Sample records for optically monitored small-scale

  1. Detection and Monitoring of Small-Scale Mining Operations in the Eastern Democratic Republic of the Congo (DRC) Using Multi-Temporal, Multi-Sensor Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Walther, Christian; Frei, Michaela

    2017-04-01

    Mining of so-called "conflict minerals" is often related with small-scale mining activities. The here discussed activities are located in forested areas in the eastern DRC, which are often remote, difficult to access and insecure for traditional geological field inspection. In order to accelerate their CTC (Certified Trading Chain)-certification process, remote sensing data are used for detection and monitoring of these small-scale mining operations. This requires a high image acquisition frequency due to mining site relocations and for compensation of year-round high cloud coverage, especially for optical data evaluation. Freely available medium resolution optical data of Sentinel-2 and Landsat-8 as well as SAR data of Sentinel-1 are used for detecting small mining targets with a minimum size of approximately 0.5 km2. The developed method enables a robust multi-temporal detection of mining sites, monitoring of mining site spatio-temporal relocations and environmental changes. Since qualitative and quantitative comparable results are generated, the followed change detection approach is objective and transparent and may push the certification process forward.

  2. A robust quantitative near infrared modeling approach for blend monitoring.

    PubMed

    Mohan, Shikhar; Momose, Wataru; Katz, Jeffrey M; Hossain, Md Nayeem; Velez, Natasha; Drennen, James K; Anderson, Carl A

    2018-01-30

    This study demonstrates a material sparing Near-Infrared modeling approach for powder blend monitoring. In this new approach, gram scale powder mixtures are subjected to compression loads to simulate the effect of scale using an Instron universal testing system. Models prepared by the new method development approach (small-scale method) and by a traditional method development (blender-scale method) were compared by simultaneously monitoring a 1kg batch size blend run. Both models demonstrated similar model performance. The small-scale method strategy significantly reduces the total resources expended to develop Near-Infrared calibration models for on-line blend monitoring. Further, this development approach does not require the actual equipment (i.e., blender) to which the method will be applied, only a similar optical interface. Thus, a robust on-line blend monitoring method can be fully developed before any large-scale blending experiment is viable, allowing the blend method to be used during scale-up and blend development trials. Copyright © 2017. Published by Elsevier B.V.

  3. Monitoring of shallow landslides by distributed optical fibers: insights from a physical model

    NASA Astrophysics Data System (ADS)

    Luca, Schenato; Matteo, Camporese; Luca, Palmieri; Alessandro, Pasuto; Salandin, Paolo

    2017-04-01

    Shallow landslides represent an extreme risk for individuals and structures due to their fast propagation and the very short time between appearance of warning signs and collapse. A lot of attention has been paid in the last decades to the analysis of activation mechanisms and to the implementation of appropriate early warning systems. Intense rainfall, stream erosion, flash floods, etc, are only few of the possible triggering factors that have been identified. All those factors may induce an increase in the forces acting and/or in the pore water pressure that eventually trigger the collapse. Due to the decrease of the shear resistance of soils, significant stresses develop at the sliding surface, determining local anomalous strain even before the collapse. This highlights the importance of monitoring the early appearance of hazardous strain fields. In light of the intrinsic lack of control and reproducibility in real cases, strain sensors have been applied in small-scale physical models and testbeds. Nonetheless, it has been observed that a reliable correlation between the landslide evolution and the strain field can be determined only by using minimally invasive sensors, while comprehensive information can be achieved at the cost of very fine spatial sampling, which represents the primary issue with small-to-medium scale physical models. It is evident how the two requirements, i.e., minimal invasiveness and high spatial resolution, are a limiting factor for standard sensor technology. In this regard, strain is one of the first variable addressed by optical fiber sensors, yet only recently for geotechnical applications and in very few case for landslide monitoring. In particular, the technology of distributed fiber optic sensors, with centimeter scale resolution, has the potential to address the aforementioned needs of small scale physical testing. In this work, for the first time, the strain field at the failure surface of a shallow landslide, reproduced in an artificial experimental hillslope, has been monitored by a distributed optical fiber sensing system based on optical fiber domain reflectometry with centimeter spatial resolution. The optical sensing system has been integrated with hydrological sensors for pore water pressure and moisture content, to the aim of supporting the data analysis. From the whole monitoring system a thorough knowledge of the collapsing mechanism has been achieved and it has been possible to identify precursory signs of the soil collapse well before its actual occurrence. The deployment of the sensing system and analysis of the collected data are discussed, together with possible potential for field installation.

  4. 2.5D change detection from satellite imagery to monitor small-scale mining activities in the Democratic Republic of the Congo

    NASA Astrophysics Data System (ADS)

    Kranz, Olaf; Lang, Stefan; Schoepfer, Elisabeth

    2017-09-01

    Mining natural resources serve fundamental societal needs or commercial interests, but it may well turn into a driver of violence and regional instability. In this study, very high resolution (VHR) optical stereo satellite data are analysed to monitor processes and changes in one of the largest artisanal and small-scale mining sites in the Democratic Republic of the Congo, which is among the world's wealthiest countries in exploitable minerals To identify the subtle structural changes, the applied methodological framework employs object-based change detection (OBCD) based on optical VHR data and generated digital surface models (DSM). Results prove the DSM-based change detection approach enhances the assessment gained from sole 2D analyses by providing valuable information about changes in surface structure or volume. Land cover changes as analysed by OBCD reveal an increase in bare soil area by a rate of 47% between April 2010 and September 2010, followed by a significant decrease of 47.5% until March 2015. Beyond that, DSM differencing enabled the characterisation of small-scale features such as pits and excavations. The presented Earth observation (EO)-based monitoring of mineral exploitation aims at a better understanding of the relations between resource extraction and conflict, and thus providing relevant information for potential mitigation strategies and peace building.

  5. Optical in situ monitoring of plasma-enhanced atomic layer deposition process

    NASA Astrophysics Data System (ADS)

    Zeeshan Arshad, Muhammad; Jo, Kyung Jae; Kim, Hyun Gi; Jeen Hong, Sang

    2018-06-01

    An optical in situ process monitoring method for the early detection of anomalies in plasma process equipment is presented. Cyclic process steps of precursor treatment and plasma reaction for the deposition of an angstrom-scale film increase their complexity to ensure the process quality. However, a small deviation in process parameters, for instance, gas flow rate, process temperature, or RF power, may jeopardize the deposited film quality. As a test vehicle for the process monitoring, we have investigated the aluminum-oxide (Al2O3) encapsulation process in plasma-enhanced atomic layer deposition (PEALD) to form a moisture and oxygen diffusion barrier in organic-light emitting diodes (OLEDs). By optical in situ monitoring, we successfully identified the reduction in oxygen flow rates in the reaction steps, which resulted in a 2.67 times increase in the water vapor transmission ratio (WVTR) of the deposited Al2O3 films. Therefore, we are convinced that the suggested in situ monitoring method is useful for the detection of process shifts or drifts that adversely affect PEALD film quality.

  6. Optical emission from a small scale model electric arc furnace in 250-600 nm region.

    PubMed

    Mäkinen, A; Niskanen, J; Tikkala, H; Aksela, H

    2013-04-01

    Optical emission spectroscopy has been for long proposed for monitoring and studying industrial steel making processes. Whereas the radiative decay of thermal excitations is always taking place in high temperatures needed in steel production, one of the most promising environment for such studies are electric arc furnaces, creating plasma in excited electronic states that relax with intense characteristic emission in the optical regime. Unfortunately, large industrial scale electric arc furnaces also present a challenging environment for optical emission studies and application of the method is not straightforward. To study the usability of optical emission spectroscopy in real electric arc furnaces, we have developed a laboratory scale DC electric arc furnace presented in this paper. With the setup, optical emission spectra of Fe, Cr, Cr2O3, Ni, SiO2, Al2O3, CaO, and MgO were recorded in the wavelength range 250-600 nm and the results were analyzed with the help of reference data. The work demonstrates that using characteristic optical emission, obtaining in situ chemical information from oscillating plasma of electric arc furnaces is indeed possible. In spite of complications, the method could possibly be applied to industrial scale steel making process in order to improve its efficiency.

  7. Ion beam machining error control and correction for small scale optics.

    PubMed

    Xie, Xuhui; Zhou, Lin; Dai, Yifan; Li, Shengyi

    2011-09-20

    Ion beam figuring (IBF) technology for small scale optical components is discussed. Since the small removal function can be obtained in IBF, it makes computer-controlled optical surfacing technology possible to machine precision centimeter- or millimeter-scale optical components deterministically. Using a small ion beam to machine small optical components, there are some key problems, such as small ion beam positioning on the optical surface, material removal rate, ion beam scanning pitch control on the optical surface, and so on, that must be seriously considered. The main reasons for the problems are that it is more sensitive to the above problems than a big ion beam because of its small beam diameter and lower material ratio. In this paper, we discuss these problems and their influences in machining small optical components in detail. Based on the identification-compensation principle, an iterative machining compensation method is deduced for correcting the positioning error of an ion beam with the material removal rate estimated by a selected optimal scanning pitch. Experiments on ϕ10 mm Zerodur planar and spherical samples are made, and the final surface errors are both smaller than λ/100 measured by a Zygo GPI interferometer.

  8. Structural health monitoring of wind turbine blade using fiber Bragg grating sensors and fiber optic rotary joint

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Ni, Y. Q.; Ye, X. W.; Yang, H. X.; Zhu, S.

    2012-04-01

    Wind energy utilization as a reliable energy source has become a large industry in the last 20 years. Nowadays, wind turbines can generate megawatts of power and have rotor diameters that are on the order of 100 meters in diameter. One of the key components in a wind turbine is the blade which could be damaged by moisture absorption, fatigue, wind gusts or lighting strikes. The wind turbine blades should be routinely monitored to improve safety, minimize downtime, lower the risk of sudden breakdowns and associated huge maintenance and logistics costs, and provide reliable power generation. In this paper, a real-time wind turbine blade monitoring system using fiber Bragg grating (FBG) sensors with the fiber optic rotary joint (FORJ) is proposed, and applied to monitor the structural responses of a 600 W small scale wind turbine. The feasibility and effectiveness of the FORJ is validated by continuously transmitting the optical signals between the FBG interrogator at the stationary side and the FBG sensors on the rotating part. A comparison study between the measured data from the proposed system and those from an IMote2-based wireless strain measurement system is conducted.

  9. Small Business Innovations (Fiber Optics)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Foster-Miller, Inc. Waltham, MA developed the In-Situ Fiber Optic Polymer Reaction Monitor which could lead to higher yields and lower costs in complex composite manufacturing. The monitor, developed under a Small Business Innovation Research (SBIR) contract with Langley Research Center, uses an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. It is the first analytical system capable of directly measuring the chemistry of advanced composite materials.

  10. Chip-scale sensor system integration for portable health monitoring.

    PubMed

    Jokerst, Nan M; Brooke, Martin A; Cho, Sang-Yeon; Shang, Allan B

    2007-12-01

    The revolution in integrated circuits over the past 50 yr has produced inexpensive computing and communications systems that are powerful and portable. The technologies for these integrated chip-scale sensing systems, which will be miniature, lightweight, and portable, are emerging with the integration of sensors with electronics, optical systems, micromachines, microfluidics, and the integration of chemical and biological materials (soft/wet material integration with traditional dry/hard semiconductor materials). Hence, we stand at a threshold for health monitoring technology that promises to provide wearable biochemical sensing systems that are comfortable, inauspicious, wireless, and battery-operated, yet that continuously monitor health status, and can transmit compressed data signals at regular intervals, or alarm conditions immediately. In this paper, we explore recent results in chip-scale sensor integration technology for health monitoring. The development of inexpensive chip-scale biochemical optical sensors, such as microresonators, that are customizable for high sensitivity coupled with rapid prototyping will be discussed. Ground-breaking work in the integration of chip-scale optical systems to support these optical sensors will be highlighted, and the development of inexpensive Si complementary metal-oxide semiconductor circuitry (which makes up the vast majority of computational systems today) for signal processing and wireless communication with local receivers that lie directly on the chip-scale sensor head itself will be examined.

  11. Robust Wave-front Correction in a Small Scale Adaptive Optics System Using a Membrane Deformable Mirror

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Park, S.; Baik, S.; Jung, J.; Lee, S.; Yoo, J.

    A small scale laboratory adaptive optics system using a Shack-Hartmann wave-front sensor (WFS) and a membrane deformable mirror (DM) has been built for robust image acquisition. In this study, an adaptive limited control technique is adopted to maintain the long-term correction stability of an adaptive optics system. To prevent the waste of dynamic correction range for correcting small residual wave-front distortions which are inefficient to correct, the built system tries to limit wave-front correction when a similar small difference wave-front pattern is repeatedly generated. Also, the effect of mechanical distortion in an adaptive optics system is studied and a pre-recognition method for the distortion is devised to prevent low-performance system operation. A confirmation process for a balanced work assignment among deformable mirror (DM) actuators is adopted for the pre-recognition. The corrected experimental results obtained by using a built small scale adaptive optics system are described in this paper.

  12. Integration and application of optical chemical sensors in microbioreactors.

    PubMed

    Gruber, Pia; Marques, Marco P C; Szita, Nicolas; Mayr, Torsten

    2017-08-08

    The quantification of key variables such as oxygen, pH, carbon dioxide, glucose, and temperature provides essential information for biological and biotechnological applications and their development. Microfluidic devices offer an opportunity to accelerate research and development in these areas due to their small scale, and the fine control over the microenvironment, provided that these key variables can be measured. Optical sensors are well-suited for this task. They offer non-invasive and non-destructive monitoring of the mentioned variables, and the establishment of time-course profiles without the need for sampling from the microfluidic devices. They can also be implemented in larger systems, facilitating cross-scale comparison of analytical data. This tutorial review presents an overview of the optical sensors and their technology, with a view to support current and potential new users in microfluidics and biotechnology in the implementation of such sensors. It introduces the benefits and challenges of sensor integration, including, their application for microbioreactors. Sensor formats, integration methods, device bonding options, and monitoring options are explained. Luminescent sensors for oxygen, pH, carbon dioxide, glucose and temperature are showcased. Areas where further development is needed are highlighted with the intent to guide future development efforts towards analytes for which reliable, stable, or easily integrated detection methods are not yet available.

  13. A unique noninvasive approach to monitoring dissolved O2 and CO2 in cell culture.

    PubMed

    Chatterjee, Madhubanti; Ge, Xudong; Uplekar, Shaunak; Kostov, Yordan; Croucher, Leah; Pilli, Manohar; Rao, Govind

    2015-01-01

    Although online monitoring of dissolved oxygen (DO) and carbon dioxide (DCO2 ) is highly desirable in bioprocesses, small-scale bioreactors are usually not monitored due to the lack of suitable sensors. Traditional electrochemical sensors are usually not used because they are bulky and invasive. Disposable optical sensors are small and only partially invasive, but there are concerns regarding the toxicity of the patch and the phototoxicity of the illuminating light. Here we present a novel, noninvasive, rate-based technique for monitoring DO and DCO2 in cell cultures. A silicone sampling loop which allowed the diffusion of O2 and CO2 through its wall was inserted inside a bioreactor, and then flushed with N2 until the CO2 and O2 inside the loop were completely removed. The gas inside the loop was then allowed to recirculate through gas impermeable tubing to the O2 and CO2 sensors. We have shown that by measuring the initial diffusion rate we were able to determine the partial pressures of the two gases in the culture. The technique could be readily automated and measurements could be made in minutes. It was tested in demonstration experiments by growing murine hybridoma cells in a T-flask and a spinner-flask at 37°C. The results were comparable to those measured with commercially available fluorescence-based patch sensors. These results show that the rate-based method is an effective way to monitor small-scale cell cultures. This measurement mechanism can be easily built into disposable cell culture vessels for facile use. © 2014 Wiley Periodicals, Inc.

  14. Performance of an untethered micro-optical pressure sensor

    NASA Astrophysics Data System (ADS)

    Ioppolo, Tindaro; Manzo, Maurizio; Krueger, Paul

    2012-11-01

    We present analytical and computational studies of the performance of a novel untethered micro-optical pressure sensor for fluid dynamics measurements. In particular, resolution and dynamic range will be presented. The sensor concept is based on the whispering galley mode (WGM) shifts that are observed in micro-scale dielectric optical cavities. A micro-spherical optical cavity (liquid or solid) is embedded in a thin polymeric sheet. The applied external pressure perturbs the morphology of the optical cavity leading to a shift in its optical resonances. The optical sensors are interrogated remotely, by embedding quantum dots or fluorescent dye in the micro-optical cavity. This allows a free space coupling of excitation and monitoring of the optical modes without the need of optical fibers or other cabling. With appropriate excitation and monitoring equipment, the micro-scale sensors can be distributed over a surface (e.g., including flexible biological surfaces) to monitor the local pressure field. We acknowledge the financial support from the National Science Foundation through grant CBET-1133876 with Dr. Horst Henning Winter as the program director.

  15. Galaxy And Mass Assembly (GAMA): the signatures of galaxy interactions as viewed from small scale galaxy clustering

    NASA Astrophysics Data System (ADS)

    Gunawardhana, M. L. P.; Norberg, P.; Zehavi, I.; Farrow, D. J.; Loveday, J.; Hopkins, A. M.; Davies, L. J. M.; Wang, L.; Alpaslan, M.; Bland-Hawthorn, J.; Brough, S.; Holwerda, B. W.; Owers, M. S.; Wright, A. H.

    2018-06-01

    Statistical studies of galaxy-galaxy interactions often utilise net change in physical properties of progenitors as a function of the separation between their nuclei to trace both the strength and the observable timescale of their interaction. In this study, we use two-point auto, cross and mark correlation functions to investigate the extent to which small-scale clustering properties of star forming galaxies can be used to gain physical insight into galaxy-galaxy interactions between galaxies of similar optical brightness and stellar mass. The Hα star formers, drawn from the highly spatially complete Galaxy And Mass Assembly (GAMA) survey, show an increase in clustering on small separations. Moreover, the clustering strength shows a strong dependence on optical brightness and stellar mass, where (1) the clustering amplitude of optically brighter galaxies at a given separation is larger than that of optically fainter systems, (2) the small scale clustering properties (e.g. the strength, the scale at which the signal relative to the fiducial power law plateaus) of star forming galaxies appear to differ as a function of increasing optical brightness of galaxies. According to cross and mark correlation analyses, the former result is largely driven by the increased dust content in optically bright star forming galaxies. The latter could be interpreted as evidence of a correlation between interaction-scale and optical brightness of galaxies, where physical evidence of interactions between optically bright star formers, likely hosted within relatively massive halos, persist over larger separations than those between optically faint star formers.

  16. Functionality Enhancement of Industrialized Optical Fiber Sensors and System Developed for Full-Scale Pavement Monitoring

    PubMed Central

    Wang, Huaping; Liu, Wanqiu; He, Jianping; Xing, Xiaoying; Cao, Dandan; Gao, Xipeng; Hao, Xiaowei; Cheng, Hongwei; Zhou, Zhi

    2014-01-01

    Pavements always play a predominant role in transportation. Health monitoring of pavements is becoming more and more significant, as frequently suffering from cracks, rutting, and slippage renders them prematurely out of service. Effective and reliable sensing elements are thus in high demand to make prognosis on the mechanical properties and occurrence of damage to pavements. Therefore, in this paper, various types of functionality enhancement of industrialized optical fiber sensors for pavement monitoring are developed, with the corresponding operational principles clarified in theory and the performance double checked by basic experiments. Furthermore, a self-healing optical fiber sensing network system is adopted to accomplish full-scale monitoring of pavements. The application of optical fiber sensors assembly and self-healing network system in pavement has been carried out to validate the feasibility. It has been proved that the research in this article provides a valuable method and meaningful guidance for the integrity monitoring of civil structures, especially pavements. PMID:24854060

  17. Functionality enhancement of industrialized optical fiber sensors and system developed for full-scale pavement monitoring.

    PubMed

    Wang, Huaping; Liu, Wanqiu; He, Jianping; Xing, Xiaoying; Cao, Dandan; Gao, Xipeng; Hao, Xiaowei; Cheng, Hongwei; Zhou, Zhi

    2014-05-19

    Pavements always play a predominant role in transportation. Health monitoring of pavements is becoming more and more significant, as frequently suffering from cracks, rutting, and slippage renders them prematurely out of service. Effective and reliable sensing elements are thus in high demand to make prognosis on the mechanical properties and occurrence of damage to pavements. Therefore, in this paper, various types of functionality enhancement of industrialized optical fiber sensors for pavement monitoring are developed, with the corresponding operational principles clarified in theory and the performance double checked by basic experiments. Furthermore, a self-healing optical fiber sensing network system is adopted to accomplish full-scale monitoring of pavements. The application of optical fiber sensors assembly and self-healing network system in pavement has been carried out to validate the feasibility. It has been proved that the research in this article provides a valuable method and meaningful guidance for the integrity monitoring of civil structures, especially pavements.

  18. Fiber Optic Sensor Embedment Study for Multi-Parameter Strain Sensing

    PubMed Central

    Drissi-Habti, Monssef; Raman, Venkadesh; Khadour, Aghiad; Timorian, Safiullah

    2017-01-01

    The fiber optic sensors (FOSs) are commonly used for large-scale structure monitoring systems for their small size, noise free and low electrical risk characteristics. Embedded fiber optic sensors (FOSs) lead to micro-damage in composite structures. This damage generation threshold is based on the coating material of the FOSs and their diameter. In addition, embedded FOSs are aligned parallel to reinforcement fibers to avoid micro-damage creation. This linear positioning of distributed FOS fails to provide all strain parameters. We suggest novel sinusoidal sensor positioning to overcome this issue. This method tends to provide multi-parameter strains in a large surface area. The effectiveness of sinusoidal FOS positioning over linear FOS positioning is studied under both numerical and experimental methods. This study proves the advantages of the sinusoidal positioning method for FOS in composite material’s bonding. PMID:28333117

  19. Small-scale monitoring - can it be integrated with large-scale programs?

    Treesearch

    C. M. Downes; J. Bart; B. T. Collins; B. Craig; B. Dale; E. H. Dunn; C. M. Francis; S. Woodley; P. Zorn

    2005-01-01

    There are dozens of programs and methodologies for monitoring and inventory of bird populations, differing in geographic scope, species focus, field methods and purpose. However, most of the emphasis has been placed on large-scale monitoring programs. People interested in assessing bird numbers and long-term trends in small geographic areas such as a local birding area...

  20. Research Progress on F-P Interference—Based Fiber-Optic Sensors

    PubMed Central

    Huang, Yi Wen; Tao, Jin; Huang, Xu Guang

    2016-01-01

    We review our works on Fabry-Perot (F-P) interferometric fiber-optic sensors with various applications. We give a general model of F-P interferometric optical fiber sensors including diffraction loss caused by the beam divergence and the Gouy phase shift. Based on different structures of an F-P cavity formed on the end of a single-mode fiber, the F-P interferometric optical sensor has been extended to measurements of the refractive index (RI) of liquids and solids, temperature as well as small displacement. The RI of liquids and solids can be obtained by monitoring the fringe contrast related to Fresnel reflections, while the ambient temperature and small displacement can be obtained by monitoring the wavelength shift of the interference fringes. The F-P interferometric fiber-optic sensors can be used for many scientific and technological applications. PMID:27598173

  1. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atie, Elie M.; Xie, Zhihua; El Eter, Ali

    2015-04-13

    Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nanometer scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e., in contact to the nanostructures. In this paper, we demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of “remote” (non contact) sensing on the nanometer scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM (Scanning Near-field Optical Microscopy) fiber tip, we introduce an ultra-compact, moveable, andmore » background-free optical nanosensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nanometer accuracy. This work paves the way towards an alternative class of nanopositioning techniques, based on the monitoring of diffraction-free plasmon resonance, that are alternative to nanomechanical and diffraction-limited optical interference-based devices.« less

  2. AWG-based WDM-PON monitoring system using an optical switch and a WDM filter

    NASA Astrophysics Data System (ADS)

    Liaw, S.-K.; Lai, Y.-T.; Chang, C.-L.; Shung, O.

    2008-09-01

    A new WDM-PON scheme with real-time monitoring based on a time-sharing method is proposed. It uses an optical time domain reflectometer (OTDR) to monitor multiple ports by integrating an optical switch (OSW) with a dense wavelength division multiplexer (DWDM) at the optical line terminal (OLT) site. Each downstream signal and its corresponding monitoring signal are separated by m times the free-space range (FSR) of an array waveguide grating (AWG). A bit error rate (BER) test in 2.5 Gb/s × 27 km is performed with and without turning on the OTDR. A small power penalty of 0.7 dB is observed compared to the back-to-back measurement.

  3. Synergy between optical and microwave remote sensing to derive soil and vegetation parameters from MAC Europe 1991 Experiment

    NASA Technical Reports Server (NTRS)

    Taconet, O.; Benallegue, M.; Vidal, A.; Vidal-Madjar, D.; Prevot, L.; Normand, M.

    1993-01-01

    The ability of remote sensing for monitoring vegetation density and soil moisture for agricultural applications is extensively studied. In optical bands, vegetation indices (NDVI, WDVI) in visible and near infrared reflectances are related to biophysical quantities as the leaf area index, the biomass. In active microwave bands, the quantitative assessment of crop parameters and soil moisture over agricultural areas by radar multiconfiguration algorithms remains prospective. Furthermore the main results are mostly validated on small test sites, but have still to be demonstrated in an operational way at a regional scale. In this study, a large data set of radar backscattering has been achieved at a regional scale on a French pilot watershed, the Orgeval, along two growing seasons in 1988 and 1989 (mainly wheat and corn). The radar backscattering was provided by the airborne scatterometer ERASME, designed at CRPE, (C and X bands and HH and VV polarizations). Empirical relationships to estimate water crop and soil moisture over wheat in CHH band under actual field conditions and at a watershed scale are investigated. Therefore, the algorithms developed in CHH band are applied for mapping the surface conditions over wheat fields using the AIRSAR and TMS images collected during the MAC EUROPE 1991 experiment. The synergy between optical and microwave bands is analyzed.

  4. Small scale adaptive optics experiment systems engineering

    NASA Technical Reports Server (NTRS)

    Boykin, William H.

    1993-01-01

    Assessment of the current technology relating to the laser power beaming system which in full scale is called the Beam Transmission Optical System (BTOS). Evaluation of system integration efforts are being conducted by the various government agencies and industry. Concepts are being developed for prototypes of adaptive optics for a BTOS.

  5. Using Arago's spot to monitor optical axis shift in a Petzval refractor.

    PubMed

    Bruns, Donald G

    2017-03-10

    Measuring the change in the optical alignment of a camera attached to a telescope is necessary to perform astrometric measurements. Camera movement when the telescope is refocused changes the plate constants, invalidating the calibration. Monitoring the shift in the optical axis requires a stable internal reference source. This is easily implemented in a Petzval refractor by adding an illuminated pinhole and a small obscuration that creates a spot of Arago on the camera. Measurements of the optical axis shift for a commercial telescope are given as an example.

  6. Real-time monitoring implementation in a remote-pumped WDM PON

    NASA Astrophysics Data System (ADS)

    Liaw, S.-K.; Hong, K.-L.; Shei, Y.-S.

    2008-08-01

    We report on an improved configuration to monitor a passive optical network with high quality in service. This proposed system comprises fiber-Bragg gratings, a 1 × 4 optical switch, and an optical time-domain reflectometry to diagnose the broken point in real time. It could simultaneously detect multioptical network units in a WDM PON. The remote-pump integrated residual pumping reused function is implemented. Broken points in different optical paths can be detected simultaneously even when the distances to the central office are identical. The bit-error rate testing is verified with a small power penalty, making it an ideal solution for the real-time monitoring in a WDM PON.

  7. Impact of phytoplankton community structure and function on marine particulate optical properties

    NASA Astrophysics Data System (ADS)

    McFarland, Malcolm Neil

    Phytoplankton are an ecologically important and diverse group of organisms whose distribution, abundance, and population dynamics vary significantly over small spatial (cm) and temporal (minutes) scales in the coastal ocean. Our inability to observe phytoplankton community structure and function at these small scales has severely limited our understanding of the fundamental ecological and evolutionary mechanisms that drive phytoplankton growth, mortality, adaptation and speciation. The goal of this dissertation was to enhance our understanding of phytoplankton ecology by improving in situ observational techniques based on the optical properties of cells, colonies, populations, and communities. Field and laboratory studies were used to determine the effects of phytoplankton species composition, morphology, and physiology on the inherent optical properties of communities and to explore the adaptive significance of bio-optically important cellular characteristics. Initial field studies found a strong association between species composition and the relative magnitude and shape of particulate absorption, scattering, and attenuation coefficient spectra. Subsequent field studies using scanning flow cytometry to directly measure optically important phytoplankton and non-algal particle characteristics demonstrated that the size and pigment content of large (>20 microm) phytoplankton cells and colonies vary significantly with the slope of particulate attenuation and absorption spectra, and with the ratio of particulate scattering to absorption. These relationships enabled visualization of phytoplankton community composition and mortality over small spatial and temporal scales derived from high resolution optical measurements acquired with an autonomous profiling system. Laboratory studies with diverse uni-algal cultures showed that morphological and physiological characteristics of cells and colonies can account for ˜30% of the optical variation observed in natural communities and that complex morphologies and low intracellular pigment concentrations minimize pigment self-shading that could otherwise limit bio-optical fitness. These results demonstrate that optical properties reveal detailed information about the distribution, abundance, morphology, and physiology of phytoplankton that can help explain their ecological dynamics over small spatial scales and the bio-optical function of diverse forms in the ocean.

  8. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review

    PubMed Central

    Ye, X. W.; Su, Y. H.; Han, J. P.

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure. PMID:25133250

  9. Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review.

    PubMed

    Ye, X W; Su, Y H; Han, J P

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure.

  10. Respiratory monitoring system based on fiber optic macro bending

    NASA Astrophysics Data System (ADS)

    Purnamaningsih, Retno Wigajatri; Widyakinanti, Astari; Dhia, Arika; Gumelar, Muhammad Raditya; Widianto, Arif; Randy, Muhammad; Soedibyo, Harry

    2018-02-01

    We proposed a respiratory monitoring system for living activities in human body based on fiber optic macro-bending for laboratory scale. The respiration sensor consists of a single-mode optical fiber and operating on a wavelength at around 1550 nm. The fiber optic was integrated into an elastic fabric placed on the chest and stomach of the monitored human subject. Deformations of the flexible textile involving deformations of the fiber optic bending curvature, which was proportional to the chest and stomach expansion. The deformation of the fiber was detected using photodetector and processed using microcontroller PIC18F14K50. The results showed that this system able to display various respiration pattern and rate for sleeping, and after walking and running activities in real time.

  11. Fiber optic SERS-based plasmonics nanobiosensing in single living cells

    NASA Astrophysics Data System (ADS)

    Scaffidi, Jonathan P.; Gregas, Molly K.; Seewaldt, Victoria; Vo-Dinh, Tuan

    2009-05-01

    We describe the development of small molecule-sensitive plasmonics-active fiber-optic nanoprobes suitable for intracellular bioanalysis in single living human cells using surface-enhanced Raman scattering (SERS) detection. The practical utility of SERS-based fiber-optic nanoprobes is illustrated by measurements of intracellular pH in HMEC- 15/hTERT immortalized "normal" human mammary epithelial cells and PC-3 human prostate cancer cells. The results indicate that fiber-optic nanoprobe insertion and interrogation provide a sensitive and selective means to monitor biologically-relevant small molecules at the single cell level.

  12. Broadband optical radiation detector

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Hong, S. D.; Moacanin, J. (Inventor)

    1981-01-01

    A method and apparatus for detecting optical radiation by optically monitoring temperature changes in a microvolume caused by absorption of the optical radiation to be detected is described. More specifically, a thermal lens forming material is provided which has first and second opposite, substantially parallel surfaces. A reflective coating is formed on the first surface, and a radiation absorbing coating is formed on the reflective coating. Chopped, incoming optical radiation to be detected is directed to irradiate a small portion of the radiation absorbing coating. Heat generated in this small area is conducted to the lens forming material through the reflective coating, thereby raising the temperature of a small portion of the lens forming material and causing a thermal lens to be formed therein.

  13. Small-scale loess landslide monitoring with small baseline subsets interferometric synthetic aperture radar technique-case study of Xingyuan landslide, Shaanxi, China

    NASA Astrophysics Data System (ADS)

    Zhao, Chaoying; Zhang, Qin; He, Yang; Peng, Jianbing; Yang, Chengsheng; Kang, Ya

    2016-04-01

    Small baseline subsets interferometric synthetic aperture radar technique is analyzed to detect and monitor the loess landslide in the southern bank of the Jinghe River, Shaanxi province, China. Aiming to achieve the accurate preslide time-series deformation results over small spatial scale and abrupt temporal deformation loess landslide, digital elevation model error, coherence threshold for phase unwrapping, and quality of unwrapping interferograms must be carefully checked in advance. In this experience, land subsidence accompanying a landslide with the distance <1 km is obtained, which gives a sound precursor for small-scale loess landslide detection. Moreover, the longer and continuous land subsidence has been monitored while deformation starting point for the landslide is successfully inverted, which is key to monitoring the similar loess landslide. In addition, the accelerated landslide deformation from one to two months before the landslide can provide a critical clue to early warning of this kind of landslide.

  14. A Closed-Cycle Optical Cryostat and Improved Optical Elements for Studies of Dissipation at the Molecular Scale

    DTIC Science & Technology

    2016-02-05

    diode laser, Raman spectroscopy REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8...this project supported the acquisition of a closed-cycle optical cryostat from Montana Instruments, as well as a new 785 nm diode laser and ultrahigh...planned experiments on inelastic electron tunneling spectroscopy that require TɝK for optimal resolution. Additionally, the spatial position of

  15. Application of light and ultrasound for medical diagnostics and treatment

    NASA Astrophysics Data System (ADS)

    Esenaliev, Rinat O.

    2002-07-01

    We develop novel optical and ultrasound techniques for medical noninvasive diagnostics and treatment. In this review, we present our results on the development of: (1) optoacoustic technique for detection of small tumors; (2) optoacoustic monitoring of blood oxygenation; (3) optoacoustic monitoring during thermotherapy; (4) optical coherence tomography for monitoring of blood glucose concentration; and (5) laser- and ultrasound-based anti- cancer drug delivery technique. Motivation, experimental methods, results obtained in vitro and in vivo with the use of these techniques are presented.

  16. Embedded fiber optic sensors for monitoring processing, quality and structural health of resin transfer molded components

    NASA Astrophysics Data System (ADS)

    Keulen, C.; Rocha, B.; Yildiz, M.; Suleman, A.

    2011-07-01

    Due to their small size and flexibility fiber optics can be embedded into composite materials with little negative effect on strength and reliability of the host material. Fiber optic sensors such as Fiber Bragg Gratings (FBG) or Etched Fiber Sensors (EFS) can be used to detect a number of relevant parameters such as flow, degree of cure, quality and structural health throughout the life of a composite component. With a detection algorithm these embedded sensors can be used to detect damage in real time while the component remains in service. This paper presents the research being conducted on the use of fiber optic sensors for process and Structural Health Monitoring (SHM) of Resin Transfer Molded (RTM) composite structures. Fiber optic sensors are used at all life stages of an RTM composite panel. A laboratory scale RTM apparatus was developed with the capability of visually monitoring the resin filling process. A technique for embedding fiber optic sensors with this apparatus has also been developed. Both FBGs and EFSs have been embedded in composite panels using the apparatus. EFSs to monitor the fabrication process, specifically resin flow have been embedded and shown to be capable of detecting the presence of resin at various locations as it is injected into the mold. Simultaneously these sensors were multiplexed on the same fiber with FBGs, which have the ability to measure strain. Since multiple sensors can be multiplexed on a single fiber the number of ingress/egress locations required per sensor can be significantly reduced. To characterize the FBGs for strain detection tensile test specimens with embedded FBG sensors have been produced. These specimens have been instrumented with a resistive strain gauge for benchmarking. Both specimens and embedded sensors were characterized through tensile testing. Furthermore FBGs have been embedded into composite panels in a manner that is conducive to detection of Lamb waves generated with a centrally located PZT. To sense Lamb waves a high speed, high precision sensing technique is required to acquire data from embedded FBGs due to the high velocities and small strain amplitudes of these guided waves. A technique based on a filter consisting of a tunable FBG was developed. Since this filter is not dependant on moving parts, tests executed with this filter concluded with the detection of Lamb waves, removing the influence of temperature and operational strains. A damage detection algorithm was developed to detect and localize cracks and delaminations.

  17. Towards Cost-Effective Operational Monitoring Systems for Complex Waters: Analyzing Small-Scale Coastal Processes with Optical Transmissometry

    PubMed Central

    Gonçalves-Araujo, Rafael; Wiegmann, Sonja; Torrecilla, Elena; Bardaji, Raul; Röttgers, Rüdiger; Bracher, Astrid; Piera, Jaume

    2017-01-01

    The detection and prediction of changes in coastal ecosystems require a better understanding of the complex physical, chemical and biological interactions, which involves that observations should be performed continuously. For this reason, there is an increasing demand for small, simple and cost-effective in situ sensors to analyze complex coastal waters at a broad range of scales. In this context, this study seeks to explore the potential of beam attenuation spectra, c(λ), measured in situ with an advanced-technology optical transmissometer, for assessing temporal and spatial patterns in the complex estuarine waters of Alfacs Bay (NW Mediterranean) as a test site. In particular, the information contained in the spectral beam attenuation coefficient was assessed and linked with different biogeochemical variables. The attenuation at λ = 710 nm was used as a proxy for particle concentration, TSM, whereas a novel parameter was adopted as an optical indicator for chlorophyll a (Chl-a) concentration, based on the local maximum of c(λ) observed at the long-wavelength side of the red band Chl-a absorption peak. In addition, since coloured dissolved organic matter (CDOM) has an important influence on the beam attenuation spectral shape and complementary measurements of particle size distribution were available, the beam attenuation spectral slope was used to analyze the CDOM content. Results were successfully compared with optical and biogeochemical variables from laboratory analysis of collocated water samples, and statistically significant correlations were found between the attenuation proxies and the biogeochemical variables TSM, Chl-a and CDOM. This outcome depicted the potential of high-frequency beam attenuation measurements as a simple, continuous and cost-effective approach for rapid detection of changes and patterns in biogeochemical properties in complex coastal environments. PMID:28107539

  18. High resolution optical surface metrology with the slope measuring portable optical test system

    NASA Astrophysics Data System (ADS)

    Maldonado, Alejandro V.

    New optical designs strive to achieve extreme performance, and continually increase the complexity of prescribed optical shapes, which often require wide dynamic range and high resolution. SCOTS, or the Software Configurable Optical Test System, can measure a wide range of optical surfaces with high sensitivity using surface slope. This dissertation introduces a high resolution version of SCOTS called SPOTS, or the Slope measuring Portable Optical Test System. SPOTS improves the metrology of surface features on the order of sub-millimeter to decimeter spatial scales and nanometer to micrometer level height scales. Currently there is no optical surface metrology instrument with the same utility. SCOTS uses a computer controlled display (such as an LCD monitor) and camera to measure surface slopes over the entire surface of a mirror. SPOTS differs in that an additional lens is placed near the surface under test. A small prototype system is discussed in general, providing the support for the design of future SPOTS devices. Then the SCOTS instrument transfer function is addressed, which defines the way the system filters surface heights. Lastly, the calibration and performance of larger SPOTS device is analyzed with example measurements of the 8.4-m diameter aspheric Large Synoptic Survey Telescope's (LSST) primary mirror. In general optical systems have a transfer function, which filters data. In the case of optical imaging systems the instrument transfer function (ITF) follows the modulation transfer function (MTF), which causes a reduction of contrast as a function of increasing spatial frequency due to diffraction. In SCOTS, ITF is shown to decrease the measured height of surface features as their spatial frequency increases, and thus the SCOTS and SPOTS ITF is proportional to their camera system's MTF. Theory and simulations are supported by a SCOTS measurement of a test piece with a set of lithographically written sinusoidal surface topographies. In addition, an example of a simple inverse filtering technique is provided. The success of a small SPOTS proof of concept instrument paved the way for a new larger prototype system, which is intended to measure subaperture regions on large optical mirrors. On large optics, the prototype SPOTS is light weight and it rests on the surface being tested. One advantage of this SPOTS is stability over time in maintaining its calibration. Thus the optician can simply place SPOTS on the mirror, perform a simple alignment, collect measurement data, then pick the system up and repeat at a new location. The entire process takes approximately 5 to 10 minutes, of which 3 minutes is spent collecting data. SPOTS' simplicity of design, light weight, robustness, wide dynamic range, and high sensitivity make it a useful tool for optical shop use during the fabrication and testing process of large and small optics.

  19. Fluorescence diffuse tomography for detection of RFP-expressed tumors in small animals

    NASA Astrophysics Data System (ADS)

    Turchin, Ilya V.; Savitsky, Alexander P.; Kamensky, Vladislav A.; Plehanov, Vladimir I.; Meerovich, Irina G.; Arslanbaeva, Lyaisan R.; Jerdeva, Viktoria V.; Orlova, Anna G.; Kleshnin, Mikhail S.; Shirmanova, Marina V.; Fiks, Ilya I.

    2007-02-01

    Conventional optical imaging is restricted with tumor size due to high tissue scattering. Labeling of tumors by fluorescent markers improves sensitivity of tumor detection thus increasing the value of optical imaging dramatically. Creation of tumor cell lines transfected with fluorescent proteins gives the possibility not only to detect tumor, but also to conduct the intravital monitoring studies. Cell lines of human melanomas Mel-P, Mel-Kor and human embryonic kidney HEK-293 Phoenix were transfected with DsRed-Express and TurboRFP genes. Emission of RFP in the long-wave optical range permits detection of the deeply located tumors, which is essential for whole-body imaging. Only special tools for turbid media imaging, such as fluorescent diffusion tomography (FDT), enable noninvasive investigation of the internal structure of biological tissue. FDT setup for monitoring of tumor growth in small animals has been created. An animal is scanned in the transilluminative configuration by low-frequency modulated light (1 kHz) from Nd:YAG laser with second harmonic generation at the 532 nm wavelength. In vivo experiments were conducted immediately after the subcutaneously injection of fluorescing cells into small animals. It was shown that FDT method allows to detect the presence of fluorescent cells in small animals and can be used for monitoring of tumor growth and anticancer drug responce.

  20. The shared and unique values of optical, fluorescence, thermal and microwave satellite data for estimating large-scale crop yields

    USDA-ARS?s Scientific Manuscript database

    Large-scale crop monitoring and yield estimation are important for both scientific research and practical applications. Satellite remote sensing provides an effective means for regional and global cropland monitoring, particularly in data-sparse regions that lack reliable ground observations and rep...

  1. A novel approach for studying submarine faults: the FOCUS project (FOCUS = Fiber Optic Cable Use for Seafloor studies of earthquake hazard and deformation)

    NASA Astrophysics Data System (ADS)

    Gutscher, M. A.; Royer, J. Y.; Graindorge, D.; Murphy, S.; Klingelhoefer, F.; Cattaneo, A.; Barreca, G.; Quetel, L.; Petersen, F.; Riccobene, G.; Urlaub, M.; Krastel, S.; Gross, F.; Kopp, H.

    2017-12-01

    Two-thirds of the earth's surface is covered by water and thus largely inaccessible to modern networks of seismological instruments. A novel use of fiber optic cables could help improve hazard assessment and increase early warning capability. Laser reflectometry using BOTDR (Brillouin Optical Time Domain Reflectometry), commonly used for structural health monitoring of large-scale engineering structures (e.g. - bridges, dams, pipelines, etc.) can measure very small strains (< 1 mm) at very large distances (10 - 200 km). This technique has never been used to monitor deformation caused by active faults on the seafloor. The objective of the FOCUS project is to demonstrate that this technique can measure small (1 - 2 cm) displacements on a primary test site offshore Sicily where the recently mapped North Alfeo Fault crosses the Catania EMSO seafloor observatory, 28 km long fiber optic cable. Two other EMSO test sites with fiber optic cables, the 100 km long Capo Passero (SE Sicily) and the 2 km long cable off Molene Island (W France) will also be studied. Initial reflectometry tests were performed on these three cables using a Febus BOTDR interrogator in June and July 2017. Unexpectedly high dynamic noise levels (corresponding to strains of 200 - 500 mm/m) were observed on the Molene cable, likely due to the high-energy, shallow water, open ocean environment. The tests on the EMSO infrastructure in Sicily indicated low experimental noise levels (20 - 30 mm/m) out to a distance of 15 km. BOTDR observations will have to be calibrated by other independent measurements. Therefore, targeted marine geophysical surveys of the seafloor along the trace of the cable and faults are planned, with the use of seafloor geodetic instruments to quantify fault displacement. Once the BOTDR fault-monitoring technique has been tested, demonstrated and calibrated offshore Eastern Sicily, the goal is to expand it to other fiber optic cable networks, either existing research networks in earthquake hazard zones (Japan, Cascadia) or to the Mediterranean region through access to retired (decommissioned) telecommunication cables or development of dual-use cables (two of the anticipated outcomes of the FOCUS project). This represents a potentially tremendous breakthrough in seismology, tectonics and natural hazard early warning capability.

  2. Small diameter, deep bore optical inspection system

    DOEpatents

    Lord, David E.; Petrini, Richard R.; Carter, Gary W.

    1981-01-01

    An improved rod optic system for inspecting small diameter, deep bores. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90.degree. to minimize optical distortion in examining the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable of examining 1/16 inch diameter and up to 4 inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and right angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.

  3. Amplified Sensitivity of Nitrogen-Vacancy Spins in Nanodiamonds Using All-Optical Charge Readout.

    PubMed

    Hopper, David A; Grote, Richard R; Parks, Samuel M; Bassett, Lee C

    2018-04-23

    Nanodiamonds containing nitrogen-vacancy (NV) centers offer a versatile platform for sensing applications spanning from nanomagnetism to in vivo monitoring of cellular processes. In many cases, however, weak optical signals and poor contrast demand long acquisition times that prevent the measurement of environmental dynamics. Here, we demonstrate the ability to perform fast, high-contrast optical measurements of charge distributions in ensembles of NV centers in nanodiamonds and use the technique to improve the spin-readout signal-to-noise ratio through spin-to-charge conversion. A study of 38 nanodiamonds with sizes ranging between 20 and 70 nm, each hosting a small ensemble of NV centers, uncovers complex, multiple time scale dynamics due to radiative and nonradiative ionization and recombination processes. Nonetheless, the NV-containing nanodiamonds universally exhibit charge-dependent photoluminescence contrasts and the potential for enhanced spin readout using spin-to-charge conversion. We use the technique to speed up a T 1 relaxometry measurement by a factor of 5.

  4. Optical Fluorescent Imaging to Monitor Temporal Effects of Microbubble-Mediated Ultrasound Therapy

    PubMed Central

    Sorace, Anna G.; Saini, Reshu; Rosenthal, Eben; Warram, Jason M.; Zinn, Kurt R.; Hoyt, Kenneth

    2013-01-01

    Microbubble-mediated ultrasound therapy can noninvasively enhance drug delivery to localized regions in the body. This technique can be beneficial in cancer therapy, but currently there are limitations to tracking the therapeutic effects. The purpose of this experiment was to investigate the potential of fluorescent imaging for monitoring the temporal effects of microbubble-mediated ultrasound therapy. Mice were implanted with 2LMP breast cancer cells. The animals underwent microbubble-mediated ultrasound therapy in the presence of Cy5.5 fluorescent-labeled IgG antibody (large molecule) or Cy5.5 dye (small molecule) and microbubble contrast agents. Control animals were administered fluorescent molecules only. Animals were transiently imaged in vivo at 1, 10, 30, and 60 min post therapy using a small animal optical imaging system. Tumors were excised and analyzed ex vivo. Tumors were homogenized and emulsion imaged for Cy5.5 fluorescence. Monitoring in vivo results showed significant influx of dye into the tumor (p < 0.05) using the small molecule, but not in the large molecule group (p > 0.05). However, after tumor emulsion, significantly higher dye concentration was detected in therapy group tumors for both small and large molecule groups in comparison to their control counterparts (p < 0.01). This paper explores a noninvasive optical imaging method for monitoring the effects of microbubble-mediated ultrasound therapy in a cancer model. It provides temporal information following the process of increasing extravasation of molecules into target tumors. PMID:23357902

  5. Optical fluorescent imaging to monitor temporal effects of microbubble-mediated ultrasound therapy.

    PubMed

    Sorace, Anna G; Saini, Reshu; Rosenthal, Eben; Warram, Jason M; Zinn, Kurt R; Hoyt, Kenneth

    2013-02-01

    Microbubble-mediated ultrasound therapy can noninvasively enhance drug delivery to localized regions in the body. This technique can be beneficial in cancer therapy, but currently there are limitations to tracking the therapeutic effects. The purpose of this experiment was to investigate the potential of fluorescent imaging for monitoring the temporal effects of microbubble-mediated ultrasound therapy. Mice were implanted with 2LMP breast cancer cells. The animals underwent microbubble-mediated ultrasound therapy in the presence of Cy5.5 fluorescent-labeled IgG antibody (large molecule) or Cy5.5 dye (small molecule) and microbubble contrast agents. Control animals were administered fluorescent molecules only. Animals were transiently imaged in vivo at 1, 10, 30, and 60 min post therapy using a small animal optical imaging system. Tumors were excised and analyzed ex vivo. Tumors were homogenized and emulsion imaged for Cy5.5 fluorescence. Monitoring in vivo results showed significant influx of dye into the tumor (p < 0.05) using the small molecule, but not in the large molecule group (p > 0.05). However, after tumor emulsion, significantly higher dye concentration was detected in therapy group tumors for both small and large molecule groups in comparison to their control counterparts (p <0.01). This paper explores a noninvasive optical imaging method for monitoring the effects of microbubble-mediated ultrasound therapy in a cancer model. It provides temporal information following the process of increasing extravasation of molecules into target tumors.

  6. Resolving the Circumstellar Environment of the Galactic B[e] Supergiant Star MWC 137 from Large to Small Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Michaela; Nickeler, Dieter H.; Liimets, Tiina

    The Galactic object MWC 137 has been suggested to belong to the group of B[e] supergiants. However, with its large-scale optical bipolar ring nebula and high-velocity jet and knots, it is a rather atypical representative of this class. We performed multiwavelength observations spreading from the optical to the radio regimes. Based on optical imaging and long-slit spectroscopic data, we found that the northern parts of the large-scale nebula are predominantly blueshifted, while the southern regions appear mostly redshifted. We developed a geometrical model consisting of two double cones. Although various observational features can be approximated with such a scenario, themore » observed velocity pattern is more complex. Using near-infrared integral-field unit spectroscopy, we studied the hot molecular gas in the vicinity of the star. The emission from the hot CO gas arises in a small-scale disk revolving around the star on Keplerian orbits. Although the disk itself cannot be spatially resolved, its emission is reflected by the dust arranged in arc-like structures and the clumps surrounding MWC 137 on small scales. In the radio regime, we mapped the cold molecular gas in the outskirts of the optical nebula. We found that large amounts of cool molecular gas and warm dust embrace the optical nebula in the east, south, and west. No cold gas or dust was detected in the north and northwestern regions. Despite the new insights into the nebula kinematics gained from our studies, the real formation scenario of the large-scale nebula remains an open issue.« less

  7. Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays

    DTIC Science & Technology

    2005-07-09

    This final report summarizes the progress during the Phase I SBIR project entitled Embedded Electro - Optic Sensor Network for the On-Site Calibration...network based on an electro - optic field-detection technique (the Electro - optic Sensor Network, or ESN) for the performance evaluation of phased

  8. Comparison of WinSLAMM Modeled Results with Monitored Biofiltration Data

    EPA Science Inventory

    The US EPA’s Green Infrastructure Demonstration project in Kansas City incorporates both small scale individual biofiltration device monitoring, along with large scale watershed monitoring. The test watershed (100 acres) is saturated with green infrastructure components (includin...

  9. Cost-effective and monitoring-active technique for TDM-passive optical networks

    NASA Astrophysics Data System (ADS)

    Chi, Chang-Chia; Lin, Hong-Mao; Tarn, Chen-Wen; Lin, Huang-Liang

    2014-08-01

    A reliable, detection-active and cost-effective method which employs the hello and heartbeat signals for branched node distinguishing to monitor fiber fault in any branch of distribution fibers of a time division multiplexing passive optical network (TDM-PON) is proposed. With this method, the material cost of building an optical network monitor system for a TDM-PON with 168 ONUs and the time of identifying a multiple branch faults is significantly reduced in a TDM-PON system of any scale. A fault location in a 1 × 32 TDM-PON system using this method to identify the fault branch is demonstrated.

  10. High resolution, high sensitivity, dynamic distributed structural monitoring using optical frequency domain reflectometry

    NASA Astrophysics Data System (ADS)

    Kreger, Stephen T.; Sang, Alex K.; Garg, Naman; Michel, Julia

    2013-05-01

    Fiber-optic ultrasonic transducers are an important component of an active ultrasonic testing system for structural health monitoring. Fiber-optic transducers have several advantages such as small size, light weight, and immunity to electromagnetic interference that make them much more attractive than the current available piezoelectric transducers, especially as embedded and permanent transducers in active ultrasonic testing for structural health monitoring. In this paper, a distributed fiber-optic laser-ultrasound generation based on the ghost-mode of tilted fiber Bragg gratings is studied. The influences of the laser power and laser pulse duration on the laser-ultrasound generation are investigated. The results of this paper are helpful to understand the working principle of this laser-ultrasound method and improve the ultrasonic generation efficiency.

  11. Arch-bridge Lift Process Monitoring by Using Packaged Optical Fibre Strain Sensors with Temperature Compensation

    NASA Astrophysics Data System (ADS)

    Mokhtar, M. R.; Sun, T.; Grattan, K. T. V.; Owens, K.; Kwasny, J.; Taylor, S. E.; Basheer, P. A. M.; Cleland, D.; Bai, Y.; Sonebi, M.; Davis, G.; Gupta, A.; Hogg, I.; Bell, B.; Doherty, W.; McKeague, S.; Moore, D.; Greeves, K.

    2011-08-01

    This paper presents a novel sensor design and packaging, specifically developed to allow fibre grating-based sensors to be used in harsh, in-the-field measurement conditions for accurate strain measurement, with full temperature compensation. After these sensors are carefully packaged and calibrated in the laboratory, they are installed onto the paragrid of a set of flat-packed concrete units, created specifically for forming a small-scale, lightweight and inexpensive flexi-arch bridge. During the arch-bridge lifting process, the sensors are used for real-time strain measurements to ensure the quality of the construction. During the work done, the sensors have demonstrated enhanced resilience when embedded in concrete structures, providing accurate and consistent strain measurements during the whole installation process and beyond into monitoring the integrity and use of the structure.

  12. Exceptional points enhance sensing in an optical microcavity

    NASA Astrophysics Data System (ADS)

    Chen, Weijian; Kaya Özdemir, Şahin; Zhao, Guangming; Wiersig, Jan; Yang, Lan

    2017-08-01

    Sensors play an important part in many aspects of daily life such as infrared sensors in home security systems, particle sensors for environmental monitoring and motion sensors in mobile phones. High-quality optical microcavities are prime candidates for sensing applications because of their ability to enhance light-matter interactions in a very confined volume. Examples of such devices include mechanical transducers, magnetometers, single-particle absorption spectrometers, and microcavity sensors for sizing single particles and detecting nanometre-scale objects such as single nanoparticles and atomic ions. Traditionally, a very small perturbation near an optical microcavity introduces either a change in the linewidth or a frequency shift or splitting of a resonance that is proportional to the strength of the perturbation. Here we demonstrate an alternative sensing scheme, by which the sensitivity of microcavities can be enhanced when operated at non-Hermitian spectral degeneracies known as exceptional points. In our experiments, we use two nanoscale scatterers to tune a whispering-gallery-mode micro-toroid cavity, in which light propagates along a concave surface by continuous total internal reflection, in a precise and controlled manner to exceptional points. A target nanoscale object that subsequently enters the evanescent field of the cavity perturbs the system from its exceptional point, leading to frequency splitting. Owing to the complex-square-root topology near an exceptional point, this frequency splitting scales as the square root of the perturbation strength and is therefore larger (for sufficiently small perturbations) than the splitting observed in traditional non-exceptional-point sensing schemes. Our demonstration of exceptional-point-enhanced sensitivity paves the way for sensors with unprecedented sensitivity.

  13. Monitoring tumor growth and treatment in small animals with magnetic resonance and optical tomographic imaging

    NASA Astrophysics Data System (ADS)

    Masciotti, J.; Provenzano, F.; Papa, J.; Klose, A.; Hur, J.; Gu, X.; Yamashiro, D.; Kandel, J.; Hielscher, A. H.

    2006-02-01

    Small animal models are employed to simulate disease in humans and to study its progression, what factors are important to the disease process, and to study the disease treatment. Biomedical imaging modalities such as magnetic resonance imaging (MRI) and Optical Tomography make it possible to non-invasively monitor the progression of diseases in living small animals and study the efficacy of drugs and treatment protocols. MRI is an established imaging modality capable of obtaining high resolution anatomical images and along with contrast agents allow the studying of blood volume. Optical tomography, on the other hand, is an emerging imaging modality, which, while much lower in spatial resolution, can separate the effects of oxyhemoglobin, deoxyhemoglobin, and blood volume with high temporal resolution. In this study we apply these modalities to imaging the growth of kidney tumors and then there treatment by an anti-VEGF agent. We illustrate how these imaging modalities have their individual uses, but can still supplement each other and cross validation can be performed.

  14. Optical glucose monitoring using vertical cavity surface emitting lasers (VCSELs)

    NASA Astrophysics Data System (ADS)

    Talebi Fard, Sahba; Hofmann, Werner; Talebi Fard, Pouria; Kwok, Ezra; Amann, Markus-Christian; Chrostowski, Lukas

    2009-08-01

    Diabetes Mellitus is a common chronic disease that has become a public health issue. Continuous glucose monitoring improves patient health by stabilizing the glucose levels. Optical methods are one of the painless and promising methods that can be used for blood glucose predictions. However, having accuracies lower than what is acceptable clinically has been a major concern. Using lasers along with multivariate techniques such as Partial Least Square (PLS) can improve glucose predictions. This research involves investigations for developing a novel optical system for accurate glucose predictions, which leads to the development of a small, low power, implantable optical sensor for diabetes patients.

  15. Small diameter, deep bore optical inspection system

    DOEpatents

    Lord, D.E.; Petrini, R.R.; Carter, G.W.

    An improved rod optic system for inspecting small diameter, deep bores is described. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90/sup 0/ to minimize optical distortion in examing the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable if examing 1/16 inch diameter and up to 4-inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and righ angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.

  16. Compact OXC architecture, design and prototype development for flexible waveband routing optical networks.

    PubMed

    Ishikawa, Tomohiro; Mori, Yojiro; Hasegawa, Hiroshi; Subramaniam, Suresh; Sato, Ken-Ichi; Moriwaki, Osamu

    2017-07-10

    A novel compact OXC node architecture that combines WSSs and arrays of small scale optical delivery-coupling type switches ("DCSWs") is proposed. Unlike conventional OXC nodes, the WSSs are only responsible for dynamic path bundling ("flexible waveband") while the small scale optical switches route bundled path groups. A network design algorithm that is aware of the routing scheme is also proposed, and numerical experiments elucidate that the necessary number of WSSs and amplifiers can be significantly reduced. A prototype of the proposed OXC is also developed using monolithic arrayed DCSWs. Transmission experiments on the prototype verify the proposal's technical feasibility.

  17. Distributed intelligent urban environment monitoring system

    NASA Astrophysics Data System (ADS)

    Du, Jinsong; Wang, Wei; Gao, Jie; Cong, Rigang

    2018-02-01

    The current environmental pollution and destruction have developed into a world-wide major social problem that threatens human survival and development. Environmental monitoring is the prerequisite and basis of environmental governance, but overall, the current environmental monitoring system is facing a series of problems. Based on the electrochemical sensor, this paper designs a small, low-cost, easy to layout urban environmental quality monitoring terminal, and multi-terminal constitutes a distributed network. The system has been small-scale demonstration applications and has confirmed that the system is suitable for large-scale promotion

  18. Demonstration of sub-femtomole sensitivity for small molecules with microsphere ring resonator sensors

    NASA Astrophysics Data System (ADS)

    White, Ian M.; Oveys, Hesam; Fan, Xudong

    2006-02-01

    Optical microsphere resonators can function as highly sensitive bio/chemical sensors due to the large Q-factor, which leads to high light-matter interaction. The whispering gallery modes (WGM) arise at the surface of the microsphere, creating a highly enhanced optical field that interacts with matter on or near the microsphere surface. As a result, the spectral position of the WGM is extremely sensitive to refractive index changes near the surface, such as when bio/chemical molecules bind to the sphere. We show the potential feasibility of a microsphere ring resonator as a sensor for small molecules by demonstrating detection of sub-femtomole changes in SiO II molecules at the surface of the microsphere. In this experiment, the silica molecules act as an excellent model for small molecule analytes because of their 60 Dalton molecular weight, and because we know nearly the exact quantity of molecules at the surface, which enables a sensitivity characterization. We measure the spectral shifts in the WGMs when low concentrations of hydrofluoric acid (HF) are added to a solution that is being probed by the microsphere. As the HF molecules break apart the SiO II molecules at the sphere surface, the WGMs shift due to the sub-nano-scale decrease in the size of the microsphere. These calculations show that the sensitivity of this microsphere resonator is on the order of 500 attomoles. Our results will lead to the utilization of optical microspheres for detection of trace quantities of small molecules for such applications as drug discovery, environmental monitoring, and enzyme detection using peptide cleavage.

  19. Optical Fibre Pressure Sensors in Medical Applications.

    PubMed

    Poeggel, Sven; Tosi, Daniele; Duraibabu, DineshBabu; Leen, Gabriel; McGrath, Deirdre; Lewis, Elfed

    2015-07-15

    This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas.

  20. Optical Fibre Pressure Sensors in Medical Applications

    PubMed Central

    Poeggel, Sven; Tosi, Daniele; Duraibabu, DineshBabu; Leen, Gabriel; McGrath, Deirdre; Lewis, Elfed

    2015-01-01

    This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas. PMID:26184228

  1. CHARACTERIZATION OF SMALL ESTUARIES AS A COMPONENT OF A REGIONAL-SCALE MONITORING PROGRAM

    EPA Science Inventory

    Large-scale environmental monitoring programs, such as EPA's Environmental Monitoring and Assessment Program (EMAP), by nature focus on estimating the ecological condition of large geographic areas. Generally missing is the ability to provide estimates of condition of individual ...

  2. Miniaturisation of Pressure-Sensitive Paint Measurement Systems Using Low-Cost, Miniaturised Machine Vision Cameras.

    PubMed

    Quinn, Mark Kenneth; Spinosa, Emanuele; Roberts, David A

    2017-07-25

    Measurements of pressure-sensitive paint (PSP) have been performed using new or non-scientific imaging technology based on machine vision tools. Machine vision camera systems are typically used for automated inspection or process monitoring. Such devices offer the benefits of lower cost and reduced size compared with typically scientific-grade cameras; however, their optical qualities and suitability have yet to be determined. This research intends to show relevant imaging characteristics and also show the applicability of such imaging technology for PSP. Details of camera performance are benchmarked and compared to standard scientific imaging equipment and subsequent PSP tests are conducted using a static calibration chamber. The findings demonstrate that machine vision technology can be used for PSP measurements, opening up the possibility of performing measurements on-board small-scale model such as those used for wind tunnel testing or measurements in confined spaces with limited optical access.

  3. Adaptive optics imaging of inherited retinal diseases.

    PubMed

    Georgiou, Michalis; Kalitzeos, Angelos; Patterson, Emily J; Dubra, Alfredo; Carroll, Joseph; Michaelides, Michel

    2017-11-15

    Adaptive optics (AO) ophthalmoscopy allows for non-invasive retinal phenotyping on a microscopic scale, thereby helping to improve our understanding of retinal diseases. An increasing number of natural history studies and ongoing/planned interventional clinical trials exploit AO ophthalmoscopy both for participant selection, stratification and monitoring treatment safety and efficacy. In this review, we briefly discuss the evolution of AO ophthalmoscopy, recent developments and its application to a broad range of inherited retinal diseases, including Stargardt disease, retinitis pigmentosa and achromatopsia. Finally, we describe the impact of this in vivo microscopic imaging on our understanding of disease pathogenesis, clinical trial design and outcome metrics, while recognising the limitation of the small cohorts reported to date. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Miniaturisation of Pressure-Sensitive Paint Measurement Systems Using Low-Cost, Miniaturised Machine Vision Cameras

    PubMed Central

    Spinosa, Emanuele; Roberts, David A.

    2017-01-01

    Measurements of pressure-sensitive paint (PSP) have been performed using new or non-scientific imaging technology based on machine vision tools. Machine vision camera systems are typically used for automated inspection or process monitoring. Such devices offer the benefits of lower cost and reduced size compared with typically scientific-grade cameras; however, their optical qualities and suitability have yet to be determined. This research intends to show relevant imaging characteristics and also show the applicability of such imaging technology for PSP. Details of camera performance are benchmarked and compared to standard scientific imaging equipment and subsequent PSP tests are conducted using a static calibration chamber. The findings demonstrate that machine vision technology can be used for PSP measurements, opening up the possibility of performing measurements on-board small-scale model such as those used for wind tunnel testing or measurements in confined spaces with limited optical access. PMID:28757553

  5. An approach for flood monitoring by the combined use of Landsat 8 optical imagery and COSMO-SkyMed radar imagery

    NASA Astrophysics Data System (ADS)

    Tong, Xiaohua; Luo, Xin; Liu, Shuguang; Xie, Huan; Chao, Wei; Liu, Shuang; Liu, Shijie; Makhinov, A. N.; Makhinova, A. F.; Jiang, Yuying

    2018-02-01

    Remote sensing techniques offer potential for effective flood detection with the advantages of low-cost, large-scale, and real-time surface observations. The easily accessible data sources of optical remote sensing imagery provide abundant spectral information for accurate surface water body extraction, and synthetic aperture radar (SAR) systems represent a powerful tool for flood monitoring because of their all-weather capability. This paper introduces a new approach for flood monitoring by the combined use of both Landsat 8 optical imagery and COSMO-SkyMed radar imagery. Specifically, the proposed method applies support vector machine and the active contour without edges model for water extent determination in the periods before and during the flood, respectively. A map difference method is used for the flood inundation analysis. The proposed approach is particularly suitable for large-scale flood monitoring, and it was tested on a serious flood that occurred in northeastern China in August 2013, which caused immense loss of human lives and properties. High overall accuracies of 97.46% for the optical imagery and 93.70% for the radar imagery are achieved by the use of the techniques presented in this study. The results show that about 12% of the whole study area was inundated, corresponding to 5466 km2 of land surface.

  6. Quasi-continuous parallel online scattered light, fluorescence and dissolved oxygen tension measurement combined with monitoring of the oxygen transfer rate in each well of a shaken microtiter plate.

    PubMed

    Ladner, Tobias; Held, Markus; Flitsch, David; Beckers, Mario; Büchs, Jochen

    2016-12-03

    Microtiter plates (MTP) are often applied as culture vessels in high-throughput screening programs. If online measuring techniques are available, MTPs can also be applied in the first steps of process development. For such small-scale bioreactors dipping probes are usually too large; therefore, optical measurements are often used. For example, the BioLector technology allows for the online monitoring of scattered light and fluorescence in each well of a continuously orbitally shaken MTP. Although this system provides valuable data, these measurements are mainly of a semi-quantitative nature. Therefore, signal calibration is required to obtain absolute values. With the µRAMOS technology it became possible for the first time to quantify the oxygen transfer rate (OTR) separately in each well of an MTP. In this work, a device is presented that combines both techniques, to provide a hitherto unparalleled high amount of information from each single well. Because both systems (BioLector and µRAMOS) are based on optical measurements, the measurements need to be synchronized to avoid interferences with the optical signals. The new experimental setup was applied for online monitoring in cultures of Escherichia coli and Hansenula polymorpha. It has been demonstrated that the well-to-well reproducibility is very high, and that the monitored signals provide reliable and valuable information about the process. With varying filling volumes, different maximum oxygen transfer capacities (OTR max ) were adjusted in oxygen-limited cultures. The different degrees of stress during the culture due to oxygen limitation affected microbial growth and also impacted reproducibility from culture to culture. Furthermore, it was demonstrated that this new device significantly simplifies the experimental efforts: instead of parallel cultures in a shake flask and MTP, just one single experiment in MTP needs to be conducted to measure the OTR, dissolved oxygen tension (DOT), scattered light and fluorescence. The new device is a very suitable system for the online monitoring of cultures in continuously orbitally shaken MTPs. Due to the high number of parameters that can simultaneously be measured with this small-scale device, deeper insight into the investigated microbial system can be achieved. Furthermore, the experimental efforts to obtain OTR, DOT, scattered light and fluorescence signals during a culture are decreased. Ultimately, this new technology and the resulting high amount of collected data will eliminate the currently existing separation between screening and process development. Graphical abstract Picture of the combined μRAMOS and BioLector setup which allows for measurements of the oxygen transfer rate (OTR), dissolved oxygen tension (DOT), scattered light and fluorescence in each single well of an orbitally shaken microtiter plate.

  7. A review of recent advances in optical fibre sensors for in vivo dosimetry during radiotherapy

    PubMed Central

    O'Keeffe, S; McCarthy, D; Woulfe, P; Grattan, M W D; Hounsell, A R; Sporea, D; Mihai, L; Vata, I; Leen, G

    2015-01-01

    This article presents an overview of the recent developments and requirements in radiotherapy dosimetry, with particular emphasis on the development of optical fibre dosemeters for radiotherapy applications, focusing particularly on in vivo applications. Optical fibres offer considerable advantages over conventional techniques for radiotherapy dosimetry, owing to their small size, immunity to electromagnetic interferences, and suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based dosemeters, together with being lightweight and flexible, mean that they are minimally invasive and thus particularly suited to in vivo dosimetry. This means that the sensor can be placed directly inside a patient, for example, for brachytherapy treatments, the optical fibres could be placed in the tumour itself or into nearby critical tissues requiring monitoring, via the same applicators or needles used for the treatment delivery thereby providing real-time dosimetric information. The article outlines the principal sensor design systems along with some of the main strengths and weaknesses associated with the development of these techniques. The successful demonstration of these sensors in a range of different clinical environments is also presented. PMID:25761212

  8. Measurement of deformations of models in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Charpin, F.; Armand, C.; Selvaggini, R.

    Techniques used at the ONERA Modane Center to monitor geometric variations in scale-models in wind tunnel trials are described. The methods include: photography of reflections from mirrors embedded in the model surface; laser-based torsiometry with polarized mirrors embedded in the model surface; predictions of the deformations using numerical codes for the model surface mechanical characteristics and the measured surface stresses; and, use of an optical detector to monitor the position of luminous fiber optic sources emitting from the model surfaces. The data enhance the confidence that the wind tunnel aerodynamic data will correspond with the in-flight performance of full scale flight surfaces.

  9. GMES Initial Operations - Network for Earth Observation Research Training (GIONET)

    NASA Astrophysics Data System (ADS)

    Nicolas-Perea, V.; Balzter, H.

    2012-12-01

    GMES Initial Operations - Network for Earth Observation Research Training (GIONET) is a Marie Curie funded project that aims to establish the first of a kind European Centre of Excellence for Earth Observation Research Training. GIONET is a partnership of leading Universities, research institutes and private companies from across Europe aiming to cultivate a community of early stage researchers in the areas of optical and radar remote sensing skilled for the emerging GMES land monitoring services during the GMES Initial Operations period (2011-2013) and beyond. GIONET is expected to satisfy the demand for highly skilled researchers and provide personnel for operational phase of the GMES and monitoring and emergency services. It will achieve this by: -Providing postgraduate training in Earth Observation Science that exposes students to different research disciplines and complementary skills, providing work experiences in the private and academic sectors, and leading to a recognized qualification (Doctorate). -Enabling access to first class training in both fundamental and applied research skills to early-stage researchers at world-class academic centers and market leaders in the private sector. -Building on the experience from previous GMES research and development projects in the land monitoring and emergency information services. The training program through supervised research focuses on 14 research topics (each carried out by an Early Stage Researchers based in one of the partner organization) divided in 5 main areas: Forest monitoring: Global biomass information systems Forest Monitoring of the Congo Basin using Synthetic Aperture radar (SAR) Multi-concept Earth Observation Capabilities for Biomass Mapping and Change Detection: Synergy of Multi-temporal and Multi-frequency Interferometric Radar and Optical Satellite Data Land cover and change: Multi-scale Remote Sensing Synergy for Land Process Studies: from field Spectrometry to Airborne Hyperspectral and Lidar Campaigns to Radar-Optical Satellite Data Multi-temporal, multi-frequency SAR for landscape dynamics Coastal zone and freshwater monitoring: Optical and SAR-based EO in support of Integrated Coastal Zone Management Dynamics and conservation ecology of emergent and submerged macrophytes in Lake Balaton using airborne remote sensing Satellite remote sensing of water quality (chlorophyll and suspended sediment) using MODIS and ship-mounted LIDAR Geohazards and emergency response: Methods for detection and monitoring of small scale land surface feature changes in complex crisis situations Monitoring landslide displacements with Radar Interferometry DINSAR/PSI hybrid methodologies for ground-motion monitoring Climate adaptation and emergency response: Earth Observation based analysis of regional impact of climate change induced water stress patterns fuelling human crisis and conflict situations in semi dry climate regimes Satellite Derived Information for Drought Detection and Estimation of the Water Balance GIONET will also cover methodologies including (i) modelling fundamental radiative processes determining the satellite signal, (ii) atmospheric correction and calibration, (iii) processing higher-order data products, (iii) developing information products from satellite data to meet user requirements, and (iv) statistical methods for assessing the quality and accuracy of data products.

  10. Lobster eye X-ray optics: Data processing from two 1D modules

    NASA Astrophysics Data System (ADS)

    Nentvich, O.; Urban, M.; Stehlikova, V.; Sieger, L.; Hudec, R.

    2017-07-01

    The X-ray imaging is usually done by Wolter I telescopes. They are suitable for imaging of a small part of the sky, not for all-sky monitoring. This monitoring could be done by a Lobster eye optics which can theoretically have a field of view up to 360 deg. All sky monitoring system enables a quick identification of source and its direction. This paper describes the possibility of using two independent one-dimensional Lobster Eye modules for this purpose instead of Wolter I and their post-processing into an 2D image. This arrangement allows scanning with less energy loss compared to Wolter I or two-dimensional Lobster Eye optics. It is most suitable especially for very weak sources.

  11. Distributed optical fiber-based monitoring approach of spatial seepage behavior in dike engineering

    NASA Astrophysics Data System (ADS)

    Su, Huaizhi; Ou, Bin; Yang, Lifu; Wen, Zhiping

    2018-07-01

    The failure caused by seepage is the most common one in dike engineering. As to the characteristics of seepage in dike, such as longitudinal extension engineering, the randomness, strong concealment and small initial quantity order, by means of distributed fiber temperature sensor system (DTS), adopting an improved optical fiber layer layout scheme, the location of initial interpolation point of the saturation line is obtained. With the barycentric Lagrange interpolation collocation method (BLICM), the infiltrated surface of dike full-section is generated. Combined with linear optical fiber monitoring seepage method, BLICM is applied in an engineering case, which shows that a real-time seepage monitoring technique is presented in full-section of dike based on the combination method.

  12. Optical power transfer and communication methods for wireless implantable sensing platforms.

    PubMed

    Mujeeb-U-Rahman, Muhammad; Adalian, Dvin; Chang, Chieh-Feng; Scherer, Axel

    2015-09-01

    Ultrasmall scale implants have recently attracted focus as valuable tools for monitoring both acute and chronic diseases. Semiconductor optical technologies are the key to miniaturizing these devices to the long-sought sub-mm scale, which will enable long-term use of these devices for medical applications. This can also enable the use of multiple implantable devices concurrently to form a true body area network of sensors. We demonstrate optical power transfer techniques and methods to effectively harness this power for implantable devices. Furthermore, we also present methods for optical data transfer from such implants. Simultaneous use of these technologies can result in miniaturized sensing platforms that can allow for large-scale use of such systems in real world applications.

  13. Optical power transfer and communication methods for wireless implantable sensing platforms

    NASA Astrophysics Data System (ADS)

    Mujeeb-U-Rahman, Muhammad; Adalian, Dvin; Chang, Chieh-Feng; Scherer, Axel

    2015-09-01

    Ultrasmall scale implants have recently attracted focus as valuable tools for monitoring both acute and chronic diseases. Semiconductor optical technologies are the key to miniaturizing these devices to the long-sought sub-mm scale, which will enable long-term use of these devices for medical applications. This can also enable the use of multiple implantable devices concurrently to form a true body area network of sensors. We demonstrate optical power transfer techniques and methods to effectively harness this power for implantable devices. Furthermore, we also present methods for optical data transfer from such implants. Simultaneous use of these technologies can result in miniaturized sensing platforms that can allow for large-scale use of such systems in real world applications.

  14. Feasibility of spatial frequency domain imaging (SFDI) for optically characterizing a preclinical oncology model.

    PubMed

    Tabassum, Syeda; Zhao, Yanyu; Istfan, Raeef; Wu, Junjie; Waxman, David J; Roblyer, Darren

    2016-10-01

    Determination of chemotherapy efficacy early during treatment would provide more opportunities for physicians to alter and adapt treatment plans. Diffuse optical technologies may be ideally suited to track early biological events following chemotherapy administration due to low cost and high information content. We evaluated the use of spatial frequency domain imaging (SFDI) to characterize a small animal tumor model in order to move towards the goal of endogenous optical monitoring of cancer therapy in a controlled preclinical setting. The effects of key measurement parameters including the choice of imaging spatial frequency and the repeatability of measurements were evaluated. The precision of SFDI optical property extractions over repeat mouse measurements was determined to be within 3.52% for move and replace experiments. Baseline optical properties and chromophore values as well as intratumor heterogeneity were evaluated over 25 tumors. Additionally, tumor growth and chemotherapy response were monitored over a 45 day longitudinal study in a small number of mice to demonstrate the ability of SFDI to track treatment effects. Optical scattering and oxygen saturation increased as much as 70% and 25% respectively in treated tumors, suggesting SFDI may be useful for preclinical tracking of cancer therapies.

  15. TerraSAR-X time-series interferometry detects human-induce subsidence in the Historical Centre of Hanoi, Vietnam

    NASA Astrophysics Data System (ADS)

    Le, Tuan; Chang, Chung-Pai; Nguyen, Xuan

    2016-04-01

    Hanoi was the capital of 12 Vietnamese dynasties, where the most historical relics, archaeological ruins and ancient monuments are located over Vietnam. However, those heritage assets are threatened by the land subsidence process occurred in recent decades, which mainly triggered by massive groundwater exploitation and construction activities. In this work, we use a set of high resolution TerraSAR-X images to map small-scale land subsidence patterns in the Historical Centre of Hanoi from April 2012 to November 2013. Images oversampling is integrated into the Small Baseline InSAR processing chain in order to enlarge the monitoring coverage by increasing the point-wise measurements, maintaining the monitoring scale of single building and monument. We analyzed over 2.4 million radar targets on 13.9 km2 area of interest based on 2 main sites: The Citadel, the Old Quarter and French Quarter. The highest subsidence rate recorded is -14.2 mm/year. Most of the heritage assets are considered as stable except the Roman Catholic Archdiocese and the Ceramic Mosaic Mural with the subsidence rates are -14.2 and -13.7 mm/year, respectively. Eventually, optical image and soil properties map are used to determine the causes of subsidence patterns. The result shows the strong relationships between the existing construction sites, the component of sediments and land subsidence processes that occurred in the study site.

  16. Small scale monitoring of a bioremediation barrier using miniature electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Sentenac, Philippe; Hogson, Tom; Keenan, Helen; Kulessa, Bernd

    2015-04-01

    The aim of this study was to assess, in the laboratory, the efficiency of a barrier of oxygen release compound (ORC) to block and divert a diesel plume migration in a scaled aquifer model using miniature electrical resistivity tomography (ERT) as the monitoring system. Two plumes of contaminant (diesel) were injected in a soil model made of local sand and clay. The diesel plumes migration was imaged and monitored using a miniature resistivity array system that has proved to be accurate in soil resistivity variations in small-scaled models of soil. ERT results reflected the lateral spreading and diversion of the diesel plumes in the unsaturated zone. One of the contaminant plumes was partially blocked by the ORC barrier and a diversion and reorganisation of the diesel in the soil matrix was observed. The technique of time-lapse ERT imaging showed that a dense non-aqueous phase liquid (DNAPL) contaminant like diesel can be monitored through a bioremediation barrier and the technique is well suited to monitor the efficiency of the barrier. Therefore, miniature ERT as a small-scale modelling tool could complement conventional techniques, which require more expensive and intrusive site investigation prior to remediation.

  17. Backscattering from a Gaussian distributed, perfectly conducting, rough surface

    NASA Technical Reports Server (NTRS)

    Brown, G. S.

    1977-01-01

    The problem of scattering by random surfaces possessing many scales of roughness is analyzed. The approach is applicable to bistatic scattering from dielectric surfaces, however, this specific analysis is restricted to backscattering from a perfectly conducting surface in order to more clearly illustrate the method. The surface is assumed to be Gaussian distributed so that the surface height can be split into large and small scale components, relative to the electromagnetic wavelength. A first order perturbation approach is employed wherein the scattering solution for the large scale structure is perturbed by the small scale diffraction effects. The scattering from the large scale structure is treated via geometrical optics techniques. The effect of the large scale surface structure is shown to be equivalent to a convolution in k-space of the height spectrum with the following: the shadowing function, a polarization and surface slope dependent function, and a Gaussian factor resulting from the unperturbed geometrical optics solution. This solution provides a continuous transition between the near normal incidence geometrical optics and wide angle Bragg scattering results.

  18. Molecular imaging of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Chang, Sung K.; Errabelli, Divya; Rizvi, Imran; Solban, Nicolas; O'Riordan, Katherine; Hasan, Tayyaba

    2006-02-01

    Recent advances in light sources, detectors and other optical imaging technologies coupled with the development of novel optical contrast agents have enabled real-time, high resolution, in vivo monitoring of molecular targets. Noninvasive monitoring of molecular targets is particularly relevant to photodynamic therapy (PDT), including the delivery of photosensitizer in the treatment site and monitoring of molecular and physiological changes following treatment. Our lab has developed optical imaging technologies to investigate these various aspects of photodynamic therapy (PDT). We used a laser scanning confocal microscope to monitor the pharmacokinetics of various photosensitizers in in vitro as well as ex vivo samples, and developed an intravital fluorescence microscope to monitor photosensitizer delivery in vivo in small animals. A molecular specific contrast agent that targets the vascular endothelial growth factor (VEGF) was developed to monitor the changes in the protein expression following PDT. We were then able to study the physiological changes due to post-treatment VEGF upregulation by quantifying vascular permeability with in vivo imaging.

  19. Etched optical fiber vibration sensor to monitor health condition of beam like structures

    NASA Astrophysics Data System (ADS)

    Putha, Kishore; Dantala, Dinakar; Kamineni, Srimannarayana; Pachava, Vengal Rao

    2013-06-01

    Using a center etched single mode optical fiber, a simple vibration senor is designed to monitor the vibrations of a simply supported beam. The sensor has high linear response to the axial displacement of about 0.8 mm with a sensitivity of 32 mV/10 μm strain. The sensor is tested for periodic and suddenly released forces, and the results are found to coincide with the theoretical values. This simple design, small in size and low cost sensor may find applications in industry and civil engineering to monitor the vibrations of the beam structures and bridges.

  20. Towards an integrated strategy for monitoring wetland inundation with virtual constellations of optical and radar satellites

    NASA Astrophysics Data System (ADS)

    DeVries, B.; Huang, W.; Huang, C.; Jones, J. W.; Lang, M. W.; Creed, I. F.; Carroll, M.

    2017-12-01

    The function of wetlandscapes in hydrological and biogeochemical cycles is largely governed by surface inundation, with small wetlands that experience periodic inundation playing a disproportionately large role in these processes. However, the spatial distribution and temporal dynamics of inundation in these wetland systems are still poorly understood, resulting in large uncertainties in global water, carbon and greenhouse gas budgets. Satellite imagery provides synoptic and repeat views of the Earth's surface and presents opportunities to fill this knowledge gap. Despite the proliferation of Earth Observation satellite missions in the past decade, no single satellite sensor can simultaneously provide the spatial and temporal detail needed to adequately characterize inundation in small, dynamic wetland systems. Surface water data products must therefore integrate observations from multiple satellite sensors in order to address this objective, requiring the development of improved and coordinated algorithms to generate consistent estimates of surface inundation. We present a suite of algorithms designed to detect surface inundation in wetlands using data from a virtual constellation of optical and radar sensors comprising the Landsat and Sentinel missions (DeVries et al., 2017). Both optical and radar algorithms were able to detect inundation in wetlands without the need for external training data, allowing for high-efficiency monitoring of wetland inundation at large spatial and temporal scales. Applying these algorithms across a gradient of wetlands in North America, preliminary findings suggest that while these fully automated algorithms can detect wetland inundation at higher spatial and temporal resolutions than currently available surface water data products, limitations specific to the satellite sensors and their acquisition strategies are responsible for uncertainties in inundation estimates. Further research is needed to investigate strategies for integrating optical and radar data from virtual constellations, with a focus on reducing uncertainties, maximizing spatial and temporal detail, and establishing consistent records of wetland inundation over time. The findings and conclusions in this article do not necessarily represent the views of the U.S. Government.

  1. Application of smart optical fiber sensors for structural load monitoring

    NASA Astrophysics Data System (ADS)

    Davies, Heddwyn; Everall, Lorna A.; Gallon, Andrew M.

    2001-06-01

    This paper describes a smart monitoring system, incorporating optical fiber sensing techniques, capable of providing important structural information to designers and users alike. This technology has wide industrial and commercial application in areas including aerospace, civil, maritime and automotive engineering. In order to demonstrate the capability of the sensing system it has been installed in a 35m free-standing carbon fiber yacht mast, where a complete optical network of strain and temperature sensors were embedded into a composite mast and boom during lay-up. The system was able to monitor the behavior of the composite rig through a range of handling conditions. The resulting strain information can be used by engineers to improve the structural design process. Embedded fiber optic sensors have wide ranging application for structural load monitoring. Due to their small size, optical fiber sensors can be readily embedded into composite materials. Other advantages include their immediate multiplexing capability and immunity to electro-magnetic interference. The capability of this system has been demonstrated within the maritime and industrial environment, but can be adapted for any application.

  2. PRECISE ANGLE MONITOR BASED ON THE CONCEPT OF PENCIL-BEAM INTERFEROMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    QIAN,S.; TAKACS,P.

    2000-07-30

    The precise angle monitoring is a very important metrology task for research, development and industrial applications. Autocollimator is one of the most powerful and widely applied instruments for small angle monitoring, which is based on the principle of geometric optics. In this paper the authors introduce a new precise angle monitoring system, Pencil-beam Angle Monitor (PAM), base on pencil beam interferometry. Its principle of operation is a combination of physical and geometrical optics. The angle calculation method is similar to the autocollimator. However, the autocollimator creates a cross image but the precise pencil-beam angle monitoring system produces an interference fringemore » on the focal plane. The advantages of the PAM are: high angular sensitivity, long-term stability character making angle monitoring over long time periods possible, high measurement accuracy in the order of sub-microradian, simultaneous measurement ability in two perpendicular directions or on two different objects, dynamic measurement possibility, insensitive to the vibration and air turbulence, automatic display, storage and analysis by use of the computer, small beam diameter making the alignment extremely easy and longer test distance. Some test examples are presented.« less

  3. A label-free fiber-optic Turbidity Affinity Sensor (TAS) for continuous glucose monitoring.

    PubMed

    Dutt-Ballerstadt, Ralph; Evans, Colton; Pillai, Arun P; Gowda, Ashok

    2014-11-15

    In this paper, we describe the concept of a novel implantable fiber-optic Turbidity Affinity Sensor (TAS) and report on the findings of its in-vitro performance for continuous glucose monitoring. The sensing mechanism of the TAS is based on glucose-specific changes in light scattering (turbidity) of a hydrogel suspension consisting of small particles made of crosslinked dextran (Sephadex G100), and a glucose- and mannose-specific binding protein - Concanavalin A (ConA). The binding of ConA to Sephadex particles results in a significant turbidity increase that is much greater than the turbidity contribution by the individual components. The turbidity of the TAS was measured by determining the intensity of light passing through the suspension enclosed within a small semi-permeable hollow fiber (OD: 220 μm, membrane thickness: 20 μm, molecular weight cut-off: 10 kDa) using fiber optics. The intensity of measured light of the TAS was proportional to the glucose concentration over the concentration range from 50mg/dL to 400mg/dL in PBS and whole blood at 37°C (R>0.96). The response time was approximately 4 min. The stability of the glucose response of the TAS decreased only slightly (by 20%) over an 8-day study period at 37°C. In conclusion, this study demonstrated proof-of-concept of the TAS for interstitial glucose monitoring. Due to the large signal amplitude of the turbidity change, and the lack of need for wavelength-specific emission and excitation filters, a very small, robust and compact TAS device with an extremely short optical pathlength could be feasibly designed and implemented for in-vivo glucose monitoring in people with diabetes. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop

    PubMed Central

    Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-01-01

    Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems. PMID:26230700

  5. Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors.

    PubMed

    Voisin, Valérie; Pilate, Julie; Damman, Pascal; Mégret, Patrice; Caucheteur, Christophe

    2014-01-15

    Surface Plasmon resonance (SPR) optical fiber biosensors constitute a miniaturized counterpart to the bulky prism configuration and offer remote operation in very small volumes of analyte. They are a cost-effective and relatively straightforward technique to yield in situ (or even possibly in vivo) molecular detection. The biosensor configuration reported in this work uses nanometric-scale gold-coated tilted fiber Bragg gratings (TFBGs) interrogated by light polarized radially to the optical fiber outer surface, so as to maximize the optical coupling with the SPR. These gratings were recently associated to aptamers to assess their label-free biorecognition capability in buffer and serum solutions. In this work, using the well-acknowledged biotin-streptavidin pair as a benchmark, we go forward in the demonstration of their unique sensitivity. In addition to the monitoring of the self-assembled monolayer (SAM) in real time, we report an unprecedented limit of detection (LOD) as low as 2 pM. Finally, an immunosensing experiment is realized with human transferrin (dissociation constant Kd~10(-8) M(-1)). It allows to assess both the reversibility and the robustness of the SPR-TFBG biosensors and to confirm their high sensitivity. © 2013 Published by Elsevier B.V.

  6. Fiber optic sensors and systems at the Federal University of Rio de Janeiro

    NASA Astrophysics Data System (ADS)

    Werneck, Marcelo M.; dos Santos, Paulo A. M.; Ferreira, Aldo P.; Maggi, Luis E.; de Carvalho, Carlos R., Jr.; Ribeiro, R. M.

    1998-08-01

    As widely known, fiberoptics (FO) are being used in a large variety of sensors and systems particularly for their small dimensions and low cost, large bandwidth and favorable dielectric properties. These properties have allowed us to develop sensors and systems for general applications and, particularly, for biomedical engineering. The intravascular pressure sensor was designed for small dimensions and high bandwidth. The system is based on light-intensity modulation technique and uses a 2 mm-diameter elastomer membrane as the sensor element and a pigtailed laser as a light source. The optical power output curve was linear for pressures within the range of 0 to 300 mmHg. The real time optical biosensor uses the evanescent field technique for monitoring Escherichia coli growth in culture media. The optical biosensor monitors interactions between the analytic (bacteria) and the evanescent field of an optical fiber passing through it. The FO based high voltage and current sensor is a measuring system designed for monitoring voltage and current in high voltage transmission lines. The linearity of the system is better than 2% in both ranges of 0 to 25 kV and 0 to 1000 A. The optical flowmeter uses a cross-correlation technique that analyses two light beams crossing the flow separated by a fixed distance. The x-ray image sensor uses a scintillating FO array, one FO for each image pixel to form an image of the x-ray field. The systems described in these paper use general-purpose components including optical fibers and optoelectronic devices, which are readily available, and of low cost.

  7. Research progress in fiber optic sensors and systems at the Federal University of Rio de Janeiro

    NASA Astrophysics Data System (ADS)

    Werneck, Marcelo M.; Ferreira, Aldo P.; Maggi, Luis E.; De Carvalho, C. C.; Ribeiro, R. M.

    1999-02-01

    As widely known, fiberoptics (FO) are being used in a large variety of sensor an systems particularly for their small dimensions and low cost, large bandwidth and favorable dielectric properties. These properties have allowed us to develop sensor and systems for general applications and, particularly, for biomedical engineering. The intravasculator pressure sensor was designed for small dimensions and high bandwidth. The system is based on light- intensity modulation technique and use a 2 mm-diameter elastomer membrane as the sensor element and a pigtailed laser as a light source. The optical power out put curve was linear for pressures within the range of 0 to 300 mmHg. The real time optical biosensor uses the evanescent field technique for monitoring Escherichia coli growth in culture media. The optical biosensor monitors interactions between the analytic and the evanescent field of an optical fiber passing through it. The FO based high voltage and current sensor is a measuring system designed for monitoring voltage and current in high voltage transmission lines. The linearity of the system is better than 2 percent in both ranges of 0 to 25 kV and 0 to 1000 A. The optical flowmeter uses a cross-correlation technique that analyzes two light beams crossing the flow separated by a fixed distance. The x-ray image sensor uses a scintillating FO array, one FO for each image pixel to form an image of the x-ray field. The systems described in this paper use general-purpose components including optical fibers and optoelectronic devices, which are readily available, and of low cost.

  8. Technical Report on the 6th Time Scale Algorithm Symposium and Tutorials

    DTIC Science & Technology

    2016-03-29

    Mesures (BIPM) REPORT NUMBER 12 Bis Grande Rue F-92310 Sevres ( France ) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S...Authors: F. Arias and G. Panfilo The 6th Time Scale Algorithm Symposium and Tutorials taken place at the Pavilion de Breteuil, BIPM (Sevres, France ) on... France ) 14:30 14:50 Rapid evaluation of time scale using an optical clock (Tetsuya Ida, NICT, Japan) 14:50 15:10 UTC(IT) steering algorithm

  9. Advanced Fiber-optic Monitoring System for Space-flight Applications

    NASA Technical Reports Server (NTRS)

    Hull, M. S.; VanTassell, R. L.; Pennington, C. D.; Roman, M.

    2005-01-01

    Researchers at Luna Innovations Inc. and the National Aeronautic and Space Administration s Marshall Space Flight Center (NASA MSFC) have developed an integrated fiber-optic sensor system for real-time monitoring of chemical contaminants and whole-cell bacterial pathogens in water. The system integrates interferometric and evanescent-wave optical fiber-based sensing methodologies with atomic force microscopy (AFM) and long-period grating (LPG) technology to provide versatile measurement capability for both micro- and nano-scale analytes. Sensors can be multiplexed in an array format and embedded in a totally self-contained laboratory card for use with an automated microfluidics platform.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attota, Ravikiran, E-mail: Ravikiran.attota@nist.gov; Dixson, Ronald G.

    We experimentally demonstrate that the three-dimensional (3-D) shape variations of nanometer-scale objects can be resolved and measured with sub-nanometer scale sensitivity using conventional optical microscopes by analyzing 4-D optical data using the through-focus scanning optical microscopy (TSOM) method. These initial results show that TSOM-determined cross-sectional (3-D) shape differences of 30 nm–40 nm wide lines agree well with critical-dimension atomic force microscope measurements. The TSOM method showed a linewidth uncertainty of 1.22 nm (k = 2). Complex optical simulations are not needed for analysis using the TSOM method, making the process simple, economical, fast, and ideally suited for high volume nanomanufacturing process monitoring.

  11. Monitoring scaling and dental calculus removal with an optical fluorescence system

    NASA Astrophysics Data System (ADS)

    Sivieri-Araujo, G.; Fontana, C. R.; Costa, M. M.; Rastelli, A. N. S.; Pereira, L. P. C.; Kurachi, C.; Bagnato, V. S.

    2014-08-01

    Fluorescence results from a process that occurs under certain conditions in molecules known as fluorophores, fluorochromes or fluorescent dyes when they absorb light. The molecule is excited to a higher energy state and emits fluorescent light. The emission wavelength is always higher than the excitation wavelength. Optical diagnoses by fluorescence can be used in medicine and dentistry. It does not cause injury to tissues because it is a noninvasive method and can add benefits to clinical treatments. The aim of this case report was to apply an optical fluorescence system for wide-field image viewing and visual monitoring of the management of plaque and dental calculus before and after periodontal scaling to improve the diagnoses and follow-up of patients with periodontal disease. The results suggest that it is possible to observe, with a fluorescence system, residual plaque and calculus that were not easily seen by the naked eye during oral inspection. Thus, the optical technique can potentially improve periodontal screening efforts, especially in patients undergoing periodontal maintenance.

  12. Optical Sensors for Monitoring Gamma and Neutron Radiation

    NASA Technical Reports Server (NTRS)

    Boyd, Clark D.

    2011-01-01

    For safety and efficiency, nuclear reactors must be carefully monitored to provide feedback that enables the fission rate to be held at a constant target level via adjustments in the position of neutron-absorbing rods and moderating coolant flow rates. For automated reactor control, the monitoring system should provide calibrated analog or digital output. The sensors must survive and produce reliable output with minimal drift for at least one to two years, for replacement only during refueling. Small sensor size is preferred to enable more sensors to be placed in the core for more detailed characterization of the local fission rate and fuel consumption, since local deviations from the norm tend to amplify themselves. Currently, reactors are monitored by local power range meters (LPRMs) based on the neutron flux or gamma thermometers based on the gamma flux. LPRMs tend to be bulky, while gamma thermometers are subject to unwanted drift. Both electronic reactor sensors are plagued by electrical noise induced by ionizing radiation near the reactor core. A fiber optic sensor system was developed that is capable of tracking thermal neutron fluence and gamma flux in order to monitor nuclear reactor fission rates. The system provides near-real-time feedback from small- profile probes that are not sensitive to electromagnetic noise. The key novel feature is the practical design of fiber optic radiation sensors. The use of an actinoid element to monitor neutron flux in fiber optic EFPI (extrinsic Fabry-Perot interferometric) sensors is a new use of material. The materials and structure used in the sensor construction can be adjusted to result in a sensor that is sensitive to just thermal, gamma, or neutron stimulus, or any combination of the three. The tested design showed low sensitivity to thermal and gamma stimuli and high sensitivity to neutrons, with a fast response time.

  13. Imaging multi-scale dynamics in vivo with spiral volumetric optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. Luís.; Fehm, Thomas F.; Ford, Steven J.; Gottschalk, Sven; Razansky, Daniel

    2017-03-01

    Imaging dynamics in living organisms is essential for the understanding of biological complexity. While multiple imaging modalities are often required to cover both microscopic and macroscopic spatial scales, dynamic phenomena may also extend over different temporal scales, necessitating the use of different imaging technologies based on the trade-off between temporal resolution and effective field of view. Optoacoustic (photoacoustic) imaging has been shown to offer the exclusive capability to link multiple spatial scales ranging from organelles to entire organs of small animals. Yet, efficient visualization of multi-scale dynamics remained difficult with state-of-the-art systems due to inefficient trade-offs between image acquisition and effective field of view. Herein, we introduce a spiral volumetric optoacoustic tomography (SVOT) technique that provides spectrally-enriched high-resolution optical absorption contrast across multiple spatio-temporal scales. We demonstrate that SVOT can be used to monitor various in vivo dynamics, from video-rate volumetric visualization of cardiac-associated motion in whole organs to high-resolution imaging of pharmacokinetics in larger regions. The multi-scale dynamic imaging capability thus emerges as a powerful and unique feature of the optoacoustic technology that adds to the multiple advantages of this technology for structural, functional and molecular imaging.

  14. The Global Ozone and Aerosol Profiles and Aerosol Hygroscopic Effect and Absorption Optical Depth (GOA2HEAD) Network Initiative

    NASA Astrophysics Data System (ADS)

    Gao, R. S.; Elkins, J. W.; Frost, G. J.; McComiskey, A. C.; Murphy, D. M.; Ogren, J. A.; Petropavlovskikh, I. V.; Rosenlof, K. H.

    2014-12-01

    Inverse modeling using measurements of ozone (O3) and aerosol is a powerful tool for deriving pollutant emissions. Because they have relatively long lifetimes, O3 and aerosol are transported over large distances. Frequent and globally spaced vertical profiles rather than ground-based measurements alone are therefore highly desired. Three requirements necessary for a successful global monitoring program are: Low equipment cost, low operation cost, and reliable measurements of known uncertainty. Conventional profiling using aircraft provides excellent data, but is cost prohibitive on a large scale. Here we describe a new platform and instruments meeting all three global monitoring requirements. The platform consists of a small balloon and an auto-homing glider. The glider is released from the balloon at about 5 km altitude, returning the light instrument package to the launch location, and allowing for consistent recovery of the payload. Atmospheric profiling can be performed either during ascent or descent (or both) depending on measurement requirements. We will present the specifications for two instrument packages currently under development. The first measures O3, RH, p, T, dry aerosol particle number and size distribution, and aerosol optical depth. The second measures dry aerosol particle number and size distribution, and aerosol absorption coefficient. Other potential instrument packages and the desired spatial/temporal resolution for the GOA2HEAD monitoring initiative will also be discussed.

  15. Optical Micromachining

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under an SBIR (Small Business Innovative Research) with Marshall Space Flight Center, Potomac Photonics, Inc., constructed and demonstrated a unique tool that fills a need in the area of diffractive and refractive micro-optics. It is an integrated computer-aided design and computer-aided micro-machining workstation that will extend the benefits of diffractive and micro-optic technology to optical designers. Applications of diffractive optics include sensors and monitoring equipment, analytical instruments, and fiber optic distribution and communication. The company has been making diffractive elements with the system as a commercial service for the last year.

  16. Manipulating biological agents and cells in micro-scale volumes for applications in medicine

    PubMed Central

    Tasoglu, Savas; Gurkan, Umut Atakan; Wang, ShuQi

    2013-01-01

    Recent technological advances provide new tools to manipulate cells and biological agents in micro/nano-liter volumes. With precise control over small volumes, the cell microenvironment and other biological agents can be bioengineered; interactions between cells and external stimuli can be monitored; and the fundamental mechanisms such as cancer metastasis and stem cell differentiation can be elucidated. Technological advances based on the principles of electrical, magnetic, chemical, optical, acoustic, and mechanical forces lead to novel applications in point-of-care diagnostics, regenerative medicine, in vitro drug testing, cryopreservation, and cell isolation/purification. In this review, we first focus on the underlying mechanisms of emerging examples for cell manipulation in small volumes targeting applications such as tissue engineering. Then, we illustrate how these mechanisms impact the aforementioned biomedical applications, discuss the associated challenges, and provide perspectives for further development. PMID:23575660

  17. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.

    PubMed

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-09-18

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  18. SITHON: A Wireless Network of in Situ Optical Cameras Applied to the Early Detection-Notification-Monitoring of Forest Fires

    PubMed Central

    Tsiourlis, Georgios; Andreadakis, Stamatis; Konstantinidis, Pavlos

    2009-01-01

    The SITHON system, a fully wireless optical imaging system, integrating a network of in-situ optical cameras linking to a multi-layer GIS database operated by Control Operating Centres, has been developed in response to the need for early detection, notification and monitoring of forest fires. This article presents in detail the architecture and the components of SITHON, and demonstrates the first encouraging results of an experimental test with small controlled fires over Sithonia Peninsula in Northern Greece. The system has already been scheduled to be installed in some fire prone areas of Greece. PMID:22408536

  19. Comparison of modelling accuracy with and without exploiting automated optical monitoring information in predicting the treated wastewater quality.

    PubMed

    Tomperi, Jani; Leiviskä, Kauko

    2018-06-01

    Traditionally the modelling in an activated sludge process has been based on solely the process measurements, but as the interest to optically monitor wastewater samples to characterize the floc morphology has increased, in the recent years the results of image analyses have been more frequently utilized to predict the characteristics of wastewater. This study shows that the traditional process measurements or the automated optical monitoring variables by themselves are not capable of developing the best predictive models for the treated wastewater quality in a full-scale wastewater treatment plant, but utilizing these variables together the optimal models, which show the level and changes in the treated wastewater quality, are achieved. By this early warning, process operation can be optimized to avoid environmental damages and economic losses. The study also shows that specific optical monitoring variables are important in modelling a certain quality parameter, regardless of the other input variables available.

  20. Fine-scale mapping of vector habitats using very high resolution satellite imagery: a liver fluke case-study.

    PubMed

    De Roeck, Els; Van Coillie, Frieke; De Wulf, Robert; Soenen, Karen; Charlier, Johannes; Vercruysse, Jozef; Hantson, Wouter; Ducheyne, Els; Hendrickx, Guy

    2014-12-01

    The visualization of vector occurrence in space and time is an important aspect of studying vector-borne diseases. Detailed maps of possible vector habitats provide valuable information for the prediction of infection risk zones but are currently lacking for most parts of the world. Nonetheless, monitoring vector habitats from the finest scales up to farm level is of key importance to refine currently existing broad-scale infection risk models. Using Fasciola hepatica, a parasite liver fluke, as a case in point, this study illustrates the potential of very high resolution (VHR) optical satellite imagery to efficiently and semi-automatically detect detailed vector habitats. A WorldView2 satellite image capable of <5m resolution was acquired in the spring of 2013 for the area around Bruges, Belgium, a region where dairy farms suffer from liver fluke infections transmitted by freshwater snails. The vector thrives in small water bodies (SWBs), such as ponds, ditches and other humid areas consisting of open water, aquatic vegetation and/or inundated grass. These water bodies can be as small as a few m2 and are most often not present on existing land cover maps because of their small size. We present a classification procedure based on object-based image analysis (OBIA) that proved valuable to detect SWBs at a fine scale in an operational and semi-automated way. The classification results were compared to field and other reference data such as existing broad-scale maps and expert knowledge. Overall, the SWB detection accuracy reached up to 87%. The resulting fine-scale SWB map can be used as input for spatial distribution modelling of the liver fluke snail vector to enable development of improved infection risk mapping and management advice adapted to specific, local farm situations.

  1. Real-time alkali monitoring system

    DOEpatents

    Goff, David R.; Romanosky, Robert R.; Hensel, Peter

    1990-01-01

    A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium emission line, may be detected in the presence of interfering background radiation. A combustion flame is fed by a diverted portion of a process stream and the common end of a bifurcated or quadfurcated fiber optic light guide is adapted to collect light from the flame. The light is guided through the branches of the fiber optic cable to bandpass filters, one of which is adapted to each of the branches of the fiber optic light guide. The bandpass filters are centered at wavelengths corresponding to the emission lines to be detected and two separate filters are required for each species being detected. The first filter has a bandwidth of about 3 nms and the second filter has a bandwidth of about 10 nms. Light detectors are located to view the light passing through the bandpass filters and amplifiers are connected to receive signals from the light detectors. The amplifier corresponding to the bandpass filter having the narrower bandwidth is preset to scale the signal by a factor equal to the ratio of the wide and narrow bandwidths of the bandpass filters. This scaling produces a scaled signal from which the difference between the scaled signal on the other signal can be calculated to produce a signal having an amplitude directly proportional to the concentration of the species of interest and independent of background radiation.

  2. Dynamic measurements and simulations of airborne picolitre-droplet coalescence in holographic optical tweezers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzdek, Bryan R.; Reid, Jonathan P., E-mail: j.p.reid@bristol.ac.uk; Collard, Liam

    We report studies of the coalescence of pairs of picolitre aerosol droplets manipulated with holographic optical tweezers, probing the shape relaxation dynamics following coalescence by simultaneously monitoring the intensity of elastic backscattered light (EBL) from the trapping laser beam (time resolution on the order of 100 ns) while recording high frame rate camera images (time resolution <10 μs). The goals of this work are to: resolve the dynamics of droplet coalescence in holographic optical traps; assign the origin of key features in the time-dependent EBL intensity; and validate the use of the EBL alone to precisely determine droplet surface tensionmore » and viscosity. For low viscosity droplets, two sequential processes are evident: binary coalescence first results from the overlap of the optical traps on the time scale of microseconds followed by the recapture of the composite droplet in an optical trap on the time scale of milliseconds. As droplet viscosity increases, the relaxation in droplet shape eventually occurs on the same time scale as recapture, resulting in a convoluted evolution of the EBL intensity that inhibits quantitative determination of the relaxation time scale. Droplet coalescence was simulated using a computational framework to validate both experimental approaches. The results indicate that time-dependent monitoring of droplet shape from the EBL intensity allows for robust determination of properties such as surface tension and viscosity. Finally, the potential of high frame rate imaging to examine the coalescence of dissimilar viscosity droplets is discussed.« less

  3. Adaptive Optics of Small Choroidal Melanoma.

    PubMed

    Rodrigues, Murilo W; Say, Emil A; Shields, Carol L; Jorge, Rodrigo

    2017-04-01

    The authors report the use of an adaptive optics (AO) system in an asymptomatic patient with small choroidal melanoma. A noninvasive, novel assessment that detected potential photoreceptor abnormalities in the retina overlying the choroidal lesion and adjacent retina is presented. These findings may help current clinical evaluation to monitor structural damage to the outer retina and possibly justify earlier intervention in borderline cases. Future research is warranted to recognize full potential of this imaging modality. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:354-357.]. Copyright 2017, SLACK Incorporated.

  4. The role of citizen science in monitoring small-scale pollution events.

    PubMed

    Hyder, Kieran; Wright, Serena; Kirby, Mark; Brant, Jan

    2017-07-15

    Small-scale pollution events involve the release of potentially harmful substances into the marine environment. These events can affect all levels of the ecosystem, with damage to both fauna and flora. Numerous reporting structures are currently available to document spills, however there is a lack of information on small-scale events due to their magnitude and patchy distribution. To this end, volunteers may provide a useful tool in filling this data gap, especially for coastal environments with a high usage by members of the public. The potential for citizen scientists to record small-scale pollution events is explored using the UK as an example, with a focus on highlighting methods and issues associated with using this data source. An integrated monitoring system is proposed which combines citizen science and traditional reporting approaches. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  5. A subcontinental view of forest plant invasions

    Treesearch

    Christopher M. Oswalt; Songlin Fei; Qinfeng Guo; Basil V. Iannone III; Sonja N. Oswalt; Bryan C. Pijanowski; Kevin M. Potter

    2015-01-01

    Over the last few decades, considerable attention has focused on small-scale studies of invasive plants and invaded systems. Unfortunately, small scale studies rarely provide comprehensive insight into the complexities of biological invasions at macroscales. Systematic and repeated monitoring of biological invasions at broad scales are rare. In this report, we...

  6. Predicting carbon benefits from climate-smart agriculture: High-resolution carbon mapping and uncertainty assessment in El Salvador.

    PubMed

    Kearney, Sean Patrick; Coops, Nicholas C; Chan, Kai M A; Fonte, Steven J; Siles, Pablo; Smukler, Sean M

    2017-11-01

    Agroforestry management in smallholder agriculture can provide climate change mitigation and adaptation benefits and has been promoted as 'climate-smart agriculture' (CSA), yet has generally been left out of international and voluntary carbon (C) mitigation agreements. A key reason for this omission is the cost and uncertainty of monitoring C at the farm scale in heterogeneous smallholder landscapes. A largely overlooked alternative is to monitor C at more aggregated scales and develop C contracts with groups of land owners, community organizations or C aggregators working across entire landscapes (e.g., watersheds, communities, municipalities, etc.). In this study we use a 100-km 2 agricultural area in El Salvador to demonstrate how high-spatial resolution optical satellite imagery can be used to map aboveground woody biomass (AGWB) C at the landscape scale with very low uncertainty (95% probability of a deviation of less than 1%). Uncertainty of AGWB-C estimates remained low (<5%) for areas as small as 250 ha, despite high uncertainties at the farm and plot scale (34-99%). We estimate that CSA adoption could more than double AGWB-C stocks on agricultural lands in the study area, and that utilizing AGWB-C maps to target denuded areas could increase C gains per unit area by 46%. The potential value of C credits under a plausible adoption scenario would range from $38,270 to $354,000 yr -1 for the study area, or about $13 to $124 ha -1  yr -1 , depending on C prices. Considering farm sizes in smallholder landscapes rarely exceed 1-2 ha, relying solely on direct C payments to farmers may not lead to widespread CSA adoption, especially if farm-scale monitoring is required. Instead, landscape-scale approaches to C contracting, supported by satellite-based monitoring methods such as ours, could be a key strategy to reduce costs and uncertainty of C monitoring in heterogeneous smallholder landscapes, thereby incentivizing more widespread CSA adoption. Copyright © 2017. Published by Elsevier Ltd.

  7. Dark Fiber and Distributed Acoustic Sensing: Applications to Monitoring Seismicity and Near-Surface Properties

    NASA Astrophysics Data System (ADS)

    Ajo Franklin, J. B.; Lindsey, N.; Dou, S.; Freifeld, B. M.; Daley, T. M.; Tracy, C.; Monga, I.

    2017-12-01

    "Dark Fiber" refers to the large number of fiber-optic lines installed for telecommunication purposes but not currently utilized. With the advent of distributed acoustic sensing (DAS), these unused fibers have the potential to become a seismic sensing network with unparalleled spatial extent and density with applications to monitoring both natural seismicity as well as near-surface soil properties. While the utility of DAS for seismic monitoring has now been conclusively shown on built-for-purpose networks, dark fiber deployments have been challenged by the heterogeneity of fiber installation procedures in telecommunication as well as access limitations. However, the potential of telecom networks to augment existing broadband monitoring stations provides a strong incentive to explore their utilization. We present preliminary results demonstrating the application of DAS to seismic monitoring on a 20 km run of "dark" telecommunications fiber between West Sacramento, CA and Woodland CA, part of the Dark Fiber Testbed maintained by the DOE's ESnet user facility. We show a small catalog of local and regional earthquakes detected by the array and evaluate fiber coupling by using variations in recorded frequency content. Considering the low density of broadband stations across much of the Sacramento Basin, such DAS recordings could provide a crucial data source to constrain small-magnitude local events. We also demonstrate the application of ambient noise interferometry using DAS-recorded waveforms to estimate soil properties under selected sections of the dark fiber transect; the success of this test suggests that the network could be utilized for environmental monitoring at the basin scale. The combination of these two examples demonstrates the exciting potential for combining DAS with ubiquitous dark fiber to greatly extend the reach of existing seismic monitoring networks.

  8. Infrared Hollow Optical Fiber Probe for Localized Carbon Dioxide Measurement in Respiratory Tracts.

    PubMed

    Katagiri, Takashi; Shibayama, Kyosuke; Iida, Takeru; Matsuura, Yuji

    2018-03-27

    A real-time gas monitoring system based on optical absorption spectroscopy is proposed for localized carbon dioxide (CO₂) measurement in respiratory tracts. In this system, a small gas cell is attached to the end of a hollow optical fiber that delivers mid-infrared light with small transmission loss. The diameters of the fiber and the gas cell are smaller than 1.2 mm so that the probe can be inserted into a working channel of common bronchoscopes. The dimensions of the gas cell are designed based on absorption spectra of CO₂ standard gases in the 4.2 μm wavelength region, which are measured using a Fourier-transform infrared spectrometer. A miniature gas cell that is comprised of a stainless-steel tube with slots for gas inlet and a micro-mirror is fabricated. A compact probing system with a quantum cascade laser (QCL) light source is built using a gas cell with a hollow optical fiber for monitoring CO₂ concentration. Experimental results using human breaths show the feasibility of the system for in-situ measurement of localized CO₂ concentration in human airways.

  9. Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings.

    PubMed

    Tian, Jiajun; Zhang, Qi; Han, Ming

    2013-03-11

    Active ultrasonic testing is widely used for medical diagnosis, material characterization and structural health monitoring. Ultrasonic transducer is a key component in active ultrasonic testing. Due to their many advantages such as small size, light weight, and immunity to electromagnetic interference, fiber-optic ultrasonic transducers are particularly attractive for permanent, embedded applications in active ultrasonic testing for structural health monitoring. However, current fiber-optic transducers only allow effective ultrasound generation at a single location of the fiber end. Here we demonstrate a fiber-optic device that can effectively generate ultrasound at multiple, selected locations along a fiber in a controllable manner based on a smart light tapping scheme that only taps out the light of a particular wavelength for laser-ultrasound generation and allow light of longer wavelengths pass by without loss. Such a scheme may also find applications in remote fiber-optic device tuning and quasi-distributed biochemical fiber-optic sensing.

  10. Children as Playtime Monitors: What It Means for the Monitor

    ERIC Educational Resources Information Center

    Sharma-Stray, Leela; Creasy, Rob

    2013-01-01

    Although many schools within the United Kingdom adopt practices, such as the use of prefects or playtime monitors, there is very little research that explores how such practices are experienced by children who take on these roles. This small-scale study explores the experiences of a small group of children who volunteered to be playtime monitors…

  11. RAPTOR: Closed-Loop monitoring of the night sky and the earliest optical detection of GRB 021211

    NASA Astrophysics Data System (ADS)

    Vestrand, W. T.; Borozdin, K.; Casperson, D. J.; Fenimore, E.; Galassi, M.; McGowan, K.; Starr, D.; White, R. R.; Wozniak, P.; Wren, J.

    2004-10-01

    We discuss the RAPTOR (Rapid Telescopes for Optical Response) sky monitoring system at Los Alamos National Laboratory. RAPTOR is a fully autonomous robotic system that is designed to identify and make follow-up observations of optical transients with durations as short as one minute. The RAPTOR design is based on Biomimicry of Human Vision. The sky monitor is composed of two identical arrays of telescopes, separated by 38 kilometers, which stereoscopically monitor a field of about 1300 square-degrees for transients. Both monitoring arrays are carried on rapidly slewing mounts and are composed of an ensemble of wide-field telescopes clustered around a more powerful narrow-field telescope called the ``fovea'' telescope. All telescopes are coupled to real-time analysis pipelines that identify candidate transients and relay the information to a central decision unit that filters the candidates to find real celestial transients and command a response. When a celestial transient is found, the system can point the fovea telescopes to any position on the sky within five seconds and begin follow-up observations. RAPTOR also responds to Gamma Ray Burst (GRB) alerts generated by GRB monitoring spacecraft. Here we present RAPTOR observations of GRB 021211 that constitute the earliest detection of optical emission from that event and are the second fastest achieved for any GRB. The detection of bright optical emission from GRB021211, a burst with modest gamma-ray fluence, indicates that prompt optical emission, detectable with small robotic telescopes, is more common than previously thought. Further, the very fast decline of the optical afterglow from GRB 021211 suggests that some so-called ``optically dark'' GRBs were not detected only because of the slow response of the follow-up telescopes.

  12. Progress in miniaturization of a multichannel optical fiber Bragg grating sensor interrogator

    NASA Astrophysics Data System (ADS)

    Lopatin, Craig M.; Mahmood, Shah; Mendoza, Edgar; Moslehi, Behzad; Black, Richard; Chau, Kelvin; Oblea, Levy

    2007-07-01

    An effort to develop a miniaturized multichannel optical fiber Bragg grating sensor interrogator was initiated in 2006 under the Small Business Innovative Research (SBIR) program. The goal was to develop an interrogator that would be sufficiently small and light to be incorporated into a health monitoring system for use on tactical missiles. Two companies, Intelligent Fiber Optic Systems Corporation (IFOS) and Redondo Optics, were funded in Phase I, and this paper describes the prototype interrogators that were developed. The two companies took very different approaches: IFOS focused on developing a unit that would have a high channel count and high resolution, using off-the-shelf components, while Redondo Optics chose to develop a unit that would be very small and lightweight, using custom designed integrated optical chips. It is believed that both approaches will result in interrogators that will be significantly small, lighter, and possibly even more precise than what is currently commercially available. This paper will also briefly describe some of the sensing concepts that may be used to interrogate the health of the solid rocket motors used in many missile systems. The sponsor of this program was NAVAIR PMA 280.

  13. Optical coupling of bare optoelectronic components and flexographically printed polymer waveguides in planar optronic systems

    NASA Astrophysics Data System (ADS)

    Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger

    2016-05-01

    Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated. Additionally, we demonstrate optical links by adopting the aforementioned processes used for defining the simulation. We verify the feasibility of the developed processes for planar optronic systems by using an active alignment and conduct discussions for further improvements of optical alignment.

  14. Micron-scale lens array having diffracting structures

    DOEpatents

    Goldberg, Kenneth A

    2013-10-29

    A novel micron-scale lens, a microlens, is engineered to concentrate light efficiently onto an area of interest, such as a small, light-sensitive detector element in an integrated electronic device. Existing microlens designs imitate the form of large-scale lenses and are less effective at small sizes. The microlenses described herein have been designed to accommodate diffraction effects, which dominate the behavior of light at small length scales. Thus a new class of light-concentrating optical elements with much higher relative performance has been created. Furthermore, the new designs are much easier to fabricate than previous designs.

  15. On-chip clearing of arrays of 3-D cell cultures and micro-tissues.

    PubMed

    Grist, S M; Nasseri, S S; Poon, T; Roskelley, C; Cheung, K C

    2016-07-01

    Three-dimensional (3-D) cell cultures are beneficial models for mimicking the complexities of in vivo tissues, especially in tumour studies where transport limitations can complicate response to cancer drugs. 3-D optical microscopy techniques are less involved than traditional embedding and sectioning, but are impeded by optical scattering properties of the tissues. Confocal and even two-photon microscopy limit sample imaging to approximately 100-200 μm depth, which is insufficient to image hypoxic spheroid cores. Optical clearing methods have permitted high-depth imaging of tissues without physical sectioning, but they are difficult to implement for smaller 3-D cultures due to sample loss in solution exchange. In this work, we demonstrate a microfluidic platform for high-throughput on-chip optical clearing of breast cancer spheroids using the SeeDB, Clear(T2), and ScaleSQ clearing methods. Although all three methods are able to effectively clear the spheroids, we find that SeeDB and ScaleSQ more effectively clear the sample than Clear(T2); however, SeeDB induces green autofluorescence while ScaleS causes sample expansion. Our unique on-chip implementation permits clearing arrays of 3-D cultures using perfusion while monitoring the 3-D cultures throughout the process, enabling visualization of the clearing endpoint as well as monitoring of transient changes that could induce image artefacts. Our microfluidic device is compatible with on-chip 3-D cell culture, permitting the use of on-chip clearing at the endpoint after monitoring the same spheroids during their culture. This on-chip method has the potential to improve readout from 3-D cultures, facilitating their use in cell-based assays for high-content drug screening and other applications.

  16. Structural health monitoring using smart optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Davies, Heddwyn; Everall, Lorna A.; Gallon, Andrew M.

    2001-04-01

    This paper describes the potential of a smart monitoring system, incorporating optical fiber sensing techniques, to provide important structural information to designers and users alike. This technology has application in all areas including aerospace, civil, maritime and automotive engineering. In order to demonstrate the capability of the sensing system it has been installed in a 35 m free-standing carbon fiber yacht mast, where a complete optical network of strain and temperature sensors were embedded into a composite mast and boom during lay-up. The system was able to monitor the behavior of the composite rig through a range of handling conditions and the resulting strain information could be used by engineers to improve the structural design process. The optical strain sensor system comprises of three main components: the sensor network, the opto-electronic data acquisition unit (OFSSS) and the external PC which acts as a data log and display. Embedded fiber optic sensors have wide ranging application for structural load monitoring. Due to their small size, optical fiber sensors can be readily embedded into composite materials. Other advantages include their immediate multiplexing capability and immunity to electromagnetic interference. The capability of this system has been demonstrated within the maritime environment, but can be adapted for any application.

  17. Distributed Fiber-Optic Sensors for Vibration Detection

    PubMed Central

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-01-01

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach–Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications. PMID:27472334

  18. Distributed Fiber-Optic Sensors for Vibration Detection.

    PubMed

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-07-26

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  19. Fiber-optic hydrophone array for acoustic surveillance in the littoral

    NASA Astrophysics Data System (ADS)

    Hill, David; Nash, Phillip

    2005-05-01

    We describe a fibre-optic hydrophone array system architecture that can be tailored to meet the underwater acoustic surveillance requirements of the military, counter terrorist and customs authorities in protecting ports and harbours, offshore production facilities or coastal approaches. Physically the fibre-optic hydrophone array is in the form of a lightweight cable, enabling rapid deployment from a small vessel. Based upon an optical architecture of time and wavelength multiplexed interferometric hydrophones, the array is comprised of a series of hydrophone sub-arrays. Using multiple sub-arrays, extended perimeters many tens of kilometres in length can be monitored. Interrogated via a long (~50km) optical fibre data link, the acoustic date is processed using the latest open architecture sonar processing platform, ensuring that acoustic targets below, on and above the surface are detected, tracked and classified. Results obtained from an at sea trial of a 96-channel hydrophone array are given, showing the passive detection and tracking of a diver, small surface craft and big ocean going ships beyond the horizon. Furthermore, we describe how the OptaMarine fibre-optic hydrophone array fits into an integrated multi-layered approach to port and harbour security consisting of active sonar for diver detection and hull imaging, as well as thermal imaging and CCTV for surface monitoring. Finally, we briefly describe a complimentary land perimeter intruder detection system consisting of an array of fibre optic accelerometers.

  20. Forest loss maps from regional satellite monitoring systematically underestimate deforestation in two rapidly changing parts of the Amazon

    NASA Astrophysics Data System (ADS)

    Milodowski, D. T.; Mitchard, E. T. A.; Williams, M.

    2017-09-01

    Accurate, consistent reporting of changing forest area, stratified by forest type, is required for all countries under their commitments to the Paris Agreement (UNFCCC 2015 Adoption of the Paris Agreement (Paris: UNFCCC)). Such change reporting may directly impact on payments through comparisons to national Reference (Emissions) Levels under the Reducing Emissions from Deforestation and forest Degradation (REDD+) framework. The emergence of global, satellite-based forest monitoring systems, including Global Forest Watch (GFW) and FORMA, have great potential in aiding this endeavour. However, the accuracy of these systems has been questioned and their uncertainties are poorly constrained, both in terms of the spatial extent of forest loss and timing of change. Here, using annual time series of 5 m optical imagery at two sites in the Brazilian Amazon, we demonstrate that GFW more accurately detects forest loss than the coarser-resolution FORMA or Brazil’s national-level PRODES product, though all underestimate the rate of loss. We conclude GFW provides robust indicators of forest loss, at least for larger-scale forest change, but under-predicts losses driven by small-scale disturbances (< 2 ha), even though these are much larger than its minimum mapping unit (0.09 ha).

  1. Forest loss maps from regional satellite monitoring systematically underestimate deforestation in two rapidly changing parts of the Amazon

    NASA Astrophysics Data System (ADS)

    Milodowski, D. T.; Mitchard, E. T. A.; Williams, M.

    2016-09-01

    Accurate, consistent reporting of changing forest area, stratified by forest type, is required for all countries under their commitments to the Paris Agreement (UNFCCC 2015 Adoption of the Paris Agreement (Paris: UNFCCC)). Such change reporting may directly impact on payments through comparisons to national Reference (Emissions) Levels under the Reducing Emissions from Deforestation and forest Degradation (REDD+) framework. The emergence of global, satellite-based forest monitoring systems, including Global Forest Watch (GFW) and FORMA, have great potential in aiding this endeavour. However, the accuracy of these systems has been questioned and their uncertainties are poorly constrained, both in terms of the spatial extent of forest loss and timing of change. Here, using annual time series of 5 m optical imagery at two sites in the Brazilian Amazon, we demonstrate that GFW more accurately detects forest loss than the coarser-resolution FORMA or Brazil’s national-level PRODES product, though all underestimate the rate of loss. We conclude GFW provides robust indicators of forest loss, at least for larger-scale forest change, but under-predicts losses driven by small-scale disturbances (< 2 ha), even though these are much larger than its minimum mapping unit (0.09 ha).

  2. High resolution extensometer based on optical encoder for measurement of small landslide displacements

    NASA Astrophysics Data System (ADS)

    Afandi, M. I.; Adinanta, H.; Setiono, A.; Qomaruddin; Widiyatmoko, B.

    2018-03-01

    There are many ways to measure landslide displacement using sensors such as multi-turn potentiometer, fiber optic strain sensor, GPS, geodetic measurement, ground penetrating radar, etc. The proposed way is to use an optical encoder that produces pulse signal with high stability of measurement resolution despite voltage source instability. The landslide measurement using extensometer based on optical encoder has the ability of high resolution for wide range measurement and for a long period of time. The type of incremental optical encoder provides information about the pulse and direction of a rotating shaft by producing quadrature square wave cycle per increment of shaft movement. The result of measurement using 2,000 pulses per resolution of optical encoder has been obtained. Resolution of extensometer is 36 μm with speed limit of about 3.6 cm/s. System test in hazard landslide area has been carried out with good reliability for small landslide displacement monitoring.

  3. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    PubMed Central

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-01-01

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications. PMID:26393596

  4. Study of distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Tian, Jiajun; Zhang, Qi; Han, Ming

    2013-05-01

    Fiber-optic ultrasonic transducers are an important component of an active ultrasonic testing system for structural health monitoring. Fiber-optic transducers have several advantages such as small size, light weight, and immunity to electromagnetic interference that make them much more attractive than the current available piezoelectric transducers, especially as embedded and permanent transducers in active ultrasonic testing for structural health monitoring. In this paper, a distributed fiber-optic laser-ultrasound generation based on the ghost-mode of tilted fiber Bragg gratings is studied. The influences of the laser power and laser pulse duration on the laser-ultrasound generation are investigated. The results of this paper are helpful to understand the working principle of this laser-ultrasound method and improve the ultrasonic generation efficiency.

  5. Fluorescence diffuse tomography for detection of RFP-expressed tumors in small animals

    NASA Astrophysics Data System (ADS)

    Turchin, Ilya V.; Savitsky, Alexander P.; Kamensky, Vladislav A.; Plehanov, Vladimir I.; Orlova, Anna G.; Kleshnin, Mikhail S.; Shirmanova, Marina V.; Fix, Ilya I.; Popov, Vladimir O.

    2007-07-01

    Capabilities of tumor detection by different optical methods can be significantly improved by labeling of tumors with fluorescent markers. Creation of tumor cell lines transfected with fluorescent proteins provides the possibility not only to detect tumor, but also to conduct the intravital monitoring studies. Cell lines of human melanomas Mel-P, Mel-Kor and human embryonic kidney HEK-293 Phoenix were transfected with DsRed-Express and Turbo-RFP genes. Emission of RFP in the long-wave optical range permits detection of the deeply located tumors, which is essential for whole-body imaging. Only special tools for turbid media imaging, such as fluorescent diffusion tomography (FDT), enable noninvasive investigation of the internal structure of biological tissue. FDT setup for monitoring of tumor growth in small animals has been created. An animal is scanned in the transilluminative configuration by low-frequency modulated light (1 kHz) from Nd:YAG laser with second harmonic generation at the 532 nm wavelength. An optimizing algorithm for scanning of an experimantal animal is suggested. In vivo experiments were conducted immediately after the subcutaneously injection of fluorescing cells into small animals. It was shown that FDT method allows to detect the presence of fluorescent cells in small animals and can be used for monitoring of tumor growth and anticancer drug responce.

  6. Current developments and tests of small x-ray optical systems for space applications

    NASA Astrophysics Data System (ADS)

    Pina, L.; Hudec, R.; Inneman, A.; Doubravová, D.; Marsikova, V.

    2017-05-01

    The paper addresses the X-ray monitoring for astrophysical applications. A novel approach based on the use of 1D and 2D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV was further studied. Wide-field optical system of this type has not been used in space yet. Designed wide-field optical system combined with Timepix X-ray detector is described together with latest experimental results obtained during laboratory tests. Proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is the only solution in cases where intensity of impinging X-ray radiation is below the sensitivity of the detector, e.g. while monitoring astrophysical objects in space, or phenomena in the Earth's atmosphere. The optical system is considered to be used in a student rocket experiment.

  7. Subsurface Monitoring of CO2 Sequestration - A Review and Look Forward

    NASA Astrophysics Data System (ADS)

    Daley, T. M.

    2012-12-01

    The injection of CO2 into subsurface formations is at least 50 years old with large-scale utilization of CO2 for enhanced oil recovery (CO2-EOR) beginning in the 1970s. Early monitoring efforts had limited measurements in available boreholes. With growing interest in CO2 sequestration beginning in the 1990's, along with growth in geophysical reservoir monitoring, small to mid-size sequestration monitoring projects began to appear. The overall goals of a subsurface monitoring plan are to provide measurement of CO2 induced changes in subsurface properties at a range of spatial and temporal scales. The range of spatial scales allows tracking of the location and saturation of the plume with varying detail, while finer temporal sampling (up to continuous) allows better understanding of dynamic processes (e.g. multi-phase flow) and constraining of reservoir models. Early monitoring of small scale pilots associated with CO2-EOR (e.g., the McElroy field and the Lost Hills field), developed many of the methodologies including tomographic imaging and multi-physics measurements. Large (reservoir) scale sequestration monitoring began with the Sleipner and Weyburn projects. Typically, large scale monitoring, such as 4D surface seismic, has limited temporal sampling due to costs. Smaller scale pilots can allow more frequent measurements as either individual time-lapse 'snapshots' or as continuous monitoring. Pilot monitoring examples include the Frio, Nagaoka and Otway pilots using repeated well logging, crosswell imaging, vertical seismic profiles and CASSM (continuous active-source seismic monitoring). For saline reservoir sequestration projects, there is typically integration of characterization and monitoring, since the sites are not pre-characterized resource developments (oil or gas), which reinforces the need for multi-scale measurements. As we move beyond pilot sites, we need to quantify CO2 plume and reservoir properties (e.g. pressure) over large scales, while still obtaining high resolution. Typically the high-resolution (spatial and temporal) tools are deployed in permanent or semi-permanent borehole installations, where special well design may be necessary, such as non-conductive casing for electrical surveys. Effective utilization of monitoring wells requires an approach of modular borehole monitoring (MBM) were multiple measurements can be made. An example is recent work at the Citronelle pilot injection site where an MBM package with seismic, fluid sampling and distributed fiber sensing was deployed. For future large scale sequestration monitoring, an adaptive borehole-monitoring program is proposed.

  8. A Platform to Monitor Tumor Cellular and Vascular Response to Radiation Therapy by Optical Coherence Tomography and Fluorescence Microscopy in vivo

    NASA Astrophysics Data System (ADS)

    Leung, Michael Ka Kit

    Radiotherapy plays a significant role in cancer treatment, and is thought to be curative by mainly killing tumor cells through damage to their genetic material. However, recent findings indicate that the tumor's vascular blood supply is also a major determinant of radiation response. The goals of this thesis are to: (1) develop an experimental platform for small animals to deliver ionizing radiation and perform high-resolution optical imaging to treatment targets, and (2) use this toolkit to longitudinally monitor the response of tumors and the associated vasculature. The thesis has achieved: (1) customization of a novel micro-irradiator for mice, (2) technical development of an improved optical coherence tomography imaging system, (3) comprehensive experimental protocol and imaging optimization for optical microscopy in a specialized animal model, and (4) completion of a feasibility study to demonstrate the capabilities of the experimental platform in monitoring the response of tumor and vasculature to radiotherapy.

  9. Controlling the scattering properties of thin, particle-doped coatings

    NASA Astrophysics Data System (ADS)

    Rogers, William; Corbett, Madeleine; Manoharan, Vinothan

    2013-03-01

    Coatings and thin films of small particles suspended in a matrix possess optical properties that are important in several industries from cosmetics and paints to polymer composites. Many of the most interesting applications require coatings that produce several bulk effects simultaneously, but it is often difficult to rationally formulate materials with these desired optical properties. Here, we focus on the specific challenge of designing a thin colloidal film that maximizes both diffuse and total hemispherical transmission. We demonstrate that these bulk optical properties follow a simple scaling with two microscopic length scales: the scattering and transport mean free paths. Using these length scales and Mie scattering calculations, we generate basic design rules that relate scattering at the single particle level to the film's bulk optical properties. These ideas will be useful in the rational design of future optically active coatings.

  10. Optical/IR from ground

    NASA Technical Reports Server (NTRS)

    Strom, Stephen; Sargent, Wallace L. W.; Wolff, Sidney; Ahearn, Michael F.; Angel, J. Roger; Beckwith, Steven V. W.; Carney, Bruce W.; Conti, Peter S.; Edwards, Suzan; Grasdalen, Gary

    1991-01-01

    Optical/infrared (O/IR) astronomy in the 1990's is reviewed. The following subject areas are included: research environment; science opportunities; technical development of the 1980's and opportunities for the 1990's; and ground-based O/IR astronomy outside the U.S. Recommendations are presented for: (1) large scale programs (Priority 1: a coordinated program for large O/IR telescopes); (2) medium scale programs (Priority 1: a coordinated program for high angular resolution; Priority 2: a new generation of 4-m class telescopes); (3) small scale programs (Priority 1: near-IR and optical all-sky surveys; Priority 2: a National Astrometric Facility); and (4) infrastructure issues (develop, purchase, and distribute optical CCDs and infrared arrays; a program to support large optics technology; a new generation of large filled aperture telescopes; a program to archive and disseminate astronomical databases; and a program for training new instrumentalists)

  11. Small Business Innovations

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under a Small Business Innovation Research (SBIR) contract to Kennedy Space Center, EIC Laboratories invented a Raman Spectrograph with fiber optic sampling for space applications such as sensing hazardous fuel vapors and making on-board rapid analyses of chemicals and minerals. Raman spectroscopy is a laser-based measurement technique that provides through a unique vibrational spectrum a molecular 'fingerprint,' and can function in aqueous environments. EIC combined optical fiber technology with Raman methods to develop sensors that can be operated at a distance from the spectrographic analysis instruments and the laser excitation source. EIC refined and commercialized the technology to create the Fiber Optic Raman Spectrograph and the RamanProbe. Commercial applications range from process control to monitoring hazardous materials.

  12. Monitoring Cloud-prone Complex Landscapes At Multiple Spatial Scales Using Medium And High Resolution Optical Data: A Case Study In Central Africa

    NASA Astrophysics Data System (ADS)

    Basnet, Bikash

    Tracking land surface dynamics over cloud-prone areas with complex mountainous terrain and a landscape that is heterogeneous at a scale of approximately 10 m, is an important challenge in the remote sensing of tropical regions in developing nations, due to the small plot sizes. Persistent monitoring of natural resources in these regions at multiple spatial scales requires development of tools to identify emerging land cover transformation due to anthropogenic causes, such as agricultural expansion and climate change. Along with the cloud cover and obstructions by topographic distortions due to steep terrain, there are limitations to the accuracy of monitoring change using available historical satellite imagery, largely due to sparse data access and the lack of high quality ground truth for classifier training. One such complex region is the Lake Kivu region in Central Africa. This work addressed these problems to create an effective process for monitoring the Lake Kivu region located in Central Africa. The Lake Kivu region is a biodiversity hotspot with a complex and heterogeneous landscape and intensive agricultural development, where individual plot sizes are often at the scale of 10m. Procedures were developed that use optical data from satellite and aerial observations at multiple scales to tackle the monitoring challenges. First, a novel processing chain was developed to systematically monitor the spatio-temporal land cover dynamics of this region over the years 1988, 2001, and 2011 using Landsat data, complemented by ancillary data. Topographic compensation was performed on Landsat reflectances to avoid the strong illumination angle impacts and image compositing was used to compensate for frequent cloud cover and thus incomplete annual data availability in the archive. A systematic supervised classification, using the state-of-the-art machine learning classifier Random Forest, was applied to the composite Landsat imagery to obtain land cover thematic maps with overall accuracies of 90% and higher. Subsequent change analysis between these years found extensive conversions of the natural environment as a result of human related activities. The gross forest cover loss for 1988--2001 and 2001--2011 periods was 216.4 and 130.5 thousand hectares, respectively, signifying significant deforestation in the period of civil war and a relatively stable and lower deforestation rate later, possibly due to conservation and reforestation efforts in the region. The other dominant land cover changes in the region were aggressive subsistence farming and urban expansion displacing natural vegetation and arable lands. Despite limited data availability, this study fills the gap of much needed detailed and updated land cover change information for this biologically important region of Central Africa. While useful on a regional scale, Landsat data can be inadequate for more detailed studies of land cover change. Based on an increasing availability of high resolution imagery and light detection and ranging (LiDAR) data from manned and unmanned aerial platforms (<1m resolution), a study was performed leading to a novel generic framework for land cover monitoring at fine spatial scales. The approach fuses high spatial resolution aerial imagery and LiDAR data to produce land cover maps with high spatial detail using object-based image analysis techniques. The classification framework was tested for a scene with both natural and cultural features and was found to be more than 90 percent accurate, sufficient for detailed land cover change studies.

  13. Infrared Hollow Optical Fiber Probe for Localized Carbon Dioxide Measurement in Respiratory Tracts

    PubMed Central

    Katagiri, Takashi; Shibayama, Kyosuke; Iida, Takeru

    2018-01-01

    A real-time gas monitoring system based on optical absorption spectroscopy is proposed for localized carbon dioxide (CO2) measurement in respiratory tracts. In this system, a small gas cell is attached to the end of a hollow optical fiber that delivers mid-infrared light with small transmission loss. The diameters of the fiber and the gas cell are smaller than 1.2 mm so that the probe can be inserted into a working channel of common bronchoscopes. The dimensions of the gas cell are designed based on absorption spectra of CO2 standard gases in the 4.2 μm wavelength region, which are measured using a Fourier-transform infrared spectrometer. A miniature gas cell that is comprised of a stainless-steel tube with slots for gas inlet and a micro-mirror is fabricated. A compact probing system with a quantum cascade laser (QCL) light source is built using a gas cell with a hollow optical fiber for monitoring CO2 concentration. Experimental results using human breaths show the feasibility of the system for in-situ measurement of localized CO2 concentration in human airways. PMID:29584666

  14. Bedside arterial blood gas monitoring system using fluorescent optical sensors

    NASA Astrophysics Data System (ADS)

    Bartnik, Daniel J.; Rymut, Russell A.

    1995-05-01

    We describe a bedside arterial blood gas (ABG) monitoring system which uses fluorescent optical sensors in the measurement of blood pH, PCO2 and PO2. The Point-of-Care Arterial Blood Gas Monitoring System consists of the SensiCathTM optical sensor unit manufactured by Optical Sensors Incorporated and the TramTM Critical Care Monitoring System with ABG Module manufactured by Marquette Electronics Incorporated. Current blood gas measurement techniques require a blood sample to be removed from the patient and transported to an electrochemical analyzer for analysis. The ABG system does not require removal of blood from the patient or transport of the sample. The sensor is added to the patient's existing arterial line. ABG measurements are made by drawing a small blood sample from the arterial line in sufficient quantity to ensure an undiluted sample at the sensor. Measurements of pH, PCO2 and PO2 are made within 60 seconds. The blood is then returned to the patient, the line flushed and results appear on the bedside monitor. The ABG system offers several advantages over traditional electrochemical analyzers. Since the arterial line remains closed during the blood sampling procedure the patient's risk of infection is reduced and the caregiver's exposure to blood is eliminated. The single-use, disposable sensor can be measure 100 blood samples over 72 hours after a single two-point calibration. Quality Assurance checks are also available and provide the caregiver the ability to assess system performance even after the sensor is patient attached. The ABG module integrates with an existing bedside monitoring system. This allows ABG results to appear on the same display as ECG, respiration, blood pressure, cardiac output, SpO2, and other clinical information. The small module takes up little space in the crowded intensive care unit. Performance studies compare the ABG system with an electrochemical blood gas analyzer. Study results demonstrated accurate and precise blood gas measurement of 100 samples and 72 hour performance without need for re-calibration.

  15. Civil infrastructure monitoring for IVHS using optical fiber sensors

    NASA Astrophysics Data System (ADS)

    de Vries, Marten J.; Arya, Vivek; Grinder, C. R.; Murphy, Kent A.; Claus, Richard O.

    1995-01-01

    8Early deployment of Intelligent Vehicle Highway Systems would necessitate the internal instrumentation of infrastructure for emergency preparedness. Existing quantitative analysis and visual analysis techniques are time consuming, cost prohibitive, and are often unreliable. Fiber optic sensors are rapidly replacing conventional instrumentation because of their small size, light weight, immunity to electromagnetic interference, and extremely high information carrying capability. In this paper research on novel optical fiber sensing techniques for health monitoring of civil infrastructure such as highways and bridges is reported. Design, fabrication, and implementation of fiber optic sensor configurations used for measurements of strain are discussed. Results from field tests conducted to demonstrate the effectiveness of fiber sensors at determining quantitative strain vector components near crack locations in bridges are presented. Emerging applications of fiber sensors for vehicle flow, vehicle speed, and weigh-in-motion measurements are also discussed.

  16. Correlation Between Hierarchical Bayesian and Aerosol Optical Depth PM2.5 Data and Respiratory-Cardiovascular Chronic Diseases

    EPA Science Inventory

    Tools to estimate PM2.5 mass have expanded in recent years, and now include: 1) stationary monitor readings, 2) Community Multi-Scale Air Quality (CMAQ) model estimates, 3) Hierarchical Bayesian (HB) estimates from combined stationary monitor readings and CMAQ model output; and, ...

  17. Optical method and apparatus for detection of defects and microstructural changes in ceramics and ceramic coatings

    DOEpatents

    Ellingson, William A.; Todd, Judith A.; Sun, Jiangang

    2001-01-01

    Apparatus detects defects and microstructural changes in hard translucent materials such as ceramic bulk compositions and ceramic coatings such as after use under load conditions. The beam from a tunable laser is directed onto the sample under study and light reflected by the sample is directed to two detectors, with light scattered with a small scatter angle directed to a first detector and light scattered with a larger scatter angle directed to a second detector for monitoring the scattering surface. The sum and ratio of the two detector outputs respectively provide a gray-scale, or "sum" image, and an indication of the lateral spread of the subsurface scatter, or "ratio" image. This two detector system allows for very high speed crack detection for on-line, real-time inspection of damage in ceramic components. Statistical image processing using a digital image processing approach allows for the quantative discrimination of the presence and distribution of small flaws in a sample while improving detection reliability. The tunable laser allows for the penetration of the sample to detect defects from the sample's surface to the laser's maximum depth of penetration. A layered optical fiber directs the incoming laser beam to the sample and transmits each scattered signal to a respective one of the two detectors.

  18. Optical Displacement Sensor for Sub-Hertz Applications

    NASA Technical Reports Server (NTRS)

    Abramovici, Alexander; Chiao, Meng P.; Dekens, Frank G.

    2008-01-01

    A document discusses a sensor made from off-the-shelf electro-optical photodiodes and electronics that achieves 20 nm/(Hz)(exp 1/2) displacement sensitivity at 1 mHz. This innovation was created using a fiber-coupled laser diode (or Nd:YAG) through a collimator and an aperture as the illumination source. Together with a germanium quad photodiode, the above-mentioned displacement sensor sensitivities have been achieved. This system was designed to aid the Laser Interferometer Space Antenna (LISA) with microthruster tests and to be a backup sensor for monitoring the relative position between a proof mass and a spacecraft for drag-free navigation. The optical displacement sensor can be used to monitor any small displacement from a remote location with minimal invasion on the system.

  19. Optical sensors in water monitoring

    NASA Astrophysics Data System (ADS)

    Gauglitz, Guenter

    2007-07-01

    An upcoming problem in Europe is the protection of water resources and control of water quality. Coastal areas, rivers, ground water, wetlands, and especially drinking water require permanent monitoring to avoid pollution by small organic molecules or especially endocrine disrupting compounds. Biosensors have demonstrated the proof-of-principle of immunochemistry for these applications. It turns out that especially optical methods based on fluorescence detection can be successfully used for the development of fast, sensitive, cost-effective, and easy-to-use analytical systems meeting the requirements given by European Community Directives and national legislation. Results obtained with the RIANA and AWACSS systems are discussed here.

  20. Dynamics of the small-scale changes of metal optic surfaces induced by pulsed light

    NASA Astrophysics Data System (ADS)

    Liukonen, R. A.; Trofimenko, A. M.

    1991-10-01

    A study is made of small-scale changes in the relief and absorptivity of mirror metal surfaces due to interaction with pulsed infrared irradiation. Several singularities are identified which are associated with the pulsed nature of the interaction and which cannot be explained by the surface temperature change alone. These include small-scale deformations observed even in the case of uniform distribution of the incident radiation intensity; an increase in deformation in excess of the increase attributable to heating only; and a change in the absorptivity of metal mirrors in excess of the theoretically predicted value.

  1. High-Resolution Monitoring of Soil Water Dynamics in a Vegetated Hillslope by Active Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Ciocca, F.; Krause, S.; Blaen, P.; Hannah, D. M.; Chalari, A.; Mondanos, M.; Abesser, C.

    2016-12-01

    Water and thermal conditions in the shallow vadose zone can be very complex and dynamic across a range of spatiotemporal scales. The efficient analysis of such dynamics requires technologies capable of precise and high-resolution monitoring of soil temperature and moisture across multiple scales. Optical fibre distributed temperature sensors (DTS) allows for precise temperature measurements at high spatio-temporal resolution, over several kilometres of optical fibre cable. In addition to passive temperature monitoring, hybrid optical cables with embedded metal conductors can be electrically heated and allow for distributed heat pulses. Such Active-DTS technique involves the analysis of temperatures during both heating and cooling phases of an optical fibre cable buried in the soil in order to provide distributed soil moisture estimates. In summer 2015, three loops of a 500m hybrid-optical cable have been deployed at 10cm, 25cm and 40cm depths along a hillslope with juvenile forest. Active-DTS surveys have been conducted with the aim to: (i) monitor the post-installation soil settling around the cable; (ii) analyse different heating strategies (intensity, duration) of the cable; (iii) establish a method for inferring soil moisture from Active-DTS results and validate with independent soil moisture readings from point probes; (iv) monitor the soil moisture response to short forcing events such as storms and artificial irrigation. Results from the surveys will be presented, and first assumptions on how the obtained soil water dynamics can be associated to specific triggers such as precipitation, evapotranspiration, soil inclination, will be discussed. This research is part of the British National Environmental Research Council (NERC) funded Distributed intelligent Heat Pulse System (DiHPS) project and is realised in the context of the Free Air Carbon Enrichment (FACE) experiment, in collaboration with the Birmingham Institute of Forest Research (BIFoR).

  2. Quantitative retrieval of aerosol optical thickness from FY-2 VISSR data

    NASA Astrophysics Data System (ADS)

    Bai, Linyan; Xue, Yong; Cao, Chunxiang; Feng, Jianzhong; Zhang, Hao; Guang, Jie; Wang, Ying; Li, Yingjie; Mei, Linlu; Ai, Jianwen

    2010-11-01

    Atmospheric aerosol, as particulate matter suspended in the air, exists in a variety of forms such as dust, fume and mist. It deeply affects climate and land surface environment in both regional and global scales, and furthermore, lead to be hugely much influence on human health. For the sake of effectively monitoring it, many atmospheric aerosol observation networks are set up and provide associated informational services in the wide world, as well-known Aerosol robotic network (AERONET), Canadian Sunphotometer Network (AeroCan) and so forth. Given large-scale atmospheric aerosol monitoring, that satellite remote sensing data are used to inverse aerosol optical depth is one of available and effective approaches. Nowadays, special types of instruments aboard running satellites are applied to obtain related remote sensing data of retrieving atmospheric aerosol. However, atmospheric aerosol real-timely or near real-timely monitoring hasn't been accomplished. Nevertheless, retrievals, using Fengyun-2 VISSR data, are carried out and the above problem resolved to certain extent, especially over China. In this paper, the authors have developed a new retrieving model/mode to retrieve aerosol optical depth, using Fengyun-2 satellite data that were obtained by the VISSR aboard FY-2C and FY-2D. A series of the aerosol optical depth distribution maps with high time resolution were able to obtained, is helpful for understanding the forming mechanism, transport, influence and controlling approach of atmospheric aerosol.

  3. Wavelet phase extracting demodulation algorithm based on scale factor for optical fiber Fabry-Perot sensing.

    PubMed

    Zhang, Baolin; Tong, Xinglin; Hu, Pan; Guo, Qian; Zheng, Zhiyuan; Zhou, Chaoran

    2016-12-26

    Optical fiber Fabry-Perot (F-P) sensors have been used in various on-line monitoring of physical parameters such as acoustics, temperature and pressure. In this paper, a wavelet phase extracting demodulation algorithm for optical fiber F-P sensing is first proposed. In application of this demodulation algorithm, search range of scale factor is determined by estimated cavity length which is obtained by fast Fourier transform (FFT) algorithm. Phase information of each point on the optical interference spectrum can be directly extracted through the continuous complex wavelet transform without de-noising. And the cavity length of the optical fiber F-P sensor is calculated by the slope of fitting curve of the phase. Theorical analysis and experiment results show that this algorithm can greatly reduce the amount of computation and improve demodulation speed and accuracy.

  4. Stiffness monitoring and damage assessment of bridges under moving vehicular loads using spatially-distributed optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Wu, Bitao; Wu, Gang; Lu, Huaxi; Feng, De-chen

    2017-03-01

    Fiber optic sensing technology has been widely used in civil infrastructure health monitoring due to its various advantages, e.g., anti-electromagnetic interference, corrosion resistance, etc. This paper investigates a new method for stiffness monitoring and damage identification of bridges under moving vehicle loads using spatially-distributed optical fiber sensors. The relationship between the element stiffness of the bridge and the long-gauge strain history is firstly studied, and a formula which is expressed by the long-gauge strain history is derived for the calculation of the bridge stiffness. Meanwhile, the stiffness coefficient from the formula can be used to identify the damage extent of the bridge. In order to verify the proposed method, a model test of a 1:10 scale bridge-vehicle system is conducted and the long-gauge strain history is obtained through fiber Bragg grating sensors. The test results indicate that the proposed method is suitable for stiffness monitoring and damage assessment of bridges under moving vehicular loads.

  5. Comparing estimates of population change from occupancy and mark-recapture models for a territorial species

    Treesearch

    Mary M. Conner; John J. Keane; Claire V. Gallagher; Thomas E. Munton; Paula A. Shaklee

    2016-01-01

    Monitoring studies often use marked animals to estimate population abundance at small spatial scales. However, at smaller scales, occupancy sampling, which uses detection/nondetection data, may be useful where sites are approximately territories, and occupancy dynamics should be strongly correlated with population dynamics. Occupancy monitoring has advantages...

  6. Fabricating small-scale, curved, polymeric structures with convex and concave menisci through interfacial free energy equilibrium.

    PubMed

    Cheng, Chao-Min; Matsuura, Koji; Wang, I-Jan; Kuroda, Yuka; LeDuc, Philip R; Naruse, Keiji

    2009-11-21

    Polymeric curved structures are widely used in imaging systems including optical fibers and microfluidic channels. Here, we demonstrate that small-scale, poly(dimethylsiloxane) (PDMS)-based, curved structures can be fabricated through controlling interfacial free energy equilibrium. Resultant structures have a smooth, symmetric, curved surface, and may be convex or concave in form based on surface tension balance. Their curvatures are controlled by surface characteristics (i.e., hydrophobicity and hydrophilicity) of the molds and semi-liquid PDMS. In addition, these structures are shown to be biocompatible for cell culture. Our system provides a simple, efficient and economical method for generating integrateable optical components without costly fabrication facilities.

  7. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    PubMed Central

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques. PMID:26263987

  8. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications.

    PubMed

    Di Sante, Raffaella

    2015-07-30

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  9. Camera-Based Microswitch Technology to Monitor Mouth, Eyebrow, and Eyelid Responses of Children with Profound Multiple Disabilities

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Bellini, Domenico; Oliva, Doretta; Singh, Nirbhay N.; O'Reilly, Mark F.; Lang, Russell; Didden, Robert

    2011-01-01

    A camera-based microswitch technology was recently used to successfully monitor small eyelid and mouth responses of two adults with profound multiple disabilities (Lancioni et al., Res Dev Disab 31:1509-1514, 2010a). This technology, in contrast with the traditional optic microswitches used for those responses, did not require support frames on…

  10. Mapping Rice Cropping Patterns Using Multi-temporal Sentinel-1A Data

    NASA Astrophysics Data System (ADS)

    Nguyen, S. T.; Chen, C. F.; Chen, C. R.; Chiang, S. H.; Khin, L. V.

    2016-12-01

    Rice is the world's third largest crop behind maize and wheat, providing food for more than half of the world's population. Rice agriculture has been a key driver of socioeconomic development in Vietnam as it provides food for more than 90 million people and is considered as a main source of income for the majority of rural populations. Vietnam has approximately 7.5 million ha, annually producing roughly 39 million tons of grain rice making this nation become one of the largest rice suppliers on earth with approximately 7.4 million tons of grain rice exported annually. Thus, monitoring rice-growing areas to meet people's food needs while safeguarding the environment is important to developing strategies for national food security and rice grain exports. Previous studies of rice crop monitoring are often carried using coarse resolution optical satellite data such as MODIS data. Because rice fields in Vietnam are generally small and fragmental, the use of coarse resolution optical satellite data reveals disadvantages due to mixed-pixel issues and data contamination caused by cloud cover. The Sentinel-1A satellite launched on 3 April 2014 provides opportunities to collectively map small patches of rice fields at different scales owing to its high spatial resolution of 10 m and temporal resolution of 12 days. The main objective of this study is to develop an approach to map rice-cropping systems in An Giang and Dong Thap provinces, South Vietnam using multi-temporal Sentinel-1A VH data. We processed the data following four main steps: (1) data pre-processing, (2) constructing smooth time-series VH backscatter data, (3) rice crop classification using the support vector machines (SVM), and (4) accuracy assessment. The mapping results validated with the ground the ground reference data indicated that the overall accuracy and Kappa coefficient were 83.4% and 0.7, respectively. The mapping results also compared with the government's rice area statistics at the district level reaffirmed the consistency between these two datasets with the correlation coefficient (R2) of 0.93 and the relative error in area of 2.2%. This study demonstrates the potential application of time-series Sentinel-1A data for rice crop mapping and the methods are thus proposed for large-scale rice crop monitoring in the country.

  11. Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators.

    PubMed

    Missey, M; Dominic, V; Powers, P; Schepler, K L

    2000-02-15

    We used elliptical beams to demonstrate aperture scaling effects in nanosecond single-grating and multigrating periodically poled lithium niobate (PPLN) monolithic optical parametric oscillators and generators. Increasing the cavity Fresnel number in single-grating crystals broadened both the beam divergence and the spectral bandwidth. Both effects are explained in terms of the phase-matching geometry. These effects are suppressed when a multigrating PPLN crystal is used because the individual gratings provide small effective subapertures. A flood-pumped multigrating optical parametric generator displayed a low output beam divergence and contained 19 pairs of signal and idler frequencies.

  12. Optically enhanced acoustophoresis

    NASA Astrophysics Data System (ADS)

    McDougall, Craig; O'Mahoney, Paul; McGuinn, Alan; Willoughby, Nicholas A.; Qiu, Yongqiang; Demore, Christine E. M.; MacDonald, Michael P.

    2017-08-01

    Regenerative medicine has the capability to revolutionise many aspects of medical care, but for it to make the step from small scale autologous treatments to larger scale allogeneic approaches, robust and scalable label free cell sorting technologies are needed as part of a cell therapy bioprocessing pipeline. In this proceedings we describe several strategies for addressing the requirements for high throughput without labeling via: dimensional scaling, rare species targeting and sorting from a stable state. These three approaches are demonstrated through a combination of optical and ultrasonic forces. By combining mostly conservative and non-conservative forces from two different modalities it is possible to reduce the influence of flow velocity on sorting efficiency, hence increasing robustness and scalability. One such approach can be termed "optically enhanced acoustophoresis" which combines the ability of acoustics to handle large volumes of analyte with the high specificity of optical sorting.

  13. Evaluation of Existing Image Matching Methods for Deriving Glacier Surface Displacements Globally from Optical Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Heid, T.; Kääb, A.

    2011-12-01

    Automatic matching of images from two different times is a method that is often used to derive glacier surface velocity. Nearly global repeat coverage of the Earth's surface by optical satellite sensors now opens the possibility for global-scale mapping and monitoring of glacier flow with a number of applications in, for example, glacier physics, glacier-related climate change and impact assessment, and glacier hazard management. The purpose of this study is to compare and evaluate different existing image matching methods for glacier flow determination over large scales. The study compares six different matching methods: normalized cross-correlation (NCC), the phase correlation algorithm used in the COSI-Corr software, and four other Fourier methods with different normalizations. We compare the methods over five regions of the world with different representative glacier characteristics: Karakoram, the European Alps, Alaska, Pine Island (Antarctica) and southwest Greenland. Landsat images are chosen for matching because they expand back to 1972, they cover large areas, and at the same time their spatial resolution is as good as 15 m for images after 1999 (ETM+ pan). Cross-correlation on orientation images (CCF-O) outperforms the three similar Fourier methods, both in areas with high and low visual contrast. NCC experiences problems in areas with low visual contrast, areas with thin clouds or changing snow conditions between the images. CCF-O has problems on narrow outlet glaciers where small window sizes (about 16 pixels by 16 pixels or smaller) are needed, and it also obtains fewer correct matches than COSI-Corr in areas with low visual contrast. COSI-Corr has problems on narrow outlet glaciers and it obtains fewer correct matches compared to CCF-O when thin clouds cover the surface, or if one of the images contains snow dunes. In total, we consider CCF-O and COSI-Corr to be the two most robust matching methods for global-scale mapping and monitoring of glacier velocities. If combining CCF-O with locally adaptive template sizes and by filtering the matching results automatically by comparing the displacement matrix to its low pass filtered version, the matching process can be automated to a large degree. This allows the derivation of glacier velocities with minimal (but not without!) user interaction and hence also opens up the possibility of global-scale mapping and monitoring of glacier flow.

  14. The orbital debris detector consortium: Suppliers of instruments for in-situ measurements of small-particles in the space environment

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Muenzenmeyer, R.; Tanner, W. G., Jr.; Uy, O. M.; Skrivanek, R. A.; Tuzzolino, A. J.; Maag, C.; Wortman, J. J.

    1995-01-01

    Industry and university participants have joined together to form the IMPA:Ct consortium (In-situ Monitors of the Particulate Ambient: Circumterrestrial) which offers a broad range of flight qualified instruments for monitoring the small particle (0.1 micron to 10 cm) environment in space. Instruments are available in 12 months or less at costs ranging from 0.5 to 1.5 million dollars (US) for the total program. Detector technologies represented by these groups are: impact-induced capacitor-discharge (MOS, metal-oxide-silicon), cratering or penetration of electroactive thin film (polyvinylidene fluoride (PVDF)), impact-plasma detection, acoustic detection, CCD tracking of optical scatter of sunlight, and photodiode detection of optical scatter of laser light. The operational characteristics, general spacecraft interface and resource requirements (mass/power/telemetry), cost and delivery schedules, and points of contact for seven different instruments are presented.

  15. Miniaturized video-microscopy system for near real-time water quality biomonitoring using microfluidic chip-based devices

    NASA Astrophysics Data System (ADS)

    Huang, Yushi; Nigam, Abhimanyu; Campana, Olivia; Nugegoda, Dayanthi; Wlodkowic, Donald

    2016-12-01

    Biomonitoring studies apply biological responses of sensitive biomonitor organisms to rapidly detect adverse environmental changes such as presence of physic-chemical stressors and toxins. Behavioral responses such as changes in swimming patterns of small aquatic invertebrates are emerging as sensitive endpoints to monitor aquatic pollution. Although behavioral responses do not deliver information on an exact type or the intensity of toxicants present in water samples, they could provide orders of magnitude higher sensitivity than lethal endpoints such as mortality. Despite the advantages of behavioral biotests performed on sentinel organisms, their wider application in real-time and near realtime biomonitoring of water quality is limited by the lack of dedicated and automated video-microscopy systems. Current behavioral analysis systems rely mostly on static test conditions and manual procedures that are time-consuming and labor intensive. Tracking and precise quantification of locomotory activities of multiple small aquatic organisms requires high-resolution optical data recording. This is often problematic due to small size of fast moving animals and limitations of culture vessels that are not specially designed for video data recording. In this work, we capitalized on recent advances in miniaturized CMOS cameras, high resolution optics and biomicrofluidic technologies to develop near real-time water quality sensing using locomotory activities of small marine invertebrates. We present proof-of-concept integration of high-resolution time-resolved video recording system and high-throughput miniaturized perfusion biomicrofluidic platform for optical tracking of nauplii of marine crustacean Artemia franciscana. Preliminary data demonstrate that Artemia sp. exhibits rapid alterations of swimming patterns in response to toxicant exposure. The combination of video-microscopy and biomicrofluidic platform facilitated straightforward recording of fast moving objects. We envisage that prospectively such system can be scaled up to perform high-throughput water quality sensing in a robotic biomonitoring facility.

  16. Respiration rate detection based on intensity modulation using plastic optical fiber

    NASA Astrophysics Data System (ADS)

    Anwar, Zawawi Mohd; Ziran Nurul Sufia, Nor; Hadi, Manap

    2017-11-01

    This paper presents the implementation of respiration rate measurement via a simple intensity-based optical fiber sensor using optical fiber technology. The breathing rate is measured based on the light intensity variation due to the longitudinal gap changes between two separated fibers. In order to monitor the breathing rate continuously, the output from the photodetector conditioning circuit is connected to a low-cost Arduino kit. At the sensing point, two optical fiber cables are positioned in series with a small gap and fitted inside a transparent plastic tube. To ensure smooth movement of the fiber during inhale and exhale processes as well as to maintain the gap of the fiber during idle condition, the fiber is attached firmly to a stretchable bandage. This study shows that this simple fiber arrangement can be applied to detect respiration activity which might be critical for patient monitoring.

  17. 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units.

    PubMed

    Qiao, Lei; Tang, Weijie; Chu, Tao

    2017-02-09

    To construct large-scale silicon electro-optical switches for optical interconnections, we developed a method using a limited number of power monitors inserted at certain positions to detect and determine the optimum operating points of all switch units to eliminate non-uniform effects arising from fabrication errors. We also introduced an optical phase bias to one phase-shifter arm of a Mach-Zehnder interferometer (MZI)-type switch unit to balance the two operation statuses of a silicon electro-optical switch during push-pull operation. With these methods, a 32 × 32 MZI-based silicon electro-optical switch was successfully fabricated with 180-nm complementary metal-oxide-semiconductor (CMOS) process technology, which is the largest scale silicon electro-optical switch to the best of our knowledge. At a wavelength of 1520 nm, the on-chip insertion losses were 12.9 to 16.5 dB, and the crosstalk ranged from -17.9 to -24.8 dB when all units were set to the 'Cross' status. The losses were 14.4 to 18.5 dB, and the crosstalk ranged from -15.1 to -19.0 dB when all units were in the 'Bar' status. The total power consumptions of the 32 × 32 switch were 247.4 and 542.3 mW when all units were set to the 'Cross' and 'Bar' statuses, respectively.

  18. 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units

    PubMed Central

    Qiao, Lei; Tang, Weijie; Chu, Tao

    2017-01-01

    To construct large-scale silicon electro-optical switches for optical interconnections, we developed a method using a limited number of power monitors inserted at certain positions to detect and determine the optimum operating points of all switch units to eliminate non-uniform effects arising from fabrication errors. We also introduced an optical phase bias to one phase-shifter arm of a Mach–Zehnder interferometer (MZI)-type switch unit to balance the two operation statuses of a silicon electro-optical switch during push–pull operation. With these methods, a 32 × 32 MZI-based silicon electro-optical switch was successfully fabricated with 180-nm complementary metal–oxide–semiconductor (CMOS) process technology, which is the largest scale silicon electro-optical switch to the best of our knowledge. At a wavelength of 1520 nm, the on-chip insertion losses were 12.9 to 16.5 dB, and the crosstalk ranged from −17.9 to −24.8 dB when all units were set to the ‘Cross’ status. The losses were 14.4 to 18.5 dB, and the crosstalk ranged from −15.1 to −19.0 dB when all units were in the ‘Bar’ status. The total power consumptions of the 32 × 32 switch were 247.4 and 542.3 mW when all units were set to the ‘Cross’ and ‘Bar’ statuses, respectively. PMID:28181557

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xiaotong; Mao, Jirong; Wang, Jiancheng, E-mail: jirongmao@mail.ynao.ac.cn

    We carefully examine the depolarization feature of blazars in the optical and near-infrared bands using the sample of Mead et al. Magnetohydrodynamics turbulence could be one possible reason for the depolarization of optical/infrared blazars when we apply the theoretical analysis of Lazarian and Pogosyan. We further identify in the sample that the depolarization results shown in most blazars roughly obey the form of the three-dimensional anisotropic Kolmogorov scaling. The effective Faraday rotation window length scale is not small enough to resolve the polarization correlation length scale in the blazar sample. The depolarization and the related turbulent features show diversities inmore » different blazar sources. We suggest more simultaneous observations in both the optical/infrared and the high-energy bands for the study of the blazar polarization.« less

  20. Brillouin Optical Correlation Domain Analysis in Composite Material Beams

    PubMed Central

    Stern, Yonatan; London, Yosef; Preter, Eyal; Antman, Yair; Diamandi, Hilel Hagai; Silbiger, Maayan; Adler, Gadi; Shalev, Doron; Zadok, Avi

    2017-01-01

    Structural health monitoring is a critical requirement in many composites. Numerous monitoring strategies rely on measurements of temperature or strain (or both), however these are often restricted to point-sensing or to the coverage of small areas. Spatially-continuous data can be obtained with optical fiber sensors. In this work, we report high-resolution distributed Brillouin sensing over standard fibers that are embedded in composite structures. A phase-coded, Brillouin optical correlation domain analysis (B-OCDA) protocol was employed, with spatial resolution of 2 cm and sensitivity of 1 °K or 20 micro-strain. A portable measurement setup was designed and assembled on the premises of a composite structures manufacturer. The setup was successfully utilized in several structural health monitoring scenarios: (a) monitoring the production and curing of a composite beam over 60 h; (b) estimating the stiffness and Young’s modulus of a composite beam; and (c) distributed strain measurements across the surfaces of a model wing of an unmanned aerial vehicle. The measurements are supported by the predictions of structural analysis calculations. The results illustrate the potential added values of high-resolution, distributed Brillouin sensing in the structural health monitoring of composites. PMID:28974041

  1. Brillouin Optical Correlation Domain Analysis in Composite Material Beams.

    PubMed

    Stern, Yonatan; London, Yosef; Preter, Eyal; Antman, Yair; Diamandi, Hilel Hagai; Silbiger, Maayan; Adler, Gadi; Levenberg, Eyal; Shalev, Doron; Zadok, Avi

    2017-10-02

    Structural health monitoring is a critical requirement in many composites. Numerous monitoring strategies rely on measurements of temperature or strain (or both), however these are often restricted to point-sensing or to the coverage of small areas. Spatially-continuous data can be obtained with optical fiber sensors. In this work, we report high-resolution distributed Brillouin sensing over standard fibers that are embedded in composite structures. A phase-coded, Brillouin optical correlation domain analysis (B-OCDA) protocol was employed, with spatial resolution of 2 cm and sensitivity of 1 °K or 20 micro-strain. A portable measurement setup was designed and assembled on the premises of a composite structures manufacturer. The setup was successfully utilized in several structural health monitoring scenarios: (a) monitoring the production and curing of a composite beam over 60 h; (b) estimating the stiffness and Young's modulus of a composite beam; and (c) distributed strain measurements across the surfaces of a model wing of an unmanned aerial vehicle. The measurements are supported by the predictions of structural analysis calculations. The results illustrate the potential added values of high-resolution, distributed Brillouin sensing in the structural health monitoring of composites.

  2. Lack of small-scale clustering in 21-cm intensity maps crossed with 2dF galaxy densities at z ~ 0.08

    NASA Astrophysics Data System (ADS)

    Anderson, Christopher; Luciw, Nicholas; Li, Yi-Chao; Kuo, Cheng-Yu; Yadav, Jaswant; Masui, Kiyoshi; Chang, Tzu-Ching; Chen, Xuelei; Oppermann, Niels; Pen, Ue-Li; Timbie, Peter T.

    2017-06-01

    I report results from 21-cm intensity maps acquired from the Parkes radio telescope and cross-correlated with galaxy maps from the 2dF galaxy survey. The data span the redshift range 0.057

  3. Full-scale monitoring of wind and suspension bridge response

    NASA Astrophysics Data System (ADS)

    Snæbjörnsson, J. T.; Jakobsen, J. B.; Cheynet, E.; Wang, J.

    2017-12-01

    Monitoring of real structures is important for many reasons. For structures susceptible to environmental actions, full-scale observations can provide valuable information about the environmental conditions at the site, as well as the characteristics of the excitation acting on the structure. The recorded data, if properly analyzed, can be used to validate and/or update experiments and models used in the design of new structures, such as the load description and modelling of the structural response. Various aspects of full-scale monitoring are discussed in the paper and the full-scale wind engineering laboratory at the Lysefjord suspension bridge introduced. The natural excitation of the bridge comes from wind and traffic. The surrounding terrain is complex and its effect on the wind flow can only be fully studied on site, in full-scale. The monitoring program and associated data analysis are described. These include various studies of the relevant turbulence characteristics, identification of dynamic properties and estimation of wind- and traffic-induced response parameters. The overall monitoring activity also included a novel application of the remote optical sensing in bridge engineering, which is found to have an important potential to complement traditional “single-point” wind observations by sonic anemometers.

  4. Fiber-Optic Sensing System: Overview, Development and Deployment in Flight at NASA

    NASA Technical Reports Server (NTRS)

    Chan, Hon Man; Parker, Allen R.; Piazza, Anthony; Richards, W. Lance

    2015-01-01

    An overview of the research and technological development of the fiber-optic sensing system (FOSS) at the National Aeronautics and Space Administration Armstrong Flight Research Center (NASA AFRC) is presented. Theory behind fiber Bragg grating (FBG) sensors, as well as interrogation technique based on optical frequency domain reflectometry (OFDR) is discussed. Assessment and validation of FOSS as an accurate measurement tool for structural health monitoring is realized in the laboratory environment as well as large-scale flight deployment.

  5. Microfluidic biolector-microfluidic bioprocess control in microtiter plates.

    PubMed

    Funke, Matthias; Buchenauer, Andreas; Schnakenberg, Uwe; Mokwa, Wilfried; Diederichs, Sylvia; Mertens, Alan; Müller, Carsten; Kensy, Frank; Büchs, Jochen

    2010-10-15

    In industrial-scale biotechnological processes, the active control of the pH-value combined with the controlled feeding of substrate solutions (fed-batch) is the standard strategy to cultivate both prokaryotic and eukaryotic cells. On the contrary, for small-scale cultivations, much simpler batch experiments with no process control are performed. This lack of process control often hinders researchers to scale-up and scale-down fermentation experiments, because the microbial metabolism and thereby the growth and production kinetics drastically changes depending on the cultivation strategy applied. While small-scale batches are typically performed highly parallel and in high throughput, large-scale cultivations demand sophisticated equipment for process control which is in most cases costly and difficult to handle. Currently, there is no technical system on the market that realizes simple process control in high throughput. The novel concept of a microfermentation system described in this work combines a fiber-optic online-monitoring device for microtiter plates (MTPs)--the BioLector technology--together with microfluidic control of cultivation processes in volumes below 1 mL. In the microfluidic chip, a micropump is integrated to realize distinct substrate flow rates during fed-batch cultivation in microscale. Hence, a cultivation system with several distinct advantages could be established: (1) high information output on a microscale; (2) many experiments can be performed in parallel and be automated using MTPs; (3) this system is user-friendly and can easily be transferred to a disposable single-use system. This article elucidates this new concept and illustrates applications in fermentations of Escherichia coli under pH-controlled and fed-batch conditions in shaken MTPs. Copyright 2010 Wiley Periodicals, Inc.

  6. Sensing and enumerating rare circulating cells with diffuse light

    NASA Astrophysics Data System (ADS)

    Zettergren, Eric; Vickers, Dwayne; Niedre, Mark

    2011-02-01

    Detection and quantification of circulating cells in live animals is a challenging and important problem in many areas of biomedical research. Current methods involve extraction of blood samples and counting of cells ex-vivo. Since only small blood volumes are analyzed at specific time points, monitoring of changes in cell populations over time is difficult and rare cells often escape detection. The goal of this research is to develop a method for enumerating very rare circulating cells in the bloodstream non-invasively. This would have many applications in biomedical research, including monitoring of cancer metastasis and tracking of hematopoietic stem cells. In this work we describe the optical configuration of our instrument which allows fluorescence detection of single cells in diffusive media at the mesoscopic scale. Our instrument design consists of two continuous wave laser diode sources and an 8-channel fiber coupled multi-anode photon counting PMT. Fluorescence detector fibers were arranged circularly around the target in a miniaturized ring configuration. Cell-simulating fluorescent microspheres and fluorescently-labeled cells were passed through a limb mimicking phantom with similar optical properties and background fluorescence as a limb of a mouse. Our data shows that we are able to successfully detect and count these with high quantitative accuracy. Future work includes characterization of our instrument using fluorescently labeled cells in-vivo. If successful, this technique would allow several orders of magnitude in vivo detection sensitivity improvement versus current approaches.

  7. Medical smart textiles based on fiber optic technology: an overview.

    PubMed

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-04-13

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest.

  8. Medical Smart Textiles Based on Fiber Optic Technology: An Overview

    PubMed Central

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-01-01

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest. PMID:25871010

  9. Demonstration of application-driven network slicing and orchestration in optical/packet domains: on-demand vDC expansion for Hadoop MapReduce optimization.

    PubMed

    Kong, Bingxin; Liu, Siqi; Yin, Jie; Li, Shengru; Zhu, Zuqing

    2018-05-28

    Nowadays, it is common for service providers (SPs) to leverage hybrid clouds to improve the quality-of-service (QoS) of their Big Data applications. However, for achieving guaranteed latency and/or bandwidth in its hybrid cloud, an SP might desire to have a virtual datacenter (vDC) network, in which it can manage and manipulate the network connections freely. To address this requirement, we design and implement a network slicing and orchestration (NSO) system that can create and expand vDCs across optical/packet domains on-demand. Considering Hadoop MapReduce (M/R) as the use-case, we describe the proposed architectures of the system's data, control and management planes, and present the operation procedures for creating, expanding, monitoring and managing a vDC for M/R optimization. The proposed NSO system is then realized in a small-scale network testbed that includes four optical/packet domains, and we conduct experiments in it to demonstrate the whole operations of the data, control and management planes. Our experimental results verify that application-driven on-demand vDC expansion across optical/packet domains can be achieved for M/R optimization, and after being provisioned with a vDC, the SP using the NSO system can fully control the vDC network and further optimize the M/R jobs in it with network orchestration.

  10. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties.

    PubMed

    Wang, Liang; Wang, Yanli; Xu, Tao; Liao, Haobo; Yao, Chenjie; Liu, Yuan; Li, Zhen; Chen, Zhiwen; Pan, Dengyu; Sun, Litao; Wu, Minghong

    2014-10-28

    Graphene quantum dots (GQDs) have various alluring properties and potential applications, but their large-scale applications are limited by current synthetic methods that commonly produce GQDs in small amounts. Moreover, GQDs usually exhibit polycrystalline or highly defective structures and thus poor optical properties. Here we report the gram-scale synthesis of single-crystalline GQDs by a facile molecular fusion route under mild and green hydrothermal conditions. The synthesis involves the nitration of pyrene followed by hydrothermal treatment in alkaline aqueous solutions, where alkaline species play a crucial role in tuning their size, functionalization and optical properties. The single-crystalline GQDs are bestowed with excellent optical properties such as bright excitonic fluorescence, strong excitonic absorption bands extending to the visible region, large molar extinction coefficients and long-term photostability. These high-quality GQDs can find a large array of novel applications in bioimaging, biosensing, light emitting diodes, solar cells, hydrogen production, fuel cells and supercapacitors.

  11. Optical Multi-Gas Monitor Technology Demonstration on the International Space Station

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.; Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Johnson, Michael D.; Mudgett, Paul D.

    2014-01-01

    The International Space Station (ISS) employs a suite of portable and permanently located gas monitors to insure crew health and safety. These sensors are tasked with functions ranging from fixed mass spectrometer based major constituents analysis to portable electrochemical sensor based combustion product monitoring. An all optical multigas sensor is being developed that can provide the specificity of a mass spectrometer with the portability of an electrochemical cell. The technology, developed under the Small Business Innovation Research program, allows for an architecture that is rugged, compact and low power. A four gas version called the Multi-Gas Monitor was launched to ISS in November 2013 aboard Soyuz and activated in February 2014. The portable instrument is comprised of a major constituents analyzer (water vapor, carbon dioxide, oxygen) and high dynamic range real-time ammonia sensor. All species are sensed inside the same enhanced path length optical cell with a separate vertical cavity surface emitting laser (VCSEL) targeted at each species. The prototype is controlled digitally with a field-programmable gate array/microcontroller architecture. The optical and electronic approaches are designed for scalability and future versions could add three important acid gases and carbon monoxide combustion product gases to the four species already sensed. Results obtained to date from the technology demonstration on ISS are presented and discussed.

  12. Optical methods for wireless implantable sensing platforms

    NASA Astrophysics Data System (ADS)

    Mujeeb-U-Rahman, Muhammad; Chang, Chieh-Feng; Scherer, Axel

    2013-09-01

    Ultra small scale implants have gained lots of importance for both acute and chronic applications. Optical techniques hold the key to miniaturizing these devices to long sought sub-mm scale. This will lead towards long term use of these devices for medically relevant applications. It can also allow using multiple of these devices at the same time and forming a true body area network of sensors. In this paper, we present optical power transfer to such devices and the techniques to harness this power for different applications, for example high voltage or high current applications. We also present methods for wireless data transfer from such implants.

  13. Photonic Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Krainak, Michael; Merritt, Scott

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  14. Compact and high-efficiency device for Raman scattering measurement using optical fibers.

    PubMed

    Mitsui, Tadashi

    2014-11-01

    We describe the design and development of a high-efficiency optical measurement device for operation within the small bore of a high-power magnet at low temperature. For the high-efficiency measurement of light emitted from this small region, we designed a compact confocal optics with lens focusing and tilting systems, and used a piezodriven translation stage that allows micron-scale focus control of the sample position. We designed a measurement device that uses 10 m-long optical fibers in order to avoid the influence of mechanical vibration and magnetic field leakage of high-power magnets, and we also describe a technique for minimizing the fluorescence signal of optical fibers. The operation of the device was confirmed by Raman scattering measurements of monolayer graphene on quartz glass with a high signal-to-noise ratio.

  15. Coordinated Multiwavelength Observations of PKS 0528+134 in Quiescence

    NASA Astrophysics Data System (ADS)

    Boettcher, Markus; Palma, N.

    2011-01-01

    We report results of an intensive multiwavelength campaign on the prominent high-redshift (z = 2.06) gamma-ray bright blazar PKS 0528+134 in September - October 2009. The campaign was centered on four 30 ksec pointings with XMM-Newton, supplemented with ground-based optical (MDM, Perkins) and radio (UMRAO, Medicina, Metsaehovi, Noto, SMA) observations as well as long-term X-ray monitoring with RXTE and gamma-ray monitoring by Fermi. We find significant variability on 1 day time scales in the optical regime, accompanied by a weak redder-when-brighter trend. X-ray variability is found on longer ( 1 week) time scales, while the Fermi light curve shows no evidence for variability, neither in flux nor spectral index. We constructed four simultaneous spectral energy distributions, which can all be fit satisfactorily with a one-zone leptonic jet model. This work was supported by NASA through XMM-Newton Guest Observer Grant NNX09AV45G.

  16. Chip-Scale Atomic Magnetometers

    NASA Astrophysics Data System (ADS)

    Knappe, Svenja

    2010-03-01

    Atomic magnetometers have reached sensitivities rivaling those of superconducting quantum interference devices (SQUIDs) in some frequency ranges [1]. A major advancement in atomic magnetometry was made possible by implementing interrogation schemes that suppress spin-exchange collisions between the alkali atoms [2]. Good signal-to-noise can be achieved by operation at very high alkali densities. At the same time, it introduces the challenge to create uniform spin-polarization and monitor the atomic precession about the magnetic field in atomic vapors with large optical densities. Off-resonant detection of the polarization rotation rather than the absorption is essential to operate in this regime. By use of microfabrication methods, we are miniaturizing such atomic magnetometers. They consist of miniature vapor cells with volumes of a few cubic millimeters integrated with micro-optical components. We present the advancement in sensitivities of such devices over nearly four orders of magnitude [3]. This allows for small low-power room-temperature devices with sensitivities that get close to those of SQUIDs in the frequency range around 100 Hz. We outline the current performance of chip-scale atomic magnetometers and the major challenges. Apart from efficient pumping and probing at high optical densities, these include magnetic noise caused by several sensor components and environmental factors, noise on the light fields, as well as magnetic fields from current-carrying parts, such as heaters, lasers, and photodetectors.[4pt] [1] Allred et al., Phys. Rev. Lett. 89, 130801 (2002) [0pt] [2] Happer and Tam, Phys. Rev. A 16, 1877 (1977) [0pt] [3] Griffith et al., Appl. Phys. Lett 94, 023502 (2009)

  17. Paraxial ray optics cloaking.

    PubMed

    Choi, Joseph S; Howell, John C

    2014-12-01

    Despite much interest and progress in optical spatial cloaking, a three-dimensional (3D), transmitting, continuously multidirectional cloak in the visible regime has not yet been demonstrated. Here we experimentally demonstrate such a cloak using ray optics, albeit with some edge effects. Our device requires no new materials, uses isotropic off-the-shelf optics, scales easily to cloak arbitrarily large objects, and is as broadband as the choice of optical material, all of which have been challenges for current cloaking schemes. In addition, we provide a concise formalism that quantifies and produces perfect optical cloaks in the small-angle ('paraxial') limit.

  18. Evaluation of a multiple-species approach to monitoring species at the ecoregional scale

    Treesearch

    Patricia N. Manley; William J. Zielinski; Matthew D. Schlesinger; Sylvia R. Mori

    2004-01-01

    Monitoring is required of land managers and conservation practitioners to assess the success of management actions. "Shortcuts" are sought to reduce monitoring costs, most often consisting of the selection of a small number of species that are closely monitored to represent the status of many associated species and environmental correlates. Assumptions...

  19. Utility of optical heterodyne displacement sensing and laser ultrasonics as in situ process control diagnostic for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Manzo, Anthony J.; Helvajian, Henry

    2018-04-01

    An in situ process control monitor is presented by way of experimental results and simulations, which utilizes a pulsed laser ultrasonic source as a probe and an optical heterodyne displacement meter as a sensor. The intent is for a process control system that operates in near real time, is nonintrusive, and in situ: A necessary requirement for a serial manufacturing technology such as additive manufacturing (AM). We show that the diagnostic approach has utility in characterizing the local temperature, the area of the heat-affected zone, and the surface roughness (Ra ˜ 0.4 μm). We further demonstrate that it can be used to identify solitary defects (i.e., holes) on the order of 10 to 20 μm in diameter. Moreover, the technique shows promise in measuring properties of materials with features that have a small radius of curvature. We present results for a thin wire of ˜650 μm in diameter. By applying multiple pairs of probe-sensor systems, the diagnostic could also measure the local cooling rate on the scale of 1 μs. Finally, while an obvious application is used in AM technology, then all optical diagnostics could be applied to other manufacturing technologies.

  20. Calibration procedure for Slocum glider deployed optical instruments.

    PubMed

    Cetinić, Ivona; Toro-Farmer, Gerardo; Ragan, Matthew; Oberg, Carl; Jones, Burton H

    2009-08-31

    Recent developments in the field of the autonomous underwater vehicles allow the wide usage of these platforms as part of scientific experiments, monitoring campaigns and more. The vehicles are often equipped with sensors measuring temperature, conductivity, chlorophyll a fluorescence (Chl a), colored dissolved organic matter (CDOM) fluorescence, phycoerithrin (PE) fluorescence and spectral volume scattering function at 117 degrees, providing users with high resolution, real time data. However, calibration of these instruments can be problematic. Most in situ calibrations are performed by deploying complementary instrument packages or water samplers in the proximity of the glider. Laboratory calibrations of the mounted sensors are difficult due to the placement of the instruments within the body of the vehicle. For the laboratory calibrations of the Slocum glider instruments we developed a small calibration chamber where we can perform precise calibrations of the optical instruments aboard our glider, as well as sensors from other deployment platforms. These procedures enable us to obtain pre- and post-deployment calibrations for optical fluorescence instruments, which may differ due to the biofouling and other physical damage that can occur during long-term glider deployments. We found that biofouling caused significant changes in the calibration scaling factors of fluorescent sensors, suggesting the need for consistent and repetitive calibrations for gliders as proposed in this paper.

  1. Oligopeptide-heavy metal interaction monitoring by hybrid gold nanoparticle based assay.

    PubMed

    Politi, Jane; Spadavecchia, Jolanda; Iodice, Mario; de Stefano, Luca

    2015-01-07

    Phytochelatins are small peptides that can be found in several organisms, which use these oligopeptides to handle heavy metal elements. Here, we report a method for monitoring interactions between lead(ii) ions in aqueous solutions and phytochelatin 6 oligopeptide bioconjugated onto pegylated gold nanorods (PEG-AuNrs). This study is the first step towards a high sensitive label free optical biosensor to quantify heavy metal pollution in water.

  2. Remote sensing of the energetic status of plants and ecosystems: optical and odorous signals

    NASA Astrophysics Data System (ADS)

    Penuelas, J.; Bartrons, M.; Llusia, J.; Filella, I.

    2016-12-01

    The optical and odorous signals emitted by plants and ecosystems present consistent relationships. They offer promising prospects for continuous local and global monitoring of the energetic status of plants and ecosystems, and therefore of their processing of energy and matter. We will discuss how the energetic status of plants (and ecosystems) resulting from the balance between the supply and demand of reducing power can be assessed biochemically, by the cellular NADPH/NADP ratio, optically, by using the photochemical reflectance index and sun-induced fluorescence as indicators of the dissipation of excess energy and associated physiological processes, and "odorously", by the emission of volatile organic compounds such as isoprenoids, as indicators of an excess of reducing equivalents and also of enhancement of protective converging physiological processes. These signals thus provide information on the energetic status, associated health status, and the functioning of plants and ecosystems. We will present the links among the three signals and will especially discuss the possibility of remotely sense the optical signals linked to carbon uptake and VOCs exchange by plants and ecosystems. These signals and their integration may have multiple applications for environmental and agricultural monitoring, for example, by extending the spatial coverage of carbon-flux and VOCs emission observations to most places and times, and/or for improving the process-based modeling of carbon fixation and isoprenoid emissions from terrestrial vegetation on plant, ecosystemic and global scales. Considerable challenges remain for a wide-scale and routine implementation of these biochemical, optical, and odorous signals for ecosystemic and/or agronomic monitoring and modeling, but its interest for making further steps forward in global ecology, agricultural applications, global carbon cycle, atmospheric science, and earth science warrants further research efforts in this line.

  3. Mass sensor based on split-nanobeam optomechanical oscillator

    NASA Astrophysics Data System (ADS)

    Zhang, Yeping; Ai, Jie; Xiang, Yanjun; He, Qinghua; Li, Tao; Ma, Jingfang

    2016-03-01

    Mass sensing based on monitoring the frequency shifts induced by added mass in oscillators is a well-known and widely used technique. The optomechanical crystal cavity has strong interaction between optical mode and mechanical mode. Radiation pressure driven optomechanical crystal cavity are excellent candidates for mass detection due to their simplicity, sensitivity and all optical operation. In an optomechanical crystal cavity, a high quality factor optical mode simultaneously serves as an efficient actuator and a sensitive probe for precise monitoring the mechanical frequency change of the cavity structure. Here, a split-nanobeam optomechanical crystal cavity is proposed, the sensing resolution as small as 0.33ag (1ag=10-21kg) and the frequency shift is more than 30MHz. This is important and promising for achieve ultimate-precision mass sensing including proteins and other molecules.

  4. In-situ strain monitoring in liquid containers of LNG transporting carriers

    NASA Astrophysics Data System (ADS)

    Oh, Min-Cheol; Seo, Jun-Kyu; Kim, Kyung-Jo; Lee, Sang-Min; Kim, Myung-Hyun

    2008-08-01

    Liquefied natural gas (LNG) transport carriers are exposed to a risk by the repeated bump in the LNG container during the vessel traveling over the wave in ocean. The liquid inside the container, especially when it was not fully contained, make a strong bump onto the insulation panel of the tank wall. The insulation panel consists of several layers of thick polyurethane foam (PUF) to maintain the LNG below the cryogenic temperature, -162°C. Due to the repeated shock on the PUF, a crack could be developed on the tank wall causing a tremendous disaster for LNG carriers. To prevent the accidental crack on the tank, a continuous monitoring of the strain imposed on the PUF is recommended. In this work, a fiber-optic Bragg grating was imbedded inside the PUF for monitoring the strain parallel to the impact direction. The optical fiber sensor with a small diameter of 125 μm was suitable to be inserted in the PUF through a small hole drilled after the PUF was cured. In-situ monitoring of the strain producing the change of Bragg reflection wavelength, a high speed wavelength interrogation method was employed by using an arrayed waveguide grating. By dropping a heavy mass on the PUF, we measured the strain imposed on the insulation panel.

  5. Optical Tweezer Assembly and Calibration

    NASA Technical Reports Server (NTRS)

    Collins, Timothy M.

    2004-01-01

    An Optical Tweezer, as the name implies, is a useful tool for precision manipulation of micro and nano scale objects. Using the principle of electromagnetic radiation pressure, an optical tweezer employs a tightly focused laser beam to trap and position objects of various shapes and sizes. These devices can trap micrometer and nanometer sized objects. An exciting possibility for optical tweezers is its future potential to manipulate and assemble micro and nano sized sensors. A typical optical tweezer makes use of the following components: laser, mirrors, lenses, a high quality microscope, stage, Charge Coupled Device (CCD) camera, TV monitor and Position Sensitive Detectors (PSDs). The laser wavelength employed is typically in the visible or infrared spectrum. The laser beam is directed via mirrors and lenses into the microscope. It is then tightly focused by a high magnification, high numerical aperture microscope objective into the sample slide, which is mounted on a translating stage. The sample slide contains a sealed, small volume of fluid that the objects are suspended in. The most common objects trapped by optical tweezers are dielectric spheres. When trapped, a sphere will literally snap into and center itself in the laser beam. The PSD s are mounted in such a way to receive the backscatter after the beam has passed through the trap. PSD s used with the Differential Interference Contrast (DIC) technique provide highly precise data. Most optical tweezers employ lasers with power levels ranging from 10 to 100 miliwatts. Typical forces exerted on trapped objects are in the pico-newton range. When PSDs are employed, object movement can be resolved on a nanometer scale in a time range of milliseconds. Such accuracy, however, can only by utilized by calibrating the optical tweezer. Fortunately, an optical tweezer can be modeled accurately as a simple spring. This allows Hook s Law to be used. My goal this summer at NASA Glenn Research Center is the assembly and calibration of an optical tweezer setup in the Instrumentation and Controls Division (5520). I am utilizing a custom LabVIEW Virtual Instrument program for data collection and microscope stage control. Helping me in my assignment are the following people: Mentor Susan Wrbanek (5520), Dr. Baha Jassemnejad (UCO) and Technicians Ken Weiland (7650) and James Williams (7650). Without their help, my task would not be possible.

  6. Temperature and pressure fiber-optic sensors applied to minimally invasive diagnostics and therapies

    NASA Astrophysics Data System (ADS)

    Hamel, Caroline; Pinet, Éric

    2006-02-01

    We present how fiber-optic temperature or pressure sensors could be applied to minimally invasive diagnostics and therapies. For instance a miniature pressure sensor based on micro-optical mechanical systems (MOMS) could solve most of the problems associated with fluidic pressure transduction presently used for triggering purposes. These include intra-aortic balloon pumping (IABP) therapy and other applications requiring detection of fast and/or subtle fluid pressure variations such as for intracranial pressure monitoring or for urology diagnostics. As well, miniature temperature sensors permit minimally invasive direct temperature measurement in diagnostics or therapies requiring energy transfer to living tissues. The extremely small size of fiber-optic sensors that we have developed allows quick and precise in situ measurements exactly where the physical parameters need to be known. Furthermore, their intrinsic immunity to electromagnetic interference (EMI) allows for the safe use of EMI-generating therapeutic or diagnostic equipments without compromising the signal quality. With the trend of ambulatory health care and the increasing EMI noise found in modern hospitals, the use of multi-parameter fiber-optic sensors will improve constant patient monitoring without any concern about the effects of EMI disturbances. The advantages of miniature fiberoptic sensors will offer clinicians new monitoring tools that open the way for improved diagnostic accuracy and new therapeutic technologies.

  7. Fiber‐optic distributed temperature sensing: A new tool for assessment and monitoring of hydrologic processes

    USGS Publications Warehouse

    Lane, John W.; Day-Lewis, Frederick D.; Johnson, Carole D.; Dawson, Cian B.; Nelms, David L.; Miller, Cheryl; Wheeler, Jerrod D.; Harvey, Charles F.; Karam, Hanan N.

    2008-01-01

    Fiber‐optic distributed temperature sensing (FO DTS) is an emerging technology for characterizing and monitoring a wide range of important earth processes. FO DTS utilizes laser light to measure temperature along the entire length of standard telecommunications optical fibers. The technology can measure temperature every meter over FO cables up to 30 kilometers (km) long. Commercially available systems can measure fiber temperature as often as 4 times per minute, with thermal precision ranging from 0.1 to 0.01 °C depending on measurement integration time. In 2006, the U.S. Geological Survey initiated a project to demonstrate and evaluate DTS as a technology to support hydrologic studies. This paper demonstrates the potential of the technology to assess and monitor hydrologic processes through case‐study examples of FO DTS monitoring of stream‐aquifer interaction on the Shenandoah River near Locke's Mill, Virginia, and on Fish Creek, near Jackson Hole, Wyoming, and estuary‐aquifer interaction on Waquoit Bay, Falmouth, Massachusetts. The ability to continuously observe temperature over large spatial scales with high spatial and temporal resolution provides a new opportunity to observe and monitor a wide range of hydrologic processes with application to other disciplines including hazards, climate‐change, and ecosystem monitoring.

  8. Implementation of Fiber Optic Sensing System on Sandwich Composite Cylinder Buckling Test

    NASA Technical Reports Server (NTRS)

    Pena, Francisco; Richards, W. Lance; Parker, Allen R.; Piazza, Anthony; Schultz, Marc R.; Rudd, Michelle T.; Gardner, Nathaniel W.; Hilburger, Mark W.

    2018-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center Shell Buckling Knockdown Factor Project is a multicenter project tasked with developing new analysis-based shell buckling design guidelines and design factors (i.e., knockdown factors) through high-fidelity buckling simulations and advanced test technologies. To validate these new buckling knockdown factors for future launch vehicles, the Shell Buckling Knockdown Factor Project is carrying out structural testing on a series of large-scale metallic and composite cylindrical shells at the NASA Marshall Space Flight Center (Marshall Space Flight Center, Alabama). A fiber optic sensor system was used to measure strain on a large-scale sandwich composite cylinder that was tested under multiple axial compressive loads up to more than 850,000 lb, and equivalent bending loads over 22 million in-lb. During the structural testing of the composite cylinder, strain data were collected from optical cables containing distributed fiber Bragg gratings using a custom fiber optic sensor system interrogator developed at the NASA Armstrong Flight Research Center. A total of 16 fiber-optic strands, each containing nearly 1,000 fiber Bragg gratings, measuring strain, were installed on the inner and outer cylinder surfaces to monitor the test article global structural response through high-density real-time and post test strain measurements. The distributed sensing system provided evidence of local epoxy failure at the attachment-ring-to-barrel interface that would not have been detected with conventional instrumentation. Results from the fiber optic sensor system were used to further refine and validate structural models for buckling of the large-scale composite structures. This paper discusses the techniques employed for real-time structural monitoring of the composite cylinder for structural load introduction and distributed bending-strain measurements over a large section of the cylinder by utilizing unique sensing capabilities of fiber optic sensors.

  9. Monitoring of Concrete Structures Using Ofdr Technique

    NASA Astrophysics Data System (ADS)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-06-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as bridges, dikes, nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μstrain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades in a concrete aggressive environment and to ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Tests were carried out by embedding various sensing cables into plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument; meanwhile, mechanical solicitations were imposed to the concrete element. Preliminary experiments are very promising since measurements performed with distributed sensing system are comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  10. An optical motion measuring system for laterally oscillated fatigue tests

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping; Murri, Gretchen B.; Sharpe, Scott

    1993-01-01

    This paper describes an optical system developed for materials testing laboratories at NASA Langley Research Center (LaRC) for high resolution monitoring of the transverse displacement and angular rotation of a test specimen installed in an axial-tension bending machine (ATB) during fatigue tests. It consists of a small laser, optics, a motorized mirror, three photodiodes, electronic detection and counting circuits, a data acquisition system, and a personal computer. A 3-inch by 5-inch rectangular plate attached to the upper grip of the test machine serves as a target base for the optical system. The personal computer automates the fatigue test procedure, controls data acquisition, performs data reduction, and provides user displays. The data acquisition system also monitors signals from up to 16 strain gages mounted on the test specimen. The motion measuring system is designed to continuously monitor and correlate the amplitude of the oscillatory motion with the strain gage signals in order to detect the onset of failure of the composite test specimen. A prototype system has been developed and tested which exceeds the design specifications of +/- 0.01 inch displacement accuracy, and +/- 0.25 deg angular accuracy at a sampling rate of 100 samples per second.

  11. Rings Around the Sun and Moon: Coronae and Diffraction

    ERIC Educational Resources Information Center

    Cowley, Les; Laven, Philip; Vollmer, Michael

    2005-01-01

    Atmospheric optical effects can teach much about physics and especially optics. Coronae--coloured rings around the sun or moon--are large-scale consequences of diffraction, which is often thought of as only a small effect confined to the laboratory. We describe coronae, how they are formed and experiments that can be conducted on ones in the sky.…

  12. Integrating Nanostructured Artificial Receptors with Whispering Gallery Mode Optical Microresonators via Inorganic Molecular Imprinting Techniques

    PubMed Central

    Hammond, G. Denise; Vojta, Adam L.; Grant, Sheila A.; Hunt, Heather K.

    2016-01-01

    The creation of label-free biosensors capable of accurately detecting trace contaminants, particularly small organic molecules, is of significant interest for applications in environmental monitoring. This is achieved by pairing a high-sensitivity signal transducer with a biorecognition element that imparts selectivity towards the compound of interest. However, many environmental pollutants do not have corresponding biorecognition elements. Fortunately, biomimetic chemistries, such as molecular imprinting, allow for the design of artificial receptors with very high selectivity for the target. Here, we perform a proof-of-concept study to show how artificial receptors may be created from inorganic silanes using the molecular imprinting technique and paired with high-sensitivity transducers without loss of device performance. Silica microsphere Whispering Gallery Mode optical microresonators are coated with a silica thin film templated by a small fluorescent dye, fluorescein isothiocyanate, which serves as our model target. Oxygen plasma degradation and solvent extraction of the template are compared. Extracted optical devices are interacted with the template molecule to confirm successful sorption of the template. Surface characterization is accomplished via fluorescence and optical microscopy, ellipsometry, optical profilometry, and contact angle measurements. The quality factors of the devices are measured to evaluate the impact of the coating on device sensitivity. The resulting devices show uniform surface coating with no microstructural damage with Q factors above 106. This is the first report demonstrating the integration of these devices with molecular imprinting techniques, and could lead to new routes to biosensor creation for environmental monitoring. PMID:27314397

  13. The Mesospheric Sodium Layer as a Remotely, Optically Pumped Magnetometer for Investigation of Birkeland Currents

    NASA Astrophysics Data System (ADS)

    Matzka, J.; Johnsen, M. G.; Hoppe, U. P.; Serrano, A.

    2016-12-01

    By means of optical pumping, it is possible to use the naturally occurring sodium layer in the mesosphere to measure Earth's scalar magnetic field at 90 km above ground. This is an altitude not accessible by other means than rockets, which only will provide point measurements of very short time scales. We are planning to modify the sodium lidar at ALOMAR in Northern Norway to be able, for the first time, to measure and monitor the magnetic field in situ in the high latitude mesosphere over longer time scales. The planned modifications to the lidar instrument will allow alternating between the new magnetometer mode and its present mode for atmospheric temperatures and winds. The technique, which has been proposed earlier for measurements at low or mid-latitudes for studies of Earth's internal magnetic field, will in our project be applied to high latitudes in the auroral zone. This opens for a completely new domain of measurements of externally generated geomagnetic variations related to currents in the magnetosphere-ionosphere system. In particular, we aim to measure the magnetic field variations in close vicinity to Birkeland currents associated with particle precipitation events penetrating to altitudes below 90 km and small-scale, discrete auroral arcs. It is, furthermore, anticipated that it will be possible to detect horizontal current structures in the E-layer on much smaller length scales than it is presently possible from ground observations alone. During the project we plan take advantage of the rich space science infrastructure located in northern Norway, including ALOMAR, EISCAT and the Tromsø Geophysical Observatory magnetometer network. If possible, we also aim to make measurements in conjunction with overpasses of the SWARM satellites.

  14. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    NASA Astrophysics Data System (ADS)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  15. Fiber optic sensing subsystem for temperature monitoring in space in-flight applications

    NASA Astrophysics Data System (ADS)

    Abad, S.; Araujo, F.; Pinto, F.; González Torres, J.; Rodriguez, R.; Moreno, M. A.

    2017-11-01

    Fiber Optic Sensor (FOS) technology presents long recognized advantages which enable to mitigate deficient performance of conventional technology in hazard-environments common in spacecraft monitoring applications, such as: multiplexing capability, immunity to EMI/RFI, remote monitoring, small size and weight, electrical insulation, intrinsically safe operation, high sensibility and long term reliability. A key advantage is also the potential reduction of Assembly Integration and Testing (AIT) time achieved by the multiplexing capability and associated reduced harness. In the frame of the ESA's ARTES5.2 and FLPP-Phase 3 programs, Airbus DS-Crisa and FiberSensing are developing a Fiber Bragg Grating (FBG) - based temperature monitoring system for application in space telecommunication platforms and launchers. The development encompasses both the interrogation unit and the FBG temperature sensors and associated fiber harness. In parallel Airbus DS - Crisa is developing a modular RTU (RTU2015) to provide maximum flexibility and mission-customization capability for RTUs maintaining the ESA's standards at I/O interface level [1]. In this context, the FBG interrogation unit is designed as a module to be compatible, in both physical dimensions and electrical interfaces aspects, with the Electrical Internal Interface Bus of the RTU2015, thus providing the capability for a hybrid electrical and optical monitoring system.

  16. Application of X-ray imaging techniques to auroral monitoring

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Burstein, P.

    1981-01-01

    The precipitation of energetic particles into the ionosphere produces bremsstrahlung X-rays and K-alpha line emission from excited oxygen and nitrogen. If viewed from a spacecraft in a highly elliptical polar orbit, this soft (0.3 - 3.0 keV) X-radiation will provide an almost uninterrupted record of dayside and nightside auroras. A grazing incidence X-ray telescope especially designed for such auroral monitoring is described. High photon collection efficiency will permit exposure times of approximately 100 seconds during substorms. Spectrophotometry will allow users to derive the energy spectrum of the precipitating particles. If placed in a 15 earth-radius orbit, the telescope can produce auroral X-ray images with 30 km resolution. Absolute position of X-ray auroras can be established with a small optical telescope co-aligned with the X-ray telescope. Comparison of X-ray and optical images will establish the height and global distribution of X-ray aurorae, relative to well-known optical auroras, thus melding the new X-ray results with knowledge of optical auroras.

  17. New optical probes for the continuous monitoring of renal function

    NASA Astrophysics Data System (ADS)

    Dorshow, Richard B.; Asmelash, Bethel; Chinen, Lori K.; Debreczeny, Martin P.; Fitch, Richard M.; Freskos, John N.; Galen, Karen P.; Gaston, Kimberly R.; Marzan, Timothy A.; Poreddy, Amruta R.; Rajagopalan, Raghavan; Shieh, Jeng-Jong; Neumann, William L.

    2008-02-01

    The ability to continuously monitor renal function via the glomerular filtration rate (GFR) in the clinic is currently an unmet medical need. To address this need we have developed a new series of hydrophilic fluorescent probes designed to clear via glomerular filtration for use as real time optical monitoring agents at the bedside. The ideal molecule should be freely filtered via the glomerular filtration barrier and be neither reabsorbed nor secreted by the renal tubule. In addition, we have hypothesized that a low volume of distribution into the interstitial space could also be advantageous. Our primary molecular design strategy employs a very small pyrazine-based fluorophore as the core unit. Modular chemistry for functionalizing these systems for optimal pharmacokinetics (PK) and photophysical properties have been developed. Structure-activity relationship (SAR) and pharmacokinetic (PK) studies involving hydrophilic pyrazine analogues incorporating polyethylene glycol (PEG), carbohydrate, amino acid and peptide functionality have been a focus of this work. Secondary design strategies for minimizing distribution into the interstitium while maintaining glomerular filtration include enhancing molecular volume through PEG substitution. In vivo optical monitoring experiments with advanced candidates have been correlated with plasma PK for measurement of clearance and hence GFR.

  18. Development of a real time monitor and multivariate method for long term diagnostics of atmospheric pressure dielectric barrier discharges: application to He, He/N2, and He/O2 discharges.

    PubMed

    O'Connor, N; Milosavljević, V; Daniels, S

    2011-08-01

    In this paper we present the development and application of a real time atmospheric pressure discharge monitoring diagnostic. The software based diagnostic is designed to extract latent electrical and optical information associated with the operation of an atmospheric pressure dielectric barrier discharge (APDBD) over long time scales. Given that little is known about long term temporal effects in such discharges, the diagnostic methodology is applied to the monitoring of an APDBD in helium and helium with both 0.1% nitrogen and 0.1% oxygen gas admixtures over periods of tens of minutes. Given the large datasets associated with the experiments, it is shown that this process is much expedited through the novel application of multivariate correlations between the electrical and optical parameters of the corresponding chemistries which, in turn, facilitates comparisons between each individual chemistry also. The results of these studies show that the electrical and optical parameters of the discharge in helium and upon the addition of gas admixtures evolve over time scales far longer than the gas residence time and have been compared to current modelling works. It is envisaged that the diagnostic together with the application of multivariate correlations will be applied to rapid system identification and prototyping in both experimental and industrial APDBD systems in the future.

  19. Respiration and body movement analysis during sleep in bed using hetero-core fiber optic pressure sensors without constraint to human activity.

    PubMed

    Nishyama, Michiko; Miyamoto, Mitsuo; Watanabe, Kazuhiro

    2011-01-01

    We describe respiration monitoring in sleep using hetero-core fiber optic pressure sensors. The proposed hetero-core fiber optic sensor is highly sensitive to macrobending as a result of the core diameter difference due to stable single-mode transmission. Pressure sensors based on hetero-core fiber optics were fabricated to have a high sensitivity to small pressure changes resulting from minute body motions, such as respiration, during sleep and large pressure changes, such as those caused by a rollover. The sensors are installed in a conventional bed. The pressure characteristic performance of all the fabricated hetero-core fiber optic pressure sensors is found to show a monotonic response with weight changes. A respiration monitoring test in seven subjects efficiently demonstrates the effective use of eight hetero-core pressure sensors installed in a bed. Additionally, even in the case of different body postures, such as lying on one's side, a slight body movement due to respiration is detected by the hetero-core pressure sensors.

  20. Fiber Optic Sensors for Health Monitoring of Morphing Airframes. Part 2; Chemical Sensing Using Optical Fibers with Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian

    2000-01-01

    Part 1 of this two part series described the fabrication and calibration of Bragg gratings written into a single mode optical fiber for use in strain and temperature monitoring. Part 2 of the series describes the use of identical fibers and additional multimode fibers, both with and without Bragg gratings, to perform near infrared spectroscopy. The demodulation system being developed at NASA Langley Research Center currently requires the use of a single mode optical fiber. Attempts to use this single mode fiber for spectroscopic analysis are problematic given its small core diameter, resulting in low signal intensity. Nonetheless, we have conducted a preliminary investigation using a single mode fiber in conjunction with an infrared spectrometer to obtain spectra of a high-performance epoxy resin system. Spectra were obtained using single mode fibers that contained Bragg gratings; however, the peaks of interest were barely discernible above the noise. The goal of this research is to provide a multipurpose sensor in a single optical fiber capable of measuring a variety of chemical and physical properties.

  1. Respiration and body movement analysis during sleep in bed using hetero-core fiber optic pressure sensors without constraint to human activity

    NASA Astrophysics Data System (ADS)

    Nishyama, Michiko; Miyamoto, Mitsuo; Watanabe, Kazuhiro

    2011-01-01

    We describe respiration monitoring in sleep using hetero-core fiber optic pressure sensors. The proposed hetero-core fiber optic sensor is highly sensitive to macrobending as a result of the core diameter difference due to stable single-mode transmission. Pressure sensors based on hetero-core fiber optics were fabricated to have a high sensitivity to small pressure changes resulting from minute body motions, such as respiration, during sleep and large pressure changes, such as those caused by a rollover. The sensors are installed in a conventional bed. The pressure characteristic performance of all the fabricated hetero-core fiber optic pressure sensors is found to show a monotonic response with weight changes. A respiration monitoring test in seven subjects efficiently demonstrates the effective use of eight hetero-core pressure sensors installed in a bed. Additionally, even in the case of different body postures, such as lying on one's side, a slight body movement due to respiration is detected by the hetero-core pressure sensors.

  2. Photoacoustic Monitoring of Absorption Spectrum During the Dehydration Process of pasilla Chili Pepper

    NASA Astrophysics Data System (ADS)

    Zendejas-Leal, Blanca Estela; Barrientos-Sotelo, Víctor Rodrigo; Cano-Casas, Rogelio; Alvarado-Noguez, Margarita Lizeth; Hernández-Rosas, Juan; Cruz-Orea, Alfredo

    2018-07-01

    In this work, the optical absorption spectrum of peppers was monitored by phase-resolved photoacoustic spectroscopy during a dehydration process based on hot-air drying, yielding simultaneous information about changes in the exocarp and mesocarp. Our results show that between all of the dehydration processes of green Capsicum annuum L. variety pasilla peppers, only very small changes occur in the different phase angles, which has been correlated with the small changes in the exocarp thickness. The phase-resolved spectra of mesocarp show more clearly the evolution of the carotenoid compounds with respect to the optical absorption spectrum without phase resolving, due to the last spectrum having a band broadening in that region with more signals convolved. We have shown that not only do the ripened chili peppers produce new carotenoid compounds, but also we are probing that the dehydration process, beginning with the green stage, preserves the nutrimental content, similar to changes that occur in the natural ripening process.

  3. A new front-face optical cell for measuring weak fluorescent emissions with time resolution in the picosecond time scale.

    PubMed

    Gryczynski, Z; Bucci, E

    1993-11-01

    Recent developments of ultrafast fluorimeters allow measuring time-resolved fluorescence on the picosecond time scale. This implies one is able to monitor lifetimes and anisotropy decays of highly quenched systems and of systems that contain fluorophores having lifetimes in the subnanosecond range; both systems that emit weak signals. The combination of weak signals and very short lifetimes makes the measurements prone to distortions which are negligible in standard fluorescence experiments. To cope with these difficulties, we have designed a new optical cell for front-face optics which offers to the excitation beam a horizontal free liquid surface in the absence of interactions with optical windows. The new cell has been tested with probes of known lifetimes and anisotropies. It proved very useful in detecting tryptophan fluorescence in hemoglobin. If only diluted samples are available, which cannot be used in front-face optics, regular square geometry can still be utilized by inserting light absorbers into a cuvette of 1 cm path length.

  4. Multilayered metal-insulator nanocavities: toward tunable multi-resonance nano-devices for integrated optics

    NASA Astrophysics Data System (ADS)

    Song, Junyeob; Zhou, Wei

    2017-02-01

    Plasmonic nanocavities can control light flows and enhance light-mater interactions at subwavelength scale, and thus can potentially be used as nanoscale components in integrated optics systems either for passive optical coupling, or for active optical modulation and emission. In this work, we investigated a new type of multilayered metal-insulator optical nanocavities that can support multiple localized plasmon resonances with ultra-small mode volumes. The total number of resonance peaks and their resonance wavelengths can be freely and accurately controlled by simple geometric design rules. Multi-resonance plasmonic nanocavities can serve as a nanoscale wavelength-multiplexed optical components in integrated optics systems, such as optical couplers, light emitters, nanolasers, optical sensors, and optical modulators.

  5. Next-generation air monitoring – an overview of EPA research to develop real-time instrumentation packages for stationary and mobile monitoring

    EPA Science Inventory

    Abstract. Air pollution measurement technology is advancing rapidly towards small-scale, real-time, wireless detectors, with a potential to significantly change the landscape of air pollution monitoring. The U.S. EPA Office of Research and Development is evaluating and developi...

  6. Updating the Synchrotron Radiation Monitor at TLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, C. H.; Hsu, S. Y.; Wang, C. J.

    2007-01-19

    The synchrotron radiation monitor provides useful information to support routine operation and physics experiments using the beam. Precisely knowing the profile of the beam helps to improve machine performance. The synchrotron radiation monitor at the Taiwan Light Source (TLS) was recently upgraded. The optics and modeling were improved to increase the accuracy of measurement in the small beam size. A high-performance IEEE-1394 digital CCD camera was used to improve the quality of images and extend the dynamic range of measurement. The image analysis is also improved. This report summarizes status and results.

  7. FRP debonding monitoring using OTDR techniques

    NASA Astrophysics Data System (ADS)

    Hou, Shuang; Cai, C. S. Steve; Ou, Jinping

    2009-07-01

    Debonding failure has been reported as the dominant failure mode for FRP strengthening in flexure. This paper explores a novel debonding monitoring method for FRP strengthened structures by means of OTDR-based fiber optic technology. Interface slip as a key factor in debonding failures will be measured through sensing optic fibers, which is instrumented in the interface between FRP and concrete in the direction perpendicular to the FRP filaments. Slip in the interface will induce power losses in the optic fiber signals at the intersection point of the FRP strip and the sensing optic fiber and the signal change will be detected through OTDR device. The FRP double shear tests and three-point bending tests were conducted to verify the effectiveness of the proposed monitoring method. It is found that the early bebonding can be detected before it causes the interface failure. The sensing optic fiber shows signal changes in the slip value at about 36~156 micrometer which is beyond sensing capacity of the conventional sensors. The tests results show that the proposed method is feasible in slip measurement with high sensitivity, and would be cost effective because of the low price of sensors used, which shows its potential of large-scale applications in civil infrastructures, especially for bridges.

  8. Atmospheric imaging results from the Mars exploration rovers: Spirit and Opportunity.

    PubMed

    Lemmon, M T; Wolff, M J; Smith, M D; Clancy, R T; Banfield, D; Landis, G A; Ghosh, A; Smith, P H; Spanovich, N; Whitney, B; Whelley, P; Greeley, R; Thompson, S; Bell, J F; Squyres, S W

    2004-12-03

    A visible atmospheric optical depth of 0.9 was measured by the Spirit rover at Gusev crater and by the Opportunity rover at Meridiani Planum. Optical depth decreased by about 0.6 to 0.7% per sol through both 90-sol primary missions. The vertical distribution of atmospheric dust at Gusev crater was consistent with uniform mixing, with a measured scale height of 11.56 +/- 0.62 kilometers. The dust's cross section weighted mean radius was 1.47 +/- 0.21 micrometers (mm) at Gusev and 1.52 +/- 0.18 mm at Meridiani. Comparison of visible optical depths with 9-mm optical depths shows a visible-to-infrared optical depth ratio of 2.0 +/- 0.2 for comparison with previous monitoring of infrared optical depths.

  9. Investigation of low-latitude hydrogen emission in terms of a two-component interstellar gas model

    NASA Technical Reports Server (NTRS)

    Baker, P. L.; Burton, W. B.

    1975-01-01

    High-resolution 21-cm hydrogen line observations at low galactic latitude are analyzed to determine the large-scale distribution of galactic hydrogen. Distribution parameters are found by model fitting, optical depth effects are computed using a two-component gas model suggested by the observations, and calculations are made for a one-component uniform spin-temperature gas model to show the systematic departures between this model and data obtained by incorrect treatment of the optical depth effects. Synthetic 21-cm line profiles are computed from the two-component model, and the large-scale trends of the observed emission profiles are reproduced together with the magnitude of the small-scale emission irregularities. Values are determined for the thickness of the galactic hydrogen disk between half density points, the total observed neutral hydrogen mass of the galaxy, and the central number density of the intercloud hydrogen atoms. It is shown that typical hydrogen clouds must be between 1 and 13 pc in diameter and that optical thinness exists on large-scale despite the presence of optically thin gas.

  10. Programmable 10 MHz optical fiducial system for hydrodiagnostic cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huen, T.

    1987-07-01

    A solid state light control system was designed and fabricated for use with hydrodiagnostic streak cameras of the electro-optic type. With its use, the film containing the streak images will have on it two time scales simultaneously exposed with the signal. This allows timing and cross timing. The latter is achieved with exposure modulation marking onto the time tick marks. The purpose of using two time scales will be discussed. The design is based on a microcomputer, resulting in a compact and easy to use instrument. The light source is a small red light emitting diode. Time marking can bemore » programmed in steps of 0.1 microseconds, with a range of 255 steps. The time accuracy is based on a precision 100 MHz quartz crystal, giving a divided down 10 MHz system frequency. The light is guided by two small 100 micron diameter optical fibers, which facilitates light coupling onto the input slit of an electro-optic streak camera. Three distinct groups of exposure modulation of the time tick marks can be independently set anywhere onto the streak duration. This system has been successfully used in Fabry-Perot laser velocimeters for over four years in our Laboratory. The microcomputer control section is also being used in providing optical fids to mechanical rotor cameras.« less

  11. Development of a Low-Cost Particulate Matter Monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Richard M.; Apte, Michael G.; Gundel, Lara A.

    2008-08-01

    We describe a small, inexpensive portable monitor for airborne particulates, composed of the following elements: a. A simple size-selective inlet (vertical elutriator) that permits only particles below a pre-set diameter to pass and enter the measurement section; b. A measurement section in which passing particles are deposited thermophoretically on a micro-fabricated resonant piezoelectric mass sensor; c. An optical characterization module co-located with the mass sensor module that directs infrared and ultraviolet beams through the deposit. The emergent optical beams are detected by a photodiode. The optical absorption of the deposit can be measured in order to characterize the deposit, andmore » determine how much is due to diesel exhaust and/or environmental tobacco smoke; and d. A small pump that moves air through the device, which may also be operated in a passive mode. The component modules were designed by the project team, and fabricated at UCB andLBNL. Testing and validation were performed in a room-sized environmental chamber at LBNL in to which was added either environmental tobacco smoke (ETS, produced by a cigarette smoking machine) or diesel exhaust (from a conventional diesel engine). Two pilot field tests in a dwelling compared the monitor with existing aerosol instruments during exposure to infiltrated ambient air to which cigarette smoke, diesel exhaust, wood smoke and cooking fumes were added. The limit of detection (LOD) derived from statistical analysis of field data is 18 mu g m-3, at the 99percent confidence level. The monitor weighs less than 120 g and has a volume of roughly 250 cm3. Power consumption is approximately 100 milliwatts. During this study, the optical component of the device was not fully implemented and has been left for future efforts. Suggested improvements in the current prototype include use of integrated thermal correction, reconfiguration of the resonator for increased particle collection area, increased thermophoretic collection efficiency using an increased temperature gradient, and shielding the resonator electronics from deposition of ultrafine particles.« less

  12. Small-scale response in an avian community to a large-scale thinning project in the southwestern United States

    Treesearch

    Karen E. Bagne; Deborah M. Finch

    2009-01-01

    Avian populations were monitored using point counts from 2002 to 2007, two years before and four years after a 2800 ha fuel reduction project. The study area was within a ponderosa pine forest near Santa Fe, New Mexico, USA. Adjacent unthinned areas were also monitored as a reference for population variation related to other factors. For individual bird species...

  13. Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers.

    PubMed

    Lee, H W; Schmidt, M A; Russell, R F; Joly, N Y; Tyagi, H K; Uebel, P; Russell, P St J

    2011-06-20

    We report a novel splicing-based pressure-assisted melt-filling technique for creating metallic nanowires in hollow channels in microstructured silica fibers. Wires with diameters as small as 120 nm (typical aspect ration 50:1) could be realized at a filling pressure of 300 bar. As an example we investigate a conventional single-mode step-index fiber with a parallel gold nanowire (wire diameter 510 nm) running next to the core. Optical transmission spectra show dips at wavelengths where guided surface plasmon modes on the nanowire phase match to the glass core mode. By monitoring the side-scattered light at narrow breaks in the nanowire, the loss could be estimated. Values as low as 0.7 dB/mm were measured at resonance, corresponding to those of an ultra-long-range eigenmode of the glass-core/nanowire system. By thermal treatment the hollow channel could be collapsed controllably, permitting creation of a conical gold nanowire, the optical properties of which could be monitored by side-scattering. The reproducibility of the technique and the high optical quality of the wires suggest applications in fields such as nonlinear plasmonics, near-field scanning optical microscope tips, cylindrical polarizers, optical sensing and telecommunications.

  14. Superresolving dendritic spine morphology with STED microscopy under holographic photostimulation

    PubMed Central

    Lauterbach, Marcel Andreas; Guillon, Marc; Desnos, Claire; Khamsing, Dany; Jaffal, Zahra; Darchen, François; Emiliani, Valentina

    2016-01-01

    Abstract. Emerging all-optical methods provide unique possibilities for noninvasive studies of physiological processes at the cellular and subcellular scale. On the one hand, superresolution microscopy enables observation of living samples with nanometer resolution. On the other hand, light can be used to stimulate cells due to the advent of optogenetics and photolyzable neurotransmitters. To exploit the full potential of optical stimulation, light must be delivered to specific cells or even parts of cells such as dendritic spines. This can be achieved with computer generated holography (CGH), which shapes light to arbitrary patterns by phase-only modulation. We demonstrate here in detail how CGH can be incorporated into a stimulated emission depletion (STED) microscope for photostimulation of neurons and monitoring of nanoscale morphological changes. We implement an original optical system to allow simultaneous holographic photostimulation and superresolution STED imaging. We present how synapses can be clearly visualized in live cells using membrane stains either with lipophilic organic dyes or with fluorescent proteins. We demonstrate the capabilities of this microscope to precisely monitor morphological changes of dendritic spines after stimulation. These all-optical methods for cell stimulation and monitoring are expected to spread to various fields of biological research in neuroscience and beyond. PMID:27413766

  15. Advancing Unmanned Aircraft Sensor Collection and Communication Capabilities with Optical Communications

    NASA Astrophysics Data System (ADS)

    Lukaczyk, T.

    2015-12-01

    Unmanned aircraft systems (UAS) are now being used for monitoring climate change over both land and seas. Their uses include monitoring of cloud conditions and atmospheric composition of chemicals and aerosols due to pollution, dust storms, fires, volcanic activity and air-sea fluxes. Additional studies of carbon flux are important for various ecosystem studies of both marine and terrestrial environments specifically, and can be related to climate change dynamics. Many measurements are becoming more complex as additional sensors become small enough to operate on more widely available small UAS. These include interferometric radars as well as scanning and fan-beam lidar systems which produce data streams even greater than those of high resolution video. These can be used to precisely map surfaces of the earth, ocean or ice features that are important for a variety of earth system studies. As these additional sensor capabilities are added to UAS the ability to transmit data back to ground or ship monitoring sites is limited by traditional wireless communication protocols. We describe results of tests of optical communication systems that provide significantly greater communication bandwidths for UAS, and discuss both the bandwidth and effective range of these systems, as well as their power and weight requirements both for systems on UAS, as well as those of ground-based receiver stations. We justify our additional use of Delay and Disruption Tolerant Networking (DTN) communication protocols with optical communication methods to ensure security and continuity of command and control operations. Finally, we discuss the implications for receiving, geo-referencing, archiving and displaying data streams from sensors communicated via optical communication to better enable real-time anomaly detection and adaptive sampling capabilities using multiple UAS or other unmanned or manned systems.

  16. Water quality in riparian boreal forest: a multi-method approach to scale biogeochemical drivers from groundwater hotspots to catchment outlets.

    NASA Astrophysics Data System (ADS)

    Ploum, Stefan; Kuglerová, Lenka; Leach, Jason; Laudon, Hjalmar

    2017-04-01

    Stream chemistry in boreal regions is for a large degree defined by the riparian zone. Within the riparian zone, groundwater hotspots represent a very small area, but likely play a major role in controlling stream water quality. Hotspots have shown to be unique in their plant species richness, soil texture and biogeochemistry. Also in terms of stream metabolism, hotspots show different responses, either due to local biotic or abiotic conditions. Readily available hydrological mapping tools, combined with biogeochemical data (stream temperature and stable water isotopes) show that there is great potential in predicting groundwater hotspots using terrain-based approaches. However, the role of individual hotspots varies in time. Presumably their hydrological regime is highly dependent on landscape properties of the upstream area. To improve the predictability of hotspots in space and time, a mechanistic understanding is needed. We achieve this by a combined approach including a damming experiment, high resolution optic fiber stream temperature measurements (DTS), a dense groundwater well network, stream and groundwater trace element analysis, frost monitoring and infrared (IR) imagery. This field-based strategy sheds light on the underlying drivers of groundwater hotspots and links them to landscape characteristics. This allows to move away from highly monitored reaches, and evaluate the relation between upland landscape features and the temporal variability of groundwater exfiltration rates on a catchment scale.

  17. Multiwavelength active-optics Shack-Hartmann sensor for monitoring seeing and turbulence outer scale

    NASA Astrophysics Data System (ADS)

    Martinez, P.

    2014-12-01

    Context. Real-time seeing and outer-scale estimation at the location of the focus of a telescope is fundamental for predicting the adaptive-optics system's dimensioning and performance, as well as for the operational aspects of instruments. Aims: This study attempts to take advantage of multiwavelength long-exposure images to instantaneously and simultaneously derive the turbulence outer scale and seeing from the full width at half maximum (FWHM) of seeing-limited images taken at the focus of a telescope. These atmospheric parameters are commonly measured in most observatories by different methods located away from the telescope platform, thus differing from the effective estimates at the focus of a telescope, mainly because of differences in pointing orientation, height above the ground, or local seeing bias (dome contribution). Methods: Long-exposure images can either be provided directly by any multiwavelength scientific imager or spectrograph or, alternatively from a modified active-optics Shack-Hartmann sensor (AOSH). From measuring the AOSH sensor spot point spread function FWHMs simultaneously at different wavelengths, one can estimate the instantaneous outer scale in addition to seeing. Results: Multiwavelength long-exposure images provide access to accurate estimates of r0 and L0 by adequate means as long as precise FWHMs can be obtained. Although AOSH sensors are specified to measure not spot sizes but slopes, real-time r0, and L0 measurements from spot FWHMs can be obtained at the critical location where they are needed with major advantages over scientific instrument images: insensitivity to the telescope field stabilization, and continuous availability. Conclusions: Assuming an alternative optical design that allows simultaneous multiwavelength images, the AOSH sensor benefits from all the advantages of real-time seeing and outer scale monitoring. With the substantial interest in the design of extremely large telescopes, such a system could be of considerable importance.

  18. A large-scale photonic node architecture that utilizes interconnected OXC subsystems.

    PubMed

    Iwai, Yuto; Hasegawa, Hiroshi; Sato, Ken-ichi

    2013-01-14

    We propose a novel photonic node architecture that is composed of interconnected small-scale optical cross-connect subsystems. We also developed an efficient dynamic network control algorithm that complies with a restriction on the number of intra-node fibers used for subsystem interconnection. Numerical evaluations verify that the proposed architecture offers almost the same performance as the equivalent single large-scale cross-connect switch, while enabling substantial hardware scale reductions.

  19. Challenges in atmospheric monitoring of areal emission sources - an Open-path Fourier transform infrared (OP-FTIR) spectroscopic experience report

    NASA Astrophysics Data System (ADS)

    Schuetze, C.; Sauer, U.; Dietrich, P.

    2015-12-01

    Reliable detection and assessment of near-surface CO2 emissions from natural or anthropogenic sources require the application of various monitoring tools at different spatial scales. Especially, optical remote sensing tools for atmospheric monitoring have the potential to measure integrally CO2 emissions over larger scales (> 10.000m2). Within the framework of the MONACO project ("Monitoring approach for geological CO2 storage sites using a hierarchical observation concept"), an integrative hierarchical monitoring concept was developed and validated at different field sites with the aim to establish a modular observation strategy including investigations in the shallow subsurface, at ground surface level and the lower atmospheric boundary layer. The main aims of the atmospheric monitoring using optical remote sensing were the observation of the gas dispersion in to the near-surface atmosphere, the determination of maximum concentration values and identification of the main challenges associated with the monitoring of extended emission sources with the proposed methodological set up under typical environmental conditions. The presentation will give an overview about several case studies using the integrative approach of Open-Path Fourier Transform Infrared spectroscopy (OP FTIR) in combination with in situ measurements. As a main result, the method was validated as possible approach for continuous monitoring of the atmospheric composition, in terms of integral determination of GHG concentrations and to identify target areas which are needed to be investigated more in detail. Especially the data interpretation should closely consider the micrometeorological conditions. Technical aspects concerning robust equipment, experimental set up and fast data processing algorithms have to be taken into account for the enhanced automation of atmospheric monitoring.

  20. Fiber-Optic Sensor Would Monitor Growth of Polymer Film

    NASA Technical Reports Server (NTRS)

    Beamesderfer, Michael

    2005-01-01

    A proposed optoelectronic sensor system would measure the increase in thickness of a film of parylene (a thermoplastic polymer made from para-xylene) during growth of the film in a vapor deposition process. By enabling real-time monitoring of film thickness, the system would make it possible to identify process conditions favorable for growth and to tailor the final thickness of the film with greater precision than is now possible. The heart of the sensor would be a pair of fiber-optic Fabry-Perot interferometers, depicted schematically in the figure. (In principle, a single such interferometer would suffice. The proposal calls for the use of two interferometers for protective redundancy and increased accuracy.) Each interferometer would include a light source, a fiber-optic coupler, and photodetectors in a control box outside the deposition chamber. A single-mode optical fiber for each interferometer would run from inside the control box to a fused-silica faceplate in a sensor head. The sensory tips of the optical fibers would be polished flush with the free surface of the faceplate. In preparation for use, the sensor head would be mounted with a hermetic seal in a feed-through port in the deposition chamber, such that free face of the faceplate and the sensory tips of the optical fibers would be exposed to the deposition environment. During operation, light would travel along each optical fiber from the control box to the sensor head. A small portion of the light would be reflected toward the control box from the end face of each fiber. Once growth of the parylene film started, a small portion of the light would also be reflected toward the control box from the outer surface of the film. In the control box, the two reflected portions of the light beam would interfere in one of the photodetectors. The difference between the phases of the interfering reflected portions of the light beam would vary in proportion to the increasing thickness of the film and the known index of refraction of the film, causing the photodetector reading to vary in proportion to a known sinusoidal function of film thickness. Electronic means of monitoring this variation and the corresponding variation in phase and thickness are well established in the art of interferometry. Hence, by tracking the cumulative change in phase difference from the beginning of deposition, one could track the growing thickness of the film to within a small fraction of a wavelength of light.

  1. Blood flow changes after unilateral carotid artery ligation monitored by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ma, Yushu; Liang, Chengbo; Suo, Yanyan; Zhao, Yuqian; Wang, Yi; Xu, Tao; Wang, Ruikang; Ma, Zhenhe

    2016-03-01

    Unilateral carotid artery ligation which could induce adaptive improvement is a classic model that has been widely used to study pathology of ischemic disease. In those studies, blood flow is an important parameter to characterize the ischemia. Optical coherence tomography (OCT) is a powerful imaging modality which can provide depth resolved images in biological tissue with high spatial and temporal resolution. SPF rats was anesthetized with isoflurane and divided into two groups. In first group, bilateral carotid artery was surgically exposed, and then left carotid artery was ligated. Blood flow changes of the contralateral carotid artery was monitored using high speed spectral domain optical coherence tomography, including the absolute flow velocity and the flow volume. In the other group, skull window was opened at the ipsilateral cerebral cortex of ligation and blood supply of small artery was measured before and after the ligation. The measured results demonstrate the blood supply compensation process after unilateral carotid artery ligation. With the superiority of high resolution, OCT is an effective technology in monitoring results of carotid artery after ligation.

  2. Towards the Development of a Low Cost Airborne Sensing System to Monitor Dust Particles after Blasting at Open-Pit Mine Sites

    PubMed Central

    Alvarado, Miguel; Gonzalez, Felipe; Fletcher, Andrew; Doshi, Ashray

    2015-01-01

    Blasting is an integral part of large-scale open cut mining that often occurs in close proximity to population centers and often results in the emission of particulate material and gases potentially hazardous to health. Current air quality monitoring methods rely on limited numbers of fixed sampling locations to validate a complex fluid environment and collect sufficient data to confirm model effectiveness. This paper describes the development of a methodology to address the need of a more precise approach that is capable of characterizing blasting plumes in near-real time. The integration of the system required the modification and integration of an opto-electrical dust sensor, SHARP GP2Y10, into a small fixed-wing and multi-rotor copter, resulting in the collection of data streamed during flight. The paper also describes the calibration of the optical sensor with an industry grade dust-monitoring device, Dusttrak 8520, demonstrating a high correlation between them, with correlation coefficients (R2) greater than 0.9. The laboratory and field tests demonstrate the feasibility of coupling the sensor with the UAVs. However, further work must be done in the areas of sensor selection and calibration as well as flight planning. PMID:26274959

  3. Towards the Development of a Low Cost Airborne Sensing System to Monitor Dust Particles after Blasting at Open-Pit Mine Sites.

    PubMed

    Alvarado, Miguel; Gonzalez, Felipe; Fletcher, Andrew; Doshi, Ashray

    2015-08-12

    Blasting is an integral part of large-scale open cut mining that often occurs in close proximity to population centers and often results in the emission of particulate material and gases potentially hazardous to health. Current air quality monitoring methods rely on limited numbers of fixed sampling locations to validate a complex fluid environment and collect sufficient data to confirm model effectiveness. This paper describes the development of a methodology to address the need of a more precise approach that is capable of characterizing blasting plumes in near-real time. The integration of the system required the modification and integration of an opto-electrical dust sensor, SHARP GP2Y10, into a small fixed-wing and multi-rotor copter, resulting in the collection of data streamed during flight. The paper also describes the calibration of the optical sensor with an industry grade dust-monitoring device, Dusttrak 8520, demonstrating a high correlation between them, with correlation coefficients (R(2)) greater than 0.9. The laboratory and field tests demonstrate the feasibility of coupling the sensor with the UAVs. However, further work must be done in the areas of sensor selection and calibration as well as flight planning.

  4. Establishment of a sensor testbed at NIST for plant productivity monitoring

    NASA Astrophysics Data System (ADS)

    Allen, D. W.; Hutyra, L.; Reinmann, A.; Trlica, A.; Marrs, J.; Jones, T.; Whetstone, J. R.; Logan, B.; Reblin, J.

    2017-12-01

    Accurate assessments of biogenic carbon fluxes is challenging. Correlating optical signatures to plant activity allows for monitoring large regions. New methods, including solar-induced fluorescence (SIF), promise to provide more timely and accurate estimate of plant activity, but we are still developing a full understanding of the mechanistic leakage between plant assimilation of carbon and SIF. We have initiated a testbed to facilitate the evaluation of sensors and methods for remote monitoring of plant activity at the NIST headquarters. The test bed utilizes a forested area of mature trees in a mixed urban environment. A 1 hectare plot within the 26 hectare forest has been instrumented for ecophysiological measurements with an edge (100 m long) that is persistently monitored with multimodal optical sensors (SIF spectrometers, hyperspectral imagers, thermal infrared imaging, and lidar). This biological testbed has the advantage of direct access to the national scales maintained by NIST of measurements related to both the physical and optical measurements of interest. We offer a description of the test site, the sensors, and preliminary results from the first season of observations for ecological, physiological, and remote sensing based estimates of ecosystem productivity.

  5. a Novel Ship Detection Method for Large-Scale Optical Satellite Images Based on Visual Lbp Feature and Visual Attention Model

    NASA Astrophysics Data System (ADS)

    Haigang, Sui; Zhina, Song

    2016-06-01

    Reliably ship detection in optical satellite images has a wide application in both military and civil fields. However, this problem is very difficult in complex backgrounds, such as waves, clouds, and small islands. Aiming at these issues, this paper explores an automatic and robust model for ship detection in large-scale optical satellite images, which relies on detecting statistical signatures of ship targets, in terms of biologically-inspired visual features. This model first selects salient candidate regions across large-scale images by using a mechanism based on biologically-inspired visual features, combined with visual attention model with local binary pattern (CVLBP). Different from traditional studies, the proposed algorithm is high-speed and helpful to focus on the suspected ship areas avoiding the separation step of land and sea. Largearea images are cut into small image chips and analyzed in two complementary ways: Sparse saliency using visual attention model and detail signatures using LBP features, thus accordant with sparseness of ship distribution on images. Then these features are employed to classify each chip as containing ship targets or not, using a support vector machine (SVM). After getting the suspicious areas, there are still some false alarms such as microwaves and small ribbon clouds, thus simple shape and texture analysis are adopted to distinguish between ships and nonships in suspicious areas. Experimental results show the proposed method is insensitive to waves, clouds, illumination and ship size.

  6. Gamma-Ray Focusing Optics for Small Animal Imaging

    NASA Technical Reports Server (NTRS)

    Pivovaroff, M. J.; Barber, W. C.; Craig, W. W.; Hasegawa, B. H.; Ramsey, B. D.; Taylor, C.

    2004-01-01

    There is a well-established need for high-resolution radionuclide imaging techniques that provide non-invasive measurement of physiological function in small animals. We, therefore, have begun developing a small animal radionuclide imaging system using grazing incidence mirrors to focus low-energy gamma-rays emitted by I-125, and other radionuclides. Our initial prototype optic, fabricated from thermally-formed glass, demonstrated a resolution of 1500 microns, consistent with the performance predicted by detailed simulations. More recently, we have begun constructing mirrors using a replication technique that reduces low spatial frequency errors in the mirror surface, greatly improving the resolution. Each technique offers particular advantages: e.g., multilayer coatings are easily deposited on glass, while superior resolution is possible with replicated optics. Scaling the results from our prototype optics, which only have a few nested shells, to system where the lens has a full complement of several tens of nested shells, a sensitivity of approx. 1 cps/micro Ci is possible, with the exact number dependent on system magnification and radionuclide species. (Higher levels of efficiency can be obtained with multi-optic imaging systems.) The gamma-ray lens will achieve a resolution as good as 100 microns, independent of the final sensitivity. The combination of high spatial resolution and modest sensitivity will enable in vivo single photon emission imaging studies in small animals.

  7. First clinical evaluation of a new percutaneous optical fiber glucose sensor for continuous glucose monitoring in diabetes.

    PubMed

    Müller, Achim Josef; Knuth, Monika; Nikolaus, Katharina Sibylle; Krivánek, Roland; Küster, Frank; Hasslacher, Christoph

    2013-01-01

    This article describes a new fiber-coupled, percutaneous fluorescent continuous glucose monitoring (CGM) system that has shown 14 days of functionality in a human clinical trial. The new optical CGM system (FiberSense) consists of a transdermal polymer optical fiber containing a biochemical glucose sensor and a small fluorescence photometer optically coupled to the fiber. The glucose-sensitive optical fiber was implanted in abdominal and upper-arm subcutaneous tissue of six diabetes patients and remained there for up to 14 days. The performance of the system was monitored during six visits to the study center during the trial. Blood glucose changes were induced by oral carbohydrate intake and insulin injections, and capillary blood glucose samples were obtained from the finger tip. The data were analyzed using linear regression and the consensus error grid analysis. The FiberSense worn at the upper arm exhibited excellent results during 14 wearing days, with an overall mean absolute relative difference (MARD) of 8.3% and 94.6% of the data in zone A of the consensus error grid. At the abdominal application site, FiberSense resulted in a MARD of 11.4 %, with 93.8% of the data in zone A. The FiberSense CGM system provided consistent, reliable measurements of subcutaneous glucose levels in human clinical trial patients with diabetes for up to 14 days. © 2013 Diabetes Technology Society.

  8. High-performance parallel processors based on star-coupled wavelength division multiplexing optical interconnects

    DOEpatents

    Deri, Robert J.; DeGroot, Anthony J.; Haigh, Ronald E.

    2002-01-01

    As the performance of individual elements within parallel processing systems increases, increased communication capability between distributed processor and memory elements is required. There is great interest in using fiber optics to improve interconnect communication beyond that attainable using electronic technology. Several groups have considered WDM, star-coupled optical interconnects. The invention uses a fiber optic transceiver to provide low latency, high bandwidth channels for such interconnects using a robust multimode fiber technology. Instruction-level simulation is used to quantify the bandwidth, latency, and concurrency required for such interconnects to scale to 256 nodes, each operating at 1 GFLOPS performance. Performance scales have been shown to .apprxeq.100 GFLOPS for scientific application kernels using a small number of wavelengths (8 to 32), only one wavelength received per node, and achievable optoelectronic bandwidth and latency.

  9. Distributed Fiber Optic Sensors For The Monitoring Of A Tunnel Crossing A Landslide

    NASA Astrophysics Data System (ADS)

    Minardo, Aldo; Picarelli, Luciano; Zeni, Giovanni; Catalano, Ester; Coscetta, Agnese; Zhang, Lei; DiMaio, Caterina; Vassallo, Roberto; Coviello, Roberto; Macchia, Giuseppe Nicola Paolo; Zeni, Luigi

    2017-04-01

    Optical fiber distributed sensors have recently gained great attention in structural and environmental monitoring due to specific advantages because they share all the classical advantages common to all optical fiber sensors such as immunity to electromagnetic interferences, high sensitivity, small size and possibility to be embedded into the structures, multiplexing and remote interrogation capabilities [1], but also offer the unique feature of allowing the exploitation of a telecommunication grade optical fiber cable as the sensing element to measure deformation and temperature profiles over long distances, without any added devices. In particular, distributed optical fiber sensors based on stimulated Brillouin scattering through the so-called Brillouin Optical Time Domain Analysis (BOTDA), allow to measure strain and temperature profiles up to tens of kilometers with a strain accuracy of ±10µɛ and a temperature accuracy of ±1°C. These sensors have already been employed in static and dynamic monitoring of a variety of structures resulting able to identify and localize many kind of failures [2,3,4]. This paper deals with the application of BOTDA to the monitoring of the deformations of a railway tunnel (200 m long) constructed in the accumulation of Varco d'Izzo earthflow, Potenza city, in the Southern Italian Apennine. The earthflow, which occurs in the tectonized clay shale formation called Varicoloured Clays, although very slow, causes continuous damage to buildings and infrastructures built upon or across it. The railway tunnel itself had to be re-constructed in 1992. Since then, the Italian National Railway monitored the structure by means of localized fissure-meters. Recently, thanks to a collaboration with the rail Infrastructure Manager (RFI), monitoring of various zones of the landslide including the tunnel is based on advanced systems, among which the optical fiber distributed sensors. First results show how the sensing optical fiber cable is able to detect the formation of localized strains and cracks, following the evolution of their width and identifying their location along the tunnel walls. It is worth noticing that the distributed nature of the sensor makes it possible to perform the monitoring with no preliminary information about the possible location of concentrated deformation. The sensing cable is simply glued to the tunnel walls and the system will remotely detect and locate any deformation and fracture wherever they occur along the fiber path, so representing a powerful early warning system. [1] J. M. López-Higuera, L. R. Cobo, A. Q. Incera, A. Cobo, "Fiber Optic Sensors in Structural Health Monitoring", Journal of Lightwave Technology, 29, 2011. [2] L. Zeni, L. Picarelli, B. Avolio, A. Coscetta, R. Papa, G. Zeni, C. Di Maio, R. Vassallo, A. Minardo, "Brillouin Optical Time Domain Analysis for Geotechnical Monitoring", Journal of Rock Mechanics and Geotechnical Engineering, 7, 2015 [3] A. Minardo, G. Porcaro, D. Giannetta, R. Bernini, L. Zeni, "Real-time monitoring of railway traffic using slope-assisted Brillouin distributed sensors", Applied Optics, 52, 2013 [4] A. Minardo, A. Coscetta, S. Pirozzi, R. Bernini, L. Zeni, "Experimental modal analysis of an aluminum rectangular plate by use of the slope-assisted BOTDA method", Smart Materials & Structures, 22, 2014

  10. Preparative electrophoresis with on-column optical fiber monitoring and direct elution into a minimized volume.

    PubMed

    Jackson, George W; Willson, Richard

    2005-11-01

    A "column-format" preparative electrophoresis device which obviates the need for gel extraction or secondary electro-elution steps is described. Separated biomolecules are continuously detected and eluted directly into a minimal volume of free solution for subsequent use. An optical fiber allows the species of interest to be detected just prior to elution from the gel column, and a small collection volume is created by addition of an ion-exchange membrane near the end of the column.

  11. Optical metasurfaces for high angle steering at visible wavelengths

    DOE PAGES

    Lin, Dianmin; Melli, Mauro; Poliakov, Evgeni; ...

    2017-05-23

    Metasurfaces have facilitated the replacement of conventional optical elements with ultrathin and planar photonic structures. Previous designs of metasurfaces were limited to small deflection angles and small ranges of the angle of incidence. Here, we have created two types of Si-based metasurfaces to steer visible light to a large deflection angle. These structures exhibit high diffraction efficiencies over a broad range of angles of incidence. We have demonstrated metasurfaces working both in transmission and reflection modes based on conventional thin film silicon processes that are suitable for the large-scale fabrication of high-performance devices.

  12. A Spectral Method for Spatial Downscaling

    PubMed Central

    Reich, Brian J.; Chang, Howard H.; Foley, Kristen M.

    2014-01-01

    Summary Complex computer models play a crucial role in air quality research. These models are used to evaluate potential regulatory impacts of emission control strategies and to estimate air quality in areas without monitoring data. For both of these purposes, it is important to calibrate model output with monitoring data to adjust for model biases and improve spatial prediction. In this article, we propose a new spectral method to study and exploit complex relationships between model output and monitoring data. Spectral methods allow us to estimate the relationship between model output and monitoring data separately at different spatial scales, and to use model output for prediction only at the appropriate scales. The proposed method is computationally efficient and can be implemented using standard software. We apply the method to compare Community Multiscale Air Quality (CMAQ) model output with ozone measurements in the United States in July 2005. We find that CMAQ captures large-scale spatial trends, but has low correlation with the monitoring data at small spatial scales. PMID:24965037

  13. Strain and ground-motion monitoring at magmatic areas: ultra-long and ultra-dense networks using fibre optic sensing systems

    NASA Astrophysics Data System (ADS)

    Jousset, Philippe; Reinsch, Thomas; Henninges, Jan; Blanck, Hanna; Ryberg, Trond

    2016-04-01

    The fibre optic distributed acoustic sensing technology (DAS) is a "new" sensing system for exploring earth crustal elastic properties and monitoring both strain and seismic waves with unprecedented acquisition characteristics. The DAS technology principle lies in sending successive and coherent pulses of light in an optical fibre and measuring the back-scattered light issued from elastic scattering at random defaults within the fibre. The read-out unit includes an interferometer, which measures light interference patterns continuously. The changes are related to the distance between such defaults and therefore the strain within the fibre can be detected. Along an optical fibre, DAS can be used to acquire acoustic signals with a high spatial (every meter over kilometres) and high temporal resolution (thousand of Hz). Fibre optic technologies were, up to now, mainly applied in perimeter surveillance applications and pipeline monitoring and in boreholes. Previous experiments in boreholes have shown that the DAS technology is well suited for probing subsurface elastic properties, showing new ways for cheaper VSP investigations of the Earth crust. Here, we demonstrate that a cable deployed at ground surface can also help in exploring subsurface properties at crustal scale and monitor earthquake activity in a volcanic environment. Within the framework of the EC funded project IMAGE, we observed a >15 km-long fibre optic cable at the surface connected to a DAS read-out unit. Acoustic data was acquired continuously for 9 days. Hammer shots were performed along the surface cable in order to locate individual acoustic traces and calibrate the spatial distribution of the acoustic information. During the monitoring period both signals from on- and offshore explosive sources and natural seismic events could be recorded. We compare the fibre optic data to conventional seismic records from a dense seismic network deployed on Reykjanes. We show that we can probe and monitor earth crust subsurface with dense acquisition of the ground motion, both in space and in time and over a broad band frequency range.

  14. Combined optical tomographic and magnetic resonance imaging of tumor bearing mice

    NASA Astrophysics Data System (ADS)

    Masciotti, J.; Abdoulaev, G.; Hur, J.; Papa, J.; Bae, J.; Huang, J.; Yamashiro, D.; Kandel, J.; Hielscher, A. H.

    2005-04-01

    With the advent of small animal imaging systems, it has become possible to non-invasively monitor the progression of diseases in living small animals and study the efficacy of drugs and treatment protocols. Magnetic resonance imaging (MRI) is an established imaging modality capable of obtaining high resolution anatomical images as well as studying cerebral blood volume (CBV), cerebral blood flow (CBF), and cerebral metabolic rate of oxygen (CMRO2). Optical tomography, on the other hand, is an emerging imaging modality, which, while much lower in spatial resolution and insensitive to CBF, can separate the effects of oxyhemoglobin, deoxyhemoglobin, and CBV with high temporal resolution. In this study we present our first results concerning coregistration of MRI and optical data. By applying both modalities to imaging of kidney tumors in mice that undergo VEGF treatment, we illustrate how these imaging modalities can supplement each other and cross validation can be performed.

  15. Full-Scale Prestress Loss Monitoring of Damaged RC Structures Using Distributed Optical Fiber Sensing Technology

    PubMed Central

    Lan, Chunguang; Zhou, Zhi; Ou, Jinping

    2012-01-01

    For the safety of prestressed structures, prestress loss is a critical issue that will increase with structural damage, so it is necessary to investigate prestress loss of prestressed structures under different damage scenarios. Unfortunately, to date, no qualified techniques are available due to difficulty for sensors to survive in harsh construction environments of long service life and large span. In this paper, a novel smart steel strand based on the Brillouin optical time domain analysis (BOTDA) sensing technique was designed and manufactured, and then series of tests were used to characterize properties of the smart steel strands. Based on prestress loss principle analysis of damaged structures, laboratory tests of two similar beams with different damages were used to verify the concept of full-scale prestress loss monitoring of damaged reinforced concrete (RC) beams by using the smart steel strands. The prestress losses obtained from the Brillouin sensors are compared with that from conventional sensors, which provided the evolution law of prestress losses of damaged RC beams. The monitoring results from the proposed smart strand can reveal both spatial distribution and time history of prestress losses of damaged RC beams. PMID:22778590

  16. Full-scale prestress loss monitoring of damaged RC structures using distributed optical fiber sensing technology.

    PubMed

    Lan, Chunguang; Zhou, Zhi; Ou, Jinping

    2012-01-01

    For the safety of prestressed structures, prestress loss is a critical issue that will increase with structural damage, so it is necessary to investigate prestress loss of prestressed structures under different damage scenarios. Unfortunately, to date, no qualified techniques are available due to difficulty for sensors to survive in harsh construction environments of long service life and large span. In this paper, a novel smart steel strand based on the Brillouin optical time domain analysis (BOTDA) sensing technique was designed and manufactured, and then series of tests were used to characterize properties of the smart steel strands. Based on prestress loss principle analysis of damaged structures, laboratory tests of two similar beams with different damages were used to verify the concept of full-scale prestress loss monitoring of damaged reinforced concrete (RC) beams by using the smart steel strands. The prestress losses obtained from the Brillouin sensors are compared with that from conventional sensors, which provided the evolution law of prestress losses of damaged RC beams. The monitoring results from the proposed smart strand can reveal both spatial distribution and time history of prestress losses of damaged RC beams.

  17. Determining seagrass abundance in southern New England waters using high resolution remotely sensed imagery

    EPA Science Inventory

    Advances in understanding the optics of shallow water environments, submerged vegetation canopies and seagrass physiology, combined with improved spatial resolution of remote sensing platforms, now enable eelgrass ecosystems to be monitored at a variety of time scales from earth-...

  18. Multi-scale monitoring for improved nutrient management

    USDA-ARS?s Scientific Manuscript database

    In many watersheds, monitoring at the outlet of small watersheds has not been able to demonstrate that conservation efforts have had any impact on stream water quality. Reasons are multiple including legacy issues, time for the conservation practices to have any benefit, temporal variability of weat...

  19. Scalable ion-photon quantum interface based on integrated diffractive mirrors

    NASA Astrophysics Data System (ADS)

    Ghadimi, Moji; Blūms, Valdis; Norton, Benjamin G.; Fisher, Paul M.; Connell, Steven C.; Amini, Jason M.; Volin, Curtis; Hayden, Harley; Pai, Chien-Shing; Kielpinski, David; Lobino, Mirko; Streed, Erik W.

    2017-12-01

    Quantum networking links quantum processors through remote entanglement for distributed quantum information processing and secure long-range communication. Trapped ions are a leading quantum information processing platform, having demonstrated universal small-scale processors and roadmaps for large-scale implementation. Overall rates of ion-photon entanglement generation, essential for remote trapped ion entanglement, are limited by coupling efficiency into single mode fibers and scaling to many ions. Here, we show a microfabricated trap with integrated diffractive mirrors that couples 4.1(6)% of the fluorescence from a 174Yb+ ion into a single mode fiber, nearly triple the demonstrated bulk optics efficiency. The integrated optic collects 5.8(8)% of the π transition fluorescence, images the ion with sub-wavelength resolution, and couples 71(5)% of the collected light into the fiber. Our technology is suitable for entangling multiple ions in parallel and overcomes mode quality limitations of existing integrated optical interconnects.

  20. Displacement and deformation measurement for large structures by camera network

    NASA Astrophysics Data System (ADS)

    Shang, Yang; Yu, Qifeng; Yang, Zhen; Xu, Zhiqiang; Zhang, Xiaohu

    2014-03-01

    A displacement and deformation measurement method for large structures by a series-parallel connection camera network is presented. By taking the dynamic monitoring of a large-scale crane in lifting operation as an example, a series-parallel connection camera network is designed, and the displacement and deformation measurement method by using this series-parallel connection camera network is studied. The movement range of the crane body is small, and that of the crane arm is large. The displacement of the crane body, the displacement of the crane arm relative to the body and the deformation of the arm are measured. Compared with a pure series or parallel connection camera network, the designed series-parallel connection camera network can be used to measure not only the movement and displacement of a large structure but also the relative movement and deformation of some interesting parts of the large structure by a relatively simple optical measurement system.

  1. Connections Between Stratospheric Pollution and the Asian Summer Monsoon

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Tsigaridis, Konstas

    2015-01-01

    The Asian Monsoon leads to rapid vertical transport of gases and aerosols into the upper troposphere. Some of the pollution might be transported above cloud levels, which will allow it to spread globally and possibly at some occasions reach into the stratosphere. In this study we will use the GISS climate model to investigate the interactions between pollution and convective transport as well as secondary aerosol formation. Pollution resulting from anthropogenic activity as well as from natural sources such as small and large volcanic eruptions, dust storms and forest fires will be quantified. This modeling study will be accompanied by satellite observations from space that monitor aerosol optical thickness (AOT), and absorption AOT (AAOT) in two and three dimensions. Our goal is a better process level understanding of the evolution of natural and anthropogenic aerosol plumes in conjunction with the Asian Monsoon. Hence, we aim to explain their large-scale expansion, which eventually determines their impacts on climate.

  2. Connections between Pollution and the Asian Monsoon Circulation

    NASA Astrophysics Data System (ADS)

    Bauer, S.

    2015-12-01

    The Asian Monsoon leads to rapid vertical transport of gases and aerosols into the upper troposphere. Some of the pollution might be transported above cloud levels, which will allow it to spread globally and possibly at some occasions reach into the stratosphere. In this study we will use the GISS climate model to investigate the interactions between pollution and convective transport as well as secondary aerosol formation. Pollution resulting from anthropogenic activity as well as from natural sources such as small and large volcanic eruptions, dust storms and forest fires will be quantified. This modeling study will be accompanied by satellite observations from space that monitor aerosol optical thickness (AOT), and absorption AOT (AAOT) in two and three dimensions. Our goal is a better process level understanding of the evolution of natural and anthropogenic aerosol plumes in conjunction with the Asian Monsoon. Hence, we aim to explain their large-scale expansion, which eventually determines their impacts on climate.

  3. VizieR Online Data Catalog: 14 unusual IR transients with Spitzer (SPRITEs) (Kasliwal+, 2017)

    NASA Astrophysics Data System (ADS)

    Kasliwal, M. M.; Bally, J.; Masci, F.; Cody, A. M.; Bond, H. E.; Jencson, J. E.; Tinyanont, S.; Cao, Yi; Contreras, C.; Dykhoff, D. A.; Amodeo, S.; Armus, L.; Boyer, M.; Cantiello, M.; Carlon, R. L.; Cass, A. C.; Cook, D.; Corgan, D. T.; Faella, J.; Fox, O. D.; Green, W.; Gehrz, R. D.; Helou, G.; Hsiao, E.; Johansson, J.; Khan, R. M.; Lau, R. M.; Langer, N.; Levesque, E.; Milne, P.; Mohamed, S.; Morrell, N.; Monson, A.; Moore, A.; Ofek, E. O.; O'Sullivan, D.; Parthasarathy, M.; Perez, A.; Perley, D. A.; Phillips, M.; Prince, T. A.; Shenoy, D.; Smith, N.; Surace, J.; van Dyk, S. D.; Whitelock, P. A.; Williams, R.

    2017-11-01

    The SPitzer InfraRed Intensive Transients Survey (SPIRITS) survey uses the IRAC instrument (FoV 5'x5') on board the warm Spitzer telescope to search for IR transients at 3.6um ([3.6]) and 4.5um ([4.5]). SPIRITS is a five-year survey from 2014 to 2018 (Kasliwal+ 2013sptz.prop10136K, 2016sptz.prop13053K). We are undertaking concomitant ground-based surveys to monitor the SPIRITS galaxy sample in the near-IR and the optical at roughly a monthly cadence. At the University of Minnesota's Mt. Lemmon Observing Facility (MLOF), we use the three-channel Two Micron All Sky Survey cameras mounted on the 1.52m IR telescope. At Las Campanas, we undertake near-IR monitoring with the Retrocam on Dupont 100 inch telescope and optical monitoring using the CCD on the Swope 40 inch telescope. At Palomar, we use the Samuel Oschin 48 inch (primarily gr-band) and Palomar 60 inch telescopes (gri-bands) for optical monitoring. Using the LCOGT network, we obtain additional optical monitoring in gri-bands. In addition, a follow-up of discovered transients was undertaken by a myriad of facilities including Keck, Magellan, Palomar 200 inch, SALT, and RATIR. Following non-detections from the ground, we were able to set even deeper magnitude limits for two transients based on a small HST Director's Discretionary program (GO/DD-13935, PI H. Bond). We imaged SPIRITS 14aje (in M101) and SPIRITS 14axa (in M81) with the Wide Field Camera 3 (WFC3) in 2014 September. (5 data files).

  4. Small Business Innovations

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A Small Business Innovation Research (SBIR) contract resulted in a series of commercially available lasers, which have application in fiber optic communications, difference frequency generation, fiber optic sensing and general laboratory use. Developed under a Small Business Innovation Research (SBIR) contract, the Phase Doppler Particles Analyzer is a non-disruptive, highly accurate laser-based method of determining particle size, number density, trajectory, turbulence and other information about particles passing through a measurement probe volume. The system consists of an optical transmitter and receiver, signal processor and computer with data acquisition and analysis software. A variety of systems are offered for applications including spray characterization for paint, and agricultural and other sprays. The Microsizer, a related product, is used in medical equipment manufacturing and analysis of contained flows. High frequency components and subsystems produced by Millitech Corporation are marketed for both research and commercial use. These systems, which operate in the upper portion of the millimeter wave, resulted from a number of Small Business Innovation Research (SBIR) projects. By developing very high performance mixers and multipliers, the company has advanced the state of the art in sensitive receiver technology. Components are used in receivers and transceivers for monitoring chlorine monoxides, ozone, in plasma characterization and in material properties characterization.

  5. Flatland Photonics: Circumventing Diffraction with Planar Plasmonic Architectures

    NASA Astrophysics Data System (ADS)

    Dionne, Jennifer Anne

    On subwavelength scales, photon-matter interactions are limited by diffraction. The diffraction limit restricts the size of optical devices and the resolution of conventional microscopes to wavelength-scale dimensions, severely hampering our ability to control and probe subwavelength-scale optical phenomena. Circumventing diffraction is now a principle focus of integrated nanophotonics. Surface plasmons provide a particularly promising approach to sub-diffraction-limited photonics. Surface plasmons are hybrid electron-photon modes confined to the interface between conductors and transparent materials. Combining the high localization of electronic waves with the propagation properties of optical waves, plasmons can achieve extremely small mode wavelengths and large local electromagnetic field intensities. Through their unique dispersion, surface plasmons provide access to an enormous phase space of refractive indices and propagation constants that can be readily tuned with material or geometry. In this thesis, we explore both the theory and applications of dispersion in planar plasmonic architectures. Particular attention is given to the modes of metallic core and plasmon slot waveguides, which can span positive, near-zero, and even negative indices. We demonstrate how such basic plasmonic geometries can be used to develop a suite of passive and active plasmonic components, including subwavelength waveguides, color filters, negative index metamaterials, and optical MOS field effect modulators. Positive index modes are probed by near- and far-field techniques, revealing plasmon wavelengths as small as one-tenth of the excitation wavelength. Negative index modes are characterized through direct visualization of negative refraction. By fabricating prisms comprised of gold, silicon nitride, and silver multilayers, we achieve the first experimental demonstration of a negative index material at visible frequencies, with potential applications for sub-diffraction-limited microscopy and electromagnetic cloaking. We exploit this tunability of complex plasmon mode indices to create a compact metal-oxide-Si (MOS) field effect plasmonic modulator (or plasMOStor). By transforming the MOS gate oxide into an optical channel, amplitude modulation depths of 11.2 dB are achieved in device volumes as small as one one-fifth of a cubic wavelength. Our results indicate the accessibility of tunable refractive indices over a wide frequency band, facilitating design of a new materials class with extraordinary optical properties and applications.

  6. Multi-sensor field trials for detection and tracking of multiple small unmanned aerial vehicles flying at low altitude

    NASA Astrophysics Data System (ADS)

    Laurenzis, Martin; Hengy, Sebastien; Hommes, Alexander; Kloeppel, Frank; Shoykhetbrod, Alex; Geibig, Thomas; Johannes, Winfried; Naz, Pierre; Christnacher, Frank

    2017-05-01

    Small unmanned aerial vehicles (UAV) flying at low altitude are becoming more and more a serious threat in civilian and military scenarios. In recent past, numerous incidents have been reported where small UAV were flying in security areas leading to serious danger to public safety or privacy. The detection and tracking of small UAV is a widely discussed topic. Especially, small UAV flying at low altitude in urban environment or near background structures and the detection of multiple UAV at the same time is challenging. Field trials were carried out to investigate the detection and tracking of multiple UAV flying at low altitude with state of the art detection technologies. Here, we present results which were achieved using a heterogeneous sensor network consisting of acoustic antennas, small frequency modulated continuous wave (FMCW) RADAR systems and optical sensors. While acoustics, RADAR and LiDAR were applied to monitor a wide azimuthal area (360°) and to simultaneously track multiple UAV, optical sensors were used for sequential identification with a very narrow field of view.

  7. Fiber-optically sensorized composite wing

    NASA Astrophysics Data System (ADS)

    Costa, Joannes M.; Black, Richard J.; Moslehi, Behzad; Oblea, Levy; Patel, Rona; Sotoudeh, Vahid; Abouzeida, Essam; Quinones, Vladimir; Gowayed, Yasser; Soobramaney, Paul; Flowers, George

    2014-04-01

    Electromagnetic interference (EMI) immune and light-weight, fiber-optic sensor based Structural Health Monitoring (SHM) will find increasing application in aerospace structures ranging from aircraft wings to jet engine vanes. Intelligent Fiber Optic Systems Corporation (IFOS) has been developing multi-functional fiber Bragg grating (FBG) sensor systems including parallel processing FBG interrogators combined with advanced signal processing for SHM, structural state sensing and load monitoring applications. This paper reports work with Auburn University on embedding and testing FBG sensor arrays in a quarter scale model of a T38 composite wing. The wing was designed and manufactured using fabric reinforced polymer matrix composites. FBG sensors were embedded under the top layer of the composite. Their positions were chosen based on strain maps determined by finite element analysis. Static and dynamic testing confirmed expected response from the FBGs. The demonstrated technology has the potential to be further developed into an autonomous onboard system to perform load monitoring, SHM and Non-Destructive Evaluation (NDE) of composite aerospace structures (wings and rotorcraft blades). This platform technology could also be applied to flight testing of morphing and aero-elastic control surfaces.

  8. Current developments in optical engineering and diffraction phenomena; Proceedings of the Meeting, San Diego, CA, Aug. 21, 22, 1986

    NASA Astrophysics Data System (ADS)

    Fischer, Robert E.; Smith, Warren J.; Harvey, James

    1986-01-01

    Papers dealing with current materials for gradient-index optics, an intelligent data-base system for optical designers; tilted mirror systems; a null-lens design approach for centrally obscured components; the use of the vector aberration theory to optimize an unobscured optical system; multizone bifocal contact lens design; and the concentric meniscus element are presented. Topics discussed include optical manufacturing in the Far East; the optical performance of molded-glass lenses for optical memory applications; through-wafer optical interconnects for multiwafer wafer-scale integrated architecture; optical thin-flim monitoring using optical fibers; aerooptical testing; optical inspection; and a system analysis program for a 32K microcomputer. Consideration is given to various theories, algorithms, and applications of diffraction, a vector formulation of a ray-equivalent method for Gaussian beam propagation; Fourier optical analysis of aberrations in focused laser beams; holography and moire interferometry; and phase-conjugate optical correctors for diffraction-limited applications.

  9. On-chip infrared sensors: redefining the benefits of scaling

    NASA Astrophysics Data System (ADS)

    Kita, Derek; Lin, Hongtao; Agarwal, Anu; Yadav, Anupama; Richardson, Kathleen; Luzinov, Igor; Gu, Tian; Hu, Juejun

    2017-03-01

    Infrared (IR) spectroscopy is widely recognized as a gold standard technique for chemical and biological analysis. Traditional IR spectroscopy relies on fragile bench-top instruments located in dedicated laboratory settings, and is thus not suitable for emerging field-deployed applications such as in-line industrial process control, environmental monitoring, and point-of-care diagnosis. Recent strides in photonic integration technologies provide a promising route towards enabling miniaturized, rugged platforms for IR spectroscopic analysis. It is therefore attempting to simply replace the bulky discrete optical elements used in conventional IR spectroscopy with their on-chip counterparts. This size down-scaling approach, however, cripples the system performance as both the sensitivity of spectroscopic sensors and spectral resolution of spectrometers scale with optical path length. In light of this challenge, we will discuss two novel photonic device designs uniquely capable of reaping performance benefits from microphotonic scaling. We leverage strong optical and thermal confinement in judiciously designed micro-cavities to circumvent the thermal diffusion and optical diffraction limits in conventional photothermal sensors and achieve a record 104 photothermal sensitivity enhancement. In the second example, an on-chip spectrometer design with the Fellgett's advantage is analyzed. The design enables sub-nm spectral resolution on a millimeter-sized, fully packaged chip without moving parts.

  10. Africa-Wide Monitoring of Small Surface Water Bodies Using Multisource Satellite Data: A Monitoring System for FEWS NET

    NASA Astrophysics Data System (ADS)

    Velpuri, N. M.; Senay, G. B.; Rowland, J.; Budde, M. E.; Verdin, J. P.

    2015-12-01

    Continental Africa has the largest volume of water stored in wetlands, large lakes, reservoirs and rivers, yet it suffers with problems such as water availability and access. Furthermore, African countries are amongst the most vulnerable to the impact of natural hazards such as droughts and floods. With climate change intensifying the hydrologic cycle and altering the distribution and frequency of rainfall, the problem of water availability and access is bound to increase. The U.S Geological Survey Famine Early Warning Systems Network (FEWS NET), funded by the U.S. Agency for International Development, has initiated a large-scale project to monitor small to medium surface water bodies in Africa. Under this project, multi-source satellite data and hydrologic modeling techniques are integrated to monitor these water bodies in Africa. First, small water bodies are mapped using satellite data such as Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Landsat, and high resolution Google Earth imagery. Stream networks and watersheds for each water body are identified using Shuttle Radar Topography Mission (SRTM) digital elevation data. Finally, a hydrologic modeling approach that uses satellite-derived precipitation estimates and evapotranspiration data calculated from global data assimilation system climate parameters is applied to model water levels. This approach has been implemented to monitor nearly 300 small water bodies located in 10 countries in sub-Saharan Africa. Validation of modeled scaled depths with field-installed gauge data in East Africa demonstrated the ability of the model to capture both the spatial patterns and seasonal variations. Modeled scaled estimates captured up to 60% of the observed gauge variability with an average RMSE of 22%. Current and historic data (since 2001) on relative water level, precipitation, and evapotranspiration for each water body is made available in near real time. The water point monitoring network will be further expanded to cover other pastoral regions of sub-Saharan Africa. This project provides timely information on water availability that supports FEWS NET monitoring activities in Africa. Information on water availability produced in this study would further increase the resilience of local communities to floods and droughts.

  11. Performance evaluation of receive-diversity free-space optical communications over correlated Gamma-Gamma fading channels.

    PubMed

    Yang, Guowei; Khalighi, Mohammad-Ali; Ghassemlooy, Zabih; Bourennane, Salah

    2013-08-20

    The efficacy of spatial diversity in practical free-space optical communication systems is impaired by the fading correlation among the underlying subchannels. We consider in this paper the generation of correlated Gamma-Gamma random variables in view of evaluating the system outage probability and bit-error-rate under the condition of correlated fading. Considering the case of receive-diversity systems with intensity modulation and direct detection, we propose a set of criteria for setting the correlation coefficients on the small- and large-scale fading components based on scintillation theory. We verify these criteria using wave-optics simulations and further show through Monte Carlo simulations that we can effectively neglect the correlation corresponding to the small-scale turbulence in most practical systems, irrespective of the specific turbulence conditions. This has not been clarified before, to the best of our knowledge. We then present some numerical results to illustrate the effect of fading correlation on the system performance. Our conclusions can be generalized to the cases of multiple-beam and multiple-beam multiple-aperture systems.

  12. Predicting Intra-Urban Population Densities in Africa using SAR and Optical Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Linard, C.; Steele, J.; Forget, Y.; Lopez, J.; Shimoni, M.

    2017-12-01

    The population of Africa is predicted to double over the next 40 years, driving profound social, environmental and epidemiological changes within rapidly growing cities. Estimations of within-city variations in population density must be improved in order to take urban heterogeneities into account and better help urban research and decision making, especially for vulnerability and health assessments. Satellite remote sensing offers an effective solution for mapping settlements and monitoring urbanization at different spatial and temporal scales. In Africa, the urban landscape is covered by slums and small houses, where the heterogeneity is high and where the man-made materials are natural. Innovative methods that combine optical and SAR data are therefore necessary for improving settlement mapping and population density predictions. An automatic method was developed to estimate built-up densities using recent and archived optical and SAR data and a multi-temporal database of built-up densities was produced for 48 African cities. Geo-statistical methods were then used to study the relationships between census-derived population densities and satellite-derived built-up attributes. Best predictors were combined in a Random Forest framework in order to predict intra-urban variations in population density in any large African city. Models show significant improvement of our spatial understanding of urbanization and urban population distribution in Africa in comparison to the state of the art.

  13. Resolving the Circumstellar Environment of the Galactic B[e] Supergiant Star MWC 137 from Large to Small Scales

    NASA Astrophysics Data System (ADS)

    Kraus, Michaela; Liimets, Tiina; Cappa, Cristina E.; Cidale, Lydia S.; Nickeler, Dieter H.; Duronea, Nicolas U.; Arias, Maria L.; Gunawan, Diah S.; Oksala, Mary E.; Borges Fernandes, Marcelo; Maravelias, Grigoris; Curé, Michel; Santander-García, Miguel

    2017-11-01

    The Galactic object MWC 137 has been suggested to belong to the group of B[e] supergiants. However, with its large-scale optical bipolar ring nebula and high-velocity jet and knots, it is a rather atypical representative of this class. We performed multiwavelength observations spreading from the optical to the radio regimes. Based on optical imaging and long-slit spectroscopic data, we found that the northern parts of the large-scale nebula are predominantly blueshifted, while the southern regions appear mostly redshifted. We developed a geometrical model consisting of two double cones. Although various observational features can be approximated with such a scenario, the observed velocity pattern is more complex. Using near-infrared integral-field unit spectroscopy, we studied the hot molecular gas in the vicinity of the star. The emission from the hot CO gas arises in a small-scale disk revolving around the star on Keplerian orbits. Although the disk itself cannot be spatially resolved, its emission is reflected by the dust arranged in arc-like structures and the clumps surrounding MWC 137 on small scales. In the radio regime, we mapped the cold molecular gas in the outskirts of the optical nebula. We found that large amounts of cool molecular gas and warm dust embrace the optical nebula in the east, south, and west. No cold gas or dust was detected in the north and northwestern regions. Despite the new insights into the nebula kinematics gained from our studies, the real formation scenario of the large-scale nebula remains an open issue. Based on observations collected with (1) the ESO VLT Paranal Observatory under programs 094.D-0637(B) and 097.D-0033(A), (2) the MPG 2.2 m telescope at La Silla Observatory, Chile, under programs 096.A-9030(A) and 096.A-9039(A), (3) the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), under program GN-2013B-Q-11, (4) the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias, (5) the APEX telescope under the program CHILE-9711B-2016. APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Observatory, and (6) the Perek 2 m telescope at Ondřejov Observatory, Czech Republic.

  14. A Toolbox of Metrology-Based Techniques for Optical System Alignment

    NASA Technical Reports Server (NTRS)

    Coulter, Phillip; Ohl, Raymond G.; Blake, Peter N.; Bos, Brent J.; Casto, Gordon V.; Eichhorn, William L.; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hagopian, John G.; Hayden, Joseph E.; hide

    2016-01-01

    The NASA Goddard Space Flight Center (GSFC) and its partners have broad experience in the alignment of flight optical instruments and spacecraft structures. Over decades, GSFC developed alignment capabilities and techniques for a variety of optical and aerospace applications. In this paper, we provide an overview of a subset of the capabilities and techniques used on several recent projects in a toolbox format. We discuss a range of applications, from small-scale optical alignment of sensors to mirror and bench examples that make use of various large-volume metrology techniques. We also discuss instruments and analytical tools.

  15. A Toolbox of Metrology-Based Techniques for Optical System Alignment

    NASA Technical Reports Server (NTRS)

    Coulter, Phillip; Ohl, Raymond G.; Blake, Peter N.; Bos, Brent J.; Eichhorn, William L.; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hagopian, John G.; Hayden, Joseph E.; Hetherington, Samuel E.; hide

    2016-01-01

    The NASA Goddard Space Flight Center (GSFC) and its partners have broad experience in the alignment of flight optical instruments and spacecraft structures. Over decades, GSFC developed alignment capabilities and techniques for a variety of optical and aerospace applications. In this paper, we provide an overview of a subset of the capabilities and techniques used on several recent projects in a "toolbox" format. We discuss a range of applications, from small-scale optical alignment of sensors to mirror and bench examples that make use of various large-volume metrology techniques. We also discuss instruments and analytical tools.

  16. Monitoring soil water dynamics at 0.1-1000 m scales using active DTS: the MOISST experience

    NASA Astrophysics Data System (ADS)

    Sayde, C.; Moreno, D.; Legrand, C.; Dong, J.; Steele-Dunne, S. C.; Ochsner, T. E.; Selker, J. S.

    2014-12-01

    The Actively Heated Fiber Optics (AHFO) method can measure soil water content at high temporal (<1hr) and spatial (every 0.25 m) resolutions along buried fiber optics (FO) cables multiple kilometers in length. As observed by Sayde et al. 2014, this unprecedented density of measurements captures soil water dynamics over four orders of magnitude in spatial scale (0.1-1000 m), bridging the gap between point scale measurements and large scale remote sensing. 4900 m of FO sensing cables were installed at the MOISST experimental site in Stillwater, Ok. The FO cables were deployed at 3 depths: 5, 10, and 15 cm. In this system the FO sensing system provides measurements of soil moisture at >39,000 locations simultaneously for each heat pulse. Six soil monitoring stations along the fiber optic path were installed to provide additional validation and calibration of the AHFO data. Gravimetric soil moisture and soil thermal samplings were performed periodically to provide additional distributed validation and calibration of the DTS data. In this work we present the preliminary results of this experiment. We will also address the experience learned from this large scale deployment of the AHFO method. In particular, we will present the in-situ soil moisture calibration method developed to tackle the calibration challenges associated with the high spatial heterogeneity of the soil physical and thermal properties. The material is based upon work supported by NASA under award NNX12AP58G, with equipment and assistance also provided by CTEMPs.org with support from the National Science Foundation under Grant Number 1129003. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NASA or the National Science Foundation. Sayde, C., J. Benitez Buelga, L. Rodriguez-Sinobas, L. El Khoury, M. English, N. van de Giesen, and J.S. Selker (2014). Mapping Variability of Soil Water Content and Flux across 1-1,000 m scales using the Actively Heated Fiber Optic Method, Accepted for publication in Water Resour. Res.

  17. 40 CFR Appendix D to Part 58 - Network Design Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... residential district. In this case, one location is representative of a neighborhood of small scale sites and... least one of the required FRM/FEM/ARM monitors is itself a continuous FEM or ARM monitor in which case... studies. 4.7.5Special Network Considerations Required When Using PM2.5 Spatial Averaging Approaches. (a...

  18. 40 CFR Appendix D to Part 58 - Network Design Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... residential district. In this case, one location is representative of a neighborhood of small scale sites and... least one of the required FRM/FEM/ARM monitors is itself a continuous FEM or ARM monitor in which case... studies. 4.7.5Special Network Considerations Required When Using PM2.5 Spatial Averaging Approaches. (a...

  19. 40 CFR Appendix D to Part 58 - Network Design Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... residential district. In this case, one location is representative of a neighborhood of small scale sites and... least one of the required FRM/FEM/ARM monitors is itself a continuous FEM or ARM monitor in which case... studies. 4.7.5Special Network Considerations Required When Using PM2.5 Spatial Averaging Approaches. (a...

  20. Wireless Sensor Networks for Oceanographic Monitoring: A Systematic Review

    PubMed Central

    Albaladejo, Cristina; Sánchez, Pedro; Iborra, Andrés; Soto, Fulgencio; López, Juan A.; Torres, Roque

    2010-01-01

    Monitoring of the marine environment has come to be a field of scientific interest in the last ten years. The instruments used in this work have ranged from small-scale sensor networks to complex observation systems. Among small-scale networks, Wireless Sensor Networks (WSNs) are a highly attractive solution in that they are easy to deploy, operate and dismantle and are relatively inexpensive. The aim of this paper is to identify, appraise, select and synthesize all high quality research evidence relevant to the use of WSNs in oceanographic monitoring. The literature is systematically reviewed to offer an overview of the present state of this field of study and identify the principal resources that have been used to implement networks of this kind. Finally, this article details the challenges and difficulties that have to be overcome if these networks are to be successfully deployed. PMID:22163583

  1. Micro/Nanofibre Optical Sensors: Challenges and Prospects

    PubMed Central

    Tong, Limin

    2018-01-01

    Micro/nanofibres (MNFs) are optical fibres with diameters close to or below the vacuum wavelength of visible or near-infrared light. Due to its wavelength- or sub-wavelength scale diameter and relatively large index contrast between the core and cladding, an MNF can offer engineerable waveguiding properties including optical confinement, fractional evanescent fields and surface intensity, which is very attractive to optical sensing on the micro and nanometer scale. In particular, the waveguided low-loss tightly confined large fractional evanescent fields, enabled by atomic level surface roughness and extraordinary geometric and material uniformity in a glass MNF, is one of its most prominent merits in realizing optical sensing with high sensitivity and great versatility. Meanwhile, the mesoporous matrix and small diameter of a polymer MNF, make it an excellent host fibre for functional materials for fast-response optical sensing. In this tutorial, we first introduce the basics of MNF optics and MNF optical sensors, and review the progress and current status of this field. Then, we discuss challenges and prospects of MNF sensors to some extent, with several clues for future studies. Finally, we conclude with a brief outlook for MNF optical sensors.

  2. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J.; Börner, K.

    2015-12-15

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steelmore » samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, M; Kim, T; Kang, S

    Purpose: The purpose of this work is to develop a new patient set-up monitoring system using force sensing resistor (FSR) sensors that can confirm pressure of contact surface and evaluate its feasibility. Methods: In this study, we focused on develop the patient set-up monitoring system to compensate for the limitation of existing optical based monitoring system, so the developed system can inform motion in the radiation therapy. The set-up monitoring system was designed consisting of sensor units (FSR sensor), signal conditioning devices (USB cable/interface electronics), a control PC, and a developed analysis software. The sensor unit was made by attachingmore » FSR sensor and dispersing pressure sponge to prevent error which is caused by concentrating specific point. Measured signal from the FSR sensor was sampled to arduino mega 2560 microcontroller, transferred to control PC by using serial communication. The measured data went through normalization process. The normalized data was displayed through the developed graphic user interface (GUI) software. The software was designed to display a single sensor unit intensity (maximum 16 sensors) and display 2D pressure distribution (using 16 sensors) according to the purpose. Results: Changes of pressure value according to motion was confirmed by the developed set-up monitoring system. Very small movement such as little physical change in appearance can be confirmed using a single unit and using 2D pressure distribution. Also, the set-up monitoring system can observe in real time. Conclusion: In this study, we developed the new set-up monitoring system using FSR sensor. Especially, we expect that the new set-up monitoring system is suitable for motion monitoring of blind area that is hard to confirm existing optical system and compensate existing optical based monitoring system. As a further study, an integrated system will be constructed through correlation of existing optical monitoring system. This work was supported by the Industrial R&D program of MOTIE/KEIT. [10048997, Development of the core technology for integrated therapy devices based on real-time MRI guided tumor tracking] and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less

  4. Time-resolved forward-light-scattering monitoring of protein–lysozyme aggregation in precrystalline solutions

    NASA Astrophysics Data System (ADS)

    Wakamatsu, Takashi; Onoda, Takashi; Ogata, Makoto

    2018-05-01

    An in situ measurement method of monitoring protein aggregation in precrystalline solutions is presented. The method is based on a small-angle forward static light scattering (F-SLS) technique. This technique uses an accurate optical arrangement of a combination of a collimating lens and a CCD to obtain an F-SLS pattern from an aggregate-containing protein solution in one shot. The real-time observation of a crystallizing lysozyme captured the formation of fractal aggregates in the initial formation stage.

  5. Imaging mouse cerebellum with serial optical coherence scanner (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Chao J.; Williams, Kristen; Orr, Harry; Taner, Akkin

    2017-02-01

    We present the serial optical coherence scanner (SOCS), which consists of a polarization sensitive optical coherence tomography and a vibratome with associated controls for serial imaging, to visualize the cerebellum and adjacent brainstem of mouse. The cerebellar cortical layers and white matter are distinguished by using intrinsic optical contrasts. Images from serial scans reveal the large-scale anatomy in detail and map the nerve fiber pathways in the cerebellum and adjacent brainstem. The optical system, which has 5.5 μm axial resolution, utilizes a scan lens or a water-immersion microscope objective resulting in 10 μm or 4 μm lateral resolution, respectively. The large-scale brain imaging at high resolution requires an efficient way to collect large datasets. It is important to improve the SOCS system to deal with large-scale and large number of samples in a reasonable time. The imaging and slicing procedure for a section took about 4 minutes due to a low speed of the vibratome blade to maintain slicing quality. SOCS has potential to investigate pathological changes and monitor the effects of therapeutic drugs in cerebellar diseases such as spinocerebellar ataxia 1 (SCA1). The SCA1 is a neurodegenerative disease characterized by atrophy and eventual loss of Purkinje cells from the cerebellar cortex, and the optical contrasts provided by SOCS is being evaluated for biomarkers of the disease.

  6. A short baseline strainmeter using fiber-optic Bragg-Grating (FBG) sensor and a nano-optic interferometer

    NASA Astrophysics Data System (ADS)

    Coutant, O.; Demengin, M.; Le Coarer, E.; Gaffet, S.

    2013-12-01

    Strain recordings from tiltmeters or borehole volumetric strainmeters on volcanoes reveal extremely rich signal of deformation associated with eruptive processes. The ability to detect and record signals of the order of few tens of nanostrain is complementary to other monitoring techniques, and of great interest to monitor and model the volcanic processes. Strain recording remains however a challenge, for both the instrumental and the installation point of view. We present in this study the first results of strain recordings, using a new fiber-optic Bragg-Grating (FBG) sensor. FBG sensors are known for many years and used as strain gauges in civil engineering. They are however limited in this case to microstrain capability. We use here a newly developped interferometer named SWIFTS whose main characteristics are i) an extremely high optical wavelength precision and ii) a small design and low power requirements allowing an easy field deployment. Our FBG sensor uses a short baseline, 3cm long Bragg network. We show preliminary results obtained from a several months recordings in the low noise underground laboratory at Rustrel (LSBB), south of France.

  7. Development of a standardized differential-reflective bioassay for microbial pathogens

    NASA Astrophysics Data System (ADS)

    Wilhelm, Jay; Auld, J. R. X.; Smith, James E.

    2008-04-01

    This research examines standardizing a method for the rapid/semi-automated identification of microbial contaminates. It introduces a method suited to test for food/water contamination, serology, urinalysis and saliva testing for any >1 micron sized molecule that can be effectively bound to an identifying marker with exclusivity. This optical biosensor method seeks to integrate the semi-manual distribution of a collected sample onto a "transparent" substrate array of binding sites that will then be applied to a standard optical data disk and run for analysis. The detection of most microbe species is possible in this platform because the relative scale is greater than the resolution of the standard-scale digital information on a standard CD or DVD. This paper explains the critical first stage in the advance of this detection concept. This work has concentrated on developing the necessary software component needed to perform highly sensitive small-scale recognition using the standard optical disk as a detection platform. Physical testing has made significant progress in demonstrating the ability to utilize a standard optical drive for the purposes of micro-scale detection through the exploitation of CIRC error correction. Testing has also shown a definable trend in the optimum scale and geometry of micro-arrayed attachment sites for the technology's concept to reach achievement.

  8. Multi-epoch intranight optical monitoring of eight radio-quiet BL Lac candidates

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Gopal-Krishna; Stalin, C. S.; Chand, H.; Srianand, R.; Petitjean, P.

    2017-10-01

    For a new sample of eight weak-line quasars (WLQs) we report a sensitive search in 20 intranight monitoring sessions, for blazar-like optical flux variations on hour-like and longer time-scale (day/month/year-like). The sample consists exclusively of the WLQs that are not radio-loud and either have been classified as 'radio-weak probable BL Lac candidates' and/or are known to have exhibited at least one episode of large, blazar-like optical variability. Whereas only a hint of intranight variability is seen for two of these WLQs, J104833.5+620305.0 (z = 0.219) and J133219.6+622715.9 (z = 3.15), statistically significant internight variability at a few per cent level is detected for three of the sources, including the radio-intermediate WLQ J133219.6+622715.9 (z = 3.15) and the well-known bona fide radio-quiet WLQs J121221.5+534128.0 (z = 3.10) and WLQ J153259.9-003944.1 (z = 4.62). In the rest frame, this variability is intraday and in the far-ultraviolet band. On the time-scale of a decade, we find for three of the WLQs large brightness changes, amounting to 1.655 ± 0.009, 0.163 ± 0.010 and 0.144 ± 0.018 mag, for J104833.5+620305.0, J123743.1+630144.9 and J232428.4+144324.4, respectively. Whereas the latter two are confirmed radio-quiet WLQs, the extragalactic nature of J104833.5+620305.0 remains to be well established, thanks to the absence of any feature(s) in its available optical spectra. This study forms a part of our ongoing campaign of intranight optical monitoring of radio-quiet WLQs, in order to improve the understanding of this enigmatic class of active galactic nuclei and to look among them for a possible tiny, elusive population of radio-quiet BL Lacs.

  9. Spectro-Imaging Polarimetry of the Local Corona During Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Qu, Z. Q.; Dun, G. T.; Chang, L.; Murray, G.; Cheng, X. M.; Zhang, X. Y.; Deng, L. H.

    2017-02-01

    Results are presented from spectro-imaging polarimetry of radiation from the local solar corona during the 2013 total solar eclipse in Gabon. This polarimetric observation was performed from 516.3 nm to 532.6 nm using a prototype Fiber Arrayed Solar Optical Telescope (FASOT). A polarimetric noise level on the order of 10^{-3} results from a reduced polarimetric optical switching demodulation (RPOSD) procedure for data reduction. It is revealed that the modality of fractional linear polarization profiles of the green coronal line shows a diversity, which may indicate complex mechanisms. The polarization degree can approach 3.2 % above the continuum polarization level on a scale of 1500 km, and the nonuniform spatial distribution in amplitude and polarization direction is found even within a small field of view of 7500 km. All of this implies that the coronal polarization is highly structured and complex even on a small scale.

  10. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller.

    PubMed

    Soons, Zita I T A; van den IJssel, Jan; van der Pol, Leo A; van Straten, Gerrit; van Boxtel, Anton J B

    2009-04-01

    This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst others the headspace and tubing to the analyzer. These gas phase dynamics are modelled using knowledge of the system in order to reconstruct oxygen consumption. The second aspect is to evaluate performance of the monitoring and control system with the required modifications of the oxygen consumption calculation on pilot-scale. In pilot-scale fed-batch cultivation good monitoring and control performance is obtained enabling a doubled concentration of bulk vaccine compared to standard batch production.

  11. Bottom-up production of meta-atoms for optical magnetism in visible and NIR light

    NASA Astrophysics Data System (ADS)

    Barois, Philippe; Ponsinet, Virginie; Baron, Alexandre; Richetti, Philippe

    2018-02-01

    Many unusual optical properties of metamaterials arise from the magnetic response of engineered structures of sub-wavelength size (meta-atoms) exposed to light. The top-down approach whereby engineered nanostructure of well-defined morphology are engraved on a surface proved to be successful for the generation of strong optical magnetism. It faces however the limitations of high cost and small active area in visible light where nanometre resolution is needed. The bottom-up approach whereby the fabrication metamaterials of large volume or large area results from the combination of nanochemitry and self-assembly techniques may constitute a cost-effective alternative. This approach nevertheless requires the large-scale production of functional building-blocks (meta-atoms) bearing a strong magnetic optical response. We propose in this paper a few tracks that lead to the large scale synthesis of magnetic metamaterials operating in visible or near IR light.

  12. Radiometric & Geometric normalization of Sentinel optical data and VHR data to build-up time-series, an example in Tonga for the monitoring of mangrove health vs. climate change

    NASA Astrophysics Data System (ADS)

    Serra, Romain; Valette, Anne; Taji, Amine; Emsley, Stephen

    2017-04-01

    Building climate resilience (i.e. climate change adaptation or self-renew of ecosystems) or planning environment rehabilitations and nature-based solutions to address their vulnerabilities to disturbances has prerequisites: 1- identify the disorder, i.e. stresses caused by events such as hurricanes, tsunamis, heavy rains, hailstone falls, smog… or piled-up along-time such as warming, rainfalls, ocean acidification, soil salinization… and measured by trends; and 2- qualify its impact on the ecosystems, i.e. the resulting strains. Mitigation of threats is accordingly twofold, i. on locally temporal scales for protection, ii. on long scale for prevention and sustainability. For assessment and evaluation prior to design future scenarios, it requires concomitant acquisition of (a) climate data at global and local spatial scale which describe the changes at the various temporal scales of phenomena without signal aliasing, and of (b) the ecosystems' status at the scales of the forcing and of relaxation times, hysteresis lags, periodicities of orbits in chaotic systems, shifts from one attractor in ecosystems to the others, etc. Dissociating groups of timescales and spatial scales facilitates the analysis and help set-up monitoring schemes. The Sentinel-2 mission, with a revisit of the earth every few days and a 10m resolution on-ground is a good automatic spectro-analytical monitoring system because detecting changes in numerous optical & IR bands at proper spatial scales for the description of land parcels. Combined with photo-interpreted VHR data which describe the environment more crudely but with high precision of land parcels' border locations, it helps find the relationship between stress and strains to empirically understand the relationships. An example is provided for Tonga, courtesy of ESA support and ADB request, with a focus on time-series' consistency that requires radiometric and geometric normalisation of EO data sets. Methodologies have been developed in the frame of ESA programs and EC program (H2020 Co-Resyf).

  13. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care

    NASA Astrophysics Data System (ADS)

    Chen, Lisa Y.; Tee, Benjamin C.-K.; Chortos, Alex L.; Schwartz, Gregor; Tse, Victor; J. Lipomi, Darren; Wong, H.-S. Philip; McConnell, Michael V.; Bao, Zhenan

    2014-10-01

    Continuous monitoring of internal physiological parameters is essential for critical care patients, but currently can only be practically achieved via tethered solutions. Here we report a wireless, real-time pressure monitoring system with passive, flexible, millimetre-scale sensors, scaled down to unprecedented dimensions of 1 × 1 × 0.1 cubic millimeters. This level of dimensional scaling is enabled by novel sensor design and detection schemes, which overcome the operating frequency limits of traditional strategies and exhibit insensitivity to lossy tissue environments. We demonstrate the use of this system to capture human pulse waveforms wirelessly in real time as well as to monitor in vivo intracranial pressure continuously in proof-of-concept mice studies using sensors down to 2.5 × 2.5 × 0.1 cubic millimeters. We further introduce printable wireless sensor arrays and show their use in real-time spatial pressure mapping. Looking forward, this technology has broader applications in continuous wireless monitoring of multiple physiological parameters for biomedical research and patient care.

  14. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care.

    PubMed

    Chen, Lisa Y; Tee, Benjamin C-K; Chortos, Alex L; Schwartz, Gregor; Tse, Victor; Lipomi, Darren J; Wong, H-S Philip; McConnell, Michael V; Bao, Zhenan

    2014-10-06

    Continuous monitoring of internal physiological parameters is essential for critical care patients, but currently can only be practically achieved via tethered solutions. Here we report a wireless, real-time pressure monitoring system with passive, flexible, millimetre-scale sensors, scaled down to unprecedented dimensions of 1 × 1 × 0.1 cubic millimeters. This level of dimensional scaling is enabled by novel sensor design and detection schemes, which overcome the operating frequency limits of traditional strategies and exhibit insensitivity to lossy tissue environments. We demonstrate the use of this system to capture human pulse waveforms wirelessly in real time as well as to monitor in vivo intracranial pressure continuously in proof-of-concept mice studies using sensors down to 2.5 × 2.5 × 0.1 cubic millimeters. We further introduce printable wireless sensor arrays and show their use in real-time spatial pressure mapping. Looking forward, this technology has broader applications in continuous wireless monitoring of multiple physiological parameters for biomedical research and patient care.

  15. Review of the outer scale of the atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Ziad, Aziz

    2016-07-01

    Outer scale is a relevant parameter for the experimental performance evaluation of large telescopes. Different techniques have been used for the outer scale estimation. In situ measurements with radiosounding balloons have given very small values of outer scale. This latter has also been estimated directly at the ground level from the wavefront analysis with High Angular Resolution (HAR) techniques using interferometric or Shack-Hartmann or more generally AO systems data. Dedicated instruments have been also developed for the outer scale monitoring such as the Generalized Seeing Monitor (GSM) and the Monitor of Outer Scale Profile (MOSP). The measured values of outer scale from HAR techniques, GSM and MOSP are somewhat coherent and are larger than the in situ results. The main explanation of this difference comes from the definition of the outer scale itself. This paper aims to give a review in a non-exhaustive way of different techniques and instruments for the measurement of the outer scale. Comparisons of outer scale measurements will be discussed in the light of the different definitions of this parameter, the associated observable quantities and the atmospheric turbulence model as well.

  16. Constraining the optical depth of galaxies and velocity bias with cross-correlation between the kinetic Sunyaev-Zeldovich effect and the peculiar velocity field

    NASA Astrophysics Data System (ADS)

    Ma, Yin-Zhe; Gong, Guo-Dong; Sui, Ning; He, Ping

    2018-03-01

    We calculate the cross-correlation function < (Δ T/T)({v}\\cdot \\hat{n}/σ _v) > between the kinetic Sunyaev-Zeldovich (kSZ) effect and the reconstructed peculiar velocity field using linear perturbation theory, with the aim of constraining the optical depth τ and peculiar velocity bias of central galaxies with Planck data. We vary the optical depth τ and the velocity bias function bv(k) = 1 + b(k/k0)n, and fit the model to the data, with and without varying the calibration parameter y0 that controls the vertical shift of the correlation function. By constructing a likelihood function and constraining the τ, b and n parameters, we find that the quadratic power-law model of velocity bias, bv(k) = 1 + b(k/k0)2, provides the best fit to the data. The best-fit values are τ = (1.18 ± 0.24) × 10-4, b=-0.84^{+0.16}_{-0.20} and y0=(12.39^{+3.65}_{-3.66})× 10^{-9} (68 per cent confidence level). The probability of b > 0 is only 3.12 × 10-8 for the parameter b, which clearly suggests a detection of scale-dependent velocity bias. The fitting results indicate that the large-scale (k ≤ 0.1 h Mpc-1) velocity bias is unity, while on small scales the bias tends to become negative. The value of τ is consistent with the stellar mass-halo mass and optical depth relationship proposed in the literature, and the negative velocity bias on small scales is consistent with the peak background split theory. Our method provides a direct tool for studying the gaseous and kinematic properties of galaxies.

  17. Micro-satellites (~ 50 kg) for the fundamental and applied science. Capacity building for Russian Academy of Sciences

    NASA Astrophysics Data System (ADS)

    Zelenyi, Lev; Rodin, V.; Gurevich, A.; Alferov, A.; Getsov, P.

    Design and manufacturing of micro-satellite ( 50 kg) platforms for the fundamental and applied research of the Earth and near-earth outer space is a problem which is complex both scientifically and technically. Main point is to define the scientific task which could be effectively solved by micro-satellite instrumentation. It is necessary also to carry out an integral approach in the course of the spacecraft development: find methods to introduce the contemporary technological-design, use the achievements of advanced physical instrument manufacturing , microelectronics and micromechanics. Technical solutions should provide the required accuracy of spacecraft orientation and stabilization. Space Research and Physical Institutes RAS with participation of Moscow University developed the model composition and technical design of micro satellite "CHIBIS" (small bird LAPWING in Russian) with two options for scientific payload: A. The complex of scientific instruments N1 for the monitoring of Global warming and the electromagnetic environment of the Earth: spectrometer for measurements of the total content of greenhouse gases (CO2 and CH4); optical camera (spatial resolution 300 m); lowfrequency flux-gate magnetometer (DC - 64 Hz); high-frequency search-coil magnetometer (0.1 - 40 kHz); analyzer of the electromagnetic emissions (0.1 - 40 kHz); detector of ionospheric plasma. B. The complex of scientific instruments N2 for investigation of fine scale physics of lightning discharges: X-ray - gamma detector (range of X-ray and gamma emission - 50-500 keV); UV detector (range UV - emission - 300-450 nm); radiofrequency analyzer (20 - 50 MHz); optical camera. Spacecraft manufacturing and scientific experiments are prepared mostly by the institutes of Russian academy of sciences without traditional involvement of large scale space industry. So this activity serves as a substantial driver of Academic capacity building for the independent research of space science problems. Further extension of this program is planned now to be within the framework of collaboration between Russian and Bulgarian Academies of Sciences on "BalkanSat" project. Recently ((3/7 -09-2007) special international workshop on the Use of Micro-Satellite Technologies for Environmental Monitoring and Impact to Human Health was held by United Nations, IKI , RAS and ESA in the small city TARUSA near Moscow. Proceedings are available at http://www.iki.rssi.ru/ This work was partially supported of the RFBR grants 06-02-08076 and 06-02-08244

  18. A deep X-ray view of the bare AGN Ark 120. III. X-ray timing analysis and multiwavelength variability

    NASA Astrophysics Data System (ADS)

    Lobban, A. P.; Porquet, D.; Reeves, J. N.; Markowitz, A.; Nardini, E.; Grosso, N.

    2018-03-01

    We present the spectral/timing properties of the bare Seyfert galaxy Ark 120 through a deep ˜420 ks XMM-Newton campaign plus recent NuSTAR observations and a ˜6-month Swift monitoring campaign. We investigate the spectral decomposition through fractional rms, covariance and difference spectra, finding the mid- to long-time-scale (˜day-year) variability to be dominated by a relatively smooth, steep component, peaking in the soft X-ray band. Additionally, we find evidence for variable Fe K emission redward of the Fe Kα core on long time-scales, consistent with previous findings. We detect a clearly defined power spectrum which we model with a power law with a slope of α ˜ 1.9. By extending the power spectrum to lower frequencies through the inclusion of Swift and Rossi X-ray Timing Explorer data, we find tentative evidence of a high-frequency break, consistent with existing scaling relations. We also explore frequency-dependent Fourier time lags, detecting a negative (`soft') lag for the first time in this source with the 0.3-1 keV band lagging behind the 1-4 keV band with a time delay, τ, of ˜900 s. Finally, we analyse the variability in the optical and ultraviolet (UV) bands using the Optical/UV Monitor onboard XMM-Newton and the Ultra-Violet/Optical Telescope onboard Swift and search for time-dependent correlations between the optical/UV/X-ray bands. We find tentative evidence for the U-band emission lagging behind the X-rays with a time delay of τ = 2.4 ± 1.8 d, which we discuss in the context of disc reprocessing.

  19. Scaling device for photographic images

    NASA Technical Reports Server (NTRS)

    Rivera, Jorge E. (Inventor); Youngquist, Robert C. (Inventor); Cox, Robert B. (Inventor); Haskell, William D. (Inventor); Stevenson, Charles G. (Inventor)

    2005-01-01

    A scaling device projects a known optical pattern into the field of view of a camera, which can be employed as a reference scale in a resulting photograph of a remote object, for example. The device comprises an optical beam projector that projects two or more spaced, parallel optical beams onto a surface of a remotely located object to be photographed. The resulting beam spots or lines on the object are spaced from one another by a known, predetermined distance. As a result, the size of other objects or features in the photograph can be determined through comparison of their size to the known distance between the beam spots. Preferably, the device is a small, battery-powered device that can be attached to a camera and employs one or more laser light sources and associated optics to generate the parallel light beams. In a first embodiment of the invention, a single laser light source is employed, but multiple parallel beams are generated thereby through use of beam splitting optics. In another embodiment, multiple individual laser light sources are employed that are mounted in the device parallel to one another to generate the multiple parallel beams.

  20. Groundwater recharge from point to catchment scale

    NASA Astrophysics Data System (ADS)

    Leterme, Bertrand; Di Ciacca, Antoine; Laloy, Eric; Jacques, Diederik

    2016-04-01

    Accurate estimation of groundwater recharge is a challenging task as only a few devices (if any) can measure it directly. In this study, we discuss how groundwater recharge can be calculated at different temporal and spatial scales in the Kleine Nete catchment (Belgium). A small monitoring network is being installed, that is aimed to monitor the changes in dominant processes and to address data availability as one goes from the point to the catchment scale. At the point scale, groundwater recharge is estimated using inversion of soil moisture and/or water potential data and stable isotope concentrations (Koeniger et al. 2015). At the plot scale, it is proposed to monitor the discharge of a small drainage ditch in order to calculate the field groundwater recharge. Electrical conductivity measurements are necessary to separate shallow from deeper groundwater contribution to the ditch discharge (see Di Ciacca et al. poster in session HS8.3.4). At this scale, two or three-dimensional process-based vadose zone models will be used to model subsurface flow. At the catchment scale though, using a mechanistic, process-based model to estimate groundwater recharge is debatable (because of, e.g., the presence of numerous drainage ditches, mixed land use pixels, etc.). We therefore investigate to which extent various types of surrogate models can be used to make the necessary upscaling from the plot scale to the scale of the whole Kleine Nete catchment. Ref. Koeniger P, Gaj M, Beyer M, Himmelsbach T (2015) Review on soil water isotope based groundwater recharge estimations. Hydrological Processes, DOI: 10.1002/hyp.10775

  1. Monitoring land at regional and national scales and the role of remote sensing

    NASA Astrophysics Data System (ADS)

    Dymond, John R.; Bégue, Agnes; Loseen, Danny

    There is a need world wide for monitoring land and its ecosystems to ensure their sustainable use. Despite the laudable intentions of Agenda 21 at the Rio Earth Summit, 1992, in which many countries agreed to monitor and report on the status of their land, systematic monitoring of land has yet to begin. The problem is truly difficult, as the earth's surface is vast and the funds available for monitoring are relatively small. This paper describes several methods for cost-effective monitoring of large land areas, including: strategic monitoring; statistical sampling; risk-based approaches; integration of land and water monitoring; and remote sensing. The role of remote sensing is given special attention, as it is the only method that can monitor land exhaustively and directly, at regional and national scales. It is concluded that strategic monitoring, whereby progress towards environmental goals is assessed, is a vital element in land monitoring as it provides a means for evaluating the utility of monitoring designs.

  2. Mixed-mode VLSI optic flow sensors for micro air vehicles

    NASA Astrophysics Data System (ADS)

    Barrows, Geoffrey Louis

    We develop practical, compact optic flow sensors. To achieve the desired weight of 1--2 grams, mixed-mode and mixed-signal VLSI techniques are used to develop compact circuits that directly perform computations necessary to measure optic flow. We discuss several implementations, including a version fully integrated in VLSI, and several "hybrid sensors" in which the front end processing is performed with an analog chip and the back end processing is performed with a microcontroller. We extensively discuss one-dimensional optic flow sensors based on the linear competitive feature tracker (LCFT) algorithm. Hardware implementations of this algorithm are shown able to measure visual motion with contrast levels on the order of several percent. We argue that the development of one-dimensional optic flow sensors is therefore reduced to a problem of engineering. We also introduce two related two-dimensional optic flow algorithms that are amenable to implementation in VLSI. This includes the planar competitive feature tracker (PCFT) algorithm and the trajectory method. These sensors are being developed to solve small-scale navigation problems in micro air vehicles, which are autonomous aircraft whose maximum dimension is on the order of 15 cm. We obtain a proof-of-principle of small-scale navigation by mounting a prototype sensor onto a toy glider and programming the sensor to control a rudder or an elevator to affect the glider's path during flight. We demonstrate the determination of altitude by measuring optic flow in the downward direction. We also demonstrate steering to avoid a collision with a wall, when the glider is tossed towards the wall at a shallow angle, by measuring the optic flow in the direction of the glider's left and right side.

  3. Toward High-Energy-Density, High-Efficiency, and Moderate-Temperature Chip-Scale Thermophotovoltaics

    DTIC Science & Technology

    2013-04-02

    this architecture include concentrated solar photovoltaics , thermoelectrics , and fuel cells. System Testing. Themicroreactorwas ignitedbyhydrogen...2, 3), thermoelectrics (4, 5), and thermophotovoltaics (TPVs) (6, 7). TPVs present an extremely appealing approach for small-scale power sources due...into spectrally confined thermal radiation, optically coupled to low-bandgap photovoltaic (PV) diodes that are electrically interfaced with a unique

  4. Assessment of a vertical high-resolution distributed-temperature-sensing system in a shallow thermohaline environment

    NASA Astrophysics Data System (ADS)

    Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.

    2011-01-01

    In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology. It also presents, for the first time, a method to manually calibrate temperatures along the optical fiber.

  5. 2D materials in electro-optic modulation: energy efficiency, electrostatics, mode overlap, material transfer and integration

    NASA Astrophysics Data System (ADS)

    Ma, Zhizhen; Hemnani, Rohit; Bartels, Ludwig; Agarwal, Ritesh; Sorger, Volker J.

    2018-02-01

    Here we discuss the physics of electro-optic modulators deploying 2D materials. We include a scaling laws analysis and show how energy-efficiency and speed change for three underlying cavity systems as a function of critical device length scaling. A key result is that the energy-per-bit of the modulator is proportional to the volume of the device, thus making the case for submicron-scale modulators possible deploying a plasmonic optical mode. We then show how Graphene's Pauli-blocking modulation mechanism is sensitive to the device operation temperature, whereby a reduction of the temperature enables a 10× reduction in modulator energy efficiency. Furthermore, we show how the high-index tunability of graphene is able to compensate for the small optical overlap factor of 2D-based material modulators, which is unlike classical silicon-based dispersion devices. Lastly, we demonstrate a novel method towards a 2D material printer suitable for cross-contamination free and on-demand printing. The latter paves the way to integrate 2D materials seamlessly into taped-out photonic chips.

  6. Field test of optical and electrical fire detectors in simulated fire scenes in a cable tunnel

    NASA Astrophysics Data System (ADS)

    Fan, Dian; Ding, Hongjun; Wang, Dorothy Y.; Jiang, Desheng

    2014-06-01

    This paper presents the testing results of three types of fire detectors: electrical heat sensing cable, optical fiber Raman temperature sensing detector, and optical fiber Bragg grating (FBG) temperature sensing detector, in two simulated fire scenes in a cable tunnel. In the small-scale fire with limited thermal radiation and no flame, the fire alarm only comes from the heat sensors which directly contact with the heat source. In the large-scale fire with about 5 °C/min temperature rising speed within a 3-m span, the fire alarm response time of the fiber Raman sensor and FBG sensors was about 30 seconds. The test results can be further used for formulating regulation for early fire detection in cable tunnels.

  7. Field Tests of Real-time In-situ Dissolved CO2 Monitoring for CO2 Leakage Detection in Groundwater

    NASA Astrophysics Data System (ADS)

    Yang, C.; Zou, Y.; Delgado, J.; Guzman, N.; Pinedo, J.

    2016-12-01

    Groundwater monitoring for detecting CO2 leakage relies on groundwater sampling from water wells drilled into aquifers. Usually groundwater samples are required be collected periodically in field and analyzed in the laboratory. Obviously groundwater sampling is labor and cost-intensive for long-term monitoring of large areas. Potential damage and contamination of water samples during the sampling process can degrade accuracy, and intermittent monitoring may miss changes in the geochemical parameters of groundwater, and therefore signs of CO2 leakage. Real-time in-situ monitoring of geochemical parameters with chemical sensors may play an important role for CO2 leakage detection in groundwater at a geological carbon sequestration site. This study presents field demonstration of a real-time in situ monitoring system capable of covering large areas for detection of low levels of dissolved CO2 in groundwater and reliably differentiating natural variations of dissolved CO2 concentration from small changes resulting from leakage. The sand-alone system includes fully distributed fiber optic sensors for carbon dioxide detection with a unique sensor technology developed by Intelligent Optical Systems. The systems were deployed to the two research sites: the Brackenridge Field Laboratory where the aquifer is shallow at depths of 10-20 ft below surface and the Devine site where the aquifer is much deeper at depths of 140 to 150 ft. Groundwater samples were periodically collected from the water wells which were installed with the chemical sensors and further compared to the measurements of the chemical sensors. Our study shows that geochemical monitoring of dissolved CO2 with fiber optic sensors could provide reliable CO2 leakage signal detection in groundwater as long as CO2 leakage signals are stronger than background noises at the monitoring locations.

  8. Optimization of Electrical Methods for Sub -surface Monitoring of Biological Contamination: From Micro-scale to Macroscopic one through Sub-micrometric Topographic and Electrochemical Studies of Oxydation/Reduction Processes Provoked by Bacteria

    NASA Astrophysics Data System (ADS)

    Dhahri, S.; Marliere, C.

    2012-12-01

    The presence of biological matter (bacteria) in deep geological sites for storage of, for instance, radioactive elements or groundwater in aquifers was clearly proved. That biomass triggers physical and chemical processes which greatly modify the durability and the sustainability of the storage sites. These processes, mainly from oxidative/reductive reactions, are poorly understood. This is mainly due to the fact that former studies were done at the macroscopic level far away from the micrometric scale where relevant processes induced by bacteria take place. Investigations at microscopic level are needed. Thus, we developed an experimental set -up based on the combined use of optical microscopy (epifluorescence and transmission), atomic force microscopy (AFM) and scanning electro -chemical microscopy (SECM) in order to get simultaneous information on topographic and electro -chemical processes at different length scales. The first highly sensitive step was to use AFM and optical microscopy with biological samples in liquid environment: We will present a new, non -perturbative method for imaging bacteria in their natural liquid environment using AFM. No immobilization protocol, neither chemical nor mechanical, is needed, contrary to what has been regarded till now as essential. Furthermore we were able to follow the natural gliding movements of bacteria, directly proving their living state during the AFM investigation: we thus directly prove the low impact of these breakthrough AFM observations on the native behavior of the bacteria. The second delicate step was to combine AFM and optical measurements with electrical ones. We mounted a new experimental set-up coupling real -time (i) monitoring of optical properties as the optical density (OD) evolution related to bulk bacterial growth in liquid or as the counting of number of bacteria adhering on the surface of the sample as well and (ii) electrical and electrochemical measurements. We thus will present results on the observed crossed correlations between physical, chemical and biological processes induced by the studied bacteria and the resulting variations of electrical signals as measured at different length scales. We indeed used variable sizes for the electrodes - from 10cm -square (colonies of around 10000 bacteria) to 0.1-1microns -square (the scale of an individual cell) thanks to newly manufactured AFM -SECM probes (using Focused Ion Beam - FIB method). These experiments were done with several bacterial strains, various medias (inoculated by bacteria versus non -inoculated). Furthermore, these results will shortly be applied to the optimized monitoring of the in -situ activity of bacteria consuming oil pollutants, following this way, in real -time, the bioremediation of an oil -contaminated soil (ANR ECOTECH_BIOPHY program).

  9. Optical-fibre sensor system for monitoring the performance of the gas propellant centrifuge separator of a spacecraft

    NASA Astrophysics Data System (ADS)

    Romo-Medrano, Katya E.; Khotiaintsev, Sergei N.; García-Garduño, Victor

    2004-08-01

    An optical-fibre sensor system is presented for monitoring void fraction distribution in a spacecraft's gas and propellant centrifuge separator. The system could be used at the separator development stage or for monitoring, during ground tests, the elements of the spacecraft propulsion system. Our sensor system employs an array of point optical-fibre refractometric transducers installed in the form of several linear radial arrays on the separator rotating blades. We employed a small-size hemispherical optical detection element as the transducer and we optimized its parameters through numerical ray-tracing. The aim is to minimize the effect of the thin film of liquid that forms on the transducer's surface in this application. The features of this sensor system are: (1) an efficient matrix-type multiplexing scheme, (2) the installation of the main optoelectronic unit of the sensor in a hermetically sealed container inside the separator tank located on the rotating shaft and (3) the spark-proof and explosion-proof design of the sensor circuits and elements. The sensor is simple, reliable, low-cost and is capable of withstanding the factors involved during operation of the propulsion system such as cryogenic temperatures and chemically aggressive liquids. The novel elements and design concepts implemented in this sensor system can also find applications in other sensors for spacecraft propulsion systems and also in a variety of optical-fibre sensors used in scientific research and industry.

  10. Application of optical lens of a CD writer for detecting the blood glucose semi-invasively

    NASA Astrophysics Data System (ADS)

    Meshram, N. D.; Dahikar, P. B.

    2014-10-01

    Recent technological advancements in the photonics industry have led to a resurgence of interest in optical glucose sensing and to realistic progress toward the development of an optical glucose sensor. Such a sensor has the potential to significantly improve the quality of life for the estimated 16 million diabetics in this country by making routine glucose measurements more convenient. Currently over 100 small companies and universities are working to develop noninvasive or minimally invasive glucose sensing technologies, and optical methods play a large role in these efforts. It has become overwhelmingly clear that frequent monitoring and tight control of blood sugar levels are requisite for effective management of Diabetes mellitus and reduction of the complications associated with this disease. The pain and trouble associated with current "finger-stick" methods for blood glucose monitoring result in decreased patient compliance and a failure to control blood sugar levels. Thus, the development of a convenient noninvasive blood glucose monitor holds the potential to significantly reduce the morbidity and mortality associated with Diabetes. A method and apparatus for noninvasive measurement of blood glucose concentration based on transilluminated laser beam via the Index Finger has been reported in this paper. This method depends on photodiode based laser operating at 632.8 nm wavelength. During measurement, the index finger is inserted into the glucose sensing unit, the transilluminated optical signal is converted into an electrical signal, compared with the reference electrical signal, and the obtained difference signal is processed by signal processing unit which presents the results in the form of blood glucose concentration. This method would enable the monitoring blood glucose level of the diabetic patient continuously, safely and noninvasively..

  11. Application of optical lens of a CD writer for detecting the blood glucose semi-invasively

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meshram, N. D., E-mail: meshramnileshsd@gmail.com; Dahikar, P. B., E-mail: pbdahikar@rediffmail.com

    Recent technological advancements in the photonics industry have led to a resurgence of interest in optical glucose sensing and to realistic progress toward the development of an optical glucose sensor. Such a sensor has the potential to significantly improve the quality of life for the estimated 16 million diabetics in this country by making routine glucose measurements more convenient. Currently over 100 small companies and universities are working to develop noninvasive or minimally invasive glucose sensing technologies, and optical methods play a large role in these efforts. It has become overwhelmingly clear that frequent monitoring and tight control of bloodmore » sugar levels are requisite for effective management of Diabetes mellitus and reduction of the complications associated with this disease. The pain and trouble associated with current “finger-stick” methods for blood glucose monitoring result in decreased patient compliance and a failure to control blood sugar levels. Thus, the development of a convenient noninvasive blood glucose monitor holds the potential to significantly reduce the morbidity and mortality associated with Diabetes. A method and apparatus for noninvasive measurement of blood glucose concentration based on transilluminated laser beam via the Index Finger has been reported in this paper. This method depends on photodiode based laser operating at 632.8 nm wavelength. During measurement, the index finger is inserted into the glucose sensing unit, the transilluminated optical signal is converted into an electrical signal, compared with the reference electrical signal, and the obtained difference signal is processed by signal processing unit which presents the results in the form of blood glucose concentration. This method would enable the monitoring blood glucose level of the diabetic patient continuously, safely and noninvasively.« less

  12. Optimization of insect cell based protein production processes - online monitoring, expression systems, scale up.

    PubMed

    Druzinec, Damir; Salzig, Denise; Brix, Alexander; Kraume, Matthias; Vilcinskas, Andreas; Kollewe, Christian; Czermak, Peter

    2013-01-01

    Due to the increasing use of insect cell based expression systems in research and industrial recombinant protein production, the development of efficient and reproducible production processes remains a challenging task. In this context, the application of online monitoring techniques is intended to ensure high and reproducible product qualities already during the early phases of process development. In the following chapter, the most common transient and stable insect cell based expression systems are briefly introduced. Novel applications of insect cell based expression systems for the production of insect derived antimicrobial peptides/proteins (AMPs) are discussed using the example of G. mellonella derived gloverin. Suitable in situ sensor techniques for insect cell culture monitoring in disposable and common bioreactor systems are outlined with respect to optical and capacitive sensor concepts. Since scale up of production processes is one of the most critical steps in process development, a conclusive overview is given about scale up aspects for industrial insect cell culture processes.

  13. Examining fire-induced forest changes using novel remote sensing technique: a case study in a mixed pine-oak forest

    NASA Astrophysics Data System (ADS)

    Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.

    2017-12-01

    Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire-induced forest phenology changes at unprecedented temporal and spatial resolutions. This work provides the methodological approach monitor fire-induced forest changes in a spatially explicit manner across scales, with important implications for fire-related forest management and for constraining/benchmarking process models.

  14. Toward Optical Sensors: Review and Applications

    NASA Astrophysics Data System (ADS)

    Sabri, Naseer; Aljunid, S. A.; Salim, M. S.; Ahmad, R. B.; Kamaruddin, R.

    2013-04-01

    Recent advances in fiber optics (FOs) and the numerous advantages of light over electronic systems have boosted the utility and demand for optical sensors in various military, industry and social fields. Environmental and atmospheric monitoring, earth and space sciences, industrial chemical processing and biotechnology, law enforcement, digital imaging, scanning, and printing are exemplars of them. The ubiquity of photonic technologies could drive down prices which reduced the cost of optical fibers and lasers. Fiber optic sensors (FOSs) offer a wide spectrum of advantages over traditional sensing systems, such as small size and longer lifetime. Immunity to electromagnetic interference, amenability to multiplexing, and high sensitivity make FOs the sensor technology of choice in several fields, including the healthcare and aerospace sectors. FOSs show reliable and rigid sensing tasks over conventional electrical and electronic sensors. This paper presents an executive review of optical fiber sensors and the most beneficial applications.

  15. Heidelberg Retina Tomography Analysis in Optic Disks with Anatomic Particularities

    PubMed Central

    Alexandrescu, C; Pascu, R; Ilinca, R; Popescu, V; Ciuluvica, R; Voinea, L; Celea, C

    2010-01-01

    Due to its objectivity, reproducibility and predictive value confirmed by many large scale statistical clinical studies, Heidelberg Retina Tomography has become one of the most used computerized image analysis of the optic disc in glaucoma. It has been signaled, though, that the diagnostic value of Moorfieds Regression Analyses and Glaucoma Probability Score decreases when analyzing optic discs with extreme sizes. The number of false positive results increases in cases of megalopapilllae and the number of false negative results increases in cases of small size optic discs. The present paper is a review of the aspects one should take into account when analyzing a HRT result of an optic disc with anatomic particularities. PMID:21254731

  16. Optical Imaging of Nonuniform Ferroelectricity and Strain at the Diffraction Limit

    PubMed Central

    Vlasin, Ondrej; Casals, Blai; Dix, Nico; Gutiérrez, Diego; Sánchez, Florencio; Herranz, Gervasi

    2015-01-01

    We have imaged optically the spatial distributions of ferroelectricity and piezoelectricity at the diffraction limit. Contributions to the birefringence from electro-optics –linked to ferroelectricity– as well as strain –arising from converse piezoelectric effects– have been recorded simultaneously in a BaTiO3 thin film. The concurrent recording of electro-optic and piezo-optic mappings revealed that, far from the ideal uniformity, the ferroelectric and piezoelectric responses were strikingly inhomogeneous, exhibiting significant fluctuations over the scale of the micrometer. The optical methods here described are appropriate to study the variations of these properties simultaneously, which are of great relevance when ferroelectrics are downscaled to small sizes for applications in data storage and processing. PMID:26522345

  17. STTR Phase I: Low-Cost, High-Accuracy, Whole-Building Carbon Dioxide Monitoring for Demand Control Ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallstrom, Jason O.; Ni, Zheng Richard

    This STTR Phase I project assessed the feasibility of a new CO 2 sensing system optimized for low-cost, high-accuracy, whole-building monitoring for use in demand control ventilation. The focus was on the development of a wireless networking platform and associated firmware to provide signal conditioning and conversion, fault- and disruptiontolerant networking, and multi-hop routing at building scales to avoid wiring costs. Early exploration of a bridge (or “gateway”) to direct digital control services was also explored. Results of the project contributed to an improved understanding of a new electrochemical sensor for monitoring indoor CO 2 concentrations, as well as themore » electronics and networking infrastructure required to deploy those sensors at building scales. New knowledge was acquired concerning the sensor’s accuracy, environmental response, and failure modes, and the acquisition electronics required to achieve accuracy over a wide range of CO 2 concentrations. The project demonstrated that the new sensor offers repeatable correspondence with commercial optical sensors, with supporting electronics that offer gain accuracy within 0.5%, and acquisition accuracy within 1.5% across three orders of magnitude variation in generated current. Considering production, installation, and maintenance costs, the technology presents a foundation for achieving whole-building CO 2 sensing at a price point below $0.066 / sq-ft – meeting economic feasibility criteria established by the Department of Energy. The technology developed under this award addresses obstacles on the critical path to enabling whole-building CO 2 sensing and demand control ventilation in commercial retrofits, small commercial buildings, residential complexes, and other highpotential structures that have been slow to adopt these technologies. It presents an opportunity to significantly reduce energy use throughout the United States.« less

  18. Optics-Only Calibration of a Neural-Net Based Optical NDE Method for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2004-01-01

    A calibration process is presented that uses optical measurements alone to calibrate a neural-net based NDE method. The method itself detects small changes in the vibration mode shapes of structures. The optics-only calibration process confirms previous work that the sensitivity to vibration-amplitude changes can be as small as 10 nanometers. A more practical value in an NDE service laboratory is shown to be 50 nanometers. Both model-generated and experimental calibrations are demonstrated using two implementations of the calibration technique. The implementations are based on previously published demonstrations of the NDE method and an alternative calibration procedure that depends on comparing neural-net and point sensor measurements. The optics-only calibration method, unlike the alternative method, does not require modifications of the structure being tested or the creation of calibration objects. The calibration process can be used to test improvements in the NDE process and to develop a vibration-mode-independence of damagedetection sensitivity. The calibration effort was intended to support NASA s objective to promote safety in the operations of ground test facilities or aviation safety, in general, by allowing the detection of the gradual onset of structural changes and damage.

  19. On-line structural health and fire monitoring of a composite personal aircraft using an FBG sensing system

    NASA Astrophysics Data System (ADS)

    Chandler, K.; Ferguson, S.; Graver, T.; Csipkes, A.; Mendez, A.

    2008-03-01

    We report in this paper on the design and development of a novel on-line structural health monitoring and fire detection system based on an array of optical fiber Bragg grating (FBG) sensors and interrogation system installed on a new, precommercial compact aircraft. A combined total of 17 FBG sensors - strain, temperature and high-temperature - were installed at critical locations in an around the wings, fuselage and engine compartment of a prototype, Comp Air CA 12 all-composite, ten-passenger personal airplane powered by a 1,650 hp turbine engine. The sensors are interrogated online and in real time by a swept laser FBG interrogator (Micron Optics sm125-700) mounted on board the plane. Sensors readings are then combined with the plane's avionics system and displayed on the pilot's aviation control panel. This system represents the first of its kind in commercial, small frame, airplanes and a first for optical fiber sensors.

  20. Ten-year monitoring of high-rise building columns using long-gauge fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Glisic, B.; Inaudi, D.; Lau, J. M.; Fong, C. C.

    2013-05-01

    A large-scale lifetime building monitoring program was implemented in Singapore in 2001. The monitoring aims of this unique program were to increase safety, verify performance, control quality, increase knowledge, optimize maintenance costs, and evaluate the condition of the structures after a hazardous event. The first instrumented building, which has now been monitored for more than ten years, is presented in this paper. The long-gauge fiber optic strain sensors were embedded in fresh concrete of ground-level columns, thus the monitoring started at the birth of both the construction material and the structure. Measurement sessions were performed during construction, upon completion of each new story and the roof, and after the construction, i.e., in-service. Based on results it was possible to follow and evaluate long-term behavior of the building through every stage of its life. The results of monitoring were analyzed at a local (column) and global (building) level. Over-dimensioning of one column was identified. Differential settlement of foundations was detected, localized, and its magnitude estimated. Post-tremor analysis was performed. Real long-term behavior of concrete columns was assessed. Finally, the long-term performance of the monitoring system was evaluated. The researched monitoring method, monitoring system, rich results gathered over approximately ten years, data analysis algorithms, and the conclusions on the structural behavior and health condition of the building based on monitoring are presented in this paper.

  1. Estimating terrestrial aboveground biomass estimation using lidar remote sensing: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Zolkos, S. G.; Goetz, S. J.; Dubayah, R.

    2012-12-01

    Estimating biomass of terrestrial vegetation is a rapidly expanding research area, but also a subject of tremendous interest for reducing carbon emissions associated with deforestation and forest degradation (REDD). The accuracy of biomass estimates is important in the context carbon markets emerging under REDD, since areas with more accurate estimates command higher prices, but also for characterizing uncertainty in estimates of carbon cycling and the global carbon budget. There is particular interest in mapping biomass so that carbon stocks and stock changes can be monitored consistently across a range of scales - from relatively small projects (tens of hectares) to national or continental scales - but also so that other benefits of forest conservation can be factored into decision making (e.g. biodiversity and habitat corridors). We conducted an analysis of reported biomass accuracy estimates from more than 60 refereed articles using different remote sensing platforms (aircraft and satellite) and sensor types (optical, radar, lidar), with a particular focus on lidar since those papers reported the greatest efficacy (lowest errors) when used in the a synergistic manner with other coincident multi-sensor measurements. We show systematic differences in accuracy between different types of lidar systems flown on different platforms but, perhaps more importantly, differences between forest types (biomes) and plot sizes used for field calibration and assessment. We discuss these findings in relation to monitoring, reporting and verification under REDD, and also in the context of more systematic assessment of factors that influence accuracy and error estimation.

  2. Long and short term variability of seven blazars in six near-infrared/optical bands

    NASA Astrophysics Data System (ADS)

    Sandrinelli, A.; Covino, S.; Treves, A.

    2014-02-01

    Context. We present the light curves of six BL Lac objects, PKS 0537-441, PKS 0735+17, OJ 287, PKS 2005-489, PKS 2155-304, and W Comae, and of the flat spectrum radio quasar PKS 1510-089, as a part of a photometric monitoring program in the near-infrared/optical bands started in 2004. All sources are Fermi blazars. Aims: Our purpose is to investigate flux and spectral variability on short and long time scales. Systematic monitoring, independent of the activity of the source, guarantees large sample size statistics, and allows an unbiased view of different activity states on weekly or daily time scales for the whole timeframe and on nightly time scales for some epochs. Methods: Data were obtained with the REM telescope located at the ESO premises of La Silla (Chile). Light curves were gathered in the optical/near-infrared VRIJHK bands from April 2005 to June 2012. Results: Variability ≳3 mag is observed in PKS 0537-441, PKS 1510-089 and PKS 2155-304, the largest ranges spanned in the near-infrared. The color intensity plots show rather different morphologies. The spectral energy distributions in general are well fitted by a power law, with some deviations that are more apparent in low states. Some variability episodes during a night interval are well documented for PKS 0537-441 and PKS 2155-304. For the latter source the variability time scale implies a large relativistic beaming factor. Full Table 3 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A79

  3. Navigating in small-scale space: the role of landmarks and resource monitoring in understanding saddleback tamarin travel.

    PubMed

    Garber, Paul A; Porter, Leila M

    2014-05-01

    Recent studies of spatial memory in wild nonhuman primates indicate that foragers may rely on a combination of navigational strategies to locate nearby and distant feeding sites. When traveling in large-scale space, tamarins are reported to encode spatial information in the form of a route-based map. However, little is known concerning how wild tamarins navigate in small-scale space (between feeding sites located at a distance of ≤60 m). Therefore, we collected data on range use, diet, and the angle and distance traveled to visit sequential feeding sites in the same group of habituated Bolivian saddleback tamarins (Saguinus fuscicollis weddelli) in 2009 and 2011. For 7-8 hr a day for 54 observation days, we recorded the location of the study group at 10 min intervals using a GPS unit. We then used GIS software to map and analyze the monkeys' movements and travel paths taken between feeding sites. Our results indicate that in small-scale space the tamarins relied on multiple spatial strategies. In 31% of cases travel was route-based. In the remaining 69% of cases, however, the tamarins appeared to attend to the spatial positions of one or more near-to-site landmarks to relocate feeding sites. In doing so they approached the same feeding site from a mean of 4.5 different directions, frequently utilized different arboreal pathways, and traveled approximately 30% longer than then the straight-line distance. In addition, the monkeys' use of non-direct travel paths allowed them to monitor insect and fruit availability in areas within close proximity of currently used food patches. We conclude that the use of an integrated spatial strategy (route-based travel and attention to near-to-goal landmarks) provides tamarins with the opportunity to relocate productive feeding sites as well as monitor the availability of nearby resources in small-scale space. © 2013 Wiley Periodicals, Inc.

  4. Health monitoring with optical fiber sensors: from human body to civil structures

    NASA Astrophysics Data System (ADS)

    Pinet, Éric; Hamel, Caroline; Glišić, Branko; Inaudi, Daniele; Miron, Nicolae

    2007-04-01

    Although structural health monitoring and patient monitoring may benefit from the unique advantages of optical fiber sensors (OFS) such as electromagnetic interferences (EMI) immunity, sensor small size and long term reliability, both applications are facing different realities. This paper presents, with practical examples, several OFS technologies ranging from single-point to distributed sensors used to address the health monitoring challenges in medical and in civil engineering fields. OFS for medical applications are single-point, measuring mainly vital parameters such as pressure or temperature. In the intra-aortic balloon pumping (IABP) therapy, a miniature OFS can monitor in situ aortic blood pressure to trigger catheter balloon inflation/deflation in counter-pulsation with heartbeats. Similar sensors reliably monitor the intracranial pressure (ICP) of critical care patients, even during surgical interventions or examinations under medical resonance imaging (MRI). Temperature OFS are also the ideal monitoring solution for such harsh environments. Most of OFS for structural health monitoring are distributed or have long gage length, although quasi-distributed short gage sensors are also used. Those sensors measure mainly strain/load, temperature, pressure and elongation. SOFO type deformation sensors were used to monitor and secure the Bolshoi Moskvoretskiy Bridge in Moscow. Safety of Plavinu dam built on clay and sand in Latvia was increased by monitoring bitumen joints displacement and temperature changes using SMARTape and Temperature Sensitive Cable read with DiTeSt unit. A similar solution was used for monitoring a pipeline built in an unstable area near Rimini in Italy.

  5. Small form factor optical fiber connector evaluation for harsh environments

    NASA Astrophysics Data System (ADS)

    Ott, Melanie N.; Thomes, W. Joe, Jr.; Chuska, Richard F.; Switzer, Robert; Blair, Diana E.

    2011-09-01

    For the past decade NASA programs have utilized the Diamond AVIM connector for optical fiber assemblies on space flight instrumentation. These connectors have been used in communications, sensing and LIDAR systems where repeatability and high performance are required. Recently Diamond has released a smaller form factor optical fiber connector called the "Mini-AVIM" which although more compact still includes the tight tolerances and the ratcheting feature of the heritage AVIM. NASA Goddard Space Flight Center Photonics Group in the Parts, Packaging and Assembly Technologies Office has been performing evaluations of this connector to determine how it compares to the performance of the AVIM connector and to assess its feasibility for harsh environmental applications. Vibration and thermal testing were performed on the Mini-AVIM with both multi-mode and single-mode optical fiber using insitu optical transmission monitoring. Random vibration testing was performed using typical launch condition profiles for most NASA missions but extended to 35 Grms, which is much higher than most requirements. Thermal testing was performed incrementally up to a range of -55°C to +125°C. The test results include both unjacketed fiber and cabled assembly evaluations. The data presented here indicate that the Mini-AVIM provides a viable option for small form factor applications that require a high performance optical fiber connector.

  6. Remote artificial eyes using micro-optical circuit for long-distance 3D imaging perception.

    PubMed

    Thammawongsa, Nopparat; Yupapin, Preecha P

    2016-01-01

    A small-scale optical device incorporated with an optical nano-antenna is designed to operate as the remote artificial eye using a tiny conjugate mirror. A basic device known as a conjugate mirror can be formed using the artificial eye device, the partially reflected light intensities from input source are interfered and the 3D whispering gallery modes formed within the ring centers, which can be modulated and propagated to the object. The image pixel is obtained at the center ring and linked with the optic nerve in the remote area via the nano-antenna, which is useful for blind people.

  7. Suppression of small-scale self-focusing of high-power laser beams due to their self-filtration during propagation in free space

    NASA Astrophysics Data System (ADS)

    Ginzburg, V. N.; Kochetkov, A. A.; Potemkin, A. K.; Khazanov, E. A.

    2018-04-01

    It has been experimentally confirmed that self-cleaning of a laser beam from spatial noise during propagation in free space makes it possible to suppress efficiently the self-focusing instability without applying spatial filters. Measurements of the instability increment by two independent methods have demonstrated quantitative agreement with theory and high efficiency of small-scale self-focusing suppression. This opens new possibilities for using optical elements operating in transmission (frequency doublers, phase plates, beam splitters, polarisers, etc.) in beams with intensities on the order of a few TW cm‑2.

  8. INNOVATIVE CONCEPTS FOR DETECTING AND LOCATING LEAKS IN WASTE IMPOUNDMENT LINER SYSTEMS: ACOUSTIC EMISSION MONITORING AND TIME DOMAIN REFLECTOMETRY

    EPA Science Inventory

    This project is part of a program to investigate the use of innovative techniques for detecting and locating leaks in waste impoundment liners. Laboratory and small scale field studies were undertaken to evaluate the potential of Acoustic Emission Monitoring (AEM) and Time Domain...

  9. The Use of Quality Control and Data Mining Techniques for Monitoring Scaled Scores: An Overview. Research Report. ETS RR-12-20

    ERIC Educational Resources Information Center

    von Davier, Alina A.

    2012-01-01

    Maintaining comparability of test scores is a major challenge faced by testing programs that have almost continuous administrations. Among the potential problems are scale drift and rapid accumulation of errors. Many standard quality control techniques for testing programs, which can effectively detect and address scale drift for small numbers of…

  10. Green tea polyphenol tailors cell adhesivity of RGD displaying surfaces: multicomponent models monitored optically

    PubMed Central

    Peter, Beatrix; Farkas, Eniko; Forgacs, Eniko; Saftics, Andras; Kovacs, Boglarka; Kurunczi, Sandor; Szekacs, Inna; Csampai, Antal; Bosze, Szilvia; Horvath, Robert

    2017-01-01

    The interaction of the anti-adhesive coating, poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) and its Arg-Gly-Asp (RGD) functionalized form, PLL-g-PEG-RGD, with the green tea polyphenol, epigallocatechin-gallate (EGCg) was in situ monitored. After, the kinetics of cellular adhesion on the EGCg exposed coatings were recorded in real-time. The employed plate-based waveguide biosensor is applicable to monitor small molecule binding and sensitive to sub-nanometer scale changes in cell membrane position and cell mass distribution; while detecting the signals of thousands of adhering cells. The combination of this remarkable sensitivity and throughput opens up new avenues in testing complicated models of cell-surface interactions. The systematic studies revealed that, despite the reported excellent antifouling properties of the coatings, EGCg strongly interacted with them, and affected their cell adhesivity in a concentration dependent manner. Moreover, the differences between the effects of the fresh and oxidized EGCg solutions were first demonstrated. Using a semiempirical quantumchemical method we showed that EGCg binds to the PEG chains of PLL-g-PEG-RGD and effectively blocks the RGD sites by hydrogen bonds. The calculations supported the experimental finding that the binding is stronger for the oxidative products. Our work lead to a new model of polyphenol action on cell adhesion ligand accessibility and matrix rigidity. PMID:28186133

  11. Green tea polyphenol tailors cell adhesivity of RGD displaying surfaces: multicomponent models monitored optically.

    PubMed

    Peter, Beatrix; Farkas, Eniko; Forgacs, Eniko; Saftics, Andras; Kovacs, Boglarka; Kurunczi, Sandor; Szekacs, Inna; Csampai, Antal; Bosze, Szilvia; Horvath, Robert

    2017-02-10

    The interaction of the anti-adhesive coating, poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) and its Arg-Gly-Asp (RGD) functionalized form, PLL-g-PEG-RGD, with the green tea polyphenol, epigallocatechin-gallate (EGCg) was in situ monitored. After, the kinetics of cellular adhesion on the EGCg exposed coatings were recorded in real-time. The employed plate-based waveguide biosensor is applicable to monitor small molecule binding and sensitive to sub-nanometer scale changes in cell membrane position and cell mass distribution; while detecting the signals of thousands of adhering cells. The combination of this remarkable sensitivity and throughput opens up new avenues in testing complicated models of cell-surface interactions. The systematic studies revealed that, despite the reported excellent antifouling properties of the coatings, EGCg strongly interacted with them, and affected their cell adhesivity in a concentration dependent manner. Moreover, the differences between the effects of the fresh and oxidized EGCg solutions were first demonstrated. Using a semiempirical quantumchemical method we showed that EGCg binds to the PEG chains of PLL-g-PEG-RGD and effectively blocks the RGD sites by hydrogen bonds. The calculations supported the experimental finding that the binding is stronger for the oxidative products. Our work lead to a new model of polyphenol action on cell adhesion ligand accessibility and matrix rigidity.

  12. Green tea polyphenol tailors cell adhesivity of RGD displaying surfaces: multicomponent models monitored optically

    NASA Astrophysics Data System (ADS)

    Peter, Beatrix; Farkas, Eniko; Forgacs, Eniko; Saftics, Andras; Kovacs, Boglarka; Kurunczi, Sandor; Szekacs, Inna; Csampai, Antal; Bosze, Szilvia; Horvath, Robert

    2017-02-01

    The interaction of the anti-adhesive coating, poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) and its Arg-Gly-Asp (RGD) functionalized form, PLL-g-PEG-RGD, with the green tea polyphenol, epigallocatechin-gallate (EGCg) was in situ monitored. After, the kinetics of cellular adhesion on the EGCg exposed coatings were recorded in real-time. The employed plate-based waveguide biosensor is applicable to monitor small molecule binding and sensitive to sub-nanometer scale changes in cell membrane position and cell mass distribution; while detecting the signals of thousands of adhering cells. The combination of this remarkable sensitivity and throughput opens up new avenues in testing complicated models of cell-surface interactions. The systematic studies revealed that, despite the reported excellent antifouling properties of the coatings, EGCg strongly interacted with them, and affected their cell adhesivity in a concentration dependent manner. Moreover, the differences between the effects of the fresh and oxidized EGCg solutions were first demonstrated. Using a semiempirical quantumchemical method we showed that EGCg binds to the PEG chains of PLL-g-PEG-RGD and effectively blocks the RGD sites by hydrogen bonds. The calculations supported the experimental finding that the binding is stronger for the oxidative products. Our work lead to a new model of polyphenol action on cell adhesion ligand accessibility and matrix rigidity.

  13. Seasonal variability shapes resilience of small-scale fisheries in Baja California Sur, Mexico.

    PubMed

    Pellowe, Kara E; Leslie, Heather M

    2017-01-01

    Small-scale fisheries are an important source of food and livelihoods to coastal communities around the world. Understanding the seasonality of fisheries catch and composition is crucial to fisheries management, particularly in the context of changing environmental and socioeconomic conditions. While seasonal variability directly impacts the lives of fishers, most fisheries studies focus on longer-term change. Here we examine seasonal variability in the small-scale fisheries of Baja California Sur, Mexico based on 13 years of government fisheries data. We investigate how four fisheries indicators with direct relevance to ecological resilience-magnitude and variance of landed fish biomass, taxon richness and the proportion of top-trophic-level taxa in total catch-vary within and among years and at multiple spatial scales. We find that these resilience indicators vary both seasonally and spatially. These results highlight the value of finer-scale monitoring and management, particularly for data-poor fisheries.

  14. Seasonal variability shapes resilience of small-scale fisheries in Baja California Sur, Mexico

    PubMed Central

    Leslie, Heather M.

    2017-01-01

    Small-scale fisheries are an important source of food and livelihoods to coastal communities around the world. Understanding the seasonality of fisheries catch and composition is crucial to fisheries management, particularly in the context of changing environmental and socioeconomic conditions. While seasonal variability directly impacts the lives of fishers, most fisheries studies focus on longer-term change. Here we examine seasonal variability in the small-scale fisheries of Baja California Sur, Mexico based on 13 years of government fisheries data. We investigate how four fisheries indicators with direct relevance to ecological resilience–magnitude and variance of landed fish biomass, taxon richness and the proportion of top-trophic-level taxa in total catch–vary within and among years and at multiple spatial scales. We find that these resilience indicators vary both seasonally and spatially. These results highlight the value of finer-scale monitoring and management, particularly for data-poor fisheries. PMID:28783740

  15. Microscopic Optical Projection Tomography In Vivo

    PubMed Central

    Meyer, Heiko; Ripoll, Jorge; Tavernarakis, Nektarios

    2011-01-01

    We describe a versatile optical projection tomography system for rapid three-dimensional imaging of microscopic specimens in vivo. Our tomographic setup eliminates the in xy and z strongly asymmetric resolution, resulting from optical sectioning in conventional confocal microscopy. It allows for robust, high resolution fluorescence as well as absorption imaging of live transparent invertebrate animals such as C. elegans. This system offers considerable advantages over currently available methods when imaging dynamic developmental processes and animal ageing; it permits monitoring of spatio-temporal gene expression and anatomical alterations with single-cell resolution, it utilizes both fluorescence and absorption as a source of contrast, and is easily adaptable for a range of small model organisms. PMID:21559481

  16. Periodic optical variability of radio-detected ultracool dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, L. K.; Golden, A.; Singh, Navtej

    2013-12-20

    A fraction of very low mass stars and brown dwarfs are known to be radio active, in some cases producing periodic pulses. Extensive studies of two such objects have also revealed optical periodic variability, and the nature of this variability remains unclear. Here, we report on multi-epoch optical photometric monitoring of six radio-detected dwarfs, spanning the ∼M8-L3.5 spectral range, conducted to investigate the ubiquity of periodic optical variability in radio-detected ultracool dwarfs. This survey is the most sensitive ground-based study carried out to date in search of periodic optical variability from late-type dwarfs, where we obtained 250 hr of monitoring,more » delivering photometric precision as low as ∼0.15%. Five of the six targets exhibit clear periodicity, in all cases likely associated with the rotation period of the dwarf, with a marginal detection found for the sixth. Our data points to a likely association between radio and optical periodic variability in late-M/early-L dwarfs, although the underlying physical cause of this correlation remains unclear. In one case, we have multiple epochs of monitoring of the archetype of pulsing radio dwarfs, the M9 TVLM 513–46546, spanning a period of 5 yr, which is sufficiently stable in phase to allow us to establish a period of 1.95958 ± 0.00005 hr. This phase stability may be associated with a large-scale stable magnetic field, further strengthening the correlation between radio activity and periodic optical variability. Finally, we find a tentative spin-orbit alignment of one component of the very low mass binary, LP 349–25.« less

  17. Demonstration of a Fiber Optic Regression Probe

    NASA Technical Reports Server (NTRS)

    Korman, Valentin; Polzin, Kurt A.

    2010-01-01

    The capability to provide localized, real-time monitoring of material regression rates in various applications has the potential to provide a new stream of data for development testing of various components and systems, as well as serving as a monitoring tool in flight applications. These applications include, but are not limited to, the regression of a combusting solid fuel surface, the ablation of the throat in a chemical rocket or the heat shield of an aeroshell, and the monitoring of erosion in long-life plasma thrusters. The rate of regression in the first application is very fast, while the second and third are increasingly slower. A recent fundamental sensor development effort has led to a novel regression, erosion, and ablation sensor technology (REAST). The REAST sensor allows for measurement of real-time surface erosion rates at a discrete surface location. The sensor is optical, using two different, co-located fiber-optics to perform the regression measurement. The disparate optical transmission properties of the two fiber-optics makes it possible to measure the regression rate by monitoring the relative light attenuation through the fibers. As the fibers regress along with the parent material in which they are embedded, the relative light intensities through the two fibers changes, providing a measure of the regression rate. The optical nature of the system makes it relatively easy to use in a variety of harsh, high temperature environments, and it is also unaffected by the presence of electric and magnetic fields. In addition, the sensor could be used to perform optical spectroscopy on the light emitted by a process and collected by fibers, giving localized measurements of various properties. The capability to perform an in-situ measurement of material regression rates is useful in addressing a variety of physical issues in various applications. An in-situ measurement allows for real-time data regarding the erosion rates, providing a quick method for empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over an operating envelope could also be useful in the modeling detailed physical processes. The sensor has been embedded in many regressing media for the purposes of proof-of-concept testing. A gross demonstration of its capabilities was performed using a sanding wheel to remove layers of metal. A longer-term demonstration measurement involved the placement of the sensor in a brake pad, monitoring the removal of pad material associated with the normal wear-and-tear of driving. It was used to measure the regression rates of the combustable media in small model rocket motors and road flares. Finally, a test was performed using a sand blaster to remove small amounts of material at a time. This test was aimed at demonstrating the unit's present resolution, and is compared with laser profilometry data obtained simultaneously. At the lowest resolution levels, this unit should be useful in locally quantifying the erosion rates of the channel walls in plasma thrusters. .

  18. New Approach to Monitor Transboundary Particulate Pollution over Northeast Asia

    NASA Technical Reports Server (NTRS)

    Park, M. E.; Song, C. H.; Park, R. S.; Lee, Jaehwa; Kim, J.; Lee, S.; Woo, J. H.; Carmichael, G. R.; Eck, Thomas F.; Holben, Brent N.; hide

    2014-01-01

    A new approach to more accurately monitor and evaluate transboundary particulate matter (PM) pollution is introduced based on aerosol optical products from Korea's Geostationary Ocean Color Imager (GOCI). The area studied is Northeast Asia (including eastern parts of China, the Korean peninsula and Japan), where GOCI has been monitoring since June 2010. The hourly multi-spectral aerosol optical data that were retrieved from GOCI sensor onboard geostationary satellite COMS (Communication, Ocean, and Meteorology Satellite) through the Yonsei aerosol retrieval algorithm were first presented and used in this study. The GOCI-retrieved aerosol optical data are integrated with estimated aerosol distributions from US EPA Models-3/CMAQ (Community Multi-scale Air Quality) v4.5.1 model simulations via data assimilation technique, thereby making the aerosol data spatially continuous and available even for cloud contamination cells. The assimilated aerosol optical data are utilized to provide quantitative estimates of transboundary PM pollution from China to the Korean peninsula and Japan. For the period of 1 April to 31 May, 2011 this analysis yields estimates that AOD as a proxy for PM2.5 or PM10 during long-range transport events increased by 117-265% compared to background average AOD (aerosol optical depth) at the four AERONET sites in Korea, and average AOD increases of 121% were found when averaged over the entire Korean peninsula. This paper demonstrates that the use of multi-spectral AOD retrievals from geostationary satellites can improve estimates of transboundary PM pollution. Such data will become more widely available later this decade when new sensors such as the GEMS (Geostationary Environment Monitoring Spectrometer) and GOCI-2 are scheduled to be launched.

  19. New approach to monitor transboundary particulate pollution over Northeast Asia

    NASA Astrophysics Data System (ADS)

    Park, M. E.; Song, C. H.; Park, R. S.; Lee, J.; Kim, J.; Lee, S.; Woo, J.-H.; Carmichael, G. R.; Eck, T. F.; Holben, B. N.; Lee, S.-S.; Song, C. K.; Hong, Y. D.

    2014-01-01

    A new approach to more accurately monitor and evaluate transboundary particulate matter (PM) pollution is introduced based on aerosol optical products from Korea's Geostationary Ocean Color Imager (GOCI). The area studied is Northeast Asia (including eastern parts of China, the Korean peninsula and Japan), where GOCI has been monitoring since June 2010. The hourly multi-spectral aerosol optical data that were retrieved from GOCI sensor onboard geostationary satellite COMS (Communication, Ocean, and Meteorology Satellite) through the Yonsei aerosol retrieval algorithm were first presented and used in this study. The GOCI-retrieved aerosol optical data are integrated with estimated aerosol distributions from US EPA Models-3/CMAQ (Community Multi-scale Air Quality) v4.5.1 model simulations via data assimilation technique, thereby making the aerosol data spatially continuous and available even for cloud contamination cells. The assimilated aerosol optical data are utilized to provide quantitative estimates of transboundary PM pollution from China to the Korean peninsula and Japan. For the period of 1 April to 31 May, 2011 this analysis yields estimates that AOD as a proxy for PM2.5 or PM10 during long-range transport events increased by 117-265% compared to background average AOD (aerosol optical depth) at the four AERONET sites in Korea, and average AOD increases of 121% were found when averaged over the entire Korean peninsula. This paper demonstrates that the use of multi-spectral AOD retrievals from geostationary satellites can improve estimates of transboundary PM pollution. Such data will become more widely available later this decade when new sensors such as the GEMS (Geostationary Environment Monitoring Spectrometer) and GOCI-2 are scheduled to be launched.

  20. Motion estimation under location uncertainty for turbulent fluid flows

    NASA Astrophysics Data System (ADS)

    Cai, Shengze; Mémin, Etienne; Dérian, Pierre; Xu, Chao

    2018-01-01

    In this paper, we propose a novel optical flow formulation for estimating two-dimensional velocity fields from an image sequence depicting the evolution of a passive scalar transported by a fluid flow. This motion estimator relies on a stochastic representation of the flow allowing to incorporate naturally a notion of uncertainty in the flow measurement. In this context, the Eulerian fluid flow velocity field is decomposed into two components: a large-scale motion field and a small-scale uncertainty component. We define the small-scale component as a random field. Subsequently, the data term of the optical flow formulation is based on a stochastic transport equation, derived from the formalism under location uncertainty proposed in Mémin (Geophys Astrophys Fluid Dyn 108(2):119-146, 2014) and Resseguier et al. (Geophys Astrophys Fluid Dyn 111(3):149-176, 2017a). In addition, a specific regularization term built from the assumption of constant kinetic energy involves the very same diffusion tensor as the one appearing in the data transport term. Opposite to the classical motion estimators, this enables us to devise an optical flow method dedicated to fluid flows in which the regularization parameter has now a clear physical interpretation and can be easily estimated. Experimental evaluations are presented on both synthetic and real world image sequences. Results and comparisons indicate very good performance of the proposed formulation for turbulent flow motion estimation.

  1. Optical nondestructive dynamic measurements of wafer-scale encapsulated nanofluidic channels.

    PubMed

    Liberman, Vladimir; Smith, Melissa; Weaver, Isaac; Rothschild, Mordechai

    2018-05-20

    Nanofluidic channels are of great interest for DNA sequencing, chromatography, and drug delivery. However, metrology of embedded or sealed nanochannels and measurement of their fill-state have remained extremely challenging. Existing techniques have been restricted to optical microscopy, which suffers from insufficient resolution, or scanning electron microscopy, which cannot measure sealed or embedded channels without cleaving the sample. Here, we demonstrate a novel method for accurately extracting nanochannel cross-sectional dimensions and monitoring fluid filling, utilizing spectroscopic ellipsometric scatterometry, combined with rigorous electromagnetic simulations. Our technique is capable of measuring channel dimensions with better than 5-nm accuracy and assessing channel filling within seconds. The developed technique is, thus, well suited for both process monitoring of channel fabrication as well as for studying complex phenomena of fluid flow through nanochannel structures.

  2. High-z objects and cold dark matter cosmogonies - Constraints on the primordial power spectrum on small scales

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.

    1993-01-01

    Modified cold dark matter (CDM) models were recently suggested to account for large-scale optical data, which fix the power spectrum on large scales, and the COBE results, which would then fix the bias parameter, b. We point out that all such models have deficit of small-scale power where density fluctuations are presently nonlinear, and should then lead to late epochs of collapse of scales M between 10 exp 9 - 10 exp 10 solar masses and (1-5) x 10 exp 14 solar masses. We compute the probabilities and comoving space densities of various scale objects at high redshifts according to the CDM models and compare these with observations of high-z QSOs, high-z galaxies and the protocluster-size object found recently by Uson et al. (1992) at z = 3.4. We show that the modified CDM models are inconsistent with the observational data on these objects. We thus suggest that in order to account for the high-z objects, as well as the large-scale and COBE data, one needs a power spectrum with more power on small scales than CDM models allow and an open universe.

  3. Appraising city-scale pollution monitoring capabilities of multi-satellite datasets using portable pollutant monitors

    NASA Astrophysics Data System (ADS)

    Aliyu, Yahaya A.; Botai, Joel O.

    2018-04-01

    The retrieval characteristics for a city-scale satellite experiment was explored over a Nigerian city. The study evaluated carbon monoxide and aerosol contents in the city atmosphere. We utilized the MSA Altair 5× gas detector and CW-HAT200 particulate counter to investigate the city-scale monitoring capabilities of satellite pollution observing instruments; atmospheric infrared sounder (AIRS), measurement of pollution in the troposphere (MOPITT), moderate resolution imaging spectroradiometer (MODIS), multi-angle imaging spectroradiometer (MISR) and ozone monitoring instrument (OMI). To achieve this, we employed the Kriging interpolation technique to collocate the satellite pollutant estimations over 19 ground sample sites for the period of 2015-2016. The portable pollutant devices were validated using the WHO air filter sampling model. To determine the city-scale performance of the satellite datasets, performance indicators: correlation coefficient, model efficiency, reliability index and root mean square error, were adopted as measures. The comparative analysis revealed that MOPITT carbon monoxide (CO) and MODIS aerosol optical depth (AOD) estimates are the appropriate satellite measurements for ground equivalents in Zaria, Nigeria. Our findings were within the acceptable limits of similar studies that utilized reference stations. In conclusion, this study offers direction to Nigeria's air quality policy organizers about available alternative air pollution measurements for mitigating air quality effects within its limited resource environment.

  4. Mitochondrial function and tissue vitality: bench-to-bedside real-time optical monitoring system

    NASA Astrophysics Data System (ADS)

    Mayevsky, Avraham; Walden, Raphael; Pewzner, Eliyahu; Deutsch, Assaf; Heldenberg, Eitan; Lavee, Jacob; Tager, Salis; Kachel, Erez; Raanani, Ehud; Preisman, Sergey; Glauber, Violete; Segal, Eran

    2011-06-01

    Background: The involvement of mitochondria in pathological states, such as neurodegenerative diseases, sepsis, stroke, and cancer, are well documented. Monitoring of nicotinamide adenine dinucleotide (NADH) fluorescence in vivo as an intracellular oxygen indicator was established in 1950 to 1970 by Britton Chance and collaborators. We use a multiparametric monitoring system enabling assessment of tissue vitality. In order to use this technology in clinical practice, the commercial developed device, the CritiView (CRV), is tested in animal models as well as in patients. Methods and Results: The new CRV enables the optical monitoring of four different parameters, representing the energy balance of various tissues in vivo. Mitochondrial NADH is measured by surface fluorometry/reflectometry. In addition, tissue microcirculatory blood flow, tissue reflectance and oxygenation are measured as well. The device is tested both in vitro and in vivo in a small animal model and in preliminary clinical trials in patients undergoing vascular or open heart surgery. In patients, the monitoring is started immediately after the insertion of a three-way Foley catheter (urine collection) to the patient and is stopped when the patient is discharged from the operating room. The results show that monitoring the urethral wall vitality provides information in correlation to the surgical procedure performed.

  5. Africa-wide monitoring of small surface water bodies using multisource satellite data: a monitoring system for FEWS NET: chapter 5

    USGS Publications Warehouse

    Velpuri, Naga Manohar; Senay, Gabriel B.; Rowland, James; Verdin, James P.; Alemu, Henok; Melesse, Assefa M.; Abtew, Wossenu; Setegn, Shimelis G.

    2014-01-01

    Continental Africa has the highest volume of water stored in wetlands, large lakes, reservoirs, and rivers, yet it suffers from problems such as water availability and access. With climate change intensifying the hydrologic cycle and altering the distribution and frequency of rainfall, the problem of water availability and access will increase further. Famine Early Warning Systems Network (FEWS NET) funded by the United States Agency for International Development (USAID) has initiated a large-scale project to monitor small to medium surface water points in Africa. Under this project, multisource satellite data and hydrologic modeling techniques are integrated to monitor several hundreds of small to medium surface water points in Africa. This approach has been already tested to operationally monitor 41 water points in East Africa. The validation of modeled scaled depths with field-installed gauge data demonstrated the ability of the model to capture both the spatial patterns and seasonal variations. Modeled scaled estimates captured up to 60 % of the observed gauge variability with a mean root-mean-square error (RMSE) of 22 %. The data on relative water level, precipitation, and evapotranspiration (ETo) for water points in East and West Africa were modeled since 1998 and current information is being made available in near-real time. This chapter presents the approach, results from the East African study, and the first phase of expansion activities in the West Africa region. The water point monitoring network will be further expanded to cover much of sub-Saharan Africa. The goal of this study is to provide timely information on the water availability that would support already established FEWS NET activities in Africa. This chapter also presents the potential improvements in modeling approach to be implemented during future expansion in Africa.

  6. Microfabrication techniques for integrated sensors and microsystems.

    PubMed

    Wise, K D; Najafi, K

    1991-11-29

    Integrated sensors and actuators are rapidly evolving to provide an important link between very large scale integrated circuits and nonelectronic monitoring and control applications ranging from biomedicine to automated manufacturing. As they continue to expand, entire microsystems merging electrical, mechanical, thermal, optical, magnetic, and perhaps chemical components should be possible on a common substrate.

  7. Photoelasticity and DIC as optical techniques for monitoring masonry specimens under mechanical loads

    NASA Astrophysics Data System (ADS)

    Colla, C.; Gabrielli, E.

    2017-01-01

    To evaluate the complex behaviour of masonry structures under mechanical loads, numerical models are developed and continuously implemented at diverse scales, whilst, from an experimental viewpoint, laboratory standard mechanical tests are usually carried out by instrumenting the specimens via traditional measuring devices. Extracted values collected in the few points where the tools were installed are assumed to represent the behaviour of the whole specimen but this may be quite optimistic or approximate. Optical monitoring techniques may help in overcoming some of these limitations by providing full-field visualization of mechanical parameters. Photoelasticity and the more recent DIC, employed to monitor masonry columns during compression tests are here presented and a lab case study is compared listing procedures, data acquisitions, advantages and limitations. It is shown that the information recorded by traditional measuring tools must be considered limited to the specific instrumented points. Instead, DIC in particular among the optical techniques, is proving both a very precise global and local picture of the masonry performance, opening new horizons towards a deeper knowledge of this complex construction material. The applicability of an innovative DIC procedure to cultural heritage constructions is also discussed.

  8. Online process monitoring at quasi-simultaneous laser transmission welding using a 3D-scanner with integrated pyrometer

    NASA Astrophysics Data System (ADS)

    Schmailzl, A.; Steger, S.; Dostalek, M.; Hierl, S.

    2016-03-01

    Quasi-simultaneous laser transmission welding is a well-known joining technique for thermoplastics and mainly used in the automotive as well as in the medical industry. For process control usually the so called set-path monitoring is used, where the weld is specified as "good" if the irradiation time is inside a defined confidence interval. However, the detection of small-sized gaps or thermal damaged zones is not possible with this technique. The analyzation of the weld seam temperature during welding offers the possibility to overcome this problem. In this approach a 3D-scanner is used instead of a scanner with flat-field optic. By using a pyrometer in combination with a 3D-scanner no color-corrected optic is needed in order to provide that laser- and detection-spot are concentric. Experimental studies on polyethylene T-joints have shown that the quality of the signal is adequate, despite the use of an optical setup with a long working distance and a small optical aperture. The effects on temperature are studied for defects like a gap in the joining zone. Therefore a notch was milled into the absorbent polymer. In case of producing housings for electronic parts the effect of an electrical wire between the joining partners is also investigated. Both defects can be identified by a local temperature deviation even at a feed rate of four meters per second. Furthermore a strategy for signal-processing is demonstrated. By this, remaining defects can be identified. Consequently an online detection of local defects is possible, which makes a dynamic process control feasible.

  9. Enterprise tools to promote interoperability: MonitoringResources.org supports design and documentation of large-scale, long-term monitoringprograms

    NASA Astrophysics Data System (ADS)

    Weltzin, J. F.; Scully, R. A.; Bayer, J.

    2016-12-01

    Individual natural resource monitoring programs have evolved in response to different organizational mandates, jurisdictional needs, issues and questions. We are establishing a collaborative forum for large-scale, long-term monitoring programs to identify opportunities where collaboration could yield efficiency in monitoring design, implementation, analyses, and data sharing. We anticipate these monitoring programs will have similar requirements - e.g. survey design, standardization of protocols and methods, information management and delivery - that could be met by enterprise tools to promote sustainability, efficiency and interoperability of information across geopolitical boundaries or organizational cultures. MonitoringResources.org, a project of the Pacific Northwest Aquatic Monitoring Partnership, provides an on-line suite of enterprise tools focused on aquatic systems in the Pacific Northwest Region of the United States. We will leverage on and expand this existing capacity to support continental-scale monitoring of both aquatic and terrestrial systems. The current stakeholder group is focused on programs led by bureaus with the Department of Interior, but the tools will be readily and freely available to a broad variety of other stakeholders. Here, we report the results of two initial stakeholder workshops focused on (1) establishing a collaborative forum of large scale monitoring programs, (2) identifying and prioritizing shared needs, (3) evaluating existing enterprise resources, (4) defining priorities for development of enhanced capacity for MonitoringResources.org, and (5) identifying a small number of pilot projects that can be used to define and test development requirements for specific monitoring programs.

  10. UV Observations of the Galaxy Cluster Abell 1795 with the Optical Monitor on XMM-Newton

    NASA Technical Reports Server (NTRS)

    Mittaz, J. P. D.; Kaastra, J. S.; Tamura, T.; Fabian, A. C.; Mushotzky, F.; Peterson, J. R.; Ikebe, Y.; Lumb, D. H.; Paerels, F.; Stewart, G.

    2000-01-01

    We present the results of an analysis of broad band UV observations of the central regions of Abell 1795 observed with the optical monitor on XMM-Newton. As have been found with other UV observations of the central regions of clusters of galaxies, we find evidence for star formation. However, we also find evidence for absorption in the cD galaxy on a more extended scale than has been seen with optical imaging. We also report the first UV observation of part of the filamentary structure seen in H-alpha, X-rays and very deep U band imaging. The part of the filament we see is very blue with UV colours consistent with a very early (O/B) stellar population. This is the first direct evidence of a dominant population of early type stars at the centre of Abell 1795 and implies very recent star formation. The relationship of this emission to emission at other wavebands is discussed.

  11. Integration of optical imaging with a small animal irradiator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weersink, Robert A., E-mail: robert.weersink@rmp.uhn.on.ca; Ansell, Steve; Wang, An

    Purpose: The authors describe the integration of optical imaging with a targeted small animal irradiator device, focusing on design, instrumentation, 2D to 3D image registration, 2D targeting, and the accuracy of recovering and mapping the optical signal to a 3D surface generated from the cone-beam computed tomography (CBCT) imaging. The integration of optical imaging will improve targeting of the radiation treatment and offer longitudinal tracking of tumor response of small animal models treated using the system. Methods: The existing image-guided small animal irradiator consists of a variable kilovolt (peak) x-ray tube mounted opposite an aSi flat panel detector, both mountedmore » on a c-arm gantry. The tube is used for both CBCT imaging and targeted irradiation. The optical component employs a CCD camera perpendicular to the x-ray treatment/imaging axis with a computer controlled filter for spectral decomposition. Multiple optical images can be acquired at any angle as the gantry rotates. The optical to CBCT registration, which uses a standard pinhole camera model, was modeled and tested using phantoms with markers visible in both optical and CBCT images. Optically guided 2D targeting in the anterior/posterior direction was tested on an anthropomorphic mouse phantom with embedded light sources. The accuracy of the mapping of optical signal to the CBCT surface was tested using the same mouse phantom. A surface mesh of the phantom was generated based on the CBCT image and optical intensities projected onto the surface. The measured surface intensity was compared to calculated surface for a point source at the actual source position. The point-source position was also optimized to provide the closest match between measured and calculated intensities, and the distance between the optimized and actual source positions was then calculated. This process was repeated for multiple wavelengths and sources. Results: The optical to CBCT registration error was 0.8 mm. Two-dimensional targeting of a light source in the mouse phantom based on optical imaging along the anterior/posterior direction was accurate to 0.55 mm. The mean square residual error in the normalized measured projected surface intensities versus the calculated normalized intensities ranged between 0.0016 and 0.006. Optimizing the position reduced this error from 0.00016 to 0.0004 with distances ranging between 0.7 and 1 mm between the actual and calculated position source positions. Conclusions: The integration of optical imaging on an existing small animal irradiation platform has been accomplished. A targeting accuracy of 1 mm can be achieved in rigid, homogeneous phantoms. The combination of optical imaging with a CBCT image-guided small animal irradiator offers the potential to deliver functionally targeted dose distributions, as well as monitor spatial and temporal functional changes that occur with radiation therapy.« less

  12. Ceramic Filter for Small System Drinking Water Treatment: Evaluation of Membrane Pore Size and Importance of Integrity Monitoring

    EPA Science Inventory

    Ceramic filtration has recently been identified as a promising technology for drinking water treatment in households and small communities. This paper summarizes the results of a pilot-scale study conducted at the U.S. Environmental Protection Agency’s (EPA’s) Test & Evaluation ...

  13. Research and Development of High-performance Explosives

    PubMed Central

    Cornell, Rodger; Wrobel, Erik; Anderson, Paul E.

    2016-01-01

    Developmental testing of high explosives for military applications involves small-scale formulation, safety testing, and finally detonation performance tests to verify theoretical calculations. small-scale For newly developed formulations, the process begins with small-scale mixes, thermal testing, and impact and friction sensitivity. Only then do subsequent larger scale formulations proceed to detonation testing, which will be covered in this paper. Recent advances in characterization techniques have led to unparalleled precision in the characterization of early-time evolution of detonations. The new technique of photo-Doppler velocimetry (PDV) for the measurement of detonation pressure and velocity will be shared and compared with traditional fiber-optic detonation velocity and plate-dent calculation of detonation pressure. In particular, the role of aluminum in explosive formulations will be discussed. Recent developments led to the development of explosive formulations that result in reaction of aluminum very early in the detonation product expansion. This enhanced reaction leads to changes in the detonation velocity and pressure due to reaction of the aluminum with oxygen in the expanding gas products. PMID:26966969

  14. Optical assessment of tissue mechanics: acousto-optical elastography of skin

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Sean J.

    2003-10-01

    A multiphysics approach, combining acoustics, optics, and mechanics can be used to detect regions of skin with distinct mechanical behavior that may indicate a pathology, such as a cancerous skin lesion. Herein, an acousto - optical approach to evaluating the viscoelastic behavior of superficial skin layers will be presented. The method relies upon inducing low frequency guided surface waves in the skin and detecting these waves by monitoring the shift in the backscattered laser speckle pattern created by illuminating a small region of the skin with coherent light. Artificial lesions in the form of chemical cross-linking and chemical softening were induced in superficial porcine skin layers and detected based upon variations in local mechanical behavior. The lesions affect not only the time-of-flight of the guided surface waves, but also change the relative phase of the acoustic waves as determined optically. The method may be applicable in the study and diagnosis of superficial skin lesions.

  15. Laser imaging for clinical applications

    NASA Astrophysics Data System (ADS)

    Van Houten, John P.; Cheong, Wai-Fung; Kermit, Eben L.; King, Richard A.; Spilman, Stanley D.; Benaron, David A.

    1995-03-01

    Medical optical imaging (MOI) uses light emitted into opaque tissues in order to determine the interior structure and chemical content. These optical techniques have been developed in an attempt to prospectively identify impending brain injuries before they become irreversible, thus allowing injury to be avoided or minimized. Optical imaging and spectroscopy center around the simple idea that light passes through the body in small amounts, and emerges bearing clues about tissues through which it passed. Images can be reconstructed from such data, and this is the basis of optical tomography. Over the past few years, techniques have been developed to allow construction of images from such optical data at the bedside. We have used a time-of-flight system reported earlier to monitor oxygenation and image hemorrhage in neonatal brain. This article summarizes the problems that we believe can be addressed by such techniques, and reports on some of our early results.

  16. Real-Time Analysis of Isoprene in Breath by Using Ultraviolet-Absorption Spectroscopy with a Hollow Optical Fiber Gas Cell

    PubMed Central

    Iwata, Takuro; Katagiri, Takashi; Matsuura, Yuji

    2016-01-01

    A breath analysis system based on ultraviolet-absorption spectroscopy was developed by using a hollow optical fiber as a gas cell for real-time monitoring of isoprene in breath. The hollow optical fiber functions as an ultra-small-volume gas cell with a long path. The measurement sensitivity of the system was evaluated by using nitric-oxide gas as a gas sample. The evaluation result showed that the developed system, using a laser-driven, high-intensity light source and a 3-m-long, aluminum-coated hollow optical fiber, could successfully measure nitric-oxide gas with a 50 ppb concentration. An absorption spectrum of a breath sample in the wavelength region of around 200–300 nm was measured, and the measured spectrum revealed the main absorbing components in breath as water vapor, isoprene, and ozone converted from oxygen by radiation of ultraviolet light. The concentration of isoprene in breath was estimated by multiple linear regression. The regression analysis results showed that the proposed analysis system enables real-time monitoring of isoprene during the exhaling of breath. Accordingly, it is suitable for measuring the circadian variation of isoprene. PMID:27929387

  17. A new fibre optic pulse oximeter probe for monitoring splanchnic organ arterial blood oxygen saturation.

    PubMed

    Hickey, M; Samuels, N; Randive, N; Langford, R; Kyriacou, P A

    2012-12-01

    A new, continuous method of monitoring splanchnic organ oxygen saturation (SpO(2)) would make the early detection of inadequate tissue oxygenation feasible, reducing the risk of hypoperfusion, severe ischaemia, and, ultimately, death. In an attempt to provide such a device, a new fibre optic based reflectance pulse oximeter probe and processing system were developed followed by an in vivo evaluation of the technology on seventeen patients undergoing elective laparotomy. Photoplethysmographic (PPG) signals of good quality and high signal-to-noise ratio were obtained from the small bowel, large bowel, liver and stomach. Simultaneous peripheral PPG signals from the finger were also obtained for comparison purposes. Analysis of the amplitudes of all acquired PPG signals indicated much larger amplitudes for those signals obtained from splanchnic organs than those obtained from the finger. Estimated SpO(2) values for splanchnic organs showed good agreement with those obtained from the finger fibre optic probe and those obtained from a commercial device. These preliminary results suggest that a miniaturized 'indwelling' fibre optic sensor may be a suitable method for pre-operative and post-operative evaluation of splanchnic organ SpO(2) and their health. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Real-Time Analysis of Isoprene in Breath by Using Ultraviolet-Absorption Spectroscopy with a Hollow Optical Fiber Gas Cell.

    PubMed

    Iwata, Takuro; Katagiri, Takashi; Matsuura, Yuji

    2016-12-05

    A breath analysis system based on ultraviolet-absorption spectroscopy was developed by using a hollow optical fiber as a gas cell for real-time monitoring of isoprene in breath. The hollow optical fiber functions as an ultra-small-volume gas cell with a long path. The measurement sensitivity of the system was evaluated by using nitric-oxide gas as a gas sample. The evaluation result showed that the developed system, using a laser-driven, high-intensity light source and a 3-m-long, aluminum-coated hollow optical fiber, could successfully measure nitric-oxide gas with a 50 ppb concentration. An absorption spectrum of a breath sample in the wavelength region of around 200-300 nm was measured, and the measured spectrum revealed the main absorbing components in breath as water vapor, isoprene, and ozone converted from oxygen by radiation of ultraviolet light. The concentration of isoprene in breath was estimated by multiple linear regression. The regression analysis results showed that the proposed analysis system enables real-time monitoring of isoprene during the exhaling of breath. Accordingly, it is suitable for measuring the circadian variation of isoprene.

  19. Hydrogen peroxide and glucose concentration measurement using optical fiber grating sensors with corrodible plasmonic nanocoatings

    PubMed Central

    Zhang, Xuejun; Wu, Ze; Liu, Fu; Fu, Qiangqiang; Chen, Xiaoyong; Xu, Jian; Zhang, Zhaochuan; Huang, Yunyun; Tang, Yong; Guo, Tuan; Albert, Jacques

    2018-01-01

    We propose and demonstrate hydrogen peroxide (H2O2) and glucose concentration measurements using a plasmonic optical fiber sensor. The sensor utilizes a tilted fiber Bragg grating (TFBG) written in standard single mode communication fiber. The fiber is over coated with an nm-scale film of silver that supports surface plasmon resonances (SPRs). Such a tilted grating SPR structure provides a high density of narrow spectral resonances (Q-factor about 105) that overlap with the broader absorption band of the surface plasmon waves in the silver film, thereby providing an accurate tool to measure small shifts of the plasmon resonance frequencies. The H2O2 to be detected acts as an oxidant to etch the silver film, which has the effect of gradually decreasing the SPR attenuation. The etching rate of the silver film shows a clear relationship with the H2O2 concentration so that monitoring the progressively increasing attenuation of a selected surface plasmon resonance over a few minutes enables us to measure the H2O2 concentration with a limit of detection of 0.2 μM. Furthermore, the proposed method can be applied to the determination of glucose in human serum for a concentration range from 0 to 12 mM (within the physiological range of 3-8 mM) by monitoring the H2O2 produced by an enzymatic oxidation process. The sensor does not require accurate temperature control because of the inherent temperature insensitivity of TFBG devices referenced to the core mode resonance. A gold mirror coated on the fiber allows the sensor to work in reflection, which will facilitate the integration of the sensor with a hypodermic needle for in vitro measurements. The present study shows that Ag-coated TFBG-SPR can be applied as a promising type of sensing probe for optical detection of H2O2 and glucose detection in human serum. PMID:29675315

  20. Hydrogen peroxide and glucose concentration measurement using optical fiber grating sensors with corrodible plasmonic nanocoatings.

    PubMed

    Zhang, Xuejun; Wu, Ze; Liu, Fu; Fu, Qiangqiang; Chen, Xiaoyong; Xu, Jian; Zhang, Zhaochuan; Huang, Yunyun; Tang, Yong; Guo, Tuan; Albert, Jacques

    2018-04-01

    We propose and demonstrate hydrogen peroxide (H 2 O 2 ) and glucose concentration measurements using a plasmonic optical fiber sensor. The sensor utilizes a tilted fiber Bragg grating (TFBG) written in standard single mode communication fiber. The fiber is over coated with an nm-scale film of silver that supports surface plasmon resonances (SPRs). Such a tilted grating SPR structure provides a high density of narrow spectral resonances (Q-factor about 10 5 ) that overlap with the broader absorption band of the surface plasmon waves in the silver film, thereby providing an accurate tool to measure small shifts of the plasmon resonance frequencies. The H 2 O 2 to be detected acts as an oxidant to etch the silver film, which has the effect of gradually decreasing the SPR attenuation. The etching rate of the silver film shows a clear relationship with the H 2 O 2 concentration so that monitoring the progressively increasing attenuation of a selected surface plasmon resonance over a few minutes enables us to measure the H 2 O 2 concentration with a limit of detection of 0.2 μM. Furthermore, the proposed method can be applied to the determination of glucose in human serum for a concentration range from 0 to 12 mM (within the physiological range of 3-8 mM) by monitoring the H 2 O 2 produced by an enzymatic oxidation process. The sensor does not require accurate temperature control because of the inherent temperature insensitivity of TFBG devices referenced to the core mode resonance. A gold mirror coated on the fiber allows the sensor to work in reflection, which will facilitate the integration of the sensor with a hypodermic needle for in vitro measurements. The present study shows that Ag-coated TFBG-SPR can be applied as a promising type of sensing probe for optical detection of H 2 O 2 and glucose detection in human serum.

  1. Metro Optical Networks for Homeland Security

    NASA Astrophysics Data System (ADS)

    Bechtel, James H.

    Metro optical networks provide an enticing opportunity for strengthening homeland security. Many existing and emerging fiber-optic networks can be adapted for enhanced security applications. Applications include airports, theme parks, sports venues, and border surveillance systems. Here real-time high-quality video and captured images can be collected, transported, processed, and stored for security applications. Video and data collection are important also at correctional facilities, courts, infrastructure (e.g., dams, bridges, railroads, reservoirs, power stations), and at military and other government locations. The scaling of DWDM-based networks allows vast amounts of data to be collected and transported including biometric features of individuals at security check points. Here applications will be discussed along with potential solutions and challenges. Examples of solutions to these problems are given. This includes a discussion of metropolitan aggregation platforms for voice, video, and data that are SONET compliant for use in SONET networks and the use of DWDM technology for scaling and transporting a variety of protocols. Element management software allows not only network status monitoring, but also provides optimized allocation of network resources through the use of optical switches or electrical cross connects.

  2. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    PubMed

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  3. Solid State Research.

    DTIC Science & Technology

    1983-02-15

    0.1 J/cm2 at 520 us, and Pulse Repetition Rate Was 10 Hs. 33 2-8 Nomarski Optical Micrograph of a Photodeposited Waveguide in LtNbO3 After Indiffusion...evaluate the interferometric array, the technique shown in Fig. 1-5 was used. With the two-mirror system shown, an incident planar wavefront could be...t- -’-, ,i- 1 0 110 - Fig. 2-8. Nomarski optical micrograph of a photodeposited waveguide in LiNbO3 after indiffusion. Small-scale divisions

  4. Coastal Benthic Optical Properties (CoBOP) of Coral Reef Environments: Effects of Changes in the Spectral Quality and Quantity of the Underwater Light Field and Elevated Temperatures on Small Scale (0.01 to 0.1 m) Optical Properties of Corals

    DTIC Science & Technology

    1998-01-01

    bleaching. 3 Dr. Rowan and I have taken samples from these colonies and Dr. Rowan will process these samples with the hypothesis that zooxanthellae from...non-bleached colonies will be represented by clade A zooxanthellae , a species more resistant to temperature stress. IMPACT/APPLICATIONS Two specific

  5. Invited Article: A review of haptic optical tweezers for an interactive microworld exploration

    NASA Astrophysics Data System (ADS)

    Pacoret, Cécile; Régnier, Stéphane

    2013-08-01

    This paper is the first review of haptic optical tweezers, a new technique which associates force feedback teleoperation with optical tweezers. This technique allows users to explore the microworld by sensing and exerting picoNewton-scale forces with trapped microspheres. Haptic optical tweezers also allow improved dexterity of micromanipulation and micro-assembly. One of the challenges of this technique is to sense and magnify picoNewton-scale forces by a factor of 1012 to enable human operators to perceive interactions that they have never experienced before, such as adhesion phenomena, extremely low inertia, and high frequency dynamics of extremely small objects. The design of optical tweezers for high quality haptic feedback is challenging, given the requirements for very high sensitivity and dynamic stability. The concept, design process, and specification of optical tweezers reviewed here are focused on those intended for haptic teleoperation. In this paper, two new specific designs as well as the current state-of-the-art are presented. Moreover, the remaining important issues are identified for further developments. The initial results obtained are promising and demonstrate that optical tweezers have a significant potential for haptic exploration of the microworld. Haptic optical tweezers will become an invaluable tool for force feedback micromanipulation of biological samples and nano- and micro-assembly parts.

  6. Unsteady density and velocity measurements in the 6 foot x 6 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Rose, W. C.; Johnson, D. A.

    1980-01-01

    The methods used and the results obtained in four aero-optic tests are summarized. It is concluded that the rather large values of density fluctuation appear to be the result of much higher Mach number than freestream and the violent turbulence in the flow as it separates from the turret. A representative comparison of fairing on-fairing off rms density fluctuation indicates essentially no effect at M = 0.62 and a small effect at M = 0.95. These data indicate that some slight improvement in optical quality can be expected with the addition of a fairing, although at M = 0.62 its effect would be nil. Fairings are very useful in controlling pressure loads on turrets, but will not have first order effects on optical quality. Scale sizes increase dramatically with increasing azimuth angle for a reprensentative condition. Since both scale sizes and fluctuation levels increase (total turbulence path length also increases) with azimuth angle, substantial optical degradation might be expected. For shorter wave lengths, large degradations occur.

  7. Optical properties of electrohydrodynamic convection patterns: rigorous and approximate methods.

    PubMed

    Bohley, Christian; Heuer, Jana; Stannarius, Ralf

    2005-12-01

    We analyze the optical behavior of two-dimensionally periodic structures that occur in electrohydrodynamic convection (EHC) patterns in nematic sandwich cells. These structures are anisotropic, locally uniaxial, and periodic on the scale of micrometers. For the first time, the optics of these structures is investigated with a rigorous method. The method used for the description of the electromagnetic waves interacting with EHC director patterns is a numerical approach that discretizes directly the Maxwell equations. It works as a space-grid-time-domain method and computes electric and magnetic fields in time steps. This so-called finite-difference-time-domain (FDTD) method is able to generate the fields with arbitrary accuracy. We compare this rigorous method with earlier attempts based on ray-tracing and analytical approximations. Results of optical studies of EHC structures made earlier based on ray-tracing methods are confirmed for thin cells, when the spatial periods of the pattern are sufficiently large. For the treatment of small-scale convection structures, the FDTD method is without alternatives.

  8. Energy Efficient, Cross-Layer Enabled, Dynamic Aggregation Networks for Next Generation Internet

    NASA Astrophysics Data System (ADS)

    Wang, Michael S.

    Today, the Internet traffic is growing at a near exponential rate, driven predominately by data center-based applications and Internet-of-Things services. This fast-paced growth in Internet traffic calls into question the ability of the existing optical network infrastructure to support this continued growth. The overall optical networking equipment efficiency has not been able to keep up with the traffic growth, creating a energy gap that makes energy and cost expenditures scale linearly with the traffic growth. The implication of this energy gap is that it is infeasible to continue using existing networking equipment to meet the growing bandwidth demand. A redesign of the optical networking platform is needed. The focus of this dissertation is on the design and implementation of energy efficient, cross-layer enabled, dynamic optical networking platforms, which is a promising approach to address the exponentially growing Internet bandwidth demand. Chapter 1 explains the motivation for this work by detailing the huge Internet traffic growth and the unsustainable energy growth of today's networking equipment. Chapter 2 describes the challenges and objectives of enabling agile, dynamic optical networking platforms and the vision of the Center for Integrated Access Networks (CIAN) to realize these objectives; the research objectives of this dissertation and the large body of related work in this field is also summarized. Chapter 3 details the design and implementation of dynamic networking platforms that support wavelength switching granularity. The main contribution of this work involves the experimental validation of deep cross-layer communication across the optical performance monitoring (OPM), data, and control planes. The first experiment shows QoS-aware video streaming over a metro-scale test-bed through optical power monitoring of the transmission wavelength and cross-layer feedback control of the power level. The second experiment extends the performance monitoring capabilities to include real-time monitoring of OSNR and polarization mode dispersion (PMD) to enable dynamic wavelength switching and selective restoration. Chapter 4 explains the author?s contributions in designing dynamic networking at the sub-wavelength switching granularity, which can provide greater network efficiency due to its finer granularity. To support dynamic switching, regeneration, adding/dropping, and control decisions on each individual packet, the cross-layer enabled node architecture is enhanced with a FPGA controller that brings much more precise timing and control to the switching, OPM, and control planes. Furthermore, QoS-aware packet protection and dynamic switching, dropping, and regeneration functionalities were experimentally demonstrated in a multi-node network. Chapter 5 describes a technique to perform optical grooming, a process of optically combining multiple incoming data streams into a single data stream, which can simultaneously achieve greater bandwidth utilization and increased spectral efficiency. In addition, an experimental demonstration highlighting a fully functioning multi-node, agile optical networking platform is detailed. Finally, a summary and discussion of future work is provided in Chapter 6. The future of the Internet is very exciting, filled with not-yet-invented applications and services driven by cloud computing and Internet-of-Things. The author is cautiously optimistic that agile, dynamically reconfigurable optical networking is the solution to realizing this future.

  9. Fabrication and testing of the first 8.4-m off-axis segment for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Allen, R. G.; Burge, J. H.; Kim, D. W.; Kingsley, J. S.; Tuell, M. T.; West, S. C.; Zhao, C.; Zobrist, T.

    2010-07-01

    The primary mirror of the Giant Magellan Telescope consists of seven 8.4 m segments which are borosilicate honeycomb sandwich mirrors. Fabrication and testing of the off-axis segments is challenging and has led to a number of innovations in manufacturing technology. The polishing system includes an actively stressed lap that follows the shape of the aspheric surface, used for large-scale figuring and smoothing, and a passive "rigid conformal lap" for small-scale figuring and smoothing. Four independent measurement systems support all stages of fabrication and provide redundant measurements of all critical parameters including mirror figure, radius of curvature, off-axis distance and clocking. The first measurement uses a laser tracker to scan the surface, with external references to compensate for rigid body displacements and refractive index variations. The main optical test is a full-aperture interferometric measurement, but it requires an asymmetric null corrector with three elements, including a 3.75 m mirror and a computer-generated hologram, to compensate for the surface's 14 mm departure from the best-fit sphere. Two additional optical tests measure large-scale and small-scale structure, with some overlap. Together these measurements provide high confidence that the segments meet all requirements.

  10. Time-dependent, optically thick accretion onto a black hole

    NASA Technical Reports Server (NTRS)

    Gilden, D. L.; Wheeler, J. C.

    1980-01-01

    A fully relativistic hydrodynamics code which incorporates diffusive radiation transport is used to study time-dependent, spherically symmetric, optically thick accretion onto a black hole. It is found that matter free-falls into the hole regardless of whether the diffusion time scale is longer or shorter than the dynamical time. Nonadiabatic heating due to magnetic field reconnection is included. The internal energy thus generated affects the flow in a purely relativistic way, again ensuring free-fall collapse of the inflowing matter. Any matter enveloping a black hole will thus be swallowed on a dynamical time scale with relatively small net release of energy. The inclusion of angular momentum will not necessarily affect this conclusion.

  11. Soil Temperature Variability in Complex Terrain measured using Distributed a Fiber-Optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Seyfried, M. S.; Link, T. E.

    2013-12-01

    Soil temperature (Ts) exerts critical environmental controls on hydrologic and biogeochemical processes. Rates of carbon cycling, mineral weathering, infiltration and snow melt are all influenced by Ts. Although broadly reflective of the climate, Ts is sensitive to local variations in cover (vegetative, litter, snow), topography (slope, aspect, position), and soil properties (texture, water content), resulting in a spatially and temporally complex distribution of Ts across the landscape. Understanding and quantifying the processes controlled by Ts requires an understanding of that distribution. Relatively few spatially distributed field Ts data exist, partly because traditional Ts data are point measurements. A relatively new technology, fiber optic distributed temperature system (FO-DTS), has the potential to provide such data but has not been rigorously evaluated in the context of remote, long term field research. We installed FO-DTS in a small experimental watershed in the Reynolds Creek Experimental Watershed (RCEW) in the Owyhee Mountains of SW Idaho. The watershed is characterized by complex terrain and a seasonal snow cover. Our objectives are to: (i) evaluate the applicability of fiber optic DTS to remote field environments and (ii) to describe the spatial and temporal variability of soil temperature in complex terrain influenced by a variable snow cover. We installed fiber optic cable at a depth of 10 cm in contrasting snow accumulation and topographic environments and monitored temperature along 750 m with DTS. We found that the DTS can provide accurate Ts data (+/- .4°C) that resolves Ts changes of about 0.03°C at a spatial scale of 1 m with occasional calibration under conditions with an ambient temperature range of 50°C. We note that there are site-specific limitations related cable installation and destruction by local fauna. The FO-DTS provide unique insight into the spatial and temporal variability of Ts in a landscape. We found strong seasonal trends in Ts variability controlled by snow cover and solar radiation as modified by topography. During periods of spatially continuous snow cover Ts was practically homogeneous throughout. In the absence of snow cover, Ts is highly variable, with most of the variability attributable to different topographic units defined by slope and aspect. During transition periods when snow melts out, Ts is highly variable within the watershed and within topographic units. The importance of accounting for these relatively small scale effects is underscored by the fact that the overall range of Ts in study area 600 m long is similar to that of the much large RCEW with 900 m elevation gradient.

  12. The economic viability of smallholder timber production under expanding açaí palm production in the Amazon Estuary

    USGS Publications Warehouse

    Fortini, Lucas B.; Douglas R. Carter,

    2015-01-01

    Relatively little attention has been paid to the economic potentials and limitations of tropical timber production and management at smallholder scales, with the most relevant research focusing on community forestry efforts. As a rare tropical example of long-lasting small-scale timber production, in this study we explore the economics of smallholder vertically integrated timber use to better understand the activity in the context of its primary land use alternative in the Amazon Estuary, açaí palm fruit production. We use data from landowner and firm surveys, participatory monitoring of firms, and detailed forest and sawmill operation monitoring to devise financial returns models of smallholder timber micro firms and açaí palm fruit production. We then compare the economics of the two activities to better understand how differences may shape decisions at the small holder scale that impact current land use shifts in the region.

  13. Laser differential image-motion monitor for characterization of turbulence during free-space optical communication tests.

    PubMed

    Brown, David M; Juarez, Juan C; Brown, Andrea M

    2013-12-01

    A laser differential image-motion monitor (DIMM) system was designed and constructed as part of a turbulence characterization suite during the DARPA free-space optical experimental network experiment (FOENEX) program. The developed link measurement system measures the atmospheric coherence length (r0), atmospheric scintillation, and power in the bucket for the 1550 nm band. DIMM measurements are made with two separate apertures coupled to a single InGaAs camera. The angle of arrival (AoA) for the wavefront at each aperture can be calculated based on focal spot movements imaged by the camera. By utilizing a single camera for the simultaneous measurement of the focal spots, the correlation of the variance in the AoA allows a straightforward computation of r0 as in traditional DIMM systems. Standard measurements of scintillation and power in the bucket are made with the same apertures by redirecting a percentage of the incoming signals to InGaAs detectors integrated with logarithmic amplifiers for high sensitivity and high dynamic range. By leveraging two, small apertures, the instrument forms a small size and weight configuration for mounting to actively tracking laser communication terminals for characterizing link performance.

  14. Micro-optical artificial compound eyes.

    PubMed

    Duparré, J W; Wippermann, F C

    2006-03-01

    Natural compound eyes combine small eye volumes with a large field of view at the cost of comparatively low spatial resolution. For small invertebrates such as flies or moths, compound eyes are the perfectly adapted solution to obtaining sufficient visual information about their environment without overloading their brains with the necessary image processing. However, to date little effort has been made to adopt this principle in optics. Classical imaging always had its archetype in natural single aperture eyes which, for example, human vision is based on. But a high-resolution image is not always required. Often the focus is on very compact, robust and cheap vision systems. The main question is consequently: what is the better approach for extremely miniaturized imaging systems-just scaling of classical lens designs or being inspired by alternative imaging principles evolved by nature in the case of small insects? In this paper, it is shown that such optical systems can be achieved using state-of-the-art micro-optics technology. This enables the generation of highly precise and uniform microlens arrays and their accurate alignment to the subsequent optics-, spacing- and optoelectronics structures. The results are thin, simple and monolithic imaging devices with a high accuracy of photolithography. Two different artificial compound eye concepts for compact vision systems have been investigated in detail: the artificial apposition compound eye and the cluster eye. Novel optical design methods and characterization tools were developed to allow the layout and experimental testing of the planar micro-optical imaging systems, which were fabricated for the first time by micro-optics technology. The artificial apposition compound eye can be considered as a simple imaging optical sensor while the cluster eye is capable of becoming a valid alternative to classical bulk objectives but is much more complex than the first system.

  15. Simulation of Small-Pitch HgCdTe Photodetectors

    NASA Astrophysics Data System (ADS)

    Vallone, Marco; Goano, Michele; Bertazzi, Francesco; Ghione, Giovanni; Schirmacher, Wilhelm; Hanna, Stefan; Figgemeier, Heinrich

    2017-09-01

    Recent studies indicate as an important technological step the development of infrared HgCdTe-based focal plane arrays (FPAs) with sub-wavelength pixel pitch, with the advantage of smaller volume, lower weight, and potentially lower cost. In order to assess the limits of pixel pitch scaling, we present combined three-dimensional optical and electrical simulations of long-wavelength infrared HgCdTe FPAs, with 3 μm, 5 μm, and 10 μm pitch. Numerical simulations predict significant cavity effects, brought by the array periodicity. The optical and electrical contributions to spectral inter-pixel crosstalk are investigated as functions of pixel pitch, by illuminating the FPAs with Gaussian beams focused on the central pixel. Despite the FPAs being planar with 100% pixel duty cycle, our calculations suggest that the total crosstalk with nearest-neighbor pixels could be kept acceptably small also with pixels only 3 μ m wide and a diffraction-limited optical system.

  16. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. 8: An intensive HST, IUE, and ground-based study of NGC 5548

    NASA Technical Reports Server (NTRS)

    Korista, K.; Alloin, D.; Barr, P.; Clavel, J.; Cohen, R. D.; Crenshaw, D. M.; Evans, I. N.; Horne, K.; Koratkar, A. P.; Kriss, G. A.

    1994-01-01

    We present the data and initial results from a combined HST/IUE/ground-based spectroscopic monitoring campaign on the Seyfert 1 galaxy NGC 5548 that was undertaken in order to address questions that require both higher temporal resolution and higher signal-to-noise ratios than were obtained in our previous multiwavelength monitoring of this galaxy in 1988-89. IUE spectra were obtained once every two days for a period of 74 days beginning on 14 March 1993. During the last 39 days of this campaign, spectroscopic observations were also made with the HST Faint Object Spectrograph (FOS) on a daily basis. Ground-based observations, consisting of 165 optical spectra and 77 photometric observations (both CCD imaging and aperture photometry), are reported for the period 1992 October to 1993 September, although much of the data are concentrated around the time of the satellite-based program. These data constitute a fifth year of intensive optical monitoring of this galaxy. In this contribution, we describe the acquisition and reduction of all of the satellite and ground-based data obtained in this program. We describe in detail various photometric problems with the FOS and explain how we identified and corrected for various anomalies. During the HST portion of the monitoring campaign, the 1350 A continuum flux is found to have varied by nearly a factor of two. In other wavebands, the continuum shows nearly identical behavior, except that the amplitude of variability is larger at shorter wavelengths, and the continuum light curves appear to show more short time-scale variability at shorter wavelengths. The broad emission lines also vary in flux, with amplitudes that are slightly smaller than the UV continuum variations and with a small time delay relative to the UV continuum. On the basis of simple time-series analysis of the UV and optical continuum and emission line light curves, we find (1) that the ultraviolet and optical continuum variations are virtually simultaneous, with any lag between the 1350 A continuum and the 5100 A continuum amounting to less than about one day; (2) that the variations in the highest ionization lines observed, He II lambda 1640 and N V lambda 1240, lag behind the continuum variations by somewhat less than 2 days, and (3) that the velocity field of the C IV-emitting region is not dominated by radial motion. The results on the C IV velocity field are preliminary and quite uncertain, but there are some weak indications that the emission-line (wings absolute value of Delta upsilon is greater than or equal to 3000 km/s) respond to continuum variations slightly more rapidly than does the core. The optical observations show that the variations in the broad H beta line flux follow the continuum variations with a time lag of around two weeks, about twice the lag for Ly alpha and C IV, as in our previous monitoring campaign on this same galaxy. However, the lags measured for Ly alpha, C IV, and H Beta are each slightly smaller than previously determined. We confirm two trends reported earlier, namely (1) that the UV/optical continuum becomes 'harder' as it gets brighter, and (2) that the highest ionization emission lines have the shortest lags, thus indicating radial ionization stratificatin of a broad-line region that spans over an order of magnitude range in radius.

  17. Multivariate Analysis To Quantify Species in the Presence of Direct Interferents: Micro-Raman Analysis of HNO 3 in Microfluidic Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lines, Amanda M.; Nelson, Gilbert L.; Casella, Amanda J.

    Microfluidic devices are a growing field with significant potential for application to small scale processing of solutions. Much like large scale processing, fast, reliable, and cost effective means of monitoring the streams during processing are needed. Here we apply a novel Micro-Raman probe to the on-line monitoring of streams within a microfluidic device. For either macro or micro scale process monitoring via spectroscopic response, there is the danger of interfering or confounded bands obfuscating results. By utilizing chemometric analysis, a form of multivariate analysis, species can be accurately quantified in solution despite the presence of overlapping or confounded spectroscopic bands.more » This is demonstrated on solutions of HNO 3 and NaNO 3 within micro-flow and microfluidic devices.« less

  18. An integrated hyperspectral and SAR satellite constellation for environment monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Jinnian; Ren, Fuhu; Xie, Chou; An, Jun; Tong, Zhanbo

    2017-09-01

    A fully-integrated, Hyperspectral optical and SAR (Synthetic Aperture Radar) constellation of small earth observation satellites will be deployed over multiple launches from last December to next five years. The Constellation is expected to comprise a minimum of 16 satellites (8 SAR and 8 optical ) flying in two orbital planes, with each plane consisting of four satellite pairs, equally-spaced around the orbit plane. Each pair of satellites will consist of a hyperspectral/mutispectral optical satellite and a high-resolution SAR satellite (X-band) flying in tandem. The constellation is expected to offer a number of innovative capabilities for environment monitoring. As a pre-launch experiment, two hyperspectral earth observation minisatellites, Spark 01 and 02 were launched as secondary payloads together with Tansat in December 2016 on a CZ-2D rocket. The satellites feature a wide-range hyperspectral imager. The ground resolution is 50 m, covering spectral range from visible to near infrared (420 nm - 1000 nm) and a swath width of 100km. The imager has an average spectral resolution of 5 nm with 148 channels, and a single satellite could obtain hyperspectral imagery with 2.5 million km2 per day, for global coverage every 16 days. This paper describes the potential applications of constellation image in environment monitoring.

  19. Gravitational field models for study of Earth mantle dynamics

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The tectonic forces or stresses due to the small scale mantle flow under the South American plate are detected and determined by utilizing the harmonics of the geopotential field model. The high degree harmonics are assumed to describe the small scale mantle convection patterns. The input data used in the derivation of this model is made up of 840,000 optical, electronic, and laser observations and 1,656 5 deg x 5 deg mean free air anomalies. Although there remain some statistically questionable aspects of the high degree harmonics, it seems appropriate now to explore their implications for the tectonic forces or stress field under the crust.

  20. Sensors for Environmental Control

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under a Kennedy Space Center Small Business Innovation Research contract, GEO-CENTERS, Inc. developed a sensing element or 'optrode,' which NASA needed for space life support research to measure a hydroponic culture's pH factor. The company then commercialized the technology in the PC Based pH Monitoring System. The system employs the optrode to enable long term continuous monitoring of the pH level of fluids in standing and flowing conditions, an optoelectronic board with light sensors and detectors that fits into a desktop computer, and a fiber optic cable that connects the two. The system is effective in monitoring the pH output of industries to maintain ranges acceptable to the Environmental Protection Agency.

  1. Little bits of diamond: Optically detected magnetic resonance of nitrogen-vacancy centers

    NASA Astrophysics Data System (ADS)

    Zhang, Haimei; Belvin, Carina; Li, Wanyi; Wang, Jennifer; Wainwright, Julia; Berg, Robbie; Bridger, Joshua

    2018-03-01

    We give instructions for the construction and operation of a simple apparatus for performing optically detected magnetic resonance measurements on diamond samples containing high concentrations of nitrogen-vacancy (NV) centers. Each NV center has a spin degree of freedom that can be manipulated and monitored by a combination of visible and microwave radiation. We observe Zeeman shifts in the presence of small external magnetic fields and describe a simple method to optically measure magnetic field strengths with a spatial resolution of several microns. The activities described are suitable for use in an advanced undergraduate lab course, powerfully connecting core quantum concepts to cutting edge applications. An even simpler setup, appropriate for use in more introductory settings, is also presented.

  2. Combat vehicle crew helmet-mounted display: next generation high-resolution head-mounted display

    NASA Astrophysics Data System (ADS)

    Nelson, Scott A.

    1994-06-01

    The Combat Vehicle Crew Head-Mounted Display (CVC HMD) program is an ARPA-funded, US Army Natick Research, Development, and Engineering Center monitored effort to develop a high resolution, flat panel HMD for the M1 A2 Abrams main battle tank. CVC HMD is part of the ARPA High Definition Systems (HDS) thrust to develop and integrate small (24 micrometers square pels), high resolution (1280 X 1024 X 6-bit grey scale at 60 frame/sec) active matrix electroluminescent (AMEL) and active matrix liquid crystal displays (AMLCD) for head mounted and projection applications. The Honeywell designed CVC HMD is a next generation head-mounted display system that includes advanced flat panel image sources, advanced digital display driver electronics, high speed (> 1 Gbps) digital interconnect electronics, and light weight, high performance optical and mechanical designs. The resulting dramatic improvements in size, weight, power, and cost have already led to program spin offs for both military and commercial applications.

  3. Evaluate ERTS imagery for mapping and detection of changes of snowcover on land and on glaciers. [Alaska and Washington

    NASA Technical Reports Server (NTRS)

    Meier, M. F. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A new procedure to determine snowcovered areas has been devised. Aside from problems in heavily forested areas this method shows promise in predicting snowmelt runoff from mountain areas and will also assist in energy balance modeling of large snowfields. Snowcover results compare favorably with measurements made by high altitude aircraft photography. Changes in snowcover in areas as small as 3 x 5 km can be determined from ERTS-1 images by both optical and electronic methods. Snowcover changes determined by these two methods in the experimental South Cascade Glacier Basin were verified by field mapping. Image enahancement techniques on ERTS-1 images of large Alaskan glaciers (the Hubbard, Yentna, and Kahiltna) have given new insights into the large-scale structures and flow dynamics of these potentially hazardous glaciers. The Hubbard Glacier, in particular, is one which poses a threat to man and should be monitored for future changes.

  4. Improving catchment scale water quality modelling with continuous high resolution monitoring of metals in runoff

    NASA Astrophysics Data System (ADS)

    Saari, Markus; Rossi, Pekka; Blomberg von der Geest, Kalle; Mäkinen, Ari; Postila, Heini; Marttila, Hannu

    2017-04-01

    High metal concentrations in natural waters is one of the key environmental and health problems globally. Continuous in-situ analysis of metals from runoff water is technically challenging but essential for the better understanding of processes which lead to pollutant transport. Currently, typical analytical methods for monitoring elements in liquids are off-line laboratory methods such as ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy) and ICP-MS (ICP combined with a mass spectrometer). Disadvantage of the both techniques is time consuming sample collection, preparation, and off-line analysis at laboratory conditions. Thus use of these techniques lack possibility for real-time monitoring of element transport. We combined a novel high resolution on-line metal concentration monitoring with catchment scale physical hydrological modelling in Mustijoki river in Southern Finland in order to study dynamics of processes and form a predictive warning system for leaching of metals. A novel on-line measurement technique based on micro plasma emission spectroscopy (MPES) is tested for on-line detection of selected elements (e.g. Na, Mg, Al, K, Ca, Fe, Ni, Cu, Cd and Pb) in runoff waters. The preliminary results indicate that MPES can sufficiently detect and monitor metal concentrations from river water. Water and Soil Assessment Tool (SWAT) catchment scale model was further calibrated with high resolution metal concentration data. We show that by combining high resolution monitoring and catchment scale physical based modelling, further process studies and creation of early warning systems, for example to optimization of drinking water uptake from rivers, can be achieved.

  5. Towards Optical Partial Discharge Detection with Micro Silicon Photomultipliers

    PubMed Central

    Ren, Ming; Song, Bo; Dong, Ming

    2017-01-01

    Optical detection is reliable in intrinsically characterizing partial discharges (PDs). Because of the great volume and high-level power supply of the optical devices that can satisfy the requirements in photosensitivity, optical PD detection can merely be used in laboratory studies. To promote the practical application of the optical approach in an actual power apparatus, a silicon photomultiplier (SiPM)-based PD sensor is introduced in this paper, and its basic properties, which include the sensitivity, pulse resolution, correlation with PD severity, and electromagnetic (EM) interference immunity, are experimentally evaluated. The stochastic phase-resolved PD pattern (PRPD) for three typical insulation defects are obtained by SiPM PD detector and are compared with those obtained using a high-frequency current transformer (HFCT) and a vacuum photomultiplier tube (PMT). Because of its good performances in the above aspects and its additional advantages, such as the small size, low power supply, and low cost, SiPM offers great potential in practical optical PD monitoring. PMID:29125544

  6. Towards Optical Partial Discharge Detection with Micro Silicon Photomultipliers.

    PubMed

    Ren, Ming; Zhou, Jierui; Song, Bo; Zhang, Chongxing; Dong, Ming; Albarracín, Ricardo

    2017-11-10

    Optical detection is reliable in intrinsically characterizing partial discharges (PDs). Because of the great volume and high-level power supply of the optical devices that can satisfy the requirements in photosensitivity, optical PD detection can merely be used in laboratory studies. To promote the practical application of the optical approach in an actual power apparatus, a silicon photomultiplier (SiPM)-based PD sensor is introduced in this paper, and its basic properties, which include the sensitivity, pulse resolution, correlation with PD severity, and electromagnetic (EM) interference immunity, are experimentally evaluated. The stochastic phase-resolved PD pattern (PRPD) for three typical insulation defects are obtained by SiPM PD detector and are compared with those obtained using a high-frequency current transformer (HFCT) and a vacuum photomultiplier tube (PMT). Because of its good performances in the above aspects and its additional advantages, such as the small size, low power supply, and low cost, SiPM offers great potential in practical optical PD monitoring.

  7. Simple and Versatile Turbidimetric Monitoring of Bacterial Growth in Liquid Cultures Using a Customized 3D Printed Culture Tube Holder and a Miniaturized Spectrophotometer: Application to Facultative and Strictly Anaerobic Bacteria.

    PubMed

    Maia, Margarida R G; Marques, Sara; Cabrita, Ana R J; Wallace, R John; Thompson, Gertrude; Fonseca, António J M; Oliveira, Hugo M

    2016-01-01

    Here we introduce a novel strategy for turbidimetric monitoring of bacterial growth in liquid culture. The instrumentation comprises a light source, a customized 3D printed culture tube holder and a miniaturized spectrophotometer, connected through optical cables. Due to its small footprint and the possibility to operate with external light, bacterial growth was directly monitored from culture tubes in a simple and versatile fashion. This new portable measurement technique was used to monitor the growth of facultative (Escherichia coli ATCC/25922, and Staphylococcus aureus ATCC/29213) and strictly (Butyrivibrio fibrisolvens JW11, Butyrivibrio proteoclasticus P18, and Propionibacterium acnes DSMZ 1897) anaerobic bacteria. For E. coli and S. aureus, the growth rates calculated from normalized optical density values were compared with those ones obtained using a benchtop spectrophotometer without significant differences (P = 0.256). For the strictly anaerobic species, a high precision (relative standard deviation < 3.5%) was observed between replicates up to 48 h. Regarding its potential for customization, this manifold could accommodate further developments for customized turbidimetric monitoring, such as the use of light-emitting diodes as a light source or flow cells.

  8. Simple and Versatile Turbidimetric Monitoring of Bacterial Growth in Liquid Cultures Using a Customized 3D Printed Culture Tube Holder and a Miniaturized Spectrophotometer: Application to Facultative and Strictly Anaerobic Bacteria

    PubMed Central

    Maia, Margarida R. G.; Marques, Sara; Cabrita, Ana R. J.; Wallace, R. John; Thompson, Gertrude; Fonseca, António J. M.; Oliveira, Hugo M.

    2016-01-01

    Here we introduce a novel strategy for turbidimetric monitoring of bacterial growth in liquid culture. The instrumentation comprises a light source, a customized 3D printed culture tube holder and a miniaturized spectrophotometer, connected through optical cables. Due to its small footprint and the possibility to operate with external light, bacterial growth was directly monitored from culture tubes in a simple and versatile fashion. This new portable measurement technique was used to monitor the growth of facultative (Escherichia coli ATCC/25922, and Staphylococcus aureus ATCC/29213) and strictly (Butyrivibrio fibrisolvens JW11, Butyrivibrio proteoclasticus P18, and Propionibacterium acnes DSMZ 1897) anaerobic bacteria. For E. coli and S. aureus, the growth rates calculated from normalized optical density values were compared with those ones obtained using a benchtop spectrophotometer without significant differences (P = 0.256). For the strictly anaerobic species, a high precision (relative standard deviation < 3.5%) was observed between replicates up to 48 h. Regarding its potential for customization, this manifold could accommodate further developments for customized turbidimetric monitoring, such as the use of light-emitting diodes as a light source or flow cells. PMID:27630632

  9. Integration of Personalized Healthcare Pathways in an ICT Platform for Diabetes Managements: A Small-Scale Exploratory Study.

    PubMed

    Fico, Giuseppe; Fioravanti, Alessio; Arredondo, Maria Teresa; Gorman, Joe; Diazzi, Chiara; Arcuri, Giovanni; Conti, Claudio; Pirini, Giampiero

    2016-01-01

    The availability of new tools able to support patient monitoring and personalized care may substantially improve the quality of chronic disease management. A personalized healthcare pathway (PHP) has been developed for diabetes disease management and integrated into an information and communication technology system to accomplish a shift from organization-centered care to patient-centered care. A small-scale exploratory study was conducted to test the platform. Preliminary results are presented that shed light on how the PHP influences system usage and performance outcomes.

  10. Optical trapping and optical force positioning of two-dimensional materials.

    PubMed

    Donato, M G; Messina, E; Foti, A; Smart, T J; Jones, P H; Iatì, M A; Saija, R; Gucciardi, P G; Maragò, O M

    2018-01-18

    In recent years, considerable effort has been devoted to the synthesis and characterization of two-dimensional materials. Liquid phase exfoliation (LPE) represents a simple, large-scale method to exfoliate layered materials down to mono- and few-layer flakes. In this context, the contactless trapping, characterization, and manipulation of individual nanosheets hold perspectives for increased accuracy in flake metrology and the assembly of novel functional materials. Here, we use optical forces for high-resolution structural characterization and precise mechanical positioning of nanosheets of hexagonal boron nitride, molybdenum disulfide, and tungsten disulfide obtained by LPE. Weakly optically absorbing nanosheets of boron nitride are trapped in optical tweezers. The analysis of the thermal fluctuations allows a direct measurement of optical forces and the mean flake size in a liquid environment. Measured optical trapping constants are compared with T-matrix light scattering calculations to show a quadratic size scaling for small size, as expected for a bidimensional system. In contrast, strongly absorbing nanosheets of molybdenum disulfide and tungsten disulfide are not stably trapped due to the dominance of radiation pressure over the optical trapping force. Thus, optical forces are used to pattern a substrate by selectively depositing nanosheets in short times (minutes) and without any preparation of the surface. This study will be useful for improving ink-jet printing and for a better engineering of optoelectronic devices based on two-dimensional materials.

  11. Development of a Strontium Magneto-Optical Trap for Probing Casimir-Polder Potentials

    NASA Astrophysics Data System (ADS)

    Martin, Paul J.

    In recent years, cold atoms have been the centerpiece of many remarkably sensitive measurements, and much effort has been made to devise miniaturized quantum sensors and quantum information processing devices. At small distances, however, mechanical effects of the quantum vacuum begin to significantly impact the behavior of the cold-atom systems. A better understanding of how surface composition and geometry affect Casimir and Casimir-Polder potentials would benefit future engineering of small-scale devices. Unfortunately, theoretical solutions are limited and the number of experimental techniques that can accurately detect such short-range forces is relatively small. We believe the exemplary properties of atomic strontium--which have enabled unprecedented frequency metrology in optical lattice clocks--make it an ideal candidate for probing slight spectroscopic perturbations caused by vacuum fluctuations. To that end, we have constructed a magneto-optical trap for strontium to enable future study of atom-surface potentials, and the apparatus and proposed detection scheme are discussed herein. Of special note is a passively stable external-cavity diode laser we developed that is both affordable and competitive with high-end commercial options.

  12. Monitoring of Low Levels of Furfural in Power Transformer Oil with a Sensor System Based on a POF-MIP Platform

    PubMed Central

    Cennamo, Nunzio; De Maria, Letizia; D’Agostino, Girolamo; Zeni, Luigi; Pesavento, Maria

    2015-01-01

    In this work an innovative, miniaturized and low cost optical chemical sensor (POF-MIP platform), based on a molecular imprinted polymer (MIP) and surface plasmon resonance in a plastic optical fiber (POF), is presented and preliminarily tested for monitoring of furfural (furan-2-carbaldehyde) in transformer oil. To this end, the optical platform was coupled to an MIP layer, highly selective for furfural. The ability of the developed sensor to directly detect furfural in the insulating oil was investigated. The detection limit of the sensor has been found to be 9 ppb, with a linear response up to about 30 ppb. However there is a sensible response up to 0.15 ppm. Because of the small linearity range, the Hill equation is suggested for the quantification. The sensor has been effectively tested in real oil samples collected from aged electrical equipment removed from service. The assessed concentration of furfural is in good agreement with that evaluated by a high pressure liquid chromatography (HLPC) method, confirming the good selectivity of the proposed sensor. PMID:25871719

  13. Monitoring of low levels of furfural in power transformer oil with a sensor system based on a POF-MIP platform.

    PubMed

    Cennamo, Nunzio; De Maria, Letizia; D'Agostino, Girolamo; Zeni, Luigi; Pesavento, Maria

    2015-04-13

    In this work an innovative, miniaturized and low cost optical chemical sensor (POF-MIP platform), based on a molecular imprinted polymer (MIP) and surface plasmon resonance in a plastic optical fiber (POF), is presented and preliminarily tested for monitoring of furfural (furan-2-carbaldehyde) in transformer oil. To this end, the optical platform was coupled to an MIP layer, highly selective for furfural. The ability of the developed sensor to directly detect furfural in the insulating oil was investigated. The detection limit of the sensor has been found to be 9 ppb, with a linear response up to about 30 ppb. However there is a sensible response up to 0.15 ppm. Because of the small linearity range, the Hill equation is suggested for the quantification. The sensor has been effectively tested in real oil samples collected from aged electrical equipment removed from service. The assessed concentration of furfural is in good agreement with that evaluated by a high pressure liquid chromatography (HLPC) method, confirming the good selectivity of the proposed sensor.

  14. Monitoring global vegetation

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.; Houston, A. G.; Heydorn, R. P.; Botkin, D. B.; Estes, J. E.; Strahler, A. H.

    1981-01-01

    An attempt is made to identify the need for, and the current capability of, a technology which could aid in monitoring the Earth's vegetation resource on a global scale. Vegetation is one of our most critical natural resources, and accurate timely information on its current status and temporal dynamics is essential to understand many basic and applied environmental interrelationships which exist on the small but complex planet Earth.

  15. Polymer waveguide grating sensor integrated with a thin-film photodetector

    PubMed Central

    Song, Fuchuan; Xiao, Jing; Xie, Antonio Jou; Seo, Sang-Woo

    2014-01-01

    This paper presents a planar waveguide grating sensor integrated with a photodetector (PD) for on-chip optical sensing systems which are suitable for diagnostics in the field and in-situ measurements. III–V semiconductor-based thin-film PD is integrated with a polymer based waveguide grating device on a silicon platform. The fabricated optical sensor successfully discriminates optical spectral characteristics of the polymer waveguide grating from the on-chip PD. In addition, its potential use as a refractive index sensor is demonstrated. Based on a planar waveguide structure, the demonstrated sensor chip may incorporate multiple grating waveguide sensing regions with their own optical detection PDs. In addition, the demonstrated processing is based on a post-integration process which is compatible with silicon complementary metal-oxide semiconductor (CMOS) electronics. Potentially, this leads a compact, chip-scale optical sensing system which can monitor multiple physical parameters simultaneously without need for external signal processing. PMID:24466407

  16. Monitoring of biogenic amines in cheeses manufactured at small-scale farms and in fermented dairy products in the Czech Republic.

    PubMed

    Buňková, Leona; Adamcová, Gabriela; Hudcová, Kateřina; Velichová, Helena; Pachlová, Vendula; Lorencová, Eva; Buňka, František

    2013-11-01

    The aim of the study was the monitoring of six biogenic amines (histamine, tyramine, phenylethylamine, tryptamine, putrescine, and cadaverine) and two polyamines (spermidine and spermine) in 112 samples of dairy products purchased in the Czech Republic, namely in 55 cheeses made in small-scale farms and in 57 fermented dairy products. The products were tested at the end of their shelf-life period. Neither tryptamine nor phenylethylamine was detected in the monitored samples; histamine was found only in four cheese samples containing up to 25mg/kg. The contents of spermine and spermidine were low and did not exceed the values of 35 mg/kg. Significant amounts of tyramine, putrescine, and cadaverine occurred especially in cheeses produced from ewe's milk or in long-term ripened cheeses. In about 10% of the tested cheeses, the total concentration of all the monitored biogenic amines and polyamines exceeded the level of 200mg/kg, which can be considered toxicologically significant. In fermented dairy products, the tested biogenic amines occurred in relatively low amounts (generally up to 30 mg/kg) that are regarded safe for the consumer's health. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Detecting insect pollinator declines on regional and global scales

    USGS Publications Warehouse

    Lubuhn, Gretchen; Droege, Sam; Connor, Edward F.; Gemmill-Herren, Barbara; Potts, Simon G.; Minckley, Robert L.; Griswold, Terry; Jean, Robert; Kula, Emanuel; Roubik, David W.; Cane, Jim; Wright, Karen W.; Frankie, Gordon; Parker, Frank

    2013-01-01

    Recently there has been considerable concern about declines in bee communities in agricultural and natural habitats. The value of pollination to agriculture, provided primarily by bees, is >$200 billion/year worldwide, and in natural ecosystems it is thought to be even greater. However, no monitoring program exists to accurately detect declines in abundance of insect pollinators; thus, it is difficult to quantify the status of bee communities or estimate the extent of declines. We used data from 11 multiyear studies of bee communities to devise a program to monitor pollinators at regional, national, or international scales. In these studies, 7 different methods for sampling bees were used and bees were sampled on 3 different continents. We estimated that a monitoring program with 200-250 sampling locations each sampled twice over 5 years would provide sufficient power to detect small (2-5%) annual declines in the number of species and in total abundance and would cost U.S.$2,000,000. To detect declines as small as 1% annually over the same period would require >300 sampling locations. Given the role of pollinators in food security and ecosystem function, we recommend establishment of integrated regional and international monitoring programs to detect changes in pollinator communities.

  18. Water Sensors

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Mike Morris, former Associate Director of STAC, formed pHish Doctor, Inc. to develop and sell a pH monitor for home aquariums. The monitor, or pHish Doctor, consists of a sensor strip and color chart that continually measures pH levels in an aquarium. This is important because when the level gets too high, ammonia excreted by fish is highly toxic; at low pH, bacteria that normally break down waste products stop functioning. Sales have run into the tens of thousands of dollars. A NASA Tech Brief Technical Support Package later led to a salt water version of the system and a DoE Small Business Innovation Research (SBIR) grant for development of a sensor for sea buoys. The company, now known as Ocean Optics, Inc., is currently studying the effects of carbon dioxide buildup as well as exploring other commercial applications for the fiber optic sensor.

  19. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenblum, William M.; Delucas, Lawrence J.; Wilson, William W.

    1989-01-01

    Major advances have been made in several of the experimental aspects of protein crystallography, leaving protein crystallization as one of the few remaining bottlenecks. As a result, it has become important that the science of protein crystal growth is better understood and that improved methods for protein crystallization are developed. Preliminary experiments with both small molecules and proteins indicate that microgravity may beneficially affect crystal growth. For this reason, a series of protein crystal growth experiments using the Space Shuttle was initiated. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth. Various optical techniques are being utilized to monitor the crystal growth process from the incipient or nucleation stage and throughout the growth phase. The eventual goal of these studies is to develop a system which utilizes optical monitoring for dynamic control of the crystallization process.

  20. A fast low-power optical memory based on coupled micro-ring lasers

    NASA Astrophysics Data System (ADS)

    Hill, Martin T.; Dorren, Harmen J. S.; de Vries, Tjibbe; Leijtens, Xaveer J. M.; den Besten, Jan Hendrik; Smalbrugge, Barry; Oei, Yok-Siang; Binsma, Hans; Khoe, Giok-Djan; Smit, Meint K.

    2004-11-01

    The increasing speed of fibre-optic-based telecommunications has focused attention on high-speed optical processing of digital information. Complex optical processing requires a high-density, high-speed, low-power optical memory that can be integrated with planar semiconductor technology for buffering of decisions and telecommunication data. Recently, ring lasers with extremely small size and low operating power have been made, and we demonstrate here a memory element constructed by interconnecting these microscopic lasers. Our device occupies an area of 18 × 40µm2 on an InP/InGaAsP photonic integrated circuit, and switches within 20ps with 5.5fJ optical switching energy. Simulations show that the element has the potential for much smaller dimensions and switching times. Large numbers of such memory elements can be densely integrated and interconnected on a photonic integrated circuit: fast digital optical information processing systems employing large-scale integration should now be viable.

  1. Application of Time Series Insar Technique for Deformation Monitoring of Large-Scale Landslides in Mountainous Areas of Western China

    NASA Astrophysics Data System (ADS)

    Qu, T.; Lu, P.; Liu, C.; Wan, H.

    2016-06-01

    Western China is very susceptible to landslide hazards. As a result, landslide detection and early warning are of great importance. This work employs the SBAS (Small Baseline Subset) InSAR Technique for detection and monitoring of large-scale landslides that occurred in Li County, Sichuan Province, Western China. The time series INSAR is performed using descending scenes acquired from TerraSAR-X StripMap mode since 2014 to get the spatial distribution of surface displacements of this giant landslide. The time series results identify the distinct deformation zone on the landslide body with a rate of up to 150mm/yr. The deformation acquired by SBAS technique is validated by inclinometers from diverse boreholes of in-situ monitoring. The integration of InSAR time series displacements and ground-based monitoring data helps to provide reliable data support for the forecasting and monitoring of largescale landslide.

  2. Multi-scale volumetric cell and tissue imaging based on optical projection tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ban, Sungbea; Cho, Nam Hyun; Ryu, Yongjae; Jung, Sunwoo; Vavilin, Andrey; Min, Eunjung; Jung, Woonggyu

    2016-04-01

    Optical projection tomography is a new optical imaging method for visualizing small biological specimens in three dimension. The most important advantage of OPT is to fill the gap between MRI and confocal microscope for the specimen having the range of 1-10 mm. Thus, it has been mainly used for whole-mount small animals and developmental study since this imaging modality was developed. The ability of OPT delivering anatomical and functional information of relatively large tissue in 3D has made it a promising platform in biomedical research. Recently, the potential of OPT spans its coverage to cellular scale. Even though there are increasing demand to obtain better understanding of cellular dynamics, only few studies to visualize cellular structure, shape, size and functional morphology over tissue has been investigated in existing OPT system due to its limited field of view. In this study, we develop a novel optical imaging system for 3D cellular imaging with OPT integrated with dynamic focusing technique. Our tomographic setup has great potential to be used for identifying cell characteristic in tissue because it can provide selective contrast on dynamic focal plane allowing for fluorescence as well as absorption. While the dominant contrast of optical imaging technique is to use the fluorescence for detecting certain target only, the newly developed OPT system will offer considerable advantages over currently available method when imaging cellar molecular dynamics by permitting contrast variation. By achieving multi-contrast, it is expected for this new imaging system to play an important role in delivering better cytological information to pathologist.

  3. Speckle-correlation monitoring of the internal micro-vascular flow

    NASA Astrophysics Data System (ADS)

    Zimnyakov, D. A.; Khmara, M. B.; Vilensky, M. A.; Kozlov, V. V.; Gorfinkel, I. V.; Zdrajevsky, R. A.

    2009-10-01

    The results of experimental study of possibility to monitor the micro-vascular blood flow in superficial tissues of various organs with the use of endoscope-based full-field speckle correlometer are presented. The blood microcirculation monitoring was carried out in the course of the laparotomy of abdominal cavity of laboratory animals (rats). Transfer of laser light to the area of interest and scattered radiation from the probed zone to the detector (CMOS camera) was carried out via fiber-optic bundles of endoscopic system. Microscopic hemodynamics was analyzed for small intestine, liver, spleen, kidney, and pancreas under different conditions (normal state, provocated peritonitis and ischemia, administration of vasodilative agents such as papaverine, lidocaine). The prospects and problems of internal monitoring of microvascular flow in laboratory and clinical conditions are discussed.

  4. Creating a zero-order resonator using an optical surface transformation

    PubMed Central

    Sun, Fei; Ge, Xiaochen; He, Sailing

    2016-01-01

    A novel zero-order resonator has been designed by an optical surface transformation (OST) method. The resonator proposed here has many novel features. Firstly, the mode volume can be very small (e.g. in the subwavelength scale). Secondly, the resonator is open (no reflecting walls are utilized) and resonant effects can be found in a continuous spectrum (i.e. a continuum of eigenmodes). Thirdly, we only need one homogenous medium to realize the proposed resonator. The shape of the resonator can be a ring structure of arbitrary shape. In addition to the natural applications (e.g. optical storage) of an optical resonator, we also suggest some other applications of our novel optical open resonator (e.g. power combination, squeezing electromagnetic energy in the free space). PMID:26888359

  5. High-port low-latency optical switch architecture with optical feed-forward buffering for 256-node disaggregated data centers.

    PubMed

    Terzenidis, Nikos; Moralis-Pegios, Miltiadis; Mourgias-Alexandris, George; Vyrsokinos, Konstantinos; Pleros, Nikos

    2018-04-02

    Departing from traditional server-centric data center architectures towards disaggregated systems that can offer increased resource utilization at reduced cost and energy envelopes, the use of high-port switching with highly stringent latency and bandwidth requirements becomes a necessity. We present an optical switch architecture exploiting a hybrid broadcast-and-select/wavelength routing scheme with small-scale optical feedforward buffering. The architecture is experimentally demonstrated at 10Gb/s, reporting error-free performance with a power penalty of <2.5dB. Moreover, network simulations for a 256-node system, revealed low-latency values of only 605nsec, at throughput values reaching 80% when employing 2-packet-size optical buffers, while multi-rack network performance was also investigated.

  6. Intensity of Territorial Marking Predicts Wolf Reproduction: Implications for Wolf Monitoring

    PubMed Central

    García, Emilio J.

    2014-01-01

    Background The implementation of intensive and complex approaches to monitor large carnivores is resource demanding, restricted to endangered species, small populations, or small distribution ranges. Wolf monitoring over large spatial scales is difficult, but the management of such contentious species requires regular estimations of abundance to guide decision-makers. The integration of wolf marking behaviour with simple sign counts may offer a cost-effective alternative to monitor the status of wolf populations over large spatial scales. Methodology/Principal Findings We used a multi-sampling approach, based on the collection of visual and scent wolf marks (faeces and ground scratching) and the assessment of wolf reproduction using howling and observation points, to test whether the intensity of marking behaviour around the pup-rearing period (summer-autumn) could reflect wolf reproduction. Between 1994 and 2007 we collected 1,964 wolf marks in a total of 1,877 km surveyed and we searched for the pups' presence (1,497 howling and 307 observations points) in 42 sampling sites with a regular presence of wolves (120 sampling sites/year). The number of wolf marks was ca. 3 times higher in sites with a confirmed presence of pups (20.3 vs. 7.2 marks). We found a significant relationship between the number of wolf marks (mean and maximum relative abundance index) and the probability of wolf reproduction. Conclusions/Significance This research establishes a real-time relationship between the intensity of wolf marking behaviour and wolf reproduction. We suggest a conservative cutting point of 0.60 for the probability of wolf reproduction to monitor wolves on a regional scale combined with the use of the mean relative abundance index of wolf marks in a given area. We show how the integration of wolf behaviour with simple sampling procedures permit rapid, real-time, and cost-effective assessments of the breeding status of wolf packs with substantial implications to monitor wolves at large spatial scales. PMID:24663068

  7. Global Monitoring of Clouds and Aerosols Using a Network of Micro-Pulse Lidar Systems

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Spinhirne, James D.; Scott, V. Stanley

    2000-01-01

    Long-term global radiation programs, such as AERONET and BSRN, have shown success in monitoring column averaged cloud and aerosol optical properties. Little attention has been focused on global measurements of vertically resolved optical properties. Lidar systems are the preferred instrument for such measurements. However, global usage of lidar systems has not been achieved because of limits imposed by older systems that were large, expensive, and logistically difficult to use in the field. Small, eye-safe, and autonomous lidar systems are now currently available and overcome problems associated with older systems. The first such lidar to be developed is the Micro-pulse lidar System (MPL). The MPL has proven to be useful in the field because it can be automated, runs continuously (day and night), is eye-safe, can easily be transported and set up, and has a small field-of-view which removes multiple scattering concerns. We have developed successful protocols to operate and calibrate MPL systems. We have also developed a data analysis algorithm that produces data products such as cloud and aerosol layer heights, optical depths, extinction profiles, and the extinction-backscatter ratio. The algorithm minimizes the use of a priori assumptions and also produces error bars for all data products. Here we present an overview of our MPL protocols and data analysis techniques. We also discuss the ongoing construction of a global MPL network in conjunction with the AERONET program. Finally, we present some early results from the MPL network.

  8. Fluorophore-NanoLuc BRET Reporters Enable Sensitive In Vivo Optical Imaging and Flow Cytometry for Monitoring Tumorigenesis

    PubMed Central

    Schaub, Franz X; Reza, Md Shamim; Flaveny, Colin A; Li, Weimin; Musicant, Adele M; Hoxha, Sany; Guo, Min; Cleveland, John L; Amelio, Antonio L

    2015-01-01

    Fluorescent proteins are widely used to study molecular and cellular events, yet this traditionally relies on delivery of excitation light, which can trigger autofluorescence, photoxicity, and photobleaching, impairing their use in vivo. Accordingly, chemiluminescent light sources such as those generated by luciferases have emerged, as they do not require excitation light. However, current luciferase reporters lack the brightness needed to visualize events in deep tissues. We report the creation of chimeric eGFP-NanoLuc (GpNLuc) and LSSmOrange-NanoLuc (OgNLuc) fusion reporter proteins coined LumiFluors, which combine the benefits of eGFP or LSSmOrange fluorescent proteins with the bright, glow-type bioluminescent light generated by an enhanced small luciferase subunit (NanoLuc) of the deep sea shrimp Oplophorus gracilirostris. The intramolecular bioluminescence resonance energy transfer (BRET) that occurs between NanoLuc and the fused fluorophore generates the brightest bioluminescent signal known to date, including improved intensity, sensitivity and durable spectral properties, thereby dramatically reducing image acquisition times and permitting highly sensitive in vivo imaging. Notably, the self-illuminating and bi-functional nature of these LumiFluor reporters enables greatly improved spatio-temporal monitoring of very small numbers of tumor cells via in vivo optical imaging and also allows the isolation and analyses of single cells by flow cytometry. Thus, LumiFluor reporters are inexpensive, robust, non-invasive tools that allow for markedly improved in vivo optical imaging of tumorigenic processes. PMID:26424696

  9. Assessment of a vertical high-resolution distributed-temperature-sensing system in a shallow thermohaline environment

    NASA Astrophysics Data System (ADS)

    Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.

    2011-03-01

    In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology, with a focus on vertical high-resolution to measure temperatures in shallow thermohaline environments. It also presents a new method to manually calibrate temperatures along the optical fiber achieving significant improved resolution. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. The vertical high-resolution DTS system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals.

  10. Fiber optic monitoring device

    DOEpatents

    Samborsky, James K.

    1993-01-01

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  11. Development of graphene process control by industrial optical spectroscopy setup

    NASA Astrophysics Data System (ADS)

    Fursenko, O.; Lukosius, M.; Lupina, G.; Bauer, J.; Villringer, C.; Mai, A.

    2017-06-01

    The successful integration of graphene into microelectronic devices depends strongly on the availability of fast and nondestructive characterization methods of graphene grown by CVD on large diameter production wafers [1-3] which are in the interest of the semiconductor industry. Here, a high-throughput optical metrology method for measuring the thickness and uniformity of large-area graphene sheets is demonstrated. The method is based on the combination of spectroscopic ellipsometry and normal incidence reflectometry in UV-Vis wavelength range (200-800 nm) with small light spots ( 30 μm2) realized in wafer optical metrology tool. In the first step graphene layers were transferred on a SiO2/Si substrate in order to determine the optical constants of graphene by the combination of multi-angle ellipsometry and reflectometry. Then these data were used for the development of a process control recipe of CVD graphene on 200 mm Ge(100)/Si(100) wafers. The graphene layer quality was additionally monitored by Raman spectroscopy. Atomic force microscopy measurements were performed for micro topography evaluation. In consequence, a robust recipe for unambiguous thickness monitoring of all components of a multilayer film stack, including graphene, surface residuals or interface layer underneath graphene and surface roughness is developed. Optical monitoring of graphene thickness uniformity over a wafer has shown an excellent long term stability (s=0.004 nm) regardless of the growth of interfacial GeO2 and surface roughness. The sensitivity of the optical identification of graphene during microelectronic processing was evaluated. This optical metrology technique with combined data collection exhibit a fast and highly precise method allowing one an unambiguous detection of graphene after transferring as well as after the CVD deposition process on a Ge(100)/Si(100) wafer. This approach is well suited for industrial applications due to its repeatability and flexibility.

  12. Algorithm and Application of Gcp-Independent Block Adjustment for Super Large-Scale Domestic High Resolution Optical Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Sun, Y. S.; Zhang, L.; Xu, B.; Zhang, Y.

    2018-04-01

    The accurate positioning of optical satellite image without control is the precondition for remote sensing application and small/medium scale mapping in large abroad areas or with large-scale images. In this paper, aiming at the geometric features of optical satellite image, based on a widely used optimization method of constraint problem which is called Alternating Direction Method of Multipliers (ADMM) and RFM least-squares block adjustment, we propose a GCP independent block adjustment method for the large-scale domestic high resolution optical satellite image - GISIBA (GCP-Independent Satellite Imagery Block Adjustment), which is easy to parallelize and highly efficient. In this method, the virtual "average" control points are built to solve the rank defect problem and qualitative and quantitative analysis in block adjustment without control. The test results prove that the horizontal and vertical accuracy of multi-covered and multi-temporal satellite images are better than 10 m and 6 m. Meanwhile the mosaic problem of the adjacent areas in large area DOM production can be solved if the public geographic information data is introduced as horizontal and vertical constraints in the block adjustment process. Finally, through the experiments by using GF-1 and ZY-3 satellite images over several typical test areas, the reliability, accuracy and performance of our developed procedure will be presented and studied in this paper.

  13. METEOSPACE, solar monitoring and space weather at Calern observatory

    NASA Astrophysics Data System (ADS)

    Corbard, T.; Malherbe, J.-M.; Crussaire, D.; Morand, F.; Ruty, F.; Biree, L.; Aboudarham, J.; Fuller, N.; Renaud, C.; Meftah, M.

    2016-12-01

    METEOSPACE is a new partnership project between the Paris Observatory (OP), the Observatoire de la Côte d'Azur (OCA), the French Air Force and a service company (LUNA technology) for the development and operation of a set of small telescopes Hα / Ca II K / Ca II H / G band to be installed at on the Calern plateau (OCA). The objective is to monitor solar activity for both research and its applications in space weather through continuous optical observations of the dynamic phenomena that are visible in the chromosphere: eruptions, destabilization of the filaments triggering coronal mass ejections and associated Moreton waves.

  14. The Satellite based Monitoring Initiative for Regional Air quality (SAMIRA): Project summary and first results

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nemuc, Anca; Stachlewska, Iwona; Zehner, Claus

    2017-04-01

    We present a summary and some first results of a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellite instruments, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. The primary goal of SAMIRA is to demonstrate the usefulness of existing and future satellite products of air quality for improving monitoring and mapping of air pollution at the regional scale. A total of six core activities are being carried out in order to achieve this goal: Firstly, the project is developing and optimizing algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard of Meteosat Second Generation. As a second activity, SAMIRA aims to derive particulate matter (PM2.5) estimates from AOD data by developing robust algorithms for AOD-to-PM conversion with the support from model- and Lidar data. In a third activity, we evaluate the added value of satellite products of atmospheric composition for operational European-scale air quality mapping using geostatistics and auxiliary datasets. The additional benefit of satellite-based monitoring over existing monitoring techniques (in situ, models) is tested by combining these datasets using geostatistical methods and demonstrated for nitrogen dioxide (NO2), sulphur dioxide (SO2), and aerosol optical depth/particulate matter. As a fourth activity, the project is developing novel algorithms for downscaling coarse-resolution satellite products of air quality with the help of high-resolution model information. This will add value to existing earth observation products of air quality by bringing them to spatial scales that are more in line with what is generally required for studying urban and regional scale air quality. In a fifth activity, we implement robust and independent validation schemes for evaluating the quality of the generated products. Finally, in a sixth activity the consortium is working towards a pre-operational system for improved PM forecasts using observational (in situ and satellite) data assimilation. SAMIRA aims to maximize project benefits by liaison with national and regional environmental protection agencies and health institutions, as well as related ESA and European initiatives such as the Copernicus Atmosphere Monitoring Service (CAMS).

  15. Automatic detection of small surface targets with electro-optical sensors in a harbor environment

    NASA Astrophysics Data System (ADS)

    Bouma, Henri; de Lange, Dirk-Jan J.; van den Broek, Sebastiaan P.; Kemp, Rob A. W.; Schwering, Piet B. W.

    2008-10-01

    In modern warfare scenarios naval ships must operate in coastal environments. These complex environments, in bays and narrow straits, with cluttered littoral backgrounds and many civilian ships may contain asymmetric threats of fast targets, such as rhibs, cabin boats and jet-skis. Optical sensors, in combination with image enhancement and automatic detection, assist an operator to reduce the response time, which is crucial for the protection of the naval and land-based supporting forces. In this paper, we present our work on automatic detection of small surface targets which includes multi-scale horizon detection and robust estimation of the background intensity. To evaluate the performance of our detection technology, data was recorded with both infrared and visual-light cameras in a coastal zone and in a harbor environment. During these trials multiple small targets were used. Results of this evaluation are shown in this paper.

  16. Process spectroscopy in microemulsions—setup and multi-spectral approach for reaction monitoring of a homogeneous hydroformylation process

    NASA Astrophysics Data System (ADS)

    Meyer, K.; Ruiken, J.-P.; Illner, M.; Paul, A.; Müller, D.; Esche, E.; Wozny, G.; Maiwald, M.

    2017-03-01

    Reaction monitoring in disperse systems, such as emulsions, is of significant technical importance in various disciplines like biotechnological engineering, chemical industry, food science, and a growing number other technical fields. These systems pose several challenges when it comes to process analytics, such as heterogeneity of mixtures, changes in optical behavior, and low optical activity. Concerning this, online nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for process monitoring in complex reaction mixtures due to its unique direct comparison abilities, while at the same time being non-invasive and independent of optical properties of the sample. In this study the applicability of online-spectroscopic methods on the homogeneously catalyzed hydroformylation system of 1-dodecene to tridecanal is investigated, which is operated in a mini-plant scale at Technische Universität Berlin. The design of a laboratory setup for process-like calibration experiments is presented, including a 500 MHz online NMR spectrometer, a benchtop NMR device with 43 MHz proton frequency as well as two Raman probes and a flow cell assembly for an ultraviolet and visible light (UV/VIS) spectrometer. Results of high-resolution online NMR spectroscopy are shown and technical as well as process-specific problems observed during the measurements are discussed.

  17. Optical Microfibre Based Photonic Components and Their Applications in Label-Free Biosensing

    PubMed Central

    Wang, Pengfei; Bo, Lin; Semenova, Yuliya; Farrell, Gerald; Brambilla, Gilberto

    2015-01-01

    Optical microfibre photonic components offer a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness. These unique features have been exploited in a range of applications such as telecommunication, sensing, optical manipulation and high Q resonators. Optical microfibre biosensors, as a class of fibre optic biosensors which rely on small geometries to expose the evanescent field to interact with samples, have been widely investigated. Due to their unique properties, such as fast response, functionalization, strong confinement, configurability, flexibility, compact size, low cost, robustness, ease of miniaturization, large evanescent field and label-free operation, optical microfibres based biosensors seem a promising alternative to traditional immunological methods for biomolecule measurements. Unlabeled DNA and protein targets can be detected by monitoring the changes of various optical transduction mechanisms, such as refractive index, absorption and surface plasmon resonance, since a target molecule is capable of binding to an immobilized optical microfibre. In this review, we critically summarize accomplishments of past optical microfibre label-free biosensors, identify areas for future research and provide a detailed account of the studies conducted to date for biomolecules detection using optical microfibres. PMID:26287252

  18. Optical Microfibre Based Photonic Components and Their Applications in Label-Free Biosensing.

    PubMed

    Wang, Pengfei; Bo, Lin; Semenova, Yuliya; Farrell, Gerald; Brambilla, Gilberto

    2015-07-22

    Optical microfibre photonic components offer a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness. These unique features have been exploited in a range of applications such as telecommunication, sensing, optical manipulation and high Q resonators. Optical microfibre biosensors, as a class of fibre optic biosensors which rely on small geometries to expose the evanescent field to interact with samples, have been widely investigated. Due to their unique properties, such as fast response, functionalization, strong confinement, configurability, flexibility, compact size, low cost, robustness, ease of miniaturization, large evanescent field and label-free operation, optical microfibres based biosensors seem a promising alternative to traditional immunological methods for biomolecule measurements. Unlabeled DNA and protein targets can be detected by monitoring the changes of various optical transduction mechanisms, such as refractive index, absorption and surface plasmon resonance, since a target molecule is capable of binding to an immobilized optical microfibre. In this review, we critically summarize accomplishments of past optical microfibre label-free biosensors, identify areas for future research and provide a detailed account of the studies conducted to date for biomolecules detection using optical microfibres.

  19. Small watershed-scale research and the challenges ahead

    NASA Astrophysics Data System (ADS)

    Larsen, M. C.; Glynn, P. D.

    2008-12-01

    For the past century, Federal mission science agencies (eg. USFS, NRCS, ARS, USGS) have had the long- term agency goals, infrastructure, and research staff to conduct research and data collection in small watersheds as well as support these activities for non-Federal partners. The National Science Foundation has been a strong partner with the Federal mission science agencies, through the LTER network, which is dependent on Federally supported research sites, and more recently with the emerging CUAHSI, WATERS, CZEN, and NEON initiatives. Much of the NSF-supported research builds on the foundations provided by their Federally supported partners, who sustain the long-term, extensive monitoring activity and research sites, including making long-term data available to all users via public interfaces. The future of these programs, and their enhancement/expansion to face the intensifying concurrent challenges of population growth, land-use change, and climate change, is dependent on a well-funded national commitment to basic science. Such a commitment will allow the scientific community to advance our understanding of these scientific challenges and to synthesize our understanding among research sites and at the national scale. Small watersheds serve as essential platforms where hypotheses can be tested, as sentinels for climate change, and as a basis for comparing and scaling up local information and syntheses to regional and continental scales. The science guides resource management and mitigation decisions and is fundamental to the development of predictive models. Furthermore, small-watershed research and monitoring programs are generally undervalued because many research questions that can be addressed now or in the future were not anticipated when the sites were initiated. Some examples include: 1) the quantification, characterization, and understanding of how emerging contaminants, personal care products, and endocrine disruptors affect organisms - substances that could not be detected until the recent increased sensitivity of modern techniques; 2) the recognition of changing climate and its effects on already-stressed water resources and ecosystems; 3) more integrated monitoring and modeling of ecosystem processes and quantification of ecosystem services. Historical hydrological and biogeochemical information available at USGS and other watershed-research and -monitoring sites can now be used in conjunction with active monitoring of biota and biological processes (especially those involving plants, invertebrates and microbes). The results will help provide a more nationally consistent framework for evaluating ecosystem health, and assessing ecosystem services, in the face of changing climate and land-use. These, and related science questions and societal issues are complex and require strong collaborations across disciplinary and organizational boundaries. Along with a well-funded national commitment to basic watershed research, the USGS continually seeks to strengthen its small-watershed and ecosystem-science programs through partnerships with NSF, State, and Federal agencies. Given the growing U.S. population, continual development in water-scarce regions, and general water- and soil-resource stress under competing national interests and priorities, the role of basic watershed-scale research and monitoring is essential because of its unique niche in the development of the improved environmental understanding and predictive models needed by resource managers.

  20. Methods for monitoring erosion using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Chan, Andrew C.; Darling, Cynthia L.; Fried, Daniel

    Since optical coherence tomography is well suited for measuring small dimensional changes on tooth surfaces it has great potential for monitoring tooth erosion. The purpose of this study was to explore different approaches for monitoring the erosion of enamel. Application of an acid resistant varnish to protect the tooth surface from erosion has proven effective for providing a reference surface for in vitro studies but has limited potential for in vivo studies. Two approaches which can potentially be used in vivo were investigated. The first approach is to measure the remaining enamel thickness, namely the distance from the tooth surface to the dentinal-enamel junction (DEJ). The second more novel approach is to irradiate the surface with a carbon dioxide laser to create a reference layer which resists erosion. Measuring the remaining enamel thickness proved challenging since the surface roughening and subsurface demineralization that commonly occurs during the erosion process can prevent resolution of the underlying DEJ. The areas irradiated by the laser manifested lower rates of erosion compared to the non-irradiated areas and this method appears promising but it is highly dependent on the severity of the acid challenge.

  1. Optical search for extraterrestrial intelligence with Air Cerenkov telescopes.

    PubMed

    Eichler, D; Beskin, G

    2001-01-01

    We propose using large Air Cerenkov telescopes (ACTs) to search for optical, pulsed signals from extraterrestrial intelligence. Such dishes collect tens of photons from a nanosecond-scale pulse of isotropic equivalent power of tens of solar luminosities at a distance of 100 pc. The field of view for giant ACTs can be on the order of 10 square degrees, and they will be able to monitor 10-100 stars simultaneously for nanosecond pulses of about 6th magnitude or brighter. Using the Earth's diameter as a baseline, orbital motion of the planet could be detected by timing the pulse arrivals.

  2. Multi-instrument Observations of Transient Luminous Events Associated with a Small-scale Winter Thunderstorm

    NASA Astrophysics Data System (ADS)

    Kolmasova, I.; Santolik, O.; Spurny, P.; Borovicka, J.; Mlynarczyk, J.; Popek, M.; Lan, R.; Uhlir, L.; Diendorfer, G.; Slosiar, R.

    2017-12-01

    We present observations of transient luminous events (TLEs) produced by a small-scale winter thunderstorm which occurred on 2 April 2017 in the southwest of Czechia. Elves, sprites and associated positive lightning strokes have been simultaneously recorded by different observational techniques. Optical data include video recordings of TLEs from Nydek (Czechia) and data recorded by high time-resolution photometers at several stations of the Czech fireball network which measured the all-sky brightness originating from lightning return strokes. Electromagnetic data sets include 3-component VLF measurements conducted in Rustrel (France), 2-component ELF measurements recorded at the Hylaty station (Poland) and signal intensity variations of a VLF transmitter (DHO38, Rhauderfehn, Germany) recorded in Bojnice (Slovakia). Optical and electromagnetic data are completed by positions and peak currents of all strokes recorded during the observed thunderstorm by the EUCLID lightning detection network. We focus our analysis on positive lightning discharges with high peak currents and we compare properties of those which produced TLE with properties of discharges for which TLE was not detected. The current moment waveforms and charge moment changes associated with the TLE events are reconstructed from the ELF electromagnetic signals. Obtained current moment waveforms show excellent agreement with high time-resolution optical data.

  3. Optical characterization of multi-scale morphologically complex heterogeneous media - Application to snow with soot impurities

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoyu; Haussener, Sophia

    2018-02-01

    A multi-scale methodology for the radiative transfer analysis of heterogeneous media composed of morphologically-complex components on two distinct scales is presented. The methodology incorporates the exact morphology at the various scales and utilizes volume-averaging approaches with the corresponding effective properties to couple the scales. At the continuum level, the volume-averaged coupled radiative transfer equations are solved utilizing (i) effective radiative transport properties obtained by direct Monte Carlo simulations at the pore level, and (ii) averaged bulk material properties obtained at particle level by Lorenz-Mie theory or discrete dipole approximation calculations. This model is applied to a soot-contaminated snow layer, and is experimentally validated with reflectance measurements of such layers. A quantitative and decoupled understanding of the morphological effect on the radiative transport is achieved, and a significant influence of the dual-scale morphology on the macroscopic optical behavior is observed. Our results show that with a small amount of soot particles, of the order of 1ppb in volume fraction, the reduction in reflectance of a snow layer with large ice grains can reach up to 77% (at a wavelength of 0.3 μm). Soot impurities modeled as compact agglomerates yield 2-3% lower reduction of the reflectance in a thick show layer compared to snow with soot impurities modeled as chain-like agglomerates. Soot impurities modeled as equivalent spherical particles underestimate the reflectance reduction by 2-8%. This study implies that the morphology of the heterogeneities in a media significantly affects the macroscopic optical behavior and, specifically for the soot-contaminated snow, indicates the non-negligible role of soot on the absorption behavior of snow layers. It can be equally used in technical applications for the assessment and optimization of optical performance in multi-scale media.

  4. STOCHASTIC OPTICS: A SCATTERING MITIGATION FRAMEWORK FOR RADIO INTERFEROMETRIC IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Michael D., E-mail: mjohnson@cfa.harvard.edu

    2016-12-10

    Just as turbulence in the Earth’s atmosphere can severely limit the angular resolution of optical telescopes, turbulence in the ionized interstellar medium fundamentally limits the resolution of radio telescopes. We present a scattering mitigation framework for radio imaging with very long baseline interferometry (VLBI) that partially overcomes this limitation. Our framework, “stochastic optics,” derives from a simplification of strong interstellar scattering to separate small-scale (“diffractive”) effects from large-scale (“refractive”) effects, thereby separating deterministic and random contributions to the scattering. Stochastic optics extends traditional synthesis imaging by simultaneously reconstructing an unscattered image and its refractive perturbations. Its advantages over direct imagingmore » come from utilizing the many deterministic properties of the scattering—such as the time-averaged “blurring,” polarization independence, and the deterministic evolution in frequency and time—while still accounting for the stochastic image distortions on large scales. These distortions are identified in the image reconstructions through regularization by their time-averaged power spectrum. Using synthetic data, we show that this framework effectively removes the blurring from diffractive scattering while reducing the spurious image features from refractive scattering. Stochastic optics can provide significant improvements over existing scattering mitigation strategies and is especially promising for imaging the Galactic Center supermassive black hole, Sagittarius A*, with the Global mm-VLBI Array and with the Event Horizon Telescope.« less

  5. Very high temperature fiber processing and testing through the use of ultrahigh solar energy concentration

    NASA Astrophysics Data System (ADS)

    Jacobson, Benjamin A.; Gleckman, Philip L.; Holman, Robert L.; Sagie, Daniel; Winston, Roland

    1991-10-01

    We have demonstrated the feasibility of a high temperature cool-wall optical furnace that harnesses the unique power of concentrated solar heating for advanced materials processing and testing. Out small-scale test furnace achieved temperatures as high as 2400 C within a 10 mm X 0.44 mm cylindrical hot-zone. Optimum performance and efficiency resulted from an innovative two-stage optical design using a long-focal length, point-focus, conventional primary concentrator and a non-imaging secondary concentrator specifically designed for the cylindrical geometry of the target fiber. A scale-up analysis suggests that even higher temperatures can be achieved over hot zones large enough for practical commercial fiber post- processing and testing.

  6. Optical Probes for Neurobiological Sensing and Imaging.

    PubMed

    Kim, Eric H; Chin, Gregory; Rong, Guoxin; Poskanzer, Kira E; Clark, Heather A

    2018-05-15

    Fluorescent nanosensors and molecular probes are next-generation tools for imaging chemical signaling inside and between cells. Electrophysiology has long been considered the gold standard in elucidating neural dynamics with high temporal resolution and precision, particularly on the single-cell level. However, electrode-based techniques face challenges in illuminating the specific chemicals involved in neural cell activation with adequate spatial information. Measuring chemical dynamics is of fundamental importance to better understand synergistic interactions between neurons as well as interactions between neurons and non-neuronal cells. Over the past decade, significant technological advances in optical probes and imaging methods have enabled entirely new possibilities for studying neural cells and circuits at the chemical level. These optical imaging modalities have shown promise for combining chemical, temporal, and spatial information. This potential makes them ideal candidates to unravel the complex neural interactions at multiple scales in the brain, which could be complemented by traditional electrophysiological methods to obtain a full spatiotemporal picture of neurochemical dynamics. Despite the potential, only a handful of probe candidates have been utilized to provide detailed chemical information in the brain. To date, most live imaging and chemical mapping studies rely on fluorescent molecular indicators to report intracellular calcium (Ca 2+ ) dynamics, which correlates with neuronal activity. Methodological advances for monitoring a full array of chemicals in the brain with improved spatial, temporal, and chemical resolution will thus enable mapping of neurochemical circuits with finer precision. On the basis of numerous studies in this exciting field, we review the current efforts to develop and apply a palette of optical probes and nanosensors for chemical sensing in the brain. There is a strong impetus to further develop technologies capable of probing entire neurobiological units with high spatiotemporal resolution. Thus, we introduce selected applications for ion and neurotransmitter detection to investigate both neurons and non-neuronal brain cells. We focus on families of optical probes because of their ability to sense a wide array of molecules and convey spatial information with minimal damage to tissue. We start with a discussion of currently available molecular probes, highlight recent advances in genetically modified fluorescent probes for ions and small molecules, and end with the latest research in nanosensors for biological imaging. Customizable, nanoscale optical sensors that accurately and dynamically monitor the local environment with high spatiotemporal resolution could lead to not only new insights into the function of all cell types but also a broader understanding of how diverse neural signaling systems act in conjunction with neighboring cells in a spatially relevant manner.

  7. The Future of Small Navy Ship Sickbays and Army Aeromedical Evacuation Aircraft

    DTIC Science & Technology

    2014-12-01

    HEAT SEALING W/PO 1 EA 9B 715 6685015840785 MONITOR, HEAT STRESS 2 EA 9B 715 6670010976167 SCALE,WEIGHING 1 EA 9B 715 6530016200664 STERILIZER M11...ELECTRONIC THERMOMETER SURE TEMP PLUS 1 EA 9B 515 6685015840785 MONITOR, HEAT STRESS 2 EA 9B 515 6135015308136 BATTERY POWER SOURCE NON...6685015840785 MONITOR, HEAT STRESS 2 EA 9B 315 6530016200664 STERILIZER M11 ULTRACLAVE 115V AUTOMATIC DOOR 1 EA 9B 315 6685015816875 CALIBRATION KEY

  8. Construction of Green Tide Monitoring System and Research on its Key Techniques

    NASA Astrophysics Data System (ADS)

    Xing, B.; Li, J.; Zhu, H.; Wei, P.; Zhao, Y.

    2018-04-01

    As a kind of marine natural disaster, Green Tide has been appearing every year along the Qingdao Coast, bringing great loss to this region, since the large-scale bloom in 2008. Therefore, it is of great value to obtain the real time dynamic information about green tide distribution. In this study, methods of optical remote sensing and microwave remote sensing are employed in Green Tide Monitoring Research. A specific remote sensing data processing flow and a green tide information extraction algorithm are designed, according to the optical and microwave data of different characteristics. In the aspect of green tide spatial distribution information extraction, an automatic extraction algorithm of green tide distribution boundaries is designed based on the principle of mathematical morphology dilation/erosion. And key issues in information extraction, including the division of green tide regions, the obtaining of basic distributions, the limitation of distribution boundary, and the elimination of islands, have been solved. The automatic generation of green tide distribution boundaries from the results of remote sensing information extraction is realized. Finally, a green tide monitoring system is built based on IDL/GIS secondary development in the integrated environment of RS and GIS, achieving the integration of RS monitoring and information extraction.

  9. Using Friends as Sensors to Detect Global-Scale Contagious Outbreaks

    PubMed Central

    Garcia-Herranz, Manuel; Moro, Esteban; Cebrian, Manuel; Christakis, Nicholas A.; Fowler, James H.

    2014-01-01

    Recent research has focused on the monitoring of global–scale online data for improved detection of epidemics, mood patterns, movements in the stock market political revolutions, box-office revenues, consumer behaviour and many other important phenomena. However, privacy considerations and the sheer scale of data available online are quickly making global monitoring infeasible, and existing methods do not take full advantage of local network structure to identify key nodes for monitoring. Here, we develop a model of the contagious spread of information in a global-scale, publicly-articulated social network and show that a simple method can yield not just early detection, but advance warning of contagious outbreaks. In this method, we randomly choose a small fraction of nodes in the network and then we randomly choose a friend of each node to include in a group for local monitoring. Using six months of data from most of the full Twittersphere, we show that this friend group is more central in the network and it helps us to detect viral outbreaks of the use of novel hashtags about 7 days earlier than we could with an equal-sized randomly chosen group. Moreover, the method actually works better than expected due to network structure alone because highly central actors are both more active and exhibit increased diversity in the information they transmit to others. These results suggest that local monitoring is not just more efficient, but also more effective, and it may be applied to monitor contagious processes in global–scale networks. PMID:24718030

  10. Using friends as sensors to detect global-scale contagious outbreaks.

    PubMed

    Garcia-Herranz, Manuel; Moro, Esteban; Cebrian, Manuel; Christakis, Nicholas A; Fowler, James H

    2014-01-01

    Recent research has focused on the monitoring of global-scale online data for improved detection of epidemics, mood patterns, movements in the stock market political revolutions, box-office revenues, consumer behaviour and many other important phenomena. However, privacy considerations and the sheer scale of data available online are quickly making global monitoring infeasible, and existing methods do not take full advantage of local network structure to identify key nodes for monitoring. Here, we develop a model of the contagious spread of information in a global-scale, publicly-articulated social network and show that a simple method can yield not just early detection, but advance warning of contagious outbreaks. In this method, we randomly choose a small fraction of nodes in the network and then we randomly choose a friend of each node to include in a group for local monitoring. Using six months of data from most of the full Twittersphere, we show that this friend group is more central in the network and it helps us to detect viral outbreaks of the use of novel hashtags about 7 days earlier than we could with an equal-sized randomly chosen group. Moreover, the method actually works better than expected due to network structure alone because highly central actors are both more active and exhibit increased diversity in the information they transmit to others. These results suggest that local monitoring is not just more efficient, but also more effective, and it may be applied to monitor contagious processes in global-scale networks.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, J.R.; Marshall, M.E.; Barker, B.W.

    In situations where cavity decoupling of underground nuclear explosions is a plausible evasion scenario, comprehensive seismic monitoring of any eventual CTBT will require the routine identification of many small seismic events with magnitudes in the range 2.0 < m sub b < 3.5. However, since such events are not expected to be detected teleseismically, their magnitudes will have to be estimated from regional recordings using seismic phases and frequency bands which are different from those employed in the teleseismic m sub b scale which is generally used to specify monitoring capability. Therefore, it is necessary to establish the m submore » b equivalences of any selected regional magnitude measures in order to estimate the expected detection statistics and thresholds of proposed CTBT seismic monitoring networks. In the investigations summarized in this report, this has been accomplished through analyses of synthetic data obtained by theoretically scaling observed regional seismic data recorded in Scandinavia and Central Asia from various tamped nuclear tests to obtain estimates of the corresponding seismic signals to be expected from small cavity decoupled nuclear tests at those same source locations.« less

  12. Acousto-optical assessment of skin viscoelasticity

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Sean J.; Duncan, Donald D.

    2003-07-01

    A multiphysics approach, combining acoustics, optics, and mechanics can be used to detect regions of skin with distinct mechanical behavior that may indicate a pathology, such as a cancerous skin lesion. Herein, an acousto-optical approach to evaluating the viscoelastic behavior of superficial skin layers will be presented. The method relies upon inducing low frequency guided surface waves in the skin and detecting these waves by monitoring the shift in the backscattered laser speckle pattern created by illuminating a small region of the skin with coherent light. Artificial lesions in the form of chemical cross-linking and chemical softening were induced in superficial porcine skin layers and detected based upon variations in local mechanical behavior. The lesions affect not only the time-of-flight of the guided surface waves, but also change the relative phase of the acoustic waves as determined optically. The method may be applicable in the study and diagnosis of superficial skin lesions.

  13. Optical characterization of porous silicon microcavities for glucose oxidase biosensing

    NASA Astrophysics Data System (ADS)

    Palestino, G.; Agarwal, V.; Garcia, D. B.; Legros, R.; Pérez, E.; Gergely, C.

    2008-04-01

    PSi microcavity (PSiMc) is characterized by a narrow resonance peak in the optical spectrum that is very sensitive to small changes in the refractive index. We report that the resonant optical cavities of PSi structures can be used to enhance the detection of labeled fluorescent biomolecules. Various PSi configurations were tested in order to compare the optical response of the PSi devices to the capture of organic molecules. Morphological and topographical analyses were performed on PSiMc using Atomic Force (AFM) and Scanning Electron (SEM) microscopies. The heterogeneity in pores lengths resulting from etching process assures a better penetration of larger molecules into the pores and sensor sensitivity depends on the pore size. Molecular detection is monitored by the successive red shifts in the reflectance spectra after the stabilization of PSiMc with 3-aminopropyltriethoxysilane (APTES). The glucose oxidase was cross linked into the PSiMc structures following a silane-glutaraldehyde (GTA) chemistry.

  14. Applying Fibre-Optic Distributed Temperature Sensing to Near-surface Temperature Dynamics of Broadacre Cereals During Radiant Frost Events.

    NASA Astrophysics Data System (ADS)

    Stutsel, B.; Callow, J. N.

    2017-12-01

    Radiant frost events, particularly those during the reproductive stage of winter cereal growth, cost growers millions of dollars in lost yield. Whilst synoptic drivers of frost and factors influencing temperature variation at the landscape scale are relatively well understood, there is a lack of knowledge surrounding small-scale temperature dynamics within paddocks and plot trials. Other work has also suggested a potential significant temperature gradient (several degrees) vertically from ground to canopy, but this is poorly constrained experimentally. Subtle changes in temperature are important as frost damage generally occurs in a very narrow temperature range (-2 to -5°C). Once a variety's damage threshold is reached, a 1°C difference in minimum temperature can increase damage from 10 to 90%. This study applies Distributed Temperature Sensing (DTS) using fibre optics to understand how minimum temperature evolves during a radiant frost. DTS assesses the difference in attenuation of Raman scattering of a light pulse travelling along a fibre optic cable to measure temperature. A bend insensitive multimode fibre was deployed in a double ended duplex configuration as a "fence" run through four times of sowing at a trial site in the Western Australian Wheatbelt. The fibre optic fence was 160m long and 800mm tall with the fibre optic cable spaced 100mm apart vertically, and calibrated in ambient water ( 10 to 15oC) and a chilled glycol ( -8 to-10 oC) baths. The temperature measurements had a spatial resolution of 0.65m and temporal resolution of 60s, providing 2,215 measurements every minute. The results of this study inform our understanding of the subtle temperature changes from the soil to canopy, providing new insight into how to place traditional temperature loggers to monitor frost damage. It also addresses questions of within-trial temperature variability, and provides an example of how novel techniques such as DTS can be used to improve the way temperature (frost) is incorporated in crop damage models. This data set provided by DTS allows a level of detail that is not possible to record with traditional temperature loggers and shows how this emerging technology can be applied to agricultural applications. This research was supported by the Grains Research and Development Corporation National Frost Initiative.

  15. A spectral method for spatial downscaling | Science Inventory ...

    EPA Pesticide Factsheets

    Complex computer models play a crucial role in air quality research. These models are used to evaluate potential regulatory impacts of emission control strategies and to estimate air quality in areas without monitoring data. For both of these purposes, it is important to calibrate model output with monitoring data to adjust for model biases and improve spatial prediction. In this paper, we propose a new spectral method to study and exploit complex relationships between model output and monitoring data. Spectral methods allow us to estimate the relationship between model output and monitoring data separately at different spatial scales, and to use model output for prediction only at the appropriate scales. The proposed method is computationally efficient and can be implemented using standard software. We apply the method to compare Community Multiscale Air Quality (CMAQ) model output with ozone measurements in the United States in July, 2005. We find that CMAQ captures large-scale spatial trends, but has low correlation with the monitoring data at small spatial scales. The National Exposure Research Laboratory′s (NERL′s)Atmospheric Modeling Division (AMAD) conducts research in support of EPA′s mission to protect human health and the environment. AMAD′s research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the Nation′s air quality and for assessing ch

  16. Software-defined optical network for metro-scale geographically distributed data centers.

    PubMed

    Samadi, Payman; Wen, Ke; Xu, Junjie; Bergman, Keren

    2016-05-30

    The emergence of cloud computing and big data has rapidly increased the deployment of small and mid-sized data centers. Enterprises and cloud providers require an agile network among these data centers to empower application reliability and flexible scalability. We present a software-defined inter data center network to enable on-demand scale out of data centers on a metro-scale optical network. The architecture consists of a combined space/wavelength switching platform and a Software-Defined Networking (SDN) control plane equipped with a wavelength and routing assignment module. It enables establishing transparent and bandwidth-selective connections from L2/L3 switches, on-demand. The architecture is evaluated in a testbed consisting of 3 data centers, 5-25 km apart. We successfully demonstrated end-to-end bulk data transfer and Virtual Machine (VM) migrations across data centers with less than 100 ms connection setup time and close to full link capacity utilization.

  17. Monitoring techniques for the manufacture of tapered optical fibers.

    PubMed

    Mullaney, Kevin; Correia, Ricardo; Staines, Stephen E; James, Stephen W; Tatam, Ralph P

    2015-10-01

    The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 μm and with waist lengths of 20 mm using single-mode SMF-28 fiber.

  18. Incorporation of wavelength selective devices into waveguides with applications to a miniature spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stallard, B. R.; Kaushik, S.; Hadley, G. R.

    1996-02-01

    This report pertains to a Laboratory Directed Research and Development project which was funded for FY94 and FY95. The goal was to develop building blocks for small, cheap sensors that use optical spectroscopy as a means of detecting chemical analytes. Such sensors can have an impact on a wide variety of technologies, such as: industrial process control, environmental monitors, chemical analysis in medicine, and automotive monitors. We describe work in fabricating and demonstrating a waveguide/grating device that can serve as the wavelength dispersive component in a miniature spectrometer. Also, we describe the invention and modeling of a new way tomore » construct an array of optical interference filters using sub-wavelength lithography to tune the index of refraction of a fixed Fabry-Perot cavity. Next we describe progress in more efficiently calculating the fields in grating devices. Finally we present the invention of a new type of near field optical probe, applicable to scanning microscopy or optical data storage, which is based on a circular grating constructed in a waveguide. This result diverges from the original goal of the project but is quite significant in that it promises to increase the data storage capacity of CD-ROMs by 10 times.« less

  19. Use of an UROV to develop 3-D optical models of submarine environments

    NASA Astrophysics Data System (ADS)

    Null, W. D.; Landry, B. J.

    2017-12-01

    The ability to rapidly obtain high-fidelity bathymetry is crucial for a broad range of engineering, scientific, and defense applications ranging from bridge scour, bedform morphodynamics, and coral reef health to unexploded ordnance detection and monitoring. The present work introduces the use of an Underwater Remotely Operated Vehicle (UROV) to develop 3-D optical models of submarine environments. The UROV used a Raspberry Pi camera mounted to a small servo which allowed for pitch control. Prior to video data collection, in situ camera calibration was conducted with the system. Multiple image frames were extracted from the underwater video for 3D reconstruction using Structure from Motion (SFM). This system provides a simple and cost effective solution to obtaining detailed bathymetry in optically clear submarine environments.

  20. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Microseconds to Years

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Gendreau, Keith; Chakrabarty, Deepto; Feroci, Marco; Maccarone, Tom; Arzoumanian, Zaven; Remillard, Ronald A.; Wood, Kent; Griffith, Christopher; STROBE-X Collaboration

    2017-01-01

    We describe a proposed probe-class mission concept that will provide an unprecedented view of the X-ray sky, performing timing and spectroscopy over a broad band (0.2-30 keV) probing timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises two primary instruments. The soft band (0.2-12 keV) will be covered by an array of lightweight optics (3-m focal length) that concentrate incident photons onto small solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates. This technology, fully developed for NICER, would be scaled up with enhanced optics to take advantage of the longer focal length of STROBE-X. The harder band (2 to at least 30 keV) would be covered by large-area collimated silicon drift detectors,developed for the European LOFT mission concept. Each instrument would provide an order of magnitude improvement in effective area compared with its predecessor (NICER in the soft band and RXTE in the hard band). A sensitive sky monitor would act as a trigger for pointed observations, provide high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enable multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis.The broad coverage will enable thermal components, non-thermal components, iron lines, and reflection features to be studied simultaneously from a single platform for the first time in accreting black holes at all scales. The enormous collecting area will enable studies of the dense matter equation of state using both soft thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. Revolutionary science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of active galactic nuclei, would also be obtained.We describe the mission concept and the planned trade studies that will optimize the mission to maximize the science return. This mission is being developed in collaboration with members of the European LOFT team, and a hardware contribution from Europe is expected.

  1. An analysis of three new infrasound arrays around Kīlauea Volcano

    USGS Publications Warehouse

    Thelen, Weston A.; Cooper, Jennifer

    2015-01-01

    A network of three new infrasound station arrays was installed around Kīlauea Volcano between July 2012 and September 2012, and a preliminary analysis of open-vent monitoring has been completed by Hawaiian Volcano Observatory (HVO). Infrasound is an emerging monitoring method in volcanology that detects perturbations in atmospheric pressure at frequencies below 20 Hz, which can result from volcanic events that are not always observed optically or thermally. Each array has the capability to detect various infrasound events as small as 0.05 Pa as measured at the array site. The infrasound monitoring network capabilities are demonstrated through case studies of rockfalls, pit collapses, and rise-fall cycles at Halema'uma'u Crater and Pu'u 'Ōʻō.

  2. Linear actuation using milligram quantities of CL-20 and TAGDNAT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snedigar, Shane; Salton, Jonathan Robert; Tappan, Alexander Smith

    2009-07-01

    There are numerous applications for small-scale actuation utilizing pyrotechnics and explosives. In certain applications, especially when multiple actuation strokes are needed, or actuator reuse is required, it is desirable to have all gaseous combustion products with no condensed residue in the actuator cylinder. Toward this goal, we have performed experiments on utilizing milligram quantities of high explosives to drive a millimeter-diameter actuator with a stroke of 30 mm. Calculations were performed to select proper material quantities to provide 0.5 J of actuation energy. This was performed utilizing the thermochemical code Cheetah to calculate the impetus for numerous propellants and tomore » select quantities based on estimated efficiencies of these propellants at small scales. Milligram quantities of propellants were loaded into a small-scale actuator and ignited with an ignition increment and hot wire ignition. Actuator combustion chamber pressure was monitored with a pressure transducer and actuator stroke was monitored using a laser displacement meter. Total actuation energy was determined by calculating the kinetic energy of reaction mass motion against gravity. Of the materials utilized, the best performance was obtained with a mixture of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and bis-triaminoguanidinium(3,3{prime}dinitroazotriazolate) (TAGDNAT).« less

  3. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    NASA Technical Reports Server (NTRS)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared LED light source. The compact grating spectrometer was replaced with a chip-scale spectrometer. With this new design, the sensor is 4 in 2 in 0.5 in, weighs 60 g, and no fiber optic cables are needed. The sensor, which contains the light source and the spectrometer, is adhered directly to the skin with medical grade adhesive. The sensor can be powered via the USB port of the laptop computer that controls the sensor operation. Alternatively, for studies in the spacesuit, the sensor can be powered by a small battery pack and operated by an ultra-portable hand-held computer. Both the handheld computer and battery pack will easily fit within the PLSS of the test spacesuit. System automation was significantly improved, to add features suggested by our colleagues in the Cardiovascular Laboratory and the NASA JSC Exercise Physiology and Countermeasures Project. The functionality and portability of this system were demonstrated in our UMass laboratory.

  4. Optical Network Virtualisation Using Multitechnology Monitoring and SDN-Enabled Optical Transceiver

    NASA Astrophysics Data System (ADS)

    Ou, Yanni; Davis, Matthew; Aguado, Alejandro; Meng, Fanchao; Nejabati, Reza; Simeonidou, Dimitra

    2018-05-01

    We introduce the real-time multi-technology transport layer monitoring to facilitate the coordinated virtualisation of optical and Ethernet networks supported by optical virtualise-able transceivers (V-BVT). A monitoring and network resource configuration scheme is proposed to include the hardware monitoring in both Ethernet and Optical layers. The scheme depicts the data and control interactions among multiple network layers under the software defined network (SDN) background, as well as the application that analyses the monitored data obtained from the database. We also present a re-configuration algorithm to adaptively modify the composition of virtual optical networks based on two criteria. The proposed monitoring scheme is experimentally demonstrated with OpenFlow (OF) extensions for a holistic (re-)configuration across both layers in Ethernet switches and V-BVTs.

  5. One-Dimensional Scanning Approach to Shock Sensing

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Adamovsky, Girgory; Floyd, Bertram

    2009-01-01

    Measurement tools for high speed air flow are sought both in industry and academia. Particular interest is shown in air flows that exhibit aerodynamic shocks. Shocks are accompanied by sudden changes in density, pressure, and temperature. Optical detection and characterization of such shocks can be difficult because the medium is normally transparent air. A variety of techniques to analyze these flows are available, but they often require large windows and optical components as in the case of Schlieren measurements and/or large operating powers which precludes their use for in-flight monitoring and applications. The one-dimensional scanning approach in this work is a compact low power technique that can be used to non-intrusively detect shocks. The shock is detected by analyzing the optical pattern generated by a small diameter laser beam as it passes through the shock. The optical properties of a shock result in diffraction and spreading of the beam as well as interference fringes. To investigate the feasibility of this technique a shock is simulated by a 426 m diameter optical fiber. Analysis of results revealed a direct correlation between the optical fiber or shock location and the beam s diffraction pattern. A plot of the width of the diffraction pattern vs. optical fiber location reveals that the width of the diffraction pattern was maximized when the laser beam is directed at the center of the optical fiber. This work indicates that the one-dimensional scanning approach may be able to determine the location of an actual shock. Near and far field effects associated with a small diameter laser beam striking an optical fiber used as a simulated shock are investigated allowing a proper one-dimensional scanning beam technique.

  6. Infrared Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Successive years of Small Business Innovation Research (SBIR) contracts from Langley Research Center to Sensiv Inc., a joint venture between Foster-Miller Inc. and Isorad, Ltd., assisted in the creation of remote fiber optic sensing systems. NASA's SBIR interest in infrared, fiber optic sensor technology was geared to monitoring the curing cycles of advanced composite materials. These funds helped in the fabrication of an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. Foster-Miller ingenuity allowed infrared transmitting optical fibers to combine with Fourier Transform Infrared spectroscopy to enable remote sensing. Sensiv probes operate in the mid-infrared range of the spectrum, although modifications to the instrument also permits its use in the near-infrared region. The Sensiv needle-probe is built to be placed in a liquid or powder and analyze the chemicals in the mixture. Other applications of the probe system include food processing control; combustion control in furnaces; and maintenance problem solving.

  7. Review of the Usefulness of Various Rotational Seismometers with Laboratory Results of Fibre-Optic Ones Tested for Engineering Applications

    PubMed Central

    Jaroszewicz, Leszek R.; Kurzych, Anna; Krajewski, Zbigniew; Marć, Paweł; Kowalski, Jerzy K.; Bobra, Piotr; Zembaty, Zbigniew; Sakowicz, Bartosz; Jankowski, Robert

    2016-01-01

    Starting with descriptions of rotational seismology, areas of interest and historical field measurements, the fundamental requirements for rotational seismometers for seismological and engineering application are formulated. On the above basis, a review of all existing rotational seismometers is presented with a description of the principles of their operation as well as possibilities to fulfill formulated requirements. This review includes mechanical, acoustical, electrochemical and optical devices and shows that the last of these types are the most promising. It is shown that optical rotational seismometer based on the ring-laser gyroscope concept is the best for seismological applications, whereas systems based on fiber-optic gyroscopes demonstrate parameters which are also required for engineering applications. Laboratory results of the Fibre-Optic System for Rotational Events & Phenomena Monitoring using a small 1-D shaking table modified to generate rotational excitations are presented. The harmonic and time-history tests demonstrate its usefulness for recording rotational motions with rates up to 0.25 rad/s. PMID:27999299

  8. New Statistical Model for Variability of Aerosol Optical Thickness: Theory and Application to MODIS Data over Ocean

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail Dmitrievic; Geogdzhayev, Igor V.; Tsigaridis, Konstantinos; Marshak, Alexander; Levy, Robert; Cairns, Brian

    2016-01-01

    A novel model for the variability in aerosol optical thickness (AOT) is presented. This model is based on the consideration of AOT fields as realizations of a stochastic process, that is the exponent of an underlying Gaussian process with a specific autocorrelation function. In this approach AOT fields have lognormal PDFs and structure functions having the correct asymptotic behavior at large scales. The latter is an advantage compared with fractal (scale-invariant) approaches. The simple analytical form of the structure function in the proposed model facilitates its use for the parameterization of AOT statistics derived from remote sensing data. The new approach is illustrated using a month-long global MODIS AOT dataset (over ocean) with 10 km resolution. It was used to compute AOT statistics for sample cells forming a grid with 5deg spacing. The observed shapes of the structure functions indicated that in a large number of cases the AOT variability is split into two regimes that exhibit different patterns of behavior: small-scale stationary processes and trends reflecting variations at larger scales. The small-scale patterns are suggested to be generated by local aerosols within the marine boundary layer, while the large-scale trends are indicative of elevated aerosols transported from remote continental sources. This assumption is evaluated by comparison of the geographical distributions of these patterns derived from MODIS data with those obtained from the GISS GCM. This study shows considerable potential to enhance comparisons between remote sensing datasets and climate models beyond regional mean AOTs.

  9. Optical Wave Turbulence and Wave Condensation in a Nonlinear Optical Experiment

    NASA Astrophysics Data System (ADS)

    Laurie, Jason; Bortolozzo, Umberto; Nazarenko, Sergey; Residori, Stefania

    We present theory, numerical simulations and experimental observations of a 1D optical wave system. We show that this system is of a dual cascade type, namely, the energy cascading directly to small scales, and the photons or wave action cascading to large scales. In the optical context the inverse cascade is particularly interesting because it means the condensation of photons. We show that the cascades are induced by a six-wave resonant interaction process described by weak turbulence theory. We show that by starting with weakly nonlinear randomized waves as an initial condition, there exists an inverse cascade of photons towards the lowest wavenumbers. During the cascade nonlinearity becomes strong at low wavenumbers and, due to the focusing nature of the nonlinearity, it leads to modulational instability resulting in the formation of solitons. Further interaction of the solitons among themselves and with incoherent waves leads to the final condensate state dominated by a single strong soliton. In addition, we show the existence of the direct energy cascade numerically and that it agrees with the wave turbulence prediction.

  10. Imaging of mesoscopic-scale organisms using selective-plane optoacoustic tomography.

    PubMed

    Razansky, Daniel; Vinegoni, Claudio; Ntziachristos, Vasilis

    2009-05-07

    Mesoscopic-scale living organisms (i.e. 1 mm to 1 cm sized) remain largely inaccessible by current optical imaging methods due to intensive light scattering in tissues. Therefore, imaging of many important model organisms, such as insects, fishes, worms and similarly sized biological specimens, is currently limited to embryonic or other transparent stages of development. This makes it difficult to relate embryonic cellular and molecular mechanisms to consequences in organ function and animal behavior in more advanced stages and adults. Herein, we have developed a selective-plane illumination optoacoustic tomography technique for in vivo imaging of optically diffusive organisms and tissues. The method is capable of whole-body imaging at depths from the sub-millimeter up to centimeter range with a scalable spatial resolution in the order of magnitude of a few tenths of microns. In contrast to pure optical methods, the spatial resolution here is not determined nor limited by light diffusion; therefore, such performance cannot be achieved by any other optical imaging technology developed so far. The utility of the method is demonstrated on several whole-body models and small-animal extremities.

  11. bicep2/KECK ARRAY. IV. OPTICAL CHARACTERIZATION AND PERFORMANCE OF THE bicep2 AND KECK ARRAY EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aikin, R. W.; Bock, J. J.

    2015-06-20

    bicep2 and the Keck Array are polarization-sensitive microwave telescopes that observe the cosmic microwave background (CMB) from the South Pole at degree angular scales in search of a signature of inflation imprinted as B-mode polarization in the CMB. bicep2 was deployed in late 2009, observed for three years until the end of 2012 at 150 GHz with 512 antenna-coupled transition edge sensor bolometers, and has reported a detection of B-mode polarization on degree angular scales. The Keck Array was first deployed in late 2010 and will observe through 2016 with five receivers at several frequencies (95, 150, and 220 GHz). bicep2 and the Keck Array sharemore » a common optical design and employ the field-proven bicep1 strategy of using small-aperture, cold, on-axis refractive optics, providing excellent control of systematics while maintaining a large field of view. This design allows for full characterization of far-field optical performance using microwave sources on the ground. Here we describe the optical design of both instruments and report a full characterization of the optical performance and beams of bicep2 and the Keck Array at 150 GHz.« less

  12. Monolithic integrated optic fiber Bragg grating sensor interrogator

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Songjian

    2010-04-01

    Fiber Bragg gratings (FBGs) are a mature sensing technology that has gained rapid acceptance in civil, aerospace, chemical and petrochemical, medicine, aviation and automotive industries. Fiber Bragg grating sensors can be use for a variety of measurements including strain, stress, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion distributed at multiple locations within the structure using a single fiber element. The most prominent advantages of FBGs are: small size and light weight, multiple FBG transducers on a single fiber, and immunity to radio frequency interference. A major disadvantage of FBG technology is that conventional state-of-the-art fiber Bragg grating interrogation systems are typically bulky, heavy, and costly bench top instruments that are assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the need for a compact FBG interrogation system, this paper describes recent progress towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-TransceiverTM) system based on multi-channel monolithic integrated optic sensor microchip technology. The integrated optic microchip technology enables the monolithic integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogators systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm small form factor (SFF) package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation.

  13. Electro-optic modulation of a laser at microwave frequencies for interferometric purposes

    NASA Astrophysics Data System (ADS)

    Specht, Paul E.; Jilek, Brook A.

    2017-02-01

    A multi-point microwave interferometer (MPMI) concept was previously proposed by the authors for spatially-resolved, non-invasive tracking of a shock, reaction, or detonation front in energetic media [P. Specht et al., AIP Conf. Proc. 1793, 160010 (2017).]. The advantage of the MPMI concept over current microwave interferometry techniques is its detection of Doppler shifted microwave signals through electro-optic (EO) modulation of a laser. Since EO modulation preserves spatial variations in the Doppler shift, collecting the EO modulated laser light into a fiber array for recording with an optical heterodyne interferometer yields spatially-resolved velocity information. This work demonstrates the underlying physical principle of the MPMI diagnostic: the monitoring of a microwave signal with nanosecond temporal resolution using an optical heterodyne interferometer. For this purpose, the MPMI concept was simplified to a single-point construction using two tunable 1550 nm lasers and a 35.2 GHz microwave source. A (110) ZnTe crystal imparted the microwave frequency onto a laser, which was combined with a reference laser for determination of the microwave frequency in an optical heterodyne interferometer. A single, characteristic frequency associated with the microwave source was identified in all experiments, providing a means to monitor a microwave signal on nanosecond time scales. Lastly, areas for improving the frequency resolution of this technique are discussed, focusing on increasing the phase-modulated signal strength.

  14. Electro-optic modulation of a laser at microwave frequencies for interferometric purposes.

    PubMed

    Specht, Paul E; Jilek, Brook A

    2017-02-01

    A multi-point microwave interferometer (MPMI) concept was previously proposed by the authors for spatially-resolved, non-invasive tracking of a shock, reaction, or detonation front in energetic media [P. Specht et al., AIP Conf. Proc. 1793, 160010 (2017).]. The advantage of the MPMI concept over current microwave interferometry techniques is its detection of Doppler shifted microwave signals through electro-optic (EO) modulation of a laser. Since EO modulation preserves spatial variations in the Doppler shift, collecting the EO modulated laser light into a fiber array for recording with an optical heterodyne interferometer yields spatially-resolved velocity information. This work demonstrates the underlying physical principle of the MPMI diagnostic: the monitoring of a microwave signal with nanosecond temporal resolution using an optical heterodyne interferometer. For this purpose, the MPMI concept was simplified to a single-point construction using two tunable 1550 nm lasers and a 35.2 GHz microwave source. A (110) ZnTe crystal imparted the microwave frequency onto a laser, which was combined with a reference laser for determination of the microwave frequency in an optical heterodyne interferometer. A single, characteristic frequency associated with the microwave source was identified in all experiments, providing a means to monitor a microwave signal on nanosecond time scales. Lastly, areas for improving the frequency resolution of this technique are discussed, focusing on increasing the phase-modulated signal strength.

  15. Development and testing of an optoacoustic imaging system for monitoring and guiding prostate cancer therapies

    NASA Astrophysics Data System (ADS)

    Spirou, Gloria M.; Vitkin, I. Alex; Wilson, B. C.; Whelan, William M.; Henrichs, Paul M.; Mehta, Ketan; Miller, Tom; Yee, Andrew; Meador, James; Oraevsky, Alexander A.

    2004-07-01

    Laser Optoacoustic Imaging System (LOIS) combines high tissue contrast based on the optical properties of tissue and high spatial resolution based on ultrawide-band ultrasonic detection. Patients undergoing thermal or photodynamic therapy of prostate cancer may benefit from capability of LOIS to detect and monitor treatment-induced changes in tissue optical properties and blood flow. The performance of a prototype LOIS was evaluated via 2D optoacoustic images of dye-colored objects of various shapes, small tubes with blood simulating veins and arteries, and thermally coagulated portions of chicken breasts imbedded tissue-mimicking gelatin phantoms. The optoacoustic image contrast was proportional to the ratio of the absorption coefficient between the embedded objects and the surrounding gel. The contrast of the venous blood relative to the background exceeded 250%, and the contrast of the thermally coagulated portions of flesh relative to the untreated tissue ranged between -100% to +200%, dependent on the optical wavelength. We used a 32-element optoacoustic transducer array and a novel design of low-noise preamplifiers and wide-band amplifiers to perform these studies. The system was optimized for imaging at a depth of ~50 mm. The system spatial resolution was better than 1-mm. The advantages and limitations of various signal-processing methods were investigated. LOIS demonstrates clinical potential for non- or minimally-invasive monitoring of treatment-induced tissue changes.

  16. Investigation of a Moire Based Crack Detection Technique for Propulsion Health Monitoring

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Abudl-Aziz, Ali; Fralick, Gustave C.; Wrbanek, John D.

    2012-01-01

    The development of techniques for the health monitoring of the rotating components in gas turbine engines is of major interest to NASA s Aviation Safety Program. As part of this on-going effort several experiments utilizing a novel optical Moir based concept along with external blade tip clearance and shaft displacement instrumentation were conducted on a simulated turbine engine disk as a means of demonstrating a potential optical crack detection technique. A Moir pattern results from the overlap of two repetitive patterns with slightly different periods. With this technique, it is possible to detect very small differences in spacing and hence radial growth in a rotating disk due to a flaw such as a crack. The experiment involved etching a circular reference pattern on a subscale engine disk that had a 50.8 mm (2 in.) long notch machined into it to simulate a crack. The disk was operated at speeds up to 12 000 rpm and the Moir pattern due to the shift with respect to the reference pattern was monitored as a means of detecting the radial growth of the disk due to the defect. In addition, blade displacement data were acquired using external blade tip clearance and shaft displacement sensors as a means of confirming the data obtained from the optical technique. The results of the crack detection experiments and its associated analysis are presented in this paper.

  17. A high resolution method for soil moisture mapping at large spatial and temporal scales

    NASA Astrophysics Data System (ADS)

    moreno, D.; Sayde, C.; Ochsner, T. E.; Sorin, C.; Selker, J. S.

    2013-12-01

    Soil moisture is a critical component of the planet's water budget, yet precise measurement of its dynamics across the critical scales of 0.1-1,000 m continues to be an area of great uncertainty. Here we present the preliminary results for a large scale installation of soil moisture quantification based on the work of Sayde et al. (2010) using actively heated fiber optic with a DTS system capable of soil moisture measurements at high spatial (reporting every 0.125 m) and temporal resolution (read as frequently as each 15 min)). The fiber optic (FO) sensing cables were installed in 2 sections: 1) a highly resolved multi-scale spiral 75m x 65m in size, 530 m total path length, and 2) a 770 m transect in the foot print of the cosmos cosmic ray probe installed at the site. In each of those 2 sections, the FO cables were deployed at 3 depths: 5, 10, and 15 cm. In this system the FO sensing system provides measurements of soil moisture at >39,000 locations simultaneously for each heat pulse. In addition, six soil monitoring stations along the fiber optic path were installed to provide additional validation and calibration of the DTS data. Finally, gravimetric soil moisture and soil thermal samplings were performed periodically to provide additional distributed validation and calibration of the DTS data. The ability of this DTS FO system to provide soil moisture measurements over four orders of magnitude in spatial scale (0.1 - 1,000m) will allow better understanding of the spatio-temporal variability in soil moisture in the field, which is essential to develop protocols for calibration and validation of large scale soil moisture remote sensing data (such as NASA airMOSS soil moisture air flights). The material is based upon work supported by NASA under award NNX12AP58G, with equipment and assistance also provided by CTEMPs.org with support from the National Science Foundation under Grant Number 1129003. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NASA or the National Science Foundation.. Sayde, C., C. Gregory, M. Gil-Rodriguez, N. Tufillaro, S. Tyler, N. van de Giesen, M. English, R. Cuenca, and J.S. Selker (2010), Feasibility of soil moisture monitoring with heated fiber optics, Water Resour. Res., 46, W06201, doi:10.1029/2009WR007846.

  18. Development of method for quantifying essential tremor using a small optical device.

    PubMed

    Chen, Kai-Hsiang; Lin, Po-Chieh; Chen, Yu-Jung; Yang, Bing-Shiang; Lin, Chin-Hsien

    2016-06-15

    Clinical assessment scales are the most common means used by physicians to assess tremor severity. Some scientific tools that may be able to replace these scales to objectively assess the severity, such as accelerometers, digital tablets, electromyography (EMG) measurement devices, and motion capture cameras, are currently available. However, most of the operational modes of these tools are relatively complex or are only able to capture part of the clinical information; furthermore, using these tools is sometimes time consuming. Currently, there is no tool available for automatically quantifying tremor severity in clinical environments. We aimed to develop a rapid, objective, and quantitative system for measuring the severity of finger tremor using a small portable optical device (Leap Motion). A single test took 15s to conduct, and three algorithms were proposed to quantify the severity of finger tremor. The system was tested with four patients diagnosed with essential tremor. The proposed algorithms were able to quantify different characteristics of tremor in clinical environments, and could be used as references for future clinical assessments. A portable, easy-to-use, small-sized, and noncontact device (Leap Motion) was used to clinically detect and record finger movement, and three algorithms were proposed to describe tremor amplitudes. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Extinction coefficients from lidar observations in ice clouds compared to in-situ measurements from the Cloud Integrating Nephelometer during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Noel, Vincent; Winker, D. M.; Garrett, T. J.; McGill, M.

    2005-01-01

    This paper presents a comparison of volume extinction coefficients in tropical ice clouds retrieved from two instruments : the 532-nm Cloud Physics Lidar (CPL), and the in-situ probe Cloud Integrating Nephelometer (CIN). Both instruments were mounted on airborne platforms during the CRYSTAL-FACE campaign and took measurements in ice clouds up to 17km. Coincident observations from three cloud cases are compared : one synoptically-generated cirrus cloud of low optical depth, and two ice clouds located on top of convective systems. Emphasis is put on the vertical variability of the extinction coefficient. Results show small differences on small spatial scales (approx. 100m) in retrievals from both instruments. Lidar retrievals also show higher extinction coefficients in the synoptic cirrus case, while the opposite tendency is observed in convective cloud systems. These differences are generally variations around the average profile given by the CPL though, and general trends on larger spatial scales are usually well reproduced. A good agreement exists between the two instruments, with an average difference of less than 16% on optical depth retrievals.

  20. Nanometer-scale displacement measurement with high resolution using dual cavity Fabry-Pérot interferometer for biomimetic robots.

    PubMed

    Lee, Jin-Hyuk; Kim, Dae-Hyun

    2014-10-01

    A sensor of a biomimetic robot has to measure very small environmental changes such as, nanometer scale strains or displacements. Fiber optic sensor can be also one of candidates for the biomimetic sensor because the sensor is like thread and the shape of the sensor is similar to muscle fiber. A fiber optic interferometer, which is an optical-based sensor, can measure displacement precisely, so such device has been widely studied for the measurement of displacement on a nanometer-scale. Especially, a Quadrature Phase-Shifted Fiber Fabry-Pérot interferometer (QPS-FFPI) uses phase-information for this measurement, allowing it to provide a precision result with high resolution. In theory, the QPS-FFPI generates two sinusoidal signals of which the phase difference should be 90 degrees for the exact measurement of the displacement. In order to guarantee the condition of the phase difference, the relative adjustment of the cavities of the optical fibers is required. However, with such precise adjustment it is very hard to fix the proper difference of the two cavities for quadrature-phase-shifting. In this paper, a dual-cavity FFPI is newly proposed to measure the displacement on a nanometer-scale with a specific type of signal processing. In the signal processing, a novel phase-compensation algorithm is applied to force the phase difference to be exactly 90 degrees without any physical adjustment. As a result, the paper shows that the phase-compensated dual-cavity FFPI can effectively measure nanometer-scale displacement with high resolution under dynamic conditions.

  1. Small-Angle X-ray Scattering (SAXS) Instrument Performance and Validation Using Silver Nanoparticles

    DTIC Science & Technology

    2016-12-01

    Intercalibration of small-angle X- Ray and neutron-scattering data. Journal of Applied Crystallography . 1988;21:629–638. 7. Zhang F, Ilavsky J, Long GG...Materials Transactions A. 2009;41:1151–1158. 8. Kusz J, Bohm H. Performance of a confocal multilayer X-ray optic. Journal of Applied Crystallography ...Journal of Applied Crystallography . 2004;37:369–380. 10. Orthaber D, Bergmann A, Glatter O. SAXS experiments on absolute scale with Kratky systems using

  2. Small Angle X ray Scattering (SAXS) Instrument Performance and Validation Using Silver Nanoparticles

    DTIC Science & Technology

    2016-12-01

    Intercalibration of small-angle X- Ray and neutron-scattering data. Journal of Applied Crystallography . 1988;21:629–638. 7. Zhang F, Ilavsky J, Long GG...Materials Transactions A. 2009;41:1151–1158. 8. Kusz J, Bohm H. Performance of a confocal multilayer X-ray optic. Journal of Applied Crystallography ...Journal of Applied Crystallography . 2004;37:369–380. 10. Orthaber D, Bergmann A, Glatter O. SAXS experiments on absolute scale with Kratky systems using

  3. UV-optical from space

    NASA Technical Reports Server (NTRS)

    Illingworth, Garth; Savage, Blair; Angel, J. Roger; Blandford, Roger D.; Boggess, Albert; Bowyer, C. Stuart; Carruthers, George R.; Cowie, Lennox L.; Doschek, George A.; Dupree, Andrea K.

    1991-01-01

    The following subject areas are covered: (1) the science program (star formation and origins of planetary systems; structure and evolution of the interstellar medium; stellar population; the galactic and extragalactic distance scale; nature of galaxy nuclei, AGNs, and QSOs; formation and evolution of galaxies at high redshifts; and cosmology); (2) implementation of the science program; (3) the observatory-class missions (HST; LST - the 6m successor to HST; and next-generation 16m telescope); (4) moderate and small missions (Delta-class Explorers; imaging astrometric interferometer; small Explorers; optics development and demonstrations; and supporting ground-based capabilities); (5) prerequisites - the current science program (Lyman-FUSE; HTS optimization; the near-term science program; data analysis, modeling, and theory funding; and archives); (6) technologies for the next century; and (7) lunar-based telescopes and instruments.

  4. Carbonate addition--an effective remedy against poor activated sludge settling properties and alkalinity conditions in small wastewater treatment plants.

    PubMed

    Wett, B; Eladawy, A; Becker, W

    2003-01-01

    The impact of marble powder on the performance of small seasonal treatment plants dealing with high ammonia concentrated wastewater has been investigated. The carbonate has been added to one of two parallel lab-scale SBR-systems as an alkalinity depot and a bio-carrier. The focus of the monitoring program was put on the measurement of carbon fractions in the liquid and the solid phase and on the alkalinity conditions. Monitoring results show a significant correlation between carbonate dosage (and corresponding inorganic carbon concentration and pH-value) and sludge volume index and nitrification rate.

  5. Advanced astigmatism-corrected tandem Wadsworth mounting for small-scale spectral broadband imaging spectrometer.

    PubMed

    Lei, Yu; Lin, Guan-yu

    2013-01-01

    Tandem gratings of double-dispersion mount make it possible to design an imaging spectrometer for the weak light observation with high spatial resolution, high spectral resolution, and high optical transmission efficiency. The traditional tandem Wadsworth mounting is originally designed to match the coaxial telescope and large-scale imaging spectrometer. When it is used to connect the off-axis telescope such as off-axis parabolic mirror, it presents lower imaging quality than to connect the coaxial telescope. It may also introduce interference among the detector and the optical elements as it is applied to the short focal length and small-scale spectrometer in a close volume by satellite. An advanced tandem Wadsworth mounting has been investigated to deal with the situation. The Wadsworth astigmatism-corrected mounting condition for which is expressed as the distance between the second concave grating and the imaging plane is calculated. Then the optimum arrangement for the first plane grating and the second concave grating, which make the anterior Wadsworth condition fulfilling each wavelength, is analyzed by the geometric and first order differential calculation. These two arrangements comprise the advanced Wadsworth mounting condition. The spectral resolution has also been calculated by these conditions. An example designed by the optimum theory proves that the advanced tandem Wadsworth mounting performs excellently in spectral broadband.

  6. Imaging of Brain Slices with a Genetically Encoded Voltage Indicator.

    PubMed

    Quicke, Peter; Barnes, Samuel J; Knöpfel, Thomas

    2017-01-01

    Functional fluorescence microscopy of brain slices using voltage sensitive fluorescent proteins (VSFPs) allows large scale electrophysiological monitoring of neuronal excitation and inhibition. We describe the equipment and techniques needed to successfully record functional responses optical voltage signals from cells expressing a voltage indicator such as VSFP Butterfly 1.2. We also discuss the advantages of voltage imaging and the challenges it presents.

  7. Near real-time qualitative monitoring of lake water chlorophyll globally using GoogleEarth Engine

    NASA Astrophysics Data System (ADS)

    Zlinszky, András; Supan, Peter; Koma, Zsófia

    2017-04-01

    Monitoring ocean chlorophyll and suspended sediment has been made possible using optical satellite imaging, and has contributed immensely to our understanding of the Earth and its climate. However, lake water quality monitoring has limitations due to the optical complexity of shallow, sediment- and organic matter-laden waters. Meanwhile, timely and detailed information on basic lake water quality parameters would be essential for sustainable management of inland waters. Satellite-based remote sensing can deliver area-covering, high resolution maps of basic lake water quality parameters, but scientific application of these datasets for lake monitoring has been hindered by limitations to calibration and accuracy evaluation, and therefore access to such data has been the privilege of scientific users. Nevertheless, since for many inland waters satellite imaging is the only source of monitoring data, we believe it is urgent to make map products of chlorophyll and suspended sediment concentrations available to a wide range of users. Even if absolute accuracy can not be validated, patterns, processes and qualitative information delivered by such datasets in near-real time can act as an early warning system, raise awareness to water quality processes and serve education, in addition to complementing local monitoring activities. By making these datasets openly available on the internet through an easy to use framework, dialogue between stakeholders, management and governance authorities can be facilitated. We use GoogleEarthEngine to access and process archive and current satellite data. GoogleEarth Engine is a development and visualization framework that provides access to satellite datasets and processing capacity for analysis at the Petabyte scale. Based on earlier investigations, we chose the fluorescence line height index to represent water chlorophyll concentration. This index relies on the chlorophyll fluorescence peak at 680 nm, and has been tested for open ocean but also inland lake situations for MODIS and MERIS satellite sensor data. In addition to being relatively robust and less sensitive to atmospheric influence, this algorithm is also very simple, being based on the height of the 680 nm peak above the linear interpolation of the two neighbouring bands. However, not all satellite datasets suitable for FLH are catalogued for GoogleEarth Engine. In the current testing phase, Landsat 7, Landsat 8 (30 m resolution), and Sentinel 2 (20 m) are being tested. Landsat 7 has suitable band configuration, but has a strip error due to a sensor problem. Landsat 8 and Sentinel 2 lack a single spectral optimal for FLH. Sentinel 3 would be an optimal data source and has shown good performace during small-scale initial tests, but is not distributed globally for GoogleEarth Engine. In addition to FLH data from these satellites, our system delivers cloud and ice masking, qualitative suspended sediment data (based on the band closest to 600 nm) and true colour images, all within an easy-to-use Google Maps background. This allows on-demand understanding and interpretation of water quality patterns and processes in near real time. While the system is still under development, we believe it could significantly contribute to lake water quality management and monitoring worldwide.

  8. gram-scale metafluids and large area tunable metamaterials: design, fabrication, and nano-optical tomographic characterization (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dionne, Jennifer A.

    2016-09-01

    Advances in metamaterials and metasurfaces have enabled unprecedented control of light-matter interactions. Metamaterial constituents support high-frequency electric and magnetic dipoles, which can be used as building blocks for new materials capable of negative refraction, electromagnetic cloaking, strong visible-frequency circular dichroism, and enhanced magnetic or chiral transitions in ions and molecules. However, most metamaterials to date have been limited to solid-state, static, narrow-band, and/or small-area structures. Here, we introduce the design, fabrication, and three-dimensional nano-optical characterization of large-area, dynamically-tunable metamaterials and gram-scale metafluids. First, we use transformation optics to design a broadband metamaterial constituent - a metallo-dielectric nanocrescent - characterized by degenerate electric and magnetic dipoles. A periodic array of nanocrescents exhibits large positive and negative refractive indices at optical frequencies, confirmed through simulations of plane wave refraction through a metamaterial prism. Simulations also reveal that the metamaterial optical properties are largely insensitive to the wavelength, orientation and polarization of incident light. Then, we introduce a new tomographic technique, cathodoluminescence (CL) spectroscopic tomography, to probe light-matter interactions in individual nanocrescents with nanometer-scale resolution. Two-dimensional CL maps of the three-dimensional nanostructure are obtained at various orientations, while a filtered back projection is used to reconstruct the CL intensity at each wavelength. The resulting tomograms allow us to locate regions of efficient cathodoluminescence in three dimensions across visible and near-infrared wavelengths, with contributions from material luminescence and radiative decay of electromagnetic eigenmodes. Finally, we demonstrate the fabrication of dynamically tunable large-area metamaterials and gram-scale metafluids, using a combination of colloidal synthesis, protein-directed assembly, self-assembly, etching, and stamping. The electric and magnetic response of the bulk metamaterial and metafluid are directly probed with optical scattering and spectroscopy. Using chemical swelling, these metamaterials exhibit reversible, unity-order refractive index changes that may provide a foundation for new adaptive optical materials in sensing, solar, and display applications.

  9. Exploring transient X-ray sky with Einstein Probe

    NASA Astrophysics Data System (ADS)

    Yuan, W.; Zhang, C.; Ling, Z.; Zhao, D.; Chen, Y.; Lu, F.; Zhang, S.

    2017-10-01

    The Einstein Probe is a small satellite in time-domain astronomy to monitor the soft X-ray sky. It is a small mission in the space science programme of the Chinese Academy of Sciences. It will carry out systematic survey and characterisation of high-energy transients at unprecedented sensitivity, spatial resolution, Grasp and monitoring cadence. Its wide-field imaging capability is achieved by using established technology of micro-pore lobster-eye X-ray focusing optics. Complementary to this is X-ray follow-up capability enabled by a narrow-field X-ray telescope. It is capable of on-board triggering and real time downlink of transient alerts, in order to trigger fast follow-up observations at multi-wavelengths. Its scientific goals are concerned with discovering and characterising diverse types of X-ray transients, including tidal disruption events, supernova shock breakouts, high-redshift GRBs, and of particular interest, X-ray counterparts of gravitational wave events.

  10. Piecewise compensation for the nonlinear error of fiber-optic gyroscope scale factor

    NASA Astrophysics Data System (ADS)

    Zhang, Yonggang; Wu, Xunfeng; Yuan, Shun; Wu, Lei

    2013-08-01

    Fiber-Optic Gyroscope (FOG) scale factor nonlinear error will result in errors in Strapdown Inertial Navigation System (SINS). In order to reduce nonlinear error of FOG scale factor in SINS, a compensation method is proposed in this paper based on curve piecewise fitting of FOG output. Firstly, reasons which can result in FOG scale factor error are introduced and the definition of nonlinear degree is provided. Then we introduce the method to divide the output range of FOG into several small pieces, and curve fitting is performed in each output range of FOG to obtain scale factor parameter. Different scale factor parameters of FOG are used in different pieces to improve FOG output precision. These parameters are identified by using three-axis turntable, and nonlinear error of FOG scale factor can be reduced. Finally, three-axis swing experiment of SINS verifies that the proposed method can reduce attitude output errors of SINS by compensating the nonlinear error of FOG scale factor and improve the precision of navigation. The results of experiments also demonstrate that the compensation scheme is easy to implement. It can effectively compensate the nonlinear error of FOG scale factor with slightly increased computation complexity. This method can be used in inertial technology based on FOG to improve precision.

  11. Advances in optical structure systems; Proceedings of the Meeting, Orlando, FL, Apr. 16-19, 1990

    NASA Astrophysics Data System (ADS)

    Breakwell, John; Genberg, Victor L.; Krumweide, Gary C.

    Various papers on advances in optical structure systems are presented. Individual topics addressed include: beam pathlength optimization, thermal stress in glass/metal bond with PR 1578 adhesive, structural and optical properties for typical solid mirror shapes, parametric study of spinning polygon mirror deformations, simulation of small structures-optics-controls system, spatial PSDs of optical structures due to random vibration, mountings for a four-meter glass mirror, fast-steering mirrors in optical control systems, adaptive state estimation for control of flexible structures, surface control techniques for large segmented mirrors, two-time-scale control designs for large flexible structures, closed-loop dynamic shape control of a flexible beam. Also discussed are: inertially referenced pointing for body-fixed payloads, sensor blending line-of-sight stabilization, controls/optics/structures simulation development, transfer functions for piezoelectric control of a flexible beam, active control experiments for large-optics vibration alleviation, composite structures for a large-optical test bed, graphite/epoxy composite mirror for beam-steering applications, composite structures for optical-mirror applications, thin carbon-fiber prepregs for dimensionally critical structures.

  12. Boundaries of ERTS and aircraft data within which useful water quality information can be obtained

    NASA Technical Reports Server (NTRS)

    Egan, W. G.

    1974-01-01

    Calibration procedures have been devised and applied to ERTS-1, multispectral, true color, and false color imagery. The results indicate that the ERTS and multispectral imagery are correlated with optical in situ measurements of the harbor water. Correlation is extended to true and false color imagery through in situ optical measurements of the harbor water. The best photometric accuracy is achieved with multispectral aerial imagery and the use of bulk MSS tape. The aircraft green photographic and ERTS-1 MSS-4 bands have been found most suitable for monitoring the scattered light levels under the conditions of this investigation. The application of satellite or aircraft for optical remote sensing depends upon the physical scale and frequency of sensing since both sensor systems generally have sufficient photometric sensitivity. The chemical parameters of the harbor water were found to be correlated to the optical properties for two stations investigated in detail.

  13. Edge detection based on adaptive threshold b-spline wavelet for optical sub-aperture measuring

    NASA Astrophysics Data System (ADS)

    Zhang, Shiqi; Hui, Mei; Liu, Ming; Zhao, Zhu; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin

    2015-08-01

    In the research of optical synthetic aperture imaging system, phase congruency is the main problem and it is necessary to detect sub-aperture phase. The edge of the sub-aperture system is more complex than that in the traditional optical imaging system. And with the existence of steep slope for large-aperture optical component, interference fringe may be quite dense when interference imaging. Deep phase gradient may cause a loss of phase information. Therefore, it's urgent to search for an efficient edge detection method. Wavelet analysis as a powerful tool is widely used in the fields of image processing. Based on its properties of multi-scale transform, edge region is detected with high precision in small scale. Longing with the increase of scale, noise is reduced in contrary. So it has a certain suppression effect on noise. Otherwise, adaptive threshold method which sets different thresholds in various regions can detect edge points from noise. Firstly, fringe pattern is obtained and cubic b-spline wavelet is adopted as the smoothing function. After the multi-scale wavelet decomposition of the whole image, we figure out the local modulus maxima in gradient directions. However, it also contains noise, and thus adaptive threshold method is used to select the modulus maxima. The point which greater than threshold value is boundary point. Finally, we use corrosion and expansion deal with the resulting image to get the consecutive boundary of image.

  14. ISTC projects devoted to improving laser beam quality

    NASA Astrophysics Data System (ADS)

    Malakhov, Yu. I.

    2007-05-01

    Short overview is done about the activity of ISTC in a direction concerned with improving powerful laser beam quality by means of nonlinear and linear adaptive optics methods. Completed projects #0591 and #1929 resulted in the development of a stimulated Brillouin scattering (SBS) phase conjugation mirror of superhigh fidelity employing the kinoform optical elements (rasters of small lenses) of new generation designed for pulsed or pulse-periodic lasers with nanosecond scale pulse duration. Project #2631 is devoted to development of an adaptive optical system for phase registration and correction of laser beams with wave front vortices. The principles of operation of conventional adaptive systems are based on the assumption that the phase is a smooth continuous function in space. Therefore the solution of the Project tasks will assume a new step in adaptive optics.

  15. Optimal wavelength-space crossbar switches for supercomputer optical interconnects.

    PubMed

    Roudas, Ioannis; Hemenway, B Roe; Grzybowski, Richard R; Karinou, Fotini

    2012-08-27

    We propose a most economical design of the Optical Shared MemOry Supercomputer Interconnect System (OSMOSIS) all-optical, wavelength-space crossbar switch fabric. It is shown, by analysis and simulation, that the total number of on-off gates required for the proposed N × N switch fabric can scale asymptotically as N ln N if the number of input/output ports N can be factored into a product of small primes. This is of the same order of magnitude as Shannon's lower bound for switch complexity, according to which the minimum number of two-state switches required for the construction of a N × N permutation switch is log2 (N!).

  16. Optical assessment of nonimaging concentrators.

    PubMed

    Timinger, A; Kribus, A; Ries, H; Smith, T; Walther, M

    2000-11-01

    An optical measurement method for nonimaging radiation concentrators is proposed. A Lambertian light source is placed in the exit aperture of the concentrator. Looking into the concentrator's entrance aperture from a remote position, one can photograph the transmission patterns. The patterns show the transmission of radiation through the concentrator with the full resolution of the four-dimensional phase space of geometric optics. By matching ray-tracing simulations to the measurement, one can achieve detailed and accurate information about the geometry of the concentrator. This is a remote, noncontact measurement and can be performed in situ for installed concentrators. Additional information regarding small-scale reflector waviness and surface reflectivity can also be obtained from the same measurement with additional analysis.

  17. A new method for detecting small and dim targets in starry background

    NASA Astrophysics Data System (ADS)

    Yao, Rui; Zhang, Yanning; Jiang, Lei

    2011-08-01

    Small visible optical space targets detection is one of the key issues in the research of long-range early warning and space debris surveillance. The SNR(Signal to Noise Ratio) of the target is very low because of the self influence of image device. Random noise and background movement also increase the difficulty of target detection. In order to detect small visible optical space targets effectively and rapidly, we bring up a novel detecting method based on statistic theory. Firstly, we get a reasonable statistical model of visible optical space image. Secondly, we extract SIFT(Scale-Invariant Feature Transform) feature of the image frames, and calculate the transform relationship, then use the transform relationship to compensate whole visual field's movement. Thirdly, the influence of star was wiped off by using interframe difference method. We find segmentation threshold to differentiate candidate targets and noise by using OTSU method. Finally, we calculate statistical quantity to judge whether there is the target for every pixel position in the image. Theory analysis shows the relationship of false alarm probability and detection probability at different SNR. The experiment result shows that this method could detect target efficiently, even the target passing through stars.

  18. Fiber-optic security monitoring sensor

    NASA Astrophysics Data System (ADS)

    Englund, Marja; Ipatti, Ari; Karioja, Pentti

    1997-09-01

    In security monitoring, fiber-optic sensors are advantageous because strong and rugged optical fibers are thin, light, flexible and immune to electromagnetic interference. Optical fibers packaged into cables, such as, building and underground cables, can be used to detect even slightest disturbances, movements, vibrations, pressure changes and impacts along their entire length. When running an optical cable around a structure, and when using speckle pattern recognition technique for alarm monitoring, the distributed monitoring of the structure is possible. The sensing cable can be strung along fences, buried underground, embedded into concrete, mounted on walls, floors and ceilings, or wrapped around the specific components. In this paper, a fiber-optic security monitoring sensor based on speckle pattern monitoring is described. The description of the measuring method and the results of the experimental fiber installations are given. The applicability of embedded and surface mounted fibers to monitor the pressure and impact induced vibrations of fences and concrete structures as well as the loosening of critical parts in a power plant machinery were demonstrated in field and laboratory conditions. The experiences related to the applications and optical cable types are also discussed.

  19. Fiber optic security monitoring sensor

    NASA Astrophysics Data System (ADS)

    Englund, Marja; Ipatti, Ari; Karioja, Pentti

    1997-09-01

    In security monitoring, fiber-optic sensors are advantageous because strong and rugged optical fibers are thin, light, flexible and immune to electromagnetic interference. Optical fibers packaged into cables, such as, building and underground cables, can be used to detect even slightest disturbances, movements, vibrations, pressure changes and impacts along their entire length. When running an optical cable around a structure, and when using speckle pattern recognition technique for alarm monitoring, the distributed monitoring of the structure is possible. The sensing cable can be strung along fences, buried underground, embedded into concrete, mounted on walls, floors and ceilings, or wrapped around the specific components. In this paper, a fiber-optic security monitoring sensor based on speckle pattern monitoring is described. The description of the measuring method and the results of the experimental fiber installations are given. The applicability of embedded and surface mounted fibers to monitor the pressure and impact induced vibrations of fences and concrete structures as well as the loosening of critical parts in a power plant machinery were demonstrated in field and laboratory conditions. The experiences related to the applications and optical cable types are also discussed.

  20. Detection of tunnel excavation using fiber optic reflectometry: experimental validation

    NASA Astrophysics Data System (ADS)

    Linker, Raphael; Klar, Assaf

    2013-06-01

    Cross-border smuggling tunnels enable unmonitored movement of people and goods, and pose a severe threat to homeland security. In recent years, we have been working on the development of a system based on fiber- optic Brillouin time domain reflectometry (BOTDR) for detecting tunnel excavation. In two previous SPIE publications we have reported the initial development of the system as well as its validation using small-scale experiments. This paper reports, for the first time, results of full-scale experiments and discusses the system performance. The results confirm that distributed measurement of strain profiles in fiber cables buried at shallow depth enable detection of tunnel excavation, and by proper data processing, these measurements enable precise localization of the tunnel, as well as reasonable estimation of its depth.

  1. Distributed Fiber Optic Sensor for Early Detection of Rocky Slopes Movements

    NASA Astrophysics Data System (ADS)

    Minardo, Aldo; Picarelli, Luciano; Coscetta, Agnese; Zeni, Giovanni; Esposito, Giuseppe; Sacchi, Marco; Matano, Fabio; Caccavale, Mauro; Luigi, Zeni

    2014-05-01

    Distributed optical fiber sensors have in recent years gained considerable attention in structural and environmental monitoring due to specific advantages that, apart from the classical advantages common to all optical fiber sensors such as immunity to electromagnetic interferences, high sensitivity, small size and possibility to be embedded into the structures, multiplexing and remote interrogation capabilities [1], offer the unique feature of allowing the exploitation of a telecommunication grade optical fiber cable as the sensing element to measure deformation and temperature profiles over very long distances. In particular, distributed optical fiber sensors based on stimulated Brillouin scattering (SBS) through the so-called Brillouin Optical Time Domain Analysis (BOTDA), allow to measure strain and temperature profiles up to tens of kilometers with a strain accuracy of ±10µɛ and a temperature accuracy of ±1°C [2]. They have already been successfully employed in the monitoring of large civil and geotechnical structures such as bridges, tunnels, dams, pipelines allowing to identify and localize any kind of failures that can occur during their construction and operation [3,4]. In this paper we present the application of BOTDA to the monitoring of movements in a rocky slope, showing how the sensing optical fiber cable is able to detect the formation and follow the growth of fractures, and to identify their location along the slope, as well. The experimental results have been achieved on a test field located in the area of Naples (Italy), where a single mode optical fiber sensing cable has been deployed along a yellow tuffs slope, by spot gluing the cable with epoxy adhesive. In order to assess the validity of the proposed approach, a few existing cracks have been artificially enlarged and the magnitude and location of the induced strain peaks have been clearly identified by the sensing device. It should be emphasized that, due to the distributed nature of the sensor, no preliminary information about the possible displacement locations of rocks are required in advance. The sensing cable can be simply deployed in a zig-zag pattern path along the slope, for hundreds of meters, and the system will remotely detect and locate any displacements wherever they occur along the fiber cable path, so representing a powerful tool for early warning against possible rock slides. [1] J. M. López-Higuera, L. R. Cobo, A. Q. Incera, A. Cobo, " Fiber Optic Sensors in Structural Health Monitoring", Journal of Lightwave Technology, Vol. 29, pp.586-608, 2011. [2] A. Minardo, R. Bernini, L. Zeni, "Numerical analysis of single pulse and differential pulse-width pair BOTDA systems in the high spatial resolution regime", Optics Express, vol. 19, pp. 19233-19244, 2011. [3] A. Minardo, R. Bernini, L. Amato, L. Zeni, "Bridge monitoring using Brillouin fiber-optic sensors", IEEE Sensor Journal, Vol. 12 (1), pp. 145-150, 2012. [4] R. Bernini, A. Minardo, S. Ciaramella, V. Minutolo, L. Zeni, "Distributed strain measurement along a concrete beam via stimulated Brillouin scattering in optical fibers", International Journal of Geophysics, Vol. 2011, pp. 1-5, doi:10.1155/2011/710941, 2011.

  2. National forest cover monitoring in mainland South and Southeast Asia: method development and capacity building

    NASA Astrophysics Data System (ADS)

    Tyukavina, A.; Potapov, P.; Hansen, M.; Talero, Y.; Turubanova, S.; Pickering, J.; Pickens, A. H.; Quyen, N. H.; Spirovska Kono, M.

    2017-12-01

    Timely forest monitoring data produced following good practice guidance are required for national reporting on greenhouse gas emissions, national forest resource assessments, and monitoring for REDD+ projects. Remote sensing provides a cost-efficient supplement to national forest inventories, and is often the single viable source of data on forest extent for countries still in the process of establishing field-based inventories. Operational forest monitoring using remotely sensed data requires technical capacity to store, process, and analyze high volumes of satellite imagery. The University of Maryland Global Land Analysis and Discovery (UMD GLAD) lab possesses such technical capacity and is seeking to transfer it to national agencies responsible for forest reporting, national academic institutions, and NGOs. Our projects in South and Southeast Asia include regional forest monitoring in the lower Mekong region in support of the Regional Land Cover Monitoring System (funded by the NASA SERVIR program) and building capacity for forest monitoring in Nepal, Bangladesh, Vietnam, Cambodia, Laos, and Thailand (funded by the SilvaCarbon program). Our forest monitoring approach is a regional scale adaptation of methods developed for the global analysis (Hansen et al. 2013). The methodology to track large-scale clearing of natural forests (e.g. in Brazil and Indonesia) is well established; however, the methods for small-scale disturbance mapping and tree cover rotation assessment are still in development. In Bangladesh our mapping of tree cover change between 2000-2014 revealed that 54% of the tree canopy cover was outside forests, and the majority of canopy changes were smaller than 0.1 ha. Landsat's 30-m resolution was therefore insufficient to monitor changes in tree cover. By using a probability sample of high resolution (circa 1 m) imagery we were able to quantify change in tree canopy cover outside forests (including village woodlots, tree plantations and agroforestry) and in different forest types. Our result shows that while the net tree cover change in Bangladesh is rather small, the gross dynamics are significant and can vary by forest type.

  3. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions.

    PubMed

    Richardson, Hugh H; Carlson, Michael T; Tandler, Peter J; Hernandez, Pedro; Govorov, Alexander O

    2009-03-01

    We perform a set of experiments on photoheating in a water droplet containing gold nanoparticles (NPs). Using photocalorimetric methods, we determine efficiency of light-to-heat conversion (eta) which turns out to be remarkably close to 1, (0.97 < eta < 1.03). Detailed studies reveal a complex character of heat transfer in an optically stimulated droplet. The main mechanism of equilibration is due to convectional flow. Theoretical modeling is performed to describe thermal effects at both nano- and millimeter scales. Theory shows that the collective photoheating is the main mechanism. For a large concentration of NPs and small laser intensity, an averaged temperature increase (at the millimeter scale) is significant (approximately 7 degrees C), whereas on the nanometer scale the temperature increase at the surface of a single NP is small (approximately 0.02 degrees C). In the opposite regime, that is, a small NP concentration and intense laser irradiation, we find an opposite picture: a temperature increase at the millimeter scale is small (0.1 degrees C) but a local, nanoscale temperature has strong local spikes at the surfaces of NPs (approximately 3 degrees C). These studies are crucial for the understanding of photothermal effects in NPs and for their potential and current applications in nano- and biotechnologies.

  4. An Optical System to Monitor the Displacement Field of Glass-fibre Posts Subjected to Thermal Loading

    PubMed Central

    Corsalini, Massimo; Pettini, Francesco; Di Venere, Daniela; Ballini, Andrea; Chiatante, Giuseppe; Lamberti, Luciano; Pappalettere, Carmine; Fiorentino, Michele; Uva, Antonio E.; Monno, Giuseppe; Boccaccio, Antonio

    2016-01-01

    Endocanalar posts are necessary to build up and retain coronal restorations but they do not reinforce dental roots. It was observed that the dislodgement of post-retained restorations commonly occurs after several years of function and long-term retention may be influenced by various factors such as temperature changes. Temperature changes, in fact, produce micrometric deformations of post and surrounding tissues/materials that may generate high stress concentrations at the interface thus leading to failure. In this study we present an optical system based on the projection moiré technique that has been utilized to monitor the displacement field of endocanalar glass-fibre posts subjected to temperature changes. Measurements were performed on forty samples and the average displacement values registered at the apical and middle region were determined for six different temperature levels. A total of 480 displacement measurements was hence performed. The values of the standard deviation computed for each of the tested temperatures over the forty samples appear reasonably small which proves the robustness and the reliability of the proposed optical technique. The possible implications for the use of the system in the applicative context were discussed. PMID:27990186

  5. Long term monitoring of the optical background in the Capo Passero deep-sea site with the NEMO tower prototype

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Aiello, S.; Ameli, F.; Anghinolfi, M.; Ardid, M.; Barbarino, G.; Barbarito, E.; Barbato, F. C. T.; Beverini, N.; Biagi, S.; Biagioni, A.; Bouhadef, B.; Bozza, C.; Cacopardo, G.; Calamai, M.; Calì, C.; Calvo, D.; Capone, A.; Caruso, F.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Costa, M.; Cuttone, G.; D'Amato, C.; D'Amico, A.; De Bonis, G.; De Luca, V.; Deniskina, N.; De Rosa, G.; di Capua, F.; Distefano, C.; Enzenhöfer, A.; Fermani, P.; Ferrara, G.; Flaminio, V.; Fusco, L. A.; Garufi, F.; Giordano, V.; Gmerk, A.; Grasso, R.; Grella, G.; Hugon, C.; Imbesi, M.; Kulikovskiy, V.; Lahmann, R.; Larosa, G.; Lattuada, D.; Leismüller, K. P.; Leonora, E.; Litrico, P.; Llorens Alvarez, C. D.; Lonardo, A.; Longhitano, F.; Lo Presti, D.; Maccioni, E.; Margiotta, A.; Marinelli, A.; Martini, A.; Masullo, R.; Migliozzi, P.; Migneco, E.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Morganti, M.; Musico, P.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Orzelli, A.; Papaleo, R.; Pellegrino, C.; Pellegriti, M. G.; Perrina, C.; Piattelli, P.; Pugliatti, C.; Pulvirenti, S.; Raffaelli, F.; Randazzo, N.; Real, D.; Riccobene, G.; Rovelli, A.; Saldaña, M.; Sanguineti, M.; Sapienza, P.; Sciacca, V.; Sgura, I.; Simeone, F.; Sipala, V.; Speziale, F.; Spitaleri, A.; Spurio, M.; Stellacci, S. M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Trovato, A.; Ventura, C.; Vicini, P.; Viola, S.; Vivolo, D.

    2016-02-01

    The NEMO Phase-2 tower is the first detector which was operated underwater for more than 1 year at the "record" depth of 3500 m. It was designed and built within the framework of the NEMO (NEutrino Mediterranean Observatory) project. The 380 m high tower was successfully installed in March 2013 80 km offshore Capo Passero (Italy). This is the first prototype operated on the site where the Italian node of the KM3NeT neutrino telescope will be built. The installation and operation of the NEMO Phase-2 tower has proven the functionality of the infrastructure and the operability at 3500 m depth. A more than 1 year long monitoring of the deep water characteristics of the site has been also provided. In this paper the infrastructure and the tower structure and instrumentation are described. The results of long term optical background measurements are presented. The rates show stable and low baseline values, compatible with the contribution of ^{40}K light emission, with a small percentage of light bursts due to bioluminescence. All these features confirm the stability and good optical properties of the site.

  6. Optical monitor for real time thickness change measurements via lateral-translation induced phase-stepping interferometry

    DOEpatents

    Rushford, Michael C.

    2002-01-01

    An optical monitoring instrument monitors etch depth and etch rate for controlling a wet-etching process. The instrument provides means for viewing through the back side of a thick optic onto a nearly index-matched interface. Optical baffling and the application of a photoresist mask minimize spurious reflections to allow for monitoring with extremely weak signals. A Wollaston prism enables linear translation for phase stepping.

  7. Distributed Fiber Optic Sensors for Earthquake Detection and Early Warning

    NASA Astrophysics Data System (ADS)

    Karrenbach, M. H.; Cole, S.

    2016-12-01

    Fiber optic cables placed along pipelines, roads or other infrastructure provide dense sampling of passing seismic wavefields. Laser interrogation units illuminate the fiber over its entire length, and strain at desired points along the fiber can be determined from the reflected signal. Single-mode optical fibers up to 50 km in length can provide a distributed acoustic sensing system (DAS) where the acoustic bandwidth of each channel is limited only by the round-trip time over the length of the cable (0.0005 s for a 50 km cable). Using a 10 m spatial resolution results in 4000 channels sampled at 2.5 kHz spanning a 40 km-long fiber deployed along a pipeline. The inline strain field is averaged along the fiber over a 10 m section of the cable at each desired spatial sample, creating a virtual sensor location. Typically, a dynamic strain sensitivity of sub-nanometers within each gauge along the entire length of the fiber can be achieved. This sensitivity corresponds to a particle displacement figure of approximately -90 dB ms-2Hz-½. Such a fiber optic sensor is not as sensitive as long-period seismometers used in earthquake networks, but given the large number of channels, small to medium-sized earthquakes can be detected, depending on distance from the array, and can be located with precision through arrival time inversions. We show several examples of earthquake recordings using distributed fiber optic arrays that were deployed originally for other purposes. A 480 km long section of a pipeline in Turkey was actively monitored with a DAS fiber optic system for activities in the immediate vicinity of the pipeline. The densely spaced sensor array along the pipeline detected earthquakes of 3.6 - 7.2 magnitude range, centered near Van, Turkey. Secondly, a fiber optic system located along a rail line near the Salton Sea in California was used to create a smaller scale fiber optic sensor array, on which earthquakes with magnitudes 2.2 - 2.7 were recorded from epicenters up to 65 km away. Our analysis shows that existing fiber optic installations along infrastructure could be combined to form a large aperture array with tens of thousands of channels for epicenter estimation and for early warning purposes, augmenting existing earthquake sensor networks.

  8. Advanced imaging research and development at DARPA

    NASA Astrophysics Data System (ADS)

    Dhar, Nibir K.; Dat, Ravi

    2012-06-01

    Advances in imaging technology have huge impact on our daily lives. Innovations in optics, focal plane arrays (FPA), microelectronics and computation have revolutionized camera design. As a result, new approaches to camera design and low cost manufacturing is now possible. These advances are clearly evident in visible wavelength band due to pixel scaling, improvements in silicon material and CMOS technology. CMOS cameras are available in cell phones and many other consumer products. Advances in infrared imaging technology have been slow due to market volume and many technological barriers in detector materials, optics and fundamental limits imposed by the scaling laws of optics. There is of course much room for improvements in both, visible and infrared imaging technology. This paper highlights various technology development projects at DARPA to advance the imaging technology for both, visible and infrared. Challenges and potentials solutions are highlighted in areas related to wide field-of-view camera design, small pitch pixel, broadband and multiband detectors and focal plane arrays.

  9. Electromagnetic coupling to centimeter-scale mechanical membrane resonators via RF cylindrical cavities

    NASA Astrophysics Data System (ADS)

    Martinez, Luis A.; Castelli, Alessandro R.; Delmas, William; Sharping, Jay E.; Chiao, Raymond

    2016-11-01

    We present experimental and theoretical results for the excitation of a mechanical oscillator via radiation pressure with a room-temperature system employing a relatively low-(Q) centimeter-size mechanical oscillator coupled to a relatively low-Q standard three-dimensional radio-frequency (RF) cavity resonator. We describe the forces giving rise to optomechanical coupling using the Maxwell stress tensor and show that nanometer-scale displacements are possible and experimentally observable. The experimental system is composed of a 35 mm diameter silicon nitride membrane sputtered with a 300 nm gold conducting film and attached to the end of a RF copper cylindrical cavity. The RF cavity is operated in its {{TE}}011 mode and amplitude modulated on resonance with the fundamental drum modes of the membrane. Membrane motion is monitored using an unbalanced, non-zero optical path difference, optically filtered Michelson interferometer capable of measuring sub-nanometer displacements.

  10. Research on a Novel Low Modulus OFBG Strain Sensor for Pavement Monitoring

    PubMed Central

    Wang, Chuan; Hu, Qingli; Lu, Qiyu

    2012-01-01

    Because of the fatigue and deflection damage of asphalt pavement, it is very important for researchers to monitor the strain response of asphalt layers in service under vehicle loads, so in this paper a novel polypropylene based OFBG (Optical Fiber Bragg Gratings) strain sensor with low modulus and large strain sensing scale was designed and fabricated. PP with MA-G-PP is used to package OFBG. The fabrication techniques, the physical properties and the sensing properties were tested. The experimental results show that this kind of new OFBG strain sensor is a wonderful sensor with low modulus (about 1 GPa) and good sensitivity, which would meet the needs for monitoring some low modulus materials or structures. PMID:23112584

  11. SERS active colloidal nanoparticles for the detection of small blood biomarkers using aptamers

    NASA Astrophysics Data System (ADS)

    Marks, Haley; Mabbott, Samuel; Jackson, George W.; Graham, Duncan; Cote, Gerard L.

    2015-03-01

    Functionalized colloidal nanoparticles for SERS serve as a promising multifunctional assay component for blood biomarker detection. Proper design of these nanoprobes through conjugation to spectral tags, protective polymers, and sensing ligands can provide experimental control over the sensitivity, range, reproducibility, particle stability, and integration with biorecognition assays. Additionally, the optical properties and degree of electromagnetic SERS signal enhancement can be altered and monitored through tuning the nanoparticle shape, size, material and the colloid's local surface plasmon resonance (LSPR). Aptamers, synthetic affinity ligands derived from nucleic acids, provide a number of advantages for biorecognition of small molecules and toxins with low immunogenicity. DNA aptamers are simpler and more economical to produce at large scale, are capable of greater specificity and affinity than antibodies, are easily tailored to specific functional groups, can be used to tune inter-particle distance and shift the LSPR, and their intrinsic negative charge can be utilized for additional particle stability.1,2 Herein, a "turn-off" competitive binding assay platform involving two different plasmonic nanoparticles for the detection of the toxin bisphenol A (BPA) using SERS is presented. A derivative of the toxin is immobilized onto a silver coated magnetic nanoparticle (Ag@MNP), and a second solid silver nanoparticle (AgNP) is functionalized with the BPA aptamer and a Raman reporter molecule (RRM). The capture (Ag@MNP) and probe (AgNP) particles are mixed and the aptamer binding interaction draws the nanoparticles closer together, forming an assembly that results in an increased SERS signal intensity. This aptamer mediated assembly of the two nanoparticles results in a 100x enhancement of the SERS signal intensity from the RRM. These pre-bound aptamer/nanoparticle conjugates were then exposed to BPA in free solution and the competitive binding event was monitored by the decrease in SERS intensity.

  12. Comparison of Fiber Optic Strain Demodulation Implementations

    NASA Technical Reports Server (NTRS)

    Quach, Cuong C.; Vazquez, Sixto L.

    2005-01-01

    NASA Langley Research Center is developing instrumentation based upon principles of Optical Frequency-Domain Reflectometry (OFDR) for the provision of large-scale, dense distribution of strain sensors using fiber optics embedded with Bragg gratings. Fiber Optic Bragg Grating technology enables the distribution of thousands of sensors immune to moisture and electromagnetic interference with negligible weight penalty. At Langley, this technology provides a key component for research and development relevant to comprehensive aerospace vehicle structural health monitoring. A prototype system is under development that includes hardware and software necessary for the acquisition of data from an optical network and conversion of the data into strain measurements. This report documents the steps taken to verify the software that implements the algorithm for calculating the fiber strain. Brief descriptions of the strain measurement system and the test article are given. The scope of this report is the verification of software implementations as compared to a reference model. The algorithm will be detailed along with comparison results.

  13. Coordinating standards and applications for optical water quality sensor networks

    USGS Publications Warehouse

    Bergamaschi, B.; Pellerin, B.

    2011-01-01

    Joint USGS-CUAHSI Workshop: In Situ Optical Water Quality Sensor Networks; Shepherdstown, West Virginia, 8-10 June 2011; Advanced in situ optical water quality sensors and new techniques for data analysis hold enormous promise for advancing scientific understanding of aquatic systems through measurements of important biogeochemical parameters at the time scales over which they vary. High-frequency and real-time water quality data also provide the opportunity for early warning of water quality deterioration, trend detection, and science-based decision support. However, developing networks of optical sensors in freshwater systems that report reliable and comparable data across and between sites remains a challenge to the research and monitoring community. To address this, the U.S. Geological Survey (USGS) and the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI), convened a 3-day workshop to explore ways to coordinate development of standards and applications for optical sensors, as well as handling, storage, and analysis of the continuous data they produce.

  14. High resolution monitoring of strain fields in concrete during hydraulic fracturing processes.

    PubMed

    Chen, Rongzhang; Zaghloul, Mohamed A S; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C; Zolfaghari, Navid; Bunger, Andrew P; Li, Ming-Jun; Chen, Kevin P

    2016-02-22

    We present a distributed fiber optic sensing scheme to image 3D strain fields inside concrete blocks during laboratory-scale hydraulic fracturing. Strain fields were measured by optical fibers embedded during casting of the concrete blocks. The axial strain profile along the optical fiber was interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry (OFDR). The 3D strain fields inside the cubes under various driving pressures and pumping schedules were measured and used to characterize the location, shape, and growth rate of the hydraulic fractures. The fiber optic sensor detection method presented in this paper provides scientists and engineers an unique laboratory tool to understand the hydraulic fracturing processes via internal, 3D strain measurements with the potential to ascertain mechanisms related to crack growth and its associated damage of the surrounding material as well as poromechanically-coupled mechanisms driven by fluid diffusion from the crack into the permeable matrix of concrete specimens.

  15. An elegant Breadboard of the optical bench for eLISA/NGO

    NASA Astrophysics Data System (ADS)

    d'Arcio, Luigi; Bogenstahl, Johanna; Diekmann, Christian; Fitzsimons, Ewan D.; Heinzel, Gerhard; Hogenhuis, Harm; Killow, Christian J.; Lieser, Maike; Nikolov, Susanne; Perreur-Lloyd, Michael; Pijnenburg, Joep; Robertson, David I.; Taylor, Alasdair; Tröbs, Michael; Ward, Harry; Weise, Dennis

    2017-11-01

    The Laser Interferometer Space Antenna, as well as its reformulated European-only evolution, the New Gravitational-Wave Observatory, both employ heterodyne laser interferometry on million kilometer scale arm lengths in a triangular spacecraft formation, to observe gravitational waves at frequencies between 3 × 10-5 Hz and 1 Hz. The Optical Bench as central payload element realizes both the inter-spacecraft as well as local laser metrology with respect to inertial proof masses, and provides further functions, such as point-ahead accommodation, acquisition sensing, transmit beam conditioning, optical power monitoring, and laser redundancy switching. These functions have been combined in a detailed design of an Optical Bench Elegant Breadboard, which is currently under assembly and integration. We present an overview of the realization and current performances of the Optical Bench subsystems, which employ ultraprecise piezo mechanism, ultrastable assembly techniques, and shot noise limited RF detection to achieve translation and tilt metrology at Picometer and Nanoradian noise levels.

  16. High resolution monitoring of strain fields in concrete during hydraulic fracturing processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong

    Here, we present a distributed fiber optic sensing scheme to image 3D strain fields inside concrete blocks during laboratory-scale hydraulic fracturing. Strain fields were measured by optical fibers embedded during casting of the concrete blocks. The axial strain profile along the optical fiber was interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry (OFDR). The 3D strain fields inside the cubes under various driving pressures and pumping schedules were measured and used to characterize the location, shape, and growth rate of the hydraulic fractures. The fiber optic sensor detection method presented in this papermore » provides scientists and engineers an unique laboratory tool to understand the hydraulic fracturing processes via internal, 3D strain measurements with the potential to ascertain mechanisms related to crack growth and its associated damage of the surrounding material as well as poromechanically-coupled mechanisms driven by fluid diffusion from the crack into the permeable matrix of concrete specimens.« less

  17. Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics.

    PubMed

    Grenier, Jason R; Fernandes, Luís A; Herman, Peter R

    2015-06-29

    Precise alignment of femtosecond laser tracks in standard single mode optical fiber is shown to enable controllable optical tapping of the fiber core waveguide light with fiber cladding photonic circuits. Asymmetric directional couplers are presented with tunable coupling ratios up to 62% and bandwidths up to 300 nm at telecommunication wavelengths. Real-time fiber monitoring during laser writing permitted a means of controlling the coupler length to compensate for micron-scale alignment errors and to facilitate tailored design of coupling ratio, spectral bandwidth and polarization properties. Laser induced waveguide birefringence was harnessed for polarization dependent coupling that led to the formation of in-fiber polarization-selective taps with 32 dB extinction ratio. This technology enables the interconnection of light propagating in pre-existing waveguides with laser-formed devices, thereby opening a new practical direction for the three-dimensional integration of optical devices in the cladding of optical fibers and planar lightwave circuits.

  18. High resolution monitoring of strain fields in concrete during hydraulic fracturing processes

    DOE PAGES

    Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong; ...

    2016-02-17

    Here, we present a distributed fiber optic sensing scheme to image 3D strain fields inside concrete blocks during laboratory-scale hydraulic fracturing. Strain fields were measured by optical fibers embedded during casting of the concrete blocks. The axial strain profile along the optical fiber was interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry (OFDR). The 3D strain fields inside the cubes under various driving pressures and pumping schedules were measured and used to characterize the location, shape, and growth rate of the hydraulic fractures. The fiber optic sensor detection method presented in this papermore » provides scientists and engineers an unique laboratory tool to understand the hydraulic fracturing processes via internal, 3D strain measurements with the potential to ascertain mechanisms related to crack growth and its associated damage of the surrounding material as well as poromechanically-coupled mechanisms driven by fluid diffusion from the crack into the permeable matrix of concrete specimens.« less

  19. NeuroCa: integrated framework for systematic analysis of spatiotemporal neuronal activity patterns from large-scale optical recording data

    PubMed Central

    Jang, Min Jee; Nam, Yoonkey

    2015-01-01

    Abstract. Optical recording facilitates monitoring the activity of a large neural network at the cellular scale, but the analysis and interpretation of the collected data remain challenging. Here, we present a MATLAB-based toolbox, named NeuroCa, for the automated processing and quantitative analysis of large-scale calcium imaging data. Our tool includes several computational algorithms to extract the calcium spike trains of individual neurons from the calcium imaging data in an automatic fashion. Two algorithms were developed to decompose the imaging data into the activity of individual cells and subsequently detect calcium spikes from each neuronal signal. Applying our method to dense networks in dissociated cultures, we were able to obtain the calcium spike trains of ∼1000 neurons in a few minutes. Further analyses using these data permitted the quantification of neuronal responses to chemical stimuli as well as functional mapping of spatiotemporal patterns in neuronal firing within the spontaneous, synchronous activity of a large network. These results demonstrate that our method not only automates time-consuming, labor-intensive tasks in the analysis of neural data obtained using optical recording techniques but also provides a systematic way to visualize and quantify the collective dynamics of a network in terms of its cellular elements. PMID:26229973

  20. Application of GNSS-RTK derived topographical maps for rapid environmental monitoring: a case study of Jack Finnery Lake (Perth, Australia).

    PubMed

    Schloderer, Glen; Bingham, Matthew; Awange, Joseph L; Fleming, Kevin M

    2011-09-01

    In environmental monitoring, environmental impact assessments and environmental audits, topographical maps play an essential role in providing a means by which the locations of sampling sites may be selected, in assisting with the interpretation of physical features, and in indicating the impact or potential impact on an area due to changes in the system being monitored (e.g., spatially changing features such as wetlands). Global Navigation Satellite Systems (GNSS) are hereby presented as a rapid method for monitoring spatial changes to support environmental monitoring decisions and policies. To validate the GNSS-based method, a comparison is made of results from a small-scale topographic survey using radio-based real-time kinematic GNSS (GNSS-RTK) and total station survey methods at Jack Finnery Lake, Perth, Australia. The accuracies achieved by the total station in this study were 2 cm horizontally and 6 cm vertically, while the GNSS-RTK also achieved an accuracy of 2 cm horizontally, but only 28 cm vertically. While the GNSS-RTK measurements were less accurate in the height component compared to those from the total station method, it is still capable of achieving accuracies sufficient for a topographic map at a scale of 1:1,750 that could support environmental monitoring tasks such as identifying spatial changes in small water bodies or wetlands. The time taken to perform the survey using GNSS-RTK, however, was much shorter compared to the total station method, thereby making it quite suitable for monitoring spatial changes within an environmental context, e.g., dynamic mining activities that require rapid surveys and the updating of the monitored data at regular intervals.

  1. On the Transport and Radiative Properties of Plasmas with Small-Scale Electromagnetic Fluctuations

    NASA Astrophysics Data System (ADS)

    Keenan, Brett D.

    Plasmas with sub-Larmor-scale ("small-scale") electromagnetic fluctuations are a feature of a wide variety of high-energy-density environments, and are essential to the description of many astrophysical/laboratory plasma phenomena. Radiation from particles, whether they be relativistic or non-relativistic, moving through small-scale electromagnetic turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation. The radiation, carrying information on the statistical properties of the turbulence, is also intimately related to the particle diffusive transport. We investigate, both theoretically and numerically, the transport of non-relativistic and transrelativistic particles in plasmas with high-amplitude isotropic sub-Larmor-scale magnetic turbulence---both with and without a mean field component---and its relation to the spectra of radiation simultaneously produced by these particles. Furthermore, the transport of particles through small-scale electromagnetic turbulence---under certain conditions---resembles the random transport of particles---via Coulomb collisions---in collisional plasmas. The pitch-angle diffusion coefficient, which acts as an effective "collision" frequency, may be substantial in these, otherwise, collisionless environments. We show that this effect, colloquially referred to as the plasma "quasi-collisionality", may radically alter the expected radiative transport properties of candidate plasmas. We argue that the modified magneto-optic effects in these plasmas provide an attractive, novel, diagnostic tool for the exploration and characterization of small-scale electromagnetic turbulence. Lastly, we speculate upon the manner in which quasi-collisions may affect inertial confinement fusion (ICF), and other laser-plasma experiments. Finally, we show that mildly relativistic jitter radiation, from laser-produced plasmas, may offer insight into the underlying electromagnetic turbulence. Here we investigate the prospects for, and demonstrate the feasibility of, such direct radiative diagnostics for mildly relativistic, solid-density laser plasmas produced in lab experiments. In effect, we demonstrate how the diffusive and radiative properties of plasmas with small-scale, turbulent, electromagnetic fluctuations may serve as a powerful tool for the diagnosis of laboratory, astrophysical, and space plasmas.

  2. Corrosion monitoring along infrastructures using distributed fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Alhandawi, Khalil B.; Vahdati, Nader; Shiryayev, Oleg; Lawand, Lydia

    2016-04-01

    Pipeline Inspection Gauges (PIGs) are used for internal corrosion inspection of oil pipelines every 3-5 years. However, between inspection intervals, rapid corrosion may occur, potentially resulting in major accidents. The motivation behind this research project was to develop a safe distributed corrosion sensor placed inside oil pipelines continuously monitoring corrosion. The intrinsically safe nature of light provided motivation for researching fiber optic sensors as a solution. The sensing fiber's cladding features polymer plastic that is chemically sensitive to hydrocarbons within crude oil mixtures. A layer of metal, used in the oil pipeline's construction, is deposited on the polymer cladding, which upon corrosion, exposes the cladding to surrounding hydrocarbons. The hydrocarbon's interaction with the cladding locally increases the cladding's refractive index in the radial direction. Light intensity of a traveling pulse is reduced due to local reduction in the modal capacity which is interrogated by Optical Time Domain Reflectometery. Backscattered light is captured in real-time while using time delay to resolve location, allowing real-time spatial monitoring of environmental internal corrosion within pipelines spanning large distances. Step index theoretical solutions were used to calculate the power loss due changes in the intensity profile. The power loss is translated into an attenuation coefficient characterizing the expected OTDR trace which was verified against similar experimental results from the literature. A laboratory scale experiment is being developed to assess the validity of the model and the practicality of the solution.

  3. Monitoring on Xi'an ground fissures deformation with TerraSAR-X data

    USGS Publications Warehouse

    Zhao, C.; Zhang, Q.; Zhu, W.; Lu, Z.

    2012-01-01

    Owing to the fine resolution of TerraSAR-X data provided since 2007, this paper applied 6 TerraSAR data (strip mode) during 3rd Dec. 2009 to 23rd Mar. 2010 to detect and monitor the active fissures over Xi'an region. Three themes have been designed for high precision detection and monitoring of Xi'an-Chang'an fissures, as small baseline subsets (SBAS) to test the atmospheric effects of differential interferograms pair stepwise, 2-pass differential interferogram with very short baseline perpendicular to generate the whole deformation map with 44 days interval, and finally, corner reflector (CR) technique was used to closely monitor the relative deformation time series between two CRs settled crossing two ground fissures. Results showed that TerraSAR data are a good choice for small-scale ground fissures detection and monitoring, while special considerations should be taken for their great temporal and baseline decorrelation. Secondly, ground fissures in Xi'an were mostly detected at the joint section of stable and deformable regions. Lastly, CR-InSAR had potential ability to monitor relative deformation crossing fissures with millimeter precision.

  4. Photoacoustic removal of occlusions from blood vessels

    DOEpatents

    Visuri, Steven R.; Da Silva, Luiz B.; Celliers, Peter M.; London, Richard A.; Maitland, IV, Duncan J.; Esch, Victor C.

    2002-01-01

    Partial or total occlusions of fluid passages within the human body are removed by positioning an array of optical fibers in the passage and directing treatment radiation pulses along the fibers, one at a time, to generate a shock wave and hydrodynamics flows that strike and emulsify the occlusions. A preferred application is the removal of blood clots (thrombin and embolic) from small cerebral vessels to reverse the effects of an ischemic stroke. The operating parameters and techniques are chosen to minimize the amount of heating of the fragile cerebral vessel walls occurring during this photo acoustic treatment. One such technique is the optical monitoring of the existence of hydrodynamics flow generating vapor bubbles when they are expected to occur and stopping the heat generating pulses propagated along an optical fiber that is not generating such bubbles.

  5. Infrared fiber optic sensor for measurements of nonuniform temperature distributions

    NASA Astrophysics Data System (ADS)

    Belotserkovsky, Edward; Drizlikh, S.; Zur, Albert; Bar-Or, O.; Katzir, Abraham

    1992-04-01

    Infrared (IR) fiber optic radiometry of thermal surfaces offers several advantages over refractive optics radiometry. It does not need a direct line of sight to the measured thermal surface and combines high capability of monitoring small areas with high efficiency. These advantages of IR fibers are important in the control of nonuniform temperature distributions, in which the temperature of closely situated points differs considerably and a high spatial resolution is necessary. The theoretical and experimental transforming functions of the sensor during scanning of an area with a nonuniform temperature distribution were obtained and their dependence on the spacial location of the fiber and type of temperature distribution were analyzed. Parameters such as accuracy and precision were determined. The results suggest that IR fiber radiometric thermometry may be useful in medical applications such as laser surgery, hyperthermia, and hypothermia.

  6. an aerosol climatology optical properties and its associated direct radiative forcing

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan

    2010-05-01

    Aerosol particles are quite complex in nature. Aerosol impacts on the distribution of radiative energy and on cloud microphysics have been debated climate impact issues. Here, a new aerosol-climatology is presented, combining the consistency and completeness of global modelling with quality data by ground-monitoring. It provides global monthly maps for spectral aerosol optical properties and for concentrations of CCN and IN. Based on the optical properties the aerosol direct forcing is determined. And with environmental data for clouds and estimates on the anthropogenic fraction from emission experiments with global modelling even the climate relevant aerosol direct forcing at the top of the atmosphere (ToA) is determined. This value is rather small near -0.2W/m2 with limited uncertainty estimated at (+/-0.3) due to uncertainties in aerosol absorption and underlying surface conditions or clouds.

  7. Data Optical Networking Architecture Using Wavelength-Division Multiplexing Method for Optical Sensors

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.

    2008-01-01

    Recently there has been a growth in the number of fiber optical sensors used for health monitoring in the hostile environment of commercial aircraft. Health monitoring to detect the onset of failure in structural systems from such causes as corrosion, stress corrosion cracking, and fatigue is a critical factor in safety as well in aircraft maintenance costs. This report presents an assessment of an analysis model of optical data networking architectures used for monitoring data signals among these optical sensors. Our model is focused on the design concept of the wavelength-division multiplexing (WDM) method since most of the optical sensors deployed in the aircraft for health monitoring typically operate in a wide spectrum of optical wavelengths from 710 to 1550 nm.

  8. How To Identify Plasmons from the Optical Response of Nanostructures

    PubMed Central

    2017-01-01

    A promising trend in plasmonics involves shrinking the size of plasmon-supporting structures down to a few nanometers, thus enabling control over light–matter interaction at extreme-subwavelength scales. In this limit, quantum mechanical effects, such as nonlocal screening and size quantization, strongly affect the plasmonic response, rendering it substantially different from classical predictions. For very small clusters and molecules, collective plasmonic modes are hard to distinguish from other excitations such as single-electron transitions. Using rigorous quantum mechanical computational techniques for a wide variety of physical systems, we describe how an optical resonance of a nanostructure can be classified as either plasmonic or nonplasmonic. More precisely, we define a universal metric for such classification, the generalized plasmonicity index (GPI), which can be straightforwardly implemented in any computational electronic-structure method or classical electromagnetic approach to discriminate plasmons from single-particle excitations and photonic modes. Using the GPI, we investigate the plasmonicity of optical resonances in a wide range of systems including: the emergence of plasmonic behavior in small jellium spheres as the size and the number of electrons increase; atomic-scale metallic clusters as a function of the number of atoms; and nanostructured graphene as a function of size and doping down to the molecular plasmons in polycyclic aromatic hydrocarbons. Our study provides a rigorous foundation for the further development of ultrasmall nanostructures based on molecular plasmonics. PMID:28651057

  9. Integrating SAR with Optical and Thermal Remote Sensing for Operational Near Real-Time Volcano Monitoring

    NASA Astrophysics Data System (ADS)

    Meyer, F. J.; Webley, P.; Dehn, J.; Arko, S. A.; McAlpin, D. B.

    2013-12-01

    Volcanic eruptions are among the most significant hazards to human society, capable of triggering natural disasters on regional to global scales. In the last decade, remote sensing techniques have become established in operational forecasting, monitoring, and managing of volcanic hazards. Monitoring organizations, like the Alaska Volcano Observatory (AVO), are nowadays heavily relying on remote sensing data from a variety of optical and thermal sensors to provide time-critical hazard information. Despite the high utilization of these remote sensing data to detect and monitor volcanic eruptions, the presence of clouds and a dependence on solar illumination often limit their impact on decision making processes. Synthetic Aperture Radar (SAR) systems are widely believed to be superior to optical sensors in operational monitoring situations, due to the weather and illumination independence of their observations and the sensitivity of SAR to surface changes and deformation. Despite these benefits, the contributions of SAR to operational volcano monitoring have been limited in the past due to (1) high SAR data costs, (2) traditionally long data processing times, and (3) the low temporal sampling frequencies inherent to most SAR systems. In this study, we present improved data access, data processing, and data integration techniques that mitigate some of the above mentioned limitations and allow, for the first time, a meaningful integration of SAR into operational volcano monitoring systems. We will introduce a new database interface that was developed in cooperation with the Alaska Satellite Facility (ASF) and allows for rapid and seamless data access to all of ASF's SAR data holdings. We will also present processing techniques that improve the temporal frequency with which hazard-related products can be produced. These techniques take advantage of modern signal processing technology as well as new radiometric normalization schemes, both enabling the combination of multiple observation geometries in change detection procedures. Additionally, it will be shown how SAR-based hazard information can be integrated with data from optical satellites, thermal sensors, webcams and models to create near-real time volcano hazard information. We will introduce a prototype monitoring system that integrates SAR-based hazard information into the near real-time volcano hazard monitoring system of the Alaska Volcano Observatory. This prototype system was applied to historic eruptions of the volcanoes Okmok and Augustine, both located in the North Pacific. We will show that for these historic eruptions, the addition of SAR data lead to a significant improvement in activity detection and eruption monitoring, and improved the accuracy and timeliness of eruption alerts.

  10. Sun-induced fluorescence - a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant.

    PubMed

    Rascher, U; Alonso, L; Burkart, A; Cilia, C; Cogliati, S; Colombo, R; Damm, A; Drusch, M; Guanter, L; Hanus, J; Hyvärinen, T; Julitta, T; Jussila, J; Kataja, K; Kokkalis, P; Kraft, S; Kraska, T; Matveeva, M; Moreno, J; Muller, O; Panigada, C; Pikl, M; Pinto, F; Prey, L; Pude, R; Rossini, M; Schickling, A; Schurr, U; Schüttemeyer, D; Verrelst, J; Zemek, F

    2015-12-01

    Variations in photosynthesis still cause substantial uncertainties in predicting photosynthetic CO2 uptake rates and monitoring plant stress. Changes in actual photosynthesis that are not related to greenness of vegetation are difficult to measure by reflectance based optical remote sensing techniques. Several activities are underway to evaluate the sun-induced fluorescence signal on the ground and on a coarse spatial scale using space-borne imaging spectrometers. Intermediate-scale observations using airborne-based imaging spectroscopy, which are critical to bridge the existing gap between small-scale field studies and global observations, are still insufficient. Here we present the first validated maps of sun-induced fluorescence in that critical, intermediate spatial resolution, employing the novel airborne imaging spectrometer HyPlant. HyPlant has an unprecedented spectral resolution, which allows for the first time quantifying sun-induced fluorescence fluxes in physical units according to the Fraunhofer Line Depth Principle that exploits solar and atmospheric absorption bands. Maps of sun-induced fluorescence show a large spatial variability between different vegetation types, which complement classical remote sensing approaches. Different crop types largely differ in emitting fluorescence that additionally changes within the seasonal cycle and thus may be related to the seasonal activation and deactivation of the photosynthetic machinery. We argue that sun-induced fluorescence emission is related to two processes: (i) the total absorbed radiation by photosynthetically active chlorophyll; and (ii) the functional status of actual photosynthesis and vegetation stress. © 2015 John Wiley & Sons Ltd.

  11. Hard X-Ray Constraints on Small-Scale Coronal Heating Events

    NASA Astrophysics Data System (ADS)

    Marsh, Andrew; Smith, David M.; Glesener, Lindsay; Klimchuk, James A.; Bradshaw, Stephen; Hannah, Iain; Vievering, Juliana; Ishikawa, Shin-Nosuke; Krucker, Sam; Christe, Steven

    2017-08-01

    A large body of evidence suggests that the solar corona is heated impulsively. Small-scale heating events known as nanoflares may be ubiquitous in quiet and active regions of the Sun. Hard X-ray (HXR) observations with unprecedented sensitivity >3 keV have recently been enabled through the use of focusing optics. We analyze active region spectra from the FOXSI-2 sounding rocket and the NuSTAR satellite to constrain the physical properties of nanoflares simulated with the EBTEL field-line-averaged hydrodynamics code. We model a wide range of X-ray spectra by varying the nanoflare heating amplitude, duration, delay time, and filling factor. Additional constraints on the nanoflare parameter space are determined from energy constraints and EUV/SXR data.

  12. Small-scale cosmic microwave background anisotropies as probe of the geometry of the universe

    NASA Technical Reports Server (NTRS)

    Kamionkowski, Marc; Spergel, David N.; Sugiyama, Naoshi

    1994-01-01

    We perform detailed calculations of cosmic microwave background (CMB) anisotropies in a cold dark matter (CDM)-dominated open universe with primordial adiabatic density perturbations for a variety of reionization histories. The CMB anisotropies depend primarily on the geometry of the universe, which in a matter-dominated universe is determined by Omega and the optical depth to the surface of last scattering. In particular, the location on the primary Doppler peak depends primarily on Omega and is fairly insensitive to the other unknown parameters, such as Omega(sub b), h, Lambda, and the shape of the power spectrum. Therefore, if the primordial density perturbations are adiabatic, measurements of CMB anisotropies on small scales may be used to determine Omega.

  13. Manufacturing process scale-up of optical grade transparent spinel ceramic at ArmorLine Corporation

    NASA Astrophysics Data System (ADS)

    Spilman, Joseph; Voyles, John; Nick, Joseph; Shaffer, Lawrence

    2013-06-01

    While transparent Spinel ceramic's mechanical and optical characteristics are ideal for many Ultraviolet (UV), visible, Short-Wave Infrared (SWIR), Mid-Wave Infrared (MWIR), and multispectral sensor window applications, commercial adoption of the material has been hampered because the material has historically been available in relatively small sizes (one square foot per window or less), low volumes, unreliable supply, and with unreliable quality. Recent efforts, most notably by Technology Assessment and Transfer (TA and T), have scaled-up manufacturing processes and demonstrated the capability to produce larger windows on the order of two square feet, but with limited output not suitable for production type programs. ArmorLine Corporation licensed the hot-pressed Spinel manufacturing know-how of TA and T in 2009 with the goal of building the world's first dedicated full-scale Spinel production facility, enabling the supply of a reliable and sufficient volume of large Transparent Armor and Optical Grade Spinel plates. With over $20 million of private investment by J.F. Lehman and Company, ArmorLine has installed and commissioned the largest vacuum hot press in the world, the largest high-temperature/high-pressure hot isostatic press in the world, and supporting manufacturing processes within 75,000 square feet of manufacturing space. ArmorLine's equipment is capable of producing window blanks as large as 50" x 30" and the facility is capable of producing substantial volumes of material with its Lean configuration and 24/7 operation. Initial production capability was achieved in 2012. ArmorLine will discuss the challenges that were encountered during scale-up of the manufacturing processes, ArmorLine Optical Grade Spinel optical performance, and provide an overview of the facility and its capabilities.

  14. The effect of small-wave modulation on the electromagnetic bias

    NASA Technical Reports Server (NTRS)

    Rodriguez, Ernesto; Kim, Yunjin; Martin, Jan M.

    1992-01-01

    The effect of the modulation of small ocean waves by large waves on the physical mechanism of the EM bias is examined by conducting a numerical scattering experiment which does not assume the applicability of geometric optics. The modulation effect of the large waves on the small waves is modeled using the principle of conservation of wave action and includes the modulation of gravity-capillary waves. The frequency dependence and magnitude of the EM bias is examined for a simplified ocean spectral model as a function of wind speed. These calculations make it possible to assess the validity of previous assumptions made in the theory of the EM bias, with respect to both scattering and hydrodynamic effects. It is found that the geometric optics approximation is inadequate for predictions of the EM bias at typical radar altimeter frequencies, while the improved scattering calculations provide a frequency dependence of the EM bias which is in qualitative agreement with observation. For typical wind speeds, the EM bias contribution due to small-wave modulation is of the same order as that due to modulation by the nonlinearities of the large-scale waves.

  15. Photonic band gap materials: towards an all-optical transistor

    NASA Astrophysics Data System (ADS)

    Florescu, Marian

    2002-05-01

    The transmission of information as optical signals encoded on light waves traveling through optical fibers and optical networks is increasingly moving to shorter and shorter distance scales. In the near future, optical networking is poised to supersede conventional transmission over electric wires and electronic networks for computer-to-computer communications, chip-to-chip communications, and even on-chip communications. The ever-increasing demand for faster and more reliable devices to process the optical signals offers new opportunities in developing all-optical signal processing systems (systems in which one optical signal controls another, thereby adding "intelligence" to the optical networks). All-optical switches, two-state and many-state all-optical memories, all-optical limiters, all-optical discriminators and all-optical transistors are only a few of the many devices proposed during the last two decades. The "all-optical" label is commonly used to distinguish the devices that do not involve dissipative electronic transport and require essentially no electrical communication of information. The all-optical transistor action was first observed in the context of optical bistability [1] and consists in a strong differential gain regime, in which, for small variations in the input intensity, the output intensity has a very strong variation. This analog operation is for all-optical input what transistor action is for electrical inputs.

  16. Monitoring the inhibition of erosion by a CO2 laser with OCT

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Tom, Henry; Fried, Daniel

    2014-02-01

    Since optical coherence tomography (OCT) is well suited for measuring small dimensional changes on tooth surfaces, OCT has great potential for monitoring tooth erosion. Previous studies have shown that enamel areas ablated by a carbon dioxide laser manifested lower rates of erosion compared to the nonablated areas. The purpose of this study was to develop a model to monitor erosion in vitro that could potentially be used in vivo. Teeth surfaces were irradiated with a carbon dioxide laser at low sub-ablative fluence to create an acid-resistant reference layer without damaging the enamel. The laser treated areas were compared with the unprotected areas using OCT during exposure to a pH cycling model for up to 6 days. The laser treated areas markedly reduced the rate of erosion.

  17. Ex vivo and in vivo label-free imaging of lymphatic vessels using OCT lymphangiography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gong, Peijun; Es'haghian, Shaghayegh; Karnowski, Karol; Rea, Suzanne; Wood, Fiona M.; Yu, Dao-Yi; McLaughlin, Robert A.; Sampson, David D.

    2017-02-01

    We have been developing an automated method to image lymphatic vessels both ex vivo and in vivo with optical coherence tomography (OCT), using their optical transparency. Our method compensates for the OCT signal attenuation for each A-scan in combination with the correction of the confocal function and sensitivity fall-off, enabling reliable thresholding of lymphatic vessels from the OCT scans. Morphological image processing with a segment-joining algorithm is also incorporated into the method to mitigate partial-volume artifacts, which are particularly evident with small lymphatic vessels. Our method is demonstrated for two different clinical application goals: the monitoring of conjunctival lymphatics for surgical guidance and assessment of glaucoma treatment; and the longitudinal monitoring of human burn scars undergoing laser ablation treatment. We present examples of OCT lymphangiography ex vivo on porcine conjunctivas and in vivo on human burn scars, showing the visualization of the lymphatic vessel network and their longitudinal changes due to treatment.

  18. Process monitoring of additive manufacturing by using optical tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zenzinger, Guenter, E-mail: guenter.zenzinger@mtu.de, E-mail: alexander.ladewig@mtu.de; Bamberg, Joachim, E-mail: guenter.zenzinger@mtu.de, E-mail: alexander.ladewig@mtu.de; Ladewig, Alexander, E-mail: guenter.zenzinger@mtu.de, E-mail: alexander.ladewig@mtu.de

    2015-03-31

    Parts fabricated by means of additive manufacturing are usually of complex shape and owing to the fabrication procedure by using selective laser melting (SLM), potential defects and inaccuracies are often very small in lateral size. Therefore, an adequate quality inspection of such parts is rather challenging, while non-destructive-techniques (NDT) are difficult to realize, but considerable efforts are necessary in order to ensure the quality of SLM-parts especially used for aerospace components. Thus, MTU Aero Engines is currently focusing on the development of an Online Process Control system which monitors and documents the complete welding process during the SLM fabrication procedure.more » A high-resolution camera system is used to obtain images, from which tomographic data for a 3dim analysis of SLM-parts are processed. From the analysis, structural irregularities and structural disorder resulting from any possible erroneous melting process become visible and may be allocated anywhere within the 3dim structure. Results of our optical tomography (OT) method as obtained on real defects are presented.« less

  19. In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models.

    PubMed

    Liu, Junting; Wang, Yabin; Qu, Xiaochao; Li, Xiangsi; Ma, Xiaopeng; Han, Runqiang; Hu, Zhenhua; Chen, Xueli; Sun, Dongdong; Zhang, Rongqing; Chen, Duofang; Chen, Dan; Chen, Xiaoyuan; Liang, Jimin; Cao, Feng; Tian, Jie

    2010-06-07

    Bioluminescence tomography (BLT) is a new optical molecular imaging modality, which can monitor both physiological and pathological processes by using bioluminescent light-emitting probes in small living animal. Especially, this technology possesses great potential in drug development, early detection, and therapy monitoring in preclinical settings. In the present study, we developed a dual modality BLT prototype system with Micro-computed tomography (MicroCT) registration approach, and improved the quantitative reconstruction algorithm based on adaptive hp finite element method (hp-FEM). Detailed comparisons of source reconstruction between the heterogeneous and homogeneous mouse models were performed. The models include mice with implanted luminescence source and tumor-bearing mice with firefly luciferase report gene. Our data suggest that the reconstruction based on heterogeneous mouse model is more accurate in localization and quantification than the homogeneous mouse model with appropriate optical parameters and that BLT allows super-early tumor detection in vivo based on tomographic reconstruction of heterogeneous mouse model signal.

  20. Fiber Bragg Grating Sensors toward Structural Health Monitoring in Composite Materials: Challenges and Solutions

    PubMed Central

    Kinet, Damien; Mégret, Patrice; Goossen, Keith W.; Qiu, Liang; Heider, Dirk; Caucheteur, Christophe

    2014-01-01

    Nowadays, smart composite materials embed miniaturized sensors for structural health monitoring (SHM) in order to mitigate the risk of failure due to an overload or to unwanted inhomogeneity resulting from the fabrication process. Optical fiber sensors, and more particularly fiber Bragg grating (FBG) sensors, outperform traditional sensor technologies, as they are lightweight, small in size and offer convenient multiplexing capabilities with remote operation. They have thus been extensively associated to composite materials to study their behavior for further SHM purposes. This paper reviews the main challenges arising from the use of FBGs in composite materials. The focus will be made on issues related to temperature-strain discrimination, demodulation of the amplitude spectrum during and after the curing process as well as connection between the embedded optical fibers and the surroundings. The main strategies developed in each of these three topics will be summarized and compared, demonstrating the large progress that has been made in this field in the past few years. PMID:24763215

Top