A photometric method for the estimation of the oil yield of oil shale
Cuttitta, Frank
1951-01-01
A method is presented for the distillation and photometric estimation of the oil yield of oil-bearing shales. The oil shale is distilled in a closed test tube and the oil extracted with toluene. The optical density of the toluene extract is used in the estimation of oil content and is converted to percentage of oil by reference to a standard curve. This curve is obtained by relating the oil yields determined by the Fischer assay method to the optical density of the toluene extract of the oil evolved by the new procedure. The new method gives results similar to those obtained by the Fischer assay method in a much shorter time. The applicability of the new method to oil-bearing shale and phosphatic shale has been tested.
Electrochemical and Spectroscopic Studies of Molten Halides
1993-01-08
industry and in the construction of electrical and electronic devices. In 1965, Mellors and Senderoff [1] introduced a general method for obtaining pure...illustrate the complexity of homogeneous Fischer - Tropsch catalysis in chloroaluminate melts and partially explain the differences observed in the...system NaAICI4-NaF has been determined using differential thermal analysis (DTA). This method results in temperatures at which endothermic and
Homepage P. Fischer, LBNL, Berkeley CA | UC Santa Cruz CA
mesoscale magnetic x-ray microscopy and spectroscopy (ultra-)fast spin dynamics soft x-ray tomography of condensed matter x-ray optics publications presentations invited talks conference contributions curriculum
Water Quality Criteria for 2,4-Dinitrotoluene and 2,6-Dinitrotoluene
1987-08-01
developed hepatocarcinomas , compared with 85 and 100 percent for rats fed 7 and 14 mg/kg/day pure 2,6-DNT, respectively, and none for rats fed 27 mg/kg/day...53, 90, and 79 percent, respectively, of the four DNT dose groups. Animals with only hepatocarcinomas represented 0, 47, 85, and 100 percent...of male Fischer 344 rats fed 35 mg/kg/day tDNT (about 6.6 mg/kg/day 2,6-DNT) for I yr developed hepatocarcinomas , com- --. pared with 85 and 100
NASA Astrophysics Data System (ADS)
Srivastava, Pratima; Ghasemi, Mahsa; Ray, Namrata; Sarkar, Amitabha; Kocabova, Jana; Lachmanova, Stepanka; Hromadova, Magdalena; Boujday, Souhir; Cauteruccio, Silvia; Thakare, Pramod; Licandro, Emanuela; Fosse, Céline; Salmain, Michèle
2016-11-01
Amine-reactive surfaces comprising N-hydroxysuccinimide ester groups as well as much more unusual Fischer alkoxymetallocarbene groups were generated on gold-coated surfaces via self-assembled monolayers of carboxy- and azido-terminated thiolates, respectively. These functions were further used to immobilize homothymine peptide nucleic acid (PNA) decamer in a covalent fashion involving the primary amine located at its N-terminus. These stepwise processes were monitored by polarization modulation reflection - absorption infrared spectroscopy (PM-RAIRS) that gave useful information on the molecular composition of the organic layers. PNA grafting and hybridization with complementary DNA strand were successfully transduced by quartz crystal microbalance (QCM) measurements. Unfortunately, attempts to transduce the hybridization optically by IR in a label-free fashion were inconclusive. Therefore we undertook to introduce an IR reporter group, namely a transition metalcarbonyl (TMC) entity at the 5‧ terminus of complementary DNA. Evidence for the formation of PNA-DNA heteroduplex was brought by the presence of ν(Ctbnd O) bands in the 2000 cm-1 region of the IR spectrum of the gold surface owing to the metalcarbonyl label.
Army Oil Analysis Program for Vehicle Testing
1996-08-16
4 TOP 2-2-690 16 August 1996 (l) Water determination: Karl Fischer method (TM 38-301-2 or ASTM-D1744 3 ): Set up the Karl Fischer titrator in...higher temperature if required. aMagnification. bReflected. CTransmitted. 5. DATA REQUIRED. a. Water: Karl Fischer percent water-- (% H2 0). b...Liquid Petroleum Products by Karl Fischer Reagent, 1984. 4. DL 18, Karl Fischer Titrator Operating Instructions. 5. ASTM-D445, Annual Book of ASTM
Li, Xi-Ying; van Achterberg, Cornelis; Tan, Ji-Cai
2013-01-01
Abstract The species of the subfamily Opiinae (Hymenoptera: Braconidae) from Hunan (Oriental China) are revised and illustrated. Thirty-six new species are described: Apodesmia bruniclypealis Li & van Achterberg, sp. n., Apodesmia melliclypealis Li & van Achterberg, sp. n., Areotetes albiferus Li & van Achterberg, sp. n., Areotetes carinuliferus Li & van Achterberg, sp. n., Areotetes striatiferus Li & van Achterberg, sp. n., Coleopioides diversinotum Li & van Achterberg, sp. n., Coleopioides postpectalis Li & van Achterberg, sp. n., Fopius dorsopiferus Li, van Achterberg & Tan, sp. n., Indiopius chenae Li & van Achterberg, sp. n., Opiognathus aulaciferus Li & van Achterberg, sp. n., Opiognathus brevibasalis Li & van Achterberg, sp. n., Opius crenuliferus Li & van Achterberg, sp. n., Opius malarator Li, van Achterberg & Tan, sp. n., Opius monilipalpis Li & van Achterberg, sp. n., Opius pachymerus Li & van Achterberg, sp. n., Opius songi Li & van Achterberg, sp. n., Opius youi Li & van Achterberg, sp. n., Opius zengi Li & van Achterberg, sp. n., Phaedrotoma acuticlypeata Li & van Achterberg, sp. n., Phaedrotoma angiclypeata Li & van Achterberg, sp. n., Phaedrotoma antenervalis Li & van Achterberg, sp. n., Phaedrotoma depressiclypealis Li & van Achterberg, sp. n., Phaedrotoma flavisoma Li & van Achterberg, sp. n., Phaedrotoma nigrisoma Li & van Achterberg, sp. n., Phaedrotoma protuberator Li & van Achterberg, sp. n., Phaedrotoma rugulifera Li & van Achterberg, sp. n., Li & van Achterberg,Phaedrotoma striatinota Li & van Achterberg, sp. n., Phaedrotoma vermiculifera Li & van Achterberg, sp. n., Rhogadopsis latipennis Li & van Achterberg, sp. n., Rhogadopsis longicaudifera Li & van Achterberg, sp. n., Rhogadopsis maculosa Li, van Achterberg & Tan, sp. n., Rhogadopsis obliqua Li & van Achterberg, sp. n., Rhogadopsis sculpturator Li & van Achterberg, sp. n., Utetes longicarinatus Li & van Achterberg, sp. n. and Xynobius notauliferus Li & van Achterberg, sp. n. Areotetes van Achterberg & Li, gen. n. (type species: Areotetes carinuliferus sp. n.) and Coleopioides van Achterberg & Li, gen. n. (type species: Coleopioides postpectalis sp. n. are described. All species are illustrated and keyed. In total 30 species of Opiinae are sequenced and the cladograms are presented. Neopius Gahan, 1917, Opiognathus Fischer, 1972, Opiostomus Fischer, 1972, and Rhogadopsis Brèthes, 1913, are treated as a valid genera based on molecular and morphological differences. Opius vittata Chen & Weng, 2005 (not Opius vittatus Ruschka, 1915), Opius ambiguus Weng & Chen, 2005 (not Wesmael, 1835) and Opius mitis Chen & Weng, 2005 (not Fischer, 1963) are primary homonymsandarerenamed into Phaedrotoma depressa Li & van Achterberg, nom. n., Opius cheni Li & van Achterberg, nom. n. andOpius wengi Li & van Achterberg, nom. n., respectively. Phaedrotoma terga (Chen & Weng, 2005) comb. n.,Diachasmimorpha longicaudata (Ashmead, 1905) and Biosteres pavitita Chen & Weng, 2005, are reported new for Hunan, Opiostomus aureliae (Fischer, 1957) comb. n. is new for China and Hunan; Xynobius maculipennis(Enderlein, 1912) comb. n. is new for Hunan and continental China and Rhogadopsis longuria (Chen & Weng, 2005) comb. n. is new for Hunan. The following new combinations are given: Apodesmia puncta (Weng & Chen, 2005) comb. n., Apodesmia tracta (Weng & Chen, 2005) comb. n., Areotetes laevigatus (Weng & Chen, 2005) comb. n., Phaedrotoma dimidia (Chen & Weng, 2005) comb. n., Phaedrotoma improcera (Weng & Chen, 2005) comb. n., Phaedrotoma amputata (Weng & Chen, 2005) comb. n., Phaedrotoma larga (Weng & Chen, 2005) comb. n., Phaedrotoma osculas (Weng & Chen, 2005) comb. n., Phaedrotoma postuma (Chen & Weng, 2005) comb. n., Phaedrotoma rugulosa (Chen & Weng, 2005) comb. n., Phaedrotoma tabularis (Weng & Chen, 2005) comb. n., Rhogadopsis apii (Chen & Weng, 2005) comb. n., Rhogadopsis dimidia (Chen & Weng, 2005) comb. n., Rhogadopsis diutia (Chen & Weng, 2005) comb. n., Rhogadopsis longuria (Chen & Weng, 2005) comb. n., Rhogadopsis pratellae(Weng & Chen, 2005) comb. n., Rhogadopsis pratensis (Weng & Chen, 2005) comb. n., Rhogadopsis sculpta (Chen & Weng, 2005) comb. n., Rhogadopsis sulcifer (Fischer, 1975) comb. n., Rhogadopsis tabidula(Weng & Chen, 2005) comb. n., Xynobius complexus (Weng & Chen, 2005) comb. n., Xynobius indagatrix (Weng & Chen, 2005) comb. n., Xynobius multiarculatus (Chen & Weng, 2005) comb. n. The following (sub)genera are synonymised: Snoflakopius Fischer, 1972, Jucundopius Fischer, 1984, Opiotenes Fischer, 1998, and Oetztalotenes Fischer, 1998, with Opiostomus Fischer, 1971; Xynobiotenes Fischer, 1998, with Xynobius Foerster, 1862; Allotypus Foerster, 1862, Lemnaphilopius Fischer, 1972, Agnopius Fischer, 1982, and Cryptognathopius Fischer, 1984, with Apodesmia Foerster, 1862; Nosopoea Foerster, 1862, Tolbia Cameron, 1907, Brachycentrus Szépligeti, 1907, Baeocentrum Schulz, 1911, Hexaulax Cameron, 1910, Coeloreuteus Roman, 1910, Neodiospilus Szépligeti, 1911, Euopius Fischer, 1967, Gerius Fischer, 1972, Grimnirus Fischer, 1972, Hoenirus Fischer, 1972, Mimirus Fischer, 1972, Gastrosema Fischer, 1972, Merotrachys Fischer, 1972, Phlebosema Fischer, 1972, Neoephedrus Samanta, Tamili, Saha & Raychaudhuri, 1983, Adontopius Fischer, 1984, Kainopaeopius Fischer, 1986, Millenniopius Fischer, 1996, and Neotropopius Fischer, 1999, with Phaedrotoma Foerster, 1862. PMID:23653521
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-28
...-AA08 Special Local Regulation; Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay... Lighthouse Dock, Fire Island, NY due to the annual Maggie Fischer Memorial Great South Bay Cross Bay Swim..., Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, NY, in the Federal Register (74...
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Ferguson, Frank T.; Lucas, Christopher; Kimura, Yuki; Hohenberg, Charles
2009-01-01
The formation of abundant carbonaceous material in meteorites is a long standing problem and an important factor in the debate on the potential for the origin of life in other stellar systems. The Fischer-Tropsch-type (FTT) catalytic reduction of CO by hydrogen was once the preferred model for production of organic materials in the primitive solar nebula. We have demonstrated that many grain surfaces can catalyze both FTT and HB-type reactions, including amorphous iron and magnesium silicates, pure silica smokes as well as several minerals. Graphite is not a particularly good FTT catalyst, especially compared to iron powder or to amorphous iron silicate. However, like other silicates that we have studied, it gets better with exposure to CO. N2 and H2 over time: e.g., after formation of a macromolecular carbonaceous layer on the surfaces of the underlying gains. While amorphous iron silicates required only 1 or 2 experimental runs to achieve steady state reaction rates, graphite only achieved steady state after 6 or more experiments. We will present results showing the catalytic action of graphite grains increasing with increasing number of experiments and will also discuss the nature of the final "graphite" grains aster completion of our experiments.
Theory of Direct Optical Measurement of Pure Spin Currents in Direct-gap Semiconductors
NASA Astrophysics Data System (ADS)
Wang, Jing; Liu, Ren-Bao; Zhu, Bang-Fen
2010-01-01
We predict that a pure spin current in a semiconductor may lead to the optical circular birefingence effect without invoking magnetization. This effect may be exploited for a direct, non-destructive measurement of the pure spin current. We derive the effective coupling between a pure spin current and a polarized light beam, and point out that it originates from the inherent spin-orbit coupling in the valence bands, rather than the Rashba or Dresselhaus effects due to inversion asymmetries. The Faraday rotation angle in GaAs is estimated, which indicates that this spin current optical birefringence is experimentally observable.
Titrimetric Analysis of Han-Based Liquid Propellants
1988-03-01
acid-base and Karl Fischer titrimetry, procedures that quantitatively determine the three major propellant components. The method developed converts...sodium hydroxide as titrant for both HAN and TEAN. Water is determined by Karl Fischer titration using the proprietary reagent "Hydranal". Each major...water, react with one or more of the components of the Karl Fischer reagent. One of the newer Karl Fischer titrants is "Hydranal", a proprietary reagent
Diesel production from Fischer-Tropsch: the past, the present, and new concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieter Leckel
2009-05-15
Fischer-Tropsch synthesis is technically classified into two categories, the high-temperature Fischer-Tropsch (HTFT) and the low-temperature Fischer-Tropsch (LTFT) processes. The criterion for this classification is the operating temperature of the synthesis, which ranges between 310-340{sup o}C for the HTFT process and 210-260{sup o}C for the LTFT process. A Fischer-Tropsch facility can be divided into roughly three sections, synthesis gas (syngas) generation, FT synthesis, and refining of the synthetic crude (syncrude). Fischer-Tropsch refineries differ regarding the product upgrading, and both transportation fuels and chemicals can be produced. Regarding the FT refinery history, the configuration of each refinery also reflects the requirements ofmore » the fuel specification at that time. This paper gives a condensed overview of how Fischer-Tropsch facilities changed during the last 70 years and focuses in particular on the diesel fuel produced. Some conceptual flow schemes are additionally presented with emphasis on the combined upgrading of the high boiling part of the FT product spectrum with liquids derived from coal pyrolysis. 52 refs., 14 figs., 12 tabs.« less
NASA Astrophysics Data System (ADS)
Ganesh, V.; Salem, G. F.; Yahia, I. S.; Yakuphanoglu, F.
2018-03-01
Different concentrations of copper-doped zinc oxide thin films were coated on a glass substrate by sol-gel/spin-coating technique. The structural properties of pure and Cu-doped ZnO films were characterized by different techniques, i.e., atomic force microscopy (AFM), photoluminescence and UV-Vis-NIR spectroscopy. The AFM study revealed that pure and doped ZnO films are formed as nano-fibers with a granular structure. The photoluminescence spectra of these films showed a strong ultraviolet emission peak centered at 392 nm and a strong blue emission peak cantered at 450 nm. The optical band gap of the pure and copper-doped ZnO thin films calculated from optical transmission spectra (3.29-3.23 eV) were found to be increasing with increasing copper doping concentration. The refractive index dispersion curve of pure and Cu-doped ZnO film obeyed the single-oscillator model. The optical dispersion parameters such as E o , E d , and n_{∞}2 were calculated. Further, the nonlinear refractive index and nonlinear optical susceptibility were also calculated and interpreted.
Blanco-Redondo, Andrea; Martijn, de Sterke C.; Sipe, J.E.; Krauss, Thomas F.; Eggleton, Benjamin J.; Husko, Chad
2016-01-01
Temporal optical solitons have been the subject of intense research due to their intriguing physics and applications in ultrafast optics and supercontinuum generation. Conventional bright optical solitons result from the interaction of anomalous group-velocity dispersion and self-phase modulation. Here we experimentally demonstrate a class of bright soliton arising purely from the interaction of negative fourth-order dispersion and self-phase modulation, which can occur even for normal group-velocity dispersion. We provide experimental and numerical evidence of shape-preserving propagation and flat temporal phase for the fundamental pure-quartic soliton and periodically modulated propagation for the higher-order pure-quartic solitons. We derive the approximate shape of the fundamental pure-quartic soliton and discover that is surprisingly Gaussian, exhibiting excellent agreement with our experimental observations. Our discovery, enabled by precise dispersion engineering, could find applications in communications, frequency combs and ultrafast lasers. PMID:26822758
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
...., Fischer S.A. Comercio, Industria, and Agricultura (Fischer) and Cutrale). The Department has conducted... Manufacturer/exporter margin Fischer S.A. Comercio, Industria, and Agricultura 5.26 Sucocitrico Cutrale, S.A 8...
Photoacoustic spectroscopy and thermal relaxation method to evaluate corn moisture content
NASA Astrophysics Data System (ADS)
Pedrochi, F.; Medina, A. N.; Bento, A. C.; Baesso, M. L.; Luz, M. L. S.; Dalpasquale, V. A.
2005-06-01
In this study, samples of popcorn with different degrees of moisture were analyzed. The optical absorption bands at the mid infrared were measured using photoacoustic spectroscopy and were correlated to the sample moisture. The results were in agreement with moisture data determined by the well known reference method, the Karl Fischer. In addition, the thermal relaxation method was used to determine the sample specific heat as a function of the moisture content. The results were also in agreement with the two mentioned methods.
1982-12-01
run to run. A Karl Fischer automatic titrimeter has been ordered to enable routine analysis of water in both the inlet and exit streams to determine...Block-Styrene)," M.S. Thesis, Chemical Engineering, June 1982, by D. E. Zurawski. "Electron Optical Methods and the Study of Corrosion," M.S. Thesis...interface as viewed through a thin transparent metal deposited onto glass. The latter method will permit quantitative studies of the corrosion and
ERIC Educational Resources Information Center
Quezeda, Dina Alarcon
1992-01-01
Traces the career of Carmen Fischer Ramirez, focusing on her work in improving early childhood education in Chile. Reviews her university career, work with the World Organization for Early Childhood Education, and major publications. (AC)
Tailored fischer-tropsch synthesis product distribution
Wang, Yong [Richland, WA; Cao, Chunshe [Kennewick, WA; Li, Xiaohong Shari [Richland, WA; Elliott, Douglas C [Richland, WA
2012-06-19
Novel methods of Fischer-Tropsch synthesis are described. It has been discovered that conducting the Fischer-Tropsch synthesis over a catalyst with a catalytically active surface layer of 35 microns or less results in a liquid hydrocarbon product with a high ratio of C.sub.5-C.sub.20:C.sub.20+. Descriptions of novel Fischer-Tropsch catalysts and reactors are also provided. Novel hydrocarbon compositions with a high ratio of C.sub.5-C.sub.20:C.sub.20+ are also described.
Poladian, L; Straton, M; Docherty, A; Argyros, A
2011-01-17
We investigate the properties of optical fibres made from chiral materials, in which a contrast in optical activity forms the waveguide, rather than a contrast in the refractive index; we refer to such structures as pure chiral fibres. We present a mathematical formulation for solving the modes of circularly symmetric examples of such fibres and examine the guidance and polarisation properties of pure chiral step-index, Bragg and photonic crystal fibre designs. Their behaviour is shown to differ for left- and right-hand circular polarisation, allowing circular polarisations to be isolated and/or guided by different mechanisms, as well as differing from equivalent non-chiral fibres. The strength of optical activity required in each case is quantified.
Werme, M; Olson, L; Brené, S
2000-03-10
The two inbred Fischer and Lewis rat strains display differences in acquisition of drug self-administration, suggesting genetic factors controlling the vulnerability to drugs of abuse. In this study, we analyzed the effects of acute and chronic cocaine and morphine on mRNAs encoding the NGFI-B/Nur77 family of nuclear orphan receptors in reward pathways in Fischer and Lewis rats. After a single injection of cocaine, a similar upregulation of NGFI-B mRNA in striatal subregions and cortex cinguli was seen in both Fischer and Lewis rats. In contrast, Nor1 mRNA was only significantly upregulated by cocaine in the Fischer rats. Morphine increased NGFI-B mRNA in medial caudate putamen and cortex cinguli in Lewis rats and Nor1 mRNA in medial caudate putamen in Fischer rats. Chronic cocaine upregulated NGFI-B mRNA in nucleus accumbens core, lateral caudate putamen and cingulate cortex in Fischer rats, whereas no effect was seen in Lewis rats. In contrast, Nor1 mRNA levels were upregulated in Lewis rats in medial caudate putamen and cingulate cortex after chronic cocaine and in cingulate cortex after chronic morphine. No effect on Nor1 mRNA levels was seen in Fischer rats after chronic treatments. Our results demonstrate different responses in addiction-prone Lewis rats as compared to the less addiction-prone Fischer rats with respect to NGFI-B and Nor1 mRNA regulation after acute and repeated administration of cocaine and morphine. Thus, we suggest that the transcription factors NGFI-B and Nor1 might be involved in the control of behaviors such as sensitized locomotor response, craving and aversion that appears after repeated administration of abused drugs.
Cobalt Fischer-Tropsch catalysts having improved selectivity
Miller, James G.; Rabo, Jule A.
1989-01-01
A cobalt Fischer-Tropsch catalyst having an improved steam treated, acid extracted LZ-210 support is taught. The new catalyst system demonstrates improved product selectivity at Fischer-Tropsch reaction conditions evidenced by lower methane production, higher C.sub.5.sup.+ yield and increased olefin production.
Astronaut Jack Fischer at Rock Creek Park
2017-11-04
NASA astronaut Jack Fischer answers a question from the audience, Saturday, Nov. 4, 2017 at the Rock Creek Park Nature Center and Planetarium in Washington, DC. During his 136 day mission aboard the ISS, Fischer conducted two spacewalks and hundreds of scientific experiments. Photo Credit: (NASA/Joel Kowsky)
75 FR 68350 - Fischer, Thomas J.; Notice of Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-05
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ID-6422-000] Fischer, Thomas J.; Notice of Filing October 29, 2010. Take notice that on October 29, 2010, Thomas J. Fischer filed an Application for Authorization to Hold Interlocking Positions as Director of Wisconsin Electric...
Economics and siting of Fischer-Tropsch coal liquefaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, J.P. Jr.; Ferreira, J.P.; Benefiel, J.
The capital intensity and low conversion efficiency of Fischer-Tropsch synthesis makes it noncompetitive with conventional petroleum in the midterm (e.g., 5 to 10 years) under normal economic conditions. However, if crude oil prices rise to higher levels (e.g., $25 to $30/bbl), coal liquefaction processes may prove to be economical. It appears that several other processes under development may become economically attractive before Fischer-Tropsch, although Fischer-Tropsch is the only proven commercially feasible venture at present. The above statement is subject, however, to the successful demonstration and commercialization of these alternative processes. Fischer-Tropsch, as a commercially proven process, may be called uponmore » as a backup should petroleum shortages ensue, world oil prices continue to increase dramatically, and alternate coal liquefaction processes fail to fully develop.« less
Radiation effects on beta /10.6/ of pure and europium doped KCl
NASA Technical Reports Server (NTRS)
Grimes, H. H.; Maisel, J. E.; Hartford, R. H.
1975-01-01
Changes in the optical absorption coefficient as the result of X-ray and electron bombardment of pure monocrystalline and polycrystalline KCl and of divalent europium doped polycrystalline KCl were determined. A constant heat flow calorimetric method was used to measure the optical absorption coefficients. Both 300 kV X-ray irradiation and 2 MeV electron irradiation produced increases in the optical absorption coefficient at room temperature. X-ray irradiation produced more significant changes in pure monocrystalline KCl than equivalent amounts of electron irradiation. Electron irradiation of pure and Eu-doped polycrystalline KCl produced increases in the absorption by as much as a factor of 20 over untreated material. Bleaching of the electron-irradiated doped KCl with 649 millimicron light produced a further increase.
NASA Astrophysics Data System (ADS)
Rao, G. Babu; Rajesh, P.; Ramasamy, P.
2017-06-01
Dye inclusion crystals have attracted researchers in the context of crystal growth for applications in solid state lasers. Pure and 0.1 mol% amaranth doped KAP single crystals, were grown from aqueous solutions by slow evaporation technique at room temperature. The grown crystals are up to the dimension of 12×10×3 mm3. Attempt is made to improve the growth rate, optical, piezoelectric and photoconductive properties of pure KAP single crystal with addition of amaranth dye as a dopant. Various characterization studies were made for both pure and dye doped KAP. Thermal stability of the crystals is tested from thermogravimetric and differential thermal analysis (TG/DTA). There is only one endothermic peak indicating decomposition point. Higher optical transparency for dye doped KAP crystal was identified from the UV-vis spectrum. Etching studies showed an improvement in the optical quality of the KAP crystal after doping with amaranth dye. The positive photoconductive nature is observed from both pure and amaranth doped KAP.
Astronaut Jack Fischer at Rock Creek Park
2017-11-04
NASA astronaut Jack Fischer speaks about his time aboard the International Space Station as part of Expeditions 51 and 52, Saturday, Nov. 4, 2017 at the Rock Creek Park Nature Center and Planetarium in Washington, DC. During his 136 day mission aboard the ISS, Fischer conducted two spacewalks and hundreds of scientific experiments. Photo Credit: (NASA/Joel Kowsky)
Scuotto, M; Persico, M; Bucci, M; Vellecco, V; Borbone, N; Morelli, E; Oliviero, G; Novellino, E; Piccialli, G; Cirino, G; Varra, M; Fattorusso, C; Mayol, L
2014-07-28
Herein, we report optically pure modified acyclic nucleosides as ideal probes for aptamer modification. These new monomers offer unique advantages in exploring the role played in thrombin inhibition by a single residue modification at key positions of the TBA structure.
Optical properties of pure and PbSe doped TiS2 nanodiscs
NASA Astrophysics Data System (ADS)
Parvaz, M.; Islamuddin; Khan, Zishan H.
2018-06-01
Titanium disulfide, being one of the popular transition-metal dichalcogenide (TMD) materials, shows wonderful properties owing to tunable optical band gap. Pure and PbSe doped titanium disulfide nanodiscs have been synthesized by solid-state reaction method. FESEM, TEM and Raman images confirm the synthesis of nanodiscs. XRD spectra suggest the polycrystalline structure of as-prepared as well as PbSe doped TiS2 nanodiscs. PL spectra of the as-synthesized nanodiscs has been studied in the wavelength range of (300–550 nm), at room temperature. The position of the peak shifts towards the lower wavelength (blue shift) and intensity of the PL increases after the doping of PbSe, which may be due to a broadening of the optical band gap. UV–vis spectra has been used to calculate optical band gap of pure and PbSe doped titanium disulfide nanodiscs. The calculated value are found to be 1.93 eV and 2.03 eV respectively. Various optical constants such as n and k have been calculated. The value of extinction coefficient (k) of pure and doped titanium disulfide increases while the value of the refractive index (n) decreases with increase in photon energy.
Oskar Fischer and the study of dementia
2009-01-01
The centenary of Alois Alzheimer's description of the case of Auguste Deter has renewed interest in the early history of dementia research. In his 1907 paper Alzheimer described the presence of plaques and tangles in one case of presenile dementia. In the same year, Oskar Fischer reported neuritic plaques in 12 cases of senile dementia. These were landmark findings in the history of research in dementia because they delineated the clinicopathological entity that is now known as Alzheimer's disease. Although much has been written about Alzheimer, only little is known about Fischer. The present article discusses Fischer's work on dementia in the context of his life and time. PMID:18952676
Barluenga, José; Martínez, Silvia; Suárez-Sobrino, Angel L; Tomás, Miguel
2002-05-29
Pentafulvenes are regioselectively cyclopropanated with group 6 Fischer carbene complexes leading to the homofulvene ring with complete endo selectivity. The homofulvene adducts undergo in turn a further cyclopropanation with ethyl diazoacetate or cyclopentannulation with a Fischer alkenyl carbene complex to provide substituted cyclopentanones after ozonolysis of the exocyclic carbon=carbon double bond. Fischer alkynyl carbene complexes also produce the corresponding alkynyl homofulvenes, albeit the exo stereoisomer is in this case exclusively or preferentially formed. Under moderate CO pressure, tungsten alkynyl carbene complexes cycloadd to pentafulvenes in a [4 + 3] fashion, giving rise to bicyclo[3.2.1]octadien-2-ones.
Supported fischer-tropsch catalyst and method of making the catalyst
Dyer, Paul N.; Pierantozzi, Ronald; Withers, Howard P.
1987-01-01
A Fischer-Tropsch catalyst and a method of making the catalyst for a Fischer-Tropsch process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas, is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.
Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.; Pantea, Michael P.; Self, Jesse G.
2009-01-01
The U.S. Geological Survey (USGS) recently completed a reassessment of in-place oil shale resources, regardless of richness, in the Eocene Green River Formation in the Piceance Basin, western Colorado. A considerable amount of oil-yield data has been collected after previous in-place assessments were published, and these data were incorporated into this new assessment. About twice as many oil-yield data points were used, and several additional oil shale intervals were included that were not assessed previously for lack of data. Oil yields are measured using the Fischer assay method. The Fischer assay method is a standardized laboratory test for determining the oil yield from oil shale that has been almost universally used to determine oil yields for Green River Formation oil shales. Fischer assay does not necessarily measure the maximum amount of oil that an oil shale can produce, and there are retorting methods that yield more than the Fischer assay yield. However, the oil yields achieved by other technologies are typically reported as a percentage of the Fischer assay oil yield, and thus Fischer assay is still considered the standard by which other methods are compared.
NASA Astrophysics Data System (ADS)
Gupta, Jhalak; Ahmed, Arham S.
2018-05-01
The pure and Cr doped nickel oxide (NiO) nanoparticles have been synthesized by cost effective co-precipitation method having nickel nitrate as initial precursor. The synthesized samples were characterized by X-Ray diffraction (XRD), UV-Visible Spectroscopy(UV-Vis) and LCR meter for structural, optical and dielectric properties respectively. The crystallite size of pure nickel oxide nanoparticles characterized by XRD using Debye Scherer's formula was found to be 21.7nm and the same decreases on increasing Cr concentration whereas optical and dielectric properties were analyzed by UV-Vis and LCR meter respectively. The energy band gaps were determined by UV-Vis using Tauc relation.
Nanodoping: a route for enhancing electro-optic performance of bent core nematic system
NASA Astrophysics Data System (ADS)
Kumar, Pradeep; Debnath, Somen; Rao, Nandiraju V. S.; Sinha, Aloka
2018-03-01
We report the effect of dispersion of barium titanate (BaTiO3) nanoparticles (BNPs) in a four ring bent core nematic (BCN) liquid crystal. Polarizing optical microscopy reveals the presence of a single nematic phase in pure and doped states. Polar switching has been observed in the bent core system and the value of spontaneous polarization (P s) increases with increase in doping concentration of BNPs in BCN. Dielectric study shows a lower frequency mode, which can be ascribed to the formation of cybotactic clusters. These clusters are also responsible for the observed polar switching in pure, as well as, in doped BCNs. Another higher frequency mode, observed only in pure BCN, indicates the rotation of molecules about their long molecular axis. The conductivity of doped samples is also found to decrease as compared to the pure BCN. This reduction helps in the minimization of negative effects caused by free ions in liquid crystal based devices. This study demonstrates that the interaction between BNPs and BCN molecules improves the P s, dielectric behaviour, viscosity and reduces the conductivity of pure BCN. Hence, nanodoping in a BCN is an effective method for the enhancement of electro-optic performances and will lead to the development of faster electro-optic devices.
33 CFR 100.124 - Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, New York.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, New York. 100.124 Section 100.124 Navigation and Navigable... NAVIGABLE WATERS § 100.124 Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, New York...
Iron on mixed zirconia-titania substrate Fischer-Tropsch catalyst and method of making same
Dyer, Paul N.; Nordquist, Andrew F.; Pierantozzi, Ronald
1986-01-01
A Fischer-Tropsch catalyst comprising iron co-deposited with or deposited on particles comprising a mixture of zirconia and titania, preferably formed by co-precipitation of compounds convertible to zirconia and titania, such as zirconium and titanium alkoxide. The invention also comprises the method of making this catalyst and an improved Fischer-Tropsch reaction process in which the catalyst is utilized.
Simulation models and designs for advanced Fischer-Tropsch technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, G.N.; Kramer, S.J.; Tam, S.S.
1995-12-31
Process designs and economics were developed for three grass-roots indirect Fischer-Tropsch coal liquefaction facilities. A baseline and an alternate upgrading design were developed for a mine-mouth plant located in southern Illinois using Illinois No. 6 coal, and one for a mine-mouth plane located in Wyoming using Power River Basin coal. The alternate design used close-coupled ZSM-5 reactors to upgrade the vapor stream leaving the Fischer-Tropsch reactor. ASPEN process simulation models were developed for all three designs. These results have been reported previously. In this study, the ASPEN process simulation model was enhanced to improve the vapor/liquid equilibrium calculations for themore » products leaving the slurry bed Fischer-Tropsch reactors. This significantly improved the predictions for the alternate ZSM-5 upgrading design. Another model was developed for the Wyoming coal case using ZSM-5 upgrading of the Fischer-Tropsch reactor vapors. To date, this is the best indirect coal liquefaction case. Sensitivity studies showed that additional cost reductions are possible.« less
Astronaut Jack Fischer at Air and Space Museum
2017-11-03
NASA astronaut Jack Fischer conducts an experiment during a Stem in 30 segment, Friday, Nov. 3, 2017 at Smithsonian's National Air and Space Museum in Washington. During Expedition 52, Fischer completed hundreds of scientific experiments and two spacewalks, and concluded his 136-day mission onboard the International Space Station, when he landed in a remote area near the town of Zhezkazgan, Kazakhstan in September 2017. Photo Credit: (NASA/Aubrey Gemignani)
Astronaut Jack Fischer at Air and Space Museum
2017-11-03
NASA astronaut Jack Fischer speaks about his time onboard the International Space Station (ISS) during Expeditions 51/52, Friday, Nov. 3, 2017 at Smithsonian's National Air and Space Museum in Washington. During Expedition 52, Fischer completed hundreds of scientific experiments and two spacewalks, and concluded his 136-day mission when he landed in a remote area near the town of Zhezkazgan, Kazakhstan in September 2017. Photo Credit: (NASA/Aubrey Gemignani)
Processes for Assessing the Thermal Stability of Han-Based Liquid Propellants. Revision
1990-07-01
indicators is not adequate, and potentiometric determination cr’ the equivalence point is the most suitable method (Kraft and Fischer 1972). The use of...be determined by Karl Fischer titration. This method requires a special titration apparatus because the Titroprozessor 636 is not suited for this type... methods obtained from the literature (Kraft and Fischer 1972), and, where necessary, the manufacturer has modified evaluation methods (Firmenschrift
Novel Attrition-Resistant Fischer Tropsch Catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weast, Logan, E.; Staats, William, R.
2009-05-01
There is a strong national interest in the Fischer-Tropsch synthesis process because it offers the possibility of making liquid hydrocarbon fuels from reformed natural gas or coal and biomass gasification products. This project explored a new approach that had been developed to produce active, attrition-resistant Fischer-Tropsch catalysts that are based on glass-ceramic materials and technology. This novel approach represented a promising solution to the problem of reducing or eliminating catalyst attrition and maximizing catalytic activity, thus reducing costs. The technical objective of the Phase I work was to demonstrate that glass-ceramic based catalytic materials for Fischer-Tropsch synthesis have resistance tomore » catalytic deactivation and reduction of particle size superior to traditional supported Fischer-Tropsch catalyst materials. Additionally, these novel glass-ceramic-based materials were expected to exhibit catalytic activity similar to the traditional materials. If successfully developed, the attrition-resistant Fischer-Tropsch catalyst materials would be expected to result in significant technical, economic, and social benefits for both producers and public consumers of Fischer-Tropsch products such as liquid fuels from coal or biomass gasification. This program demonstrated the anticipated high attrition resistance of the glass-ceramic materials. However, the observed catalytic activity of the materials was not sufficient to justify further development at this time. Additional testing documented that a lack of pore volume in the glass-ceramic materials limited the amount of surface area available for catalysis and consequently limited catalytic activity. However, previous work on glass-ceramic catalysts to promote other reactions demonstrated that commercial levels of activity can be achieved, at least for those reactions. Therefore, we recommend that glass-ceramic materials be considered again as potential Fischer-Tropsch catalysts if it can be demonstrated that materials with adequate pore volume can be produced. During the attrition resistance tests, it was learned that the glass-ceramic materials are very abrasive. Attention should be paid in any further developmental efforts to the potential for these hard, abrasive materials to damage reactors.« less
Deflocculants for Tape Casting Barium Titanate.
1983-07-01
the individual components of our system in order to determine the effects of water on dispersion properties. The Karl Fischer reagent method (KFR) was...Determined by Karl Fischer Methods Ambient (%) (Dry) % Methyl Ethyl Ketone 0.0338 0.0068* Ethanol 5.1029 0.0161* REX-ethanol 1.8658 0.0059* Barium Titanate...glass jar prior to use. Residual moisture, as determined by Karl Fischer reagent methods , is indicated in Table 11. The Fisher reagent grade ethanol
Walder, Christine
2010-01-01
The Austrian writer A. Fischer-Colbrie underwent an analysis with Freud in 1915-16 and then again in 1919. Based on his literary estate, this article tries to shed some light on the biographical background and the precipitating factors of his mental problems. When the cure had to be interrupted because of the young man's military service, Freud sustained an unusual correspondence with him that reflected his efforts to maintain their therapeutic contact. At the same time his letters witness Fischer-Colbrie's burgeoning literary talents.--An appendix presents Freud's letters to Fischer-Colbrie, edited and annotated by Michael Schröter.
A Self-Perpetuating Catalyst for the Production of Complex Organic Molecules in Protostellar Nebulae
NASA Technical Reports Server (NTRS)
Nuth, Joseph A.; Johnson, N. M.
2010-01-01
The formation of abundant carbonaceous material in meteorites is a long standing problem and an important factor in the debate on the potential for the origin of life in other stellar systems. Many mechanisms may contribute to the total organic content in protostellar nebulae, ranging from organics formed via ion-molecule and atom-molecule reactions in the cold dark clouds from which such nebulae collapse, to similar ion-molecule and atom-molecule reactions in the dark regions of the nebula far from the proto star, to gas phase reactions in sub-nebulae around growing giant planets and in the nebulae themselves. The Fischer-Tropsch-type (FTT) catalytic reduction of CO by hydrogen was once the preferred model for production of organic materials in the primitive solar nebula. The Haber-Bosch catalytic reduction of N2 by hydrogen was thought to produce the reduced nitrogen found in meteorites. However, the clean iron metal surfaces that catalyze these reactions are easily poisoned via reaction with any number of molecules, including the very same complex organics that they produce and both reactions work more efficiently in the hot regions of the nebula. We have demonstrated that many grain surfaces can catalyze both FTT and HB-type reactions, including amorphous iron and magnesium silicates, pure silica smokes as well as several minerals. Although none work as well as pure iron grains, and all produce a wide range of organic products rather than just pure methane, these materials are not truly catalysts.
Astronaut Jack Fischer at Air and Space Museum
2017-11-03
NASA astronaut Jack Fischer sticks his finger in a liquid that was just boiling by vacuum, during a Stem in 30 experiment, Friday, Nov. 3, 2017 at Smithsonian's National Air and Space Museum in Washington. During Expedition 52, Fischer completed hundreds of scientific experiments and two spacewalks, and concluded his 136-day mission onboard the International Space Station, when he landed in a remote area near the town of Zhezkazgan, Kazakhstan in September 2017. Photo Credit: (NASA/Aubrey Gemignani)
Astronaut Jack Fischer at Air and Space Museum
2017-11-03
An audience member asks a question after a presentation by NASA astronaut Jack Fischer about his time onboard the International Space Station (ISS) during Expeditions 51/52, Friday, Nov. 3, 2017 at Smithsonian's National Air and Space Museum in Washington. During Expedition 52, Fischer completed hundreds of scientific experiments and two spacewalks, and concluded his 136-day mission when he landed in a remote area near the town of Zhezkazgan, Kazakhstan in September 2017. Photo Credit: (NASA/Aubrey Gemignani)
The Behavior of Water in Jet Fuels and the Clogging of Micronic Filters at Low Temperatures,
1950-01-11
especially at low temperatures has been made. A method for the determination of water in fuels using the Karl Fischer reagent has been developed and... method utilizing the Karl Fischer reagenti was investigated and a technique developed which proved to be more satisfactory. Procedures Determination of...LABORATORY RESTRICTED I | Method Used ------ (1) Acetyl chloride-pyridine* I 2(2) Karl Fischer Reagent - present work ---_ _ (3) Calcium hydride* 0.I i (4
Johnson, Jeffrey Allan
2015-04-01
This paper's primary goal is to compare the personalities, values, and influence of August Wilhelm Hofmann and Emil Fischer as exemplars and acknowledged leaders of successive generations of the German chemical profession and as scientists sharing a 19th-century liberal, internationalist outlook from the German wars of unification in the 1860s to Fischer's death in 1919 in the aftermath of German defeat in World War I. The paper will consider the influence of Hofmann and Fischer on the shaping of national scientific institutions in Germany, from founding of the German Chemical Society in 1867 to the first institutes of the Kaiser Wilhelm Society founded in 1911, their academic leadership in other areas including the shaping of a successful academic-industrial symbiosis in organic chemistry, and finally their response to war as a force disruptive of scientific internationalism. All of these developments posed serious dilemmas, exacerbated by emerging strains of nationalism and anti-Semitism in German society. Whereas Hofmann's lifework came to a relatively successful end in 1892, Fischer was not so fortunate, as the war brought him heavy responsibilities and terrible personal losses, but with no German victory and no peace of reconciliation--a bleak end for Fischer and the 19th-century liberal ideals that had inspired him.
Multiple-stage pure phase encoding with biometric information
NASA Astrophysics Data System (ADS)
Chen, Wen
2018-01-01
In recent years, many optical systems have been developed for securing information, and optical encryption/encoding has attracted more and more attention due to the marked advantages, such as parallel processing and multiple-dimensional characteristics. In this paper, an optical security method is presented based on pure phase encoding with biometric information. Biometric information (such as fingerprint) is employed as security keys rather than plaintext used in conventional optical security systems, and multiple-stage phase-encoding-based optical systems are designed for generating several phase-only masks with biometric information. Subsequently, the extracted phase-only masks are further used in an optical setup for encoding an input image (i.e., plaintext). Numerical simulations are conducted to illustrate the validity, and the results demonstrate that high flexibility and high security can be achieved.
Effect of Aromatic Concentration of a Fischer-Tropsch Fuel on Thermal Stability
NASA Technical Reports Server (NTRS)
Klettlinger, Jennifer Lindsey Suder
2012-01-01
Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. Fischer Tropsch fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal parafins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline commercial grade F-T jet fuel, and various blends of this F-T fuel with an aromatic solution. The goal of this research is to determine the effect of aromatic content on the thermal stability of Fischer-Tropsch fuel. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.
System and Method for Generating a Frequency Modulated Linear Laser Waveform
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)
2017-01-01
A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.
System and Method for Generating a Frequency Modulated Linear Laser Waveform
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)
2014-01-01
A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.
Maximum-performance fiber-optic irradiation with nonimaging designs.
Fang, Y; Feuermann, D; Gordon, J M
1997-10-01
A range of practical nonimaging designs for optical fiber applications is presented. Rays emerging from a fiber over a restricted angular range (small numerical aperture) are needed to illuminate a small near-field detector at maximum radiative efficiency. These designs range from pure reflector (all-mirror), to pure dielectric (refractive and based on total internal reflection) to lens-mirror combinations. Sample designs are shown for a specific infrared fiber-optic irradiation problem of practical interest. Optical performance is checked with computer three-dimensional ray tracing. Compared with conventional imaging solutions, nonimaging units offer considerable practical advantages in compactness and ease of alignment as well as noticeably superior radiative efficiency.
Optical and structural behaviors of crosslinked polyvinyl alcohol thin films
NASA Astrophysics Data System (ADS)
Pandit, Subhankar; Kundu, Sarathi
2018-04-01
Polyvinyl Alcohol (PVA) has excellent properties like uniaxial tensile stress, chemical resistance, biocompatibility, etc. The properties of PVA further can be tuned by crosslinking process. In this work, a simple heat treatment method is used to find out the optimum crosslinking of PVA and the corresponding structural and optical responses are explored. The PVA crosslinking is done by exposing the films at different temperatures and time intervals. The optical property of pure and heat treated PVA films are investigated by UV-Vis absorption and photoluminescence emission spectroscopy and structural modifications are studied by Fourier Transform Infrared Spectroscopy (FTIR). The absorption peaks of pure PVA are observed at ≈ 280 and 335 nm and the corresponding emission is observed at ≈ 424 nm. The pure PVA showed modified optical behaviors after the heat treatment. In addition, dipping the PVA films in hot water (85°C) for nearly 20 minutes also show impact on both structural and optical properties. From FTIR spectroscopy, the changes in vibrational band positions confirm the structural modifications of PVA films.
Process for Assessing the Stability of HAN (Hydroxylamine)-Based Liquid Propellants.
1987-07-29
liquid propellants on the basis of HAN according to Fig. 1 can be determined directly by Fischer titration. This method requires a special unit, as the...Wasserreagenzien nach Eugen Scholz fUr die Karl - Fischer -Titration (Guidelines by Messrs. Riedel-de Haen for Titration according to the Karl Fischer ...Propellant components 2 2.2 Methods of determination 3 2.3 Acid/base titration and pK values 4 2.4 The Titroprozessor 636 8 2.5 Propellant analyses 10
Evaluation of Storage Effects on Commercial, Biodegradable, Synthetic or Bio-sourced Hydraulic Fluid
2007-01-10
Water Content (ASTM D 6304) Coulometric Karl Fischer Titration for water content was conducted in accordance with ASTM D 6304, Standard Test Method ...Point7 (ASTM D 92) • Lubricity (4-Ball Wear)8 (ASTM D 4172) • Total Acid Number (TAN)9 (ASTM D 664) • Water Content by Karl Fischer Coulometric...2001 and the data from FLTT in 2005. However, FLTT procured a new Karl Fischer water titrator in 2003. But FLTT continued to use the same
Novel Fischer-Tropsch catalysts. [DOE patent
Vollhardt, K.P.C.; Perkins, P.
Novel compounds are described which are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO + H/sub 2/ to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.
Influence of tartaric acid on linear-nonlinear optical and electrical properties of KH2PO4 crystal
NASA Astrophysics Data System (ADS)
Baig, M. I.; Anis, Mohd; Muley, G. G.
2017-10-01
KH2PO4 (KDOP) is widely demanded technological crystal for applications in laser driven photonic devices. Therefore, present article is focused to investigate the effect of tartaric acid (TA) on laser induced nonlinear optical properties of KDOP crystal. The optically transparent TA doped KDOP crystal of size 15 × 10 × 04 mm3 has been grown by slow solvent evaporation technique at 35 °C. The structural analysis of pure and TA doped KDOP crystal has been achieved by means of single crystal X-ray diffraction technique. The functional groups of TA doped KDOP crystal has been identified by means of Fourier transform infrared spectral analysis. The UV-visible studies have been performed to determine the optical transparency and evaluate the linear optical constants of pure and TA doped KDOP crystal. The Kurtz-Perry test has been employed to confirm the frequency doubling phenomenon of crystal and the SHG efficiency of TA doped KDOP crystal is found to be 5.68 times higher than that of standard KDP material. The Z-scan technique has been employed to explore the third order nonlinear optical (TONLO) refraction (n2), absorption (β) and susceptibility (χ3) of pure and TA doped KDOP crystal at 632.8 nm. The TA facilitated optical switching in TONLO response of KDOP crystal is found to be an interesting effect to examine. The laser damage threshold of TA doped KDOP crystal has been determined at 1064 nm using the Nd:YAG laser. The comparative electrical analysis on pure and TA doped KDOP crystal has been accomplished by means of dielectric and photoconductivity characterization studies.
Optically resilient 3D micro-optics on the tips of optical fibers
NASA Astrophysics Data System (ADS)
Jonušauskas, Linas
2017-05-01
In this paper we present a study aimed at investigating an optical resiliency of polymers that could be applied in 3D femtosecond laser lithography. These include popular in lithography SU8 and OrmoClear as well as hybrid organic-inorganic zirconium containing SZ2080. We show that latter material in its pure (non-photosensitized) form has the best optical resiliency out of all tested materials. Furthermore, its 3D structurability is investigated. Despite threshold-like quality degradation outside fabrication window, we show that this material is suitable for creating complex 3D structures on the tips of optical fibers. Overall it is demonstrated, that unique capability of 3DLL to structure pure materials can lead to very compact functional fiber-based devices that could withstand high (GW/cm2) light intensities.
Zhu, Shaozhou; Ren, Lu; Yu, Songzhu; Gong, Cuiyu; Song, Dawei; Zheng, Guojun
2014-10-15
Whole cells of Bradyrhizobium japonicum USDA 6 showed both (+)-γ-lactamase activity and (-)-γ-lactamase activity. Insight into the genome of B. japonicum USDA 6 revealed two potential γ-lactamases: a type I (+)-γ-lactamase and a (-)-γ-lactamase, making it the first strain to contain two totally different enantioselective lactamases. Both recombinant enzymes could easily be used to prepare either optically pure (+)-γ-lactam ((+)-2-azabicyclo[2.2.1]hept-5-en-3-one) or optically pure (-)-γ-lactam ((-)-2-azabicyclo[2.2.1]hept-5-en-3-one), which are versatile synthetic building blocks for the synthesis of various carbocyclic nucleosides and carbocyclic sugar analogues. Bioinformatic analysis showed that the type I (+)-γ-lactamase belongs to the amidase signature family, with 504 amino acids; the (-)-γ-lactamase, which consists of 274 amino acids, belongs to the hydrolase family. Here, we report that B. japonicum USDA contains a (-)-γ-lactamase in addition to a (+)-γ-lactamase, and it is the (-)-γ-lactamase from this strain that is examined in detail in this Letter. Enzymatic synthesis of optically pure (+)-γ-lactam with nearly 50% isolated yield and >99% ee was achieved. Copyright © 2014 Elsevier Ltd. All rights reserved.
Alternative Fuel Research in Fischer-Tropsch Synthesis
NASA Technical Reports Server (NTRS)
Surgenor, Angela D.; Klettlinger, Jennifer L.; Yen, Chia H.; Nakley, Leah M.
2011-01-01
NASA Glenn Research Center has recently constructed an Alternative Fuels Laboratory which is solely being used to perform Fischer-Tropsch (F-T) reactor studies, novel catalyst development and thermal stability experiments. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch synthesis. The purpose of this test facility is to conduct bench scale Fischer-Tropsch (F-T) catalyst screening experiments while focusing on reducing energy inputs, reducing CO2 emissions and increasing product yields within the F-T process. Fischer-Tropsch synthesis is considered a gas to liquid process which reacts syn-gas (a gaseous mixture of hydrogen and carbon monoxide), over the surface of a catalyst material which is then converted into liquids of various hydrocarbon chain length and product distributions1. These hydrocarbons can then be further processed into higher quality liquid fuels such as gasoline and diesel. The experiments performed in this laboratory will enable the investigation of F-T reaction kinetics to focus on newly formulated catalysts, improved process conditions and enhanced catalyst activation methods. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor used solely for cobalt catalyst activation.
Skab, Ihor; Vasylkiv, Yurij; Zapeka, Bohdan; Savaryn, Viktoriya; Vlokh, Rostyslav
2011-07-01
We present an analysis of the effect of torsion stresses on the spatial distribution of optical birefringence in crystals of different point symmetry groups. The symmetry requirements needed so that the optical beam carries dislocations of the phase front are evaluated for the case when the crystals are twisted and the beam closely corresponds to a plane wave. It is shown that the torsion stresses can produce screw-edge, pure screw, or pure edge dislocations of the phase front in the crystals belonging to cubic and trigonal systems. The conditions for appearance of canonical and noncanonical vortices in the conditions of crystal torsion are analyzed. © 2011 Optical Society of America
Optical and structural characterization of Ge clusters embedded in ZrO2
NASA Astrophysics Data System (ADS)
Agocs, E.; Zolnai, Z.; Rossall, A. K.; van den Berg, J. A.; Fodor, B.; Lehninger, D.; Khomenkova, L.; Ponomaryov, S.; Gudymenko, O.; Yukhymchuk, V.; Kalas, B.; Heitmann, J.; Petrik, P.
2017-11-01
The change of optical and structural properties of Ge nanoclusters in ZrO2 matrix have been investigated by spectroscopic ellipsometry versus annealing temperatures. Radio-frequency top-down magnetron sputtering approach was used to produce the samples of different types, i.e. single-layers of pure Ge, pure ZrO2 and Ge-rich-ZrO2 as well as multi-layers stacked of 40 periods of 5-nm-Ge-rich-ZrO2 layers alternated by 5-nm-ZrO2 ones. Germanium nanoclusters in ZrO2 host were formed by rapid-thermal annealing at 600-800 °C during 30 s in nitrogen atmosphere. Reference optical properties for pure ZrO2 and pure Ge have been extracted using single-layer samples. As-deposited multi-layer structures can be perfectly modeled using the effective medium theory. However, annealed multi-layers demonstrated a significant diffusion of elements that was confirmed by medium energy ion scattering measurements. This fact prevents fitting of such annealed structure either by homogeneous or by periodic multi-layer models.
NASA Astrophysics Data System (ADS)
Lin, Yuting; Ghijsen, Michael; Thayer, David; Nalcioglu, Orhan; Gulsen, Gultekin
2011-03-01
Dynamic contrast enhanced MRI (DCE-MRI) has been proven to be the most sensitive modality in detecting breast lesions. Currently available MR contrast agent, Gd-DTPA, is a low molecular weight extracellular agent and can diffuse freely from the vascular space into interstitial space. Due to this reason, DCE-MRI has low sensitivity in differentiating benign and malignant tumors. Meanwhile, diffuse optical tomography (DOT) can be used to provide enhancement kinetics of an FDA approved optical contrast agent, ICG, which behaves like a large molecular weight optical agent due to its binding to albumin. The enhancement kinetics of ICG may have a potential to distinguish between the malignant and benign tumors and hence improve the specificity. Our group has developed a high speed hybrid MRI-DOT system. The DOT is a fully automated, MR-compatible, multi-frequency and multi-spectral imaging system. Fischer-344 rats bearing subcutaneous R3230 tumor are injected simultaneously with Gd-DTPA (0.1nmol/kg) and IC-Green (2.5mg/kg). The enhancement kinetics of both contrast agents are recorded simultaneously with this hybrid MRI-DOT system and evaluated for different tumors.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
...., Florida Citrus Mutual and Citrus World Inc.), Cutrale, and Fischer S.A. Comercio, Industria, and...: Manufacturer/exporter Percent margin Coinbra-Frutesp (SA) * Fischer S.A. Comercio, Industria, and 3.97...
Peculiarity of methoxy group-substituted phenylhydrazones in Fischer indole synthesis
MURAKAMI, Yasuoki
2012-01-01
We found that the Fischer indole synthesis of ethyl pyruvate 2-methoxyphenylhydrazone (5) with HCl/EtOH gave an abnormal product, ethyl 6-chloroindole-2-carboxylate (7), as the main product, with a smaller amount of ethyl 7-methoxyindole-2-carboxylate (6) as the normal product. This abnormal reaction was the result of a cyclization on the side with the substituent (methoxy group) of a benzene ring on phenylhydrazone, which was not previously observed. In this initial investigation, we focused on 1) the application of the above-mentioned abnormal Fischer indole synthesis, 2) the details of this reaction of phenylhydrazone with other kinds of substituents, 3) the mechanism of the first step of the Fischer indole synthesis, 4) the abnormal reaction in methoxydiphenylhydrazones, and 5) a synthetic device to avoid an abnormal reaction. The results of these studies are summarized herein. PMID:22241067
Separation of catalyst from Fischer-Tropsch slurry
White, Curt M.; Quiring, Michael S.; Jensen, Karen L.; Hickey, Richard F.; Gillham, Larry D.
1998-10-27
In a catalytic process for converting synthesis gas including hydrogen and carbon monoxide to hydrocarbons and oxygenates by a slurry Fischer-Tropsch synthesis, the wax product along with dispersed catalyst is removed from the slurry and purified by removing substantially all of the catalyst prior to upgrading the wax and returning a portion to the Fischer-Tropsch reaction. Separation of the catalyst particles from the wax product is accomplished by dense gas and/or liquid extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic in nature. The purified catalyst free wax product can be subsequently upgraded by various methods such as hydrogenation, isomerization, hydrocracking, conversion to gasoline and other products over ZSM-5 aluminosilicate zeolite, etc. The catalyst particles are returned to the Fischer-Tropsch Reactor by slurring them with a wax fraction of appropriate molecular weight, boiling point and viscosity to avoid reactor gelation.
Nocianitri, K A; Aoyama, Y
2001-04-01
Rats of the Donryu, Wistar, Fischer, and Sprague-Dawley strains were examined for the effects of choline deficiency on liver lipids, serum lipids, and serum ornithine carbamoyltransferase. The liver total lipid, triacylglycerol, cholesterol and phospholipid contents in the choline-deficient rats were significantly higher than those in choline-sufficient rats. The contents of total lipids and phospholipids in the liver of the Wistar and Fischer rats fed on a choline-deficient diet were significantly higher than those of the Donryu and Sprague-Dawley rats. The levels of triacylglycerol, cholesterol and phospholipids in the serum were significantly decreased by feeding with the choline-deficient diet. The serum ornithine carbamoyltransferase activity was increased in the Wistar and Fischer strains by feeding with the choline-deficient diet. The Wistar and Fischer strains were consequently the most sensitive to both lipid accumulation and liver lesions induced by the choline deficiency.
Polarization-dependent optical reflection ultrasonic detection
NASA Astrophysics Data System (ADS)
Zhu, Xiaoyi; Huang, Zhiyu; Wang, Guohe; Li, Wenzhao; Li, Changhui
2017-03-01
Although ultrasound transducers based on commercial piezoelectric-material have been widely used, they generally have limited bandwidth centered at the resonant frequency. Currently, several pure-optical ultrasonic detection methods have gained increasing interest due to their wide bandwidth and high sensitivity. However, most of them require customized components (such as micro-ring, SPR, Fabry-Perot film, etc), which limit their broad implementations. In this study, we presented a simple pure-optical ultrasound detection method, called "Polarization-dependent Reflection Ultrasonic Detection" (PRUD). It detects the intensity difference between two polarization components of the probe beam that is modulated by ultrasound waves. PRUD detect the two components by using a balanced detector, which effectively suppressed much of the unwanted noise. We have achieved the sensitivity (noise equivalent pressure) to be 1.7kPa, and this can be further improved. In addition, like many other pure-optical ultrasonic detection methods, PRUD also has a flat and broad bandwidth from almost zero to over 100MHz. Besides theoretical analysis, we did a phantom study by imaging a tungsten filament to demonstrate the performance of PRUD. We believe this simple and economic method will attract both researchers and engineers in optical and ultrasound fields.
Realization of pure frequency modulation of DFB laser via combined optical and electrical tuning.
Tian, Chao; Chen, I-Chun Anderson; Park, Seong-Wook; Martini, Rainer
2013-04-08
In this paper we present a novel approach to convert AM signal into FM signal in semiconductor lasers via off resonance optical pumping and report on experimental results obtained with a commercial DFB laser. Aside of demonstrating discrete and fast frequency modulation, we achieve pure frequency modulation through combination with electrical modulation suppressing the associated amplitude modulation, which is detrimental to application such as spectroscopy and communication.
Microstructural, Optical and Dielectric Properties of Al-Incorporated SnO2 Nanoparticles
NASA Astrophysics Data System (ADS)
Ahmed, Ateeq; Tripathi, P.; Naseem Siddique, M.; Ali, Tinku
2017-08-01
In this work, Pure SnO2 and Al doped SnO2 nanoparticles with the composition Sn1-xAlxO2 (x = 0, and 0.05) have been successfully prepared using sol-gel technique. The effect of Al dopant on microstructural, optical and dielectric properties has been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Ultraviolet (UV-Visible) absorption spectroscopy andImpedance spectroscopy (LCR meter)respectively. The XRD patterns indicated tetragonal rutile structure with single phase without any detectable impurity for all samples and incorporation of Al ions into the SnO2 lattice. Crystalline size decreased with aluminum content. The results of SEM confirm nanoparticles size decreases with Al dopant. UV-Visible results showed that optical band also decreases when Al is doped into pure SnO2 lattice. Frequency dependent dielectric properties of pure and doped SnO2 nanoparticles have been also studied.
Renuka, N; Ramesh Babu, R; Vijayan, N; Vasanthakumar, Geetha; Krishna, Anuj; Ramamurthi, K
2015-02-25
In the present work, pure and metal substituted L-Prolinium trichloroacetate (LPTCA) single crystals were grown by slow evaporation method. The grown crystals were subjected to single crystal X-ray diffraction (XRD), powder X-ray diffraction, FTIR, UV-Visible-NIR, hardness, photoluminescence and dielectric studies. The dopant concentration in the crystals was measured by inductively coupled plasma (ICP) analysis. Single crystal X-ray diffraction studies of the pure and metal substituted LPTCA revealed that the grown crystals belong to the trigonal system. Ni(2+) and Co(2+) doping slightly altered the lattice parameters of LPTCA without affecting the basic structure of the crystal. FTIR spectral analysis confirms the presence of various functional groups in the grown crystals. The mechanical behavior of pure and doped crystals was analyzed by Vickers's microhardness test. The optical transmittance, dielectric and photoluminescence properties of the pure and doped crystals were analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.
Dyer, Paul N.; Pierantozzi, Ronald; Withers, Howard P.
1987-01-01
A Fischer-Tropsch process utilizing a product selective and stable catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.
NASA Technical Reports Server (NTRS)
Nooner, D. W.; Gibert, J. M.; Gelpi, E.; Oro, J.
1976-01-01
Experiments were performed in which meteoritic iron, iron ore and nickel-iron alloy were used to catalyze (in Fischer-Tropsch synthesis) the reaction of deuterium and carbon monoxide in a closed vessel. Normal alkanes and alkenes and their monomethyl substituted isomers and aromatic hydrocarbons were synthesized. Iron oxide and oxidized-reduced Canyon Diablo used as Fischer-Tropsch catalysts were found to produce aromatic hydrocarbons in distributions having many of the features of those observed in carbonaceous chondrites, but only at temperatures and reaction times well above 300 C and 6-8 h.
1987-01-01
transpiration method using a Karl - Fischer automai~tic titrator. 1The apparatus for the measu rement. is shown in Figil. N2 gas was used as a carrier gas...finally passed thbrough anhydrous mtethariol in the cell of Karl - Fischer automatic titrator for the measurements at low teni- peratu res , or through a cold...and KOH: min. 85 % containing max. 1% K2 CO 3 ). Water content of the melt was measured with Karl Fischer’s method (e.g., for a 50-50 mol % mixture less
Higuera-Matas, A; Montoya, G. L; Coria, S.M; Miguéns, M; García-Lecumberri, C; Ambrosio, E
2011-01-01
Drug addiction results from the interplay between social and biological factors. Among these, genetic variables play a major role. The use of genetically related inbred rat strains that differ in their preference for drugs of abuse is one approach of great importance to explore genetic determinants. Lewis and Fischer 344 rats have been extensively studied and it has been shown that the Lewis strain is especially vulnerable to the addictive properties of several drugs when compared with the Fischer 344 strain. Here, we have used microarrays to analyze gene expression profiles in the frontal cortex and nucleus accumbens of Lewis and Fischer 344 rats. Our results show that only a very limited group of genes were differentially expressed in Lewis rats when compared with the Fischer 344 strain. The genes that were induced in the Lewis strain were related to oxygen transport, neurotransmitter processing and fatty acid metabolism. On the contrary genes that were repressed in Lewis rats were involved in physiological functions such as drug and proton transport, oligodendrocyte survival and lipid catabolism. These data might be useful for the identification of genes which could be potential markers of the vulnerability to the addictive properties of drugs of abuse. PMID:21886580
Wang, Lihong V.
2004-01-01
This article reviews two types of ultrasound-mediated biophotonic imaging–acousto-optical tomography (AOT, also called ultrasound-modulated optical tomography) and photo-acoustic tomography (PAT, also called opto-acoustic or thermo-acoustic tomography)–both of which are based on non-ionizing optical and ultrasonic waves. The goal of these technologies is to combine the contrast advantage of the optical properties and the resolution advantage of ultrasound. In these two technologies, the imaging contrast is based primarily on the optical properties of biological tissues, and the imaging resolution is based primarily on the ultrasonic waves that either are provided externally or produced internally, within the biological tissues. In fact, ultrasonic mediation overcomes both the resolution disadvantage of pure optical imaging in thick tissues and the contrast and speckle disadvantages of pure ultrasonic imaging. In our discussion of AOT, the relationship between modulation depth and acoustic amplitude is clarified. Potential clinical applications of ultrasound-mediated biophotonic imaging include early cancer detection, functional imaging, and molecular imaging. PMID:15096709
Effective optical constants of anisotropic materials
NASA Technical Reports Server (NTRS)
Aronson, J. R.; Emslie, A. G.
1980-01-01
The applicability of a technique for determining the optical constants of soil or aerosol components on the basis of measurements of the reflectance or transmittance of inhomogeneous samples of component material is investigated. Optical constants for a sample of very pure quartzite were obtained by a specular reflection technique and line parameters were calculated by classical dispersion theory. Predictions of the reflectance of powdered quartz were then derived from optical constants measured for the anisotropic quartz and for pure quartz crystals, and compared with experimental measurements. The calculated spectra are found to resemble each other moderately well in shape, however the reflectance level calculated from the psuedo-optical constants (quartzite) is consistently below that calculated from quartz values. The spectrum calculated from the quartz optical constants is also shown to represent the experimental nonrestrahlen features more accurately. It is thus concluded that although optical constants derived from inhomogeneous materials may represent the spectral features of a powdered sample qualitatively a quantitative fit to observed data is not likely.
NASA Technical Reports Server (NTRS)
Klettlinger, Jennifer Lindsey Suder
2012-01-01
The objective of this study was to evaluate the effect of titanium oxide, lanthanum oxide, and zirconium oxide on alumina supported cobalt catalysts. The hypothesis was that the presence of lanthanum oxide, titanium oxide, and zirconium oxide would reduce the interaction between cobalt and the alumina support. This was of interest because an optimized weakened interaction could lead to the most advantageous cobalt dispersion, particle size, and reducibility. The presence of these oxides on the support were investigated using a wide range of characterization techniques such as SEM, nitrogen adsorption, x-ray diffraction (XRD), temperature programmed reduction (TPR), temperature programmed reduction after reduction (TPR-AR), and hydrogen chemisorptions/pulse reoxidation. Results indicated that both La2O3 and TiO2 doped supports facilitated the reduction of cobalt oxide species in reference to pure alumina supported cobalt catalysts, however further investigation is needed to determine the effect of ZrO2 on the reduction profile. Results showed an increased corrected cluster size for all three doped supported catalysts in comparison to their reference catalysts. The increase in reduction and an increase in the cluster size led to the conclusion that the support-metal interaction weakened by the addition of TiO2 and La2O3. It is also likely that the interaction decreased upon presence of ZrO2 on the alumina, but further research is necessary. Preliminary results have indicated that the alumina-supported catalysts with titanium oxide and lanthanum oxide present are of interest because of the weakened cobalt support interaction. These catalysts showed an increased extent of reduction, therefore more metallic cobalt is present on the support. However, whether or not there is more cobalt available to participate in the Fischer-Tropsch synthesis reaction (cobalt surface atoms) depends also on the cluster size. On one hand, increasing cluster size alone tends to decrease the active site density; on the other hand, by increasing the size of the cobalt clusters, there is less likelihood of forming oxidized cobalt complexes (cobalt aluminate) during Fischer-Tropsch synthesis. Thus, from the standpoint of stability, improving the extent of reduction while increasing the particle size slightly may be beneficial for maintaining the sites, even if there is a slight decrease in overall initial active site density.
Structural and optical properties of pure and copper doped zinc oxide nanoparticles
NASA Astrophysics Data System (ADS)
Sajjad, Muhammad; Ullah, Inam; Khan, M. I.; Khan, Jamshid; Khan, M. Yaqoob; Qureshi, Muhammad Tauseef
2018-06-01
Pure and copper-doped zinc oxide nanoparticles (NPs) have been synthesized via chemical co-precipitation method where hydrazine is used as reducing agent and aqueous extract of Euphorbia milii plant as capping agent. Main objectives of the reported work are to investigate the effect of copper doping on crystal structure of ZnO nanoparticles; to study the effect of copper doping on optical band gap of ZnO nanoparticles and photoluminescence (PL) study of pure and copper-doped ZnO nanoparticles. To achieve the aforementioned objectives, XRD and SEM tests were performed for the identification and confirmation of crystal structure and morphology of the prepared samples. From XRD data the average grain size for pure ZnO was observed to be 24.62 nm which was first decreased to 18.95 nm for 5 wt% Cu-doped sample and then it was found to increase up to 37.80 nm as the Cu doping was increased to 7 wt%. Optical band gap of pure and Cu-doped ZnO nanoparticles was calculated from diffuse reflectance spectroscopy (DRS) spectra and was found to decrease from 3.13 eV to 2.94 eV as the amount of Cu increases up to 7 wt%. In photoluminescence study, PL technique was used and enhanced visible spectrum was observed. For further characterization FT-IR and EDX tests were also carried out.
Werme, M; Thorén, P; Olson, L; Brené, S
1999-07-15
We have examined the effects of chronic voluntary running for 30 d on the levels of nerve growth factor inducilble-B (NGFI-B) and neuron-derived orphan receptor 1 (NOR1) mRNAs in Fischer and Lewis rats. The aim was to compare the addiction-prone Lewis rat strain to the Fischer strain in a plausible model for natural reward. The Lewis strain ran markedly more than the Fischer strain, as indicated by the length of running per day when given free access to running wheels. Both strains progressively increased their amount of daily running. By day 14, Lewis rats had reached a maximal level corresponding to 10 km/d, which slowly decreased to approximately 8 km/d. Fischer rats ran considerably less, averaging approximately 1. 5 km/d by day 30. After 30 d of running, levels of mRNA encoding NGFI-B and Nor1 were decreased in cerebral cortex in Lewis but not Fischer rats. The downregulation of NGFI-B mRNA in Lewis rats could not be attenuated by the opioid receptor antagonist naloxone. Instead, naloxone by itself downregulated NGFI-B in striatum and cerebral cortex in both strains. In contrast, naloxone had no effect on Nor1 mRNA levels, although the running-induced downregulation of Nor1 was, in most cases, attenuated by naloxone. Data from the present study suggest that the same genetic factors contributing to the drug addiction-prone behavior of Lewis rats also control the excessive running behavior and that this coincides with downregulation of transcription factors of the NGFI-B family.
Fischer-Tropsch Catalyst for Aviation Fuel Production
NASA Technical Reports Server (NTRS)
DeLaRee, Ana B.; Best, Lauren M.; Bradford, Robyn L.; Gonzalez-Arroyo, Richard; Hepp, Aloysius F.
2012-01-01
As the oil supply declines, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to nonpetroleum sources as a feedstock for aviation (and other transportation) fuels. The Fischer-Tropsch process uses a gas mixture of carbon monoxide and hydrogen which is converted into various liquid hydrocarbons; this versatile gas-to-liquid technology produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fischer-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur and aromatic compounds. It is most commonly catalyzed by cobalt supported on alumina, silica, or titania or unsupported alloyed iron powders. Cobalt is typically used more often than iron, in that cobalt is a longer-active catalyst, has lower water-gas shift activity, and lower yield of modified products. Promoters are valuable in improving Fischer-Tropsch catalyst as they can increase cobalt oxide dispersion, enhance the reduction of cobalt oxide to the active metal phase, stabilize a high metal surface area, and improve mechanical properties. Our goal is to build up the specificity of the Fischer-Tropsch catalyst while adding less-costly transition metals as promoters; the more common promoters used in Fischer-Tropsch synthesis are rhenium, platinum, and ruthenium. In this report we will describe our preliminary efforts to design and produce catalyst materials to achieve our goal of preferentially producing C8 to C18 paraffin compounds in the NASA Glenn Research Center Gas-To-Liquid processing plant. Efforts at NASA Glenn Research Center for producing green fuels using non-petroleum feedstocks support both the Sub-sonic Fixed Wing program of Fundamental Aeronautics and the In Situ Resource Utilization program of the Exploration Technology Development and Demonstration program.
Fischer-Tropsch Catalyst for Aviation Fuel Production
NASA Technical Reports Server (NTRS)
deLaRee, Ana B.; Best, Lauren M.; Hepp, Aloysius F.
2011-01-01
As the oil supply declines, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to non-petroleum sources as a feedstock for aviation (and other transportation) fuels. The Fischer-Tropsch process uses a gas mixture of carbon monoxide and hydrogen which is converted into various liquid hydrocarbons; this versatile gas-to-liquid technology produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fischer-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur and aromatic compounds. It is most commonly catalyzed by cobalt supported on alumina, silica, or titania or unsupported alloyed iron powders. Cobalt is typically used more often than iron, in that cobalt is a longer-active catalyst, has lower water-gas shift activity, and lower yield of modified products. Promoters are valuable in improving Fischer-Tropsch catalyst as they can increase cobalt oxide dispersion, enhance the reduction of cobalt oxide to the active metal phase, stabilize a high metal surface area, and improve mechanical properties. Our goal is to build up the specificity of the Fischer-Tropsch catalyst while adding less-costly transition metals as promoters; the more common promoters used in Fischer-Tropsch synthesis are rhenium, platinum, and ruthenium. In this report we will describe our preliminary efforts to design and produce catalyst materials to achieve our goal of preferentially producing C8 to C18 paraffin compounds in the NASA Glenn Research Center Gas-To-Liquid processing plant. Efforts at NASA Glenn Research Center for producing green fuels using non-petroleum feedstocks support both the Sub-sonic Fixed Wing program of Fundamental Aeronautics and the In Situ Resource Utilization program of the Exploration Technology Development and Demonstration program.
ERIC Educational Resources Information Center
Gibbs, Hope J.
2005-01-01
This article relates the experiences of Jeff Fischer, an instructor in the Computer Integrated Machining department at South Central College (SCC) in North Mankato, Minnesota. Facing dwindling student enrollment and possible departmental budget costs, Fischer was able to turn his passion for custom-built cycles and the intricate machining that…
DEVELOPMENTAL TOXICITY OF ATRAZINE METABOLITES IN FISCHER 344 RATS
Previously we have shown that atrazine, a commonly used herbicide, causes full-litter resorption (FLR) in Fischer 344 rats at 50 mg/kg. In this study, we tested four atrazine metabolites for their potential to cause FLR and developmental toxicity. Desethylatrazine (DEA), desis...
Margolis, S A; Levenson, M
2000-05-01
The calibration of Karl Fischer instruments and reagents and the compensation for instrumental bias are essential to the accurate measurement of trace levels of water in organic and inorganic chemicals. A stable, nonhygroscopic standard, Water Saturated Octanol, which is compatible with the Karl Fischer reagents, has been prepared. This material, Standard Reference Material (SRM) 2890, is homogeneous and is certified to contain 39.24 +/- 0.85 mg water/mL (expanded uncertainty) of solution (47.3 +/- 1.0 mg water/g solution, expanded uncertainty) at 21.5 degrees C. The solubility of water in -octanol has been shown to be nearly constant between 10 degrees C and 30 degrees C (i.e., within 1% of the value at 21.5 degrees C). The results of an interlaboratory comparison exercise illustrate the utility of SRM 2890 in assessing the accuracy and bias of Karl Fischer instruments and measurements.
Separation of catalyst from Fischer-Tropsch slurry
White, C.M.; Quiring, M.S.; Jensen, K.L.; Hickey, R.F.; Gillham, L.D.
1998-10-27
In a catalytic process for converting synthesis gas including hydrogen and carbon monoxide to hydrocarbons and oxygenates by a slurry Fischer-Tropsch synthesis, the wax product along with dispersed catalyst is removed from the slurry and purified by removing substantially all of the catalyst prior to upgrading the wax and returning a portion to the Fischer-Tropsch reaction. Separation of the catalyst particles from the wax product is accomplished by dense gas and/or liquid extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic in nature. The purified catalyst-free wax product can be subsequently upgraded by various methods such as hydrogenation, isomerization, hydrocracking, conversion to gasoline and other products over ZSM-5 aluminosilicate zeolite, etc. The catalyst particles are returned to the Fischer-Tropsch Reactor by mixing them with a wax fraction of appropriate molecular weight, boiling point and viscosity to avoid reactor gelation. 2 figs.
Optical characterization of pure vegetable oils and their biodiesels using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Firdous, S.; Anwar, S.; Waheed, A.; Maraj, M.
2016-04-01
Great concern regarding energy resources and environmental polution has increased interest in the study of alternative sources of energy. Biodiesels as an alternative fuel provide a suitable diesel oil substitute for internal combustion engines. The Raman spectra of pure biodiesels of soybean oil, olive oil, coconut oil, animal fats, and petroleum diesel are optically characterized for quality and biofuel as an alternative fuel. The most significant spectral differences are observed in the frequency range around 1457 cm-1 for pure petroleum diesel, 1427 for fats biodiesel, 1670 cm-1 for pure soybean oil, 1461 cm-1 for soybean oil based biodiesel, 1670 cm-1 for pure olive oil, 1666 cm-1 for olive oil based biodiesel, 1461 cm-1 for pure coconut oil, and 1460 cm-1 for coconut oil based biodiesel, which is used for the analysis of the phase composition of oils. A diode pump solid-state laser with a 532 nm wavelength is used as an illuminating light. It is demonstrated that the peak positions and relative intensities of the vibrations of the oils can be used to identify the biodiesel quality for being used as biofuel.
El Alami, Mohammed Samir Ibn; El Amrani, Mohamed Amin; Agbossou-Niedercorn, Francine; Suisse, Isabelle; Mortreux, André
2015-01-19
The preparation of optically pure secondary alcohols in the presence of catalysts based on chiral ligands derived from monoterpenes, such as pinenes, limonenes and carenes, is reviewed. A wide variety of these ligands has been synthesized and used in several catalytic reactions, including hydrogen transfer, C-C bond formation via addition of organozinc compounds to aldehydes, hydrosilylation, and oxazaborolidine reduction, leading to high activities and enantioselectivities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakur, Anjna, E-mail: anjna56@gmail.com; Thakur, Priya; Yadav, Kamlesh, E-mail: kamlesh.yadav001@gmail.com
2016-05-06
In this paper, poly (ethyl methacrylate) (PEMA) and (PEMA){sub 0.85}/(ZnO){sub 0.15} nanocomposite films for 2, 3, 4 and 5 minutes have been deposited by spray pyrolysis technique on indium tin oxide (ITO) coated substrate. The effect of thickness of the film on the morphological and optical properties of PEMA and (PEMA){sub 0.85}/(ZnO){sub 0.15} nanocomposite films are studied. The morphological and optical properties of pure PEMA and (PEMA){sub 0.85}/(ZnO){sub 0.15} nanocomposite films are compared. The field emission scanning electron microscopy (FESEM) shows that as the thickness of film increases, uniformity of films increases. It is found from UV-Visible spectra that themore » energy band gap decreases with increasing the deposition time and refractive index increases with increasing the thickness of the film. The band gap of the nanocomposites is found less than the pure polymer film and opposite trend is observed for refractive index. The optical absorption of PEMA/ZnO nanocomposite films is higher than pure PEMA film. The thickness of the nanocomposite film plays a significant role in the tunability of the optical properties.« less
Compounds for neutron radiation detectors and systems thereof
Payne, Stephen A.; Stoeffl, Wolfgang; Zaitseva, Natalia P.; Cherepy, Nerine J.; Carman, M. Leslie
2013-06-11
One embodiment includes a material exhibiting an optical response signature for neutrons that is different than an optical response signature for gamma rays, said material exhibiting performance comparable to or superior to stilbene in terms of distinguishing neutrons from gamma rays, wherein the material is not stilbene. Another embodiment includes a substantially pure crystal exhibiting an optical response signature for neutrons that is different than an optical response signature for gamma rays, the substantially pure crystal comprising a material selected from a group consisting of: 1-1-4-4-tetraphenyl-1-3-butadiene; 2-fluorobiphenyl-4-carboxylic acid; 4-biphenylcarboxylic acid; 9-10-diphenylanthracene; 9-phenylanthracene; 1-3-5-triphenylbenzene; m-terphenyl; bis-MSB; p-terphenyl; diphenylacetylene; 2-5-diphenyoxazole; 4-benzylbiphenyl; biphenyl; 4-methoxybiphenyl; n-phenylanthranilic acid; and 1-4-diphenyl-1-3-butadiene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grandjean, Didier; Morales, Fernando; Mens, Ad
2007-02-02
Combination of in situ X-ray absorption spectroscopy (XAFS) at the Co and Mn K-edges with electron microscopy (STEM-EELS) has allowed to unravel the complex structure of a series of unpromoted and Mn promoted TiO2-supported cobalt Fischer-Tropsch catalysts prepared by homogeneous deposition precipitation (HDP), both in their calcined and reduced states. After calcination the catalysts are generally composed of large Co3O4 aggregates (13-20 nm) and a MnO2-type phase that is either dispersed on the TiO2 surface or, for the major part, covering the Co3O4 particles. Additionally Mn is also forming a spinel-type Co3-xMnxO4 solid solution at the surface of the Co3O4more » particles. In pure Co or when small amount of this spinel-type phase are formed during calcination, reduction in H2 at 350 deg. C produces Co0 particles of variable sizes (3.5-15 nm) otherwise Co reduction is limited to the Co2+ state. Manganese that exists entirely in a Mn2+ state in the reduced catalysts is forming (1) a highly dispersed Ti2MnO4-type phase at the TiO2 surface, (2) a less dispersed MnO phase close to the cobalt particles that coexists with (3) a rock salt-type Mn1-xCoxO solid solution. Similarly, large amount of spinel solid solution in the calcined state favors the formation of Mn1-xCoxO-type solid solution during reduction showing that one of the main roles of the Mn promoter is to limit Co reducibility.« less
Thermal Stability Testing of a Fischer-Tropsch Fuel and Various Blends with Jet A
NASA Technical Reports Server (NTRS)
Klettlinger, Jennifer Suder; Surgenor, Angela; Yen, Chia
2010-01-01
Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. Fischer-Tropsch fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal parafins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline conventional Jet A, a commercial grade F-T jet fuel, and various blends of this F-T fuel in Jet A. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.
Fischer and Whitson during Sprint Experiment OPS
2017-05-03
iss051e037012 (May 3, 2017) --- Flight engineer Jack Fischer dons Thigh and Calf Guides in preparation for Ultrasound 2 operations for the Integrated Resistance and Aerobic Training Study (Sprint) experiment. He is assisted by Commander Peggy Whitson. Image was taken in the Columbus European Laboratory.
An improved measurement system for FOG pure lag time with no changing of FOG work status
NASA Astrophysics Data System (ADS)
Chen, X.; Yang, J. H.; Zhou, Y. L.; Shu, X. W.
2018-05-01
The minimum pure lag time is an important factor for characterizing the dynamic performance of fiber optical gyroscope. It is defined as the time duration from the reception of velocity-shock signal to the output of corresponding fiber-optic gyroscope data. Many engineering projects have required for this index specifically, so the measurement of the minimum pure lag time is highly demanded. In typically measurement system, the work status of tested FOG has to be changed. In this work, a FOG pure lag time measurement system without changing the work status of the FOG has been demonstrated. During the operation of this test system, the impact structure generated a shock towards the FOG, and the pure lag time was measured through data processing analysis. The design scheme and test principle have been researched and analyzed in detail. And a prototype has been developed and used for experiment successfully. This measurement system can realize a measurement accuracy of better than ±3 μs and a system resolution of 108.6ns.
Structural, chemical and physical properties of pure and La3+ doped L-Threonine acetate crystals
NASA Astrophysics Data System (ADS)
Senthamizhan, A.; Sambathkumar, K.; Nithiyanantham, S.; Venkatachalapathy, M.; Rajkamal, N.
2017-12-01
The pure and La3+ doped L- Threonine crystals can be grown by slow evaporation techniques. The crystal structure were examined through X-Ray diffraction (XRD) analysis, confirmed the P212121 system. The quantitative nature of dopant can be analyzed with Inductively Coupled Plasma (ICP) study. The Fourier Transform Infra-Red (FTIR) and Fourier Transform (FT- Raman) investigations yields the possible stretching/bonding with their functional groups and the qualitative/quantitative nature of both crystals is analyzed. The optical behavior of crystals can be studied through Ultra Violet (UV) - Visible spectrometer. The mechanical, thermal and decomposition studies can be carried out through Vickers hardness test, Thermo Gravometric Analysis (TGA) and Differential Thermal Analysis (DTA). The Non Linear Optical (NLO) properties are found more than Potassium Phosphate (KDP) through Kurtz powders technique. The dielectric and optical absorption studies for both pure and L-doped crystals were studied and interpreted all the properties. The La3+ dopant increases the properties are investigated.
Sawai, Hideki; Na, Kyungsu; Sasaki, Nanami; Mimitsuka, Takashi; Minegishi, Shin-ichi; Henmi, Masahiro; Yamada, Katsushige; Shimizu, Sakayu; Yonehara, Tetsu
2011-01-01
This report describes the production of highly optically pure D-lactic acid by the continuous fermentation of Sporolactobacillus laevolacticus and S. inulinus, using a membrane-integrated fermentation (MFR) system. The optical purity of D-lactic acid produced by the continuous fermentation system was greater than that produced by batch fermentation; the maximum value for the optical purity of D-lactic acid reached 99.8% enantiomeric excess by continuous fermentation when S. leavolacticus was used. The volumetric productivity of the optically pure D-lactic acid was about 12 g/L/h, this being approximately 11-fold higher than that obtained by batch fermentation. An enzymatic analysis indicated that both S. laevolacticus and S. inulinus could convert L-lactic acid to D-lactic acid by isomerization after the late-log phase. These results provide evidence for an effective bio-process to produce D-lactic acid of greater optical purity than has conventionally been achieved to date.
Human exposure to hexachlorobenzene (HCB) has resulted in demineralization of bone with osteoporosis resulting. Experiments were undertaken to investigate the effects of HCB on the homeostatic mechanism of calcium metabolism. Fischer 344 rats were dosed with 0, 0.1, 1.0, 10.0 or ...
High-Performance 3D Image Processing Architectures for Image-Guided Interventions
2008-01-01
Parallel architectures and algorithms for image understanding. Boston: Academic Press, 1991. [99] A. Bruhn, T. Jakob, M. Fischer, T. Kohlberger , J...Symposium on Pattern Recognition, vol. 2449(pp. 290-297, 2002. [100] A. Bruhn, T. Jakob, M. Fischer, T. Kohlberger , J. Weickert, U. Bruning, and C
MACROMOLECULAR ADDUCTION BY TRICHLOROACETONITRILE IN THE FISCHER 344 RAT FOLLOWING ORAL GAVAGE
Male Fischer 344 rats were administered 1- or 2-[14C]-trichloroacetonitrile (TCAN) by ral gavage. NA was isolated from the liver, kidneys and stomach and several protein fractions (globin, albumin and blobulins) were isolated from blood. CAN binds to both the DNA and the blood pr...
,
2008-01-01
Chapter 1 of this CD-ROM is a database of digitized Fischer (shale-oil) assays of cores and cuttings from boreholes drilled in the Eocene Green River oil shale deposits in southwestern Wyoming. Assays of samples from some surface sections are also included. Most of the Fischer assay analyses were made by the former U.S. Bureau of Mines (USBM) at its laboratory in Laramie, Wyoming. Other assays, made by institutional or private laboratories, were donated to the U.S. Geological Survey (USGS) and are included in this database as well as Adobe PDF-scanned images of some of the original laboratory assay reports and lithologic logs prepared by USBM geologists. The size of this database is 75.2 megabytes and includes information on 971 core holes and rotary-drilled boreholes and numerous surface sections. Most of these data were released previously by the USBM and the USGS through the National Technical Information Service but are no longer available from that agency. Fischer assays for boreholes in northeastern Utah and northwestern Colorado have been published by the USGS. Additional data include geophysical logs, groundwater data, chemical and X-ray diffraction analyses, and other data. These materials are available for inspection in the office of the USGS Central Energy Resources Team in Lakewood, Colorado. The digitized assays were checked with the original laboratory reports, but some errors likely remain. Other information, such as locations and elevations of core holes and oil and gas tests, were not thoroughly checked. However, owing to the current interest in oil-shale development, it was considered in the public interest to make this preliminary database available at this time. Chapter 2 of this CD-ROM presents oil-yield histograms of samples of cores and cuttings from exploration drill holes in the Eocene Green River Formation in the Great Divide, Green River, and Washakie Basins of southwestern Wyoming. A database was compiled that includes about 47,000 Fischer assays from 186 core holes and 240 rotary drill holes. Most of the oil yield data are from analyses performed by the former U.S. Bureau of Mines oil shale laboratory in Laramie, Wyoming, with some analyses made by private laboratories. Location data for 971 Wyoming oil-shale drill holes are listed in a spreadsheet that is included in the CD-ROM. These Wyoming Fischer assays and histograms are part of a much larger collection of oil-shale information, including geophysical and lithologic logs, water data, chemical and X-ray diffraction analyses on the Green River oil-shale deposits in Colorado, Utah, and Wyoming held by the U.S. Geological Survey. Because of an increased interest in oil shale, this CD-ROM containing Fischer assay data and oil-yield histograms for the Green River oil-shale deposits in southwestern Wyoming is being released to the public. Microsoft Excel spreadsheets included with Chapter 2 contain the Fischer assay data from the 426 holes and data on the company name and drill-hole name, and location. Histograms of the oil yields obtained from the Fischer assays are presented in both Grapher and PDF format. Fischer assay text data files are also included in the CD-ROM.
Zhang, Caili; Zhou, Cheng; Assavasirijinda, Nilnate; Yu, Bo; Wang, Limin; Ma, Yanhe
2017-11-25
Optically pure D-lactic acid (≥ 99%) is an important precursor of polylactic acid. However, there are relatively few studies on D-lactic acid fermentation compared with the extensive investigation of L-lactic acid production. Most lactic acid producers are mesophilic organisms. Optically pure D-lactic acid produced at high temperature not only could reduce the costs of sterilization but also could inhibit the growth of other bacteria, such as L-lactic acid producers. Thermophilic Bacillus coagulans is an excellent producer of L-lactic acid with capable of growing at 50 °C. In our previous study, the roles of two L-lactic acid dehydrogenases have been demonstrated in B. coagulans DSM1. In this study, the function of another annotated possible L-lactate dehydrogenase gene (ldhL3) was verified to be leucine dehydrogenase with an activity of 0.16 units (μmol/min) per mg protein. Furthermore, the activity of native D-lactate dehydrogenase was too low to support efficient D-lactic acid production, even under the control of strong promoter. Finally, an engineered B. coagulans D-DSM1 strain with the capacity for efficient production of D-lactic acid was constructed by deletion of two L-lactate dehydrogenases genes (ldhL1 and ldhL2) and insertion of the D-lactate dehydrogenase gene (LdldhD) from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 at the position of ldhL1. This genetically engineered strain produced only D-lactic acid under non-sterilized condition, and finally 145 g/L of D-lactic acid was produced with an optical purity of 99.9% and a high yield of 0.98 g/g. This is the highest optically pure D-lactic acid titer produced by a thermophilic strain.
Optically Clear and Resilient Free-Form µ-Optics 3D-Printed via Ultrafast Laser Lithography.
Jonušauskas, Linas; Gailevičius, Darius; Mikoliūnaitė, Lina; Sakalauskas, Danas; Šakirzanovas, Simas; Juodkazis, Saulius; Malinauskas, Mangirdas
2017-01-02
We introduce optically clear and resilient free-form micro-optical components of pure (non-photosensitized) organic-inorganic SZ2080 material made by femtosecond 3D laser lithography (3DLL). This is advantageous for rapid printing of 3D micro-/nano-optics, including their integration directly onto optical fibers. A systematic study of the fabrication peculiarities and quality of resultant structures is performed. Comparison of microlens resiliency to continuous wave (CW) and femtosecond pulsed exposure is determined. Experimental results prove that pure SZ2080 is ∼20 fold more resistant to high irradiance as compared with standard lithographic material (SU8) and can sustain up to 1.91 GW/cm² intensity. 3DLL is a promising manufacturing approach for high-intensity micro-optics for emerging fields in astro-photonics and atto-second pulse generation. Additionally, pyrolysis is employed to homogeneously shrink structures up to 40% by removing organic SZ2080 constituents. This opens a promising route towards downscaling photonic lattices and the creation of mechanically robust glass-ceramic microstructures.
Optically Clear and Resilient Free-Form μ-Optics 3D-Printed via Ultrafast Laser Lithography
Jonušauskas, Linas; Gailevičius, Darius; Mikoliūnaitė, Lina; Sakalauskas, Danas; Šakirzanovas, Simas; Juodkazis, Saulius; Malinauskas, Mangirdas
2017-01-01
We introduce optically clear and resilient free-form micro-optical components of pure (non-photosensitized) organic-inorganic SZ2080 material made by femtosecond 3D laser lithography (3DLL). This is advantageous for rapid printing of 3D micro-/nano-optics, including their integration directly onto optical fibers. A systematic study of the fabrication peculiarities and quality of resultant structures is performed. Comparison of microlens resiliency to continuous wave (CW) and femtosecond pulsed exposure is determined. Experimental results prove that pure SZ2080 is ∼20 fold more resistant to high irradiance as compared with standard lithographic material (SU8) and can sustain up to 1.91 GW/cm2 intensity. 3DLL is a promising manufacturing approach for high-intensity micro-optics for emerging fields in astro-photonics and atto-second pulse generation. Additionally, pyrolysis is employed to homogeneously shrink structures up to 40% by removing organic SZ2080 constituents. This opens a promising route towards downscaling photonic lattices and the creation of mechanically robust glass-ceramic microstructures. PMID:28772389
Optical Measurement Technology For Aluminium Extrusions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moe, Per Thomas; Willa-Hansen, Arnfinn; Stoeren, Sigurd
2007-04-07
Optical measurement techniques such as laser scanning, structured light scanning and photogrammetry can be used for accurate shape control for aluminum extrusion and downstream processes. The paper presents the fundamentals of optical shape measurement. Furthermore, it focuses on how full-field in- and off-line shape measurement during pure-bending of aluminum extrusions has been performed with stripe projection (structured light) using white light. Full field shape measurement is difficult to implement industrially, but is very useful as a laboratory tool. For example, it has been clearly shown how moderate internal air pressure (less than 5 bars) can significantly reduce undesirable cross-sectional shapemore » distortions during pure bending, and how buckling of the compressive flange occurs at an early stage. Finally, a stretch-bending set-up with adaptive shape control using internal gas pressure and optical techniques is presented.« less
Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene.
Wu, Zhi-Feng; Gao, Peng-Fei; Guo, Lei; Kang, Jun; Fang, Dang-Qi; Zhang, Yang; Xia, Ming-Gang; Zhang, Sheng-Li; Wen, Yu-Hua
2017-12-06
A traditional doping technique plays an important role in the band structure engineering of two-dimensional nanostructures. Since electron interaction is changed by doping, the optical and electrochemical properties could also be significantly tuned. In this study, density functional theory calculations have been employed to explore the structural stability, and electronic and optical properties of B-doped phosphorene. The results show that all B-doped phosphorenes are stable with a relatively low binding energy. Of particular interest is that these B-doped systems exhibit an indirect band gap, which is distinct from the direct one of pure phosphorene. Despite the different concentrations and configurations of B dopants, such indirect band gaps are robust. The screened hybrid density functional HSE06 predicts that the band gap of B-doped phosphorene is slightly smaller than that of pure phosphorene. Spatial charge distributions at the valence band maximum (VBM) and the conduction band minimum (CBM) are analyzed to understand the features of an indirect band gap. By comparison with pure phosphorene, B-doped phosphorenes exhibit strong anisotropy and intensity of optical absorption. Moreover, B dopants could enhance the stability of Li adsorption on phosphorene with less sacrifice of the Li diffusion rate. Our results suggest that B-doping is an effective way of tuning the band gap, enhancing the intensity of optical absorption and improving the performances of Li adsorption, which could promote potential applications in novel optical devices and lithium-ion batteries.
Physiatrie and German maternal feminism: Dr. Anna Fischer-Dückelmann critiques academic medicine.
Meyer, Paulette
2006-01-01
Alternative medicine and reform strategies made Anna Fischer-Dückelmann a most controversial, notorious, and widely read women doctor before World War I. She published a dozen titles in 13 languages asserting that national well-being depended on maternal prowess. To her critics, Fischer-Dückelmann's commitment to medical self-help and practices of Physiatrie amounted to medical quackery. Her career has been largely unexamined, yet her feminist critiques and social concerns are not far removed from modern social medicine. For this pioneering doctor, treating physical and emotional ills and promoting the health of families were first steps toward healing the divisions of a world at war.
NASA Technical Reports Server (NTRS)
Klettlinger, J.; Rich, R.; Yen, C.; Surgenor, A.
2011-01-01
Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. Fischer-Tropsch fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal parafins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline conventional Jet A, a commercial grade F-T jet fuel, and various blends of this F-T fuel in Jet A. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.
Two classes of capillary optical fibers: refractive and photonic
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2008-11-01
This paper is a digest tutorial on some properties of capillary optical fibers (COF). Two basic types of capillary optical fibers are clearly distinguished. The classification is based on propagation mechanism of optical wave. The refractive, singlemode COF guides a dark hollow beam of light (DHB) with zero intensity on fiber axis. The photonic, singlemode COF carries nearly a perfect axial Gaussian beam with maximum intensity on fiber axis. A subject of the paper are these two basic kinds of capillary optical fibers of pure refractive and pure photonic mechanism of guided wave transmission. In a real capillary the wave may be transmitted by a mixed mechanism, refractive and photonic, with strong interaction of photonic and refractive guided wave modes. Refractive capillary optical fibers are used widely for photonic instrumentation applications, while photonic capillary optical fibers are considered for trunk optical communications. Replacement of classical, single mode, dispersion shifted, 1550nm optimized optical fibers for communications with photonic capillaries would potentially cause a next serious revolution in optical communications. The predictions say that such a revolution may happen within this decade. This dream is however not fulfilled yet. The paper compares guided modes in both kinds of optical fiber capillaries: refractive and photonic. The differences are emphasized indicating prospective application areas of these fibers.
IMMUNOTOXICITY OF 2-METHOXYETHANOL FOLLOWING ORAL ADMINISTRATION IN FISCHER 344 RATS
The immunotoxicity of the glycol ether 2-methoxyethanol (ME) as evaluated in adult Fischer 344 rats using a variety of in vitro and in vivo immune function assays. n the first phase of this study, male rats are dosed by oral gavage with ME in water, at dosages ranging from 50 to ...
Process for upgrading wax from Fischer-Tropsch synthesis
Derr, Jr., W. Rodman; Garwood, William E.; Kuo, James C.; Leib, Tiberiu M.; Nace, Donald M.; Tabak, Samuel A.
1987-01-01
The waxy liquid phase of an oil suspension of Fischer-Tropsch catalyst containing dissolved wax is separated out and the wax is converted by hydrocracking, dewaxing or by catalytic cracking with a low activity catalyst to provide a highly olefinic product which may be further converted to premium quality gasoline and/or distillate fuel.
Modeling Synchronization in Networks of Delay-Coupled Fiber Ring Lasers
2011-11-21
synchronication of delay-couple oscillators,” Chaos 20, 043127 (2010). 10. J. Mulet , C. Mirasso, T. Heil, and I. Fischer, “Synchronication scenario of two...distant mutually coupled semi- conductor lasers,” J. Opt. B: Quantum Semiclassical Opt. 6, 97–105 (2004). 11. T. Heil, I. Fischer, W. Elsasser, J. Mulet
Fischer and Schrock Carbene Complexes: A Molecular Modeling Exercise
ERIC Educational Resources Information Center
Montgomery, Craig D.
2015-01-01
An exercise in molecular modeling that demonstrates the distinctive features of Fischer and Schrock carbene complexes is presented. Semi-empirical calculations (PM3) demonstrate the singlet ground electronic state, restricted rotation about the C-Y bond, the positive charge on the carbon atom, and hence, the electrophilic nature of the Fischer…
Wang, Haifeng; Ma, Kang; Zhang, Wei; Li, Jia; Sun, Guohua; Li, Hongmei
2012-10-15
Certified reference materials (CRMs) of water content are widely used in the calibration and validation of Karl Fischer coulometry and volumetry. In this study, the water content of the water saturated 1-octanol (WSO) CRM was certified by Karl Fischer coulometry, volumetry and quantitative nuclear magnetic resonance (Q NMR). The water content recovery by coulometry was 99.76% with a diaphragm-less electrode and Coulomat AG anolyte. The relative bias between the coulometry and volumetry results was 0.06%. In Q NMR, the water content of WSO is traceable to the International System (SI) of units through the purity of internal standard. The relative bias of water content in WSO between Q NMR and volumetry was 0.50%. The consistency of results for these three independent methods improves the accuracy of the certification of the RM. The certified water content of the WSO CRM was 4.76% with an expanded uncertainty of 0.09%. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kulkarni, Rupali B.; Anis, Mohd; Hussaini, S. S.; Shirsat, Mahendra D.
2018-03-01
Present investigation reports the growth of pure and L-threonine (LT) doped cadmium thiourea acetate (CTA) crystals by slow solution evaporation technique followed by structural, optical and dielectric characterization studies. A bulk single crystal of LT-CTA has been grown at temperature 38 °C. The single crystal x-ray diffraction technique has been employed to confirm the structural parameters of pure and LT doped CTA crystals. The increase in optical transparency of LT-CTA crystal was ascertained in the range of 200 to 900 nm using UV-visible spectral analysis. The widened optical band gap of the LT-CTA crystal is found to be 4.7 eV. Pure and doped crystals are subjected to FT-IR analysis to indicate the presence of functional groups quantitatively. Appreciable enhancement in second harmonic generation (SHG) efficiency of LT-CTA crystal with reference to parent CTA was confirmed from Kurtz-Perry SHG test (1.31 times of CTA crystal). The assertive influence of LT on electrical properties of grown crystals has been investigated in the temperature range 35 °C-120 °C. Electronic purity and the color centered photoluminescence emission nature of pure and IA-CTA crystals were justified by luminescence analysis. With the aid of single beam Z-scan analysis, the Kerr lensing nonlinearity was identified and the magnitude of TONLO parameters has been determined. The cubic susceptibility (χ3) and figure of merit (FOM) was found to be 4.81 × 10-4esu and 978.35. Results vitalize LT-CTA for laser stabilization systems.
1980-05-01
International Conference, Vol 1, Dhahran, Saudi Arabia (November 1975), pp 508-510. + C. W. J. Van Koppen, L. S. Fischer, and A. Dijkmans ...S. Fischer, and A. Dijkmans , "Stratification Effects in te Short and Long Term Storage of Solar Heat," Proceed- ings, 1978 meeting of Amercan Sec
Process for upgrading wax from Fischer-Tropsch synthesis
Derr, W.R. Jr.; Garwood, W.E.; Kuo, J.C.; Leib, T.M.; Nace, D.M.; Tabak, S.A.
1987-08-04
The waxy liquid phase of an oil suspension of Fischer-Tropsch catalyst containing dissolved wax is separated out and the wax is converted by hydrocracking, dewaxing or by catalytic cracking with a low activity catalyst to provide a highly olefinic product which may be further converted to premium quality gasoline and/or distillate fuel. 2 figs.
Cobalt Fischer-Tropsch catalysts having improved selectivity
Miller, James G.; Rabo, Jule A.
1989-01-01
The promoter(s) Mn oxide or Mn oxide and Zr oxide are added to a cobalt Fischer-Tropsch catalyst combined with the molecular sieve TC-103 or TC-123 such that the resultant catalyst demonstrates improved product selectivity, stability and catalyst life. The improved selectivity is evidenced by lower methane production, higher C5+ yield and increased olefin production.
ERIC Educational Resources Information Center
Stein, Jeffrey S.; Pinkston, Jonathan W.; Brewer, Adam T.; Francisco, Monica T.; Madden, Gregory J.
2012-01-01
Lewis rats have been shown to make more impulsive choices than Fischer 344 rats in discrete trial choice procedures that arrange fixed (i.e., nontitrating) reinforcement parameters. However, nontitrating procedures yield only gross estimates of preference, as choice measures in animal subjects are rarely graded at the level of the individual…
ERIC Educational Resources Information Center
Madden, Gregory J.; Smith, Nathaniel G.; Brewer, Adam T.; Pinkston, Jonathan W.; Johnson, Patrick S.
2008-01-01
Previous research has shown that Lewis rats make more impulsive choices than Fischer 344 rats. Such strain-related differences in choice are important as they may provide an avenue for exploring genetic and neurochemical contributions to impulsive choice. The present systematic replication was designed to determine if these findings could be…
ERIC Educational Resources Information Center
Steinberg, Laurence; Cauffman, Elizabeth; Woolard, Jennifer; Graham, Sandra; Banich, Marie
2009-01-01
The authors respond to both the general and specific concerns raised in Fischer, Stein, and Heikkinen's commentary on their article (Steinberg, Cauffman, Woolard, Graham, & Banich), in which they drew on studies of adolescent development to justify the American Psychological Association's positions in two Supreme Court cases involving the…
ERIC Educational Resources Information Center
Ross, Amanda D.; Waehler, Charles A.; Gray, Torie N.
2013-01-01
An important original study by Dorland and Fischer noted how the use of inclusive language can affect the therapeutic relationship positively for gay, lesbian, and bisexual clients. In this extension of that study with heterosexual participants ("N" = 179), there seemed to be low, but positive, salience of the language used by the…
Gardner, A.L.
1999-01-01
The purpose of this application is to conserve the spelling of the specific name of Cervus gouazoubira Fischer, 1814 for the brown brocket deer of South America (family Cervidae). This spelling, rather than the original gouazoubira, has been in virtually universal usage for almost 50 years.
USDA-ARS?s Scientific Manuscript database
In a study of comparability of total water contents (%) of conditioned cottons by Karl Fischer Titration (KFT) and Low Temperature Distillation (LTD) reference methods, we demonstrated a match of averaged results based on a large number of replications and weighing the test specimens at the same tim...
SUBCHRONIC TOXICITY OF 1,3,5-TRINITROBENZENE IN FISCHER 344 RATS
The subchronic toxicity of 1,3,5-trinitrobenzene (TNB) in male and female Fischer 344 rats was evaluated by feeding a powdered certified laboratory diet containing 0, 66.7, 400 and 800 mg TNB/kg diet for 90 days. The calculated average TNB intake was 4.29, 24.70, and 49.28 mg/kg...
Space Station Crew Members Discuss Life in Space with Country Music Legends
2017-06-29
Aboard the International Space Station, Expedition 52 Flight Engineers Jack Fischer and Peggy Whitson of NASA discussed life and research on the orbital outpost with country music stars Garth Brooks and Trisha Yearwood, during an in-flight chat June 29. Brooks and Yearwood placed the call during a tour of NASA’s Johnson Space Center in Houston in the wake of a social media post Fischer made prior to his launch in April that listed Brooks’ song “The River” as one of his favorites. Fischer and Whitson are scheduled to remain in orbit aboard the station until early September when they will return to Earth in a Russian Soyuz spacecraft for a parachute-assisted landing on the steppe of Kazakhstan.
2017-04-13
jsc2017e043083 (April 13, 2017) --- At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 51 crewmembers Fyodor Yurchikhin of the Russian Federal Space Agency (Roscosmos, left) and Jack Fischer of NASA (right) display commemorative items April 13 that will be used as “zero-G” mascot indicators in the Soyuz MS-04 descent module over their heads during launch and their ascent to orbit. Yurchikhin is holding several toys from his children and Fischer is holding an emblem of the MD Anderson Cancer Center in Houston, where his daughter, Sariah was treated. Fischer and Yurchikhin will liftoff April 20 from the Baikonur Cosmodrome on the Soyuz MS-04 spacecraft for a four and a half month mission on the International Space Station. NASA/Victor Zelentsov
NASA Astrophysics Data System (ADS)
Poornaprakash, B.; Chalapathi, U.; Purusottam Reddy, B.; Prabhakar Vattikuti, S. V.; Siva Pratap Reddy, M.; Park, Si-Hyun
2018-03-01
The sensible tuning of the structural, optical, and magnetic properties of ZnO nanoparticles (NPs) with suitable doping can enhance their applicability in diverse fields. In this study, we synthesized ZnO NPs with Er (0-4 at%) doping and their elemental, structural, optical, and magnetic properties were studied. Both field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) studies of the suspensions consist of hexagonal shaped NPs. All the prepared NPs exhibited hexagonal phase as demonstrated by powder x-ray diffraction studies. A blue shift was observed in the Er doped ZnO NPs compared to pure ZnO, indicating the increased optical bandgap. Vibrating sample magnetometer studies exhibited the pure ZnO NPs was typical diamagnetic feature whereas all the Er doped ZnO NPs were paramagnetic feature at 300 K. This is the first paramagnetic report on Er doped ZnO NPs.
NASA Astrophysics Data System (ADS)
Popov, A. S.; Uklein, A. V.; Multian, V. V.; Dantec, R. Le; Kostenyukova, E. I.; Bezkrovnaya, O. N.; Pritula, I. M.; Gayvoronsky, V. Ya.
2016-11-01
Optical properties and nonlinear optical response due to the CW and pulsed laser radiation self-action at 532 nm were studied in composites based on KDP single crystals with incorporated nanofibriles of nanostructured oxyhydroxide of aluminum (NOA). It was shown a high optical quality and structural homogeneity of nanocomposites KDP:NOA by the transmittance spectra, elastic optical scattering and XRD analysis. It was observed manifestation of the second harmonic generation efficiency enhancement in the KDP:NOA versus the nominally pure KDP (λ=1064 nm, τ=1 ns) that is correlated with efficient refractive index self-modulation Δn ∼10-4 (λ=532 nm, τ=30 ps). In the pyramidal and prismatic growth sectors of the nominally pure KDP crystal it was shown opposite signs of the photoinduced variations both of the refractive index and of the optical absorption/bleaching due to resonant excitation of the native defects at 532 nm. It should be considered for the wide-aperture laser frequency KDP family based convertors fabrication.
NASA Astrophysics Data System (ADS)
Kumar, R. Ashok; Sivakumar, N.; Vizhi, R. Ezhil; Babu, D. Rajan
2011-02-01
This work investigates the influence of iron doping on Potassium Hydrogen Phthalate (KHP) single crystals by the slow evaporation solution growth technique. Factors such as evaporation rate, solution pH, solute concentration, super saturation limit, etc. are very important in order to have optically transparent single crystals. As part of the work, the effects of metallic salt FeCl 3 in different concentrations were analyzed with pure KHP. Powder X-ray diffraction suggests that the grown crystals are crystallized in the orthorhombic structure. The functional groups and the effect of moisture on the doped crystals can be analyzed with the help of a FTIR spectrum. The pure and doped KHP single crystal shows good transparency in the entire visible region, which is suitable for optical device applications. The refractive indices along b axis of pure and doped KHP single crystals were analyzed by the prism coupling technique. The emission of green light with the use of a Nd:YAG laser ( λ=1064 nm) confirmed the second harmonic generation properties of the grown crystals.
Growth and characterization of pure and Ca2+ doped MnHg(SCN)4 single crystals
NASA Astrophysics Data System (ADS)
Latha, C.; Mahadevan, C. K.; Guo, Li; Liu, Jinghe
2018-05-01
Manganese-mercury thiocyanate, MnHg(SCN)4, crystal is considered to be an important organometallic nonlinear optical (NLO) material exhibiting higher thermal stability and second harmonic generation (SHG) efficiency. In order to understand the effect of Ca2+ as an impurity on the physicochemical properties, we have grown pure and Ca2+ doped (with a concentration of 1 mol%) MnHg(SCN)4 single crystals by the free evaporation of solvent method and characterized structurally, chemically, optically and electrically by adopting the available standard methods. Results obtained indicate that Ca2+ doping increases significantly the optical transmittance, SHG efficiency, and DC electrical conductivity and decreases the dielectric loss factor (improves the crystal quality), and AC electrical conductivity without distorting the crystal structure. Also, the low dielectric constant (εr) values observed for both the pure and doped crystals considered at near ambient temperatures indicate the possibility of using these crystals not only as potential NLO materials (useful in the photonics industry) but also as promising low εr value dielectric materials (useful in the microelectronics industry).
DFT calculations of graphene monolayer in presence of Fe dopant and vacancy
NASA Astrophysics Data System (ADS)
Ostovari, Fatemeh; Hasanpoori, Marziyeh; Abbasnejad, Mohaddeseh; Salehi, Mohammad Ali
2018-07-01
In the present work, the effects of Fe doping and vacancies on the electronic, magnetic and optical properties of graphene are studied by density functional theory based calculations. The conductive behavior is revealed for the various defected graphene by means of electronic density of states. However, defected structures show different magnetic and optical properties compared to those of pure one. The ferromagnetic phase is the most probable phase by substituting Fe atoms and vacancies at AA sublattice of graphene. The optical properties of impure graphene differ from pure graphene under illumination with parallel polarization of electric field, whereas for perpendicular polarization it remains unchanged. In presence of defect and under parallel polarization of light, the static dielectric constant rises strongly and the maximum peak of Im ε(ω) shows red shift relative to pure graphene. Moreover, the maximum absorption peak gets broaden in the visible to infrared region at the same condition and the magnitude and related energy of peaks shift to higher value in the EELS spectra. Furthermore, the results show that the maximum values of refractive index and reflectivity spectra increase rapidly and represent the red and blue shifts; respectively. Generally; substituting the C atom with Fe has more effect on magnetic and optical properties relative to the C vacancies.
NASA Astrophysics Data System (ADS)
Kochuparampil, A. P.; Joshi, J. H.; Joshi, M. J.
2017-09-01
As ammonium dihydrogen phosphate (ADP) is a popular nonlinear optical crystal, to engineer its linear and nonlinear optical properties, the chalcogenide compound cobalt sulphide (CoS) was doped and the crystals were grown by the slow solvent evaporation method. To increase the solubility of CoS in water, its nanoparticles were synthesized by wet chemical technique using ethylene diamine as the capping agent followed by microwave irradiation. The nanoparticle sample exhibited finite solubility in water and was used to dope in ADP crystals. The powder XRD patterns showed the single phase nature of the doped crystals. The FTIR spectra confirmed the presence of various functional groups and EDAX gave the estimation of Co and S elements. The EPR spectroscopy also confirmed the presence of cobalt in the doped samples. TGA indicated slightly less thermal stability of the doped crystals compared to the pure ADP. The dielectric study was carried out at room temperature in the frequency range from 100Hz to 1MHz. Also, various linear optical parameters were evaluated for pure and doped crystals using UV-Vis spectroscopy. The second harmonic generation (SHG) efficiency of Nd:YAG laser was evaluated by the Kurtz and Parry method for the doped samples, it was found to be slightly lesser than that of the pure ADP crystals.
NASA Astrophysics Data System (ADS)
Gopalakrishna, Smitha Mysore; Murugendrappa, Malalkere Veerappa
2018-05-01
In this paper we bring forth the effect of La0.7Ca0.3MnO3 (LCM) perovskite nano particle on the optical band gap in composition with conducting Polypyrrole (PPy) prepared by chemical oxidation method. The morphology and crystalline phase were determined by SEM, TEM and X-Ray diffraction studies. The Optical band gap studies were analyzed using the UV-VIS spectrometer scanned in the range 200 nm to 600 nm for pure PPy and PPy/LCM composites. There is a characteristic peak observed for the composites situated around 315 nm for pure PPy, PPy/LCM10 and PPy/LCM50. But for higher compositions of LCM weight percentage like 30%, 40% and 50% the peak shift slightly to higher wavelength side. The peak shifts to 320 nm, 325 nm and 335 nm respectively. The optical band gap increased for Pure PPy, PPy/LCM10 and PPy/LCM20 and found to decrease gradually for PPy/LCM30, PPy/LCM40 and PPy/LCM50. The studies suggest that LCM composition in the PPy chain has a role in modifying the wavelength and in turn its band gap. The study may find application in organic devices working at high frequency and voltage.
Magesh, G; Bhoopathi, G; Nithya, N; Arun, A P; Ranjith Kumar, E
2018-05-26
In this work, ZnO nanoparticles were prepared by in situ chemical precipitation method in the presence of Agar biopolymer. The influence of Agar concentrations on the structural, morphological and optical properties of ZnO have been investigated. The XRD pattern of Pure ZnO and Agar/ZnO nanocomposites indicates the hexagonal wurtzite phase of ZnO. The crystallite size of pure ZnO and Agar/ZnO nanocomposites was found to be in the range of 35.5 to 19.73 nm. Pure ZnO and Agar/ZnO nanocomposites showed nanospheroid and nanopaddy shaped morphology from FESEM studies. The interplanar distance observed from the HRTEM image confirms the plane of the prepared material. The elemental composition of the samples were characterized by EDX. The optical properties of Pure ZnO and Agar/ZnO nanocomposites were characterized by UV, FTIR and PL. The band gap of Agar/ZnO nanocomposites were varied with the Agar concentration. Oxygen vacancy induced photoluminescence of ZnO are observed and its intensity is found to be increased linearly with the Agar concentration. The antibacterial activity of ZnO and Agar/ZnO nanocomposites was evaluated by disc diffusion method against Gram-positive (B.subtilis) and Gram-negative (P. aeruginosa) bacteria. The cytotoxicity of Agar/ZnO nanocomposites was studied against Normal (L929) and Breast cancer cell line (MB231). The result of this investigation reveals that the Agar/ZnO nanocomposites deliver a dose dependent toxicity in normal and cancer cell line. Copyright © 2018. Published by Elsevier B.V.
Growth and characterization of pure and Cadmium chloride doped KDP Crystals grown by gel medium
NASA Astrophysics Data System (ADS)
Kalaivani, M. S.; Asaithambi, T.
2016-10-01
Crystal growth technology provides an important basis for many industrial branches. Crystals are the unrecognized pillars of modern technology. Without crystals, there is no electronic industry, no photonic industry, and no fiber optic communications. Single crystals play a major role and form the strongest base for the fast growing field of engineering, science and technology. Crystal growth is an interdisciplinary subject covering physics, chemistry, material science, chemical engineering, metallurgy, crystallography, mineralogy, etc. In past few decades, there has been a keen interest on crystal growth processes, particularly in view of the increasing demand of materials for technological applications. Optically good quality pure and metal doped KDP crystals have been grown by gel method at room temperature and their characterization have been studied. Gel method is a much uncomplicated method and can be utilized to synthesize crystals which are having low solubility. Potassium dihydrogen orthophosphate KH2PO4 (KDP) continues to be an interesting material both academically and industrially. KDP is a representative of hydrogen bonded materials which possess very good electro - optic and nonlinear optical properties in addition to interesting electrical properties. Due to this interesting properties, we made an attempt to grow pure and cadmium chloride doped KDP crystals in various concentrations (0.002, 0.004, 0.006, 0.008 and 0.010) using gel method. The grown crystals were collected after 20 days. We get crystals with good quality and shaped. The dc electrical conductivity (resistance, capacitance and dielectric constant) values were measured at frequencies in the range of 1 KHZ and 100 HZ of pure and cadmium chloride added crystal with a temperature range of 400C to 1300C using simple two probe setup with Q band digital LCR meter present in our lab. The electrical conductivity increases with increase of temperature. The dielectric constants of metal doped KDP crystals were slightly decreased compared to pure KDP crystals.
Study of linear optical parameters of sodium sulphide nano-particles added ADP crystals
NASA Astrophysics Data System (ADS)
Kochuparampil, A. P.; Joshi, J. H.; Dixit, K. P.; Jethva, H. O.; Joshi, M. J.
2017-05-01
Ammonium Dihydrogen Phosphate (ADP) is one of the nonlinear optical crystals. It is having various applications like optical mixing, electro-optical modulator, harmonic generators, etc. Chalcogenide compounds are poorly soluble in water and difficult to add in the water soluble ADP crystals. The solubility of Chalcogenide compounds can be increased by synthesizing the nano-structured samples with suitable capping agent. In the present study sodium sulphide was added in to ADP to modify its linear optical parameters. Sodium sulphide nano particles were synthesized by co-precipitation technique using Ethylene diamine as capping agent followed by microwave irradiation. The powder XRD confirmed the nano-structured nature of sodium sulphide nano particles. The solubility of nanoparticles of sodium sulphide increased significantly in water compared to the bulk. Pure and Na2S added ADP crystals were grown by slow solvent evaporation method at room temperature. The presence of sodium in ADP was confirmed by AAS. The UV-Vis spectra were recorded for all crystals. Various optical parameters like, transmittance, energy band gap, extinction coefficient, refractive index, optical conductivity, etc. were evaluated. The electronic polarizibility of pure and doped crystals calculated from energy band gap. The effect of doping concentration was found on various parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabo, J.A.
Of the twelve catalysts tested in this quarter, none showed any significant effectiveness. The principal value of the quarter's work has been in whatever guidance may be derived from the negative findings, especially what they may tell us about the design parameters of a good catalyst. The most effective catalyst developed to date, Catalyst 6 (Run 11677-11) of the Third Annual Report, was composed of Co/Th/X/sub 4//UCC-103+UCC-101. This quarter's findings suggest three specifics of that catalyst which should prove useful in shaping further work. First, that the X/sub 4/ component is probably a key contributor to stability. Second, that themore » source of the X/sub 4/ is important; the X/sub 4/ must be free of known catalyst poisons, or have those poisons completely removed without impairing the cobalt Fischer-Tropsch activity. And third, that extra, physically mixed UCC-101 apparently contributes little if anything to stability. Eight of the twelve runs were devoted to tests of water gas shift catalysts in different formulations and methods of preparation, and under different operating conditions. Many attempts have been made to develop a copper-zinc water gas shift catalyst which will function effectively in combination with a Fischer-Tropsch catalyst and at the Fischer-Tropsch operating temperatures. The failure of these trials to date suggests that the water gas shift components may be deactivated by intermediates or products of Fischer-Tropsch synthesis. Yet attempts to isolate the water gas shift component from the Fischer-Tropsch products have been equally fruitless. 177 figs., 30 tabs.« less
Albumin dialysis has a favorable effect on amino acid profile in hepatic encephalopathy.
Koivusalo, Anna-Maria; Teikari, Taru; Höckerstedt, Krister; Isoniemi, Helena
2008-12-01
According to one popular theory, hepatic encephalopathy (HE) is partly caused by an imbalance in plasma amino acid levels. The Fischer's ratio between branched chain amino acids (BCAAs) and aromatic amino acids (AAAs) correlates with the degree of HE; the lower Fischer's ratio, the higher the grade of HE. Extra-corporeal liver support systems, like MARS(R)-albumin dialysis (Molecular Adsorbents Recirculating System), can improve HE. The MARS(R) system uses a hyperosmolar albumin circuit to remove both water-soluble and albumin-bound substances. Plasma levels of neuroactive amino acids were analyzed in 82 consecutive patients with life-threatening liver failure admitted to our ICU. All patients fulfilled our indications for MARS treatment and most also fulfilled the criteria for liver transplantation (LTx). In patients with acute liver failure (ALF), as compared to those with acute decompensation of chronic liver failure (AcOChr), levels of leucine and isoleucine were significantly higher before MARS(R) treatment. In all patients, before MARS(R) treatment the higher the grade of HE grade the lower was the Fischer's ratio and higher were the levels of inhibitory neuroactive amino acids. During MARS(R) treatments the Fischer's ratio increased, and the grade of HE decreased. The increase in Fischer's ratio was mainly due to the decrease in AAAs. The plasma levels of neuroactive amino acids, methionine, glutamine, glutamate, histidine and taurine decreased during MARS(R)-treatment. In this study MARS(R)-albumin dialysis had a favorable effect on the plasma amino acid profile of patients with HE.
USDA-ARS?s Scientific Manuscript database
In a preliminary study to measure total water in lint cotton we demonstrated that volumetric Karl Fischer Titration of moisture transported by a carrier gas from an attached small oven is more accurate than standard oven drying in air. The objective of the present study was to assess the measuremen...
CHRONIC TOXICITY OF 1,3,5-TRINITROBENZENE IN FISCHER 344 RATS
The chronic toxicity of 1,3,5-trinitrobenzene (TNB) in male and female Fischer 344 (F344) rats was evaluated by feeding a diet containing 0, 5, 60 and 300 ppm of TNB for 2 years. The calculated average TNB intake over 2 years for males and females was 0.22, 2.64, 13.44 and 0.23,...
Development and Application of Skill Standards for Security Practitioners
2006-07-01
Development and Application of Skill Standards for Security Practitioners Henry K. Simpson Northrop Grumman Technical Services Lynn F. Fischer...and Application of Skill Standards for Security Practitioners Henry K. Simpson, Northrop Grumman Technical Services Lynn F. Fischer, Defense...described in the present report was driven by a JSTC tasking to develop skill standards for security practitioners in seven different security
Mercier, Tracey J.; Brownfield, Michael E.; Johnson, Ronald C.; Self, Jesse G.
1998-01-01
This CD-ROM includes updated files containing Fischer assays of samples of core holes and cuttings from exploration drill holes drilled in the Eocene Green River Formation in the Piceance Basin of northwestern Colorado. A database was compiled that includes more than 321,380 Fischer assays from 782 boreholes. Most of the oil yield data were analyzed by the former U.S. Bureau of Mines oil shale laboratory in Laramie, Wyoming, and some analyses were made by private laboratories. Location data for 1,042 core and rotary holes, oil and gas tests, as well as a few surface sections are listed in a spreadsheet and included in the CD-ROM. These assays are part of a larger collection of subsurface information held by the U.S. Geological Survey, including geophysical and lithologic logs, water data, and chemical and X-ray diffraction analyses having to do with the Green River oil shale deposits in Colorado, Wyoming, and Utah. Because of an increased interest in oil shale, this CD-ROM disc containing updated Fischer assay data for the Piceance Basin oil shale deposits in northwestern Colorado is being released to the public.
Reductions in aircraft particulate emissions due to the use of Fischer-Tropsch fuels
NASA Astrophysics Data System (ADS)
Beyersdorf, A. J.; Timko, M. T.; Ziemba, L. D.; Bulzan, D.; Corporan, E.; Herndon, S. C.; Howard, R.; Miake-Lye, R.; Thornhill, K. L.; Winstead, E.; Wey, C.; Yu, Z.; Anderson, B. E.
2013-06-01
The use of alternative fuels for aviation is likely to increase due to concerns over fuel security, price stability and the sustainability of fuel sources. Concurrent reductions in particulate emissions from these alternative fuels are expected because of changes in fuel composition including reduced sulfur and aromatic content. The NASA Alternative Aviation Fuel Experiment (AAFEX) was conducted in January-February 2009 to investigate the effects of synthetic fuels on gas-phase and particulate emissions. Standard petroleum JP-8 fuel, pure synthetic fuels produced from natural gas and coal feedstocks using the Fischer-Tropsch (FT) process, and 50% blends of both fuels were tested in the CFM-56 engines on a DC-8 aircraft. To examine plume chemistry and particle evolution with time, samples were drawn from inlet probes positioned 1, 30, and 145 m downstream of the aircraft engines. No significant alteration to engine performance was measured when burning the alternative fuels. However, leaks in the aircraft fuel system were detected when operated with the pure FT fuels as a result of the absence of aromatic compounds in the fuel. Dramatic reductions in soot emissions were measured for both the pure FT fuels (reductions of 84% averaged over all powers) and blended fuels (64%) relative to the JP-8 baseline with the largest reductions at idle conditions. The alternative fuels also produced smaller soot (e.g. at 85% power, volume mean diameters were reduced from 78 nm for JP-8 to 51 nm for the FT fuel), which may reduce their ability to act as cloud condensation nuclei (CCN). The reductions in particulate emissions are expected for all alternative fuels with similar reductions in fuel sulfur and aromatic content regardless of the feedstock. As the plume cools downwind of the engine, nucleation-mode aerosols form. For the pure FT fuels, reductions (94% averaged over all powers) in downwind particle number emissions were similar to those measured at the exhaust plane (84%). However, the blended fuels had less of a reduction (reductions of 30-44%) than initially measured (64%). The likely explanation is that the reduced soot emissions in the blended fuel exhaust plume results in promotion of new particle formation microphysics, rather than coating on pre-existing soot particles, which is dominant in the JP-8 exhaust plume. Downwind particle volume emissions were reduced for both the pure (79 and 86% reductions) and blended FT fuels (36 and 46%) due to the large reductions in soot emissions. In addition, the alternative fuels had reduced particulate sulfate production (near-zero for FT fuels) due to decreased fuel sulfur content. To study the formation of volatile aerosols (defined as any aerosol formed as the plume ages) in more detail, tests were performed at varying ambient temperatures (-4 to 20 °C). At idle, particle number and volume emissions were reduced linearly with increasing ambient temperature, with best fit slopes corresponding to -1.2 × 106 # (kg fuel)-1 °C-1 for particle number emissions and -9.7 mm3 (kg fuel)-1 °C-1 for particle volume emissions. The temperature dependence of aerosol formation can have large effects on local air quality surrounding airports in cold regions. Aircraft produced aerosols in these regions will be much larger than levels expected based solely on measurements made directly at the engine exit plane. The majority (90% at idle) of the volatile aerosol mass formed as nucleation-mode aerosols with a smaller fraction as a soot coating. Conversion efficiencies of up to 3.8% were measured for the partitioning of gas-phase precursors (unburned hydrocarbons and SO2) to form volatile aerosols. Highest conversion efficiencies were measured at 45% power.
Radiation effects on beta 10.6 of pure and europium doped KCl
NASA Technical Reports Server (NTRS)
Grimes, H. H.; Maisel, J. E.; Hartford, R. H.
1975-01-01
Changes in the optical absorption coefficient as a result of X-ray and electron bombardment of pure KCl (monocrystalline and polycrystalline), and divalent europium doped polycrystalline KCl were determined. The optical absorption coefficients were measured by a constant heat flow calorimetric method. Both 300 KV X-irradiation and 2 MeV electron irradiation produced significant increases in beta 10.6, measured at room temperature. The X-irradiation of pure moncrystalline KCl increased beta 10.6 by 0.005/cm for a 113 MR dose. For an equivalent dose, 2 MeV electrons were found less efficient in changing beta 10.6. However, electron irradiation of pure and Eu-doped polycrystalline KCl produced marked increases in adsorption. Beta increased to over 0.25/cm in Eu-doped material for a 30 x 10 to the 14th power electrons/sq cm dose, a factor of 20 increase over unirradiated material. Moreover, bleaching the electron irradiated doped KCl with 649 m light produced and additional factor of 1.5 increase. These findings will be discussed in light of known defect-center properties in KCl.
NASA Astrophysics Data System (ADS)
Mareeswaran, S.; Asaithambi, T.
2016-10-01
Now a day's crystals are the pillars of current technology. Crystals are applied in various fields like fiber optic communications, electronic industry, photonic industry, etc. Crystal growth is an interesting and innovative field in the subject of physics, chemistry, material science, metallurgy, chemical engineering, mineralogy and crystallography. In recent decades optically good quality of pure and metal doped KDP crystals have been grown by gel growth method in room temperature and its characterizations were studied. Gel method is a very simple and one of the easiest methods among the various crystal growth methods. Potassium dihydrogen phosphate KH2PO4 (KDP) continues to be an interesting material both academically and technologically. KDP is a delegate of hydrogen bonded materials which possess very good electrical and nonlinear optical properties in addition to interesting electro-optic properties. We made an attempt to grow pure and titanium oxide doped KDP crystals with various doping concentrations (0.002, 0.004, 0.006, 0.008 and 0.010) using gel method. The grown crystals were collected after 20 days. We get crystals with good quality and shaped crystals. The dc electrical conductivity (resistance, capacitance and dielectric constant) values of the above grown crystals were measured at two different frequencies (1KHz and 100 Hz) with a temperature range of 500C to 1200C using simple two probe setup with Q band digital LCR meter present in our lab. The electrical conductivity increases with the increase of temperature. Dielectric constants value of titanium oxide doped KDP crystal was slightly decreased compared with pure KDP crystals. Results were discussed in details.
Wang, Hualei; Sun, Huihui; Wei, Dongzhi
2013-02-18
A nitrilase-mediated pathway has significant advantages in the production of optically pure (R)-(-)-mandelic acid. However, unwanted byproduct, low enantioselectivity, and specific activity reduce its value in practical applications. An ideal nitrilase that can efficiently hydrolyze mandelonitrile to optically pure (R)-(-)-mandelic acid without the unwanted byproduct is needed. A novel nitrilase (BCJ2315) was discovered from Burkholderia cenocepacia J2315 through phylogeny-based enzymatic substrate specificity prediction (PESSP). This nitrilase is a mandelonitrile hydrolase that could efficiently hydrolyze mandelonitrile to (R)-(-)-mandelic acid, with a high enantiomeric excess of 98.4%. No byproduct was observed in this hydrolysis process. BCJ2315 showed the highest identity of 71% compared with other nitrilases in the amino acid sequence. BCJ2315 possessed the highest activity toward mandelonitrile and took mandelonitrile as the optimal substrate based on the analysis of substrate specificity. The kinetic parameters Vmax, Km, Kcat, and Kcat/Km toward mandelonitrile were 45.4 μmol/min/mg, 0.14 mM, 15.4 s(-1), and 1.1×10(5) M(-1)s(-1), respectively. The recombinant Escherichia coli M15/BCJ2315 had a strong substrate tolerance and could completely hydrolyze mandelonitrile (100 mM) with fewer amounts of wet cells (10 mg/ml) within 1 h. PESSP is an efficient method for discovering an ideal mandelonitrile hydrolase. BCJ2315 has high affinity and catalytic efficiency toward mandelonitrile. This nitrilase has great advantages in the production of optically pure (R)-(-)-mandelic acid because of its high activity and enantioselectivity, strong substrate tolerance, and having no unwanted byproduct. Thus, BCJ2315 has great potential in the practical production of optically pure (R)-(-)-mandelic acid in the industry.
The New Special Relationship: Redefining America’s Strategic Partnership With Germany
2015-05-01
confidence in his government, which narrowly succeeded.21 Additionally, both Chancellor Schröder and then-Foreign Minister Joschka Fischer were instrumental...support within international institutions. Foreign Minister Fischer in particular labored to coordinate a common European position as well as...Damon M. Wilson, and Jeff Lightfoot, Anchoring the Alliance (Washington, DC: Atlantic Council of the United States, 2012 33 Sebastian Schulte
Effect of structural promoters on Fe-based Fischer-Tropsch synthesis of biomass derived syngas
Pratibha Sharma; Thomas Elder; Leslie H. Groom; James J. Spivey
2014-01-01
Biomass gasification and subsequent conversion of this syngas to liquid hydrocarbons using FischerâTropsch (FâT) synthesis is a promising source of hydrocarbon fuels. However, biomass-derived syngas is different from syngas obtained from other sources such as steam reforming of methane. Specifically the H2/CO ratio is less than 1/1 and the CO
33 CFR 100.124 - Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, New York.
Code of Federal Regulations, 2011 CFR
2011-07-01
... South Bay Cross Bay Swim, Great South Bay, New York. 100.124 Section 100.124 Navigation and Navigable... NAVIGABLE WATERS § 100.124 Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, New York. (a) Regulated area. All navigable waters of Great South Bay, NY within a 100 yard radius of each...
Fe-based Fischer Tropsch Synthesis of biomass-derived syngas: Effect of synthesis method
Khiet Mai; Thomas Elder; Les Groom; James J. Spivey
2015-01-01
Two 100Fe/4Cu/4K/6Zn catalysts were prepared using two different methods: coprecipitation or impregnation methods. The effect of the preparation methods on the catalyst structure, catalytic properties, and the conversion of biomass-derived syngas via FischerâTropsch synthesis was investigated. Syngas was derived from gasifying Southern pine woodchips and had the...
F-T process using an iron on mixed zirconia-titania supported catalyst
Dyer, Paul N.; Nordquist, Andrew F.; Pierantozzi, Ronald
1987-01-01
A Fischer-Tropsch catalyst comprising iron co-deposited with or deposited on particles comprising a mixture of zirconia and titania, preferably formed by co-precipitation of compounds convertible to zirconia and titania, such as zirconium and titanium alkoxide. The invention also comprises the method of making this catalyst and an improved Fischer-Tropsch reaction process in which the catalyst is utilized.
Zheng, Yan-Song; Hu, Yu-Jian; Li, Dong-Mi; Chen, Yi-Chang
2010-01-15
Pure enantiomers of carboxylic acids are a class of important biomolecules, chiral drugs, chiral reagents, etc. Analysis of the enantiomers usually needs expensive instrument or complex chiral receptors. However, to develop simple and reliable methods for the enantiomer analysis of acids is difficult. In this paper, chiral recognition of 2,3-dibenzoyltartaric acid and mandelic acid was first carried out by aggregation-induced emission molecules bearing optically pure aminol group, which was easily synthesized. The chiral recognition is not only seen by naked eyes but also measured by fluorophotometer. The difference of fluorescence intensity between the two enantiomers of the acids aroused by the aggregation-induced emission molecules was up to 598. The chiral recognition could be applied to quantitative analysis of enantiomer content of chiral acids. More chiral AIE amines need to be developed for enantiomer analysis of more carboxylic acids.
Fiber Optic Communications Technology. A Status Report.
ERIC Educational Resources Information Center
Hull, Joseph A.
Fiber optic communications (communications over very pure glass transmission channels of diameter comparable to a human hair) is an emerging technology which promises most improvements in communications capacity at reasonable cost. The fiber transmission system offers many desirable characteristics representing improvements over conventional…
Optical and morphological study of disorder in opals
NASA Astrophysics Data System (ADS)
Palacios-Lidón, E.; Juárez, B. H.; Castillo-Martínez, E.; López, C.
2005-03-01
An optical and morphological study has been carried out to understand the role of intrinsic defects in the optical properties of opal-based photonic crystals. By doping poly(methylmethacrylate) (PMMA) thin-film opals with larger polystyrene (PS) spheres, structural disorder has being generated perturbing the PMMA matrix periodicity. It is shown that this disorder dramatically affects the optical response of the system worsening its photonic properties. It has been found that the effect of doping is highly dependent not only on the concentration but also on the relative size of the dopant with reference to the matrix. Through a detailed scanning electron microscopy inspection, the sort of structural defects involved, derived from the different particle size used, has been characterized. A direct relationship between the observed optical response with the different perturbations generated in the lattice has been found. In addition, from this study it can be concluded that it is possible to grow high quality alloyed photonic crystals, exhibiting intermediate photonic properties between pure PMMA and pure PS opals by simple sphere size matching and variation of the relative concentration of both components.
Analysis of the optical properties of bile
NASA Astrophysics Data System (ADS)
Baldini, Francesco; Bechi, Paolo; Cianchi, Fabio; Falai, Alida; Fiorillo, Claudia; Nassi, Paolo
2000-07-01
Invasive bile determination is very useful in the diagnosis of many gastric pathologies. At the moment, this measurement is performed with Bilitec 2000, an optical fiber sensor, that is based on absorption by bilirubin. Nevertheless, erroneous evaluations are possible, due to the different configurations which the bilirubin molecule can adopt. The optical behavior of human samples of pure bile and bile+gastric juice has been examined using an optical fiber spectrophotometer and two suitable modified Bilitec 2000 units. A protocol has been established for the treatment of biological fluids, in order to make it possible to study the behavior of their optical properties as a function of pH and concentration without causing any alteration in the samples. The analysis of pH dependence evidenced the presence of different calibration curves at different pH values: the self-aggregation of the bilirubin molecules observed in pure bile samples was almost totally absent in the gastric samples. Measurements carried out on Bilitec 2000 showed that the most appropriate wavelength for bilirubin detection in the stomach should be 470 nm.
Abdel-Rahman, Mohamed Ali; Sonomoto, Kenji
2016-10-20
There has been growing interest in the microbial production of optically pure lactic acid due to the increased demand for lactic acid-derived environmentally friendly products, for example biodegradable plastic (poly-lactic acid), as an alternative to petroleum-derived materials. To maximize the market uptake of these products, their cost should be competitive and this could be achieved by decreasing the production cost of the raw material, that is, lactic acid. It is of great importance to isolate and develop robust and highly efficient microbial lactic acid producers. Alongside the fermentative substrate and concentration, the yield and productivity of lactic acid are key parameters and major factors in determining the final production cost of lactic acid. In this review, we will discuss the current limitations and challenges for cost-efficient microbial production of optically pure lactic acid. The main obstacles to effective fermentation are the use of food resources, indirect utilization of polymeric sugars, sensitivity to inhibitory compounds released during biomass treatments, substrate inhibition, decreased lactic acid yield and productivity, inefficient utilization of mixed sugars, end product inhibition, increased use of neutralizing agents, contamination problems, and decreased optical purity of lactic acid. Furthermore, opportunities to address and overcome these limitations, either by fermentation technology or metabolic engineering approaches, will be introduced and discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Zeolites for CO2-CO-O2 Separation to Obtain CO2-Neutral Fuels.
Perez-Carbajo, Julio; Matito-Martos, Ismael; Balestra, Salvador R G; Tsampas, Mihalis N; van de Sanden, Mauritius C M; Delgado, José A; Águeda, V Ismael; Merkling, Patrick J; Calero, Sofia
2018-06-20
Carbon dioxide release has become an important global issue due to the significant and continuous rise in atmospheric CO 2 concentrations and the depletion of carbon-based energy resources. Plasmolysis is a very energy-efficient process for reintroducing CO 2 into energy and chemical cycles by converting CO 2 into CO and O 2 utilizing renewable electricity. The bottleneck of the process is that CO remains mixed with O 2 and residual CO 2 . Therefore, efficient gas separation and recuperation are essential for obtaining pure CO, which, via water gas shift and Fischer-Tropsch reactions, can lead to the production of CO 2 -neutral fuels. The idea behind this work is to provide a separation mechanism based on zeolites to optimize the separation of carbon dioxide, carbon monoxide, and oxygen under mild operational conditions. To achieve this goal, we performed a thorough screening of available zeolites based on topology and adsorptive properties using molecular simulation and ideal adsorption solution theory. FAU, BRE, and MTW are identified as suitable topologies for these separation processes. FAU can be used for the separation of carbon dioxide from carbon monoxide and oxygen and BRE or MTW for the separation of carbon monoxide from oxygen. These results are reinforced by pressure swing adsorption simulations at room temperature combining adsorption columns with pure silica FAU zeolite and zeolite BRE at a Si/Al ratio of 3. These zeolites have the added advantage of being commercially available.
Investigation on the Enhanced Oxidation of Ferritic/Martensitic Steel P92 in Pure Steam
Yuan, Juntao; Wu, Ximao; Wang, Wen; Zhu, Shenglong; Wang, Fuhui
2014-01-01
Oxidation of ferritic/martensitic steel P92 was investigated in pure oxygen and in pure steam at 600–800 °C by thermogravimetric analysis (TGA), optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The results showed that the oxidation of P92 was significantly enhanced and multilayer scale with an outer iron oxides layer formed in pure steam. At 700 °C, the gas switch markedly influenced the scaling kinetics and scale microstructure. It was supposed that the higher affinity of iron to steam would be attributed to the enhanced oxidation of P92 in pure steam, and the much easier transport of hydroxyl would account for the significant difference induced by gas switch. PMID:28788592
Huffman, Gerald P.
2012-11-13
A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.
Revés, Marc; Achard, Thierry; Solà, Jordi; Riera, Antoni; Verdaguer, Xavier
2008-09-19
Here we synthesized a family of racemic and optically pure N-phosphino-p-tolylsulfinamide (PNSO) ligands. Their stability and coordination behavior toward dicobalt-alkyne complexes was evaluated. Selectivities of up to 3:1 were achieved in the ligand exchange process with (mu-TMSC2H)Co2(CO)6. The resulting optically pure major complexes were tested in the asymmetric intermolecular Pauson-Khand reaction and yielded up to 94% ee. X-ray studies of the major complex 18a indicated that the presence of an aryl group on the sulfinamide reduces the hemilabile character of the PNSO ligands.
Synergistic effect of indium and gallium co-doping on the properties of RF sputtered ZnO thin films
NASA Astrophysics Data System (ADS)
Shaheera, M.; Girija, K. G.; Kaur, Manmeet; Geetha, V.; Debnath, A. K.; Karri, Malvika; Thota, Manoj Kumar; Vatsa, R. K.; Muthe, K. P.; Gadkari, S. C.
2018-04-01
ZnO thin films were synthesized using RF magnetron sputtering, with simultaneous incorporation of Indium (In) and Gallium (Ga). The structural, optical, chemical composition and surface morphology of the pure and co-doped (IGZO) thin films were characterized by X-Ray diffraction (XRD), UV-visible spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), and Raman spectroscopy. XRD revealed that these films were oriented along c-axis with hexagonal wurtzite structure. The (002) diffraction peak in the co-doped sample was observed at 33.76° with a slight shift towards lower 2θ values as compared to pure ZnO. The surface morphology of the two thin films was observed to differ. For pure ZnO films, round grains were observed and for IGZO thin films round as well as rod type grains were observed. All thin films synthesized show excellent optical properties with more than 90% transmission in the visible region and band gap of the films is observed to decrease with co-doping. The co doping of In and Ga is therefore expected to provide a broad range optical and physical properties of ZnO thin films for a variety of optoelectronic applications.
Martínez-Gómez, Ana Isabel; Martínez-Rodríguez, Sergio; Clemente-Jiménez, Josefa María; Pozo-Dengra, Joaquín; Rodríguez-Vico, Felipe; Las Heras-Vázquez, Francisco Javier
2007-01-01
Two recombinant reaction systems for the production of optically pure d-amino acids from different d,l-5-monosubstituted hydantoins were constructed. Each system contained three enzymes, two of which were d-hydantoinase and d-carbamoylase from Agrobacterium tumefaciens BQL9. The third enzyme was hydantoin racemase 1 for the first system and hydantoin racemase 2 for the second system, both from A. tumefaciens C58. Each system was formed by using a recombinant Escherichia coli strain with one plasmid harboring three genes coexpressed with one promoter in a polycistronic structure. The d-carbamoylase gene was cloned closest to the promoter in order to obtain the highest level of synthesis of the enzyme, thus avoiding intermediate accumulation, which decreases the reaction rate. Both systems were able to produce 100% conversion and 100% optically pure d-methionine, d-leucine, d-norleucine, d-norvaline, d-aminobutyric acid, d-valine, d-phenylalanine, d-tyrosine, and d-tryptophan from the corresponding hydantoin racemic mixture. For the production of almost all d-amino acids studied in this work, system 1 hydrolyzed the 5-monosubstituted hydantoins faster than system 2. PMID:17220246
Schneider, Nathanaëlle; Lincot, Daniel
2013-01-01
Summary This paper describes the atomic layer deposition of In2(S,O)3 films by using In(acac)3 (acac = acetylacetonate), H2S and either H2O or O2 plasma as oxygen sources. First, the growth of pure In2S3 films was studied in order to better understand the influence of the oxygen pulses. X-Ray diffraction measurements, optical analysis and energy dispersive X-ray spectroscopy were performed to characterize the samples. When H2O was used as the oxygen source, the films have structural and optical properties, and the atomic composition of pure In2S3. No pure In2O3 films could be grown by using H2O or O2 plasma. However, In2(S,O)3 films could be successfully grown by using O2 plasma as oxygen source at a deposition temperature of T = 160 °C, because of an exchange reaction between S and O atoms. By adjusting the number of In2O3 growth cycles in relation to the number of In2S3 growth cycles, the optical band gap of the resulting thin films could be tuned. PMID:24367743
Bugot, Cathy; Schneider, Nathanaëlle; Lincot, Daniel; Donsanti, Frédérique
2013-01-01
This paper describes the atomic layer deposition of In2(S,O)3 films by using In(acac)3 (acac = acetylacetonate), H2S and either H2O or O2 plasma as oxygen sources. First, the growth of pure In2S3 films was studied in order to better understand the influence of the oxygen pulses. X-Ray diffraction measurements, optical analysis and energy dispersive X-ray spectroscopy were performed to characterize the samples. When H2O was used as the oxygen source, the films have structural and optical properties, and the atomic composition of pure In2S3. No pure In2O3 films could be grown by using H2O or O2 plasma. However, In2(S,O)3 films could be successfully grown by using O2 plasma as oxygen source at a deposition temperature of T = 160 °C, because of an exchange reaction between S and O atoms. By adjusting the number of In2O3 growth cycles in relation to the number of In2S3 growth cycles, the optical band gap of the resulting thin films could be tuned.
Optical, electrical properties and structural characterization of ZnO:rGO based photodetector
NASA Astrophysics Data System (ADS)
Nath, Debarati; Mandal, S. K.; Deb, Debajit; Rakshit, J. K.; Dey, P.; Roy, J. N.
2018-04-01
Pure ZnO and ZnO:rGO composite films are prepared by sol-gel process and the effect of reduced graphene oxide(rGO) on structural, optical and electrical properties of the film are studied. UV-visspectrum shows that composite film exhibit similar optical absorbance property as pure ZnOfilm. Band gap of the film is changed from 3.32 to 3.21 eV by incorporation of rGO. From current-voltage curve it can be observed that photo current is increased significantly in composite film under red laser light illumination. This result suggests that conduction mechanism in composite film is dominated by rGO. Nyquist plot of both films show only one semicircle behavior in measured frequency range, which may be attributed to grain boundaries effects in the composite.
Chemical spray pyrolyzed kesterite Cu2ZnSnS4 (CZTS) thin films
NASA Astrophysics Data System (ADS)
Khalate, S. A.; Kate, R. S.; Deokate, R. J.
2018-04-01
Pure kesterite phase thin films of Cu2ZnSnS4 (CZTS) were synthesized at different substrate temperatures using sulphate precursors by spray pyrolysis method. The significance of synthesis temperature on the structural, morphological and optical properties has been studied. The X-ray analysis assured that synthesized CZTS thin films showing pure kesterite phase. The value of crystallite size was found maximum at the substrate temperature 400 °C. At the same temperature, microstructural properties such as dislocation density, micro-strain and stacking fault probability were found minimum. The morphological examination designates the development of porous and uniform CZTS thin films. The synthesized CZTS thin films illustrate excellent optical absorption (105 cm-1) in the visible band and the optical band gap varies in the range of 1.489 eV to 1.499 eV.
Norton, C G; Suedmeyer, J; Oderkerk, B; Fieback, T M
2014-05-01
A new optical flow cell with a new optical arrangement adapted for high pressures and temperatures using glass fibres to connect light source, cell, and spectrometer has been developed, as part of a larger project comprising new methods for in situ analysis of bio and hydrogen gas mixtures in high pressure and temperature applications. The analysis is based on measurements of optical, thermo-physical, and electromagnetic properties in gas mixtures with newly developed high pressure property sensors, which are mounted in a new apparatus which can generate gas mixtures with up to six components with an uncertainty of composition of as little as 0.1 mol. %. Measurements of several pure components of natural gases and biogases to a pressure of 20 MPa were performed on two isotherms, and with binary mixtures of the same pure gases at pressures to 17.5 MPa. Thereby a new method of analyzing the obtained spectra based on the partial density of methane was investigated.
Purely wavelength- and amplitude-modulated quartz-enhanced photoacoustic spectroscopy.
Patimisco, Pietro; Sampaolo, Angelo; Bidaux, Yves; Bismuto, Alfredo; Scott, Marshall; Jiang, James; Muller, Antoine; Faist, Jerome; Tittel, Frank K; Spagnolo, Vincenzo
2016-11-14
We report here on a quartz-enhanced photoacoustic (QEPAS) sensor employing a quantum cascade laser (QCL) structure capable of operating in a pure amplitude or wavelength modulation configuration. The QCL structure is composed of three electrically independent sections: Gain, Phase (PS) and Master Oscillator (MO). Selective current pumping of these three sections allows obtaining laser wavelength tuning without changes in the optical power, and power modulation without emission wavelength shifts. A pure QEPAS amplitude modulation condition is obtained by modulating the PS current, while pure wavelength modulation is achieved by modulating simultaneously the MO and PS QCL sections and slowly scanning the DC current level injected in the PS section.
NASA Astrophysics Data System (ADS)
Bairy, Raghavendra; Jayarama, A.; Shivakumar, G. K.; Patil, P. S.; Bhat, K. Udaya
2018-04-01
Thin films of undoped and zinc doped CdO have been deposited on glass substrate using spray pyrolysis technique with various dopant concentrations of Zn such as 1, 5 and 10%. Influence of Zn doping on CdO thin films for the structural, morphological, optical and nonlinear optical properties are reported. XRD analysis reveals that as prepared pure and Zn doped CdO films show polycrystalline nature with face centered cubic structure. Also, Zn doping does not significantly modify the crystallinity and not much increase in the crystallite size of the film. SEM images shows grains which are uniform and grain size with increase in dopant concentration. The transmittance of the prepared CdO films recorded in the UV visible spectra and it shows 50 to 60% in the visible region. The estimated optical band gap increases from 2.60 to 2.70 eV for various dopant concentrations. The nonlinear optical absorption of Zn-doped CdO films have been measured used the Z-scan technique at a wavelength 532 nm. The nonlinear optical absorption coefficient (β), nonlinear refractive index (n2) and the third order nonlinear optical susceptibility (χ(3)) of the pure and Zn doped films were determined.
Processes and catalysts for conducting fischer-tropsch synthesis in a slurry bubble column reactor
Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.
1999-01-01
Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided.
All optical detection of picosecond spin-wave dynamics in 2D annular antidot lattice
NASA Astrophysics Data System (ADS)
Porwal, Nikita; Mondal, Sucheta; Choudhury, Samiran; De, Anulekha; Sinha, Jaivardhan; Barman, Anjan; Datta, Prasanta Kumar
2018-02-01
Novel magnetic structures with precisely controlled dimensions and shapes at the nanoscale have potential applications in spin logic, spintronics and other spin-based communication devices. We report the fabrication of 2D bi-structure magnonic crystal in the form of embedded nanodots in a periodic Ni80Fe20 antidot lattice structure (annular antidot) by focused ion-beam lithography. The spin-wave spectra of the annular antidot sample, studied for the first time by a time-resolved magneto-optic Kerr effect microscopy show a remarkable variation with bias field, which is important for the above device applications. The optically induced spin-wave spectra show multiple modes in the frequency range 14.7 GHz-3.5 GHz due to collective interactions between the dots and antidots as well as the annular elements within the whole array. Numerical simulations qualitatively reproduce the experimental results, and simulated mode profiles reveal the spatial distribution of the spin-wave modes and internal magnetic fields responsible for these observations. It is observed that the internal field strength increases by about 200 Oe inside each dot embedded within the hole of annular antidot lattice as compared to pure antidot lattice and pure dot lattice. The stray field for the annular antidot lattice is found to be significant (0.8 kOe) as opposed to the negligible values of the same for the pure dot lattice and pure antidot lattice. Our findings open up new possibilities for development of novel artificial crystals.
Studies of dynamic processes in biomedicine by high-speed spectral optical coherence tomography
NASA Astrophysics Data System (ADS)
Wojtkowski, M.; Kowalczyk, A.
2007-02-01
This contribution demonstrates potential of Spectral Optical Coherence Tomography (SOCT) for studies of dynamic processes in biomedicine occurring at various time scales. Several examples from ophthalmology, optometry, surgery, neurology are given to illustrate the extension of SOCT beyond pure morphological investigations.
Thermodynamically efficient solar concentrators
NASA Astrophysics Data System (ADS)
Winston, Roland
2012-10-01
Non-imaging Optics is the theory of thermodynamically efficient optics and as such depends more on thermodynamics than on optics. Hence in this paper a condition for the "best" design is proposed based on purely thermodynamic arguments, which we believe has profound consequences for design of thermal and even photovoltaic systems. This new way of looking at the problem of efficient concentration depends on probabilities, the ingredients of entropy and information theory while "optics" in the conventional sense recedes into the background.
Laser cooling of rubidium atoms in a 2D optical lattice
NASA Astrophysics Data System (ADS)
Wei, Chunhua; Kuhn, Carlos C. N.
2018-06-01
Lossless polarization gradient cooling of ?? atoms in a far-detuned 2D optical lattice is demonstrated. Temperatures down to ?K and phase space densities as high as 1 / 1000 are achieved in a total duty cycle of ?. It is shown that utilizing the vector component of the optical lattice allows lower temperatures to be achieved when compared with pure scalar lattices.
Process Technology for Tunable Fischer Tropsch Synthesis Towards Middle Distillate Fuel Fractions
2008-08-04
Catalyst Preparation (III) ● Incipient Wetness Used to impregnate Potassium Solution onto Iron (K / Fe atomic ratio = .02). Catalyst dried overnight at T...80oC then calcined for 1 hour at T = 350oC ● Incipient Wetness Used to impregnate Copper Solution onto Iron ( Cu / Fe atomic ratio = .01...Fischer Tropsch technologies that target the production of TP SBF through process, catalyst , and reactor improvements. Investigate Supercritical
Electrochemical and Spectroscopic Investigation of Molten Chloroaluminates and Related Solvents
1988-11-07
chemistry of iridium carbonyl complexes known to be active Fischer-Tropsch catalysts (described below). These studies represent the first successful in...electrochemical studies, e. g., doole potential step chronocoulometry, of this system are in progress. 3: hemistry of iridium carbonyls in sodium...chloroaluminates’/The iridium carbonyl species 1r4(CO)12 and IrCl(CO)3 have previously been shown to serve as Fischer-Tropsch catalysts in acidic sodium
1997-01-16
Administration Following Physical and Environmental Stressors in Fischer-344 and Lewis Female Rats" Name of Candidate: Kelly Brown Doctor...Title ofDissertation: Examination ofAcute Sensitivity to Morphine and Morphine Self- Administration Following Physical and Environmental Stressors in...to tolerance, toxicity, or addiction liability. IV Examination ofAcute Sensitivity to Morphine and Morphine Self-Administration Following Physical and
Process for Assessing the Stability of HAN (Hydroxylammonium Nitrate)-Based Liquid Propellants
1989-02-09
Scholz, Guidelines by Messrs. Riedel - de Haen for Titration according to the Karl Fischer Method ), 3. Auflage/3rd Edition 1982 /22/ JANDER; G. and... Potentiometric determination of the equivalence point is the most suitable method /15/. Time is saved by using automatically recording titration 33...propellant. The water content of liquid propellants on the basis of HAN according to Fig. 6 can be determined directly by Karl Fischer titration. This
Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor
Singleton, A.H.; Oukaci, R.; Goodwin, J.G.
1999-08-17
Processes and catalysts are disclosed for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided. 1 fig.
Effect of potassium promoter on cobalt nano-catalysts for fischer-tropsch reaction
NASA Astrophysics Data System (ADS)
Ali, Sardar; Mohd Zabidi, Noor Asmawati; Subbarao, Duvvuri
2012-09-01
In the present work effect of potassium on cobalt nano-catalysts for Fischer-Tropsch reaction has been presented. The catalysts were prepared using a wet impregnation method and promoted with potassium. Samples were characterized by nitrogen adsorption, H2-TPR, and TEM. The Fischer-Tropsch Synthesis (FTS) was carried out in a fixed-bed microreactor 220 δC, 1 atm, H2/CO = 2 and a velocity (SV) =12 L/g.h. for 5 h. Addition of potassium into Co/CNTs decreased the average size of cobalt nanoparticles and the catalyst reducibility. Potassium-promoted Co catalyst resulted in appreciable increase in the selectivity of C5+ hydrocarbons and suppressed methane formation. The 0.06%KCo/CNTs catalyst enhanced the C5+ hydrocarbons selectivity by a factor of 23.5% and reduced the methane selectivity by a factor of 39.6%
[Study on the change of optical zone after femtosecond laser assisted laser in situ keratomileusis].
Li, H; Chen, M; Tian, L; Li, D W; Peng, Y S; Zhang, F F
2018-01-11
Objective: To explore the change of optical zone after femtosecond laser assisted laser in sitn keratomileusis(FS-LASIK) so as to provide the reference for measurement and design of clinical optical zone. Methods: This retrospective case series study covers 41 eyes of 24 patients (7 males and 17 females, aged from 18 to 42 years old) with myopia and myopic astigmatism who have received FS-LASIK surgery at Corneal Refractive Department of Qingdao Eye Hospital and completed over 6 months of clinical follow-up. Pentacam system (with the application of 6 corneal topographic map modes including: the pure axial curvature topographic map, the pure tangential curvature topographic map, the axial curvature difference topographic map, the tangential curvature difference topographic map, the postoperative front elevation map and the corneal thickness difference topographic map), combined with transparent concentric software (a system independently developed by Qingdao Eye Hospital) was used to measure the optical zone at 1, 3 and 6 months postoperatively, the optical zone diameters measurement results among different follow-up times in group were analyzed with the repeated measures analysis of variance, and the actual measured values and the theoretical design values of the optical zone were analyzed with independent-samples t-testing. Spearman correlation coefficient ( r(s) ) have been applied to evaluate the relationship between postoperative optical zone measurement values and the potential influencing factors. Results: The optical zone diameters measured by pure axial curvature topographic map at 1, 3 and 6 months after FS-LASIK showed (6.55±0.50)mm, (6.50±0.53)mm and (6.48±0.53)mm respectively. The differences between values are of no statistical significance ( F= 1.60, P= 0.21), the optical zone diameter measured by pure tangential curvature topographic map at 1, 3 and 6 months after FS-LASIK showed (5.44±0.46)mm, (5.46±0.52)mm and (5.44±0.50)mm respectively, the differences between values are of no statistical significance ( F= 0.17, P= 0.85). The optical zone diameters measured by postoperative front elevation map at 1, 3 and 6 months after FS-LASIK showed (5.06±0.28)mm, (5.12±0.32)mm and (5.17±0.28)mm respectively. The differences between the values of 3 and 6 months postoperatively are of no statistical significance ( F= 6.14, P= 0.15), the optical zone diameters measured by axial curvature difference topographic map at 1, 3 and 6 months after FS-LASIK showed (6.51±0.37)mm, (6.45±0.41)mm and (6.41±0.40)mm respectively, and the differences between the values of 3 and 6 months postoperatively are of no statistical significance ( F= 7.25, P= 0.05). The optical zone diameters measured by tangential curvature difference topographic map at 1, 3 and 6 months after FS-LASIK showed (5.21±0.23)mm, (5.16±0.19)mm and (5.17±0.20) mm respectively, and the differences between the values of 1 and 3 months postoperatively are of statistical significance ( F= 1.75, P= 0.04). The optical zone diameters measured by corneal thickness difference topographic map at 1, 3 and 6 months after FS-LASIK showed (6.53±0.40)mm, (6.39±0.43)mm and (6.41±0.47)mm respectively, and the differences between the values of 1 and 3 months postoperatively are of statistical significance ( F= 1.67, P= 0.032). The actual measured optical zone values from the 6 different modes of Pentacam system are less than the theoretical design values (7.75 mm), and the differences were statistical significance ( t= -15.42, -29.39, -59.27, -21.47, -81.69, -18.22, P< 0.01). Conclusions: The optical zone measurement values tend to be stable at 3 months after FS-LASIK. The actual measured values from all the 6 different modes of Pentacam system were less than the theoretical design values. The results from pure tangential curvature topographic map, the tangential curvature difference topographic map and the postoperative front elevation map showed greater variation with clear border, which was beneficial for eccentric research. The results from pure axial curvature topographic map, the axial curvature difference topographic map and the corneal thickness difference topographic map were close to the theoretically designed values. Furthermore, the axial curvature difference topographic map showed clearer border and less variation thus maybe more favorable for measuring optical zone in clinical application. (Chin J Ophthalmol, 2018, 54: 39-47) .
Growth and characterization of pure and glycine doped cadmium thiourea sulphate (GCTS) crystals
NASA Astrophysics Data System (ADS)
Lawrence, M.; Thomas Joseph Prakash, J.
2012-06-01
The pure and glycine doped cadmium thiourea sulphate (GCTS) single crystals were grown successfully by slow evaporation method at room temperature. The concentration of dopant in the mother solution was 1 mol%. There is a change in unit cell. The Fourier transform infrared spectroscopy study confirms the incorporation of glycine into CTS crystal. The doped crystals are optically better and more transparent than the pure ones. The dopant increases the hardness value of the material. The grown crystals were also subjected to thermal and NLO studies.
Microbial genome sequencing using optical mapping and Illumina sequencing
USDA-ARS?s Scientific Manuscript database
Introduction Optical mapping is a technique in which strands of genomic DNA are digested with one or more restriction enzymes, and a physical map of the genome constructed from the resulting image. In outline, genomic DNA is extracted from a pure culture, linearly arrayed on a specialized glass sli...
NASA Astrophysics Data System (ADS)
Berk, Alexander
2013-03-01
Exact expansions for Voigt line-shape total, line-tail and spectral bin equivalent widths and for Voigt finite spectral bin single-line transmittances have been derived in terms of optical depth dependent exponentially-scaled modified Bessel functions of integer order and optical depth independent Fourier integral coefficients. The series are convergent for the full range of Voigt line-shapes, from pure Doppler to pure Lorentzian. In the Lorentz limit, the expansion reduces to the Ladenburg and Reiche function for the total equivalent width. Analytic expressions are derived for the first 8 Fourier coefficients for pure Lorentzian lines, for pure Doppler lines and for Voigt lines with at most moderate Doppler dependence. A strong-line limit sum rule on the Fourier coefficients is enforced to define an additional Fourier coefficient and to optimize convergence of the truncated expansion. The moderate Doppler dependence scenario is applicable to and has been implemented in the MODTRAN5 atmospheric band model radiative transfer software. Finite-bin transmittances computed with the truncated expansions reduce transmittance residuals compared to the former Rodgers-Williams equivalent width based approach by ∼2 orders of magnitude.
Induction of optical vortex in the crystals subjected to bending stresses.
Skab, Ihor; Vasylkiv, Yurij; Vlokh, Rostyslav
2012-08-20
We describe a method for generation of optical vortices that relies on bending of transparent parallelepiped-shaped samples fabricated from either glass or crystalline solid materials. It is shown that the induced singularity of optical indicatrix rotation leads in general to appearance of a mixed screw-edge dislocation of the phase front of outgoing optical beam. At the same time, some specified geometrical parameters of the sample can ensure generation of a purely screw dislocation of the phase front and, as a result, a singly charged canonical optical vortex.
Cen, Ling-Ping; Ng, Tsz Kin; Liang, Jia-Jian; Zhuang, Xi; Yao, Xiaowu; Yam, Gary Hin-Fai; Chen, Haoyu; Cheung, Herman S; Zhang, Mingzhi; Pang, Chi Pui
2018-06-01
Optic neuropathies are the leading cause of irreversible blindness and visual impairment in the developed countries, affecting more than 80 million people worldwide. While most optic neuropathies have no effective treatment, there is intensive research on retinal ganglion cell (RGC) protection and axon regeneration. We previously demonstrated potential of human periodontal ligament-derived stem cells (PDLSCs) for retinal cell replacement. Here, we report the neuroprotective effect of human PDLSCs to ameliorate RGC degeneration and promote axonal regeneration after optic nerve crush (ONC) injury. Human PDLSCs were intravitreally injected into the vitreous chamber of adult Fischer rats after ONC in vivo as well as cocultured with retinal explants in vitro. Human PDLSCs survived in the vitreous chamber and were maintained on the RGC layer even at 3 weeks after ONC. Immunofluorescence analysis of βIII-tubulin and Gap43 showed that the numbers of surviving RGCs and regenerating axons were significantly increased in the rats with human PDLSC transplantation. In vitro coculture experiments confirmed that PDLSCs enhanced RGC survival and neurite regeneration in retinal explants without inducing inflammatory responses. Direct cell-cell interaction and elevated brain-derived neurotrophic factor secretion, but not promoting endogenous progenitor cell regeneration, were the RGC protective mechanisms of human PDLSCs. In summary, our results revealed the neuroprotective role of human PDLSCs by strongly promoting RGC survival and axonal regeneration both in vivo and in vitro, indicating a therapeutic potential for RGC protection against optic neuropathies. Stem Cells 2018;36:844-855. © AlphaMed Press 2018.
Cavalieri, Andrea; Fischer, Ravit; Larkov, Olga; Dudai, Nativ
2014-03-01
Citronellal is one of the most prominent monoterpenes present in many essential oils. Low persistence of essential oils as bioherbicides has often been addressed because of the high volatility of these compounds. Bioconversion of citronellal by wheat seeds releases less aggressive and injurious compounds as demonstrated by their diminished germination. We demonstrated that optically pure citronellal enantiomers were reduced to optically pure citronellol enantiomers with retention of the configuration both in isolated wheat embryos and endosperms. Our findings reveal the potential of essential oils as allelopathic agents providing an insight into their mechanism of action and persistence. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.
Valley-Selective Exciton Bistability in a Suspended Monolayer Semiconductor
NASA Astrophysics Data System (ADS)
Xie, Hongchao; Jiang, Shengwei; Shan, Jie; Mak, Kin Fai
2018-05-01
We demonstrate robust power- and wavelength-dependent optical bistability in fully suspended monolayers of WSe2 near the exciton resonance. Bistability has been achieved under continuous-wave optical excitation at an intensity level of 10^3 W/cm^2. The observed bistability is originated from a photo-thermal mechanism, which provides both optical nonlinearity and passive feedback, two essential elements for optical bistability. Under a finite magnetic field, the exciton bistability becomes helicity dependent, which enables repeatable switching of light purely by its polarization.
Measurements of the optical properties of thin films of silver and silver oxide
NASA Technical Reports Server (NTRS)
Peters, Palmer N.; Sisk, Robert C.; Brown, Yolanda; Gregory, John C.; Nag, Pallob K.; Christl, Ligia
1995-01-01
The optical properties of silver films and their oxides are measured to better characterize such films for use as sensors for atomic oxygen. Good agreement between properties of measured pure silver films and reported optical constants is observed. Similar comparisons for silver oxide have not been possible because of a lack of reported constants, but self-consistencies and discrepancies in our measured results are described.
Tutorial on photoacoustic tomography
NASA Astrophysics Data System (ADS)
Zhou, Yong; Yao, Junjie; Wang, Lihong V.
2016-06-01
Photoacoustic tomography (PAT) has become one of the fastest growing fields in biomedical optics. Unlike pure optical imaging, such as confocal microscopy and two-photon microscopy, PAT employs acoustic detection to image optical absorption contrast with high-resolution deep into scattering tissue. So far, PAT has been widely used for multiscale anatomical, functional, and molecular imaging of biological tissues. We focus on PAT's basic principles, major implementations, imaging contrasts, and recent applications.
2017-04-03
jsc2017e039459 (04/03/2017) --- At the Kremlin Wall in Red Square in Moscow, Expedition 51 crewmember Jack Fischer of NASA lays flowers at the site where Russian space icons are interred during traditional ceremonies April 3. Fischer and Fyodor Yurchikhin of the Russian Federal Space Agency (Roscosmos) will launch April 20 on the Soyuz MS-04 spacecraft from the Baikonur Cosmodrome in Kazakhstan for a four and a half month mission on the International Space Station. Photo: NASA/Rob Navias.
Rand Project Air Force Annual Report 2011
2011-01-01
types of biomass ) or from nonpetroleum fossil fuels (such as coal or natural gas). The Air Force has played a leading role in DoD efforts to evaluate...coal gasification and centers on the Fischer-Tropsch fuel production method. The Fischer-Tropsch method has been recently updated through the...configured to accept a combination of coal and biomass and to capture and sequester nearly all the CO2 generated at the plant site. Thus, within a few
Stein, Jeffrey S; Pinkston, Jonathan W; Brewer, Adam T; Francisco, Monica T; Madden, Gregory J
2012-01-01
Lewis rats have been shown to make more impulsive choices than Fischer 344 rats in discrete-trial choice procedures that arrange fixed (i.e., nontitrating) reinforcement parameters. However, nontitrating procedures yield only gross estimates of preference, as choice measures in animal subjects are rarely graded at the level of the individual subject. The present study was designed to examine potential strain differences in delay discounting using an adjusting-amount procedure, in which distributed (rather than exclusive) choice is observed due to dynamic titration of reinforcer magnitude across trials. Using a steady-state version of the adjusting-amount procedure in which delay was manipulated between experimental conditions, steeper delay discounting was observed in Lewis rats compared to Fischer 344 rats; further, delay discounting in both strains was well described by the traditional hyperbolic discounting model. However, upon partial completion of the present study, a study published elsewhere (Wilhelm & Mitchell, 2009) demonstrated no difference in delay discounting between these strains with the use of a more rapid version of the adjusting-amount procedure (i.e., in which delay is manipulated daily). Thus, following completion of the steady-state assessment in the present study, all surviving Lewis and Fischer 344 rats completed an approximation of this rapid-determination procedure in which no strain difference in delay discounting was observed. PMID:22693360
Stein, Jeffrey S; Pinkston, Jonathan W; Brewer, Adam T; Francisco, Monica T; Madden, Gregory J
2012-05-01
Lewis rats have been shown to make more impulsive choices than Fischer 344 rats in discrete-trial choice procedures that arrange fixed (i.e., nontitrating) reinforcement parameters. However, nontitrating procedures yield only gross estimates of preference, as choice measures in animal subjects are rarely graded at the level of the individual subject. The present study was designed to examine potential strain differences in delay discounting using an adjusting-amount procedure, in which distributed (rather than exclusive) choice is observed due to dynamic titration of reinforcer magnitude across trials. Using a steady-state version of the adjusting-amount procedure in which delay was manipulated between experimental conditions, steeper delay discounting was observed in Lewis rats compared to Fischer 344 rats; further, delay discounting in both strains was well described by the traditional hyperbolic discounting model. However, upon partial completion of the present study, a study published elsewhere (Wilhelm & Mitchell, 2009) demonstrated no difference in delay discounting between these strains with the use of a more rapid version of the adjusting-amount procedure (i.e., in which delay is manipulated daily). Thus, following completion of the steady-state assessment in the present study, all surviving Lewis and Fischer 344 rats completed an approximation of this rapid-determination procedure in which no strain difference in delay discounting was observed.
Auto-combustion synthesis and characterization of Mg doped CuAlO{sub 2} nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Shraddha, E-mail: shraddhaa32@gmail.com; Parveen, Azra; Naqvi, A. H.
2015-06-24
The synthesis of pure and Mg doped Copper aluminumoxide CuAlO{sub 2}nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO{sub 2} sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO{sub 2} has been studied over a wide range of frequencies by using complex impedance spectroscopy.Themore » variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.« less
Auto-combustion synthesis and characterization of Mg doped CuAlO2 nanoparticles
NASA Astrophysics Data System (ADS)
Agrawal, Shraddha; Parveen, Azra; Naqvi, A. H.
2015-06-01
The synthesis of pure and Mg doped Copper aluminumoxide CuAlO2nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO2 sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO2 has been studied over a wide range of frequencies by using complex impedance spectroscopy.The variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.
All-optical observation and reconstruction of spin wave dispersion
Hashimoto, Yusuke; Daimon, Shunsuke; Iguchi, Ryo; Oikawa, Yasuyuki; Shen, Ka; Sato, Koji; Bossini, Davide; Tabuchi, Yutaka; Satoh, Takuya; Hillebrands, Burkard; Bauer, Gerrit E. W.; Johansen, Tom H.; Kirilyuk, Andrei; Rasing, Theo; Saitoh, Eiji
2017-01-01
To know the properties of a particle or a wave, one should measure how its energy changes with its momentum. The relation between them is called the dispersion relation, which encodes essential information of the kinetics. In a magnet, the wave motion of atomic spins serves as an elementary excitation, called a spin wave, and behaves like a fictitious particle. Although the dispersion relation of spin waves governs many of the magnetic properties, observation of their entire dispersion is one of the challenges today. Spin waves whose dispersion is dominated by magnetostatic interaction are called pure-magnetostatic waves, which are still missing despite of their practical importance. Here, we report observation of the band dispersion relation of pure-magnetostatic waves by developing a table-top all-optical spectroscopy named spin-wave tomography. The result unmasks characteristics of pure-magnetostatic waves. We also demonstrate time-resolved measurements, which reveal coherent energy transfer between spin waves and lattice vibrations. PMID:28604690
NASA Astrophysics Data System (ADS)
Niculescu, R.; Iosub, I.; Clenci, A.; Zaharia, C.; Iorga-Simăn, V.
2017-10-01
Increased environmental awareness and depletion of fossil petroleum resources are driving the automotive industry to seek out and use alternative fuels. For instance, the biofuel is a major renewable energy source to supplement declining fossil fuel resources. The addition of alcohols like methanol and ethanol is practical in biodiesel blends due to its miscibility with the pure biodiesel. Alcohols also improve physico-chemical properties of biodiesel blends, which lead to improved combustion efficiency. Proper volatility of fuels is critical to the operation of internal combustion engines with respect to both performance and emissions. Volatility may be characterised by various measurements, the most common of which are vapour pressure, distillation and the vapour/liquid ratio. The presence of ethanol or other oxygenates may affect these properties and, as a result, performance and emissions, as well. However, in the case of diesel-biodiesel-alcohols mixtures, the variance of component volatility makes difficult the analysis of the overall volatility. Thus, the paper presents an experimental method of distilling diesel-biodiesel-alcohols mixtures by adjusting the boiler pressure of an i-Fischer Dist equipment.
Raman and infrared spectroscopic study of the molecular dynamics of N2O in inert solvents
NASA Astrophysics Data System (ADS)
Ouillon, R.
The influence of the rotational motion of the N2O molecule on its own vibrational motion does not noticeably affect the widths of v1 and v3 isotropic spectra of this molecule in inert solvents (SF6 and CCl4). The pure vibrational dephasing plays a predominant role on this band broadening as shown by comparing the experimental vibrational relaxation time with the calculated vibrational dephasing time deduced from either the binary collision (Fischer-Laubereau) or hydrodynamic model (Metiu-Oxtoby), provided the anharmonicity of the intermolecular potential, as regards the former, and the quadratic coupling terms between vibrator and bath, as regards the latter, are taken into account. Examination of the vibrational correlation functions in the framework of the Rothschild model allows a better understanding of the influence of the instantaneous distribution of vibrational frequencies and of the decay of the perturbation on the shape of the isotropic spectra and confirms that the modulation of the N2O vibration by its environment is rather rapid.
Electro-Optical Characterization of Bistable Smectic A Liquid Crystal Displays
NASA Astrophysics Data System (ADS)
Buyuktanir, Ebru Aylin
My dissertation focuses the characterization and optimization of the electro-optical properties of smectic A (SmA) based liquid crystal (LC) displays. I present the development of robust and flexible bistable SmA LC displays utilizing polymer dispersed liquid crystal (PDLC) technology. The SmA PDLC displays produced on plastic substrates present electrically reversible memory, high contrast ratio, paper-like sunlight readability, and wide viewing angle characteristics. In order to optimize the SmA PDLC display, I investigated polymerization conditions, such as polymer concentration effect, polymerization temperature, and UV-light intensity variations. I characterized the electro-optical responses-such as static-response, time-response, threshold characteristics, and contrast ratio values' of the optimized SmA PDLC display and compared them to those of the pure SmA LC. The best electro-optical performance of SmA PDLC formulation was obtained using the combination of low mW/cm 2 and high mW/cm2 UV-light curing intensity. The contrast ratio of the optimum SmA PDLC at a 5o collection angle was 83% of that of the pure SmA material on plastic substrates. I fabricated 2.5 x 2.5 in., 4 x 4 in., and 6 x 6 in. sized monochrome flexible SmA PDLC displays, as well as red, yellow, and fluorescent dyes colored SmA PDLC displays on plastic substrates. The electro-optic performance of the bistable SmA LC display consisting of a patterned field-induced polymer wall infrastructure was also studied and compared to those of pure SmA material. I found that the contrast ratio of the SmA LC encapsulated between polymer walls was much greater than that of the SmA PDLC system, approaching the contrast ratio value of the pure SmA material. I also improved the electro-optical characteristics of bistable SmA LC displays by adding ferroparticles into the system. Finally, I illustrated the unique capabilities of polarized confocal Raman microscopy (CRM) to resolve the orientational order of SmA LCs in three-dimension by investigating the characteristic vibrational bands of LC molecules. CRM provides a precise characterization of the molecular order at different depths of the LC films. I examined the director patterns of focal conic defects of smectic A LC, colloidal smectic A LC systems, and the field-oriented nematic LC in the horizontal and vertical planes.
Yang, Wenjuan; Wen, Yanwei; Chen, Rong; Zeng, Dawen; Shan, Bin
2014-10-21
First-principle calculations have been carried out to investigate structural stabilities, electronic structures and optical properties of tungsten doped bismuth oxychloride (BiOCl). The structures of substitutional and interstitial tungsten, and in the form of WO6-ligand-doped BiOCl are examined. The substitutional and interstitial tungsten doping leads to discrete midgap states within the forbidden band gap, which has an adverse effect on the photocatalytic properties. On the other hand, the WO6-ligand-doped BiOCl structure induces a continuum of hybridized states in the forbidden gap, which favors transport of electrons and holes and could result in enhancement of visible light activity. In addition, the band gap of WO6-BiOCl decreases by 0.25 eV with valence band maximum (VBM) shifting upwards compared to that of pure BiOCl. By calculating optical absorption spectra of pure BiOCl and WO6-ligand-doped BiOCl structure, it is found that the absorption peak of the WO6-ligand-doped BiOCl structure has a red shift towards visible light compared with that of pure BiOCl, which agrees well with experimental observations. These results reveal the tungsten doped BiOCl system as a promising material in photocatalytic decomposition of organics and water splitting under sunlight irradiation.
Engineer, Anupama S; Dhakephalkar, Anita P; Gaikaiwari, Raghavendra P; Dhakephalkar, Prashant K
2013-12-01
Hydantoinase-mediated enzymatic synthesis of optically pure carbamoyl amino acids was investigated as an environmentally friendly, energy-efficient alternative to the otherwise energy-intensive, polluting chemical synthesis. Hydantoinase-producing bacterial strain was identified as Pseudomonas aeruginosa by 16S rRNA gene sequencing and biochemical profiling using the BIOLOG Microbial Identification System. Hydantoinase activity was assessed using hydantoin analogs and 5-monosubstituted hydantoins as substrates in a colorimetric assay. The hydantoinase gene was PCR amplified using gene-specific primers and sequenced on an automated gene analyzer. Hydantoinase gene sequence of P. aeruginosa MCM B-887 revealed maximum homology of only 87 % with proven hydantoinase gene sequences in GenBank. MCM B-887 resting cells converted >99 % of substrate into N-carbamoyl amino acids under optimized condition at 42 °C, pH 8.0, and 100 mM substrate concentration in <120 min. Hydantoin hydrolyzing activity was D-selective and included broad substrate profile of 5-methyl hydantoin, 5-phenyl hydantoin, 5-hydroxyphenyl hydantoin, o-chlorophenyl hydantoin, as well as hydantoin analogs such as allantoin, dihydrouracil, etc. MCM B-887 resting cells may thus be suitable for bio-transformations leading to the synthesis of optically pure, unnatural carbamoyl amino acids of industrial importance.
Thermophilic archaeal enzymes and applications in biocatalysis.
Littlechild, Jennifer A
2011-01-01
Thermophilic enzymes have advantages for their use in commercial applications and particularly for the production of chiral compounds to produce optically pure pharmaceuticals. They can be used as biocatalysts in the application of 'green chemistry'. The thermophilic archaea contain enzymes that have already been used in commercial applications such as the L-aminoacylase from Thermococcus litoralis for the resolution of amino acids and amino acid analogues. This enzyme differs from bacterial L-aminoacylases and has similarities to carboxypeptidases from other archaeal species. An amidase/γ-lactamase from Sulfolobus solfataricus has been used for the production of optically pure γ-lactam, the building block for antiviral carbocyclic nucleotides. This enzyme has similarities to the bacterial signature amidase family. An alcohol dehydrogenase from Aeropyrum pernix has been used for the production of optically pure alcohols and is related to the zinc-containing eukaryotic alcohol dehydrogenases. A transaminase and a dehalogenase from Sulfolobus species have also been studied. The archaeal transaminase is found in a pathway for serine synthesis which is found only in eukaryotes and not in bacteria. It can be used for the asymmetric synthesis of homochiral amines of high enantioselective purity. The L-2-haloacid dehalogenase has applications both in biocatalysis and in bioremediation. All of these enzymes have increased thermostability over their mesophilic counterparts.
Hybrid silicon–carbon nanostructures for broadband optical absorption
Yang, Wen -Hua; Lu, Wen -Cai; Ho, K. M.; ...
2017-01-25
Proper design of nanomaterials for broadband light absorption is a key factor for improving the conversion efficiency of solar cells. Here we present a hybrid design of silicon–carbon nanostructures with silicon clusters coated by carbon cages, i.e., Si m@C 2n for potential solar cell application. The optical properties of these hybrid nanostructures were calculated based on time dependent density function theory (TDDFT). The results show that the optical spectra of Si m@C 2n are very different from those of pure Si m and C 2n clusters. While the absorption spectra of pure carbon cages and Si m clusters exhibit peaksmore » in the UV region, those of the Si m@C 2n nanostructures exhibit a significant red shift. Superposition of the optical spectra of various Si m@C 2n nanostructures forms a broad-band absorption, which extends to the visible light and infrared regions. As a result, the broadband adsorption of the assembled Si m@C 2n nanoclusters may provide a new approach for the design of high efficiency solar cell nanomaterials.« less
Optical properties and crystallinity of silver mirrors under a 35 krad cobalt-60 radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Po-Kai, E-mail: pkchiu@itrc.narl.org.tw; Chiang, Donyau; Lee, Chao-Te
2015-09-15
This study addresses the effects of thin film optical design and environmental radiation on the optical properties of silver mirrors. Different experimental thin film optical designs are selected, and the film stack is built using Macleod's approach. Mirror elements are exposed to the same dose of radiation and their properties are characterized using a spectrophotometer equipped with an integration sphere and an x-ray diffractometer. Spectrophotometric analyses of mirrors exposed to about 35 krad of {sup 60}Co radiations overall show that the B270 glass substrates coated with titanium oxide (TiO{sub 2}), silicon dioxide (SiO{sub 2}), pure chrome, and pure silver effectivelymore » reduces radiation damage. The absorption spectrum of the TiO{sub 2} film in the visible region decreases after radiation and displays drifting. As thin metal films comparison, the silver thin film exhibits higher radiation resistance than the chrome thin film. The x-ray diffraction analysis on metal film layers reveals that crystallinity slightly increases when the silver thin film is irradiated.« less
NASA Technical Reports Server (NTRS)
Otterman, J.; Susskind, J.; Dalu, G.; Kratz, D.; Goldberg, I. L.
1992-01-01
The impact of water-emission anisotropy on remotedly sensed long-wave data has been studied. Water emission is formulated from a calm body for a facile computation of radiative transfer in the atmosphere. The error stemming from the blackbody assumption are calculated for cases of a purely absorbing or a purely scattering atmosphere taking the optical properties of the atmosphere as known. For an absorbing atmosphere, the errors in the sea-surface temperature (SST) are found to be always reduced and be the same whether measurements are made from space or at any level of the atmosphere. The inferred optical thickness tau of an absorbing layer can be in error under the blackbody assumption by a delta tau of 0.01-0.08, while the inferred optical thickness of a scattering layer can be in error by a larger amount, delta tau of 0.03-0.13. It is concluded that the error delta tau depends only weakly on the actual optical thickness and the viewing angle, but is rather sensitive to the wavelength of the measurement.
Enhanced photoelectrochemical and optical performance of ZnO films tuned by Cr doping
NASA Astrophysics Data System (ADS)
Salem, M.; Akir, S.; Massoudi, I.; Litaiem, Y.; Gaidi, M.; Khirouni, K.
2017-04-01
In this paper, pure and Cr-doped nanostructured Zinc oxide thin films were synthesized by simple and low cost co-precipitation and spin-coating method with Cr concentration varying between 0.5 and 5 at.%. Crystalline structure of the prepared films was investigated by X-ray diffraction (XRD) and Raman spectroscopy techniques. XRD analysis indicated that the films were indexed as the hexagonal phase of wurtzite-type structure and demonstrated a decrease in the crystallite size with increasing Cr doping content. Cr doping revealed a significant effect on the optical measurements such as transmission and photoluminescence properties. The optical measurements indicated that Cr doping decreases the optical band gap and it has been shifted from 3.41 eV for pure ZnO film to 3.31 eV for 5 at.% Cr-doped one. The photoelectrochemical (PEC) sensing characteristics of Cr-doped ZnO layers were investigated. Amongst all photo-anodes with different Cr dopant concentration, the 2 at.% Cr incorporated ZnO films exhibited fast response and higher photoconduction sensitivity.
Thompson, N L; Hixson, D C; Callanan, H; Panzica, M; Flanagan, D; Faris, R A; Hong, W J; Hartel-Schenk, S; Doyle, D
1991-01-01
Dipeptidyl peptidase IV (DPPIV) is a serine exoproteinase expressed at high levels in epithelial cells of kidney, liver and small intestine. Recently Watanabe, Kohima & Fujimoto [(1987) Experientia 43, 400-401] and Gossrau et al. [(1990) Histochem. J. 22, 172-173] reported that Fischer 344 rats are deficient in this enzyme. We have examined DPPIV expression in Fischer 344 rats available from U.S. and German suppliers and find that livers of the U.S. Fischer rats, in contrast with their German counterparts, express active DPPIV (D+). Northern analysis of liver RNA showed comparable levels of 3.4 kb and 5.6 kb DPPIV transcripts in both D+ rats from the U.S. and German (D-) rats. Monoclonal antibody (MAb) 236.3 to DPPIV immunoprecipitated at 150 kDa enzymically active (105 kDa, denatured) protein from surface-labelled D+ hepatocytes and reacted with canalicular and sinusoidal membranes (as shown by immunofluorescence microscopy). MAb 236.3 failed to immunoprecipitate a labelled peptide from D- cell extract or to stain D- liver sections. Polyclonal antibody (PAb) specific for DPPIV immunoprecipitated an enzymically active peptide from D+ hepatocyte extracts and a smaller, inactive peptide from D- hepatocyte extracts. Peptide maps of DPPIV immunoprecipitated from D+ extracts with MAb 236.3 and PAb were identical, but differed from that of the D- hepatocyte component recognized by PAb. The molecular basis of the DPPIV deficiency in the D- rats thus appears to be the translation of an enzymically inactive protein missing the epitope recognized by MAb 236.3. We have exploited these D- rats as hosts for syngeneic transplantation of liver cells from D+ Fischer rats. DPPIV expression is stable in the transplanted cells and allows them to be readily distinguished from the surrounding D- tissue. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:1705112
Sprague-Dawley and Fischer female rats differ in acute effects of fluoxetine on sexual behavior.
Miryala, Chandra Suma J; Hiegel, Cindy; Uphouse, Lynda
2013-02-01
The selective serotonin reuptake inhibitor (SSRI), fluoxetine, leads to sexual dysfunction in a substantial proportion of women. In studies with the Fischer inbred rat, the 5-HT(1A) receptor has been implicated in this sexual dysfunction. Whether this association with 5-HT(1A) receptors holds for other rat strains is not known. The effects of acute fluoxetine on sexual behavior in two strains of rats that differ in their response to a 5-HT(1A) receptor agonist were examined. Whether the strain difference is comparable in naturally cycling and hormonally primed, ovariectomized rats was determined. Proestrous rats and ovariectomized rats, hormonally primed with estradiol benzoate and progesterone, were treated with varying doses of fluoxetine. Sexual behavior was examined before and after treatment with the SSRI. Lordosis to mount ratios, lordosis quality, and proceptive behaviors were quantified. Sprague-Dawley and Fischer females were compared on each of these measures. The IC(50) for inhibition of lordosis behavior was determined. In both the intact and the hormonally primed, ovariectomized model, Sprague-Dawley females were less sensitive to the effects of fluoxetine on sexual behavior. In both groups, fluoxetine showed dose dependency in behavioral inhibition, but a higher dose was required for Sprague-Dawley than for Fischer females. Naturally cycling, proestrous rats required a higher dose of fluoxetine than hormonally primed ovariectomized rats to produce significant inhibition of sexual behavior. Thus, the strain difference in the response to fluoxetine does not parallel strain differences in the response to a 5-HT(1A) receptor agonist. Acute treatment with fluoxetine inhibits lordosis behavior in both Fischer and Sprague-Dawley females and the strain difference cannot be explained by reported strain differences in the response to a 5-HT(1A) receptor agonist. Fluoxetine's inhibition of female rat sexual behavior may involve effects of the SSRI in addition to activation of the 5-HT(1A) receptor. © 2012 International Society for Sexual Medicine.
Sprague-Dawley and Fischer Female Rats Differ in Acute Effects of Fluoxetine on Sexual Behavior
Miryala, C.S.J.; Hiegel, C.; Uphouse, L.
2012-01-01
Introduction The selective serotonin reuptake inhibitor (SSRI), fluoxetine, leads to sexual dysfunction in a substantial proportion of women. In studies with the Fischer inbred rat, the 5-HT1A receptor has been implicated in this sexual dysfunction. Whether this association with 5-HT1A receptors holds for other rat strains is not known. Aim The effects of acute fluoxetine on sexual behavior in two strains of rats that differ in their response to a 5-HT1A receptor agonist were examined. Whether the strain difference is comparable in naturally cycling and hormonally primed, ovariectomized rats was determined. Main Outcome Measures Lordosis to mount ratios, lordosis quality, and proceptive behaviors were quantified. Sprague-Dawley and Fischer females were compared on each of these measures. The IC50 for inhibition of lordosis behavior was determined. Methods Proestrous rats and ovariectomized rats, hormonally primed with estradiol benzoate and progesterone, were treated with varying doses of fluoxetine. Sexual behavior was examined before and after treatment with the SSRI. Results In both the intact and the hormonally-primed, ovariectomized model, Sprague-Dawley females were less sensitive to the effects of fluoxetine on sexual behavior. In both groups, fluoxetine showed dose-dependency in behavioral inhibition, but a higher dose was required for Sprague-Dawley than for Fischer females. Naturally cycling, proestrous rats required a higher dose of fluoxetine than hormonally-primed ovariectomized rats to produce significant inhibition of sexual behavior. Thus, the strain difference in the response to fluoxetine does not parallel strain differences in the response to a 5-HT1A receptor agonist. Conclusions Acute treatment with fluoxetine inhibits lordosis behavior in both Fischer and Sprague-Dawley females and the strain difference cannot be explained by reported strain differences in the response to a 5-HT1A receptor agonist. Fluoxetine’s inhibition of female rat sexual behavior may involve effects of the SSRI in addition to activation of the 5-HT1A receptor. PMID:23110651
1984-12-01
the study were also analyzed for nitrate, nitrite and mercury content by TEl. 200 Fischer 344 rats, obtained from Harlan Sprague-Dawley, Madison , WI...Iles Pancreas Pituitary gland Prostate Rectum Salivary gland Sciatic nerve Seminal vesicles Skin, abdominal Spinal cord (cervical, thoracic, lumbar ...Skin, abdominal Spinal cord (cervical, thoracic and lumbar ) Sp I een Sternum Including bone marrow Stomach TIssue masses Thyroids (parathyrolds
2012-09-01
Content per Combustion J FAME Fatty Acid Methyl Ester FMEP Friction Mean Effective Pressure PSI or Bar FT Fischer-Tropsch h Heat...recently, algae-derived oils. Biodiesel has gained popularity in North America over the past decade, but the ester content of Fatty Acid Methyl ... Ester ( FAME ) fuel creates both cold weather and water- based operational issues. The Fischer-Tropsch (FT) process produces liquid fuels from “syngas,” a
The Deployment Life Study: Longitudinal Analysis of Military Families Across the Deployment Cycle
2016-01-01
psychological and physical aggression than they reported prior to the deployment. 1 H. Fischer, A Guide to U.S. Military Casualty Statistics ...analyses include a large number of statistical tests and thus the results pre- sented in this report should be viewed in terms of patterns, rather...Military Children and Families,” The Future of Children, Vol. 23, No. 2, 2013, pp. 13–39. Fischer, H., A Guide to U.S. Military Casualty Statistics
Interaction of Jet Fuel Hydrocarbon Components with Red Blood Cells and Hemoglobin
2014-06-24
Directorate (RHDJ), Wright-Patterson AFB, OH. The authors would like to thank Maj. Paul Eden, Nicole Schaeublin, Christin Grabinski, Dr. Jeff Gearhart...We would also like to thank LtCol. Norman Fox (Laboratory Flight Commander), Mrs. Nersa Loh (Supervisor, Transfusion Services), and Mr. Dan Fischer ...Approximately 7.8 mg of hemoglobin sample was concentrated into a total volume of 5 mL of Fischer PBS pH 7.5 buffer using an Amicon Centrifugal Filter Unit
Fickle Allies: Regular and Irregular Confederate Forces in Missouri during the American Civil War
2014-05-22
238-239, 242. 58Kel N. Pickens, “The Battle of Wilson’s Creek, Missouri, August 10, 1861,” in Civil War Battles in the West, ed. LeRoy H. Fischer ...force with nearby Confederate Army Brigadier General William Hardee and MSG Brigadier General M. Jeff . Thompson, and open a new front to ultimately...West, ed. LeRoy H. Fischer (Manhattan, KS: Sunflower University Press, 1981), 40. 101Shea, War in the West, 18-19, 26, 34-35. 30
Spacewalking_in_Ultra_High_Definition
2017-07-21
Ever wonder what the spacewalker sees while you’re looking at him or her? Here’s your answer, courtesy of NASA astronaut Jack Fischer. This Ultra High Definition clip shows Fischer outside the International Space Station during a spacewalk on Expedition 51 in May 2017, and the view from a small camera attached to his spacesuit at the same time. Music by Joakim Karud. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
2017-04-13
jsc2017e043074 (April 13, 2017) --- At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 51 crewmember Jack Fischer of NASA conducts a session on a tilt table to test his vestibular system April 13 as part of his pre-launch activities. Fischer and Fyodor Yurchikhin of the Russian Federal Space Agency (Roscosmos) will liftoff April 20 from the Baikonur Cosmodrome on the Soyuz MS-04 spacecraft for a four and a half month mission on the International Space Station. NASA/Victor Zelentsov
2017-04-13
jsc2017e043073 (April 13, 2017) --- At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 51 crewmember Jack Fischer of NASA takes a spin in a rotating chair to test his vestibular system April 13 as part of his pre-launch activities. Fischer and Fyodor Yurchikhin of the Russian Federal Space Agency (Roscosmos) will liftoff April 20 from the Baikonur Cosmodrome on the Soyuz MS-04 spacecraft for a four and a half month mission on the International Space Station. NASA/Victor Zelentsov
Tutorial on photoacoustic tomography
Zhou, Yong; Yao, Junjie; Wang, Lihong V.
2016-01-01
Abstract. Photoacoustic tomography (PAT) has become one of the fastest growing fields in biomedical optics. Unlike pure optical imaging, such as confocal microscopy and two-photon microscopy, PAT employs acoustic detection to image optical absorption contrast with high-resolution deep into scattering tissue. So far, PAT has been widely used for multiscale anatomical, functional, and molecular imaging of biological tissues. We focus on PAT’s basic principles, major implementations, imaging contrasts, and recent applications. PMID:27086868
NASA Astrophysics Data System (ADS)
Gupta, Jhalak; Ahmad, Arham S.
2018-05-01
The nanocrystallites of pure and Fe doped Nickel Oxide (NiO) were synthesized by the cost effective co-precipitation method using nickel nitrate as the initial precursor. The synthesized nickel oxide nanoparticles were characterized by X-Ray Diffraction (XRD), Photoluminiscence Spectroscopy (PL), LCR meter. The crystallite size of synthesized pure Nickel Oxide nanoparticles obtained by XRD using Debye Scherer's formula was found to be 21.8nm and the size decreases on increasing the dopant concentration. The optical properties were analyzed by PL and dielectric ones by using LCR meter.
A novel optical ozone sensor based on purely organic phosphor.
Lee, Dongwook; Jung, Jaehun; Bilby, David; Kwon, Min Sang; Yun, Jaesook; Kim, Jinsang
2015-02-11
An optical ozone sensor was developed based on the finding that a purely organic phosphor linearly loses its phosphorescence emission intensity in the presence of varying concentration of ozone gas and ozonated water. Compared to conventional conductance-based inorganic sensors, our novel sensory film has many advantages such as easy fabrication, low-cost, and portability. NMR data confirmed that phosphorescence drop is attributed to oxidation of the core triplet generating aldehyde group of the phosphor. We observed that linear correlation between phosphorescence and ozone concentration and it can detect ozone concentrations of 0.1 ppm that is the threshold concentration harmful to human tissue and respiratory organs. Like a litmus paper, this ozone sensor can be fabricated as a free-standing and disposable film.
Racemic resolution of some DL-amino acids using Aspergillus fumigatus L-amino acid oxidase.
Singh, Susmita; Gogoi, Binod K; Bezbaruah, Rajib L
2011-07-01
The ability of Aspergillus fumigatus L-amino acid oxidase (L-aao) to cause the resolution of racemic mixtures of DL-amino acids was investigated with DL-alanine, DL-phenylalanine, DL-tyrosine, and DL-aspartic acid. A chiral column, Crownpak CR+ was used for the analysis of the amino acids. The enzyme was able to cause the resolution of the three DL-amino acids resulting in the production of optically pure D-alanine (100% resolution), D-phenylalanine (80.2%), and D-tyrosine (84.1%), respectively. The optically pure D-amino acids have many uses and thus can be exploited industrially. This is the first report of the use of A. fumigatus L: -amino acid oxidase for racemic resolution of DL-amino acids.
Wharton, Robert; Norrbom, Allen L.
2013-01-01
Abstract New host records (all members of the family Tephritidae) are presented for 14 newly described species of opiine Braconidae from the neotropics and two previously described species, one from the neotropics and one from the Nearctic Region. Doryctobracon anneae Wharton, Opius baderae Wharton, O. baeblus Wharton, O. cablus Wharton, O. dablus Wharton, O. danielsae Wharton, O. gabriellae Wharton, O. godfrayi Wharton, O. marshi Wharton, O. nablus Wharton, O. pipitae Wharton, O. stecki Wharton, O. taramegillae Wharton, and O. yoderi Wharton are newly described. Hosts are newly recorded for the previously described species Opius nympha Fischer and O. peleus Fischer. A key is presented to Opiinae that have been reared from flower, stem, and leaf feeding tephritids in the New World. Host and host plant associations are discussed; a few of the tephritid host plant records are also new. Opius cosa (Fischer), is a comb. n. PMID:24294078
Petersen, Abdul M; Farzad, Somayeh; Görgens, Johann F
2015-05-01
This study considered an average-sized sugar mill in South Africa that crushes 300 wet tonnes per hour of cane, as a host for integrating methanol and Fischer-Tropsch synthesis, through gasification of a combined flow of sugarcane trash and bagasse. Initially, it was shown that the conversion of biomass to syngas is preferably done by catalytic allothermal gasification instead of catalytic autothermal gasification. Thereafter, conventional and advanced synthesis routes for both Methanol and Fischer-Tropsch products were simulated with Aspen Plus® software and compared by technical and economic feasibility. Advanced FT synthesis satisfied the overall energy demands, but was not economically viable for a private investment. Advanced methanol synthesis is also not viable for private investment since the internal rate of return was 21.1%, because it could not provide the steam that the sugar mill required. The conventional synthesis routes had less viability than the corresponding advanced synthesis routes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhu, Jia-Chen; van Achterberg, Cornelis; Chen, Xue-Xin
2017-01-01
Abstract An illustrated key to the genera and subgenera of the Alysiini (Hymenoptera, Braconidae, Alysiinae) from China is presented. Three genera new for China are reported: Adelurola Strand, 1924, Anisocyrta Foerster, 1863, and Pentapleura Foerster, 1863. The total for China is 26 genera of Alysiini and an additional seven subgenera (excluding the nominal subgenera, which are included in the total of genera). The known Chinese species are listed under each genus and the biology is summarised. Separatatus sinicus (Zheng, Chen & Yang, 2012) and Grammospila eurys (Chen & Wu, 1994) are new combinations. Regetus Papp, 1999, and Adelphenaldis Fischer, 2003, are new synonyms of Eusynaldis Zaykov & Fischer, 1982. In addition, Eusynaldis Zaykov & Fischer and Synaldis Foerster, 1863, are treated as subgenera of Aspilota Foerster, 1863, and Dinotrema Foerster, 1863, respectively. An aberrant species of Separatatus Chen & Wu, 1994, S. parallelus sp. n., is described from Yunnan and Hainan. PMID:29308029
Photo-induced optical activity in phase-change memory materials.
Borisenko, Konstantin B; Shanmugam, Janaki; Williams, Benjamin A O; Ewart, Paul; Gholipour, Behrad; Hewak, Daniel W; Hussain, Rohanah; Jávorfi, Tamás; Siligardi, Giuliano; Kirkland, Angus I
2015-03-05
We demonstrate that optical activity in amorphous isotropic thin films of pure Ge2Sb2Te5 and N-doped Ge2Sb2Te5N phase-change memory materials can be induced using rapid photo crystallisation with circularly polarised laser light. The new anisotropic phase transition has been confirmed by circular dichroism measurements. This opens up the possibility of controlled induction of optical activity at the nanosecond time scale for exploitation in a new generation of high-density optical memory, fast chiroptical switches and chiral metamaterials.
Casimir switch: steering optical transparency with vacuum forces.
Liu, Xi-Fang; Li, Yong; Jing, H
2016-06-03
The Casimir force, originating from vacuum zero-point energy, is one of the most intriguing purely quantum effects. It has attracted renewed interests in current field of nanomechanics, due to the rapid size decrease of on-chip devices. Here we study the optomechanically-induced transparency (OMIT) with a tunable Casimir force. We find that the optical output rate can be significantly altered by the vacuum force, even terminated and then restored, indicating a highly-controlled optical switch. Our result addresses the possibility of designing exotic optical nano-devices by harnessing the power of vacuum.
First-principles study on silicon atom doped monolayer graphene
NASA Astrophysics Data System (ADS)
Rafique, Muhammad; Shuai, Yong; Hussain, Nayyar
2018-01-01
This paper illustrates the structural, electronic and optical properties of individual silicon (Si) atom-doped single layer graphene using density functional theory method. Si atom forms tight bonding with graphene layer. The effect of doping has been investigated by varying the concentration of Si atoms from 3.125% to 9.37% (i.e. From one to three Si atoms in 4 × 4 pure graphene supercell containing 32 carbon atoms), respectively. Electronic structure, partial density of states (PDOS) and optical properties of pure and Si atom-doped graphene sheet were calculated using VASP (Vienna ab-initio Simulation Package). The calculated results for pure graphene sheet were then compared with Si atom doped graphene. It is revealed that upon Si doping in graphene, a finite band gap appears at the high symmetric K-point, thereby making graphene a direct band gap semiconductor. Moreover, the band gap value is directly proportional to the concentration of impurity Si atoms present in graphene lattice. Upon analyzing the optical properties of Si atom-doped graphene structures, it is found that, there is significant change in the refractive index of the graphene after Si atom substitution in graphene. In addition, the overall absorption spectrum of graphene is decreased after Si atom doping. Although a significant red shift in absorption is found to occur towards visible range of radiation when Si atom is substituted in its lattice. The reflectivity of graphene improves in low energy region after Si atom substitution in graphene. These results can be useful for tuning the electronic structure and to manipulate the optical properties of graphene layer in the visible region.
LED backlight system with fiber-optic red, green, blue to white color combiner
NASA Astrophysics Data System (ADS)
Kim, Hye R.; Jeong, Yunsong; Lee, Jhang-Woo; Oh, Kyunghwan
2006-09-01
As an application in the backlight system of small LCD display, we realized a pure white light source by mixing red, green, blue (RGB) lights using a 3 X 3 Hard Plastic Cladding Fiber (HPCF) coupler. We also proposed the 0.44 inch LED backlight system with these fiber-optic pure white sources and characterized its illumination characteristics. Using optimized fusion-tapering technique, we fabricated HPCF coupler which combines three input lights over the circularly formed waist. HPCF has the core diameter of 200 μm and clad diameter of 230 μm. The fabricated 3 X 3 HPCF coupler has the perfect uniformity of about 0.3 dB, low insertion loss of 5.5 dB, and low excess loss of 0.8 dB, which shows excellent uniform power splitting ratio. In order to improve the transmission performance, The RGB chip LEDs were butt-coupled directly to the ferruled input ports of the coupler and packaged by TO46-can type. In the produced white color by HPCF coupler, the photometric brightness at the circular endface of outputs of HPCF coupler was in a rage of 10062 ~ 10094 cd/m2. The fiber optic white color combiner provides tunable white sources excluding heat source and having thickness of 200 μm. We also proposed a 0.44 inch LED backlight system with these fiber-optic pure white sources. With the proposed device, we obtain the improved uniformity in luminance distribution and wide color gamut by using the white light mixing red, green and blue lights.
Running and cocaine both upregulate dynorphin mRNA in medial caudate putamen.
Werme, M; Thorén, P; Olson, L; Brené, S
2000-08-01
Physical activities such as long-distance running can be habit forming and associated with a sense of well-being to a degree that justifies comparison with drug-induced addictive behaviours. To understand molecular similarities and dissimilarities controlling these behaviours in humans we compared the effects of running in running wheels to the effects of chronic cocaine or morphine administration on mRNA levels in brain reward pathways in the inbred Fischer and Lewis rat strains. These strains are both inbred from the Sprague-Dawley strain; Lewis rats display a higher preference towards addictive drugs and running than do Fischer rats. After chronic cocaine or running a similar increase of dynorphin mRNA in medial caudate putamen was found in the Lewis rat, suggesting common neuronal adaptations in this brain region to both cocaine and running. Fischer and Lewis rats both responded to cocaine with increased dynorphin mRNA levels in medial caudate putamen. However, only Lewis rats increased dynorphin mRNA after running, possibly reflecting the much higher degree of running by the Lewis strain as compared to the Fischer strain. Moreover, the running-induced upregulation of dynorphin mRNA was blocked by the opioid receptor antagonist naloxone. We suggest that running increases dynorphin mRNA by a mechanism that involves endogenous opioids. The voluntary wheel-running model in rats might be used to study natural reward and compulsive behaviours and possibly also to screen candidate drugs for treatment of compulsive disorders.
Emissions characteristics of Military Helicopter Engines Fueled with JP-8 and a Fischer-Tropsch Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corporan, E.; DeWitt, M.; Klingshirn, Christopher D
2010-01-01
The rapid growth in aviation activities and more stringent U.S. Environmental Protection Agency regulations have increased concerns regarding aircraft emissions, due to their harmful health and environmental impacts, especially in the vicinity of airports and military bases. In this study, the gaseous and particulate-matter emissions of two General Electric T701C engines and one T700 engine were evaluated. The T700 series engines power the U.S. Army's Black Hawk and Apache helicopters. The engines were fueled with standard military JP-8 fuel and were tested at three power settings. In addition, one of the T701C engines was operated on a natural-gas-derived Fischer-Tropsch syntheticmore » paraffinic kerosene jet fuel. Test results show that the T701C engine emits significantly lower particulate-matter emissions than the T700 for all conditions tested. Particulate-matter mass emission indices ranged from 0.2-1.4 g/kg fuel for the T700 and 0.2-0.6 g/kg fuel for the T701C. Slightly higher NOx and lower CO emissions were observed for the T701C compared with the T700. Operation of the T701C with the Fischer-Tropsch fuel rendered dramatic reductions in soot emissions relative to operation on JP-8, due primarily to the lack of aromatic compounds in the alternative fuel. The Fischer-Tropsch fuel also produced smaller particles and slight reductions in CO emissions.« less
Antibacterial and tribological behavior of self-assembled monolayer on optical lens
NASA Astrophysics Data System (ADS)
Horng, J. H.; Jeng, Y. R.; Wei, C. C.; Tasi, Y. T.
2010-10-01
This paper studies the effects of the antibacterial and anti-adhesion properties of self-assembled monolayers (SAMs) on optical parts. Therefore, the experiments in this study prepared several kinds of SAMs, including alkyl and biphenyl spacer chains with different surface terminal groups (-CH3,-COOH) and head groups (-SH). This study reports the growth of eight self-assembled monolayers on optical parts: OTS, ODS, OTS with antibacterial solution, ODS with antibacterial solution, and pure antibacterial solution, with bio-compatibility. Experimental results regarding the contact angle of five self-assembled monolayers show that ODS with antibacterial illustrated the maximum contact angle 103° 12 hours after reaction. The solutions of OTS, ODS with antibacterial, OTS with antibacterial, and pure anti-bacterial showed contact angles of 102°, 99°, 101°, and 59° respectively. These results indicate that the antibacterial solution has negligible effects on anti-adhesion property of optical lenses. The results of digital optical microscope system analysis show that in the antibacterial experiment of eight kinds of selfassembled monolayers, the OTSanti50% effect cultured for 24 hours achieved the best results, with a growth rate of 12%. The descending order of antibacterial effect is antibacterial 10%>ODS>OTS> antibacterial 50%>ODSanti50%>OTSanti10%>ODSanti10%. In summary, the surface treatment of optical lenses involving OTSanti 50% is the most capable of effectively increasing antifouling and antibacterial functions.
Moreno Fernández, H; Rogler, D; Sauthier, G; Thomasset, M; Dietsch, R; Carlino, V; Pellegrin, E
2018-01-22
Boron carbide (B 4 C) is one of the few materials that is expected to be most resilient with respect to the extremely high brilliance of the photon beam generated by free electron lasers (FELs) and is thus of considerable interest for optical applications in this field. However, as in the case of many other optics operated at light source facilities, B 4 C-coated optics are subject to ubiquitous carbon contaminations. Carbon contaminations represent a serious issue for the operation of FEL beamlines due to severe reduction of photon flux, beam coherence, creation of destructive interference, and scattering losses. A variety of B 4 C cleaning technologies were developed at different laboratories with varying success. We present a study regarding the low-pressure RF plasma cleaning of carbon contaminated B 4 C test samples via inductively coupled O 2 /Ar, H 2 /Ar, and pure O 2 RF plasma produced following previous studies using the same ibss GV10x downstream plasma source. Results regarding the chemistry, morphology as well as other aspects of the B 4 C optical coating before and after the plasma cleaning are reported. We conclude that among the above plasma processes only plasma based on pure O 2 feedstock gas exhibits the required chemical selectivity for maintaining the integrity of the B 4 C optical coatings.
Matrix light and pixel light: optical system architecture and requirements to the light source
NASA Astrophysics Data System (ADS)
Spinger, Benno; Timinger, Andreas L.
2015-09-01
Modern Automotive headlamps enable improved functionality for more driving comfort and safety. Matrix or Pixel light headlamps are not restricted to either pure low beam functionality or pure high beam. Light in direction of oncoming traffic is selectively switched of, potential hazard can be marked via an isolated beam and the illumination on the road can even follow a bend. The optical architectures that enable these advanced functionalities are diverse. Electromechanical shutters and lens units moved by electric motors were the first ways to realize these systems. Switching multiple LED light sources is a more elegant and mechanically robust solution. While many basic functionalities can already be realized with a limited number of LEDs, an increasing number of pixels will lead to more driving comfort and better visibility. The required optical system needs not only to generate a desired beam distribution with a high angular dynamic, but also needs to guarantee minimal stray light and cross talk between the different pixels. The direct projection of the LED array via a lens is a simple but not very efficient optical system. We discuss different optical elements for pre-collimating the light with minimal cross talk and improved contrast between neighboring pixels. Depending on the selected optical system, we derive the basic light source requirements: luminance, surface area, contrast, flux and color homogeneity.
Extended X-Ray Emission around Quasars at Intermediate Redshift
NASA Technical Reports Server (NTRS)
Fiore, Fabrizio
1998-01-01
We compare the optical to soft X-ray spectral energy distribution (SED) of a sample of bright low-redshift (0.048 less than z less than 0.155), radio-quiet quasars, with a range of thermal models which have been proposed to explain the optical/UV/soft X-ray quasar emission: (a) optically thin emission from an ionized plasma, (b) optically thick emission from the innermost regions of an accretion disk in Schwarzschild and Kerr geometries. We presented ROSAT PSPC observations of these quasars in an earlier paper. Here our goals are to search for the signature of thermal emission in the quasar SED, and to investigate whether a single component is dominating at different frequencies. We find that isothermal optically thin plasma models can explain the observed soft X-ray color and the mean OUV color. However, they predict an ultraviolet (1325 Angstrom) luminosity a factor of 3 to 10 times lower than observed. Pure disk models, even in a Kerr geometry, do not have the necessary flexibility to account for the observed OUV and soft X-ray luminosities. Additional components are needed both in the optical and in the soft X-rays (e.g. a hot corona can explain the soft X-ray color). The most constrained modification of pure disk models, is the assumption of an underlying power law component extending from the infrared (3 micrometers) to the X-ray. This can explain both the OUV and soft X-ray colors and luminosities and does not exceed the 3 micrometers luminosity, where a contribution from hot dust is likely to be important. We also discuss the possibility that the observed soft X-ray color and luminosity are dominated by reflection from the ionized surface of the accretion disk. While modifications of both optically thin plasma models and pure disk models might account for the observed SED, we do not find any strong evidence that the OUV bump and soft X-ray emission are one and the same component. Likewise, we do not find any strong argument which definitely argues in favor of thermal models.
Time-resolved photon echoes from donor-bound excitons in ZnO epitaxial layers
NASA Astrophysics Data System (ADS)
Poltavtsev, S. V.; Kosarev, A. N.; Akimov, I. A.; Yakovlev, D. R.; Sadofev, S.; Puls, J.; Hoffmann, S. P.; Albert, M.; Meier, C.; Meier, T.; Bayer, M.
2017-07-01
The coherent optical response from 140 nm and 65 nm thick ZnO epitaxial layers is studied using four-wave-mixing spectroscopy with picosecond temporal resolution. Resonant excitation of neutral donor-bound excitons results in two-pulse and three-pulse photon echoes. For the donor-bound A exciton (D0XA ) at temperature of 1.8 K we evaluate optical coherence times T2=33 -50 ps corresponding to homogeneous line widths of 13 -19 μ eV , about two orders of magnitude smaller as compared with the inhomogeneous broadening of the optical transitions. The coherent dynamics is determined mainly by the population decay with time T1=30 -40 ps, while pure dephasing is negligible. Temperature increase leads to a significant shortening of T2 due to interaction with acoustic phonons. In contrast, the loss of coherence of the donor-bound B exciton (D0XB ) is significantly faster (T2=3.6 ps ) and governed by pure dephasing processes.
Reductions in aircraft particulate emissions due to the use of Fischer-Tropsch fuels
NASA Astrophysics Data System (ADS)
Beyersdorf, A. J.; Timko, M. T.; Ziemba, L. D.; Bulzan, D.; Corporan, E.; Herndon, S. C.; Howard, R.; Miake-Lye, R.; Thornhill, K. L.; Winstead, E.; Wey, C.; Yu, Z.; Anderson, B. E.
2014-01-01
The use of alternative fuels for aviation is likely to increase due to concerns over fuel security, price stability, and the sustainability of fuel sources. Concurrent reductions in particulate emissions from these alternative fuels are expected because of changes in fuel composition including reduced sulfur and aromatic content. The NASA Alternative Aviation Fuel Experiment (AAFEX) was conducted in January-February 2009 to investigate the effects of synthetic fuels on gas-phase and particulate emissions. Standard petroleum JP-8 fuel, pure synthetic fuels produced from natural gas and coal feedstocks using the Fischer-Tropsch (FT) process, and 50% blends of both fuels were tested in the CFM-56 engines on a DC-8 aircraft. To examine plume chemistry and particle evolution with time, samples were drawn from inlet probes positioned 1, 30, and 145 m downstream of the aircraft engines. No significant alteration to engine performance was measured when burning the alternative fuels. However, leaks in the aircraft fuel system were detected when operated with the pure FT fuels as a result of the absence of aromatic compounds in the fuel. Dramatic reductions in soot emissions were measured for both the pure FT fuels (reductions in mass of 86% averaged over all powers) and blended fuels (66%) relative to the JP-8 baseline with the largest reductions at idle conditions. At 7% power, this corresponds to a reduction from 7.6 mg kg-1 for JP-8 to 1.2 mg kg-1 for the natural gas FT fuel. At full power, soot emissions were reduced from 103 to 24 mg kg-1 (JP-8 and natural gas FT, respectively). The alternative fuels also produced smaller soot (e.g., at 85% power, volume mean diameters were reduced from 78 nm for JP-8 to 51 nm for the natural gas FT fuel), which may reduce their ability to act as cloud condensation nuclei (CCN). The reductions in particulate emissions are expected for all alternative fuels with similar reductions in fuel sulfur and aromatic content regardless of the feedstock. As the plume cools downwind of the engine, nucleation-mode aerosols form. For the pure FT fuels, reductions (94% averaged over all powers) in downwind particle number emissions were similar to those measured at the exhaust plane (84%). However, the blended fuels had less of a reduction (reductions of 30-44%) than initially measured (64%). The likely explanation is that the reduced soot emissions in the blended fuel exhaust plume results in promotion of new particle formation microphysics, rather than coating on pre-existing soot particles, which is dominant in the JP-8 exhaust plume. Downwind particle volume emissions were reduced for both the pure (79 and 86% reductions) and blended FT fuels (36 and 46%) due to the large reductions in soot emissions. In addition, the alternative fuels had reduced particulate sulfate production (near zero for FT fuels) due to decreased fuel sulfur content. To study the formation of volatile aerosols (defined as any aerosol formed as the plume ages) in more detail, tests were performed at varying ambient temperatures (-4 to 20 °C). At idle, particle number and volume emissions were reduced linearly with increasing ambient temperature, with best fit slopes corresponding to -8 × 1014 particles (kg fuel)-1 °C-1 for particle number emissions and -10 mm3 (kg fuel)-1 °C-1 for particle volume emissions. The temperature dependency of aerosol formation can have large effects on local air quality surrounding airports in cold regions. Aircraft-produced aerosols in these regions will be much larger than levels expected based solely on measurements made directly at the engine exit plane. The majority (90% at idle) of the volatile aerosol mass formed as nucleation-mode aerosols, with a smaller fraction as a soot coating. Conversion efficiencies of up to 2.8% were measured for the partitioning of gas-phase precursors (unburned hydrocarbons and SO2) to form volatile aerosols. Highest conversion efficiencies were measured at 45% power.
Itai, Takuma; Kojima, Tatsuhiro; Kuwamura, Naoto; Konno, Takumi
2017-11-21
A unique example of a coordination system that creates optically pure crystals from a meso compound with d- and l-amino acids is reported. The 1:1 reaction of a newly prepared meso digold(I) complex, [Au 2 (dcpe)(d-Hpen)(l-Hpen)] ([H 2 1]), with Co(OAc) 2 under aerobic conditions yielded a cationic Au I 2 Co III trinuclear complex, [Au 2 Co(dcpe)(d-pen)(l-pen)] + [2] + , in which [1] 2- acts as a hexadentate-N 2 ,O 2 ,S 2 metalloligand to a Co III center. Similar reactions with M(OAc) 2 (M=Ni and Zn) produced analogous but neutral Au I 2 M II complexes, [Au 2 M(dcpe)(d-pen)(l-pen)] ([3 M ]). Complexes [2] + and [3 M ] are chiral (C vs. A) at the octahedral Co III and M II centers due to the arrangement of the N 2 ,O 2 ,S 2 donor set. In addition, through spontaneous resolution, [3 M ] gave optically pure C-[3 M ] and A-[3 M ] crystals, showing the creation of homochirality from meso-[1] 2- and achiral M 2+ through crystallization. Such a phenomenon was not observed for [2] + , which gave a racemic compound containing both C-[2] + and A-[2] + . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
1983-11-01
content. C . An J ma Is *a Fischer 344 (F344) rats, obtained from Harlan Sprague-Dawley, Madison , WI, were used for this study. Four hundred and thirty...Seminal vesicles "Skin, abdominal Spinal cord (cervical, thoracic, lumbar ) *Spleen Sternum, Including bone marrow Stomach *Testes Thymus Thyroids...abdominal * Spinal cord (cervical, thoracic and lumbar ) Spleen Sternum Including bone marrow Stomach Tissue masses Thyroids (parathyroids) Trachea
2017-04-14
jsc2017e043855 (April 14, 2017) --- At the Baikonur Cosmodrome in Kazakhstan, Expedition 51 crewmember Jack Fischer of NASA poses for pictures April 14 in front of the cottage where Yuri Gagarin slept on the eve of his historic launch on April 12, 1961 to become the first human to fly in space. Fischer and Fyodor Yurchikhin of the Russian Federal Space Agency (Roscosmos) will launch April 20 on the Soyuz MS-04 spacecraft for a four and a half month mission on the International Space Station. Credit: NASA/Victor Zelentsov
Macromolecules and Enzymes: The Geneva Heritage from Kurt H. Meyer and Edmond H. Fischer.
Fischer, Edmond H; Piguet, Alfred
2009-12-01
On the 26th May 2009, Edmond Fischer, winner with Ed Krebs of the Nobel prize in physiology or medicine in 1992, and his colleague at the time of his research activities at the Ecole de chimie of the University of Geneva, Alfred Piguet, met with Andreas Hauser, Claude Piguet and Howard Riezman of the Section de chimie et biochimie of the University of Geneva to talk about how they became scientists under the impetus of Kurt H. Meyer and what became of them thereafter.
1985-01-01
enzymes resulted mainly in the formation of 2-amino-6-nitrotoluene and 2-(N-acetylami no)-6-nitrotoluene and minor amounts of 2,6-diaminotoluene. I.p...2,6-DNT to DNA of cultured hepatocytes from both A/N mice and Fischer-344 rats required prior metabolism of 2,6-DNT by the respective cecal enzymes . DNA...64 37. In Vitro Metabolism of [3- 3H]2,6-DNT by Cecal Enzymes from A/ Mice and Fischer-344 Rats ..... ............ 65 38. In Vivo Covalent
Change of Command aboard the Space Station
2017-09-02
The reins of the International Space Station were passed from Fyodor Yurchikhin of Roscosmos to Randy Bresnik of NASA during a ceremony on the orbital outpost Sept. 1. Yurchikhin is returning to Earth with his crewmates, Peggy Whitson and Jack Fischer of NASA in the Soyuz MS-04 spacecraft for a landing Sept. 3. Whitson, who has logged more days in space than any other U.S. astronaut, is completing a 10-month mission, her third long duration flight, while Yurchikhin and Fischer are completing 136 days in space.
Metabolism and nephrotoxicity of indan in male Fischer 344 rats.
Servé, M P; Ferry, M J; Yu, K O; Olson, C T; Hobson, D W
1990-01-01
Indan, a component of fuels, solvents, and varnishes, is metabolized in male Fischer 344 rats to 1-indanol, 2-indanol, 5-indanol, 1-indanone, 2-indanone, 2-hydroxy-1-indanone, cis-1,2-indandiol, and trans-1,2-indandiol. The metabolites were identified using the techniques of gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The rats treated with indan demonstrated the classic lesions of hydrocarbon-induced nephropathy. The kidney damage produced was less than that found for tetralin and other branched-chain acyclic hydrocarbons.
NASA Astrophysics Data System (ADS)
Dong, Youming; Wang, Kaili; Tan, Yi; Wang, Qingchun; Li, Jianzhang; Mark, Hughes; Zhang, Shifeng
2018-04-01
The inherent sophisticated structure of wood inspires researchers to use it as a natural template for synthesizing functional nanoparticles. In this study, pure copper nanoparticles were synthesized using poplar wood as a natural inexpensive and renewable template. The crystal structure and morphologies of the copper nanoparticles were characterized by X-ray diffraction and field emission scanning electron microscopy. The optical properties, antibacterial properties, and stability of the hybrid wood materials were also tested. Due to the hierarchical and anisotropic structure and electron-rich components of wood, pure copper nanoparticles with high stability were synthesized with fcc structure and uniform sizes and then assembled into corncob-like copper deposits along the wood cell lumina. The products of nanoparticles depended strongly on the initial OH- concentration. With an increase in OH- concentration, Cu2O gradually decreased and Cu remained. Due to the restrictions inherent in wood structure, the derived Cu nanoparticles showed similar grain size in spite of increased Cu2+ concentration. This combination of Cu nanostructures and wood exhibited remarkable optical and antibacterial properties.
Longitudinal uniformity, time performances and irradiation test of pure CsI crystals
NASA Astrophysics Data System (ADS)
Angelucci, M.; Atanova, O.; Baccaro, S.; Cemmi, A.; Cordelli, M.; Donghia, R.; Giovannella, S.; Happacher, F.; Miscetti, S.; Sarra, I.; Soleti, S. R.
2016-07-01
To study an alternative to BaF2, as the crystal choice for the Mu2e calorimeter, 13 pure CsI crystals from Opto Materials and ISMA producers have been characterized by determining their light yield (LY) and longitudinal response uniformity (LRU), when read with a UV extended PMT. The crystals show a LY of 100 p.e./MeV ( 150 p.e./MeV) when wrapped with Tyvek and coupled to the PMT without (with) optical grease. The LRU is well represented by a linear slope that is on average δ -0.6%/cm. The timing performances of the Opto Materials crystal, read with a UV extended MPPC, have been evaluated with minimum ionizing particles. A timing resolution of 330 ps ( 440 ps) is achieved when connecting the photosensor to the MPPC with (without) optical grease. The crystal radiation hardness to a ionization dose has also been studied for one pure CsI crystal from SICCAS. After exposing it to a dose of 900 Gy, a decrease of 33% in the LY is observed while the LRU remains unchanged.
Evidence of a Critical Phase Transition in Purely Temporal Dynamics with Long-Delayed Feedback
NASA Astrophysics Data System (ADS)
Faggian, Marco; Ginelli, Francesco; Marino, Francesco; Giacomelli, Giovanni
2018-04-01
Experimental evidence of an absorbing phase transition, so far associated with spatiotemporal dynamics, is provided in a purely temporal optical system. A bistable semiconductor laser, with long-delayed optoelectronic feedback and multiplicative noise, shows the peculiar features of a critical phenomenon belonging to the directed percolation universality class. The numerical study of a simple, effective model provides accurate estimates of the transition critical exponents, in agreement with both theory and our experiment. This result pushes forward a hard equivalence of nontrivial stochastic, long-delayed systems with spatiotemporal ones and opens a new avenue for studying out-of-equilibrium universality classes in purely temporal dynamics.
NASA Technical Reports Server (NTRS)
Bull, William B. (Compiler); Pinoli, Pat C. (Compiler); Upton, Cindy G. (Compiler); Day, Tony (Compiler); Hill, Keith (Compiler); Stone, Frank (Compiler); Hall, William B.
1994-01-01
This report is a compendium of the presentations of the 12th biannual meeting of the Industry Advisory Committee under the Solid Propulsion Integrity Program. A complete transcript of the welcoming talks is provided. Presentation outlines and overheads are included for the other sessions: SPIP Overview, Past, Current and Future Activity; Test Methods Manual and Video Tape Library; Air Force Developed Computer Aided Cure Program and SPC/TQM Experience; Magneto-Optical mapper (MOM), Joint Army/NASA program to assess composite integrity; Permeability Testing; Moisture Effusion Testing by Karl Fischer Analysis; Statistical Analysis of Acceptance Test Data; NMR Phenolic Resin Advancement; Constituent Testing Highlights on the LDC Optimization Program; Carbon Sulfur Study, Performance Related Testing; Current Rayon Specifications and Future Availability; RSRM/SPC Implementation; SRM Test Methods, Delta/Titan/FBM/RSRM; and Open Forum on Performance Based Acceptance Testing -- Industry Experience.
The effect of laser ablation parameters on optical limiting properties of silver nanoparticles
NASA Astrophysics Data System (ADS)
Gursoy, Irmak; Yaglioglu, Halime Gul
2017-09-01
This paper presents the effect of laser ablation parameters on optical limiting properties of silver nanoparticles. The current applications of lasers such as range finding, guidance, detection, illumination and designation have increased the potential of damaging optical imaging systems or eyes temporary or permanently. The applications of lasers introduce risks for sensors or eyes, when laser power is higher than damage threshold of the detection system. There are some ways to protect these systems such as neutral density (nd) filters, shutters, etc. However, these limiters reduce the total amount of light that gets into the system. Also, response time of these limiters may not be fast enough to prevent damage and cause precipitation in performance due to deprivation of transmission or contrast. Therefore, optical limiting filters are needed that is transparent for low laser intensities and limit or block the high laser intensities. Metal nanoparticles are good candidates for such optical limiting filters for ns pulsed lasers or CW lasers due to their high damage thresholds. In this study we investigated the optical limiting performances of silver nanoparticles produced by laser ablation technique. A high purity silver target immersed in pure water was ablated with a Nd:YAG nanosecond laser at 532 nm. The effect of altering laser power and ablation time on laser ablation efficiency of nanoparticles was investigated experimentally and optimum values were specified. Open aperture Zscan experiment was used to investigate the effect of laser ablation parameters on the optical limiting performances of silver nanoparticles in pure water. It was found that longer ablation time decreases the optical limiting threshold. These results are useful for silver nanoparticles solutions to obtain high performance optical limiters.
1984-12-01
The concept proposed is an electro - optic technique that would make it possible to spatially modulate a high power pulsed laser beam to thermoelastically induce focused ultrasound in a test material. Being a purely electro - optic device, the modulator, and therefore the depth at which the acoustic focus occurs, can be programmed electronically at electronic speeds. If successful, it would become possible to scan ultrasound continuously in three dimensions within the component or structure under test. (Author)
Catastrophe optics of sharp-edge diffraction.
Borghi, Riccardo
2016-07-01
A classical problem of diffraction theory, namely plane wave diffraction by sharp-edge apertures, is here reformulated from the viewpoint of the fairly new subject of catastrophe optics. On using purely geometrical arguments, properly embedded into a wave optics context, uniform analytical estimates of the diffracted wavefield at points close to fold caustics are obtained, within paraxial approximation, in terms of the Airy function and its first derivative. Diffraction from parabolic apertures is proposed to test reliability and accuracy of our theoretical predictions.
NASA Astrophysics Data System (ADS)
1984-12-01
The concept proposed is an electro-optic technique that would make it possible to spatially modulate a high power pulsed laser beam to thermoelastically induce focused ultrasound in a test material. Being a purely electro-optic device, the modulator, and therefore the depth at which the acoustic focus occurs, can be programmed electronically at electronic speeds. If successful, it would become possible to scan ultrasound continuously in three dimensions within the component or structure under test.
Effect of co-doping process on topography, optical and electrical properties of ZnO nanostructured
NASA Astrophysics Data System (ADS)
Mohamed, R.; Mamat, M. H.; Malek, M. F.; Ismail, A. S.; Yusoff, M. M.; Syamsir, S. A.; Khusaimi, Z.; Rusop, M.
2018-05-01
We investigated of Undoped ZnO and Magnesium (Mg)-Aluminium (Al) co-doped Zinc Oxide (MAZO) nanostructured films were prepared by sol gel spin coating technique. The surface topography was analyzed using Atomic Force Microscopy (AFM). Based on the AFM results, Root Mean Square (RMS) of MAZO films have rougher surface compared to pure ZnO films. The optical and electrical properties of thin film samples were characterized using Uv-Vis spectroscopy and two point probes, current-voltage (I-V) measurements. The transmittance spectra for both thin samples was above 80% in the visible wavelength. The MAZO film shows the highest conductivity compared to pure ZnO films. This result indicates that the improvement of carrier mobility throughout doping process and possibly contribute by extra ion charge.
Spatial phase-shift dual-beam speckle interferometry.
Gao, Xinya; Yang, Lianxiang; Wang, Yonghong; Zhang, Boyang; Dan, Xizuo; Li, Junrui; Wu, Sijin
2018-01-20
The spatial phase-shift technique has been successfully applied to an out-of-plane speckle interferometry system. Its application to a pure in-plane sensitive system has not been reported yet. This paper presents a novel optical configuration that enables the application of the spatial phase-shift technique to pure in-plane sensitive dual-beam speckle interferometry. The new spatial phase-shift dual-beam speckle interferometry (SPS-DBSP) uses a dual-beam in-plane electronic speckle pattern interferometry configuration with individual aperture shears, avoiding the interference in the object plane by the use of a low-coherence source, and different optical paths. The measured object is illuminated by two incoherent beams that are generated by a delay line, which is larger than the coherence length of the laser. The two beams reflected from the object surface interfere with each other at the CCD plane because of different optical paths. A spatial phase shift is introduced by the angle between the two apertures when they are mapped to the same optical axis. The phase of the in-plane deformation can directly be extracted from the speckle patterns by the Fourier transform method. The capability of SPS-DBSI is demonstrated by theoretical discussion as well as experiments.
Optical characterization of pure and Al-doped ZnO prepared by sol-gel method
NASA Astrophysics Data System (ADS)
Belka, Radosław; Keczkowska, Justyna; Kasińska, Justyna
2016-09-01
In this paper the preparation process and optical characterization of pure and Al3+ doped zinc oxide (Al:ZnO) coatings will be presented. ZnO based materials have been studied extensively due to their potential applications in optoelectronic devices as conductive gas sensors, transparent conductive, electrodes, solar cell windows, varistors, UVfilters or photovoltaic cells. It is II-VI semiconductor with wide-band gap of 3.37 eV and large exciton binding energy of 60meV. It is possible to improve the conductivity of ZnO coating by intentionally doping ZnO with aluminium ions during preparation process. Such transparent and conducting thin films, known as AZO (Aluminium Zinc Oxide) films, are very good candidate for application as transparent conducting materials in many optoelectronic devices. The well-known sol-gel method is used for preparation of solution, coated on glass substrates by dip coating process. Prepared samples were investigated by Raman and UV-VIS spectroscopy. Transmittance as well as specular and diffuse reflectance spectroscopy methods were used for studies of optical parameters. We found that Al admixture influences on optical bandgap of ZnO.
On the origin of pure optical rotation in twisted-cross metamaterials
Barr, Lauren E.; Díaz-Rubio, Ana; Tremain, Ben; Carbonell, Jorge; Sánchez-Dehesa, José; Hendry, Euan; Hibbins, Alastair P.
2016-01-01
We present an experimental and computational study of the response of twisted-cross metamaterials that provide near dispersionless optical rotation across a broad band of frequencies from 19 GHz to 37 GHz. We compare two distinct geometries: firstly, a bilayer structure comprised of arrays of metallic crosses where the crosses in the second layer are twisted about the layer normal; and secondly where the second layer is replaced by the complementary to the original, i.e. an array of cross-shaped holes. Through numerical modelling we determine the origin of rotatory effects in these two structures. In both, pure optical rotation occurs in a frequency band between two transmission minima, where alignment of electric and magnetic dipole moments occurs. In the cross/cross metamaterial, the transmission minima occur at the symmetric and antisymmetric resonances of the coupled crosses. By contrast, in the cross/complementary-cross structure the transmission minima are associated with the dipole and quadrupole modes of the cross, the frequencies of which appear intrinsic to the cross layer alone. Hence the bandwidth of optical rotation is found to be relatively independent of layer separation. PMID:27457405
Recent Results With Coupled Opto-Electronic Oscillators
NASA Astrophysics Data System (ADS)
Yao, X. S.; Maleki, L.; Wu, C.; Davis, L.; Forouhar, S.
1998-07-01
We present experimental results of coupled opto-electronic oscillators (COEOs) constructed with a semiconductor optical-amplifier-based ring laser, a semiconductor Fabry-Perot laser, and a semiconductor colliding-pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 ps and RF signals as high in frequency as 18 GHz with a spectral purity comparable to an HP 8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.
Recent results with the coupled opto-electronic oscillator
NASA Astrophysics Data System (ADS)
Yao, X. S.; Maleki, Lute; Wu, Chi; Davis, Lawrence J.; Forouhar, Siamak
1998-11-01
We present experimental results of coupled opto-electronic oscillators (COEO) constructed with a semiconductor optical amplifier based ring laser, a semiconductor Fabry-Perot laser, and a semiconductor colliding pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 picoseconds and RF signals as high in frequency as 18 GHz with a spectral purity comparable with a HP8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.
Generation of 21.3 Gbaud 8PSK signal using an SOA-based all-optical phase modulator.
Dailey, J M; Webb, R P; Manning, R J
2011-12-12
We describe a novel SOA-based all-optical pure-phase modulator, and show how deleterious cross-gain modulation from the SOAs can be suppressed by utilizing an integrated interferometer structure. We experimentally demonstrate the use of the optical gate as a π/4 phase modulator producing 21.3 Gbaud 8PSK from 21.3 Gbit/s OOK and 21.3 Gbaud QPSK inputs. The modulator produces 3 dB of gain and coherent detection-based bit error rate measurements indicate a 2.4 dB excess penalty. © 2011 Optical Society of America
Pure optical photoacoustic microscopy
Xie, Zhixing; Chen, Sung-Liang; Ling, Tao; Guo, L. Jay; Carson, Paul L.; Wang, Xueding
2011-01-01
The concept of pure optical photoacoustic microscopy(POPAM) was proposed based on optical rastering of a focused excitation beam and optically sensing the photoacoustic signal using a microring resonator fabricated by a nanoimprinting technique. After the refinements of the microring’s working wavelength and in the resonator structure and mold fabrication, an ultrahigh Q factor of 3.0×105 was achieved which provided high sensitivity with a noise equivalent detectable pressure(NEDP) value of 29Pa. This NEDP is much lower than the hundreds of Pascals achieved with existing optical resonant structures such as etalons, fiber gratings and dielectric multilayer interference filters available for acoustic measurement. The featured high sensitivity allowed the microring resonator to detect the weak photoacoustic signals from micro- or submicroscale objects. The inherent superbroad bandwidth of the optical microring resonator combined with an optically focused scanning beam provided POPAM with high resolution in the axial as well as both lateral directions while the axial resolution of conventional photoacoustic microscopy (PAM) suffers from the limited bandwidth of PZT detectors. Furthermore, the broadband microring resonator showed similar sensitivity to that of our most sensitive PZT detector. The current POPAM system provides a lateral resolution of 5 μm and an axial resolution of 8 μm, comparable to that achieved by optical microscopy while presenting the unique contrast of optical absorption and functional information complementing other optical modalities. The 3D structure of microvasculature, including capillary networks, and even individual red blood cells have been discerned successfully in the proof-of-concept experiments on mouse bladders ex vivo and mouse ears in vivo. The potential of approximately GHz bandwidth of the microring resonator also might allow much higher resolution than shown here in microscopy of optical absorption and acoustic propagation properties at depths in unfrozen tissue specimens or thicker tissue sections, which is not now imageable with current optical or acoustic microscopes of comparable resolution. PMID:21643156
Vidal-García, Pablo; Sánchez-Vergara, María Elena; Corona-Sánchez, Ricardo; Jiménez-Sandoval, Omar; Mercado, Efraín Gutiérrez-Rivas; Toscano, Rubén A; Álvarez-Toledano, Cecilio
2018-03-24
A new series of Fischer carbenes have been synthetized and examined as hole-transporting or electron-transporting layers (HTLs or ETLs) in the fabrication of organic solar cells (OSCs). The synthesis of three Fischer aminocarbene complexes with the general formula [Cr(CO)₅{C(NHCH₂)Ar}] (Ar = 2-pyridyl ( 3a ), 3-pyridyl ( 3b ) and 4-pyridyl ( 3c )) is reported. The molecular structure of complex 3b has been confirmed by X-ray analysis. In order to study the possible applications of the three Fischer aminocarbenes in OSCs, thin films of these complexes were prepared using a vacuum deposition process. These organometallic films were chemically and morphologically characterized by IR spectroscopy, SEM, AFM and XRD. According to the IR and Tauc analysis, the vacuum deposition process generates thin films free of impurities with an activation energy of 4.0, 2.7 and 2.1 eV for 3a , 3b y 3c, respectively. The UV-vis spectra of the amorphous aminocarbene films show that they are practically transparent to the visible radiation of the electromagnetic spectrum. This is due to the fact that their absorption is located mainly in the ultraviolet range. Two OSCs with bulk-heterojunction configuration were manufactured in order to prove the use of the aminocarbenes as ETL o HTL. The aminocarbene [Cr(CO)₅{C(NHCH₂) 4-pyridyl}] ( 3c ) proved to be suitable as ETL with a fill factor (FF) of 0.23 and a short circuit current density ( J SC ) of 1.037 mA/cm².
Markowska, A L; Breckler, S J
1999-12-01
The goal of the current project is to develop a multivariate statistical strategy for the formation of behavioral indices of performance and, further, to apply this strategy to establish the relationship between age and important characteristics of performance. The strategy was to begin with a large set of measures that span a broad range of behaviors. The behavioral effects of the following variables were examined: Age (4, 12, 24, and 30 months), genotype [Fischer 344 and a hybrid (F1) of Fischer 344 and Brown Norway (F344xBN)], gender (Fischer 344 males and Fischer 344 females), long-term diet (ad lib diet or dietary restriction beginning at 4 months of age), and short-term diet (ad lib diet or dietary restriction during testing). The behavioral measures were grouped into conceptually related indicators. The indicators within a set were submitted to a principal component analysis to help identify the summary indices of performance, which were formed with the assumption that these component scores would offer more reliable and valid measures of relevant aspects of behavioral performance than would individual measures taken alone. In summary, this approach has made a number of important contributions. It has provided sensitive and selective measures of performance that indicated contributions of all variables: psychological process, age, genotype, gender, long-term and short-term diet and has increased the sensitivity of behavioral measures to age-related behavioral impairment. It has also improved task-manageability by decreasing the number of meaningful variables without losing important information, consequently providing a simplification of the pattern of changes.
2007-11-01
of dwarf arctic birch and bog rosemary. Understory in most areas includes Labrador tea, lowbush cranberry , and blueberry. Occasionally the black...wild rose, blueberry, and highbush cranberry are common shrubs. Mixed forests usually develop from stands of pure or nearly pure broadleaftrees...forest type include tamarack, blueberry, lowbush cranberry , labrador tea, and feather moss. It is unclear what type of black spruce lowland forest, if
Role of amphiphilic molecule on liquid crystal phases
NASA Astrophysics Data System (ADS)
Dan, Kaustabh; Roy, Madhusudan; Datta, Alokmay
2013-02-01
We have studied the effect of an amphiphilic fatty acid, Stearic Acid (StA), on the phases, wetting and polarization properties of the liquid crystalline substance N-(4-Methoxybenzylidene)-4-butylaniline (MBBA), through Differential Scanning Calorimetry and Optical Polarization Microscopy. Metastable and mesophases disappear for a MBBA:StA = 1:5 mixture. This mixture wets Si(111) and dewets Si(100) surfaces while pure MBBA dewets both. Films of this mixture also show better polarization than the pure sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Commercial Fischer-Tropsch (F-T) processes are limited by deficiencies intrinsic to the metal catalysts used (Fe and Co). These are (1) the predominance of normal paraffins in the product, (2) a small liquid motor fuel fraction formed in the total product, and (3) the formation of oxygenated compounds which cause separation and corrosion problems. Union Carbide believed that substantial improvements could be made based upon recent discoveries of new molecular sieves. It was believed that the combustion of the new molecular sieves with the classical F-T catalysts could eliminate these deficiencies. The initial effort focused on studies of the molecular sievemore » component alone (Task 1). This resulted in the identification of UCC-108 and UCC-101 (and their variations) as candidates for the production of fuel range hydrocarbons with Fischer-Tropsch catalysts. The next step (Task 2) was the study of these materials in conjunction with Fischer-Tropsch catalysts to generate fuel hydrocarbons from syngas. A few outstanding candidates were discovered that provided significantly better product yields and quality as well as an improved catalyst stability. This report summarizes the results of the program. 80 figs., 33 tabs.« less
Cedergren, A
1974-06-01
A rapid and sensitive method using true potentiometric end-point detection has been developed and compared with the conventional amperometric method for Karl Fischer determination of water. The effect of the sulphur dioxide concentration on the shape of the titration curve is shown. By using kinetic data it was possible to calculate the course of titrations and make comparisons with those found experimentally. The results prove that the main reaction is the slow step, both in the amperometric and the potentiometric method. Results obtained in the standardization of the Karl Fischer reagent showed that the potentiometric method, including titration to a preselected potential, gave a standard deviation of 0.001(1) mg of water per ml, the amperometric method using extrapolation 0.002(4) mg of water per ml and the amperometric titration to a pre-selected diffusion current 0.004(7) mg of water per ml. Theories and results dealing with dilution effects are presented. The time of analysis was 1-1.5 min for the potentiometric and 4-5 min for the amperometric method using extrapolation.
Driving Innovation in Optical Networking
NASA Astrophysics Data System (ADS)
Colizzi, Ernesto
Over the past 30 years, network applications have changed with the advent of innovative services spanning from high-speed broadband access to mobile data communications and to video signal distribution. To support this service evolution, optical transport infrastructures have changed their role. Innovations in optical networking have not only allowed the pure "bandwidth per fiber" increase, but also the realization of highly dependable and easy-to-manage networks. This article analyzes the innovations that have characterized the optical networking solutions from different perspectives, with a specific focus on the advancements introduced by Alcatel-Lucent's research and development laboratories located in Italy. The advancements of optical networking will be explored and discussed through Alcatel-Lucent's optical products to contextualize each innovation with the market evolution.
Growth and characterization of high quality ZnS thin films by RF sputtering
NASA Astrophysics Data System (ADS)
Mukherjee, C.; Rajiv, K.; Gupta, P.; Sinha, A. K.; Abhinandan, L.
2012-06-01
High optical quality ZnS films are deposited on glass and Si wafer by RF sputtering from pure ZnS target. Optical transmittance, reflectance, ellipsometry, FTIR and AFM measurements are carried out. Effect of substrate temperature and chamber baking for long duration on film properties have been studied. Roughness of the films as measured by AFM are low (1-2Å).
Three-dimensional image formation in fiber-optical second-harmonic-generation microscopy.
Gu, Min; Fu, Ling
2006-02-06
Three-dimensional (3-D) image formation in fiber-optical second-harmonic-generation microscopy is revealed to be purely coherent and therefore can be described by a 3-D coherent transfer function (CTF) that exhibits the same spatial frequency passband as that of fiber-optical reflection-mode non-fluorescence microscopy. When the numerical aperture of the fiber is much larger than the angle of convergence of the illumination on the fiber aperture, the performance of fiber-optical second-harmonic-generation microscopy behaves as confocal second-harmonic-generation microscopy. The dependence of axial resolution on fiber coupling parameters shows an improvement of approximately 7%, compared with that in fiber-optical two-photon fluorescence microscopy.
NASA Technical Reports Server (NTRS)
Lee, Joonsuk; Yang, Ping; Dessler, Andrew E.; Baum, Bryan A.; Platnick, Steven
2005-01-01
Cloud microphysical and optical properties are inferred from the bidirectional reflectances simulated for a single-layered cloud consisting of an external mixture of ice particles and liquid droplets. The reflectances are calculated with a rigorous discrete ordinates radiative transfer model and are functions of the cloud effective particle size, the cloud optical thickness, and the values of the ice fraction in the cloud (i.e., the ratio of ice water content to total water content). In the present light scattering and radiative transfer simulations, the ice fraction is assumed to be vertically homogeneous; the habit (shape) percentage as a function of ice particle size is consistent with that used for the Moderate Resolution Imaging Spectroradiometer (MODIS) operational (Collection 4 and earlier) cloud products; and the surface is assumed to be Lambertian with an albedo of 0.03. Furthermore, error analyses pertaining to the inference of the effective particle sizes and optical thicknesses of mixed-phase clouds are performed. Errors are calculated with respect to the assumption of a cloud containing solely liquid or ice phase particles. The analyses suggest that the effective particle size inferred for a mixed-phase cloud can be underestimated (or overestimated) if pure liquid phase (or pure ice phase) is assumed for the cloud, whereas the corresponding cloud optical thickness can be overestimated (or underestimated).
Emil Fischer and the "art of chemical experimentation".
Jackson, Catherine M
2017-03-01
What did nineteenth-century chemists know? This essay uses Emil Fischer's classic study of the sugars in 1880s and 90s Germany to argue that chemists' knowledge was not primarily vested in the theories of valence, structure, and stereochemistry that have been the subject of so much historical and philosophical analysis of chemistry in this period. Nor can chemistry be reduced to a merely manipulative exercise requiring little or no intellectual input. Examining what chemists themselves termed the "art of chemical experimentation" reveals chemical practice as inseparable from its cognitive component, and it explains how chemists integrated theory with experiment through reason.
NASA Astrophysics Data System (ADS)
Shimazaki, Y.; Yamamoto, M.; Borzenets, I. V.; Watanabe, K.; Taniguchi, T.; Tarucha, S.
2015-12-01
The field of `Valleytronics’ has recently been attracting growing interest as a promising concept for the next generation electronics, because non-dissipative pure valley currents with no accompanying net charge flow can be manipulated for computational use, akin to pure spin currents. Valley is a quantum number defined in an electronic system whose energy bands contain energetically degenerate but non-equivalent local minima (conduction band) or maxima (valence band) due to a certain crystal structure. Specifically, spatial inversion symmetry broken two-dimensional honeycomb lattice systems exhibiting Berry curvature is a subset of possible systems that enable optical, magnetic and electrical control of the valley degree of freedom. Here we use dual-gated bilayer graphene to electrically induce and control broken inversion symmetry (or Berry curvature) as well as the carrier density for generating and detecting the pure valley current. In the insulating regime, at zero-magnetic field, we observe a large nonlocal resistance that scales cubically with the local resistivity, which is evidence of pure valley current.
Synthesis and photoluminescence of ultra-pure germanium nanoparticles
NASA Astrophysics Data System (ADS)
Chivas, R.; Yerci, S.; Li, R.; Dal Negro, L.; Morse, T. F.
2011-09-01
We have used aerosol deposition to synthesize defect and micro-strain free, ultra-pure germanium nanoparticles. Transmission electron microscopy images show a core-shell configuration with highly crystalline core material. Powder X-ray diffraction measurements verify the presence of highly pure, nano-scale germanium with average crystallite size of 30 nm and micro-strain of 0.058%. X-ray photoelectron spectroscopy demonstrates that GeO x ( x ⩽ 2) shells cover the surfaces of the nanoparticles. Under optical excitation, these nanoparticles exhibit two separate emission bands at room temperature: a visible emission at 500 nm with 0.5-1 ns decay times and an intense near-infrared emission at 1575 nm with up to ˜20 μs lifetime.
Soapy: an adaptive optics simulation written purely in Python for rapid concept development
NASA Astrophysics Data System (ADS)
Reeves, Andrew
2016-07-01
Soapy is a newly developed Adaptive Optics (AO) simulation which aims be a flexible and fast to use tool-kit for many applications in the field of AO. It is written purely in the Python language, adding to and taking advantage of the already rich ecosystem of scientific libraries and programs. The simulation has been designed to be extremely modular, such that each component can be used stand-alone for projects which do not require a full end-to-end simulation. Ease of use, modularity and code clarity have been prioritised at the expense of computational performance. Though this means the code is not yet suitable for large studies of Extremely Large Telescope AO systems, it is well suited to education, exploration of new AO concepts and investigations of current generation telescopes.
APPLIED OPTICS. Voltage-tunable circular photogalvanic effect in silicon nanowires.
Dhara, Sajal; Mele, Eugene J; Agarwal, Ritesh
2015-08-14
Electronic bands in crystals can support nontrivial topological textures arising from spin-orbit interactions, but purely orbital mechanisms can realize closely related dynamics without breaking spin degeneracies, opening up applications in materials containing only light elements. One such application is the circular photogalvanic effect (CPGE), which is the generation of photocurrents whose magnitude and polarity depend on the chirality of optical excitation. We show that the CPGE can arise from interband transitions at the metal contacts to silicon nanowires, where inversion symmetry is locally broken by an electric field. Bias voltage that modulates this field further controls the sign and magnitude of the CPGE. The generation of chirality-dependent photocurrents in silicon with a purely orbital-based mechanism will enable new functionalities in silicon that can be integrated with conventional electronics. Copyright © 2015, American Association for the Advancement of Science.
Femtosecond pulses propagation through pure water
NASA Astrophysics Data System (ADS)
Naveira, Lucas; Sokolov, Alexei; Byeon, Joong-Hyeok; Kattawar, George
2007-10-01
Recently, considerable attention has been dedicated to the field of optical precursors, which can possibly be applied to long-distance underwater communications. Input beam intensities have been carefully adjusted to keep experiments in the linear regime, and some experiments have shown violation of the Beer-Lambert law. We are presently carrying out experiments using femtosecond laser pulses propagating through pure water strictly in the linear regime to study this interesting and important behavior. We are also employing several new and innovative schemes to more clearly define the phenomena.
Optoelectronic interconnects for 3D wafer stacks
NASA Astrophysics Data System (ADS)
Ludwig, David E.; Carson, John C.; Lome, Louis S.
1996-01-01
Wafer and chip stacking are envisioned as a means of providing increased processing power within the small confines of a three-dimensional structure. Optoelectronic devices can play an important role in these dense 3-D processing electronic packages in two ways. In pure electronic processing, optoelectronics can provide a method for increasing the number of input/output communication channels within the layers of the 3-D chip stack. Non-free space communication links allow the density of highly parallel input/output ports to increase dramatically over typical edge bus connections. In hybrid processors, where electronics and optics play a role in defining the computational algorithm, free space communication links are typically utilized for, among other reasons, the increased network link complexity which can be achieved. Free space optical interconnections provide bandwidths and interconnection complexity unobtainable in pure electrical interconnections. Stacked 3-D architectures can provide the electronics real estate and structure to deal with the increased bandwidth and global information provided by free space optical communications. This paper provides definitions and examples of 3-D stacked architectures in optoelectronics processors. The benefits and issues of these technologies are discussed.
Optoelectronic interconnects for 3D wafer stacks
NASA Astrophysics Data System (ADS)
Ludwig, David; Carson, John C.; Lome, Louis S.
1996-01-01
Wafer and chip stacking are envisioned as means of providing increased processing power within the small confines of a three-dimensional structure. Optoelectronic devices can play an important role in these dense 3-D processing electronic packages in two ways. In pure electronic processing, optoelectronics can provide a method for increasing the number of input/output communication channels within the layers of the 3-D chip stack. Non-free space communication links allow the density of highly parallel input/output ports to increase dramatically over typical edge bus connections. In hybrid processors, where electronics and optics play a role in defining the computational algorithm, free space communication links are typically utilized for, among other reasons, the increased network link complexity which can be achieved. Free space optical interconnections provide bandwidths and interconnection complexity unobtainable in pure electrical interconnections. Stacked 3-D architectures can provide the electronics real estate and structure to deal with the increased bandwidth and global information provided by free space optical communications. This paper will provide definitions and examples of 3-D stacked architectures in optoelectronics processors. The benefits and issues of these technologies will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhe, E-mail: zhenzhe1201@sina.com; Yang, Lei; Hang, Yin
Highly transparent Dy{sup 3+}-doped terbium gallium garnet (TGG) single crystal was grown by Czochralski (Cz) method. Phase composition of the crystal was tested by XRD measurements. The distribution coefficient of Dy{sup 3+} in the crystal was obtained. The optical and magneto-optical properties were analyzed in detail, and magnetic properties of the Dy{sup 3+}-TGG crystal were studied. The paramagnetic behavior is observed down to 10 K. The as-grown crystal exhibited high optical transmittance, particularly in the visible region. The Faraday rotation was investigated over visible and near-infrared regions (VIS–NIR) at room temperature. The Verdet constants increase at measured wavelengths and highmore » thermal stability was found in Dy{sup 3+}-doped TGG, as compared to the properties of pure TGG, indicating that Dy{sup 3+}-doped crystals are preferable for magneto-active materials used in Faraday devices at VIS–NIR wavelengths. - Graphical abstract: Highly transparent Dy{sup 3+}-doped terbium gallium garnet (TGG) and pure TGG single crystals were grown by Czochralski method. The Dy{sup 3+}-doped TGG possesses 20–30% higher Verdet values in reference to TGG independently on wavelength.« less
Okano, Kenji; Zhang, Qiao; Shinkawa, Satoru; Yoshida, Shogo; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko
2009-01-01
In order to achieve direct and efficient fermentation of optically pure D-lactic acid from raw corn starch, we constructed L-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum and introduced a plasmid encoding Streptococcus bovis 148 alpha-amylase (AmyA). The resulting strain produced only D-lactic acid from glucose and successfully expressed amyA. With the aid of secreting AmyA, direct D-lactic acid fermentation from raw corn starch was accomplished. After 48 h of fermentation, 73.2 g/liter of lactic acid was produced with a high yield (0.85 g per g of consumed sugar) and an optical purity of 99.6%. Moreover, a strain replacing the ldhL1 gene with an amyA-secreting expression cassette was constructed. Using this strain, direct D-lactic acid fermentation from raw corn starch was accomplished in the absence of selective pressure by antibiotics. This is the first report of direct D-lactic acid fermentation from raw starch.
Okano, Kenji; Zhang, Qiao; Shinkawa, Satoru; Yoshida, Shogo; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko
2009-01-01
In order to achieve direct and efficient fermentation of optically pure d-lactic acid from raw corn starch, we constructed l-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum and introduced a plasmid encoding Streptococcus bovis 148 α-amylase (AmyA). The resulting strain produced only d-lactic acid from glucose and successfully expressed amyA. With the aid of secreting AmyA, direct d-lactic acid fermentation from raw corn starch was accomplished. After 48 h of fermentation, 73.2 g/liter of lactic acid was produced with a high yield (0.85 g per g of consumed sugar) and an optical purity of 99.6%. Moreover, a strain replacing the ldhL1 gene with an amyA-secreting expression cassette was constructed. Using this strain, direct d-lactic acid fermentation from raw corn starch was accomplished in the absence of selective pressure by antibiotics. This is the first report of direct d-lactic acid fermentation from raw starch. PMID:19011066
NASA Astrophysics Data System (ADS)
Loganathan, A.; Kumar, K.
2016-06-01
In the present work, pure and Sr2+ ions substituted Mg ferrite nanoparticles (NPs) had been prepared by co-precipitation method and their structural, optical, and magnetic properties at different calcination temperatures were studied. On this purpose, thermo gravimetric and differential thermal analysis (TG-DTA), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy, UV-Visible diffused reflectance spectroscopy, impedance spectroscopy, and vibrating sample magnetometer were carried out. The exo- and endothermic processes of synthesized precursors were investigated by TG-DTA measurements. The structural properties of the obtained products were examined by XRD analysis and show that the synthesized NPs are in the cubic spinel structure. The existence of two bands around 578-583 and 430-436 cm-1 in FT-IR spectrum also confirmed the formation of spinel-structured ferrite NPs. The lattice constants and particle size are estimated using XRD data and found to be strongly dependent on calcination temperatures. The optical, electrical, and magnetic properties of ferrite compositions also investigated and found to be strongly dependant on calcination temperatures.
Semiconductor laser-based optoelectronics oscillators
NASA Astrophysics Data System (ADS)
Yao, X. S.; Maleki, Lute; Wu, Chi; Davis, Lawrence J.; Forouhar, Siamak
1998-08-01
We demonstrate the realization of coupled opto-electronic oscillators (COEO) with different semiconductor lasers, including a ring laser, a Fabry-Perot laser, and a colliding pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 picoseconds and RF signals as high in frequency as 18 GHz with a spectral purity comparable with a HP8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.
Structural, optical and AFM characterization of PVA:La3+ polymer films
NASA Astrophysics Data System (ADS)
Ali, F. M.; Maiz, F.
2018-02-01
In this paper the structural and optical properties of pure Polyvinyl alcohol (PVA) and La3+-doped PVA films in the concentration range of 4%, 12% and 20% weight percent of Lanthanum were prepared by the conventional casting technique. X-ray diffraction pattern and atomic force microscopy studies of the investigated samples reveal their semi-crystalline nature. It is found that, absorption coefficient and cluster size of lanthanum:PVA composite increase with increasing salt concentration. However, the optical energy gap shows a slight decreasing trend.
Optical memory based on quantized atomic center-of-mass motion.
Lopez, J P; de Almeida, A J F; Felinto, D; Tabosa, J W R
2017-11-01
We report a new type of optical memory using a pure two-level system of cesium atoms cooled by the magnetically assisted Sisyphus effect. The optical information of a probe field is stored in the coherence between quantized vibrational levels of the atoms in the potential wells of a 1-D optical lattice. The retrieved pulse shows Rabi oscillations with a frequency determined by the reading beam intensity and are qualitatively understood in terms of a simple theoretical model. The exploration of the external degrees of freedom of an atom may add another capability in the design of quantum-information protocols using light.
Magneto-optical effects in semimetallic Bi 1–xSb x (x=0.015)
Dordevic, S. V.; Wolf, M. S.; Stojilovic, N.; ...
2012-09-12
We report the results of infrared and magneto-optical spectroscopy study on electrodynamic response of bismuth doped with 1.5% of antimony. The spectra are presented for temperatures down to 4.2 K, and in magnetic fields as high as 18 T. The results reveal strong magneto-optical activity, similar to pure bismuth, however there are some differences introduced by antimony doping. Analysis of optical functions reveals that the two type of charge carriers respond differently to external magnetic field. Finally, when the system enters the extreme quantum regime, both the inter- and intraband Landau Level transition are observed in the spectra.
Preparation and characterization of Pt loaded WO3 films suitable for gas sensing applications
NASA Astrophysics Data System (ADS)
Jolly Bose, R.; Illyasukutty, Navas; Tan, K. S.; Rawat, R. S.; Vadakke Matham, Murukesan; Kohler, Heinz; Mahadevan Pillai, V. P.
2018-05-01
This paper presents the preparation of nanostructured platinum (Pt) loaded tungsten oxide (WO3) thin films by radio frequency (RF) magnetron sputtering technique. Even though, Pt loading does not produce any phase change in WO3 lattice, it deteriorates the crystalline quality and induces defects on WO3 films. The Pt loading in WO3 has profound impact on structural and optical properties of the films by which the particle size, lattice strain and optical band gap energy are reduced. Nanoporous film with reduced particle size is obtained for 5 wt% Pt loaded WO3 sample which is crucial for gas sensors. Hence the sensing response of 5 wt% Pt loaded sample is tested towards carbon monoxide (CO) gas along with pure WO3 sample. The sensing response of Pt loaded sample is nearly 15 times higher than pure WO3 sample in non-humid ambience at an operating temperature 200 °C. This indicates the suitability of the prepared films for gas sensors. The sensing response of pure WO3 film depends on the humidity while the Pt loaded WO3 film shows stable response in both humid and non-humid ambiences.
Investigation of optical properties and local structure of Gd3+ doped nano-crystalline GeSe2
NASA Astrophysics Data System (ADS)
Hantour, Hanan Hassan
2017-04-01
Pure and Gd-doped nano-crystalline GeSe2 were prepared by the melt-quenching technique. Structure analysis using Rietveld program suggests monoclinic structure for both virgin and doped samples with nano-particle size 41 nm for GeSe2 and 48 nm for Gd-doped sample. A wide optical band gap as estimated from absorbance measurements is 4.1 and 4.8 eV for pure and doped samples in accordance with the confinement effects. Raman spectra show two unresolved components at ˜202 cm-1 with broad line width. Also, well identified low intensity (υ < 145 cm-1) and high intensity (υ > 250 cm-1) bands are detected. For Gd-doped sample, the main band is shifted to lower energies and its full width at half maximum (FWHM) is reduced by ˜50% accompanied by an intensity increase of about ˜17 fold times. The photoluminescence analysis of the pure sample shows a main emission band at ˜604 nm. This band is split into two separated bands with higher intensity. The detected emission bands at wavelength >650 nm are assigned to transmission from 6GJ to the different 6PJ terms.
Tada, Yukie; Yano, Norio; Takahashi, Hiroshi; Yuzawa, Katsuhiro; Ando, Hiroshi; Kubo, Yoshikazu; Nagasawa, Akemichi; Inomata, Akiko; Ogata, Akio; Nakae, Dai
2013-12-01
Information about potential risks of iron nanomaterials is still limited, while a wide variety of applications are expected. We recently reported acute phase responses of male and female Fischer 344 rats after a single intratracheal spray instillation of Fe3O4 nanoparticles (magnetite), clearly showing dose-dependent pulmonary inflammatory changes (Tada et al., J Toxicol Pathol 25, 233-239, 2012). The present study assessed long-term responses of male and female Fischer 344 rats to multiple administrations of magnetite. Ten-week-old male and female Fischer 344 rats (n=20/group) were exposed to a total of 13 quadweekly intermittent intratracheal spray instillations of magnetite during the experimental period of 52 weeks, at doses of 0, 0.2 (low), 1.0 (medium) and 5.0 (high-dose) mg/kg body weight per administration. Absolute and relative lung weights of the high-dose group were significantly higher than those of the control group. Macroscopically, slight enlargement and scattered black patches were recognized in the lungs and the lung-associated lymph nodes of the high-dose group. Histopathologically, infiltration of macrophages phagocytosing magnetite (all dose groups) and of chronic inflammatory cells (medium- and high-dose males and high-dose females), alveolar bronchiolization and granuloma (high-dose group) were observed. In addition, alveolar hyperplasias were observed in some rats of the high-dose group, and cytoplasmic overexpression of β-catenin protein was immunohistochemically found in such lesions. The present results clearly show that instilled magnetite causes chronic inflammatory responses in the lung. These responses occur in a dose-dependent manner without apparent differences among sexes.
Gil, Fulvio R; Zitouni, Nedjma B; Azoulay, Eric; Maghni, Karim; Lauzon, Anne-Marie
2006-11-01
Four smooth muscle myosin heavy chain (SMMHC) isoforms are generated by alternative mRNA splicing of a single gene. Two of these isoforms differ by the presence [(+)insert] or absence [(-)insert] of a 7-amino acid insert in the motor domain. The rate of actin filament propulsion of the (+)insert SMMHC isoform, as measured in the in vitro motility assay, is twofold greater than that of the (-)insert isoform. We hypothesized that a greater expression of the (+)insert SMMHC isoform and greater regulatory light chain (LC(20)) phosphorylation contribute to airway hyperresponsiveness. We measured airway responsiveness to methacholine in Fischer hyperresponsive and Lewis normoresponsive rats and determined SMMHC isoform mRNA and protein expression, as well as essential light chain (LC(17)) isoforms, h-caldesmon, and alpha-actin protein expression in their tracheae. We also measured tracheal muscle strip contractility in response to methacholine and corresponding LC(20) phosphorylation. We found Fischer rats have more (+)insert mRNA (69.4 +/- 2.0%) (mean +/- SE) than Lewis rats (53.0 +/- 2.4%; P < 0.05) and a 44% greater content of (+)insert isoform relative to total myosin protein. No difference was found for LC(17) isoform, h-caldesmon, and alpha-actin expression. The contractility experiments revealed a greater isometric force for Fischer trachealis segments (4.2 +/- 0.8 mN) than Lewis (1.9 +/- 0.4 mN; P < 0.05) and greater LC(20) phosphorylation level in Fischer (55.1 +/- 6.4) than in Lewis (41.4 +/- 6.1; P < 0.05) rats. These results further support the contention that innate airway hyperresponsiveness is a multifactorial disorder in which increased expression of the fast (+)insert SMMHC isoform and greater activation of LC(20) lead to smooth muscle hypercontractility.
Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation
NASA Astrophysics Data System (ADS)
Li, Junze; Wang, Jun; Zhang, Yingjun; Wang, Haizhen; Lin, Gaoming; Xiong, Xuan; Zhou, Weihang; Luo, Hongmei; Li, Dehui
2018-04-01
The two-dimensional (2D) Ruddlesden-Popper type perovskites have attracted intensive interest for their great environmental stability and various potential optoelectronic applications. Fundamental understanding of the photophysical and electronic properties of the 2D perovskites with pure single phase is essential for improving the performance of the optoelectronic devices and designing devices with new architectures. Investigating the optical and electronic properties of these materials with pure single phase is required to obtain pure single phase 2D perovskites. Here, we report on an alternative approach to fabricate (C4H9NH3)2(CH3NH3) n-1Pb n I3n+1 microplates with pure single n-number perovskite phase for n > 2 by mechanical exfoliation. Micro-photoluminescence and absorption spectroscopy studies reveal that the as-synthesized 2D perovskite plates for n > 2 are comprised by dominant n-number phase and small inclusions of hybrid perovskite phases with different n values, which is supported by excitation power dependent photoluminescence. By mechanical exfoliation method, 2D perovskite microplates with the thickness of around 20 nm are obtained, which surprisingly have single n-number perovskite phase for n = 2-5. In addition, we have demonstrated that the exfoliated 2D perovskite microplates can be integrated with other 2D layered materials such as boron nitride, and are able to be transferred to prefabricated electrodes for photodetections. Our studies not only provide a strategy to prepare 2D perovskites with a single n-number perovskite phase allowing us to extract the basic optical and electronic parameters of pure phase perovskites, but also demonstrate the possibility to integrate the 2D perovskites with other 2D layered materials to extend the device’s functionalities.
Theoretical investigation of stabilities and optical properties of Si12C12 clusters
NASA Astrophysics Data System (ADS)
Duan, Xiaofeng F.; Burggraf, Larry W.
2015-01-01
By sorting through hundreds of globally stable Si12C12 isomers using a potential surface search and using simulated annealing, we have identified low-energy structures. Unlike isomers knit together by Si-C bonds, the lowest energy isomers have segregated carbon and silicon regions that maximize stronger C-C bonding. Positing that charge separation between the carbon and silicon regions would produce interesting optical absorption in these cluster molecules, we used time-dependent density functional theory to compare the calculated optical properties of four isomers representing structural classes having different types of silicon and carbon segregation regions. Absorptions involving charge transfer between segregated carbon and silicon regions produce lower excitation energies than do structures having alternating Si-C bonding for which frontier orbital charge transfer is exclusively from separated carbon atoms to silicon atoms. The most stable Si12C12 isomer at temperatures below 1100 K is unique as regards its high symmetry and large optical oscillator strength in the visible blue. Its high-energy and low-energy visible transitions (1.15 eV and 2.56 eV) are nearly pure one-electron silicon-to-carbon transitions, while an intermediate energy transition (1.28 eV) is a nearly pure carbon-to-silicon one-electron charge transfer.
NASA Astrophysics Data System (ADS)
Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio
2007-10-01
We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1×M bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a , uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.
Transfer of non-Gaussian quantum states of mechanical oscillator to light
NASA Astrophysics Data System (ADS)
Filip, Radim; Rakhubovsky, Andrey A.
2015-11-01
Non-Gaussian quantum states are key resources for quantum optics with continuous-variable oscillators. The non-Gaussian states can be deterministically prepared by a continuous evolution of the mechanical oscillator isolated in a nonlinear potential. We propose feasible and deterministic transfer of non-Gaussian quantum states of mechanical oscillators to a traveling light beam, using purely all-optical methods. The method relies on only basic feasible and high-quality elements of quantum optics: squeezed states of light, linear optics, homodyne detection, and electro-optical feedforward control of light. By this method, a wide range of novel non-Gaussian states of light can be produced in the future from the mechanical states of levitating particles in optical tweezers, including states necessary for the implementation of an important cubic phase gate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fajardo, Mario E., E-mail: mario.fajardo@eglin.af.mil; Molek, Christopher D.; Vesely, Annamaria L.
2015-10-14
We report the first successful results from our novel Rubidium Atomic Line Filtered (RALF) Doppler velocimetry apparatus, along with unanticipated oscillatory signals due to coherent optical transients generated within pure Rb vapor cells. RALF is a high-velocity and high-acceleration extension of the well-known Doppler Global Velocimetry (DGV) technique for constructing multi-dimensional flow velocity vector maps in aerodynamics experiments [H. Komine, U.S. Patent No. 4,919,536 (24 April 1990)]. RALF exploits the frequency dependence of pressure-broadened Rb atom optical absorptions in a heated Rb/N{sub 2} gas cell to encode the Doppler shift of reflected near-resonant (λ{sub 0} ≈ 780.24 nm) laser light onto the intensitymore » transmitted by the cell. The present RALF apparatus combines fiber optic and free-space components and was built to determine suitable operating conditions and performance parameters for the Rb/N{sub 2} gas cells. It yields single-spot velocities of thin laser-driven-flyer test surfaces and incorporates a simultaneous Photonic Doppler Velocimetry (PDV) channel [Strand et al., Rev. Sci. Instrum. 77, 083108 (2006)] for validation of the RALF results, which we demonstrate here over the v = 0 to 1 km/s range. Both RALF and DGV presume the vapor cells to be simple Beer's Law optical absorbers, so we were quite surprised to observe oscillatory signals in experiments employing low pressure pure Rb vapor cells. We interpret these oscillations as interference between the Doppler shifted reflected light and the Free Induction Decay (FID) coherent optical transient produced within the pure Rb cells at the original laser frequency; this is confirmed by direct comparison of the PDV and FID signals. We attribute the different behaviors of the Rb/N{sub 2} vs. Rb gas cells to efficient dephasing of the atomic/optical coherences by Rb-N{sub 2} collisions. The minimum necessary N{sub 2} buffer gas density ≈0.3 amagat translates into a smallest useful velocity range of 0 to 2 km/s, which can readily be extended to cover the 0 to 10 km/s range, and beyond. The recognition that coherent optical transients can be produced within low pressure vapor cells during velocimetry experiments may offer new insights into some quantitative discrepancies reported in earlier DGV studies. Future plans include “line-RALF” experiments with streak camera detection, and two-dimensional surface velocity mapping using pulsed laser illumination and/or gated intensified CCD camera detection.« less
Enhanced optical limiting effect in fluorine-functionalized graphene oxide
NASA Astrophysics Data System (ADS)
Zhang, Fang; Wang, Zhengping; Wang, Duanliang; Wang, Shenglai; Xu, Xinguang
2017-09-01
Nonlinear optical absorption of fluorine-functionalized graphene oxide (F-GO) solution was researched by the open-aperture Z-scan method using 1064 and 532 nm lasers as the excitation sources. The F-GO dispersion exhibited strong optical limiting property and the fitted results demonstrated that the optical limiting behavior was the result of a two-photon absorption process. For F-GO nanosheets, the two-photon absorption coefficients at 1064 nm excitation are 20% larger than the values at 532 nm excitation and four times larger than that of pure GO nanosheets. It indicates that the doping of fluorine can effectively improve the nonlinear optical property of GO especially in infrared waveband, and fluorine-functionalized graphene oxide is an excellent nonlinear absorption material in infrared waveband.
Thermodynamic origin of nonimaging optics
NASA Astrophysics Data System (ADS)
Jiang, Lun; Winston, Roland
2016-10-01
Nonimaging optics is the theory of thermodynamically efficient optics and as such depends more on thermodynamics than on optics. Hence, in this paper, a condition for the "best" design is proposed based on purely thermodynamic arguments, which we believe has profound consequences for the designs of thermal and even photovoltaic systems. This way of looking at the problem of efficient concentration depends on probabilities, the ingredients of entropy and information theory, while "optics" in the conventional sense recedes into the background. Much of the paper is pedagogical and retrospective. Some of the development of flowline designs will be introduced at the end and the connection between the thermodynamics and flowline design will be graphically presented. We will conclude with some speculative directions of where the ideas might lead.
2017-05-12
iss051e041844 (05/12/2017) -- NASA astronaut Jack Fischer is seen during the 200th spacewalk in support of the International Space Station. Expedition 51 Commander Peggy Whitson and Flight Engineer Jack Fischer of NASA successfully replaced a large avionics box that supplies electricity and data connections to the science experiments. The astronauts also completed additional tasks to install a connector that will route data to the Alpha Magnetic Spectrometer, repair insulation at the connecting point of the Japanese robotic arm, and install a protective shield on the Pressurized Mating Adapter-3. This adapter will host a new international docking port for the arrival of commercial crew spacecraft.
Method of inducing surface ensembles on a metal catalyst
Miller, Steven S.
1989-01-01
A method of inducing surface ensembles on a transition metal catalyst used in the conversion of a reactant gas or gas mixture, such as carbon monoxide and hydrogen into hydrocarbons (the Fischer-Tropsch reaction) is disclosed which comprises adding a Lewis base to the syngas (CO+H.sub.2) mixture before reaction takes place. The formation of surface ensembles in this manner restricts the number and types of reaction pathways which will be utilized, thus greatly narrowing the product distribution and maximizing the efficiency of the Fischer-Tropsch reaction. Similarly, amines may also be produced by the conversion of reactant gas or gases, such as nitrogen, hydrogen, or hydrocarbon constituents.
Method of inducing surface ensembles on a metal catalyst
Miller, S.S.
1987-10-02
A method of inducing surface ensembles on a transition metal catalyst used in the conversion of a reactant gas or gas mixture, such as carbon monoxide and hydrogen into hydrocarbons (the Fischer-Tropsch reaction) is disclosed which comprises adding a Lewis base to the syngas (CO + H/sub 2/) mixture before reaction takes place. The formation of surface ensembles in this manner restricts the number and types of reaction pathways which will be utilized, thus greatly narrowing the product distribution and maximizing the efficiency of the Fischer-Tropsch reaction. Similarly, amines may also be produced by the conversion of reactant gas or gases, such as nitrogen, hydrogen, or hydrocarbon constituents.
A detailed gravimetric geoid from North America to Eurasia
NASA Technical Reports Server (NTRS)
Vincent, S. F.; Strange, W. E.; Marsh, J. G.
1972-01-01
A detailed gravimetric geoid of the United States, North Atlantic, and Eurasia, which was computed from a combination of satellite derived and surface gravity data, is presented. The precision of this detailed geoid is + or - 2 to + or - 3 m in the continents but may be in the range of 5 to 7 m in those areas where data is sparse. Comparisons of the detailed gravimetric geoid with results of Rapp, Fischer, and Rice for the United States, Bomford in Europe, and Heiskanen and Fischer in India are presented. Comparisons are also presented with geoid heights from satellite solutions for geocentric station coordinates in North America, the Caribbean, and Europe.
Expedition 52 Crew Lands Safely in Kazakhstan to Complete Record-Setting Mission
2017-09-02
Expedition 52 Commander Fyodor Yurchikhin of Roscosmos and Flight Engineers Peggy Whitson and Jack Fischer of NASA landed safely near the town of Dzhezkazgan, Kazakhstan Sept. 3 after bidding farewell to their colleagues on the complex and undocking their Soyuz MS-04 spacecraft from the Poisk Module on the International Space Station. The landing marked the first time since Nov. 26, 2010 that two NASA astronauts returned to Earth in a Russian Soyuz spacecraft. Whitson, who has logged more days in space than any other U.S. astronaut, completed a 10-month mission, her third long duration flight, while Yurchikhin and Fischer completed 136 days in space.
Expedition 52 Crew Lands Safely in Kazakhstan
2017-09-02
Expedition 52 Commander Fyodor Yurchikhin of Roscosmos and Flight Engineers Peggy Whitson and Jack Fischer of NASA landed safely near the town of Dzhezkazgan, Kazakhstan Sept. 3 after bidding farewell to their colleagues on the complex and undocking their Soyuz MS-04 spacecraft from the Poisk Module on the International Space Station. The landing marked the first time since Nov. 26, 2010 that two NASA astronauts returned to Earth in a Russian Soyuz spacecraft. Whitson, who has logged more days in space than any other U.S. astronaut, completed a 10-month mission, her third long duration flight, while Yurchikhin and Fischer completed 136 days in space.
Delgado, Jorge A.; Claver, Carmen; Castillón, Sergio; Curulla-Ferré, Daniel; Godard, Cyril
2017-01-01
A series of small and well defined cobalt nanoparticles were synthesized by the chemical reduction of cobalt salts in water using NaBH4 as a reducing agent and using various polymeric stabilizers. The obtained nanocatalysts of similar mean diameters (ca. 2.6 nm) were fully characterized and tested in the aqueous phase Fischer-Tropsch Synthesis (AFTS). Interestingly, the nature and structure of the stabilizers used during the synthesis of the CoNPs affected the reduction degree of cobalt and the B-doping of these NPs and consequently, influenced the performance of these nanocatalysts in AFTS. PMID:28336892
1982-06-18
McKnight, W. B.Barsam, Helena F. See Simutis, Zita M. 3 273 Basso, Michael J. See McCreery, M. J. 2 357 Bates, Calvin See Fischer , Paul 1 399 Baussus...F. 3 1 Berg, Ri chard See Lunardi ni, Virgil J. 2 263 Berkhimer, Karl See Sturdivan, Larry M. 4 209 Bertin, John J. VMultiple Launch Rocket System...W. Fischer , Paul A Novel Beom Bunching Concept for 1 399 Sates,, Calvin Millimeter Wave Tubes Hartley, Joseph Friedman, Melvin H. New Viewpoints in
Early contributions to theoretical chemistry: Inga Fischer-Hjalmars, a founder of the Swedish school
NASA Astrophysics Data System (ADS)
Johansson, Adam Johannes
2017-09-01
Inga Fischer-Hjalmars was one of the pioneers in the creation of the Swedish school of theoretical chemistry. She started her scientific endeavours in pharmacy and biochemistry, but soon sought a deeper understanding of molecules and chemistry. With a genuine experimental background and quantum chemical skills learned from Charles Coulson in the late 1940s, Inga was well prepared to continue her research and to contribute to the establishment of theoretical chemistry as it was later defined by Coulson; the use of quantum mechanics to explain experimental phenomena in all branches of chemistry. During the 1950s and 1960s Inga made important contributions to our understanding of chemical bonding and reactivity. For example, she made key insights into the dissociation of molecular hydrogen, the influence of heteroatoms on dipole moments in organic compounds, the electronic configuration of ozone and on the validity of different approximations in molecular theory. Inga Fischer-Hjalmars and her students developed extensions of the Pariser-Parr-Pople method and during the latter part of her career, she returned to the biomolecules that once had brought her into science, now applying quantum chemical methods to understand bonding and spectral properties of these molecules at greater depth.
NASA Astrophysics Data System (ADS)
Morrison, Foster; Chovitz, Bernard; Fischer, Michael M. J.
2010-05-01
Irene Kaminka Fischer, a prominent geodesist whose career spanned the years 1952-1977, died on 22 October 2009 at the age of 102 at an assisted living facility in Brighton, Mass. Born in Vienna, Austria, on 27 July 1907, Irene grew up there; graduating with a degree in mathematics from the Vienna Institute of Technology; and met and married her husband, Eric, a noted geographer. In 1939, the Fischers fled Nazi Austria, first to Palestine, and by 1941 had relocated to the United States. During the next 11 years, Irene worked at various jobs, as well as playing the role of mother to her son and daughter. But when her daughter was ready for college, she began to look for a position that would fully utilize her considerable talents in mathematics. She found a perfect fit at her husband's federal agency, the U.S. Army Map Service (AMS). Her entire career in geodesy was spent with that organization and its successors (currently the National Geospatial-Intelligence Agency (NGA)). Hired as a mathematician, she eventually was promoted to chief of the Geoid Branch in the Geodesy Division. She retained that position until her retirement in 1977.
Wu, Qiong; van Achterberg, Cornelis; Tan, Jiang-Li; Chen, Xue-Xin
2016-01-01
The East Palaearctic and North Oriental species of the genus Psyttalia Walker (Hymenoptera, Braconidae, Opiinae) are reviewed. Three new species are described and illustrated: Psyttalia latinervis Wu & van Achterberg, sp. n . and Psyttalia majocellata Wu & van Achterberg, sp. n . from China, and Psyttalia spectabilis van Achterberg, sp. n. from Japan. Coeloreuteus formosanus Watanabe, 1934, Opius (Lissosema) proclivis Papp, 1981, Opius (Psyttalia) subcyclogaster Tobias, 1998, Opius (Psyttalia) darasunicus Tobias, 1998, Opius (Psyttalia) cyclogastroides Tobias, 1998, Psyttalia extensa Weng & Chen, 2001, and Rhogadopsis longicaudifera Li & van Achterberg, 2013, are new synonyms of Psyttalia cyclogaster (Thomson, 1895); Opius (Psyttalia) ophthalmicus Tobias, 1977, and Opius (Psyttalia) brevitemporalis Tobias, 1998, of Psyttalia carinata (Thomson, 1895) and both Opius (Psyttalia) vacuus Tobias, 1998, and Opius (Lissosema) longurius Chen & Weng, 1995, of Rhogadopsis mediocarinata (Fischer, 1963). Phaedrotoma daghestanicum (Telenga, 1950), Rhogadopsis mediocarinata (Fischer, 1963) and Rhogadopsis mystica (Fischer, 1963) are new combinations. New records are Psyttalia carinata (Thomson, 1895) from The Netherlands and Norway, and Psyttalia cyclogaster (Thomson, 1895) from Japan. A lectotype is designated for Psyttalia carinata (Thomson, 1895) and Psyttalia cyclogaster (Thomson, 1895). A key to the East Palaearctic and North Oriental species of the genus Psyttalia Walker is included.
NASA Astrophysics Data System (ADS)
Cowley, S. W. H.; Provan, G.
2015-07-01
We discuss the properties of Saturn planetary period oscillations (PPOs) deduced from analysis of Saturn kilometric radiation (SKR) modulations by Fischer et al. (2014), and from prior analysis of magnetic field oscillations data by Andrews et al. (2012) and Provan et al. (2013), with emphasis on the post-equinox interval from early 2010 to early 2013. Fischer et al. (2014) characterize this interval as showing single phase-locked periods in the northern and southern SKR modulations observed in polarization-separated data, while the magnetic data generally show the presence of separated dual periods, northern remaining shorter than southern. We show that the single SKR period corresponds to the southern magnetic period early in 2010, segues into the northern period in late 2010, and returns to the southern period in mid-2012, approximately in line with changes in the dominant magnetic oscillation. An exception occurs in mid-February to late August 2011 when two periods are again discerned in SKR data, in good agreement with the ongoing dual periods in the magnetic data. Fischer et al. (2014) discuss this change in terms of a large jump in the southern SKR period related to the Great White Spot storm, which the magnetic data show is primarily due instead to a reappearance in the SKR data of the ongoing southern modulation in a transitory interval of resumed southern dominance. In the earlier interval from early April 2010 to mid-February 2011 when Fischer et al. (2014) deduce single phase-locked periods, we show unequivocal evidence in the magnetic data for the presence of separated dual oscillations of approximately equal amplitude. We suggest that the apparent single SKR periods result from a previously reported phenomenon in which modulations associated with one hemisphere appear in polarization-separated data associated with the other. In the following interval, mid-August 2011 to early April 2012, when Fischer et al. (2014) again report phase-locked northern and southern oscillations, no ongoing southern oscillation of separate period is discerned in the magnetic data. However, the magnetic amplitude data show that if a phase-locked southern oscillation is indeed present, its amplitude must be less than ~ 5-10 % of the northern oscillation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vashistha, Indu B., E-mail: indu-139@yahoo.com; Sharma, S. K.; Sharma, Mahesh C.
2015-08-28
In order to find the suitable alternative of toxic CdS buffer layer, deposition of pure ZnS and doped with Al by chemical bath deposition method have been reported. Further as grown pure and doped thin films have been annealed at 150°C. The structural and surface morphological properties have been characterized by X-Ray diffraction (XRD) and Atomic Force Microscope (AFM).The XRD analysis shows that annealed thin film has been polycrystalline in nature with sphalerite cubic crystal structure and AFM images indicate increment in grain size as well as growth of crystals after annealing. Optical measurement data give band gap of 3.5more » eV which is ideal band gap for buffer layer for solar cell suggesting that the obtained ZnS buffer layer is suitable in a low-cost solar cell.« less
Transaminases for the synthesis of enantiopure beta-amino acids
2012-01-01
Optically pure β-amino acids constitute interesting building blocks for peptidomimetics and a great variety of pharmaceutically important compounds. Their efficient synthesis still poses a major challenge. Transaminases (also known as aminotransferases) possess a great potential for the synthesis of optically pure β-amino acids. These pyridoxal 5'-dependent enzymes catalyze the transfer of an amino group from a donor substrate to an acceptor, thus enabling the synthesis of a wide variety of chiral amines and amino acids. Transaminases can be applied either for the kinetic resolution of racemic compounds or the asymmetric synthesis starting from a prochiral substrate. This review gives an overview over microbial transaminases with activity towards β-amino acids and their substrate spectra. It also outlines current strategies for the screening of new biocatalysts. Particular emphasis is placed on activity assays which are applicable to high-throughput screening. PMID:22293122
On-chip low loss heralded source of pure single photons.
Spring, Justin B; Salter, Patrick S; Metcalf, Benjamin J; Humphreys, Peter C; Moore, Merritt; Thomas-Peter, Nicholas; Barbieri, Marco; Jin, Xian-Min; Langford, Nathan K; Kolthammer, W Steven; Booth, Martin J; Walmsley, Ian A
2013-06-03
A key obstacle to the experimental realization of many photonic quantum-enhanced technologies is the lack of low-loss sources of single photons in pure quantum states. We demonstrate a promising solution: generation of heralded single photons in a silica photonic chip by spontaneous four-wave mixing. A heralding efficiency of 40%, corresponding to a preparation efficiency of 80% accounting for detector performance, is achieved due to efficient coupling of the low-loss source to optical fibers. A single photon purity of 0.86 is measured from the source number statistics without narrow spectral filtering, and confirmed by direct measurement of the joint spectral intensity. We calculate that similar high-heralded-purity output can be obtained from visible to telecom spectral regions using this approach. On-chip silica sources can have immediate application in a wide range of single-photon quantum optics applications which employ silica photonics.
An Ultimate Stereocontrol in Asymmetric Synthesis of Optically Pure Fully Aromatic Helicenes.
Šámal, Michal; Chercheja, Serghei; Rybáček, Jiří; Vacek Chocholoušová, Jana; Vacek, Jaroslav; Bednárová, Lucie; Šaman, David; Stará, Irena G; Starý, Ivo
2015-07-08
The role of the helicity of small molecules in enantioselective catalysis, molecular recognition, self-assembly, material science, biology, and nanoscience is much less understood than that of point-, axial-, or planar-chiral molecules. To uncover the envisaged potential of helically chiral polyaromatics represented by iconic helicenes, their availability in an optically pure form through asymmetric synthesis is urgently needed. We provide a solution to this problem present since the birth of helicene chemistry in 1956 by developing a general synthetic methodology for the preparation of uniformly enantiopure fully aromatic [5]-, [6]-, and [7]helicenes and their functionalized derivatives. [2 + 2 + 2] Cycloisomerization of chiral triynes combined with asymmetric transformation of the first kind (ultimately controlled by the 1,3-allylic-type strain) is central to this endeavor. The point-to-helical chirality transfer utilizing a traceless chiral auxiliary features a remarkable resistance to diverse structural perturbations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klingler, S., E-mail: stefan.klingler@wmi.badw.de; Maier-Flaig, H.; Weiler, M.
Microfocused Brillouin light scattering (BLS) and microwave absorption (MA) are used to study magnon-photon coupling in a system consisting of a split-ring microwave resonator and an yttrium iron garnet (YIG) film. The split-ring resonator is defined by optical lithography and loaded with a 1 μm-thick YIG film grown by liquid phase epitaxy. BLS and MA spectra of the hybrid system are simultaneously recorded as a function of the applied magnetic field magnitude and microwave excitation frequency. Strong coupling of the magnon and microwave resonator modes is found with a coupling strength of g{sub eff} /2π = 63 MHz. The combined BLS and MA datamore » allow us to study the continuous transition of the hybridized modes from a purely magnonic to a purely photonic mode by varying the applied magnetic field and microwave frequency. Furthermore, the BLS data represent an up-conversion of the microwave frequency coupling to optical frequencies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Virender Singh; Tanwar, Amit; Singh, Davender, E-mail: Davender-kadian@rediffmail.com
The pure and Ag-doped TiO{sub 2} nanoparticles were prepared by using Titanium isoproxide (TTIP), silver nitrate sodium hydroxide and sodium hydroxide. The calcined nanoparticles at 400°C were characterized by means of X-ray diffraction (XRD). XRD analyses reveal that the nanoparticles of various doping concentration were having anatase phase. The particle size was calculated by Scherrer formula and was found 11.08 nm for pure TiO{sub 2} and 8.86 nm for 6 mol % Ag doped TiO{sub 2}. The morphology and nature of nanoparticles was analyzed by using scanning electron microscope (SEM), the optical absorption spectra of pure TiO{sub 2} and Ag-doped TiO{sub 2} nanoparticlesmore » showed that absorption edge increases towards longer wavelength from 390 nm (pure) to 450 nm (doped), also band gap energy calculated from Tauc’s plot decrease from 3.20eV to 2.92eV with increase in doing. The measurement of photocatalytic properties of pure TiO{sub 2} and Ag-doped TiO{sub 2} nanoparticles showed that Ag-doped TiO{sub 2} degrades MB dye more efficiently than pure TiO{sub 2}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Budhendra, E-mail: bksingh@ua.pt; Kaushal, Ajay, E-mail: ajay.kaushal@ua.pt; Bdikin, Igor
2015-10-15
Highlights: • Pure and Ni doped ZnO nanopowders were synthesized by low cost sonochemical method. • The optical properties of Zn{sub 1−x}Ni{sub x}O nanopowders can be tuned by varying Ni content. • The results reveal the solubility limit of Ni into ZnO matrix as below 8%. - Abstract: Zn{sub 1−x}Ni{sub x}O nanopowders with different Ni contents of x = 0.0, 0.04 and 0.08 were synthesized via cost effective sonochemical reaction method. X-ray diffraction (XRD) pattern reveals pure wurtzite phase of prepared nanostructures with no additional impurity peaks. The morphology and dimensions of nanoparticles were investigated using scanning electron microscope (SEM).more » A sharp and strong peak for first order optical mode for wurtzite zinc oxide (ZnO) structure was observed at ∼438 cm{sup −1} in Raman spectra. The calculated optical band gap (E{sub g}) from UV–vis transmission data was found to decrease with increase in Ni content. The observed red shift in E{sub g} with increasing Ni content in ZnO nanopowders were in agreement with band gap behaviours found in their photoluminescence (PL) spectra. The synthesised ZnO nanopowders with controlled band gap on Ni doping reveals their potential for use in various electronic and optical device applications. The results were discussed in detail.« less
Sm and Y radiolabeled magnetic fluids: magnetic and magneto-optical characterization
NASA Astrophysics Data System (ADS)
Aquino, R.; Gomes, J. A.; Tourinho, F. A.; Dubois, E.; Perzynski, R.; da Silva, G. J.; Depeyrot, J.
2005-03-01
We report on magnetic fluids based on samarium and ytrium-doped nanoparticles. The nanostructures chemical composition is checked and X-ray diffraction provides both their mean size and a structural characterization. Magnetization and magneto-optical birefringence results are presented and well agree with the pure maghemite behavior. Since these particles can become radioactive after neutron activation, they could therefore represent a new perspective for biomedical applications in the radiation therapy of cancer.
Controlling lightwave in Riemann space by merging geometrical optics with transformation optics.
Liu, Yichao; Sun, Fei; He, Sailing
2018-01-11
In geometrical optical design, we only need to choose a suitable combination of lenses, prims, and mirrors to design an optical path. It is a simple and classic method for engineers. However, people cannot design fantastical optical devices such as invisibility cloaks, optical wormholes, etc. by geometrical optics. Transformation optics has paved the way for these complicated designs. However, controlling the propagation of light by transformation optics is not a direct design process like geometrical optics. In this study, a novel mixed method for optical design is proposed which has both the simplicity of classic geometrical optics and the flexibility of transformation optics. This mixed method overcomes the limitations of classic optical design; at the same time, it gives intuitive guidance for optical design by transformation optics. Three novel optical devices with fantastic functions have been designed using this mixed method, including asymmetrical transmissions, bidirectional focusing, and bidirectional cloaking. These optical devices cannot be implemented by classic optics alone and are also too complicated to be designed by pure transformation optics. Numerical simulations based on both the ray tracing method and full-wave simulation method are carried out to verify the performance of these three optical devices.
X-ray studies of quasars with the Einstein Observatory. II
NASA Technical Reports Server (NTRS)
Zamorani, G.; Maccacaro, T.; Henry, J. P.; Tananbaum, H.; Soltan, A.; Liebert, J.; Stocke, J.; Strittmatter, P. A.; Weymann, R. J.; Smith, M. G.
1981-01-01
X-ray observations of 107 quasars have been carried out with the Einstein Observatory, and 79 have been detected. A correlation between optical emission and X-ray emission is found; and for radio-loud quasars, the data show a correlation between radio emission and X-ray emission. For a given optical luminosity, the average X-ray emission of radio-loud quasars is about three times higher than that of radio-quiet quasars. The data also suggest that the ratio of X-ray to optical luminosity is decreasing with increasing redshift and/or optical luminosity. The data support the picture in which luminosity evolution, rather than pure density evolution, describes the quasar behavior as a function of redshift.
Generating and Separating Twisted Light by gradient-rotation Split-Ring Antenna Metasurfaces.
Zeng, Jinwei; Li, Ling; Yang, Xiaodong; Gao, Jie
2016-05-11
Nanoscale compact optical vortex generators promise substantially significant prospects in modern optics and photonics, leading to many advances in sensing, imaging, quantum communication, and optical manipulation. However, conventional vortex generators often suffer from bulky size, low vortex mode purity in the converted beam, or limited operation bandwidth. Here, we design and demonstrate gradient-rotation split-ring antenna metasurfaces as unique spin-to-orbital angular momentum beam converters to simultaneously generate and separate pure optical vortices in a broad wavelength range. Our proposed design has the potential for realizing miniaturized on-chip OAM-multiplexers, as well as enabling new types of metasurface devices for the manipulation of complex structured light beams.
Spectrally pure RF photonic source based on a resonant optical hyper-parametric oscillator
NASA Astrophysics Data System (ADS)
Liang, W.; Eliyahu, D.; Matsko, A. B.; Ilchenko, V. S.; Seidel, D.; Maleki, L.
2014-03-01
We demonstrate a free running 10 GHz microresonator-based RF photonic hyper-parametric oscillator characterized with phase noise better than -60 dBc/Hz at 10 Hz, -90 dBc/Hz at 100 Hz, and -150 dBc/Hz at 10 MHz. The device consumes less than 25 mW of optical power. A correlation between the frequency of the continuous wave laser pumping the nonlinear resonator and the generated RF frequency is confirmed. The performance of the device is compared with the performance of a standard optical fiber based coupled opto-electronic oscillator of OEwaves.
Enhance the performance of liquid crystal as an optical switch by doping CdS quantum dots
NASA Astrophysics Data System (ADS)
Ahmed, Sudad S.; Ibrahim, Rawa K.; Al-Naimee, Kais; Naje, Asama N.; Ibrahim, Omar A.; Majeed, K. A.
2018-05-01
The electrical and optical properties results were studied for Cadmium Sulphide (CdS) Nanoparticles / Nematic liquid crystal (5CB) mixtures. Doping of CdS nanoparticles increases the spontaneous polarization and response time, the increase is due to large dipole-dipole interaction between the liquid crystal (LC) molecules and CdS nanoparticles, which increase the anchoring energy. The electro-optic measurements revealed a decrease (∼40%) in threshold voltage, and faster response time in doped sample cells than Pure 4'-n-pentyl-4-cyanobiphenyl (5CB) nematic liquid crystal.
Inverse Slip Accompanying Twinning and Detwinning during Cyclic Loading of Magnesium Single Crystal
Yu, Qin; Wang, Jian; Jiang, Yanyao
2013-01-01
In situ , observation of twinning and detwinning in magnesium single crystals during tension-compression cyclic loading was made using optical microscopy. A quantitative analysis of plastic strain indicates that twinning and detwinning experience two stages, low and high work hardening de-twinning, and pure re-twinning and fresh twinning combined with retwinning. Slip is always activated. For the first time, inverse slip accompanying with pure retwinning and high work hardening detwinning was experimentally identified, which provides insights in better understanding of the activity of twining, detwinning, and slips.
Vanadium impurity effects on optical properties of Ti3N2 mono-layer: An ab-initio study
NASA Astrophysics Data System (ADS)
Babaeipour, Manuchehr; Eslam, Farzaneh Ghafari; Boochani, Arash; Nezafat, Negin Beryani
2018-06-01
The present work is investigated the effect of vanadium impurity on electronic and optical properties of Ti3N2 monolayer by using density function theory (DFT) implemented in Wien2k code. In order to study optical properties in two polarization directions of photons, namely E||x and E||z, dielectric function, absorption coefficient, optical conductivity, refraction index, extinction index, reflectivity, and energy loss function of Ti3N2 and Ti3N2-V monolayer have been evaluated within GGA (PBE) approximation. Although, Ti3N2 monolayer is a good infrared reflector and can be used as an infrared mirror, introducing V atom in the infrared area will decrease optical conductivity because optical conductivity of a pure form of a material is higher than its doped form.
Sloto, Ronald A.
2010-01-01
The 38-acre Fischer and Porter Company Superfund Site is in Warminster Township, Bucks County, Pa. Historically, as part of the manufacturing process, trichloroethylene (TCE) degreasers were used for parts cleaning. In 1979, the Bucks County Health Department detected TCE and other volatile organic compounds (VOCs) in water from the Fischer and Porter on-site supply wells and nearby public-supply wells. The Fischer and Porter Site was designated as a Superfund Site and placed on the National Priorities List in September 1983. A 1984 Record of Decision for the site required the Fischer and Porter Company to pump and treat groundwater contaminated by VOCs from three on-site wells at a combined rate of 75 gallons per minute to contain groundwater contamination on the property. Additionally, the Record of Decision recognized the need for treatment of the water from two nearby privately owned supply wells operated by the Warminster Heights Home Ownership Association. In 2004, the Warminster Heights Home Ownership Association sold its water distribution system, and both wells were taken out of service. The report describes changes in groundwater levels and contaminant concentrations and migration caused by the shutdown of the Warminster Heights supply wells and presents a delineation of the off-site groundwater-contamination plume. The U.S. Geological Survey (USGS) conducted this study (2006-09) in cooperation with the U.S. Environmental Protection Agency (USEPA). The Fischer and Porter Site and surrounding area are underlain by sedimentary rocks of the Stockton Formation of Late Triassic age. The rocks are chiefly interbedded arkosic sandstone and siltstone. The Stockton aquifer system is comprised of a series of gently dipping lithologic units with different hydraulic properties. A three-dimensional lithostratigraphic model was developed for the site on the basis of rock cores and borehole geophysical logs. The model was simplified by combining individual lithologic units into generalized units representing upward fining sedimentary cycles capped by a siltstone bed. These cycles were labeled units 1 through 8 and are called stratigraphic units in this report. Groundwater in the unweathered zone mainly moves through a network of interconnecting secondary openings--bedding-plane fractures and joints. Groundwater generally is unconfined in the shallower part of the aquifer and confined or semiconfined in the deeper part of the aquifer. The migration of VOCs from the Fischer and Porter Site source area is influenced by geologic and hydrologic controls. The hydrologic controls have changed with time. Stratigraphic units 2 and 3 crop out beneath the former Fischer and Porter plant. VOCs originating at the plant source area entered these stratigraphic units and moved downdip to the northwest. When the wells at and in the vicinity of the site were initially sampled in 1979-80, three public-supply wells (BK-366, BK-367, MG-946) and three industrial-supply wells (BK-368, BK-370, and BK-371) were pumping. Groundwater contaminated with VOCs flowed downdip and then northeast along strike toward well BK-366, downdip toward well BK-368, and downdip and then west along strike toward well MG-946. The long axis of the TCE plume is oriented about N. 18? W. in the direction of dip. In 1979-80, the leading edge of the plume was about 3,500 feet wide. With the cessation of pumping of the supply wells in 2004, the size of the plume has decreased. In 2007-09, the plume was approximately 2,000 feet long and 2,000 feet wide at the leading edge. On the western side of the site, TCE and tetrachloroethylene (PCE) appear to be moving downdip though stratigraphic unit 3. The downdip extent of TCE and PCE migration extended approximately 550 feet off-site to the northwest and 750 feet off-site to the north. TCE concentrations in water samples from wells at the western site boundary increased from 1996 to 2007. On the northern side of the site, TCE and P
NASA Astrophysics Data System (ADS)
Lee, Hwan; Cho, Jun-Hyung; Sung, Hyuk-Kee
2017-05-01
The phase modulation (PM) and amplitude modulation (AM) of optical signals can be achieved using a direct-modulated (DM) optical injection-locked (OIL) semiconductor laser. We propose and theoretically analyze a simple method to extract the phase component of a PM signal produced by a DM-OIL semiconductor laser. The pure AM component of the combined PM-AM signal can be isolated by square-law detection in a photodetector and can then be used to compensate for the PM-AM signal based on an optical homodyne method. Using the AM compensation technique, we successfully developed a simple and cost-effective phase extraction method applicable to the PM-AM optical signal of a DM-OIL semiconductor laser.
Self-reporting inhibitors: single crystallization process to get two optically pure enantiomers.
Wan, Xinhua; Ye, Xichong; Cui, Jiaxi; Li, Bowen; Li, Na; Zhang, Jie
2018-05-22
Collection of two optically pure enantiomers in a single crystallization process can significantly increase the chiral separation efficiency but it's hard to realize nowadays. Herein we describe, for the first time, a self-reporting strategy for visualizing the crystallization process by a kind of dyed self-assembled inhibitors made from the copolymers with tri(ethylene glycol)-grafting polymethylsiloxane as main chains and poly(N6-methacryloyl-L-lysine) as side chains. When applied with seeds together for the fractional crystallization of conglomerates, the inhibitors can label the formation of the secondary crystals and guide us to completely separate the crystallization process of two enantiomers with colorless crystals as the first product and red crystals as the secondary product. This method leads to high optical purity of D/L-Asn·H2O (99.9 ee% for D-crystals and 99.5 ee% for L-crystals) in a single crystallization process. Moreover, it requires low feeding amount of additives and shows excellent recyclability. We foresee its great potential in developing novel chiral separation methods that can be used in different scales. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tailoring the optical characteristics of microsized InP nanoneedles directly grown on silicon.
Li, Kun; Sun, Hao; Ren, Fan; Ng, Kar Wei; Tran, Thai-Truong D; Chen, Roger; Chang-Hasnain, Connie J
2014-01-08
Nanoscale self-assembly offers a pathway to realize heterogeneous integration of III-V materials on silicon. However, for III-V nanowires directly grown on silicon, dislocation-free single-crystal quality could only be attained below certain critical dimensions. We recently reported a new approach that overcomes this size constraint, demonstrating the growth of single-crystal InGaAs/GaAs and InP nanoneedles with the base diameters exceeding 1 μm. Here, we report distinct optical characteristics of InP nanoneedles which are varied from mostly zincblende, zincblende/wurtzite-mixed, to pure wurtzite crystalline phase. We achieved, for the first time, pure single-crystal wurtzite-phase InP nanoneedles grown on silicon with bandgaps of 80 meV larger than that of zincblende-phase InP. Being able to attain excellent material quality while scaling up in size promises outstanding device performance of these nanoneedles. At room temperature, a high internal quantum efficiency of 25% and optically pumped lasing are demonstrated for single nanoneedle as-grown on silicon substrate. Recombination dynamics proves the excellent surface quality of the InP nanoneedles, which paves the way toward achieving multijunction photovoltaic cells, long-wavelength heterostructure lasers, and advanced photonic integrated circuits.
NASA Astrophysics Data System (ADS)
Vanalakar, S. A.; Agawane, G. L.; Kamble, A. S.; Patil, P. S.; Kim, J. H.
2017-12-01
Cu2ZnSnSe4 (CZTSe) has attracted intensive attention as an absorber material for the thin-film solar cells due to its high absorption coefficient, direct band gap, low toxicity, and abundance of its constituent elements. In this study nanostructured CZTSe nanoparticles are prepared via green hydrothermal synthesis without using toxic solvents, organic amines, catalysts or noxious chemicals. The structural, optical, and morphological properties of CZTSe nanostructured powder were studied using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy, and transmission electron microscope (TEM) techniques. Raman peaks at 170, 195, and 232 cm-1 confirm the formation of pure phase CZTSe nanostructured particles. In addition, the EDS and XPS results confirm the appropriate chemical purity of the annealed CZTSe nanoparticles. Meanwhile, the TEM analysis showed the presence of phase pure oval like CZTSe particle with size of about 80-140 nm. The UV-Vis-NIR absorption spectra analysis showed that the optical band gap of CZTSe nanostructured particles is about 1.14 eV. This band gap energy is close to the optimum value of a photovoltaic solar cell absorber material.
NASA Technical Reports Server (NTRS)
Hansen, Gary B.; Warren, Stephen G.; Leovy, Conway B.
1991-01-01
Researchers found that it is possible to grow large clear samples of CO2 ice at Mars-like temperatures of 150-170K if a temperature controlled refrigerator is connected to an isolated two-phase pure CO2 system. They designed a chamber for transmission measurements whose optical path between the 13mm diameter window is adjustable from 1.6mm to 107mm. This will allow measurements of linear absorption down to less than 0.01 cm (exp -1). A preliminary transmission spectrum of a thick sample of CO2 ice in the near infrared was obtained. Once revised optical constants have been determined as a function of wavelength and temperature, they can be applied to spectral reflectance/emissivity models for CO2 snow surfaces, both pure and contaminated with dust and water ice, using previously established approaches. It will be useful, also, to develop an infrared scattering-emission cloud radiance model (especially as viewed from near the limb) in order to develop a strategy for the identification of CO2 cloud layers by the atmospheric infrared radiometer instrument on the Mars Observer.
NASA Astrophysics Data System (ADS)
Liu, Wei-Chun; Lo, Yu-Lung; Phan, Quoc-Hung
2018-03-01
A method is proposed for extracting the circular birefringence (CB), circular dichroism (CD) and depolarization (Dep) properties of optical scattering samples using an amplitude-modulation polarimetry technique. The validity of the proposed method is demonstrated by extracting the CB property of pure glucose aqueous samples, the CB/Dep properties of glucose solutions containing 0.02% lipofundin particles, and the CD/Dep properties of chlorophyllin solutions containing suspended polystyrene microspheres. The results show that the proposed technique has the ability to detect pure glucose with a resolution of 66 mg/dL over a concentration range of 0-500 mg/dL. Moreover, the glucose concentration of the CB/Dep samples can be detected over the same range with a resolution of 168 mg/dL. Finally, the chlorophyllin concentration of the CD/Dep sample can be detected over the range of 0-200 μg/dL with a resolution of 6.5 × 10-5. In general, the results show that the proposed technique provides a reliable and accurate means of measuring the CB/CD properties of optical samples with scattering effects, and thus has significant potential for biological sensing applications.
Pulsed Rabi oscillations in quantum two-level systems: beyond the area theorem
NASA Astrophysics Data System (ADS)
Fischer, Kevin A.; Hanschke, Lukas; Kremser, Malte; Finley, Jonathan J.; Müller, Kai; Vučković, Jelena
2018-01-01
The area theorem states that when a short optical pulse drives a quantum two-level system, it undergoes Rabi oscillations in the probability of scattering a single photon. In this work, we investigate the breakdown of the area theorem as both the pulse length becomes non-negligible and for certain pulse areas. Using simple quantum trajectories, we provide an analytic approximation to the photon emission dynamics of a two-level system. Our model provides an intuitive way to understand re-excitation, which elucidates the mechanism behind the two-photon emission events that can spoil single-photon emission. We experimentally measure the emission statistics from a semiconductor quantum dot, acting as a two-level system, and show good agreement with our simple model for short pulses. Additionally, the model clearly explains our recent results (Fischer and Hanschke 2017 et al Nat. Phys.) showing dominant two-photon emission from a two-level system for pulses with interaction areas equal to an even multiple of π.
Whole-body and multispectral photoacoustic imaging of adult zebrafish
NASA Astrophysics Data System (ADS)
Huang, Na; Xi, Lei
2016-10-01
Zebrafish is a top vertebrate model to study developmental biology and genetics, and it is becoming increasingly popular for studying human diseases due to its high genome similarity to that of humans and the optical transparency in embryonic stages. However, it becomes difficult for pure optical imaging techniques to volumetric visualize the internal organs and structures of wild-type zebrafish in juvenile and adult stages with excellent resolution and penetration depth. Even with the establishment of mutant lines which remain transparent over the life cycle, it is still a challenge for pure optical imaging modalities to image the whole body of adult zebrafish with micro-scale resolution. However, the method called photoacoustic imaging that combines all the advantages of the optical imaging and ultrasonic imaging provides a new way to image the whole body of the zebrafish. In this work, we developed a non-invasive photoacoustic imaging system with optimized near-infrared illumination and cylindrical scanning to image the zebrafish. The lateral and axial resolution yield to 80 μm and 600 μm, respectively. Multispectral strategy with wavelengths from 690 nm to 930 nm was employed to image various organs inside the zebrafish. From the reconstructed images, most major organs and structures inside the body can be precisely imaged. Quantitative and statistical analysis of absorption for organs under illumination with different wavelengths were carried out.
Vitali, Rachel V.; Cain, Stephen M.; Zaferiou, Antonia M.; Ojeda, Lauro V.; Perkins, Noel C.
2017-01-01
Three-dimensional rotations across the human knee serve as important markers of knee health and performance in multiple contexts including human mobility, worker safety and health, athletic performance, and warfighter performance. While knee rotations can be estimated using optical motion capture, that method is largely limited to the laboratory and small capture volumes. These limitations may be overcome by deploying wearable inertial measurement units (IMUs). The objective of this study is to present a new IMU-based method for estimating 3D knee rotations and to benchmark the accuracy of the results using an instrumented mechanical linkage. The method employs data from shank- and thigh-mounted IMUs and a vector constraint for the medial-lateral axis of the knee during periods when the knee joint functions predominantly as a hinge. The method is carefully validated using data from high precision optical encoders in a mechanism that replicates 3D knee rotations spanning (1) pure flexion/extension, (2) pure internal/external rotation, (3) pure abduction/adduction, and (4) combinations of all three rotations. Regardless of the movement type, the IMU-derived estimates of 3D knee rotations replicate the truth data with high confidence (RMS error < 4° and correlation coefficient r≥0.94). PMID:28846613
2017-04-14
jsc2017e043854 (April 14, 2017) --- At the Baikonur Cosmodrome in Kazakhstan, the Expedition 51 prime and backup crewmembers pose for pictures April 14 in front of the cottage where Yuri Gagarin slept on the eve of his historic launch on April 12, 1961 to become the first human to fly in space. From left to right are backup crewmembers Randy Bresnik of NASA and Sergey Ryazanskiy of the Russian Federal Space Agency (Roscosmos) and prime crewmembers Fyodor Yurchikhin of Roscosmos and Jack Fischer of NASA. Yurchikhin and Fischer will launch April 20 on the Soyuz MS-04 spacecraft for a four and a half month mission on the International Space Station. Credit: NASA/Victor Zelentsov
DOE Office of Scientific and Technical Information (OSTI.GOV)
KUTZMAN,R.S.
1984-11-01
The major objective of this study was to relate the results of a series of functional tests to the compositional and structural alterations in the rat lung induced by subchronic exposure to silica dust. To induce a fibrotic lesion, Fischer-344 rats were exposed to either 0, 2, 10, or 20 mg Si0{sub 2}/m{sup 3} for 6 hours/day, 5 days/week for six months and then maintained in an animal room, equipped with a laminar flow unit, for six months prior to assessment of the end points.
Koyama, Michihisa; Tsuboi, Hideyuki; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Del Carpio, Carlos A; Miyamoto, Akira
2007-02-01
Computational chemistry can provide fundamental knowledge regarding various aspects of materials. While its impact in scientific research is greatly increasing, its contributions to industrially important issues are far from satisfactory. In order to realize industrial innovation by computational chemistry, a new concept "combinatorial computational chemistry" has been proposed by introducing the concept of combinatorial chemistry to computational chemistry. This combinatorial computational chemistry approach enables theoretical high-throughput screening for materials design. In this manuscript, we review the successful applications of combinatorial computational chemistry to deNO(x) catalysts, Fischer-Tropsch catalysts, lanthanoid complex catalysts, and cathodes of the lithium ion secondary battery.
Fischer-Tropsch Wastewater Utilization
Shah, Lalit S.
2003-03-18
The present invention is generally directed to handling the wastewater, or condensate, from a hydrocarbon synthesis reactor. More particularly, the present invention provides a process wherein the wastewater of a hydrocarbon synthesis reactor, such as a Fischer-Tropsch reactor, is sent to a gasifier and subsequently reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas. The wastewater may also be recycled back to a slurry preparation stage, where solid combustible organic materials are pulverized and mixed with process water and the wastewater to form a slurry, after which the slurry fed to a gasifier where it is reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas.
Bain, Ryan M; Ayrton, Stephen T; Cooks, R Graham
2017-07-01
Previous reports have shown that reactions occurring in the microdroplets formed during electrospray ionization can, under the right conditions, exhibit significantly greater rates than the corresponding bulk solution-phase reactions. The observed acceleration under electrospray ionization could result from a solution-phase, a gas-phase, or an interfacial reaction. This study shows that a gas-phase ion/molecule (or ion/ion) reaction is not responsible for the observed rate enhancement in the particular case of the Fischer indole synthesis. The results show that the accelerated reaction proceeds in the microdroplets, and evidence is provided that an interfacial process is involved. Graphical Abstract .
Trapping Planetary Noble Gases During the Fischer-Tropsch-Type Synthesis of Organic Materials
NASA Technical Reports Server (NTRS)
Nuth, Joseph A.; Johnson, N. M.; Meshik, A.
2010-01-01
When hydrogen, nitrogen and CO arc exposed to amorphous iron silicate surfaces at temperatures between 500 - 900K, a carbonaceous coating forms via Fischer-Tropsch type reactions!, Under normal circumstances such a catalytic coating would impede or stop further reaction. However, we find that this coating is a better catalyst than the amorphous iron silicates that initiate these rcactions:u . The formation of a self-perpetuating catalytic coating on grain surfaces could explain the rich deposits of macromolecular carbon found in primitive meteorites and would imply that protostellar nebulae should be rich in organic materiaL Many more experiments are needed to understand this chemical system and its application to protostellar nebulae.
Nataraj, Shankar; Russek, Steven Lee; Dyer, Paul Nigel
2000-01-01
Natural gas or other methane-containing feed gas is converted to a C.sub.5 -C.sub.19 hydrocarbon liquid in an integrated system comprising an oxygenative synthesis gas generator, a non-oxygenative synthesis gas generator, and a hydrocarbon synthesis process such as the Fischer-Tropsch process. The oxygenative synthesis gas generator is a mixed conducting membrane reactor system and the non-oxygenative synthesis gas generator is preferably a heat exchange reformer wherein heat is provided by hot synthesis gas product from the mixed conducting membrane reactor system. Offgas and water from the Fischer-Tropsch process can be recycled to the synthesis gas generation system individually or in combination.
Schrittwieser, Joerg H; Resch, Verena; Wallner, Silvia; Lienhart, Wolf-Dieter; Sattler, Johann H; Resch, Jasmin; Macheroux, Peter; Kroutil, Wolfgang
2011-08-19
A chemoenzymatic approach for the asymmetric total synthesis of the title compounds is described that employs an enantioselective oxidative C-C bond formation catalyzed by berberine bridge enzyme (BBE) in the asymmetric key step. This unique reaction yielded enantiomerically pure (R)-benzylisoquinoline derivatives and (S)-berbines such as the natural product (S)-scoulerine, a sedative and muscle relaxing agent. The racemic substrates rac-1 required for the biotransformation were prepared in 4-8 linear steps using either a Bischler-Napieralski cyclization or a C1-Cα alkylation approach. The chemoenzymatic synthesis was applied to the preparation of fourteen enantiomerically pure alkaloids, including the natural products (S)-scoulerine and (R)-reticuline, and gave overall yields of up to 20% over 5-9 linear steps.
Measurement of complete and continuous Wigner functions for discrete atomic systems
NASA Astrophysics Data System (ADS)
Tian, Yali; Wang, Zhihui; Zhang, Pengfei; Li, Gang; Li, Jie; Zhang, Tiancai
2018-01-01
We measure complete and continuous Wigner functions of a two-level cesium atom in both a nearly pure state and highly mixed states. We apply the method [T. Tilma et al., Phys. Rev. Lett. 117, 180401 (2016), 10.1103/PhysRevLett.117.180401] of strictly constructing continuous Wigner functions for qubit or spin systems. We find that the Wigner function of all pure states of a qubit has negative regions and the negativity completely vanishes when the purity of an arbitrary mixed state is less than 2/3 . We experimentally demonstrate these findings using a single cesium atom confined in an optical dipole trap, which undergoes a nearly pure dephasing process. Our method can be applied straightforwardly to multi-atom systems for measuring the Wigner function of their collective spin state.
NASA Astrophysics Data System (ADS)
Samuel, Bincy Susan; Krishnamurthy, R.; Rajasekaran, R.
2014-11-01
Single crystals of pure and L-aspartic acid doped Zinc (Tris) Thiourea Sulphate (ZTS) were grown from aqueous solution by solution growth method. The cell parameters and structure of the grown crystals were determined by X-ray diffraction studies. The presence of functional group in the compound has been confirmed by FTIR and FT-Raman analysis. The optical transparency range has been studied through UV-Vis spectroscopy. TGA/DTA studies show thermal stability of the grown crystals. Microhardness study reveals that the hardness number (Hv) increases with load for pure and doped ZTS crystals. Dielectric studies have been carried out and the results are discussed. The second harmonic generation was confirmed for L-aspartic acid doped ZTS which is greater than pure ZTS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adesso, Gerardo; CNR-INFM Coherentia, Naples; CNISM, Unita di Salerno, Salerno
2007-10-15
We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1xM bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself andmore » the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a, uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.« less
Techno-economic assessment of the Mobil Two-Stage Slurry Fischer-Tropsch/ZSM-5 process
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Sawy, A.; Gray, D.; Neuworth, M.
1984-11-01
A techno-economic assessment of the Mobil Two-Stage Slurry Fischer-Tropsch reactor system was carried out. Mobil bench-scale data were evaluated and scaled to a commercial plant design that produced specification high-octane gasoline and high-cetane diesel fuel. Comparisons were made with three reference plants - a SASOL (US) plant using dry ash Lurgi gasifiers and Synthol synthesis units, a modified SASOL plant with a British Gas Corporation slagging Lurgi gasifier (BGC/Synthol) and a BGC/slurry-phase process based on scaled data from the Koelbel Rheinpreussen-Koppers plant. A conceptual commercial version of the Mobil two-stage process shows a higher process efficiency than a SASOL (US)more » and a BGC/Synthol plant. The Mobil plant gave lower gasoline costs than obtained from the SASOL (US) and BGC/Synthol versions. Comparison with published data from a slurry-phase Fischer-Tropsch (Koelbel) unit indicated that product costs from the Mobil process were within 6% of the Koelbel values. A high-wax version of the Mobil process combined with wax hydrocracking could produce gasoline and diesel fuel at comparable cost to the lowest values achieved from prior published slurry-phase results. 27 references, 18 figures, 49 tables.« less
NASA Astrophysics Data System (ADS)
Eslava, José L.; Iglesias-Juez, Ana; Fernández-García, Marcos; Guerrero-Ruiz, Antonio; Rodríguez-Ramos, Inmaculada
2018-07-01
The effect of using two different promoter precursors on the Fischer-Tropsch synthesis was studied over cesium promoted ruthenium catalysts supported on a high surface area graphite support. In this work we reveal significant modifications in the selectivity values for Fischer-Tropsch reaction depending on the Cs promoter precursor (CsCl vs CsNO3). Specifically the bimetallic catalyst (4Ru-4Cs), prepared from nitrates both for metal and promoter precursors, showed a high selectivity to CO2 during reaction. By modifying the cesium precursor, it was possible to inhibit the water gas shift reaction, decreasing significantly the selectivity to CO2. In order to understand the chemical origin of these modifications a careful characterization of the materials was performed including: X-ray absorption near edge spectroscopy, transmission electron microscopy measurements, temperature programmed reduction studies, determination of the CO uptakes on the catalysts and the evolution of the CO adsorption heats as a function of surface coverages. It was found that upon reduction and under reaction atmosphere the promoter in the ex-nitrate catalyst appears as Cs2O which is considered responsible of the CO2 production, while in the catalysts prepared with Cs chloride the promoter remains as CsCl suffering a slight partial reduction.
Wu, Qiong; van Achterberg, Cornelis; Tan, Jiang-Li; Chen, Xue-Xin
2016-01-01
Abstract The East Palaearctic and North Oriental species of the genus Psyttalia Walker (Hymenoptera, Braconidae, Opiinae) are reviewed. Three new species are described and illustrated: Psyttalia latinervis Wu & van Achterberg, sp. n. and Psyttalia majocellata Wu & van Achterberg, sp. n. from China, and Psyttalia spectabilis van Achterberg, sp. n. from Japan. Coeloreuteus formosanus Watanabe, 1934, Opius (Lissosema) proclivis Papp, 1981, Opius (Psyttalia) subcyclogaster Tobias, 1998, Opius (Psyttalia) darasunicus Tobias, 1998, Opius (Psyttalia) cyclogastroides Tobias, 1998, Psyttalia extensa Weng & Chen, 2001, and Rhogadopsis longicaudifera Li & van Achterberg, 2013, are new synonyms of Psyttalia cyclogaster (Thomson, 1895); Opius (Psyttalia) ophthalmicus Tobias, 1977, and Opius (Psyttalia) brevitemporalis Tobias, 1998, of Psyttalia carinata (Thomson, 1895) and both Opius (Psyttalia) vacuus Tobias, 1998, and Opius (Lissosema) longurius Chen & Weng, 1995, of Rhogadopsis mediocarinata (Fischer, 1963). Phaedrotoma daghestanicum (Telenga, 1950), Rhogadopsis mediocarinata (Fischer, 1963) and Rhogadopsis mystica (Fischer, 1963) are new combinations. New records are Psyttalia carinata (Thomson, 1895) from The Netherlands and Norway, and Psyttalia cyclogaster (Thomson, 1895) from Japan. A lectotype is designated for Psyttalia carinata (Thomson, 1895) and Psyttalia cyclogaster (Thomson, 1895). A key to the East Palaearctic and North Oriental species of the genus Psyttalia Walker is included. PMID:27920599
NASA Astrophysics Data System (ADS)
Yang, Wei; Hall, Trevor J.
2013-12-01
The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users. As a consequence, the nature of the Internet traffic has been fundamentally transformed from a pure packet-based pattern to today's predominantly flow-based pattern. Cloud computing has also brought about an unprecedented growth in the Internet traffic. In this paper, a hybrid optical switch architecture is presented to deal with the flow-based Internet traffic, aiming to offer flexible and intelligent bandwidth on demand to improve fiber capacity utilization. The hybrid optical switch is capable of integrating IP into optical networks for cloud-based traffic with predictable performance, for which the delay performance of the electronic module in the hybrid optical switch architecture is evaluated through simulation.
Evaluation of space environmental effects on metals and optical thin films on EOIM-3
NASA Technical Reports Server (NTRS)
Vaughn, Jason A.; Linton, Roger C.; Finckenor, Miria M.; Kamenetzky, Rachel R.
1995-01-01
Metals and optical thin films exposed to the space environment on the Third Flight of the Evaluation of Oxygen Interactions with Materials (EOIM-3) payload, onboard Space Shuttle mission STS-46 were evaluated. The materials effects described in this paper include the effects of space exposure on various pure metals, optical thin films, and optical thin film metals. The changes induced by exposure to the space environment in the material properties were evaluated using bidirectional reflectance distribution function (BRDF), specular reflectance (250 nm to 2500 nm), ESCA, VUV reflectance (120 nm to 200 nm), ellipsometry, FTIR and optical properties. Using these analysis techniques gold optically thin film metal mirrors with nickel undercoats were observed to darken due to nickel diffusion through the gold to the surface. Also, thin film nickel mirrors formed nickel oxide due to exposure to both the atmosphere and space.
All-dielectric resonant cavity-enabled metals with broadband optical transparency
NASA Astrophysics Data System (ADS)
Liu, Zhengqi; Zhang, Houjiao; Liu, Xiaoshan; Pan, Pingping; Liu, Yi; Tang, Li; Liu, Guiqiang
2017-06-01
Metal films with broadband optical transparency are desirable in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and infrared detectors. As bare metal is opaque to light, this issue of transparency attracts great scientific interest. In this work, we proposed and demonstrated a feasible and universal approach for achieving broadband optical transparent (BOT) metals by utilizing all-dielectric resonant cavities. Resonant dielectrics provide optical cavity modes and couple strongly with the surface plasmons of the metal film, and therefore produce a broadband near-unity optical transparent window. The relative enhancement factor (EF) of light transmission exceeds 3400% in comparison with that of pure metal film. Moreover, the transparent metal motif can be realized by other common metals including gold (Au), silver (Ag) and copper (Cu). These optical features together with the fully retained electric and mechanical properties of a natural metal suggest that it will have wide applications in optoelectronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manos Mavrikakis; James A. Dumesic; Amit A. Gokhale
2006-03-03
Efforts during this second year focused on four areas: (1) continued searching and summarizing of published Fischer-Tropsch synthesis (FTS) mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) investigation of CO adsorption/desorption and temperature programmed hydrogenation (TPH) of carbonaceous species after FTS on unsupported iron and alumina-supported iron catalysts; (3) activity tests of alumina-supported iron catalysts in a fixed bed reactor; (4) sequential design of experiments, for the collection of rate data in a Berty CSTR reactor, and nonlinear-regression analysis to obtain kinetic parameters. Literature sources describing mechanistic and kinetic studies of Fischer-Tropsch synthesis on iron catalysts weremore » compiled in a review. Temperature-programmed desorption/reaction methods (the latter using mass-spectrometry detection and also thermogravimetric analyzer (TGA)) were utilized to study CO adsorption/-desorption on supported and unsupported iron catalysts. Molecular and dissociative adsorptions of CO occur on iron catalysts at 25-150 C. The amounts adsorbed and bond strengths of adsorption are influenced by supports and promoters. That CO adsorbs dissociatively on polycrystalline Fe at temperatures well below those of FT reaction indicates that CO dissociation is facile and unlikely to be the rate-limiting step during FTS. Carbonaceous species formed after FT reaction for only 5 minutes at 200 C were initially hydrogenated under mild, isothermal condition (200 C and 1 atm), followed by TPH to 800 C. During the mild, isothermal hydrogenation, only about 0.1-0.2 mL of atomic carbon is apparently removed, while during TPH to 800 C multilayer equivalents of atomic, polymeric, carbidic, and graphitic carbons are removed. Rates of CO conversion on alumina-supported iron catalysts at 220-260 C and 20 atm are correlated well by a Langmuir-Hinshelwood expression, derived assuming carbon hydrogenation to CH and OH recombination to water to be rate-determining steps. In the coming year, studies will focus on quantitative determination of the rates of kinetically-relevant elementary steps on Fe catalysts with/without K and Pt promoters and at various levels of Al{sub 2}O{sub 3} support, providing a database for understanding (1) effects of promoter and support on elementary kinetic parameters and (2) for validation of computational models that incorporate effects of surface structure and promoters. Kinetic parameters will be incorporated into a microkinetics model, enabling prediction of rate without invoking assumptions, e.g. of a rate-determining step or a most-abundant surface intermediate. Calculations using periodic, self-consistent Density Functional Theory (DFT) methods were performed on two model surfaces: (1) Fe(110) with 1/4 ML subsurface carbon, and (2) Fe(110) with 1/4 ML Pt adatoms. Reaction networks for FTS on these systems were characterized in full detail by evaluating the thermodynamics and kinetics of each elementary step. We discovered that subsurface C stabilizes all the reactive intermediates, in contrast to Pt, which destabilizes most of them. A comparative study of the reactivities of the modified-Fe surfaces against pure Fe is expected to yield a more comprehensive understanding of promotion mechanisms for FTS on Fe.« less
NASA Astrophysics Data System (ADS)
Netrvalová, Marie; Novák, Petr; Šutta, Pavol; Medlín, Rostislav
2017-11-01
Zn-Ti-O thin films with different concentrations of titanium were deposited by reactive magnetron co-sputtering in a reactive Ar/O2 atmosphere from zinc and titanium targets. It was found that with increasing Ti content the structure of the films gradually changes from a fully crystalline pure ZnO wurtzite structure with a strongly preferred columnar orientation to an amorphous Zn-Ti-O material with 12.5 at.% Ti. The optical parameters (spectral refractive index and extinction coefficient, optical band gap) and thickness of the films were analysed by the combined evaluation of ellipsometric measurements and measurements of transmittance on a UV-vis spectrophotometer. For evaluation of optical parameters was used Cody-Lorentz dispersion model.
NASA Astrophysics Data System (ADS)
Yannopapas, Vassilios; Paspalakis, Emmanuel
2018-07-01
We present a new theoretical tool for simulating optical trapping of nanoparticles in the presence of an arbitrary metamaterial design. The method is based on rigorously solving Maxwell's equations for the metamaterial via a hybrid discrete-dipole approximation/multiple-scattering technique and direct calculation of the optical force exerted on the nanoparticle by means of the Maxwell stress tensor. We apply the method to the case of a spherical polystyrene probe trapped within the optical landscape created by illuminating of a plasmonic metamaterial consisting of periodically arranged tapered metallic nanopyramids. The developed technique is ideally suited for general optomechanical calculations involving metamaterial designs and can compete with purely numerical methods such as finite-difference or finite-element schemes.
Process technologies of MPACVD planar waveguide devices and fiber attachment
NASA Astrophysics Data System (ADS)
Li, Cheng-Chung; Qian, Fan; Boudreau, Robert A.; Rowlette, John R., Sr.; Bowen, Terry P.
1999-03-01
Optical circuits based on low-loss glass waveguide on silicon are a practical and promising approach to integrate different functional components. Fiber attachment to planar waveguide provides a practical application for optical communications. Microwave Plasma Assisted Chemical Vapor Deposition (MPACVD) produces superior quality, low birefringence, low-loss, planar waveguides for integrated optical devices. Microwave plasma initiates the chemical vapor of SiCl4, GeCl4 and oxygen. A Ge-doped silica layer is thus deposited with a compatible high growth rate (i.e. 0.4 - 0.5 micrometer/min). Film properties are based on various parameters, such as chemical flow rates, chamber pressure and temperature, power level and injector design. The resultant refractive index can be varied between 1.46 (i.e. pure silica) and 1.60 (i.e. pure germania). Waveguides can be fabricated with any desired refractive index profile. Standard photolithography defines the waveguide pattern on a mask layer. The core layer is removed by plasma dry etch which has been investigated by both reactive ion etch (RIE) and inductively coupled plasma (ICP) etch. Etch rates of 3000 - 4000 angstrom/min have been achieved using ICP compared to typical etch rates of 200 - 300 angstrom/min using conventional RIE. Planar waveguides offer good mode matching to optical fiber. A polished fiber end can be glued to the end facet of waveguide with a very low optical coupling loss. In addition, anisotropic etching of silicon V- grooves provides a passive alignment capability. Epoxy and solder were used to fix the fiber within the guiding groove. Several designs of waveguide-fiber attachment will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demján, Tamás; Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest; Vörös, Márton
2014-08-14
Diamondoids are small diamond nanoparticles (NPs) that are built up from diamond cages. Unlike usual semiconductor NPs, their atomic structure is exactly known, thus they are ideal test-beds for benchmarking quantum chemical calculations. Their usage in spintronics and bioimaging applications requires a detailed knowledge of their electronic structure and optical properties. In this paper, we apply density functional theory (DFT) based methods to understand the electronic and optical properties of a few selected pure and modified diamondoids for which accurate experimental data exist. In particular, we use many-body perturbation theory methods, in the G{sub 0}W{sub 0} and G{sub 0}W{sub 0}+BSEmore » approximations, and time-dependent DFT in the adiabatic local density approximation. We find large quasiparticle gap corrections that can exceed thrice the DFT gap. The electron-hole binding energy can be as large as 4 eV but it is considerably smaller than the GW corrections and thus G{sub 0}W{sub 0}+BSE optical gaps are about 50% larger than the Kohn-Sham (KS) DFT gaps. We find significant differences between KS time-dependent DFT and GW+BSE optical spectra on the selected diamondoids. The calculated G{sub 0}W{sub 0} quasiparticle levels agree well with the corresponding experimental vertical ionization energies. We show that nuclei dynamics in the ionization process can be significant and its contribution may reach about 0.5 eV in the adiabatic ionization energies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burtron Davis; Gary Jacobs; Wenping Ma
The successful adaptation of conventional cobalt and iron-based Fischer-Tropsch synthesis catalysts for use in converting biomass-derived syngas hinges in part on understanding their susceptibility to byproducts produced during the biomass gasification process. With the possibility that oil production will peak in the near future, and due to concerns in maintaining energy security, the conversion of biomass-derived syngas and syngas derived from coal/biomass blends to Fischer-Tropsch synthesis products to liquid fuels may provide a sustainable path forward, especially considering if carbon sequestration can be successfully demonstrated. However, one current drawback is that it is unknown whether conventional catalysts based on ironmore » and cobalt will be suitable without proper development because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using an entrained-flow oxygen-blown gasifier) than solely from coal, other byproducts may be present in higher concentrations. The current project examines the impact of a number of potential byproducts of concern from the gasification of biomass process, including compounds containing alkali chemicals like the chlorides of sodium and potassium. In the second year, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities.« less
Preparation and properties of in situ amino-functionalized graphene oxide/polyimide composite films
NASA Astrophysics Data System (ADS)
Lu, Yunhua; Hao, Jican; Xiao, Guoyong; Chen, Lin; Wang, Tonghua; Hu, Zhizhi
2017-11-01
The pure light-colored and transparent polyimide (PI) film was prepared from aromatic dianhydride 4,4‧-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and diamine 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene (6FAPB) in the solvent of DMAc via two-step method. Graphene oxide (GO) was in situ grafted with 6FAPB and directly used as a functional inorganic nanofiller to further synthesize poly(amic acid) (PAA)/GO solution. Then, PI/GO composite films with different loadings of GO were prepared by the thermal imidization. The mechanical, thermal, optical, electrical, surface properties, and electrochemical behavior were characterized. The FTIR and XPS results indicate that amino groups can be successfully grafted on the surface of GO. The tensile strength and Young's modulus of the PI-1.0%GO composite film were increased to 118.4 MPa and 2.91 GPa, respectively, which was an approximate improvement of 30.8% and 39.9% compared with pure PI film. These PI/GO composites showed around 256 °C for the glass transition temperature, and around 535 °C for the 5% thermal decomposition temperature, respectively. However, the optical transmittance was significantly decreased from 81.5% (pure PI) to 0.8% (PI-1.0%GO). Besides, the electrical conductivity increased from 1.6 × 10-13 S/m (pure PI) to 2.5 × 10-9 S/m (PI-1.0%GO). Furthermore, when the incorporation of GO was 1.0 wt%, an obvious reduction from 1.08% (pure PI) to 0.65% in the water uptake was observed for the PI/GO composite films, and the water surface contact angle raised from 72.5° (pure PI) to 83.5°. The electrochemical behavior showed that the ability of oxygen atom on the imide ring to gain and loss electron was increased due to incorporation of GO. These results indicated that the strong interfacial interaction between GO and PAA as well as uniform dispersion of GO in PI matrix were benefit to improve the mechanical, thermal, electrical properties and so on. The in situ amino-functionalized approach provides a strategy for preparing high-performance PI-based composite materials.
Synthesis and optical properties of Co2+-doped ZnO Network prepared by new precursors
NASA Astrophysics Data System (ADS)
Akhtari, Fereshteh; Zorriasatein, Suzan; Farahmandjou, Majid; Elahi, Seyed Mohammad
2018-06-01
Pure ZnO nanoparticles (NPs) and Co/ZnO alloy NPs were synthesized with different percentages of cobalt impurity (1%, 3%, 5%, and 25%) with new precursors through the coprecipitation method. The structural results of the XRD analysis indicated that the pure and impure samples have a wurtzite hexagonal structure such that with an elevation of Co impurity up to 1%, the size of the nanocrystals declines by up to 30 nm. Furthermore, the FESEM analysis results suggest the homogeneity of the NPs such that with increased cobalt impurity, its level declines. The TEM analysis results revealed that the NPs with 5% impurity have a mean size of 32 nm in spherical form. The FTIR optical analysis results suggest a very sharp absorption peak within the wavelength ranges of 434–448 cm‑1, belonging to the Zn-O vibration bond. In addition, the absorption peak developed at the wavelength of 3428 cm‑1 is related to the activation of the OH radicals, whose absorption value grows with the addition of an impurity, thereby, causing enhanced photocatalytic activity. The UV-DRS optical analysis indicated that the absorption wavelength grows with increased impurity, causing the development of redshift and a reduction of the energy band gap. In this regard, for the pure sample, the band gap value was 3.18 eV, while for the sample with 5% impurity, the band gap was obtained as 2.68 eV. The VSM magnetic analysis suggests ferromagnetic development in the impure sample, with a saturation magnetism of 16 memu g‑1 and a coercivity field of 342 G.
The electronic structures of AlN and InN wurtzite nanowires
NASA Astrophysics Data System (ADS)
Xiong, Wen; Li, Dong-Xiao
2017-07-01
We derive the relations between the analogous seven Luttinger-Kohn parameters and six Rashba-Sheka-Pikus parameters for wurtzite semiconductors, which can be used to investigate the electronic structures of some wurtzite semiconductors such as AlN and InN materials, including their low-dimensional structures. As an example, the electronic structures of AlN and InN nanowires are calculated by using the derived relations and six-band effective-mass k · p theory. Interestingly, it is found that the ground hole state of AlN nanowires is always a pure S state whether the radius R is small (1 nm) or large (6 nm), and the ground hole state only contains | Z 〉 Bloch orbital component. Therefore, AlN nanowires is the ideal low-dimensional material for the production of purely linearly polarized π light, unlike ZnO nanowires, which emits plane-polarized σ light. However, the ground hole state of InN nanowires can be tuned from a pure S state to a mixed P state when the radius R is larger than 2.6 nm, which will make the polarized properties of the lowest optical transition changes from linearly polarized π light to plane-polarized σ light. Meanwhile, the valence band structures of InN nanowires will present strong band-crossings when the radius R increases to 6 nm, and through the detail analysis of possible transitions of InN nanowires at the Γ point, we find some of the neighbor optical transitions are almost degenerate, because the spin-orbit splitting energy of InN material is only 0.001 eV. Therefore, it is concluded that the electronic structures and optical properties of InN nanowires present great differences with that of AlN nanowires.
Bourbia, A; Draissia, M; Bedboudi, H; Boulkhessaim, S; Debili, M Y
2010-01-01
This article deals with the microstructural strengthening mechanisms of aluminium by means of hard alpha-Al(2)O(3) alumina fine particles. A broad of understanding views covering materials preparations, elaboration process, characterization techniques and associated microstructural characteristic parameters measurements is given. In order to investigate the microstructural characteristic parameters and the mechanical strengthening mechanisms of pure aluminium by hard fine particles, a set of Al-(alpha-Al(2)O(3)) alloys samples were made under vacuum by high fusion temperature melting, the high frequency (HF) process, and rapidly solidified under ambient temperature from a mixture of cold-compacted high-pure fine Al and alpha-Al(2)O(3) powders. The as-solidified Al-(alpha-Al(2)O(3)) alloys were characterized by means of X-ray diffraction (XRD) analyses, optical microscopy observations and Vickers microhardness tests in both brut and heat-treated states. It was found that the as-solidified HF Al-(alpha-Al(2)O(3)) alloys with compositions below 4 wt.% (alpha-Al(2)O(3)) are single-phase microstructures of the solid solution FCC Al phase and over two-phase microstructures of the solid solution FCC Al and the Rhombohedral alpha-Al(2)O(3) phases. The optical micrographs reveal the presence of a grain size refinement in these alloys. Vickers microhardness of the as-solidified Al-(alpha-Al(2)O(3)) is increased by means of pure fine alpha-Al(2)O(3) alumina particles. These combined effects of strengthening and grain size refinement observed in the as-solidified Al-(alpha-Al(2)O(3)) alloys are essentially due to a strengthening of Al by the alpha-Al(2)O(3) alumina particles insertion in the (HF) melted and rapidly solidified alloys.
Influence of sintering time on switching of the femtosecond nonlinear optical properties of CuNb2O6
NASA Astrophysics Data System (ADS)
Priyadarshani, N.; Sabari Girisun, T. C.; Venugopal Rao, S.
2017-04-01
Transition of mixed phases (monoclinic and orthorhombic) to pure orthorhombic phase was achieved during the synthesis process of CuNb2O6 by varying the sintering time. The suppression of monoclinic phase and dominant formation of orthorhombic CuNb2O6 was confirmed from the XRD and FTIR data analysis. FESEM studies demonstrated that due to increase in sintering time, coarsening process initiated the grain growth and trapping of pores leading to pore-free structures. The nonlinear optical (NLO) properties of mixed and pure copper niobate were studied by the Z-scan technique using near-infrared (800 nm, ∼150 fs, 80 MHz) laser excitation. Mixed phases exhibited saturable absorption and self-defocusing behaviour while pure orthorhombic demonstrated reverse saturable absorption and self-focusing process. The switching of nonlinearity along with increase in NLO coefficient of O-CuNb2O6 was attributed to the decreased metal-oxygen bond length and pore free structure. The increase in nonlinear absorption coefficient with input irradiance suggests the occurrence of effective 3 PA (2 PA followed by ESA) process. The magnitudes of nonlinear absorption coefficient (2.14 × 10-23m3/W2) and nonlinear refractive index (6.0 × 0-17 m2/W) of O-CuNb2O6 were found to be higher than well-known NLO materials. Orthorhombic CuNb2O6 exhibited optical limiting action with low limiting threshold of 38.26 μJ/cm2 and favouring NLO properties suggesting that the material to be an entrant candidate for safety devices against ultrashort pulsed lasers.
NASA Astrophysics Data System (ADS)
Laoui, Samir
Photoacoustic tomography is a hybrid imaging modality that takes advantage of the high contrast of pure optical imaging and the high intrinsic resolution of ultrasound without the necessity of ionizing radiation. Photoacoustic imaging (PM) is neither purely optical nor purely acoustical in nature, but a combination of the two. It is fundamentally based on light excitation and ultrasonic detection. Photoacoustic imaging has been successful without the introduction of exogenous contrast agents; however, to image deeper regions of biological tissue, a contrast agent is necessary. Several types of photoacoustic contrast agents have been made available for diagnostic purposes; however, the majority of literature has focused on gold nanoparticle systems for which the surface-plasmon resonance effect is important. The only option currently available for molecular PM contrast agents is to choose an existing near infrared absorbing fluorescent probes with the hope that they may generate a substantial photoacoustic (PA) response. However, these dyes have been designed with an optimized fluorescence emission response and are not anticipated to generate an adequate photoacoustic response. This dissertation addresses this lack of precedence in the literature for understanding the mechanism of a photoacoustic signal generation from strongly absorbing dye molecules including BODIPY, cyanine and curcumin systems. This work represents preliminary efforts in bringing novel molecular photoacoustic contrast agents (MPACs) into the photoacoustic imaging arena. To this end, photoacoustic and optical Z-scan experiments, and quenching studies were employed to demonstrate correlation of photoacoustic emission enhancement with excited state absorption mechanisms. To investigate further the photoacoustic emission in a practical imaging setting, MPACs were imaged using a recently developed photoacoustic imaging tomography system which was constructed exclusively for the purpose of this study.
Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics.
González-Tudela, Alejandro; Porras, Diego
2013-02-22
Implementations of solid-state quantum optics provide us with devices where qubits are placed at fixed positions in photonic or plasmonic one-dimensional waveguides. We show that solely by controlling the position of the qubits and with the help of a coherent driving, collective spontaneous decay may be engineered to yield an entangled mesoscopic steady state. Our scheme relies on the realization of pure superradiant Dicke models by a destructive interference that cancels dipole-dipole interactions in one dimension.
A Spherical Electro Optic High Voltage Sensor
1989-06-01
electro - optic (EO) crystal is introduced for photonic measurement of pulsed high-voltage fields. A spherical shape is used in order to reduce electric field gradients in the vicinity of the sensor. The sensor is pure dielectric and is interrogated remotely using a laser. The sensor does not require the connection of any conducting components, which results in the highest electrical isolation. The spherical nature of the crystal coupled with the incident laser beam, and crossed polarizers (intensity modulation scheme). automatically produces interference figures. The
Optical Properties of Zinc Selenide Grown Using Molecular Beam Deposition Techniques
1989-06-01
studied were grown using a standard MBE machine with insitu diagnostics. The ZnSe material used for growing the samples is highly pure polycrystalline...width of the interference maxima n can be found from equation (1). Beyond 550 nm absorption is varying rapidly and this will cause Tmax to vary...nonlinearity Is utilized - such as in an optically bistable switch. It is known from previous work on ZnSe grown on GaAs 113] that the material begins growing
Highly sensitive evanescent wave combination tapered fiber optic fluorosensor for protein detection
NASA Astrophysics Data System (ADS)
Nardone, Vincent; Kapoor, Rakesh
2008-02-01
In this paper we are reporting the development of a highly sensitive evanescent wave combination tapered fiber optic fluorosensor. We have demonstrated detection of 5 pM Bovine Serum Albumin (BSA) protein using these fiber optic sensors. The sensor can be easily adopted for detection of other proteins. Six identical probes were prepared and affinity pure Goat anti-BSA antibodies were immobilized on the probe surface. We could detect signal from all the probes kept in 5 pM to 1 nM BSA solution while no signal was detected from the probes kept in 20 nM labeled ESA solution.
Miniaturization of Fresnel lenses for solar concentration: a quantitative investigation.
Duerr, Fabian; Meuret, Youri; Thienpont, Hugo
2010-04-20
Sizing down the dimensions of solar concentrators for photovoltaic applications offers a number of promising advantages. It provides thinner modules and smaller solar cells, which reduces thermal issues. In this work a plane Fresnel lens design is introduced that is first analyzed with geometrical optics. Because of miniaturization, pure ray tracing may no longer be valid to determine the concentration performance. Therefore, a quantitative wave optical analysis of the miniaturization's influence on the obtained concentration performance is presented. This better quantitative understanding of the impact of diffraction in microstructured Fresnel lenses might help to optimize the design of several applications in nonimaging optics.
Enhanced optical rotation and diminished depolarization in diffusive scattering from a chiral liquid
NASA Astrophysics Data System (ADS)
Silverman, M. P.; Strange, Wayne; Badoz, J.; Vitkin, I. A.
1996-02-01
Optical rotation and degree of polarization of linearly polarized light were observed by forward, lateral, and back scattering from solutions of D-glucose containing a dispersion of micron-size polystyrene spheres. Rotations increased linearly with glucose concentration at a rate determined by the microsphere concentration and were large even at optical thicknesses sufficiently great to extinguish transmission of the incident beam. Depolarization of light with increasing microsphere concentration occurred at a much slower rate in chiral glucose solution than in pure water. These experiments suggest new possibilities for studying turbid chiral media for which light transmission and specular reflection techniques are inappropriate.
Effective light coupling in reflective fiber optic distance sensors using a double-clad fiber
NASA Astrophysics Data System (ADS)
Werzinger, Stefan; Härteis, Lisa; Köhler, Aaron; Engelbrecht, Rainer; Schmauss, Bernhard
2017-04-01
Many fiber optic distance sensors use a reflective configuration, where a light beam is launched from an optical fiber, reflected from a target and coupled back into the fiber. While singlemode fibers (SMF) provide low-loss, high-performance components and a well-defined output beam, the coupling of the reflected light into the SMF is very sensitive to mechanical misalignments and scattering at the reflecting target. In this paper we use a double-clad fiber (DCF) and a DCF coupler to obtain an enhanced multimodal coupling of reflected light into the fiber. Increased power levels and robustness are achieved compared to a pure SMF configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chunaev, D S; Karasik, A Ya
2014-06-30
The nonlinear two-photon light absorption coefficients have been measured in an optical fibre with a quartz glass (SiO{sub 2}) core and in a fibre with a germanosilicate glass (SiO{sub 2} + GeO{sub 2}) core. The two-photon absorption coefficient β measured at a wavelength of 349 nm in the (SiO{sub 2} + GeO{sub 2})-based fibre (13.7 cm TW{sup -1}) multiply exceeds that for the pure quartz glass optical fibre (0.54 cm TW{sup -1}). (nonlinear optical phenomena)
Optical depth localization of nitrogen-vacancy centers in diamond with nanometer accuracy.
Häußler, Andreas J; Heller, Pascal; McGuinness, Liam P; Naydenov, Boris; Jelezko, Fedor
2014-12-01
Precise positioning of nitrogen-vacancy (NV) centers is crucial for their application in sensing and quantum information. Here we present a new purely optical technique enabling determination of the NV position with nanometer resolution. We use a confocal microscope to determine the position of individual emitters along the optical axis. Using two separate detection channels, it is possible to simultaneously measure reflected light from the diamond surface and fluorescent light from the NV center and statistically evaluate both signals. An accuracy of 2.6 nm for shallow NV centers was achieved and is consistent with other techniques for depth determination.
Effect of temperature on optical properties of PMMA/SiO2 composite thin film
NASA Astrophysics Data System (ADS)
Soni, Gyanesh; Srivastava, Subodh; Soni, Purushottam; Kalotra, Pankaj; Vijay, Y. K.
2018-05-01
Effect of temperature on PMMA/SiO2 composites thin films were investigated. Nanocomposite flexible thin films of 60 µm thicknesses with different loading of SiO2 nanoparticles were prepared using solution casting method. SEM images show that SiO2 nanoparticles are distributed uniformly in PMMA matrix without any lumps on the surface, and PMMA/SiO2 nano composite thin films had a smoother and regular morphology. UV-Vis and optical band gap measurements revealed that both the concentration of SiO2 nanoparticles and temperature affect the optical properties of the composite thin film in comparison to the pure PMMA film.
In vivo vascular flow profiling combined with optical tweezers based blood routing
NASA Astrophysics Data System (ADS)
Meissner, Robert; Sugden, Wade W.; Siekmann, Arndt F.; Denz, Cornelia
2017-07-01
In vivo wall shear rate is quantified during zebrafish development using particle image velocimetry for biomedical diagnosis and modeling of artificial vessels. By using brightfield microscopy based high speed video tracking we can resolve single heart-beat cycles of blood flow in both space and time. Maximum blood flow velocities and wall shear rates are presented for zebrafish at two and three days post fertilization. By applying biocompatible optical tweezers as an Optical rail we present rerouting of red blood cells in vivo. With purely light-driven means we are able to compensate the lack of proper red blood cell blood flow in so far unperfused capillaries.
A dual modality optical fiber sensor
NASA Astrophysics Data System (ADS)
Herrera-Piad, Luis A.; Haus, Joseph W.; Jauregui-Vazquez, Daniel; Lopez-Dieguez, Yanelis; Estudillo-Ayala, Julian M.; Sierra-Hernandez, Juan M.; Hernandez-Garcia, Juan C.; Rojas-Laguna, Roberto
2018-02-01
We propose and demonstrate a fibre optic system based on bi-tapered silica fibre that can simultaneously measure strain and fibre curvature. Both modalities on the signal can be extracted with no measurable crosstalk between them. The experimental signal has a pure phase modulation when strain is applied to the tapered fibre optic section of the sensor and the signal shows only intensity modulation when an un-tapered fibre section is bent. High sensitivity is achieved from the experimental results for strain and bending losses and the estimation of measurement errors is 0.2 and 0.1%, respectively. This system offers low-cost, compactness and it can be adapted for structural health monitoring.
Melioration of Optical and Electrical Performance of Ga-N Codoped ZnO Thin Films
NASA Astrophysics Data System (ADS)
Narayanan, Nripasree; Deepak, N. K.
2018-06-01
Transparent and conducting p-type zinc oxide (ZnO) thin films doped with gallium (Ga) and nitrogen (N) simultaneously were deposited on glass substrates by spray pyrolysis technique. Phase composition analysis by X-ray diffraction confirmed the polycrystallinity of the films with pure ZnO phase. Energy dispersive X-ray analysis showed excellent incorporation of N in the ZnO matrix by means of codoping. The optical transmittance of N monodoped film was poor but got improved with Ga-N codoping and also resulted in the enhancement of optical energy gap. Hole concentration increased with codoping and consequently, lower resistivity and high stability were obtained.
Korte, Dorota; Franko, Mladen
2015-01-01
In this work, complex geometrical optics is, for what we believe is the first time, applied instead of geometrical or wave optics to describe the probe beam interaction with the field of the thermal wave in photothermal beam deflection (photothermal deflection spectroscopy) experiments on thin films. On the basis of this approach the thermal (thermal diffusivity and conductivity), optical (energy band gap), and transport (carrier lifetime) parameters of the semiconductor thin films (pure TiO2, N- and C-doped TiO2, or TiO2/SiO2 composites deposited on a glass or aluminum support) were determined with better accuracy and simultaneously during one measurement. The results are in good agreement with results obtained by the use of other methods and reported in the literature.
Rotary-scanning optical resolution photoacoustic microscopy
NASA Astrophysics Data System (ADS)
Qi, Weizhi; Xi, Lei
2016-10-01
Optical resolution photoacoustic microscopy (ORPAM) is currently one of the fastest evolving photoacoustic imaging modalities. It has a comparable spatial resolution to pure optical microscopic techniques such as epifluorescence microscopy, confocal microscopy, and two-photon microscopy, but also owns a deeper penetration depth. In this paper, we report a rotary-scanning (RS)-ORPAM that utilizes a galvanometer scanner integrated with objective to achieve rotary laser scanning. A 15 MHz cylindrically focused ultrasonic transducer is mounted onto a motorized rotation stage to follow optical scanning traces synchronously. To minimize the loss of signal to noise ratio, the acoustic focus is precisely adjusted to reach confocal with optical focus. Black tapes and carbon fibers are firstly imaged to evaluate the performance of the system, and then in vivo imaging of vasculature networks inside the ears and brains of mice is demonstrated using this system.
Tamura, Masato; Yanagawa, Fumiki; Sugiura, Shinji; Takagi, Toshiyuki; Sumaru, Kimio; Matsui, Hirofumi; Kanamori, Toshiyuki
2014-05-07
Cell sorting is an essential and efficient experimental tool for the isolation and characterization of target cells. A three-dimensional environment is crucial in determining cell behavior and cell fate in biological analysis. Herein, we have applied photodegradable hydrogels to optical cell separation from a 3D environment using a computer-controlled light irradiation system. The hydrogel is composed of photocleavable tetra-arm polyethylene glycol and gelatin, which optimized cytocompatibility to adjust a composition of crosslinker and gelatin. Local light irradiation could degrade the hydrogel corresponding to the micropattern image designed on a laptop; minimum resolution of photodegradation was estimated at 20 µm. Light irradiation separated an encapsulated fluorescent microbead without any contamination of neighbor beads, even at multiple targets. Upon selective separation of target cells in the hydrogels, the separated cells have grown on another dish, resulting in pure culture. Cell encapsulation, light irradiation and degradation products exhibited negligible cytotoxicity in overall process.
NASA Astrophysics Data System (ADS)
Rahman Ansari, Akhalakur; Hussain, Shahir; Imran, Mohd; Abdel-wahab, M. Sh; Alshahrie, Ahmed
2018-06-01
The pure cobalt thin film was deposited on the glass substrate by using DC magnetron sputtering and then exposed to microwave assist oxygen plasma generated in microwave plasma CVD. The oxidation process of Co thin film into Co3O4 thin films with different microwave power and temperature were studied. The influences of microwave power, temperature and irradiation time were investigated on the morphology and particle size of oxide thin films. The crystal structure, chemical conformation, morphologies and optical properties of oxidized Co thin films (Co3O4) were studied by using x-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Raman Spectroscopy and UV–vis Spectroscopy. The data of these films showed complete oxidation pure metallic cobalt (Co) into cobalt oxide (Co3O4). The optical properties were studied for calculating the direct band gaps which ranges from 1.35 to 1.8 eV.
Asymmetric Synthesis of 1,2,9,9a-Tetrahydrocyclopropa[c]benzo[e]indol-4-one (CBI)
Lajiness, James P.; Boger, Dale L.
2011-01-01
A short, asymmetric synthesis of the 1,2,9,9a-tetrahydrocyclopropa[c]benzo[e]indol-4-one (CBI) analogue of the CC-1065 and duocarmycin DNA alkylation subunits is described. Treatment of iodo-epoxide 5, prepared by late-stage alkylation of 4 with (S)-glycidal-3-nosylate, with EtMgBr at room temperature directly provides the optically pure alcohol 6 in 87% yield (99% ee) derived from selective metal–halogen exchange and subsequent regioselective intramolecular 6-endo-tet cyclization. The use of MeMgBr or i-PrMgBr also provides the product in high yields (82–87%), but requires larger amounts of the Grignard reagent to effect metal–halogen exchange and cyclization. Direct transannular spirocyclization of 7 following O-debenzylation of 6 provides N-Boc-CBI. This approach represents the most efficient (9-steps, 31% overall) and effective (99% ee) route to the optically pure CBI alkylation subunit yet described. PMID:21192653
Non-local opto-electrical spin injection and detection in germanium at room temperature
NASA Astrophysics Data System (ADS)
Jamet, Matthieu; Rortais, Fabien; Zucchetti, Carlo; Ghirardini, Lavinia; Ferrari, Alberto; Vergnaud, Celine; Widiez, Julie; Marty, Alain; Attane, Jean-Philippe; Jaffres, Henri; George, Jean-Marie; Celebrano, Michele; Isella, Giovanni; Ciccacci, Franco; Finazzi, Marco; Bottegoni, Federico
Non-local charge carriers injection/detection schemes lie at the foundation of information manipulation in integrated systems. The next generation electronics may operate on the spin instead of the charge and germanium appears as the best hosting material to develop such spintronics for its compatibility with mainstream silicon technology and long spin lifetime at room temperature. Moreover, the energy proximity between the direct and indirect bandgaps allows for optical spin orientation. In this presentation, we demonstrate injection of pure spin currents in Ge, combined with non-local spin detection blocks at room temperature. Spin injection is performed either electrically through a magnetic tunnel junction (MTJ) or optically, by using lithographed nanostructures to diffuse the light and create an in-plane polarized electron spin population. Pure spin current detection is achieved using either a MTJ or the inverse spin-Hall effect across a Pt stripe. Supported by the ANR project SiGeSPIN #ANR-13-BS10-0002 and the CARIPLO project SEARCH-IV (Grant 2013-0623).
Optical Plasma Control During ARC Carbon Nanotube Growth
NASA Technical Reports Server (NTRS)
Hinkov, I.; Farhat, S.; DeLaChapelle, M. Lamy; Fan, S. S.; Han, H. X.; Li, G. H.; Scott, C. D.
2001-01-01
To improve nanotube production, we developed a novel optical control technique, based on the shape of the visible plasma zone created between the anode and the cathode in the direct current (DC) arc process. For a given inert gas, we adjust the anode to cathode distance (ACD) in order to obtain strong visible vortices around the cathode. This enhance anode vaporization, which improve nanotubes formation. In light of our experimental results, we focus our discussion on the relationship between plasma parameters and nanotube growth. Plasma temperature control during arc process is achieved using argon, helium, and their mixtures as a buffer gases. The variation of the gas mixture from pure argon to pure helium changes plasma temperature. As a consequence, the microscopic characteristics of nanotubes as diameter distribution is changed moving from smaller values for argon to higher diameters for helium. We also observe a dependence of the macroscopic characteristics of the final products as Brunauer-Emmett-Teller (BET) surface area.
Recurrent excitation between motoneurones propagates across segments and is purely glutamatergic
Bhumbra, Gardave S.
2018-01-01
Spinal motoneurones (Mns) constitute the final output for the execution of motor tasks. In addition to innervating muscles, Mns project excitatory collateral connections to Renshaw cells (RCs) and other Mns, but the latter have received little attention. We show that Mns receive strong synaptic input from other Mns throughout development and into maturity, with fast-type Mns systematically receiving greater recurrent excitation than slow-type Mns. Optical recordings show that activation of Mns in one spinal segment can propagate to adjacent segments even in the presence of intact recurrent inhibition. While it is known that transmission at the neuromuscular junction is purely cholinergic and RCs are excited through both acetylcholine and glutamate receptors, here we show that neurotransmission between Mns is purely glutamatergic, indicating that synaptic transmission systems are differentiated at different postsynaptic targets of Mns. PMID:29538375
NASA Astrophysics Data System (ADS)
Imantalab, O.; Fattah-alhosseini, A.; Keshavarz, M. K.; Mazaheri, Y.
2016-02-01
In this work, electrochemical behavior of annealed (micro-) and nano-grained pure copper (fabricated by accumulative roll bonding process) in phosphate buffer solutions of various pH values ranging from 10.69 to 12.59 has been studied. Before any electrochemical measurements, evaluation of microstructure was obtained by optical microscope and transmission electron microscopy. To investigate the electrochemical behavior of the samples, the potentiodynamic polarization, Mott-Schottky analysis, and electrochemical impedance spectroscopy (EIS) were carried out. Potentiodynamic polarization plots and EIS measurements revealed that as a result of grain refinement, the passive behavior of the nano-grained sample was improved compared to that of annealed pure copper. Also, Mott-Schottky analysis indicated that the passive films behaved as p-type semiconductors and grain refinement did not change the semiconductor type of passive films.
Tavčar, Eva; Turk, Erika; Kreft, Samo
2012-01-01
The most commonly used technique for water content determination is Karl-Fischer titration with electrometric detection, requiring specialized equipment. When appropriate equipment is not available, the method can be performed through visual detection of a titration endpoint, which does not enable an analysis of colored samples. Here, we developed a method with spectrophotometric detection of a titration endpoint, appropriate for moisture determination of colored samples. The reaction takes place in a sealed 4 ml cuvette. Detection is performed at 520 nm. Titration endpoint is determined from the graph of absorbance plotted against titration volume. The method has appropriate reproducibility (RSD = 4.3%), accuracy, and linearity (R 2 = 0.997). PMID:22567558
Expedition 52-52 Launches to the Space Station on This Week @NASA - April 21, 2017
2017-04-21
On April 20, Expedition 51-52 Flight Engineer Jack Fischer of NASA and Soyuz Commander Fyodor Yurchikhin of the Russian Space Agency, Roscosmos launched to the International Space Station aboard a Soyuz spacecraft, from the Baikonur Cosmodrome in Kazakhstan. About six-hours later, the pair arrived at the orbital outpost and were greeted by station Commander Peggy Whitson of NASA and other members of the crew. Fischer and Yurchikhin will spend four and a half months conducting research aboard the station. Also, U.S. Resupply Mission Heads to the Space Station, Time Magazine Recognizes Planet-Hunting Scientists, Landslides on Ceres Reflect Ice Content, Mars Rover Opportunity Leaves 'Tribulation', and Earth Day in the Nation’s Capital!
NASA Astrophysics Data System (ADS)
Fonseca, E. S. R.; de Jesus, M. E. P.
2007-07-01
The estimation of optical properties of highly turbid and opaque biological tissue is a difficult task since conventional purely optical methods rapidly loose sensitivity as the mean photon path length decreases. Photothermal methods, such as pulsed or frequency domain photothermal radiometry (FD-PTR), on the other hand, show remarkable sensitivity in experimental conditions that produce very feeble optical signals. Photothermal Radiometry is primarily sensitive to absorption coefficient yielding considerably higher estimation errors on scattering coefficients. Conversely, purely optical methods such as Local Diffuse Reflectance (LDR) depend mainly on the scattering coefficient and yield much better estimates of this parameter. Therefore, at moderate transport albedos, the combination of photothermal and reflectance methods can improve considerably the sensitivity of detection of tissue optical properties. The authors have recently proposed a novel method that combines FD-PTR with LDR, aimed at improving sensitivity on the determination of both optical properties. Signal analysis was performed by global fitting the experimental data to forward models based on Monte-Carlo simulations. Although this approach is accurate, the associated computational burden often limits its use as a forward model. Therefore, the application of analytical models based on the diffusion approximation offers a faster alternative. In this work, we propose the calculation of the diffuse reflectance and the fluence rate profiles under the δ-P I approximation. This approach is known to approximate fluence rate expressions better close to collimated sources and boundaries than the standard diffusion approximation (SDA). We extend this study to the calculation of the diffuse reflectance profiles. The ability of the δ-P I based model to provide good estimates of the absorption, scattering and anisotropy coefficients is tested against Monte-Carlo simulations over a wide range of scattering to absorption ratios. Experimental validation of the proposed method is accomplished by a set of measurements on solid absorbing and scattering phantoms.
The Optical Properties of Ion Implanted Silica
NASA Technical Reports Server (NTRS)
Smith, Cydale C.; Ila, D.; Sarkisov, S.; Williams, E. K.; Poker, D. B.; Hensley, D. K.
1997-01-01
We will present our investigation on the change in the optical properties of silica, 'suprasil', after keV through MeV implantation of copper, tin, silver and gold and after annealing. Suprasil-1, name brand of silica glass produced by Hereaus Amerisil, which is chemically pure with well known optical properties. Both linear nonlinear optical properties of the implanted silica were investigated before and after thermal annealing. All implants, except for Sn, showed strong optical absorption bands in agreement with Mie's theory. We have also used Z-scan to measure the strength of the third order nonlinear optical properties of the produced thin films, which is composed of the host material and the metallic nanoclusters. For implants with a measurable optical absorption band we used Doyle's theory and the full width half maximum of the absorption band to calculate the predicted size of the formed nanoclusters at various heat treatment temperatures. These results are compared with those obtained from direct observation using transmission electron microscopic techniques.
2014-01-01
Semiconductor nanowires, due to their unique electronic, optical, and chemical properties, are firmly placed at the forefront of nanotechnology research. The rich physics of semiconductor nanowire optics arises due to the enhanced light–matter interactions at the nanoscale and coupling of optical modes to electronic resonances. Furthermore, confinement of light can be taken to new extremes via coupling to the surface plasmon modes of metal nanostructures integrated with nanowires, leading to interesting physical phenomena. This Perspective will examine how the optical properties of semiconductor nanowires can be altered via their integration with highly confined plasmonic nanocavities that have resulted in properties such as orders of magnitude faster and more efficient light emission and lasing. The use of plasmonic nanocavities for tailored optical absorption will also be discussed in order to understand and engineer fundamental optical properties of these hybrid systems along with their potential for novel applications, which may not be possible with purely dielectric cavities. PMID:25396030
Sources of Wilhelm Johannsen's genotype theory.
Roll-Hansen, Nils
2009-01-01
This paper describes the historical background and early formation of Wilhelm Johannsen's distinction between genotype and phenotype. It is argued that contrary to a widely accepted interpretation (For instance, W. Provine, 1971. The Origins of Theoretical Population Genetics. Chicago: The University of Chicago Press; Mayr, 1973; F. B. Churchill, 1974. Journal of the History of Biology 7: 5-30; E. Mayr, 1982. The Growth of Biological Thought, Cambridge: Harvard University Press; J. Sapp, 2003. Genesis. The Evolution of Biology. New York: Oxford University Press) his concepts referred primarily to properties of individual organisms and not to statistical averages. Johannsen's concept of genotype was derived from the idea of species in the tradition of biological systematics from Linnaeus to de Vries: An individual belonged to a group - species, subspecies, elementary species - by representing a certain underlying type (S. Müller-Wille and V. Orel, 2007. Annals of Science 64: 171-215). Johannsen sharpened this idea theoretically in the light of recent biological discoveries, not least those of cytology. He tested and confirmed it experimentally combining the methods of biometry, as developed by Francis Galton, with the individual selection method and pedigree analysis, as developed for instance by Louis Vilmorin. The term "genotype" was introduced in W. Johannsen's 1909 (Elemente der Exakten Erblichkeitslehre. Jena: Gustav Fischer) treatise, but the idea of a stable underlying biological "type" distinct from observable properties was the core idea of his classical bean selection experiment published 6 years earlier (W. Johannsen, 1903. Ueber Erblichkeit in Populationen und reinen Linien. Eine Beitrag zur Beleuchtung schwebender Selektionsfragen, Jena: Gustav Fischer, pp. 58-59). The individual ontological foundation of population analysis was a self-evident presupposition in Johannsen's studies of heredity in populations from their start in the early 1890s till his death in 1927. The claim that there was a "substantial but cautious modification of Johannsen's phenotype-genotype distinction" (Churchill, 1974, p. 24) from a statistical to an individual ontological perspective derives from a misreading of the 1903 and 1909 texts. The immediate purpose of this paper is to correct this reading of the 1903 monograph by showing how its problems and results grow out of Johannsen's earlier work in heredity and plant breeding. Johannsen presented his famous selection experiment as the culmination of a line of criticism of orthodox Darwinism by William Bateson, Hugo de Vries, and others (Johannsen, 1903). They had argued that evolution is based on stepwise rather than continuous change in heredity. Johannsen's paradigmatic experiment showed how stepwise variation in heredity could be operationally distinguished from the observable, continuous morphological variation. To test Galton's law of partial regression, Johannsen deliberately chose pure lines of self-fertilizing plants, a pure line being the descendants in successive generations of one single individual. Such a population could be assumed to be highly homogeneous with respect to hereditary type, and Johannsen found that selection produced no change in this type. Galton, he explained, had experimented with populations composed of a number of stable hereditary types. The partial regression which Galton found was simply an effect of selection between types, increasing the proportion of some types at the expense of others.
NASA Astrophysics Data System (ADS)
Gypser, Stella; Fischer, Thomas; Lange, Philipp; Veste, Maik
2016-04-01
Mining activities can strongly affect ecosystem properties by destruction of naturally developed soils and removal of vegetation. The unstructured substrates show high bulk densities, compaction, low water infiltration rates, reduced water holding capacities and higher susceptibility to wind and water erosion. In the initial stage of the ecosystem development, the post-mining sites are open areas without or with a low cover of higher vegetation. It is well-known that biocrusts are able to colonize the soil surface under such extreme conditions without human support and affect soil hydrological processes such as water infiltration, run-off or re-distribution. Investigations were conducted on two former lignite open-cast mining sites, an artificial sand dune on the reclaimed watershed Welzow "Neuer Lugteich" and a reforestation area in Schlabendorf (Brandenburg, north-east Germany). The aim was to relate the hydrological characteristics of the topsoil to successional stages of biological soil crusts on reclaimed soils and their influence on repellency index and water holding capacity compared to pure mining substrate. Our study emphasized the influence of changing successional stages and species composition of biological soil crusts, forming a small-scale crust pattern, on water repellency and retention on sandy soils in temperate climate. Different successional stages of soil crusts were identified from initial scattered green algae crusts, dominated by Zygogonium spec. and Ulothrix spec., and more developed soil crusts containing mosses such as Ceratodon purpureus and Polytrichum piliferum. Lichens of the Genus Cladonia were more pronouncedly contributed to biocrusts at later and mature stages of development. The repellency index on the one hand increased due to the cross-linking of sand particles by the filamentous green algae Zygogonium spec. which resulted in clogging of pores, and on the other hand decreased with the occurrence of moss plants due to absorption caused by bryophytes. The determination of the water retention curves showed an increase of the water holding capacity, especially in conjunction with the growth of green algae layer. The absorption capacity of soil crust biota as well as a decreased pore diameter in the green algae layers positively affected the water retention of crusted soil compared to pure substrate. The occurrence of bryophytes with later succession weakened the repellent behavior of the biocrusts, increased infiltration, and might have affected the run-off at small-scale on biocrusts. Certainly, the biological soil crusts showed water repellent properties but no distinctive hydrophobic characteristics. On both locations, similar trends of water repellency and retention related to crustal formation were observed, in spite of different relief, reclamation time and inhomogeneous distribution of crustal organisms. References Gypser, S., Veste, M., Fischer, T., Lange, P. (2016): Infiltration and water retention of biological soil crusts on reclaimed soils of former open-cast lignite mining sites in Brandenburg, north-east Germany, Journal of Hydrology and Hydromechanics, accepted 12. November 2015. Gypser, S., Veste, M., Fischer, T., Lange, P. (2015): Formation of soil lichen crusts at reclaimed post-mining sites, Lower Lusatia, North-east Germany. Graphis Scripta 27: 3-14.
Optical characterization of phase transitions in pure polymers and blends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mannella, Gianluca A.; Brucato, Valerio; La Carrubba, Vincenzo, E-mail: vincenzo.lacarrubba@unipa.it
2015-12-17
To study the optical properties of polymeric samples, an experimental apparatus was designed on purpose and set up. The sample is a thin film enclosed between two glass slides and a PTFE frame, with a very thin thermocouple placed on sample for direct temperature measurement. This sample holder was placed between two aluminum slabs, equipped with a narrow slit for optical measurements and with electrical resistances for temperature control. Sample was enlightened by a laser diode, whereas transmitted light was detected with a photodiode. Measurements were carried out on polyethylene-terephtalate (PET) and two different polyamides, tested as pure polymers andmore » blends. The thermal history imposed to the sample consisted in a rapid heating from ambient temperature to a certain temperature below the melting point, a stabilization period, and then a heating at constant rate. After a second stabilization period, the sample was cooled. The data obtained were compared with DSC measurements performed with the same thermal history. In correspondence with transitions detected via DSC (e.g. melting, crystallization and cold crystallization), the optical signal showed a steep variation. In particular, crystallization resulted in a rapid decrease of transmitted light, whereas melting gave up an increase of light transmitted by the sample. Further variations in transmitted light were recorded for blends, after melting: those results may be related to other phase transitions, e.g. liquid-liquid phase separation. All things considered, the apparatus can be used to get reliable data on phase transitions in polymeric systems.« less
Okano, Kenji; Uematsu, Gentaro; Hama, Shinji; Tanaka, Tsutomu; Noda, Hideo; Kondo, Akihiko; Honda, Kohsuke
2018-05-01
Fermentative production of optically pure lactic acid (LA) has attracted great interest because of the increased demand for plant-based plastics. For cost-effective LA production, an engineered Lactobacillus plantarum NCIMB 8826 strain, which enables the production of optically pure l-LA from raw starch, is constructed. The wild-type strain produces a racemic mixture of d- and l-LA from pyruvate by the action of the respective lactate dehydrogenases (LDHs). Therefore, the gene encoding D-LDH (ldhD) is deleted. Although no decrease in d-LA formation is observed in the ΔldhD mutant, additional disruption of the operon encoding lactate racemase (larA-E), which catalyzes the interconversion between d- and l-LA, completely abolished d-LA production. From 100 g L -1 glucose, the ΔldhD ΔlarA-E mutant produces 87.0 g L -1 of l-LA with an optical purity of 99.4%. Subsequently, a plasmid is introduced into the ΔldhD ΔlarA-E mutant for the secretion of α-amylase from Streptococcus bovis 148. The resulting strain could produce 50.3 g L -1 of l-LA from raw corn starch with a yield of 0.91 (g per g of consumed sugar) and an optical purity of 98.6%. The engineered L. plantarum strain would be useful in the production of l-LA from starchy materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
"Quantum Interference with Slits" Revisited
ERIC Educational Resources Information Center
Rothman, Tony; Boughn, Stephen
2011-01-01
Marcella has presented a straightforward technique employing the Dirac formalism to calculate single- and double-slit interference patterns. He claims that no reference is made to classical optics or scattering theory and that his method therefore provides a purely quantum mechanical description of these experiments. He also presents his…
Effect of chemical structure on film-forming properties of seed oils
USDA-ARS?s Scientific Manuscript database
The film thickness of seven seed oils and two petroleum-based oils of varying chemical structures, was investigated by the method of optical interferometry under pure rolling conditions, and various combinations of entrainment speed (u), load, and temperature. The measured film thickness (h measured...
Exciton Resonances in Novel Silicon Carbide Polymers
NASA Astrophysics Data System (ADS)
Burggraf, Larry; Duan, Xiaofeng
2015-05-01
A revolutionary technology transformation from electronics to excitionics for faster signal processing and computing will be advantaged by coherent exciton transfer at room temperature. The key feature required of exciton components for this technology is efficient and coherent transfer of long-lived excitons. We report theoretical investigations of optical properties of SiC materials having potential for high-temperature excitonics. Using Car-Parinello simulated annealing and DFT we identified low-energy SiC molecular structures. The closo-Si12C12 isomer, the most stable 12-12 isomer below 1100 C, has potential to make self-assembled chains and 2-D nanostructures to construct exciton components. Using TDDFT, we calculated the optical properties of the isomer as well as oligomers and 2-D crystal formed from the isomer as the monomer unit. This molecule has large optical oscillator strength in the visible. Its high-energy and low-energy transitions (1.15 eV and 2.56 eV) are nearly pure one-electron silicon-to-carbon transitions, while an intermediate energy transition (1.28 eV) is a nearly pure carbon-to-silicon one-electron charge transfer. These results are useful to describe resonant, coherent transfer of dark excitons in the nanostructures. Research supported by the Air Force Office of Scientific Research.
NASA Astrophysics Data System (ADS)
Fujioka, K.; Fujimoto, Y.; Tsubakimoto, K.; Kawanaka, J.; Shoji, I.; Miyanaga, N.
2015-03-01
The refractive index of a potassium dihydrogen phosphate (KDP) crystal strongly depends on the deuteration fraction of the crystal. The wavelength dependence of the phase-matching angle in the near-infrared optical parametric process shows convex and concave characteristics for pure KDP and pure deuterated KDP (DKDP), respectively, when pumped by the second harmonic of Nd- or Yb-doped solid state lasers. Using these characteristics, ultra-broadband phase matching can be realized by optimization of the deuteration fraction. The refractive index of DKDP that was grown with a different deuteration fraction (known as partially deuterated KDP or pDKDP) was measured over a wide wavelength range of 0.4-1.5 μm by the minimum deviation method. The wavelength dispersions of the measured refractive indices were fitted using a modified Sellmeier equation, and the deuteration fraction dependence was analyzed using the Lorentz-Lorenz equation. The wavelength-dependent phase-matching angle for an arbitrary deuteration fraction was then calculated for optical parametric amplification with pumping at a wavelength of 526.5 nm. The results revealed that a refractive index database with precision of more than 2 × 10-5 was necessary for exact evaluation of the phase-matching condition. An ultra-broad gain bandwidth of up to 490 nm will be feasible when using the 68% pDKDP crystal.
Nagano, Hiroyuki; Shibano, Kana; Matsumoto, Yu; Yokota, Atsushi; Wada, Masaru
2017-06-01
An enzyme catalyzing the ammonia-lyase reaction for the conversion of d-erythro-3-hydroxyaspartate to oxaloacetate was purified from the cell-free extract of a soil-isolated bacterium Pseudomonas sp. N99. The enzyme exhibited ammonia-lyase activity toward l-threo-3-hydroxyaspartate and d-erythro-3-hydroxyaspartate, but not toward other 3-hydroxyaspartate isomers. The deduced amino acid sequence of the enzyme, which belongs to the serine/threonine dehydratase family, shows similarity to the sequence of l-threo-3-hydroxyaspartate ammonia-lyase (EC 4.3.1.16) from Pseudomonas sp. T62 (74%) and Saccharomyces cerevisiae (64%) and serine racemase from Schizosaccharomyces pombe (65%). These results suggest that the enzyme is similar to l-threo-3-hydroxyaspartate ammonia-lyase from Pseudomonas sp. T62, which does not act on d-erythro-3-hydroxyaspartate. We also then used the recombinant enzyme expressed in Escherichia coli to produce optically pure l-erythro-3-hydroxyaspartate and d-threo-3-hydroxyaspartate from the corresponding dl-racemic mixtures. The enzymatic resolution reported here is one of the simplest and the first enzymatic method that can be used for obtaining optically pure l-erythro-3-hydroxyaspartate.
NASA Astrophysics Data System (ADS)
Azab, A. A.; Ateia, Ebtesam E.; Esmail, S. A.
2018-07-01
Nano-crystalline of TM-doped ZnO with general formula Zn0.97TM0.03O (TM: Mn, Fe, Co, and Ni) was prepared using sol-gel method. The dependence of crystal structure, morphology, and optical and magnetic properties on the type of transition metals was investigated. The XRD investigation of pure and TM-doped ZnO nanoparticles samples confirms the formation of single-phase hexagonal wurtzite structure. The estimated crystallite sizes are found in the range of 17 and 38 nm for the doped and pure samples, respectively. The obtained data suggest that the dopant type plays a vital role in the physical properties of the investigated samples. The optical band-gap energy Eg has been calculated from near infrared (NIR) and visible (VIS) reflectance spectra using the Kubelka-Munk function. Minimum value of 2.398 eV and maximum one of 3.29 eV were obtained for Manganese-doped ZnO and pure ZnO, respectively. The analysis of XRD and VSM of the samples confirms that the observed room-temperature (RT) ferromagnetism can be attributed to an intrinsic property of doped material sample and not due to formation of any secondary phase. The magnetic results show that Mn is the most effective dopant for producing ferromagnetism in nanoparticles of ZnO.
Characterization of the Roman curse tablet
NASA Astrophysics Data System (ADS)
Liu, Wen; Zhang, Boyang; Fu, Lin
2017-08-01
The Roman curse tablet, produced in ancient Rome period, is a metal plate that inscribed with curses. In this research, several techniques were used to find out the physical structure and chemical composition of the Roman curse tablet, and testified the hypothesis that whether the tablet is made of pure lead or lead alloy. A sample of Roman Curse Tablet from the Johns Hopkins Archaeological Museum was analyzed using several different characterization techniques to determine the physical structure and chemical composition. The characterization techniques used were including optical microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). Because of the small sample size, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence (XRF) cannot test the sample. Results from optical microscopy and SEM, enlarged images of the sample surface were studied. The result revealed that the sample surface has a rough, non-uniform, and grainy surface. AFM provides three-dimensional topography of the sample surface, studying the sample surface in atomic level. DSC studies the thermal property, which is most likely a lead-alloy, not a pure lead. However, none of these tests indicated anything about the chemical composition. Future work will be required due to the lack of measures finding out its chemical composition. Therefore, from these characterization techniques above, the Roman curse tablet sample is consisted of lead alloy, not pure lead.
Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics
NASA Astrophysics Data System (ADS)
İlter, Işıl; Akyıl, Saniye; Devseren, Esra; Okut, Dilara; Koç, Mehmet; Kaymak Ertekin, Figen
2018-02-01
In this study, the effect of hot air and microwave drying on drying kinetics and some quality characteristics such as water activity, color, optic index and volatile oil of garlic puree was investigated. Optic index representing browning of the garlic puree increased excessively with an increase in microwave power and hot air drying temperature. However, volatile oil content of the dried samples was decreased by increasing of temperature and microwave power. By increasing drying temperature (50, 60 and 70 °C) and microwave power (180, 360 and 540 W), the drying time decreased from 8.5 h to 4 min. In order to determine the kinetic parameters, the experimental drying data were fitted to various semi-empirical models beside 2nd Fick's diffusion equation. Among them, the Page model gave a better fit for microwave-drying, while Logarithmic model gave a better fit for hot air drying. By increasing the microwave power and hot air drying temperature, the effective moisture diffusivity, De values ranged from 0.76×10-8 to 2.85×10-8 m2/s and from 2.21×10-10 to 3.07×10-10 m2/s, respectively. The activation energy was calculated as 20.90 kJ/mol for hot air drying and 21.96 W/g for microwave drying using an Arrhenius type equation.
Optical spectroscopy of the Weyl semimetal TaAs
Xu, B.; Dai, Y. M.; Zhao, L. X.; ...
2016-03-24
Here, we present a systematic study of both the temperature and frequency dependence of the optical response in TaAs, a material that has recently been realized to host the Weyl semimetal state. Our study reveals that the optical conductivity of TaAs features a narrow Drude response alongside a conspicuous linear dependence on frequency. The weight of the Drude peak decreases upon cooling, following a T 2 temperature dependence, in good agreement with theoretical predictions. Two linear components with distinct slopes dominate the low-temperature optical conductivity. A comparison between our experimental results and theoretical calculations suggests that the linear conductivity belowmore » ~230 cm –1 arises purely from interband transitions near the Weyl points, providing rich information about the Weyl semimetal state in TaAs.« less
The interpretation of optical light variations of Centaurus X-3
NASA Technical Reports Server (NTRS)
Mauder, H.
1976-01-01
The interpretation of optical light variations of X-ray binaries is discussed for the case of negligible reflection effect. The limiting cases of synchronous rotation of the visible star (Roche configuration) and of no rotation (pure tidal deformation) are considered. The theoretical results are compared with the available light curves of Cen X-3. X-ray data of the Copernicus satellite are used to get an impression of the atmospheric structure of the outer layers of the visible component. It is shown, that the X-ray eclipse duration is in good agreement with the mass ration derived from the optical variations. The X-ray eclipse duration is discussed with respect to the extended low states, and a possible correlation of the extended lows with the appearance of the optical light curves is considered.
Synchronization using pulsed edge tracking in optical PPM communication system
NASA Technical Reports Server (NTRS)
Gagliardi, R.
1972-01-01
A pulse position modulated (PPM) optical communication system using narrow pulses of light for data transmission requires accurate time synchronization between transmitter and receiver. The presence of signal energy in the form of optical pulses suggests the use of a pulse edge tracking method of maintaining the necessary timing. The edge tracking operation in a binary PPM system is examined, taking into account the quantum nature of the optical transmissions. Consideration is given first to pure synchronization using a periodic pulsed intensity, then extended to the case where position modulation is present and auxiliary bit decisioning is needed to aid the tracking operation. Performance analysis is made in terms of timing error and its associated statistics. Timing error variances are shown as a function of system signal to noise ratio.
Decrease and enhancement of third-order optical nonlinearity in metal-dielectric composite films
NASA Astrophysics Data System (ADS)
Ning, Tingyin; Lu, Heng; Zhou, Yueliang; Man, Baoyuan
2018-04-01
We investigate third-order optical nonlinearity in gold nanoparticles embedded in CaCu3Ti4O12 (CCTO) films using the Z-scan method. We observe that the effective third-order nonlinear optical susceptibilities in such composite films can not only be enhanced, in line with the conventional behavior, but also be decreased, depending on the volume concentration of gold. In particular, the nonlinear absorption behavior can be changed from saturable absorption in pure CCTO films to reversed saturable absorption in composite films, and theoretically, even zero nonlinear absorption could be obtained. These results indicate that it should be possible to tune the third-order optical nonlinearity in Au:CCTO composite films by altering the gold concentration, thus making them suitable for applications in photonic devices.
Optical, thermal and morphological study of ZnS doped PVA polymer nano composites
NASA Astrophysics Data System (ADS)
Guruswamy, B.; Ravindrachary, V.; Shruthi, C.; Sagar, Rohan N.; Hegde, Shreedatta
2018-05-01
The effect of ZnS nano particle doping on optical, thermal properties and morphological study of the PVA polymer has been investigated using FTIR, UV-Visible and TGA, FESEM techniques. Nano sized ZnS particles were synthesized by a simple wet chemical route. Pure and ZnS/PVA nano composites were prepared using solution casting technique. The FTIR study confirms that the ZnS nano particles interacts with the OH group of PVA polymer and forms the complex. The formation of these complexes affects the optical and thermal properties of the composite. The changes in optical properties were studied using UV-Vis absorption method. The variation in thermal property was analysed using TGA results. The modified surface morphology analysis was carried out using FESEM.
Deshmukh, Pravin Suryakantrao; Megha, Kanu; Banerjee, Basu Dev; Ahmed, Rafat Sultana; Chandna, Sudhir; Abegaonkar, Mahesh Pandurang; Tripathi, Ashok Kumar
2013-01-01
Background: Non-ionizing radiofrequency radiation has been increasingly used in industry, commerce, medicine and especially in mobile phone technology and has become a matter of serious concern in present time. Objective: The present study was designed to investigate the possible deoxyribonucleic acid (DNA) damaging effects of low-level microwave radiation in brain of Fischer rats. Materials and Methods: Experiments were performed on male Fischer rats exposed to microwave radiation for 30 days at three different frequencies: 900, 1800 and 2450 MHz. Animals were divided into 4 groups: Group I (Sham exposed): Animals not exposed to microwave radiation but kept under same conditions as that of other groups, Group II: Animals exposed to microwave radiation at frequency 900 MHz at specific absorption rate (SAR) 5.953 × 10−4 W/kg, Group III: Animals exposed to 1800 MHz at SAR 5.835 × 10−4 W/kg and Group IV: Animals exposed to 2450 MHz at SAR 6.672 × 10−4 W/kg. At the end of the exposure period animals were sacrificed immediately and DNA damage in brain tissue was assessed using alkaline comet assay. Results: In the present study, we demonstrated DNA damaging effects of low level microwave radiation in brain. Conclusion: We concluded that low SAR microwave radiation exposure at these frequencies may induce DNA strand breaks in brain tissue. PMID:23833433
Chronic toxicity and oncogenicity of decamethylcyclopentasiloxane in the Fischer 344 Rat.
Jean, Paul A; Plotzke, Kathleen P; Scialli, Anthony R
2016-02-01
Decamethylcyclopentasiloxane (D5) is a cyclic polydimethylsiloxane used in the synthesis of silicon-based materials and as a component in consumer products. Male and female Fischer 344 rats were exposed to D5 vapor (0, 10, 40, 160 ppm; whole-body inhalation) for 6 h/d, 5 d/wk, for up to 104 weeks. Microscopic examination of tissues revealed test article effects at 160 ppm in the upper respiratory tract (hyaline inclusions in males and females at 6, 12, and 24 months) and an increased incidence of uterine endometrial adenocarcinoma at 24-months. The hyaline inclusions were considered a non-adverse tissue response for lack of any other respiratory tract non-neoplastic or neoplastic changes. Uterine endometrial adenocarcinoma was not anticipated. Toxicity testing (mutagenicity/genotoxicity, acute, sub-acute and sub-chronic descriptive toxicity) performed prior to the conduct of the chronic bioassay provided no indication that the uterus was a potential target organ. The target organ and tumor type specificity (adenocarcinoma is a common spontaneous tumor in the aged Fischer 344 rat) suggests the effect is associated with estrous cycle alteration. A robust assessment of potential mode(s) of action responsible for the uterine tumors and relevance to humans is addressed in a companion manuscript (Klaunig et al., 2015). Copyright © 2015 Elsevier Inc. All rights reserved.
Characterization of Catalyst Materials for Production of Aerospace Fuels
NASA Technical Reports Server (NTRS)
Best, Lauren M.; De La Ree, Ana B.; Hepp, Aloysius F.
2012-01-01
Due to environmental, economic, and security issues, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to non-petroleum sources as a feedstock for aviation (and other transportation) fuels. Additionally, efforts are concentrated on reducing costs coupled with fuel production from non-conventional sources. One solution to this issue is Fischer-Tropsch gas-to-liquid technology. Fischer-Tropsch processing of synthesis gas (CO/H2) produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fisher-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur or aromatic compounds. This process is most commonly catalyzed by heterogeneous (in this case, silver and platinum) catalysts composed of cobalt supported on alumina or unsupported alloyed iron powders. Physisorption, chemisorptions, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) are described to better understand the potential performance of Fischer-Tropsch cobalt on alumina catalysts promoted with silver and platinum. The overall goal is to preferentially produce C8 to C18 paraffin compounds for use as aerospace fuels. Progress towards this goal will eventually be updated and achieved by a more thorough understanding of the characterization of catalyst materials. This work was supported by NASA s Subsonic Fixed Wing and In-situ Resource Utilization projects.
Everitt, J I; Bermudez, E; Mangum, J B; Wong, B; Moss, O R; Janszen, D; Rutten, A A
1994-01-01
The mesothelium is a target of the toxic and carcinogenic effects of certain natural mineral and man-made fibers. Long-term inhalation of a ceramic fiber (RCF-1) results in a high incidence of pleural mesotheliomas in Syrian golden hamsters but not in identically exposed Fischer-344 rats. The present study compared the histopathology of the early pleural response in rats and hamsters instilled with artificial fibers. Groups of Syrian golden hamsters and Fischer-344 rats were instilled with ceramic (RCF-1) or glass (MMVF-10) fibers directly into the pleural space. Each species received approximately equal numbers of long, thin fibers per g body weight. Fiber-induced lesions were compared 7 and 28 days postinstillation. Both hamsters and rats developed qualitatively similar dose-dependent inflammatory lesions that were not fiber-type specific. Both species developed fibrosis in conjunction with inflammation in the visceral pleura, but a striking interspecies difference was noted in the pattern of mesothelial cell response. Hamsters developed greater surface mesothelial cell proliferation and had focal aggregates of mesothelial cells embedded deep within regions of visceral pleural fibrosis. It is hypothesized from the present study that the marked fiber-induced proliferative mesothelial cell response of the hamster visceral pleura may explain the high number of pleural mesotheliomas found in long-term fiber studies in this species.
Characterization of Catalyst Materials for Production of Aerospace Fuels
NASA Technical Reports Server (NTRS)
DeLaRee, Ana B.; Hepp, Aloysius F.
2011-01-01
Due to environmental, economic, and security issues, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to non-petroleum sources as a feedstock for aviation (and other transportation) fuels. Additionally, efforts are concentrated on reducing costs coupled with fuel production from non-conventional sources. One solution to this issue is Fischer-Tropsch gas-to-liquid technology. Fischer-Tropsch processing of synthesis gas (CO/H2) produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fisher-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur or aromatic compounds. This process is most commonly catalyzed by heterogeneous (in this case, silver and platinum) catalysts composed of cobalt supported on alumina or unsupported alloyed iron powders. Physisorption, chemisorptions, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) are described to better understand the potential performance of Fischer-Tropsch cobalt on alumina catalysts promoted with silver and platinum. The overall goal is to preferentially produce C8 to C18 paraffin compounds for use as aerospace fuels. Progress towards this goal will eventually be updated and achieved by a more thorough understanding of the characterization of catalyst materials. This work was supported by NASA s Subsonic Fixed Wing and In-situ Resource Utilization projects.
Ultralow-loss polaritons in isotopically pure boron nitride.
Giles, Alexander J; Dai, Siyuan; Vurgaftman, Igor; Hoffman, Timothy; Liu, Song; Lindsay, Lucas; Ellis, Chase T; Assefa, Nathanael; Chatzakis, Ioannis; Reinecke, Thomas L; Tischler, Joseph G; Fogler, Michael M; Edgar, J H; Basov, D N; Caldwell, Joshua D
2018-02-01
Conventional optical components are limited to size scales much larger than the wavelength of light, as changes to the amplitude, phase and polarization of the electromagnetic fields are accrued gradually along an optical path. However, advances in nanophotonics have produced ultrathin, so-called 'flat' optical components that beget abrupt changes in these properties over distances significantly shorter than the free-space wavelength. Although high optical losses still plague many approaches, phonon polariton (PhP) materials have demonstrated long lifetimes for sub-diffractional modes in comparison to plasmon-polariton-based nanophotonics. We experimentally observe a threefold improvement in polariton lifetime through isotopic enrichment of hexagonal boron nitride (hBN). Commensurate increases in the polariton propagation length are demonstrated via direct imaging of polaritonic standing waves by means of infrared nano-optics. Our results provide the foundation for a materials-growth-directed approach aimed at realizing the loss control necessary for the development of PhP-based nanophotonic devices.
Introduction of a new opto-electrical phase-locked loop in CMOS technology: the PMD-PLL
NASA Astrophysics Data System (ADS)
Ringbeck, Thorsten; Schwarte, Rudolf; Buxbaum, Bernd
1999-12-01
The huge and increasing need of information in the industrial world demands an enormous potential of bandwidth in telecommunication systems. Optical communication provides all participants with the whole spectrum of digital services like videophone, cable TV, video conferencing and online services. Especially fast and low cost opto-electrical receivers are badly needed in order to expand fiber networks to every home (FTTH--fiber to the home or FTTD--fiber to the desk, respectively). This paper proposes a new receiver structure which is designed to receiver optical data which are encoded by code division multiple access techniques (CDMA). For data recovery in such CDMA networks phase locked loops (PLL) are needed, which synchronize the local oscillator with the incoming clock. In optical code division multiple access networks these PLLs could be realized either with an electrical PLL after opto-electrical converting or directly in the optical path with a pure optical PLL.
Linear and passive silicon optical isolator
Wang, Chen; Zhong, Xiao-Lan; Li, Zhi-Yuan
2012-01-01
On-chip optical isolation plays a key role in optical communications and computing based on silicon integrated photonic structures and has attracted great attentions for long years. Recently there have appeared hot controversies upon whether isolation of light can be realized via linear and passive photonic structures. Here we demonstrate optical isolation of infrared light in purely linear and passive silicon photonic structures. Both numerical simulations and experimental measurements show that the round-trip transmissivity of in-plane infrared light across a silicon photonic crystal slab heterojunction diode could be two orders of magnitudes smaller than the forward transmissivity at around 1,550 nm with a bandwidth of about 50 nm, indicating good performance of optical isolation. The occurrence of in-plane light isolation is attributed to the information dissipation due to off-plane and side-way scattering and selective modal conversion in the multiple-channel structure and has no conflict with the reciprocal principle. PMID:22993699
Ultralow-loss polaritons in isotopically pure boron nitride
NASA Astrophysics Data System (ADS)
Giles, Alexander J.; Dai, Siyuan; Vurgaftman, Igor; Hoffman, Timothy; Liu, Song; Lindsay, Lucas; Ellis, Chase T.; Assefa, Nathanael; Chatzakis, Ioannis; Reinecke, Thomas L.; Tischler, Joseph G.; Fogler, Michael M.; Edgar, J. H.; Basov, D. N.; Caldwell, Joshua D.
2018-02-01
Conventional optical components are limited to size scales much larger than the wavelength of light, as changes to the amplitude, phase and polarization of the electromagnetic fields are accrued gradually along an optical path. However, advances in nanophotonics have produced ultrathin, so-called `flat' optical components that beget abrupt changes in these properties over distances significantly shorter than the free-space wavelength. Although high optical losses still plague many approaches, phonon polariton (PhP) materials have demonstrated long lifetimes for sub-diffractional modes in comparison to plasmon-polariton-based nanophotonics. We experimentally observe a threefold improvement in polariton lifetime through isotopic enrichment of hexagonal boron nitride (hBN). Commensurate increases in the polariton propagation length are demonstrated via direct imaging of polaritonic standing waves by means of infrared nano-optics. Our results provide the foundation for a materials-growth-directed approach aimed at realizing the loss control necessary for the development of PhP-based nanophotonic devices.
Properties of the 4.45 eV optical absorption band in LiF:Mg,Ti.
Nail, I; Oster, L; Horowitz, Y S; Biderman, S; Belaish, Y
2006-01-01
The optical absorption (OA) and thermoluminescence (TL) of dosimetric LiF:Mg,Ti (TLD-100) as well as nominally pure LiF single crystal have been studied as a function of irradiation dose, thermal and optical bleaching in order to investigate the role of the 4.45 eV OA band in low temperature TL. Computerised deconvolution was used to resolve the absorption spectrum into individual gaussian bands and the TL glow curve into glow peaks. Although the 4.45 eV OA band shows thermal decay characteristics similar to the 4.0 eV band its dose filling constant and optical bleaching properties suggest that it cannot be associated with the TL of composite peaks 4 or 5. Its presence in optical grade single crystal LiF further suggests that it is an intrinsic defect or possibly associated with chance impurities other than Mg, Ti.
Apparatus and process for determining the susceptibility of microorganisms to antibiotics
NASA Technical Reports Server (NTRS)
Gibson, Sandra F. (Inventor); Fadler, Norman L. (Inventor)
1976-01-01
A process for determining the susceptibility of microorganisms to antibiotics involves introducing a diluted specimen into discrete quantities of a selective culture medium which favors a specific microorganism in that the microorganism is sustained by the medium and when so sustained will change the optical characteristics of the medium. Only the specific microorganism will alter the optical characteristics. Some of the discrete quantities are blended with known antibiotics, while at least one is not. If the specimen contains the microorganisms favored by the selective medium, the optical characteristics of the discrete quantity of pure selective medium, that is the one without antibiotics, will change. If the antibiotics in any of the other discrete quantities are ineffective against the favored microorganisms, the optical characteristics of those quantities will likewise change. No change in the optical characteristics of a discrete quantity indicates that the favored microorganism is susceptible to the antibiotic in the quantity.
Model for multishot all-thermal all-optical switching in ferromagnets
NASA Astrophysics Data System (ADS)
Gorchon, J.; Yang, Y.; Bokor, J.
2016-07-01
All-optical magnetic switching (AOS) is a recently observed rich and puzzling phenomenon that offers promising technological applications. However, a fundamental understanding of the underlying mechanisms remains elusive. Here we present a model for multishot helicity-dependent AOS in ferromagnetic materials based on a purely heat-driven mechanism in the presence of magnetic circular dichroism (MCD). We predict that AOS should be possible with as little as 0.5% of MCD, after a minimum number of laser shots heat the sample close to the Curie temperature. Finally, we qualitatively reproduce the all-optically switched domain patterns observed experimentally by numerically simulating the result of multiple laser shots on an FePtC granular ferromagnetic film.
An optical flow-based state-space model of the vocal folds.
Granados, Alba; Brunskog, Jonas
2017-06-01
High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters.
Nanohole optical tweezers in heterogeneous mixture analysis
NASA Astrophysics Data System (ADS)
Hacohen, Noa; Ip, Candice J. X.; Laxminarayana, Gurunatha K.; DeWolf, Timothy S.; Gordon, Reuven
2017-08-01
Nanohole optical trapping is a tool that has been shown to analyze proteins at the single molecule level using pure samples. The next step is to detect and study single molecules with dirty samples. We demonstrate that using our double nanohole optical tweezing configuration, single particles in an egg white solution can be classified when trapped. Different sized molecules provide different signal variations in their trapped state, allowing the proteins to be statistically characterized. Root mean squared variation and trap stiffness are methods used on trapped signals to distinguish between the different proteins. This method to isolate and determine single molecules in heterogeneous samples provides huge potential to become a reliable tool for use within biomedical and scientific communities.
Early Developments in Argumentation in Physics.
ERIC Educational Resources Information Center
Bazerman, Charles
An evaluation of four seventeenth and eighteenth century essays on optics revealed early trends in the evolution of scientific articles. The later articles showed a growing tendency to (1) separate practice from pure knowledge, (2) organize information around problems of knowledge and theory rather than around chronological events, (3) emphasize…
Transversely polarized sub-diffraction optical needle with ultra-long depth of focus
NASA Astrophysics Data System (ADS)
Guan, Jian; Lin, Jie; Chen, Chen; Ma, Yuan; Tan, Jiubin; Jin, Peng
2017-12-01
We generated purely transversely polarized sub-diffraction optical needles with ultra-long depth of focus (DOF) by focusing azimuthally polarized (AP) beams that were modulated by a vortex 0-2 π phase plate and binary phase diffraction optical elements (DOEs). The concentric belts' radii of the DOEs were optimized by a hybrid genetic particle swarm optimization (HGPSO) algorithm. For the focusing system with the numerical aperture (NA) of 0.95, an optical needle with the full width at half maximum (FWHM) of 0.40 λ and the DOF of 6.23 λ was generated. Similar optical needles were also generated by binary phase DOEs with different belts. The results demonstrated that the binary phase DOEs could achieve smaller FWHMs and longer DOFs simultaneously. The generated needles were circularly polarized on the z-axis and there were no longitudinally polarized components in the focal fields. The radius fabrication errors of a DOE have little effect on the optical needle produced by itself. The generated optical needles can be applied to the fields of photolithography, high-density optical data storage, microscope imaging and particle trapping.
Shiraiwa, Tadashi; Suzuki, Masahiro; Sakai, Yoshio; Nagasawa, Hisashi; Takatani, Kazuhiro; Noshi, Daisuke; Yamanashi, Kenji
2002-10-01
To synthesize optically active 2-amino-2-methyl-3-phenylpropanoic acid (1), (RS)-2-benzoylamino-2-benzyl-3-hydroxypropanoic acid [(RS)-2] was first optically resolved using cinchonidine as a resolving agent to yield optically pure (S)- and (R)-2 in yields of about 70%, based on half of the starting amount of (RS)-2. Next, the racemic structure of (RS)-2 was examined based on melting point, solubility, IR spectrum, and binary and ternary phase diagrams, with the aim of optical resolution by preferential crystallization of (RS)-2. Results indicated that the (RS)-2 exists as a conglomerate at room temperature, although it forms a racemic compound at the melting point. The optical resolution by preferential crystallization yielded (S)- and (R)-2 with optical purities of about 90%, which were fully purified by recrystallization. After O-tosylation of (S)- and (R)-2, reduction by zinc powder and sodium iodide gave (R)- and (S)-1, respectively.
Fabrication of GaN doped ZnO nanocrystallines by laser ablation.
Gopalakrishnan, N; Shin, B C; Bhuvana, K P; Elanchezhiyan, J; Balasubramanian, T
2008-08-01
Here, we present the fabrication of pure and GaN doped ZnO nanocrystallines on Si(111) substrates by KrF excimer laser. The targets for the ablation have been prepared by conventional ceramic method. The fabricated nanocrystallines have been investigated by X-ray diffraction, photoluminescence and atomic force microscopy. The X-ray diffraction analysis shows that the crystalline size of pure ZnO is 36 nm and it is 41 nm while doped with 0.8 mol% of GaN due to best stoichiometry between Zn and O. Photoluminescence studies reveal that intense deep level emissions have been observed for pure ZnO and it has been suppressed for the GaN doped ZnO structures. The images of atomic force microscope show that the rms surface roughness is 27 nm for pure ZnO and the morphology is improved with decrease in rms roughness, 18 nm with fine crystallines while doped with 1 mol% GaN. The improved structural, optical and morphological properties of ZnO nanocrystalline due to GaN dopant have been discussed in detail.
Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys
Jin, Ke; Zhang, Yanwen; Bei, Hongbin
2015-09-09
In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 10 13 to 5 × 10 15 ions cm –2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. Withmore » continuously increasing the ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Here, under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.« less
Nishizawa, Nozomi; Nishibayashi, Kazuhiro; Munekata, Hiro
2017-02-21
We report the room-temperature electroluminescence (EL) with nearly pure circular polarization (CP) from GaAs-based spin-polarized light-emitting diodes (spin-LEDs). External magnetic fields are not used during device operation. There are two small schemes in the tested spin-LEDs: first, the stripe-laser-like structure that helps intensify the EL light at the cleaved side walls below the spin injector Fe slab, and second, the crystalline AlO x spin-tunnel barrier that ensures electrically stable device operation. The purity of CP is depressively low in the low current density ( J ) region, whereas it increases steeply and reaches close to the pure CP when J > 100 A/cm 2 There, either right- or left-handed CP component is significantly suppressed depending on the direction of magnetization of the spin injector. Spin-dependent reabsorption, spin-induced birefringence, and optical spin-axis conversion are suggested to account for the observed experimental results.
Reliable quantum certification of photonic state preparations
Aolita, Leandro; Gogolin, Christian; Kliesch, Martin; Eisert, Jens
2015-01-01
Quantum technologies promise a variety of exciting applications. Even though impressive progress has been achieved recently, a major bottleneck currently is the lack of practical certification techniques. The challenge consists of ensuring that classically intractable quantum devices perform as expected. Here we present an experimentally friendly and reliable certification tool for photonic quantum technologies: an efficient certification test for experimental preparations of multimode pure Gaussian states, pure non-Gaussian states generated by linear-optical circuits with Fock-basis states of constant boson number as inputs, and pure states generated from the latter class by post-selecting with Fock-basis measurements on ancillary modes. Only classical computing capabilities and homodyne or hetorodyne detection are required. Minimal assumptions are made on the noise or experimental capabilities of the preparation. The method constitutes a step forward in many-body quantum certification, which is ultimately about testing quantum mechanics at large scales. PMID:26577800
Generation of a sub-half-wavelength focal spot with purely transverse spin angular momentum
NASA Astrophysics Data System (ADS)
Hang, Li; Fu, Jian; Yu, Xiaochang; Wang, Ying; Chen, Peifeng
2017-11-01
We theoretically demonstrate that optical focus fields with purely transverse spin angular momentum (SAM) can be obtained when a kind of special incident fields is focused by a high numerical aperture (NA) aplanatic lens (AL). When the incident pupil fields are refracted by an AL, two transverse Cartesian components of the electric fields at the exit pupil plane do not have the same order of sinusoidal or cosinoidal components, resulting in zero longitudinal SAMs of the focal fields. An incident field satisfying above conditions is then proposed. Using the Richard-Wolf vectorial diffraction theory, the energy density and SAM density distributions of the tightly focused beam are calculated and the results clearly validate the proposed theory. In addition, a sub-half-wavelength focal spot with purely transverse SAM can be achieved and a flattop energy density distribution parallel to z-axis can be observed around the maximum energy density point.
Zhao, Jinfang; Xu, Liyuan; Wang, Yongze; Zhao, Xiao; Wang, Jinhua; Garza, Erin; Manow, Ryan; Zhou, Shengde
2013-06-07
Polylactic acid (PLA), a biodegradable polymer, has the potential to replace (at least partially) traditional petroleum-based plastics, minimizing "white pollution". However, cost-effective production of optically pure L-lactic acid is needed to achieve the full potential of PLA. Currently, starch-based glucose is used for L-lactic acid fermentation by lactic acid bacteria. Due to its competition with food resources, an alternative non-food substrate such as cellulosic biomass is needed for L-lactic acid fermentation. Nevertheless, the substrate (sugar stream) derived from cellulosic biomass contains significant amounts of xylose, which is unfermentable by most lactic acid bacteria. However, the microorganisms that do ferment xylose usually carry out heterolactic acid fermentation. As a result, an alternative strain should be developed for homofermentative production of optically pure L-lactic acid using cellulosic biomass. In this study, an ethanologenic Escherichia coli strain, SZ470 (ΔfrdBC ΔldhA ΔackA ΔpflB ΔpdhR ::pflBp6-acEF-lpd ΔmgsA), was reengineered for homofermentative production of L-lactic acid from xylose (1.2 mole xylose = > 2 mole L-lactic acid), by deleting the alcohol dehydrogenase gene (adhE) and integrating the L-lactate dehydrogenase gene (ldhL) of Pediococcus acidilactici. The resulting strain, WL203, was metabolically evolved further through serial transfers in screw-cap tubes containing xylose, resulting in the strain WL204 with improved anaerobic cell growth. When tested in 70 g L-1 xylose fermentation (complex medium), WL204 produced 62 g L-1 L-lactic acid, with a maximum production rate of 1.631 g L-1 h-1 and a yield of 97% based on xylose metabolized. HPLC analysis using a chiral column showed that an L-lactic acid optical purity of 99.5% was achieved by WL204. These results demonstrated that WL204 has the potential for homofermentative production of L-lactic acid using cellulosic biomass derived substrates, which contain a significant amount of xylose.
Carbon Isotopic Fractionation in Fischer-Tropsch Type Reactions and Relevance to Meteorite Organics
NASA Technical Reports Server (NTRS)
Johnson, Natasha M; Elsila, Jamie E.; Kopstein, Mickey; Nuth, Joseph A., III
2012-01-01
Fischer-Tropsch-Type (FTT) reactions have been hypothesized to contribute to the formation of organic compounds in the early solar system, but it has been difficult to identify a signature of such reactions in meteoritic organics. The work reported here examined whether temperature-dependent carbon isotopic fractionation of FTT reactions might provide such a signature. Analyses of bulk organic deposits resulting from FTT experiments show a slight trend towards lighter carbon isotopic ratios with increasing temperature. It is unlikely, however, that these carbon isotopic signatures could provide definitive provenance for organic compounds in solar system materials produced through FTT reactions, because of the small scale of the observed fractionations and the possibility that signatures from many different temperatures may be present in any specific grain.
Amino acids in a Fischer Tropsch type synthesis
NASA Technical Reports Server (NTRS)
Brown, D. L.; Lawless, J. G.
1974-01-01
One postulation is described for the presence of organic compounds in meteorites which states that they were formed during the condensation of the solar nebula. A viable laboratory simulation of these conditions can be modeled after the industrial Fischer Tropsch reaction, which is known to produce organic compounds called hydrocarbons. In this simulation, a mixture of carbon monoxide, hydrogen and ammonia is heated in the presence of iron meteorite. The reaction products for amino acids, a class of organic compounds important to life, were examined. A large number of these compounds is found in meteorites and other chemical evolution experiments, but only small quantities of a few amino acids were found in the present simulation work. These results are at odds with the existing literature in which many amino acids were reported.
Preparation of Fischer-Tropsch catalysts from cobalt/iron hydrotalcites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, B.H.; Boff, J.J.; Zarochak, M.F.
1995-12-31
Compounds with the (hydrotalcites) have properties that make them attractive as precursors for Fischer-Tropsch catalysts. A series of single-phase hydrotalcites with cobalt/iron atom ratios ranging from 75/25 to 25/75 has been synthesized. Mixed cobalt/iron oxides have been prepared from these hydrotalcites by controlled thermal decomposition. Thermal decomposition at temperatures below 600 {degrees}C typically produced a single-phase mixed metal oxide with a spinel structure. The BET surface areas of the spinal samples have been found to be as high as about 150 m{sup 2}/g. Appropriate reducing pretreatments have been developed for several of these spinels and their activity, selectivity, and activitymore » and selectivity maintenance have been examined at 13 MPa in a fixed-bed microreactor.« less
NASA Astrophysics Data System (ADS)
Cusinato, Lucy; Martínez-Prieto, Luis M.; Chaudret, Bruno; Del Rosal, Iker; Poteau, Romuald
2016-05-01
A deeper understanding of the relationship between experimental reaction conditions and the surface composition of nanoparticles is crucial in order to elucidate mechanisms involved in nanocatalysis. In the framework of the Fischer-Tropsch synthesis, a resolution of this complex puzzle requires a detailed understanding of the interaction of CO and H with the surface of the catalyst. In this context, the single- and co-adsorption of CO and H to the surface of a 1 nm ruthenium nanoparticle has been investigated with density functional theory. Using several indexes (d-band center, crystal overlap Hamilton population, density of states), a systematic analysis of the bond properties and of the electronic states has also been done, in order to bring an understanding of structure/property relationships at the nanoscale. The H : CO surface composition of this ruthenium nanoparticle exposed to syngas has been evaluated according to a thermodynamic model fed with DFT energies. Such ab initio thermodynamic calculations give access to the optimal H : CO coverage values under a wide range of experimental conditions, through the construction of free energy phase diagrams. Surprisingly, under the Fischer-Tropsch synthesis experimental conditions, and in agreement with new experiments, only CO species are adsorbed at the surface of the nanoparticle. These findings shed new light on the possible reaction pathways underlying the Fischer-Tropsch synthesis, and specifically the initiation of the reaction. It is finally shown that the joint knowledge of the surface composition and energy descriptors can help to identify possible reaction intermediates.A deeper understanding of the relationship between experimental reaction conditions and the surface composition of nanoparticles is crucial in order to elucidate mechanisms involved in nanocatalysis. In the framework of the Fischer-Tropsch synthesis, a resolution of this complex puzzle requires a detailed understanding of the interaction of CO and H with the surface of the catalyst. In this context, the single- and co-adsorption of CO and H to the surface of a 1 nm ruthenium nanoparticle has been investigated with density functional theory. Using several indexes (d-band center, crystal overlap Hamilton population, density of states), a systematic analysis of the bond properties and of the electronic states has also been done, in order to bring an understanding of structure/property relationships at the nanoscale. The H : CO surface composition of this ruthenium nanoparticle exposed to syngas has been evaluated according to a thermodynamic model fed with DFT energies. Such ab initio thermodynamic calculations give access to the optimal H : CO coverage values under a wide range of experimental conditions, through the construction of free energy phase diagrams. Surprisingly, under the Fischer-Tropsch synthesis experimental conditions, and in agreement with new experiments, only CO species are adsorbed at the surface of the nanoparticle. These findings shed new light on the possible reaction pathways underlying the Fischer-Tropsch synthesis, and specifically the initiation of the reaction. It is finally shown that the joint knowledge of the surface composition and energy descriptors can help to identify possible reaction intermediates. Electronic supplementary information (ESI) available: Energies, detailed description of the hapticity and of the bridging character of the surface ligands and geometries for isomers; additional phase diagrams (without ZPE corrections). See DOI: 10.1039/C6NR01191H
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, Douglas
2012-06-01
Project Independence proposed to construct a demonstration biomass-to-liquids (BTL) biorefinery in Wisconsin Rapids, isconsin. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage Wisconsin System Incorporated’s Wisconsin Rapids Mill, and when in full operation would both generate renewable energy for Wisconsin Rapids Mill and produce liquid fuels from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for BTL production using forest residuals and wood waste, providing a basis for proliferating BTL conversion technologies throughout the United States. It was a project goal to create a compellingmore » new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with biomass being harvested, sized, conditioned and fed into a ThermoChem Recovery International (TRI) steam reformer where it is converted to high quality synthetic gas (syngas). The syngas is then cleaned, compressed, scrubbed, polished and fed into the Fischer-Tropsch (F-T) catalytic reactors where the gas is converted into two, sulfur-free, clean crude products which will be marketed as revenue generating streams. Additionally, the Fischer-Tropsch products could be upgraded for use in automotive, aviation and chemical industries as valuable products, if desired. As the Project Independence project set out to prove forest products could be used to commercially produce biofuels, they planned to address and mitigate issues as they arose. In the early days of the Project Independence project, the plant was sized to process 500 dry tons of biomass per day but would generate a blend of synthesis gas for the lime kiln and a minimum of Fischer-Tropsch liquids for sale. This was to be done using a single stage of Fischer-Tropsch reaction at roughly a 70% yield. The capability of the Wisconsin Rapids Mill lime kiln to run on the relatively low heating value of the product synthesis gas was problematic. The design was then changed to maximize Fischer-Tropsch liquids production using a two stage Fischer-Tropsch process. Project Independence progressed with the design of the mill as ThermoChem Recovery International worked on the technical details of the project as well as develop information from their pilot plant. The pilot plant work uncovered several problems with the synthesis gas clean-up that solutions. ThermoChem Recovery International found these solutions and developed a very good path forward on the technical side. The technical solutions were demonstrated in the pilot plant to everyone’s satisfaction. In July 2010, NewPage Corporation had been severely affected by the downturn in the economy and actively went to find a strategic partner. By April 2011 the Abell Foundation entered the picture as this strategic partner. The Abell Foundation would join forces as Project Independence Inc. to build the 500 dry ton per day Project Independence plant. The design of this facility progress even after NewPage Corporation declared Chapter 11 Bankruptcy protection in September, 2011. This continued until April 2012 when NewPage Corporation determined that continued work on Project Independence Inc. presented too much risk with little reward for NewPage Corporation. The project was terminated at this point.« less
Doughnut shape atom traps with arbitrary inclination
NASA Astrophysics Data System (ADS)
Masegosa, R. R. Y.; Moya-Cessa, H.; Chavez-Cerda, S.
2006-02-01
Since the invention of magneto-optical trap (MOT), there have been several experimental and theoretical studies of the density distribution in these devices. To the best of our knowledge, only horizontal orbital traps have been observed, perpendicular to the coil axis. In this work we report the observation of distributions of trapped atoms in pure circular orbits without a nucleus whose orbital plane is tilted up to 90 degrees with respect to the horizontal plane. We have used a stabilized time phase optical array in our experiments and conventional equipment used for MOT.
Pure nanodiamonds for levitated optomechanics in vacuum
NASA Astrophysics Data System (ADS)
Frangeskou, A. C.; Rahman, A. T. M. A.; Gines, L.; Mandal, S.; Williams, O. A.; Barker, P. F.; Morley, G. W.
2018-04-01
Optical trapping at high vacuum of a nanodiamond containing a nitrogen vacancy centre would provide a test bed for several new phenomena in fundamental physics. However, the nanodiamonds used so far have absorbed too much of the trapping light, heating them to destruction (above 800 K) except at pressures above ∼10 mbar where air molecules dissipate the excess heat. Here we show that milling diamond of 1000 times greater purity creates nanodiamonds that do not heat up even when the optical intensity is raised above 700 GW m‑2 below 5 mbar of pressure.
De Jonckheere, J; Narbonneau, F; Jeanne, M; Kinet, D; Witt, J; Krebber, K; Paquet, B; Depre, A; Logier, R
2009-01-01
The potential impact of optical fiber sensors embedded into medical textiles for the continuous monitoring of the patient during Magnetic Resonance Imaging is presented. We report on two pure optical sensing technologies for respiratory movements monitoring - a macro bending sensor and a Bragg grating sensor, designed to measure the elongation due to abdominal and thoracic motions during breathing. We demonstrate that the two sensors can successfully sense textile elongation between, 0% and 3%, while maintaining the stretching properties of the textile substrates for a good comfort of the patient.
The pure rotational spectrum of CaNC
NASA Astrophysics Data System (ADS)
Scurlock, C. T.; Steimle, T. C.; Suenram, R. D.; Lovas, F. J.
1994-03-01
The pure rotational spectrum of calcium isocyanide, CaNC, in its (0,0,0) X 2Σ+ vibronic state was measured using a combination of Fourier transform microwave (FTMW) and pump/probe microwave-optical double resonance (PPMODR) spectroscopy. Gaseous CaNC was generated using a laser ablation/supersonic expansion source. The determined spectroscopic parameters are (in MHz), B=4048.754 332 (29); γ=18.055 06 (23); bF=12.481 49 (93); c=2.0735 (14); and eQq0=-2.6974 (11). The hyperfine parameters are qualitatively interpreted in terms of a plausible molecular orbital descriptions and a comparison with the alkaline earth monohalides and the alkali monocyanides is given.
NASA Astrophysics Data System (ADS)
Menzel, Dorothee; Mews, Mathias; Rech, Bernd; Korte, Lars
2018-01-01
The electronic structure of thermally co-evaporated indium-tungsten-oxide films is investigated. The stoichiometry is varied from pure tungsten oxide to pure indium oxide, and the band alignment at the indium-tungsten-oxide/crystalline silicon heterointerface is monitored. Using in-system photoelectron spectroscopy, optical spectroscopy, and surface photovoltage measurements, we show that the work function of indium-tungsten-oxide continuously decreases from 6.3 eV for tungsten oxide to 4.3 eV for indium oxide, with a concomitant decrease in the band bending at the hetero interface to crystalline silicon than indium oxide.
Polarizing Beam Splitter: A New Approach Based on Transformation Optics
NASA Astrophysics Data System (ADS)
Mueller, Jonhatan; Wegener, Martin
Standard optical elements (e.g. lenses, prisms) are mostly designed of piecewise homogeneous and isotropic dielectrics. However, in theory one has far more possibilities to influence electromagnetic waves, namely all the components of the permittivity and permeability tensors. In the past few years, on the one hand, new micro fabrication methods allowed for new freedom in controlling of the optical parameters using so called artificial metamaterials. On the other hand, the theory of transformation optics has given a somewhat intuitive approach for the design of such structures. The most popular feature of this kind is certainly optical cloaking (i.e. [1,2]). However, the full capabilities of other transformation optical devices are far from being fully explored. In my work, I focused on pure dielectric structures in a non-resonant and therefore non-lossy regime. Although the relative permittivity one can achieve this way is limited by the available natural dielectrics, a broad spectrum of features can be realized.
NASA Astrophysics Data System (ADS)
Song, Yufeng; Liang, Zhiming; Jiang, Xiantao; Chen, Yunxiang; Li, Zhongjun; Lu, Lu; Ge, Yanqi; Wang, Ke; Zheng, Jilin; Lu, Shunbin; Ji, Jianhua; Zhang, Han
2017-12-01
Antimonene, a new type of mono/few-layer two-dimensional (2D) mono-elemental material purely consisting of antimony similar as graphene and phosphorene, has been theoretically predicted with excellent optical response and enhanced stability. Herein, we experimentally investigated the broadband nonlinear optical response of highly stable few-layer antimonene (FLA) by performing an open-aperture Z-scan laser measurement. Thanks to the direct bandgap and resonant absorption at the telecommunication band, we demonstrated the feasibility of FLA-decorated microfiber not only as an optical saturable absorber for ultrafast photonics operation, but also as a stable all-optical pulse thresholder that can effectively suppress the transmission noise, boost the signal-to-noise ratio (SNR), and reshape the deteriorated input signal. Our findings, as the first prototypic device of absorption of antimonene, might facilitate the development of antimonene-based optical communication technologies towards high stability and practical applications in the future.
Hydrocarbon recovery from diatomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scinta, J.
1984-05-15
Supercritical extraction of diatomaceous earth results in a much more significant improvement in hydrocarbon recovery over Fischer retorting than achievable with tar sands. Process and apparatus for supercritical extraction of diatomaceous earth are disclosed.
Advanced Secure Optical Image Processing for Communications
NASA Astrophysics Data System (ADS)
Al Falou, Ayman
2018-04-01
New image processing tools and data-processing network systems have considerably increased the volume of transmitted information such as 2D and 3D images with high resolution. Thus, more complex networks and long processing times become necessary, and high image quality and transmission speeds are requested for an increasing number of applications. To satisfy these two requests, several either numerical or optical solutions were offered separately. This book explores both alternatives and describes research works that are converging towards optical/numerical hybrid solutions for high volume signal and image processing and transmission. Without being limited to hybrid approaches, the latter are particularly investigated in this book in the purpose of combining the advantages of both techniques. Additionally, pure numerical or optical solutions are also considered since they emphasize the advantages of one of the two approaches separately.
NASA Astrophysics Data System (ADS)
Zulina, Natalia A.; Pavlovetc, Ilia M.; Baranov, Mikhail A.; Denisyuk, Igor Yu.
2017-03-01
In this work Ag nanoparticles (NPs) stable colloid solution were prepared by laser ablation of chemically pure silver rod in liquid monomer isodecyl acrylate (IDA). Sizes of obtained nanoparticles were determined by scanning electron microscope and vary from 27 to 120 nm. Nanocomposites films were prepared from obtained stable colloid solution of AgNPs by photocuring. For aliphatic polymer IDA long molecules cross-linking Diurethane dimethacrylate, 1,6-Hexandiol diacrylate and Tetra (ethylene glycol) diacrylate were used. Prepared nanomaterials exhibit strong third-order nonlinear optical responses, which was estimated by using z-scan technique. The third-order nonlinear optical coefficients of the studied nanocomposites were found to be up to Reχ(3)=1.31×10-5 (esu) and Imχ(3)=7.64×10-5 (esu).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowyer, J.F.; Latendresse, J.R.; Delongchamp, R.R.
Acrylamide (AA) is an important industrial chemical that is neurotoxic in rodents and humans and carcinogenic in rodents. The observation of cancer in endocrine-responsive tissues in Fischer 344 rats has prompted hypotheses of hormonal dysregulation, as opposed to DNA damage, as the mechanism for tumor induction by AA. The current investigation examines possible evidence for disruption of the hypothalamic-pituitary-thyroid axis from 14 days of repeated exposure of male Fischer 344 rats to doses of AA that range from one that is carcinogenic after lifetime exposure (2.5 mg/kg/d), an intermediate dose (10 mg/kg/d), and a high dose (50 mg/kg/d) that ismore » neurotoxic for this exposure time. The endpoints selected include: serum levels of thyroid and pituitary hormones; target tissue expression of genes involved in hormone synthesis, release, and receptors; neurotransmitters in the CNS that affect hormone homeostasis; and histopathological evaluation of target tissues. These studies showed virtually no evidence for systematic alteration of the hypothalamic-pituitary-thyroid axis and do not support hormone dysregulation as a plausible mechanism for AA-induced thyroid cancer in the Fischer 344 rat. Specifically, there were no significant changes in: 1) mRNA levels in hypothalamus or pituitary for TRH, TSH, thyroid hormone receptor {alpha} and {beta}, as well 10 other hormones or releasing factors; 2) mRNA levels in thyroid for thyroglobulin, thyroid peroxidase, sodium iodide symporter, or type I deiodinases; 3) serum TSH or T3 levels (T4 was decreased at high dose only); 4) dopaminergic tone in the hypothalamus and pituitary or importantly 5) increased cell proliferation (Mki67 mRNA and Ki-67 protein levels were not increased) in thyroid or pituitary. These negative findings are consistent with a genotoxic mechanism of AA carcinogenicity based on metabolism to glycidamide and DNA adduct formation. Clarification of this mechanistic dichotomy may be useful in human cancer risk assessments for AA.« less
Tsuji, Shuhei; Koyama, Satoshi; Taniguchi, Ryoji; Fujiwara, Takako; Fujiwara, Hisayoshi; Sato, Yukihito
2018-06-06
Loss of skeletal muscle mass and low nutritional status are major complications of severe chronic heart failure (CHF) and have been associated with poor prognosis. This study aimed to identify the nutritional status of outpatients with CHF based on their body composition, such as skeletal muscle index (SMI) and serum amino acid concentration. We compared the body composition data and results of blood samples, including the serum amino acid concentration, of patients with CHF and those of controls. No significant difference was found in total amino acid concentration between 105 patients with CHF (62% men, mean age: 71.0±11.0 years) and 106 controls (67% men, mean age: 69.1±9.4 years) (CHF: 3459.1±504.9nmol/ml, control: 3575.8±513.1nmol/ml; p=0.072). However, the concentration of essential amino acids (EAA) (CHF: 949.5±197.9nmol/ml, control: 1034.1±207.3nmol/ml; p=0.002) and branched-chain amino acid (BCAA) (CHF: 449.3±114.3nmol/ml, control: 503.9±118.2nmol/ml; p<0.001) and Fischer's ratio (CHF: 2.86±0.62, control: 3.17±0.50; p<0.001) were significantly lower in patients with CHF. Integrated analysis of these data revealed that SMI was negatively correlated with age [correlation coefficient (R), -0.313; 95% confidence interval (CI), -0.514 to -0.079; p=0.010], but positively correlated with EAA concentration (R, 0.256; 95% CI, 0.017-0.467; p=0.037), BCAA concentration (R, 0.362; 95% CI, 0.134-0.554; p=0.003), and Fischer's ratio (R, 0.573; 95% CI, 0.386-0.715; p<0.001). Serum concentrations of EAA and BCAA and Fischer's ratio were lower in patients with CHF than in controls, while SMI correlated with EAA, BCAA, and Fischer's ratio. Copyright © 2018 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuth, Joseph A.; Kimura, Yuki; Lucas, Christopher
It has been suggested that carbonaceous grains are efficiently destroyed in the interstellar medium and must either reform in situ at very low pressures and temperatures or in an alternative environment more conducive to grain growth. Graphite whiskers have been discovered associated with high-temperature phases in meteorites such as calcium aluminum inclusions and chondrules, and it has been suggested that the expulsion of such material from protostellar nebulae could significantly affect the optical properties of the average interstellar grain population. We have experimentally studied the potential for Fischer-Tropsch and Haber-Bosch type reactions to produce organic materials in protostellar systems frommore » the abundant H{sub 2}, CO, and N{sub 2} reacting on the surfaces of available silicate grains. When graphite grains are repeatedly exposed to H{sub 2}, CO, and N{sub 2} at 875 K abundant graphite whiskers are observed to form on or from the surfaces of the graphite grains. In a dense, turbulent nebula, such extended whiskers are very likely to be broken off, and fragments could be ejected either in polar jets or by photon pressure after transport to the outer reaches of the nebula.« less
The Formation of Graphite Whiskers in the Primitive Solar Nebula
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Kimura, Yuki; Lucas, Christopher; Ferguson, Frank; Johnson, Natasha M.
2010-01-01
It has been suggested that carbonaceous grains are efficiently destroyed in the interstellar medium and must either reform in situ at very low pressures and temperatures or in an alternative environment more conducive to grain growth. Graphite whiskers have been discovered associated with high-temperature phases in meteorites such as calcium aluminum inclusions and chondrules, and it has been suggested that the expulsion of such material from proto stellar nebulae could significantly affect the optical properties of the average interstellar grain population. We have experimentally studied the potential for Fischer-Tropsch and Haber-Bosch type reactions to produce organic materials in protostellar systems from the abundant H2, CO, and N2 reacting on the surfaces of available silicate grains. When graphite grains are repeatedly exposed to H2, CO, and N2 at 875 K abundant graphite whiskers are observed to form on or from the surfaces of the graphite grains. In a dense, turbulent nebula, such extended whiskers are very likely to be broken off, and fragments could be ejected either in polar jets or by photon pressure after transport to the outer reaches of the nebula.
Photoacoustic tomography guided diffuse optical tomography for small-animal model
NASA Astrophysics Data System (ADS)
Wang, Yihan; Gao, Feng; Wan, Wenbo; Zhang, Yan; Li, Jiao
2015-03-01
Diffuse optical tomography (DOT) is a biomedical imaging technology for noninvasive visualization of spatial variation about the optical properties of tissue, which can be applied to in vivo small-animal disease model. However, traditional DOT suffers low spatial resolution due to tissue scattering. To overcome this intrinsic shortcoming, multi-modal approaches that incorporate DOT with other imaging techniques have been intensively investigated, where a priori information provided by the other modalities is normally used to reasonably regularize the inverse problem of DOT. Nevertheless, these approaches usually consider the anatomical structure, which is different from the optical structure. Photoacoustic tomography (PAT) is an emerging imaging modality that is particularly useful for visualizing lightabsorbing structures embedded in soft tissue with higher spatial resolution compared with pure optical imaging. Thus, we present a PAT-guided DOT approach, to obtain the location a priori information of optical structure provided by PAT first, and then guide DOT to reconstruct the optical parameters quantitatively. The results of reconstruction of phantom experiments demonstrate that both quantification and spatial resolution of DOT could be highly improved by the regularization of feasible-region information provided by PAT.
Application of chiral critical clusters to assymetric synthesis
Ferrieri, Richard A.
2002-01-01
Disclosed is a composition, a method of making and a method of using critical clusters for asymmetric synthesis using substantially optically-pure chiral solvent molecules in a supercritical fluid. The solvent molecules are capable of forming a multipoint hydrogen bonded solvate as they encage at least one solute molecule. The encaged solute molecule is capable of reacting to form an optically active chiral center. In another aspect, there is disclosed a method of directing the position of bonding between a solute molecule and a ligand involving encaging the solute molecule and the ligand with polar solvent molecules in a supercritical fluid under conditions of temperature and pressure sufficient to change electric charge distribution in the solute molecule. In yet another aspect, disclosed is a method of making pharmaceutical compounds involving encaging a solute molecule, which is capable of forming a chiral center, and a ligand with polar solvent molecules in a supercritical fluid under conditions of temperature and pressure sufficient to change electric charge distribution of the solute molecule. The solute molecule and ligand are then reacted whereby the ligand bonds to the solute molecule forming a chiral center. Also disclosed is a method for racemic resolution using critical clusters involving encaging racemic mixtures of solute molecules with substantially optically-pure chiral solvent molecules in a supercritical fluid under conditions of temperature and pressure sufficient to form critical clusters. The solvent molecules are capable of multipoint hydrogen bonding with the solute molecules. The encaged solute molecules are then nonenzymatically reacted to enhance the optical purity of the solute molecules.
NASA Technical Reports Server (NTRS)
Delgado, Jesus; Chullen, Cinda; Mendoza, Edgar
2014-01-01
Advanced space life support systems require lightweight, low-power, durable sensors for monitoring critical gas components. A luminescence-based optical flow-through cell to monitor carbon dioxide, oxygen, and humidity has been developed and was demonstrated using bench top instrumentation under environmental conditions relevant to portable life support systems, including initially pure oxygen atmosphere, pressure range from 3.5 to 14.7 psi, temperature range from 50 F to 150 F, and humidity from dry to 100% RH and under liquid water saturation. This paper presents the first compact readout unit for these optical sensors, designed for the volume, power, and weight restrictions of a spacesuit portable Life support system and the analytical characterization of the optical sensors interrogated by the novel optoelectronic system. Trace gas contaminants in a space suit, originating from hardware and material off-gassing and crew member metabolism, are from many chemical families. The result is a gas mix much more complex than the pure oxygen fed into the spacesuit, which may interfere with gas sensor readings. The paper also presents an evaluation of optical sensor performance when exposed to the most significant trace gases reported to be found in spacesuits. The studies were conducted with the spacecraft maximum allowable concentrations for those trace gases and the calculated 8-hr. concentrations resulting from having no trace contaminant control system in the ventilation loop. Finally, a profile of temperature, pressure, humidity, and gas composition for a typical EVA mission has been defined, and the performance of sensors operated repeatedly under simulated EVA mission conditions has been studied.
Job Well Done aboard the Space Station
2017-09-02
Expedition 52 Commander Fyodor Yurchikhin of Roscosmos and Flight Engineers Peggy Whitson and Jack Fischer of NASA, bid farewell to the crew remaining on the orbital outpost, including NASA’s Randy Bresnik.
78 FR 10187 - Changes in Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-13
....com/ County (12-08- Fischer, 4430 South Adams index.php/colorado/ 0595P). Chairman, Adams County... Public Works http:// March 15, 2013 370498 Cornelius (12- Jeff Tarte, Department, 21445 www.bakeraecom...
2017-06-06
iss052e000508 (June 6, 2017) --- View of astronaut Jack Fischer working with the Neutron Crystallographic Studies of Human Acetylcholinesterase for the Design of Accelerated Reactivators (CASIS PCG 6) experiment in the Japanese Experiment Module
Quantum Optical Aspects of Topological Phases, Such as Berry’s Phase
1993-11-10
by Franson, and by Home, Shimosy and Zeilinger , in two recent Physical Review Leuers (62, 2205 and 2209 (1989)), in order to observe a purely quantal...interferometer. We also set up a two-photon interferometer, similar to the ones suggested by Franson, and by Home, Shimony and Zeilinger , in two
Crystal Growth of New Functional Materials for Electro-Optical Applications
2001-01-01
Ga2O3 single crystals have been grown by the floating zone technique as promising transparent conductive oxides. 1. INTRODUCTION The important role of...through the addition of dopants while preserving the transparency of the pure B- Ga2O3 makes of this material a substitutive candidate for transparent
Electronic and optical properties of hydrogenated silicon carbide nanosheets: A DFT study
NASA Astrophysics Data System (ADS)
Delavari, Najmeh; Jafari, Mahmoud
2018-07-01
Density-functional theory has been applied to investigate the effect of hydrogen adsorption on silicon carbide (SiC) nanosheets, considering six, different configurations for adsorption process. The chair-like configuration is found to be the most stable because of the adsorption of hydrogen atoms by silicon and carbon atoms on the opposite sides. The pure and hydrogenated SiC monolayers are also found to be sp2- and sp3-hybridized, respectively. The binding energy of the hydrogen atoms in the chair-like structure is calculated about -3.845 eV, implying the system to be much more stable than the same study based on graphene, though with nearly the same electronic properties, strongly proposing the SiC monolayer to be a promising material for next generation hydrogen storage. Optical properties presented in terms of the real and the imaginary parts of the dielectric function also demonstrate a decrease in the dielectric constant and the static refractive index due to hydrogen adsorption with the Plasmon frequency of the chair-like, hydrogenated monolayer, occurring at higher energies compared to that of the pure one.
Chen, Tingfang; Wang, Aiji; Kong, Lingrui; Li, Yongliang; Wang, Yinshu
2016-04-01
Pure and Cl- incorporated ZnO nanofilms were grown by the ultrasonic spray-assisted chemical vapor deposition (CVD) method. The properties of the nanofilms were investigated. The effects of growth temperature and Cl- concentration on the crystal structure, morphology, and optical properties of the nanofilms were studied. Temperature plays an important role in the growth mode and morphology of the pure nanofilms. Preferential growth along the c-axis occurs only at modulating temperature. Lower temperature suppresses the preferential growth, and higher temperature suppresses the growth of the nanofilms. The morphologies of the nanofilms change from lamellar and spherical structures into hexagonal platelets, then into separated nanoparticles with an increase in the temperature. Incorporating Cl- results in the lattice contracting gradually along with c-axis. Grains composing the nanofilms refine, and the optical gap broadens with increasing of Cl- concentration in growth precursor. Incorporating Cl- could reduce oxygen vacancies and passivate the non-irradiated centers, thus enhancing the UV emission and suppressing the visible emission of ZnO nanofilms.
Entropically Driven Self-Assembly of Colloidal Crystals on Templates in Space
NASA Technical Reports Server (NTRS)
Yodh, Arjun G.; Zimmerli, Gregory A.
2002-01-01
These experiments aim to create new colloidal crystalline materials, to study the assembly and thermodynamics of these materials, to measure the optical properties of these materials. and to fix the resulting structures so that they can be brought back and studied on earth. In microgravity, the elimination of particle sedimentation effects creates a purely "thermodynamic" environment for colloidal suspensions wherein particle size, volume fraction, and interparticle interactions are the primary determinants of the assembled structures. We will control the colloidal assembly process using attractive, entropic particle interactions brought about by the depletion effect. By using attractive interactions for colloidal assembly we create conditions for growth that resemble those associated with "conventional" microscopic systems such as atoms and molecules. This approach differs qualitatively from the more common "space-filling" mode of colloidal crystal growth that is driven purely by packing constraints. It is anticipated that at least some of the solidified structures will survive reentry to earth's gravitational field, and that their optical, magnetic, and electrical properties can then be studied in detail upon return.
Enantioselective behaviour of the herbicide fluazifop-butyl in vegetables and soil.
Qi, Yanli; Liu, Donghui; Liu, Chang; Liang, Yiran; Zhan, Jing; Zhou, Zhiqiang; Wang, Peng
2017-04-15
The enantioselective dissipation of the enantiomers of fluazifop-butyl in tomato, cucumber, pakchoi, rape and soil under field condition was investigated to elucidate the enantioselective environmental behaviours and chiral stability of the optical pure product. Fluazifop, the major chiral metabolite of fluazifop-butyl, was also detected. Fluazifop-butyl dissipated rapidly in the vegetables and soil with the half-lives of the enantiomers ranging from 1.62 to 2.84days. Enantioselective degradations of fluazifop-butyl were found. In tomato and cucumber, S-fluazifop-butyl dissipated faster than R-enantiomer, while R-fluazifop-butyl showed a faster degradation in pakchoi, rape and soil. Fluazifop was found almost immediately after the application of fluazifop-butyl and had relatively longer persistent time. When the optical pure product fluazifop-P-butyl was applied, rapid degradation to R-fluazifop was found with half-lives from 1.24 to 2.28days, and no S-fluazifop-butyl or S-fluazifop was detected showing the herbicidally active fluazifop-P-butyl and R-fluazifop were configurationally stable. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neu, Anna-Katrin; Pleissner, Daniel; Mehlmann, Kerstin; Schneider, Roland; Puerta-Quintero, Gloria Inés; Venus, Joachim
2016-07-01
In this study, mucilage, a residue from coffee production, was investigated as substrate in fermentative l(+)-lactic acid production. Mucilage was provided as liquid suspension consisting glucose, galactose, fructose, xylose and sucrose as free sugars (up to 60gL(-1)), and used directly as medium in Bacillus coagulans batch fermentations carried out at 2 and 50L scales. Using mucilage and 5gL(-1) yeast extract as additional nitrogen source, more than 40gL(-1) lactic acid was obtained. Productivity and yield were 4-5gL(-1)h(-1) and 0.70-0.77g lactic acid per g of free sugars, respectively, irrespective the scale. Similar yield was found when no yeast extract was supplied, the productivity, however, was 1.5gL(-1)h(-1). Down-stream processing of culture broth, including filtration, electrodialysis, ion exchange chromatography and distillation, resulted in a pure lactic acid formulation containing 930gL(-1)l(+)-lactic acid. Optical purity was 99.8%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Yilong; Xu, Yongkai; Zhang, Yun; Sun, Aijun; Hu, Yunfeng
2018-06-01
The two enantiomers of ethyl 3-hydroxybutyrate are important intermediates for the synthesis of a great variety of valuable chiral drugs. The preparation of chiral drug intermediates through kinetic resolution reactions catalyzed by esterases/lipases has been demonstrated to be an efficient and environmentally friendly method. We previously functionally characterized microbial esterase PHE21 and used PHE21 as a biocatalyst to generate optically pure ethyl (S)-3-hydroxybutyrate. Herein, we also functionally characterized one novel salt-tolerant microbial esterase WDEst17 from the genome of Dactylosporangium aurantiacum subsp. Hamdenensis NRRL 18085. Esterase WDEst17 was further developed as an efficient biocatalyst to generate (R)-3-hydroxybutyrate, an important chiral drug intermediate, with the enantiomeric excess being 99% and the conversion rate being 65.05%, respectively, after process optimization. Notably, the enantio-selectivity of esterase WDEst17 was opposite than that of esterase PHE21. The identification of esterases WDEst17 and PHE21 through genome mining of microorganisms provides useful biocatalysts for the preparation of valuable chiral drug intermediates. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ramazanov, M. A.; Imamaliyev, A. R.; Humbatov, Sh. A.; Agamaliev, Z. A.
2018-02-01
The effect of submicron ferroelectric BaTiO3 particles on the dielectric and electro-optical properties of the smectic-A liquid crystal (LC) with a high negative dielectric anisotropy is investigated. It is shown that the addition of BaTiO3 particles with a weight amount of 1% reduces insignificantly the transverse dielectric permittivity component ɛ ⊥ of, but significantly increases the longitudinal dielectric permittivity component ɛ // of the smectic-A LC. As a result, the anisotropy of the dielectric permittivity Δɛ = ɛ // - ɛ ⊥ of the smectic-A LC decreases. The addition of BaTiO3 particles shifts the dispersion ɛ ⊥ toward lower frequencies. Both components of the electrical conductivity of LC colloid + BaTiO3 are an order of magnitude higher than of the pure LC. The threshold voltage of the homeotropic-planar transition of the colloid is twice smaller, and its velocity is 6 times higher in comparison with the pure LC. A simple model explaining qualitatively all results obtained is presented.
Absorption Amelioration of Amorphous Si Film by Introducing Metal Silicide Nanoparticles.
Sun, Hui; Wu, Hsuan-Chung; Chen, Sheng-Chi; Ma Lee, Che-Wei; Wang, Xin
2017-12-01
Amorphous Si (a-Si) films with metal silicide are expected to enhance the absorption ability of pure a-Si films. In this present study, NiSi (20 nm)/Si (40 nm) and AlSi (20 nm)/Si (40 nm) bilayer thin films are deposited through radio frequency (RF) sputtering at room temperature. The influence of the film's composition and the annealing temperature on the film's optical absorption is investigated. The results show that all the NiSi/Si films and AlSi/Si films possess higher absorption ability compared to a pure a-Si film (60 nm). After annealing from 400 to 600 °C under vacuum for 1 h, the Si layer remains amorphous in both NiSi/Si films and AlSi/Si films, while the NiSi layer crystallizes into NiSi 2 phase, whereas Al atoms diffuse through the whole film during the annealing process. Consequently, with increasing the annealing temperature, the optical absorption of NiSi/Si films increases, while that of AlSi/Si films obviously degrades.
Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Zendo, Takeshi; Sakai, Kenji; Sonomoto, Kenji
2015-01-01
Production of optically pure lactic acid from lignocellulosic material for commercial purposes is hampered by several difficulties, including heterofermentation of pentose sugars and high energy consumption by mesophilic lactic acid bacteria. Here, we report a novel lactic acid bacterium, strain QU 50, that has the potential to produce optically pure l-lactic acid (≥99.2%) in a homofermentative manner from xylose under thermophilic conditions. Strain QU 50 was isolated from Egyptian fertile soil and identified as Enterococcus faecium QU 50 by analyzing its sugar fermentation pattern and 16S rRNA gene sequence. Enterococcus faecium QU 50 fermented xylose efficiently to produce lactic acid over wide pH (6.0-10.0) and temperature ranges (30-52°C), with a pH of 6.5 and temperature of 50°C being optimal. To our knowledge, this is the first report of homofermentative lactic acid production from xylose by a thermophilic lactic acid bacterium. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Liu, Shu-Juan; Chen, Yang; Xu, Wen-Juan; Zhao, Qiang; Huang, Wei
2012-04-13
Polymers containing transition-metal complexes exhibit excellent optical and electronic properties, which are different from those of polymers with a pure organic skeleton and combine the advantages of both polymers and metal complexes. Hence, research about this class of polymers has attracted more and more interest in recent years. Up to now, a number of novel polymers containing transition-metal complexes have been exploited, and significant advances in their optical and electronic applications have been achieved. In this article, we summarize some new research trends in the applications of this important class of optoelectronic polymers, such as chemo/biosensors, electronic memory devices and photovoltaic devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Cárdenas, M. C.; Rodríguez Gómez, J.
2011-11-01
PANIC, the PAnoramic Near Infrared Camera, is a new instrument for Calar Alto Observatory (CAHA) is a wide-field infraredimager for the CAHA 2.2 m and 3.5 m telescopes. The optics is a folded single optical train, pure lens optics, with a pixel scale of 0.45 arcsec/pixel (18 microns) at the 2.2 m telescope and 0.23 arcsec/pixel at the 3.5 m. A mosaic of four Hawaii-2RG detectorsprovides a field of view (FOV) of 0.5x0.5 degrees and 0.25x0.25 degrees, respectively. It will cover the photometric bandsfrom Z to K_s (0.8 to 2.5 microns) with a low thermal background due to cold stops. Here we present the current status of the project.
Limit on Excitation and Stabilization of Atoms in Intense Optical Laser Fields.
Zimmermann, H; Meise, S; Khujakulov, A; Magaña, A; Saenz, A; Eichmann, U
2018-03-23
Atomic excitation in strong optical laser fields has been found to take place even at intensities exceeding saturation. The concomitant acceleration of the atom in the focused laser field has been considered a strong link to, if not proof of, the existence of the so-called Kramers-Henneberger (KH) atom, a bound atomic system in an intense laser field. Recent findings have moved the importance of the KH atom from being purely of theoretical interest toward real world applications; for instance, in the context of laser filamentation. Considering this increasing importance, we explore the limits of strong-field excitation in optical fields, which are basically imposed by ionization through the spatial field envelope and the field propagation.
Roy, Nathalie; Roy, Gilles; Bissonnette, Luc R; Simard, Jean-Robert
2004-05-01
We measure with a gated intensified CCD camera the cross-polarized backscattered light from a linearly polarized laser beam penetrating a cloud made of spherical particles. In accordance with previously published results we observe a clear azimuthal pattern in the recorded images. We show that the pattern is symmetrical, that it originates from second-order scattering, and that higher-order scattering causes blurring that increases with optical depth. We also find that the contrast in the symmetrical features can be related to measurement of the optical depth. Moreover, when the blurring contributions are identified and subtracted, the resulting pattern provides a pure second-order scattering measurement that can be used for retrieval of droplet size.
NASA Astrophysics Data System (ADS)
Boukhenoufa, N.; Mahamdi, R.; Rechem, D.
2016-11-01
In this work, sol—gel dip-coating technique was used to elaborate ZnO pure and ZnO/Al films. The impact of Al-doped concentration on the structural, optical, surface morphological and electrical properties of the elaborated samples was investigated. It was found that better electrical and optical performances have been obtained for an Al concentration equal to 5%, where the ZnO thin films exhibit a resistivity value equal to 1.64104 Ω·cm. Moreover, highest transparency has been recorded for the same Al concentration value. The obtained results from this investigation make the developed thin film structure a potential candidate for high optoelectronic performance applications.
Fast production of Bose-Einstein condensates of metastable helium
NASA Astrophysics Data System (ADS)
Bouton, Q.; Chang, R.; Hoendervanger, A. L.; Nogrette, F.; Aspect, A.; Westbrook, C. I.; Clément, D.
2015-06-01
We report on the Bose-Einstein condensation of metastable 4He atoms using a hybrid approach, consisting of a magnetic quadrupole and an optical dipole trap. In our setup we cross the phase transition with 2 ×106 atoms, and we obtain pure condensates of 5 ×105 atoms in the optical trap. This approach to cooling 4He provides enhanced cycle stability, large optical access to the atoms and results in the production of a condensate every 6 s—a factor 2 faster than the state of the art. This speed-up will significantly reduce the data acquisition time needed for the measurement of many particle correlations, made possible by the ability of metastable helium atoms to be detected individually.
Ruggiero, Anthony J.
2005-05-03
An integrated optical capillary electrophoresis system for analyzing an analyte. A modulated optical pump beam impinges on an capillary containing the analyte/buffer solution which is separated by electrophoresis. The thermally-induced change in the index of refraction of light in said electrophoresis capillary is monitored using an integrated micro-interferometer. The interferometer includes a first interferometer arm intersecting the electrophoresis capillary proximate the excitation beam and a second, reference interferometer arm. Changes in index of refraction in the analyte measured by interrogating the interferometer state using white light interferometry and a phase-generated carrier demodulation technique. Background thermo-optical activity in the buffer solution is cancelled by splitting the pump beam and exciting pure buffer solution in a second section of capillary where it crosses the reference arm of the interferometer.
Faraday effect in hybrid magneto-plasmonic photonic crystals.
Caballero, B; García-Martín, A; Cuevas, J C
2015-08-24
We present a theoretical study of the Faraday effect in hybrid magneto-plasmonic crystals that consist of Au-Co-Au perforated membranes with a periodic array of sub-wavelength holes. We show that in these hybrid systems the interplay between the extraordinary optical transmission and the magneto-optical activity leads to a resonant enhancement of the Faraday rotation, as compared to purely ferromagnetic membranes. In particular, we determine the geometrical parameters for which this enhancement is optimized and show that the inclusion of a noble metal like Au dramatically increases the Faraday rotation over a broad bandwidth. Moreover, we show that the analysis of the Faraday rotation in these periodically perforated membranes provides a further insight into the origin of the extraordinary optical transmission.
UV-green iridescence predicts male quality during jumping spider contests.
Lim, Matthew L M; Li, Daiqin
2013-01-01
Animal colour signals used in intraspecies communications can generally be attributed to a composite effect of structural and pigmentary colours. Notably, the functional role of iridescent coloration that is 'purely' structural (i.e., absence of pigments) is poorly understood. Recent studies reveal that iridescent colorations can reliably indicate individual quality, but evidence of iridescence as a pure structural coloration indicative of male quality during contests and relating to an individual's resource-holding potential (RHP) is lacking. In age- and size-controlled pairwise male-male contests that escalate from visual displays of aggression to more costly physical fights, we demonstrate that the ultraviolet-green iridescence of Cosmophasis umbratica predicts individual persistence and relates to RHP. Contest initiating males exhibited significantly narrower carapace band separation (i.e., relative spectral positions of UV and green hues) than non-initiators. Asymmetries in carapace and abdomen brightness influenced overall contest duration and escalation. As losers retreated upon having reached their own persistence limits in contests that escalated to physical fights, losers with narrower carapace band separation were significantly more persistence. We propose that the carapace UV-green iridescence of C. umbratica predicts individual persistence and is indicative of a male's RHP. As the observed UV-green hues of C. umbratica are 'pure' optical products of a multilayer reflector system, we suggest that intrasexual variations in the optical properties of the scales' chitin-air-chitin microstructures are responsible for the observed differences in carapace band separations.
Posada, John A; Cardona, Carlos A; Gonzalez, Ramon
2012-02-01
Glycerol has become an ideal feedstock for producing fuels and chemicals. Here, five technological schemes for optically pure D: -lactic acid production from raw glycerol were designed, simulated, and economically assessed based on five fermentative scenarios using engineered Escherichia coli strains. Fermentative scenarios considered different qualities of glycerol (pure, 98 wt.%, and crude, 85 wt.%) with concentrations ranging from 20 to 60 g/l in the fermentation media, and two fermentation stages were also analyzed. Raw glycerol (60 wt.%) was considered as the feedstock feeding the production process in all cases; then a purification process of raw glycerol up to the required quality was required. Simulation processes were carried out using Aspen Plus, while economic assessments were performed using Aspen Icarus Process Evaluator. D: -Lactic acid recovery and purification processes were based on reactive extraction with tri-n-octylamine using dichloromethane as active extractant agent. The use of raw glycerol represents only between 2.4% and 7.8% of the total production costs. Also, the total production costs obtained of D: -lactic acid in all cases were lower than its sale price indicating that these processes are potentially profitable. Thus, the best configuration process requires the use of crude glycerol diluted at 40 g/l with total glycerol consumption and with D: -lactic acid recovering by reactive extraction. The lowest obtained total production cost was 1.015 US$/kg with a sale price/production cost ratio of 1.53.
NASA Astrophysics Data System (ADS)
Lafhaj, Z.; Filippov, L. O.; Filippova, I. V.
2017-07-01
The flotation separation of salt type calcium minerals is problematic, due to the similarities in their same active Ca2+ related site for interaction with anionic collectors and similar physicochemical characteristics such as solubility, zero-point charge, surface speciation and Ca-site density. The work was performed to achieve effective and selective separation of the calcium-minerals using pure minerals samples: orange calcite with Mg impurities, optic calcite with impurities level and an apatite. The pure samples surface was examined using techniques sensitive near-surface like infrared spectroscopy (FTIR) and chemical composition was obtained by ICPMS. The isoelectric point (IEP) and point of zero charge (PZC) in electrolyte were recorded using electrophoresis method at different ionic strengths of the solution. Mechanisms of charge development at the mineral-water interface are discussed. The time of contact as important parameter for the charge equilibrium was deduced from kinetics study and fixed to 30 minutes. The difference in the values obtained between IEP and PZSE can be explained by the presence of a specific adsorption of cations and anions on the surface. The effect of pure anionic collectors such as oleic and linoleic acid were studied. At low pH, both collectors lead to a good recovery for the calcites. The flotation recovery of optic calcite at pH 9 with sodium oleate is higher than with sodium linoleate. At alkaline pH, apatite showed a better recovery with sodium linoleate.
NASA Astrophysics Data System (ADS)
Li, Tiejun; Lou, Qihong; Wei, Yunrong; Huang, Feng; Dong, Jingxing; Liu, Jingru
2001-12-01
Surface ablation of cobalt cemented tungsten carbide hardmetal with pulsed UV laser has been in situ diagnosed by using the technique of laser-induced optical emission spectroscopy. The dependence of emission intensity of cobalt lines on number of laser shots was investigated at laser fluence of 2.5 J/cm 2. As a comparison, the reliance of emission intensity of cobalt lines as a function of laser pulse number by using pure cobalt as ablation sample was also studied at the same laser condition. It was found that for surface ablation of tungsten carbide hardmetal at laser fluence of 2.5 J/cm 2, the intensities of cobalt lines fell off dramatically in the first 300 consecutive laser shots and then slowed down to a low stable level with even more shots. For surface ablation of pure cobalt at the same laser condition, the intensities of cobalt lines remained constant more or less even after 500 laser shots and then reduced very slowly with even more shots. It was concluded that selective evaporation of cobalt at this laser fluence should be responsible for the dramatic fall-off of cobalt lines with laser shots accumulation for surface ablation of tungsten carbide hardmetal. In contrast, for surface ablation of pure cobalt, the slow reduction of cobalt lines with pulse number accumulation should be due to the formation of laser-induced crater effect.
Mobil process converts methanol to high-quality synthetic gasoline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, A.
1978-12-11
If production of gasoline from coal becomes commercially attractive in the United States, a process under development at the Mobil Research and Development Corp. may compete with better known coal liquefaction processes. Mobil process converts methanol to high-octane, unleaded gasoline; methanol can be produced commercially from coal. If gasoline is the desired product, the Mobil process offers strong technical and cost advantages over H-coal, Exxon donor solvent, solvent-refined coal, and Fischer--Tropsch processes. The cost analysis, contained in a report to the Dept. of Energy, concludes that the Mobil process produces more-expensive liquid products than any other liquefaction process except Fischer--Tropsch.more » But Mobil's process produces ready-to-use gasoline, while the others produce oils which require further expensive refining to yield gasoline. Disadvantages and advantages are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
KUTZMAN,R.S.
1984-02-01
The major objective of this study was to relate the results of a series of functional tests to the compositional and structural alterations in the rat lung induced by subchronic exposure to silica dust. Fischer-344 rats were exposed for 6 hours/day, 5 days/week for 6 months to either 0, 2, 10, or 20 mg SiO{sub 2}/m{sup 3}. The general appearance of the exposed rats was not different from that of the controls. Interestingly, female rats exposed to silica dust, at all tested concentrations, gained more weight than the controls. The lung weight and the lung-to-body weight ratio was greater inmore » the male rats exposed to the highest concentration of silica dust.« less
Morphological transformation during activation and reaction of an iron Fischer-Tropsch catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, N.B.; Kohler, S.; Harrington, M.
1995-12-31
The purpose of this project is to support the development of slurry-phase bubble column processes being studied at the La Porte Alternative Fuel Development Unit. This paper describes the aspects of Sandia`s recent work regarding the advancement and understanding of the iron catalyst used in the slurry phase process. A number of techniques were used to understand the chemical and physical effects of pretreatment and reaction on the attrition and carbon deposition characteristics of iron catalysts. Unless otherwise stated, the data discussed was derived form experiments carried out on the catalyst chosen for the summer 1994 Fischer-Tropsch run at LaPorte,more » UCI 1185-78-370, (an L 3950 type) that is 88% Fe{sub 2}O{sub 3}, 11% CuO, and 0.052%K{sub 2}O.« less
[The water content reference material of water saturated octanol].
Wang, Haifeng; Ma, Kang; Zhang, Wei; Li, Zhanyuan
2011-03-01
The national standards of biofuels specify the technique specification and analytical methods. A water content certified reference material based on the water saturated octanol was developed in order to satisfy the needs of the instrument calibration and the methods validation, assure the accuracy and consistency of results in water content measurements of biofuels. Three analytical methods based on different theories were employed to certify the water content of the reference material, including Karl Fischer coulometric titration, Karl Fischer volumetric titration and quantitative nuclear magnetic resonance. The consistency of coulometric and volumetric titration was achieved through the improvement of methods. The accuracy of the certified result was improved by the introduction of the new method of quantitative nuclear magnetic resonance. Finally, the certified value of reference material is 4.76% with an expanded uncertainty of 0.09%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotman, D.
After nearly a decade of work and $150 million in development costs. Exxon Research and Engineering (ER&E; Florham Park, NJ) says its natural gas conversion process based on Fischer-Tropsch technology is ready for full-scale commercialization. ER&E is looking to entice one of Exxon`s other business units into building a plant based on the process. The Exxon technology makes refinery or petrochemical feedstocks from natural gas in an integrated three-step process, including fluid-bed reactor to make synthesis gas and a hydrocarbon synthesis step using a proprietary Fischer-Tropsch catalyst. Exxon has successfully demonstrated the process at a pilot plant in Baton Rouge,more » LA but says no commercialization decision has been made. ER&E estimates that to commercialize the technology economically will require a large gas conversion plant-with a price tag of about $2 billion.« less
The Alzheimer Pandemic: Is Paracetamol to Blame?
Jones, Günther Robert Norman
2013-01-01
Historical Background: The clinical recognition of a form of dementia closely resembling Alzheimer's disease dates from around 1800. The role of analgesics derived from coal-tar in the spread of the pandemic is traced in terms of the introduction of phenacetin (PN) in 1887; its nephrotoxicity; the observation of lesions characteristic of the disease by Fischer and Alzheimer; the discovery of paracetamol (PA) as the major metabolite of PN; the linking of kidney injury and dementia with high PN usage; and the failure of PN replacement by PA to halt and reverse the exponential, inexorable rise in the incidence of Alzheimer-type dementia. Fischer observed his first case before Alzheimer; it is proposed to rename the syndrome Fischer-Alzheimer disease (F-AD). Disease development: PA-metabolising enzymes are localised in the synaptic areas of the frontal cortex and hippocampus, where F-AD lesions arise. The initiating chemical lesions in liver poisoning comprise covalent binding of a highly reactive product of PA metabolism to proteins; similar events are believed to occur in brain, where alterations in the antigenic profiles of cerebral proteins activate the microglia. β-Amyloid forms, and, like PA itself, induces nitric oxide synthase. Peroxynitrite modifies cerebral proteins by nitrating tyrosine residues, further challenging the microglia and exacerbating the amyloid cascade. Spontaneous reinnervation, N-acetyl cysteine administration and tyrosine supplementation may attenuate the early stages of F-AD development. Conclusion: F-AD is primarily a man-made condition with PA as its principal risk factor. PMID:24350947
Aversive properties of negative incentive shifts in Fischer 344 and Lewis rats
Brewer, Adam; Johnson, Patrick; Stein, Jeff; Schlund, Michael; Williams, Dean C.
2018-01-01
Research on incentive contrast highlights that reward value is not absolute but rather is based upon comparisons we make to rewards we have received and expect to receive. Both human and nonhuman studies on incentive contrast show that shifting from a larger more-valued reward to a smaller less-valued reward is associated with long periods of nonresponding—a negative contrast effect. In this investigation, we used two different genetic rat strains, Fischer 344 and Lewis rats that putatively differ in their sensitivity to aversive stimulation, to assess the aversive properties of large-to-small reward shifts (negative incentive shifts). Additionally, we examined the extent to which increasing cost (fixed-ratio requirements) modulates negative contrast effects. In the presence of a cue that signaled the upcoming reward magnitude, lever pressing was reinforced with one of two different magnitudes of food (large or small). This design created two contrast shifts (small-to-large, large-to-small) and two shifts used as control conditions (small-to-small, large-to-large). Results showed a significant interaction between rat strain and cost requirements only during the negative incentive shift with the emotionally reactive Fischer 344 rats exhibiting significantly longer response latencies with increasing cost, highlighting greater negative contrast. These findings are more consistent with emotionality accounts of negative contrast and results of neurophysiological research that suggests shifting from a large to a small reward is aversive. Findings also highlight how subjective reward value and motivation is a product of gene-environment interactions. PMID:27864048
Rosenwasser, Alan M; Clark, James W; Fixaris, Michael C; Belanger, Gabriel V; Foster, James A
2010-05-01
Several lines of evidence implicate reciprocal interactions between excessive alcohol (ethanol) intake and dysregulation of circadian biological rhythms. Thus, chronic alcohol intake leads to widespread circadian disruption in both humans and experimental animals, while in turn, chronobiological disruption has been hypothesized to promote or sustain excessive alcohol intake. Nevertheless, the effects of circadian disruption on voluntary ethanol intake have not been investigated extensively, and prior studies have reported both increased and decreased ethanol intake in rats maintained under "shift-lag" lighting regimens mimicking those experienced by shift workers and transmeridian travelers. In the present study, male and female inbred Fischer and Lewis rats were housed in running wheel cages with continuous free-choice access to both water and 10% (vol/vol) ethanol solution and exposed to repeated 6-h phase advances of the daily light-dark (LD) cycle, whereas controls were kept under standard LD 12:12 conditions. Shift-lag lighting reduced overall ethanol and water intake, and reduced ethanol preference in Fischer rats. Although contrary to the hypothesis that circadian disruption would increase voluntary ethanol intake, these results are consistent with our previous report of reduced ethanol intake in selectively bred high-alcohol-drinking (HAD1) rats housed under a similar lighting regimen. We conclude that chronic circadian disruption is a form of chronobiological stressor that, like other stressors, can either increase or decrease ethanol intake, depending on a variety of poorly understood variables. 2010 Elsevier Inc. All rights reserved.
Jiang, Ting; Zhang, Chen; He, Qin; Zheng, Zhaojuan; Ouyang, Jia
2018-02-01
The efficient utilization of xylose is regarded as a technical barrier to the commercial production of bulk chemicals from biomass. Due to the desirable mechanical properties of polylactic acid (PLA) depending on the isomeric composition of lactate, biotechnological production of lactate with high optical pure has been increasingly focused in recent years. The main objective of this work was to construct an engineered Escherichia coli for the optically pure L-lactate production from xylose. Six chromosomal deletions (pflB, ldhA, ackA, pta, frdA, adhE) and a chromosomal integration of L-lactate dehydrogenase-encoding gene (ldhL) from Bacillus coagulans was involved in construction of E. coli KSJ316. The recombinant strain could produce L-lactate from xylose resulting in a yield of 0.91 g/g xylose. The chemical purity of L-lactate was 95.52%, and the optical purity was greater than 99%. Moreover, three strategies, including overexpression of L-lactate dehydrogenase, intensification of xylose catabolism, and addition of additives to medium, were designed to enhance the production. The results showed that they could increase the concentration of L-lactate by 32.90, 20.13, and 233.88% relative to the control, respectively. This was the first report that adding formate not only could increase the xylose utilization but also led to the fewer by-product levels.
Optical Reflectance Measurements for Commonly Used Reflectors
NASA Astrophysics Data System (ADS)
Janecek, Martin; Moses, William W.
2008-08-01
When simulating light collection in scintillators, modeling the angular distribution of optical light reflectance from surfaces is very important. Since light reflectance is poorly understood, either purely specular or purely diffuse reflectance is generally assumed. In this paper we measure the optical reflectance distribution for eleven commonly used reflectors. A 440 nm, output power stabilized, un-polarized laser is shone onto a reflector at a fixed angle of incidence. The reflected light's angular distribution is measured by an array of silicon photodiodes. The photodiodes are movable to cover 2pi of solid angle. The light-induced current is, through a multiplexer, read out with a digital multimeter. A LabVIEW program controls the motion of the laser and the photodiode array, the multiplexer, and the data collection. The laser can be positioned at any angle with a position accuracy of 10 arc minutes. Each photodiode subtends 6.3deg, and the photodiode array can be positioned at any angle with up to 10 arc minute angular resolution. The dynamic range for the current measurements is 10 5:1. The measured light reflectance distribution was measured to be specular for several ESR films as well as for aluminum foil, mostly diffuse for polytetrafluoroethylene (PTFE) tape and titanium dioxide paint, and neither specular nor diffuse for Lumirrorreg, Melinexreg and Tyvekreg. Instead, a more complicated light distribution was measured for these three materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qing, E-mail: yangqing@cqu.edu.cn; Yu, Fei; Sima, Wenxia
Transformer oil-based nanofluids (NFs) with 0.03 g/L Fe{sub 3}O{sub 4} nanoparticle content exhibit 11.2% higher positive impulse breakdown voltage levels than pure transformer oils. To study the effects of the Fe{sub 3}O{sub 4} nanoparticles on the space charge in transformer oil and to explain why the nano-modified transformer oil exhibits improved impulse breakdown voltage characteristics, the traditional Kerr electro-optic field mapping technique is improved by increasing the length of the parallel-plate electrodes and by using a photodetector array as a high light sensitivity device. The space charge distributions of pure transformer oil and of NFs containing Fe{sub 3}O{sub 4} nanoparticlesmore » can be measured using the improved Kerr electro-optic field mapping technique. Test results indicate a significant reduction in space charge density in the transformer oil-based NFs with the Fe{sub 3}O{sub 4} nanoparticles. The fast electrons are captured by the nanoparticles and are converted into slow-charged particles in the NFs, which then reduce the space charge density and result in a more uniform electric field distribution. Streamer propagation in the NFs is also obstructed, and the breakdown strengths of the NFs under impulse voltage conditions are also improved.« less
Li, Qingxin; Hudari, Mohammad Sufian Bin; Wu, Jin Chuan
2016-01-01
Optically pure D-lactic acid was produced from glucose, xylose, or starch by the combined use of Weissella sp. S26 and Bacillus sp. ADS3, two native bacterial strains isolated from Singapore environment. Weissella sp. S26 was used to ferment various sugars to lactic acid rich in D-isomer followed by sterilization of the broth and inoculation of Bacillus sp. ADS3 cells to selectively degrade acetic acid (if any) and L-lactic acid. In a simultaneous saccharification and fermentation of starch by Weissella sp. S26 in 1 L of modified MRS medium containing 50 g/L starch at 30 °C, lactic acid reached 24.2 g/L (23.6 g/L of D-isomers and 0.6 g/L of L-isomers), and acetic acid was 11.8 g/L at 37 h. The fermentation broth was sterilized at 100 °C for 20 min and cooled down to 30 °C followed by inoculation of Bacillus sp. ADS3 (10 %, v/v), and the mixture was kept at 30 °C for 115 h. Acetic acid was completely removed, and L-lactic acid was largely removed giving an optical purity of D-lactic acid as high as 99.5 %.
Babar, Shaista; Mane, Anil U.; Yanguas-Gil, Angel; ...
2016-06-17
Here, a systematic alteration in the optical properties of W:Al 2O 3 nanocomposite films is demonstrated by precisely varying the W cycle percentage (W%) from 0 to 100% in Al 2O 3 during atomic layer deposition. The direct and indirect band energies of the nanocomposite materials decrease from 5.2 to 4.2 eV and from 3.3 to 1.8 eV, respectively, by increasing the W% from 10 to 40. X-ray absorption spectroscopy reveals that, for W% < 50, W is present in both metallic and suboxide states, whereas, for W% ≥ 50, only metallic W is seen. This transition from dielectric tomore » metallic character at W% ~ 50 is accompanied by an increase in the electrical and thermal conductivity and the disappearance of a clear band gap in the absorption spectrum. The density of the films increases monotonically from 3.1 g/cm 3 for pure Al 2O 3 to 17.1 g/cm 3 for pure W, whereas the surface roughness is greatest for the W% = 50 films. The W:Al 2O 3 nanocomposite films are thermally stable and show little change in optical properties upon annealing in air at 500 °C. These W:Al 2O 3 nanocomposite films show promise as selective solar absorption coatings for concentrated solar power applications.« less
Baines, K.H.; Delitsky, M.L.; Momary, T.W.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.
2009-01-01
Thunderstorm activity on Saturn is associated with optically detectable clouds that are atypically dark throughout the near-infrared. As observed by Cassini/VIMS, these clouds are ~20% less reflective than typical neighboring clouds throughout the spectral range from 0.8 ??m to at least 4.1 ??m. We propose that active thunderstorms originating in the 10-20 bar water-condensation region vertically transport dark materials at depth to the ~1 bar level where they can be observed. These materials in part may be produced by chemical processes associated with lightning, likely within the water clouds near the ~10 bar freezing level of water, as detected by the electrostatic discharge of lightning flashes observed by Cassini/RPWS (e.g., Fischer et al. 2008, Space Sci. Rev., 137, 271-285). We review lightning-induced pyrolytic chemistry involving a variety of Saturnian constituents, including hydrogen, methane, ammonia, hydrogen sulfide, phosphine, and water. We find that the lack of absorption in the 1-2 ??m spectral region by lightning-generated sulfuric and phosphorous condensates renders these constituents as minor players in determining the color of the dark storm clouds. Relatively small particulates of elemental carbon, formed by lightning-induced dissociation of methane and subsequently upwelled from depth - perhaps embedded within and on the surface of spectrally bright condensates such as ammonium hydrosulfide or ammonia - may be a dominant optical material within the dark thunderstorm-related clouds of Saturn. ?? 2009 Elsevier Ltd. All rights reserved.
Bigras, Gilbert
2012-06-01
Color deconvolution relies on determination of unitary optical density vectors (OD(3D)) derived from pure constituent stains initially defined as intensity vectors in RGB space. OD(3D) can be defined in polar coordinates (phi, theta, radius); always being equal to one, radius can be ignored. Easier handling of unitary optical density 2D vectors (OD(2D)) is shown. OD(2D) pure stains used in anatomical pathology were assessed as centroid values (phi, theta) with a measure of variance: inertia based on arc lengths between centroid value and sampled points. These variables were plotted on a stereographic projection plane. In order to assess pure stains OD(2D), different methods of sampling RGB pixels were tested and compared: (2) direct sampling of nuclei from preparations using (a) composite H&E and (b) hematoxylin only and (2) for any pure stain RGB image, different associated 8-bit masks (saturation, brightness and RGB average) were used for sampling and compared. Behaviors of phi, theta and inertia were obtained by moving threshold in 8-bit mask histograms. Phi and theta stability were tested against variable light intensity during image acquisition and by using 2 different image acquisition systems. The more saturated RGB pixels are, the more stable phi, theta and inertia values are obtained. Different commercial hematoxylins have distinct OD(2D) characteristics. UltraView DAB stain shows high inertia and is angularly closer to usual counterstains than ultraView Red stain, which also has a lower inertia. Superior accuracy is expected from the latter stain. Phi and theta OD(2D) values are sensitive to light intensity variation, to the used imaging system and to the used objectives. An ImageJ plugin was designed to plot and interactively modify OD(2D) values with instant update of color deconvolution allowing heuristic segmentation. Utilization of polar OD(2D) eases statistical characterization of OD(3D) vectors: conditions of optimal sampling were demonstrated and various factors influencing OD(2D) stability were explored. Stereographic projection plane allows intuitive visualization of OD(3D) vectors as well as heuristic vectorial modification. All findings are not restricted to anatomical pathology but can be applied to bright field microscopy and subtractive color applications in general.
A light-induced microwave oscillator
NASA Technical Reports Server (NTRS)
Yao, X. S.; Maleki, L.
1995-01-01
We describe a novel oscillator that converts continuous light energy into sta ble and spectrally pure microwave signals. This light-induced microwave oscillator (LIMO) consists of a pump laser and a feedback circuit, including an intensity modulator, an optical fiber delay line, a photodetector, an amplifier, and a filter. We develop a quasilinear theory and obtain expressions for the threshold condition, the amplitude, the frequency, the line width, and the spectral power density of the oscillation. We also present experimental data to compare with the theoretical results. Our findings indicate that the LIMO can generate ultrastable, spectrally pure microwave reference signals up to 75 GHz with a phase noise lower than -140 dBc/Hz at 10 kHz.
Arroyo, Yolanda; Sanz-Tejedor, M Ascensión; Parra, Alejandro; García Ruano, José Luis
2012-04-23
Asymmetric nucleophilic monofluoroalkylation of a broad range of aldehydes with an α-fluoro-γ-sulfinylbenzyl carbanion takes place with complete control of the facial selectivity at the carbanion and good to high anti-diastereoselectivity to give easily separable mixtures of two optically pure 1,2-fluorohydrin derivatives (up to 24:1 anti/syn). Separation and removal of the p-tolylsulfinyl group with tBuLi provides enantiomerically pure anti-1,2-disubstituted-1,2-fluorohydrins, whereas α-fluorobenzylketones can be obtained by desulfinylation of the mixture followed by pyridinium chlorochromate oxidation (one-pot process). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Xu, Guan; Johnson, Laura A.; Hu, Jack; Dillman, Jonathan R.; Higgins, Peter D. R.; Wang, Xueding
2015-03-01
Crohn's disease (CD) is an autoimmune disease affecting 700,000 people in the United States. This condition may cause obstructing intestinal narrowings (strictures) due to inflammation, fibrosis (deposition of collagen), or a combination of both. Utilizing the unique strong optical absorption of hemoglobin at 532 nm and collagen at 1370 nm, this study investigated the feasibility of non-invasively characterizing intestinal strictures using photoacoustic imaging (PAI). Three normal controls, ten pure inflammation and 9 inflammation plus fibrosis rat bowel wall samples were imaged. Statistical analysis of the PA measurements has shown the capability of discriminating the purely inflammatory from mixed inflammatory and fibrotic strictures.
Optical and magneto-optical properties of Co-doped CeO{sub 2−δ} films in the 0.5 to 4 eV range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veis, M., E-mail: veis@karlov.mff.cuni.cz; Kucera, M.; Zahradnik, M.
2014-05-07
Magnetically doped Ce{sub 1−x}Co{sub x}O{sub 2−δ} (nominal x = 0.05 and 0.10) films were systematically studied by spectroscopic ellipsometry and magneto-optical spectroscopy. The samples were prepared by pulsed laser deposition on MgO(100) substrates and grew as textured polycrystalline films with thickness between 200 and 750 nm. They exhibited room temperature ferromagnetism and an out-of-plane easy axis attributed to magnetoelastic effects from the in-plane compressive strain. The dispersion of dielectric function of Ce{sub 1−x}Co{sub x}O{sub 2−δ} films was parametrized by the sum of Tauc-Lorentz and damped Lorentz oscillators and adjusted numerically. Deduced optical band gaps were similar to those of pure CeO{sub 2}, butmore » the Co doping increased the optical absorption. The magneto-optical spectroscopy was carried out in both Faraday and Kerr configurations in the photon energy range from 0.5 to 4 eV, showing a strong dependence of the magneto-optical effect on the Co content near the optical band edge.« less