Science.gov

Sample records for optically actuated thermocapillary

  1. Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate.

    PubMed

    Ohta, Aaron T; Jamshidi, Arash; Valley, Justin K; Hsu, Hsan-Yin; Wu, Ming C

    2007-08-14

    The authors demonstrate an optical manipulation mechanism of gas bubbles for microfluidic applications. Air bubbles in a silicone oil medium are manipulated via thermocapillary forces generated by the absorption of a laser in an amorphous silicon thin film. In contrast to previous demonstrations of optically controlled thermally driven bubble movement, transparent liquids can be used, as the thermal gradient is formed from laser absorption in the amorphous silicon substrate, and not in the liquid. A variety of bubbles with volumes ranging from 19 pl to 23 nl was transported at measured velocities of up to 1.5 mm/s.

  2. Interactive actuation of multiple opto-thermocapillary flow-addressed bubble microrobots

    PubMed Central

    Hu, Wenqi; Fan, Qihui; Ohta, Aaron T

    2014-01-01

    Opto-thermocapillary flow-addressed bubble (OFB) microrobots are a potential tool for the efficient transportation of micro-objects. This microrobot system uses light patterns to generate thermal gradients within a liquid medium, creating thermocapillary forces that actuate the bubble microrobots. An interactive control system that includes scanning mirrors and a touchscreen interface was developed to address up to ten OFB microrobots. Using this system, the parallel and cooperative transportation of 20-μm-diameter polystyrene beads was demonstrated. PMID:25678988

  3. Thermocapillary Technique for Shaping and Fabricating Optical Ribbon Waveguides

    NASA Astrophysics Data System (ADS)

    Fiedler, Kevin; Troian, Sandra

    The demand for ever increasing bandwidth and higher speed communication has ushered the next generation optoelectronic integrated circuits which directly incorporate polymer optical waveguide devices. Polymer melts are very versatile materials which have been successfully cast into planar single- and multimode waveguides using techniques such as embossing, photolithography and direct laser writing. In this talk, we describe a novel thermocapillary patterning method for fabricating waveguides in which the free surface of an ultrathin molten polymer film is exposed to a spatially inhomogeneous temperature field via thermal conduction from a nearby cooled mask pattern held in close proximity. The ensuring surface temperature distribution is purposely designed to pool liquid selectively into ribbon shapes suitable for optical waveguiding, but with rounded and not rectangular cross sectional areas due to capillary forces. The solidified waveguide patterns which result from this non-contact one step procedure exhibit ultrasmooth interfaces suitable for demanding optoelectronic applications. To complement these studies, we have also conducted finite element simulations for quantifying the influence of non-rectangular cross-sectional shapes on mode propagation and losses. Kf gratefully acknowledges support from a NASA Space Technology Research Fellowship.

  4. Bi-stable optical actuator

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2000-01-01

    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  5. Curved Piezoelectric Actuators for Stretching Optical Fibers

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.

  6. Three DOF actuator for optical parts micropositioning

    NASA Astrophysics Data System (ADS)

    Nitu, Constantin; Comeaga, Constantin D.; Gramescu, Bogdan

    2005-08-01

    The actual growth of high-technologies and future applications in micro- and nano-manufacturing have raised the need for low cost / high performance micro-positioners. Photonic packaging, optical device testing, MEMS positioning/alignment, fiber alignment, micromachining, micro-manipulation, semiconductor handling systems, microsurgery are some examples of applications, from which the most are in the optical field. Very often, micro-positioning systems with micron or submicron resolution m needed to be run open loop, without feedback position sensors. Such devices are achievable with strain actuators like piezoelectric, magnetostrictive or electrostrictive ones. Two kinds of actuators could be used, with continuous motion or with discrete motion. The first could reach all the points from a space but request real time control. The second could reach only a finite number of points in space, but the command is binary, easy to implement. The working space for discrete actuators can be reached using a lot of actuators, series connected. The paper presents a piezoelectric actuator with 3 DOF, that could be used for micro-positioning. The investigated actuator is a scale model, for checking the principle and the models.

  7. Optically actuated two position mechanical mover

    NASA Technical Reports Server (NTRS)

    Yang, L. C.; Murphy, A. J. (Inventor)

    1974-01-01

    An optically actuated mechanical mover adapted to be moved from an ambient position to an active position, is disclosed. The mechanical mover essentially comprises a piston/cylinder arrangement including a piston that is contained within an internal cylindrical chamber of a housing. The cylindrical chamber is configured to permit the piston to be moved for the length of the chamber as a work stroke. A lock pin extending through the piston, and diametrically opposed walls of the chamber housing, retain the piston in the ambient position at one end of the chamber. An actuator for producing a pressure or shock wave that drives the piston is positioned at the end of the chamber corresponding to the piston ambient position.

  8. Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects.

    PubMed

    Maggi, Claudio; Saglimbeni, Filippo; Dipalo, Michele; De Angelis, Francesco; Di Leonardo, Roberto

    2015-07-29

    The direct conversion of light into work allows the driving of micron-sized motors in a contactless, controllable and continuous way. Light-to-work conversion can involve either direct transfer of optical momentum or indirect opto-thermal effects. Both strategies have been implemented using different coupling mechanisms. However, the resulting efficiencies are always very low, and high power densities, generally obtained by focused laser beams, are required. Here we show that microfabricated gears, sitting on a liquid-air interface, can efficiently convert absorbed light into rotational motion through a thermocapillary effect. We demonstrate rotation rates up to 300 r.p.m. under wide-field illumination with incoherent light. Our analysis shows that thermocapillary propulsion is one of the strongest mechanisms for light actuation at the micron- and nanoscale.

  9. Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects

    PubMed Central

    Maggi, Claudio; Saglimbeni, Filippo; Dipalo, Michele; De Angelis, Francesco; Di Leonardo, Roberto

    2015-01-01

    The direct conversion of light into work allows the driving of micron-sized motors in a contactless, controllable and continuous way. Light-to-work conversion can involve either direct transfer of optical momentum or indirect opto-thermal effects. Both strategies have been implemented using different coupling mechanisms. However, the resulting efficiencies are always very low, and high power densities, generally obtained by focused laser beams, are required. Here we show that microfabricated gears, sitting on a liquid–air interface, can efficiently convert absorbed light into rotational motion through a thermocapillary effect. We demonstrate rotation rates up to 300 r.p.m. under wide-field illumination with incoherent light. Our analysis shows that thermocapillary propulsion is one of the strongest mechanisms for light actuation at the micron- and nanoscale. PMID:26220862

  10. Environmentally responsive optical microstructured hybrid actuator assemblies and applications thereof

    DOEpatents

    Aizenberg, Joanna; Aizenberg, Michael; Kim, Philseok

    2016-01-05

    Microstructured hybrid actuator assemblies in which microactuators carrying designed surface properties to be revealed upon actuation are embedded in a layer of responsive materials. The microactuators in a microactuator array reversibly change their configuration in response to a change in the environment without requiring an external power source to switch their optical properties.

  11. Active optics with a minimum number of actuators

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.

    2014-06-01

    Optics for astronomy implies powerful developments of active and adaptive optics methods applied to instrumentation from X-rays to the near infrared for the design of telescopes, spectrographs, and coronagraph planet finders. This presentation particularly emphasizes the development of active optics methods. Highly accurate and remarkably smooth surfaces from active optics methods allow new optical systems that use highly aspheric and non-axisymmetric - freeform - surfaces. Depending on the goal and performance required for a deformable optical surface, elasticity theory analysis is carried out either with small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, or the weakly conical shell theory. A mirror thickness distribution is then determined as a function of associated bending actuators and boundary conditions. For a given optical shape to generate, one searches for optical solutions with a minimum number of actuators.

  12. Optically triggered actuation in chitosan/reduced graphene oxide nanocomposites.

    PubMed

    M N, Muralidharan; K P, Shinu; A, Seema

    2016-06-25

    Bio-compatible actuators which can work under optical stimulus have great future in bio-medical applications. In this work, chitosan/reduced graphene oxide (RGO) nanocomposite optical actuators were developed through a simple solvent casting technique. The photomechanical actuation of the composites is demonstrated under IR illumination. All samples exhibited contraction in length when exposed to IR light. The photomechanical stress and strain were found to increase with increasing RGO concentration. Photomechanical stress as high as 695kPa was achieved with 4wt.% RGO loading. Contrary to some other reported systems, the photomechanical stress decreased with the applied pre-strain. The actuation behaviour can be tuned either by altering the RGO content or applied pre-strain.

  13. Micro-Ball-Lens Optical Switch Driven by SMA Actuator

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    The figure is a simplified cross section of a microscopic optical switch that was partially developed at the time of reporting the information for this article. In a fully developed version, light would be coupled from an input optical fiber to one of two side-by-side output optical fibers. The optical connection between the input and the selected output fiber would be made via a microscopic ball lens. Switching of the optical connection from one output fiber to another would be effected by using a pair of thin-film shape-memory-alloy (SMA) actuators to toggle the lens between two resting switch positions. There are many optical switches some made of macroscopic parts by conventional fabrication techniques and some that are microfabricated and, hence, belong to the class of microelectromechanical systems (MEMS). Conventionally fabricated optical switches tend to be expensive. MEMS switches can be mass-produced at relatively low cost, but their attractiveness has been diminished by the fact that, heretofore, MEMS switches have usually been found to exhibit high insertion losses. The present switch is intended to serve as a prototype of low-loss MEMS switches. In addition, this is the first reported SMA-based optical switch. The optical fibers would be held in V grooves in a silicon frame. The lens would have a diameter of 1 m; it would be held by, and positioned between, the SMA actuators, which would be made of thin films of TiNi alloy. Although the SMA actuators are depicted here as having simple shapes for the sake of clarity of illustration, the real actuators would have complex, partly net-like shapes. With the exception of the lens and the optical fibers, the SMA actuators and other components of the switch would be made by microfabrication techniques. The components would be assembled into a sandwich structure to complete the fabrication of the switch. To effect switching, an electric current would be passed through one of the SMA actuators to heat it above

  14. Optically driven actuators using poly(vinylidene difluoride)

    NASA Astrophysics Data System (ADS)

    Mizutani, Yasuhiro; Otani, Yukitoshi; Umeda, Norihiro

    2008-05-01

    Optically driven actuators have a feature of a non-contact method supplied by light energy. A new method is proposed with three poly(vinylidene difluoride) (PVDF) cantilevers as the legs and a polymer film as the body. The PVDF cantilevers are coated with silver on one surface. When one side of the cantilever is irradiated by a laser beam, an electric field is produced along a cross-section of the cantilever by the pyroelectric effect and a mechanical displacement occurs by the piezoelectric effect. Its response time and its generated force are measured experimentally. Two types of optically driven actuators using PVDF film are proposed to move using different characteristics.

  15. Optical pendulum generator based on photomechanical liquid-crystalline actuators.

    PubMed

    Tang, Rong; Liu, Ziyi; Xu, Dandan; Liu, Jian; Yu, Li; Yu, Haifeng

    2015-04-29

    For converting light energy into electricity, an optical pendulum generator was designed by combining photomechanical movement of liquid-crystalline actuator (LCA) with Faraday's law of electromagnetic induction. Bilayer cantilever actuators were first fabricated with LDPE and LCA. Their photomechanical movement drove the attached copper coils to cut magnetic line of force generating electricity. The output electricity was proportional to the changing rate of the magnetic flux, which was greatly influenced by light intensity, film thickness, and sample size. Continuous electrical output was also achieved. This simple strategy may expand applications of photoactive materials in the capture and storage of light energy.

  16. Optical pendulum generator based on photomechanical liquid-crystalline actuators.

    PubMed

    Tang, Rong; Liu, Ziyi; Xu, Dandan; Liu, Jian; Yu, Li; Yu, Haifeng

    2015-04-29

    For converting light energy into electricity, an optical pendulum generator was designed by combining photomechanical movement of liquid-crystalline actuator (LCA) with Faraday's law of electromagnetic induction. Bilayer cantilever actuators were first fabricated with LDPE and LCA. Their photomechanical movement drove the attached copper coils to cut magnetic line of force generating electricity. The output electricity was proportional to the changing rate of the magnetic flux, which was greatly influenced by light intensity, film thickness, and sample size. Continuous electrical output was also achieved. This simple strategy may expand applications of photoactive materials in the capture and storage of light energy. PMID:25875214

  17. Aligning Optical Fibers by Means of Actuated MEMS Wedges

    NASA Technical Reports Server (NTRS)

    Morgan, Brian; Ghodssi, Reza

    2007-01-01

    Microelectromechanical systems (MEMS) of a proposed type would be designed and fabricated to effect lateral and vertical alignment of optical fibers with respect to optical, electro-optical, optoelectronic, and/or photonic devices on integrated circuit chips and similar monolithic device structures. A MEMS device of this type would consist of a pair of oppositely sloped alignment wedges attached to linear actuators that would translate the wedges in the plane of a substrate, causing an optical fiber in contact with the sloping wedge surfaces to undergo various displacements parallel and perpendicular to the plane. In making it possible to accurately align optical fibers individually during the packaging stages of fabrication of the affected devices, this MEMS device would also make it possible to relax tolerances in other stages of fabrication, thereby potentially reducing costs and increasing yields. In a typical system according to the proposal (see Figure 1), one or more pair(s) of alignment wedges would be positioned to create a V groove in which an optical fiber would rest. The fiber would be clamped at a suitable distance from the wedges to create a cantilever with a slight bend to push the free end of the fiber gently to the bottom of the V groove. The wedges would be translated in the substrate plane by amounts Dx1 and Dx2, respectively, which would be chosen to move the fiber parallel to the plane by a desired amount Dx and perpendicular to the plane by a desired amount Dy. The actuators used to translate the wedges could be variants of electrostatic or thermal actuators that are common in MEMS.

  18. Relative-Motion Sensors and Actuators for Two Optical Tables

    NASA Technical Reports Server (NTRS)

    Gursel, Yekta; McKenney, Elizabeth

    2004-01-01

    Optoelectronic sensors and magnetic actuators have been developed as parts of a system for controlling the relative position and attitude of two massive optical tables that float on separate standard air suspensions that attenuate ground vibrations. In the specific application for which these sensors and actuators were developed, one of the optical tables holds an optical system that mimics distant stars, while the other optical table holds a test article that simulates a spaceborne stellar interferometer that would be used to observe the stars. The control system is designed to suppress relative motion of the tables or, on demand, to impose controlled relative motion between the tables. The control system includes a sensor system that detects relative motion of the tables in six independent degrees of freedom and a drive system that can apply force to the star-simulator table in the six degrees of freedom. The sensor system includes (1) a set of laser heterodyne gauges and (2) a set of four diode lasers on the star-simulator table, each aimed at one of four quadrant photodiodes at nominal corresponding positions on the test-article table. The heterodyne gauges are used to measure relative displacements along the x axis.

  19. Optically controlled bimorph cantilever by Poly(vinylidene difluoride) and its application of optical actuator

    NASA Astrophysics Data System (ADS)

    Mizutani, Yasuhiro; Otani, Yukitoshi

    2008-11-01

    An optically driven actuator is a non-contact method for the remote application of light energy. A new method for optically driving actuators which uses a polyvinylidine difluoride (PVDF) cantilever is proposed. The PVDF cantilever is coated with silver on one surface. The PVDF is a ferroelectric polymer that has both pyroelectric and piezoelectric properties. When one side of the cantilever is irradiated by a laser beam, an electric field is produced along cross-section of the cantilever and mechanical displacement occurs by the piezoelectric effect. The response of the PVDF cantilever is analyzed mathematically.

  20. Design and control of dual servo actuator for near field optical recording system

    NASA Astrophysics Data System (ADS)

    Jeong, Jaehwa; Choi, Young-Man; Lee, Jun-Hee; Yoon, Hyoung-Kil; Gweon, Dae-Gab

    2005-12-01

    Near field recording (NFR) has been introduced as a new optical data storage method to realize higher data density beyond the diffraction limit. As the data density increases, the track pitch is remarkably reduced to about 400nm. Thus, more precise actuator is required and we propose a dual servo actuator to improve the accuracy of actuator. The proposed dual servo actuator consists of a coarse actuator and a fine actuator, multisegmented magnet array (MSMA) voice coil motor (VCM) and PMN-PT actuator. In design of VCM actuator, a novel magnetic circuit of VCM with MSMA is proposed. It can generate higher air gap flux density than the magnetic circuit of VCM with the conventional magnet array. In design of fine actuator, the fine actuator including PMN-PT single crystal instead of the conventional PZT is proposed. The displacement gain of PMN-PT fine actuator is 26 nm/V and that of PZT fine actuator is 17 nm/V. The displacement gain is increased by 53 %. To evaluate tracking performance of the manufactured dual servo actuator and to assign the proper role to each actuator, the PQ method is selected. From experiment results, the total bandwidth of the dual servo actuator is increased to 2.5kHz and the resolution is 25 nm. Comparing with the resolution of one servo actuator, 70 nm, we can find that the accuracy of actuator is remarkably improved. And the proposed dual servo actuator shows satisfactory performances to be applied to NFR and it can be applied to other future disk drives.

  1. Endoscopic optical coherence tomography imaging probe using a MEMS actuator

    NASA Astrophysics Data System (ADS)

    Zara, Jason M.; Izatt, Joseph A.; Oberhardt, Bruce J.; Smith, Stephen W.

    2004-07-01

    Endoscopic optical coherence tomography (EOCT) is a medical imaging technique that uses infrared light delivered via an endoscope to produce high-resolution images of tissue microstructure of the gastrointestinal tract. A key component of an EOCT system is the method used to scan the infrared beam across the tissue surface. We have begun developing electrostatic MEMS micromirror devices for use in EOCT. These devices consist of 1 mm square gold-plated silicon mirrors on polyimide tables that tilt on 3 micron thick torsion hinges. The MEMS actuator used to tilt the mirror, the integrated forces array (IFA) is a thin (2.2 μm) polyimide membrane consisting of hundreds of thousands of deformable capacitors that can produce strains up to 20% and forces equivalent to 13 mg with applied voltages from 30-120 V. Measurements of optical deflections of these devices range from 18° at low frequencies to more than 120° near the resonant frequencies of the structures (30-60 Hz). The support structures, hinges, and actuators are fabricated from polyimide on silicon using photolithography. These electrostatic MEMS micromirrors were inserted into the scanning arm of an OCT imaging system to take in vitro images of porcine tissue and in vivo images of human skin at frame rates from 4-8 Hz. SLA probe tips were designed and fabricated to align the optics of the device and to protect the fragile polyimide devices during endoscopic imaging. In addition, devices are being fabricated that combine the IFA and mirror structures onto a single silicon wafer, reducing fabrication difficulty.

  2. A low-voltage three-axis electromagnetically actuated micromirror for fine alignment among optical devices

    NASA Astrophysics Data System (ADS)

    Cho, Il-Joo; Yoon, Euisik

    2009-08-01

    In this paper, a new three-axis electromagnetically actuated micromirror structure has been proposed and fabricated. It is electromagnetically actuated at low voltage using an external magnetic field. The main purpose of this work was to obtain a three-axis actuated micromirror in a mechanically robust structure with large static angular and vertical displacement at low actuation voltage for fine alignment among optical components in an active alignment module as well as conventional optical systems. The mirror plate and torsion bars are made of bulk silicon using a SOI wafer, and the actuation coils are made of electroplated Au. The maximum static deflection angles were measured as ±4.2° for x-axis actuation and ±9.2° for y-axis actuation, respectively. The maximum static vertical displacement was measured as ±42 µm for z-axis actuation. The actuation voltages were below 3 V for all actuation. The simulated resonant frequencies are several kHz, and these imply that the fabricated micromirror can be operated in sub-millisecond order. The measured radius of curvature (ROC) of the fabricated micromirror is 7.72 cm, and the surface roughness of the reflector is below 1.29 nm which ensure high optical performance such as high directionality and reflectivity. The fabricated micromirror has demonstrated large actuated displacement at low actuation voltage, and it enables us to compensate a larger misalignment value when it is used in an active alignment module. The robust torsion bar and lifting bar structure formed by bulk silicon allowed the proposed micromirror to have greater operating stability. The additional degree of freedom with z-axis actuation can decrease the difficulty in the assembly of optical components and increase the coupling efficiency between optical components.

  3. Photonic muscle active optics for space telescopes (active optics with 1023 actuators)

    NASA Astrophysics Data System (ADS)

    Ritter, Joe

    2009-08-01

    Presented is a novel optical system using Cis-Trans photoisomerization where nearly every molecule of a mirror substrate is itself an optically powered actuator. Primary mirrors require sub-wavelength figure (shape) error in order to achieve acceptable Strehl ratios. Traditional telescopy methods require rigid and therefore heavy mirrors and reaction structures as well as proportionally heavy and expensive spacecraft busses and launch vehicles. Areal density can be reduced by increasing actuation density. Making every molecule of a substrate an actuator approaches the limit of the areal density vs actuation design trade space. Cis-Trans photoisomerization, a reversible reorganization of molecular structure induced by light, causes a change in the shape and volume of azobenzene based molecules. Induced strain in these "photonic muscles" can be over 40%. Forces are pico-newtons/molecule. Although this molecular limit is not typically multiplied in aggregate materials we have made, considering the large number of molecules in a mole, future optimized systems may approach this limit In some π-π* mixed valence azo-polymer membranes we have made photoisomerization causes a highly controllable change in macroscopic dimension with application of light. Using different wavelengths and polarizations provides the capability to actively reversibly and remotely control membrane mirror shape and dynamics using low power lasers, instead of bulky actuators and wires, thus allowing the substitution of optically induced control for rigidity and mass. Areal densities of our photonic muscle mirrors are approximately 100 g/m2. This includes the substrate and actuators (which are of course the same). These materials are thin and flexible (similar to saran wrap) so high packing ratios are possible, suggesting the possibility of deployable JWST size mirrors weighing 6 kilograms, and the possibility of ultralightweight space telescopes the size of a football field. Photons weigh nothing

  4. Intelligent process monitoring of multilayer ceramic actuators using high temperature optical fiber displacement sensors

    SciTech Connect

    Gunther, M.F.; Claus, R.O.; Ritter, A.; Tran, T.A.; Greene, J.A.

    1994-12-31

    The Fiber and Electro-Optics Research Center (FEORC) has developed a sensing technique for the intelligent processing of a multilayer ceramic actuator (MCA) elements manufactured by the AVX Corporation in Conway, SC. Presented are the results of the fiber optic strain sensor used to monitor the burnout of organic binders from a green actuator sample. The results establish the operation of the short gage length, low finesse Fabry-Perot interferometric strain sensor as a tool for intelligent processing of such ceramic actuator elements. Also presented is the method of sensor operation, and post processing results using the same sensor for tracking actuator performance and hysteresis.

  5. Control of oscillatory thermocapillary convection in microgravity

    NASA Astrophysics Data System (ADS)

    Neitzel, G. Paul

    1994-08-01

    Laboratory and numerical experiments are underway to generate, and subsequently suppress, oscillatory thermocapillary convection in thin layer of silicone oil. The laboratory experiments have succeeded in characterizing the flow state in a limited range of Bond number-Marangoni number space of interest, identifying states of: (1) steady, unicellular, thermocapillary convection; (2) steady, multicellular, thermocapillary convection; and (3) oscillatory thermocapillary convection. Comparisons between experimental results and stability computations for a related basic state will be made.

  6. Control of oscillatory thermocapillary convection in microgravity

    NASA Technical Reports Server (NTRS)

    Neitzel, G. Paul

    1994-01-01

    Laboratory and numerical experiments are underway to generate, and subsequently suppress, oscillatory thermocapillary convection in thin layer of silicone oil. The laboratory experiments have succeeded in characterizing the flow state in a limited range of Bond number-Marangoni number space of interest, identifying states of: (1) steady, unicellular, thermocapillary convection; (2) steady, multicellular, thermocapillary convection; and (3) oscillatory thermocapillary convection. Comparisons between experimental results and stability computations for a related basic state will be made.

  7. THUNDER Piezoelectric Actuators as a Method of Stretch-Tuning an Optical Fiber Grating

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Fox, Robert L.; Froggatt, Mark E.; Childers, Brooks A.

    2000-01-01

    A method of stretching optical fiber holds interest for measuring strain in smart structures where the physical displacement may be used to tune optical fiber lasers. A small, light weight, low power tunable fiber laser is ideal for demodulating strain in optical fiber Bragg gratings attached to smart structures such as the re-usable launch vehicle that is being developed by NASA. A method is presented for stretching optical fibers using the THUNDER piezoelectric actuators invented at NASA Langley Research Center. THUNDER actuators use a piezoelectric layer bonded to a metal backing to enable the actuators to produce displacements larger than the unbonded piezoelectric material. The shift in reflected optical wavelength resulting from stretching the fiber Bragg grating is presented. Means of adapting THUNDER actuators for stretching optical fibers is discussed, including ferrules, ferrule clamp blocks, and plastic hinges made with stereo lithography.

  8. THUNDER piezoelectric actuators as a method of stretch-tuning an optical fiber grating

    NASA Astrophysics Data System (ADS)

    Allison, Sidney G.; Fox, Robert L.; Froggatt, Mark E.; Childers, Brooks A.

    2000-06-01

    A method of stretching optical fiber holds interest for measuring strain in smart structures where the physical displacement may be used to tune optical fiber lasers. A small, lightweight, low power tunable fiber laser is ideal for demodulating strain in optical fiber Bragg gratings attached to smart structures such as the re-usable launch vehicle that is begin developed by NASA. A method is presented for stretching optical fibers using the THUNDER piezoelectric actuators invented at NASA Langley Research Center. THUNDER actuators use a piezoelectric layer bonded to a metal backing to enable the actuators to produce displacements larger than the unbonded piezoelectric material. The shift in reflected optical wavelength resulting from stretching the fiber Bragg grating is presented. Means of adapting THUNDER actuators for stretching optical fibers is discussed, including ferrules, ferrule clamp blocks, and plastic hinges made with stereo lithography.

  9. The fabrication and characterisation of piezoelectric actuators for active x-ray optics

    NASA Astrophysics Data System (ADS)

    Zhang, Dou; Rodriguez Sanmartin, Daniel; Button, Tim W.; Meggs, Carl; Atkins, Carolyn; Doel, Peter; Brooks, David; Feldman, Charlotte; Willingale, Richard; Michette, Alan; Pfauntsch, Slawka; Sahraei, Shahin; James, Ady; Dunare, Camelia; Stevenson, Tom; Parkes, William; Smith, Andrew; Wang, Hongchang

    2009-08-01

    Piezoelectric actuators are widely employed in adaptive optics to enable an actively controlled mirror surface and improve the optical resolution and sensitivity. Currently two new prototype adaptive X-ray optical systems are under development through the Smart X-ray Optics project in a UK based consortium. One proposed technology is micro-structured optical arrays (MOAs) which uses aligned micro-channels structures obtained by deep silicon etching using both dry and wet techniques and bonded piezoelectric actuators to produce a micro-focused X-ray source for biological applications. The other technology is large scale optics which uses a thin shell mirror segment with 20-40 bonded piezo-actuators for the next generation of X-ray telescopes with an aim to achieve a resolution greater than that currently available by Chandra (0.5"). The Functional Materials Group of Birmingham University has the capability of fabricating a wide range of piezo-actuators including, for example, unimorph, bimorph and active fibre composites (AFC) by using a viscous plastic processing technique. This offers flexibility in customising the shapes (from planar to 3-D helix) and feature sizes (>20 μm) of the actuators, as well as achieving good piezoelectric properties. PZT unimorph actuators are being developed in this programme according to the design and implementation of the proposed mirror and array structures. Precise controls on the dimension, thickness, surface finishing and the curvature have been achieved for delivering satisfactory actuators. Results are presented regarding the fabrication and characterisation of such piezo-actuators, as well as the progress on the large optic and MOAs prototypes employing the piezo-actuators.

  10. Large-Stroke Self-Aligned Vertical Comb Drive Actuators for Adaptive Optics Applications

    SciTech Connect

    Carr, E J; Olivier, S S; Solgaard, O

    2005-10-27

    A high-stroke micro-actuator array was designed, modeled, fabricated and tested. Each pixel in the 4x4 array consists of a self-aligned vertical comb drive actuator. This micro-actuator array was designed to become the foundation of a micro-mirror array that will be used as a deformable mirror for adaptive optics applications. Analytical models combined with CoventorWare{reg_sign} simulations were used to design actuators that would move up to 10{micro}m in piston motion with 100V applied. Devices were fabricated according to this design and testing of these devices demonstrated an actuator displacement of 1.4{micro}m with 200V applied. Further investigation revealed that fabrication process inaccuracy led to significantly stiffer mechanical springs in the fabricated devices. The increased stiffness of the springs was shown to account for the reduced displacement of the actuators relative to the design.

  11. Influence of low optical frequencies on actuation dynamics of microelectromechanical systems via Casimir forces

    NASA Astrophysics Data System (ADS)

    Sedighi, Mehdi; Palasantzas, George

    2015-04-01

    The role of the Casimir force on the analysis of microactuators is strongly influenced by the optical properties of interacting materials. Bifurcation and phase portrait analysis were used to compare the sensitivity of actuators when the optical properties at low optical frequencies were modeled using the Drude and Plasma models. Indeed, for metallic systems, which have strong Casimir attraction, the details of the modeling of the low optical frequency regime can be dramatic, leading to predictions of either stable motion or stiction instability. However, this difference is strongly minimized for weakly conductive systems as are the doped insulators making actuation modeling more certain to predict.

  12. Laser microfluidics: fluid actuation by light

    NASA Astrophysics Data System (ADS)

    Delville, Jean-Pierre; de Saint Vincent, Matthieu Robert; Schroll, Robert D.; Chraïbi, Hamza; Issenmann, Bruno; Wunenburger, Régis; Lasseux, Didier; Zhang, Wendy W.; Brasselet, Etienne

    2009-03-01

    The development of microfluidic devices is still hindered by the lack of robust fundamental building blocks that constitute any fluidic system. An attractive approach is optical actuation because light field interaction is contactless and dynamically reconfigurable, and solutions have been anticipated through the use of optical forces to manipulate microparticles in flows. Following the concept of an 'optical chip' advanced from the optical actuation of suspensions, we propose in this survey new routes to extend this concept to microfluidic two-phase flows. First, we investigate the destabilization of fluid interfaces by the optical radiation pressure and the formation of liquid jets. We analyze the droplet shedding from the jet tip and the continuous transport in laser-sustained liquid channels. In the second part, we investigate a dissipative light-flow interaction mechanism consisting in heating locally two immiscible fluids to produce thermocapillary stresses along their interface. This opto-capillary coupling is implemented in adequate microchannel geometries to manipulate two-phase flows and propose a contactless optical toolbox including valves, droplet sorters and switches, droplet dividers or droplet mergers. Finally, we discuss radiation pressure and opto-capillary effects in the context of the 'optical chip' where flows, channels and operating functions would all be performed optically on the same device.

  13. Halbach array type focusing actuator for small and thin optical data storage device

    NASA Astrophysics Data System (ADS)

    Lee, Sung Q.; Park, Kang-Ho; Paek, Mun Chul

    2004-09-01

    The small form factor optical data storage devices are developing rapidly nowadays. Since it is designed for portable and compatibility with flesh memory, its components such as disk, head, focusing actuator, and spindle motor should be assembled within 5 mm. The thickness of focusing actuator is within 2 mm and the total working range is +/-100um, with the resolution of less than 1μm. Since the thickness is limited tightly, it is hard to place the yoke that closes the magnetic circuit and hard to make strong flux density without yoke. Therefore, Halbach array is adopted to increase the magnetic flux of one side without yoke. The proposed Halbach array type focusing actuator has the advantage of thin actuation structure with sacrificing less flex density than conventional magnetic array. The optical head unit is moved on the swing arm type tracking actuator. Focusing coil is attached to swing arm, and Halbach magnet array is positioned at the bottom of deck along the tracking line, and focusing actuator exerts force by the Fleming's left hand rule. The dynamics, working range, control resolution of focusing actuator are analyzed and performed.

  14. Four-plate piezoelectric actuator driving a large-diameter special optical fiber for nonlinear optical microendoscopy.

    PubMed

    Wang, Ying; Li, Zhi; Liang, Xiaobao; Fu, Ling

    2016-08-22

    In nonlinear optical microendoscope (NOME), a fiber with excellent optical characteristics and a miniature scanning mechanism at the distal end are two key components. Double-clad fibers (DCFs) and double-clad photonic crystal fibers (DCPCFs) have shown great optical characteristics but limited vibration amplitude due to large diameter. Besides reducing the damping of fiber cantilever, optimizing the structural of the actuator for lower energy dissipation also contributes to better driving capability. This paper presented an optimized actuator for driving a particular fiber cantilever in the view point of energy. Firstly, deformation energy of a bending fiber cantilever operating in resonant mode is investigated. Secondly, strain and stress analyses revealed that the four-plate actuator achieved lower energy dissipation. Then, finite-element simulations showed that the large-diameter fiber yielded an adequate vibration amplitude driven by a four-plate actuator, which was confirmed by experiments of our home-made four-plate actuator prototypes. Additionally, a NOME based on a DCPCF with a diameter of 350 μm driven by four-plate piezoelectric actuator has been developed. The NOME can excite and collect intrinsic second-harmonic and two-photon fluorescence signals with the excitation power of 10-30 mW and an adequate field of view of 200 μm, which suggest great potential applications in neuroscience and clinical diagnoses. PMID:27557270

  15. Development of net-shape piezoelectric actuators for large x-ray optics

    NASA Astrophysics Data System (ADS)

    Rodriguez Sanmartin, Daniel; Zhang, Dou; Button, Tim; Meggs, Carl; Atkins, Carolyn; Doel, Peter; Brooks, David; Feldman, Charlotte; Willingale, Richard; James, Ady; Willis, Graham; Smith, Andy

    2010-09-01

    The design of current X-ray telescope systems needs to reach a compromise between the resolution and sensitivity. A new area of interest of adaptive optics is the development of actively controlled thin X-ray mirrors, where aberrations would be corrected. Their assembly on an X-ray telescope would provide an instrument with both high resolution and sensitivity. The Smart X-Ray Optics (SXO) project comprises a U.K.-based consortium developing prototypes for the next generation of X-ray telescopes. The overall aim is to produce X-ray mirrors using thin, below 1mm, structures, comprising Ni mirror shells with bonded piezoelectric unimorph actuators, and with a target resolution of {0.1 arcs. Such an optic would enable the design of an X-ray telescope with both a greater resolution and collective area than the best currently available by Chandra (0.5arcs) and XMM Newton (1650cm2) respectively. Lead zirconate titanate, PZT-based piezoelectric actuators are being developed in this programme to fit precisely the curved Ni mirror shell prototypes (100×300×0.4mm, radius of curvature 167mm). Viscous plastic processing has been chosen for the fabrication of net-shaped piezoelectric unimorph actuators 75×32×0.18mm, with radius of curvature conforming to those of the X-ray optic. Laser machining has been used for precisely controlling the actuator shape and for the definition of the multi-segment electrodes. Accurate control of the thickness, surface finish and curvature are the key factors to delivering satisfactory actuators. Results are presented concerning the fabrication and characterisation of the piezoelectric actuators, and the integration procedure on the nickel optic.

  16. A light writable microfluidic "flash memory": optically addressed actuator array with latched operation for microfluidic applications.

    PubMed

    Hua, Zhishan; Pal, Rohit; Srivannavit, Onnop; Burns, Mark A; Gulari, Erdogan

    2008-03-01

    This paper presents a novel optically addressed microactuator array (microfluidic "flash memory") with latched operation. Analogous to the address-data bus mediated memory address protocol in electronics, the microactuator array consists of individual phase-change based actuators addressed by localized heating through focused light patterns (address bus), which can be provided by a modified projector or high power laser pointer. A common pressure manifold (data bus) for the entire array is used to generate large deflections of the phase change actuators in the molten phase. The use of phase change material as the working media enables latched operation of the actuator array. After the initial light "writing" during which the phase is temporarily changed to molten, the actuated status is self-maintained by the solid phase of the actuator without power and pressure inputs. The microfluidic flash memory can be re-configured by a new light illumination pattern and common pressure signal. The proposed approach can achieve actuation of arbitrary units in a large-scale array without the need for complex external equipment such as solenoid valves and electrical modules, which leads to significantly simplified system implementation and compact system size. The proposed work therefore provides a flexible, energy-efficient, and low cost multiplexing solution for microfluidic applications based on physical displacements. As an example, the use of the latched microactuator array as "normally closed" or "normally open" microvalves is demonstrated. The phase-change wax is fully encapsulated and thus immune from contamination issues in fluidic environments.

  17. Dynamic Reconstruction and Multivariable Control for Force-Actuated, Thin Facesheet Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Grocott, Simon C. O.; Miller, David W.

    1997-01-01

    The Multiple Mirror Telescope (MMT) under development at the University of Arizona takes a new approach in adaptive optics placing a large (0.65 m) force-actuated, thin facesheet deformable mirror at the secondary of an astronomical telescope, thus reducing the effects of emissivity which are important in IR astronomy. However, The large size of the mirror and low stiffness actuators used drive the natural frequencies of the mirror down into the bandwidth of the atmospheric distortion. Conventional adaptive optics takes a quasi-static approach to controlling the, deformable mirror. However, flexibility within the control bandwidth calls for a new approach to adaptive optics. Dynamic influence functions are used to characterize the influence of each actuator on the surface of the deformable mirror. A linearized model of atmospheric distortion is combined with dynamic influence functions to produce a dynamic reconstructor. This dynamic reconstructor is recognized as an optimal control problem. Solving the optimal control problem for a system with hundreds of actuators and sensors is formidable. Exploiting the circularly symmetric geometry of the mirror, and a suitable model of atmospheric distortion, the control problem is divided into a number of smaller decoupled control problems using circulant matrix theory. A hierarchic control scheme which seeks to emulate the quasi-static control approach that is generally used in adaptive optics is compared to the proposed dynamic reconstruction technique. Although dynamic reconstruction requires somewhat more computational power to implement, it achieves better performance with less power usage, and is less sensitive than the hierarchic technique.

  18. Nano-scale optical actuation based on two-dimensional heterostructure photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Lin, Tong; Zhou, Guangya; Chau, Fook Siong; Tian, Feng; Deng, Jie

    2015-03-01

    Nowadays, nano-electro-mechanical systems (NEMS) actuators using electrostatic forces are facing the bottleneck of the electromagnetic interference which greatly degrades their performances. On the contrary, the hybrid circuits driven by optical gradient forces which are immune to the electromagnetic interference show prominent advantages in communication, quantum computation, and other application systems. In this paper we propose an optical actuator utilizing the optical gradient force generated by a hetero-structure photonic crystal cavity. This type of cavity has a longitudinal air-slot and characteristics of ultrahigh quality factor (Q) and ultra-small mode volume (V) which is capable of producing a much larger force compared with the waveguide-based structures. Due to the symmetry property, attractive optical gradient force is generated. Additionally, the optomechanical coefficient (gom) of this cavity is two orders of magnitude larger than that of the coupled nanobeam photonic crystal cavities. The 2D hetero-structure cavity, comb drives, folded beam suspensions and the displacement sensor compose the whole device. The cavity serves as the optical actuator whilst the butt-coupled waveguide acts as the displacement sensor which is theoretically proved to be insensitive to the temperature variations. As known, the thermo-optic effect prevails especially in the cavity-based structures. The butt-coupled waveguide can be used to decouple the thermal effect and the optoemchanical effect (OM) with the aid of comb drives. The results demonstrate that the proposed optical gradient force actuator show great potential in the future of all-optical reconfigurable circuits.

  19. Influence of materials' optical response on actuation dynamics by Casimir forces.

    PubMed

    Sedighi, M; Broer, W H; Van der Veeke, S; Svetovoy, V B; Palasantzas, G

    2015-06-01

    The dependence of the Casimir force on the frequency-dependent dielectric functions of interacting materials makes it possible to tailor the actuation dynamics of microactuators. The Casimir force is largest for metallic interacting systems due to the high absorption of conduction electrons in the far-infrared range. For less conductive systems, such as phase change materials or conductive silicon carbide, the reduced force offers the advantage of increased stable operation of MEMS devices against pull-in instabilities that lead to unwanted stiction. Bifurcation analysis with phase portraits has been used to compare the sensitivity of a model actuator when the optical properties are altered.

  20. Influence of materials' optical response on actuation dynamics by Casimir forces

    NASA Astrophysics Data System (ADS)

    Sedighi, M.; Broer, W. H.; Van der Veeke, S.; Svetovoy, V. B.; Palasantzas, G.

    2015-06-01

    The dependence of the Casimir force on the frequency-dependent dielectric functions of interacting materials makes it possible to tailor the actuation dynamics of microactuators. The Casimir force is largest for metallic interacting systems due to the high absorption of conduction electrons in the far-infrared range. For less conductive systems, such as phase change materials or conductive silicon carbide, the reduced force offers the advantage of increased stable operation of MEMS devices against pull-in instabilities that lead to unwanted stiction. Bifurcation analysis with phase portraits has been used to compare the sensitivity of a model actuator when the optical properties are altered.

  1. Fiber Optic Experience with the Smart Actuation System on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Zavala, Eddie

    1997-01-01

    High bandwidth, immunity to electromagnetic interference, and potential weight savings have led to the development of fiber optic technology for future aerospace vehicle systems. This technology has been incorporated in a new smart actuator as the primary communication interface. The use of fiber optics simplified system integration and significantly reduced wire count. Flight test results showed that fiber optics could be used in aircraft systems and identified critical areas of development of fly-by-light technology. This paper documents the fiber optic experience gained as a result of this program, and identifies general design considerations that could be used in a variety of specific applications of fiber optic technology. Environmental sensitivities of fiber optic system components that significantly contribute to optical power variation are discussed. Although a calibration procedure successfully minimized the effect of fiber optic sensitivities, more standardized calibration methods are needed to ensure system operation and reliability in future aerospace vehicle systems.

  2. Precision Linear Actuators for the Spherical Primary Optical Telescope Demonstration Mirror

    NASA Technical Reports Server (NTRS)

    Budinoff, Jason; Pfenning, David

    2006-01-01

    The Spherical Primary Optical Telescope (SPOT) is an ongoing research effort at Goddard Space Flight Center developing wavefront sensing and control architectures for future space telescopes. The 03.5-m SPOT telescope primary mirror is comprise9 of six 0.86-m hexagonal mirror segments arranged in a single ring, with the central segment missing. The mirror segments are designed for laboratory use and are not lightweighted to reduce cost. Each primary mirror segment is actuated and has tip, tilt, and piston rigid-body motions. Additionally, the radius of curvature of each mirror segment may be varied mechanically. To provide these degrees of freedom, the SPOT mirror segment assembly requires linear actuators capable of actuators must withstand high static loads as they must support the mirror segment, which has a mass of -100 kg. A stepper motor driving a differential satellite roller screw was designed to meet these demanding requirements. Initial testing showed that the actuator is capable of sub-micron repeatability over the entire 6-mm range, and was limited by 100-200 nm measurement noise levels present in the facility. Further testing must be accomplished in an isolated facility with a measurement noise floor of <5 nm. Such a facility should be ready for use at GSFC in the early summer of 2006, and will be used to better characterize this actuator.

  3. Adaptive Optics: Arroyo Simulation Tool and Deformable Mirror Actuation Using Golay Cells

    NASA Technical Reports Server (NTRS)

    Lint, Adam S.

    2005-01-01

    The Arroyo C++ libraries, written by Caltech post-doc student Matthew Britton, have the ability to simulate optical systems and atmospheric signal interference. This program was chosen for use in an end-to-end simulation model of a laser communication system because it is freely distributed and has the ability to be controlled by a remote system or "smart agent." Proposed operation of this program by a smart agent has been demonstrated, and the results show it to be a suitable simulation tool. Deformable mirrors, as a part of modern adaptive optics systems, may contain thousands of tiny, independently controlled actuators used to modify the shape of the mirror. Each actuator is connected to two wires, creating a cumbersome and expensive device. Recently, an alternative actuation method that uses gas-filled tubes known as Golay cells has been explored. Golay cells, operated by infrared lasers instead of electricity, would replace the actuator system thereby creating a more compact deformable mirror. The operation of Golay cells and their ability to move a deformable mirror in excess of the required 20 microns has been demonstrated. Experimentation has shown them to be extremely sensitive to pressure and temperature, making them ideal for use in a controlled environment.

  4. Kilohertz scanning all-fiber optical delay line using piezoelectric actuation

    NASA Astrophysics Data System (ADS)

    Henderson, David A.; Hoffman, Conrad; Culhane, Robert; Viggiano, Dan, III

    2004-12-01

    Commercial applications for fiber sensing and low-coherence interferometry are rapidly growing in medical, industrial and aerospace markets. These new instruments must be smaller, more robust and less expensive. An all-fiber optical delay line or "fiber stretcher", using piezoelectric (PZT) actuation, offers a simple solid-state solution that eliminates free space optics. The challenges for PZT fiber stretchers include: reducing non-linearity and hysteresis, achieving sufficient scan range with minimum fiber length, maximizing scan frequency and reducing losses in the drive electronics. PZT actuators are essentially large ceramic capacitors that must be rapidly charged and discharged to achieve fast scanning. The mechanical response of the PZT ceramic is greater than 10 kHz which makes it practical to scan at four kilohertz. A thin-walled piezoelectric disk or cylinder achieves 4.5 millimeters of fiber stretch using 20 meters of coiled fiber. Digitally controlled series resonant electronics produce a 1200 volt sinusoidal drive signal at a fixed frequency of four kilohertz while dissipating only 16 Watts. An all-fiber optical delay line module, using piezoelectric actuators and a series resonant drive, is a miniature, robust and efficient alternative to free-space optics with dithering mirrors or spinning polygons.

  5. Control of the unilluminated deformable mirror actuators in an altitude-conjugated adaptive optics system

    PubMed

    Veran

    2000-07-01

    Off-axis observations made with adaptive optics are severely limited by anisoplanatism errors. However, conjugating the deformable mirror to an optimal altitude can reduce these errors; it is then necessary to control, through extrapolation, actuators that are not measured by the wave-front sensor (unilluminated actuators). In this study various common extrapolation schemes are investigated, and an optimal method that achieves a significantly better performance is proposed. This extrapolation method involves a simple matrix multiplication and will be implemented in ALTAIR, the Gemini North Telescope adaptive optics system located on Mauna Kea, Hawaii. With this optimal method, the relative H-band Strehl reduction due to extrapolation errors is only 5%, 16%, and 30% when the angular distance between the guide source and the science target is 20, 40 and 60 arc sec, respectively. For a site such as Mauna Kea, these errors are largely outweighed by the increase in the size of the isoplanatic field.

  6. Control of the unilluminated deformable mirror actuators in an altitude-conjugated adaptive optics system

    PubMed

    Veran

    2000-07-01

    Off-axis observations made with adaptive optics are severely limited by anisoplanatism errors. However, conjugating the deformable mirror to an optimal altitude can reduce these errors; it is then necessary to control, through extrapolation, actuators that are not measured by the wave-front sensor (unilluminated actuators). In this study various common extrapolation schemes are investigated, and an optimal method that achieves a significantly better performance is proposed. This extrapolation method involves a simple matrix multiplication and will be implemented in ALTAIR, the Gemini North Telescope adaptive optics system located on Mauna Kea, Hawaii. With this optimal method, the relative H-band Strehl reduction due to extrapolation errors is only 5%, 16%, and 30% when the angular distance between the guide source and the science target is 20, 40 and 60 arc sec, respectively. For a site such as Mauna Kea, these errors are largely outweighed by the increase in the size of the isoplanatic field. PMID:10883986

  7. Flow restrictor silicon membrane microvalve actuated by optically controlled paraffin phase transition

    NASA Astrophysics Data System (ADS)

    Kolari, K.; Havia, T.; Stuns, I.; Hjort, K.

    2014-08-01

    Restrictor valves allow proportional control of fluid flow but are rarely integrated in microfluidic systems. In this study, an optically actuated silicon membrane restrictor microvalve is demonstrated. Its actuation is based on the phase transition of paraffin, using a paraffin wax mixed with a suitable concentration of optically absorbing nanographite particles. Backing up the membrane with oil (the melted paraffin) allows for a compliant yet strong contact to the valve seat, which enables handling of high pressures. At flow rates up to 30 µL min-1 and at a pressure of 2 bars, the valve can successfully be closed and control the flow level by restriction. The use of this paraffin composite as an adhesive layer sandwiched between the silicon valve and glass eases fabrication. This type of restrictor valve is best suited for high pressure, low volume flow silicon-based nanofluidic systems.

  8. Design and optimization of small-sized actuators for driving optical lens with different shapes based on IPMCs

    NASA Astrophysics Data System (ADS)

    Wang, Yanjie; Chen, Hualing; Luo, Bin; Zhu, Zicai

    2012-04-01

    Ionic Polymer Metal Composites (IPMCs), as one of the most promising smart materials, can produce a large deformation for low voltage in the range of 0-5V. Since the materials were found, IPMCs have often been studied as actuators for their large deformation and inherent flexibility. Recently, IPMCs are applied to the optical lens-driving system. In this paper, we design miniature optical lens actuators for the focusing requirements. And two kinds of the driving structure, the petal-shaped and annular structure, are proposed. Then, the preparation processes of IPMCs and the actuators are presented and five kinds of petal-shaped and annular actuators are manufactured and their performances are tested, respectively. Finally, the performances of the actuators with different parameters are analyzed by an equivalent thermal model with FEA software.

  9. Control of systems with tiered actuators with application to interferometer optical delay line control

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J.; Hadaegh, Fred Y.

    2004-01-01

    High accuracy feedback control systems might employ tiers of actuators with different properties. Such systems performance can be estimated in advance using Bode integrals. The systems can be made globally stable with good transient responses and close to the best possible disturbance rejection when controllers include high-order linear links and multiple nonlinear dynamic links. The design approach is exemplified by designing conb-ol system for an interferometer optical delay line.

  10. Optical Diagnostics of Air Flows Induced in Surface Dielectric Barrier Discharge Plasma Actuator

    NASA Astrophysics Data System (ADS)

    Kobatake, Takuya; Deguchi, Masanori; Suzuki, Junya; Eriguchi, Koji; Ono, Kouichi

    2014-10-01

    A surface dielectric barrier discharge (SDBD) plasma actuator has recently been intensively studied for the flow control over airfoils and turbine blades in the fields of aerospace and aeromechanics. It consists of two electrodes placed on both sides of the dielectric, where one is a top powered electrode exposed to the air, and the other is a bottom grounded electrode encapsulated with an insulator. The unidirectional gas flow along the dielectric surfaces is induced by the electrohydrodynamic (EHD) body force. It is known that the thinner the exposed electrode, the greater the momentum transfer to the air is, indicating that the thickness of the plasma is important. To analyze plasma profiles and air flows induced in the SDBD plasma actuator, we performed time-resolved and -integrated optical emission and schlieren imaging of the side view of the SDBD plasma actuator in atmospheric air. We applied a high voltage bipolar pulse (4-8 kV, 1-10 kHz) between electrodes. Experimental results indicated that the spatial extent of the plasma is much smaller than that of the induced flows. Experimental results further indicated that in the positive-going phase, a thin and long plasma is generated, where the optical emission is weak and uniform; on the other hand, in the negative-going phase, a thick and short plasma is generated, where a strong optical emission is observed near the top electrode.

  11. Batch fabrication of optical actuators using nanotube-elastomer composites towards refreshable Braille displays

    NASA Astrophysics Data System (ADS)

    Camargo, C. J.; Campanella, H.; Marshall, J. E.; Torras, N.; Zinoviev, K.; Terentjev, E. M.; Esteve, J.

    2012-07-01

    This paper reports an opto-actuable device fabricated using micro-machined silicon moulds. The actuating component of the device is made from a composite material containing carbon nanotubes (CNTs) embedded in a liquid crystal elastomer (LCE) matrix. We demonstrate the fabrication of a patterned LCE-CNT film by a combination of mechanical stretching and thermal cross-linking. The resulting poly-domain LCE-CNT film contains ‘blister-shaped’ mono-domain regions, which reversibly change their shape under light irradiation and hence can be used as dynamic Braille dots. We demonstrate that blisters with diameters of 1.0 and 1.5 mm, and wall thickness 300 µm, will mechanically contract under irradiation by a laser diode with optical power up to 60 mW. The magnitude of this contraction was up to 40 µm, which is more than 10% of their height in the ‘rest’ state. The stabilization time of the material is less than 6 s for both actuation and recovery. We also carried out preliminary tests on the repeatability of this photo-actuation process, observing no material or performance degradation. This manufacturing approach establishes a starting point for the design and fabrication of wide-area tactile actuators, which are promising candidates for the development of new Braille reading applications for the visually impaired.

  12. Patch-clamp array with on-chip electronics, optics, flow control and mechanical actuation.

    SciTech Connect

    James, Conrad D.; Okandan, Murat; Draper, Bruce Leroy; Mani, Seethambal S.

    2003-07-01

    Fast and quantitative analysis of cellular activity, signaling and responses to external stimuli is a crucial capability and it has been the goal of several projects focusing on patch clamp measurements. To provide the maximum functionality and measurement options, we have developed a patch clamp array device that incorporates on-chip electronics, mechanical, optical and microfluidic coupling as well as cell localization through fluid flow. The preliminary design, which integrated microfluidics, electrodes and optical access, was fabricated and tested. In addition, new designs which further combine mechanical actuation, on-chip electronics and various electrode materials with the previous designs are currently being fabricated.

  13. Fiber-optic rotation of micro-scale structures enabled microfluidic actuation and self-scanning two-photon excitation

    NASA Astrophysics Data System (ADS)

    Black, Bryan J.; Luo, Dijun; Mohanty, Samarendra K.

    2012-11-01

    Here, we report non-restricted, controlled fiber optic rotation of micro-motor, in counter-propagating fiber-optic beams having transverse-offset, for actuation of microfluidic flow. Ray-optics based simulations of the torque (and angular velocity) were conducted for different fiber transverse-offsets in order to determine optimal geometry for effective actuation. Further, self-scanning two-photon excitation of the fiber-optically rotated microscopic object is achieved by use of an ultrafast laser beam in one of the fiber arm.

  14. Characterization of optically actuated MRI-compatible active needles for medical interventions

    NASA Astrophysics Data System (ADS)

    Black, Richard J.; Ryu, Seokchang; Moslehi, Behzad; Costa, Joannes M.

    2014-03-01

    The development of a Magnetic Resonance Imaging (MRI) compatible optically-actuated active needle for guided percutaneous surgery and biopsy procedures is described. Electrically passive MRI-compatible actuation in the small diameter needle is provided by non-magnetic materials including a shape memory alloy (SMA) subject to precise fiber laser operation that can be from a remote (e.g., MRI control room) location. Characterization and optimization of the needle is facilitated using optical fiber Bragg grating (FBG) temperature sensors arrays. Active bending of the needle during insertion allows the needle to be accurately guided to even relatively small targets in an organ while avoiding obstacles and overcoming undesirable deviations away from the planned path due to unforeseen or unknowable tissue interactions. This feature makes the needle especially suitable for use in image-guided surgical procedures (ranging from MRI to CT and ultrasound) when accurate targeting is imperative for good treatment outcomes. Such interventions include reaching small tumors in biopsies, delineating freezing areas in, for example, cryosurgery and improving the accuracy of seed placement in brachytherapy. Particularly relevant are prostate procedures, which may be subject to pubic arch interference. Combining diagnostic imaging and actuation assisted biopsy into one treatment can obviate the need for a second exam for guided biopsy, shorten overall procedure times (thus increasing operating room efficiencies), address healthcare reimbursement constraints and, most importantly, improve patient comfort and clinical outcomes.

  15. Unsteady thermocapillary migration of bubbles

    NASA Technical Reports Server (NTRS)

    Dill, Loren H.; Balasubramaniam, R.

    1988-01-01

    Upon the introduction of a gas bubble into a liquid possessing a uniform thermal gradient, an unsteady thermo-capillary flow begins. Ultimately, the bubble attains a constant velocity. This theoretical analysis focuses upon the transient period for a bubble in a microgravity environment and is restricted to situations wherein the flow is sufficiently slow such that inertial terms in the Navier-Stokes equation and convective terms in the energy equation may be safely neglected (i.e., both Reynolds and Marangoni numbers are small). The resulting linear equations were solved analytically in the Laplace domain with the Prandtl number of the liquid as a parameter; inversion was accomplished numerically using a standard IMSL routine. In the asymptotic long-time limit, the theory agrees with the steady-state theory of Young, Goldstein, and Block. The theory predicts that more than 90 percent of the terminal steady velocity is achieved when the smallest dimensionless time, i.e., the one based upon the largest time scale-viscous or thermal-equals unity.

  16. Thermocapillary motion of deformable drops

    NASA Technical Reports Server (NTRS)

    Haj-Hariri, Hossein; Shi, Qingping; Borhan, Ali

    1994-01-01

    The thermocapillary motion of initially spherical drops/bubbles driven by a constant temperature gradient in an unbounded liquid medium is simulated numerically. Effects of convection of momentum and energy, as well as shape deformations, are addressed. The method used is based on interface tracking on a base cartesian grid, and uses a smeared color or indicator function for the determination of the surface topology. Quad-tree adaptive refinement of the cartesian grid is implemented to enhance the fidelity of the surface tracking. It is shown that convection of energy results in a slowing of the drop, as the isotherms get wrapped around the front of the drop. Shape deformation resulting from inertial effects affect the migration velocity. The physical results obtained are in agreement with the existing literature. Furthermore, remarks are made on the sensitivity of the calculated solutions to the smearing of the fluid properties. Analysis and simulations show that the migration velocity depends very strongly on the smearing of the interfacial force whereas it is rather insensitive to the smearing of other properties, hence the adaptive grid.

  17. Screening of liquids for thermocapillary bubble movement

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Subramanian, R. S.; Papazian, J. M.; Smith, H. D.; Mattox, D. M.

    1979-01-01

    Ground-based methods for pretesting qualitatively the thermocapillary movement of gas bubbles in a liquid to be used in space processing are discussed. Theoretical considerations are shown to require the use of a thin, enclosed, horizontal liquid film in order that the bubbles move faster than the bulk convection of the liquid, with insulating boundaries to prevent the onset of instabilities. Experimental realizations of horizontal cells in which to test the thermocapillary movement of bubbles in sheets of molten glass heated from below and organic melts in tubes heated from both ends are briefly described and the results of experiments are indicated.

  18. Design and Performance Evaluation of Sensors and Actuators for Advanced Optical Systems

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2011-01-01

    Current state-of-the-art commercial sensors and actuators do not meet many of NASA s next generation spacecraft and instrument needs. Nor do they satisfy the DoD needs for satellite missions, especially micro/nano satellite missions. In an effort to develop advanced optical devices and instruments that meet mission requirements, NASA Langley recently completed construction of a new cleanroom housing equipment capable of fabricating high performance active optic and adaptive optic technologies including deformable mirrors, reconfigurable lenses (both refractive and diffractive), spectrometers, spectro-polarimeters, tunable filters and many other active optic devices. In addition to performance, these advanced optic technologies offer advantages in speed, size, weight, power consumption, and radiation tolerance. The active optic devices described in this paper rely on birefringent liquid crystal materials to alter either the phase or the polarization of the incoming light. Design considerations and performance evaluation results for various NASA applications are presented. Applications presented will include large space telescopes, optical communications, spacecraft windows, coronagraphs, and star trackers. Keywords: Photonics, Adaptive Optics, Tunable Filters, MEMs., MOEMs, Coronagraph, Star Tracker

  19. Nanosecond pulsed sliding dielectric barrier discharge plasma actuator for airflow control: Electrical, optical, and mechanical characteristics

    NASA Astrophysics Data System (ADS)

    Bayoda, K. D.; Benard, N.; Moreau, E.

    2015-08-01

    Plasma actuators used for active flow control are widely studied because they could replace mechanical actuators. Industrial applications of these plasma actuators sometimes require a large surface plasma sheet in view of increasing the interaction region between the discharge and the incoming flow. Instead of using a typical two-electrode nanosecond pulsed dielectric barrier discharge for which the interaction region is limited to about 20 mm, this study proposes to characterize a nanosecond sliding discharge based on a three-electrode geometry in order to increase the extension length up to the electrode gap. This sliding discharge is compared to the typical nanosecond dielectric barrier discharge by means of electrical, optical, and mechanical diagnostics. Electrical characterization reveals that the deposited energy can be widely increased. Time-resolved Intensified Charge Coupled Device (iCCD) images of the discharge development over the dielectric surface highlight that the intensity and the propagation velocity of streamers are strongly affected by the DC voltage applied at the third electrode. Finally, qualitative and quantitative characterizations of the pressure wave due to the surrounding gas heating are proposed by means of Schlieren visualizations and high frequency pressure measurements, respectively.

  20. Design and performance evaluation of sensors and actuators for advanced optical systems

    NASA Astrophysics Data System (ADS)

    Clark, Natalie

    2011-04-01

    Current state-of-the-art commercial sensors and actuators do not meet many of NASA's next generation spacecraft and instrument needs. Nor do they satisfy the DoD needs for satellite missions, especially micro/nano satellite missions. In an effort to develop advanced optical devices and instruments that meet mission requirements, NASA Langley recently completed construction of a new cleanroom housing equipment capable of fabricating high performance active optic and adaptive optic technologies including deformable mirrors, reconfigurable lenses (both refractive and diffractive), spectrometers, spectro-polarimeters, tunable filters and many other active optic devices. In addition to performance, these advanced optic technologies offer advantages in speed, size, weight, power consumption, and radiation tolerance. The active optic devices described in this paper rely on birefringent liquid crystal materials to alter either the phase or the polarization of the incoming light. Design considerations and performance evaluation results for various NASA applications are presented. Applications presented will include large space telescopes, optical communications, spacecraft windows, coronagraphs, and star trackers.

  1. Micromachined Accelerometers With Optical Interferometric Read-Out and Integrated Electrostatic Actuation.

    PubMed

    Hall, Neal A; Okandan, Murat; Littrell, Robert; Serkland, Darwin K; Keeler, Gordon A; Peterson, Ken; Bicen, Baris; Garcia, Caesar T; Degertekin, F Levent

    2008-02-01

    A micromachined accelerometer device structure with diffraction-based optical detection and integrated electrostatic actuation is introduced. The sensor consists of a bulk silicon proof mass electrode that moves vertically with respect to a rigid diffraction grating backplate electrode to provide interferometric detection resolution of the proof-mass displacement when illuminated with coherent light. The sensor architecture includes a monolithically integrated electrostatic actuation port that enables the application of precisely controlled broadband forces to the proof mass while the displacement is simultaneously and independently measured optically. This enables several useful features such as dynamic self-characterization and a variety of force-feedback modalities, including alteration of device dynamics in situ. These features are experimentally demonstrated with sensors that have been optoelectronically integrated into sub-cubic-millimeter volumes using an entirely surface-normal, rigid, and robust embodiment incorporating vertical cavity surface emitting lasers and integrated photodetector arrays. In addition to small form factor and high acceleration resolution, the ability to self-characterize and alter device dynamics in situ may be advantageous. This allows periodic calibration and in situ matching of sensor dynamics among an array of accelerometers or seismometers configured in a network.

  2. Optimization of Seesaw Swing Arm Actuator Design for Small Form Factor Optical Disk Drive

    NASA Astrophysics Data System (ADS)

    Po-Chien Chou,; Yu-Cheng Lin,; Stone Cheng,

    2010-05-01

    Many small form factor (SFF) optical pickup heads based on the swing arm design utilize a piezoelectric material or the slim metal plate to perform the focusing action. The seesaw-type actuator is a new mechanism used in the focusing action for SFF optical data storage devices. The swing arm nutates along a pivot instead of a hinge in the vertical movement. In this paper, an optimized design of a biaxial voice coil motor (VCM), in which the tracking and focusing VCMs are combined in the rear of the swing arm, is proposed. Simulation and experiment results demonstrate the effectiveness of the proposed design methodology by showing that the stress magnitude distribution characteristics, mechanism stiffness, and driving stability of the optimized design are enhanced in comparison with those of the original.

  3. Performance of Integrated Fiber Optic, Piezoelectric, and Shape Memory Alloy Actuators/Sensors in Thermoset Composites

    NASA Technical Reports Server (NTRS)

    Trottier, C. Michael

    1996-01-01

    Recently, scientists and engineers have investigated the advantages of smart materials and structures by including actuators in material systems for controlling and altering the response of structural environments. Applications of these materials systems include vibration suppression/isolation, precision positioning, damage detection and tunable devices. Some of the embedded materials being investigated for accomplishing these tasks include piezoelectric ceramics, shape memory alloys, and fiber optics. These materials have some benefits and some shortcomings; each is being studied for use in active material design in the SPICES (Synthesis and Processing of Intelligent Cost Effective Structures) Consortium. The focus of this paper concerns the manufacturing aspects of smart structures by incorporating piezoelectric ceramics, shape memory alloys and fiber optics in a reinforced thermoset matrix via resin transfer molding (RTM).

  4. Development of Rotary-Type Voice Coil Motor Actuator for Small-Form-Factor Optical Disk Drive

    NASA Astrophysics Data System (ADS)

    Lee, Dong‑Ju; Park, Se‑June; Oh, Jeseung; Park, No‑Cheol; Park, Young‑Pil; Jung, Ho‑Seop

    2006-02-01

    We propose the miniaturized rotary-type voice coil motor (VCM) actuator that has an effective focusing mechanism and a sufficient bandwidth for a small-form-factor (SFF) optical disk drive (ODD) based on Blu-ray disk (BD) 1× specifications.

  5. Microscale Marangoni actuation: all-optical and all-electrical methods.

    PubMed

    Farahi, R H; Passian, A; Zahrai, S; Lereu, A L; Ferrell, T L; Thundat, T

    2006-01-01

    We present experimental results from an all-optical microfluidic platform that may be complimented by a thin film all-electrical network. Using these configurations we have studied the microfluidic convective flow systems of silicone oil, glycerol, and 1,3,5-trinitrotoluene on open surfaces through the production of surface tension gradients derived from thermal gradients. We show that sufficient localized thermal variation can be created utilizing surface plasmons and/or engaging individually addressable resistive thermal elements. Both studies manipulate fluids via Marangoni forces, each having their unique exploitable advantages. Surface plasmon excitation in metal foils are the driving engine of many physical-, chemical-, and bio-sensing applications. Incorporating, for the first time, the plasmon concept in microfluidics, our results thus demonstrate great potential for simultaneous fluid actuation and sensing.

  6. Thermocapillary Migration and Interactions of Bubbles and Drops

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Lacy, Claud E.; Wozniak, Guenter; Subramanian, R. Shankar

    1996-01-01

    When a drop or bubble is placed in another fluid and subjected to the action of a temperature gradient, the drop will move. Such motion is a direct consequence of the variation of interfacial tension with temperature, and is termed thermocapillary migration. This paper discusses results from experiments conducted in reduced gravity on the thermocapillary motion of bubbles and drops.

  7. Dynamic Head-Disk Interface Modeling and Adaptive Control of a Hybrid Actuator for Optical Data Storage Systems

    NASA Astrophysics Data System (ADS)

    Wu, Zhizheng; Li, Yang; Wang, Pei; Liu, Mei

    2015-01-01

    In the near-field recording (NFR) system, the gap between the lens and disk will drop down to 100 nm. However, the disk vibration and force disturbance make it difficult to maintain the desired flying height during disk operation, and the lens-disk collision can easily occur. It is proposed in this article to design a hybrid actuator system which combines both advantages of the flying slider used in hard disk drives and the voice coil actuator used in optical disk drives. The dynamic head-disk interface model of the hybrid actuator is first developed, then an adaptive regulation approach is proposed to control the flying height at its desired value despite the unknown disturbances. Simulation and experimental results are presented to illustrate the effectiveness of the proposed flying height control approach.

  8. Photomechanical actuator device based on disperse red 1 doped poly(methyl methacrylate) optical fiber

    NASA Astrophysics Data System (ADS)

    Ye, Xianjun

    The photomechanical effect is the phenomenon involving any mechanical property change of a material induced by light exposure. Photomechanical devices can be built with superior performance over traditional devices and offer versatile control tactics. Previous experiments show that disperse red 1 azobenzene (DR1) doped poly(methyl methacrylate) (PMMA) optical fiber has a fast photomechanical response upon asymmetrical 633nm laser irradiation originating in photoisomerization of the dopants between the cis and trans forms, which causes an elongation of the polymer fiber. In this work, laser light of 355nm wavelength is used to investigate the dynamics of the trans to cis photoisomerization process, which should result in length contraction of the DR1 doped PMMA polymer fiber. A three-point-contact optically-actuated beam controlling tilt mount is made and used as the measurement apparatus to study this process. The photomechanical fiber is observed to elongate upon UV irradiation. Numerical simulations, which take into account the coupled effect between the laser-induced temperature increase and population density change of the dye molecules, show that contraction of the fiber due to direct trans-cis photoisomerization is overwhelmed by elongation due to the photo-thermally-stimulated cis-trans isomerization under high intensity. An ink coated entrance face of the fiber is placed in the measurement tilt mount and is found to exhibit contraction in the fast process under low intensity without sacrificing the good signal to noise ratio enjoyed in the high intensity case.

  9. Design and Development of an Optical Path Difference Scan Mechanism for Fourier Transform Spectrometers using High Displacement RAINBOW Actuators

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Hardy, Robin C.; Dausch, David E.

    1997-01-01

    A new piezoelectric drive mechanism has been developed for optical translation in space-based spectrometer systems. The mechanism utilizes a stack of RAINBOW high displacement piezoelectric actuators to move optical components weighing less than 250 grams through a one centimeter travel. The mechanism uses the direct motion of the piezoelectric devices, stacked such that the displacement of the individual RAINBOW actuators is additive. A prototype device has been built which utilizes 21 RAINBOWs to accomplish the necessary travel. The mechanism weighs approximately 0.6 kilograms and uses less than 2 Watts of power at a scanning frequency of 0.5 Hertz, significantly less power than that required by state-of-the-art motor systems.

  10. Control and network system of force actuators for deformable mirror active optics in LAMOST

    NASA Astrophysics Data System (ADS)

    Zhang, Shengtao; Zhang, Zhenchao; Wang, You

    2007-12-01

    The reflecting Schmidt plate M A of LAMOST consists of 24 segmented hexagonal sub-mirrors. Each sub-mirror is 25mm thick and 1.1m in diagonal. There are 34 force actuators on the back of one sub-mirror which need to be controlled to offer precise load to create correct mirror deformation. This paper presents the control method and network configuration of force actuators for one sub-mirror. Master computer running Windows NT operation system and slave controllers running DOS operation system are connected together via Ethernet local area network (ELAN) by means of TCP/IP protocol. Adopting five slave controllers, 34 force actuators are combined into a distributed system. Master computer controls five slave controllers and five slave controllers operate 34 force actuators. Master computer communicates with slave controllers normally, which receives state of each force actuator from slave controllers and sends instructions to slave controllers via Ethernet LAN. Each slave controller operates 8 force actuators to offer correct load. Axial load capacity of force actuator is +/-150N (pull and push) with accuracy RMS <=0.05N. Force sensor is used as close-loop feedback apparatus to detect the micro load of the actuator.

  11. Control of Oscillatory Thermocapillary Convection in Microgravity

    NASA Technical Reports Server (NTRS)

    Skarda, Ray

    1998-01-01

    This project focused on the generation and suppression of oscillatory thermocapillary convection in a thin liquid layer. The bulk of the research was experimental in nature, some theoretical work was also done. ne first phase of this research generated, for the first time, the hydrothermal-wave instability predicted by Smith and Davis in 1983. In addition, the behavior of the fluid layer under a number of conditions was investigated and catalogued. A transition map for the instability of buoyancy-thermocapillary convection was prepared which presented results in terms of apparatus-dependent and apparatus-independent parameters, for ease of comparison with theoretical results. The second phase of this research demonstrated the suppression of these hydrothermal waves through an active, feed-forward control strategy employing a CO2 laser to selectively heat lines of negative disturbance temperature on the free surface of the liquid layer. An initial attempt at this control was only partially successful, employing a thermocouple inserted slightly below the free surface of the liquid to generate the control scheme. Subsequent efforts, however, were completely successful in suppressing oscillations in a portion of the layer by utilizing data from an infrared image of the free surface to compute hydrothermal-wave phase speeds and, using these, to tailor the control scheme to each passing wave.

  12. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.; Krulevitch, Peter A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  13. MEMS Actuators for Tuning Nanometer-scale Airgaps in Heterostructures and Optical Instrumentation for Glacier Ice Studies

    NASA Astrophysics Data System (ADS)

    Chan, Wing Shan

    MEMS Actuators for Tuning Nanometer-scale Airgaps in Heterostructures: We developed a new actuator microstructure to control the spacing between closely spaced surfaces. Creating and controlling nanometer gaps is of interest in areas such as plasmonics and quantum electronics. For example, energy states in quantum well heterostructures can be tuned by adjusting the physical coupling distance between wells. Unfortunately, such an application calls for active control of a nano-scale air gap between surfaces which are orders of magnitude larger, which is difficult due to stiction forces. A vertical electrostatic wedge actuator was designed to control the air gap between two closely spaced quantum wells in a collapsed cantilever structure. A six-mask fab- rication process was developed and carried out on an InGaAs/InP quantum well het- erostructure on an InP substrate. Upon actuation, the gap spacing between the surfaces was tuned over a maximum range of 55 nm from contact with an applied voltage of 60 V. Challenges in designing and fabricating the device are discussed. Optical Instrumentation for Glacier Ice Studies: We explored new optical instrumentation for glacier ice studies. Glacier ice, such as that of the Greenland and Antarctic ice sheets, is formed by the accumulation of snowfall over hundreds of thousands of years. Not all snowfalls are the same. Their isotopic compositions vary according to the planet's climate at the time, and may contain part of the past atmosphere. The physical properties and chemical content of the ice are therefore proxies of Earth's climate history. In this work, new optical methods and instrumentation based on light scattering and polarization were developed to more efficiently study glacier ice. Field deployments in Antarctica of said instrumentation and results acquired are presented.

  14. Adaptive optics actuation by means of van der Waals forces: a novel nanotechnology strategy to steer light by light

    NASA Astrophysics Data System (ADS)

    Pinto, Fabrizio

    2008-11-01

    The feasibility to carry out the contactless actuation and control of both continuous facesheet deformable mirrors and MOEMS segmented micromirrors by manipulating van der Waals forces between electrically neutral surfaces is discussed. As we show, appropriately engineering such surface forces allows for adaptive optics strategies that are fully scalable down to the nanostructure level and that are intimately based on the optical properties of the materials involved. Since the magnitude of unretarded van der Waals forces diverges as the third power of the distance between the adaptive surface and the back-facing, actuating boundary, the novel approach proposed herein remains effective as the device size decreases even enabling one to address individual atoms. In some implementations, the actuation mechanism is driven by the dependence of van der Waals forces in semiconductors on illumination. Therefore the possibility exists, with adequate power levels, to design feed-back loops driven exclusively by light. A remarkable property of dispersion forces is their drastic behavior as a function of the topology of the interacting surfaces. This fact, at the frontier of contemporary numerical investigations, leads to the consideration of geometries in which dispersion forces are expected to change from attractive to repulsive. Finally, van der Waals forces exist between all neutral materials and contactless actuation can be achieved, for instance, even if the reflecting surface is not a conductor. This will open new multidimensional parameter space to the use of suitably designed classes of adaptive optics materials, including dielectrics, semiconductors, and multilayered structures, such as photonic-band-gap crystals.

  15. Bimorphic polymeric photomechanical actuator

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S. (Inventor); Curley, Michael J. (Inventor); Adamovsky, Grigory (Inventor); Sarkisov, Jr., Sergey S. (Inventor); Fields, Aisha B. (Inventor)

    2006-01-01

    A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.

  16. Precision tracking control of dual-stage actuation system for optical manufacturing

    NASA Astrophysics Data System (ADS)

    Dong, W.; Tang, J.

    2009-03-01

    Actuators with high linear motion speed, high positioning resolution and long motion stroke are needed in many precision machining systems. In some current systems, voice coil motors (VCMs) are implemented for servo control. While the voice coil motors may provide long motion stroke needed in many applications, the main obstacle that hinders the improvement of the machining accuracy and efficiency is its limited bandwidth. To fundamentally solve this issue, we propose to develop a dual-stage actuation system that consists of a voice coil motor that covers the coarse motion and a piezoelectric stack actuator that induces the fine motion to enhance the positioning accuracy. A flexure hinge-based mechanism is developed to connect these two actuators together. A series of numerical and experimental studies are carried out to facilitate the system design and preliminary control development.

  17. Thermocapillary convection in a liquid bridge

    NASA Technical Reports Server (NTRS)

    Mcneil, Thomas J.; Cole, Robert; Shankar Subramanian, R.

    1984-01-01

    Results from experiments on thermocapillary flow in a vertical liquid bridge are reported. Data on surface velocities are presented for four different silicone oils at several values of the temperature difference across the liquid bridge and for three different average temperatures. Also, axial velocity measured as a function of radial position in the bridge is reported. A theoretical model of the velocity and temperature fields in the system is formulated and solved by finite differences. The experimental data on surface velocities are nondimensionalized, and are found to collapse on a single line when plotted against the Marangoni number. Scaled velocities are relatively insensitive to changes in the value of the Marangoni number from 20 to 290, and the Prandtl number from 1460 to 7120. The data are in reasonable accord with predictions from theory.

  18. Thermocapillary instabilities in liquid bridges revisited

    NASA Astrophysics Data System (ADS)

    Ryzhkov, Ilya I.

    2011-08-01

    The study of convective thermocapillary instabilities in liquid bridges [J. J. Xu and S. H. Davis, Phys. Fluids 27(5), 1102 (1984)] is revisited. A new branch of neutral mode m = 1 is found. The previously reported results are confirmed in the range of low Prandtl numbers. It is shown that for large Prandtl numbers, the flow becomes unstable at much smaller values of the Marangoni number than it was reported previously. The calculations are performed for adiabatic and heat conductive free surface. In both cases, the critical mode is m = 1. The previously reported change of critical mode from m = 1 to m = 0 with increasing the Prandtl number is not confirmed. The corrected results provide a better agreement with the experimental data.

  19. Thermocapillary Convection in Bubbles and Drops

    NASA Technical Reports Server (NTRS)

    Balassubramaniam; Subramanian, R. Shankar

    2003-01-01

    When bubbles or drops are present in an immiscible liquid in reduced gravity and the temperature of the liquid is non-uniform, a thermocapillary stress is generated at the interface due to the variation of interfacial tension with temperature. The resulting flow propels the drop freely suspended in the liquid towards warmer regions, so as to minimize the interfacial energy. In this presentation, we will focus on the effect of convective transport of momentum and energy, that are characterized by the Reynolds number and the Marangoni number, respectively. The results of asymptotic analyses for the speed of the drop for low and large values of these parameters will be discussed. These predictions as well as those from numerical simulations will be compared with reduced gravity experimental results obtained from experiments performed aboard the space shuttle.

  20. Use of optically transparent lead lanthanum zirconate titanate as actuators and sensors

    NASA Astrophysics Data System (ADS)

    Luo, Quantian; Tong, Liyong

    2009-07-01

    The photo-induced strain in transparent lead lanthanum zirconate titanate (PLZT) materials is due to a process of superposition of photovoltaic and converse piezoelectric effects. The photovoltaic effect in PLZT materials is observed only in the direction of spontaneous polarization of ferroelectric materials. In this paper, electrical and mechanical performance of PLZT ceramics polarized in 0-1 or 0-3 direction are investigated, and PLZT actuators and sensors with the 0-3 polarization are studied. For multilayer PLZT actuators, presented also are the formulas for the calculation of energy release rates due to debonding.

  1. Piezoelectrically driven translatory optical MEMS actuator with 7mm apertures and large displacements

    NASA Astrophysics Data System (ADS)

    Quenzer, H.-J.; Gu-Stoppel, S.; Stoppel, F.; Janes, J.; Hofmann, U.; Benecke, W.

    2015-02-01

    The design and manufacturing of a piezoelectrically driven translatory MEMS actuator is presented, which features a 7 mm aperture and four thin-film PZT actuators achieving large displacements. The actuator performs piston mode oscillation in resonance which can serve for Fourier Transform Infrared Spectroscopy (FTIR). Thereby vertical displacements in piston mode of up to ± 800 μm at 163 Hz and 25 V driving sinusoidal voltage has been achieved under ambient conditions. Due to the low frequencies and the low driving voltages only low power consumption is required. The effect of residual gas friction and internal friction on the piezo-driven MEMS actuator is analyzed by measuring Qvalues associated with the piston mode. Laser Doppler Vibrometry (LDV) was also used to detect and analyses the parasitic effects especially tilting which superimposes the vertical movement of the mirror. The deviation from the pure vertical piston mode was found to 1.3 μm along the x and 3 μm in the y-axis.

  2. Thermocapillary Flows with Low Frequency g-Jitter

    NASA Technical Reports Server (NTRS)

    Grassia, P.; Homsy, G. M.

    1999-01-01

    A thermocapillary parallel flow is established in a fluid filled slot with an applied temperature gradient. Low frequency jitter is imposed in arbitrary directions. Vertical jitter proves to be relatively uninteresting, merely augmenting or opposing the basic thermocapillary flow. Streamwise jitter still produces parallel flows, but these now exhibit boundary layers or layered cellular structures for large Rayleigh number as the applied stratification alternates between stable and unstable. Runaways are possible for unstable stratification and these correspond to resonant excitation of stationary long wave Rayleigh-Benard modes. Spanwise jitter produces fully three dimensional motion. A spanwise-streamwise circulation results for weak spanwise jitter, which advects the interfacial temperature establishing a subsidiary spanwise thermocapillary flow. This flow is strong at small Biot number when advected temperature is trapped in the slot, and has a counter-intuitive dependence on the spanwise-streamwise aspect ratio.

  3. A micro-optical system for endoscopy based on mechanical compensation paradigm using miniature piezo-actuation.

    PubMed

    Cerveri, Pietro; Zazzarini, Cynthia Corinna; Patete, Paolo; Baroni, Guido

    2014-06-01

    The goal of the study was to investigate the feasibility of a novel miniaturized optical system for endoscopy. Fostering the mechanical compensation paradigm, the modeled optical system, composed by 14 lenses, separated in 4 different sets, had a total length of 15.55mm, an effective focal length ranging from 1.5 to 4.5mm with a zoom factor of about 2.8×, and an angular field of view up to 56°. Predicted maximum lens travel was less than 3.5mm. The consistency of the image plane height across the magnification range testified the zoom capability. The maximum predicted achromatic astigmatism, transverse spherical aberration, longitudinal spherical aberration and relative distortion were less than or equal to 25μm, 15μm, 35μm and 12%, respectively. Tests on tolerances showed that the manufacturing and opto-mechanics mounting are critical as little deviations from design dramatically decrease the optical performances. However, recent micro-fabrication technology can guarantee tolerances close to nominal design. A closed-loop actuation unit, devoted to move the zoom and the focus lens sets, was implemented adopting miniaturized squiggle piezo-motors and magnetic position encoders based on Hall effect. Performance results, using a prototypical test board, showed a positioning accuracy of less than 5μm along a lens travel path of 4.0mm, which was in agreement with the lens set motion features predicted by the analysis. In conclusion, this study demonstrated the feasibility of the optical design and the viability of the actuation approach while tolerances must be carefully taken into account.

  4. Numerical simulation of thermocapillary wetting suppression

    NASA Astrophysics Data System (ADS)

    Chen, Jyh-Chen; Kuo, C.-W.; Neitzel, G. Paul

    2002-11-01

    The commercial code FIDAP, based on the finite-element method, is used to investigate a nonwetting phenomenon that occurs when a liquid drop is pressed against a solid wall held at a sufficiently lower temperature. In this situation, an interstitial gas film is induced by thermocapillary convection and separates the drop from the wall, forming a self-lubricating system. The flow in both the gas and liquid phases must be computed to simulate the non-wetting phenomenon. We explore the velocity and thermal fields of both the interstitial film and the liquid drop. A steady-state solution is discussed, with many parameters being considered, i.e., drop/wall temperature differences and relative displacement from the point of first apparent contact, as well as varying drop liquids. The results of the present study indicate that a silicone-oil drop may experience nonwetting while a water drop may not. The mechanism promoting the existence or non-existence of the nonwetting state is also discussed.

  5. Thermocapillary and arc phenomena in stainless steel welds

    NASA Astrophysics Data System (ADS)

    Pierce, S. W.

    1993-12-01

    The goal of this paper is to study the effects of power level and distribution on thermocapillary induced weld shape and of arc factors on weld shape. Thermocapillarity is apparent in both conduction mode electron beam welds (EBW) and gas tungsten arc (GTA) welds, particularly in the former. A non-Gaussian arc distribution is suggested to account for the differences between the two welding processes. At higher current levels (200-300 A), plasma shear force also contributes to weld shape development. Evidence suggests that thermocapillary flow reversal is not a factor in normal GTA welds; EBW flow reversal occurs only at high power density levels where the keyhole mode is present.

  6. Electrically actuatable doped polymer flakes and electrically addressable optical devices using suspensions of doped polymer flakes in a fluid host

    DOEpatents

    Trajkovska-Petkoska, Anka; Jacobs, Stephen D.; Marshall, Kenneth L.; Kosc, Tanya Z.

    2010-05-11

    Doped electrically actuatable (electrically addressable or switchable) polymer flakes have enhanced and controllable electric field induced motion by virtue of doping a polymer material that functions as the base flake matrix with either a distribution of insoluble dopant particles or a dopant material that is completely soluble in the base flake matrix. The base flake matrix may be a polymer liquid crystal material, and the dopants generally have higher dielectric permittivity and/or conductivity than the electrically actuatable polymer base flake matrix. The dopant distribution within the base flake matrix may be either homogeneous or non-homogeneous. In the latter case, the non-homogeneous distribution of dopant provides a dielectric permittivity and/or conductivity gradient within the body of the flakes. The dopant can also be a carbon-containing material (either soluble or insoluble in the base flake matrix) that absorbs light so as to reduce the unpolarized scattered light component reflected from the flakes, thereby enhancing the effective intensity of circularly polarized light reflected from the flakes when the flakes are oriented into a light reflecting state. Electro-optic devices contain these doped flakes suspended in a host fluid can be addressed with an applied electric field, thus controlling the orientation of the flakes between a bright reflecting state and a non-reflecting dark state.

  7. Development of “L-Shaped” Rotary Voice Coil Motor Actuator for Ultra Slim Optical Disk Drive Using Integrated Design Method based on Coupled-Field Analysis

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Ju; Woo, Jung-Hyun; Kim, Sa-Ung; Oh, Je-Seung; Yoo, Jeong-Hoon; Park, No-Cheol; Park, Young-Pil; Shimano, Takeshi; Nakamura, Shigeo

    2007-06-01

    In this paper, we propose an “L-shaped” rotary voice coil motor (VCM) actuator for an ultra slim optical disk drive (ODD) with a CF II card size using the integrated design method that integrates coupled-field analysis and design methods.

  8. Multi-actuator adaptive lens for wavefront correction in optical coherence tomography and two-photon excitation fluorescence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bonora, Stefano; Lee, Sujin; Jian, Yifan; Cua, Michelle; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    We present a new type of adaptive lens with 18 actuators that can correct up the 4th order of aberration. The Multi-actuator Adaptive Lens (M-AL) can guarantee a good level of aberration correction for many applications and, with respect to deformable mirror, it allows the realization of more compact and simple optical systems. The adaptive lens is based on the use of piezoelectric actuators and, without any obstruction or electrodes in the clear aperture, can guarantee a fast response time, in the order of about 10ms. The clear aperture of the M-AL allows its use in "classical" Adaptive Optics configuration together with a wavefront sensor. To introduce a further simplification to the optical system design we show that the adaptive lens can be also driven with a wavefront sensorless control algorithm during in vivo optical coherence tomography of the human retina and for two-photon excitation fluorescence microscopy. In the experimental setup we used two aberration correcting devices a commercial adaptive lens (AL) with a high dynamic range to correct for defocus and the Multi-actuator Adaptive Lens (M-AL) to correct for the Zernike aberrations up to the 4th order. Experimental results show that the ocular aberrations of human eyes can be successfully corrected with our M-AL for pupils of 5mm and that retinal cones can be readily imaged.

  9. Electro-optic architecture for servicing sensors and actuators in advanced aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.

    1989-01-01

    A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.

  10. Electro-optic architecture (EOA) for sensors and actuators in aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Glomb, W. L., Jr.

    1989-01-01

    Results of a study to design an optimal architecture for electro-optical sensing and control in advanced aircraft and space systems are described. The propulsion full authority digital Electronic Engine Control (EEC) was the focus for the study. The recommended architecture is an on-engine EEC which contains electro-optic interface circuits for fiber-optic sensors on the engine. Size and weight are reduced by multiplexing arrays of functionally similar sensors on a pair of optical fibers to common electro-optical interfaces. The architecture contains common, multiplex interfaces to seven sensor groups: (1) self luminous sensors; (2) high temperatures; (3) low temperatures; (4) speeds and flows; (5) vibration; (6) pressures; and (7) mechanical positions. Nine distinct fiber-optic sensor types were found to provide these sensing functions: (1) continuous wave (CW) intensity modulators; (2) time division multiplexing (TDM) digital optic codeplates; (3) time division multiplexing (TDM) analog self-referenced sensors; (4) wavelength division multiplexing (WDM) digital optic code plates; (5) wavelength division multiplexing (WDM) analog self-referenced intensity modulators; (6) analog optical spectral shifters; (7) self-luminous bodies; (8) coherent optical interferometers; and (9) remote electrical sensors. The report includes the results of a trade study including engine sensor requirements, environment, the basic sensor types, and relevant evaluation criteria. These figures of merit for the candidate interface types were calculated from the data supplied by leading manufacturers of fiber-optic sensors.

  11. Applications of dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Pelrine, Ron; Sommer-Larsen, Peter; Kornbluh, Roy D.; Heydt, Richard; Kofod, Guggi; Pei, Qibing; Gravesen, Peter

    2001-07-01

    Dielectric elastomer actuators, based on the field-induced deformation of elastomeric polymers with compliant electrodes, can produce a large strain response, combined with a fast response time and high electromechanical efficiency. This unique performance, combined with other factors such as low cost, suggests many potential applications, a wide range of which are under investigation. Applications that effectively exploit the properties of dielectric elastomers include artificial muscle actuators for robots; low-cost, lightweight linear actuators; solid- state optical devices; diaphragm actuators for pumps and smart skins; acoustic actuators; and rotary motors. Issues that may ultimately determine the success or failure of the actuation technology for specific applications include the durability of the actuator, the performance of the actuator under load, operating voltage and power requirements, and electronic driving circuitry, to name a few.

  12. Cryogenic Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  13. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2000-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  14. Design and simulation of piezoelectric PZT micro-actuators with integrated piezoresistive displacement sensors for micro-optics applications

    NASA Astrophysics Data System (ADS)

    Chen, Ssu-Han; Michael, Aron; Kwok, Chee Yee; Wang, Peng

    2015-12-01

    This paper presents the design and simulation of a novel piezoelectric actuator integrated with on-chip piezoresistive sensors for micro-lens actuation. COMSOL Multiphysics is used to perform and facilitate the design and simulation. The actuator consists of eight d31 mode unimorph piezoelectric actuators symmetrically attached to a lens holding frame through springs at one end, and to the silicon substrate at the other end. Diffused p-Si piezoresistors with doping of 1x1018cm-3 are considered in the proposed design for displacement sensing of each micro-actuator. Results shows 3.2μm/V displacement sensitivity for the micro-lens actuator and piezoresistive sensitivity of 0.134mV/V/μm is obtainable with p-Si piezoresistors.

  15. Drugs of abuse detection in saliva based on actuated optical method

    NASA Astrophysics Data System (ADS)

    Shao, Jie; Li, Zhenyu; Jiang, Hong; Wang, Wenlong; Wu, Yixuan

    2014-12-01

    There has been a considerable increase in the abuse of drugs during the past decade. Combing drug use with driving is very dangerous. More than 11% of drivers in a roadside survey tested positive for drugs, while 18% of drivers killed in accidents tested positive for drugs as reported in USA, 2007. Toward developing a rapid drug screening device, we use saliva as the sample, and combining the traditional immunoassays method with optical magnetic technology. There were several methods for magnetic nanoparticles detection, such as magnetic coils, SQUID, microscopic imaging, and Hall sensors. All of these methods were not suitable for our demands. By developing a novel optical scheme, we demonstrate high-sensitivity detection in saliva. Drugs of abuse are detected at sub-nano gram per milliliter levels in less than 120 seconds. Evanescent wave principle has been applied to sensitively monitor the presence of magnetic nanoparticles on the binding surface. Like the total internal reflection fluorescence microscope (TIRFM), evanescent optical field is generated at the plastic/fluid interface, which decays exponentially and penetrates into the fluid by only a sub-wavelength distance. By disturbance total internal reflection with magnetic nanoparticles, the optical intensity would be influenced. We then detected optical output by imaging the sensor surface onto a CCD camera. We tested four drugs tetrahydrocannabinol (THC), methamphetamine (MAMP), ketamine (KET), morphine (OPI), using this technology. 100 ng mL-1 sensitivity was achieved, and obvious evidence showed that this results could be improved in further researches.

  16. Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation

    PubMed Central

    Wu, Yicong; Zhang, Yuying; Xi, Jiefeng; Li, Ming-Jun; Li, Xingde

    2010-01-01

    A miniature fiber optic endomicroscope with built-in dynamic focus scanning capability is developed for the first time for 3-D two-photon fluorescence (TPF) imaging of biological samples. Fast 2-D lateral beam scanning is realized by resonantly vibrating a double-clad fiber cantilever with a tubular piezoactuator. Slow axial scanning is achieved by moving the distal end of the imaging probe with an extremely compact electrically driven shape memory alloy (SMA). The 10-mm-long SMA allows 150-μm contractions with a driving voltage varying only from 50 to 100 mV. The response of the SMA contraction with the applied voltage is nonlinear, but repeatable and can be accurately calibrated. Depth-resolved imaging of acriflavine-stained biological tissues and unstained white paper with the endomicroscope is performed, and the results demonstrate the feasibility of 3-D nonlinear optical imaging with the SMA-based scanning fiber-optic endomicroscope. PMID:21198147

  17. Space experimental investigation on thermocapillary migration of bubbles

    NASA Astrophysics Data System (ADS)

    Cui, Hailiang; Hu, Liang; Duan, Li; Kang, Qi; Hu, Wenrui

    2008-07-01

    Results from a space experiment on bubble thermocapillary migration conducted on board the Chinese 22nd recoverable satellite were presented. Considering the temperature field in the cell was disturbed by the accumulated bubbles, the temperature gradient was corrected firstly with the help of the temperature measurement data at six points and numerical simulation. Marangoni number ( Ma) of single bubble migrating in the space experiment ranged from 98.04 to 9288, exceeding that in the previous experiment data. The experiment data including the track and the velocity of two bubble thermocapillary migration showed that a smaller bubble would move slower as it was passed by a larger one, and the smaller one would even rest in a short time when the size ratio was large enough.

  18. Thermocapillary deformation of a water layer at local heating

    NASA Astrophysics Data System (ADS)

    Cheverda, V. V.; Fedorets, A. A.; Marchuk, I. V.; Kabov, O. A.

    2016-03-01

    A horizontal water layer of 0.29-0.44 mm thickness, locally heated from the substrate, is investigated. The value of thermocapillary deformation occurring at local heating is measured by an inverted laser scanning confocal microscope Zeiss LSM 510 Meta. The heater in the form of strip of 0.5-mm width, 40-mm length, and 0.5-mm height made of indium oxide is sputtered on a sapphire substrate. The water temperature from the side of the substrate is measured using the infrared scanner Titanium 570M. We studied in detail the effect of the initial layer thickness and heating power on the value of thermocapillary deformation and temperature field. It is shown that deformation increases with an increase in thermal capacity and decrease in the layer thickness. Results of numerical simulation are in good qualitative agreement with the measurement results.

  19. Control of thermocapillary convection in a liquid bridge by vibration

    NASA Technical Reports Server (NTRS)

    Anilkumar, A. V.; Grugel, R. N.; Shen, X. F.; Lee, C. P.; Wang, T. G.

    1993-01-01

    The streaming induced in a short vertical liquid column by the vibration of one of the supporting end walls has been utilized in this novel study. Vibration essentially drives a surface flow in the zone away from the vibrating wall, with the return flow in the bulk towards the wall. Preliminary measurements of the surface streaming velocity show that it increases with the frequency and amplitude of vibration and the zone length and decreases with the viscosity of the zone liquid. This controlled surface streaming has been employed to balance an opposing steady thermocapillary flow in a model half-zone of silicone oil. In addition to the evidence gathered through flow visualization, temperature measurements in the zone reveal that the radial temperature gradients set up by the thermocapillary flow are weakened/offset by this balancing.

  20. The thermocapillary migrations of two bubbles in microgravity environment.

    PubMed

    Sun, Ren; Hu, Wen-Rui

    2002-11-15

    The thermocapillary motion of two bubbles along their line of centers in a uniform temperature gradient is investigated theoretically. The bubbles are moving in the direction of the temperature gradient. And the interaction between the leading bubble and the trailing one becomes significant as the separation distance between them is decreased greatly so that the bubble interaction is considered in this case. The appropriate equations of momentum and energy are solved using the method of reflections. In order to proceed analytically, sets of transformations between two coordinates are obtained. By using these transformations and the reflection process, accurate migration velocities of these two bubbles in the microgravity environment are derived for the limit of small Marangoni and Reynolds numbers. These results are employed to describe the thermocapillary motion of two bubbles and to estimate the effects of bubble size and the thermal gradient on the interaction between two bubbles. All of our results for the migration of the two bubbles demonstrate that the approach of the second bubble to the first one intensifies the mutual interaction between these two bubbles and yields some interesting thermocapillary motions.

  1. Oscillatory/Chaotic Thermocapillary Flow Induced by Radiant Heating

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth J.

    1998-01-01

    There is a continuing need to understand the fluid physics occurring under low gravity conditions in processes such as crystal growth, materials processing, and the movement of bubbles or droplets. The fluid flow in such situations is often caused by a gradient in interfacial tension. If a temperature gradient is created due to a heat source, the resulting flow is called thermocapillary flow, a special case of Marangoni Convection. In this study, an experimental investigation was conducted using silicone oil in cylindrical containers with a laser heat source at the free surface. It was desired to determine the conditions under which steady, axisymmetrical thermocapillary flow becomes unstable and oscillatory three-dimensional flow states develop. The critical Marangoni number for each observed oscillatory state was measured as a function of the container aspect ratio and the dynamic Bond number, a measure of buoyant force versus ii thermocapillary force. Various oscillatory modes were observed during three- dimensional convection, and chaotic flow was reached in one test condition. The critical Marangoni numbers are compared with those measured in previous studies, and the power spectra and phase trajectories of the instantaneous surface temperature distributions are used to characterize the routes of transitions to the chaotic flow state. Results show that only superharmonic modes appear in the routes to chaos while infinite number of subharmonic modes occur in flow transitions for pure Rayleigh convection.

  2. Thermocapillary migration of droplets in a transparent liquid mixture and a monotectic alloy melt

    NASA Astrophysics Data System (ADS)

    Klein, H.; Neumann, H.

    2003-08-01

    Experimental evidence of thermocapillary migration of droplets is reported in two different systems, a binary liquid mixture with miscibility gap and a monotectic alloy belt. Thermocapillary migration is monitored by video microscopy in the first and by using electrical resistance measurements in the second system.

  3. MEMS Actuated Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Walton, C; Cohn, M

    2005-11-10

    This ongoing work concerns the creation of a deformable mirror by the integration of MEMS actuators with Nanolaminate foils through metal compression boning. These mirrors will use the advantages of these disparate technologies to achieve dense actuation of a high-quality, continuous mirror surface. They will enable advanced adaptive optics systems in large terrestrial telescopes. While MEMS actuators provide very dense actuation with high precision they can not provide large forces typically necessary to deform conventional mirror surfaces. Nanolaminate foils can be fabricated with very high surface quality while their extraordinary mechanical properties enable very thin, flexible foils to survive the rigors of fabrication. Precise metal compression bonding allows the attachment of the fragile MEMS actuators to the thin nanolaminate foils without creating distortions at the bond sites. This paper will describe work in four major areas: (1) modeling and design, (2) bonding development, (3) nanolaminate foil development, (4) producing a prototype. A first-principles analytical model was created and used to determine the design parameters. A method of bonding was determined that is both strong, and minimizes the localized deformation or print through. Work has also been done to produce nanolaminate foils that are sufficiently thin, flexible and flat to be deformed by the MEMS actuators. Finally a prototype was produced by bonding thin, flexible nanolaminate foils to commercially available MEMS actuators.

  4. The three-dimensional stationary instability in dynamic thermocapillary shallow cavities

    NASA Astrophysics Data System (ADS)

    Benz, S.; Schwabe, D.

    In various configurations with thermal convection, three-dimensional stationary patterns occur that consist of pairs of counter-rotating longitudinal rolls. These rolls are investigated in this paper under a variety of experimental conditions. The liquids used are ethanol and the silicone oil hexamethyldisiloxane. The upper surface of the liquid volume is free and very flat because measures against menisci at the side and end walls have been taken. The temperature gradient is applied horizontally via thermally conducting but transparent sapphire end walls, leading to thermocapillary forces at the free surface in addition to the buoyant forces at normal earth's gravity. The geometry of the liquid volume is either rectangular or axisymmetrical (annular). The rectangular set-up is transparent and especially suited for optical observations of tracers in the bulk of the liquid. The annular set-up has the advantages of a large azimuthal (transversal) extent and the absence of side walls. In it a wavelength of λ 1.3d was observed (where d is the depth of the liquid volume). Temperatures and velocities are measured and used to characterize the instability. Also the region of existence of the instability is studied in layers shallower than in earlier experiments in order to give a larger ratio between thermocapillary and buoyant forces. To find the onset of the instability when increasing the temperature gradient, the amplitude of the instability was derived from measurements and extrapolated. This yields a significantly lower threshold (Mac=2300+/-1000 for d=5mm) than previous experimental studies. One implementation of the annular gap experiment was performed under microgravity (experiment MAGIA), the other experiments under normal gravity. The results of the experiment under microgravity indicate the absence of the three-dimensional stationary pattern under the absence of gravity.

  5. Optical fibre long period grating spectral actuators utilizing ferrofluids as outclading overlayers

    NASA Astrophysics Data System (ADS)

    Konstantaki, M.; Candiani, A.; Pissadakis, S.

    2011-03-01

    Results are presented on the spectral tuning of optical fibre long period gratings utilizing water and oil based ferrofluids as outclading overlayers, under static magnetic field stimulus. Two approaches are adopted for modifying the ambient refractive index at the position of the long period grating. In the first approach, a water based ferrofluid is controllably translated along the length of the grating via a magnetic field. Changes as high as 7.5nm and 6.5dB are monitored in the wavelength and strength, respectively, of the attenuation bands of the grating. The repeatable performance of this device for repetitive forward and backward translation verifies that no ferrofluidic residue is left on the fibre, due to silanization cladding functionalisation. In the second approach, the refractive index of an oil based ferrofluidic overlayer is modified through the magneto-optical effect. For an applied static magnetic field in the order of 400 Gauss the strength of the attenuation band of the grating is modified by more than 10% while its spectral position remains unaffected. Accordingly for the implementation of the last approach, the magnetically induced refractive index changes of ferrofluids of different solution concentrations are studied by employing diffraction efficiency measurements.

  6. Free surface deformation and heat transfer by thermocapillary convection

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Eckart; Dreyer, Michael; Basting, Steffen; Bänsch, Eberhard

    2016-04-01

    Knowing the location of the free liquid/gas surface and the heat transfer from the wall towards the fluid is of paramount importance in the design and the optimization of cryogenic upper stage tanks for launchers with ballistic phases, where residual accelerations are smaller by up to four orders of magnitude compared to the gravity acceleration on earth. This changes the driving forces drastically: free surfaces become capillary dominated and natural or free convection is replaced by thermocapillary convection if a non-condensable gas is present. In this paper we report on a sounding rocket experiment that provided data of a liquid free surface with a nonisothermal boundary condition, i.e. a preheated test cell was filled with a cold but storable liquid in low gravity. The corresponding thermocapillary convection (driven by the temperature dependence of the surface tension) created a velocity field directed away from the hot wall towards the colder liquid and then in turn back at the bottom towards the wall. A deformation of the free surface resulting in an apparent contact angle rather different from the microscopic one could be observed. The thermocapillary flow convected the heat from the wall to the liquid and increased the heat transfer compared to pure conduction significantly. The paper presents results of the apparent contact angle as a function of the dimensionless numbers (Weber-Marangoni and Reynolds-Marangoni number) as well as heat transfer data in the form of a Nusselt number. Experimental results are complemented by corresponding numerical simulations with the commercial software Flow3D and the inhouse code Navier.

  7. Unsteady Thermocapillary Migration of Isolated Drops in Creeping Flow

    NASA Technical Reports Server (NTRS)

    Dill, Loren H.; Balasubramaniam, R.

    1992-01-01

    The problem of an isolated immiscible drop that slowly migrates due to unsteady thermocapillary stresses is considered. All physical properties except for interfacial tension are assumed constant for the two Newtonian fluids. Explicit expressions are found for the migration rate and stream functions in the Laplace domain. The resulting microgravity theory is useful, e.g., in predicting the distance a drop will migrate due to an impulsive interfacial temperature gradient as well as the time required to attain steady flow conditions from an initially resting state.

  8. Particle-depletion dynamics in axisymmetric thermocapillary flows

    NASA Astrophysics Data System (ADS)

    Kuhlmann, H. C.; Lemée, T.

    2015-03-01

    The removal of suspended particles from the interior of a thermocapillary liquid bridge via a finite-particle-size effect restricting the particle motion near the free surface is analyzed in the framework of a model flow. The particle depletion occurs on the same short time scale as does the particle accumulation in experiments. Furthermore, the time scale diverges in a similar manner for decreasing particle size. The dependence of the time scale for particle accumulation on the particle size is explained in terms of a diverging return time to the free surface for those finite-size particles which are subject to the particle-free surface-interaction.

  9. Thermocapillary and arc phenomena in stainless steel welds

    SciTech Connect

    Pierce, S.W.

    1993-10-01

    Goal was to study effect of power level and distribution on thermocapiilary-induced weld shape and of arc factors on weld shape. Thermocapillarity was apparent in both conduction mode EB welds and GTA welds, particularly in the former. A non-Gaussian arc distribution is suggested for accounting for the differences between the twoss processes. At higher current levels (200--300 A), plasma shear force also contributes to weld shape development. Evidence suggests that thermocapillary flow reversal is not a factor in normal GTA welds; EDB flow reversal occurs only at high power density levels where the keyhole mode is present.

  10. Use of thermocapillary migration in a controllable heat valve

    NASA Technical Reports Server (NTRS)

    Schmid, L. A.

    1982-01-01

    In accordance with the Marangoni effect, immiscible droplets in a host fluid in which a temperature gradient exists move in the direction of increasing temperature. It is proposed that this thermocapillary migration could be used to construct a 'liquid wick' that would return the condensed vapor at the condenser end of a heat pipe back to the evaporator, thus completing the fluid circuit. The droplets would be formed by capillary pressure forcing the condensate through a perforated diaphragm whose temperature would control the droplet flux, and hence the heat flux between the two ends of the heat pipe, thus making it a controllable heat valve.

  11. A comparative flow visualization study of thermocapillary flow in drops in liquid-liquid systems

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Rashidnia, N.

    1991-01-01

    Experiments are performed to visualize thermocapillary flow in drops in an immiscible host liquid. The host liquid used is silicone oil. Drops of three different liquids are used, viz, vegetable oil, water-methanol mixture anad pure methanol. Clear evidence of thermocapillary flow is seen in vegetable oil drops. For a mixture of water and methanol (approximately 50-50 by weight), natural convection is seen to dominate the flow outside the drop. Pure methanol drops exhibit thermocapillary flow, but dissolve in silicone oil. A small amount of water added to pure methanol significantly reduces the dissolution. Flow oscillations occur in this system for both isothermal and non-isothermal conditions.

  12. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, James G.

    1999-01-01

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing.

  13. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, J.G.

    1999-02-02

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing. 49 figs.

  14. The effect of noncondensables on thermocapillary-buoyancy convection

    NASA Astrophysics Data System (ADS)

    Qin, Tongran; Grigoriev, Roman

    2014-11-01

    We consider convection in a layer of volatile simple fluid with free surface subject to a horizontal temperature gradient in the presence of noncondensable gases, such as air, and driven by a combination of buoyancy and thermocapillary stresses. At ambient conditions a unicellular base flow becomes unstable as the temperature gradient is increased, developing a multicellular structure. Recent experimental studies showed that the composition of the gas phase has a significant effect on the convection pattern. In particular, although varying the average concentration of noncondensables over an experimentally accessible range has almost no effect on the average flow speed, the transition to multicellular convection is significantly delayed when noncondensables are evacuated. Using a combination of numerical simulations and linear stability analysis which account for heat and mass transport in the gas phase we show that this dependence is due mainly to the changes in thermocapillary stresses which are controlled by the variation in the composition of the gas phase that arises in response to evaporation and condensation.

  15. Flow patterns in free liquid film caused by thermocapillary effect

    NASA Astrophysics Data System (ADS)

    Ueno, Ichiro; Fei, Linhao; Kowata, Yosuke; Kaneko, Toshihiro; Pettit, Donald

    2015-11-01

    The basic flow patterns realized in a thin free liquid film driven by the thermocapillary effect are focused. Spetial attention is paied to the effect of the volume ratio of the liquid film to the hole sustaining the film on the flow patterns. We prepare a thin liquid film of less than 0 . 5 mm in thickness in order to stably realize the film under normal gravity. Liquid has in general negative temperature coefficient of it surface tension; that is, the fluid is driven to the colder to hotter regions by the non-uniform surface-tension distribution. In the case of thin free liquid film, however, it is found that a unique flow pattern is induced. One of the present authors, DRP, carried out a series of experiments under microgravity condition in the International Space Station (ISS) in 2003. He prepared a ring made of metal, and formed a thin film of water inside the ring. Once he added a non-uniform temperature distribution to the film by placing a heated iron at one end of the ring, a net flow toward the heated iron was realized. In order to understand flow patterns, we focus on the flow structures of the thermocapillary convection in a cross section normal to the end walls as well as the surface temperature distributions.

  16. Thermocapillary flow and gaseous convection in microgravity: Results from GAS payload G-0518

    NASA Technical Reports Server (NTRS)

    Thomas, S.

    1986-01-01

    Thermocapillary flow and gaseous convection in microgravity were investigated in GAS payload G-0518 during Space Shuttle Mission 41-D. A cylinder of paraffin was supported and heated differentially from its ends to induce a melt from solid to liquid and drive thermocapillary flow in the resulting liquid phase. Laminar thermocapillary flow was observed in the liquid paraffin and found to show a transition to time-dependent oscillatory motion at a Marangoni number of about Ma = 34000 with a period of approximately T = 8 seconds. In addition, free convection in a gas in microgravity was observed for the first time. The gaseous convection was caused by the thermal and/or velocity boundary layers present at the heater-liquid interface. Oscillation occurred in the gaseous convection simultaneously with those in the liquid, implying the two are strongly coupled. The gaseous convection may be driven by coupled thermocapillary flow/thermal expansion convection or microgravity bouyancy convection.

  17. Light-Driven Polymeric Bimorph Actuators

    NASA Technical Reports Server (NTRS)

    Adamovsky, Gregory; Sarkisov, Sergey S.; Curley, Michael J.

    2009-01-01

    Light-driven polymeric bimorph actuators are being developed as alternatives to prior electrically and optically driven actuators in advanced, highly miniaturized devices and systems exemplified by microelectromechanical systems (MEMS), micro-electro-optical-mechanical systems (MEOMS), and sensor and actuator arrays in smart structures. These light-driven polymeric bimorph actuators are intended to satisfy a need for actuators that (1) in comparison with the prior actuators, are simpler and less power-hungry; (2) can be driven by low-power visible or mid-infrared light delivered through conventional optic fibers; and (3) are suitable for integration with optical sensors and multiple actuators of the same or different type. The immediate predecessors of the present light-driven polymeric bimorph actuators are bimorph actuators that exploit a photorestrictive effect in lead lanthanum zirconate titanate (PLZT) ceramics. The disadvantages of the PLZT-based actuators are that (1) it is difficult to shape the PLZT ceramics, which are hard and brittle; (2) for actuation, it is necessary to use ultraviolet light (wavelengths < 380 nm), which must be generated by use of high-power, high-pressure arc lamps or lasers; (3) it is difficult to deliver sufficient ultraviolet light through conventional optical fibers because of significant losses in the fibers; (4) the response times of the PLZT actuators are of the order of several seconds unacceptably long for typical applications; and (5) the maximum mechanical displacements of the PLZT-based actuators are limited to those characterized by low strains beyond which PLZT ceramics disintegrate because of their brittleness. The basic element of a light-driven bimorph actuator of the present developmental type is a cantilever beam comprising two layers, at least one of which is a polymer that exhibits a photomechanical effect (see figure). The dominant mechanism of the photomechanical effect is a photothermal one: absorption of

  18. Atomic-scale thermocapillary flow in focused ion beam milling

    SciTech Connect

    Das, K.; Johnson, H. T.; Freund, J. B.

    2015-05-15

    Focused ion beams provide a means of nanometer-scale manufacturing and material processing, which is used for applications such as forming nanometer-scale pores in thin films for DNA sequencing. We investigate such a configuration with Ga{sup +} bombardment of a Si thin-film target using molecular dynamics simulation. For a range of ion intensities in a realistic configuration, a recirculating melt region develops, which is seen to flow with a symmetrical pattern, counter to how it would flow were it driven by the ion momentum flux. Such flow is potentially important for the shape and composition of the formed structures. Relevant stress scales and estimated physical properties of silicon under these extreme conditions support the importance thermocapillary effects. A flow model with Marangoni forcing, based upon the temperature gradient and geometry from the atomistic simulation, indeed reproduces the flow and thus could be used to anticipate such flows and their influence in applications.

  19. Thermocapillary convection in two immiscible liquid layers with free surface

    NASA Technical Reports Server (NTRS)

    Doi, Takao; Koster, Jean N.

    1993-01-01

    Thermocapillary convection is studied in two immiscible liquid layers with one free surface, one liquid/liquid interface, and differential heating applied parallel to the interfaces. An analytical solution is introduced for infinite horizontal layers. The defining parameter for the flow pattern is lambda, the ratio of the temperature coefficient of the interfacial tension to that of the surface tension. Four different flow patterns exist under zero gravity conditions. 'Halt' conditions which halt the fluid motion in the lower encapsulated liquid layer have been found. A numerical experiment is carried out to study effects of vertical end walls on the double layer convection in a 2D cavity. The halt condition obtained from the analytical study is found to be valid in the limit of small Reynolds numbers. The flow in the encapsulated liquid layer can be suppressed substantially.

  20. Extra-long Float-zones Induced by Thermocapillary Flows

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ju; Steen, Paul H.

    1996-11-01

    A model problem is posed to study the influence of flow on the interfacial stability of a nearly cylindrical liquid bridge for lengths near its circumference (the Plateau-Rayleigh limit). Zero gravity is assumed. The flow is generated by a shear stress imposed on the deformable interface. The symmetry of the imposed stress mimics the thermocapillary effect induced on a float-zone by a ring heater (i.e. a full zone). Numerical solutions, complemented by a bifurcation analysis, show that bridges substantially longer than the Plateau-Rayleigh limit are possible. An interaction of the first two capillary instabilities through the stress-induced pressure gradient is responsible. Time-periodic standing waves are also predicted in certain parameter ranges. Motivation comes from extra-long float-zones observed in MEPHISTO space lab experiments (June 1994).

  1. Francois Frenkiel Award Lecture: Thermocapillary migration of interfacial droplets

    NASA Astrophysics Data System (ADS)

    Greco, Edwin F.

    2010-11-01

    Thermocapillary migration of bubbles through the bulk liquid--a process in which tangential surface stresses arising from the variation of surface tension with temperature create a propulsive force on the bubble--has been extensively studied in the past. In contrast, the motion of droplets confined to the free surface of a liquid substrate has received much less attention. Recent developments in microfluidics provided new motivation to understand how applied thermal gradients can affect the motion of, and mixing inside, small aqueous droplets. In particular, the quality and speed of mixing depend rather sensitively on the flow structure inside the droplet. In this talk we describe different approaches that allow one to compute both the flow inside interfacial droplets and the flow in the layer of liquid substrate supporting the droplet and the lessons which can be learned by analyzing these flows.

  2. The actuator design and the experimental tests of a new technology large deformable mirror for visible wavelengths adaptive optics

    NASA Astrophysics Data System (ADS)

    Del Vecchio, Ciro; Agapito, Guido; Arcidiacono, Carmelo; Carbonaro, Luca; Marignetti, Fabrizio; De Santis, Enzo; Biliotti, Valdemaro; Riccardi, Armando

    2012-07-01

    Recently, Adaptive Secondary Mirrors showed excellent on-sky results in the Near Infrared wavelengths. They currently provide 30mm inter-actuator spacing and about 1 kHz bandwidth. Pushing these devices to be operated at visible wavelengths is a challenging task. Compared to the current systems, working in the infrared, the more demanding requirements are the higher spatial resolution and the greater correction bandwidth. In fact, the turbulence scale is shorter and the parameter variation is faster. Typically, the former is not larger than 25 mm (projected on the secondary mirror) and the latter is 2 kHz, therefore the actuator has to be more slender and faster than the current ones. With a soft magnetic composite core, a dual-stator and a single-mover, VRALA, the actuator discussed in this paper, attains unprecedented performances with a negligible thermal impact. Pre-shaping the current required to deliver a given stroke greatly simplifies the control system, whose output supplies the current generator. As the inductance depends on the mover position, the electronics of this generator, provided with an inductance measure circuit, works also as a displacement sensor, supplying the control system with an accurate feed-back signal. A preliminary prototype, built according to the several FEA thermo-magnetic analyses, has undergone some preliminary laboratory tests. The results of these checks, matching the design results in terms of power and force, show that the the magnetic design addresses the severe specifications.

  3. Optimized actuators for ultrathin deformable primary mirrors.

    PubMed

    Laslandes, Marie; Patterson, Keith; Pellegrino, Sergio

    2015-05-20

    A novel design and selection scheme for surface-parallel actuators for ultrathin, lightweight mirrors is presented. The actuation system consists of electrodes printed on a continuous layer of piezoelectric material bonded to an optical-quality substrate. The electrodes provide almost full coverage of the piezoelectric layer, in order to maximize the amount of active material that is available for actuation, and their shape is optimized to maximize the correctability and stroke of the mirror for a chosen number of independent actuators and for a dominant imperfection mode. The starting point for the design of the electrodes is the observation that the correction of a figure error that has at least two planes of mirror symmetry is optimally done with twin actuators that have the same optimized shape but are rotated through a suitable angle. Additional sets of optimized twin actuators are defined by considering the intersection between the twin actuators, and hence an arbitrarily fine actuation pattern can be generated. It is shown that this approach leads to actuator systems with better performance than simple, geometrically based actuators. Several actuator patterns to correct third-order astigmatism aberrations are presented, and an experimental demonstration of a 41-actuator mirror is also presented. PMID:26192533

  4. Actuated atomizer

    NASA Technical Reports Server (NTRS)

    Tilton, Charles (Inventor); Weiler, Jeff (Inventor); Palmer, Randall (Inventor); Appel, Philip (Inventor)

    2008-01-01

    An actuated atomizer is adapted for spray cooling or other applications wherein a well-developed, homogeneous and generally conical spray mist is required. The actuated atomizer includes an outer shell formed by an inner ring; an outer ring; an actuator insert and a cap. A nozzle framework is positioned within the actuator insert. A base of the nozzle framework defines swirl inlets, a swirl chamber and a swirl chamber. A nozzle insert defines a center inlet and feed ports. A spool is positioned within the coil housing, and carries the coil windings having a number of turns calculated to result in a magnetic field of sufficient strength to overcome the bias of the spring. A plunger moves in response to the magnetic field of the windings. A stop prevents the pintle from being withdrawn excessively. A pintle, positioned by the plunger, moves between first and second positions. In the first position, the head of the pintle blocks the discharge passage of the nozzle framework, thereby preventing the atomizer from discharging fluid. In the second position, the pintle is withdrawn from the swirl chamber, allowing the atomizer to release atomized fluid. A spring biases the pintle to block the discharge passage. The strength of the spring is overcome, however, by the magnetic field created by the windings positioned on the spool, which withdraws the plunger into the spool and further compresses the spring.

  5. Actuator mechanism

    NASA Technical Reports Server (NTRS)

    Stange, W. C. (Inventor)

    1978-01-01

    An actuator mechanism is described, having a frame with a rotatable shaft supported in the frame, a positioning mechanism coupled to the shaft for rotating the shaft in two rotary positions, disposed approximately 180 degrees apart, and a pair of plungers coupled to the shaft. Each plunger is responsive to a control signal for applying bi-directional rotation to the shaft.

  6. Thermocapillary Flow and Aggregation of Bubbles on a Solid Wall

    NASA Technical Reports Server (NTRS)

    Kasumi, Hiroki; Solomentsev, Yuri E.; Guelcher, Scott A.; Anderson, John L.; Sides, Paul J.

    2000-01-01

    During the electrolytic evolution of oxygen bubbles forming on a vertically oriented transparent tin oxide electrode, bubbles were found to be mutually attractive. The mechanism of the aggregation had never been explained satisfactorily until Guelcher et al. attributed it to thermocapillary flow. The gradient of surface tension of the liquid at the bubble's surface, which was established because of reaction heat and ohmic heat loss at the electrode wall, drives flow of the liquid adjacent to each bubble; the bubble "pumps" fluid along its surface away from the wall. Fluid flows toward the bubble to conserve mass and entrains nearby bubbles in the flow pattern. The same logic would apply when two bubbles of equal size are adjacent to each other on a warm wall. Each bubble drives thermocapillary flow and hence entrains the other in its flow pattern, which drives the aggregation. Our objective here is to perform experiments where the temperature gradient at the wall is well known and controlled. The theory can be quantitatively tested by studying aggregation of bubble pairs of equal size, and by varying system parameters such as temperature gradient, bubble size and fluid viscosity. The results are then compared with the theory in a quantitatively rigorous manner. We demonstrate that the theory without adjustable parameters is capable of quantitatively modeling the rate of aggregation of two bubbles. The equations governing the thermocapillary flow around a single stationary bubble on a heated or cooled wall in a semi-infinite domain were solved. Both Reynolds number and Marangoni number were much less than unity. The critical result is that liquid in the vicinity of a warm wall flows toward a stationary collector bubble. Consequently the thermocapillary flow around the stationary bubble entrains another bubble toward itself. The bubbles undergo hindered translation parallel to the wall with velocity U while the fluid flow field is described with u. Two velocities

  7. On the Onset of Thermocapillary Convection in a Liquid bridge

    NASA Astrophysics Data System (ADS)

    Shukla, Kedar

    follow the method of Shukla [17] for Boussinesq flow to model the convective instability in an axisymmetric flow in the liquid bridge. The surface deformation caused by g-jitters and its effects on the onset of oscillatory flow will be examined. References: [1] Grodzka, P.G. and Bannister, T.C., Heat flow and convection demonstration experiments abord Appolo 14, Science (Washington, D.C.), Vol.176, May 1972, pp. 506-508. [2] Bannister, T C., etal, NASA, TMX-64772, 1973. [3] Shukla, K.N. Hydrodynamics of Diffusive Processes, Applied Mechanics Review, Vol.54, No.5, 2001, pp. 391-404. [4] Chen, G., Lizee, A., Roux, B.,, Bifurcation analysis of the thermo capillary convection in cylindrical liquid bridge, J Crystal growth, Vol. 180, 1997, pp.638-647. [5] Imaishi, N., Yasuhiro, S., Akiyama, Y and Yoda, S., Numerical simulation of oscillatory Marangoni flow in half zone liquid bridge of low Prandtl number fluid, J., Crystal Growth, Vol. 230, 2001, pp. 164-171. [6] Bennacer, R., Mohamad, A.A., Leonardi, E., The effect o heat flux distribution on thermo capillary convection in a sideheated liquid bridge, Numer. Heat transfer, Part A, vol. 41, 2002, pp. 657-671. [7] Kuhlmann, H C., Rath, H J., Hydrodynamic instabilities in Cylindrical thermocapillary liquid bridges, J Fluid Mech., Vol. 247,1993, pp. 247-274. [8] Wanshura, M., Shevtsova, V M, Kuhlmann, H C and Rath, H J., Convective instability in thermocapillary liquid bridges, Phys. Fluids, Vol. 7, 1995, pp. 912-925. [9] Kasperski, G., Batoul, A., Labrosse, G., Up to the unsteadiness of axisymmetric thermocapillary low in a laterally heated liquid bridge, Phys. Fluids, Vol. 12, 2000, pp. 103-119. [10] Lappa, M., Savino, R., Monti, R., Three dimensional numerical simulation of Marangoni instabilities in non cylindrical liquid bridges in microgravity, Int. J Heat Mass Transfer, Vol. 44, 2001, pp. 1983-2003 [11] Zeng, Z, Mizuseki, H., Simamura, K., Fukud, T. Higashino, K, Kawaazoe, Y., Three dimensional oscillatory thermocapillary

  8. Modular droplet actuator drive

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G. (Inventor); Paik, Philip (Inventor)

    2011-01-01

    A droplet actuator drive including a detection apparatus for sensing a property of a droplet on a droplet actuator; circuitry for controlling the detection apparatus electronically coupled to the detection apparatus; a droplet actuator cartridge connector arranged so that when a droplet actuator cartridge electronically is coupled thereto: the droplet actuator cartridge is aligned with the detection apparatus; and the detection apparatus can sense the property of the droplet on a droplet actuator; circuitry for controlling a droplet actuator coupled to the droplet actuator connector; and the droplet actuator circuitry may be coupled to a processor.

  9. Sensors and actuators based on SOI materials

    NASA Astrophysics Data System (ADS)

    Sanz-Velasco, Anke; Nafari, Alexandra; Rödjegård, Henrik; Bring, Martin; Hedsten, Karin; Enoksson, Peter; Bengtsson, Stefan

    2006-05-01

    Examples of using SOI materials for formation of novel sensor and actuator structures at Chalmers University of Technology are given. Using SOI material gives advantages in formation of sensor and actuator structures, such as a nanoindentation force sensor, a three-axis accelerometer, a miniaturized pinball game and integration of diffractive optical elements onto silicon.

  10. Oscillation Characteristics of Thermocapillary Convection in An Open Annular Pool

    NASA Astrophysics Data System (ADS)

    Duan, Li; Kang, Qi; Zhang, Di

    2016-07-01

    Temperature oscillation characteristics and free surface deformation are essential phenomena in fluids with free surface. We report experimental oscillatory behaviors for hydrothermal wave instability in thermocapillary-driven flow in an open annular pool of silicone oil. The annular pool is heated from the inner cylindrical wall with the radius 4mm and cooled at the outer wall with radius 20mm, and the depth of the silicone oil layer is in the range of 0.8mm-3mm.Temperature difference between the two sidewalls was increased gradually, and the flow will become unstable via a super critical temperature difference. In the present paper we used T-type thermocouple measuring the single-point temperature inside the liquid layer and captured the tiny micrometer wave signal through a high-precision laser displacement sensor. The critical temperature difference and critical Ma number of onset of oscillation have been obtained. We discussed the critical temperature difference and critical Marangoni number varies with the change of the depth of liquid layer, and the relationship between the temperature oscillation and surface oscillation has been discussed. Experimental results show that temperature oscillation and surface oscillation start almost at the same time with similar spectrum characteristic.

  11. Thermocapillary migration of a small chain of bubbles

    NASA Technical Reports Server (NTRS)

    Wei, Huailiang; Subramanian, R. S.

    1993-01-01

    The quasistatic thermocapillary migration of a chain of two or three spherical bubbles in an unbounded fluid possessing a uniform temperature gradient is investigated in the limit of vanishing Reynolds and Peclet numbers. The line of bubble centers is permitted to be either parallel or perpendicular to the direction of the undisturbed temperature gradient. The governing equations are solved by a truncated-series, boundary-collocation technique. Results are presented which demonstrate the impact of the presence of other bubbles on a test bubble. In the three-bubble case, a simple pairwise-additive approximation is constructed from the reflections solution, and found to perform well except when the bubbles are close to each other. Also, features of the flow topology in the fluid are explored. Separated reverse flow wakes are found in the axisymmetric problem, and other interesting structures are noted for the case in which the line of centers is perpendicular to the applied temperature gradient. The observed flow structure is shown to be the result of superposition of simpler basic flows.

  12. Multistability of oscillatory thermocapillary convection in a liquid bridge.

    PubMed

    Shevtsova, V M; Melnikov, D E; Legros, J C

    2003-12-01

    A parametric investigation of the onset of chaos in a liquid bridge was numerically carried out for a medium Prandtl number liquid, Pr = 4, and unit aspect ratio under zero-gravity conditions. Spatiotemporal patterns of thermocapillary flow were successively studied beginning from the onset of instability up to the appearance of the nonperiodic flow and further on. Well-tested numerical code is used for solving the three-dimensional time-dependent Navier-Stokes equations in cylindrical coordinate system. Two-dimensional steady flow becomes oscillatory with azimuthal wave number m=2 as a result of Hopf bifurcation at Re(cr)(1)=630. A second independent solution with wave number m=3 was found to appear at Reynolds number Re(cr)(2) approximately 810. Two branches of three-dimensional periodic orbits, traveling waves with m=2 and m=3, coexist for Re>Re(cr)(2). Additional stable branches do not connect them. The different flow organizations reveal different behaviors in the supercritical area. The m=2 traveling wave always remains periodic, but the mode m=3 starts exhibiting chaotic features at Re approximately 4200. The onset of temporal nonperiodicity was shown to be associated with development of broadband noise in spectra and preceded by a quasiperiodicity. The flow stabilizes back to periodic with single frequency when Re exceeds a value Re approximately 5100. The window of periodicity exists up to at least Re=6000, the largest investigated value of the Reynolds number. PMID:14754319

  13. Thermocapillary Convection Due to a Stationary Bubble - A Paradox

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Subramanian, R. S.

    2003-01-01

    We analyze the velocity and temperature fields at steady state due to thermocapillary convection around a gas bubble that is stationary in a liquid. A linear temperature field is imposed in the undisturbed liquid. Our interest is in investigating the effect of convective transport of momentum and energy on the velocity and temperature fields. We assume the pertinent physical properties to be constant, and that buoyant convection is negligible. Suitably defined Reynolds and Marangoni numbers are assumed to be small compared with unity. When both the Reynolds and Marangoni numbers are set equal to zero, a solution can be found. In this solution, far from the bubble, the velocity field decays as the inverse of the distance from the bubble, and the disturbance temperature field decays as the inverse of the square of this distance. We now attempt to obtain a solution when the Reynolds number is zero, but the Marangoni number is small, but non-zero, by a perturbation expansion in the Marangoni number. When the temperature field is expanded in a regular perturbation series in the Marangoni number, we show that the problem for the first correction field is ill-posed. The governing equation for this perturbation field contains an inhomogeneity, and the corresponding particular solution neither decays far from the bubble, nor can be canceled by a homogeneous solution. Additional information is included in the original extended abstract.

  14. Ground Based Studies of Thermocapillary Flows in Levitated Drops

    NASA Technical Reports Server (NTRS)

    Sadhal, Satwindar Singh; Trinh, Eugene H.

    1996-01-01

    Ground-based experiments together with analytical studies are presently being conducted for levitated drops. Both acoustic and electrostatic techniques are being employed to achieve levitation of drops in a gaseous environment. The scientific effort is principally on the thermal and the fluid phenomena associated with the local heating of levitated drops, both at 1-g and at low-g. In particular, the thermocapillary flow associated with local spot heating is being studied. Fairly stable acoustic levitation of drops has been achieved with some exceptions when random rotational motion of the drop persists. The flow visualization has been carried out by light scattering from smoke particles for the exterior flow and fluorescent tracer particles in the drop. The results indicate a lack of axial symmetry in the internal flow even though the apparatus and the heating are symmetric. The theoretical studies for the past year have included fundamental analyses of acoustically levitated spherical drops. The flow associated with a particle near the velocity antinode is being investigated by the singular perturbation technique. As a first step towards understanding the effect of the particle displacement from the antinode, the flow field about the node has been calculated for the first time. The effect of the acoustic field on the interior of a liquid drop has also been investigated. The results predict that the internal flow field is very weak.

  15. Bed of polydisperse viscous spherical drops under thermocapillary effects

    NASA Astrophysics Data System (ADS)

    Sharanya, V.; Raja Sekhar, G. P.; Rohde, Christian

    2016-08-01

    Viscous flow past an ensemble of polydisperse spherical drops is investigated under thermocapillary effects. We assume that the collection of spherical drops behaves as a porous media and estimates the hydrodynamic interactions analytically via the so- called cell model that is defined around a specific representative particle. In this method, the hydrodynamic interactions are assumed to be accounted by suitable boundary conditions on a fictitious fluid envelope surrounding the representative particle. The force calculated on this representative particle will then be extended to a bed of spherical drops visualized as a Darcy porous bed. Thus, the "effective bed permeability" of such a porous bed will be computed as a function of various parameters and then will be compared with Carman-Kozeny relation. We use cell model approach to a packed bed of spherical drops of uniform size (monodisperse spherical drops) and then extend the work for a packed bed of polydisperse spherical drops, for a specific parameters. Our results show a good agreement with the Carman-Kozeny relation for the case of monodisperse spherical drops. The prediction of overall bed permeability using our present model agrees well with the Carman-Kozeny relation when the packing size distribution is narrow, whereas a small deviation can be noted when the size distribution becomes broader.

  16. Dielectric elastomer actuators for adaptive photonic microsystems

    NASA Astrophysics Data System (ADS)

    Heimann, Marcus; Schröder, Henning; Marx, Sebastian; Lang, Klaus-Dieter

    2013-03-01

    Various applications in the field of photonic microsystems for Dielectric Elastomer Actuators (DEA) were shown with this research. DEA belong to the class of Electro Active Polymers (EAP) and have the potential to substitute common technologies like piezoelectric actuators. DEAs offers several advantages like compact and variable shapes, large actuation ranges and cost efficient production processes that have to be emphasized. For the market of adaptive photonic microsystems especially area actuators are very suitable. They can be used e.g. as tuneable lens, mirror or grating component and tool for optical fiber alignment. These area actuators have a similar structure like a capacitor. They consist of three layers, two electrode layers on top and bottom and one dielectric layer in the center. The dielectric layer is made of a deformable and prestretched elastomer film. When applying a voltage between both electrode layers the thickness of the dielectric film is compressed and the actuator is displaced in the plane. The use of material compositions like a polymer matrix with graphite, carbon nano particles or carbon nano tubes as well as thin metal films for the electrodes were studied. The paper presents results on suitable dielectric and electrode materials, actuator geometries and respective adaptive photonic components. The manufacturing process of area actuators is described in detail. As a basic size of the area actuators (20 × 20) mm2 were chosen. Onto the produced area actuators polymer lenses or mirrors were assembled. The deflection of the optical beam path is calculated with optical simulations and measured at the prepared adaptive optical components. Static actuations of about +/-15 μm are achieved when applying a voltage of 200 V. Also the function of a tuneable beam splitter is demonstrated to show further applications.

  17. Memory metal actuator

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F. (Inventor)

    1985-01-01

    A mechanical actuator can be constructed by employing a plurality of memory metal actuator elements in parallel to control the amount of actuating force. In order to facilitate direct control by digital control signals provided by a computer or the like, the actuating elements may vary in stiffness according to a binary relationship. The cooling or reset time of the actuator elements can be reduced by employing Peltier junction cooling assemblies in the actuator.

  18. Pneumatically actuated micropipetting device

    NASA Astrophysics Data System (ADS)

    Szita, Nicolas; Buser, Rudolf A.

    1998-03-01

    We have realized a valveless micropipetting device with an integrated sensor which can aspirate and dispense liquid volumes without any valves, hence without any reflow or dead volume. With an external pneumatic actuation, we have demonstrated aspirating and dispensing from 190nl of 6 (mu) l of water. Measurements showed a standard deviation of down to 1 percent. An integrated capacitive sensor will allow monitoring of the pressure throughout the pipetting process and detect malfunctions, e.g. clotting of the pipetting tip. It is our intention to use this demonstrated precise aspiration mechanism in combination with a micromachined reaction chamber and a miniaturized optical analysis system.

  19. Carbon nanotube actuators

    PubMed

    Baughman; Cui; Zakhidov; Iqbal; Barisci; Spinks; Wallace; Mazzoldi; De Rossi D; Rinzler; Jaschinski; Roth; Kertesz

    1999-05-21

    Electromechanical actuators based on sheets of single-walled carbon nanotubes were shown to generate higher stresses than natural muscle and higher strains than high-modulus ferroelectrics. Like natural muscles, the macroscopic actuators are assemblies of billions of individual nanoscale actuators. The actuation mechanism (quantum chemical-based expansion due to electrochemical double-layer charging) does not require ion intercalation, which limits the life and rate of faradaic conducting polymer actuators. Unlike conventional ferroelectric actuators, low operating voltages of a few volts generate large actuator strains. Predictions based on measurements suggest that actuators using optimized nanotube sheets may eventually provide substantially higher work densities per cycle than any previously known technology.

  20. Flexure-based nanomagnetic actuators

    NASA Astrophysics Data System (ADS)

    Vasquez, Daniel James

    Nanometer-scale actuators powered through applied-magnetic fields have been designed, fabricated, and tested. These actuators consist of one or more ferromagnetic elements attached to a mechanical flexure. Two types of flexures were studied including a cantilever beam that is fixed on one end, and free on the other. The free end of the cantilever is attached to a, ferromagnetic element allowing a bending torque to be applied by a magnetic field. The second type of actuator design uses a set of torsion beams that are each anchored on one end, and attached to the magnetic element on the other end. The torsion beams are designed such that the application of a magnetic field will result in a twist along the long axis of the beam with little to no bending. The smallest fabricated and tested device is a cantilever-based ferromagnetic actuator that consists of a single 1.5-mum-long, 338-nm-wide, and 50-nm-thick nickel element, and a 2.2-mum-long, 110-nm-wide, and 30-nm-thick gold cantilever beam. A deflection of over 17° was measured for this actuator, while a similar one with a 10.1-mum long cantilever beam experienced measured deflections up to 57°. Torsion-based ferromagnetic actuators have been fabricated and tested with 110-nm-wide, and 50-rim-thick magnetic elements. Such magnetic elements contain only a single saturated magnetic domain. The ultimate scalability of ferromagnetic actuation is limited by the ability of thermal noise to affect the temporal stability of a nanometer-scale magnet. Theory to describe thermal noise and ultimate scalability of the ferromagnetic actuators has been developed. The size of the ferromagnetic actuators studied in this manuscript are smaller than most plant and animal cells. This enables the possibility of such actuators to manipulate a, living cell on an intracellular level. Other potential applications of such small actuators include MHz, to GHz frequency resonators, and tunable optical filters.

  1. Experimental Investigation on Bubble Thermocapillary Migration and Bubble Coalescence in Reduced Gravity

    NASA Astrophysics Data System (ADS)

    Cui, H. L.; Hu, L.; Duan, L.; Kang, Q.

    In this paper some results from a space experiment are presented on bubble thermocapillary migration on board the Chinese 22 nd recoverable satellite in 2005 A bubble or drop will move when placed in another fluid and subjected to a temperature gradient This motion arises as a consequence of the variation of interfacial tension with temperature Such a phenomenon is already known as Marangoni or thermocapillary migration problem Bubble and drop dynamics becomes a hot point of research because this investigation is very important for basic research as well as for applications in reduced gravity environment such as space material science chemical engineering and so on The space experiment of bubble thermocapillary migration were done in a KF-96L series silicone oil of nominal viscosity 5cst This paper discussed the characteristic of fluid field firstly The temperature gradient in test cell is corrected with the temperature measurement data at six points and numerical simulating taking account to the temperature field disturbed by accumulated upper bubbles The effective temperature gradient is 1 4 times as that calculated with temperature data at the six points Moreover the disturbance in velocity field to bubble migration can be neglected with the help of numerical results In the experiment Marangoni number Ma of bubble thermocapillary migrations is from 98 04 to 9288 The most Marangoni number is larger than that attained in the prior flight experiments The experimental results are consistent with earlier results and are compared

  2. A numerical study of thermocapillary migration of a small liquid droplet on a horizontal solid surface

    NASA Astrophysics Data System (ADS)

    Nguyen, Huy-Bich; Chen, Jyh-Chen

    2010-06-01

    In the present study, the transient thermocapillary migration of a small liquid droplet on a horizontal solid surface is numerically investigated. The droplet has a large static contact angle and a high aspect ratio of the maximum height of the droplet to its footprint. The Navier-Stokes and energy equations for both the droplet and surrounding air are solved through the finite element method. The evolution of the isotherms, the flow fields and the contact angle hysteresis are presented. Two asymmetric thermocapillary vortices appear inside the droplet. The variation of the size of the thermocapillary vortex during the migration process causes the speed of the droplet to first increase significantly, and then decrease gradually to approach a constant value. The higher imposed temperature gradient causes the droplet velocity to reach its maximal value earlier and have a higher final speed. If the static contact angle of the droplet is less than (or higher) than 90°, the droplet speed is lower (or higher) since the net thermocapillary momentum in the horizontal direction is diminished (or enhanced) by the presence of capillary force. The present results for the migration velocity and the contact angle hysteresis for a squalane droplet are also in good agreement with the previous experimental results.

  3. Thermocapillary convection in zone-melting crystal growth - An open-boat physical simulation

    NASA Technical Reports Server (NTRS)

    Kim, Y. J.; Kou, Sindo

    1989-01-01

    Thermocapillary convection in a molten zone of NaNO3 contained in a boat with a free horizontal surface, that is heated from above by a centered wire heater, was studied to simulate flow in zone-melting crystal growth. Using a laser-light-cut technique and fine SiO powder as a tracer, convection in the melt zone was visualized in two different cases. In the first case, the entire melt surface was free, while in the second the melt surface was free only in the immediate vicinity of one vertical wall and was covered elsewhere, this wall being to simulate the melt/crystal interface during crystal growth. It was observed that thermocapillary convection near this wall prevailed in the first case, but was reduced significantly in the second. Since thermocapillary rather than natural convection dominated in the melt, the effect of the partial covering of the melt surface on thermocapillary convection in the melt observed in this study is expected to be similar under microgravity.

  4. Effect of Marangoni number on thermocapillary convection and free-surface deformation in liquid bridges

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Huang, Hu-Lin; Zhou, Xiao-Ming; Zhu, Gui-Ping; Zou, Yong

    2016-04-01

    Floating zone technique is a crucible-free process for growth of high quality single crystals. Unstable thermocapillary convection is a typical phenomenon during the process under microgravity. Therefore, it is very important to investigate the instability of thermocapillary convection in liquid bridges with deformable free-surface under microgravity. In this works, the Volume of Fluid (VOF) method is employed to track the free-surface movement. The results are presented as the behavior of flow structure and temperature distribution of the molten zone. The impact of Marangoni number ( Ma) is also investigated on free-surface deformation as well as the instability of thermocapillary convection. The free-surface exhibits a noticeable axisymmetric (but it is non-centrosymmetric) and elliptical shape along the circumferential direction. This specific surface shape presents a typical narrow `neck-shaped' structure with convex at two ends of the zone and concave at the mid-plane along the axial direction. At both θ = 0° and θ = 90°, the deformation ratio ξ increases rapidly with Ma at first, and then increases slowly. Moreover, the hydrothermal wave number m and the instability of thermocapillary convection increase with Ma.

  5. Membrane Mirrors With Bimorph Shape Actuators

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    Deformable mirrors of a proposed type would be equipped with relatively-large-stroke microscopic piezoelectric actuators that would be used to maintain their reflective surfaces in precise shapes. These mirrors would be members of the class of MEMS-DM (for microelectromechanical system deformable mirror) devices, which offer potential for a precise optical control in adaptive-optics applications in such diverse fields as astronomy and vision science. The proposed mirror would be fabricated, in part, by use of a membrane-transfer technique. The actuator design would contain bimorph-type piezoelectric actuators.

  6. Biomimetic actuator

    NASA Astrophysics Data System (ADS)

    Bouda, Vaclav; Boudova, Lea; Haluzikova, Denisa

    2005-05-01

    The aim of the presentation is to propose an alternative model of mammalian skeletal muscle function, which reflects the simplicity of nature and can be applied in engineering. Van der Waals attractive and repulsive electrostatic forces are assumed to control the design of internal structures and functions of contractile units of the muscles - sarcomere. The role of myosin heads is crucial for the higher order formation. The model of the myosin head lattice is the working model for the sarcomere contraction interpretation. The contraction is interpreted as a calcium induced phase transition of the lattice, which results in relative actin-myosin sliding and/or force generation. The model should provide the engineering science with a simple analogy to technical actuators of high performance.

  7. Electrostatically actuatable light modulating device

    DOEpatents

    Koehler, Dale R.

    1991-01-01

    The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.

  8. Hysteresis compensation of the piezoelectric ceramic actuators-based tip/tilt mirror with a neural network method in adaptive optics

    NASA Astrophysics Data System (ADS)

    Wang, Chongchong; Wang, Yukun; Hu, Lifa; Wang, Shaoxin; Cao, Zhaoliang; Mu, Quanquan; Li, Dayu; Yang, Chengliang; Xuan, Li

    2016-05-01

    The intrinsic hysteresis nonlinearity of the piezo-actuators can severely degrade the positioning accuracy of a tip-tilt mirror (TTM) in an adaptive optics system. This paper focuses on compensating this hysteresis nonlinearity by feed-forward linearization with an inverse hysteresis model. This inverse hysteresis model is based on the classical Presiach model, and the neural network (NN) is used to describe the hysteresis loop. In order to apply it in the real-time adaptive correction, an analytical nonlinear function derived from the NN is introduced to compute the inverse hysteresis model output instead of the time-consuming NN simulation process. Experimental results show that the proposed method effectively linearized the TTM behavior with the static hysteresis nonlinearity of TTM reducing from 15.6% to 1.4%. In addition, the tip-tilt tracking experiments using the integrator with and without hysteresis compensation are conducted. The wavefront tip-tilt aberration rejection ability of the TTM control system is significantly improved with the -3 dB error rejection bandwidth increasing from 46 to 62 Hz.

  9. Experiments on Suppression of Thermocapillary Oscillations in Sodium Nitrate Floating Half-Zones by High-frequency End-wall Vibrations

    NASA Technical Reports Server (NTRS)

    Anilkumar, A.; Grugel, R. N.; Bhowmick, J.; Wang, T.

    2004-01-01

    Experiments to suppress thermocapillary oscillations using high-frequency vibrations were carried out in sodium nitrate floating half-zones. Such a half-zone is formed by melting one end of a vertically held sodium nitrate crystal rod in contact with a hot surface at the top. Thermocapillary convection occurs in the melt because of the temperature gradient at the free surface of the melt. In the experiments, when thermocapillary oscillations occurred, the bottom end of the crystal rod was vibrated at a high frequency to generate a streaming flow in a direction opposite to that of the thermocapillary convection. It is observed that, by generating a sufficiently strong streaming flow, the thermocapillary flow can be offset enough such that the associated thermocapillary oscillations can be quenched.

  10. Experiments on Suppression of Thermocapillary Oscillations in Float-Zones by High-Frequency End-Wall Vibrations

    NASA Technical Reports Server (NTRS)

    Anilkumar, A. V.; Grugel, R. N.; Lee, C. P.; Bhowmick, J.; Wang, T. G.

    2003-01-01

    Experiments to suppress thermocapillary oscillations using high-frequency vibrations were performed on float-zones. Such a float-zone is formed by melting one end of a vertically held sodium nitrate-barium nitrate crystal rod in contact with a hot surface at the top. In the experiments, when thermocapillary oscillation occurred, the bottom end of the rod was vibrated at a high frequency to generate fine ripples on the melt surface, driving a streaming flow in the opposite direction to that of the thermocapillary convection. It was observed that by generating a sufficiently strong streaming flow the thermocapillary flow can be offset enough such that the associated thermocapillarity oscillations can be quenched.

  11. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  12. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  13. Microprocessor controlled force actuator

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. C.; Inman, D. J.; Horner, G. C.

    1986-01-01

    The mechanical and electrical design of a prototype force actuator for vibration control of large space structures (LSS) is described. The force actuator is an electromagnetic system that produces a force by reacting against a proof-mass. The actuator has two colocated sensors, a digital microcontroller, and a power amplifier. The total weight of actuator is .998 kg. The actuator has a steady state force output of approximately 2.75 N from approximately 2 Hz to well beyond 1000 Hz.

  14. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si

  15. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  16. Cryogenic Actuators and Motors Using Single Crystal Piezoelectrics

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.; Shrout, Thomas R.

    2006-04-01

    Novel piezoelectric actuators (stack actuator and flextensional actuator) and ultrasonic motors are presented for cryogenic actuations utilizing the excellent cryogenic properties of recently invented single crystal piezoelectrics (PMN-PT and PZN-PT crystals). Single crystal piezoelectrics exhibit large increases in strain over conventional piezoelectric ceramics. Furthermore, the crystals have been found to retain appreciable piezoactivity down to temperatures as low as 20K. These cryogenic actuators are very promising for shape control, precision positioning and force control in various NASA, military and civilian applications such as cryogenic adaptive optics for space telescopes, interferometers in terrestrial planet finder missions, interferometers and spectrometers for remote sensing applications.

  17. Piezoelectric multilayer actuator life test.

    PubMed

    Sherrit, Stewart; Bao, Xiaoqi; Jones, Christopher M; Aldrich, Jack B; Blodget, Chad J; Moore, James D; Carson, John W; Goullioud, Renaud

    2011-04-01

    Potential NASA optical missions such as the Space Interferometer Mission require actuators for precision positioning to accuracies of the order of nanometers. Commercially available multilayer piezoelectric stack actuators are being considered for driving these precision mirror positioning mechanisms. These mechanisms have potential mission operational requirements that exceed 5 years for one mission life. To test the feasibility of using these commercial actuators for these applications and to determine their reliability and the redundancy requirements, a life test study was undertaken. The nominal actuator requirements for the most critical actuators on the Space Interferometry Mission (SIM) in terms of number of cycles was estimated from the Modulation Optics Mechanism (MOM) and Pathlength control Optics Mechanism (POM) and these requirements were used to define the study. At a nominal drive frequency of 250 Hz, one mission life is calculated to be 40 billion cycles. In this study, a set of commercial PZT stacks configured in a potential flight actuator configuration (pre-stressed to 18 MPa and bonded in flexures) were tested for up to 100 billion cycles. Each test flexure allowed for two sets of primary and redundant stacks to be mechanically connected in series. The tests were controlled using an automated software control and data acquisition system that set up the test parameters and monitored the waveform of the stack electrical current and voltage. The samples were driven between 0 and 20 V at 2000 Hz to accelerate the life test and mimic the voltage amplitude that is expected to be applied to the stacks during operation. During the life test, 10 primary stacks were driven and 10 redundant stacks, mechanically in series with the driven stacks, were open-circuited. The stroke determined from a strain gauge, the temperature and humidity in the chamber, and the temperature of each individual stack were recorded. Other properties of the stacks, including the

  18. Coupling thermocapillary and solutocapillary stress in 2D micro-foam drainage

    NASA Astrophysics Data System (ADS)

    Jullien, Marie-Caroline; Miralles, Vincent; Rio, Emmanuelle; Cantat, Isabelle; Espci/Cnrs Team; Lps/Orsay Team; Ipr-Rennes Team

    2015-11-01

    The foam drainage dynamics is known to be strongly affected by the nature of the surfactants stabilising the liquid/gas interface. In the present work, we consider a 2D microfoam stabilized by both soluble (sodium dodecylsulfate) and insoluble (dodecanol) surfactants. The drainage dynamics is driven by a thermocapillary Marangoni stress at the liquid/gas interface [V. Miralles et al., Phys. Rev. Lett., 2014] and the presence of dodecanol at the interface induces a solutocapillary stress acting against the applied thermocapillary stress, hence slowing down the drainage dynamics. We define a dimensionless permeability of the 2D foam in order to get insight into the relative contributions of the two surface stresses at play. We propose different surfactant transport scenarios.

  19. Investigation of Thermocapillary Convection of High Prandtl Number Fluid Under Microgravity

    NASA Technical Reports Server (NTRS)

    Liang, Ruquan; Duan, Guangdong

    2012-01-01

    Thermocapillary convection in a liquid bridge, which is suspended between two coaxial disks under zero gravity, has been investigated numerically. The Navier-Stokes equations coupled with the energy conservation equation are solved on a staggered grid, and the level set approach is used to capture the free surface deformation of the liquid bridge. The velocity and temperature distributions inside the liquid bridge are analyzed. It is shown from this work that as the development of the thermocapillary convection, the center of the vortex inside the liquid bridge moves down and reaches an equilibrium position gradually. The temperature gradients in the regions near the upper center axis and the bottom cold corner are higher than those in the other regions.

  20. Thermocapillary stabilization of the capillary breakup of an annular film of liquid

    NASA Technical Reports Server (NTRS)

    Dijkstra, Henk A.; Steen, Paul H.

    1991-01-01

    It is known that the breakup by surface tension of a cylindrical interface containing a viscous liquid can be damped by axial motion of the underlying liquid and that for an annular film the capillary instability can be completely suppressed (disturbances of all wavelengths decay) by certain axial velocity profiles. Here, using a linear stability analysis, it is shown that complete stabilization can also occur for thermocapillary-driven axial motions. However, the influence of thermocapillary instabilities typically shrinks the window in parameter space where stabilization is found, relative to the isothermal case. The influence of Reynolds, surface tension, Prandtl, and Biot parameters on limits of stabilization is calculated using continuation techniques. It is observed that windows of stabilization first open with topological changes of the neutral curves in parameter space.

  1. Surface temperature distribution along a thin liquid layer due to thermocapillary convection

    NASA Technical Reports Server (NTRS)

    Lai, C. L.; Chai, A. T.

    1985-01-01

    The surface temperature distributions due to thermocapillary convections in a thin liquid layer with heat fluxes imposed on the free surface were investigated. The nondimensional analysis predicts that, when convection is important, the characteristics length scale in the flow direction L, and the characteristic temperature difference delta T sub o can be represented by L and delta T sub o approx. (A2Ma)/1/4 delta T sub R, respectively, where L sub R and delta sub R are the reference scales used in the conduction dominant situations with A denoting the aspect ratio and Ma the Marangoni number. Having L and delta sub o defined, the global surface temperature gradient delta sub o/L, the global thermocapillary driving force, and other interesting features can be determined. Numerical calculations involving a Gaussian heat flux distribution are presented to justify these two relations.

  2. Actuated Hybrid Mirrors for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Ealey, Mark; Redding, David

    2010-01-01

    This paper describes new, large, ultra-lightweight, replicated, actively controlled mirrors, for use in space telescopes. These mirrors utilize SiC substrates, with embedded solid-state actuators, bonded to Nanolaminate metal foil reflective surfaces. Called Actuated Hybrid Mirrors (AHMs), they use replication techniques for high optical quality as well as rapid, low cost manufacturing. They enable an Active Optics space telescope architecture that uses periodic image-based wavefront sensing and control to assure diffraction-limited performance, while relaxing optical system fabrication, integration and test requirements. The proposed International Space Station Observatory seeks to demonstrate this architecture in space.

  3. Handbook of actuators and edge alignment sensors

    SciTech Connect

    Krulewich, D A

    1992-11-01

    This actuator and sensor handbook was developed during a cooperative project between the NASA-Marshall Space Flight Center, the SDI-Directed Energy Program and LLNL. The common purpose of the joint effort was to develop precision actuators and sensors for the NASA initiated SpacE Laser ENE-rgy Program (SELENE). The purpose of the SELENE Program is to develop a highly cost effective segmented adaptive optics system for beaming laser power directly to spacecraft in earth orbit.

  4. Shape memory polymer actuator and catheter

    DOEpatents

    Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Matthews, Dennis L.; Decker, Derek E.; Jungreis, Charles A.

    2007-11-06

    An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.

  5. Shape memory polymer actuator and catheter

    DOEpatents

    Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Matthews, Dennis L.; Decker, Derek E.; Jungreis, Charles A.

    2004-05-25

    An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.

  6. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows

    NASA Astrophysics Data System (ADS)

    Liu, Haihu; Valocchi, Albert J.; Zhang, Yonghao; Kang, Qinjun

    2013-01-01

    A phase-field-based hybrid model that combines the lattice Boltzmann method with the finite difference method is proposed for simulating immiscible thermocapillary flows with variable fluid-property ratios. Using a phase field methodology, an interfacial force formula is analytically derived to model the interfacial tension force and the Marangoni stress. We present an improved lattice Boltzmann equation (LBE) method to capture the interface between different phases and solve the pressure and velocity fields, which can recover the correct Cahn-Hilliard equation (CHE) and Navier-Stokes equations. The LBE method allows not only use of variable mobility in the CHE, but also simulation of multiphase flows with high density ratio because a stable discretization scheme is used for calculating the derivative terms in forcing terms. An additional convection-diffusion equation is solved by the finite difference method for spatial discretization and the Runge-Kutta method for time marching to obtain the temperature field, which is coupled to the interfacial tension through an equation of state. The model is first validated against analytical solutions for the thermocapillary driven convection in two superimposed fluids at negligibly small Reynolds and Marangoni numbers. It is then used to simulate thermocapillary migration of a three-dimensional deformable droplet and bubble at various Marangoni numbers and density ratios, and satisfactory agreement is obtained between numerical results and theoretical predictions.

  7. Thermocapillary flow instabilities in an annulus under microgravity — results of the experiment magia

    NASA Astrophysics Data System (ADS)

    Schwabe, D.; Benz, S.

    We investigated thermocapillary flow in an annular gap with outer heater container of radius R 1 = 40 mm and inner cooled cylinder of R 2 = 20 mm and with an adjustable height h, 2.5 ≤ h ≤ 20 mm. The gap was filled flat up to the rim with the 0.65 cSt silicone oil hexamethyldisiloxane (Prandtl number Pr = 6.7). The temperature differences ΔT, 0 K ≤ ΔT ≤ 40 K between outer and inner wall generated thermocapillary flow in the free upper surface and various flow structures have been observed under microgravity. We identified hydrothermal waves for small h and more complicated oscillations for larger h. For small h and small ΔT the multiroll structure was visible via IR-images of the free surface: concentric steady convection rolls with the same sense of rotation, embedded into the main thermocapillary roll. We measured the critical Marangoni number Ma c for the transition to time-dependent flow in the aspect ratio range A = h/(R 1 - R 2), 0.125 ≤ A ≤ 1, where it was virtually constant Ma c ≈ 5 · 10 4. We report and discuss a steady temperature asymmetry, changing its direction from time to time, as recorded by the IR-camera. This symmetry breaking is most probably due to slowly changing residual acceleration in the satellite.

  8. Thermocapillary bubble flow and coalescence in a rotating cylinder: A 3D study

    NASA Astrophysics Data System (ADS)

    Alhendal, Yousuf; Turan, A.; Al-mazidi, M.

    2015-12-01

    The process of thermocapillary bubbles rising in a rotating 3D cylinder in zero gravity was analysed and presented numerically with the aid of computational fluid dynamics (CFD) by means of the volume of fluid (VOF) method. Calculations were carried out to investigate in detail the effect of the rotational speed of the hosted liquid on the trajectory of both single and group bubbles driven by the Marangoni force in zero-gravity conditions. For rotational speeds from 0.25 to 2 rad/s, bubble displacement with angular motion was found to be directed between the hotter surface and the rotational axis. This is contrary to the conventional bubble flow from areas of high pressure to low pressure, radial direction, or from cold to hot regions, axial direction. The results demonstrate that for the ratio of rotational speeds to the thermocapillary bubble velocity larger than unity, the surface tension gradient is the dominant force and the bubble motion towards the hotter. On the other hand, for ratio less than 1, the bubble motion is dominated and is significantly affected by centrifugal force. As rotation speed increases, the amount of deflection increases and the Marangoni effect vanishes. The current study is novel in the sense that single- and multi-bubble motion incorporating thermocapillary forces in a rotating liquid in a zero-gravity environment has never been numerically investigated.

  9. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    NASA Astrophysics Data System (ADS)

    Zheng, Lin; Zheng, Song; Zhai, Qinglan

    2016-02-01

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn-Hilliard equation which is solved in the frame work of LBE. The scalar convection-diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results.

  10. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows.

    PubMed

    Liu, Haihu; Valocchi, Albert J; Zhang, Yonghao; Kang, Qinjun

    2013-01-01

    A phase-field-based hybrid model that combines the lattice Boltzmann method with the finite difference method is proposed for simulating immiscible thermocapillary flows with variable fluid-property ratios. Using a phase field methodology, an interfacial force formula is analytically derived to model the interfacial tension force and the Marangoni stress. We present an improved lattice Boltzmann equation (LBE) method to capture the interface between different phases and solve the pressure and velocity fields, which can recover the correct Cahn-Hilliard equation (CHE) and Navier-Stokes equations. The LBE method allows not only use of variable mobility in the CHE, but also simulation of multiphase flows with high density ratio because a stable discretization scheme is used for calculating the derivative terms in forcing terms. An additional convection-diffusion equation is solved by the finite difference method for spatial discretization and the Runge-Kutta method for time marching to obtain the temperature field, which is coupled to the interfacial tension through an equation of state. The model is first validated against analytical solutions for the thermocapillary driven convection in two superimposed fluids at negligibly small Reynolds and Marangoni numbers. It is then used to simulate thermocapillary migration of a three-dimensional deformable droplet and bubble at various Marangoni numbers and density ratios, and satisfactory agreement is obtained between numerical results and theoretical predictions. PMID:23410429

  11. Investigation of interfacial phenomena and thermocapillary effect on drop evaporation in reduced gravity condition

    NASA Astrophysics Data System (ADS)

    Xie, Jingchang; Lin, Hai

    2013-11-01

    Based on ground-based experiments, a drop evaporation experiment will fly aboard Chinese recoverable satellite in the near future This experiment will focus on the interfacial phenomena of phase chance, heat and mass transfer and the effect of thermocapillary convection on drop evaporation process Close attention will also be paid to the contact angle behavior, the triple line shifting and their relations Our ground-based experiments observed the interior flow field and the gaseous exterior of small suspended evaporating drops, the temperature distributions inside and outside the drops. Both good heat conductor and heat insulating material were used as substrate materials to investigate their influence on heat transfer and surface temperature distribution of an evaporating drop Experimental results indicate that for a drop evaporating in ambient temperature without substrate heating, temperature gradients existed along the drop surface which results in stable thermocapillary convection and cells appeared near the surface throughout entire evaporating process. The thermocapillary convection greatly changed drop's interior temperature distribution and the way of energy and mass transfer. Temperature jump or discontinuity was also measured at drop free surface.

  12. Electromagnetic rotational actuation.

    SciTech Connect

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  13. Subminiature hydraulic actuator

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.

    1978-01-01

    Subminiature, single-vane rotary actuator for wind-tunnel test-model control-surface actuation systems presents severe torque and system band-pass requirements with stringent space and weight limitations. Actuator has very low leakage of fluid from one side to other, permitting use in precision position servo-systems.

  14. AMSD Cryo Actuator Testing

    NASA Technical Reports Server (NTRS)

    Mullette, Mark; Matthews, Gary; Russell, Kevin (Technical Monitor)

    2002-01-01

    The actuator technology required for AMSD and subsequently NGST are critical in the successful development for future cryogenic systems. Kodak has undertaken an extensive test plan to determine the performance of the force actuators developed under the AMSD program. These actuators are currently in testing at MSFC and are expected to finish this test cycle in early June 2002.

  15. Droplet actuator analyzer with cartridge

    NASA Technical Reports Server (NTRS)

    Smith, Gregory F. (Inventor); Sturmer, Ryan A. (Inventor); Paik, Philip Y. (Inventor); Srinivasan, Vijay (Inventor); Pollack, Michael G. (Inventor); Pamula, Vamsee K. (Inventor); Brafford, Keith R. (Inventor); West, Richard M. (Inventor)

    2011-01-01

    A droplet actuator with cartridge is provided. According to one embodiment, a sample analyzer is provided and includes an analyzer unit comprising electronic or optical receiving means, a cartridge comprising self-contained droplet handling capabilities, and a wherein the cartridge is coupled to the analyzer unit by a means which aligns electronic and/or optical outputs from the cartridge with electronic or optical receiving means on the analyzer unit. According to another embodiment, a sample analyzer is provided and includes a sample analyzer comprising a cartridge coupled thereto and a means of electrical interface and/or optical interface between the cartridge and the analyzer, whereby electrical signals and/or optical signals may be transmitted from the cartridge to the analyzer.

  16. Lattice Boltzmann phase-field modeling of thermocapillary flows in a confined microchannel

    NASA Astrophysics Data System (ADS)

    Liu, Haihu; Valocchi, Albert J.; Zhang, Yonghao; Kang, Qinjun

    2014-01-01

    To understand how thermocapillary forces manipulate the droplet motion in a confined microchannel, a lattice Boltzmann phase-field model is developed to simulate immiscible thermocapillary flows with consideration of fluid-surface interactions. Based on our recent work of Liu et al., 2013 [54], an interfacial force of potential form is proposed to model the interfacial tension force and the Marangoni stress. As only the first-order derivatives are involved, the proposed interfacial force is easily combined with the wetting boundary condition to account for fluid-surface interactions. The hydrodynamic equations are solved using a multiple-relaxation-time algorithm with the interfacial force treated as a forcing term, while an additional convection-diffusion equation is solved by a passive-scalar approach to obtain the temperature field, which is coupled to the interfacial tension by an equation of state. The model is first validated against analytical solutions for the thermocapillary-driven convection in two superimposed fluids at negligibly small Reynolds and Marangoni numbers. It is then demonstrated to produce the correct equilibrium contact angle for a binary fluid with different viscosities when a constant interfacial tension is taken into account. Finally, we numerically simulate the thermocapillary flows for a microfluidic droplet adhering on a solid wall and subject to a simple shear flow when a laser is applied to locally heat the fluids, and investigate the influence of contact angle and fluid viscosity ratio on the droplet dynamical behavior. The droplet motion can be completely blocked provided that the contact angle exceeds a threshold value, below which the droplet motion successively undergoes four stages: constant velocity, deceleration, acceleration, and approximately constant velocity. When the droplet motion is completely blocked, three steady vortices are clearly visible, and the droplet is fully filled by two counter-rotating vortices with the

  17. Analytical and numerical studies of the thermocapillary flow in a uniformly floating zone

    NASA Technical Reports Server (NTRS)

    Fowlis, W. W.; Roberts, G. O.

    1986-01-01

    The microgravity environment of an orbiting vehicle permits crystal growth experiments in the presence of greatly reduced buoyant convection in the liquid melt. Crystals grown in ground-based laboratories do not achieve their potential properties because of dopant variations caused by flow in the melt. The floating zone crystal growing system is widely used to produce crystals of silicon and other materials. However, in this system the temperature gradient on the free sidewall surface of the melt is the source of a thermocapillary flow which does not disappear in the low-gravity environment. The idea of using a uniform rotation of the floating zone system to confine the thermocapillary flow to the melt sidewall leaving the interior of the melt passive is examined. A cylinder of fluid with an axial temperature gradient imposed on the cylindrical sidewall is considered. A half zone and the linearized, axisymmetric flow in the absence of crystal growth is examined. Rotation is found to confine the linear thermocapillary flow. A simplified model is extended to a full zone and both linear and nonlinear thermocapillary flows are studied theoretically. Analytical and numerical methods are used for the linear flows and numerical methods for the nonlinear flows. It was found that the linear flows in the full zone have more complicated and thicker boundary layer structures than in the half zone, and that these flows are also confined by the rotation. However, for the simplified model considered and for realistic values for silicon, the thermocapillary flow is not linear. The fully nonlinear flow is strong and unsteady (a weak oscillation is present) and it penetrates the interior. Some non-rotating flow results are also presented. Since silicon as a large value of thermal conductivity, one would expect the temperature fields to be determined by conduction alone. This is true for the linear and weakly nonlinear flows, but for the stronger nonlinear flow the results show that

  18. Omnidirectional Actuator Handle

    NASA Technical Reports Server (NTRS)

    Moetteli, John B.

    1995-01-01

    Proposed actuator handle comprises two normally concentric rings, cables, and pulleys arranged such that relative displacement of rings from concentricity results in pulling of cable and consequent actuation of associated mechanism. Unlike conventional actuator handles like levers on farm implements, actuated from one or two directions only, proposed handle reached from almost any direction and actuated by pulling or pushing inner ring in any direction with respect to outer ring. Flanges installed on inner ring to cover gap between inner ring and housing to prevent clothing from being caught.

  19. Damage of MEMS thermal actuators heated by laser irradiation.

    SciTech Connect

    Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

    2005-01-01

    Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

  20. Damage of MEMS thermal actuators heated by laser irradiation.

    SciTech Connect

    Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

    2004-11-01

    Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

  1. Thermo-magnetic materials for use in designing intelligent actuators

    SciTech Connect

    Ohtani, Yoshimutsu; Yoshimura, Fumikatsu; Hatakeyama, Iwao; Ishii, Yoshikazu

    1994-12-31

    The authors present the concept of an intelligent thermal actuator designed by using thermally sensitive magnetic materials. The use of the magnetic transition of FeRh alloy is very effective in increasing the actuator functions. These functions are freedom of direction, tuning temperature, and increasing both sensitivity and power. Two new types of actuator, a remote controlled optical driven thermo-magnetic motor and a temperature sensitive spring-less valve, are proposed and experimental results are shown.

  2. Experimental study of thermocapillary flows in a thin liquid layer with heat fluxes imposed on the free surface

    NASA Technical Reports Server (NTRS)

    Lai, Chun-Liang; Greenberg, Paul S.; Chai, An-Ti

    1988-01-01

    To study thermocapillary flows in a two-dimensional thin liquid layer with heat fluxes imposed on the free surface experimentally, a long tray configuration was employed to simulate the infinite layer. The surface temperature distribution due to thermocapillary convective for different flow regimes was measured and compared with theoretical predictions. A short tray configuration was also employed to study the end wall effects (insulating or conducting). The results show that for a strong convection flow with an insulating wall as the boundary the surface temperature distribution became quite uniform. Consequently, the thermocapillary driving force was greatly reduced. On the other hand, a strong fluid motion always existed adjacent to the conducting wall because of the large surface temperature gradient near the wall.

  3. Experimental study of thermocapillary flows in a thin liquid layer with heat fluxes imposed on the free surface

    NASA Technical Reports Server (NTRS)

    Lai, Chun-Liang; Greenberg, Paul S.; Chai, An-Ti

    1988-01-01

    To study thermocapillary flows in a two-dimensional thin liquid layer with heat fluxes imposed on the free surface experimentally, a long tray configuration was employed to simulate the infinite layer. The surface temperature distribution due to thermocapillary convection for different flow regimes was measured and compared with theorectical predictions. A short tray configuration was also employed to study the end wall effects (insulating or conducting). The results show that, for a strong convection flow with an insulating wall as the boundary, the surface temperature distribution became quite uniform. Consequently, the thermocapillary driving force was greatly reduced. On the other hand, a strong fluid motion always existed adjacent to the conducting wall because of the large surface temperature gradient near the wall.

  4. Electropneumatic actuator, phase 1

    NASA Astrophysics Data System (ADS)

    Bloomfield, D. P.

    1989-10-01

    The program demonstrated the feasibility of an electropneumatic actuator which can be used in manufacturing applications. The electropneumatic actuator, an alternative to the electric, hydraulic, and pneumatic actuators used in industry, consists of an electrochemical compressor, a power supply, and an actuator. The electrochemical compressor working fluid is hydrogen and a solvent such as water or ammonia. The compressor has no moving parts and runs on low voltage DC. The actuator is a conventional, commercially available unit. Researchers designed, constructed, and tested the electrochemical compressor in conjunction with the actuator, power supply, and computerized control. The one inch actuator can lift a fifty pound weight a distance of ten inches in about 1.5 minutes. The electrochemically powered system is capable of driving its loaded actuator to a prescribed location at a controlled rate. A defined set of design changes will combine the compressor and actuator in the same housing, and will develop two orders of magnitude increased actuator speed at the same or higher force levels.

  5. MEMS fluidic actuator

    DOEpatents

    Kholwadwala, Deepesh K.; Johnston, Gabriel A.; Rohrer, Brandon R.; Galambos, Paul C.; Okandan, Murat

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  6. A Study on a Microwave-Driven Smart Material Actuator

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Chu, Sang-Hyon; Kwak, M.; Cutler, A. D.

    2001-01-01

    NASA s Next Generation Space Telescope (NGST) has a large deployable, fragmented optical surface (greater than or = 2 8 m in diameter) that requires autonomous correction of deployment misalignments and thermal effects. Its high and stringent resolution requirement imposes a great deal of challenge for optical correction. The threshold value for optical correction is dictated by lambda/20 (30 nm for NGST optics). Control of an adaptive optics array consisting of a large number of optical elements and smart material actuators is so complex that power distribution for activation and control of actuators must be done by other than hard-wired circuitry. The concept of microwave-driven smart actuators is envisioned as the best option to alleviate the complexity associated with hard-wiring. A microwave-driven actuator was studied to realize such a concept for future applications. Piezoelectric material was used as an actuator that shows dimensional change with high electric field. The actuators were coupled with microwave rectenna and tested to correlate the coupling effect of electromagnetic wave. In experiments, a 3x3 rectenna patch array generated more than 50 volts which is a threshold voltage for 30-nm displacement of a single piezoelectric material. Overall, the test results indicate that the microwave-driven actuator concept can be adopted for NGST applications.

  7. Improved Electrohydraulic Linear Actuators

    NASA Technical Reports Server (NTRS)

    Hamtil, James

    2004-01-01

    A product line of improved electrohydraulic linear actuators has been developed. These actuators are designed especially for use in actuating valves in rocket-engine test facilities. They are also adaptable to many industrial uses, such as steam turbines, process control valves, dampers, motion control, etc. The advantageous features of the improved electrohydraulic linear actuators are best described with respect to shortcomings of prior electrohydraulic linear actuators that the improved ones are intended to supplant. The flow of hydraulic fluid to the two ports of the actuator cylinder is controlled by a servo valve that is controlled by a signal from a servo amplifier that, in turn, receives an analog position-command signal (a current having a value between 4 and 20 mA) from a supervisory control system of the facility. As the position command changes, the servo valve shifts, causing a greater flow of hydraulic fluid to one side of the cylinder and thereby causing the actuator piston to move to extend or retract a piston rod from the actuator body. A linear variable differential transformer (LVDT) directly linked to the piston provides a position-feedback signal, which is compared with the position-command signal in the servo amplifier. When the position-feedback and position-command signals match, the servo valve moves to its null position, in which it holds the actuator piston at a steady position.

  8. Comprehensive piezoceramic actuator review

    NASA Astrophysics Data System (ADS)

    Taylor, Chris J.; Washington, Gregory N.

    2002-07-01

    Piezoceramic actuation has become an area of increased interest in the past ten years. Having been used for many years as sensors in such applications as pressure transducers and smoke detectors, piezoceramics are now being used as prime movers in fuel injectors and valve lifters. In an effort to aid the engineering community, this paper will conduct a comprehensive review of several piezoceramic actuators. Classical design parameters will be derived for each actuator such as blocked force and free stroke. In addition, more esoteric entities such as mechanical efficiency and energy density will also be derived. The result will be design metrics of popular piezoceramic actuators containing vital design equations, validated with empirical data. Of the many different configurations of piezoceramic actuators, this paper will investigate the bimorph and unimorph bender. These actuator types are finding increased use in semi-active structural damping, energy harvesting and vibration control. The work in this paper will show experimental verification of various actuator types as well as theoretical derivations. In addition to unimorphs, bimorphs and stack actuators a novel type of unimorph bender, the THUNDER actuator (developed and licensed by NASA) will be included in the review.

  9. Thermocapillary effects on steadily evaporating contact line: A perturbative local analysis

    NASA Astrophysics Data System (ADS)

    Benselama, Adel M.; Harmand, Souad; Sefiane, Khellil

    2012-07-01

    The evaporation process taking place close to the three-phase contact line is considered and studied theoretically using a linear stability analysis approach. A domain perturbation method, taking into consideration thermocapillary effects and surface forces, is used to develop the higher-order solution in terms of series expansion about lubrication condition. A closed-form solution is found for the film thickness, the pressure jump across the liquid-vapor interface and the evaporative flux in the vicinity of the contact line. The key novelty in this work is considering thermocapillary instability for very thin films (˜10 nm) accounting for surface forces. For (quasi-) flat-very-thin films, the analysis shows no instability, which is consistent with general knowledge in this field. However, for films extending from a meniscus, as encountered in wetting configurations, it is found that the competition between London-van der Waals, capillary, and thermocapillary forces leads to contact line instability and behavior revealed for the first time. According to the sign of the Marangoni number, the instability can enhance (if positive) or reduce (if negative) the evaporation rate by widening out or narrowing, respectively, the contact region and, in both cases, significantly modifies the vortical structure of the flow. If the Marangoni number is positive, the film interface close to the contact line can exhibit corrugations. The occurrence of these latter is discriminated, in addition to the Marangoni number, by the value of three operating parameters, namely the film aspect ratio, the ratio of the film diffusive thermal resistance to evaporative heat transfer resistance, and the ratio of capillary pressure to disjoining pressure. By modifying the physical and operating parameters, it is also shown that the system can be optimized in order to suppress these corrugations.

  10. Modelling thermocapillary migration of a microfluidic droplet on a solid surface

    NASA Astrophysics Data System (ADS)

    Liu, Haihu; Zhang, Yonghao

    2015-01-01

    A multiphase lattice Boltzmann model is developed to simulate immiscible thermocapillary flows with the presence of fluid-surface interactions. In this model, interfacial tension force and Marangoni stress are included by introducing a body force term based on the concept of continuum surface force, and phase segregation is achieved using the recolouring algorithm proposed by Latva-Kokko and Rothman. At a solid surface, fluid-surface interactions are modelled by a partial wetting boundary condition that uses a geometric formulation to specify the contact angle, and a colour-conserving boundary closure scheme to improve the numerical accuracy and suppress spurious velocities at the contact line. An additional convection-diffusion equation is solved by the passive scalar approach to obtain the temperature field, which is coupled to the hydrodynamic equations through an equation of state. This model is first validated by simulations of static contact angle and dynamic capillary intrusion process when a constant interfacial tension is considered. It is then used to simulate the thermocapillary migration of a microfluidic droplet on a horizontal solid surface subject to a uniform temperature gradient. We for the first time demonstrate numerically that the droplet motion undergoes two different states depending on the surface wettability: the droplet migrates towards the cooler regions on hydrophilic surfaces but reverses on hydrophobic surfaces. Decreasing the viscosity ratio can enhance the intensity of thermocapillary vortices, leading to an increase in migration velocity. The contact angle hysteresis, i.e., the difference between the advancing and receding contact angles, is always positive regardless of the contact angle and viscosity ratio. The contact angle hysteresis and the migration velocity both first decrease and then increase with the contact angle, and their minimum values occur at the contact angle of 90 degrees.

  11. Thermocapillary migration of an isolated droplet and interaction of two droplets in zero gravity

    NASA Astrophysics Data System (ADS)

    Alhendal, Yousuf; Turan, Ali; Kalendar, Abdulrahim

    2016-09-01

    Fluid transfer within a stagnant liquid presents a significant challenge in zero-gravity conditions due to the lack of buoyancy effects. This challenge can be overcome by the utilisation of the Marangoni effect, or more specifically thermocapillary migration. The thermocapillary migration of droplets is driven by temperature gradients within the multiphase system which bring about a surface tension gradient driving the flow from the cold to the hot region. The migration speed of the droplet is significantly impacted by the heat transfer both inside the droplet and in its surroundings. This paper presents the analysis of drop movement in a stagnant liquid using computational fluid dynamics (CFD). The commercial software package Ansys-Fluent v.13 [1] is used to solve the governing continuum conservation equations for two-phase flow using the Volume of Fluid (VOF) method to track the liquid/liquid interface in 2D domain. This approach has been shown to be a valuable tool for studying the phenomena of liquid-liquid interaction. A strong agreement has been found with experimental observations conducted in microgravity. The inherent velocity of drops has been found to decrease with increasing Marangoni number. This finding is in line with the previous space experiments of Xie et al. (2005) [2] and in contrast to the numerical results of Ma (1999) [3] using the same liquid for the droplet and the host liquid. Data obtained in the present numerical study has been used to derive an expression predicting the scaled droplet velocity as a function of Marangoni number. A numerical study of the interaction of two spherical droplets undergoing thermocapillary migration in microgravity is also presented. The temperature thrust from the leading droplet towards the trailing droplet was found to disturb its migration velocity, but the trailing droplet was found to have no influence on the migration of the leading droplet.

  12. Experimental research on thermocapillary migration of drops by using digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Zhang, Shuoting; Duan, Li; Kang, Qi

    2016-07-01

    The thermocapillary migration of drops in a rectangular cell, with a heated top wall and a cooled bottom wall, was investigated experimentally on the ground. The rectangular test cell was 70 mm high, with a horizontal cross section of 40 mm × 40 mm. In the present experiment, 30 cSt silicon oil was used as the continuous phase, and a water-ethanol mixture was used as the drop phase, respectively. The drops ranged in size from 1.87 to 6.94 mm in diameter and were injected into the continuous phase, where the temperature gradients ranged from 0.193 to 0.484 °C mm-1. In order to measure the temperature distribution of the liquid, a digital holographic interferometry was used, which was non-contact, full-field, and in-situ. The holograms were recorded, and then the corresponding wrapped phase distributions images were numerically reconstructed. The temperature distribution of the continuous phase liquid in the cell had been obtained following the unwrapping. Also, through an algebra layer analysis, the temperature distribution around the drop during the thermocapillary migration was obtained. As a result, the drop was colder than the continuous phase liquid, and a thermal wake existed behind the drop. The influence of convective transport on the drop migration was also investigated for the Marangoni number in the range of 7-174. With the increasing of the Marangoni number, the dimensionless interface temperature difference decreased, which was caused by the convective transport enhanced results in the drop thermocapillary migration velocity becoming decreased. The data were compared with previous space experiments to explain the phenomena of the drop migration. Finally, with the increasing Marangoni numbers, the length of the thermal wake region increased, and the thermal wake region became extended.

  13. Linear-stability theory of thermocapillary convection in a model of float-zone crystal growth

    NASA Technical Reports Server (NTRS)

    Neitzel, G. P.; Chang, K.-T.; Jankowski, D. F.; Mittelmann, H. D.

    1992-01-01

    Linear-stability theory has been applied to a basic state of thermocapillary convection in a model half-zone to determine values of the Marangoni number above which instability is guaranteed. The basic state must be determined numerically since the half-zone is of finite, O(1) aspect ratio with two-dimensional flow and temperature fields. This, in turn, means that the governing equations for disturbance quantities will remain partial differential equations. The disturbance equations are treated by a staggered-grid discretization scheme. Results are presented for a variety of parameters of interest in the problem, including both terrestrial and microgravity cases.

  14. Steady thermocapillary flows in a two-layer liquid system with flat interfaces

    NASA Astrophysics Data System (ADS)

    del Arco, E. Crespo; Extremet, G. P.; Sani, R. L.

    1993-01-01

    Steady thermocapillary convection is studied in a system of two flat, superposed layers of immiscible liquids with two fluid-fluid interfaces in a configuration similar to that of an encapsulated crystal growth. The layers are bounded on the sides by isothermal vertical walls maintained at different constant temperatures. A simplified analytical solution is used initially to explore different potential flow regimes in a parameter space of large dimensionality. Then the coupled Navier-Stokes and heat transfer equations are solved numerically with a finite element method via FIDAP, in a rectangular cavity filled with two immiscible liquids in the absence of a gravitational field.

  15. Ground-Based Studies of Thermocapillary Flows in Levitated Laser-Heated Drops

    NASA Technical Reports Server (NTRS)

    Sadhai, S. S.; Zhao, H.; Trinh, Eugene H.

    1999-01-01

    The fluid flow phenomena are studied together with the thermal effects on drops levitated in acoustic and/or electrostatic fields. While the study is concerned primarily with particles in strong acoustic fields to overcome gravity, some results for microgravity have also been obtained. The study also includes an analysis and an experimental investigation of the thermocapillary flow in a spot-heated drop. Results of a Glovebox experiment on the MSL-1 mission, one of whose objectives was to evaluate the acoustic stability criteria in microgravity, are also discussed.

  16. Thermocapillary motion of bubbles inside drops. [in free fall environment with axisymmetric surface temperature field

    NASA Technical Reports Server (NTRS)

    Shankar, N.; Cole, R.; Subramanian, R. S.

    1982-01-01

    A quasi-static analysis is performed for the thermocapillary motion of a bubble located inside a drop in free fall, with arbitrary axisymmetric temperature fields prescribed on the drop surface. It is shown that in the case of an axially symmetric temperature field, the bubble moves along the axis of symmetry toward the nearest warm pole. The bubble velocity as well as the velocity and temperature fields in the drop can be predicted on the basis of the quasi-static assumptions. An approximation is presented which adequately describes bubble migration velocities in the case where the ratio of the bubble radius to the drop radius is relatively small.

  17. Thermocapillary Migration of Liquid Droplets Induced by a Unidirectional Thermal Gradient.

    PubMed

    Dai, Qingwen; Khonsari, M M; Shen, Cong; Huang, Wei; Wang, Xiaolei

    2016-08-01

    A liquid droplet placed on a nonuniformly heated solid surface will migrate from a high-temperature region to a low-temperature region. This study reports the development of a theoretical model and experimental investigation on the migration behavior of paraffin oil droplets induced by the unidirectional thermal gradient. Thin-film lubrication theory is employed to determine the migration velocity of droplets, and temperature dependence of viscosity is taken into account. Comparisons between experimental and numerical results are presented. An effective approach for estimating the thermocapillary migration velocity of droplets on lubrication is proposed. PMID:27400229

  18. Actuating Fibers: Design and Applications.

    PubMed

    Stoychev, Georgi V; Ionov, Leonid

    2016-09-21

    Actuators are devices capable of moving or controlling objects and systems by applying mechanical force on them. Among all kinds of actuators with different shapes, fibrous ones deserve particular attention. In spite of their apparent simplicity, actuating fibers allow for very complex actuation behavior. This review discusses different approaches for the design of actuating fibers, and their advantages and disadvantages. We also discuss the prospects for the design of fibers with advanced architectures and complex actuation behavior. PMID:27571481

  19. Carbon nanotube array actuators

    NASA Astrophysics Data System (ADS)

    Geier, S.; Mahrholz, T.; Wierach, P.; Sinapius, M.

    2013-09-01

    Experimental investigations of highly vertically aligned carbon nanotubes (CNTs), also known as CNT-arrays, are the main focus of this paper. The free strain as result of an active material behavior is analyzed via a novel experimental setup. Previous test experiences of papers made of randomly oriented CNTs, also called Bucky-papers, reveal comparably low free strain. The anisotropy of aligned CNTs promises better performance. Via synthesis techniques like chemical vapor deposition (CVD) or plasma enhanced CVD (PECVD), highly aligned arrays of multi-walled carbon nanotubes (MWCNTs) are synthesized. Two different types of CNT-arrays are analyzed, morphologically first, and optically tested for their active characteristics afterwards. One type of the analyzed arrays features tube lengths of 750-2000 μm with a large variety of diameters between 20 and 50 nm and a wave-like CNT-shape. The second type features a maximum, almost uniform, length of 12 μm and a constant diameter of 50 nm. Different CNT-lengths and array types are tested due to their active behavior. As result of the presented tests, it is reported that the quality of orientation is the most decisive property for excellent active behavior. Due to their alignment, CNT-arrays feature the opportunity to clarify the actuation mechanism of architectures made of CNTs.

  20. Lock for hydraulic actuators

    NASA Technical Reports Server (NTRS)

    Wood, R. H.

    1981-01-01

    Two clamps hold rod in fixed extension from cylinder even when power is off, converting actuator into stiff structural member. Locked actuator is useful as mechanical support or linkage or as fail-safe device in case of loss of hydraulic pressure. Potential applications include manufacturing processes and specialized handling and holding devices.

  1. Pulley With Active Antifriction Actuator And Control

    NASA Technical Reports Server (NTRS)

    Ih, Che-Hang C.; Vivian, Howard C.

    1994-01-01

    Torque actuator and associated control system minimizes effective friction of rotary bearing. Motor exerts compensating torque in response to feedback from external optical sensor. Compensation torque nearly cancels frictional torque of shaft bearings. Also useful in reducing bearing friction in gyro-scopes, galvanometers, torquemeters, accelerometers, earth-motion detectors, and balances.

  2. SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)

    EPA Science Inventory

    Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...

  3. Fast electrochemical actuator

    NASA Astrophysics Data System (ADS)

    Uvarov, I. V.; Postnikov, A. V.; Svetovoy, V. B.

    2016-03-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics.

  4. Ultrathin Alvarez lens system actuated by artificial muscles.

    PubMed

    Petsch, S; Grewe, A; Köbele, L; Sinzinger, S; Zappe, H

    2016-04-01

    A key feature of Alvarez lenses is that they may be tuned in focal length using lateral rather than axial translation, thus reducing the overall length of a focus-tunable optical system. Nevertheless the bulk of classical microsystems actuators limits further miniaturization. We present here a new, ultrathin focus-tunable Alvarez lens fabricated using molding techniques and actuated using liquid crystal elastomer (LCE) artificial muscle actuators. The large deformation generated by the LCE actuators permits the integration of the actuators in-plane with the mechanical and optical system and thus reduces the device thickness to only 1.6 mm. Movement of the Alvarez lens pair of 178 μm results in a focal length change of 3.3 mm, based on an initial focal length of 28.4 mm. This design is of considerable interest for realization of ultraflat focus-tunable and zoom systems. PMID:27139677

  5. Effect of slippage on the thermocapillary migration of a small droplet

    PubMed Central

    Nguyen, Huy-Bich; Chen, Jyh-Chen

    2012-01-01

    We conduct a numerical investigation and analytical analysis of the effect of slippage on the thermocapillary migration of a small liquid droplet on a horizontal solid surface. The finite element method is employed to solve the Navier-Stokes equations coupled with the energy equation. The effect of the slip behavior on the droplet migration is determined by using the Navier slip condition at the solid-liquid boundary. The results indicate that the dynamic contact angles and the contact angle hysteresis of the droplet are strictly correlated to the slip coefficient. The enhancement of the slip length leads to an increase in the droplet migration velocity due to the enhancement of the net momentum of thermocapillary convection vortices inside the droplet. A larger contact angle leads to an increase in the migration velocity which in turn enlarges the rate of the droplet migration velocity to the slip length. There is good agreement between the analytical and the numerical results when the dynamic contact angle utilizes in the analytical approach obtained from the results of the numerical computation, and the static contact angle is smaller than 50°. PMID:22662076

  6. Thermocapillary Levitation of Nanoliter-Volume Droplets and Extension to Two-Phase Systems

    NASA Astrophysics Data System (ADS)

    Black, James; Neitzel, G. Paul

    2012-11-01

    The development of a novel method of droplet levitation to be employed in lab-on-a-chip (LOC) applications relies upon the mechanism of thermocapillary convection (due to the temperature dependence of surface tension) to drive a layer of lubricating gas between droplet and substrate. The fact that most droplets of interest in LOC applications are aqueous in nature, coupled with the fact that success in effecting thermocapillary transport in aqueous solutions has been limited, has led to the development of a technique for the controlled encapsulation of nanoliter-volume water droplets within a shell of inert silicone oil. Previously, microliter-volume single-phase silicone-oil droplets have been levitated. This work aims to extend this technique to nanoliter-volume single- and compound-phase oil and water droplets as well as ascertain how the fluid-fluid interface affects the internal convective currents driven by the surface flow in compound-phase systems. Supported by NASA and NSF.

  7. Wall effects on the thermocapillary migration of single gas bubbles in stagnant liquids

    NASA Astrophysics Data System (ADS)

    Alhendal, Yousuf; Turan, Ali; Kalendar, Abdulrahim

    2016-09-01

    In this paper, the governing continuum conservation equations for two-phase flow are solved using the commercial software package (Ansys-Fluent 1) to investigate the thermocapillary movement of a single bubble in stagnant liquid under zero-gravity condition. The current results show that different temperature gradients lead to different bubble migration velocities, and bubble migration velocity varies linearly with the temperature gradient for the given conditions. Furthermore the inside column diameter was found to have a significant influence on the thermocapillary migration of the bubble. Calculation were made in columns with inside diameters Dr 15, 20, 30, 40, 60, 80, 100 and 120 mm. Reduction on bubble migration velocity only occurred when the ratio of the bubble diameter to the column diameter, db/Dr, is greater than 0.267 due to column wall effect. On the other hand, the influence of the column diameter on the rise velocity is negligible when db/Dr is equal to or smaller than 0.267. No bubble shape deformation were observed and the bubble were spherical in shape for all column width. Present investigation of the shape and trajectory of bubble motion driven by surface tension-gradient in different column width is a new area of study and aims to support research into space applications which can help to determine the new migration time and speed.

  8. Influence of Two-Phase Thermocapillary Flow on Cryogenic Liquid Retention in Microscopic Pores

    NASA Technical Reports Server (NTRS)

    Schmidt, G. R.; Nadarajah, A.; Chung, T. J.; Karr, G. R.

    1994-01-01

    Previous experiments indicate that the bubble point pressure of spacecraft liquid hydrogen acquisition devices is reduced substantially when the ullage is pressurized with heated hydrogen vapor. The objective is to determine whether the two-phase thermocapillary convection arising from thermodynamic non-equilibrium along the porous surfaces of such devices could lead to this observed degradation in retention performance. We also examine why retention capability appears to be unaffected by pressurization with heated helium or direct heating through the porous structure. Computational assessments based on coupled solution of the flowfield and liquid free surface indicate that for highly wetting fluids in small pores, dynamic pressure and vapor recoil dictate surface morphology and drive meniscus deformation. With superheating, the two terms exert the same influence on curvature and promote mechanical equilibrium, but with subcooling, the pressure distribution produces a suction about the pore center-line that degrades retention. This result points to thermocapillary-induced deformation arising from condensation as the cause for retention loss. It also indicates that increasing the level of non-equilibrium by reducing accommodation coefficient restricts deformation and explains why retention failure does not occur with direct screen heating or helium pressurization.

  9. Electrothermal linear actuator

    NASA Technical Reports Server (NTRS)

    Derr, L. J.; Tobias, R. A.

    1969-01-01

    Converting electric power into powerful linear thrust without generation of magnetic fields is accomplished with an electrothermal linear actuator. When treated by an energized filament, a stack of bimetallic washers expands and drives the end of the shaft upward.

  10. Rotary series elastic actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2012-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  11. Rotary Series Elastic Actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2013-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  12. Magnetically Actuated Seal

    NASA Technical Reports Server (NTRS)

    Pinera, Alex

    2013-01-01

    This invention is a magnetically actuated seal in which either a single electromagnet, or multiple electromagnets, are used to control the seal's position. This system can either be an open/ close type of system or an actively controlled system.

  13. Muscle Motion Solenoid Actuator

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  14. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III

    1994-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The linear proof mass actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (mass, upper housing, lower housing, and center support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operating testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  15. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, S. E., III

    1995-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The Linear Proof Mass Actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (Mass, Upper Housing, Lower Housing, and Center Support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operational testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  16. Tendon Driven Finger Actuation System

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); Permenter, Frank Noble (Inventor); Mehling, Joshua S. (Inventor)

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  17. Inertial Linear Actuators

    NASA Technical Reports Server (NTRS)

    Laughlin, Darren

    1995-01-01

    Inertial linear actuators developed to suppress residual accelerations of nominally stationary or steadily moving platforms. Function like long-stroke version of voice coil in conventional loudspeaker, with superimposed linear variable-differential transformer. Basic concept also applicable to suppression of vibrations of terrestrial platforms. For example, laboratory table equipped with such actuators plus suitable vibration sensors and control circuits made to vibrate much less in presence of seismic, vehicular, and other environmental vibrational disturbances.

  18. Electrostatic Linear Actuator

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.; Curry, Kenneth C.

    1990-01-01

    Electrically charged helices attract or repel each other. Proposed electrostatic linear actuator made with intertwined dual helices, which holds charge-bearing surfaces. Dual-helix configuration provides relatively large unbroken facing charged surfaces (relatively large electrostatic force) within small volume. Inner helix slides axially in outer helix in response to voltages applied to conductors. Spiral form also makes components more rigid. Actuator conceived to have few moving parts and to be operable after long intervals of inactivity.

  19. Combustion powered linear actuator

    DOEpatents

    Fischer, Gary J.

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  20. Control Software for Piezo Stepping Actuators

    NASA Technical Reports Server (NTRS)

    Shields, Joel F.

    2013-01-01

    A control system has been developed for the Space Interferometer Mission (SIM) piezo stepping actuator. Piezo stepping actuators are novel because they offer extreme dynamic range (centimeter stroke with nanometer resolution) with power, thermal, mass, and volume advantages over existing motorized actuation technology. These advantages come with the added benefit of greatly reduced complexity in the support electronics. The piezo stepping actuator consists of three fully redundant sets of piezoelectric transducers (PZTs), two sets of brake PZTs, and one set of extension PZTs. These PZTs are used to grasp and move a runner attached to the optic to be moved. By proper cycling of the two brake and extension PZTs, both forward and backward moves of the runner can be achieved. Each brake can be configured for either a power-on or power-off state. For SIM, the brakes and gate of the mechanism are configured in such a manner that, at the end of the step, the actuator is in a parked or power-off state. The control software uses asynchronous sampling of an optical encoder to monitor the position of the runner. These samples are timed to coincide with the end of the previous move, which may consist of a variable number of steps. This sampling technique linearizes the device by avoiding input saturation of the actuator and makes latencies of the plant vanish. The software also estimates, in real time, the scale factor of the device and a disturbance caused by cycling of the brakes. These estimates are used to actively cancel the brake disturbance. The control system also includes feedback and feedforward elements that regulate the position of the runner to a given reference position. Convergence time for smalland medium-sized reference positions (less than 200 microns) to within 10 nanometers can be achieved in under 10 seconds. Convergence times for large moves (greater than 1 millimeter) are limited by the step rate.

  1. Graphene-nanoplatelet-based photomechanical actuators

    NASA Astrophysics Data System (ADS)

    Loomis, James; King, Ben; Burkhead, Tom; Xu, Peng; Bessler, Nathan; Terentjev, Eugene; Panchapakesan, Balaji

    2012-02-01

    This paper reports large light-induced reversible and elastic responses of graphene nanoplatelet (GNP) polymer composites. Homogeneous mixtures of GNP/polydimethylsiloxane (PDMS) composites (0.1-5 wt%) were prepared and their infrared (IR) mechanical responses studied with increasing pre-strains. Using IR illumination, a photomechanically induced change in stress of four orders of magnitude as compared to pristine PDMS polymer was measured. The actuation responses of the graphene polymer composites depended on the applied pre-strains. At low levels of pre-strain (3-9%) the actuators showed reversible expansion while at high levels (15-40%) the actuators exhibited reversible contraction. The GNP/PDMS composites exhibited higher actuation stresses compared to other forms of nanostructured carbon/PDMS composites, including carbon nanotubes (CNTs), for the same fabrication method. An extraordinary optical-to-mechanical energy conversion factor (ηM) of 7-9 MPa W-1 for GNP-based polymer composite actuators is reported.

  2. Bio inspired Magnet-polymer (Magpol) actuators

    NASA Astrophysics Data System (ADS)

    Ahmed, Anansa S.; Ramanujan, R. V.

    2014-03-01

    Magnet filler-polymer matrix composites (Magpol) are an emerging class of morphing materials. Magpol composites have an interesting ability to undergo large strains in response to an external magnetic field. The potential to develop Magpol as large strain actuators is due to the ability to incorporate large particle loading into the composite and also due to the increased interaction area at the interface of the nanoparticles and the composite. Mn-Zn ferrite fillers with different saturation magnetizations (Ms) were synthesized. Magpol composites consisting of magnetic ferrite filler particles in an Poly ethylene vinyl acetate (EVA) matrix were prepared. The deformation characteristics of the actuator were determined. The morphing ability of the Magpol composite was studied under different magnetic fields and also with different filler loadings. All films exhibited large strain under the applied magnetic field. The maximum strain of the composite showed an exponential dependence on the Ms. The work output of Magpol was also calculated using the work loop method. Work densities of upto 1 kJ/m3 were obtained which can be compared to polypyrrole actuators, but with almost double the typical strain. Applications of Magpol can include artificial muscles, drug delivery, adaptive optics and self healing structures. Advantages of Magpol include remote contactless actuation, high actuation strain and strain rate and quick response.

  3. Advances in shape-memory polymer actuation

    NASA Astrophysics Data System (ADS)

    Leng, Jinsong; Liu, Yanju; Lan, Xin

    2009-03-01

    Shape memory polymer (SMP) is a promising smart material, which is able to perform a large deformation upon applying an external stimulus, such as heat, light and moisture, etc. In recent years, many investigations have been advanced in thermo-responsive SMP actuation, and several novel actuations have been applied in SMP. In this paper, the mechanism and demonstration of three types of SMP actuations (infrared laser, physical swelling effect and electricity) are presented. These novel actuation approaches may help SMP to fully reach its potential application. Firstly, for the infrared laser-activated SMP, it is concerned about the drive of SMP by infrared light. The infrared laser, transmitted through the optical fiber embedded in the SMP matrix, was chosen to drive the SMP. The working frequency of infrared laser was installed in 3-4μm. Moreover, this paper presents a study on the effects of solution on the glass transition temperature (Tg). It shows that the hydrogen bonding of SMP was aroused by the absorbed solution that significantly reduces transition temperature of polymer. In this way, the shape memory effect (SME) can undergo solution-driven shape recovery. Finally, the actuation of two types of electro-active SMP composites filled with electrically conductive powders (carbon black, nickel powers) have been carried out, and the SMP composite can be driven by applying a relatively low voltage.

  4. Waveguiding Actuators Based on Photothermally Responsive Hydrogels

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Hauser, Adam; Bende, Nakul; Kuzyk, Mark; Hayward, Ryan

    A simple means to achieve rapid and highly reversible photo-responsiveness in a hydrogel is to combine a thermally-responsive gel such as poly(N-isopropyl acrylamide) (PNIPAM), with the photothermal effect of gold nanoparticles. Relying on such composite gels, we fabricate micro-scale bilayer photoactuators by photolithographic patterning, and demonstrate their controlled bending/unbending behavior in response to visible light. In addition to actuation by flood exposure, 532 nm laser light can be waveguided through a plastic optical fiber to direct it into the photoactuator, providing the possibility for remotely controllable actuators that do not require line-of-sight access. The actuators show large magnitude responses within time-scales of ~1 s, consistent with the small dimensions of the actuators, but also exhibit smaller-scale responses over much longer times, suggesting the possibility of slow internal relaxations within the network. Based on our study on this bilayer system, we further explore fabrication methods for cylindrical actuators that are able to bend in arbitrary directions.

  5. Actuation of polypyrrole nanowires

    NASA Astrophysics Data System (ADS)

    Lee, Alexander S.; Peteu, Serban F.; Ly, James V.; Requicha, Aristides A. G.; Thompson, Mark E.; Zhou, Chongwu

    2008-04-01

    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 µm, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.

  6. Actuation of polypyrrole nanowires.

    PubMed

    Lee, Alexander S; Peteu, Serban F; Ly, James V; Requicha, Aristides A G; Thompson, Mark E; Zhou, Chongwu

    2008-04-23

    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 µm, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.

  7. Hybrid electromechanical actuator and actuation system

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Xu, Tian-Bing (Inventor)

    2008-01-01

    A hybrid electromechanical actuator has two different types of electromechanical elements, one that expands in a transverse direction when electric power is applied thereto and one that contracts in a transverse direction when electric power is applied thereto. The two electromechanical elements are (i) disposed in relation to one another such that the transverse directions thereof are parallel to one another, and (ii) mechanically coupled to one another at least at two opposing edges thereof. Electric power is applied simultaneously to the elements.

  8. Development of Microfabricated Magnetic Actuators for Removing Cellular Occlusion

    PubMed Central

    Lee, Selene A.; Lee, Hyowon; Pinney, James R; Khialeeva, Elvira; Bergsneider, Marvin; Judy, Jack W.

    2011-01-01

    Here we report on the development of torsional magnetic microactuators for displacing biological materials in implantable catheters. Static and dynamic behaviors of the devices were characterized in air and in fluid using optical experimental methods. The devices were capable of achieving large deflections (>60°) and had resonant frequencies that ranged from 70 Hz to 1.5 kHz in fluid. The effect of long-term actuation (>2.5 · 108 cycles) was quantified using resonant shift as the metric (Δf < 2%). Cell-clearing capabilities of the devices were evaluated by examining the effect of actuation on a layer of aggressively growing adherent cells. On average, actuated microdevices removed 37.4% of the adherent cell layer grown over the actuator surface. The effect of actuation time, deflection angle, and beam geometry were evaluated. The experimental results indicate that physical removal of adherent cells at the microscale is feasible using magnetic microactuation. PMID:21886945

  9. Photostrictive actuators for photonic control of shallow spherical shells

    NASA Astrophysics Data System (ADS)

    Shih, Hui-Ru; Tzou, Horn-Sen

    2007-10-01

    Photostrictive materials, exhibiting light-induced strain, are of interest for the future generation of wireless remote control photo-actuators. Photostrictive actuators are expected to be used as the driving component in optically controlled flexible structures. In this paper, the photonic control of flexible spherical shells using discrete photostrictive actuators is investigated. This paper presents a coupled opto-piezothermoelastic shell theory that incorporates photovoltaic, pyroelectric and piezoelectric effects, and has the capability to predict the response of a spherical shell driven by the photostrictive actuators. In this study, the effects of actuator location as well as membrane and bending components on the control action have been analyzed. The results obtained indicate that the control forces are mode and location dependent. Analysis also shows that the membrane control action is much more significant than the bending control action.

  10. Flextensional Single Crystal Piezoelectric Actuators for Membrane Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Sahul, Raffi; Hackenberger, Wesley S.

    2006-01-01

    Large aperture and light weight space telescopes requires adaptive optics with deformable mirrors capable of large amplitude aberration corrections at a broad temperature range for space applications including NASA missions such as SAFIR, TPF, Con-X, etc. The single crystal piezoelectric actuators produced at TRS offer large stroke, low hysteresis, and an excellent cryogenic strain response. Specifically, the recently developed low profile, low voltage flextensional single crystal piezoelectric actuators with dimensions of 18 x 5 x 1 mm showed stroke larger than 95 microns under 300 V. Furthermore, flextensional actuator retained approx. 40-50% of its room temperature strain at liquid Nitrogen environment. In this paper, ATILA FEM design of flextensional actuators, actuator fabrication, and characterization results will be presented for the future work on membrane deformable mirror.

  11. Coarsening Dynamics of Inclusions and Thermocapillary Phenomena in Smectic Liquid Crystal Bubbles

    NASA Astrophysics Data System (ADS)

    Park, Cheol; Maclennan, Joseph; Glaser, Matthew; Clark, Noel; Trittel, Torsten; Eremin, Alexey; Stannarius, Ralf; Tin, Padetha; Hall, Nancy

    The Observation and Analysis of Smectic Islands in Space (OASIS) project comprises a series of experiments that probe interfacial and hydrodynamic behavior of thin spherical-bubbles of smectic liquid crystal in microgravity. Smectic films are the thinnest known stable condensed phase structures, making them ideal for studies of two-dimensional (2D) coarsening dynamics and thermocapillary phenomena in microgravity. The OASIS flight hardware was launched on SpaceX-6 in April 2015 and experiments were carried out on the International Space Station using four different smectic A and C liquid crystal materials in separate sample chambers. We will describe the behavior of collective island dynamics on the bubbles, including temperature gradient-induced themomigration, and the diffusion and coalescence-driven coarsening dynamics of island emulsions in microgravity. This work was supported by NASA Grant No. NNX-13AQ81G, and NSF MRSEC Grants No. DMR-0820579 and DMR-1420736.

  12. Ground Based Studies of Thermocapillary Flows in Levitated Drops: Analytical Part

    NASA Technical Reports Server (NTRS)

    Sadhal, S. S.; Trinh, Eugene H.

    1997-01-01

    The main objectives of the analytical part of this investigation are to study the fluid flow phenomena together with the thermal effects on drops levitated in an acoustic field. To a large extent, experimentation on ground requires a strong acoustic field that has a significant interference with other thermal-fluid effects. While most of the work has been directed towards particles in strong acoustic fields to overcome gravity, some results for microgravity have been obtained. One of the objectives was to obtain the thermocapillary flow in a spot-heated drop, and set up a model for the prediction of thermophysical properties. In addition, for acoustically levitated particles, a clear understanding of the underlying fluid mechanics was required. Also, the interaction of acoustics with steady and pulsating thermal stimuli was required to be analyzed. The experimental part of the work was funded through JPL, and has been reported separately.

  13. Interaction of three-dimensional hydrodynamic and thermocapillary instabilities in film flows.

    PubMed

    Scheid, Benoit; Kalliadasis, Serafim; Ruyer-Quil, Christian; Colinet, Pierre

    2008-12-01

    We study three-dimensional wave patterns on the surface of a film flowing down a uniformly heated wall. Our starting point is a model of four evolution equations for the film thickness h , the interfacial temperature theta , and the streamwise and spanwise flow rates, q and p , respectively, obtained by combining a gradient expansion with a weighted residual projection. This model is shown to be robust and accurate in describing the competition between hydrodynamic waves and thermocapillary Marangoni effects for a wide range of parameters. For small Reynolds numbers, i.e., in the "drag-gravity regime," we observe regularly spaced rivulets aligned with the flow and preventing the development of hydrodynamic waves. The wavelength of the developed rivulet structures is found to closely match the one of the most amplified mode predicted by linear theory. For larger Reynolds numbers, i.e., in the "drag-inertia regime," the situation is similar to the isothermal case and no rivulets are observed. Between these two regimes we observe a complex behavior for the hydrodynamic and thermocapillary modes with the presence of rivulets channeling quasi-two-dimensional waves of larger amplitude and phase speed than those observed in isothermal conditions, leading possibly to solitarylike waves. Two subregions are identified depending on the topology of the rivulet structures that can be either "ridgelike" or "groovelike." A regime map is further proposed that highlights the influence of the Reynolds and the Marangoni numbers on the rivulet structures. Interestingly, this map is found to be related to the variations of amplitude and speed of the two-dimensional solitary-wave solutions of the model. Finally, the heat transfer enhancement due to the increase of interfacial area in the presence of rivulet structures is shown to be significant. PMID:19256949

  14. Combined thermocapillary and buoyancy-driven convection within short-duration pulse-heated liquid droplets

    SciTech Connect

    Shen, F.; Khodadadi, J.M.

    1999-12-01

    Containerless processing of advanced materials and thermophysical property determination techniques for high-temperature materials almost exclusively manipulate spherical droplets. Spherical droplets are also observed in other industrial applications and naturally occurring phenomena, such as spray forming, fuel droplet vaporization, thermal storage technology, powder metallurgy, and environmental transport. In addition to the heat diffusion mode of thermal transport, the possible mechanisms of convection that may be encountered within droplets are surface-tension-driven and buoyancy-driven convection. Here, buoyancy-driven convection and its interaction with thermocapillary flow within short-duration-heated liquid droplets was studied computationally. A parametric study was conducted to investigate the effect of the Grashof number Gr and the surface-tension Reynolds number Re for fluids with different Prandtl numbers Pr having both negative and positive surface-tension temperature coefficients ({partial{underscore}derivative}{sigma}/{partial{underscore}derivative}T). Both the additive and impeding effects of buoyancy-driven convection on the thermocapillary flow was observed. The numerical analysis indicated that the buoyancy-driven convection has a weak effect on low-Pr fluids during the short-pulse-heating condition. For mid-Pr fluids the buoyancy effect is more prominent. In monitoring the history of the surface temperature rise, it was found that the buoyancy-driven convection has a weak effect for low-Pr fluids at the side and bottom observation points, whereas buoyancy-driven convection has substantial influence at the bottom observation point for mid-Pr fluids with a positive surface-tension temperature coefficient. It was concluded that the presence of additive or impeding modes depends not only on the sign of the surface-tension temperature coefficient of fluids as proposed by other researchers, but also on Pr, geometry, and boundary conditions. The

  15. Digital Actuator Technology

    SciTech Connect

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  16. Deformation of Fluid Column by Action of Axial Vibration and Some Aspects of High-Rate Thermocapillary Convection

    NASA Technical Reports Server (NTRS)

    Feonychev, Alexander I.; Kalachinskaya, Irina S.; Pokhilko, Victor I.

    1996-01-01

    The deformation of the fluid column by an action of a low-frequency vibration is considered. It is shown that behavior of the free fluid surface depends on the frequency of applied vibration and its amplitude. In the area of very low frequencies when fluid has time to comment on travel of bounding solid walls limiting column, the harmonical oscillations of free surface with given frequency are observed. With increase of vibration frequency the steady-state relief on free fluid surface is formed. If the amplitude of vibration is very small and the frequency corresponding to the first peak in the vibration spectrum on the Mir orbital station, the deformation of free surface tends to zero. Fluid flow induced thermocapillary effect on deformed free surface is more unstable as in the case of smooth cylindrical surface. It was shown that width of heating zone affects very essentially the flow pattern and transition to oscillatory regime of thermocapillary convection.

  17. High Response Twin-Objective Actuator with Radial Tilt Function for Blu-ray Disc Recorder

    NASA Astrophysics Data System (ADS)

    Kim, Seok Jung; Heor, Tae Youn; Kim, Tae Kyung; Ahn, Young Man; Chung, Chong Sam; Park, Soo Han

    2005-05-01

    We have developed Blu-ray Disc (BD) optical pick-up with a twin-objective lens actuator which is compatible with compact disc (CD) and digital versatile disc (DVD) in the high-speed BD-read only memory (ROM) and BD Recorder. In order to readout CD and DVD in BD Recorder, we adopted twin-objective lens actuator in consideration of optical utilization efficiency, optical performance and insurance of sufficient working distance (WD). This twin-objective lens actuator has two objectives in radial direction, one is for CD/DVD and the other is for BD. Through our careful investigation in design process, this actuator has extremely high AC sensitivities and good 2nd resonance characteristics in consideration of twin-objective actuator. Also, this actuator has linearity in wide focus range, that is to say, more than ± 1.0 mm and has radial tilt function which is tilt range more than 7 deg.

  18. Influence of the heating rate on the critical Marangoni number of oscillatory thermocapillary convection in the floating half zone

    NASA Astrophysics Data System (ADS)

    Li, Kai; Tang, ZeMei; Hu, WenRui

    2012-01-01

    In the present study, numerical simulations were conducted on thermocapillary convection in floating half zones of 5 cSt silicone oil of different scales in comparison with the experimental studies in the microgravity conditions. The effect of heating rate on the marginal instability boundaries is indicated as a possible explanation for the significant quantitative discrepancies between the experimental results in the terrestrial conditions and in the microgravity conditions.

  19. Torsional Ratcheting Actuating System

    SciTech Connect

    BARNES,STEPHEN MATTHEW; MILLER,SAMUEL L.; RODGERS,M. STEVEN; BITSIE,FERNANDO

    2000-01-24

    A new type of surface micromachined ratcheting actuation system has been developed at the Microelectronics Development Laboratory at Sandia National Laboratories. The actuator uses a torsional electrostatic comb drive that is coupled to an external ring gear through a ratcheting scheme. The actuator can be operated with a single square wave, has minimal rubbing surfaces, maximizes comb finger density, and can be used for open-loop position control. The prototypes function as intended with a minimum demonstrated operating voltage of 18V. The equations of motion are developed for the torsional electrostatic comb drive. The resonant frequency, voltage vs. displacement and force delivery characteristics are predicted and compared with the fabricated device's performance.

  20. Actuating critical care therapeutics.

    PubMed

    Stone, David J; Csete, Marie

    2016-10-01

    Viewing the intensive care unit (ICU) as a control system with inputs (patients) and outputs (outcomes), we focus on actuation (therapies) of the system and how to enhance our understanding of status of patients and their trajectory in the ICU. To incorporate the results of these analytics meaningfully, we feel that a reassessment of predictive scoring systems and of ways to optimally characterize and display the patient's "state space" to clinicians is important. Advances in sensing (diagnostics) and computation have not yet led to significantly better actuation, and so we focus on ways that data can be used to improve actuation in the ICU, in particular by following therapeutic burden along with disease severity. This article is meant to encourage discussion about how the critical care community can best deal with the data they see each day, and prepare for recommendations that will inevitably arise from application of major federal and state initiatives in big data analytics and precision medicine.

  1. Numerical investigation for the effect of the liquid film volume on thermocapillary flow direction in a thin circular liquid film

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Takagi, Y.; Okano, Y.; Dost, S.

    2013-08-01

    NASA Astronaut Dr. Pettit carried out a thermocapillary flow experiment onboard the International Space Station in 2003. In this experiment a thin water film containing milk powder was formed in a stainless-steel wire ring. Heating a section of the ring by a soldering iron induced in the water film a thermocapillary flow towards the heated section of the ring (outward flow: cold to hot). This flow was in the opposite direction of the usually observed thermocapillary flows (inward flow: hot to cold). To shed light on this interesting phenomenon observed in the space experiment, we have conducted a three-dimensional numerical simulation study. Simulation results showed that the film geometry of the water film is a key factor determining flow direction and flow strength. When the liquid film free surfaces are convex, i.e., the water film volume is larger than that when the free surfaces are flat, an outward flow develops in the film as observed in the space experiment. However, when the free surfaces are concave, the simulation predicts an inward flow.

  2. Heat Transfer of Thermocapillary Convection in a Two-Layered Fluid System Under the Influence of Magnetic Field

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Ludovisis, D.; Cha, S. S.

    2006-01-01

    Heat transfer of a two-layer fluid system has been of great importance in a variety of industrial applications. For example, the phenomena of immiscible fluids can be found in materials processing and heat exchangers. Typically in solidification from a melt, the convective motion is the dominant factor that affects the uniformity of material properties. In the layered flow, thermocapillary forces can come into an important play, which was first emphasized by a previous investigator in 1958. Under extraterrestrial environments without gravity, thermocapillary effects can be a more dominant factor, which alters material properties in processing. Control and optimization of heat transfer in an immiscible fluid system need complete understanding of the flow phenomena that can be induced by surface tension at a fluid interface. The present work is focused on understanding of the magnetic field effects on thermocapillary convection, in order to optimize material processing. That is, it involves the study of the complicated phenomena to alter the flow motion in crystal growth. In this effort, the Marangoni convection in a cavity with differentially heated sidewalls is investigated with and without the influence of a magnetic field. As a first step, numerical analyses are performed, by thoroughly investigating influences of all pertinent physical parameters. Experiments are then conducted, with preliminary results, for comparison with the numerical analyses.

  3. Numerical investigation of oscillatory thermocapillary flows under zero gravity in a circular liquid film with concave free surfaces

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Takagi, Y.; Okano, Y.; Dost, S.

    2016-03-01

    NASA astronaut Pettit has conducted thermocapillary flow experiments in water films suspended in a solid ring onboard the International Space Station (ISS) in 2003 and 2011. In one of these experiments, an oscillatory thermocapillary flow was observed. The developed flow broke its symmetry along the centerline of the film. To the best of our knowledge, there are no studies on such oscillatory thermocapillary flows in thin films, and the flow-mechanism giving rise to such oscillatory flows is also not well understood. In order to shed light on the subject, we have carried out a numerical simulation study. The simulation results have shown that the water film geometry (film surface shape; being concave) is an important parameter and give rise to three oscillatory flow structures in the film, namely, a hydrothermal wave developing near the heated section, a symmetric oscillatory flow due to temperature variations, and a symmetry breaking flow due to the hydrodynamic instability along the free boundary layer (mixing layer) and the development of the hydrothermal waves. Simulation results show that the symmetry-breaking phenomenon observed in the thin film experiment on the ISS can be explained by the hydrodynamic instability and the development of hydrothermal waves.

  4. Nanoscale Optomechanical Actuators for Controlling Mechanotransduction in Living Cells

    PubMed Central

    Liu, Zheng; Liu, Yang; Chang, Yuan; Seyf, Hamid Reza; Henry, Asegun; Mattheyses, Alexa L.; Yehl, Kevin; Zhang, Yun; Huang, Zhuangqun; Salaita, Khalid

    2015-01-01

    Herein we develop an approach for optically controlling receptor tension. This is achieved using optomechanical actuator nanoparticles that are controlled with non-invasive near-infrared light. Illumination leads to particle collapse, delivering piconewton forces to specific cell surface receptors with high spatial and temporal resolution. As a proof-of-concept, we applied optomechanical actuation to trigger integrin-based focal adhesion formation, cell protrusion and migration, as well as T cell receptor activation. PMID:26657558

  5. Nanoscale optomechanical actuators for controlling mechanotransduction in living cells.

    PubMed

    Liu, Zheng; Liu, Yang; Chang, Yuan; Seyf, Hamid Reza; Henry, Asegun; Mattheyses, Alexa L; Yehl, Kevin; Zhang, Yun; Huang, Zhuangqun; Salaita, Khalid

    2016-02-01

    To control receptor tension optically at the cell surface, we developed an approach involving optomechanical actuator nanoparticles that are controlled with near-infrared light. Illumination leads to particle collapse, delivering piconewton forces to specific cell surface receptors with high spatial and temporal resolution. We demonstrate optomechanical actuation by controlling integrin-based focal adhesion formation, cell protrusion and migration, and T cell receptor activation.

  6. Nanoscale optomechanical actuators for controlling mechanotransduction in living cells.

    PubMed

    Liu, Zheng; Liu, Yang; Chang, Yuan; Seyf, Hamid Reza; Henry, Asegun; Mattheyses, Alexa L; Yehl, Kevin; Zhang, Yun; Huang, Zhuangqun; Salaita, Khalid

    2016-02-01

    To control receptor tension optically at the cell surface, we developed an approach involving optomechanical actuator nanoparticles that are controlled with near-infrared light. Illumination leads to particle collapse, delivering piconewton forces to specific cell surface receptors with high spatial and temporal resolution. We demonstrate optomechanical actuation by controlling integrin-based focal adhesion formation, cell protrusion and migration, and T cell receptor activation. PMID:26657558

  7. Hydraulic involute cam actuator

    DOEpatents

    Love, Lonnie J.; Lind, Randall F.

    2011-11-01

    Mechanical joints are provided in which the angle between a first coupled member and a second coupled member may be varied by mechanical actuators. In some embodiments the angle may be varied around a pivot axis in one plane and in some embodiments the angle may be varied around two pivot axes in two orthogonal planes. The joints typically utilize a cam assembly having two lobes with an involute surface. Actuators are configured to push against the lobes to vary the rotation angle between the first and second coupled member.

  8. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  9. High Bandwidth Electro-optic Scanner for Optical Data Storage

    NASA Astrophysics Data System (ADS)

    Zhai, Jinhui; Huang, Yuhong; Schroeck, Steve; Messner, W.; Stancil, Daniel D.; Schlesinger, T. E.

    2000-02-01

    Beam deflectors can be used as fine tracking actuators to improve track access time and data rate in future high performance optical disk drives. In this paper we report on the use of an electro-optic (EO) scanner for optical data storage. Track following has been accomplished using this EO actuator with a servo bandwidth of 200 kHz, and single-stage high-speed track switching/following has been demonstrated in a new optical head tracking system with reduced offset. A fine tracking experiment has also been demonstrated using an EO actuator with a voice coil motor (VCM) actuator to extend the fine tracking range. A new compensator design method, the PQ method, has been used for this scanner/VCM compound actuator system. Significant improvements in track switching/following speed are demonstrated with the scanner/VCM compound actuator as compared to tracking with the VCM actuator alone.

  10. "Mighty Worm" Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Bamford, Robert M.; Wada, Ben K.; Moore, Donald M.

    1994-01-01

    "Mighty Worm" piezoelectric actuator used as adjustable-length structural member, active vibrator or vibration suppressor, and acts as simple (fixed-length) structural member when inactive. Load force not applied to piezoelectric element in simple-structural-member mode. Piezoelectric element removed from load path when not in use.

  11. Piezoelectric actuator renaissance

    NASA Astrophysics Data System (ADS)

    Uchino, Kenji

    2015-03-01

    This paper resumes the content of the invited talk of the author, read at the occasion of the International Workshop on Relaxor Ferroelectrics, IWRF 14, held on October 12-16, 2014 in Stirin, Czech Republic. It reviews the recent advances in materials, designing concepts, and new applications of piezoelectric actuators, as well as the future perspectives of this area.

  12. Electromechanical flight control actuator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  13. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  14. Performance of the optical communication adaptive optics testbed

    NASA Technical Reports Server (NTRS)

    Troy, Mitchell; Roberts, Jennifer; Guiwits, Steve; Azevedo, Steve; Bikkannavar, Siddarayappa; Brack, Gary; Garkanian, Vachik; Palmer, Dean; Platt, Benjamin; Truong, Tuan; Wilson, Keith; Wallace, Kent

    2005-01-01

    We describe the current performance of an adaptive optics testbed for optical communication. This adaptive optics system allows for simulation of night and day-time observing on a 1 meter telescope with a 97 actuator deformable mirror.

  15. Nanophotonic implementation of optoelectrowetting for microdroplet actuation

    NASA Astrophysics Data System (ADS)

    Collier, Christopher M.; Hill, Kyle A.; DeWachter, Mark A.; Huizing, Alexander M.; Holzman, Jonathan F.

    2015-02-01

    The development and ultimate operation of a nanocomposite high-aspect-ratio photoinjection (HARP) device is presented in this work. The device makes use of a nanocomposite material as the optically active layer and the device achieves a large optical penetration depth with a high aspect ratio which provides a strong actuation force far away from the point of photoinjection. The nanocomposite material can be continuously illuminated and the position of the microdroplets can, therefore, be controlled to diffraction limited resolution. The nanocomposite HARP device shows great potential for future on-chip applications.

  16. Improving the optical and electroactive response of poly(vinylidene fluoride-trifluoroethylene) spin-coated films for sensor and actuator applications

    NASA Astrophysics Data System (ADS)

    Cardoso, V. F.; Costa, C. M.; Minas, G.; Lanceros-Mendez, S.

    2012-08-01

    Poly(vinylidene fluoride-trifluoroethylene), P(VDF-TrFE), thin-films have been processed by spin-coating with controlled thickness. The influence of the thermal annealing and poling conditions on the properties of the material has been investigated. It is shown that thermal annealing strongly influences the microstructure and ferroelectric phase transition of the copolymer but does not significantly affect the degree of crystallinity of the samples. By increasing the annealing temperature, the samples undergo a transition from a microporous to a microfibrillar microstructure, accompanied by a decrease in the gauche defect density within the molecular chains that increases the ferroelectric transition temperature and enthalpy, and also influences the optical transparency of the films, which can achieve transmittances larger that 95% in the visible spectral range. The piezoelectric response of the material can be maximized by increasing the poling temperature at the cost of a decrease in the optical transparency of the film, due to the microstructural changes induced by the electrical field and the temperature. An optical transmittance as high as 90% along the visible spectral range is nevertheless maintained, demonstrating the suitability of the material for electroactive applications where transparency is also a relevant issue.

  17. Dielectric Actuation of Polymers

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  18. Actuating the deformable mirror: a multiphysics design approach

    NASA Astrophysics Data System (ADS)

    Del Vecchio, Ciro; Biasi, Roberto; Gallieni, Daniele; Riccardi, Armando; Spairani, Roberto

    2008-07-01

    The crucial component of an Adaptive Optics unit is the actuation system of the deformable mirror. One possible implementation comprehends a linear force motor and a capacitive sensor providing the feedback measure signal. Due to the extreme accuracy required by the optics, a proper design of the actuator is essential in order to fulfill the specifications. In the device, mechanics, electrostatics, electromagnetism and thermal effects are mutually related, and they have to be properly considered in the design phase. This paper analyzes such a multiphysics behavior of the actuation system, providing an inter-disciplinary approach able to define the optimized device: a capacitive sensor measuring the displacements at the nanometer accuracy and a closed loop linear motor delivering the requested force with the lowest possible power dissipation, in order to minimize the degrading of the optical waves propagation.

  19. Muscular MEMS—the engineering of liquid crystal elastomer actuators

    NASA Astrophysics Data System (ADS)

    Petsch, S.; Khatri, B.; Schuhladen, S.; Köbele, L.; Rix, R.; Zentel, R.; Zappe, H.

    2016-08-01

    A new class of soft-matter actuator, the liquid crystal elastomer (LCE), shows promise for application in a wide variety of mechanical microsystems. Frequently referred to as an ‘artificial muscle’, this family of materials exhibits large actuation stroke and generates considerable force, in a compact form which may easily be combined with the structures and devices commonly used in microsystems and MEMS. We show here how standard microfabrication techniques may be used to integrate LCEs into mechanical microsystems and present an in-depth analysis of their mechanical and actuation properties. Using an example from micro-optics and optical MEMS, we demonstrate that their performance and flexibility allows realization of entirely new types of tunable optical functionality.

  20. Actuation profiles to form Zernike shapes with a thermal active mirror.

    PubMed

    Saathof, Rudolf; Schutten, Gerrit Jan M; Spronck, Jo W; Munnig Schmidt, Robert H

    2015-01-15

    In EUV lithography, the absorption of EUV light causes wavefront distortion that deteriorates the imaging process. An adaptive optics system has been developed ["Adaptive optics to counteract thermal aberrations," Ph.D. thesis (TU Delft, 2013)] to correct for this distortion using an active mirror (AM). This AM is thermally actuated by absorbing an irradiance profile exposed by a projector onto the AM. Due to thermal conductivity and bimorph-like deformation of the AM, the relation between actuation profile and actuated shape is not trivial. Therefore, this Letter describes how actuation profiles are obtained to generate Zernike shapes. These actuation profiles have been obtained by a finite-element-based optimization procedure. Furthermore, these actuation profiles are exposed to the AM, and the resulting deformations are measured. This Letter shows actuated Zernike shapes with purities higher than 0.9 for most actuation profiles. In addition, superimposed actuation profiles resulted in superimposed Zernike shapes, showing linearity needed to apply modal wavefront correction. Therefore, this approach can be used to obtain actuation profiles for this AM concept, which can be used for highly precise wavefront correction. PMID:25679845

  1. Electrical Actuation Technology Bridging

    NASA Technical Reports Server (NTRS)

    Hammond, Monica (Compiler); Sharkey, John (Compiler)

    1993-01-01

    This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29-October 1, 1992. The workshop was sponsored by the NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

  2. Solar actuated drain system

    SciTech Connect

    Sarver, G. E.; Worstell, B. W.

    1985-04-30

    A temperature actuated drain system is provided that comprises a siphon that has an inlet end for immersing in a pool of water to be drained from a roof surface and a discharge end communicating with a pressure-responsive one-way valve. A solar actuated enclosed chamber that contains a solar heat energy collector is located on the roof surface and is in open communication with the siphon by means of a tubular member that has its inlet end positioned closely adjacent the bottom of the interior of the chamber. The arrangement causes any appreciable amounts of water that accumulate within the chamber to be discharged from the chamber during the pumping action created by the heating and cooling of air within the chamber.

  3. Microfabricated therapeutic actuator mechanisms

    DOEpatents

    Northrup, M.A.; Ciarlo, D.R.; Lee, A.P.; Krulevitch, P.A.

    1997-07-08

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The ``micro`` size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed. 22 figs.

  4. Microfabricated therapeutic actuator mechanisms

    DOEpatents

    Northrup, Milton A.; Ciarlo, Dino R.; Lee, Abraham P.; Krulevitch, Peter A.

    1997-01-01

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The "micro" size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed.

  5. Microfabricated therapeutic actuators

    DOEpatents

    Lee, Abraham P.; Northrup, M. Allen; Ciarlo, Dino R.; Krulevitch, Peter A.; Benett, William J.

    1999-01-01

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use.

  6. Microfabricated therapeutic actuators

    DOEpatents

    Lee, A.P.; Northrup, M.A.; Ciarlo, D.R.; Krulevitch, P.A.; Benett, W.J.

    1999-06-15

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use. 8 figs.

  7. Automatic rotary valve actuator

    SciTech Connect

    Cook, W.E.

    1985-03-28

    This report describes the design, construction, and operation of a microcomputer-controlled valve actuator for operating test valves requiring rotary motion of the valve stem. An AIM 65 microcomputer, using a FORTH language program, controls an air motor and air clutch mounted within an oven to accomplish testing at elevated temperatures. The valve actuator closes the test valve until a preset torque is reached and then opens the valve to its initial starting point. The number of cycles and extremes of rotation are tallied and printed as the test progresses. Provisions are made to accept remote signals to stop the test and to indicate to a remote device when the test has been stopped.

  8. Scissor thrust valve actuator

    DOEpatents

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  9. Position-movable lens driven by dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Jin, Boya; Ren, Hongwen

    2016-07-01

    A position-movable lens driven by a dielectric elastomer (DE) actuator is demonstrated. With the aid of stretching/contracting of the DE actuator, the lens can do a reciprocating motion in the direction perpendicular to its optical axis. For our DE with 1-mm thick, a voltage pulse of V=5.5 kV can cause the lens to shift ˜1.7 mm. The stretching time and contracting time of the actuator are ˜3.5 and ˜4 s, respectively. When the lens integrates with another solid lens, a variable focal length can be obtained. Although the driving voltage is relatively high, the actuator is electrically stable and the power consumption is extremely low. Our lens with movable position has potential applications in imaging, information storage, beam steering, and bifocal technology.

  10. Dissolution actuated sample container

    DOEpatents

    Nance, Thomas A.; McCoy, Frank T.

    2013-03-26

    A sample collection vial and process of using a vial is provided. The sample collection vial has an opening secured by a dissolvable plug. When dissolved, liquids may enter into the interior of the collection vial passing along one or more edges of a dissolvable blocking member. As the blocking member is dissolved, a spring actuated closure is directed towards the opening of the vial which, when engaged, secures the vial contents against loss or contamination.

  11. Linear mass actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III (Inventor); Crossley, Edward A., Jr. (Inventor); Jones, Irby W. (Inventor); Miller, James B. (Inventor); Davis, C. Calvin (Inventor); Behun, Vaughn D. (Inventor); Goodrich, Lewis R., Sr. (Inventor)

    1992-01-01

    A linear mass actuator includes an upper housing and a lower housing connectable to each other and having a central passageway passing axially through a mass that is linearly movable in the central passageway. Rollers mounted in the upper and lower housings in frictional engagement with the mass translate the mass linearly in the central passageway and drive motors operatively coupled to the roller means, for rotating the rollers and driving the mass axially in the central passageway.

  12. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  13. Thermally actuated thermionic switch

    DOEpatents

    Barrus, D.M.; Shires, C.D.

    1982-09-30

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  14. Thermally actuated thermionic switch

    DOEpatents

    Barrus, Donald M.; Shires, Charles D.

    1988-01-01

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  15. Passively actuated valve

    DOEpatents

    Modro, S. Michael; Ougouag, Abderrafi M.

    2005-09-20

    A passively actuated valve for isolating a high pressure zone from a low pressure zone and discontinuing the isolation when the pressure in the high pressure zone drops below a preset threshold. If the pressure in the high pressure zone drops below the preset threshold, the valve opens and allows flow from the high pressure zone to the low pressure zone. The valve remains open allowing pressure equalization and back-flow should a pressure inversion between the two pressure zone occur.

  16. Thermocapillary Bubble Migration - An Oseen-Like Analysis of the Energy Equation

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Dill, L. H.

    1992-01-01

    The thermocapillary migration of a bubble in a liquid possessing a temperature gradient is analyzed in the limit of large Reynolds and Marangoni numbers. Crespo and Manuel (1983) performed an analysis in this limit wherein energy conduction is completely neglected and obtained the bubble migration velocity using energy dissipation arguments. In the present analysis, performed in a coordinate system moving with the bubble, the velocity field in the convection term in the energy equation is approximated in an Oseen-like manner by replacing it with the velocity field far away from the bubble (i.e., the migration velocity of the bubble). Conduction is retained to satisfy the zero conductive heat flux boundary condition on the bubble surface. An approximate solution has been obtained for the Oseen-like energy equation. The bubble velocity obtained using energy dissipation considerations is in agreement with the result of Crespo and Manuel. The solution shows the thermal boundary layer and wake structure in the vicinity of the bubble. The Oseen-like analysis, however, has inherent limitations, as the flow penetrates the bubble surface. These issues are discussed and the result are compared to those in the literature.

  17. Thermocapillary Phenomena and Performance Limitations of a Wickless Heat Pipe in Microgravity

    NASA Astrophysics Data System (ADS)

    Kundan, Akshay; Plawsky, Joel L.; Wayner, Peter C.; Chao, David F.; Sicker, Ronald J.; Motil, Brian J.; Lorik, Tibor; Chestney, Louis; Eustace, John; Zoldak, John

    2015-04-01

    A counterintuitive, thermocapillary-induced limit to heat- pipe performance was observed that is not predicted by current thermal-fluid models. Heat pipes operate under a number of physical constraints including the capillary, boiling, sonic, and entrainment limits that fundamentally affect their performance. Temperature gradients near the heated end may be high enough to generate significant Marangoni forces that oppose the return flow of liquid from the cold end. These forces are believed to exacerbate dry out conditions and force the capillary limit to be reached prematurely. Using a combination of image and thermal data from experiments conducted on the International Space Station with a transparent heat pipe, we show that in the presence of significant Marangoni forces, dry out is not the initial mechanism limiting performance, but that the physical cause is exactly the opposite behavior: flooding of the hot end with liquid. The observed effect is a consequence of the competition between capillary and Marangoni-induced forces. The temperature signature of flooding is virtually identical to dry out, making diagnosis difficult without direct visual observation of the vapor-liquid interface.

  18. Modeling the dynamics of thermocapillary motion in a laser fusion: the utilization of the FIDAP pack

    NASA Astrophysics Data System (ADS)

    Walczak, Maria; Sek, Jerzy

    1997-10-01

    The paper presents the results of analysis of thermocapillary phenomena in the liquid phase of a laser fusion. Making use of the FIDAP program the authors modelled the phenomena of convection using silver as an example. Silver was subjected to the action of a laser radiation pulse of the duration (tau) equals 4 ms and the Gaussian distribution of the power density qo approximately 109 . . . 1011 W/m2, of the radius ro equals 150 micrometer. The axis symmetry of the model was assumed. Thermal coefficients were assumed to be constant for each phase, while the values of the surface tension as a function of temperature. With such assumptions the Marangoni convection is the primary cause of convection motion. The velocity field and the shape of the interfacial surface were determined on the basis of calculations performed using the FIDAP program. The shape coefficient (K equals d/h - width by depth) of the fusion is in good agreement with the real value. The paper indicates some possibilities of using a model built with the help of the FIDAP program for predicting some results of laser melting.

  19. Thermocapillary motion of a liquid drop on a horizontal solid surface.

    PubMed

    Pratap, Vikram; Moumen, Nadjoua; Subramanian, R Shankar

    2008-05-01

    The motion of drops of decane on horizontal poly(dimethylsiloxane) (PDMS)-coated glass surfaces resulting from a temperature gradient on the surface is studied experimentally, and a theoretical description of the thermocapillary motion of spherical-cap drops on a horizontal solid surface obtained using the lubrication approximation also is presented. The drop size and the applied temperature gradient are varied in the experiments, and the measured velocities of the drops are compared with predictions from the model. The scalings of the velocity with drop size and with the applied temperature gradient are predicted correctly by the theoretical model, even though the actual velocities are smaller than those predicted. The influence of contact angle hysteresis, which leads to a critical drop size below which drops do not move, is found to be minimal. Unlike in previous studies (Chen, J. Z.; Troian, S. M.; Darhuber, A. A.; Wagner, S. J. Appl. Phys. 2005, 97, 014906; Brzoska, J. B.; Brochard-Wyart, F.; Rondelez, F. Langmuir 1993, 9, 2220), this small critical drop size appears to be independent of the applied temperature gradient. Results also are presented on the deformation of the contact lines of the moving drops in the form of an aspect ratio, and correlated with the temperature difference across the footprints of the drops and the capillary number. PMID:18399689

  20. Instability of thermocapillary convection in long liquid bridges of high Prandtl number fluids in microgravity

    NASA Astrophysics Data System (ADS)

    Nishino, Koichi; Yano, Taishi; Kawamura, Hiroshi; Matsumoto, Satoshi; Ueno, Ichiro; Ermakov, Michael K.

    2015-06-01

    This paper reports experimental results on the instability of thermocapillary convection in long half-zone liquid bridges of high Prandtl number fluids (Pr=67, 112 and 207 for 5, 10 and 20 cSt silicone oils, respectively). The experiments were carried out in microgravity on the International Space Station, which allowed sufficiently long waiting period for the development of instability. Critical temperature differences were measured for liquid bridges of 30 and 50 mm diameters and up to 62.5 mm length. The resultant critical Marangoni numbers (Mac) were obtained for a wide range of aspect ratio (=height/diameter), AR, up to AR=2.0. Linear stability analyses for Pr=67 were also carried out to obtain numerical data for comparison. The present experimental results for Pr=67 indicate 5.0×1031.25) and they are in good agreement with the present linear stability analysis result. In contrast, the present results are considerably smaller than the previous data (Pr=74) taken in the Space Shuttle experiments. It is shown that this difference is due to the effect of heating rate of the liquid bridge. The data for oscillation frequency and azimuthal mode number are also presented. The non-dimensional oscillation frequencies as well as Mac for Pr=67 have shown a sudden decrease at around AR=1.25, suggesting the bifurcation of neutral stability curves.

  1. Spectral simulation of thermocapillary convection with a deformable free surface using boundary-fitted coordinates

    NASA Astrophysics Data System (ADS)

    Ahmed, Ikramuddin

    A Chebyshev-spectral collocation scheme has been developed to simulate thermocapillary convection processes in a differentially heated cavity with and without buoyancy effects. The time-dependent Navier- Stokes equations in primitive variables were solved with a semi-implicit scheme using the influence matrix technique. The deformable free surface was incorporated by means of a boundary-fitted coordinate (BFC) system. The BFC grid was generated by solving a system of elliptic equations. An iterative scheme based on finite difference methods was found to be sufficient for calculating a smooth distribution of grid-points for relatively low degrees of deformation of the free surface. The metrics of transformation, however, were calculated spectrally in order to achieve a high order of accuracy in the a posteriori mapping of the physical grid to the computational grid. The overall scheme was found to be efficient, economical, and capable of resolving the complex hydrodynamic and thermal structures in thermocapillarity driven flows with deformable free surfaces. The scheme was also modified to study problems with very high Marangoni numbers and non-deformable free surfaces, and later extended to three dimensions with periodic boundary conditions in order to explore the transitions to fully three dimensional phenomena that are anticipated in industrially relevant flow configurations.

  2. Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system

    NASA Astrophysics Data System (ADS)

    Rashidnia, N.; Balasubramaniam, R.

    1991-05-01

    An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20 to 50 C using a capillary tube and (d sigma)/(d T) was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of (d sigma)/(d T). The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).

  3. Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system

    NASA Astrophysics Data System (ADS)

    Rashidnia, N.; Balasubramaniam, R.

    1989-12-01

    An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20 to 50 C using a capillary tube and (d sigma)/(d T) was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of (d sigma)/(d T). The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).

  4. Thermocapillary instabilities in a laterally heated liquid bridge with end wall rotation

    NASA Astrophysics Data System (ADS)

    Kahouadji, L.; Houchens, B. C.; Witkowski, L. Martin

    2011-10-01

    The effect of rotation on the stability of thermocapillary driven flow in a laterally heated liquid bridge is studied numerically using the full-zone model of the floating-zone crystal growth technique. A small Prandtl number (0.02) fluid, relevant for semiconductor melts, is studied with an aspect ratio (height to diameter of the melt) equal to one. Buoyancy is neglected. A linear stability analysis of three-dimensional perturbations is performed and shows that for any ratio of angular velocities, a weak rotation rate has the surprising effect of destabilizing the base flow. By systematically varying the rotation rate and ratio of angular velocities, the critical threshold and azimuthal wave number of the most unstable mode is found over a wide range of this two parameter space. Depending on these parameters, the leading eigenmode is a wave propagating either in the positive or negative azimuthal direction, with kinetic energy typically localized close to one of the end walls. These results are of practical interest for industrial crystal growth applications, where rotation is often used to obtain higher quality crystals.

  5. Thermocapillary instabilities with crystal and feed rod rotation in laterally heated liquid bridge

    NASA Astrophysics Data System (ADS)

    Witkowski, Laurent Martin; Kahouadji, Lyes; Walker, John S.

    2006-11-01

    Rotation is involved in many industrial processes for crystal growth. The main reason is that heating is usually not uniform in the azimuthal direction. A drawback (or advantage) of rotation is that it modifies the flow originating from thermal or electromagnetic sources. In the needle-eye float-zone process, the optimum angular velocity of the feed rod and crystal is found empirically. The ratio of these velocities is often negative but not always. Early numerical studies focused on the baseflow of the melt and were restricted to axisymmetry. The main finding is that when rotation is large enough the flow is confined toward the periphery as a result of Taylor column effect. More recent research is devoted to the stability of thermocapillary convection to tridimensional disturbances either by direct numerical simulations or by linear analysis but few relate to the effect of rotation. In order to have a better understanding of the effect of rotation rate on the critical Marangoni number for a laterally heated liquid bridge, we have studied the stability of tridimensional perturbation by a linear analysis for various angular velocity ratio. The competition between different azimuthal modes has been explored and some interpretations are given.

  6. Thermocapillary and shear driven flows in gas/liquid system in annular duct

    NASA Astrophysics Data System (ADS)

    Gaponenko, Yu; Nepomnyashchy, A.; Shevtsova, V.

    2011-12-01

    We report the results of numerical study of two-phase flows in annulus for different aspect ratios obtained in the frame of the JEREMI experiment preparation. The geometry of the physical problem is a cylindrical and non-deformable liquid bridge concentrically surrounded by an annular gas channel under conditions of zero gravity. Thermocapillary (Marangoni) convection in liquid bridge of Pr = 68 is analyzed in the case when the interface is subjected to an axial gas stream. The gas flow is counter-directed with respect to the Marangoni flow. The inlet gas velocity U0g, temperature difference ΔT between end rods of the liquid bridge and aspect ratio are the control parameters of the system. In the case when the gas stream comes from the cold side, it cools down the interface to a temperature lower than that of the liquid beneath, and in a certain region of the parameter space that cooling causes instability due to a temperature difference in the direction, perpendicular to the interface. The present study is focused on the influence of the aspect ratio on the existence and characteristic features of the oscillatory regime.

  7. The effect of noncondensables on the stability of buoyancy-thermocapillary convection

    NASA Astrophysics Data System (ADS)

    Li, Yaofa; Grigoriev, Roman; Yoda, Minami

    2014-11-01

    Buoyancy-thermocapillary convection is a well-known problem that is also of interest in evaporative cooling. Our fundamental understanding of convection and transport in the presence of phase change remains limited, however. Pathline visualizations and PIV were used to study convection in a confined layer of a pure volatile 0.65 cSt silicone oil driven by a horizontal temperature gradient at Marangoni numbers Ma <103 and Bond numbers BoD = O (1) below a sealed vapor space containing noncondensables (i.e., air) at concentrations ca = 11 mol % - 96 % . At ca = 96 % (i.e., ambient conditions), the results are in qualitative agreement with previous studies and a new linear stability analysis, with transitions from steady unicellular to partial multicellular to steady multicellular flow, then to oscillatory multicellular (OMC) flow as Ma increases. In the OMC state, the cells oscillate near the heated end, but travel instead towards the cooled end. The results show that decreasing ca has a marked effect on the flow stability, increasing the critical Ma for transition between different flow states. Indeed, only steady unicellular and partial multicellular flow states are observed at ca = 11 % for these Ma . Supported by ONR.

  8. Thermocapillary-buoyancy convection in a shallow cavity heated from the side

    NASA Astrophysics Data System (ADS)

    Shevtsova, V. M.; Nepomnyashchy, A. A.; Legros, J. C.

    2003-06-01

    Combined thermocapillary-buoyancy convection has been investigated numerically in an extended cavity with differently heated walls. When the Marangoni number Ma grows, the unicellular flow is replaced by a steady bicellular or multicellular flow and then either by a hydrothermal wave or an oscillatory multicellular flow, depending on the dynamic Bond number Bodyn. The appearance of a hydrothermal wave prevents the propagation of the stationary roll structure, which spreads from the hot side, over the whole cavity. The hydrothermal wave itself looks as a succession of the cells moving from the cold side towards the motionless rolls on the hot side. For an intermediate interval of Bodyn the parallel flow is unstable with respect to the hydrothermal wave (HTW), but the multicellular periodic structure generated by the side-wall perturbation is stable, so that the HTW decays in space when propagating on the background of the multicellular structure. The nonlinear competition between finite-amplitude, boundary-induced steady patterns and hydrothermal waves is essential. A nonlinear simulation of flow regimes in a wide region of the values of dynamical Bond number and Marangoni number is presented. A number of phenomena that cannot be predicted in the framework of the linear stability theory, specifically those characteristic for the motion in the intermediate interval of Bodyn, as well as the secondary transition from steady to unsteady flows at large Bodyn, which takes place when the Marangoni number Ma grows, are described.

  9. Influence of Thermocapillary Flow on Capillary Stability: Long Float-Zones in Low Gravity

    NASA Technical Reports Server (NTRS)

    Chen, Yi-Ju; Steen, Paul H.

    1996-01-01

    A model problem is posed to study the influence of flow on the interfacial stability of a nearly cylindrical liquid bridge for lengths near its circumference (the Plateau-Rayleigh limit). The flow is generated by a shear stress imposed on the deformable interface. The symmetry of the imposed shear stress mimics the thermocapillary stress induced on a float-zone by a ring heater (i.e. a full zone). Principal assumptions are (1) zero gravity, (2) creeping flow, and (3) that the imposed coupling at the free surface between flow and temperature fields is the only such coupling. A numerical solution, complemented by a bifurcation analysis, shows that bridges substantially longer than the Plateau-Rayleigh limit are possible. An interaction of the first two capillary instabilities through the stress-induced flow is responsible. Time-periodic standing waves are also predicted in certain parameter ranges. Motivation comes from extra-long float-zones observed in MEPHISTO space lab experiments (June 1994).

  10. Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system

    NASA Technical Reports Server (NTRS)

    Rashidnia, N.; Balasubramaniam, R.

    1989-01-01

    An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20 to 50 C using a capillary tube and (d sigma)/(d T) was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of (d sigma)/(d T). The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).

  11. Shape change, engulfment, and breakup of partially engulfed compound drops undergoing thermocapillary migration.

    PubMed

    Lavrenteva, O M; Rosenfeld, L; Nir, A

    2011-11-01

    Compound drops comprise two or more immiscible phases, one of which entirely or partially engulfs the others. In this work we consider the thermocapillary-induced motion of partially engulfed compound drops, composed of two phases, in an immiscible fluid. If the capillary number is negligibly small, Ca < 1, the partially engulfed compound drop is composed of three spherical surface segments, intersecting at contact angles that are determined by the three interfacial tensions associated with the three fluid phases that make up the compound drop and the ambient medium. Corrections to the shapes of the undeformable case at Ca = 0 are expected to be of the order Ca. However, as the drop propagates through the nonisothermal fluid, the temperature at the three-phase contact line and, hence, the contact angles, may considerably change, resulting in a dramatic change of the compound drop shape. Moreover, the changes in the interfacial tensions may be so significant that the partially engulfed configuration may become impossible and either two immiscible parts of the compound drop separate or one of them becomes completely engulfed by the other.

  12. Thermocapillary flow with evaporation and condensation at low gravity. Part 2: Deformable surface

    NASA Technical Reports Server (NTRS)

    Schmidt, G. R.; Chung, T. J.; Nadarajah, A.

    1995-01-01

    The free surface behavior of a volatile wetting liquid at low gravity is studied using scaling and numerical techniques. An open cavity model, which was applied in part 1 to investigate fluid flow and heat transfer in non-deforming pores, is used to evaluate the influence of convection on surface morphology with length scales and subcooling/superheating limits of 1 less than or equal to D less than or equal to 10(exp 2) microns and approximately 1 K, respectively. Results show that the menisci shapes of highly wetting fluids are sensitive to thermocapillary flow and to a lesser extent the recoil force associated with evaporation and condensation. With subcooling, thermocapillarity produces a suction about the pore centerline that promotes loss of mechanical equilibrium, while condensation exerts an opposing force that under some conditions offsets this destabilizing influence. With superheating, thermocapillarity and evaporation act in the same direction and mutually foster surface stability. All of these trends are magnified by high capillary and Biot numbers, and the stronger circulation intensities associated with small contact angles. These phenomena strongly depend on the thermal and interfacial equilibrium between the liquid and vapor, and have important ramifications for systems designed to maintain a pressure differential across a porous surface.

  13. The influence of surfactants on thermocapillary flow instabilities in low Prandtl melting pools

    NASA Astrophysics Data System (ADS)

    Kidess, Anton; Kenjereš, Saša; Kleijn, Chris R.

    2016-06-01

    Flows in low Prandtl number liquid pools are relevant for various technical applications and have so far only been investigated for the case of pure fluids, i.e., with a constant, negative surface tension temperature coefficient ∂γ/∂T. Real-world fluids containing surfactants have a temperature dependent ∂γ/∂T > 0, which may change sign to ∂γ/∂T < 0 at a critical temperature Tc. Where thermocapillary forces are the main driving force, this can have a tremendous effect on the resulting flow patterns and the associated heat transfer. Here we investigate the stability of such flows for five Marangoni numbers in the range of 2.1 × 106 ≤ Ma ≤ 3.4 × 107 using dynamic large eddy simulations, which we validate against a high resolution direct numerical simulation. We find that the five cases span all flow regimes, i.e., stable laminar flow at Ma ≤ 2.1 × 106, transitional flow with rotational instabilities at Ma = 2.8 × 106 and Ma = 4.6 × 106, and turbulent flow at Ma = 1.8 × 107 and Ma = 3.4 × 107.

  14. Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system

    NASA Technical Reports Server (NTRS)

    Rashidnia, N.; Balasubramaniam, R.

    1991-01-01

    An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20 to 50 C using a capillary tube and (d sigma)/(d T) was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of (d sigma)/(d T). The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).

  15. Cylindrical Piezoelectric Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  16. Microelectromechanical (MEM) thermal actuator

    DOEpatents

    Garcia, Ernest J.; Fulcher, Clay W. G.

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  17. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  18. High power thrust vector actuation

    NASA Astrophysics Data System (ADS)

    Kittock, M. J.

    1993-06-01

    Modern missile programs are frequently favoring electro-mechanical (EM) thrust vector actuation (TVA) over hydraulic for a variety of reasons. However, actuation system performance requirements are not relaxed for EM systems. Thus the development of EM systems with greater power output is required. The configuration of EM actuator studied consists of a DC brushless motor driving a spur gear train, which drives a ballscrew that converts rotary motion to rectilinear motion. This design produces an actuator with high levels of performance in a compact mechanical package. Design for manufacturability and assembly (DFMA) was part of the design process, resulting in an actuator that can be assembled easily and will operate reliably. This paper will discuss the mechanical details of the resultant actuator and report test results on a prototype derivative.

  19. Linear Proof-Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III; Crossley, Edward A.; Miller, James B.; Jones, Irby W.; Davis, C. Calvin; Behun, Vaughn D.; Goodrich, Lewis R., Sr.

    1995-01-01

    Linear proof-mass actuator (LPMA) is friction-driven linear mass actuator capable of applying controlled force to structure in outer space to damp out oscillations. Capable of high accelerations and provides smooth, bidirectional travel of mass. Design eliminates gears and belts. LPMA strong enough to be used terrestrially where linear actuators needed to excite or damp out oscillations. High flexibility designed into LPMA by varying size of motors, mass, and length of stroke, and by modifying control software.

  20. Direct drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1998-03-10

    A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.

  1. Direct drive field actuator motors

    DOEpatents

    Grahn, Allen R.

    1998-01-01

    A positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  2. Fault-tolerant rotary actuator

    DOEpatents

    Tesar, Delbert

    2006-10-17

    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  3. Experiments on the multi-roll-structure of thermocapillary flow in side-heated thin liquid layers

    NASA Astrophysics Data System (ADS)

    Schwabe, D.; Cramer, A.; Schneider, J.; Benz, S.; Metzger, J.

    1999-01-01

    The multi-roll-structure (MRS) with convection rolls, all with the same sense of rotation and axes perpendicular to the applied temperature gradient appears in thin layers driven by thermocapillarity prior to time dependent states. Detailed experimental and numerical results are reported. The MRS in large Prandtl-number fluids is dominated by thermocapillarity and separates from the buoyancy driven bulk flow for deep layers. We prepare a microgravity experiment MAGIA to study thermocapillary flow structures without coupling to buoyancy in a 20.0 mm wide annular layer with free surface of variable depth heated by the outer wall and cooled at the inside.

  4. Enhancing the Thermocapillary Migration of Bubbles Retarded by the Adsorption of Surfactant Impurities By Using Remobilizing Surfactants

    NASA Astrophysics Data System (ADS)

    Maldarelli, Charles; Balasubramaniam, R.

    2002-11-01

    Thermocapillary migration is a method for moving bubbles in space in the absence of buoyancy. A temperature gradient is applied to the continuous phase in which a bubble is situated, and the applied gradient impressed on the bubble surface causes one pole of the drop to be cooler than the opposite pole. As the surface tension is a decreasing function of temperature, the cooler pole pulls at the warmer pole, creating a flow which propels the bubble in the direction of the warmer fluid. A major impediment to the practical use of thermocapillarity to direct the movement of bubbles in space is the fact that surfactant impurities which are unavoidably present in the continuous phase can significantly reduce the migration velocity. A surfactant impurity adsorbed onto the bubble interface is swept to the trailing end of the bubble. When bulk concentrations are low (which is the case with an impurity), diffusion of surfactant to the front end is slow relative to convection, and surfactant collects at the back end of the bubble. Collection at the back lowers the surface tension relative to the front end setting up a reverse tension gradient. (This can also be the case if kinetic desorption of surfactant at the back end of the bubble is much slower than convection.) For buoyancy driven bubble motions in the absence of a thermocapillarity, the tension gradient opposes the surface flow, and reduces the surface and terminal velocities (the interface becomes more solid-like and bubbles translate as solid particles). When thermocapillary forces are present, the reverse tension gradient set up by the surfactant accumulation reduces the temperature induced tension gradient, and can decrease to near zero the bubble's thermocapillary velocity. The objective of our research is to develop a method for enhancing the thermocapillary migration of bubbles which have been retarded by the adsorption onto the bubble surface of a surfactant impurity. Our remobilization theory proposes to use

  5. Position actuators for the primary mirror of the W. M. Keck Telescope

    SciTech Connect

    Meng, J.D.; Franck, J.; Gabor, G.; Jared, R.C.; Minor, R.H.; Schaefer, B.

    1989-07-01

    The pistons and tilts of the 36 segments of the W. M. Keck Telescope primary mirror are under active control. The mechanical and electronic designs of the actuators used to achieve this control are described along with the performance of the actuators under a variety of tests. In use, the actuators will move in four-nanometer increments. This resolution and the accuracy of the actuator moves are adequate for stabilizing the figure of the primary mirror to the precision required for optical and infrared astronomy.

  6. Piezoelectric actuated gimbal

    DOEpatents

    Tschaggeny, Charles W.; Jones, Warren F.; Bamberg, Eberhard

    2011-09-13

    A gimbal is described and which includes a fixed base member defining an axis of rotation; a second member concentrically oriented relative to the axis of rotation; a linear actuator oriented in immediate, adjoining force transmitting relation relative to the base member or to the second member, and which applies force along a linear axis which is tangential to the axis of rotation so as to cause the second member to rotate coaxially relative to the fixed base member; and an object of interest mounted to the second member such that the object of interest is selectively moved relative to the base member about the axis of rotation.

  7. Lead screw linear actuator

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1980-01-01

    A linear actuator which can apply high forces is described, which includes a reciprocating rod having a threaded portion engaged by a nut that is directly coupled to the rotor of an electric motor. The nut is connected to the rotor in a manner that minimizes loading on the rotor, by the use of a coupling that transmits torque to the nut but permits it to shift axially and radially with respect to the rotor. The nut has a threaded hydrostatic bearing for engaging the threaded rod portion, with an oilcarrying groove in the nut being interrupted.

  8. Model-Based Angular Scan Error Correction of an Electrothermally-Actuated MEMS Mirror

    PubMed Central

    Zhang, Hao; Xu, Dacheng; Zhang, Xiaoyang; Chen, Qiao; Xie, Huikai; Li, Suiqiong

    2015-01-01

    In this paper, the actuation behavior of a two-axis electrothermal MEMS (Microelectromechanical Systems) mirror typically used in miniature optical scanning probes and optical switches is investigated. The MEMS mirror consists of four thermal bimorph actuators symmetrically located at the four sides of a central mirror plate. Experiments show that an actuation characteristics difference of as much as 4.0% exists among the four actuators due to process variations, which leads to an average angular scan error of 0.03°. A mathematical model between the actuator input voltage and the mirror-plate position has been developed to predict the actuation behavior of the mirror. It is a four-input, four-output model that takes into account the thermal-mechanical coupling and the differences among the four actuators; the vertical positions of the ends of the four actuators are also monitored. Based on this model, an open-loop control method is established to achieve accurate angular scanning. This model-based open loop control has been experimentally verified and is useful for the accurate control of the mirror. With this control method, the precise actuation of the mirror solely depends on the model prediction and does not need the real-time mirror position monitoring and feedback, greatly simplifying the MEMS control system. PMID:26690432

  9. Model-Based Angular Scan Error Correction of an Electrothermally-Actuated MEMS Mirror.

    PubMed

    Zhang, Hao; Xu, Dacheng; Zhang, Xiaoyang; Chen, Qiao; Xie, Huikai; Li, Suiqiong

    2015-01-01

    In this paper, the actuation behavior of a two-axis electrothermal MEMS (Microelectromechanical Systems) mirror typically used in miniature optical scanning probes and optical switches is investigated. The MEMS mirror consists of four thermal bimorph actuators symmetrically located at the four sides of a central mirror plate. Experiments show that an actuation characteristics difference of as much as 4.0% exists among the four actuators due to process variations, which leads to an average angular scan error of 0.03°. A mathematical model between the actuator input voltage and the mirror-plate position has been developed to predict the actuation behavior of the mirror. It is a four-input, four-output model that takes into account the thermal-mechanical coupling and the differences among the four actuators; the vertical positions of the ends of the four actuators are also monitored. Based on this model, an open-loop control method is established to achieve accurate angular scanning. This model-based open loop control has been experimentally verified and is useful for the accurate control of the mirror. With this control method, the precise actuation of the mirror solely depends on the model prediction and does not need the real-time mirror position monitoring and feedback, greatly simplifying the MEMS control system.

  10. Model-Based Angular Scan Error Correction of an Electrothermally-Actuated MEMS Mirror.

    PubMed

    Zhang, Hao; Xu, Dacheng; Zhang, Xiaoyang; Chen, Qiao; Xie, Huikai; Li, Suiqiong

    2015-01-01

    In this paper, the actuation behavior of a two-axis electrothermal MEMS (Microelectromechanical Systems) mirror typically used in miniature optical scanning probes and optical switches is investigated. The MEMS mirror consists of four thermal bimorph actuators symmetrically located at the four sides of a central mirror plate. Experiments show that an actuation characteristics difference of as much as 4.0% exists among the four actuators due to process variations, which leads to an average angular scan error of 0.03°. A mathematical model between the actuator input voltage and the mirror-plate position has been developed to predict the actuation behavior of the mirror. It is a four-input, four-output model that takes into account the thermal-mechanical coupling and the differences among the four actuators; the vertical positions of the ends of the four actuators are also monitored. Based on this model, an open-loop control method is established to achieve accurate angular scanning. This model-based open loop control has been experimentally verified and is useful for the accurate control of the mirror. With this control method, the precise actuation of the mirror solely depends on the model prediction and does not need the real-time mirror position monitoring and feedback, greatly simplifying the MEMS control system. PMID:26690432

  11. Light-driven actuation of fluids at microscale

    NASA Astrophysics Data System (ADS)

    Deshpande, Mandar; Saggere, Laxman

    2004-07-01

    This paper discusses the prospects of light-driven actuation particularly for actuating fluids at micro-scale for potential use in a novel retinal prosthesis and other drug delivery applications. The prosthesis is conceived to be comprised of an array of light-driven microfluidic-dispenser units, devices that eject very small amounts of fluids on the order of 1 picoliter per second in response to incident light energy in the range of 0.1-1 mW/cm2. A light-driven actuator, whose size will ideally be smaller than about 100 micrometers in diameter, independently powers each dispenser unit. Towards this application, various approaches for transducing light energy for actuation of fluids are explored. These approaches encompass both direct transduction of light energy to mechanical actuation of fluid and indirect transduction through an intermediary form of energy, for instance, light energy to thermal or electrical energy followed by mechanical actuation of fluid. Various existing schemes for such transduction are reviewed comprehensively and discussed from the standpoint of the application requirements. Direct transduction schemes exploiting recent developments in optically sensitive materials that exhibit direct strain upon illumination, particularly the photostrictive PLZT (Lanthanum modified Lead Zirconate Titanate), are studied for the current application, and results of some preliminary experiments involving measurement of photovoltage, photocurrent, and photo-induced strain in the meso-scale samples of the PLZT material are presented.

  12. Surface Deformation by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Eckart; Dreyer, Michael E.

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The scientific aims are to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat transfer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. Correlations for the effective contact angle and the heat transfer coefficient shall be delivered as a function of the relevant dimensionsless parameters. The data will be used for benchmarking of commercial CFD codes and the tank design

  13. Adaptive lenses using transparent dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Shian, Samuel; Diebold, Roger; Clarke, David

    2013-03-01

    Variable focal lenses, used in a vast number of applications such as endoscope, digital camera, binoculars, information storage, communication, and machine vision, are traditionally constructed as a lens system consisting of solid lenses and actuating mechanisms. However, such lens system is complex, bulky, inefficient, and costly. Each of these shortcomings can be addressed using an adaptive lens that performs as a lens system. In this presentation, we will show how we push the boundary of adaptive lens technology through the use of a transparent electroactive polymer actuator that is integral to the optics. Detail of our concepts and lens construction will be described as well as electromechanical and optical performances. Preliminary data indicate that our adaptive lens prototype is capable of varying its focus by more than 100%, which is higher than that of human eyes. Furthermore, we will show how our approach can be used to achieve certain controls over the lens characteristics such as adaptive aberration and optical axis, which are difficult or impossible to achieve in other adaptive lens configurations.

  14. Actuator operated microvalves

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2008-01-01

    An actuator operated microvalve and the method of making same is disclosed and claimed. The microvalve comprises a SiC housing which includes a first lower portion and a second upper portion. The lower portion of the SiC housing includes a passageway therethrough, a microvalve seat, and a moveable SiC diaphragm. The SiC diaphragm includes a centrally located boss and radially extending corrugations which may be sinusoidally shaped. The boss of the SiC diaphragm moves and modulates in a range of positions between a closed position wherein the boss interengages said microvalve seat prohibiting communication of fluid through the passageway and a fully open position when the boss is spaced apart from the seat at its maximum permitting communication of fluid through said passageway. The actuator includes a SiC top plate affixed to the boss of the diaphragm and a first electrode and the second upper portion of the SiC housing further includes a second electrode.

  15. A bioinspired soft actuated material.

    PubMed

    Roche, Ellen T; Wohlfarth, Robert; Overvelde, Johannes T B; Vasilyev, Nikolay V; Pigula, Frank A; Mooney, David J; Bertoldi, Katia; Walsh, Conor J

    2014-02-26

    A class of soft actuated materials that can achieve lifelike motion is presented. By embedding pneumatic actuators in a soft material inspired by a biological muscle fibril architecture, and developing a simple finite element simulation of the same, tunable biomimetic motion can be achieved with fully soft structures, exemplified here by an active left ventricle simulator.

  16. Smart actuators with piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Janocha, Hartmut; Jendritza, Daniel J.; Scheer, Peter

    1996-04-01

    Piezoelectric solid-state actuators continue to gain in technical and economic significance for a great variety of applications such as quick fine-positioning tasks, control of structural stability and active noise and vibration control due to the high driving forces, short reaction times and compact construction of these actuators. Microelectronics and signal processing must be combined intelligently to form `smart actuators' in order to do justice to the growing demand for precision, miniaturization, efficiency and cost. Energy transducers with piezoelectric PZT ceramics (PZT: lead-zirconate-titanate) simultaneously possess actuator and sensor capacities. An important requirement for the construction of smart actuators is fulfilled by separating the sensor information (charge approximately external force) from the actuator control quantities (elongation approximately electric field strength). A closed-loop control structure with digital signal processing and a voltage controlled power amplifier were developed to enable nearly load-independent linearization of the actuator's response characteristic (elongation-voltage curve) even under dynamic operating conditions by making use of the `self-sensing' effect and without using extra force or displacement sensors. The effectiveness of the developed approach for realizing smart actuators was verified and specified with the help of a computerized large-signal measurement set-up using a low-voltage piezoelectric ceramic stack as an example.

  17. Rotary actuator for space applications

    NASA Astrophysics Data System (ADS)

    Andión, J. A.; Burgui, C.; Migliorero, G.

    2005-07-01

    SENER is developing a rotary actuator for space applications. The activity, partially funded under ESA GSTP contract, aims at the design, development and performance testing of an innovative rotary actuator concept for space applications. An engineering model has been manufactured and has been tested to demonstrate the compliance with the requirements specification.

  18. Features of the Interface Equation Coupling Thin and Thick Film Regimes in Conduction-Triggered Thermocapillary Flows

    NASA Astrophysics Data System (ADS)

    Nicolaou, Zachary; Troian, Sandra

    2015-11-01

    An attractive feature of moving boundary problems involving the coupling of adjacent thin film regimes is the simplified form of the corresponding interface equation. For interfaces subject to conduction-triggered thermocapillary forces and damping by capillary forces, the evolution equation reduces to a 4th order nonlinear PDE. The dispersion equation for linear instability of a uniform state then reduces to Type II, characterized by a vanishing growth rate at k =0, a positive k2 contribution from the driving force and a negative k4 from capillary damping. Here we generalize to a moving interface coupling thin and thick film regimes. The resulting 4th order, nonlinear integro-differential equation contains the usual form of the capillary term but a nonlocal thermocapillary term due to far field contributions from the lateral transport of conserved quantities. The dispersion equation in no longer of Type II since the destabilizing term is no longer quadratic. Despite these differences, the generalized form retains certain pleasing features which can be exploited for further analysis.

  19. Thermocapillary flow with evaporation and condensation and its effect on liquid retention in low-G fluid acquisition devices

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.

    1994-01-01

    The steady motion, thermal and free surface behavior of a volatile, wetting liquid in microgravity are studied using scaling and numerical techniques. The objective is to determine whether the thermocapillary and two-phase convection arising from thermodynamic nonequilibrium along the porous surfaces of spacecraft liquid acquisition devices could cause the retention failures observed with liquid hydrogen and heated vapor pressurant. Why these devices seem immune to retention loss when pressurized with heated helium or heated directly through the porous structure was also examined. Results show that highly wetting fluids exhibit large negative and positive dynamic pressure gradients towards the meniscus interline when superheated and subcooled, respectively. With superheating, the pressure variation and recoil force arising from liquid/vapor phase change exert the same influence on surface morphology and promote retention. With subcooling, however, the pressure distribution produces a suction that degrades mechanical equilibrium of the surface. This result indicates that thermocapillary-induced deformation arising from subcooling and condensation is the likely cause for retention loss. In addition, increasing the level of nonequilibrium by reducing accommodation coefficient suppresses deformation and explains why this failure mode does not occur in instances of direct screen heating or pressurization with a heated inert gas.

  20. Thermocapillary-driven motion of a sessile drop: effect of non-monotonic dependence of surface tension on temperature.

    PubMed

    Karapetsas, George; Sahu, Kirti Chandra; Sefiane, Khellil; Matar, Omar K

    2014-04-22

    We study the thermocapillary-driven spreading of a droplet on a nonuniformly heated substrate for fluids associated with a non-monotonic dependence of the surface tension on temperature. We use lubrication theory to derive an evolution equation for the interface that accounts for capillarity and thermocapillarity. The contact line singularity is relieved by using a slip model and a Cox-Voinov relation; the latter features equilibrium contact angles that vary depending on the substrate wettability, which, in turn, is linked to the local temperature. We simulate the spreading of droplets of fluids whose surface tension-temperature curves exhibit a turning point. For cases wherein these turning points correspond to minima, and when these minima are located within the droplet, then thermocapillary stresses drive rapid spreading away from the minima. This gives rise to a significant acceleration of the spreading whose characteristics resemble those associated with the "superspreading" of droplets on hydrophobic substrates. No such behavior is observed for cases in which the turning point corresponds to a surface tension maximum.

  1. Magnetic resonance elastography using an air ball-actuator.

    PubMed

    Numano, Tomokazu; Kawabata, Yoshihiko; Mizuhara, Kazuyuki; Washio, Toshikatsu; Nitta, Naotaka; Homma, Kazuhiro

    2013-07-01

    The purpose of this study was to develop a new technique for a powerful compact MR elastography (MRE) actuator based on a pneumatic ball-vibrator. This is a compact actuator that generates powerful centrifugal force vibrations via high speed revolutions of an internal ball using compressed air. This equipment is easy to handle due to its simple principles and structure. Vibration frequency and centrifugal force are freely adjustable via air pressure changes (air flow volume), and replacement of the internal ball. In order to achieve MRI compatibility, all parts were constructed from non-ferromagnetic materials. Vibration amplitudes (displacements) were measured optically by a laser displacement sensor. From a bench test of displacement, even though the vibration frequency increased, the amount of displacement did not decrease. An essential step in MRE is the generation of mechanical waves within tissue via an actuator, and MRE sequences are synchronized to several phase offsets of vibration. In this system, the phase offset was detected by a four-channel optical-fiber sensor, and it was used as an MRI trigger signal. In an agarose gel phantom experiment, this actuator was used to make an MR elastogram. This study shows that the use of a ball actuator for MRE is feasible.

  2. Reliability studies of electrostrictive actuators

    SciTech Connect

    Kumar, U.; Randall, M.; Hock, J.; Ritter, A.

    1994-12-31

    Multilayer electrostrictive actuators have numerous applications. Frequently these applications involve harsh mechanical and electrical loads. Furthermore, it is typically expected that these loads be incurred for >10{sup 8} repetitions (ideally for an infinite number of cycles). This paper describes the electrical and electro-mechanical analyses used at AVX Corporation to assess the performance characteristics of multilayer ceramic actuators, and addresses the effects of electro-mechanical cycling on selected device properties. In this study, lead magnesium niobate based multilayer electrostrictive actuators were subjected to a.c. fields at rated device voltage. Capacitance, dissipation factor, displacement vs. voltage, displacement hysteresis, electro-mechanical quality factor, and resonant frequency were monitored as a function of electro-mechanical cycling. The actuators exhibited highly stable displacements throughout the investigation. Changes observed in other properties indicate a possibility of using them as NDE techniques to assess the actuator reliability.

  3. Actuator-valve interface optimization

    SciTech Connect

    Burchett, O.L.; Jones, R.L.

    1986-01-01

    A computer code, Actuator Valve Response (AVR), has been developed to optimize the explosive actuator-valve interface parameters so that the valve plunger velocity is at a maximum when the plunger reaches the valve tubes. The code considers three forces to act on the valve plunger before the plunger reaches the valve tubes. These are the pressure force produced by the actuator, the shear force necessary to shear the seal disks on the actuator and the valve plunger, and the friction force caused by friction between the plunger and the plunger bore. The three forces are modeled by expressions that are explicitly functions of the plunger displacement. A particular actuator-valve combination was analyzed with the computer code AVR with four different combinations of valve plunger seal disk shear strength and initial friction force. (LEW)

  4. T-Slide Linear Actuators

    NASA Technical Reports Server (NTRS)

    Vranish, John

    2009-01-01

    T-slide linear actuators use gear bearing differential epicyclical transmissions (GBDETs) to directly drive a linear rack, which, in turn, performs the actuation. Conventional systems use a rotary power source in conjunction with a nut and screw to provide linear motion. Non-back-drive properties of GBDETs make the new actuator more direct and simpler. Versions of this approach will serve as a long-stroke, ultra-precision, position actuator for NASA science instruments, and as a rugged, linear actuator for NASA deployment duties. The T slide can operate effectively in the presence of side forces and torques. Versions of the actuator can perform ultra-precision positioning. A basic T-slide actuator is a long-stroke, rack-and-pinion linear actuator that, typically, consists of a T-slide, several idlers, a transmission to drive the slide (powered by an electric motor) and a housing that holds the entire assembly. The actuator is driven by gear action on its top surface, and is guided and constrained by gear-bearing idlers on its other two parallel surfaces. The geometry, implemented with gear-bearing technology, is particularly effective. An electronic motor operating through a GBDET can directly drive the T slide against large loads, as a rack and pinion linear actuator, with no break and no danger of back driving. The actuator drives the slide into position and stops. The slide holes position with power off and no brake, regardless of load. With the T slide configuration, this GBDET has an entire T-gear surface on which to operate. The GB idlers coupling the other two T slide parallel surfaces to their housing counterpart surfaces provide constraints in five degrees-of-freedom and rolling friction in the direction of actuation. Multiple GB idlers provide roller bearing strength sufficient to support efficient, rolling friction movement, even in the presence of large, resisting forces. T-slide actuators can be controlled using the combination of an off

  5. Nuclear radiation actuated valve

    DOEpatents

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  6. Ferroelectric actuator testing for deformable-mirror applications

    NASA Astrophysics Data System (ADS)

    Costello, Thomas P.; Schell, John D.

    1992-01-01

    Low voltage ferroelectric microdisplacement actuators are excellent candidates for use in zonal correction deformable mirrors (DMs) used in adaptive optical systems. Selection/specification is a critical process, however, since the device's electro-mechanical performance largely determines the mirror performance, and its electrical load characteristics strongly influence the cost of drive electronics. Several commercially available low voltage actuator devices were tested to establish a database for new DM designs. Both quasi-static and dynamic response characteristics were investigated. Test results are presented and conclusions are drawn concerning the merits of each device for typical deformable mirror applications.

  7. Gear-Driven Turnbuckle Actuator

    NASA Technical Reports Server (NTRS)

    Rivera, Ricky N.

    2010-01-01

    This actuator design allows the extension and contraction of turnbuckle assemblies. It can be operated manually or remotely, and is extremely compact. It is ideal for turnbuckles that are hard to reach by conventional tools. The tool assembly design solves the problem of making accurate adjustments to the variable geometry guide vanes without having to remove and reinstall the actuator system back on the engine. The actuator does this easily by adjusting the length of the turnbuckles while they are still attached to the engine.

  8. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  9. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  10. Heat Transfer by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    NASA Astrophysics Data System (ADS)

    Dreyer, Michael; Fuhrmann, Eckart

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The topic of this paper is to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat trans-fer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. The paper will deliver correlations for the effective contact angle and the heat transfer coefficient as a function of the relevant dimensionsless parameters as well as physical explanations for the observed behavior. The data will be used

  11. Large displacement vertical translational actuator based on piezoelectric thin films

    PubMed Central

    Qiu, Zhen; Pulskamp, Jeffrey S; Lin, Xianke; Rhee, Choong-Ho; Wang, Thomas; Polcawich, Ronald G; Oldham, Kenn

    2014-01-01

    A novel vertical translational microactuator based on thin-film piezoelectric actuation is presented, using a set of four compound bend-up/bend-down unimorphs to produce translational motion of a moving platform or stage. The actuation material is a chemical-solution deposited lead–zirconate–titanate (PZT) thin film. Prototype designs have shown as much as 120 μm of static displacement, with 80–90 μm displacements being typical, using four 920 μm long by 70 μm legs. Analytical models are presented that accurately describe nonlinear behavior in both static and dynamic operation of prototype stages when the dependence of piezoelectric coefficients on voltage is known. Resonance of the system is observed at a frequency of 200 Hz. The large displacement and high bandwidth of the actuators at low-voltage and low-power levels should make them useful to a variety of optical applications, including endoscopic microscopy. PMID:25506130

  12. Experimental characterization of sensor and actuator embedded in intelligent materials

    SciTech Connect

    Burford, M.K.; Murphy, K.A.; Claus, R.O.; Miller, M.S.; Grace, J.L.; Carman, G.P.

    1994-12-31

    The authors report results from a research program which investigating the feasibility of utilizing optical fiber sensors to experimentally verify actuator properties as well as to determine the nonlinear behavior of the actuators. The measurement of longitudinal strain by extrinsic Fabry-Perot interferometers (EFPI`s) is presented for three PZT/material configurations as the voltage applied to the specimen is ramped up and down under various loading and clamping conditions. These arrangements simulate an actuator (1) by itself, (2) embedded in a composite laminate, and (3) attached to a composite laminate. Loaded and unloaded conditions are tested for two configurations to determine the nonlinear effects of loads on the PZT material. Experimental results are presented.

  13. Cellulose based soft gel like actuator for reconfigurable lens array

    NASA Astrophysics Data System (ADS)

    Sadasivuni, Kishor Kumar; Yadav, Mithilesh; Gao, Xiaoyuan; Mun, Seongcheol; Kim, Jaehwan

    2014-04-01

    Reconfigurable lens is biomimetic as it mimics human eye and is a transparent actuating material that can change its curvature in the presence of external stimuli. Focus tunable, adaptive lenses provide several advantages over traditional lens assemblies in terms of compactness, cost, efficiency and flexibility. To further improve the simplicity and compact nature of adaptive lenses, we present lens system which makes use of an inline, transparent electro active polymer actuator. This paper reports the preliminary development we have achieved in reconfigurable lens systems made with cellulose nanocrystals (CNC) using the principle of Kerr effect. Preparation of the hydrophobic CNC solution as well as the optical properties of the lens has been discussed. This soft gel actuator was analyzed by measuring the electric birefringence in the pulse field of constant and sinusoidal voltage based on the use of modulation of elliptic light polarization.

  14. Enzyme actuated bioresponsive hydrogels

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew Nolan

    Bioresponsive hydrogels are emerging with technological significance in targeted drug delivery, biosensors and regenerative medicine. Conferred with the ability to respond to specific biologically derived stimuli, the design challenge is in effectively linking the conferred biospecificity with an engineered response tailored to the needs of a particular application. Moreover, the fundamental phenomena governing the response must support an appropriate dynamic range and limit of detection. The design of these systems is inherently complicated due to the high interdependency of the governing phenomena that guide the sensing, transduction, and the actuation response of hydrogels. To investigate the dynamics of these materials, model systems may be used which seek to interrogate the system dynamics by uni-variable experimentation and limit confounding phenomena such as: polymer-solute interactions, polymer swelling dynamics and biomolecular reaction-diffusion concerns. To this end, a model system, alpha-chymotrypsin (Cht) (a protease) and a cleavable peptide-chromogen (pro-drug) covalently incorporated into a hydrogel, was investigated to understand the mechanisms of covalent loading and release by enzymatic cleavage in bio-responsive delivery systems. Using EDC and Sulfo-NHS, terminal carboxyl groups of N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide, a cleavable chromogen, were conjugated to primary amines of a hydrated poly(HEMA)-based hydrogel. Hydrogel discs were incubated in buffered Cht causing enzyme-mediated cleavage of the peptide and concomitant release of the chromophore for monitoring. To investigate substrate loading and the effects of hydrogel morphology on the system, the concentration of the amino groups (5, 10, 20, and 30 mol%) and the cross-linked density (1, 5, 7, 9 and 12 mol%) were independently varied. Loading-Release Efficiency of the chromogen was shown to exhibit a positive relation to increasing amino groups (AEMA). The release rates demonstrated a

  15. Variable Valve Actuation

    SciTech Connect

    Jeffrey Gutterman; A. J. Lasley

    2008-08-31

    Many approaches exist to enable advanced mode, low temperature combustion systems for diesel engines - such as premixed charge compression ignition (PCCI), Homogeneous Charge Compression Ignition (HCCI) or other HCCI-like combustion modes. The fuel properties and the quantity, distribution and temperature profile of air, fuel and residual fraction in the cylinder can have a marked effect on the heat release rate and combustion phasing. Figure 1 shows that a systems approach is required for HCCI-like combustion. While the exact requirements remain unclear (and will vary depending on fuel, engine size and application), some form of substantially variable valve actuation is a likely element in such a system. Variable valve actuation, for both intake and exhaust valve events, is a potent tool for controlling the parameters that are critical to HCCI-like combustion and expanding its operational range. Additionally, VVA can be used to optimize the combustion process as well as exhaust temperatures and impact the after treatment system requirements and its associated cost. Delphi Corporation has major manufacturing and product development and applied R&D expertise in the valve train area. Historical R&D experience includes the development of fully variable electro-hydraulic valve train on research engines as well as several generations of mechanical VVA for gasoline systems. This experience has enabled us to evaluate various implementations and determine the strengths and weaknesses of each. While a fully variable electro-hydraulic valve train system might be the 'ideal' solution technically for maximum flexibility in the timing and control of the valve events, its complexity, associated costs, and high power consumption make its implementation on low cost high volume applications unlikely. Conversely, a simple mechanical system might be a low cost solution but not deliver the flexibility required for HCCI operation. After modeling more than 200 variations of the

  16. Nanolaminate Mirrors With "Piston" Figure-Control Actuators

    NASA Technical Reports Server (NTRS)

    Lowman, Andrew; Redding, David; Hickey, Gregory; Knight, Jennifer; Moynihan, Philip; Lih, Shyh0Shiuh; Barbee, Troy

    2003-01-01

    Efforts are under way to develop a special class of thin-shell curved mirrors for high-resolution imaging in visible and infrared light in a variety of terrestrial or extraterrestrial applications. These mirrors can have diameters of the order of a meter and include metallic film reflectors on nanolaminate substrates supported by multiple distributed piezoceramic gpiston h-type actuators for micron-level figure control. Whereas conventional glass mirrors of equivalent size and precision have areal mass densities between 50 and 150 kg/sq m, the nanolaminate mirrors, including not only the reflector/ shell portions but also the actuators and the backing structures needed to react the actuation forces, would have areal mass densities that may approach .5 kg/m2. Moreover, whereas fabrication of a conventional glass mirror of equivalent precision takes several years, the reflector/shell portion of a nanolaminate mirror can be fabricated in less than a week, and its actuation system can be fabricated in 1 to 2 months. The engineering of these mirrors involves a fusion of the technological heritage of multisegmented adaptive optics and deformable mirrors with more recent advances in metallic nanolaminates and in mathematical modeling of the deflections of thin, curved shells in response to displacements by multiple, distributed actuators. Because a nanolaminate shell is of the order of 10 times as strong as an otherwise identical shell made of a single, high-strength, non-nanolaminate metal suitable for mirror use, a nanolaminate mirror can be made very thin (typically between 100 and 150 m from the back of the nanolaminate substrate to the front reflecting surface). The thinness and strength of the nanolaminate are what make it possible to use distributed gpiston h-type actuators for surface figure control with minimal local concentrated distortion (called print-through in the art) at the actuation points.

  17. Firewater system inadvertent actuation frequencies

    SciTech Connect

    Schroeder, J.A.; Eide, S.A.

    1993-04-01

    This paper presents some recommended generic values for fire protection system inadvertent actuation frequencies. The frequencies are based on actual data from Department of Energy and commercial reactor plant facilities.

  18. Firewater system inadvertent actuation frequencies

    SciTech Connect

    Schroeder, J.A. ); Eide, S.A. )

    1993-01-01

    This paper presents some recommended generic values for fire protection system inadvertent actuation frequencies. The frequencies are based on actual data from Department of Energy and commercial reactor plant facilities.

  19. Hydraulically actuated well shifting tool

    SciTech Connect

    Roth, B.A.

    1992-10-20

    This patent describes a hydraulically actuated shifting tool for actuating a sliding member in a well tool. It comprises: a housing having a hydraulic fluid bore therein; shifting dog means positioned on the housing for movement away and toward the housing; locking dog means positioned on the housing for movement away and toward the body; shifting dog hydraulic actuating means in fluid communication with the bore for causing engagement of the shifting dogs with the sliding member; locking dog hydraulic actuating means in communication with the bore for causing engagement of the locking dogs with the locking means; and hydraulic shifting means in communication with the bore for causing relative movement between the shifting dog means and the locking dog means for shifting the sliding sleeve.

  20. Magnetostrictive Actuators For Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin P.

    1996-01-01

    Linear-translation motors containing magnetostrictive actuator elements proposed for use in making fine position adjustments on scientific instruments at temperatures from near absolute zero to room temperature. Actuators produce small increments of linear motion and operate in "set-and-forget" mode in sense they automatically lock themselves against motion when power not applied. Do not consume or dissipate power when stationary. Proposed linear-translation motors also made to produce large maximum displacements.

  1. Sensors, actuators, and smart materials

    NASA Astrophysics Data System (ADS)

    Troiler-McKinstry, S.; Newnham, R. E.

    1993-04-01

    Electroceramic materials are presently noted to have a wide array of sensing and actuating functions which can be incorporated into smart-material designs. The sensor types extend to temperature, piezoelectricity and piezoresistivity, and the presence of oxygen. Attention is given to the prospects for developing composite smart materials that encompass various sensing and actuating functions; these may ultimately reach a level of complexity and sophistication that may be termed 'biomimetric' in its approximation to the functions of the living tissues of organisms.

  2. Development and characterization of high-frequency resonance-enhanced microjet actuators for control of high-speed jets

    NASA Astrophysics Data System (ADS)

    Upadhyay, Puja; Gustavsson, Jonas P. R.; Alvi, Farrukh S.

    2016-05-01

    For flow control applications requiring high-frequency excitation, very few actuators have sufficient dynamic response and/or control authority to be useful in high-speed flows. Due to this reason, experiments involving high-frequency excitation, attempted in the past, have been limited to either low-frequency actuation with reasonable control authority or moderate-frequency actuation with limited control authority. The current work expands on the previous development of the resonance-enhanced microactuators to design actuators that are capable of producing high-amplitude pulses at much higher frequencies [{O} (10 kHz)]. Using lumped element modeling, two actuators have been designed with nominal frequencies of 20 and 50 kHz. Extensive benchtop characterization using acoustic measurements as well as optical diagnostics using a high-resolution micro-schlieren setup is employed to characterize the dynamic response of these actuators. The actuators performed at a range of frequencies, 20.3-27.8 and 54.8-78.2 kHz, respectively. In addition to providing information on the actuator flow physics and performance at various operating conditions, this study serves to develop easy-to-integrate high-frequency actuators for active control of high-speed jets. Preliminary testing of these actuators is performed by implementing the 20-kHz actuator on a Mach 0.9 free jet flow field for noise reduction. Acoustic measurements in the jet near field demonstrate attenuation of radiated noise at all observation angles.

  3. Large Scale Magnetostrictive Valve Actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  4. Explosive actuated valve

    DOEpatents

    Byrne, Kenneth G.

    1983-01-01

    1. A device of the character described comprising the combination of a housing having an elongate bore and including a shoulder extending inwardly into said bore, a single elongate movable plunger disposed in said bore including an outwardly extending flange adjacent one end thereof overlying said shoulder, normally open conduit means having an inlet and an outlet perpendicularly piercing said housing intermediate said shoulder and said flange and including an intermediate portion intersecting and normally openly communicating with said bore at said shoulder, normally closed conduit means piercing said housing and intersecting said bore at a location spaced from said normally open conduit means, said elongate plunger including a shearing edge adjacent the other end thereof normally disposed intermediate both of said conduit means and overlying a portion of said normally closed conduit means, a deformable member carried by said plunger intermediate said flange and said shoulder and normally spaced from and overlying the intermediate portion of said normally open conduit means, and means on the housing communicating with the bore to retain an explosive actuator for moving said plunger to force the deformable member against the shoulder and extrude a portion of the deformable member out of said bore into portions of the normally open conduit means for plugging the same and to effect the opening of said normally closed conduit means by the plunger shearing edge substantially concomitantly with the plugging of the normally open conduit means.

  5. Quick actuating closure

    NASA Technical Reports Server (NTRS)

    White, III, Dorsey E. (Inventor); Updike, deceased, Benjamin T. (Inventor); Allred, Johnny W. (Inventor)

    1989-01-01

    A quick actuating closure for a pressure vessel 80 in which a wedge ring 30 with a conical outer surface 31 is moved forward to force shear blocks 40, with conical inner surfaces 41, radially outward to lock an end closure plug 70 within an opening 81 in the pressure vessel 80. A seal ring 60 and a preload ramp 50 sit between the shear blocks 40 and the end closure plug 70 to provide a backup sealing capability. Conical surfaces 44 and 55 of the preload ramp 50 and the shear blocks 40 interact to force the seal ring 60 into shoulders 73 and 85 in the end closure plug 70 and opening 81 to form a tight seal. The end closure plug 70 is unlocked by moving the wedge ring 30 rearward, which causes T-bars 32 of the wedge ring 30 riding within T -slots 42 of the shear blocks 40 to force them radially inward. The end closure plug 70 is then removed, allowing access to the interior of the pressure vessel 80.

  6. Downhole hydraulic actuated pump

    SciTech Connect

    Roeder, G.K.

    1988-09-06

    This patent describes a downhole hydraulically actuated pump assembly of the type having a main housing within which an engine and pump is enclosed; a connecting rod, an engine piston, a pump plunger, means by which the engine and connecting rod reciprocate the pump plunger and thereby produces fluid; the main housing has a lower end having a formation fluid inlet; and upper end having a power fluid inlet; and, a produced fluid outlet; the plunger divides one marginal end of the housing into upper and lower production chambers; the lower end of the connecting rod is hollow and extends through the plunger into fluid communication with the formation fluid inlet to provide a source of formation fluid for the upper and lower production chambers; a traveling value assembly contained within the plunger and arranged to transfer formation fluid from the hollow rod, through the plunger, and into the upper and lower production chambers, respectively, as the plunger upstrokes and downstrokes; produced fluid valve means by which fluid flows from the upper and lower production chambers and through the produced fluid outlet.

  7. Multiple switch actuator

    DOEpatents

    Beyer, Edward T.

    1976-01-06

    The present invention relates to switches and switch actuating devices to be operated for purposes of arming a bomb or other missile as it is dropped or released from an aircraft. The particular bomb or missile in which this invention is applied is one in which there is a plurality of circuits which are to be armed by the closing of switches upon dropping or releasing of the bomb. The operation of the switches to closed position is normally accomplished by means of a pull-out wire; that is, a wire which is withdrawn from the bomb or missile at the time of release of the bomb, one end of the wire being attached to the aircraft. The conditions to be met are that the arming switches must be positively and surely maintained in open position until the bomb is released and the arming action is effected. The action of the pull-out wire in achieving the arming action must be sure and positive with minimum danger of malfunctioning, jamming or binding.

  8. Remobilizing the Interfaces of Thermocapillary Driven Bubbles Retarded by the Adsorption of a Surfactant Impurity on the Bubble Surface

    NASA Technical Reports Server (NTRS)

    Palaparthi, Ravi; Maldarelli, Charles; Papageorgiou, Dimitri; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    Thermocapillary migration is a method for moving bubbles in space in the absence of buoyancy. A temperature gradient is applied to the continuous phase in which a bubble is situated, and the applied gradient impressed on the bubble surface causes one pole of the drop to be cooler than the opposite pole. As the surface tension is a decreasing function of temperature, the cooler pole pulls at the warmer pole, creating a flow which propels the bubble in the direction of the warmer fluid. A major impediment to the practical use of thermocapillarity to direct the movement of bubbles in space is the fact that surfactant impurities which are unavoidably present in the continuous phase can significantly reduce the migration velocity. A surfactant impurity adsorbed onto the bubble interface is swept to the trailing end of the bubble. When bulk concentrations are low (which is the case with an impurity), diffusion of surfactant to the front end is slow relative to convection, and surfactant collects at the back end of the bubble. Collection at the back lowers the surface tension relative to the front end setting up a reverse tension gradient. For buoyancy driven bubble motions in the absence of a thermocapillarity, the tension gradient opposes the surface flow, and reduces the surface and terminal velocities (the interface becomes more solid-like). When thermocapillary forces are present, the reverse tension gradient set up by the surfactant accumulation reduces the temperature tension gradient, and decreases to near zero the thermocapillary velocity. The objective of our research is to develop a method for enhancing the thermocapillary migration of bubbles which have been retarded by the adsorption onto the bubble surface of a surfactant impurity, Our remobilization theory proposes to use surfactant molecules which kinetically rapidly exchange between the bulk and the surface and are at high bulk concentrations. Because the remobilizing surfactant is present at much higher

  9. Remobilizing the Interface of Thermocapillary Driven Bubbles Retarded By the Adsorption of a Surfactant Impurity on the Bubble Surface

    NASA Technical Reports Server (NTRS)

    Palaparthi, Ravi; Maldarelli, Charles; Papageorgiou, Dimitri; Singh, Bhim (Technical Monitor)

    2001-01-01

    Thermocapillary migration is a method for moving bubbles in space in the absence of buoyancy. A temperature gradient is the continuous phase in which a bubble is situated, and the applied gradient impressed on the bubble surface causes one pole of the drop to be cooler than the opposite pole. As the surface tension is a decreasing function of temperature, the cooler pole pulls at the warmer pole, creating a flow that propels the bubble in the direction of the warmer fluid. A major impediment to the practical use of thermocapillary to direct the movement of bubbles in space is the fact that surfactant impurities, which are unavoidably present in the continuous phase, can significantly reduce the migration velocity. A surfactant impurity adsorbed onto the bubble interface is swept to the trailing end of the bubble. When bulk concentrations are low (which is the case with an impurity), diffusion of surfactant to the front end is slow relative to convection, and surfactant collects at the back end of the bubble. Collection at the back lowers the surface tension relative to the front end setting up a reverse tension gradient. (This can also be the case if kinetic desorption of surfactant at the back end of the bubble is much slower than convection.) For buoyancy driven bubble motions in the absence of a thermocapillarity, the tension gradient opposes the surface flow, and reduces the surface and terminal velocities (the interface becomes more solid-like and bubbles translate as solid particles). When thermocapillary forces are present, the reverse tension gradient set up by the surfactant accumulation reduces the temperature-induced tension gradient, and can decrease to near zero the bubble's thermocapillary velocity. The objective of our research is to develop a method for enhancing the thermocapillary migration of bubbles which have be retarded by the adsorption onto the bubble surface of a surfactant impurity. Our remobilization theory proposes to use surfactant

  10. Remobilizing the Interface of Thermocapillary Driven Bubbles Retarded By the Adsorption of a Surfactant Impurity on the Bubble Surface

    NASA Technical Reports Server (NTRS)

    Palaparthi, Ravi; Maldarelli, Charles; Papageorgiou, Dimitri; Singh, Bhim (Technical Monitor)

    2001-01-01

    Thermocapillary migration is a method for moving bubbles in space in the absence of buoyancy. A temperature gradient is the continuous phase in which a bubble is situated, and the applied gradient impressed on the bubble surface causes one pole of the drop to be cooler than the opposite pole. As the surface tension is a decreasing function of temperature, the cooler pole pulls at the warmer pole, creating a flow that propels the bubble in the direction of the warmer fluid. A major impediment to the practical use of thermocapillary to direct the movement of bubbles in space is the fact that surfactant impurities, which are unavoidably present in the continuous phase, can significantly reduce the migration velocity. A surfactant impurity adsorbed onto the bubble interface is swept to the trailing end of the bubble. When bulk concentrations are low (which is the case with an impurity), diffusion of surfactant to the front end is slow relative to convection, and surfactant collects at the back end of the bubble. Collection at the back lowers the surface tension relative to the front end setting up a reverse tension gradient. (This can also be the case if kinetic desorption of surfactant at the back end of the bubble is much slower than convection.) For buoyancy driven bubble motions in the absence of a thermocapillarity, the tension gradient opposes the surface flow, and reduces the surface and terminal velocities (the interface becomes more solid-like and bubbles translate as solid particles). When thermocapillary forces are present, the reverse tension gradient set up by the surfactant accumulation reduces the temperature-induced tension gradient, and can decrease to near zero the bubble's thermocapillary velocity. The objective of our research is to develop a method for enhancing the thermocapillary migration of bubbles which have be retarded by the adsorption onto the bubble surface of a surfactant impurity. Our remobilization theory proposes to use surfactant

  11. Stable electroosmotically driven actuators

    NASA Astrophysics Data System (ADS)

    Sritharan, Deepa; Motsebo, Mylene; Tumbic, Julia; Smela, Elisabeth

    2013-04-01

    We have previously presented "nastic" actuators based on electroosmotic (EO) pumping of fluid in microchannels using high electric fields for potential application in soft robotics. In this work we address two challenges facing this technology: applying EO to meso-scale devices and the stability of the pumping fluid. The hydraulic pressure achieved by EO increases with as 1/d2, where d is the depth of the microchannel, but the flow rate (which determines the stroke and the speed) is proportional to nd, where n is the number of channels. Therefore to get high force and high stroke the device requires a large number of narrow channels, which is not readily achievable using standard microfabrication techniques. Furthermore, for soft robotics the structure must be soft. In this work we present a method of fabricating a three-dimensional porous elastomer to serve as the array of channels based on a sacrificial sugar scaffold. We demonstrate the concept by fabricating small pumps. The flexible devices were made from polydimethylsiloxane (PDMS) and comprise the 3D porous elastomer flanked on either side by reservoirs containing electrodes. The second issue addressed here involves the pumping fluid. Typically, water is used for EO, but water undergoes electrolysis even at low voltages. Since EO takes place at kV, these systems must be open to release the gases. We have recently reported that propylene carbonate (PC) is pumped at a comparable rate as water and is also stable for over 30 min at 8 kV. Here we show that PC is, however, degraded by moisture, so future EO systems must prevent water from reaching the PC.

  12. The LDCM actuator for vibration suppression

    NASA Technical Reports Server (NTRS)

    Ide, Eric N.; Lindner, Douglas K.

    1988-01-01

    A linear dc motor (LDCM) has been proposed as an actuator for the COFS I mast and the COFS program ground test Mini-Mast. The basic principles of operation of the LDCM as an actuator for vibration suppression in large flexible structures are reviewed. Because of force and stroke limitations, control loops are required to stabilize the actuator, which results in a non-standard actuator-plant configuration. A simulation model that includes LDCM actuator control loops and a finite element model of the Mast is described, with simulation results showing the excitation capability of the actuator.

  13. Actuator selection for large space structures

    NASA Technical Reports Server (NTRS)

    Reddy, A. S. S. R.; Ruan, Mifang

    1990-01-01

    The paper discusses the process of selecting the actuator locations and the determination of the required number of actuators for large space structures. The selection is based on the definitions of the degree of controllability, the independence of actuators, and the effectiveness of the individual actuators. An algorithm is developed that can be used for the selection of the essential number of actuators and for finding some defects of the system, such as the insuffiency of the available actuator locations for effective control of the whole system or a too crowded frequency distribution. The efficiency of the algorithm was demonstrated by an application to the Space Station.

  14. Stress measurements of planar dielectric elastomer actuators.

    PubMed

    Osmani, Bekim; Aeby, Elise A; Müller, Bert

    2016-05-01

    Dielectric elastomer actuator (DEA) micro- and nano-structures are referred to artificial muscles because of their specific continuous power and adequate time response. The bending measurement of an asymmetric, planar DEA is described. The asymmetric cantilevers consist of 1 or 5 μm-thin DEAs deposited on polyethylene naphthalate (PEN) substrates 16, 25, 38, or 50 μm thick. The application of a voltage to the DEA electrodes generates an electrostatic pressure in the sandwiched silicone elastomer layer, which causes the underlying PEN substrate to bend. Optical beam deflection enables the detection of the bending angle vs. applied voltage. Bending radii as large as 850 m were reproducibly detected. DEA tests with electric fields of up to 80 V/μm showed limitations in electrode's conductivity and structure failures. The actuation measurement is essential for the quantitative characterization of nanometer-thin, low-voltage, single- and multi-layer DEAs, as foreseen for artificial sphincters to efficiently treat severe urinary and fecal incontinence. PMID:27250436

  15. NIRCam pupil imaging lens actuator assembly

    NASA Astrophysics Data System (ADS)

    Clark, Charles S.

    2009-08-01

    The near infrared camera (NIRCam) is one of four science instruments installed on the integrated science instrument module (ISIM) of NASA's James Webb Space Telescope (JWST) which is intended to conduct scientific observations over a five-year mission lifetime. NIRCam's requirements include operation at 37 Kelvin to produce high-resolution images in two-wave bands encompassing the range from 0.6 to 5 microns. The NIRCam instrument is also required to provide a means of imaging the primary mirror for ground testing, instrument commissioning, and diagnostics which have resulted in the development of the pupil imaging lens actuator assembly. This paper discusses the development of the pupil imaging lens (PIL) assembly, including the driving requirements for the PIL assembly, and how the design supports these conditions. Some of the design features included in the PIL assembly are the titanium isothermal optical flexure mounts with multi-axis alignment flexures, a counterbalanced direct drive rotary actuator, and a fail-safe retraction system with magnetic stowage stop. The paper also discusses how the PIL assembly was successfully tested to the demanding requirements typical for cryogenic instruments.

  16. Magnetically actuated liquid crystals.

    PubMed

    Wang, Mingsheng; He, Le; Zorba, Serkan; Yin, Yadong

    2014-07-01

    Ferrimagnetic inorganic nanorods have been used as building blocks to construct liquid crystals with optical properties that can be instantly and reversibly controlled by manipulating the nanorod orientation using considerably weak external magnetic fields (1 mT). Under an alternating magnetic field, they exhibit an optical switching frequency above 100 Hz, which is comparable to the performance of commercial liquid crystals based on electrical switching. By combining magnetic alignment and lithography processes, it is also possible to create patterns of different polarizations in a thin composite film and control over the transmittance of light in particular areas. Developing such magnetically responsive liquid crystals opens the door toward various applications, which may benefit from the instantaneous and contactless nature of magnetic manipulation.

  17. Preliminary study, analysis and design for a power switch for digital engine actuators

    NASA Technical Reports Server (NTRS)

    Beattie, E. C.; Zickwolf, H. C., Jr.

    1979-01-01

    Innovative control configurations using high temperature switches to operate actuator driving solenoids were studied. The impact on engine control system life cycle costs and reliability of electronic control and (ECU) heat dissipation due to power conditioning and interface drivers were addressed. Various power supply and actuation schemes were investigated, including optical signal transmission and electronics on the actuator, engine driven alternator, and inside the ECU. The use of a switching shunt power conditioner results in the most significant decrease in heat dissipation within the ECU. No overall control system reliability improvement is projected by the use of remote high temperature switches for solenoid drivers.

  18. Characterization of electrostatic glass actuators

    NASA Astrophysics Data System (ADS)

    Moser, R.; Wüthrich, R.; Sache, L.; Higuchi, T.; Bleuler, H.

    2003-06-01

    Electrostatic glass actuators are a promising concept for various applications. The use of the interaction between glassy substances and electrostatic fields allows synchronous propulsion akin to the electret actuator. Even though some properties of electrostatic glass motors have been observed and described, a characterization is still missing. The authors would like to present the experimental work leading to the determination of the optimal glass blend and to the optimal electrode pattern in order to maximize the exploitable forces. An analytical model is also presented, satisfactorily close to the measured data. These measurements and models constitute a tool to design electrostatic glass actuators such as, for example, a miniature disk drive, which is presented as one of several promising applications.

  19. Wellhead with hydraulic pump actuator

    SciTech Connect

    Brown, H.D.; Brown, M.A.; Rohling, L.J.

    1984-07-31

    A wellhead assembly especially suited for oil wells has a wide working pressure range and employs three components which fit together to seal the well casing, hold the tubing against high wellhead pressures, and provide a connection to the tubing through which the sucker rods are operated. The primary casing seal is formed by the mating contact of metal surfaces that are not subject to deterioration. The actuator for the subsurface pump is a vertically disposed hydraulic cylinder unit aligned with the sucker rods and forming the uppermost section of an elongated cylindrical housing, which also has a lowermost section on the wellhead that provides the outlets for the fluid pumped from the well, and an intermediate, control section that contains a spool valve for controlling the hydraulic actuator. The spool is shifted by the piston and rod of the hydraulic actuator at the upper and lower limits of their stroke to thereby reciprocate the sucker rods and operate the subsurface pump.

  20. A Parylene Bellows Electrochemical Actuator

    PubMed Central

    Li, Po-Ying; Sheybani, Roya; Gutierrez, Christian A.; Kuo, Jonathan T. W.; Meng, Ellis

    2011-01-01

    We present the first electrochemical actuator with Parylene bellows for large-deflection operation. The bellows diaphragm was fabricated using a polyethylene-glycol-based sacrificial molding technique followed by coating in Parylene C. Bellows were mechanically characterized and integrated with a pair of interdigitated electrodes to form an electrochemical actuator that is suitable for low-power pumping of fluids. Pump performance (gas generation rate and pump efficiency) was optimized through a careful examination of geometrical factors. Overall, a maximum pump efficiency of 90% was achieved in the case of electroplated electrodes, and a deflection of over 1.5 mm was demonstrated. Real-time wireless operation was achieved. The complete fabrication process and the materials used in this actuator are bio-compatible, which makes it suitable for biological and medical applications. PMID:21318081

  1. Electromechanical propellant control system actuator

    NASA Technical Reports Server (NTRS)

    Myers, W. Neill; Weir, Rae Ann

    1990-01-01

    New control mechanism technologies are currently being sought to provide alternatives to hydraulic actuation systems. The Propulsion Laboratory at Marshall Space Flight Center (MSFC) is involved in the development of electromechanical actuators (EMA's) for this purpose. Through this effort, an in-house designed electromechanical propellant valve actuator has been assembled and is presently being evaluated. This evaluation will allow performance comparisons between EMA and hydraulics systems. The in-house design consists of the following hardware: a three-phase brushless motor, a harmonic drive, and an output spline which will mate with current Space Shuttle Main Engine (SSME) propellant control valves. A resolver and associated electronics supply position feedback for the EMA. System control is provided by a solid-state electronic controller and power supply. Frequency response testing has been performed with further testing planned as hardware and test facilities become available.

  2. Uncertainty models for control of distributed actuator and sensor arrays

    NASA Astrophysics Data System (ADS)

    Gorinevsky, Dimitry; Stein, Gunter

    2000-06-01

    This paper considers control analysis approaches for systems incorporating large actuator and sensor arrays. Applications of such systems are increasingly common because of the development of micro-systems technology. Many imaging systems have large one-dimensional or two-dimensional arrays of actuators. This includes RF or optical reflectors, display, printing, and other systems. Signal processing for large sensor arrays has well-established theory and applications, especially in imaging. At the same time, approaches to control of large distributed actuator and sensor arrays are much less developed. This paper considers one of the fundamental issues in design and analysis of large actuator and sensor array systems. The key notion in modern feedback control theory is the notion of uncertainty and associated notion of control robustness to this uncertainty. In control of dynamical systems evolving in time, structured uncertainty models are commonly accepted for theoretical analysis (Structured Singular Value or (mu) -analysis) and practical control design. In control of spatially distributed processes, there is a need to establish appropriate models of the uncertainty of the system spatial and dynamical characteristics. This paper discusses an extension of structured uncertainty models towards controlled systems with spatially distributed arrays of actuators and sensors. Unlike a dynamical uncertainty, spatial uncertainty is not casual in the spatial coordinate. This leads to related but different uncertainty models in the two cases. For spatial coordinates, boundary effects also contribute to the modeling error. By using the discussed uncertainty models, the existing methods of robust control design and analysis can be extended towards spatially distributed systems. As an illustrative example, this paper demonstrates an application of the developed approach to a one-dimensional model of a flexible reflector with a distrusted actuator array for shape control.

  3. Electrostatic Discharge (ESD) Protection for a Laser Diode Ignited Actuator

    SciTech Connect

    SALAS, FREDERICK J.; SANCHEZ, DANIEL H.; WEINLEIN, JOHN HARVEY

    2003-06-01

    The use of laser diodes in devices to ignite pyrotechnics provides unique new capabilities including the elimination of electrostatic discharge (ESD) pulses entering the device. The Faraday cage formed by the construction of these devices removes the concern of inadvertent ignition of the energetic material. However, the laser diode itself can be damaged by ESD pulses, therefore, to enhance reliability, some protection of the laser diode is necessary. The development of the MC4612 Optical Actuator has included a circuit to protect the laser diode from ESD pulses including the ''Fisher'' severe human body ESD model. The MC4612 uses a laser diode and is designed to replace existing hot-wire actuators. Optical energy from a laser diode, instead of electrical energy, is used to ignite the pyrotechnic. The protection circuit is described along with a discussion of how the circuit design addresses and circumvents the historic 1Amp/1Watt requirement that has been applicable to hot-wire devices.

  4. Fast-acting valve actuator

    DOEpatents

    Cho, Nakwon

    1980-01-01

    A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.

  5. Compound semiconductor optical waveguide switch

    DOEpatents

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  6. Electrodynamic actuators for rocket engine valves

    NASA Technical Reports Server (NTRS)

    Fiet, O.; Doshi, D.

    1972-01-01

    Actuators, employed in acoustic loudspeakers, operate liquid rocket engine valves by replacing light paper cones with flexible metal diaphragms. Comparative analysis indicates better response time than solenoid actuators, and improved service life and reliability.

  7. Method and apparatus for actuating vehicle transmission

    SciTech Connect

    Ishida, H.; Ishihara, M.; Uriuhara, M.

    1988-11-15

    This patent describes a method of actuating a vehicle parallel-gear transmission having gears and an internal lever for moving shift blocks connected with shift rods and shift forks for changing gear ratios of the transmission, a hydraulically controlled select actuator operatively connected to the internal lever for moving the internal lever in a select direction, a hydraulically controlled shift actuator operatively connected to the internal lever for moving the internal lever in a shift direction substantially normal to the select direction, a hydraulically controlled clutch actuator for connecting and disconnecting a clutch of the transmission, and a common fluid discharge passage connected to fluid discharge ports of the select and shift actuators and a fluid discharge port of the clutch actuator, the select and shift actuators being alternately actuatable to effect a gear changing operation.

  8. Propellant-powered actuator for gas generators

    NASA Technical Reports Server (NTRS)

    Makowski, M. J.

    1972-01-01

    Hydrazine operated monopropellant generators are used for spacecraft rocket engines and propellant pressurization systems. Measured work output of monopropellant actuators compares favorably with output of squib-type actuators.

  9. New electrode materials for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Lam, Tuling; Biggs, James; Hu, Liangbing; Yu, Zhibin; Ha, Soonmok; Xi, Dongjuan; Senesky, Matthew K.; Grüner, George; Pei, Qibing

    2007-04-01

    Dielectric elastomer actuators exert strain due to an applied electric field. With advantageous properties such as high efficiency and their light weight, these actuators are attractive for a variety of applications ranging from biomimetic robots, medical prosthetics to conventional pumps and valves. The performance and reliability however, are limited by dielectric breakdown which occurs primarily from localized defects inherently present in the polymer film during actuation. These defects lead to electric arcing, causing a short circuit that shuts down the entire actuator and can lead to actuator failure at fields significantly lower than the intrinsic strength of the material. This limitation is particularly a problem in actuators using large-area films. Our recent studies have shown that the gap between the strength of the intrinsic material and the strength of large-area actuators can be reduced by electrically isolating defects in the dielectric film. As a result, the performance and reliability of dielectric elastomers actuators can be substantially improved.

  10. MEMS Actuators for Improved Performance and Durability

    NASA Astrophysics Data System (ADS)

    Yearsley, James M.

    Micro-ElectroMechanical Systems (MEMS) devices take advantage of force-scaling at length scales smaller than a millimeter to sense and interact with directly with phenomena and targets at the microscale. MEMS sensors found in everyday devices like cell-phones and cars include accelerometers, gyros, pressure sensors, and magnetic sensors. MEMS actuators generally serve more application specific roles including micro- and nano-tweezers used for single cell manipulation, optical switching and alignment components, and micro combustion engines for high energy density power generation. MEMS rotary motors are actuators that translate an electric drive signal into rotational motion and can serve as rate calibration inputs for gyros, stages for optical components, mixing devices for micro-fluidics, etc. Existing rotary micromotors suffer from friction and wear issues that affect lifetime and performance. Attempts to alleviate friction effects include surface treatment, magnetic and electrostatic levitation, pressurized gas bearings, and micro-ball bearings. The present work demonstrates a droplet based liquid bearing supporting a rotary micromotor that improves the operating characteristics of MEMS rotary motors. The liquid bearing provides wear-free, low-friction, passive alignment between the rotor and stator. Droplets are positioned relative to the rotor and stator through patterned superhydrophobic and hydrophilic surface coatings. The liquid bearing consists of a central droplet that acts as the motor shaft, providing axial alignment between rotor and stator, and satellite droplets, analogous to ball-bearings, that provide tip and tilt stable operation. The liquid bearing friction performance is characterized through measurement of the rotational drag coefficient and minimum starting torque due to stiction and geometric effects. Bearing operational performance is further characterized by modeling and measuring stiffness, environmental survivability, and high

  11. Distributed structural control using multilayered piezoelectric actuators

    NASA Technical Reports Server (NTRS)

    Cudney, Harley H.; Inman, Daniel J.; Oshman, Yaakov

    1990-01-01

    A method of segmenting piezoelectric sensors and actuators is proposed which can preclude the currently experienced cancelation of sensor signals, or the reduction of actuator effectiveness, due to the integration of the property undergoing measurement or control. The segmentation method is demonstrated by a model developed for beam structures, to which multiple layers of piezoelectric materials are attached. A numerical study is undertaken of increasing active and passive damping of a beam using the segmented sensors and actuators over unsegmented sensors and actuators.

  12. Piezoelectric Actuators On A Cold Finger

    NASA Technical Reports Server (NTRS)

    Kuo, Chin-Po; Garba, John A.; Glaser, Robert J.

    1995-01-01

    Developmental system for active suppression of vibrations of cold finger includes three piezoelectric actuators bonded to outer surface. Actuators used to suppress longitudinal and lateral vibrations of upper end of cold finger by applying opposing vibrations. Cold finger in question is part of a cryogenic system associated with an infrared imaging detector. When fully developed, system would be feedback sensor/control/actuator system automatically adapting to changing vibrational environment and suppresses pressure-induced vibrations by imposing compensatory vibrations via actuators.

  13. Carbon nanotube-polymer composite actuators

    DOEpatents

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  14. Electrically actuated liquid iris.

    PubMed

    Xu, Miao; Ren, Hongwen; Lin, Yi-Hsin

    2015-03-01

    We report an adaptive iris using dielectric liquids and a radial-interdigitated electrode. A black liquid is confined by a circular gasket with a donut shape. The surrounding of the black liquid is filled with an immiscible liquid. In the relaxing state, the black liquid obtains the largest clear aperture. By applying a voltage, the surface of the black liquid is stretched by the generated dielectric force, resulting in a reduction of its aperture. For the demonstrated iris, the diameter of the aperture can be changed from ∼4.7  mm to ∼1.2  mm when the voltage is applied from 0 to 70  V(rms). The aperture ratio is ∼94%. Owing to the radial-interdigitated electrode, the aperture size of the iris can be effectively switched with a reasonably fast response time. The optical switch is polarization-insensitive. The potential applications of our iris are light shutters, optical attenuators, biomimicry, and wearable devices. PMID:25723444

  15. Tilt/Tip/Piston Manipulator with Base-Mounted Actuators

    NASA Technical Reports Server (NTRS)

    Tahmasebi, Farhad

    2006-01-01

    A proposed three-degree-of-freedom (tilt/tip/piston) manipulator, suitable for aligning an optical or mechanical component, would offer several advantages over prior such manipulators: Unlike in some other manipulators, no actuator would support the weight of another actuator: All of the actuators would be mounted on a base. Hence, there would be less manipulated weight. The basic geometry of the manipulator would afford mechanical advantage: that is, actuator motions would be larger than the motions they produce in the manipulated object. Mechanical advantage inherently increases the accuracy and resolution of manipulation. Unlike in some other manipulators, it would not be necessary to route power and/or data lines through manipulator joints. The proposed manipulator (see figure) would include three prismatic actuators (T1N1, T2N2, and T3N3) mounted on the base and operating in the same plane. Examples of suitable prismatic actuators include lead-screw mechanisms, linear hydraulic motors, piezoelectric linear drives, inchworm-movement linear stepping motors, and linear flexure drives. The actuators would control the lengths of links R1T1, R2T2, and R3T3. Three spherical joints (P1, P2, and P3) would be located at the corners of an equilateral triangle of side length q on the platform holding the object to be manipulated. Three inextensible limbs (R1P1, R2P2, and R3P3) having length r would connect the spherical joints on the platform to revolute joints (R1, R2, and R3) at the ends of the actuator-controlled links R1T1, R2T2, and R3T3. By varying the lengths of these links, one could control the tilt, tip, and piston coordinates of the platform. Closed-form equations for direct or forward kinematics of the manipulator (given the lengths of the variable links, find the tilt, tip, and piston coordinates) have been derived. The equations of inverse kinematics (find the variable link lengths needed to obtain the desired tilt, tip, and piston coordinates) have also

  16. Smart patch piezoceramic actuator issues

    NASA Technical Reports Server (NTRS)

    Griffin, Steven F.; Denoyer, Keith K.; Yost, Brad

    1993-01-01

    The Phillips Laboratory is undertaking the challenge of finding new and innovative ways to integrate sensing, actuation, and the supporting control and power electronics into a compact self-contained unit to provide vibration suppression for a host structure. This self-contained unit is commonly referred to as a smart patch. The interfaces to the smart patch will be limited to standard spacecraft power and possibly a communications line. The effort to develop a smart patch involves both contractual and inhouse programs which are currently focused on miniaturization of the electronics associated with vibrational control using piezoceramic sensors and actuators. This paper is comprised of two distinct parts. The first part examines issues associated with bonding piezoceramic actuators to a host structure. Experimental data from several specimens with varying flexural stiffness are compared to predictions from two piezoelectric/substructure coupling models, the Blocked Force Model and the Uniform Strain Model with Perfect Bonding. The second part of the paper highlights a demonstration article smart patch created using the insights gained from inhouse efforts at the Phillips Laboratory. This demonstration article has self contained electronics on the same order of size as the actuator powered by a voltage differential of approximately 32 volts. This voltage is provided by four rechargeable 8 volt batteries.

  17. Status of Electrical Actuator Applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Taylor, Linda M.; Hansen, Irving G.

    1996-01-01

    An ever increasing number of actuation functions historically performed by hydraulics or pneumatics are being accomplished by electric actuation. If 'end to end' systems are considered, electric actuators (EA's) are potentially lighter and more efficient. In general, system redundancies may be more easily implemented and operationally monitored. Typically, electrical components exhibit longer mean times to failure and projected lifetime costs of EA's are potentially much lower than those of other options. EA's have certain characteristics which must be considered in their application. The actual mechanical loadings must be established, for the more easily controlled EA may be operated much closer to its full capabilities. At higher rates of motion, EA's are operating as constant power devices. Therefore, it may be possible to start a movement that can not be stopped. The incorporation of high power electronics into remote locations introduces new concerns of EMI and thermal control. It is the management of these and other characteristics that forms the engineering design challenges. Work is currently in progress on EA's for aircraft and expendable launch vehicles. These applications span from ten to 40+ horsepower. The systematics and status of these actuators will be reported along with current technical trends in this area.

  18. Multilayer Piezoelectric Stack Actuator Characterization

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  19. SMA actuators for morphing wings

    NASA Astrophysics Data System (ADS)

    Brailovski, V.; Terriault, P.; Georges, T.; Coutu, D.

    An experimental morphing laminar wing was developed to prove the feasibility of aircraft fuel consumption reduction through enhancement of the laminar flow regime over the wing extrados. The morphing wing prototype designed for subsonic cruise flight conditions (Mach 0.2 … 0.3; angle of attack - 1 … +2∘), combines three principal subsystems: (1) flexible extrados, (2) rigid intrados and (3) an actuator group located inside the wing box. The morphing capability of the wing relies on controlled deformation of the wing extrados under the action of shape memory alloys (SMA) actuators. A coupled fluid-structure model of the morphing wing was used to evaluate its mechanical and aerodynamic performances in different flight conditions. A 0.5 m chord and 1 m span prototype of the morphing wing was tested in a subsonic wind tunnel. In this work, SMA actuators for morphing wings were modeled using a coupled thermo-mechanical finite element model and they were windtunnel validated. If the thermo-mechanical model of SMA actuators presented in this work is coupled with the previously developed structureaerodynamic model of the morphing wing, it could serve for the optimization of the entire morphing wing system.

  20. Designing light responsive bistable arches for rapid, remotely triggered actuation

    NASA Astrophysics Data System (ADS)

    Smith, Matthew L.; Shankar, M. Ravi; Backman, Ryan; Tondiglia, Vincent P.; Lee, Kyung Min; McConney, Michael E.; Wang, David H.; Tan, Loon-Seng; White, Timothy J.

    2014-03-01

    Light responsive azobenzene functionalized polymer networks enjoy several advantages as actuator candidates including the ability to be remotely triggered and the capacity for highly tunable control via light intensity, polarization, wavelength and material alignments. One signi cant challenge hindering these materials from being employed in applications is their often relatively slow actuation rates and low power densities, especially in the absence of photo-thermal e ects. One well known strategy employed in nature for increasing actuation rate and power output is the storage and quick release of elastic energy (e.g., the Venus ytrap). Using nature as inspiration we have conducted a series of experiments and developed an equilibrium mechanics model for investigating remotely triggered snap-through of bistable light responsive arches made from glassy azobenzene functionalized polymers. After brie y discussing experimental observations we consider in detail a geometrically exact, planar rod model of photomechanical snap-through. Theoretical energy release characteristics and unique strain eld pro les provide insight toward design strategies for improved actuator performance. The bistable light responsive arches presented here are potentially a powerful option for remotely triggered, rapid motion from apparently passive structures in applications such as binary optical switches and positioners, surfaces with morphing topologies, and impulse locomotion in micro or millimeter scale robotics.

  1. Microstamped opto-mechanical actuator for tactile displays

    NASA Astrophysics Data System (ADS)

    Camargo, Carlos J.; Torras, Núria; Campanella, Humberto; Marshall, Jean E.; Zinoviev, Kirill; Campo, Eva M.; Terentjev, Eugene M.; Esteve, Jaume

    2011-10-01

    Over the last few years, several technologies have been adapted for use in tactile displays, such as thermo-pneumatic actuators, piezoelectric polymers and dielectric elastomers. None of these approaches offers high-performance for refreshable Braille display system (RBDS), due to considerations of weight, power efficiency and response speed. Optical actuation offers an attractive alternative to solve limitations of current-art technologies, allowing electromechanical decoupling, elimination of actuation circuits and remote controllability. Creating these opticallydriven devices requires liquid crystal - carbon nanotube (LC-CNT) composites that show a reversible shape change in response to an applied light. This work thus reports on novel opto-actuated Braille dots based on LC-CNT composite and silicon mold microstamping. The manufacturing approach succeeds on producing blisters according to the Braille standard for the visually impaired, by taking shear-aligned LC-CNT films and silicon stamps. For this application, we need to define specifically-shaped structures. Some technologies have succeeded on elastomer microstructuring. Nevertheless, they are not applicable for LC-CNT molding because they do not consider the stretching of the polymer which is required for LC-CNT fabrication. Our process demonstrates that composites micro-molding and their 3-D structuring is feasible by silicon-based stamping. Its work principle involves the mechanical stretching, allowing the LC mesogens alignment.

  2. Compliant composite electrodes and large strain bistable actuation

    NASA Astrophysics Data System (ADS)

    Yun, Sungryul; Yu, Zhibin; Niu, Xiaofan; Hu, Weili; Li, Lu; Brochu, Paul; Pei, Qibing

    2012-04-01

    Dielectric elastomer actuators (DEA) and bistable electroactive polymers (BSEP) both require compliant electrodes with rubbery elasticity and high conductivity at large strains. Stretchable opto-electronic devices additionally require the compliant electrodes to be optically transparent. Many candidate materials have been investigated. We report a new approach to mechanically robust, stretchable compliant electrodes. A facile in-situ composite synthesis and transfer technique is employed, and the resulting composite electrodes retain the high surface conductivity of the original conductive network formed by nanowires or nanotubes, while exhibiting the mechanical flexibility of the matrix polymer. The composite electrodes have high transparency and low surface roughness useful for the fabrication of polymer thinfilm electronic devices. The new electrodes are suitable for high-strain actuation, as a complaint resistive heating element to administer the temperature of shape memory polymers, and as the charge injection electrodes for flexible/stretchable polymer light emitting diodes. Bistable electroactive polymers employing the composite electrodes can be actuated to large strains via heating-actuation-cooling cycles.

  3. Structural integrity and failure mechanisms of a smart piezoelectric actuator under a cyclic bending mode

    NASA Astrophysics Data System (ADS)

    Woo, Sung-Choong; Goo, Nam Seo

    2008-08-01

    Information on the onset and evolution of damage within materials is essential for guaranteeing the integrity of actuator systems. The authors have evaluated the structural integrity and the failure mechanisms of smart composite actuators with a PZT ceramic plate under electric cyclic loading. For this, two kinds of actuators, actuator 1 and actuator 2, were manufactured. Prior to the main testing, performance testing was performed on the actuators to determine their resonant frequencies. Electric cyclic tests were conducted up to twenty million cycles. An acoustic emission technique was used for monitoring the damage evolution in real time. We observed the extent of the damage after testing using scanning electron microscopy and reflected optical microscopy to support characteristics in the acoustic emission behavior that corresponded to specific types of damage mechanisms. It was shown that the initial damage mechanism of the smart composite actuator under electric cyclic loading originated from the transgranular micro-fatigue damage in the PZT ceramic layer. With increasing cycles, a local intergranular crack initiated and developed onto the surface of the PZT ceramic layer or propagated into the internal layer. Finally, short-circuiting led to the electric breakdown of the actuator. These results were different depending on the drive frequencies and the configuration of the actuators. Moreover, we differentiated between the aforementioned damage mechanisms via AE signal pattern analyses based on the primary frequency and the waveform. From our results, we conclude that the drive frequency and the existence of a protecting layer are dominant factors in the structural integrity of the smart composite actuator.

  4. Microprocessor controlled proof-mass actuator

    NASA Technical Reports Server (NTRS)

    Horner, Garnett C.

    1987-01-01

    The objective of the microprocessor controlled proof-mass actuator is to develop the capability to mount a small programmable device on laboratory models. This capability will allow research in the active control of flexible structures. The approach in developing the actuator will be to mount all components as a single unit. All sensors, electronic and control devices will be mounted with the actuator. The goal for the force output capability of the actuator will be one pound force. The programmable force actuator developed has approximately a one pound force capability over the usable frequency range, which is above 2 Hz.

  5. Fish-skeleton visualization of bending actuators

    NASA Astrophysics Data System (ADS)

    Nakshatharan, Sunjai; Punning, Andres; Assi, Siim; Johanson, Urmas; Aabloo, Alvo

    2016-04-01

    We present a novel experimental method for qualitative visualization and quantitative characterization of the time-dependent behavior of bending ionic electroactive polymer actuators. The thin fibers, attached to the actuator, represent the surface normal at the given points of the bending actuator. The structure, formed by the skeleton of many adjacent fibers, amplifies the visual overview about the whole actuator. The four coordinates formed by four tips of two fibers enable determining the axial as well as the bending strains of a bending actuator.

  6. Dielectric elastomer actuators for facial expression

    NASA Astrophysics Data System (ADS)

    Wang, Yuzhe; Zhu, Jian

    2016-04-01

    Dielectric elastomer actuators have the advantage of mimicking the salient feature of life: movements in response to stimuli. In this paper we explore application of dielectric elastomer actuators to artificial muscles. These artificial muscles can mimic natural masseter to control jaw movements, which are key components in facial expressions especially during talking and singing activities. This paper investigates optimal design of the dielectric elastomer actuator. It is found that the actuator with embedded plastic fibers can avert electromechanical instability and can greatly improve its actuation. Two actuators are then installed in a robotic skull to drive jaw movements, mimicking the masseters in a human jaw. Experiments show that the maximum vertical displacement of the robotic jaw, driven by artificial muscles, is comparable to that of the natural human jaw during speech activities. Theoretical simulations are conducted to analyze the performance of the actuator, which is quantitatively consistent with the experimental observations.

  7. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  8. Tunable fiber Bragg grating ring lasers using macro fiber composite actuators

    NASA Astrophysics Data System (ADS)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-10-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley's optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from -500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG's holds promise for enhanced tunability in future research.

  9. Patched Off-Axis Bending/Twisting Actuators for Thin Mirrors

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Lih, Shyh-Shiuh; Tzou, Horn-Sen

    2005-01-01

    Two documents present updates on thin-shell, adjustable, curved mirrors now being developed for use in spaceborne imaging systems. These mirrors at an earlier stage of development were reported in Nanolaminate Mirrors With Integral Figure-Control Actuators (NPO-30221), NASA Tech Briefs, Vol. 26, No. 5 (May 2002), page 80. To recapitulate: These mirrors comprise metallic film reflectors on nanolaminate substrates that contain "in-plane" actuators for controlling surface figures with micron-level precision. The actuators are integral parts of the mirror structures, typically fabricated as patches that are bonded onto the rear (nonreflective) surfaces of the mirror shells. The current documents discuss mathematical modeling of mirror deflections caused by actuators arranged in unit cells distributed across the rear mirror surfaces. One of the documents emphasizes an actuator configuration in which a mirror surface is divided into hexagonal unit cells. Each unit cell contains four rectangular actuator patches in an off-axis cruciform pattern to induce a combination of bending and twisting. For deflections to reduce certain optical aberrations, it is found that, relative to other configurations, this configuration involves a smaller areal density of actuators.

  10. Efficient Hybrid Actuation Using Solid-State Actuators

    NASA Technical Reports Server (NTRS)

    Leo, Donald J.; Cudney, Harley H.; Horner, Garnett (Technical Monitor)

    2001-01-01

    Piezohydraulic actuation is the use of fluid to rectify the motion of a piezoelectric actuator for the purpose of overcoming the small stroke limitations of the material. In this work we study a closed piezohydraulic circuit that utilizes active valves to rectify the motion of a hydraulic end affector. A linear, lumped parameter model of the system is developed and correlated with experiments. Results demonstrate that the model accurately predicts the filtering of the piezoelectric motion caused by hydraulic compliance. Accurate results are also obtained for predicting the unidirectional motion of the cylinder when the active valves are phased with respect to the piezoelectric actuator. A time delay associated with the mechanical response of the valves is incorporated into the model to reflect the finite time required to open or close the valves. This time delay is found to be the primary limiting factor in achieving higher speed and greater power from the piezohydraulic unit. Experiments on the piezohydraulic unit demonstrate that blocked forces on the order of 100 N and unloaded velocities of 180 micrometers/sec are achieved.

  11. Oscillatory thermocapillary convection in liquid bridges with highly deformed free surfaces: Experiments and energy-stability analysis

    NASA Astrophysics Data System (ADS)

    Sumner, L. B. S.; Neitzel, G. P.; Fontaine, J.-P.; Dell'Aversana, P.

    2001-01-01

    Laboratory experimentation, numerical simulation, and energy-stability theory are used to examine the effect of interface deformation on the onset of oscillatory thermocapillary convection in half zones. Experiments are performed to map the stability boundaries marking the onset of oscillatory flow, modifying the free-surface deformation by adjusting the volume of liquid in the bridge. The stability results presented here along with those of other researchers [Monti et al., Proceedings of the 43rd Cong. Int. Artro. Fed. (1992); Hu et al., J. Cryst. Growth 142, 379 (1994)] show that free-surface curvature can have a pronounced influence on flow stability. Steady, axisymmetric flow simulations are computed using the commercial code FIDAP to model the conditions of the experiments, and reveal that flow structure near the stability boundary is sensitive to several parameters. Energy theory is applied to these simulations to determine sufficient conditions for stability. Comparisons between the theoretical and experimental results show nonconservative energy limits falling above the experimentally determined stability boundaries for bridges of various liquid volumes. While the trend of the experimental data is predicted for zones of large volume ratio (bulging zones), the same cannot be said for those with small volume ratio (necked-down zones). In addition, energy-stability limits for some undeformed-free-surface cases were determined which are above the linear-stability limits determined by other researchers, in clear contradiction of the roles of the respective theories.

  12. Time-dependent thermocapillary convection in a Cartesian cavity - Numerical results for a moderate Prandtl number fluid

    NASA Technical Reports Server (NTRS)

    Peltier, L. J.; Biringen, S.

    1993-01-01

    The present numerical simulation explores a thermal-convective mechanism for oscillatory thermocapillary convection in a shallow Cartesian cavity for a Prandtl number 6.78 fluid. The computer program developed for this simulation integrates the two-dimensional, time-dependent Navier-Stokes equations and the energy equation by a time-accurate method on a stretched, staggered mesh. Flat free surfaces are assumed. The instability is shown to depend upon temporal coupling between large scale thermal structures within the flow field and the temperature sensitive free surface. A primary result of this study is the development of a stability diagram presenting the critical Marangoni number separating steady from the time-dependent flow states as a function of aspect ratio for the range of values between 2.3 and 3.8. Within this range, a minimum critical aspect ratio near 2.3 and a minimum critical Marangoni number near 20,000 are predicted below which steady convection is found.

  13. Remobilizing the Interfaces of Thermocapillary Driven Bubbles Retarded by the Adsorption of a Surfactant Impurity on the Bubble Surface

    NASA Technical Reports Server (NTRS)

    Palaparthi, Ravi; Maldarelli, Charles; Papageorgiou, Dimitri; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    Thermocapillary migration is a method for moving bubbles in space in the absence of buoyancy. A temperature gradient is applied to the continuous phase in which a bubble is situated, and the applied gradient impressed on the bubble surface causes one pole of the drop to be cooler than the opposite pole. As the surface tension is a decreasing function of temperature, the cooler pole pulls at the warmer pole, creating a flow which propels the bubble in the direction of the warmer fluid. A major impediment to the practical use of thermocapillarity to direct the movement of bubbles in space is the fact that surfactant impurities which are unavoidably present in the continuous phase can significantly reduce the migration velocity. A surfactant impurity adsorbed onto the bubble interface is swept to the trailing end of the bubble. When bulk concentrations are low (which is the case with an impurity), diffusion of surfactant to the front end is slow relative to convection, and surfactant collects at the back end of the bubble. Collection at the back lowers the surface tension relative to the front end setting up a reverse tension gradient. For buoyancy driven bubble motions in the absence of a thermocapillarity, the tension gradient opposes the surface flow, and reduces the surface and terminal velocities (the interface becomes more solid-like). When thermocapillary forces are present, the reverse tension gradient set up by the surfactant accumulation reduces the temperature tension gradient, and decreases to near zero the thermocapillary velocity. The objective of our research is to develop a method for enhancing the thermocapillary migration of bubbles which have been retarded by the adsorption onto the bubble surface of a surfactant impurity, Our remobilization theory proposes to use surfactant molecules which kinetically rapidly exchange between the bulk and the surface and are at high bulk concentrations. Because the remobilizing surfactant is present at much higher

  14. Piezoelectric step-motion actuator

    DOEpatents

    Mentesana; Charles P.

    2006-10-10

    A step-motion actuator using piezoelectric material to launch a flight mass which, in turn, actuates a drive pawl to progressively engage and drive a toothed wheel or rod to accomplish stepped motion. Thus, the piezoelectric material converts electrical energy into kinetic energy of the mass, and the drive pawl and toothed wheel or rod convert the kinetic energy of the mass into the desired rotary or linear stepped motion. A compression frame may be secured about the piezoelectric element and adapted to pre-compress the piezoelectric material so as to reduce tensile loads thereon. A return spring may be used to return the mass to its resting position against the compression frame or piezoelectric material following launch. Alternative embodiment are possible, including an alternative first embodiment wherein two masses are launched in substantially different directions, and an alternative second embodiment wherein the mass is eliminated in favor of the piezoelectric material launching itself.

  15. Impact micro-positioning actuator

    NASA Technical Reports Server (NTRS)

    Cuerden, Brian (Inventor); Angel, J. Roger P. (Inventor); Burge, James H. (Inventor); DeRigne, Scott T. (Inventor)

    2006-01-01

    An impact micro-positioning actuator. In one aspect of the invention, a threaded shaft is threadably received in a nut and the nut is impacted by an impacting device, causing the nut first to rotate relative to the shaft by slipping as a result of shaft inertia and subsequently to stick to the shaft as a result of the frictional force therebetween. The nut is returned to its initial position by a return force provided by a return mechanism after impact. The micro-positioning actuator is further improved by controlling at least one and preferably all of the following: the friction, the impact provided by the impacting device, the return force provided by the return mechanism, and the inertia of the shaft. In another aspect of the invention, a threaded shaft is threadably received in a nut and the shaft is impacted by an impacting device, causing the shaft to rotate relative to the nut.

  16. Hydraulically amplified PZT mems actuator

    DOEpatents

    Miles, Robin R.

    2004-11-02

    A hydraulically amplified microelectromechanical systems actuator. A piece of piezoelectric material or stacked piezo bimorph is bonded or deposited as a thin film. The piece is operatively connected to a primary membrane. A reservoir is operatively connected to the primary membrane. The reservoir contains a fluid. A membrane is operatively connected to the reservoir. In operation, energizing the piezoelectric material causing the piezoelectric material to bow. Bowing of the piezoelectric material causes movement of the primary membrane. Movement of the primary membrane results in a force in being transmitted to the liquid in the reservoir. The force in the liquid causes movement of the membrane. Movement of the membrane results in an operating actuator.

  17. Propeller pitch change actuation system

    SciTech Connect

    Kusiak, E.H.

    1988-06-28

    An apparatus is described for adjusting the pitch of a variable pitch propeller blade characterized by: an actuator for setting the pitch of the propeller blade the actuator having; a rotatable screw for setting propeller pitch, a nut mounted for longitudinal motion along the screw as the screw is rotated, means for connecting the nut to the propeller blade to adjust the pitch of the propeller blade as the screw rotates, and a rotatable means mounted within the nut for locking the nut against longitudinal motion if the rotatable means is not rotating with the longitudinal motion of the nut and for allowing the nut to move longitudinally if the rotatable means is rotating with the longitudinal motion of the nut.

  18. Enhancing the force capability of permanent magnet latching actuators for electromechanical valve actuation systems

    NASA Astrophysics Data System (ADS)

    Rens, J.; Clark, R. E.; Jewell, G. W.; Howe, D.

    2005-05-01

    This article introduces a topology of parallel-polarized permanent magnet latching actuator for use in electromagnetic valve actuation systems for internal combustion engines. The actuator has a number of advantages over reluctance actuators, commonly employed in such systems, in terms of reduced starting currents and fail-safe capability. The influence of a number of design features on actuator performance, such as tooth tapering, additional magnets to improve the main magnet flux path and prevent the onset of saturation, and mechanical clearances required to protect the permanent magnet from shock loads are investigated. The design study findings are verified by measurements on a prototype actuator.

  19. Actuator device for artificial leg

    NASA Technical Reports Server (NTRS)

    Burch, J. L. (Inventor)

    1976-01-01

    An actuator device is described for moving an artificial leg of a person having a prosthesis replacing an entire leg and hip joint. The device includes a first articulated hip joint assembly carried by the natural leg and a second articulated hip joint assembly carried by the prosthesis whereby energy from the movement of the natural leg is transferred by a compressible fluid from the first hip joint assembly to the second hip joint assembly for moving the artificial leg.

  20. The MJS-77 magnetometer actuator

    NASA Technical Reports Server (NTRS)

    Stange, W. C.

    1977-01-01

    A two-position (0 deg and 180 deg) actuating mechanism (flipper) driven by alternately-heated wax motors (pellets) used to rotate the low field triaxial fluxgate magnetometer experiment on the 1977 Mariner Jupiter-Saturn spacecraft to its 0 deg and 180 deg positions is described. The magnetic field, power requirements, weight and volume of this device are discussed. The problems encountered in design and development of this mechanism are presented.

  1. The MJS-77 magnetometer actuator

    NASA Technical Reports Server (NTRS)

    Stange, W. C.

    1977-01-01

    A two-position (0 deg and 180 deg) actuating mechanism (flipper) driven by alternately-heated wax motors (pellets) will be used to rotate the low field triaxial fluxgate magnetometer experiment on the 1977 Mariner Jupiter-Saturn spacecraft to its 0 deg and 180 deg positions. The magnetic field, power requirements, weight and volume of this device are very restrictive. The problems encountered in design and development of this mechanism are presented.

  2. Tunable Optical Assembly with Vibration Dampening

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Allison, Sidney G.; Fox, Robert L.

    2008-01-01

    Since their market introduction in 1995, fiber Bragg gratings (FBGs) have emerged as excellent means of measuring such parameters as strain and temperature. Distributed-grating sensing is particularly beneficial for such structural-health monitoring applications such as those of 'smart' structures or integrated vehicle health management in aerospace vehicles. Because of the variability of their output wavelengths, tunable lasers have become widely used as means of measuring FBGs. Several versions of a lightweight assembly for strain-tuning an FBG and dampening its vibrations have been constructed. The main components of such an assembly are one or more piezoelectric actuators, an optical fiber containing one or more Bragg grating(s), a Bragg-grating strain-measurement system, and a voltage source for actuation. The piezoelectric actuators are, more specifically, piezoceramic fiber composite actuators and, can be, still more specifically, of a type known in the art as macro-fiber composite (MFC) actuators. In fabrication of one version of the assembly, the optical fiber containing the Bragg grating(s) is sandwiched between the piezoelectric actuators along with an epoxy that is used to bond the optical fiber to both actuators, then the assembly is placed in a vacuum bag and kept there until the epoxy is cured. Bonding an FBG directly into an MFC actuator greatly reduces the complexity, relative to assemblies, that include piezoceramic fiber composite actuators, hinges, ferrules, and clamp blocks with setscrews. Unlike curved actuators, MFC actuators are used in a flat configuration and are less bulky. In addition, the MFC offers some vibration dampening and support for the optical fiber whereas, in a curved piezoelectric actuator assembly, the optical fiber is exposed, and there is nothing to keep the exposed portion from vibrating.

  3. A model for ferromagnetic shape memory thin film actuators

    NASA Astrophysics Data System (ADS)

    Lee, Kwok-Lun; Seelecke, Stefan

    2005-05-01

    The last decade has witnessed the discovery of materials combining shape memory behavior with ferromagnetic properties (FSMAs), see James & Wuttig1, James et al.2, Ullakko et al.3. These materials feature the so-called giant magnetostrain effect, which, in contrast to conventional magnetostriction is due motion of martensite twins. This effect has motivated the development of a new class of active materials transducers, which combine intrinsic sensing capabilities with superior actuation speed and improved efficiency when compared to conventional shape memory alloys. Currently, thin film technology is being developed intensively in order to pave the way for applications in micro- and nanotechnology. As an example, Kohl et al., recently proposed a novel actuation mechanism based on NiMnGa thin film technology, which makes use of both the ferromagnetic transition and the martensitic transformation allowing the realization of an almost perfect antagonism in a single component part. The implementation of the mechanism led to the award-winning development of an optical microscanner. Possible applications in nanotechnology arise, e.g., by combination of smart NiMnGa actuators with scanning probe technologies. The key aspect of Kohl's device is the fact that it employs electric heating for actuation, which requires a thermo-magneto-mechanical model for analysis. The research presented in this paper aims at the development of a model that simulates this particular material behavior. It is based on ideas originally developed for conventional shape memory alloy behavior, (Mueller & Achenbach, Achenbach, Seelecke, Seelecke & Mueller) and couples it with a simple expression for the nonlinear temperature- and position-dependent effective magnetic force. This early and strongly simplified version does not account for a full coupling between SMA behavior and ferromagnetism yet, and does not incorporate the hysteretic character of the magnetization phenomena either. It can however

  4. Varifocal liquid-filled microlens operated by an electroactive polymer actuator.

    PubMed

    Choi, Seung Tae; Lee, Jeong Yub; Kwon, Jong Oh; Lee, Seungwan; Kim, Woonbae

    2011-05-15

    We designed, fabricated, and characterized varifocal microlenses, whose focal length varies along with the deformation of a transparent elastomer membrane under hydraulic pressure tailored by electroactive polymer actuators. The microfluidic channel of the microlens was designed to be embedded between silicon and glass so that transient fluctuation of the optical fluid and elastomer membrane is effectively suppressed, and thus the microlens is optically stabilized in a reduced time. Multilayered poly(vinylidene fluoride-trifluoroethylene-clorotrifluoroethylene) actuators were also developed and integrated onto the microfluidic chambers. We demonstrated that the developed microlenses are suitable for use in microimaging systems to make their foci tunable. PMID:21593935

  5. Subsea valve actuator for ultra deepwater

    SciTech Connect

    Ali, S.Z.; Skeels, H.B.; Montemayor, B.K.; Williams, M.R.

    1996-12-31

    This paper reviews the continuing development of gate valve and actuator technology for subsea completions extending into ultra deep water. The basic technical challenges inherent to subsea valve actuators are reviewed, along with the various factors which affect the design and performance of these devices in deepwater applications. The high external ambient pressures which occur in deep water, coupled with high specific gravity hydraulic control fluids, are shown to have a significant impact on the performance of the actuators. This paper presents design and analysis methods and the verification test procedures which are required to develop and qualify new deep water actuator designs. Gate valve actuators of the type described in this paper are currently in use on subsea christmas trees on the world`s deepest subsea wells offshore Brazil (water depths >3,000 feet). New applications of the deepwater actuators are in process for upcoming Gulf of Mexico subsea production systems in water depths approaching 6,000 feet. The actuator/valve development method described in this paper has been confirmed by performance verification testing of full scale valves and actuators using a hyperbaric chamber to simulate ultra deepwater operating conditions. Performance of the test valves and actuators correlated very well with analytical predictions. Test results have confirmed that the new valve actuator designs will satisfy API 17D performance requirements for water depths up to 7,500 feet, well in excess of the upcoming GOM application.

  6. Actuators for a space manipulator

    NASA Technical Reports Server (NTRS)

    Chun, W.; Brunson, P.

    1987-01-01

    The robotic manipulator can be decomposed into distinct subsytems. One particular area of interest of mechanical subsystems is electromechanical actuators (or drives). A drive is defined as a motor with an appropriate transmission. An overview is given of existing, as well as state-of-the-art drive systems. The scope is limited to space applications. A design philosophy and adequate requirements are the initial steps in designing a space-qualified actuator. The focus is on the d-c motor in conjunction with several types of transmissions (harmonic, tendon, traction, and gear systems). The various transmissions will be evaluated and key performance parameters will be addressed in detail. Included in the assessment is a shuttle RMS joint and a MSFC drive of the Prototype Manipulator Arm. Compound joints are also investigated. Space imposes a set of requirements for designing a high-performance drive assembly. Its inaccessibility and cryogenic conditions warrant special considerations. Some guidelines concerning these conditions are present. The goal is to gain a better understanding in designing a space actuator.

  7. Design of high performance piezo composites actuators

    NASA Astrophysics Data System (ADS)

    Almajid, Abdulhakim A.

    Design of high performance piezo composites actuators are developed. Functionally Graded Microstructure (FGM) piezoelectric actuators are designed to reduce the stress concentration at the middle interface existed in the standard bimorph actuators while maintaining high actuation performance. The FGM piezoelectric laminates are composite materials with electroelastic properties varied through the laminate thickness. The elastic behavior of piezo-laminates actuators is developed using a 2D-elasticity model and a modified classical lamination theory (CLT). The stresses and out-of-plane displacements are obtained for standard and FGM piezoelectric bimorph plates under cylindrical bending generated by an electric field throughout the thickness of the laminate. The analytical model is developed for two different actuator geometries, a rectangular plate actuator and a disk shape actuator. The limitations of CLT are investigated against the 2D-elasticity model for the rectangular plate geometry. The analytical models based on CLT (rectangular and circular) and 2D-elasticity are compared with a model based on Finite Element Method (FEM). The experimental study consists of two FGM actuator systems, the PZT/PZT FGM system and the porous FGM system. The electroelastic properties of each layer in the FGM systems were measured and input in the analytical models to predict the FGM actuator performance. The performance of the FGM actuator is optimized by manipulating the thickness of each layer in the FGM system. The thickness of each layer in the FGM system is made to vary in a linear or non-linear manner to achieve the best performance of the FGM piezoelectric actuator. The analytical and FEM results are found to agree well with the experimental measurements for both rectangular and disk actuators. CLT solutions are found to coincide well with the elasticity solutions for high aspect ratios while the CLT solutions gave poor results compared to the 2D elasticity solutions for

  8. Lightweight in-plane actuated deformable mirrors for space telescopes

    NASA Astrophysics Data System (ADS)

    Shepherd, Michael J.

    This research focused on lightweight, in-plane actuated, deformable mirrors, with the ultimate goal of developing a 20-meter or larger diameter light gathering aperture for space telescopes. Membrane optics is the study of these structures which may be stowed compactly and unfurled in orbit. This effort comprised four research areas: modelling, analytical solutions, surface control strategy, and scaling. Initially, experimental results were compared to theory using a 0.127 meter diameter deformable mirror testbed. The mirror was modelled using finite elements with MSC.Nastran software, where a boundary tension field was determined using laser vibrometer data. A non-linear solution technique was used to incorporate the membrane stiffening from the applied tension. Statically obtained actuator influence functions were compared to experimentally achieved data, and then a least squares approach was used as the basis for creating a quasi-static control algorithm. Experimental simultaneous tracking of Zernike tip, tilt, and defocus modes was successfully demonstrated. The analytical solutions to plate-membrane and beam-string ordinary differential equation representing the deformable mirror equations were developed. A simplified approach to modelling the axisymmetric cases was also presented. Significantly, it was shown both analytically and through numerical analysis that static actuation for a mirror with a discrete electrode pattern and a high tension-to-stiffness ratio was simply a localized piston displacement in the region of the actuator. Next, a novel static control strategy, the Modal Transformation Method, was developed for membrane mirrors. The method was implemented in finite element simulation, and shows the capability of the in-plane actuated mirror to form Zernike surfaces within an interior, or clear aperture, region using a number of statically-actuated structural modes. Lastly, the scaling problem for membrane optics was addressed. Linear modelling was

  9. Silkworm protein: its possibility as an actuator

    NASA Astrophysics Data System (ADS)

    Jin, Hyoung-Joon; Myung, Seung Jun; Kim, Heung Soo; Jung, Woochul; Kim, Jaehwan

    2006-03-01

    The possibility of silkworm (Bombyx mori) protein as a base material of biomimetic actuator was investigated in this paper. Silkworm films were prepared from high concentrations of regenerated fibroin in aqueous solution. Films with thickness of about 100 μm were prepared for coating electrodes. The cast silk films were coated by very thin gold electrode on both sides of the film. Tensile test of cast film showed bi-modal trend, which is typical stress-strain relation of polymeric film. As the test of a possible biomimetic actuator, silkworm film actuator provides bending deformations according to the magnitude and frequency of the applied electric filed. Although the present bending deformation of silkworm film actuator is smaller than that of Electro-Active Paper actuator, it provides the possibility of biomimetic actuator.

  10. Microwave Power for Smart Membrane Actuators

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Song, Kyo D.; Golembiewski, Walter T.; Chu, Sang-Hyon; King, Glen C.

    2002-01-01

    The concept of microwave-driven smart membrane actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. A large, ultra-light space structure, such as solar sails and Gossamer spacecrafts, requires a distribution of power into individual membrane actuators to control them in an effective way. A patch rectenna array with a high voltage output was developed to drive smart membrane actuators. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is developed and tested for networking a rectenna/actuator patch array. For the future development, the PAD circuit could be imbedded into a single embodiment of rectenna and actuator array with the thin-film microcircuit embodiment. Preliminary design and fabrication of PAD circuitry that consists of a sixteen nodal elements were made for laboratory testing.

  11. Electromechanical actuator for thrust vector control

    NASA Astrophysics Data System (ADS)

    Zubkow, Zygmunt

    Attention is given to the development and testing of electromechanical actuator (EMA) systems for use in first- and second-stage thrust vector control of rocket engines. An overview of the test program is also presented. Designs for both first- and second-stage actuators employ redundant dc brushless, three-phase rare-earth permanent magnet motors. The first-stage actuator is about 28 hp per motor and uses a roller screw. Second-stage thrust vector control is implemented with a much smaller actuator of about 1 hp per motor. This actuator uses a gear drive with a recycling ball screw mechanism. An operational EMA is presented. This 6.5-in. actuator is capable of a stall force of 1350 pounds per motor and a frequency response of about 5 HZ.

  12. Integrated sensing and actuation of muscle-like actuators

    NASA Astrophysics Data System (ADS)

    Gisby, T. A.; Xie, S.; Calius, E. P.; Anderson, I. A.

    2009-03-01

    The excellent overall performance and compliant nature of Dielectric Elastomer Actuators (DEAs) make them ideal candidates for artificial muscles. Natural muscle however is much more than just an actuator, it provides position feedback to the brain that is essential for the body to maintain balance and correct posture. If DEAs are to truly earn the moniker of "artificial muscles" they need to be able to reproduce, if not improve on, this functionality. Self-sensing DEAs are the ideal solution to this problem. This paper presents a system by which the capacitance of a DEA can be sensed while it is being actuated and used for feedback control. This system has been strongly influenced by the desire for portability i.e. designed for use in a battery operated microcontroller based system. It is capable of controlling multiple independent DEAs using a single high voltage power supply. These features are important developments for artificial muscle devices where accuracy and low mass are important e.g. a prosthetic hand or force-feedback surgical tools. A numerical model of the electrical behaviour of the DEA that incorporates arbitrary leakage currents and the impact of arbitrary variable capacitance has been created to model a DEA system. A robust capacitive self-sensing method that uses a slew-rate controlled Pulse Width Modulation (PWM) signal and compensates for the effects of leakage current and variable capacitance is presented. The numerical model is then used to compare the performance of this new method with an earlier method previously published by the authors.

  13. Actuation fluid adapter for hydraulically-actuated electronically-controlled fuel injector and engine using same

    DOEpatents

    Keyster, Eric S.; Merchant, Jack A.

    2002-01-01

    A fuel injector adapter consists of a block defining a pressure communication passage therethrough and an actuation fluid passage. The actuation fluid passage includes three separate branches that open through an outer surface of the block at three separate locations.

  14. Fluidic self-actuating control assembly

    DOEpatents

    Grantz, Alan L.

    1979-01-01

    A fluidic self-actuating control assembly for use in a reactor wherein no external control inputs are required to actuate (scram) the system. The assembly is constructed to scram upon sensing either a sudden depressurization of reactor inlet flow or a sudden increase in core neutron flux. A fluidic control system senses abnormal flow or neutron flux transients and actuates the system, whereupon assembly coolant flow reverses, forcing absorber balls into the reactor core region.

  15. Direct-drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1995-07-11

    A high-torque, low speed, positive-drive field actuator motor is disclosed including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 37 figs.

  16. Direct-drive field actuator motors

    DOEpatents

    Grahn, Allen R.

    1995-01-01

    A high-torque, low speed, positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  17. MRI-powered Actuators for Robotic Interventions

    PubMed Central

    Vartholomeos, Panagiotis; Qin, Lei; Dupont, Pierre E.

    2012-01-01

    This paper presents a novel actuation technology for robotically assisted MRI-guided interventional procedures. Compact and wireless, the actuators are both powered and controlled by the MRI scanner. The design concept and performance limits are described and derived analytically. Simulation and experiments in a clinical MR scanner are used to validate the analysis and to demonstrate the capability of the approach for needle biopsies. The concepts of actuator locking mechanisms and multi-axis control are also introduced. PMID:22287082

  18. Bucky gel actuators optimization towards haptic applications

    NASA Astrophysics Data System (ADS)

    Bubak, Grzegorz; Ansaldo, Alberto; Ceseracciu, Luca; Hata, Kenji; Ricci, Davide

    2014-03-01

    An ideal plastic actuator for haptic applications should generate a relatively large displacement (minimum 0.2-0.6 mm, force (~50 mN/cm2) and a fast actuation response to the applied voltage. Although many different types of flexible, plastic actuators based on electroactive polymers (EAP) are currently under investigation, the ionic EAPs are the only ones that can be operated at low voltage. This property makes them suitable for applications that require inherently safe actuators. Among the ionic EAPs, bucky gel based actuators are very promising. Bucky gel is a physical gel made by grounding imidazolium ionic liquids with carbon nanotubes, which can then be incorporated in a polymeric composite matrix to prepare the active electrode layers of linear and bending actuators. Anyhow, many conflicting factors have to be balanced to obtain required performance. In order to produce high force a large stiffness is preferable but this limits the displacement. Moreover, the bigger the active electrode the larger the force. However the thicker an actuator is, the slower the charging process becomes (it is diffusion limited). In order to increase the charging speed a thin electrolyte would be desirable, but this increases the probability of pinholes and device failure. In this paper we will present how different approaches in electrolyte and electrode preparation influence actuator performance and properties taking particularly into account the device ionic conductivity (which influences the charging speed) and the electrode surface resistance (which influences both the recruitment of the whole actuator length and its speed).

  19. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens

    PubMed Central

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.

    2015-01-01

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images. PMID:26368169

  20. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.

    PubMed

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N; Zawadzki, Robert J; Sarunic, Marinko V

    2015-08-24

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images. PMID:26368169

  1. PACT: the actuator to support the primary mirror of the ELT

    NASA Astrophysics Data System (ADS)

    Kamphues, F.; Nijenhuis, J.; den Breeje, R.; van den Dool, T. C.; Ponsioen, J.

    2008-07-01

    The European Southern Observatory (ESO) has started technology development for their next generation optical telescope. Due to its ultra large collecting area, The European Extremely Large Telescope (E-ELT) will require a paradigm shift in telescope design to keep the overall program cost at an acceptable level. The E-ELT will feature a 42 meter segmented primary mirror and will make extensive use of active and adaptive optics. Each primary mirror segment will be supported by three actuators that control piston and tilt. TNO has developed a low cost nanopositioning actuator (PACT) for the primary mirror segments. The actuators will be tested by IAC and ESO, with support from TNO, under operational conditions in a Wind Evaluation Breadboard (WEB) at the Roque de Los Muchachos observatory in La Palma.

  2. Polypyrrole actuators: modeling and performance

    NASA Astrophysics Data System (ADS)

    Madden, John D.; Madden, Peter G.; Hunter, Ian W.

    2001-07-01

    Conducting polymer actuators generate forces that exceed those of mammalian skeletal muscle by up to two orders of magnitude for a given cross-sectional area, require only a few volts to operate, and are low in cost. However application of conducting polymer actuators is hampered by the lack of a full description of the relationship between load, displacement, voltage and current. In an effort to provide such a model, system identification techniques are employed. Stress-strain tests are performed at constant applied potential to determine polypyrrole stiffness. The admittance transfer function of polypyrrole and the associated electrolyte is measured over the potential range in which polypyrrole is highly conductive. The admittance is well described by treating the polymer as a volumetric capacitance of 8*107 F*m3 whose charging rate is limited by the electrolyte resistance and by diffusion within polypyrrole. The relationship between strain and charge is investigated, showing that strain is directly proportional to charge via the strain to charge density ratio, (alpha) = 1*10+-10 m3*C-1, at loads of up to 4 MPa. Beyond 4 MPa the strain to charge ratio is time dependent. The admittance models, stress/strain relation and strain to charge relationship are combined to form a full description of polypyrrole electromechanical response. This description predicts that large increases in strain rate and power are obtained through miniaturization, yielding bandwidths in excess of 10 kHz. The model also enables motor designers to optimize polypyrrole actuator geometries for their applications.

  3. Surface micromachined sensors and actuators

    SciTech Connect

    Sniegowski, J.J.

    1995-08-01

    A description of a three-level mechanical polysilicon surface-micromachining technology including a discussion of the advantages of this level of process complexity is presented. This technology is capable of forming mechanical elements ranging from simple cantilevered beams to complex, interconnected, interactive, microactuated micromechanisms. The inclusion of a third deposited layer of mechanical polysilicon greatly extends the degree of complexity available for micromechanism design. Additional features of the Sandia three-level process include the use of Chemical-Mechanical Polishing (CMP) for planarization, and the integration of micromechanics with the Sandia CMOS circuit process. The latter effort includes a CMOS-first, tungsten metallization process to allow the CMOS electronics to withstand high-temperature micromechanical processing. Alternatively, a novel micromechanics-first approach wherein the micromechanical devices are processed first in a well below the surface of the CMOS starting material followed by the standard, aluminum metallization CMOS process is also being pursued. Following the description of the polysilicon surface micromachining are examples of the major sensor and actuator projects based on this technology at the Microelectronics Development Laboratory (MDL) at Sandia National Laboratories. Efforts at the MDL are concentrated in the technology of surface micromachining due to the availability of and compatibility with standard CMOS processes. The primary sensors discussed are a silicon nitride membrane pressure sensor, hot polysilicon filaments for calorimetric gas sensing, and a smart hydrogen sensor. Examples of actuation mechanisms coupled to external devices are also presented. These actuators utilize the three-level process (plus an additional passive level) and employ either surface tension or electrostatic forces.

  4. Latching micro optical switch

    DOEpatents

    Garcia, Ernest J; Polosky, Marc A

    2013-05-21

    An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

  5. Toward standardization of EAP actuators test procedures

    NASA Astrophysics Data System (ADS)

    Fernandez, Diego; Moreno, Luis; Baselga, Juan

    2005-05-01

    Since the field of Electroactive Polymers (EAP) actuators is fairly new there are no standard testing processes for such intelligent materials. This drawback can seriously limit the scope of application of EAP actuators, since the targeted industrial sectors (aerospace, biomedical...) demand high reliability and product assurance. As a first iteration two elements are required to define a test standard for an EAP actuator: a Unit Tester, and a Component Specification. In this paper a EAP Unit Tester architecture is presented along with the required classification of measurements to be included in the EAP actuator Component Specification. The proposed EAP Unit Tester allows on-line monitoring and recording of the following properties of the specimen under test: large deformation, small tip displacement, temperature at the electrodes, weight of the specimen, voltage and current driven into the EAP, load being applied to the actuator, output voltage of the EAP in sensing operation and mode of operation (structure/sensor/actuator/smart). The measurements are taken simultaneously, in real-time. The EAP Unit Tester includes a friendly Graphical User Interface. It uses embedded Excel tools to visualize data. In addition, real-time connectivity with MATLAB allows an easy testing of control algorithms. A novel methodology to measure the properties of EAP specimens versus a variable load is also presented. To this purpose a force signals generator in the range of mN was developed. The device is based on a DC mini-motor. It generates an opposing force to the movement of the EAP actuator. Since the device constantly opposes the EAP actuator movement it has been named Digital Force Generator (DFG). The DFG design allows simultaneous length and velocity measuring versus different load signals. By including such a device in the EAP Unit Tester the most suitable application for the specimen under test can be easily identified (vibration damper, large deformation actuator, large

  6. Nano-optomechanical actuator and pull-back instability.

    PubMed

    Ren, Min; Huang, Jianguo; Cai, Hong; Tsai, Julius Minglin; Zhou, Jinxiong; Liu, Zishun; Suo, Zhigang; Liu, Ai-Qun

    2013-02-26

    This paper studies the nonlinear behavior of a nano-optomechanical actuator, consisting of a free-standing arc in a ring resonator that is coupled to a bus waveguide through evanescent waves. The arc deflects when a control light of a fixed wavelength and optical power is pumped into the bus waveguide, while the amount of deflection is monitored by measuring the transmission spectrum of a broadband probe light. This nanoactuator achieves a maximal deflection of 43.1 nm, with a resolution of 0.28 nm. The optical force is a nonlinear function of the deflection of the arc, leading to pull-back instability when the control light is red-tuned. This instability is studied by a combination of experiment and modeling. Potential applications of the nanoactuator include bio-nanomotor, optical switches, and optomechanical memories.

  7. Design and fabrication of a MEMS chevron-type thermal actuator

    SciTech Connect

    Baracu, Angela; Voicu, Rodica; Müller, Raluca; Avram, Andrei; Pustan, Marius Chiorean, Radu Birleanu, Corina Dudescu, Cristian

    2015-02-17

    This paper presents the design and fabrication of a MEMS chevron-type thermal actuator. The device was designed for fabrication in the standard MEMS technology, where the topography of the upper layers depends on the patterns of structural and sacrificial layers underneath. The proposed actuator presents some advantages over usual thermal vertical chevron actuators by means of low operating voltages, high output force and linear movement without deformation of the shaft. The device simulations were done using COVENTOR software. The movement obtained by simulation was 12 μm, for a voltage of 0.2 V and the current intensity of 257 mA. The design optimizes the in-plane displacement by fixed anchors and beam inclination angle. Heating is provided by Joule dissipation. The material used for manufacture of chevron-based actuator was aluminum due to its thermal and mechanical properties. The release of the movable part was performed using isotropic dry etching by Reactive Ion Etching (RIE). A first inspection was achieved using Scanning Electron Microscope (SEM). In order to obtain the in-plane displacement we carried out electrical measurements. The thermal actuator can be used for a variety of optical and microassembling applications. This kind of thermal actuator could be integrated easily with other micro devices since its fabrication is compatible with the general semiconductor processes.

  8. High-performance surface-micromachined inchworm actuator.

    SciTech Connect

    Walraven, Jeremy Allen; Redmond, James Michael; Luck, David L.; Ashurst, William Robert; de Boer, Maarten Pieter; Maboudian, Roya; Corwin, Alex David

    2003-07-01

    This work demonstrates a polycrystalline silicon surface-micromachined inchworm actuator that exhibits high-performance characteristics such as large force ({+-}0.5 millinewtons), large velocity range (0 to {+-}4.4 mm/sec), large displacement range ({+-}100 microns), small step size ({+-}10, {+-}40 or {+-}100 nanometers), low power consumption (nanojoules per cycle), continuous bidirectional operation and relatively small area (600 x 200{micro}m{sup 2}). An in situ load spring calibrated on a logarithmic scale from micronewtons to millinewtons, optical microscopy and Michelson interferometry are used to characterize its performance. The actuator consists of a force-amplifying plate that spans two voltage-controlled clamps, and walking is achieved by appropriately sequencing signals to these three components. In the clamps, normal force is borne by equipotential rubbing counterfaces, enabling friction to be measured against load. Using different monolayer coatings, we show that the static coefficient of friction can be changed from 0.14 to 1.04, and that it is load-independent over a broad range. We further find that the static coefficient of friction does not accurately predict the force generated by the actuator and attribute this to nanometer-scale presliding tangential deflections.

  9. Fully printed 3 microns thick dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Poulin, A.; Rosset, S.; Shea, H.

    2016-04-01

    In this work we present a new fabrication technique to print thin dielectric elastomer actuators (DEAs), reducing the driving voltage below 300 V while keeping good actuation performance. With operation voltages in the kV-range, standard DEAs are limited in terms of potential applications. Using thinner membranes is one of the few existing methods to achieve lower operation voltages. Typical DEAs have membranes in the 20-100 μm range, values below which membrane fabrication becomes challenging and the membrane quality and uniformity degrade. Using pad printing we produced thin silicone elastomer membranes, on which we pad-printed compliant electrodes. We then fabricated DEAs by assembling two membranes back to back. We obtain an actuation strain of 7.5% at only 245 V on a 3 μm thick DEA. In order to investigate the stiffening impact of the electrodes we developed a simple DEA model that includes their mechanical properties. We also developed a strain-mapping algorithm based on optical correlation. The simulation results and the strain-mapping measurements confirm that the stiffening impact of the electrodes increases for thinner membranes. Electrodes are an important element that cannot be neglected in the design and optimization of ultra-thin DEAs.

  10. Fabrication Process of Silicone-based Dielectric Elastomer Actuators

    PubMed Central

    Rosset, Samuel; Araromi, Oluwaseun A.; Schlatter, Samuel; Shea, Herbert R.

    2016-01-01

    This contribution demonstrates the fabrication process of dielectric elastomer transducers (DETs). DETs are stretchable capacitors consisting of an elastomeric dielectric membrane sandwiched between two compliant electrodes. The large actuation strains of these transducers when used as actuators (over 300% area strain) and their soft and compliant nature has been exploited for a wide range of applications, including electrically tunable optics, haptic feedback devices, wave-energy harvesting, deformable cell-culture devices, compliant grippers, and propulsion of a bio-inspired fish-like airship. In most cases, DETs are made with a commercial proprietary acrylic elastomer and with hand-applied electrodes of carbon powder or carbon grease. This combination leads to non-reproducible and slow actuators exhibiting viscoelastic creep and a short lifetime. We present here a complete process flow for the reproducible fabrication of DETs based on thin elastomeric silicone films, including casting of thin silicone membranes, membrane release and prestretching, patterning of robust compliant electrodes, assembly and testing. The membranes are cast on flexible polyethylene terephthalate (PET) substrates coated with a water-soluble sacrificial layer for ease of release. The electrodes consist of carbon black particles dispersed into a silicone matrix and patterned using a stamping technique, which leads to precisely-defined compliant electrodes that present a high adhesion to the dielectric membrane on which they are applied. PMID:26863283

  11. Fabrication Process of Silicone-based Dielectric Elastomer Actuators.

    PubMed

    Rosset, Samuel; Araromi, Oluwaseun A; Schlatter, Samuel; Shea, Herbert R

    2016-01-01

    This contribution demonstrates the fabrication process of dielectric elastomer transducers (DETs). DETs are stretchable capacitors consisting of an elastomeric dielectric membrane sandwiched between two compliant electrodes. The large actuation strains of these transducers when used as actuators (over 300% area strain) and their soft and compliant nature has been exploited for a wide range of applications, including electrically tunable optics, haptic feedback devices, wave-energy harvesting, deformable cell-culture devices, compliant grippers, and propulsion of a bio-inspired fish-like airship. In most cases, DETs are made with a commercial proprietary acrylic elastomer and with hand-applied electrodes of carbon powder or carbon grease. This combination leads to non-reproducible and slow actuators exhibiting viscoelastic creep and a short lifetime. We present here a complete process flow for the reproducible fabrication of DETs based on thin elastomeric silicone films, including casting of thin silicone membranes, membrane release and prestretching, patterning of robust compliant electrodes, assembly and testing. The membranes are cast on flexible polyethylene terephthalate (PET) substrates coated with a water-soluble sacrificial layer for ease of release. The electrodes consist of carbon black particles dispersed into a silicone matrix and patterned using a stamping technique, which leads to precisely-defined compliant electrodes that present a high adhesion to the dielectric membrane on which they are applied. PMID:26863283

  12. NASA pyrotechnically actuated systems program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1993-01-01

    The Office of Safety and Mission Quality initiated a Pyrotechnically Actuated Systems (PAS) Program in FY-92 to address problems experienced with pyrotechnically actuated systems and devices used both on the ground and in flight. The PAS Program will provide the technical basis for NASA's projects to incorporate new technological developments in operational systems. The program will accomplish that objective by developing/testing current and new hardware designs for flight applications and by providing a pyrotechnic data base. This marks the first applied pyrotechnic technology program funded by NASA to address pyrotechnic issues. The PAS Program has been structured to address the results of a survey of pyrotechnic device and system problems with the goal of alleviating or minimizing their risks. Major program initiatives include the development of a Laser Initiated Ordnance System, a pyrotechnic systems data base, NASA Standard Initiator model, a NASA Standard Linear Separation System and a NASA Standard Gas Generator. The PAS Program sponsors annual aerospace pyrotechnic systems workshops.

  13. Optimization of Actuating Origami Networks

    NASA Astrophysics Data System (ADS)

    Buskohl, Philip; Fuchi, Kazuko; Bazzan, Giorgio; Joo, James; Gregory, Reich; Vaia, Richard

    2015-03-01

    Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form, function and mobility of the structure. By leveraging design concepts from action origami, a subset of origami art focused on kinematic mechanisms, reversible folding patterns for applications such as solar array packaging, tunable antennae, and deployable sensing platforms may be designed. However, the enormity of the design space and the need to identify the requisite actuation forces within the structure places a severe limitation on design strategies based on intuition and geometry alone. The present work proposes a topology optimization method, using truss and frame element analysis, to distribute foldline mechanical properties within a reference crease pattern. Known actuating patterns are placed within a reference grid and the optimizer adjusts the fold stiffness of the network to optimally connect them. Design objectives may include a target motion, stress level, or mechanical energy distribution. Results include the validation of known action origami structures and their optimal connectivity within a larger network. This design suite offers an important step toward systematic incorporation of origami design concepts into new, novel and reconfigurable engineering devices. This research is supported under the Air Force Office of Scientific Research (AFOSR) funding, LRIR 13RQ02COR.

  14. Microfabricated electroactive carbon nanotube actuators

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Arti; Baughman, Ray H.; De Rossi, Danilo; Mazzoldi, Alberto; Tesconi, Mario; Tognetti, Alessandro; Vozzi, Giovanni

    2001-07-01

    A variety of microfabrication techniques have been developed at the University of Pisa. They are based either on pressure or piston actuated microsyringes or modified ink-jet printers. This work present the results of a study aimed at fabricating carbon nanotube (NT) actuators using micro-syringes. In order to prevent the nanotubes from aggregating into clumps, they were enclosed in a partially cross-linked polyvinylalcohol - polyallylamine matrix. After sonication the solution remained homogenously dispersed for about 40 minutes, which was sufficient time for deposition. Small strips of NT, about 5 mm across and 15 mm long were deposited. Following deposition, the films were baked at 80 degree(s)C and their thickness, impedance and mechanical resistance measured. The results indicate that 50 minutes of baking time is sufficient to give a constant resistivity of 1.12 x 10-2 (Omega) m per layer similar to a typical semiconductor, and each layer has a thickness of about 6 micrometers .

  15. Integrated piezoelectric actuators in deep drawing tools

    NASA Astrophysics Data System (ADS)

    Neugebauer, R.; Mainda, P.; Drossel, W.-G.; Kerschner, M.; Wolf, K.

    2011-04-01

    The production of car body panels are defective in succession of process fluctuations. Thus the produced car body panel can be precise or damaged. To reduce the error rate, an intelligent deep drawing tool was developed at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in cooperation with Audi and Volkswagen. Mechatronic components in a closed-loop control is the main differentiating factor between an intelligent and a conventional deep drawing tool. In correlation with sensors for process monitoring, the intelligent tool consists of piezoelectric actuators to actuate the deep drawing process. By enabling the usage of sensors and actuators at the die, the forming tool transform to a smart structure. The interface between sensors and actuators will be realized with a closed-loop control. The content of this research will present the experimental results with the piezoelectric actuator. For the analysis a production-oriented forming tool with all automotive requirements were used. The disposed actuators are monolithic multilayer actuators of the piezo injector system. In order to achieve required force, the actuators are combined in a cluster. The cluster is redundant and economical. In addition to the detailed assembly structures, this research will highlight intensive analysis with the intelligent deep drawing tool.

  16. Actuator lifetime predictions for Ni60Ti40 shape memory alloy plate actuators

    NASA Astrophysics Data System (ADS)

    Wheeler, Robert; Ottmers, Cade; Hewling, Brett; Lagoudas, Dimitris

    2016-04-01

    Shape memory alloys (SMAs), due to their ability to repeatedly recover substantial deformations under applied mechanical loading, have the potential to impact the aerospace, automotive, biomedical, and energy industries as weight and volume saving replacements for conventional actuators. While numerous applications of SMA actuators have been flight tested and can be found in industrial applications, these actuators are generally limited to non-critical components, are not widely implemented and frequently one-off designs, and are generally overdesigned due to a lack of understanding of the effect of the loading path on the fatigue life and the lack of an accurate method of predicting actuator lifetimes. Previous efforts have been effective at predicting actuator lifetimes for isobaric dogbone test specimens. This study builds on previous work and investigates the actuation fatigue response of plate actuators with various stress concentrations through the use of digital image correlation and finite element simulations.

  17. Methods and apparatus for laser beam scanners with different actuating mechanisms

    NASA Astrophysics Data System (ADS)

    Chen, Si-hai; Xiang, Si-hua; Wu, Xin; Dong, Shan; Xiao, Ding; Zheng, Xia-wei

    2009-07-01

    In this paper, 3 types of laser beam scanner are introduced. One is transmissive beam scanner, which is composed of convex and concave microlens arrays (MLAs). By moving the concave lens in the plane vertical to the optical axis, the incident beam can be deflected in two dimensions. Those two kinds of MLAs are fabricated by thermal reflow and replication process. A set of mechanical scanner frame is fabricated with the two MLAs assembling in it. The testing result shown that the beam deflection angles are 9.5° and 9.6°, in the 2 dimension(2D) with the scanning frequency of 2 HZ and 8 HZ, respectively. The second type of laser beam scanner is actuated by voice coil actuators (VCAs). Based on ANSOFT MAXWELL software, we have designed VCAs with small size and large force which have optimized properties. The model of VCAs is built using AutoCAD and is analyzed by Ansoft maxwell. According to the simulation results, high performance VCAs are fabricated and tested. The result is that the force of the VCAs is 6.39N/A, and the displacement is +/-2.5mm. A set up of beam scanner is fabricated and actuated by the designed VCAs. The testing result shown that the two dimensional scanning angle is 15° and 10° respectively at the frequency of 60HZ. The two dimensional scanning angle is 8.3° and 6° respectively at the frequency of 100HZ. The third type of scanner is actuated by amplified piezoelectric actuators (APAs). The scanning mirror is actuated by the piezoelectric (PZ) actuators with the scanning frequency of 700HZ, 250HZ and 87HZ respectively. The optical scanning angle is +/-0.5° at the three frequencies.

  18. MEMS-Based Piezoelectric/Electrostatic Inchworm Actuator

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    A proposed inchworm actuator, to be designed and fabricated according to the principles of microelectromechanical systems (MEMS), would effect linear motion characterized by steps as small as nanometers and an overall range of travel of hundreds of microns. Potential applications for actuators like this one include precise positioning of optical components and active suppression of noise and vibration in scientific instruments, conveyance of wafers in the semiconductor industry, precise positioning for machine tools, and positioning and actuation of micro-surgical instruments. The inchworm motion would be generated by a combination of piezoelectric driving and electrostatic clamping. The actuator (see figure), would include a pair of holders (used for electrostatic clamping), a slider (the part that would engage in the desired linear motion), a driver, a piezoelectric stack under the driver, and a pair of polymer beams centrally clamped to the flexure beam via a T bar. The holders would be held stationary. One end of the piezoelectric stack would be held stationary; the other end would be connected to the bottom of the driver, which would be free to move up and down. All of these components except the piezoelectric stack and the polymer beams would be micromachined from a 500- m-thick silicon wafer by deep reactive-ion etching. The inchworm motion would be perpendicular to the broad faces of the wafer (perpendicular to the plane of the figure). The combination of the polymer beams and the centrally clamped flexure beam would spring-bias the slider into a position such that, in the absence of electrostatic clamping, the gap between the slider on the one hand and both the driver and the holder on the other hand would be no more than a few microns. This arrangement would make it possible to electrostatically pull the slider into contact with either the holders or the driver at a clamping force of the order of 1 N by applying a reasonably small voltage (of the order of

  19. A two-dimensional laser scanning mirror using motion-decoupling electromagnetic actuators.

    PubMed

    Shin, Bu Hyun; Oh, Dongho; Lee, Seung-Yop

    2013-03-27

    This work proposes a two-dimensional (2-D) laser scanning mirror with a novel actuating structure composed of one magnet and two coils. The mirror-actuating device generates decoupled scanning motions about two orthogonal axes by combining two electromagnetic actuators of the conventional moving-coil and the moving-magnet types. We implement a finite element analysis to calculate magnetic flux in the electromagnetic system and experiments using a prototype with the overall size of 22 mm (W) × 20 mm (D) × 15 mm (H) for the mirror size of 8 mm × 8 mm. The upper moving-coil type actuator to rotate only the mirror part has the optical reflection angle of 15.7° at 10 Hz, 90° at the resonance frequency of 60 Hz at ±3 V (±70 mA) and the bandwidth of 91 Hz. The lower moving-magnet type actuator has the optical reflection angle of 16.20° at 10 Hz and 50° at the resonance frequency of 60 Hz at ±5 V (±34 mA) and the bandwidth of 88 Hz. The proposed compact and simple 2-D scanning mirror has advantages of large 2-D angular deflections, wide frequency bandwidth and low manufacturing cost.

  20. Piezoelectric Actuator/Sensor Technology at Rockwell

    NASA Technical Reports Server (NTRS)

    Neurgaonkar, Ratnakar R.

    1996-01-01

    We describe the state-of-the art of piezoelectric materials based on perovskite and tungsten bronze families for sensor, actuator and smart structure applications. The microstructural defects in these materials have been eliminated to a large extent and the resulting materials exhibit exceedingly high performance for various applications. The performance of Rockwell actuators/sensors is at least 3 times better than commercially available products. These high performance actuators are being incorporated into various applications including, DOD, NASA and commercial. The multilayer actuator stacks fabricated from our piezoceramics are advantageous for sensing and high capacitance applications. In this presentation, we will describe the use of our high performance piezo-ceramics for actuators and sensors, including multilayer stacks and composite structures.

  1. Genetic Algorithm Approaches for Actuator Placement

    NASA Technical Reports Server (NTRS)

    Crossley, William A.

    2000-01-01

    This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.

  2. Adding realism to simulated sensors and actuators.

    PubMed

    Rosen, C; Jeppsson, U; Rieger, L; Vanrolleghem, P A

    2008-01-01

    In this paper, we propose a statistical theoretical framework for incorporation of sensor and actuator faults in dynamic simulations of wastewater treatment operation. Sensor and actuator faults and failures are often neglected in simulations for control strategy development and testing, although it is well known that they represent a significant obstacle for realising control at full-scale facilities. The framework for incorporating faults and failures is based on Markov chains and displays the appealing property of easy transition of sensor and actuator history into a model for fault generation. The paper briefly describes Markov theory and how this is used together with models for sensor and actuator dynamics to achieve a realistic simulation of measurements and actuators.

  3. Space shuttle rudder/speedbrake actuation subsystem

    NASA Technical Reports Server (NTRS)

    Naber, R. A.

    1985-01-01

    The Rudder/Speedbrake (R/SB) Actuation Subsystem for use on the NASA Space Shuttle Orbiter is an electro-hydro-mechanical system which provides the control and positionary capability of the orbiter aero-dynamic primary flight control surface. The system is located in the vehicle's vertical stabilizer. The geared rotary actuators provide a power hinge feature of the split panel rudder. Actuation of both panels in the same direction provides conventional rudder control; actuating the panels differentially provides a speedbrake function intended to control both speed and pitch. The commands may be superimposed on one another. The system consists of one power drive unit which responds to quadredundant avionic signals to generate a rotary output, four geared rotary actuators, which develop rotary position and torque as outputs, and ten torque transmitting drive-shifts.

  4. Lead magnesium niobate actuator for micropositioning

    DOEpatents

    Swift, Charles D.; Bergum, John W.

    1994-01-01

    An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated.

  5. Lead magnesium niobate actuator for micropositioning

    DOEpatents

    Swift, C.D.; Bergum, J.W.

    1994-10-25

    An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated. 3 figs.

  6. Conducting IPN actuators for biomimetic vision system

    NASA Astrophysics Data System (ADS)

    Festin, Nicolas; Plesse, Cedric; Chevrot, Claude; Teyssié, Dominique; Pirim, Patrick; Vidal, Frederic

    2011-04-01

    In recent years, many studies on electroactive polymer (EAP) actuators have been reported. One promising technology is the elaboration of electronic conducting polymers based actuators with Interpenetrating Polymer Networks (IPNs) architecture. Their many advantageous properties as low working voltage, light weight and high lifetime (several million cycles) make them very attractive for various applications including robotics. Our laboratory recently synthesized new conducting IPN actuators based on high molecular Nitrile Butadiene Rubber, poly(ethylene oxide) derivative and poly(3,4-ethylenedioxithiophene). The presence of the elastomer greatly improves the actuator performances such as mechanical resistance and output force. In this article we present the IPN and actuator synthesis, characterizations and design allowing their integration in a biomimetic vision system.

  7. Microfabrication of stacked dielectric elastomer actuator fibers

    NASA Astrophysics Data System (ADS)

    Corbaci, Mert; Walter, Wayne; Lamkin-Kennard, Kathleen

    2016-04-01

    Dielectric elastomer actuators (DEA) are one of the best candidate materials for next generation of robotic actuators, soft sensors and artificial muscles due to their fast response, mechanical robustness and compliance. However, high voltage requirements of DEAs have impeded their potential to become widely used in such applications. In this study, we propose a method for fabrication of silicon based multilayer DEA fibers composed of microlevel dielectric layers to improve the actuation ratios of DEAs at lower voltages. A multi-walled carbon nanotube - polydimethylsiloxane (MWCNT/PDMS) composite was used to fabricate mechanically compliant, conductive parallel plates and electrode connections for the DEA actuators. Active surface area and layer thickness were varied to study the effects of these parameters on actuation ratio as a function of applied voltage. Different structures were fabricated to assess the flexibility of the fabrication method for specific user-end applications.

  8. Hand-actuated engine starter

    SciTech Connect

    Lindstrom, F.B.

    1987-01-27

    This patent describes a hand-actuated starter for an internal combustion engine wherein a first clutch member is journalled on a first shaft and a second clutch member is mounted on an engine shaft. The first clutch member has a pulley and is axially displaceable with respect to the second clutch member in response to rotation of the pulley, the first shaft and first clutch member having first and second mutually engaging bearing surfaces respectively. The improvement described here is wherein one of the surfaces has threads and the other of the surfaces has a helical groove and a helical spring in the groove positioned to engage the threads. The spring is radially displaceable in the groove.

  9. Lost-motion valve actuator

    SciTech Connect

    Burris, W.J. III; Ringgenberg, P.D.

    1987-04-07

    A lost-motion valve actuator is described for a bore closure valve employed in a well bore, comprising: operating connector means adapted to move the bore closure valve between open and closed positions through longitudinal movement of the operating connector means. The operating connector means comprises an operating connector and a connector insert defining a recess therebetween; locking dog means comprising at least one locking dog received in the recess and spring biasing means adapted to urge at least one locking dog radially inwardly; and mandrel means slidably received within the operating connector means and including dog slot means associated therewith. The dog slot means comprises an annular slot on the exterior of the mandrel means adapted to lockingly receive at least one inwardly biased locking dog when proximate thereto, whereby longitudinal movement of the mandrel means is transmitted to the operating connector means.

  10. Magnetic actuation of hair cells

    PubMed Central

    Rowland, David; Roongthumskul, Yuttana; Lee, Jae-Hyun; Cheon, Jinwoo; Bozovic, Dolores

    2011-01-01

    The bullfrog sacculus contains mechanically sensitive hair cells whose stereociliary bundles oscillate spontaneously when decoupled from the overlying membrane. Steady-state offsets on the resting position of a hair bundle can suppress or modulate this native motility. To probe the dynamics of spontaneous oscillation in the proximity of the critical point, we describe here a method for mechanical actuation that avoids loading the bundles or contributing to the viscous drag. Magnetite beads were attached to the tips of the stereocilia, and a magnetic probe was used to impose deflections. This technique allowed us to observe the transition from multi-mode to single-mode state in freely oscillating bundles, as well as the crossover from the oscillatory to the quiescent state. PMID:22163368

  11. Magnetic actuation of hair cells.

    PubMed

    Rowland, David; Roongthumskul, Yuttana; Lee, Jae-Hyun; Cheon, Jinwoo; Bozovic, Dolores

    2011-11-01

    The bullfrog sacculus contains mechanically sensitive hair cells whose stereociliary bundles oscillate spontaneously when decoupled from the overlying membrane. Steady-state offsets on the resting position of a hair bundle can suppress or modulate this native motility. To probe the dynamics of spontaneous oscillation in the proximity of the critical point, we describe here a method for mechanical actuation that avoids loading the bundles or contributing to the viscous drag. Magnetite beads were attached to the tips of the stereocilia, and a magnetic probe was used to impose deflections. This technique allowed us to observe the transition from multi-mode to single-mode state in freely oscillating bundles, as well as the crossover from the oscillatory to the quiescent state. PMID:22163368

  12. Pressure-actuated joint system

    NASA Technical Reports Server (NTRS)

    McGuire, John R. (Inventor)

    2004-01-01

    A pressure vessel is provided that includes first and second case segments mated with one another. First and second annular rubber layers are disposed inboard of the first and second case segments, respectively. The second annular rubber layer has a slot extending from the radial inner surface across a portion of its thickness to define a main body portion and a flexible portion. The flexible portion has an interfacing surface portion abutting against an interfacing surface portion of the first annular rubber layer to follow movement of the first annular rubber layer during operation of the pressure vessel. The slot receives pressurized gas and establishes a pressure-actuated joint between the interfacing surface portions. At least one of the interfacing surface portions has a plurality of enclosed and sealed recesses formed therein.

  13. Enhanced Actuation Performance and Reduced Heat Generation in Shear-Bending Mode Actuator at High Temperature.

    PubMed

    Chen, Jianguo; Liu, Guoxi; Cheng, Jinrong; Dong, Shuxiang

    2016-08-01

    The actuation performance, strain hysteresis, and heat generation of the shear-bending mode actuators based on soft and hard BiScO3-PbTiO3 (BS-PT) ceramics were investigated under different thermal (from room temperature to 300 °C) and electrical loadings (from 2 to 10 kV/cm and from 1 to 1000 Hz). The actuator based on both soft and hard BS-PT ceramics worked stably at the temperature as high as 300 °C. The maximum working temperature of this shear-bending actuators is 150 °C higher than those of the traditional piezoelectric actuators based on commercial Pb(Zr, Ti)O3 materials. Furthermore, although the piezoelectric properties of soft-type ceramics based on BS-PT ceramics were superior to those of hard ceramics, the maximum displacement of the actuator based on hard ceramics was larger than that fabricated by soft ceramics at high temperature. The maximum displacement of the actuator based on hard ceramics was [Formula: see text] under an applied electric field of 10 kV/cm at 300 °C. The strain hysteresis and heat generation of the actuator based on hard ceramics was smaller than those of the actuator based on soft ceramics in the wide temperature range. These results indicated that the shear-bending actuator based on hard piezoelectric ceramics was more suitable for high-temperature piezoelectric applications. PMID:27214895

  14. Out-of-Plane Translational PZT Bimorph Actuator with Archimedes’ Spiral Actuating Tethers

    NASA Astrophysics Data System (ADS)

    Yang, Chenye; Liu, Sanwei; Livermore, Carol

    2015-12-01

    The design, finite element analysis (FEA), and experimental characterization of a MEMS out-of-plane (vertical) translational lead-zirconate-titanate (PZT) bimorph actuator supported on Archimedes’ spiral tethers are presented. Two types of bimorph actuators with different electrode patterns (with spiral tethers half actuated or fully actuated) are designed and fabricated. Both designs are fabricated by commercial processes and are compatible with integration into more complex MEMS systems. Finite element analysis (FEA) was used to analyze and predict the displacements of both types of actuators. The deflections of both fully- actuated and half-actuated devices were measured experimentally to validate the design. At an applied voltage of 110V, the out-of-plane deflections of the actuators with half-actuated and fully-actuated tethers were measured at about 17 μm and 29 μm respectively, in good agreement with FEA predictions of 17.1 μm and 25.8 μm. The corresponding blocking forces are predicted as 10 mN and 17 mN by FEA.

  15. Active Damping Using Distributed Anisotropic Actuators

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.

    2010-01-01

    A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.

  16. Magnetic suspension characteristics of electromagnetic actuators

    NASA Technical Reports Server (NTRS)

    Rao, Dantam K.; Dill, J.; Zorzi, E.

    1993-01-01

    Electromagnetic actuators that use a current-carrying coil (which is placed in a magnetic field) to generate mechanical force are conceptually attractive components for active control of rotating shafts. In one concept that is being tested in the laboratory, the control forces from such actuators are applied on the flexibly supported bearing housings of the rotor. Development of this concept into a practical reality requires a clear and thorough understanding of the role of electromechanical parameters of these actuators in delivering the right amount of control force at the right phase into the rotor. The electromechanical parameters of the actuators investigated are the mass of the armature, stiffness of its suspension, electrical resistance, and inductance of the coils. Improper selection of these parameters can result in degradation in their performance, leading to mistuning between the actuator and the rotor. Through a simple analysis, it is shown that use of such mistuned actuators could result in sharp fluctuations in the phase of the control force delivered into the rotor around the critical speeds. These sharp fluctuations in phase, called 'Phase Glitches', are undesirable. Hence, future designs of controllers should take into account the undesirable mistuning effects between the actuator and the rotor caused by the phase glitches.

  17. Elastomeric actuator devices for magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Jolesz, Ferenc A. (Inventor); Kacher, Daniel F. (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)

    2008-01-01

    The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex.

  18. Dielectric elastomer actuators with hydrostatic coupling

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Frediani, Gabriele; De Rossi, Danilo

    2009-03-01

    The rapidly growing adoption of dielectric elastomer (DE) actuators as a high performance EAP technology for many kinds of new applications continuously opens new technical challenges, in order to take always the most from each adopted device and actuating configuration. This paper presents a new type of DE actuators, which show attractive potentialities for specific application needs. The concept here proposed adopts an incompressible fluid to mechanically couple active and passive parts. The active parts work according to the DE actuation principle, while the passive parts represent the end effector, in contact with the load. The fluid is used to transfer actuation hydrostatically from an active to a passive part and, then, to the load. This can provide specific advantages, including improved safety and less stringent design constraints for the architecture of the actuator, especially for soft end effectors. Such a simple concept can be readily implemented according to different shapes and intended functionalities of the resulting actuators. The paper describes the structure and the performance of the first prototype devices developed so far.

  19. Thermostatic Valves Containing Silicone-Oil Actuators

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Birur, Gajanana C.; Bame, David P.; Karlmann, Paul B.; Prina, Mauro; Young, William; Fisher, Richard

    2009-01-01

    Flow-splitting and flow-mixing thermally actuated spool valves have been developed for controlling flows of a heat-transfer fluid in a temperature-regulation system aboard the Mars Science Laboratory (MSL) rover. Valves like these could also be useful in terrestrial temperature-regulation systems, including automobile air-conditioning systems and general refrigeration systems. These valves are required to provide smoother actuation over a wider temperature range than the flow-splitting, thermally actuated spool valves used in the Mars Explorer Rover (MER). Also, whereas the MER valves are unstable (tending to oscillate) in certain transition temperature ranges, these valves are required not to oscillate. The MER valves are actuated by thermal expansion of a wax against spring-loaded piston rods (as in common automotive thermostats). The MSL valves contain similar actuators that utilize thermal expansion of a silicone oil, because silicone-oil actuators were found to afford greater and more nearly linear displacements, needed for smoother actuation, over the required wider temperature range. The MSL valves also feature improved spool designs that reflect greater understanding of fluid dynamics, consideration of pressure drops in valves, and a requirement for balancing of pressures in different flow branches.

  20. Biomimetic photo-actuation: progress and challenges

    NASA Astrophysics Data System (ADS)

    Dicker, Michael P. M.; Weaver, Paul M.; Rossiter, Jonathan M.; Bond, Ian P.; Faul, Charl F. J.

    2016-04-01

    Photo-actuation, such as that observed in the reversible sun-tracking movements of heliotropic plants, is produced by a complex, yet elegant series of processes. In the heliotropic leaf movements of the Cornish Mallow, photo-actuation involves the generation, transport and manipulation of chemical signals from a distributed network of sensors in the leaf veins to a specialized osmosis driven actuation region in the leaf stem. It is theorized that such an arrangement is both efficient in terms of materials use and operational energy conversion, as well as being highly robust. We concern ourselves with understanding and mimicking these light driven, chemically controlled actuating systems with the aim of generating intelligent structures which share the properties of efficiency and robustness that are so important to survival in Nature. In this work we present recent progress in mimicking these photo-actuating systems through remote light exposure of a metastable state photoacid and the resulting signal and energy transfer through solution to a pH-responsive hydrogel actuator. Reversible actuation strains of 20% were achieved from this arrangement, with modelling then employed to reveal the critical influence hydrogel pKa has on this result. Although the strong actuation achieved highlights the progress that has been made in replicating the principles of biomimetic photo-actuation, challenges such as photoacid degradation were also revealed. It is anticipated that current work can directly lead to the development of high-performance and low-cost solartrackers for increased photovoltaic energy capture and to the creation of new types of intelligent structures employing chemical control systems.

  1. Bluff Body Flow Control Using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Thomas, Flint

    2005-11-01

    In this study, the use of single dielectric barrier discharge plasma actuators for the control of bluff body flow separation is investigated. In particular, surface mounted plasma actuators are used to reduce both drag and unsteady vortex shedding from circular cylinders in cross-flow. It is demonstrated that the plasma-induced surface blowing gives rise to a local Coanda effect that promotes the maintenance of flow attachment. Large reductions in vortex shedding and drag are demonstrated for Reynolds numbers ˜ 10^410^5. Both steady and unsteady plasma-induced surface blowing is explored. Results are presented from experiments involving both two and four surface mounted actuators.

  2. Hydraulic Actuator System for Rotor Control

    NASA Technical Reports Server (NTRS)

    Ulbrich, Heinz; Althaus, Josef

    1991-01-01

    In the last ten years, several different types of actuators were developed and fabricated for active control of rotors. A special hydraulic actuator system capable of generating high forces to rotating shafts via conventional bearings is addressed. The actively controlled hydraulic force actuator features an electrohydraulic servo valve which can produce amplitudes and forces at high frequencies necessary for influencing rotor vibrations. The mathematical description will be given in detail. The experimental results verify the theoretical model. Simulations already indicate the usefulness of this compact device for application to a real rotor system.

  3. Microcantilever actuation via periodic internal heating

    SciTech Connect

    Lee, Jungchul; King, William P.

    2007-12-15

    This paper reports electrothermal actuation of silicon microcantilevers having integrated resistive heaters. Periodic electrical excitation induced periodic resistive heating in the cantilever, while the cantilever deflection was monitored with a photodetector. Excitation was either at the cantilever resonant frequency, f{sub 0}, f{sub 0}/2, or f{sub 0}/3. When the time averaged maximum cantilever temperature was 174 deg. C, the cantilever out-of-plane actuation amplitude was 484 nm near the cantilever resonance frequency of 24.9 kHz. This actuation was sufficiently large to operate the cantilever in intermittent contact mode and scan a calibration grating of height of 20 nm.

  4. Refreshable Braille Displays Using EAP Actuators

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2010-01-01

    Refreshable Braille can help visually impaired persons benefit from the growing advances in computer technology. The development of such displays in a full screen form is a great challenge due to the need to pack many actuators in small area without interferences. In recent years, various displays using actuators such as piezoelectric stacks have become available in commercial form but most of them are limited to one line Braille code. Researchers in the field of electroactive polymers (EAP) investigated methods of using these materials to form full screen displays. This manuscript reviews the state of the art of producing refreshable Braille displays using EAP-based actuators..

  5. Refreshable Braille displays using EAP actuators

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2010-04-01

    Refreshable Braille can help visually impaired persons benefit from the growing advances in computer technology. The development of such displays in a full screen form is a great challenge due to the need to pack many actuators in small area without interferences. In recent years, various displays using actuators such as piezoelectric stacks have become available in commercial form but most of them are limited to one line Braille code. Researchers in the field of electroactive polymers (EAP) investigated methods of using these materials to form full screen displays. This manuscript reviews the state of the art of producing refreshable Braille displays using EAP-based actuators.

  6. Peristaltic pump made of dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Lotz, Peter; Matysek, Marc; Schlaak, Helmut F.

    2009-03-01

    The functional principle of peristaltic motion is inspired by the pattern in which hollow organs move. The technology of dielectric elastomer actuators provides the possibility to design a very compact peristaltic pump. The geometries of the whole pump and the actuator elements have been determined by numerical simulations of the mechanical behaviour and the fluid dynamics. With eight independent actuators the pumping channel is self-sealing and there is no need for any valves. The first generation of this pump is able to generate flow rates up to 0.36 μl/min.

  7. Optimization Strategies for Sensor and Actuator Placement

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Kincaid, Rex K.

    1999-01-01

    This paper provides a survey of actuator and sensor placement problems from a wide range of engineering disciplines and a variety of applications. Combinatorial optimization methods are recommended as a means for identifying sets of actuators and sensors that maximize performance. Several sample applications from NASA Langley Research Center, such as active structural acoustic control, are covered in detail. Laboratory and flight tests of these applications indicate that actuator and sensor placement methods are effective and important. Lessons learned in solving these optimization problems can guide future research.

  8. Misfire tolerant combustion-powered actuation

    DOEpatents

    Spletzer, Barry L.; Fischer, Gary J.; Marron, Lisa C.; Kuehl, Michael A.

    2001-01-01

    The present invention provides a combustion-powered actuator that is suitable for intermittent actuation, that is suitable for use with atmospheric pressure carburetion, and that requires little electrical energy input. The present invention uses energy from expansion of pressurized fuel to effectively purge a combustion chamber, and to achieve atmospheric pressure carburetion. Each purge-fill-power cycle can be independent, allowing the actuator to readily tolerate misfires. The present invention is suitable for use with linear and rotary operation combustion chambers, and is suitable for use in a wide variety of applications.

  9. A Model of the THUNDER Actuator

    NASA Technical Reports Server (NTRS)

    Curtis, Alan R. D.

    1997-01-01

    A THUNDER actuator is a composite of three thin layers, a metal base, a piezoelectric wafer and a metal top cover, bonded together under pressure and at high temperature with the LaRC SI polyimid adhesive. When a voltage is applied between the metal layers across the PZT the actuator will bend and can generate a force. This document develops and describes an analytical model the transduction properties of THUNDER actuators. The model development is divided into three sections. First, a static model is described that relates internal stresses and strains and external displacements to the thermal pre-stress and applied voltage. Second, a dynamic energy based model is described that allows calculation of the resonance frequencies, developed force and electrical input impedance. Finally, a fully coupled electro-mechanical transducer model is described. The model development proceeds by assuming that both the thermal pre-stress and the piezoelectric actuation cause the actuator to deform in a pure bend in a single plane. It is useful to think of this as a two step process, the actuator is held flat, differential stresses induce a bending moment, the actuator is released and it bends. The thermal pre-stress is caused by the different amounts that the constituent layers shrink due to their different coefficients of thermal expansion. The adhesive between layers sets at a high temperature and as the actuator cools, the metal layers shrink more than the PZT. The PZT layer is put into compression while the metal layers are in tension. The piezoelectric actuation has a similar effect. An applied voltage causes the PZT layer to strain, which in turn strains the two metal layers. If the PZT layer expands it will put the metal layers into tension and PZT layer into compression. In both cases, if shear force effects are neglected, the actuator assembly will experience a uniform in-plane strain. As the materials each have a different elastic modulus, different stresses will

  10. Choosing Actuators for Automatic Control Systems of Thermal Power Plants

    SciTech Connect

    Gorbunov, A. I.; Serdyukov, O. V.

    2015-03-15

    Two types of actuators for automatic control systems of thermal power plants are analyzed: (i) pulse-controlled actuator and (ii) analog-controlled actuator with positioning function. The actuators are compared in terms of control circuit, control accuracy, reliability, and cost.

  11. High output paraffin actuators: Utilization in aerospace mechanisms

    NASA Technical Reports Server (NTRS)

    Tibbitts, Scott

    1988-01-01

    High Output Paraffin (HOP) thermal actuators were developed to provide an alternative to conventional aerospace actuators: HOP actuators directly convert temperature changes to useful mechanical work. When fabricated with internal resistance heating elements, they provide an electric linear motor. For applications in which slower response times are acceptable or preferred, HOP actuators have distinct advantages over conventional approaches.

  12. Improved manufacturing technology for producing porous Nafion for high-performance ionic polymer–metal composite actuators

    NASA Astrophysics Data System (ADS)

    Zhao, Dongxu; Li, Dichen; Wang, Yanjie; Chen, Hualing

    2016-07-01

    The current actuation performance of ionic polymer–metal composites (IPMCs) limits their further application in the aerospace, energy, and optics fields, among others. To overcome this issue, we developed a freeze-drying process to generate Nafion membranes with a porous structure, the characteristics of which were investigated using thermogravimetric analysis, Fourier transform infrared spectrometry, field-emission scanning electron microscopy, and water uptake tests. The pores fabricated using the developed freeze-drying process had a diameter of approximately 270 nm, and a porosity of nearly 40.45%. The displacement and the central angle were introduced as variables to evaluate the bending deformation of an IPMC actuator based on the porous Nafion membrane. Compared with conventional actuators, this IPMC actuator showed an increase in displacement of 4963.6% at 2 V, and an increase in central angle of 73.35% at 3 V. Although the blocking forces of this IPMC actuator decreased to some extent, it was confirmed that the integrated actuation performance, which was evaluated using the strain energy density increment, was improved. The performance of the IPMC actuator was enhanced as a result of the porous Nafion structure manufactured using the developed freeze-drying process.

  13. Improved manufacturing technology for producing porous Nafion for high-performance ionic polymer-metal composite actuators

    NASA Astrophysics Data System (ADS)

    Zhao, Dongxu; Li, Dichen; Wang, Yanjie; Chen, Hualing

    2016-07-01

    The current actuation performance of ionic polymer-metal composites (IPMCs) limits their further application in the aerospace, energy, and optics fields, among others. To overcome this issue, we developed a freeze-drying process to generate Nafion membranes with a porous structure, the characteristics of which were investigated using thermogravimetric analysis, Fourier transform infrared spectrometry, field-emission scanning electron microscopy, and water uptake tests. The pores fabricated using the developed freeze-drying process had a diameter of approximately 270 nm, and a porosity of nearly 40.45%. The displacement and the central angle were introduced as variables to evaluate the bending deformation of an IPMC actuator based on the porous Nafion membrane. Compared with conventional actuators, this IPMC actuator showed an increase in displacement of 4963.6% at 2 V, and an increase in central angle of 73.35% at 3 V. Although the blocking forces of this IPMC actuator decreased to some extent, it was confirmed that the integrated actuation performance, which was evaluated using the strain energy density increment, was improved. The performance of the IPMC actuator was enhanced as a result of the porous Nafion structure manufactured using the developed freeze-drying process.

  14. EFFECTS OF LASER RADIATION ON MATTER: Melting and thermocapillary convection under the action of pulsed laser radiation with an inhomogeneous spatial distribution

    NASA Astrophysics Data System (ADS)

    Uglov, A. A.; Smurov, I. Yu; Gus'kov, A. G.; Aksenov, L. V.

    1990-08-01

    A theoretical study is reported of melting and thermocapillary convection under the action of laser radiation with a nonmonotonic spatial distribution of the power density. An analysis is made of changes in the geometry of the molten bath with time. The transition from a nonmonotonic boundary of a melt, corresponding to the spatial distribution of the radiation, to a monotonic one occurs in a time of the order of 1 ms when the power density of laser radiation is 105 W/cm2. The vortex structure of the flow in the molten bath is governed by the spatial distribution of the laser radiation in such a way that each local power density maximum corresponds to two vortices with oppositely directed velocity components.

  15. Nylon-muscle-actuated robotic finger

    NASA Astrophysics Data System (ADS)

    Wu, Lianjun; Jung de Andrade, Monica; Rome, Richard S.; Haines, Carter; Lima, Marcio D.; Baughman, Ray H.; Tadesse, Yonas

    2015-04-01

    This paper describes the design and experimental analysis of novel artificial muscles, made of twisted and coiled nylon fibers, for powering a biomimetic robotic hand. The design is based on circulating hot and cold water to actuate the artificial muscles and obtain fast finger movements. The actuation system consists of a spring and a coiled muscle within a compliant silicone tube. The silicone tube provides a watertight, expansible compartment within which the coiled muscle contracts when heated and expands when cooled. The fabrication and characterization of the actuating system are discussed in detail. The performance of the coiled muscle fiber in embedded conditions and the related characteristics of the actuated robotic finger are described.

  16. Actuators Based on Liquid Crystalline Elastomer Materials

    PubMed Central

    Jiang, Hongrui; Li, Chensha; Huang, Xuezhen

    2013-01-01

    Liquid crystalline elastomers (LCEs) exhibit a number of remarkable physical effects, including the unique, high-stroke reversible mechanical actuation when triggered by external stimuli. This article reviews some recent exciting developments in the field of LCEs materials with an emphasis on their utilization in actuator applications. Such applications include artificial muscles, industrial manufacturing, health and microelectromechanical systems (MEMS). With suitable synthetic and preparation pathways and well-controlled actuation stimuli, such as heat, light, electric and magnetic field, excellent physical properties of LCE materials can be realized. By comparing the actuating properties of different systems, general relationships between the structure and the property of LCEs are discussed. How these materials can be turned into usable devices using interdisciplinary techniques is also described. PMID:23648966

  17. Research on Plasma Synthetic Jet Actuator

    NASA Astrophysics Data System (ADS)

    Che, X. K.; Nie, W. S.; Hou, Z. Y.

    2011-09-01

    Circular dielectric barrier surface discharge (DBDs) actuator is a new concept of zero mass synthetic jet actuator. The characteristic of discharge and flow control effect of annular-circular plasma synthetic jet actuator has been studied by means of of numerical simulation and experiment. The discharge current density, electron density, electrostatic body force density and flowfield have been obtained. The results show annular-circular actuator can produce normal jet whose velocity will be greater than 2.0 m/s. The jet will excite circumfluence. In order to insure the discharge is generated in the exposed electrode annular and produce centripetal and normal electrostatic body force, the width and annular diameter of exposed electrode must be big enough, or an opposite phase drove voltage potential should be applied between the two electrodes.

  18. Actuator grouping optimization on flexible space reflectors

    NASA Astrophysics Data System (ADS)

    Hill, Jeffrey R.; Wang, K. W.; Fang, Houfei; Quijano, Ubaldo

    2011-03-01

    With the rapid advances in deployable membrane and mesh antenna technologies, the feasibility of developing large, lightweight reflectors has greatly improved. In order to achieve the required accuracy, precision surface control is needed on these lightweight reflectors. While studies have shown that domain control of space reflectors via Polyvinylidene Fluoride (PVDF) actuators is promising, the challenge is to realistically control a large number of distributed actuators with limited number of power supplies. In this research, a new En Mass Elimination method is synthesized to determine the optimal grouping of actuators when the actuator number exceeds the number of power supplies available. An analytical model is developed and the methodology is demonstrated numerically through system simulation on the derived model.

  19. Actuators based on liquid crystalline elastomer materials

    NASA Astrophysics Data System (ADS)

    Jiang, Hongrui; Li, Chensha; Huang, Xuezhen

    2013-05-01

    Liquid crystalline elastomers (LCEs) exhibit a number of remarkable physical effects, including the unique, high-stroke reversible mechanical actuation when triggered by external stimuli. This article reviews some recent exciting developments in the field of LCE materials with an emphasis on their utilization in actuator applications. Such applications include artificial muscles, industrial manufacturing, health and microelectromechanical systems (MEMS). With suitable synthetic and preparation pathways and well-controlled actuation stimuli, such as heat, light, electric and magnetic fields, excellent physical properties of LCE materials can be realized. By comparing the actuating properties of different systems, general relationships between the structure and the properties of LCEs are discussed. How these materials can be turned into usable devices using interdisciplinary techniques is also described.

  20. Feasibility of transparent flexible ultrasonic haptic actuator

    NASA Astrophysics Data System (ADS)

    Akther, Asma; Kafy, Abdullahil; Kim, Hyun Chan; Kim, Jaehwan

    2016-04-01

    Ultrasonic haptics actuator is a device that can create a haptic feedback to user's hand. The modulation of ultrasonic frequency can give different textures to the users. In this study, a feasibility of the ultrasonic haptic actuator made on a flexible piezoelectric substrate is investigated. As the piezoelectric substrate helps to propagate flexural waves, a pair of interdigital transducer (IDT) with reflectors can produce standing waves, which can increase the vibrational displacement of the actuator. A pair of IDT pattern was fabricated on a piezoelectric polymer substrate. A finite element analysis is at first performed to design the actuator. A sinusoidal excitation voltage is applied on IDT electrodes at ultrasonic frequencies and the displacement waveforms are found. The displacement waveforms clearly represent how ultrasonic waves propagate through the piezoelectric substrate.

  1. Self-actuating reactor shutdown system

    DOEpatents

    Barrus, Donald M.; Brummond, Willian A; Peterson, Leslie F.

    1988-01-01

    A control system for the automatic or self-actuated shutdown or "scram" of a nuclear reactor. The system is capable of initiating scram insertion by a signal from the plant protection system or by independent action directly sensing reactor conditions of low-flow or over-power. Self-actuation due to a loss of reactor coolant flow results from a decrease of pressure differential between the upper and lower ends of an absorber element. When the force due to this differential falls below the weight of the element, the element will fall by gravitational force to scram the reactor. Self-actuation due to high neutron flux is accomplished via a valve controlled by an electromagnet and a thermionic diode. In a reactor over-power, the diode will be heated to a change of state causing the electromagnet to be shorted thereby actuating the valve which provides the changed flow and pressure conditions required for scramming the absorber element.

  2. Considerations for contractile electroactive materials and actuators

    NASA Astrophysics Data System (ADS)

    Rasmussen, Lenore; Schramm, David; Rasmussen, Paul; Mullally, Kevin; Meixler, Lewis D.; Pearlman, Daniel; Kirk, Alice

    2011-04-01

    Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.

  3. Considerations for Contractile Electroactive Materials and Actuators

    SciTech Connect

    Lenore Rasmussen, David Schramm, Paul Rasmussen, Kevin Mullaly, Ras Labs, LLC, Intelligent Materials for Prosthetics & Automation, Lewis D. Meixler, Daniel Pearlman and Alice Kirk

    2011-05-23

    Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.

  4. Tension Stiffened and Tendon Actuated Manipulator

    NASA Technical Reports Server (NTRS)

    Doggett, William R. (Inventor); Dorsey, John T. (Inventor); Ganoe, George G. (Inventor); King, Bruce D. (Inventor); Jones, Thomas C. (Inventor); Mercer, Charles D. (Inventor); Corbin, Cole K. (Inventor)

    2015-01-01

    A tension stiffened and tendon actuated manipulator is provided performing robotic-like movements when acquiring a payload. The manipulator design can be adapted for use in-space, lunar or other planetary installations as it is readily configurable for acquiring and precisely manipulating a payload in both a zero-g environment and in an environment with a gravity field. The manipulator includes a plurality of link arms, a hinge connecting adjacent link arms together to allow the adjacent link arms to rotate relative to each other and a cable actuation and tensioning system provided between adjacent link arms. The cable actuation and tensioning system includes a spreader arm and a plurality of driven and non-driven elements attached to the link arms and the spreader arm. At least one cable is routed around the driven and non-driven elements for actuating the hinge.

  5. Serpentine Robot Arm Contains Electromagnetic Actuators

    NASA Technical Reports Server (NTRS)

    Moya, Israel A.; Studer, Philip A.

    1994-01-01

    Identical modules assembled into flexible robot arm configured in serpentlike fashion to manipulate objects while avoiding obstacles. Each module includes integral electromagnetic actuators energized selectively to produce variety of motions, stationary configurations, and combinations thereof.

  6. Conducting polymers are simultaneous sensing actuators

    NASA Astrophysics Data System (ADS)

    Córdova, Fransisco G.; Ismail, Yahya A.; Martinez, Jose G.; Al Harrasi, Ahmad S.; Otero, Toribio F.

    2013-04-01

    Conducting polymers are soft, wet and reactive gels capable of mimicking biological functions. They are the electrochemomechanical actuators having the ability to sense the surrounding variables simultaneously. The sensing and actuating signals are sent/received back through the same two connecting wires in these materials. The sensing ability is a general property of all conducting polymers arises from the unique electrochemical reaction taking place in them. This sensing ability is verified for two different conducting polymers here - for an electrochemically generated polypyrrole triple layer bending actuator exchanging cations and for a chemically generated polytoluidine linear actuator exchanging anions. The configuration of the polypyrrole actuator device corresponds to polypyrrole-dodecyl benzene sulfonate (pPy-DBS) film/tape/ pPy-DBS film in which the film on one side of the triple layer is acted as anode and the film on the other side acted as cathode simultaneously, and the films interchanged their role when move in the opposite direction. The polytoluidine linear actuator was fabricated using a hydrgel microfiber through in situ chemical polymerization. The sensing characteristics of these two actuators were studied as a function of their working conditions: applied current, electrolyte concentration and temperature in aqueous electrolytes. The chronopotentiometric responses were studied by applying square electrical currents for a specified time. For the pPy actuator it was set to produce angular movement of +/- 45° by the free end of the actuator, consuming constant charges of 60 mC. In both the actuators the evolution of the muscle potential along the electrical current cycle was found to be a function of chemical and physical variables acting on the polymer reaction rates: electrolyte concentration, temperature or driving electrical current. The muscle potential evolved decreases with increasing electrolyte concentrations, increasing temperatures or

  7. Mirrors Containing Biomimetic Shape-Control Actuators

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Mouroulis, Pantazis; Bao, Xiaoqi; Sherrit, Stewart

    2003-01-01

    Curved mirrors of a proposed type would comprise lightweight sheets or films containing integral, biologically inspired actuators for controlling their surface figures. These mirrors could be useful in such applications as collection of solar energy, focusing of radio beams, and (provided sufficient precision could be achieved) imaging. These mirrors were originally intended for use in outer space, but it should also be possible to develop terrestrial versions. Several prior NASA Tech Briefs articles have described a variety of approaches to the design of curved, lightweight mirrors containing integral shape-control actuators. The primary distinction between the present approach and the prior approaches lies in the actuator design concept, which involves shapes and movements reminiscent of those of a variety of small, multi-armed animals. The shape and movement of an actuator of this type can also be characterized as reminiscent of that of an umbrella. This concept can be further characterized as a derivative of that of multifinger grippers, the fingers of which are bimorph bending actuators (see Figure 1). The fingers of such actuators can be strips containing any of a variety of materials that have been investigated for use as actuators, including such electroactive polymers as ionomeric polymer/metal composites (IPMCs), ferroelectric polymers, and grafted elastomers. A mirror according to this proposal would be made from a sheet of one of the actuator composites mentioned above. The design would involve many variables, including the pre-curvature and stiffness of the mirror sheet, the required precision of figure control, the required range of variation in focal length (see Figure 2), the required precision of figure control for imaging or non-imaging use, the bending and twisting moments needed to effect the required deformations, and voltage-tomoment coefficients of the actuators, and the voltages accordingly required for actuation. A typical design would call

  8. Unusual and Superfast Temperature-Triggered Actuators.

    PubMed

    Jiang, Shaohua; Liu, Fangyao; Lerch, Arne; Ionov, Leonid; Agarwal, Seema

    2015-09-01

    A superfast actuator based on a bilayer fibrous mat shows folding/unfolding and the formation of 3D structures in a fraction of a second. The actuation is reversible for many cycles without losing its form and size, with unfolding at room temperature and folding above 35 °C. The system is promising for making 3D bioscaffolds, electrodes, and micro-/macroactuators. PMID:26186175

  9. Microelectromechanical Systems Actuator Based Reconfigurable Printed Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor)

    2005-01-01

    A polarization reconfigurable patch antenna is disclosed. The antenna includes a feed element, a patch antenna element electrically connected to the feed element, and at least one microelectromechanical systems (MEMS) actuator, with a partial connection to the patch antenna element along an edge of the patch antenna element. The polarization of the antenna can be switched between circular polarization and linear polarization through action of the at least one MEMS actuator.

  10. Redundancy of hydraulic flight control actuators

    NASA Technical Reports Server (NTRS)

    Chenoweth, C. C.; Ryder, D. R.

    1976-01-01

    The constraint of requiring airplanes to have inherent aerodynamic stability can be removed by using active control systems. The resulting airplane requires control system reliability approaching that of the basic airframe. Redundant control actuators can be used to achieve the required reliability, but create mechanization and operational problems. Of numerous candidate systems, two different approaches to solving the problems associated with redundant actuators which appear the most likely to be used in advanced airplane control systems are described.

  11. Digital flight control actuation system study

    NASA Technical Reports Server (NTRS)

    Rossing, R.; Hupp, R.

    1974-01-01

    Flight control actuators and feedback sensors suitable for use in a redundant digital flight control system were examined. The most appropriate design approach for an advanced digital flight control actuation system for development and use in a fly-by-wire system was selected. The concept which was selected consisted of a PM torque motor direct drive. The selected system is compatible with concurrent and independent development efforts on the computer system and the control law mechanizations.

  12. An Atomic Force Microscope with Dual Actuation Capability for Biomolecular Experiments

    PubMed Central

    Sevim, Semih; Shamsudhin, Naveen; Ozer, Sevil; Feng, Luying; Fakhraee, Arielle; Ergeneman, Olgaç; Pané, Salvador; Nelson, Bradley J.; Torun, Hamdi

    2016-01-01

    We report a modular atomic force microscope (AFM) design for biomolecular experiments. The AFM head uses readily available components and incorporates deflection-based optics and a piezotube-based cantilever actuator. Jetted-polymers have been used in the mechanical assembly, which allows rapid manufacturing. In addition, a FeCo-tipped electromagnet provides high-force cantilever actuation with vertical magnetic fields up to 0.55 T. Magnetic field calibration has been performed with a micro-hall sensor, which corresponds well with results from finite element magnetostatics simulations. An integrated force resolution of 1.82 and 2.98 pN, in air and in DI water, respectively was achieved in 1 kHz bandwidth with commercially available cantilevers made of Silicon Nitride. The controller and user interface are implemented on modular hardware to ensure scalability. The AFM can be operated in different modes, such as molecular pulling or force-clamp, by actuating the cantilever with the available actuators. The electromagnetic and piezoelectric actuation capabilities have been demonstrated in unbinding experiments of the biotin-streptavidin complex. PMID:27273214

  13. An Atomic Force Microscope with Dual Actuation Capability for Biomolecular Experiments

    NASA Astrophysics Data System (ADS)

    Sevim, Semih; Shamsudhin, Naveen; Ozer, Sevil; Feng, Luying; Fakhraee, Arielle; Ergeneman, Olgaç; Pané, Salvador; Nelson, Bradley J.; Torun, Hamdi

    2016-06-01

    We report a modular atomic force microscope (AFM) design for biomolecular experiments. The AFM head uses readily available components and incorporates deflection-based optics and a piezotube-based cantilever actuator. Jetted-polymers have been used in the mechanical assembly, which allows rapid manufacturing. In addition, a FeCo-tipped electromagnet provides high-force cantilever actuation with vertical magnetic fields up to 0.55 T. Magnetic field calibration has been performed with a micro-hall sensor, which corresponds well with results from finite element magnetostatics simulations. An integrated force resolution of 1.82 and 2.98 pN, in air and in DI water, respectively was achieved in 1 kHz bandwidth with commercially available cantilevers made of Silicon Nitride. The controller and user interface are implemented on modular hardware to ensure scalability. The AFM can be operated in different modes, such as molecular pulling or force-clamp, by actuating the cantilever with the available actuators. The electromagnetic and piezoelectric actuation capabilities have been demonstrated in unbinding experiments of the biotin-streptavidin complex.

  14. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.

    PubMed

    Xing, Huihui; Li, Jun; Shi, Yang; Guo, Jinbao; Wei, Jie

    2016-04-13

    We have developed a novel thermoresponsive photonic actuator based on three-dimensional SiO2 opal photonic crystals (PCs) together with liquid crystal elastomers (LCEs). In the process of fabrication of such a photonic actuator, the LCE precursor is infiltrated into the SiO2 opal PC followed by UV light-induced photopolymerization, thereby forming the SiO2 opal PC/LCE composite film with a bilayer structure. We find that this bilayer composite film simultaneously exhibits actuation behavior as well as the photonic band gap (PBG) response to external temperature variation. When the SiO2 opal PC/LCE composite film is heated, it exhibits a considerable bending deformation, and its PBG shifts to a shorter wavelength at the same time. In addition, this actuation is quite fast, reversible, and highly repeatable. The thermoresponsive behavior of the SiO2 opal PC/LCE composite films mainly derives from the thermal-driven change of nematic order of the LCE layer which leads to the asymmetric shrinkage/expansion of the bilayer structure. These results will be of interest in designing optical actuator systems for environment-temperature detection. PMID:26996608

  15. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.

    PubMed

    Xing, Huihui; Li, Jun; Shi, Yang; Guo, Jinbao; Wei, Jie

    2016-04-13

    We have developed a novel thermoresponsive photonic actuator based on three-dimensional SiO2 opal photonic crystals (PCs) together with liquid crystal elastomers (LCEs). In the process of fabrication of such a photonic actuator, the LCE precursor is infiltrated into the SiO2 opal PC followed by UV light-induced photopolymerization, thereby forming the SiO2 opal PC/LCE composite film with a bilayer structure. We find that this bilayer composite film simultaneously exhibits actuation behavior as well as the photonic band gap (PBG) response to external temperature variation. When the SiO2 opal PC/LCE composite film is heated, it exhibits a considerable bending deformation, and its PBG shifts to a shorter wavelength at the same time. In addition, this actuation is quite fast, reversible, and highly repeatable. The thermoresponsive behavior of the SiO2 opal PC/LCE composite films mainly derives from the thermal-driven change of nematic order of the LCE layer which leads to the asymmetric shrinkage/expansion of the bilayer structure. These results will be of interest in designing optical actuator systems for environment-temperature detection.

  16. Design and preliminary test of precision segment positioning actuator for the California Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    Lorell, Kenneth R.; Aubrun, Jean-Noel; Clappier, Robert R.; Shelef, Ben; Shelef, Gad

    2003-01-01

    In order for the California Extremely Large Telescope (CELT) to achieve the required optical performance, each of its 1000 primary mirror segments must be positioned relative to adjacent segments with nanometer-level accuracy. This can be accomplished using three actuators for each segment to actively control the segment in tip, tilt, and piston. The Keck telescopes utilize a segmented primary mirror similar to CELT employing a highly successful actuator design. However, because of its size and the shear number of actuators (3000 vs. 108 for Keck), CELT will require a different design. Sensitivity to wind loads and structural vibrations, the large dynamic range, low operating power, and extremely reliable operation, all achieved at an affordable unit cost, are the most demanding design requirements. This paper examines four actuator concepts and presents a trade-off between them. The concept that best met the CELT requirements is described along with an analysis of its performance. The concept is based on techniques that achieve the required accuracy while providing a substantial amount of vibration attenuation and damping. A prototype actuator has been built to validate this concept. Preliminary tests confirm predicted behavior and future tests will establish a sound baseline for final design and production.

  17. An Atomic Force Microscope with Dual Actuation Capability for Biomolecular Experiments.

    PubMed

    Sevim, Semih; Shamsudhin, Naveen; Ozer, Sevil; Feng, Luying; Fakhraee, Arielle; Ergeneman, Olgaç; Pané, Salvador; Nelson, Bradley J; Torun, Hamdi

    2016-01-01

    We report a modular atomic force microscope (AFM) design for biomolecular experiments. The AFM head uses readily available components and incorporates deflection-based optics and a piezotube-based cantilever actuator. Jetted-polymers have been used in the mechanical assembly, which allows rapid manufacturing. In addition, a FeCo-tipped electromagnet provides high-force cantilever actuation with vertical magnetic fields up to 0.55 T. Magnetic field calibration has been performed with a micro-hall sensor, which corresponds well with results from finite element magnetostatics simulations. An integrated force resolution of 1.82 and 2.98 pN, in air and in DI water, respectively was achieved in 1 kHz bandwidth with commercially available cantilevers made of Silicon Nitride. The controller and user interface are implemented on modular hardware to ensure scalability. The AFM can be operated in different modes, such as molecular pulling or force-clamp, by actuating the cantilever with the available actuators. The electromagnetic and piezoelectric actuation capabilities have been demonstrated in unbinding experiments of the biotin-streptavidin complex. PMID:27273214

  18. Flexible Low-Mass Devices and Mechanisms Actuated by Electroactive Polymers

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y; Leary, S.; Shahinpoor, M.; Harrison, J. O.; Smith, J.

    1999-01-01

    Miniature, lightweight, miser actuators that operate similar to biological muscles can be used to develop robotic devices with unmatched capabilities to impact many technology areas. Electroactive polymers (EAP) offer the potential to producing such actuators and their main attractive feature is their ability to induce relatively large bending or longitudinal strain. Generally, these materials produce a relatively low force and the applications that can be considered at the current state of the art are relatively limited. This reported study is concentrating on the development of effective EAPs and the resultant enabling mechanisms employing their unique characteristics. Several EAP driven mechanisms, which emulate human hand, were developed including a gripper, manipulator arm and surface wiper. The manipulator arm was made of a composite rod with an EAP actuator consisting of a scrolled rope that is activated longitudinally by an electrostatic field. A gripper was made to serve as an end effector and it consisted of multiple bending EAP fingers for grabbing and holding such objects as rocks. An EAP surface wiper was developed to operate like a human finger and to demonstrate the potential to remove dust from optical and IR windows as well as solar cells. These EAP driven devices are taking advantage of the large actuation displacement of these materials but there is need for a significantly greater actuation force capability.

  19. Design of a linear-motion dual-stage actuation system for precision control

    NASA Astrophysics Data System (ADS)

    Dong, W.; Tang, J.; El Deeb, Y.

    2009-09-01

    Actuators with high linear-motion speed, high positioning resolution and a long motion stroke are needed in many precision machining systems. In some current systems, voice coil motors (VCMs) are implemented for servo control. While the voice coil motors may provide the long motion stroke needed in many applications, the main obstacle that hinders the improvement of the machining accuracy and efficiency is their limited bandwidth. To fundamentally solve this issue, we propose to develop a dual-stage actuation system that consists of a voice coil motor that covers the coarse motion, and a piezoelectric stack actuator that induces the fine motion, thus enhancing the positioning accuracy. The focus of this present research is the mechatronics design and synthesis of the new actuation system. In particular, a flexure hinge based mechanism is developed to provide a motion guide and preload to the piezoelectric stack actuator that is serially connected to the voice coil motor. This mechanism is built upon parallel plane flexure hinges. A series of numerical and experimental studies are carried out to facilitate the system design and the model identification. The effectiveness of the proposed system is demonstrated through open-loop studies and preliminary closed-loop control practice. While the primary goal of this particular design is aimed at enhancing optical lens machining, the concept and approach outlined are generic and can be extended to a variety of applications.

  20. New modular piezo actuator with built-in stress-strain transformation

    NASA Astrophysics Data System (ADS)

    Rödig, Thomas; Schönecker, Andreas; Seffner, Lutz; Drossel, Welf-Guntram; Kunze, Holger; Roscher, Hans-Jürgen

    2009-03-01

    As known, the electrical induced strain of conventional piezoceramic materials is limited by 0.12 % (2 kV/mm), which often requires strain transformation designs, like levers, in order to meet application needs. High fabrication accuracy and low tolerances are crucial points in mechanical manufacturing causing high device costs. Therefore, we developed a piezoelectric composite actuator with inherent stress - strain transformation. Basically, piezoceramic sheets are laminated with spring steel of a certain curvature, which can be realised by a comparatively simple fabrication technique. The working diagram of these composite bow actuators showed a high level of performance adaptable to a wide range of applications. The authors established the value chain covering the piezoceramic formulation, the processing technology and the design in view of optimum system performance. The paper presents an overview of the design principles, simulation and various aspect of fabrication technology including lamination, sintering and polarization. The new devices are useable in different sectors, for example in automotive industry as solid state transducer or as the active part in injectors. Moreover, the composite bow actuators may find application in microsystems technology, micro optics and micro fluidics as well as vibration dampers. The composite bow actuators can be used as single component transducer, as well as multi-bow actuator in series or parallel combination on demand.