Flight Center (GSFC) but fabricated out of house and then assembled, aligned and tested upon receipt at GSFC. A 24 inch aperture cryogenic test facility utilizing a 1024 x 1024 CCD array was developed at GSFC specifically for this test. The telescope,s image quality (measured as encircled energy), boresight stability and focus stability were measured. The gold coated beryllium design exceeded the cold image performance requirement of 80% encircled energy within a 460 micron diameter circle.

  16. Sensitivity of 30-cm mercury bombardment ion thruster characteristics to accelerator grid design

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1978-01-01

    The design of ion optics for bombardment thrusters strongly influences overall performance and lifetime. The operation of a 30 cm thruster with accelerator grid open area fractions ranging from 43 to 24 percent, was evaluated and compared with experimental and theoretical results. Ion optics properties measured included the beam current extraction capability, the minimum accelerator grid voltage to prevent backstreaming, ion beamlet diameter as a function of radial position on the grid and accelerator grid hole diameter, and the high energy, high angle ion beam edge location. Discharge chamber properties evaluated were propellant utilization efficiency, minimum discharge power per beam amp, and minimum discharge voltage.

  17. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays

    DOE PAGES

    Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; ...

    2015-01-15

    Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, themore » Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process.« less

  18. 10-channel fiber array fabrication technique for parallel optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Arauz, Lina J.; Luo, Yuan; Castillo, Jose E.; Kostuk, Raymond K.; Barton, Jennifer

    2007-02-01

    Optical Coherence Tomography (OCT) shows great promise for low intrusive biomedical imaging applications. A parallel OCT system is a novel technique that replaces mechanical transverse scanning with electronic scanning. This will reduce the time required to acquire image data. In this system an array of small diameter fibers is required to obtain an image in the transverse direction. Each fiber in the array is configured in an interferometer and is used to image one pixel in the transverse direction. In this paper we describe a technique to package 15μm diameter fibers on a siliconsilica substrate to be used in a 2mm endoscopic probe tip. Single mode fibers are etched to reduce the cladding diameter from 125μm to 15μm. Etched fibers are placed into a 4mm by 150μm trench in a silicon-silica substrate and secured with UV glue. Active alignment was used to simplify the lay out of the fibers and minimize unwanted horizontal displacement of the fibers. A 10-channel fiber array was built, tested and later incorporated into a parallel optical coherence system. This paper describes the packaging, testing, and operation of the array in a parallel OCT system.

  19. Effect of the nanowire diameter on the linearity of the response of GaN-based heterostructured nanowire photodetectors.

    PubMed

    Spies, Maria; Polaczyński, Jakub; Ajay, Akhil; Kalita, Dipankar; Luong, Minh Anh; Lähnemann, Jonas; Gayral, Bruno; den Hertog, Martien I; Monroy, Eva

    2018-06-22

    Nanowire photodetectors are investigated because of their compatibility with flexible electronics, or for the implementation of on-chip optical interconnects. Such devices are characterized by ultrahigh photocurrent gain, but their photoresponse scales sublinearly with the optical power. Here, we present a study of single-nanowire photodetectors displaying a linear response to ultraviolet illumination. Their structure consists of a GaN nanowire incorporating an AlN/GaN/AlN heterostructure, which generates an internal electric field. The activity of the heterostructure is confirmed by the rectifying behavior of the current-voltage characteristics in the dark, as well as by the asymmetry of the photoresponse in magnitude and linearity. Under reverse bias (negative bias on the GaN cap segment), the detectors behave linearly with the impinging optical power when the nanowire diameter is below a certain threshold (≈80 nm), which corresponds to the total depletion of the nanowire stem due to the Fermi level pinning at the sidewalls. In the case of nanowires that are only partially depleted, their nonlinearity is explained by a nonlinear variation of the diameter of their central conducting channel under illumination.

  20. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays

    PubMed Central

    Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; Lu, M.; Chen, X.; Zheng, Y. X.; Chen, L. Y.; Ye, Z.; Wang, C. Z.; Ho, K. M.

    2015-01-01

    Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, the Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process. PMID:25589290

  1. Fabrication and mechanical behavior of dye-doped polymer optical fiber

    NASA Astrophysics Data System (ADS)

    Jiang, Changhong; Kuzyk, Mark G.; Ding, Jow-Lian; Johns, William E.; Welker, David J.

    2002-07-01

    The purpose of this article is to study the materials physics behind dye-doped polymethyl metharcylate (PMMA) that is important for the optical fiber drawing process. We report effects of the fabrication process on the mechanical properties of the final fiber. The qualitative degree of polymer chain alignment is found to increase with the drawing force, which in turn decreases with the drawing temperature and increases with the drawing ratio. The chain alignment relaxes when the fibers are annealed at 95 degC with a commensurate decrease in fiber length and increase in diameter. The annealed fiber has higher ductility but lower strength than the unannealed fiber. Both the yield and tensile strengths are dependent on the strain rate. The relationship between tensile strength, sigmab, and fiber diameter, d, is found empirically to be sigmab[is proportional to]d-0.5. The yield strength appears to be less sensitive to the fiber diameter than the tensile strength. For PMMA doped with disperse red 1 azo dye, the yield strength, tensile strength, and Young's modulus peak at a dye concentration of 0.0094 wt %. These results are useful for designing polymer optical fibers with well-defined mechanical properties.

  2. Effect of the nanowire diameter on the linearity of the response of GaN-based heterostructured nanowire photodetectors

    NASA Astrophysics Data System (ADS)

    Spies, Maria; Polaczyński, Jakub; Ajay, Akhil; Kalita, Dipankar; Luong, Minh Anh; Lähnemann, Jonas; Gayral, Bruno; den Hertog, Martien I.; Monroy, Eva

    2018-06-01

    Nanowire photodetectors are investigated because of their compatibility with flexible electronics, or for the implementation of on-chip optical interconnects. Such devices are characterized by ultrahigh photocurrent gain, but their photoresponse scales sublinearly with the optical power. Here, we present a study of single-nanowire photodetectors displaying a linear response to ultraviolet illumination. Their structure consists of a GaN nanowire incorporating an AlN/GaN/AlN heterostructure, which generates an internal electric field. The activity of the heterostructure is confirmed by the rectifying behavior of the current–voltage characteristics in the dark, as well as by the asymmetry of the photoresponse in magnitude and linearity. Under reverse bias (negative bias on the GaN cap segment), the detectors behave linearly with the impinging optical power when the nanowire diameter is below a certain threshold (≈80 nm), which corresponds to the total depletion of the nanowire stem due to the Fermi level pinning at the sidewalls. In the case of nanowires that are only partially depleted, their nonlinearity is explained by a nonlinear variation of the diameter of their central conducting channel under illumination.

  3. The LSST Optical System

    NASA Astrophysics Data System (ADS)

    Liang, M.; Seppala, L.; Sweeney, D.; LSST Project Team

    2005-12-01

    The 8.4m Large Synoptic Survey Telescope facility will digitally survey the entire visible sky. It will explore the nature of dark matter and dark energy, open the faint optical transient time window and catalog earth-crossing asteroids > 300m diameter. We present the design of an f/1.25 modified Paul-Baker or Laux telescope with etendue (A--Ω product) of >318m2 deg2 , >50× beyond any existing facility. The optical design, over a 3.5-degree diameter field of view (9.62 deg2), delivers superb ˜ 0.2 arcsec FWHM images over 6 spectral bands covering 325--1000 nm. The flat focal surface has a plate scale of 51 microns/arcsec, matching the 10 microns pixels of a large 0.65 m diameter mosaic digital detector. The f/1.17 primary can be made using polishing techniques and metrology methods pioneered at the University of Arizona Mirror Lab for the 8.4 m f/1.1 Large Binocular Telescope primaries. The 3.4 m convex secondary is twice the size of the largest convex secondary yet manufactured; the 1.7 m MMT f/5 secondary. We show a fabrication and testing plan for this optic, which has less than 40 microns asphericity from best fit sphere. Five separate null test or alignment tests are built in as part of the optimization of the entire telescope: the three lenses separately, the combination of the first two lenses and the three mirror telescope system, without the camera corrector optics. All five tests help to ensure practicable telescope design.

  4. Miniature fiber optic loop subcomponent for compact sensors and dense routing

    NASA Astrophysics Data System (ADS)

    Gillham, Frederick J.; Stowe, David W.; Ouellette, Thomas R.; Pryshlak, Adrian P.

    1999-05-01

    Fiber optic data links and embedded sensors, such as Fabry- Perot and Mach-Zehnders, are important elements in smart structure architectures. Unfortunately, one problem with optical fiber is the inherent limit through which fibers and cables can be looped. A revolutionary, patented technology has been developed which overcomes this problem. Based on processing the fiber into low loss miniature bends, it permits routing the fiber to difficult areas, and minimizing the size of sensors and components. The minimum bend diameter for singlemode fiber is typically over two inches in diameter, to avoid light attenuation and limit stresses which could prematurely break the fiber. With the new miniature bend technology, bend diameters as small as 1 mm are readily achieved. One embodiment is a sub-component with standard singlemode fiber formed into a 180 degree bend and packaged in a glass tube only 1.5 mm OD X 8 mm long, Figure 1. Measured insertion loss is less than 0.2 dB from 1260 nm to 1680 nm. A final processing step which anneals the fiber into the eventual curvature, reduces the internal stress, thereby resulting in long life expectancy with robust immunity to external loading. This paper addresses the optical and physical performance of the sub-component. Particular attention is paid to attenuation spectra, polarization dependent loss, reflectance, thermal cycle, damp heat, and shock tests. Applications are presented which employs the bend technology. Concatenating right angle bends into a 'wire harness' demonstrates the ability to route fiber through a smart engine or satellite structure. Miniature optical coils are proposed for sensors and expansion joints.

  5. Joint Services Electronics Program.

    DTIC Science & Technology

    1987-10-15

    semiconductor perturb the index of refraction which can be detected in a Nomarski -type optical interferometer. For example, we have demonstrated the real-time...probe relies on a different physical effect and operates by interferometrically detecting the phase change induced in an optical beam by the presence of... interferometric diameter measurement system to monitor the growth process, has been in operation for . several years. The focussing optics and pulling mechanisms

  6. Atmospheric nuclei in the Pacific midtroposphere: Their nature, concentration, and evolution

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.

    1993-01-01

    An extensive flight series was carried out during May-June 1990 in the remote North and South Pacific free tropospheric aboard the NASA DC-8. Condensation nuclei counters and optical particle counters provided information on aerosol particles with diameters between 0.003 and 7.0 micrometers. Vertical profiles revealed aerosol layers to be a common feature of the free troposphere. Regions with highest aerosol mass tended to have the highest concentrations of surface-derived nuclei but the lowest concentrations of total nuclei. Regions with lowest aerosol mass tended to have the highest concentrations of the smaller 'ultrafine' condensation nuclei with diameters below 0.02 mircometers. Horizontal transects totaling over 35,000 km at about 9 to 10-km altitude exhibited variability of approximately 3 orders of magnitude in both aerosol mass and number concentrations over spatial scales ranging from 1 to 1000 km. At these altitudes an approximate inverse relationship between ultrafine concentrations and the surface area of the larger aerosol was evident. Regions having lowest aerosol mass were characterized by aerosol thermal volatility, indicative of a predominately sulfuric acid composition, and by very high concentrations of ultrafine nuclei, indicative of recent homogeneous nucleation. These conditions were frequently observed but were conspicuously evident above cloud over the intertropical convergence zone. The clean, free troposphere appears to be a significant source region for new tropospheric nuclei. A simplified model of the lifetime, coagulation, and cycling of these nuclei suggests that they constitute a source of cloud condensation nuclei in the lower troposphere.

  7. The eyes of mesopelagic crustaceans. III. Thysanopoda tricuspidata (Euphausiacea).

    PubMed

    Meyer-Rochow, V B; Walsh, S

    1978-12-14

    The compound eyes of the mesopelagic eupausiid Thysanopoda tricuspidata were investigated by light-, scanning-, and transmission electron microscopy. The eyes are spherical and have a diameter that corresponds to 1/6 of the carapace length. The hexagonal facets have strongly curved outer surfaces. Although there are four crystalline cone cells, only two participate in the formation of the cone, which is 90-120 micrometer long and appears to have a radial gradient of refractive index. The clear zone, separating dioptric structures and retinula, is only 90-120 micrometer wide. In it lie the very large oval nuclei of the seven retinula cells. Directly in front of the 70 micrometer long and 15 micrometer thick rhabdom a lens-like structure of 12 micrometer diameter is developed. This structure, known in only a very few arthropods, seems to be present in all species of Euphausiacea studied to date. It is believed that the rhabdom lens improves near-field vision and absolute light sensitivity. Rod-shaped pigment grains and mitochondria of the tubular type are found in the plasma of retinula cells. The position of the proximal screening pigment as well as the microvillar organization in the rhabdom are indicative of light-adapted material. The orthogonal alignment of rhabdovilli suggests polarization sensitivity. Behind each rabdom there is a cup-shaped homogenous structure of unknown, but possibly optical function. Finally, the structure and the function of the euphysiid eye are reviewed and the functional implications of individual components are discussed.

  8. ACUTE ZONAL OCCULT OUTER RETINOPATHY: Structural and Functional Analysis Across the Transition Zone Between Healthy and Diseased Retina.

    PubMed

    Duncker, Tobias; Lee, Winston; Jiang, Fan; Ramachandran, Rithambara; Hood, Donald C; Tsang, Stephen H; Sparrow, Janet R; Greenstein, Vivienne C

    2018-01-01

    To assess structure and function across the transition zone (TZ) between relatively healthy and diseased retina in acute zonal occult outer retinopathy. Six patients (6 eyes; age 22-71 years) with acute zonal occult outer retinopathy were studied. Spectral-domain optical coherence tomography, fundus autofluorescence, near-infrared reflectance, color fundus photography, and fundus perimetry were performed and images were registered to each other. The retinal layers of the spectral-domain optical coherence tomography scans were segmented and the thicknesses of two outer retinal layers, that is, the total receptor and outer segment plus layers, and the retinal nerve fiber layer were measured. All eyes showed a TZ on multimodal imaging. On spectral-domain optical coherence tomography, the TZ was in the nasal retina at varying distances from the fovea. For all eyes, it was associated with loss of the ellipsoid zone band, significant thinning of the two outer retinal layers, and in three eyes with thickening of the retinal nerve fiber layer. On fundus autofluorescence, all eyes had a clearly demarcated peripapillary area of abnormal fundus autofluorescence delimited by a border of high autofluorescence; the latter was associated with loss of the ellipsoid zone band and with a change from relatively normal to markedly decreased or nonrecordable visual sensitivity on fundus perimetry. The results of multimodal imaging clarified the TZ in acute zonal occult outer retinopathy. The TZ was outlined by a distinct high autofluorescence border that correlated with loss of the ellipsoid zone band on spectral-domain optical coherence tomography. However, in fundus areas that seemed healthy on fundus autofluorescence, thinning of the outer retinal layers and thickening of the retinal nerve fiber layer were observed near the TZ. The TZ was also characterized by a decrease in visual sensitivity.

  9. Evaluation of some technical factors affecting surgical outcome in photorefractive keratectomy with the VISX 2020 excimer laser

    NASA Astrophysics Data System (ADS)

    Maguen, Ezra I.; Salz, James J.; Papaioannou, Thanassis; Nesburn, Anthony B.

    1995-05-01

    Some technical factors relating to the use of the VISX model 20/20 excimer laser for photorefractive keratectomy will be discussed and the way they affect the final optical correction will be demonstrated, as follows: (1) Discontinuation of nitrogen flow: improved corneal haze but induced a mean undercorrection of 0.8 D, 18 months postoperatively. (2) Discontinuation of the use of the fixation ring did not affect centration in a statistically significant fashion. (3) Enlargement of the optical from 5.0 mm to 6.0 mm zone did not affect the refractive outcome. Visual acuity was improved in eyes which had PRK done with a 6.0 mm optical zone.

  10. Color moiré simulations in contact-type 3-D displays.

    PubMed

    Lee, B-R; Son, J-Y; Chernyshov, O O; Lee, H; Jeong, I-K

    2015-06-01

    A new method of color moiré fringe simulation in the contact-type 3-D displays is introduced. The method allows simulating color moirés appearing in the displays, which cannot be approximated by conventional cosine approximation of a line grating. The color moirés are mainly introduced by the line width of the boundary lines between the elemental optics in and plate thickness of viewing zone forming optics. This is because the lines are hiding some parts of pixels under the viewing zone forming optics, and the plate thickness induces a virtual contraction of the pixels. The simulated color moiré fringes are closely matched with those appearing at the displays.

  11. Laser-Based Acousto-Optic Uplink Communications Technique

    DTIC Science & Technology

    2003-08-18

    An apparatus for enabling acousto - optic communication comprising an in-water platform comprising means for emitting an acoustic signal to an acousto ...portion of the first interrogation beam and a second laser beam formed from the reflection of the first interrogation beam off of the acousto - optic interaction... optic interaction zone, an in-air platform comprising the ability for transmitting a first optical interrogation beam, the ability for receiving a

  12. Power Profiles and In Vitro Optical Quality of Scleral Contact Lenses: Effect of the Aperture and Power.

    PubMed

    Domínguez-Vicent, Alberto; Esteve-Taboada, Jose Juan; Recchioni, Alberto; Brautaset, Rune

    2018-05-01

    To assess the power profile and in vitro optical quality of scleral contact lenses with different powers as a function of the optical aperture. The mini and semiscleral contact lenses (Procornea) were measured for five powers per design. The NIMO TR-1504 (Lambda-X) was used to assess the power profile and Zernike coefficients of each contact lens. Ten measurements per lens were taken at 3- and 6-mm apertures. Furthermore, the optical quality of each lens was described in Zernike coefficients, modulation transfer function, and point spread function (PSF). A convolution of each lens PSF with an eye-chart image was also computed. The optical power fluctuated less than 0.5 diopters (D) along the optical zone of each lens. However, the optical power obtained for some lenses did not match with its corresponding nominal one, the maximum difference being 0.5 D. In optical quality, small differences were obtained among all lenses within the same design. Although significant differences were obtained among lenses (P<0.05), these showed small impact in the image quality of each convolution. Insignificant power fluctuations were obtained along the optical zone measured for each scleral lens. Additionally, the optical quality of both lenses has showed to be independent of the lens power within the same aperture.

  13. Upward nitrate transport by phytoplankton in oceanic waters: balancing nutrient budgets in oligotrophic seas.

    PubMed

    Villareal, Tracy A; Pilskaln, Cynthia H; Montoya, Joseph P; Dennett, Mark

    2014-01-01

    In oceanic subtropical gyres, primary producers are numerically dominated by small (1-5 µm diameter) pro- and eukaryotic cells that primarily utilize recycled nutrients produced by rapid grazing turnover in a highly efficient microbial loop. Continuous losses of nitrogen (N) to depth by sinking, either as single cells, aggregates or fecal pellets, are balanced by both nitrate inputs at the base of the euphotic zone and N2-fixation. This input of new N to balance export losses (the biological pump) is a fundamental aspect of N cycling and central to understanding carbon fluxes in the ocean. In the Pacific Ocean, detailed N budgets at the time-series station HOT require upward transport of nitrate from the nutricline (80-100 m) into the surface layer (∼0-40 m) to balance productivity and export needs. However, concentration gradients are negligible and cannot support the fluxes. Physical processes can inject nitrate into the base of the euphotic zone, but the mechanisms for transporting this nitrate into the surface layer across many 10s of m in highly stratified systems are unknown. In these seas, vertical migration by the very largest (10(2)-10(3) µm diameter) phytoplankton is common as a survival strategy to obtain N from sub-euphotic zone depths. This vertical migration is driven by buoyancy changes rather than by flagellated movement and can provide upward N transport as nitrate (mM concentrations) in the cells. However, the contribution of vertical migration to nitrate transport has been difficult to quantify over the required basin scales. In this study, we use towed optical systems and isotopic tracers to show that migrating diatom (Rhizosolenia) mats are widespread in the N. Pacific Ocean from 140°W to 175°E and together with other migrating phytoplankton (Ethmodiscus, Halosphaera, Pyrocystis, and solitary Rhizosolenia) can mediate time-averaged transport of N (235 µmol N m(-2) d(-1)) equivalent to eddy nitrate injections (242 µmol NO3 (-) m(-2) d(-1)). This upward biotic transport can close N budgets in the upper 250 m of the central Pacific Ocean and together with diazotrophy creates a surface zone where biological nutrient inputs rather than physical processes dominate the new N flux. In addition to these numerically rare large migrators, there is evidence in the literature of ascending behavior in small phytoplankton that could contribute to upward flux as well. Although passive downward movement has dominated models of phytoplankton flux, there is now sufficient evidence to require a rethinking of this paradigm. Quantifying these fluxes is a challenge for the future and requires a reexamination of individual phytoplankton sinking rates as well as methods for capturing and enumerating ascending phytoplankton in the sea.

  14. Upward nitrate transport by phytoplankton in oceanic waters: balancing nutrient budgets in oligotrophic seas

    PubMed Central

    Pilskaln, Cynthia H.; Montoya, Joseph P.; Dennett, Mark

    2014-01-01

    In oceanic subtropical gyres, primary producers are numerically dominated by small (1–5 µm diameter) pro- and eukaryotic cells that primarily utilize recycled nutrients produced by rapid grazing turnover in a highly efficient microbial loop. Continuous losses of nitrogen (N) to depth by sinking, either as single cells, aggregates or fecal pellets, are balanced by both nitrate inputs at the base of the euphotic zone and N2-fixation. This input of new N to balance export losses (the biological pump) is a fundamental aspect of N cycling and central to understanding carbon fluxes in the ocean. In the Pacific Ocean, detailed N budgets at the time-series station HOT require upward transport of nitrate from the nutricline (80–100 m) into the surface layer (∼0–40 m) to balance productivity and export needs. However, concentration gradients are negligible and cannot support the fluxes. Physical processes can inject nitrate into the base of the euphotic zone, but the mechanisms for transporting this nitrate into the surface layer across many 10s of m in highly stratified systems are unknown. In these seas, vertical migration by the very largest (102–103 µm diameter) phytoplankton is common as a survival strategy to obtain N from sub-euphotic zone depths. This vertical migration is driven by buoyancy changes rather than by flagellated movement and can provide upward N transport as nitrate (mM concentrations) in the cells. However, the contribution of vertical migration to nitrate transport has been difficult to quantify over the required basin scales. In this study, we use towed optical systems and isotopic tracers to show that migrating diatom (Rhizosolenia) mats are widespread in the N. Pacific Ocean from 140°W to 175°E and together with other migrating phytoplankton (Ethmodiscus, Halosphaera, Pyrocystis, and solitary Rhizosolenia) can mediate time-averaged transport of N (235 µmol N m-2 d-1) equivalent to eddy nitrate injections (242 µmol NO3− m-2 d-1). This upward biotic transport can close N budgets in the upper 250 m of the central Pacific Ocean and together with diazotrophy creates a surface zone where biological nutrient inputs rather than physical processes dominate the new N flux. In addition to these numerically rare large migrators, there is evidence in the literature of ascending behavior in small phytoplankton that could contribute to upward flux as well. Although passive downward movement has dominated models of phytoplankton flux, there is now sufficient evidence to require a rethinking of this paradigm. Quantifying these fluxes is a challenge for the future and requires a reexamination of individual phytoplankton sinking rates as well as methods for capturing and enumerating ascending phytoplankton in the sea. PMID:24688877

  15. Statistical mapping of zones of focused groundwater/surface-water exchange using fiber-optic distributed temperature sensing

    USGS Publications Warehouse

    Mwakanyamale, Kisa; Day-Lewis, Frederick D.; Slater, Lee D.

    2013-01-01

    Fiber-optic distributed temperature sensing (FO-DTS) increasingly is used to map zones of focused groundwater/surface-water exchange (GWSWE). Previous studies of GWSWE using FO-DTS involved identification of zones of focused GWSWE based on arbitrary cutoffs of FO-DTS time-series statistics (e.g., variance, cross-correlation between temperature and stage, or spectral power). New approaches are needed to extract more quantitative information from large, complex FO-DTS data sets while concurrently providing an assessment of uncertainty associated with mapping zones of focused GSWSE. Toward this end, we present a strategy combining discriminant analysis (DA) and spectral analysis (SA). We demonstrate the approach using field experimental data from a reach of the Columbia River adjacent to the Hanford 300 Area site. Results of the combined SA/DA approach are shown to be superior to previous results from qualitative interpretation of FO-DTS spectra alone.

  16. Far-Zone Resonant Energy Transfer in X-ray Photoemission as a Structure Determination Tool.

    PubMed

    Céolin, Denis; Rueff, Jean-Pascal; Zimin, Andrey; Morin, Paul; Kimberg, Victor; Polyutov, Sergey; Ågren, Hans; Gel'mukhanov, Faris

    2017-06-15

    Near-zone Förster resonant energy transfer is the main effect responsible for excitation energy flow in the optical region and is frequently used to obtain structural information. In the hard X-ray region, the Förster law is inadequate because the wavelength is generally shorter than the distance between donors and acceptors; hence, far-zone resonant energy transfer (FZRET) becomes dominant. We demonstrate the characteristics of X-ray FZRET and its fundamental differences with the ordinary near-zone resonant energy-transfer process in the optical region by recording and analyzing two qualitatively different systems: high-density CuO polycrystalline powder and SF 6 diluted gas. We suggest a method to estimate geometrical structure using X-ray FZRET employing as a ruler the distance-dependent shift of the acceptor core ionization potential induced by the Coulomb field of the core-ionized donor.

  17. Evaluation of Eyeball and Orbit in Relation to Gender and Age.

    PubMed

    Özer, Cenk Murat; Öz, Ibrahim Ilker; Şerifoğlu, Ismail; Büyükuysal, Mustafa Çağatay; Barut, Çağatay

    2016-11-01

    The orbital aperture is the entrance to the orbit in which most important visual structures such as the eyeball and the optic nerve are found. It is vital not only for the visual system but also for the evaluation and recognition of the face. Eyeball volume is essential for diagnosing microphthalmos or buphthalmos in several eye disorders. Knowing the length of the optic nerve is necessary in selecting the right instruments for enucleation. Therefore, the aim of this study was to evaluate eyeball volume, orbital aperture, and optic nerve dimensions for a morphological description in a Turkish population sample according to gender and body side.Paranasal sinus computed tomography (CT) scans of 198 individuals (83 females, 115 males) aged between 5 and 74 years were evaluated retrospectively. The dimensions of orbital aperture, axial length and volume of eyeball, and diameter and length of the intraorbital part of the optic nerve were measured. Computed tomography examinations were performed on an Activion 16 CT Scanner (Toshiba Medical Systems, 2008 Japan). The CT measurements were calculated by using OsiriX software on a personal computer. All parameters were evaluated according to gender and right/left sides. A statistically significant difference between genders was found with respect to axial length of eyeball, optic nerve diameter, dimensions of orbital aperture on both sides, and right optic nerve length. Furthermore, certain statistically significant side differences were also found. There were statistically significant correlations between age and the axial length of the eyeball, optic nerve diameter, and the transverse length of the orbital aperture on both sides for the whole study group.In this study we determined certain morphometric parameters of the orbit. These outcomes may be helpful in developing a database to determine normal orbit values for the Turkish population so that quantitative assessment of orbital disease and orbital deformities will be evaluated both for preoperative planning and for assessing postoperative outcomes.

  18. Free-space wavelength-multiplexed optical scanner.

    PubMed

    Yaqoob, Z; Rizvi, A A; Riza, N A

    2001-12-10

    A wavelength-multiplexed optical scanning scheme is proposed for deflecting a free-space optical beam by selection of the wavelength of the light incident on a wavelength-dispersive optical element. With fast tunable lasers or optical filters, this scanner features microsecond domain scan setting speeds and large- diameter apertures of several centimeters or more for subdegree angular scans. Analysis performed indicates an optimum scan range for a given diffraction order and grating period. Limitations include beam-spreading effects based on the varying scanner aperture sizes and the instantaneous information bandwidth of the data-carrying laser beam.

  19. Large core plastic planar optical splitter fabricated by 3D printing technology

    NASA Astrophysics Data System (ADS)

    Prajzler, Václav; Kulha, Pavel; Knietel, Marian; Enser, Herbert

    2017-10-01

    We report on the design, fabrication and optical properties of large core multimode optical polymer splitter fabricated using fill up core polymer in substrate that was made by 3D printing technology. The splitter was designed by the beam propagation method intended for assembling large core waveguide fibers with 735 μm diameter. Waveguide core layers were made of optically clear liquid adhesive, and Veroclear polymer was used as substrate and cover layers. Measurement of optical losses proved that the insertion optical loss was lower than 6.8 dB in the visible spectrum.

  20. Probing plasmonic breathing modes optically

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krug, Markus K., E-mail: markus.krug@uni-graz.at; Reisecker, Michael; Hohenau, Andreas

    2014-10-27

    The confinement of surface plasmon modes in flat nanoparticles gives rise to plasmonic breathing modes. With a vanishing net dipole moment, breathing modes do not radiate, i.e., they are optically dark. Having thus escaped optical detection, breathing modes were only recently revealed in silver nanodisks with electron energy loss spectroscopy in an electron microscope. We show that for disk diameters >200 nm, retardation induced by oblique optical illumination relaxes the optically dark character. This makes breathing modes and thus the full plasmonic mode spectrum accessible to optical spectroscopy. The experimental spectroscopy data are in excellent agreement with numerical simulations.

Top