Poladian, L; Straton, M; Docherty, A; Argyros, A
2011-01-17
We investigate the properties of optical fibres made from chiral materials, in which a contrast in optical activity forms the waveguide, rather than a contrast in the refractive index; we refer to such structures as pure chiral fibres. We present a mathematical formulation for solving the modes of circularly symmetric examples of such fibres and examine the guidance and polarisation properties of pure chiral step-index, Bragg and photonic crystal fibre designs. Their behaviour is shown to differ for left- and right-hand circular polarisation, allowing circular polarisations to be isolated and/or guided by different mechanisms, as well as differing from equivalent non-chiral fibres. The strength of optical activity required in each case is quantified.
NASA Astrophysics Data System (ADS)
Ganesh, V.; Salem, G. F.; Yahia, I. S.; Yakuphanoglu, F.
2018-03-01
Different concentrations of copper-doped zinc oxide thin films were coated on a glass substrate by sol-gel/spin-coating technique. The structural properties of pure and Cu-doped ZnO films were characterized by different techniques, i.e., atomic force microscopy (AFM), photoluminescence and UV-Vis-NIR spectroscopy. The AFM study revealed that pure and doped ZnO films are formed as nano-fibers with a granular structure. The photoluminescence spectra of these films showed a strong ultraviolet emission peak centered at 392 nm and a strong blue emission peak cantered at 450 nm. The optical band gap of the pure and copper-doped ZnO thin films calculated from optical transmission spectra (3.29-3.23 eV) were found to be increasing with increasing copper doping concentration. The refractive index dispersion curve of pure and Cu-doped ZnO film obeyed the single-oscillator model. The optical dispersion parameters such as E o , E d , and n_{∞}2 were calculated. Further, the nonlinear refractive index and nonlinear optical susceptibility were also calculated and interpreted.
Optically Clear and Resilient Free-Form µ-Optics 3D-Printed via Ultrafast Laser Lithography.
Jonušauskas, Linas; Gailevičius, Darius; Mikoliūnaitė, Lina; Sakalauskas, Danas; Šakirzanovas, Simas; Juodkazis, Saulius; Malinauskas, Mangirdas
2017-01-02
We introduce optically clear and resilient free-form micro-optical components of pure (non-photosensitized) organic-inorganic SZ2080 material made by femtosecond 3D laser lithography (3DLL). This is advantageous for rapid printing of 3D micro-/nano-optics, including their integration directly onto optical fibers. A systematic study of the fabrication peculiarities and quality of resultant structures is performed. Comparison of microlens resiliency to continuous wave (CW) and femtosecond pulsed exposure is determined. Experimental results prove that pure SZ2080 is ∼20 fold more resistant to high irradiance as compared with standard lithographic material (SU8) and can sustain up to 1.91 GW/cm² intensity. 3DLL is a promising manufacturing approach for high-intensity micro-optics for emerging fields in astro-photonics and atto-second pulse generation. Additionally, pyrolysis is employed to homogeneously shrink structures up to 40% by removing organic SZ2080 constituents. This opens a promising route towards downscaling photonic lattices and the creation of mechanically robust glass-ceramic microstructures.
Optically Clear and Resilient Free-Form μ-Optics 3D-Printed via Ultrafast Laser Lithography
Jonušauskas, Linas; Gailevičius, Darius; Mikoliūnaitė, Lina; Sakalauskas, Danas; Šakirzanovas, Simas; Juodkazis, Saulius; Malinauskas, Mangirdas
2017-01-01
We introduce optically clear and resilient free-form micro-optical components of pure (non-photosensitized) organic-inorganic SZ2080 material made by femtosecond 3D laser lithography (3DLL). This is advantageous for rapid printing of 3D micro-/nano-optics, including their integration directly onto optical fibers. A systematic study of the fabrication peculiarities and quality of resultant structures is performed. Comparison of microlens resiliency to continuous wave (CW) and femtosecond pulsed exposure is determined. Experimental results prove that pure SZ2080 is ∼20 fold more resistant to high irradiance as compared with standard lithographic material (SU8) and can sustain up to 1.91 GW/cm2 intensity. 3DLL is a promising manufacturing approach for high-intensity micro-optics for emerging fields in astro-photonics and atto-second pulse generation. Additionally, pyrolysis is employed to homogeneously shrink structures up to 40% by removing organic SZ2080 constituents. This opens a promising route towards downscaling photonic lattices and the creation of mechanically robust glass-ceramic microstructures. PMID:28772389
Optically resilient 3D micro-optics on the tips of optical fibers
NASA Astrophysics Data System (ADS)
Jonušauskas, Linas
2017-05-01
In this paper we present a study aimed at investigating an optical resiliency of polymers that could be applied in 3D femtosecond laser lithography. These include popular in lithography SU8 and OrmoClear as well as hybrid organic-inorganic zirconium containing SZ2080. We show that latter material in its pure (non-photosensitized) form has the best optical resiliency out of all tested materials. Furthermore, its 3D structurability is investigated. Despite threshold-like quality degradation outside fabrication window, we show that this material is suitable for creating complex 3D structures on the tips of optical fibers. Overall it is demonstrated, that unique capability of 3DLL to structure pure materials can lead to very compact functional fiber-based devices that could withstand high (GW/cm2) light intensities.
Optical and structural characterization of Ge clusters embedded in ZrO2
NASA Astrophysics Data System (ADS)
Agocs, E.; Zolnai, Z.; Rossall, A. K.; van den Berg, J. A.; Fodor, B.; Lehninger, D.; Khomenkova, L.; Ponomaryov, S.; Gudymenko, O.; Yukhymchuk, V.; Kalas, B.; Heitmann, J.; Petrik, P.
2017-11-01
The change of optical and structural properties of Ge nanoclusters in ZrO2 matrix have been investigated by spectroscopic ellipsometry versus annealing temperatures. Radio-frequency top-down magnetron sputtering approach was used to produce the samples of different types, i.e. single-layers of pure Ge, pure ZrO2 and Ge-rich-ZrO2 as well as multi-layers stacked of 40 periods of 5-nm-Ge-rich-ZrO2 layers alternated by 5-nm-ZrO2 ones. Germanium nanoclusters in ZrO2 host were formed by rapid-thermal annealing at 600-800 °C during 30 s in nitrogen atmosphere. Reference optical properties for pure ZrO2 and pure Ge have been extracted using single-layer samples. As-deposited multi-layer structures can be perfectly modeled using the effective medium theory. However, annealed multi-layers demonstrated a significant diffusion of elements that was confirmed by medium energy ion scattering measurements. This fact prevents fitting of such annealed structure either by homogeneous or by periodic multi-layer models.
Investigation on the Enhanced Oxidation of Ferritic/Martensitic Steel P92 in Pure Steam
Yuan, Juntao; Wu, Ximao; Wang, Wen; Zhu, Shenglong; Wang, Fuhui
2014-01-01
Oxidation of ferritic/martensitic steel P92 was investigated in pure oxygen and in pure steam at 600–800 °C by thermogravimetric analysis (TGA), optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The results showed that the oxidation of P92 was significantly enhanced and multilayer scale with an outer iron oxides layer formed in pure steam. At 700 °C, the gas switch markedly influenced the scaling kinetics and scale microstructure. It was supposed that the higher affinity of iron to steam would be attributed to the enhanced oxidation of P92 in pure steam, and the much easier transport of hydroxyl would account for the significant difference induced by gas switch. PMID:28788592
Application of chiral critical clusters to assymetric synthesis
Ferrieri, Richard A.
2002-01-01
Disclosed is a composition, a method of making and a method of using critical clusters for asymmetric synthesis using substantially optically-pure chiral solvent molecules in a supercritical fluid. The solvent molecules are capable of forming a multipoint hydrogen bonded solvate as they encage at least one solute molecule. The encaged solute molecule is capable of reacting to form an optically active chiral center. In another aspect, there is disclosed a method of directing the position of bonding between a solute molecule and a ligand involving encaging the solute molecule and the ligand with polar solvent molecules in a supercritical fluid under conditions of temperature and pressure sufficient to change electric charge distribution in the solute molecule. In yet another aspect, disclosed is a method of making pharmaceutical compounds involving encaging a solute molecule, which is capable of forming a chiral center, and a ligand with polar solvent molecules in a supercritical fluid under conditions of temperature and pressure sufficient to change electric charge distribution of the solute molecule. The solute molecule and ligand are then reacted whereby the ligand bonds to the solute molecule forming a chiral center. Also disclosed is a method for racemic resolution using critical clusters involving encaging racemic mixtures of solute molecules with substantially optically-pure chiral solvent molecules in a supercritical fluid under conditions of temperature and pressure sufficient to form critical clusters. The solvent molecules are capable of multipoint hydrogen bonding with the solute molecules. The encaged solute molecules are then nonenzymatically reacted to enhance the optical purity of the solute molecules.
Vanadium impurity effects on optical properties of Ti3N2 mono-layer: An ab-initio study
NASA Astrophysics Data System (ADS)
Babaeipour, Manuchehr; Eslam, Farzaneh Ghafari; Boochani, Arash; Nezafat, Negin Beryani
2018-06-01
The present work is investigated the effect of vanadium impurity on electronic and optical properties of Ti3N2 monolayer by using density function theory (DFT) implemented in Wien2k code. In order to study optical properties in two polarization directions of photons, namely E||x and E||z, dielectric function, absorption coefficient, optical conductivity, refraction index, extinction index, reflectivity, and energy loss function of Ti3N2 and Ti3N2-V monolayer have been evaluated within GGA (PBE) approximation. Although, Ti3N2 monolayer is a good infrared reflector and can be used as an infrared mirror, introducing V atom in the infrared area will decrease optical conductivity because optical conductivity of a pure form of a material is higher than its doped form.
Martínez-Gómez, Ana Isabel; Martínez-Rodríguez, Sergio; Clemente-Jiménez, Josefa María; Pozo-Dengra, Joaquín; Rodríguez-Vico, Felipe; Las Heras-Vázquez, Francisco Javier
2007-01-01
Two recombinant reaction systems for the production of optically pure d-amino acids from different d,l-5-monosubstituted hydantoins were constructed. Each system contained three enzymes, two of which were d-hydantoinase and d-carbamoylase from Agrobacterium tumefaciens BQL9. The third enzyme was hydantoin racemase 1 for the first system and hydantoin racemase 2 for the second system, both from A. tumefaciens C58. Each system was formed by using a recombinant Escherichia coli strain with one plasmid harboring three genes coexpressed with one promoter in a polycistronic structure. The d-carbamoylase gene was cloned closest to the promoter in order to obtain the highest level of synthesis of the enzyme, thus avoiding intermediate accumulation, which decreases the reaction rate. Both systems were able to produce 100% conversion and 100% optically pure d-methionine, d-leucine, d-norleucine, d-norvaline, d-aminobutyric acid, d-valine, d-phenylalanine, d-tyrosine, and d-tryptophan from the corresponding hydantoin racemic mixture. For the production of almost all d-amino acids studied in this work, system 1 hydrolyzed the 5-monosubstituted hydantoins faster than system 2. PMID:17220246
Effect of chemical structure on film-forming properties of seed oils
USDA-ARS?s Scientific Manuscript database
The film thickness of seven seed oils and two petroleum-based oils of varying chemical structures, was investigated by the method of optical interferometry under pure rolling conditions, and various combinations of entrainment speed (u), load, and temperature. The measured film thickness (h measured...
Hybrid silicon–carbon nanostructures for broadband optical absorption
Yang, Wen -Hua; Lu, Wen -Cai; Ho, K. M.; ...
2017-01-25
Proper design of nanomaterials for broadband light absorption is a key factor for improving the conversion efficiency of solar cells. Here we present a hybrid design of silicon–carbon nanostructures with silicon clusters coated by carbon cages, i.e., Si m@C 2n for potential solar cell application. The optical properties of these hybrid nanostructures were calculated based on time dependent density function theory (TDDFT). The results show that the optical spectra of Si m@C 2n are very different from those of pure Si m and C 2n clusters. While the absorption spectra of pure carbon cages and Si m clusters exhibit peaksmore » in the UV region, those of the Si m@C 2n nanostructures exhibit a significant red shift. Superposition of the optical spectra of various Si m@C 2n nanostructures forms a broad-band absorption, which extends to the visible light and infrared regions. As a result, the broadband adsorption of the assembled Si m@C 2n nanoclusters may provide a new approach for the design of high efficiency solar cell nanomaterials.« less
All optical detection of picosecond spin-wave dynamics in 2D annular antidot lattice
NASA Astrophysics Data System (ADS)
Porwal, Nikita; Mondal, Sucheta; Choudhury, Samiran; De, Anulekha; Sinha, Jaivardhan; Barman, Anjan; Datta, Prasanta Kumar
2018-02-01
Novel magnetic structures with precisely controlled dimensions and shapes at the nanoscale have potential applications in spin logic, spintronics and other spin-based communication devices. We report the fabrication of 2D bi-structure magnonic crystal in the form of embedded nanodots in a periodic Ni80Fe20 antidot lattice structure (annular antidot) by focused ion-beam lithography. The spin-wave spectra of the annular antidot sample, studied for the first time by a time-resolved magneto-optic Kerr effect microscopy show a remarkable variation with bias field, which is important for the above device applications. The optically induced spin-wave spectra show multiple modes in the frequency range 14.7 GHz-3.5 GHz due to collective interactions between the dots and antidots as well as the annular elements within the whole array. Numerical simulations qualitatively reproduce the experimental results, and simulated mode profiles reveal the spatial distribution of the spin-wave modes and internal magnetic fields responsible for these observations. It is observed that the internal field strength increases by about 200 Oe inside each dot embedded within the hole of annular antidot lattice as compared to pure antidot lattice and pure dot lattice. The stray field for the annular antidot lattice is found to be significant (0.8 kOe) as opposed to the negligible values of the same for the pure dot lattice and pure antidot lattice. Our findings open up new possibilities for development of novel artificial crystals.
Growth and characterization of pure and Cadmium chloride doped KDP Crystals grown by gel medium
NASA Astrophysics Data System (ADS)
Kalaivani, M. S.; Asaithambi, T.
2016-10-01
Crystal growth technology provides an important basis for many industrial branches. Crystals are the unrecognized pillars of modern technology. Without crystals, there is no electronic industry, no photonic industry, and no fiber optic communications. Single crystals play a major role and form the strongest base for the fast growing field of engineering, science and technology. Crystal growth is an interdisciplinary subject covering physics, chemistry, material science, chemical engineering, metallurgy, crystallography, mineralogy, etc. In past few decades, there has been a keen interest on crystal growth processes, particularly in view of the increasing demand of materials for technological applications. Optically good quality pure and metal doped KDP crystals have been grown by gel method at room temperature and their characterization have been studied. Gel method is a much uncomplicated method and can be utilized to synthesize crystals which are having low solubility. Potassium dihydrogen orthophosphate KH2PO4 (KDP) continues to be an interesting material both academically and industrially. KDP is a representative of hydrogen bonded materials which possess very good electro - optic and nonlinear optical properties in addition to interesting electrical properties. Due to this interesting properties, we made an attempt to grow pure and cadmium chloride doped KDP crystals in various concentrations (0.002, 0.004, 0.006, 0.008 and 0.010) using gel method. The grown crystals were collected after 20 days. We get crystals with good quality and shaped. The dc electrical conductivity (resistance, capacitance and dielectric constant) values were measured at frequencies in the range of 1 KHZ and 100 HZ of pure and cadmium chloride added crystal with a temperature range of 400C to 1300C using simple two probe setup with Q band digital LCR meter present in our lab. The electrical conductivity increases with increase of temperature. The dielectric constants of metal doped KDP crystals were slightly decreased compared to pure KDP crystals.
Yang, Wenjuan; Wen, Yanwei; Chen, Rong; Zeng, Dawen; Shan, Bin
2014-10-21
First-principle calculations have been carried out to investigate structural stabilities, electronic structures and optical properties of tungsten doped bismuth oxychloride (BiOCl). The structures of substitutional and interstitial tungsten, and in the form of WO6-ligand-doped BiOCl are examined. The substitutional and interstitial tungsten doping leads to discrete midgap states within the forbidden band gap, which has an adverse effect on the photocatalytic properties. On the other hand, the WO6-ligand-doped BiOCl structure induces a continuum of hybridized states in the forbidden gap, which favors transport of electrons and holes and could result in enhancement of visible light activity. In addition, the band gap of WO6-BiOCl decreases by 0.25 eV with valence band maximum (VBM) shifting upwards compared to that of pure BiOCl. By calculating optical absorption spectra of pure BiOCl and WO6-ligand-doped BiOCl structure, it is found that the absorption peak of the WO6-ligand-doped BiOCl structure has a red shift towards visible light compared with that of pure BiOCl, which agrees well with experimental observations. These results reveal the tungsten doped BiOCl system as a promising material in photocatalytic decomposition of organics and water splitting under sunlight irradiation.
Burgoyne, Claude F.; Downs, J. Crawford
2009-01-01
We propose that age-related alterations in optic nerve head (ONH) biomechanics underlie the clinical behavior and increased susceptibility of the aged ONH to glaucomatous damage. The literature which suggests that the aged ONH is more susceptible to glaucomatous damage at all levels of intraocular pressure is reviewed. The relevant biomechanics of the aged ONH are discussed and a biomechanical explanation for why, on average, the stiffened peripapillary scleral and lamina cribrosa connective tissues of the aged eye should lead to a shallow (senile sclerotic) form of cupping is proposed. A logic for why age-related axon loss and the optic neuropathy of glaucoma in the aged eye may overlap is discussed. Finally, we argue for a need to characterize all forms of clinical cupping into prelaminar and laminar components so as to add precision to the discussion of clinical cupping which does not currently exist. Such characterization may lead to the early detection of ONH axonal and connective tissue pathology in ocular hypertension and eventually aid in the assessment of etiology in all forms of optic neuropathy including those that may be purely age-related. PMID:18552618
An Ultimate Stereocontrol in Asymmetric Synthesis of Optically Pure Fully Aromatic Helicenes.
Šámal, Michal; Chercheja, Serghei; Rybáček, Jiří; Vacek Chocholoušová, Jana; Vacek, Jaroslav; Bednárová, Lucie; Šaman, David; Stará, Irena G; Starý, Ivo
2015-07-08
The role of the helicity of small molecules in enantioselective catalysis, molecular recognition, self-assembly, material science, biology, and nanoscience is much less understood than that of point-, axial-, or planar-chiral molecules. To uncover the envisaged potential of helically chiral polyaromatics represented by iconic helicenes, their availability in an optically pure form through asymmetric synthesis is urgently needed. We provide a solution to this problem present since the birth of helicene chemistry in 1956 by developing a general synthetic methodology for the preparation of uniformly enantiopure fully aromatic [5]-, [6]-, and [7]helicenes and their functionalized derivatives. [2 + 2 + 2] Cycloisomerization of chiral triynes combined with asymmetric transformation of the first kind (ultimately controlled by the 1,3-allylic-type strain) is central to this endeavor. The point-to-helical chirality transfer utilizing a traceless chiral auxiliary features a remarkable resistance to diverse structural perturbations.
Theory of Direct Optical Measurement of Pure Spin Currents in Direct-gap Semiconductors
NASA Astrophysics Data System (ADS)
Wang, Jing; Liu, Ren-Bao; Zhu, Bang-Fen
2010-01-01
We predict that a pure spin current in a semiconductor may lead to the optical circular birefingence effect without invoking magnetization. This effect may be exploited for a direct, non-destructive measurement of the pure spin current. We derive the effective coupling between a pure spin current and a polarized light beam, and point out that it originates from the inherent spin-orbit coupling in the valence bands, rather than the Rashba or Dresselhaus effects due to inversion asymmetries. The Faraday rotation angle in GaAs is estimated, which indicates that this spin current optical birefringence is experimentally observable.
First-principles study on silicon atom doped monolayer graphene
NASA Astrophysics Data System (ADS)
Rafique, Muhammad; Shuai, Yong; Hussain, Nayyar
2018-01-01
This paper illustrates the structural, electronic and optical properties of individual silicon (Si) atom-doped single layer graphene using density functional theory method. Si atom forms tight bonding with graphene layer. The effect of doping has been investigated by varying the concentration of Si atoms from 3.125% to 9.37% (i.e. From one to three Si atoms in 4 × 4 pure graphene supercell containing 32 carbon atoms), respectively. Electronic structure, partial density of states (PDOS) and optical properties of pure and Si atom-doped graphene sheet were calculated using VASP (Vienna ab-initio Simulation Package). The calculated results for pure graphene sheet were then compared with Si atom doped graphene. It is revealed that upon Si doping in graphene, a finite band gap appears at the high symmetric K-point, thereby making graphene a direct band gap semiconductor. Moreover, the band gap value is directly proportional to the concentration of impurity Si atoms present in graphene lattice. Upon analyzing the optical properties of Si atom-doped graphene structures, it is found that, there is significant change in the refractive index of the graphene after Si atom substitution in graphene. In addition, the overall absorption spectrum of graphene is decreased after Si atom doping. Although a significant red shift in absorption is found to occur towards visible range of radiation when Si atom is substituted in its lattice. The reflectivity of graphene improves in low energy region after Si atom substitution in graphene. These results can be useful for tuning the electronic structure and to manipulate the optical properties of graphene layer in the visible region.
LED backlight system with fiber-optic red, green, blue to white color combiner
NASA Astrophysics Data System (ADS)
Kim, Hye R.; Jeong, Yunsong; Lee, Jhang-Woo; Oh, Kyunghwan
2006-09-01
As an application in the backlight system of small LCD display, we realized a pure white light source by mixing red, green, blue (RGB) lights using a 3 X 3 Hard Plastic Cladding Fiber (HPCF) coupler. We also proposed the 0.44 inch LED backlight system with these fiber-optic pure white sources and characterized its illumination characteristics. Using optimized fusion-tapering technique, we fabricated HPCF coupler which combines three input lights over the circularly formed waist. HPCF has the core diameter of 200 μm and clad diameter of 230 μm. The fabricated 3 X 3 HPCF coupler has the perfect uniformity of about 0.3 dB, low insertion loss of 5.5 dB, and low excess loss of 0.8 dB, which shows excellent uniform power splitting ratio. In order to improve the transmission performance, The RGB chip LEDs were butt-coupled directly to the ferruled input ports of the coupler and packaged by TO46-can type. In the produced white color by HPCF coupler, the photometric brightness at the circular endface of outputs of HPCF coupler was in a rage of 10062 ~ 10094 cd/m2. The fiber optic white color combiner provides tunable white sources excluding heat source and having thickness of 200 μm. We also proposed a 0.44 inch LED backlight system with these fiber-optic pure white sources. With the proposed device, we obtain the improved uniformity in luminance distribution and wide color gamut by using the white light mixing red, green and blue lights.
Evaluation of space environmental effects on metals and optical thin films on EOIM-3
NASA Technical Reports Server (NTRS)
Vaughn, Jason A.; Linton, Roger C.; Finckenor, Miria M.; Kamenetzky, Rachel R.
1995-01-01
Metals and optical thin films exposed to the space environment on the Third Flight of the Evaluation of Oxygen Interactions with Materials (EOIM-3) payload, onboard Space Shuttle mission STS-46 were evaluated. The materials effects described in this paper include the effects of space exposure on various pure metals, optical thin films, and optical thin film metals. The changes induced by exposure to the space environment in the material properties were evaluated using bidirectional reflectance distribution function (BRDF), specular reflectance (250 nm to 2500 nm), ESCA, VUV reflectance (120 nm to 200 nm), ellipsometry, FTIR and optical properties. Using these analysis techniques gold optically thin film metal mirrors with nickel undercoats were observed to darken due to nickel diffusion through the gold to the surface. Also, thin film nickel mirrors formed nickel oxide due to exposure to both the atmosphere and space.
Laser-driven formation of a high-pressure phase in amorphous silica.
Salleo, Alberto; Taylor, Seth T; Martin, Michael C; Panero, Wendy R; Jeanloz, Raymond; Sands, Timothy; Génin, François Y
2003-12-01
Because of its simple composition, vast availability in pure form and ease of processing, vitreous silica is often used as a model to study the physics of amorphous solids. Research in amorphous silica is also motivated by its ubiquity in modern technology, a prominent example being as bulk material in transmissive and diffractive optics for high-power laser applications such as inertial confinement fusion (ICF). In these applications, stability under high-fluence laser irradiation is a key requirement, with optical breakdown occurring when the fluence of the beam is higher than the laser-induced damage threshold (LIDT) of the material. The optical strength of polished fused silica transmissive optics is limited by their surface LIDT. Surface optical breakdown is accompanied by densification, formation of point defects, cratering, material ejection, melting and cracking. Through a combination of electron diffraction and infrared reflectance measurements we show here that synthetic vitreous silica transforms partially into a defective form of the high-pressure stishovite phase under high-intensity (GW cm(-2)) laser irradiation. This phase transformation offers one suitable mechanism by which laser-induced damage grows catastrophically once initiated, thereby dramatically shortening the service lifetime of optics used for high-power photonics.
Synchronization using pulsed edge tracking in optical PPM communication system
NASA Technical Reports Server (NTRS)
Gagliardi, R.
1972-01-01
A pulse position modulated (PPM) optical communication system using narrow pulses of light for data transmission requires accurate time synchronization between transmitter and receiver. The presence of signal energy in the form of optical pulses suggests the use of a pulse edge tracking method of maintaining the necessary timing. The edge tracking operation in a binary PPM system is examined, taking into account the quantum nature of the optical transmissions. Consideration is given first to pure synchronization using a periodic pulsed intensity, then extended to the case where position modulation is present and auxiliary bit decisioning is needed to aid the tracking operation. Performance analysis is made in terms of timing error and its associated statistics. Timing error variances are shown as a function of system signal to noise ratio.
Optical, thermal and morphological study of ZnS doped PVA polymer nano composites
NASA Astrophysics Data System (ADS)
Guruswamy, B.; Ravindrachary, V.; Shruthi, C.; Sagar, Rohan N.; Hegde, Shreedatta
2018-05-01
The effect of ZnS nano particle doping on optical, thermal properties and morphological study of the PVA polymer has been investigated using FTIR, UV-Visible and TGA, FESEM techniques. Nano sized ZnS particles were synthesized by a simple wet chemical route. Pure and ZnS/PVA nano composites were prepared using solution casting technique. The FTIR study confirms that the ZnS nano particles interacts with the OH group of PVA polymer and forms the complex. The formation of these complexes affects the optical and thermal properties of the composite. The changes in optical properties were studied using UV-Vis absorption method. The variation in thermal property was analysed using TGA results. The modified surface morphology analysis was carried out using FESEM.
Blanco-Redondo, Andrea; Martijn, de Sterke C.; Sipe, J.E.; Krauss, Thomas F.; Eggleton, Benjamin J.; Husko, Chad
2016-01-01
Temporal optical solitons have been the subject of intense research due to their intriguing physics and applications in ultrafast optics and supercontinuum generation. Conventional bright optical solitons result from the interaction of anomalous group-velocity dispersion and self-phase modulation. Here we experimentally demonstrate a class of bright soliton arising purely from the interaction of negative fourth-order dispersion and self-phase modulation, which can occur even for normal group-velocity dispersion. We provide experimental and numerical evidence of shape-preserving propagation and flat temporal phase for the fundamental pure-quartic soliton and periodically modulated propagation for the higher-order pure-quartic solitons. We derive the approximate shape of the fundamental pure-quartic soliton and discover that is surprisingly Gaussian, exhibiting excellent agreement with our experimental observations. Our discovery, enabled by precise dispersion engineering, could find applications in communications, frequency combs and ultrafast lasers. PMID:26822758
Optical link by using optical wiring method for reducing EMI
NASA Astrophysics Data System (ADS)
Cho, In-Kui; Kwon, Jong-Hwa; Choi, Sung-Woong; Bondarik, Alexander; Yun, Je-Hoon; Kim, Chang-Joo; Ahn, Seung-Beom; Jeong, Myung-Yung; Park, Hyo Hoon
2008-12-01
A practical optical link system was prepared with a transmitter (Tx) and receiver (Rx) for reducing EMI (electromagnetic interference). The optical TRx module consisted of a metal optical bench, a module printed circuit board (PCB), a driver/receiver IC, a VCSEL/PD array, and an optical link block composed of plastic optical fiber (POF). For the optical interconnection between the light-sources and detectors, an optical wiring method has been proposed to enable easy assembly. The key benefit of fiber optic link is the absence of electromagnetic interference (EMI) noise creation and susceptibility. This paper provides a method for optical interconnection between an optical Tx and an optical Rx, comprising the following steps: (i) forming a light source device, an optical detection device, and an optical transmission unit on a substrate (metal optical bench (MOB)); (ii) preparing a flexible optical transmission-connection medium (optical wiring link) to optically connect the light source device formed on the substrate with the optical detection device; and (iii) directly connecting one end of the surface-finished optical transmission connection medium with the light source device and the other end with the optical detection device. Electronic interconnections have uniquely electronic problems such as EMI, shorting, and ground loops. Since these problems only arise during transduction (electronics-to-optics or opticsto- electronics), the purely optical part and optical link(interconnection) is free of these problems. 1 An optical link system constructed with TRx modules was fabricated and the optical characteristics about data links and EMI levels were measured. The results clearly demonstrate that the use of an optical wiring method can provide robust and cost-effective assembly for reducing EMI of inter-chip interconnect. We successfully achieved a 4.5 Gb/s data transmission rate without EMI problems.
The Optical Properties of Ion Implanted Silica
NASA Technical Reports Server (NTRS)
Smith, Cydale C.; Ila, D.; Sarkisov, S.; Williams, E. K.; Poker, D. B.; Hensley, D. K.
1997-01-01
We will present our investigation on the change in the optical properties of silica, 'suprasil', after keV through MeV implantation of copper, tin, silver and gold and after annealing. Suprasil-1, name brand of silica glass produced by Hereaus Amerisil, which is chemically pure with well known optical properties. Both linear nonlinear optical properties of the implanted silica were investigated before and after thermal annealing. All implants, except for Sn, showed strong optical absorption bands in agreement with Mie's theory. We have also used Z-scan to measure the strength of the third order nonlinear optical properties of the produced thin films, which is composed of the host material and the metallic nanoclusters. For implants with a measurable optical absorption band we used Doyle's theory and the full width half maximum of the absorption band to calculate the predicted size of the formed nanoclusters at various heat treatment temperatures. These results are compared with those obtained from direct observation using transmission electron microscopic techniques.
Dynamics of solid dispersions in oil during the lubrication of point contacts. Part 1: Graphite
NASA Technical Reports Server (NTRS)
Cusano, C.; Sliney, H. E.
1981-01-01
A Hertzian contact was lubricated with dispersed graphite in mineral oils under boundary lubrication conditions. The contact was optically observed under pure rolling, combined rolling and sliding, and pure sliding conditions. The contact was formed with a steel ball on the flat surface of a glass disk. Photomicrographs are presented which show the distribution of the graphite in and around the contact. Friction and surface damage are also shown for conditions when the base oils are used alone and when graphite is added to the base oils. Under pure rolling and combined rolling and sliding conditions, it is found that, for low speeds, a graphite film can form which will separate the contacting surfaces. Under pure sliding conditions, graphite accumulates at the inlet and sweeps around the contact, but very little of the graphite passes through the contact. The accumulated graphite appears to act as a barrier which reduces the supply of oil available to the contact for boundary lubrication. Friction data show no clear short term beneficial or detrimental effect caused by addition of graphite to the base oil. However, during pure sliding, more abrasion occurs on the polished balls lubricated with the dispersion than on those lubricated with the base oil alone. All observations were for the special case of a highly-polished ball on a glass surface and may not be applicable to other geometries and materials, or to rougher surfaces.
Enantiomeric Natural Products: Occurrence and Biogenesis**
Finefield, Jennifer M.; Sherman, David H.; Kreitman, Martin; Williams, Robert M.
2012-01-01
In Nature, chiral natural products are usually produced in optically pure form; however, on occasion Nature is known to produce enantiomerically opposite metabolites. These enantiomeric natural products can arise in Nature from a single species, or from different genera and/or species. Extensive research has been carried out over the years in an attempt to understand the biogenesis of naturally occurring enantiomers, however, many fascinating puzzles and stereochemical anomalies still remain. PMID:22555867
Radiation effects on beta /10.6/ of pure and europium doped KCl
NASA Technical Reports Server (NTRS)
Grimes, H. H.; Maisel, J. E.; Hartford, R. H.
1975-01-01
Changes in the optical absorption coefficient as the result of X-ray and electron bombardment of pure monocrystalline and polycrystalline KCl and of divalent europium doped polycrystalline KCl were determined. A constant heat flow calorimetric method was used to measure the optical absorption coefficients. Both 300 kV X-ray irradiation and 2 MeV electron irradiation produced increases in the optical absorption coefficient at room temperature. X-ray irradiation produced more significant changes in pure monocrystalline KCl than equivalent amounts of electron irradiation. Electron irradiation of pure and Eu-doped polycrystalline KCl produced increases in the absorption by as much as a factor of 20 over untreated material. Bleaching of the electron-irradiated doped KCl with 649 millimicron light produced a further increase.
NASA Astrophysics Data System (ADS)
Rao, G. Babu; Rajesh, P.; Ramasamy, P.
2017-06-01
Dye inclusion crystals have attracted researchers in the context of crystal growth for applications in solid state lasers. Pure and 0.1 mol% amaranth doped KAP single crystals, were grown from aqueous solutions by slow evaporation technique at room temperature. The grown crystals are up to the dimension of 12×10×3 mm3. Attempt is made to improve the growth rate, optical, piezoelectric and photoconductive properties of pure KAP single crystal with addition of amaranth dye as a dopant. Various characterization studies were made for both pure and dye doped KAP. Thermal stability of the crystals is tested from thermogravimetric and differential thermal analysis (TG/DTA). There is only one endothermic peak indicating decomposition point. Higher optical transparency for dye doped KAP crystal was identified from the UV-vis spectrum. Etching studies showed an improvement in the optical quality of the KAP crystal after doping with amaranth dye. The positive photoconductive nature is observed from both pure and amaranth doped KAP.
Shiraiwa, Tadashi; Suzuki, Masahiro; Sakai, Yoshio; Nagasawa, Hisashi; Takatani, Kazuhiro; Noshi, Daisuke; Yamanashi, Kenji
2002-10-01
To synthesize optically active 2-amino-2-methyl-3-phenylpropanoic acid (1), (RS)-2-benzoylamino-2-benzyl-3-hydroxypropanoic acid [(RS)-2] was first optically resolved using cinchonidine as a resolving agent to yield optically pure (S)- and (R)-2 in yields of about 70%, based on half of the starting amount of (RS)-2. Next, the racemic structure of (RS)-2 was examined based on melting point, solubility, IR spectrum, and binary and ternary phase diagrams, with the aim of optical resolution by preferential crystallization of (RS)-2. Results indicated that the (RS)-2 exists as a conglomerate at room temperature, although it forms a racemic compound at the melting point. The optical resolution by preferential crystallization yielded (S)- and (R)-2 with optical purities of about 90%, which were fully purified by recrystallization. After O-tosylation of (S)- and (R)-2, reduction by zinc powder and sodium iodide gave (R)- and (S)-1, respectively.
NASA Astrophysics Data System (ADS)
Yagodzinskyy, Yuriy; Malitckii, Evgenii; Tuomisto, Filip; Hänninen, Hannu
2018-03-01
Single crystals of oxygen-free copper oriented to easy glide of dislocations were tensile tested in order to study the hydrogen effects on the strain localisation in the form of slip bands appearing on the polished specimen surface under tensile straining. It was found that hydrogen increases the plastic flow stress in Stage I of deformation. The dislocation slip localisation in the form of slip bands was observed and analysed using an online optical monitoring system and atomic force microscopy. The fine structure of the slip bands observed with AFM shows that they consist of a number of dislocation slip offsets which spacing in the presence of hydrogen is markedly reduced as compared to that in the hydrogen-free specimens. The tensile tests and AFM observations were accompanied with positron annihilation lifetime measurements showing that straining of pure copper in the presence of hydrogen results in free volume generation in the form of vacancy complexes. Hydrogen-enhanced free-volume generation is discussed in terms of hydrogen interactions with edge dislocation dipoles forming in double cross-slip of screw dislocations in the initial stage of plastic deformation of pure copper.
Die Soldering in Aluminium Die Casting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Q.; Kenik, E.A.; Viswanathan, S.
2000-03-15
Two types of tests, dipping tests and dip-coating tests were carried out on small steel cylinders using pure aluminum and 380 alloy to investigate the mechanism of die soldering during aluminum die casting. Optical and scanning electron microscopy were used to study the morphology and composition of the phases formed during soldering. A soldering mechanism is postulated based on experimental observations. A soldering critical temperature is postulated at which iron begins to react with aluminum to form an aluminum-rich liquid phase and solid intermetallic compounds. When the temperature at the die surface is higher than this critical temperature, the aluminum-richmore » phase is liquid and joins the die with the casting during the subsequent solidification. The paper discusses the mechanism of soldering for the case of pure aluminum and 380 alloy casting in a steel mold, the factors that promote soldering, and the strength of the bond formed when soldering occurs. conditions, an aluminum-rich soldering layer may also form over the intermetallic layer. Although a significant amount of research has been conducted on the nature of these intermetallics, little is known about the conditions under which soldering occurs.« less
Scuotto, M; Persico, M; Bucci, M; Vellecco, V; Borbone, N; Morelli, E; Oliviero, G; Novellino, E; Piccialli, G; Cirino, G; Varra, M; Fattorusso, C; Mayol, L
2014-07-28
Herein, we report optically pure modified acyclic nucleosides as ideal probes for aptamer modification. These new monomers offer unique advantages in exploring the role played in thrombin inhibition by a single residue modification at key positions of the TBA structure.
Optical properties of pure and PbSe doped TiS2 nanodiscs
NASA Astrophysics Data System (ADS)
Parvaz, M.; Islamuddin; Khan, Zishan H.
2018-06-01
Titanium disulfide, being one of the popular transition-metal dichalcogenide (TMD) materials, shows wonderful properties owing to tunable optical band gap. Pure and PbSe doped titanium disulfide nanodiscs have been synthesized by solid-state reaction method. FESEM, TEM and Raman images confirm the synthesis of nanodiscs. XRD spectra suggest the polycrystalline structure of as-prepared as well as PbSe doped TiS2 nanodiscs. PL spectra of the as-synthesized nanodiscs has been studied in the wavelength range of (300–550 nm), at room temperature. The position of the peak shifts towards the lower wavelength (blue shift) and intensity of the PL increases after the doping of PbSe, which may be due to a broadening of the optical band gap. UV–vis spectra has been used to calculate optical band gap of pure and PbSe doped titanium disulfide nanodiscs. The calculated value are found to be 1.93 eV and 2.03 eV respectively. Various optical constants such as n and k have been calculated. The value of extinction coefficient (k) of pure and doped titanium disulfide increases while the value of the refractive index (n) decreases with increase in photon energy.
Preparation of special purity Ge - S - I and Ge - Se - I glasses
NASA Astrophysics Data System (ADS)
Velmuzhov, A. P.; Sukhanov, M. V.; Shiryaev, V. S.; Kotereva, T. V.; Snopatin, G. E.; Churbanov, M. F.
2017-05-01
The paper considers the new approaches for the production of special pure Ge - S - I and Ge - Se - I glasses via the germanium(IV) iodide, germanium(II) sulfide, as well as the Ge2S3, Ge2S3I2 and Ge2Se3I2 glassy alloys. The glass samples containing 0.03-0.17 ppm(wt) hydrogen impurity in the form of SH-group, 0.04-0.15 ppm(wt) hydrogen impurity in the form of SeH-group, and 0.5-7.8 ppm(wt) oxygen impurity in the form of Ge-O were produced. Using a crucible technique, the single-index [GeSe4]95I5 glass fibers of 300-400 μm diameter were drawn. The minimum optical losses in the best fiber were 1.7 dB/m at a wavelength of 5.5 μm; the background optical losses were within 2-3 dB/m in the spectral range of 2.5-8 μm.
Exciton Resonances in Novel Silicon Carbide Polymers
NASA Astrophysics Data System (ADS)
Burggraf, Larry; Duan, Xiaofeng
2015-05-01
A revolutionary technology transformation from electronics to excitionics for faster signal processing and computing will be advantaged by coherent exciton transfer at room temperature. The key feature required of exciton components for this technology is efficient and coherent transfer of long-lived excitons. We report theoretical investigations of optical properties of SiC materials having potential for high-temperature excitonics. Using Car-Parinello simulated annealing and DFT we identified low-energy SiC molecular structures. The closo-Si12C12 isomer, the most stable 12-12 isomer below 1100 C, has potential to make self-assembled chains and 2-D nanostructures to construct exciton components. Using TDDFT, we calculated the optical properties of the isomer as well as oligomers and 2-D crystal formed from the isomer as the monomer unit. This molecule has large optical oscillator strength in the visible. Its high-energy and low-energy transitions (1.15 eV and 2.56 eV) are nearly pure one-electron silicon-to-carbon transitions, while an intermediate energy transition (1.28 eV) is a nearly pure carbon-to-silicon one-electron charge transfer. These results are useful to describe resonant, coherent transfer of dark excitons in the nanostructures. Research supported by the Air Force Office of Scientific Research.
NASA Astrophysics Data System (ADS)
Gupta, Jhalak; Ahmed, Arham S.
2018-05-01
The pure and Cr doped nickel oxide (NiO) nanoparticles have been synthesized by cost effective co-precipitation method having nickel nitrate as initial precursor. The synthesized samples were characterized by X-Ray diffraction (XRD), UV-Visible Spectroscopy(UV-Vis) and LCR meter for structural, optical and dielectric properties respectively. The crystallite size of pure nickel oxide nanoparticles characterized by XRD using Debye Scherer's formula was found to be 21.7nm and the same decreases on increasing Cr concentration whereas optical and dielectric properties were analyzed by UV-Vis and LCR meter respectively. The energy band gaps were determined by UV-Vis using Tauc relation.
Nanodoping: a route for enhancing electro-optic performance of bent core nematic system
NASA Astrophysics Data System (ADS)
Kumar, Pradeep; Debnath, Somen; Rao, Nandiraju V. S.; Sinha, Aloka
2018-03-01
We report the effect of dispersion of barium titanate (BaTiO3) nanoparticles (BNPs) in a four ring bent core nematic (BCN) liquid crystal. Polarizing optical microscopy reveals the presence of a single nematic phase in pure and doped states. Polar switching has been observed in the bent core system and the value of spontaneous polarization (P s) increases with increase in doping concentration of BNPs in BCN. Dielectric study shows a lower frequency mode, which can be ascribed to the formation of cybotactic clusters. These clusters are also responsible for the observed polar switching in pure, as well as, in doped BCNs. Another higher frequency mode, observed only in pure BCN, indicates the rotation of molecules about their long molecular axis. The conductivity of doped samples is also found to decrease as compared to the pure BCN. This reduction helps in the minimization of negative effects caused by free ions in liquid crystal based devices. This study demonstrates that the interaction between BNPs and BCN molecules improves the P s, dielectric behaviour, viscosity and reduces the conductivity of pure BCN. Hence, nanodoping in a BCN is an effective method for the enhancement of electro-optic performances and will lead to the development of faster electro-optic devices.
Preface to the Surface Science Topical Issue on Chirality at Surfaces
NASA Astrophysics Data System (ADS)
2014-11-01
This Topical Issue of Surface Science focuses on the rapidly growing interest in the structure and enantioselective properties of chiral surfaces and chiral organic layers on surfaces. Chirality has intrigued scientists since the time of Pasteur and his 1848 [1] demonstration of the relationship between the optical rotation of light and the atomic structure of the compounds through which it propagates. The origin of optical rotation in the structure of organic molecules and the tetrahedral nature of the carbon atom was first appreciated and articulated by van't Hoff in 1874 [2]. In biochemistry, the importance of molecular chirality arises from the fact that most naturally occurring chiral biomolecules exist in homochiral form. For example, the fundamental building blocks of proteins are the amino acids which all appear in the L-enantiomeric form in nature. The implications of biomolecular homochirality were not truly appreciated until the late 1950s [3] when the stereochemistry of the artificially produced drug thalidomide was implicated in the physical defects observed in thousands of children born to mothers who had used the drug during pregnancy. This then sparked an explosion in asymmetric synthesis and enantioselective chemical processing in general, as regulations required that chiral pharmaceuticals be manufactured in enantiomerically pure form. The development of heterogenous catalysts for industrial-scale production of enantiomerically pure molecules is still a huge challenge. Many of the studies in this Topical Issue are aimed at developing a molecular level understanding of the surface processes which direct enantioselective reactions at gas-solid and liquid-solid interfaces.
Synthesis and optical properties of Co2+-doped ZnO Network prepared by new precursors
NASA Astrophysics Data System (ADS)
Akhtari, Fereshteh; Zorriasatein, Suzan; Farahmandjou, Majid; Elahi, Seyed Mohammad
2018-06-01
Pure ZnO nanoparticles (NPs) and Co/ZnO alloy NPs were synthesized with different percentages of cobalt impurity (1%, 3%, 5%, and 25%) with new precursors through the coprecipitation method. The structural results of the XRD analysis indicated that the pure and impure samples have a wurtzite hexagonal structure such that with an elevation of Co impurity up to 1%, the size of the nanocrystals declines by up to 30 nm. Furthermore, the FESEM analysis results suggest the homogeneity of the NPs such that with increased cobalt impurity, its level declines. The TEM analysis results revealed that the NPs with 5% impurity have a mean size of 32 nm in spherical form. The FTIR optical analysis results suggest a very sharp absorption peak within the wavelength ranges of 434–448 cm‑1, belonging to the Zn-O vibration bond. In addition, the absorption peak developed at the wavelength of 3428 cm‑1 is related to the activation of the OH radicals, whose absorption value grows with the addition of an impurity, thereby, causing enhanced photocatalytic activity. The UV-DRS optical analysis indicated that the absorption wavelength grows with increased impurity, causing the development of redshift and a reduction of the energy band gap. In this regard, for the pure sample, the band gap value was 3.18 eV, while for the sample with 5% impurity, the band gap was obtained as 2.68 eV. The VSM magnetic analysis suggests ferromagnetic development in the impure sample, with a saturation magnetism of 16 memu g‑1 and a coercivity field of 342 G.
Electroforming of optical tooling in high-strength Ni-Co alloy
NASA Astrophysics Data System (ADS)
Stein, Berl
2003-05-01
Plastic optics are often mass produced by injection, compression or injection-compression molding. Optical quality molds can be directly machined in appropriate materials (tool steels, electroless nickel, aluminum, etc.), but much greater cost efficiency can be achieved with electroformed modl inserts. Traditionally, electroforming of optical quality mold inserts has been carried out in nickel, a material much softer than tool steels which, when hardened to 45 - 50 HRc usually exhibit high wear resistance and long service life (hundreds of thousands of impressions per mold). Because of their low hardness (< 20 HRc), nickel molds can produce only tens of thousands of parts before they are scrapped due to wear or accidental damage. This drawback prevented their wider usage in general plastic and optical mold making. Recently, NiCoForm has developed a proprietary Ni-CO electroforming bath combining the high strength and wear resistance of the alloy with the low stress and high replication fidelity typical of pure nickel electroforming. This paper will outline the approach to electroforming of optical quality tooling in low stress, high strength Ni-Co alloy and present several examples of electroformed NiColoy mold inserts.
Transparent ceramic scintillators for gamma spectroscopy and radiography
NASA Astrophysics Data System (ADS)
Cherepy, N. J.; Kuntz, J. D.; Seeley, Z. M.; Fisher, S. E.; Drury, O. B.; Sturm, B. W.; Hurst, T. A.; Sanner, R. D.; Roberts, J. J.; Payne, S. A.
2010-08-01
Transparent ceramics combine the scintillation performance of single crystals with the ruggedness and processability of glass. We have developed a versatile, scaleable fabrication method, wherein nanoparticle feedstock is consolidated at temperatures well below melting to form inch-scale phase-pure transparent ceramics with optical scatter of α <0.1 cm-1. We have fabricated Cerium-doped Gadolinium Garnets with light yields of ~50,000 Ph/MeV and energy resolution of <5% at 662 keV. We have also developed methods to form sheets of the high-Z ceramic scintillator, Europium-doped Lutetium Oxide Bixbyite, producing ~75,000 Ph/MeV for radiographic imaging applications.
Study on Formation of Plasma Nanobubbles in Water
NASA Astrophysics Data System (ADS)
Sato, Takehiko; Nakatani, Tatsuyuki; Miyahara, Takashi; Ochiai, Shiroh; Oizumi, Masanobu; Fujita, Hidemasa; Miyazaki, Takamichi
2015-12-01
Nanobubbles of less than 400 nm in diameter were formed by plasma in pure water. Pre-breakdown plasma termed streamer discharges, generated gas channels shaped like fine dendritic coral leading to the formation of small bubbles. Nanobubbles were visualized by an optical microscope and measured by dynamic laser scattering. However, it is necessary to verify that these nanobubbles are gas bubbles, not solid, because contamination such as platinum particles and organic compounds from electrode and residue in ultrapure water were also observed.
Masurier, Nicolas; Aruta, Roberta; Gaumet, Vincent; Denoyelle, Séverine; Moreau, Emmanuel; Lisowski, Vincent; Martinez, Jean; Maillard, Ludovic T
2012-04-06
A series of 20 optically pure 3,4-dihydro-5H-pyrido[1',2':1,2]imidazo[4,5-d][1,3]diazepin-5-ones which form a new family of azaheterocycle-fused [1,3]diazepines were synthesized in four steps with 17-66% overall yields. The key step consists of a selective C-acylation reaction of easily accessible 2-aminoimidazo[1,2-a]pyridine at C-3.
Shiraiwa, Tadashi; Kawashima, Yuka; Ikaritani, Atsushi; Suganuma, Yumiko; Saijoh, Reiichi
2006-08-01
To obtain optically active threo-2-amino-3-hydroxy-3-phenylpropanoic acid (1) via optical resolutions by replacing and preferential crystallization, the racemic structure of (2RS,3SR)-1 hydrochloride [(2RS,3SR)-1.HCl] was examined based on the melting point, solubility, and infrared spectrum. (2RS,3SR)-1.HCl was indicated to exist as a conglomerate at room temperature, although it forms a racemic compound at the melting point. When, in optical resolution by replacing crystallization, L-phenylalanine methyl ester hydrochloride (L-2) was used as the optically active co-solute, (2R,3S)-1.HCl was preferentially crystallized from the supersaturated racemic solution; the use of D-2 as the co-solute afforded (2S,3R)-1.HCl with an optical purity of 95%. In addition, optical resolution by preferential crystallization was successfully achieved to give successively (2R,3S)- and (2S,3R)-1.HCl with optical purities of 90-92%. The (2R,3S)- and (2S,3R)-1.HCl purified by recrystallization from 1-propanol were treated with triethylamine in methanol to give optically pure (2R,3S)- and (2S,3R)-1.
Multiple-stage pure phase encoding with biometric information
NASA Astrophysics Data System (ADS)
Chen, Wen
2018-01-01
In recent years, many optical systems have been developed for securing information, and optical encryption/encoding has attracted more and more attention due to the marked advantages, such as parallel processing and multiple-dimensional characteristics. In this paper, an optical security method is presented based on pure phase encoding with biometric information. Biometric information (such as fingerprint) is employed as security keys rather than plaintext used in conventional optical security systems, and multiple-stage phase-encoding-based optical systems are designed for generating several phase-only masks with biometric information. Subsequently, the extracted phase-only masks are further used in an optical setup for encoding an input image (i.e., plaintext). Numerical simulations are conducted to illustrate the validity, and the results demonstrate that high flexibility and high security can be achieved.
System and Method for Generating a Frequency Modulated Linear Laser Waveform
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)
2017-01-01
A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.
System and Method for Generating a Frequency Modulated Linear Laser Waveform
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)
2014-01-01
A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.
Maximum-performance fiber-optic irradiation with nonimaging designs.
Fang, Y; Feuermann, D; Gordon, J M
1997-10-01
A range of practical nonimaging designs for optical fiber applications is presented. Rays emerging from a fiber over a restricted angular range (small numerical aperture) are needed to illuminate a small near-field detector at maximum radiative efficiency. These designs range from pure reflector (all-mirror), to pure dielectric (refractive and based on total internal reflection) to lens-mirror combinations. Sample designs are shown for a specific infrared fiber-optic irradiation problem of practical interest. Optical performance is checked with computer three-dimensional ray tracing. Compared with conventional imaging solutions, nonimaging units offer considerable practical advantages in compactness and ease of alignment as well as noticeably superior radiative efficiency.
Theoretical study of optical conductivity of graphene with magnetic and nonmagnetic adatoms
NASA Astrophysics Data System (ADS)
Majidi, Muhammad Aziz; Siregar, Syahril; Rusydi, Andrivo
2014-11-01
We present a theoretical study of the optical conductivity of graphene with magnetic and nonmagnetic adatoms. First, by introducing an alternating potential in a pure graphene, we demonstrate a gap formation in the density of states and the corresponding optical conductivity. We highlight the distinction between such a gap formation and the so-called Pauli blocking effect. Next, we apply this idea to graphene with adatoms by introducing magnetic interactions between the carrier spins and the spins of the adatoms. Exploring various possible ground-state spin configurations of the adatoms, we find that the antiferromagnetic configuration yields the lowest total electronic energy and is the only configuration that forms a gap. Furthermore, we analyze four different circumstances leading to similar gaplike structures and propose a means to interpret the magneticity and the possible orderings of the adatoms on graphene solely from the optical conductivity data. We apply this analysis to the recently reported experimental data of oxygenated graphene.
Optical and structural behaviors of crosslinked polyvinyl alcohol thin films
NASA Astrophysics Data System (ADS)
Pandit, Subhankar; Kundu, Sarathi
2018-04-01
Polyvinyl Alcohol (PVA) has excellent properties like uniaxial tensile stress, chemical resistance, biocompatibility, etc. The properties of PVA further can be tuned by crosslinking process. In this work, a simple heat treatment method is used to find out the optimum crosslinking of PVA and the corresponding structural and optical responses are explored. The PVA crosslinking is done by exposing the films at different temperatures and time intervals. The optical property of pure and heat treated PVA films are investigated by UV-Vis absorption and photoluminescence emission spectroscopy and structural modifications are studied by Fourier Transform Infrared Spectroscopy (FTIR). The absorption peaks of pure PVA are observed at ≈ 280 and 335 nm and the corresponding emission is observed at ≈ 424 nm. The pure PVA showed modified optical behaviors after the heat treatment. In addition, dipping the PVA films in hot water (85°C) for nearly 20 minutes also show impact on both structural and optical properties. From FTIR spectroscopy, the changes in vibrational band positions confirm the structural modifications of PVA films.
Controlled Electrochemical Deformation of Liquid-Phase Gallium.
Chrimes, Adam F; Berean, Kyle J; Mitchell, Arnan; Rosengarten, Gary; Kalantar-zadeh, Kourosh
2016-02-17
Pure gallium is a soft metal with a low temperature melting point of 29.8 °C. This low melting temperature can potentially be employed for creating optical components with changeable configurations on demand by manipulating gallium in its liquid state. Gallium is a smooth and highly reflective metal that can be readily maneuvered using electric fields. These features allow gallium to be used as a reconfigurable optical reflector. This work demonstrates the use of gallium for creating reconfigurable optical reflectors manipulated through the use of electric fields when gallium is in a liquid state. The use of gallium allows the formed structures to be frozen and preserved as long as the temperature of the metal remains below its melting temperature. The lens can be readily reshaped by raising the temperature above the melting point and reapplying an electric field to produce a different curvature of the gallium reflector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mtat, D.; Touati, R.; Guerfel, T., E-mail: taha-guerfel@yahoo.fr
2016-12-15
Chemical preparation, X-ray single crystal diffraction, IR and NMR spectroscopic investigations of a novel nonlinear optical organic compound (C{sub 17}H{sub 22}NO{sub 2}Cl) are described. The compound crystallizes in the orthorhombic system with the non-centrosymmetric sp. gr. P2{sub 1}2{sub 1}2{sub 1}. In the crystal structure, molecules are interconnected by N–H…O hydrogen bonds forming infinite chains along a axis. The Hirshfeld surface and associated fingerprint plots of the compound are presented to explore the nature of intermolecular interactions and their relative contributions in building the solid-state architecture. The molecular HOMO–LUMO compositions and their respective energy gaps are also drawn to explain themore » activity of the compound. The first hyperpolarizability β{sub tot} of the title compound is determined using DFT calculations. The optical properties are also investigated by UV–Vis absorption spectrum.« less
NASA Astrophysics Data System (ADS)
Heinz, M.; Dubiel, M.; Meinertz, J.; Ihlemann, J.; Hoell, A.
2017-02-01
In this study, plasmonic Au and Au/Ag nanostructures in soda-lime-silicate glasses have been generated by means of ArF-excimer laser irradiation (193 nm) below the ablation threshold of the glass. For this purpose pure and silver/sodium ion-exchanged float glasses have been coated by gold and then irradiated by the laser. The formation of Au and Au/Ag nanoparticles could be verified by the surface plasmon resonances between 420 and 620 nm, which were obtained by optical spectroscopy. Both, pure Au and Ag particles as well as bimetallic Au/Ag nanoparticles, could be observed by means of small angle X-ray scattering experiments. These results demonstrate that such procedures enable the spaceselected generation of plasmonic nanostructures in glass surfaces by excimer laser irradiation.
Structural and optical characterization of PVA:KMnO4 based solid polymer electrolyte
NASA Astrophysics Data System (ADS)
Abdullah, Omed Gh.; Aziz, Shujahadeen B.; Rasheed, Mariwan A.
Solid polymer electrolyte films of polyvinyl alcohol (PVA) doped with a different weight percent of potassium permanganate (KMnO4) were prepared by standard solution cast method. XRD and FTIR techniques were performed for structural study. Complex formation between the PVA polymer and KMnO4 salt was confirmed by Fourier transform infrared (FTIR) spectroscopy. The description of crystalline nature of the solid polymer electrolyte films has been confirmed by XRD analysis. The UV-Visible absorption spectra were analyzed in terms of absorption formula for non-crystalline materials. The fundamental optical parameters such as optical band gap energy, refractive index, optical conductivity, and dielectric constants have been investigated and showed a clear dependence on the KMnO4 concentration. The observed value of optical band gap energy for pure PVA is about 6.27 eV and decreases to a value 3.12 eV for the film sample formed with 4 wt% KMnO4 salt. The calculated values of refractive index and the dielectric constants of the polymer electrolyte films increase with increasing KMnO4 content.
Chiral J-aggregates of atropo-enantiomeric perylene bisimides and their self-sorting behavior.
Xie, Zengqi; Stepanenko, Vladimir; Radacki, Krzysztof; Würthner, Frank
2012-06-04
Herein we report on structural, morphological, and optical properties of homochiral and heterochiral J-aggregates that were created by nucleation-elongation assembly of atropo-enantiomerically pure and racemic perylene bisimides (PBIs), respectively. Our detailed studies with conformationally stable biphenoxy-bridged chiral PBIs by UV/Vis absorption, circular dichroism (CD) spectroscopy, and atomic force microscopy (AFM) revealed structurally as well as spectroscopically quite different kinds of J-aggregates for enantiomerically pure and racemic PBIs. AFM investigations showed that enantiopure PBIs form helical nanowires of unique diameter and large length-to-width ratio by self-recognition, while racemic PBIs provide irregular-sized particles by self-discrimination of the enantiomers at the stage of nucleation. Steady-state fluorescence spectroscopy studies revealed that the photoluminescence efficiency of homochiral J-aggregated nanowires (47±3%) is significantly higher than that of heterochiral J-aggregated particle-like aggregates (12±3%), which is explained in terms of highly ordered molecular stacking in one-dimensional nanowires of homochiral J-aggregates. Our present results demonstrate the high impact of homochirality on the construction of well-defined nanostructures with unique optical properties. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influence of tartaric acid on linear-nonlinear optical and electrical properties of KH2PO4 crystal
NASA Astrophysics Data System (ADS)
Baig, M. I.; Anis, Mohd; Muley, G. G.
2017-10-01
KH2PO4 (KDOP) is widely demanded technological crystal for applications in laser driven photonic devices. Therefore, present article is focused to investigate the effect of tartaric acid (TA) on laser induced nonlinear optical properties of KDOP crystal. The optically transparent TA doped KDOP crystal of size 15 × 10 × 04 mm3 has been grown by slow solvent evaporation technique at 35 °C. The structural analysis of pure and TA doped KDOP crystal has been achieved by means of single crystal X-ray diffraction technique. The functional groups of TA doped KDOP crystal has been identified by means of Fourier transform infrared spectral analysis. The UV-visible studies have been performed to determine the optical transparency and evaluate the linear optical constants of pure and TA doped KDOP crystal. The Kurtz-Perry test has been employed to confirm the frequency doubling phenomenon of crystal and the SHG efficiency of TA doped KDOP crystal is found to be 5.68 times higher than that of standard KDP material. The Z-scan technique has been employed to explore the third order nonlinear optical (TONLO) refraction (n2), absorption (β) and susceptibility (χ3) of pure and TA doped KDOP crystal at 632.8 nm. The TA facilitated optical switching in TONLO response of KDOP crystal is found to be an interesting effect to examine. The laser damage threshold of TA doped KDOP crystal has been determined at 1064 nm using the Nd:YAG laser. The comparative electrical analysis on pure and TA doped KDOP crystal has been accomplished by means of dielectric and photoconductivity characterization studies.
Kim, Tae Hee; Mount, Christopher W; Dulken, Benjamin W; Ramos, Jenelyn; Fu, Caroline J; Khant, Htet A; Chiu, Wah; Gombotz, Wayne R; Pun, Suzie H
2012-01-01
Polymeric micelles formed by the self-assembly of amphiphilic block copolymers can be used to encapsulate hydrophobic drugs for tumor-delivery applications. Filamentous carriers with high aspect ratios offer potential advantages over spherical carriers, including prolonged circulation times. In this work, mixed micelles comprised of poly (ethylene oxide)-poly-[(R)-3-hydroxybutyrate]-poly (ethylene oxide) (PEO-PHB-PEO) and Pluronic F-127 (PF-127) were used to encapsulate a near-infrared fluorophore. The micelle formulations were assessed for tumor accumulation after tail vein injection to xenograft tumor-bearing mice by non-invasive optical imaging. The mixed micelle formulation that facilitated the highest tumor accumulation was shown by cryo-electron microscopy to be filamentous in structure compared to spherical structures of pure PF-127 micelles. In addition, increased dye loading efficiency and dye stability was attained in this mixed micelle formulation compared to pure PEO-PHB-PEO micelles. Therefore, the optimized PEO-PHB-PEO/PF-127 mixed micelle formulation offers advantages for cancer delivery over micelles formed from the individual copolymer components. PMID:22118658
Zhu, Shaozhou; Ren, Lu; Yu, Songzhu; Gong, Cuiyu; Song, Dawei; Zheng, Guojun
2014-10-15
Whole cells of Bradyrhizobium japonicum USDA 6 showed both (+)-γ-lactamase activity and (-)-γ-lactamase activity. Insight into the genome of B. japonicum USDA 6 revealed two potential γ-lactamases: a type I (+)-γ-lactamase and a (-)-γ-lactamase, making it the first strain to contain two totally different enantioselective lactamases. Both recombinant enzymes could easily be used to prepare either optically pure (+)-γ-lactam ((+)-2-azabicyclo[2.2.1]hept-5-en-3-one) or optically pure (-)-γ-lactam ((-)-2-azabicyclo[2.2.1]hept-5-en-3-one), which are versatile synthetic building blocks for the synthesis of various carbocyclic nucleosides and carbocyclic sugar analogues. Bioinformatic analysis showed that the type I (+)-γ-lactamase belongs to the amidase signature family, with 504 amino acids; the (-)-γ-lactamase, which consists of 274 amino acids, belongs to the hydrolase family. Here, we report that B. japonicum USDA contains a (-)-γ-lactamase in addition to a (+)-γ-lactamase, and it is the (-)-γ-lactamase from this strain that is examined in detail in this Letter. Enzymatic synthesis of optically pure (+)-γ-lactam with nearly 50% isolated yield and >99% ee was achieved. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Trufanov, Aleksandr N.; Trufanov, Nikolay A.; Semenov, Nikita V.
2016-09-01
The experimental data analysis of the stress applying rod section geometry for the PANDA-type polarization maintaining optical fiber has been performed. The dependencies of the change in the radial dimensions of the preform and the doping boundary on the angular coordinate have been obtained. The original algorithm of experimental data statistic analysis, which enables determination of the specimens' characteristic form of section, has been described. The influence of actual doped zone geometry on the residual stress fields formed during the stress rod preform fabrication has been investigated. It has been established that the deviation of the boundary between pure silica and the doped zone from the circular shape results in dissymmetry and local concentrations of the residual stress fields along the section, which can cause preforms destruction at high degrees of doping. The observed geometry deviations of up to 10% lead to the increase of the maximum stress intensity value by over 20%.
NASA Astrophysics Data System (ADS)
Marathe, D. M.; Tarkas, H. S.; Mahajan, M. S.; Lonkar, G. S.; Tak, S. R.; Sali, J. V.
2016-09-01
We here present a way of preparing the polymer: fullerene BHJ using dual feed method which can lead to formation of pure phases. In this report, we present results of our initial experiments in this direction. The effect of process parameters on the thickness and surface roughness of the active layer has been discussed. The structural and optical properties have been studied using the optical microscope, UV—visible spectroscopy and photoluminescence spectroscopy. Significant PL quenching indicates efficient charge separation in the BHJ formed using this technique. We have also compared the BHJ thin films prepared with this dual feed ultrasonic technique with the single feed spray method. The BHJ formed using this technique has been used as an active layer in OSC. supported by the University Grants Commission, New Delhi, under Faculty Improvement Programme (No. 33-02/12(WRO) Dt.19.03.2013) and the Special Assistance Programme (530/2/DRS/2010(SAP-I)) Phase-II.
Skab, Ihor; Vasylkiv, Yurij; Zapeka, Bohdan; Savaryn, Viktoriya; Vlokh, Rostyslav
2011-07-01
We present an analysis of the effect of torsion stresses on the spatial distribution of optical birefringence in crystals of different point symmetry groups. The symmetry requirements needed so that the optical beam carries dislocations of the phase front are evaluated for the case when the crystals are twisted and the beam closely corresponds to a plane wave. It is shown that the torsion stresses can produce screw-edge, pure screw, or pure edge dislocations of the phase front in the crystals belonging to cubic and trigonal systems. The conditions for appearance of canonical and noncanonical vortices in the conditions of crystal torsion are analyzed. © 2011 Optical Society of America
Microstructural and Optical Properties of Porous Alumina Elaborated on Glass Substrate
NASA Astrophysics Data System (ADS)
Zaghdoudi, W.; Gaidi, M.; Chtourou, R.
2013-03-01
A transparent porous anodized aluminum oxide (AAO) nanostructure was formed on a glass substrate using the anodization of a highly pure evaporated aluminum layer. A parametric study was carried out in order to achieve a fine control of the microstructural and optical properties of the elaborated films. The microstructural and surface morphologies of the porous alumina films were characterized by x-ray diffraction and atomic force microscopy. Pore diameter, inter-pore separation, and the porous structure as a function of anodization conditions were investigated. It was then found that the pores density decreases with increasing the anodization time. Regular cylindrical porous AAO films with a flat bottom structure were formed by chemical etching and anodization. A high transmittance in the 300-900 nm range is reported, indicating a fulfilled growth of the transparent sample (alumina) from the aluminum metal. The data showed typical interference oscillations as a result of the transparent characteristics of the film throughout the visible spectral range. The thickness and the optical constants ( n and k) of the porous anodic alumina films, as a function of anodizing time, were obtained using spectroscopic ellipsometry in the ultraviolet-visible-near infrared (UV-vis-NIR) regions.
Wujkowska, Zuzanna; Strojewska, Aleksandra; Pieczonka, Adam M; Leśniak, Stanisław; Rachwalski, Michał
2017-05-01
Optically pure, diastereomeric aziridine amides built on the chiral skeletons of camphor, fenchone, and menthone have proven to be highly efficient ligands for enantioselective asymmetric direct aldol reaction in the presence of water and zinc triflate. Desired products were formed in moderate to high chemical yields (up to 95%) and with enantiomeric excess up to 99%. The influence of the stereogenic centers located at the aziridine subunit on the stereochemical course of the reaction is discussed. © 2017 Wiley Periodicals, Inc.
Karabal, Pratibha U; Kamble, Dayanand A; Sudalai, Arumugam
2014-04-21
The salen Co(III)-catalyzed phenolic kinetic resolution of racemic anti- or syn-azido and benzyloxy epoxides provides a practical route to a range of enantioenriched anti- or syn-1-aryloxy-3-azido or benzyloxy-2-alcohols in excellent yields and ees. The synthetic potential of this protocol is illustrated with an enantioselective synthesis of ICI-118,551, a β-blocker, in a highly optically pure form (99% ee).
Polarization-dependent optical reflection ultrasonic detection
NASA Astrophysics Data System (ADS)
Zhu, Xiaoyi; Huang, Zhiyu; Wang, Guohe; Li, Wenzhao; Li, Changhui
2017-03-01
Although ultrasound transducers based on commercial piezoelectric-material have been widely used, they generally have limited bandwidth centered at the resonant frequency. Currently, several pure-optical ultrasonic detection methods have gained increasing interest due to their wide bandwidth and high sensitivity. However, most of them require customized components (such as micro-ring, SPR, Fabry-Perot film, etc), which limit their broad implementations. In this study, we presented a simple pure-optical ultrasound detection method, called "Polarization-dependent Reflection Ultrasonic Detection" (PRUD). It detects the intensity difference between two polarization components of the probe beam that is modulated by ultrasound waves. PRUD detect the two components by using a balanced detector, which effectively suppressed much of the unwanted noise. We have achieved the sensitivity (noise equivalent pressure) to be 1.7kPa, and this can be further improved. In addition, like many other pure-optical ultrasonic detection methods, PRUD also has a flat and broad bandwidth from almost zero to over 100MHz. Besides theoretical analysis, we did a phantom study by imaging a tungsten filament to demonstrate the performance of PRUD. We believe this simple and economic method will attract both researchers and engineers in optical and ultrasound fields.
Realization of pure frequency modulation of DFB laser via combined optical and electrical tuning.
Tian, Chao; Chen, I-Chun Anderson; Park, Seong-Wook; Martini, Rainer
2013-04-08
In this paper we present a novel approach to convert AM signal into FM signal in semiconductor lasers via off resonance optical pumping and report on experimental results obtained with a commercial DFB laser. Aside of demonstrating discrete and fast frequency modulation, we achieve pure frequency modulation through combination with electrical modulation suppressing the associated amplitude modulation, which is detrimental to application such as spectroscopy and communication.
Microstructural, Optical and Dielectric Properties of Al-Incorporated SnO2 Nanoparticles
NASA Astrophysics Data System (ADS)
Ahmed, Ateeq; Tripathi, P.; Naseem Siddique, M.; Ali, Tinku
2017-08-01
In this work, Pure SnO2 and Al doped SnO2 nanoparticles with the composition Sn1-xAlxO2 (x = 0, and 0.05) have been successfully prepared using sol-gel technique. The effect of Al dopant on microstructural, optical and dielectric properties has been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Ultraviolet (UV-Visible) absorption spectroscopy andImpedance spectroscopy (LCR meter)respectively. The XRD patterns indicated tetragonal rutile structure with single phase without any detectable impurity for all samples and incorporation of Al ions into the SnO2 lattice. Crystalline size decreased with aluminum content. The results of SEM confirm nanoparticles size decreases with Al dopant. UV-Visible results showed that optical band also decreases when Al is doped into pure SnO2 lattice. Frequency dependent dielectric properties of pure and doped SnO2 nanoparticles have been also studied.
Optical Spectroscopy Of Materials With Restricted Dimensions
NASA Astrophysics Data System (ADS)
Yen, William M...
1989-05-01
In this paper, we discuss various experimental advantages which are gained by using samples which have special dimensions and/or geometries. We limit our discussion here to the cylindrical geometry appropriate for optical fibers which are employed for various optoelectronic applications. We present results of laser spectroscopic studies of nominally pure and activated single crystal and glass fibers to illustrate some of these advantages. For example, we have succeeded for the first time in obtaining the dependence of the ruby R-lines and of the Raman spectra of sapphire on tensile stress. We further discuss a novel laser spectroscopic method, Dilution Narrowed Laser Spectroscopy or DNLS; we demonstrate this form of spectroscopy on single mode glass fibers activated with rare earth ions and consider the possibilities inherent in this technique.
Pu, Xiaotao; Qi, Xiangbing; Ready, Joseph M.
2009-01-01
Unsymmetrically substituted allenes (1,2 dienes) are inherently chiral and can be prepared in optically pure form. Nonetheless, to date the allene framework has not been incorporated into ligands for asymmetric catalysis. Since allenes project functionality differently than either tetrahedral carbon or chiral biaryls, they may create complementary chiral environments. This study demonstrates that optically active C2 symmetric allene-containing bisphosphine oxides can catalyze the addition of SiCl4 to meso epoxides with high enantioselectivity. The epoxide-opening likely involves generation of a Lewis acidic, cationic (bisphosphine oxide)SiCl3 complex. The fact that high asymmetric induction is observed suggests that allenes may represent a new platform for the development of ligands and catalysts for asymmetric synthesis. PMID:19722613
Renuka, N; Ramesh Babu, R; Vijayan, N; Vasanthakumar, Geetha; Krishna, Anuj; Ramamurthi, K
2015-02-25
In the present work, pure and metal substituted L-Prolinium trichloroacetate (LPTCA) single crystals were grown by slow evaporation method. The grown crystals were subjected to single crystal X-ray diffraction (XRD), powder X-ray diffraction, FTIR, UV-Visible-NIR, hardness, photoluminescence and dielectric studies. The dopant concentration in the crystals was measured by inductively coupled plasma (ICP) analysis. Single crystal X-ray diffraction studies of the pure and metal substituted LPTCA revealed that the grown crystals belong to the trigonal system. Ni(2+) and Co(2+) doping slightly altered the lattice parameters of LPTCA without affecting the basic structure of the crystal. FTIR spectral analysis confirms the presence of various functional groups in the grown crystals. The mechanical behavior of pure and doped crystals was analyzed by Vickers's microhardness test. The optical transmittance, dielectric and photoluminescence properties of the pure and doped crystals were analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.
Synthesis of quenchable amorphous diamond
Zeng, Zhidan; Yang, Liuxiang; Zeng, Qiaoshi; ...
2017-08-22
Diamond owes its unique mechanical, thermal, optical, electrical, chemical, and biocompatible materials properties to its complete sp 3-carbon network bonding. Crystallinity is another major controlling factor for materials properties. Although other Group-14 elements silicon and germanium have complementary crystalline and amorphous forms consisting of purely sp 3 bonds, purely sp 3-bonded tetrahedral amorphous carbon has not yet been obtained. In this letter, we combine high pressure and in situ laser heating techniques to convert glassy carbon into “quenchable amorphous diamond”, and recover it to ambient conditions. Our X-ray diffraction, high-resolution transmission electron microscopy and electron energy-loss spectroscopy experiments on themore » recovered sample and computer simulations confirm its tetrahedral amorphous structure and complete sp 3 bonding. This transparent quenchable amorphous diamond has, to our knowledge, the highest density among amorphous carbon materials, and shows incompressibility comparable to crystalline diamond.« less
Synthesis of quenchable amorphous diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Zhidan; Yang, Liuxiang; Zeng, Qiaoshi
Diamond owes its unique mechanical, thermal, optical, electrical, chemical, and biocompatible materials properties to its complete sp 3-carbon network bonding. Crystallinity is another major controlling factor for materials properties. Although other Group-14 elements silicon and germanium have complementary crystalline and amorphous forms consisting of purely sp 3 bonds, purely sp 3-bonded tetrahedral amorphous carbon has not yet been obtained. In this letter, we combine high pressure and in situ laser heating techniques to convert glassy carbon into “quenchable amorphous diamond”, and recover it to ambient conditions. Our X-ray diffraction, high-resolution transmission electron microscopy and electron energy-loss spectroscopy experiments on themore » recovered sample and computer simulations confirm its tetrahedral amorphous structure and complete sp 3 bonding. This transparent quenchable amorphous diamond has, to our knowledge, the highest density among amorphous carbon materials, and shows incompressibility comparable to crystalline diamond.« less
Containerless Studies of Nucleation and Undercooling
NASA Technical Reports Server (NTRS)
Trinh, E. H.
1985-01-01
The long term research goals are to perform experiments to determine the achievable limits of undercooling, the characteristics of heterogeneous nucleation, and the physical properties of significantly undercooled melts. The techniques used are based on the newly developed containerless manipulation methods afforded by acoustic levitation. Ground based investigations involved 0.1 to 2 mm specimens of pure metals and alloys (In, Ga, Sn, Ga-In, ...) as well as glass-forming organic compounds (O-Terphenyl). A currently operating ultrasonic high temperature apparatus has allowed the ground-based levitation of 1 to 2 mm samples of solid aluminum at 550 deg C in an argon atmosphere. Present work is concentrating on the undercooling of pure metal samples (In, Sn), and on the measurements of surface tension and viscosity of the undercooled melts via shape oscillation techniques monitored through optical detection methods. The sound velocity of undercooled O-Terphenyl is being measured in an immiscible liquid levitation cells.
Thermal stability of simple tetragonal and hexagonal diamond germanium
Huston, Larissa Q.; Johnson, Brett C.; Haberl, Bianca; ...
2017-11-07
Here, exotic phases of germanium, that form under high pressure but persist under ambient conditions, are of technological interest due to their unique optical and electrical properties. The thermal evolution and stability of two of these exotic Ge phases, the simple tetragonal (st12) and hexagonal diamond (hd) phases, are investigated in detail. These metastable phases, formed by high pressure decompression in either a diamond anvil cell or by nanoindentation, are annealed at temperatures ranging from 280 to 320 °C for st12-Ge and 200 to 550 °C for hd-Ge. In both cases, the exotic phases originated from entirely pure Ge precursormore » materials. Raman microspectroscopy is used to monitor the phase changes ex situ following annealing. Our results show that hd-Ge synthesized via a pure form of a-Ge first undergoes a subtle change in structure and then an irreversible phase transformation to dc-Ge with an activation energy of (4.3 ± 0.2) eV at higher temperatures. St12-Ge was found to transform to dc-Ge with an activation energy of (1.44 ± 0.08) eV. Taken together with results from previous studies, this study allows for intriguing comparisons with silicon and suggests promising technological applications.« less
Thermal stability of simple tetragonal and hexagonal diamond germanium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huston, Larissa Q.; Johnson, Brett C.; Haberl, Bianca
Here, exotic phases of germanium, that form under high pressure but persist under ambient conditions, are of technological interest due to their unique optical and electrical properties. The thermal evolution and stability of two of these exotic Ge phases, the simple tetragonal (st12) and hexagonal diamond (hd) phases, are investigated in detail. These metastable phases, formed by high pressure decompression in either a diamond anvil cell or by nanoindentation, are annealed at temperatures ranging from 280 to 320 °C for st12-Ge and 200 to 550 °C for hd-Ge. In both cases, the exotic phases originated from entirely pure Ge precursormore » materials. Raman microspectroscopy is used to monitor the phase changes ex situ following annealing. Our results show that hd-Ge synthesized via a pure form of a-Ge first undergoes a subtle change in structure and then an irreversible phase transformation to dc-Ge with an activation energy of (4.3 ± 0.2) eV at higher temperatures. St12-Ge was found to transform to dc-Ge with an activation energy of (1.44 ± 0.08) eV. Taken together with results from previous studies, this study allows for intriguing comparisons with silicon and suggests promising technological applications.« less
NASA Astrophysics Data System (ADS)
Nna-Mvondo, D.; Anderson, C. M.; Samuelson, R. E.
2017-12-01
Two types of cloud systems have been repeatedly observed in Titan's atmosphere since the Cassini spacecraft entered into orbit around Saturn in 2004: (1) tropospheric convective methane clouds and (2) stratospheric ice clouds. Most of the stratospheric ice clouds observed by Cassini's Composite InfraRed Spectrometer (CIRS) form as a result of vapor condensation processes from a combination of pure and mixed nitriles and hydrocarbons. Examples include the n6 band of crystalline cyanoacetylene (HC3N) at 506 cm-1 (Anderson et al., 2010 and references therein) and the CIRS-discovered co-condensed nitrile ice feature at 160 cm-1 (Anderson and Samuelson, 2011). Other CIRS-observed stratospheric ice emission features, such as the n8 band of dicyanoacetylene (C4N2) at 478 cm-1 and the Haystack emission feature at 220 cm-1, have no associated observed vapor emission features, and could therefore form through more complex chemical processes such as solid-state photochemistry as suggested by Anderson et al. (2016). In the Spectroscopy for Planetary Ices Environments (SPICE) laboratory at NASA GSFC, we are undergoing investigations of Titan's observed stratospheric ices to better understand their chemical compositions, formation mechanisms, and optical properties. We accomplish this using the SPECtroscopy of Titan-Related ice AnaLogs (SPECTRAL) high-vacuum chamber, in which we perform transmission spectroscopy of thin films of pure and mixed ices, from the near- to far-infrared (50 cm-1 to 11700 cm-1), and dose at low temperatures (30 K to 150 K), to study their spectral evolution and optical properties. Here we discuss our laboratory results obtained for various experiments containing pure and mixed nitrile ices (and some combined with benzene). The first significant result reveals that the libration mode of HCN (166 - 169 cm-1) is drastically altered by the surrounding molecules when mixing occurs in a co-condensed phase. For propionitrile ice, we observe peculiar temperature and time-driven ice phase transitions (as compared to other nitrile ices), revealed by significant spectral changes in the mid and far-IR that cease once a stable crystalline phase is achieved. Results from such experimental measurements provide crucial data to deepen our understanding of Titan's stratospheric chemistry.
First-principles Study of the Electronic Structure and Optical Properties of MgH2
NASA Astrophysics Data System (ADS)
Alford, Ashley; Chou, Mei-Yin
2003-03-01
It has been noticed that magnesium might play an interesting role in recently discovered switchable-mirror systems. For example, the films of rare earth and magnesium alloys are found to be superior to the pure rare-earth samples in maximum transparency and mirror-state reflectivity [1]. Moreover, the magnesium-rich Ni-Mg alloy films turned out to be a switchable-mirror system without rare earths [2]. In both cases, pure transparent MgH2 is reversibly formed when these alloys take up hydrogen. In order to model the optical properties of these films, we need to know the electronic and optical properties of MgH2. In this work, we investigate its bonding characteristics, band structure, and dielectric properties with first-principles theoretical methods. The stability of the crystal and the bonding are studied using density functional theory and pseudopotential methods. The excited state properties (the quasiparticle spectra) are studied by many-body perturbation theory within the so-called GW approximation in which the electronic self-energy is approximated by the full Green's function (G) times the screened Coulomb interaction (W). We will report the results for both the rutile-structured alpha-MgH2 and the low-symmetry gamma-MgH2. [1] P. van der Sluis, M. Ouwerkerk, and P. A. Duine, Appl. Phys. Lett. 70, 3356 (1997). [2] T. J. Richardson, J. L. Slack, R. D. armitage, R. Kostecki, B. Farangis, and M. D. Rubin, Appl. Phys. Lett. 78, 3047 (2001).
NASA Astrophysics Data System (ADS)
Cataldo, Franco; Ursini, Ornella; Angelini, Giancarlo
2008-08-01
For the first time the radioracemization of α(+)pinene and α(-)pinene, of turpentine and of R(-)- α-phellandrene has been studied by optical rotatory dispersion (ORD) spectroscopy. For all these compounds, the radioracemization implies a shift of the ORD curves toward lower levels of specific optical rotation. The radioracemization degree ( RR) has been defined and calculated for all the compounds studied. It has been found that for radiation dose of 1 MGy the radioracemization degree is about 4.5% for the compound with the highest optical purity and reaches 7-8% for the less optically pure compounds, demonstrating that impurities can affect greatly the radioracemization. In contrast with the general radioracemization effect exerted by high-energy radiation on chiral molecules, β(-)pinene, β(+)pinene when irradiated show an increment of their specific optical rotation. This fact has been measured for the first time by ORD spectroscopy and the amplification degree of chirality can reach 1000% in the near UV. This phenomenon is due to the formation of a chiral polymer, poly- β-pinene, which forms a solution with the monomer enhancing its optical activity. The implications for the theories of the origin of life of such unexpected phenomenon are discussed briefly.
Wang, Lihong V.
2004-01-01
This article reviews two types of ultrasound-mediated biophotonic imaging–acousto-optical tomography (AOT, also called ultrasound-modulated optical tomography) and photo-acoustic tomography (PAT, also called opto-acoustic or thermo-acoustic tomography)–both of which are based on non-ionizing optical and ultrasonic waves. The goal of these technologies is to combine the contrast advantage of the optical properties and the resolution advantage of ultrasound. In these two technologies, the imaging contrast is based primarily on the optical properties of biological tissues, and the imaging resolution is based primarily on the ultrasonic waves that either are provided externally or produced internally, within the biological tissues. In fact, ultrasonic mediation overcomes both the resolution disadvantage of pure optical imaging in thick tissues and the contrast and speckle disadvantages of pure ultrasonic imaging. In our discussion of AOT, the relationship between modulation depth and acoustic amplitude is clarified. Potential clinical applications of ultrasound-mediated biophotonic imaging include early cancer detection, functional imaging, and molecular imaging. PMID:15096709
Effective optical constants of anisotropic materials
NASA Technical Reports Server (NTRS)
Aronson, J. R.; Emslie, A. G.
1980-01-01
The applicability of a technique for determining the optical constants of soil or aerosol components on the basis of measurements of the reflectance or transmittance of inhomogeneous samples of component material is investigated. Optical constants for a sample of very pure quartzite were obtained by a specular reflection technique and line parameters were calculated by classical dispersion theory. Predictions of the reflectance of powdered quartz were then derived from optical constants measured for the anisotropic quartz and for pure quartz crystals, and compared with experimental measurements. The calculated spectra are found to resemble each other moderately well in shape, however the reflectance level calculated from the psuedo-optical constants (quartzite) is consistently below that calculated from quartz values. The spectrum calculated from the quartz optical constants is also shown to represent the experimental nonrestrahlen features more accurately. It is thus concluded that although optical constants derived from inhomogeneous materials may represent the spectral features of a powdered sample qualitatively a quantitative fit to observed data is not likely.
Enantiomeric and Diastereoisomeric Relationships: A Practical Approach
NASA Astrophysics Data System (ADS)
Durieu, V.; Martiat, G.; Vandergeten, M. Ch.; Pirsoul, F.; Toubeau, F.; van Camp, Agnès
2000-06-01
We describe an experiment in organic chemistry in which the students prepare, purify, and characterize optical isomers. The three optical isomers of the bisoxalamides obtained by the reaction of racemic 1-phenylethylamine with diethyloxalate are separable by flash chromatography into the racemic mixture of (R,R) + (S,S) oxalamides and the (R,S) meso compound. The purified diastereomers are characterized using UV and IR spectra and mp. The mixture may also be quantitatively analyzed by HPLC. The meso isomer and the enantiomers are formed in nearly identical quantities. This observation offers us a means to calculate the optical purity of the starting a-phenylethylamine: the incorporation of an R or S carbon into the oxalamide is assumed to be purely statistical. After resolution of the alpha-phenylethylamines by a previously described procedure and transformation of the enriched R(+) and S(-) amines into the corresponding bisoxalamides, the students determine the diastereomeric composition of their products by HPLC. The calculated ee's of the enriched R(+) and S(-)-amines are similar to those obtained through optical rotation measurements. The advantage of our method is that it requires a much smaller sample of resolved amine.
Properties of the exotic metastable ST12 germanium allotrope
Zhao, Zhisheng; Zhang, Haidong; Kim, Duck Young; Hu, Wentao; Bullock, Emma S.; Strobel, Timothy A.
2017-01-01
The optical and electronic properties of semiconducting materials are of great importance to a vast range of contemporary technologies. Diamond-cubic germanium is a well-known semiconductor, although other ‘exotic' forms may possess distinct properties. In particular, there is currently no consensus for the band gap and electronic structure of ST12-Ge (tP12, P43212) due to experimental limitations in sample preparation and varying theoretical predictions. Here we report clear experimental and theoretical evidence for the intrinsic properties of ST12-Ge, including the first optical measurements on bulk samples. Phase-pure bulk samples of ST12-Ge were synthesized, and the structure and purity were verified using powder X-ray diffraction, transmission electron microscopy, Raman and wavelength/energy dispersive X-ray spectroscopy. Optical measurements indicate that ST12-Ge is a semiconductor with an indirect band gap of 0.59 eV and a direct optical transition at 0.74 eV, which is in good agreement with electrical transport measurements and our first-principles calculations. PMID:28045027
Properties of the exotic metastable ST12 germanium allotrope
Zhao, Zhisheng; Zhang, Haidong; Kim, Duck Young; ...
2017-01-03
The optical and electronic properties of semiconducting materials are of great importance to a vast range of contemporary technologies. Diamond-cubic germanium is a well-known semiconductor, although other ‘exotic’ forms may possess distinct properties. In particular, there is currently no consensus for the band gap and electronic structure of ST12-Ge (tP12, P4 32 12) due to experimental limitations in sample preparation and varying theoretical predictions. Here we report clear experimental and theoretical evidence for the intrinsic properties of ST12-Ge, including the first optical measurements on bulk samples. Phase-pure bulk samples of ST12-Ge were synthesized, and the structure and purity were verifiedmore » using powder X-ray diffraction, transmission electron microscopy, Raman and wavelength/energy dispersive X-ray spectroscopy. Lastly, optical measurements indicate that ST12-Ge is a semiconductor with an indirect band gap of 0.59 eV and a direct optical transition at 0.74 eV, which is in good agreement with electrical transport measurements and our first-principles calculations.« less
Liu, Xu; Lu, Ming; Guo, Zhefei; Huang, Lin; Feng, Xin; Wu, Chuanbin
2012-03-01
To explore in-situ forming cocrystal as a single-step, efficient method to significantly depress the processing temperature and thus minimize the thermal degradation of heat-sensitive drug in preparation of solid dispersions by melting method (MM) and hot melt extrusion (HME). Carbamazepine (CBZ)-nicotinamide (NIC) cocrystal solid dispersions were prepared with polymer carriers PVP/VA, SOLUPLUS and HPMC by MM and/or HME. The formation of cocrystal was investigated by differential scanning calorimetry and hot stage polarized optical microscopy. State of CBZ in solid dispersion was characterized by X-ray powder diffraction and optical microscopy. Interactions between CBZ, NIC and polymers were investigated by FTIR. Dissolution behaviors of solid dispersions were compared with that of pure CBZ. CBZ-NIC cocrystal with melting point of 160°C was formed in polymer carriers during heating process, and the preparation temperature of amorphous CBZ solid dispersion was therefore depressed to 160°C. The dissolution rate of CBZ-NIC cocrystal solid dispersion was significantly increased. By in-situ forming cocrystal, chemically stable amorphous solid dispersions were prepared by MM and HME at a depressed processing temperature. This method provides an attractive opportunity for HME of heat-sensitive drugs.
Structural and optical properties of pure and copper doped zinc oxide nanoparticles
NASA Astrophysics Data System (ADS)
Sajjad, Muhammad; Ullah, Inam; Khan, M. I.; Khan, Jamshid; Khan, M. Yaqoob; Qureshi, Muhammad Tauseef
2018-06-01
Pure and copper-doped zinc oxide nanoparticles (NPs) have been synthesized via chemical co-precipitation method where hydrazine is used as reducing agent and aqueous extract of Euphorbia milii plant as capping agent. Main objectives of the reported work are to investigate the effect of copper doping on crystal structure of ZnO nanoparticles; to study the effect of copper doping on optical band gap of ZnO nanoparticles and photoluminescence (PL) study of pure and copper-doped ZnO nanoparticles. To achieve the aforementioned objectives, XRD and SEM tests were performed for the identification and confirmation of crystal structure and morphology of the prepared samples. From XRD data the average grain size for pure ZnO was observed to be 24.62 nm which was first decreased to 18.95 nm for 5 wt% Cu-doped sample and then it was found to increase up to 37.80 nm as the Cu doping was increased to 7 wt%. Optical band gap of pure and Cu-doped ZnO nanoparticles was calculated from diffuse reflectance spectroscopy (DRS) spectra and was found to decrease from 3.13 eV to 2.94 eV as the amount of Cu increases up to 7 wt%. In photoluminescence study, PL technique was used and enhanced visible spectrum was observed. For further characterization FT-IR and EDX tests were also carried out.
In-line interferometer for broadband near-field scanning optical spectroscopy.
Brauer, Jens; Zhan, Jinxin; Chimeh, Abbas; Korte, Anke; Lienau, Christoph; Gross, Petra
2017-06-26
We present and investigate a novel approach towards broad-bandwidth near-field scanning optical spectroscopy based on an in-line interferometer for homodyne mixing of the near field and a reference field. In scattering-type scanning near-field optical spectroscopy, the near-field signal is usually obscured by a large amount of unwanted background scattering from the probe shaft and the sample. Here we increase the light reflected from the sample by a semi-transparent gold layer and use it as a broad-bandwidth, phase-stable reference field to amplify the near-field signal in the visible and near-infrared spectral range. We experimentally demonstrate that this efficiently suppresses the unwanted background signal in monochromatic near-field measurements. For rapid acquisition of complete broad-bandwidth spectra we employ a monochromator and a fast line camera. Using this fast acquisition of spectra and the in-line interferometer we demonstrate the measurement of pure near-field spectra. The experimental observations are quantitatively explained by analytical expressions for the measured optical signals, based on Fourier decomposition of background and near field. The theoretical model and in-line interferometer together form an important step towards broad-bandwidth near-field scanning optical spectroscopy.
Design principles and realization of electro-optical circuit boards
NASA Astrophysics Data System (ADS)
Betschon, Felix; Lamprecht, Tobias; Halter, Markus; Beyer, Stefan; Peterson, Harry
2013-02-01
The manufacturing of electro-optical circuit boards (EOCB) is based to a large extent on established technologies. First products with embedded polymer waveguides are currently produced in series. The range of applications within the sensor and data communication markets is growing with the increasing maturity level. EOCBs require design flows, processes and techniques similar to existing printed circuit board (PCB) manufacturing and appropriate for optical signal transmission. A key aspect is the precise and automated assembly of active and passive optical components to the optical waveguides which has to be supported by the technology. The design flow is described after a short introduction into the build-up of EOCBs and the motivation for the usage of this technology within the different application fields. Basis for the design of EOCBs are the required optical signal transmission properties. Thereafter, the devices for the electro-optical conversion are chosen and the optical coupling approach is defined. Then, the planar optical elements (waveguides, splitters, couplers) are designed and simulated. This phase already requires co-design of the optical and electrical domain using novel design flows. The actual integration of an optical system into a PCB is shown in the last part. The optical layer is thereby laminated to the purely electrical PCB using a conventional PCB-lamination process to form the EOCB. The precise alignment of the various electrical and optical layers is thereby essential. Electrical vias are then generated, penetrating also the optical layer, to connect the individual electrical layers. Finally, the board has to be tested electrically and optically.
Green synthesis and characterization of ANbO3 (A = Na, K) nanopowders fabricated using a biopolymer
NASA Astrophysics Data System (ADS)
Khorrami, Gh. H.; Mousavi, M.; Khayatian, S. A.; Kompany, A.; Khorsand Zak, A.
2017-10-01
Lead-free sodium niobate (NaNbO3, NN) and potassium niobate (KNbO3, KN) nanopowders were successfully synthesized by a simple and green synthesis process in gelatin media. Gelatin, which is a biopolymer, was used as stabilizer. In order to determine the lowest calcination temperature needed to obtain pure NN and KN nanopowders, the produced gels were analyzed by thermogravometric analyzer (TGA). The produced gels were calcined at 500∘C and 600∘C. The structural and optical properties of the prepared powders were examined using X-ray diffraction (XRD) technique, transmission electron microscopy (TEM), and UV-Vis spectroscopy. The XRD results revealed that pure phase NN and KN nanopowders were formed at low temperature calcination of 500∘C and 600∘C, respectively. The Scherrer formula and size-strain plot (SSP) method were employed to estimate crystallite size and lattice strain of the samples. The TEM images show that the NN and KN samples calcined at 600∘C have cubic shape with an average particle size of 60.95 and 39.29 nm, respectively. The optical bandgap energy of the samples was calculated using UV-Vis diffused reflectance spectra of the samples and Kubelka-Munck relation.
Laser induced single spot oxidation of titanium
NASA Astrophysics Data System (ADS)
Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.
2016-11-01
Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels' colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.
Optical characterization of pure vegetable oils and their biodiesels using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Firdous, S.; Anwar, S.; Waheed, A.; Maraj, M.
2016-04-01
Great concern regarding energy resources and environmental polution has increased interest in the study of alternative sources of energy. Biodiesels as an alternative fuel provide a suitable diesel oil substitute for internal combustion engines. The Raman spectra of pure biodiesels of soybean oil, olive oil, coconut oil, animal fats, and petroleum diesel are optically characterized for quality and biofuel as an alternative fuel. The most significant spectral differences are observed in the frequency range around 1457 cm-1 for pure petroleum diesel, 1427 for fats biodiesel, 1670 cm-1 for pure soybean oil, 1461 cm-1 for soybean oil based biodiesel, 1670 cm-1 for pure olive oil, 1666 cm-1 for olive oil based biodiesel, 1461 cm-1 for pure coconut oil, and 1460 cm-1 for coconut oil based biodiesel, which is used for the analysis of the phase composition of oils. A diode pump solid-state laser with a 532 nm wavelength is used as an illuminating light. It is demonstrated that the peak positions and relative intensities of the vibrations of the oils can be used to identify the biodiesel quality for being used as biofuel.
Optical performances of the FM JEM-X masks
NASA Astrophysics Data System (ADS)
Reglero, V.; Rodrigo, J.; Velasco, T.; Gasent, J. L.; Chato, R.; Alamo, J.; Suso, J.; Blay, P.; Martínez, S.; Doñate, M.; Reina, M.; Sabau, D.; Ruiz-Urien, I.; Santos, I.; Zarauz, J.; Vázquez, J.
2001-09-01
The JEM-X Signal Multiplexing Systems are large HURA codes "written" in a pure tungsten plate 0.5 mm thick. 24.247 hexagonal pixels (25% open) are spread over a total area of 535 mm diameter. The tungsten plate is embedded in a mechanical structure formed by a Ti ring, a pretensioning system (Cu-Be) and an exoskeleton structure that provides the required stiffness. The JEM-X masks differ from the SPI and IBIS masks on the absence of a code support structure covering the mask assembly. Open pixels are fully transparent to X-rays. The scope of this paper is to report the optical performances of the FM JEM-X masks defined by uncertainties on the pixel location (centroid) and size coming from the manufacturing and assembly processes. Stability of the code elements under thermoelastic deformations is also discussed. As a general statement, JEM-X Mask optical properties are nearly one order of magnitude better than specified in 1994 during the ESA instrument selection.
Directly Phase-Modulated Light Source
NASA Astrophysics Data System (ADS)
Yuan, Z. L.; Fröhlich, B.; Lucamarini, M.; Roberts, G. L.; Dynes, J. F.; Shields, A. J.
2016-07-01
The art of imparting information onto a light wave by optical signal modulation is fundamental to all forms of optical communication. Among many schemes, direct modulation of laser diodes stands out as a simple, robust, and cost-effective method. However, the simultaneous changes in intensity, frequency, and phase have prevented its application in the field of secure quantum communication. Here, we propose and experimentally demonstrate a directly phase-modulated light source which overcomes the main disadvantages associated with direct modulation and is suitable for diverse applications such as coherent communications and quantum cryptography. The source separates the tasks of phase preparation and pulse generation between a pair of semiconductor lasers leading to very pure phase states. Moreover, the cavity-enhanced electro-optic effect enables the first example of subvolt half-wave phase modulation at high signal rates. The source is compact, stable, and versatile, and we show its potential to become the standard transmitter for future quantum communication networks based on attenuated laser pulses.
El Alami, Mohammed Samir Ibn; El Amrani, Mohamed Amin; Agbossou-Niedercorn, Francine; Suisse, Isabelle; Mortreux, André
2015-01-19
The preparation of optically pure secondary alcohols in the presence of catalysts based on chiral ligands derived from monoterpenes, such as pinenes, limonenes and carenes, is reviewed. A wide variety of these ligands has been synthesized and used in several catalytic reactions, including hydrogen transfer, C-C bond formation via addition of organozinc compounds to aldehydes, hydrosilylation, and oxazaborolidine reduction, leading to high activities and enantioselectivities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakur, Anjna, E-mail: anjna56@gmail.com; Thakur, Priya; Yadav, Kamlesh, E-mail: kamlesh.yadav001@gmail.com
2016-05-06
In this paper, poly (ethyl methacrylate) (PEMA) and (PEMA){sub 0.85}/(ZnO){sub 0.15} nanocomposite films for 2, 3, 4 and 5 minutes have been deposited by spray pyrolysis technique on indium tin oxide (ITO) coated substrate. The effect of thickness of the film on the morphological and optical properties of PEMA and (PEMA){sub 0.85}/(ZnO){sub 0.15} nanocomposite films are studied. The morphological and optical properties of pure PEMA and (PEMA){sub 0.85}/(ZnO){sub 0.15} nanocomposite films are compared. The field emission scanning electron microscopy (FESEM) shows that as the thickness of film increases, uniformity of films increases. It is found from UV-Visible spectra that themore » energy band gap decreases with increasing the deposition time and refractive index increases with increasing the thickness of the film. The band gap of the nanocomposites is found less than the pure polymer film and opposite trend is observed for refractive index. The optical absorption of PEMA/ZnO nanocomposite films is higher than pure PEMA film. The thickness of the nanocomposite film plays a significant role in the tunability of the optical properties.« less
Compounds for neutron radiation detectors and systems thereof
Payne, Stephen A.; Stoeffl, Wolfgang; Zaitseva, Natalia P.; Cherepy, Nerine J.; Carman, M. Leslie
2013-06-11
One embodiment includes a material exhibiting an optical response signature for neutrons that is different than an optical response signature for gamma rays, said material exhibiting performance comparable to or superior to stilbene in terms of distinguishing neutrons from gamma rays, wherein the material is not stilbene. Another embodiment includes a substantially pure crystal exhibiting an optical response signature for neutrons that is different than an optical response signature for gamma rays, the substantially pure crystal comprising a material selected from a group consisting of: 1-1-4-4-tetraphenyl-1-3-butadiene; 2-fluorobiphenyl-4-carboxylic acid; 4-biphenylcarboxylic acid; 9-10-diphenylanthracene; 9-phenylanthracene; 1-3-5-triphenylbenzene; m-terphenyl; bis-MSB; p-terphenyl; diphenylacetylene; 2-5-diphenyoxazole; 4-benzylbiphenyl; biphenyl; 4-methoxybiphenyl; n-phenylanthranilic acid; and 1-4-diphenyl-1-3-butadiene.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-10
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-864] Pure Magnesium in Granular... duty order \\1\\ on pure magnesium in granular form from the People's Republic of China (``PRC'') to... circumstances review. The Department is now rescinding this CCR. \\1\\ See Antidumping Duty Order: Pure Magnesium...
An improved measurement system for FOG pure lag time with no changing of FOG work status
NASA Astrophysics Data System (ADS)
Chen, X.; Yang, J. H.; Zhou, Y. L.; Shu, X. W.
2018-05-01
The minimum pure lag time is an important factor for characterizing the dynamic performance of fiber optical gyroscope. It is defined as the time duration from the reception of velocity-shock signal to the output of corresponding fiber-optic gyroscope data. Many engineering projects have required for this index specifically, so the measurement of the minimum pure lag time is highly demanded. In typically measurement system, the work status of tested FOG has to be changed. In this work, a FOG pure lag time measurement system without changing the work status of the FOG has been demonstrated. During the operation of this test system, the impact structure generated a shock towards the FOG, and the pure lag time was measured through data processing analysis. The design scheme and test principle have been researched and analyzed in detail. And a prototype has been developed and used for experiment successfully. This measurement system can realize a measurement accuracy of better than ±3 μs and a system resolution of 108.6ns.
Structural, chemical and physical properties of pure and La3+ doped L-Threonine acetate crystals
NASA Astrophysics Data System (ADS)
Senthamizhan, A.; Sambathkumar, K.; Nithiyanantham, S.; Venkatachalapathy, M.; Rajkamal, N.
2017-12-01
The pure and La3+ doped L- Threonine crystals can be grown by slow evaporation techniques. The crystal structure were examined through X-Ray diffraction (XRD) analysis, confirmed the P212121 system. The quantitative nature of dopant can be analyzed with Inductively Coupled Plasma (ICP) study. The Fourier Transform Infra-Red (FTIR) and Fourier Transform (FT- Raman) investigations yields the possible stretching/bonding with their functional groups and the qualitative/quantitative nature of both crystals is analyzed. The optical behavior of crystals can be studied through Ultra Violet (UV) - Visible spectrometer. The mechanical, thermal and decomposition studies can be carried out through Vickers hardness test, Thermo Gravometric Analysis (TGA) and Differential Thermal Analysis (DTA). The Non Linear Optical (NLO) properties are found more than Potassium Phosphate (KDP) through Kurtz powders technique. The dielectric and optical absorption studies for both pure and L-doped crystals were studied and interpreted all the properties. The La3+ dopant increases the properties are investigated.
Sawai, Hideki; Na, Kyungsu; Sasaki, Nanami; Mimitsuka, Takashi; Minegishi, Shin-ichi; Henmi, Masahiro; Yamada, Katsushige; Shimizu, Sakayu; Yonehara, Tetsu
2011-01-01
This report describes the production of highly optically pure D-lactic acid by the continuous fermentation of Sporolactobacillus laevolacticus and S. inulinus, using a membrane-integrated fermentation (MFR) system. The optical purity of D-lactic acid produced by the continuous fermentation system was greater than that produced by batch fermentation; the maximum value for the optical purity of D-lactic acid reached 99.8% enantiomeric excess by continuous fermentation when S. leavolacticus was used. The volumetric productivity of the optically pure D-lactic acid was about 12 g/L/h, this being approximately 11-fold higher than that obtained by batch fermentation. An enzymatic analysis indicated that both S. laevolacticus and S. inulinus could convert L-lactic acid to D-lactic acid by isomerization after the late-log phase. These results provide evidence for an effective bio-process to produce D-lactic acid of greater optical purity than has conventionally been achieved to date.
MEMS Terahertz Focal Plane Array With Optical Readout
2016-06-01
heat sink via a thermal insulator (pure SiO2 ) and two bi-material legs formed by Al and SiO2 as shown in Figure 12. 13 Figure 12. THz...The primary doublet lens is made of two different pieces of glass (E- BAF11 and N-SF11) which are cemented together. The respective indices of...BAF11 glass 1.6725 n2 (N-SF11) Index of refraction of N-SF11 glass 1.7975 t1 (E-BAF11) Thickness of E-BAF11 glass 20 mm t2 (N-SF11) Thickness of N
NASA Astrophysics Data System (ADS)
Friedman, Serah; Khalil, Matt; Taborek, Peter
2013-03-01
Pure liquid water does not wet most solid surfaces. Liquid water on these surfaces beads up and forms droplets with a finite contact angle. General thermodynamic principles suggest that as the temperature approaches the critical point, the contact angle should go to zero, marking the wetting transition. We have made an optical cell which can operate near the critical point of water (Tc =373C, Pc =217 atm) to study this phenomenon on sapphire, graphite and silicon. We have used two methods to measure the wetting temperature of water on these surfaces. Firstly, we studied a single droplet on a horizontal surface and optically measured the change in contact angle as a function of increasing temperature. Second, we studied the condensation of droplets on a vertical plate as a function of temperature. As the temperature approached the wetting temperature in both cases, the droplets spread and eventually form a smooth film along the surface of the plate. The wetting temperature on sapphire is near 240C and is considerably higher on graphite. Our observed values of Tw are significantly higher than the predictions made by the sharp-kink approximation and recent molecular dynamics simulations.
Zhang, Caili; Zhou, Cheng; Assavasirijinda, Nilnate; Yu, Bo; Wang, Limin; Ma, Yanhe
2017-11-25
Optically pure D-lactic acid (≥ 99%) is an important precursor of polylactic acid. However, there are relatively few studies on D-lactic acid fermentation compared with the extensive investigation of L-lactic acid production. Most lactic acid producers are mesophilic organisms. Optically pure D-lactic acid produced at high temperature not only could reduce the costs of sterilization but also could inhibit the growth of other bacteria, such as L-lactic acid producers. Thermophilic Bacillus coagulans is an excellent producer of L-lactic acid with capable of growing at 50 °C. In our previous study, the roles of two L-lactic acid dehydrogenases have been demonstrated in B. coagulans DSM1. In this study, the function of another annotated possible L-lactate dehydrogenase gene (ldhL3) was verified to be leucine dehydrogenase with an activity of 0.16 units (μmol/min) per mg protein. Furthermore, the activity of native D-lactate dehydrogenase was too low to support efficient D-lactic acid production, even under the control of strong promoter. Finally, an engineered B. coagulans D-DSM1 strain with the capacity for efficient production of D-lactic acid was constructed by deletion of two L-lactate dehydrogenases genes (ldhL1 and ldhL2) and insertion of the D-lactate dehydrogenase gene (LdldhD) from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 at the position of ldhL1. This genetically engineered strain produced only D-lactic acid under non-sterilized condition, and finally 145 g/L of D-lactic acid was produced with an optical purity of 99.9% and a high yield of 0.98 g/g. This is the highest optically pure D-lactic acid titer produced by a thermophilic strain.
Optical Measurement Technology For Aluminium Extrusions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moe, Per Thomas; Willa-Hansen, Arnfinn; Stoeren, Sigurd
2007-04-07
Optical measurement techniques such as laser scanning, structured light scanning and photogrammetry can be used for accurate shape control for aluminum extrusion and downstream processes. The paper presents the fundamentals of optical shape measurement. Furthermore, it focuses on how full-field in- and off-line shape measurement during pure-bending of aluminum extrusions has been performed with stripe projection (structured light) using white light. Full field shape measurement is difficult to implement industrially, but is very useful as a laboratory tool. For example, it has been clearly shown how moderate internal air pressure (less than 5 bars) can significantly reduce undesirable cross-sectional shapemore » distortions during pure bending, and how buckling of the compressive flange occurs at an early stage. Finally, a stretch-bending set-up with adaptive shape control using internal gas pressure and optical techniques is presented.« less
Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene.
Wu, Zhi-Feng; Gao, Peng-Fei; Guo, Lei; Kang, Jun; Fang, Dang-Qi; Zhang, Yang; Xia, Ming-Gang; Zhang, Sheng-Li; Wen, Yu-Hua
2017-12-06
A traditional doping technique plays an important role in the band structure engineering of two-dimensional nanostructures. Since electron interaction is changed by doping, the optical and electrochemical properties could also be significantly tuned. In this study, density functional theory calculations have been employed to explore the structural stability, and electronic and optical properties of B-doped phosphorene. The results show that all B-doped phosphorenes are stable with a relatively low binding energy. Of particular interest is that these B-doped systems exhibit an indirect band gap, which is distinct from the direct one of pure phosphorene. Despite the different concentrations and configurations of B dopants, such indirect band gaps are robust. The screened hybrid density functional HSE06 predicts that the band gap of B-doped phosphorene is slightly smaller than that of pure phosphorene. Spatial charge distributions at the valence band maximum (VBM) and the conduction band minimum (CBM) are analyzed to understand the features of an indirect band gap. By comparison with pure phosphorene, B-doped phosphorenes exhibit strong anisotropy and intensity of optical absorption. Moreover, B dopants could enhance the stability of Li adsorption on phosphorene with less sacrifice of the Li diffusion rate. Our results suggest that B-doping is an effective way of tuning the band gap, enhancing the intensity of optical absorption and improving the performances of Li adsorption, which could promote potential applications in novel optical devices and lithium-ion batteries.
Two classes of capillary optical fibers: refractive and photonic
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2008-11-01
This paper is a digest tutorial on some properties of capillary optical fibers (COF). Two basic types of capillary optical fibers are clearly distinguished. The classification is based on propagation mechanism of optical wave. The refractive, singlemode COF guides a dark hollow beam of light (DHB) with zero intensity on fiber axis. The photonic, singlemode COF carries nearly a perfect axial Gaussian beam with maximum intensity on fiber axis. A subject of the paper are these two basic kinds of capillary optical fibers of pure refractive and pure photonic mechanism of guided wave transmission. In a real capillary the wave may be transmitted by a mixed mechanism, refractive and photonic, with strong interaction of photonic and refractive guided wave modes. Refractive capillary optical fibers are used widely for photonic instrumentation applications, while photonic capillary optical fibers are considered for trunk optical communications. Replacement of classical, single mode, dispersion shifted, 1550nm optimized optical fibers for communications with photonic capillaries would potentially cause a next serious revolution in optical communications. The predictions say that such a revolution may happen within this decade. This dream is however not fulfilled yet. The paper compares guided modes in both kinds of optical fiber capillaries: refractive and photonic. The differences are emphasized indicating prospective application areas of these fibers.
Raman Scattering Studies on Ag Nanocluster Composites Formed by Ion Implantation into Silica
NASA Astrophysics Data System (ADS)
Ren, Feng; Jiang, Chang Zhong; Fu, De Jun; Fu, Qiang
2005-12-01
Highly-pure amorphous silica slides were implanted by 200 keV Ag ions with doses ranged from 1× 1016 to 2× 1017 ions/cm2. Optical absorption spectra show that Ag nanoclusters with various sizes have been formed. Enhancement of surface enhanced Raman scattering signal by a factor up to about 103 was obtained by changing the Ag particle size. The silica was damaged by the implanted Ag ions, and the large compression stress on the silica leads to the shift of Raman peaks. New bands at 1368 and 1586 cm-1, which are attributed to the vibration of Ag-O bond and O2 molecules in silica, are observed in the samples with doses higher than 1× 1017 ions/cm2.
Titan haze: structure and properties of cyanoacetylene and cyanoacetylene-acetylene photopolymers
NASA Technical Reports Server (NTRS)
Clarke, D. W.; Ferris, J. P.
1997-01-01
The structure and morphological properties of polymers produced photochemically from the UV irradiation of cyanoacetylene and cyanoacetylene mixtures have been examined to evaluate their possible contribution to the haze layers found on Titan. A structural analysis of these polymers may contribute to our understanding of the data returned from the Huygens probe of the Cassini mission that will pass through the atmosphere of Titan in the year 2004. Infrared analysis, elemental analysis, and thermal methods (thermogravimetric analysis, thermolysis, pyrolysis) were used to examine structures of polycyanoacetylenes produced by irradiation of the gas phase HC3N at 185 and 254 nm. The resulting brown to black polymer, which exists as small particles, is believed to be a branched chain of conjugated carbon-carbon double bonds, which, on exposure to heat, cyclizes to form a graphitic structure. Similar methods of analysis were used to show that when HC3N is photolyzed in the presence of Titan's other atmospheric constituents (CH4, C2H6, C2H2, and CO), a copolymer is formed in which the added gases are incorporated as substituents on the polymer chain. Of special significance is the copolymer of HC3N and acetylene (C2H2). Even in experiments where C2H2 was absorbing nearly all of the incident photons, the ratio of C2H2 to HC3N found in the resulting polymer was only 2:1. Scanning electron microscopy was used to visually examine the polymer particles. While pure polyacetylene particles are amorphous spheres roughly 1 micrometer in diameter, polycyanoacetylenes appear to be strands of rough, solid particles slightly smaller in size. The copolymer of HC3N and C2H2 exhibits characteristics of both pure polymers. This is particularly important as pure polyacetylenes do not match the optical constants measured for Titan's atmospheric hazes. The copolymers produced by the incorporation of other minor atmospheric constituents, like HC3N, into the polyacetylenes are expected to have optical constants more comparable to those of the Titan haze.
Microwave-assisted Bi2Se3 nanoparticles using various organic solvents
NASA Astrophysics Data System (ADS)
Vijila, J. Joy Jeba; Mohanraj, K.; Henry, J.; Sivakumar, G.
2016-01-01
Microwave assisted Bi2Se3 nanoparticles were synthesized from five different solvents DMF, EG, EG + H2O, EDA + dil.HNO3 and N2H4 + H2O + Ethanol. The influence of solvents on purity of the compound was analysed by using X-ray diffraction patterns. The result indicates pure rhombohedral Bi2Se3 nanoparticles formed for N2H4 + H2O + Ethanol. The presence of vibrational bands in the range of 400-800 cm- 1 is confirmed the formation of Bi2Se3. The maximum optical absorption observed around 450 nm and the band gap values are found in the range of 1.5 eV-2.17 eV for all the solvents. The nanostructure of the Bi2Se3 particles change with solvents. From the experimental results, the solvent N2H4 + H2O + Ethanol produces pure nanosize Bi2Se3 particles under the microwave assisted method.
Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis.
Huber, R; Burggraf, S; Mayer, T; Barns, S M; Rossnagel, P; Stetter, K O
1995-07-06
A variety of hyperthermophilic bacteria and archaea have been isolated from high-temperature environments by plating and serial dilutions. However, these techniques allow only the small percentage of organisms able to form colonies, or those that are predominant within environmental samples, to be obtained in pure culture. Recently, in situ 16S ribosomal RNA analyses of samples from the Obsidian hot pool at Yellowstone National Park, Wyoming, revealed a variety of archaeal sequences, which were all different from those of previously isolated species. This suggests substantial diversity of archaea with so far unknown morphological, physiological and biochemical features, which may play an important part within high-temperature ecosystems. Here we describe a procedure to obtain pure cultures of unknown organisms harbouring specific 16S rRNA sequences identified previously within the environment. It combines visual recognition of single cells by phylogenetic staining and cloning by 'optical tweezers'. Our result validates polymerase chain reaction data on the existence of large archael communities.
Miniaturized Cassegrainian concentrator concept demonstration
NASA Technical Reports Server (NTRS)
Patterson, R. E.; Rauschenbach, H. S.
1982-01-01
High concentration ratio photovoltaic systems for space applications have generally been considered impractical because of perceived difficulties in controlling solar cell temperatures to reasonably low values. A miniaturized concentrator system is now under development which surmounts this objection by providing acceptable solar cell temperatures using purely passive cell cooling methods. An array of identical miniaturized, rigid Cassegrainian optical systems having a low f-number with resulting short dimensions along their optical axes are rigidly mounted into a frame to form a relatively thin concentrator solar array panel. A number of such panels, approximately 1.5 centimeters thick, are wired as an array and are folded against one another for launch in a stowed configuration. Deployment on orbit is similar to the deployment of conventional planar honeycomb panel arrays or flexible blanket arrays. The miniaturized concept was conceived and studied in the 1978-80 time frame. Progress in the feasibility demonstration to date is reported.
Ytterbium-doped glass-ceramics for optical refrigeration.
Filho, Elton Soares de Lima; Krishnaiah, Kummara Venkata; Ledemi, Yannick; Yu, Ye-Jin; Messaddeq, Younes; Nemova, Galina; Kashyap, Raman
2015-02-23
We report for the first time the characterization of glass-ceramics for optical refrigeration. Ytterbium-doped nanocrystallites were grown in an oxyfluoride glass matrix of composition 2YbF(3):30SiO(2)-15Al(2)O(3)-25CdF(2)-22PbF(2)-4YF(3), forming bulk glass-ceramics at three different crystalisation levels. The samples are compared with a corresponding uncrystalised (glass) sample, as well as a Yb:YAG sample which has presented optical cooling. The measured X-ray diffraction spectra, and thermal capacities of the samples are reported. We also report for the first time the use of Yb:YAG as a reference for absolute photometric quantum efficiency measurement, and use the same setup to characterize the glass and glass-ceramic samples. The cooling figure-of-merit was measured by optical calorimetry using a fiber Bragg grating and found to depend on the level of crystallization of the sample, and that samples with nanocrystallites result in higher quantum efficiency and lower background absorption than the pure-glass sample. In addition to laser-induced cooling, the glass-ceramics have the potential to serve as a reference for quantum efficiency measurements.
NASA Astrophysics Data System (ADS)
Kulkarni, Rupali B.; Anis, Mohd; Hussaini, S. S.; Shirsat, Mahendra D.
2018-03-01
Present investigation reports the growth of pure and L-threonine (LT) doped cadmium thiourea acetate (CTA) crystals by slow solution evaporation technique followed by structural, optical and dielectric characterization studies. A bulk single crystal of LT-CTA has been grown at temperature 38 °C. The single crystal x-ray diffraction technique has been employed to confirm the structural parameters of pure and LT doped CTA crystals. The increase in optical transparency of LT-CTA crystal was ascertained in the range of 200 to 900 nm using UV-visible spectral analysis. The widened optical band gap of the LT-CTA crystal is found to be 4.7 eV. Pure and doped crystals are subjected to FT-IR analysis to indicate the presence of functional groups quantitatively. Appreciable enhancement in second harmonic generation (SHG) efficiency of LT-CTA crystal with reference to parent CTA was confirmed from Kurtz-Perry SHG test (1.31 times of CTA crystal). The assertive influence of LT on electrical properties of grown crystals has been investigated in the temperature range 35 °C-120 °C. Electronic purity and the color centered photoluminescence emission nature of pure and IA-CTA crystals were justified by luminescence analysis. With the aid of single beam Z-scan analysis, the Kerr lensing nonlinearity was identified and the magnitude of TONLO parameters has been determined. The cubic susceptibility (χ3) and figure of merit (FOM) was found to be 4.81 × 10-4esu and 978.35. Results vitalize LT-CTA for laser stabilization systems.
NASA Astrophysics Data System (ADS)
Poornaprakash, B.; Chalapathi, U.; Purusottam Reddy, B.; Prabhakar Vattikuti, S. V.; Siva Pratap Reddy, M.; Park, Si-Hyun
2018-03-01
The sensible tuning of the structural, optical, and magnetic properties of ZnO nanoparticles (NPs) with suitable doping can enhance their applicability in diverse fields. In this study, we synthesized ZnO NPs with Er (0-4 at%) doping and their elemental, structural, optical, and magnetic properties were studied. Both field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) studies of the suspensions consist of hexagonal shaped NPs. All the prepared NPs exhibited hexagonal phase as demonstrated by powder x-ray diffraction studies. A blue shift was observed in the Er doped ZnO NPs compared to pure ZnO, indicating the increased optical bandgap. Vibrating sample magnetometer studies exhibited the pure ZnO NPs was typical diamagnetic feature whereas all the Er doped ZnO NPs were paramagnetic feature at 300 K. This is the first paramagnetic report on Er doped ZnO NPs.
Magnetic behaviors of cataclasites within Wenchuan earthquake fault zone in heating experiments
NASA Astrophysics Data System (ADS)
Zhang, L.; Li, H.; Sun, Z.; Chou, Y. M.; Cao, Y., Jr.; Huan, W.; Ye, X.; He, X.
2017-12-01
Previous rock magnetism of fault rocks were used to trace the frictional heating temperature, however, few studies are focus on different temperatures effect of rock magnetic properties. To investigate rock magnetic response to different temperature, we conducted heating experiments on cataclasites from the Wenchuan earthquake Fault Scientific Drilling borehole 2 (WFSD-2) cores. Samples of cataclasites were obtained using an electric drill with a 1 cm-diameter drill pipe from 580.65 m-depth. Experiments were performed by a Thermal-optical measurement system under argon atmosphere and elevated temperatures. Both microstructural observations and powder X-ray diffraction analyses show that feldspar and quartz start to melt at 1100 ° and 1300 ° respectively. Magnetic susceptibility values of samples after heating are higher than that before heating. Samples after heating at 700 and 1750 ° have the highest values of magnetic susceptibility. Rock magnetic measurements show that the main ferromagnetic minerals within samples heated below 1100 ° (400, 700, 900 and 1100 °) are magnetite, which is new-formed by transformation of paramagnetic minerals. The χferri results show that the quantity of magnetite is bigger at sample heated by 700° experiment than by 400, 900 and 1100° experiments. Based on the FORC diagrams, we consider that magnetite grains are getting finer from 400 to 900°, and growing coarser when heated from 900 to 1100 °. SEM-EDX results indicate that the pure iron are formed in higher temperature (1300, 1500 and 1750 °), which present as framboids with size <10 μm. Rock magnetic measurements imply pure iron is the main ferromagnetic materials in these heated samples. The amount and size of iron framboids increase with increasing temperature. Therefore, we conclude that the paramagnetic minerals are decomposed into fine magnetite, then to coarse-grained magnetite, finally to pure iron at super high temperature. New-formed magnetite contributes to the higher magnetic susceptibility values of samples when heated at 400, 700, 900 and 1100°, while the neoformed pure iron is responsible to the higher magnetic susceptibility values of samples when heated at 1300, 1500 and 1750°.
NASA Astrophysics Data System (ADS)
Popov, A. S.; Uklein, A. V.; Multian, V. V.; Dantec, R. Le; Kostenyukova, E. I.; Bezkrovnaya, O. N.; Pritula, I. M.; Gayvoronsky, V. Ya.
2016-11-01
Optical properties and nonlinear optical response due to the CW and pulsed laser radiation self-action at 532 nm were studied in composites based on KDP single crystals with incorporated nanofibriles of nanostructured oxyhydroxide of aluminum (NOA). It was shown a high optical quality and structural homogeneity of nanocomposites KDP:NOA by the transmittance spectra, elastic optical scattering and XRD analysis. It was observed manifestation of the second harmonic generation efficiency enhancement in the KDP:NOA versus the nominally pure KDP (λ=1064 nm, τ=1 ns) that is correlated with efficient refractive index self-modulation Δn ∼10-4 (λ=532 nm, τ=30 ps). In the pyramidal and prismatic growth sectors of the nominally pure KDP crystal it was shown opposite signs of the photoinduced variations both of the refractive index and of the optical absorption/bleaching due to resonant excitation of the native defects at 532 nm. It should be considered for the wide-aperture laser frequency KDP family based convertors fabrication.
NASA Astrophysics Data System (ADS)
Kumar, R. Ashok; Sivakumar, N.; Vizhi, R. Ezhil; Babu, D. Rajan
2011-02-01
This work investigates the influence of iron doping on Potassium Hydrogen Phthalate (KHP) single crystals by the slow evaporation solution growth technique. Factors such as evaporation rate, solution pH, solute concentration, super saturation limit, etc. are very important in order to have optically transparent single crystals. As part of the work, the effects of metallic salt FeCl 3 in different concentrations were analyzed with pure KHP. Powder X-ray diffraction suggests that the grown crystals are crystallized in the orthorhombic structure. The functional groups and the effect of moisture on the doped crystals can be analyzed with the help of a FTIR spectrum. The pure and doped KHP single crystal shows good transparency in the entire visible region, which is suitable for optical device applications. The refractive indices along b axis of pure and doped KHP single crystals were analyzed by the prism coupling technique. The emission of green light with the use of a Nd:YAG laser ( λ=1064 nm) confirmed the second harmonic generation properties of the grown crystals.
Growth and characterization of pure and Ca2+ doped MnHg(SCN)4 single crystals
NASA Astrophysics Data System (ADS)
Latha, C.; Mahadevan, C. K.; Guo, Li; Liu, Jinghe
2018-05-01
Manganese-mercury thiocyanate, MnHg(SCN)4, crystal is considered to be an important organometallic nonlinear optical (NLO) material exhibiting higher thermal stability and second harmonic generation (SHG) efficiency. In order to understand the effect of Ca2+ as an impurity on the physicochemical properties, we have grown pure and Ca2+ doped (with a concentration of 1 mol%) MnHg(SCN)4 single crystals by the free evaporation of solvent method and characterized structurally, chemically, optically and electrically by adopting the available standard methods. Results obtained indicate that Ca2+ doping increases significantly the optical transmittance, SHG efficiency, and DC electrical conductivity and decreases the dielectric loss factor (improves the crystal quality), and AC electrical conductivity without distorting the crystal structure. Also, the low dielectric constant (εr) values observed for both the pure and doped crystals considered at near ambient temperatures indicate the possibility of using these crystals not only as potential NLO materials (useful in the photonics industry) but also as promising low εr value dielectric materials (useful in the microelectronics industry).
DFT calculations of graphene monolayer in presence of Fe dopant and vacancy
NASA Astrophysics Data System (ADS)
Ostovari, Fatemeh; Hasanpoori, Marziyeh; Abbasnejad, Mohaddeseh; Salehi, Mohammad Ali
2018-07-01
In the present work, the effects of Fe doping and vacancies on the electronic, magnetic and optical properties of graphene are studied by density functional theory based calculations. The conductive behavior is revealed for the various defected graphene by means of electronic density of states. However, defected structures show different magnetic and optical properties compared to those of pure one. The ferromagnetic phase is the most probable phase by substituting Fe atoms and vacancies at AA sublattice of graphene. The optical properties of impure graphene differ from pure graphene under illumination with parallel polarization of electric field, whereas for perpendicular polarization it remains unchanged. In presence of defect and under parallel polarization of light, the static dielectric constant rises strongly and the maximum peak of Im ε(ω) shows red shift relative to pure graphene. Moreover, the maximum absorption peak gets broaden in the visible to infrared region at the same condition and the magnitude and related energy of peaks shift to higher value in the EELS spectra. Furthermore, the results show that the maximum values of refractive index and reflectivity spectra increase rapidly and represent the red and blue shifts; respectively. Generally; substituting the C atom with Fe has more effect on magnetic and optical properties relative to the C vacancies.
NASA Astrophysics Data System (ADS)
Kochuparampil, A. P.; Joshi, J. H.; Joshi, M. J.
2017-09-01
As ammonium dihydrogen phosphate (ADP) is a popular nonlinear optical crystal, to engineer its linear and nonlinear optical properties, the chalcogenide compound cobalt sulphide (CoS) was doped and the crystals were grown by the slow solvent evaporation method. To increase the solubility of CoS in water, its nanoparticles were synthesized by wet chemical technique using ethylene diamine as the capping agent followed by microwave irradiation. The nanoparticle sample exhibited finite solubility in water and was used to dope in ADP crystals. The powder XRD patterns showed the single phase nature of the doped crystals. The FTIR spectra confirmed the presence of various functional groups and EDAX gave the estimation of Co and S elements. The EPR spectroscopy also confirmed the presence of cobalt in the doped samples. TGA indicated slightly less thermal stability of the doped crystals compared to the pure ADP. The dielectric study was carried out at room temperature in the frequency range from 100Hz to 1MHz. Also, various linear optical parameters were evaluated for pure and doped crystals using UV-Vis spectroscopy. The second harmonic generation (SHG) efficiency of Nd:YAG laser was evaluated by the Kurtz and Parry method for the doped samples, it was found to be slightly lesser than that of the pure ADP crystals.
NASA Astrophysics Data System (ADS)
Gopalakrishna, Smitha Mysore; Murugendrappa, Malalkere Veerappa
2018-05-01
In this paper we bring forth the effect of La0.7Ca0.3MnO3 (LCM) perovskite nano particle on the optical band gap in composition with conducting Polypyrrole (PPy) prepared by chemical oxidation method. The morphology and crystalline phase were determined by SEM, TEM and X-Ray diffraction studies. The Optical band gap studies were analyzed using the UV-VIS spectrometer scanned in the range 200 nm to 600 nm for pure PPy and PPy/LCM composites. There is a characteristic peak observed for the composites situated around 315 nm for pure PPy, PPy/LCM10 and PPy/LCM50. But for higher compositions of LCM weight percentage like 30%, 40% and 50% the peak shift slightly to higher wavelength side. The peak shifts to 320 nm, 325 nm and 335 nm respectively. The optical band gap increased for Pure PPy, PPy/LCM10 and PPy/LCM20 and found to decrease gradually for PPy/LCM30, PPy/LCM40 and PPy/LCM50. The studies suggest that LCM composition in the PPy chain has a role in modifying the wavelength and in turn its band gap. The study may find application in organic devices working at high frequency and voltage.
Magesh, G; Bhoopathi, G; Nithya, N; Arun, A P; Ranjith Kumar, E
2018-05-26
In this work, ZnO nanoparticles were prepared by in situ chemical precipitation method in the presence of Agar biopolymer. The influence of Agar concentrations on the structural, morphological and optical properties of ZnO have been investigated. The XRD pattern of Pure ZnO and Agar/ZnO nanocomposites indicates the hexagonal wurtzite phase of ZnO. The crystallite size of pure ZnO and Agar/ZnO nanocomposites was found to be in the range of 35.5 to 19.73 nm. Pure ZnO and Agar/ZnO nanocomposites showed nanospheroid and nanopaddy shaped morphology from FESEM studies. The interplanar distance observed from the HRTEM image confirms the plane of the prepared material. The elemental composition of the samples were characterized by EDX. The optical properties of Pure ZnO and Agar/ZnO nanocomposites were characterized by UV, FTIR and PL. The band gap of Agar/ZnO nanocomposites were varied with the Agar concentration. Oxygen vacancy induced photoluminescence of ZnO are observed and its intensity is found to be increased linearly with the Agar concentration. The antibacterial activity of ZnO and Agar/ZnO nanocomposites was evaluated by disc diffusion method against Gram-positive (B.subtilis) and Gram-negative (P. aeruginosa) bacteria. The cytotoxicity of Agar/ZnO nanocomposites was studied against Normal (L929) and Breast cancer cell line (MB231). The result of this investigation reveals that the Agar/ZnO nanocomposites deliver a dose dependent toxicity in normal and cancer cell line. Copyright © 2018. Published by Elsevier B.V.
Study of linear optical parameters of sodium sulphide nano-particles added ADP crystals
NASA Astrophysics Data System (ADS)
Kochuparampil, A. P.; Joshi, J. H.; Dixit, K. P.; Jethva, H. O.; Joshi, M. J.
2017-05-01
Ammonium Dihydrogen Phosphate (ADP) is one of the nonlinear optical crystals. It is having various applications like optical mixing, electro-optical modulator, harmonic generators, etc. Chalcogenide compounds are poorly soluble in water and difficult to add in the water soluble ADP crystals. The solubility of Chalcogenide compounds can be increased by synthesizing the nano-structured samples with suitable capping agent. In the present study sodium sulphide was added in to ADP to modify its linear optical parameters. Sodium sulphide nano particles were synthesized by co-precipitation technique using Ethylene diamine as capping agent followed by microwave irradiation. The powder XRD confirmed the nano-structured nature of sodium sulphide nano particles. The solubility of nanoparticles of sodium sulphide increased significantly in water compared to the bulk. Pure and Na2S added ADP crystals were grown by slow solvent evaporation method at room temperature. The presence of sodium in ADP was confirmed by AAS. The UV-Vis spectra were recorded for all crystals. Various optical parameters like, transmittance, energy band gap, extinction coefficient, refractive index, optical conductivity, etc. were evaluated. The electronic polarizibility of pure and doped crystals calculated from energy band gap. The effect of doping concentration was found on various parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Binita; Halder, Saswata; Sinha, T. P.
2016-05-23
Europium-doped luminescent barium samarium tantalum oxide Ba{sub 2}SmTaO{sub 6} (BST) has been investigated by first-principles calculation, and the crystal structure, electronic structure, and optical properties of pure BST and Eu-doped BST have been examined and compared. Based on the calculated results, the luminescence properties and mechanism of Eu-doped BST has been discussed. In the case of Eu-doped BST, there is an impurity energy band at the Fermi level, which is formed by seven spin up energy levels of Eu and act as the luminescent centre, which is evident from the band structure calculations.
Comparative optical studies of ZnO and ZnO-TiO2 - Metal oxide nanoparticle
NASA Astrophysics Data System (ADS)
Vijayalakshmi, R. Vanathi; Asvini, V.; Kumar, P. Praveen; Ravichandran, K.
2018-05-01
A comparative study was carried out to show the enhancement in optical activity of bimetal oxide nanoparticle (ZnO - TiO2) than metal oxide nanoparticle (ZnO), which can preferably be used for optical applications. The samples were prepared by wet chemical method and crystalline structure of the samples as hexagonal - primitive for ZnO and tetragonal - bcc for ZnO-TiO2 was confirmed by XRD measurements. The average grain size of ZnO - 19.89nm and ZnO-TiO2- 49.89 nm was calculated by Debye- Scherrer formula. The structure and particle size of the sample was analyzed by FESEM images. The direct band gap energy of ZnO (3.9eV) and ZnO - TiO2(4.68eV) was calculated by Kubelka-Munk Function, from which it is clear that the band gap energy increases in bimetal oxide to a desired level than in its pure form. The photoluminescence study shows that the emitted wavelength of the samples lies exactly around the visible region.
Optical and Raman microspectroscopy of nitrogen and hydrogen mixtures at high pressures
NASA Astrophysics Data System (ADS)
Ciezak, Jennifer; Jenkins, T.; Hemley, R.
2009-06-01
Extended phases of molecular solids formed from simple molecules have led to polymeric materials under extreme conditions with advanced optical, mechanical and energetic properties. Although the existence of extended phases has been demonstrated in N2, CO and CO2, recovery of the materials to ambient conditions has posed considerable difficulty. Recent molecular dynamics simulations have predicted that the addition of hydrogen to nitrogen may increase the stability of the cubic-gauche nitrogen polymer and thereby offer the possibility of synthesis at lower pressures and temperatures. Here we present optical and Raman microspectroscopy measurements performed on nitrogen and hydrogen mixtures to 85 GPa. To pressures of 30 GPa, large deviations in the internal molecular stretching modes of the mixtures relative to those of the pure material reveal unusual phase behavior. After an unusual phase separation near 35 GPa, a phase assemblage of consisting of a phase rich in both nitrogen and hydrogen, a phase of relatively amorphous nitrogen and a mixture of the two is observed. Near this pressure, Raman bands attributed to the N-N single bonded stretch were observed.
Synthesis and characterization of cadmium sulphide thin films prepared by spin coating
NASA Astrophysics Data System (ADS)
Chodavadiya, Nisarg; Chapanari, Amisha; Zinzala, Jignesh; Ray, Jaymin; Pandya, Samir
2018-05-01
An II-VI group semiconductor is Wide band gap materials and has been widely studied due to their fundamental optical, structural, and electrical properties. Cadmium sulphide (CdS) is one of the most emerged materials in II-VI group. It has many applications such as buffer later in photovoltaic cell, multilayer light emitting diodes, optical filters, thin film field effect transistors, gas sensors, light detectors etc. It is fundamentally an n-type material with an optical band gap of 2.4 eV. Owing to these properties we had studied CdS thin films synthesis and characterized by Raman, Ultraviolet - Visible spectroscopy (UV-VIS) and Hot probe method. CdS thin films were prepared by spin coating of the Cadmium-thiourea precursor solution. Visual inspection after 20 minute thermolysis time the films were looks uniform and shiny pale yellow in color. Raman confirms the A1 vibration of pure CdS. UV-VIS gives the band gap about 2.52 eV, which confirms the formation of nanocrystalline form of CdS. Finally, hot probe signifies the n-type conductivity of the CdS film.
NASA Astrophysics Data System (ADS)
Pritula, I. M.; Kostenyukova, E. I.; Bezkrovnaya, O. N.; Kolybaeva, M. I.; Sofronov, D. S.; Dolzhenkova, E. F.; Kanaev, A.; Tsurikov, V.
2016-07-01
Potassium Dihydrogen Phosphate (KDP) crystal doped with L-arginine (L-arg) amino acid with 1.4 wt% concentration in the solution was grown onto a point seed by the method of temperature reduction. For the first time an attempt was made to grow large-size (7 × 6 × 8 cm3) optically transparent crystals, which allowed to analyze the effect of L-arg additive on the physical properties of the different growth sectors ({100} and {101}) of KDP. The incorporation of L-arg into both growth sectors of the crystal was confirmed by the methods of optical and IR spectroscopy and found to be caused by the ability of the amino acid to form hydrogen bonds with the face {100} and electrostatically interact with the positively charged face {101} of KDP crystal. A slight variation in the unit cell parameters was reported, the elementary cell volume of KDP:L-arg crystal increased in comparison with the one of pure KDP by 2·10-2 and 2.07·10-2 Å3 in the sectors {100} and {101}, respectively. It was found that the doping of L-arg enhanced the SHG efficiency of KDP and depended on the crystal growth sectors. The SHG efficiency of KDP:L-arg was by a factor 2.53 and 3.95 higher in comparison with those of pure KDP for {101} and {100} growth sector, respectively. The doping was found to lead to softening of both faces by ∼3-10% and ∼14-17% in the sectors {101} and {100}, respectively. Investigation of the influence of L-arg molecules on the bulk laser damage threshold of the crystals showed that the bulk laser damage threshold of the samples of KDP:L-arg crystal was higher than the one of the pure crystal in the sector {101} and lower in the sector {100}. The correlation between microhardness and laser damage threshold were discussed. The study is helpful for further searching, designing and simulation of hybrid NLO materials.
NASA Astrophysics Data System (ADS)
Jain, Shefali; Singh, Dinesh; Vijayan, N.; Sharma, Shailesh Narain
2018-05-01
In this work, stable Cu2ZnSnS4 (CZTS) nanocrystals (NCs) in pure kesterite phase were synthesized by a facile one-pot rapid injection technique (colloidal route). Time-dependent reaction mechanism for the synthesis of CZTS nanoparticles is explained. When TOP-S (Tri-octyl phosphine-sulphur) was injected in the CuZnSn-complex with TOPO (Tri-octyl phosphine oxide) as capping ligand, orthorhombic phase Cu2-X S nanoparticles of spherical shape were found at nucleation sites. With an advancement in the reaction time, Sn got infused in Cu2-X S to form Cu2SnS3 and its shape got deformed. Further increase in reaction time infuses Zn to form Cu2ZnSnS4 with the gradual vanishing of Cu2-X S and Cu2SnS3 phases and finally, the rod-shaped CZTS Np's were obtained. This factor of reaction time, which influence the morphology and size were studied in detail. The structural and optical properties of the pure kesterite phase CZTS nanorods were also analysed. The band gap of the rod-like CZTS is determined to be around 1.43 eV, which is an optimum value for solar photoelectric conversion.
NASA Astrophysics Data System (ADS)
Majeed, Shahbaz; Siraj, K.; Naseem, S.; Khan, Muhammad F.; Irshad, M.; Faiz, H.; Mahmood, A.
2017-07-01
Pure and gold-doped diamond-like carbon (Au-DLC) thin films are deposited at room temperature by using RF magnetron sputtering in an argon gas-filled chamber with a constant flow rate of 100 sccm and sputtering time of 30 min for all DLC thin films. Single-crystal silicon (1 0 0) substrates are used for the deposition of pristine and Au-DLC thin films. Graphite (99.99%) and gold (99.99%) are used as co-sputtering targets in the sputtering chamber. The optical properties and structure of Au-DLC thin films are studied with the variation of gold concentration from 1%-5%. Raman spectroscopy, atomic force microscopy (AFM), Vickers hardness measurement (VHM), and spectroscopic ellipsometry are used to analyze these thin films. Raman spectroscopy indicates increased graphitic behavior and reduction in the internal stresses of Au-DLC thin films as the function of increasing gold doping. AFM is used for surface topography, which shows that spherical-like particles are formed on the surface, which agglomerate and form larger clusters on the surface by increasing the gold content. Spectroscopy ellipsometry analysis elucidates that the refractive index and extinction coefficient are inversely related and the optical bandgap energy is decreased with increasing gold content. VHM shows that gold doping reduces the hardness of thin films, which is attributed to the increase in sp2-hybridization.
Wang, Haohao; Odawara, Osamu; Wada, Hiroyuki
2016-01-01
A YVO4:Eu3+ colloid with an interesting nanostructure was formed by pulsed laser ablation in deionized water without any additives or surfactants. Analyses of particle morphology, composition and optical properties were accomplished by SEM, TEM, EDS PL and UV-vis. Ovoid-like particles formed by the agglomeration of numerous nanocrystals were observed by SEM and TEM, while EDS with area-mode analysis revealed that the content of dopant ion was well retained within the nanoparticles. In addition, the formation mechanism is deduced and discussed for the first time in this research. The findings of this study could provide new insights into the understanding of laser-induced oxide materials and offer an opportunity for other research groups to pursue red emitting nanophosphors with outstandingly purity. PMID:26842419
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kewley, Lisa J.; Dopita, Michael A.; Sutherland, Ralph
We use the chemical evolution predictions of cosmological hydrodynamic simulations with our latest theoretical stellar population synthesis, photoionization, and shock models to predict the strong line evolution of ensembles of galaxies from z = 3 to the present day. In this paper, we focus on the brightest optical emission-line ratios, [N II]/H{alpha} and [O III]/H{beta}. We use the optical diagnostic Baldwin-Phillips-Terlevich (BPT) diagram as a tool for investigating the spectral properties of ensembles of active galaxies. We use four redshift windows chosen to exploit new near-infrared multi-object spectrographs. We predict how the BPT diagram will appear in these four redshiftmore » windows given different sets of assumptions. We show that the position of star-forming galaxies on the BPT diagram traces the interstellar medium conditions and radiation field in galaxies at a given redshift. Galaxies containing active galactic nucleus (AGN) form a mixing sequence with purely star-forming galaxies. This mixing sequence may change dramatically with cosmic time, due to the metallicity sensitivity of the optical emission-lines. Furthermore, the position of the mixing sequence may probe metallicity gradients in galaxies as a function of redshift, depending on the size of the AGN narrow-line region. We apply our latest slow shock models for gas shocked by galactic-scale winds. We show that at high redshift, galactic wind shocks are clearly separated from AGN in line ratio space. Instead, shocks from galactic winds mimic high metallicity starburst galaxies. We discuss our models in the context of future large near-infrared spectroscopic surveys.« less
NASA Astrophysics Data System (ADS)
Singh, Gurinder; Kaura, Aman; Mukul, Monika; Singh, Janpreet; Tripathi, S. K.
2014-06-01
We have carried out comprehensive computational and experimental study on the face-centered cubic Ge2Sb2Te5 (GST) and indium (In)-doped GST phase change materials. Structural calculations, total density of states and crystal orbital Hamilton population have been calculated using first-principle calculation. 5 at.% doping of In weakens the Ge-Te, Sb-Te and Te-Te bond lengths. In element substitutes Sb to form In-Te-like structure in the GST system. In-Te has a weaker bond strength compared with the Sb-Te bond. However, both GST and doped alloy remain in rock salt structure. It is more favorable to replace Sb with In than with any other atomic position. X-ray diffraction (XRD) analysis has been carried out on thin film of In-doped GST phase change materials. XRD graph reveals that In-doped phase change materials have rock salt structure with the formation of In2Te3 crystallites in the material. Temperature dependence of impedance spectra has been calculated for thin films of GST and doped material. Thickness of the as-deposited films is calculated from Swanepoel method. Absorption coefficient (α) has been calculated for amorphous and crystalline thin films of the alloys. The optical gap (indirect band gap) energy of the amorphous and crystalline thin films has also been calculated by the equation α hν = β (hν - E_{{g }} )2 . Optical contrast (C) of pure and doped phase change materials have also been calculated. Sufficient optical contrast has been found for pure and doped phase change materials.
Radiation effects on beta 10.6 of pure and europium doped KCl
NASA Technical Reports Server (NTRS)
Grimes, H. H.; Maisel, J. E.; Hartford, R. H.
1975-01-01
Changes in the optical absorption coefficient as a result of X-ray and electron bombardment of pure KCl (monocrystalline and polycrystalline), and divalent europium doped polycrystalline KCl were determined. The optical absorption coefficients were measured by a constant heat flow calorimetric method. Both 300 KV X-irradiation and 2 MeV electron irradiation produced significant increases in beta 10.6, measured at room temperature. The X-irradiation of pure moncrystalline KCl increased beta 10.6 by 0.005/cm for a 113 MR dose. For an equivalent dose, 2 MeV electrons were found less efficient in changing beta 10.6. However, electron irradiation of pure and Eu-doped polycrystalline KCl produced marked increases in adsorption. Beta increased to over 0.25/cm in Eu-doped material for a 30 x 10 to the 14th power electrons/sq cm dose, a factor of 20 increase over unirradiated material. Moreover, bleaching the electron irradiated doped KCl with 649 m light produced and additional factor of 1.5 increase. These findings will be discussed in light of known defect-center properties in KCl.
NASA Astrophysics Data System (ADS)
Mareeswaran, S.; Asaithambi, T.
2016-10-01
Now a day's crystals are the pillars of current technology. Crystals are applied in various fields like fiber optic communications, electronic industry, photonic industry, etc. Crystal growth is an interesting and innovative field in the subject of physics, chemistry, material science, metallurgy, chemical engineering, mineralogy and crystallography. In recent decades optically good quality of pure and metal doped KDP crystals have been grown by gel growth method in room temperature and its characterizations were studied. Gel method is a very simple and one of the easiest methods among the various crystal growth methods. Potassium dihydrogen phosphate KH2PO4 (KDP) continues to be an interesting material both academically and technologically. KDP is a delegate of hydrogen bonded materials which possess very good electrical and nonlinear optical properties in addition to interesting electro-optic properties. We made an attempt to grow pure and titanium oxide doped KDP crystals with various doping concentrations (0.002, 0.004, 0.006, 0.008 and 0.010) using gel method. The grown crystals were collected after 20 days. We get crystals with good quality and shaped crystals. The dc electrical conductivity (resistance, capacitance and dielectric constant) values of the above grown crystals were measured at two different frequencies (1KHz and 100 Hz) with a temperature range of 500C to 1200C using simple two probe setup with Q band digital LCR meter present in our lab. The electrical conductivity increases with the increase of temperature. Dielectric constants value of titanium oxide doped KDP crystal was slightly decreased compared with pure KDP crystals. Results were discussed in details.
Wang, Hualei; Sun, Huihui; Wei, Dongzhi
2013-02-18
A nitrilase-mediated pathway has significant advantages in the production of optically pure (R)-(-)-mandelic acid. However, unwanted byproduct, low enantioselectivity, and specific activity reduce its value in practical applications. An ideal nitrilase that can efficiently hydrolyze mandelonitrile to optically pure (R)-(-)-mandelic acid without the unwanted byproduct is needed. A novel nitrilase (BCJ2315) was discovered from Burkholderia cenocepacia J2315 through phylogeny-based enzymatic substrate specificity prediction (PESSP). This nitrilase is a mandelonitrile hydrolase that could efficiently hydrolyze mandelonitrile to (R)-(-)-mandelic acid, with a high enantiomeric excess of 98.4%. No byproduct was observed in this hydrolysis process. BCJ2315 showed the highest identity of 71% compared with other nitrilases in the amino acid sequence. BCJ2315 possessed the highest activity toward mandelonitrile and took mandelonitrile as the optimal substrate based on the analysis of substrate specificity. The kinetic parameters Vmax, Km, Kcat, and Kcat/Km toward mandelonitrile were 45.4 μmol/min/mg, 0.14 mM, 15.4 s(-1), and 1.1×10(5) M(-1)s(-1), respectively. The recombinant Escherichia coli M15/BCJ2315 had a strong substrate tolerance and could completely hydrolyze mandelonitrile (100 mM) with fewer amounts of wet cells (10 mg/ml) within 1 h. PESSP is an efficient method for discovering an ideal mandelonitrile hydrolase. BCJ2315 has high affinity and catalytic efficiency toward mandelonitrile. This nitrilase has great advantages in the production of optically pure (R)-(-)-mandelic acid because of its high activity and enantioselectivity, strong substrate tolerance, and having no unwanted byproduct. Thus, BCJ2315 has great potential in the practical production of optically pure (R)-(-)-mandelic acid in the industry.
NASA Astrophysics Data System (ADS)
Kumari, Lakshmi; Kar, Asit Kumar
2018-05-01
ZnO nanorods with varying precursor concentration have been successfully synthesized by the hydrothermal method. The effect of the precursor concentration on the structural, morphological and optical properties of the resulting nanorods was investigated by means of X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), UV-Vis spectroscopy and photoluminescence (PL) spectroscopy. The crystalline structural characterization demonstrated that the synthesized materials crystallize in pure ZnO wurtzite structure without any other secondary phase. SEM micrographs demonstrate nanorod type features in all the samples. In addition, they show that increase of precursor concentration changes the length and diameter of nanorods. The UV-Vis studies show a strong absorption band in UV region at 373 nm attributed to the band-edge absorption of wurtzite hexagonal ZnO, blue shifted relative to its bulk form (380 nm). The PL spectra of obtained nanorods excited at 360 nm present broad visible emission. Moreover, as the visible region (from 510 to 550 nm) is concerned, it is speculated that the increase of the precursor concentration affects strongly the kind of interstitial defects (Oi, Zni and Vo) formed in ZnO nanorods. The luminescence intensity decreases with the increase of precursor concentration.
Evidence for the in vivo polymerization of ependymin: a brain extracellular glycoprotein.
Shashoua, V E; Hesse, G W; Milinazzo, B
1990-07-09
Ependymin, a glycoprotein of the brain extracellular fluid, has been implicated in synaptic changes associated with the consolidation process of long-term memory formation and the activity-dependent sharpening of connections of regenerating optic nerve. In vitro experiments have demonstrated that ependymin has the capacity to form fibrous insoluble polymers (FIP) when the solvent Ca2+ concentration is reduced by the addition of EGTA. Such products, once formed, do not dissolve in 2% sodium dodecyl sulfate (SDS) in 5 M urea. This property was used to develop a method for isolating brain FIP. A reproducible quantity of FIP was found in goldfish and mouse brain. This was highly concentrated in the synaptosomal fraction and had identical immunoreactivity properties to FIP obtained by the polymerization of pure ependymin in vitro as well as a cross-reactivity to other protein components of the extracellular matrix such as fibronectin and laminin. Labeling studies with [35S]methionine showed that labeled FIP aggregates are synthesized in vivo and become associated with the synaptosomal fraction. A comparison of the amino acid sequence of ependymin with those for proteins of the extracellular matrix indicated that common sequences 5-6 amino acids long exist in the molecules. These homologies may explain why antibodies to fibronectin, laminin and tubulin can recognize the FIP prepared from pure ependymin. These results suggest that ependymin can polymerize in vivo to form FIP aggregates which have similar immunoreactivity properties to major components of the brain extracellular matrix.
Zheng, Yan-Song; Hu, Yu-Jian; Li, Dong-Mi; Chen, Yi-Chang
2010-01-15
Pure enantiomers of carboxylic acids are a class of important biomolecules, chiral drugs, chiral reagents, etc. Analysis of the enantiomers usually needs expensive instrument or complex chiral receptors. However, to develop simple and reliable methods for the enantiomer analysis of acids is difficult. In this paper, chiral recognition of 2,3-dibenzoyltartaric acid and mandelic acid was first carried out by aggregation-induced emission molecules bearing optically pure aminol group, which was easily synthesized. The chiral recognition is not only seen by naked eyes but also measured by fluorophotometer. The difference of fluorescence intensity between the two enantiomers of the acids aroused by the aggregation-induced emission molecules was up to 598. The chiral recognition could be applied to quantitative analysis of enantiomer content of chiral acids. More chiral AIE amines need to be developed for enantiomer analysis of more carboxylic acids.
Fiber Optic Communications Technology. A Status Report.
ERIC Educational Resources Information Center
Hull, Joseph A.
Fiber optic communications (communications over very pure glass transmission channels of diameter comparable to a human hair) is an emerging technology which promises most improvements in communications capacity at reasonable cost. The fiber transmission system offers many desirable characteristics representing improvements over conventional…
Optical and morphological study of disorder in opals
NASA Astrophysics Data System (ADS)
Palacios-Lidón, E.; Juárez, B. H.; Castillo-Martínez, E.; López, C.
2005-03-01
An optical and morphological study has been carried out to understand the role of intrinsic defects in the optical properties of opal-based photonic crystals. By doping poly(methylmethacrylate) (PMMA) thin-film opals with larger polystyrene (PS) spheres, structural disorder has being generated perturbing the PMMA matrix periodicity. It is shown that this disorder dramatically affects the optical response of the system worsening its photonic properties. It has been found that the effect of doping is highly dependent not only on the concentration but also on the relative size of the dopant with reference to the matrix. Through a detailed scanning electron microscopy inspection, the sort of structural defects involved, derived from the different particle size used, has been characterized. A direct relationship between the observed optical response with the different perturbations generated in the lattice has been found. In addition, from this study it can be concluded that it is possible to grow high quality alloyed photonic crystals, exhibiting intermediate photonic properties between pure PMMA and pure PS opals by simple sphere size matching and variation of the relative concentration of both components.
Analysis of the optical properties of bile
NASA Astrophysics Data System (ADS)
Baldini, Francesco; Bechi, Paolo; Cianchi, Fabio; Falai, Alida; Fiorillo, Claudia; Nassi, Paolo
2000-07-01
Invasive bile determination is very useful in the diagnosis of many gastric pathologies. At the moment, this measurement is performed with Bilitec 2000, an optical fiber sensor, that is based on absorption by bilirubin. Nevertheless, erroneous evaluations are possible, due to the different configurations which the bilirubin molecule can adopt. The optical behavior of human samples of pure bile and bile+gastric juice has been examined using an optical fiber spectrophotometer and two suitable modified Bilitec 2000 units. A protocol has been established for the treatment of biological fluids, in order to make it possible to study the behavior of their optical properties as a function of pH and concentration without causing any alteration in the samples. The analysis of pH dependence evidenced the presence of different calibration curves at different pH values: the self-aggregation of the bilirubin molecules observed in pure bile samples was almost totally absent in the gastric samples. Measurements carried out on Bilitec 2000 showed that the most appropriate wavelength for bilirubin detection in the stomach should be 470 nm.
NASA Astrophysics Data System (ADS)
Pedersen, Joachim D.; Esposito, Heather J.; Teh, Kwok Siong
2011-10-01
We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm). Pure solid zinc is inductively heated and melted, followed by ionization by thermal induction argon/oxygen plasma to produce conformal, nonporous nanocrystalline ZnO films at a growth rate of up to 50 nm/min on amorphous and crystalline substrates including Si (100), fused quartz, glass, muscovite, c- and a-plane sapphire (Al2O3), gold, titanium, and polyimide. X-ray diffraction indicates the grains of as-deposited ZnO to be highly textured, with the fastest growth occurring along the c-axis. The individual grains are observed to be faceted by (103) planes which are the slowest growth planes. ZnO nanocrystalline films of nominal thicknesses of 200 nm are deposited at substrate temperatures of 330°C and 160°C on metal/ceramic substrates and polymer substrates, respectively. In addition, 20-nm- and 200-nm-thick films are also deposited on quartz substrates for optical characterization. At optical spectra above 375 nm, the measured optical transmittance of a 200-nm-thick ZnO film is greater than 80%, while that of a 20-nm-thick film is close to 100%. For a 200-nm-thick ZnO film with an average grain size of 100 nm, a four-point probe measurement shows electrical conductivity of up to 910 S/m. Annealing of 200-nm-thick ZnO films in 300 sccm pure argon at temperatures ranging from 750°C to 950°C (at homologous temperatures between 0.46 and 0.54) alters the textures and morphologies of the thin film. Based on scanning electron microscope images, higher annealing temperatures appear to restructure the ZnO nanocrystalline films to form nanorods of ZnO due to a combination of grain boundary diffusion and bulk diffusion. PACS: films and coatings, 81.15.-z; nanocrystalline materials, 81.07.Bc; II-VI semiconductors, 81.05.Dz.
Abdel-Rahman, Mohamed Ali; Sonomoto, Kenji
2016-10-20
There has been growing interest in the microbial production of optically pure lactic acid due to the increased demand for lactic acid-derived environmentally friendly products, for example biodegradable plastic (poly-lactic acid), as an alternative to petroleum-derived materials. To maximize the market uptake of these products, their cost should be competitive and this could be achieved by decreasing the production cost of the raw material, that is, lactic acid. It is of great importance to isolate and develop robust and highly efficient microbial lactic acid producers. Alongside the fermentative substrate and concentration, the yield and productivity of lactic acid are key parameters and major factors in determining the final production cost of lactic acid. In this review, we will discuss the current limitations and challenges for cost-efficient microbial production of optically pure lactic acid. The main obstacles to effective fermentation are the use of food resources, indirect utilization of polymeric sugars, sensitivity to inhibitory compounds released during biomass treatments, substrate inhibition, decreased lactic acid yield and productivity, inefficient utilization of mixed sugars, end product inhibition, increased use of neutralizing agents, contamination problems, and decreased optical purity of lactic acid. Furthermore, opportunities to address and overcome these limitations, either by fermentation technology or metabolic engineering approaches, will be introduced and discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kiani, S.; Zakerhamidi, M. S.; Tajalli, H.
2016-05-01
Previous studies on the electro-optical responses of dye-doped liquid crystal have shown that dopant material have a considerable effect on their electro-optical responses. Despite the studies carried out on electro-optical properties of dye-doped liquid crystal, no attention has been paid to study of the interaction and structural effects in this procedure. In this paper, linear dyes and with similar structure were selected as dopants. The only difference in used dyes is the functional groups in their tails. So, doping of these dyes into liquid crystals determines the influence of interaction type on electro-optical behaviours of the doped systems. Therefore, in this work, two aminoazobenzene (;A-dye;: hydrogen bond donor) and dimethyl-aminoazobenzene (;B-dye;) dyes with different compositional percentages in liquid crystal host were used. Electro-optical Kerr behaviour, the pre-transition temperature and third order nonlinear susceptibility were investigated. The obtained results effectively revealed that type of interactions between the dye and liquid crystal is determinative of behavioral difference of doped system, compared to pure liquid crystal. Also, pre-transitional behaviour and thereupon Kerr electro-optical responses were affected by formed interactions into doped systems. In other words, it will be shown that addition of any dopants in liquid crystal, regardless of the nature of interactions, cannot cause appropriate electro-optical responses. In fact, type of dye, nature of interactions between dopant and liquid crystalline host as well as concentration of dye are the key factors in selecting the appropriate liquid crystal and dopant dye.
Revés, Marc; Achard, Thierry; Solà, Jordi; Riera, Antoni; Verdaguer, Xavier
2008-09-19
Here we synthesized a family of racemic and optically pure N-phosphino-p-tolylsulfinamide (PNSO) ligands. Their stability and coordination behavior toward dicobalt-alkyne complexes was evaluated. Selectivities of up to 3:1 were achieved in the ligand exchange process with (mu-TMSC2H)Co2(CO)6. The resulting optically pure major complexes were tested in the asymmetric intermolecular Pauson-Khand reaction and yielded up to 94% ee. X-ray studies of the major complex 18a indicated that the presence of an aryl group on the sulfinamide reduces the hemilabile character of the PNSO ligands.
Synergistic effect of indium and gallium co-doping on the properties of RF sputtered ZnO thin films
NASA Astrophysics Data System (ADS)
Shaheera, M.; Girija, K. G.; Kaur, Manmeet; Geetha, V.; Debnath, A. K.; Karri, Malvika; Thota, Manoj Kumar; Vatsa, R. K.; Muthe, K. P.; Gadkari, S. C.
2018-04-01
ZnO thin films were synthesized using RF magnetron sputtering, with simultaneous incorporation of Indium (In) and Gallium (Ga). The structural, optical, chemical composition and surface morphology of the pure and co-doped (IGZO) thin films were characterized by X-Ray diffraction (XRD), UV-visible spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), and Raman spectroscopy. XRD revealed that these films were oriented along c-axis with hexagonal wurtzite structure. The (002) diffraction peak in the co-doped sample was observed at 33.76° with a slight shift towards lower 2θ values as compared to pure ZnO. The surface morphology of the two thin films was observed to differ. For pure ZnO films, round grains were observed and for IGZO thin films round as well as rod type grains were observed. All thin films synthesized show excellent optical properties with more than 90% transmission in the visible region and band gap of the films is observed to decrease with co-doping. The co doping of In and Ga is therefore expected to provide a broad range optical and physical properties of ZnO thin films for a variety of optoelectronic applications.
Schneider, Nathanaëlle; Lincot, Daniel
2013-01-01
Summary This paper describes the atomic layer deposition of In2(S,O)3 films by using In(acac)3 (acac = acetylacetonate), H2S and either H2O or O2 plasma as oxygen sources. First, the growth of pure In2S3 films was studied in order to better understand the influence of the oxygen pulses. X-Ray diffraction measurements, optical analysis and energy dispersive X-ray spectroscopy were performed to characterize the samples. When H2O was used as the oxygen source, the films have structural and optical properties, and the atomic composition of pure In2S3. No pure In2O3 films could be grown by using H2O or O2 plasma. However, In2(S,O)3 films could be successfully grown by using O2 plasma as oxygen source at a deposition temperature of T = 160 °C, because of an exchange reaction between S and O atoms. By adjusting the number of In2O3 growth cycles in relation to the number of In2S3 growth cycles, the optical band gap of the resulting thin films could be tuned. PMID:24367743
Bugot, Cathy; Schneider, Nathanaëlle; Lincot, Daniel; Donsanti, Frédérique
2013-01-01
This paper describes the atomic layer deposition of In2(S,O)3 films by using In(acac)3 (acac = acetylacetonate), H2S and either H2O or O2 plasma as oxygen sources. First, the growth of pure In2S3 films was studied in order to better understand the influence of the oxygen pulses. X-Ray diffraction measurements, optical analysis and energy dispersive X-ray spectroscopy were performed to characterize the samples. When H2O was used as the oxygen source, the films have structural and optical properties, and the atomic composition of pure In2S3. No pure In2O3 films could be grown by using H2O or O2 plasma. However, In2(S,O)3 films could be successfully grown by using O2 plasma as oxygen source at a deposition temperature of T = 160 °C, because of an exchange reaction between S and O atoms. By adjusting the number of In2O3 growth cycles in relation to the number of In2S3 growth cycles, the optical band gap of the resulting thin films could be tuned.
Optical, electrical properties and structural characterization of ZnO:rGO based photodetector
NASA Astrophysics Data System (ADS)
Nath, Debarati; Mandal, S. K.; Deb, Debajit; Rakshit, J. K.; Dey, P.; Roy, J. N.
2018-04-01
Pure ZnO and ZnO:rGO composite films are prepared by sol-gel process and the effect of reduced graphene oxide(rGO) on structural, optical and electrical properties of the film are studied. UV-visspectrum shows that composite film exhibit similar optical absorbance property as pure ZnOfilm. Band gap of the film is changed from 3.32 to 3.21 eV by incorporation of rGO. From current-voltage curve it can be observed that photo current is increased significantly in composite film under red laser light illumination. This result suggests that conduction mechanism in composite film is dominated by rGO. Nyquist plot of both films show only one semicircle behavior in measured frequency range, which may be attributed to grain boundaries effects in the composite.
Chemical spray pyrolyzed kesterite Cu2ZnSnS4 (CZTS) thin films
NASA Astrophysics Data System (ADS)
Khalate, S. A.; Kate, R. S.; Deokate, R. J.
2018-04-01
Pure kesterite phase thin films of Cu2ZnSnS4 (CZTS) were synthesized at different substrate temperatures using sulphate precursors by spray pyrolysis method. The significance of synthesis temperature on the structural, morphological and optical properties has been studied. The X-ray analysis assured that synthesized CZTS thin films showing pure kesterite phase. The value of crystallite size was found maximum at the substrate temperature 400 °C. At the same temperature, microstructural properties such as dislocation density, micro-strain and stacking fault probability were found minimum. The morphological examination designates the development of porous and uniform CZTS thin films. The synthesized CZTS thin films illustrate excellent optical absorption (105 cm-1) in the visible band and the optical band gap varies in the range of 1.489 eV to 1.499 eV.
Norton, C G; Suedmeyer, J; Oderkerk, B; Fieback, T M
2014-05-01
A new optical flow cell with a new optical arrangement adapted for high pressures and temperatures using glass fibres to connect light source, cell, and spectrometer has been developed, as part of a larger project comprising new methods for in situ analysis of bio and hydrogen gas mixtures in high pressure and temperature applications. The analysis is based on measurements of optical, thermo-physical, and electromagnetic properties in gas mixtures with newly developed high pressure property sensors, which are mounted in a new apparatus which can generate gas mixtures with up to six components with an uncertainty of composition of as little as 0.1 mol. %. Measurements of several pure components of natural gases and biogases to a pressure of 20 MPa were performed on two isotherms, and with binary mixtures of the same pure gases at pressures to 17.5 MPa. Thereby a new method of analyzing the obtained spectra based on the partial density of methane was investigated.
Xu, Jie; Li, Jianwei; Zhu, Xiaocheng; Fan, Guohua; Shan, Debin; Guo, Bin
2015-11-04
Micro-forming with ultrafine-grained (UFG) materials is a promising direction for the fabrication of micro-electro-mechanical systems (MEMS) components due to the improved formability, good surface quality, and excellent mechanical properties it provides. In this paper, micro-compression tests were performed using UFG pure aluminum processed by equal-channel angular pressing (ECAP) with subsequent annealing treatment. Microstructural evolution was investigated by electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). The results show that microstructural evolutions during compression tests at the micro/meso-scale in UFG pure Al are absolutely different from the coarse-grained (CG) materials. A lot of low-angle grain boundaries (LAGBs) and recrystallized fine grains are formed inside of the original large grains in CG pure aluminum after micro-compression. By contrast, ultrafine grains are kept with few sub-grain boundaries inside the grains in UFG pure aluminum, which are similar to the original microstructure before micro-compression. The surface roughness and coordinated deformation ability can be signmicrostructure; micro/meso-forming; ultrafine grains; ECAP; aluminumificantly improved with UFG pure aluminum, which demonstrates that the UFG materials have a strong potential application in micro/meso-forming.
Purely wavelength- and amplitude-modulated quartz-enhanced photoacoustic spectroscopy.
Patimisco, Pietro; Sampaolo, Angelo; Bidaux, Yves; Bismuto, Alfredo; Scott, Marshall; Jiang, James; Muller, Antoine; Faist, Jerome; Tittel, Frank K; Spagnolo, Vincenzo
2016-11-14
We report here on a quartz-enhanced photoacoustic (QEPAS) sensor employing a quantum cascade laser (QCL) structure capable of operating in a pure amplitude or wavelength modulation configuration. The QCL structure is composed of three electrically independent sections: Gain, Phase (PS) and Master Oscillator (MO). Selective current pumping of these three sections allows obtaining laser wavelength tuning without changes in the optical power, and power modulation without emission wavelength shifts. A pure QEPAS amplitude modulation condition is obtained by modulating the PS current, while pure wavelength modulation is achieved by modulating simultaneously the MO and PS QCL sections and slowly scanning the DC current level injected in the PS section.
NASA Astrophysics Data System (ADS)
Bairy, Raghavendra; Jayarama, A.; Shivakumar, G. K.; Patil, P. S.; Bhat, K. Udaya
2018-04-01
Thin films of undoped and zinc doped CdO have been deposited on glass substrate using spray pyrolysis technique with various dopant concentrations of Zn such as 1, 5 and 10%. Influence of Zn doping on CdO thin films for the structural, morphological, optical and nonlinear optical properties are reported. XRD analysis reveals that as prepared pure and Zn doped CdO films show polycrystalline nature with face centered cubic structure. Also, Zn doping does not significantly modify the crystallinity and not much increase in the crystallite size of the film. SEM images shows grains which are uniform and grain size with increase in dopant concentration. The transmittance of the prepared CdO films recorded in the UV visible spectra and it shows 50 to 60% in the visible region. The estimated optical band gap increases from 2.60 to 2.70 eV for various dopant concentrations. The nonlinear optical absorption of Zn-doped CdO films have been measured used the Z-scan technique at a wavelength 532 nm. The nonlinear optical absorption coefficient (β), nonlinear refractive index (n2) and the third order nonlinear optical susceptibility (χ(3)) of the pure and Zn doped films were determined.
High-resolution IUE observations of the 1981 eclipse of 32 CYG
NASA Technical Reports Server (NTRS)
Reimers, D.; Che, A.; Hempe, K.
1981-01-01
32 Cyg shows a spectacular pure emission line spectrum during eclipse. Six weeks later, most lines, which were observed in emission during eclipse, are seen as P Cygni type profiles with strong absorption components. The lines are formed through line scattering of B star light in the extended atmosphere (wind) of the K supergiant. During eclipse, the emission parts of the P Cyg lines remain visible since the size of the line scattering sphere around the B star is larger than the red giant. Other emission lines are formed in a shock front near the B star (CIV, SiIV, FeIII) and possibly in an accretion disk. The strong FeII UV Mult. 191 lambda lambda 1785-88 A is shown to be formed through optical pumping via FeII UV Mult. 9 photons. The phase dependence of the P Cyg type profiles is modelled by means of line transfer calculations in nonspherical, 3-dimensional geometry with velocity fields.
NASA Astrophysics Data System (ADS)
Bell, Colin; Jump, Ellen; Kerr, William; Corney, Jonathan; Zuelli, Nicola; Savings, David
2017-10-01
This paper presents the results of an experimental investigation of the strain measured on a sample of Ti35A (commercially pure) titanium that was formed past the point of failure in a hydroforming operation. The sample was etched prior to forming to allow for a strain map of the exterior to be created and examined by using a circle grid analysis (CGA) technique. The sample was scanned post forming with precise optical inspection to ascertain an accurate model of its geometry. This paper discusses the results of the analyses including the full geometric and surface strain measurements. This paper then compares material thinning properties to strain values and finds a linear relationship of approximately 3:1 between Von Mises strain and material thinning percentage throughout the sample. The slope of the line appears to correlate strongly with the material's Poisson's ratio and could have potential uses in process planning.
Extrinsic fiber optic displacement sensors and displacement sensing systems
Murphy, K.A.; Gunther, M.F.; Vengsarkar, A.M.; Claus, R.O.
1994-04-05
An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer. 14 figures.
Extrinsic fiber optic displacement sensors and displacement sensing systems
Murphy, Kent A.; Gunther, Michael F.; Vengsarkar, Ashish M.; Claus, Richard O.
1994-01-01
An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer.
NASA Technical Reports Server (NTRS)
Golden, D. C.; Ming, Douglas W.; Lauer, H. V., Jr.; Morris, R. V.; Trieman, A. H.; McKay, G. A.
2006-01-01
Magnetite and sulfides in the black rims of carbonate globules in Martian meteorite ALH84001 have been studied extensively because of the claim by McKay et al. that they are biogenic in origin. However, exclusively inorganic (abiotic) processes are able to account for the occurrence of carbonate-sulfide-magnetite assemblages in the meteorite. We have previously precipitated chemically zoned and sulfide-bearing carbonate globules analogous to those in ALH84001 (at less than or equal to 150 C) from multiple fluxes of variable-composition Ca-Mg-Fe-CO2-S-H2O solutions. Brief heating of precipitated globules to approx. 470 C produced magnetite and pyrrhotite within the globules by thermal decomposition of siderite and pyrite, respectively. We have also shown that morphology of magnetite formed by inorganic thermal decomposition of Fe-rich carbonate is similar to the morphology of so-called biogenic magnetite in the carbonate globules of ALH84001. Magnetite crystals in the rims of carbonate globules in ALH84001 are chemically pure [Note: "Chemically pure" is defined here as magnetite with Mg at levels comparable or lower than Mg detected by [8] in ALH84001 magnetite]. A debate continues on whether or not chemically pure magnetite can form by the thermal decomposition of mixed Mg-Fe-carbonates that have formed under abiotic conditions. Thomas-Keprta et al. argue that it is not possible to form Mg-free magnetite from Mg-Fe-carbonate based on thermodynamic data. We previously suggested that chemically pure magnetite could form by the thermal decomposition of relatively pure siderite in the outer rims of the globules. Mg-Fe-carbonates may also thermally decompose under conditions conducive for formation of chemically pure magnetite. In this paper we show through laboratory experiments that chemically pure magnetite can form by an inorganic process from mixed Mg-Fe-carbonates.
Studies of dynamic processes in biomedicine by high-speed spectral optical coherence tomography
NASA Astrophysics Data System (ADS)
Wojtkowski, M.; Kowalczyk, A.
2007-02-01
This contribution demonstrates potential of Spectral Optical Coherence Tomography (SOCT) for studies of dynamic processes in biomedicine occurring at various time scales. Several examples from ophthalmology, optometry, surgery, neurology are given to illustrate the extension of SOCT beyond pure morphological investigations.
Thermodynamically efficient solar concentrators
NASA Astrophysics Data System (ADS)
Winston, Roland
2012-10-01
Non-imaging Optics is the theory of thermodynamically efficient optics and as such depends more on thermodynamics than on optics. Hence in this paper a condition for the "best" design is proposed based on purely thermodynamic arguments, which we believe has profound consequences for design of thermal and even photovoltaic systems. This new way of looking at the problem of efficient concentration depends on probabilities, the ingredients of entropy and information theory while "optics" in the conventional sense recedes into the background.
Linear build-up of Fano resonance spectral profiles
NASA Astrophysics Data System (ADS)
Golovinski, P. A.; Yakovets, A. V.; Astapenko, V. A.
2018-06-01
The build-up dynamics of a continuous spectrum under the action of a weak laser field on a Fano resonance with the use of the pulses with the Lorentz spectrum and ultrashort pulses in the wavelet form is investigated. A dispersion-time excitation dependence of the Fano resonances in a He atom, in an InP impurity semiconductor, in longitudinal optical LO-phonons of a shallow donor exciton in pure ZnO crystals, and in metamaterials are calculated. The numerical simulation of the dynamics has shown time-dependent formation of a Fano spectral profile in the systems of different physical natures under the action of ultrashort pulses with attosecond and femtosecond durations.
Laser cooling of rubidium atoms in a 2D optical lattice
NASA Astrophysics Data System (ADS)
Wei, Chunhua; Kuhn, Carlos C. N.
2018-06-01
Lossless polarization gradient cooling of ?? atoms in a far-detuned 2D optical lattice is demonstrated. Temperatures down to ?K and phase space densities as high as 1 / 1000 are achieved in a total duty cycle of ?. It is shown that utilizing the vector component of the optical lattice allows lower temperatures to be achieved when compared with pure scalar lattices.
Pressnitz, Desiree; Fischereder, Eva-Maria; Pletz, Jakob; Kofler, Christina; Hammerer, Lucas; Hiebler, Katharina; Lechner, Horst; Richter, Nina; Eger, Elisabeth; Kroutil, Wolfgang
2018-05-31
Stereoselective methods for the synthesis of tetrahydro-ß-carbolines are of significant interest due to the broad spectrum of biological activity of the target molecules. In the plant kingdom strictosidine synthases catalyze the C-C coupling via a Pictet-Spengler reaction of tryptamine and secologanin to exclusively form the (S)-configured tetrahydro-ß-carboline (S)-strictosidine. Investigating the biocatalytic Pictet-Spengler reaction of tryptamine with small-molecular-weight aliphatic aldehydes revealed that the strictosidine synthases gave unexpectedly access to the (R)-configured product. Developing an efficient expression method of the catalyst allowed the preparative transformation of various aldehydes giving the products with up to >98% ee. With this tool in hand a chemoenzymatic two-step synthesis of (R)-harmicine was achieved giving (R)-harmicine in 67% overall yield in optically pure form. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Park, Sang Yeon; Hwang, In-Soo; Lee, Hyun-Ju; Song, Choong Eui
2017-04-01
Glyoxalase I plays a critical role in the enzymatic defence against glycation by catalysing the isomerization of hemithioacetal, formed spontaneously from cytotoxic α-oxoaldehydes and glutathione, to (S)-α-hydroxyacylglutathione derivatives. Upon the hydrolysis of the thioesters catalysed by glyoxalase II, inert (S)-α-hydroxy acids, that is, lactic acid, are then produced. Herein, we demonstrate highly enantioselective glyoxalase I mimic catalytic isomerization of in-situ-generated hemithioacetals, providing facile access to both enantiomers of α-hydroxy thioesters. Owing to the flexibility of thioesters, a family of optically pure α-hydroxyamides, which are highly important drug candidates in the pharmaceutical industry, were prepared without any coupling reagents. Similar to real enzymes, the enforced proximity of the catalyst and substrates by the chiral cage in situ formed by the incorporation of potassium salt can enhance the reactivity and efficiently transfer the stereochemical information.
Canted antiferromagnetism in phase-pure CuMnSb
NASA Astrophysics Data System (ADS)
Regnat, A.; Bauer, A.; Senyshyn, A.; Meven, M.; Hradil, K.; Jorba, P.; Nemkovski, K.; Pedersen, B.; Georgii, R.; Gottlieb-Schönmeyer, S.; Pfleiderer, C.
2018-05-01
We report the low-temperature properties of phase-pure single crystals of the half-Heusler compound CuMnSb grown by means of optical float zoning. The magnetization, specific heat, electrical resistivity, and Hall effect of our single crystals exhibit an antiferromagnetic transition at TN=55 K and a second anomaly at a temperature T*≈34 K. Powder and single-crystal neutron diffraction establish an ordered magnetic moment of (3.9 ±0.1 ) μB/f .u . , consistent with the effective moment inferred from the Curie-Weiss dependence of the susceptibility. Below TN, the Mn sublattice displays commensurate type-II antiferromagnetic order with propagation vectors and magnetic moments along <111 > (magnetic space group R [I ]3 c ). Surprisingly, below T*, the moments tilt away from <111 > by a finite angle δ ≈11∘ , forming a canted antiferromagnetic structure without uniform magnetization consistent with magnetic space group C [B ]c . Our results establish that type-II antiferromagnetism is not the zero-temperature magnetic ground state of CuMnSb as may be expected of the face-centered cubic Mn sublattice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldridge, James D.; Womick, Jordan M.; Rosmus, Kimberly A.
Novel quaternary lanthanide-substituted oxides of stoichiometry LnxY2-xTi2O7 (where Ln is lanthanum, neodymium, samarium, gadolinium, or ytterbium) were prepared by traditional high-temperature, solid-state techniques and characterized by X-ray powder diffraction. Samples with nominal values of x up to 1.0 were attempted. The well-studied ternary cubic pyrochlore compound yttrium titanium oxide (Y2Ti2O7, space group Fd-3m, Z = 8), served as a parent structural framework in which Ln3+ cations were substituted on the Y3+ site. Laboratory-grade X-ray powder diffraction data revealed pure quaternary pyrochlore phases for LnxY2-xTi2O7 with x ≤ 0.2. Pyrochlore phase purity was verified by Rietveld analysis using high-resolution synchrotron X-raymore » powder diffraction data when x ≤ 0.2, however, for La3+ substitution specifically, pure quaternary pyrochlore formed at x<0.1. Band gap energies on selected samples were determined using optical diffuse reflectance spectroscopy and showed that these materials can be classified as electrical insulators with indirect band gap energies around 3.7 eV.« less
NASA Astrophysics Data System (ADS)
Różycka, Anna; Fryń, Patryk; Iwan, Agnieszka; Bogdanowicz, Krzysztof Artur; Filapek, Michal; Górska, Natalia; Dąbczyński, Paweł; Rysz, Jakub; Pociecha, Damian; Hreniak, Agnieszka; Marzec, Monika
2018-02-01
A new piperazine imine, (7E)-N-((4-((E)-(4-hexadecylphenylimino)methyl)piperazin-1-yl)methylene)-4-dodecylbenzenamine, has been synthesized by the condensation of 1,4-piperazinedicarboxaldehyde with 4-hexadecylaniline. The imine was characterized by cyclic voltammetry, Fourier transform middle-infrared absorption spectroscopy and X-ray diffraction. Thermal properties of imine was analyzed by differential scanning calorimetry method during first and second heating scan at 10 and 20 °C/min. Texture of imine was investigated by polarized optical microscopy and atomic force microscopy. Furthermore, imine was blended with titanium dioxide in anatase form and fully characterized by the same methods. Piperazine imine and its mixture with titanium dioxide exhibited only a transition from crystal to isotropic state. Imine exhibits two-step reduction wave attributed to one-electron transfer in each step as was found by cyclic voltammetry. Both titanium dioxide and poly(3-hexylthiophene) change the electrochemical properties of piperazine imine, however, in different ways. Studied imine blended with titanium dioxide exhibited higher value of energy band gap than pure piperazine imine and lower Eg than pure poly(3-hexylthiophene).
Nonreciprocal reconfigurable microwave optomechanical circuit.
Bernier, N R; Tóth, L D; Koottandavida, A; Ioannou, M A; Malz, D; Nunnenkamp, A; Feofanov, A K; Kippenberg, T J
2017-09-19
Nonreciprocal microwave devices are ubiquitous in radar and radio communication and indispensable in the readout chains of superconducting quantum circuits. Since they commonly rely on ferrite materials requiring large magnetic fields that make them bulky and lossy, there has been significant interest in magnetic-field-free on-chip alternatives, such as those recently implemented using the Josephson nonlinearity. Here, we realize reconfigurable nonreciprocal transmission between two microwave modes using purely optomechanical interactions in a superconducting electromechanical circuit. The scheme relies on the interference in two mechanical modes that mediate coupling between the microwave cavities and requires no magnetic field. We analyse the isolation, transmission and the noise properties of this nonreciprocal circuit. Finally, we show how quantum-limited circulators can be realized with the same principle. All-optomechanically mediated nonreciprocity demonstrated here can also be extended to directional amplifiers, and it forms the basis towards realizing topological states of light and sound.Nonreciprocal optical devices traditionally rely on magnetic fields and magnetic-free approaches are rather recent. Here, Bernier et al. propose and demonstrate a purely optomechanical circulator with reconfigurable transmission without the need for direct coupling between input and output modes.
[Study on the change of optical zone after femtosecond laser assisted laser in situ keratomileusis].
Li, H; Chen, M; Tian, L; Li, D W; Peng, Y S; Zhang, F F
2018-01-11
Objective: To explore the change of optical zone after femtosecond laser assisted laser in sitn keratomileusis(FS-LASIK) so as to provide the reference for measurement and design of clinical optical zone. Methods: This retrospective case series study covers 41 eyes of 24 patients (7 males and 17 females, aged from 18 to 42 years old) with myopia and myopic astigmatism who have received FS-LASIK surgery at Corneal Refractive Department of Qingdao Eye Hospital and completed over 6 months of clinical follow-up. Pentacam system (with the application of 6 corneal topographic map modes including: the pure axial curvature topographic map, the pure tangential curvature topographic map, the axial curvature difference topographic map, the tangential curvature difference topographic map, the postoperative front elevation map and the corneal thickness difference topographic map), combined with transparent concentric software (a system independently developed by Qingdao Eye Hospital) was used to measure the optical zone at 1, 3 and 6 months postoperatively, the optical zone diameters measurement results among different follow-up times in group were analyzed with the repeated measures analysis of variance, and the actual measured values and the theoretical design values of the optical zone were analyzed with independent-samples t-testing. Spearman correlation coefficient ( r(s) ) have been applied to evaluate the relationship between postoperative optical zone measurement values and the potential influencing factors. Results: The optical zone diameters measured by pure axial curvature topographic map at 1, 3 and 6 months after FS-LASIK showed (6.55±0.50)mm, (6.50±0.53)mm and (6.48±0.53)mm respectively. The differences between values are of no statistical significance ( F= 1.60, P= 0.21), the optical zone diameter measured by pure tangential curvature topographic map at 1, 3 and 6 months after FS-LASIK showed (5.44±0.46)mm, (5.46±0.52)mm and (5.44±0.50)mm respectively, the differences between values are of no statistical significance ( F= 0.17, P= 0.85). The optical zone diameters measured by postoperative front elevation map at 1, 3 and 6 months after FS-LASIK showed (5.06±0.28)mm, (5.12±0.32)mm and (5.17±0.28)mm respectively. The differences between the values of 3 and 6 months postoperatively are of no statistical significance ( F= 6.14, P= 0.15), the optical zone diameters measured by axial curvature difference topographic map at 1, 3 and 6 months after FS-LASIK showed (6.51±0.37)mm, (6.45±0.41)mm and (6.41±0.40)mm respectively, and the differences between the values of 3 and 6 months postoperatively are of no statistical significance ( F= 7.25, P= 0.05). The optical zone diameters measured by tangential curvature difference topographic map at 1, 3 and 6 months after FS-LASIK showed (5.21±0.23)mm, (5.16±0.19)mm and (5.17±0.20) mm respectively, and the differences between the values of 1 and 3 months postoperatively are of statistical significance ( F= 1.75, P= 0.04). The optical zone diameters measured by corneal thickness difference topographic map at 1, 3 and 6 months after FS-LASIK showed (6.53±0.40)mm, (6.39±0.43)mm and (6.41±0.47)mm respectively, and the differences between the values of 1 and 3 months postoperatively are of statistical significance ( F= 1.67, P= 0.032). The actual measured optical zone values from the 6 different modes of Pentacam system are less than the theoretical design values (7.75 mm), and the differences were statistical significance ( t= -15.42, -29.39, -59.27, -21.47, -81.69, -18.22, P< 0.01). Conclusions: The optical zone measurement values tend to be stable at 3 months after FS-LASIK. The actual measured values from all the 6 different modes of Pentacam system were less than the theoretical design values. The results from pure tangential curvature topographic map, the tangential curvature difference topographic map and the postoperative front elevation map showed greater variation with clear border, which was beneficial for eccentric research. The results from pure axial curvature topographic map, the axial curvature difference topographic map and the corneal thickness difference topographic map were close to the theoretically designed values. Furthermore, the axial curvature difference topographic map showed clearer border and less variation thus maybe more favorable for measuring optical zone in clinical application. (Chin J Ophthalmol, 2018, 54: 39-47) .
Growth and characterization of pure and glycine doped cadmium thiourea sulphate (GCTS) crystals
NASA Astrophysics Data System (ADS)
Lawrence, M.; Thomas Joseph Prakash, J.
2012-06-01
The pure and glycine doped cadmium thiourea sulphate (GCTS) single crystals were grown successfully by slow evaporation method at room temperature. The concentration of dopant in the mother solution was 1 mol%. There is a change in unit cell. The Fourier transform infrared spectroscopy study confirms the incorporation of glycine into CTS crystal. The doped crystals are optically better and more transparent than the pure ones. The dopant increases the hardness value of the material. The grown crystals were also subjected to thermal and NLO studies.
Microbial genome sequencing using optical mapping and Illumina sequencing
USDA-ARS?s Scientific Manuscript database
Introduction Optical mapping is a technique in which strands of genomic DNA are digested with one or more restriction enzymes, and a physical map of the genome constructed from the resulting image. In outline, genomic DNA is extracted from a pure culture, linearly arrayed on a specialized glass sli...
NASA Astrophysics Data System (ADS)
Berk, Alexander
2013-03-01
Exact expansions for Voigt line-shape total, line-tail and spectral bin equivalent widths and for Voigt finite spectral bin single-line transmittances have been derived in terms of optical depth dependent exponentially-scaled modified Bessel functions of integer order and optical depth independent Fourier integral coefficients. The series are convergent for the full range of Voigt line-shapes, from pure Doppler to pure Lorentzian. In the Lorentz limit, the expansion reduces to the Ladenburg and Reiche function for the total equivalent width. Analytic expressions are derived for the first 8 Fourier coefficients for pure Lorentzian lines, for pure Doppler lines and for Voigt lines with at most moderate Doppler dependence. A strong-line limit sum rule on the Fourier coefficients is enforced to define an additional Fourier coefficient and to optimize convergence of the truncated expansion. The moderate Doppler dependence scenario is applicable to and has been implemented in the MODTRAN5 atmospheric band model radiative transfer software. Finite-bin transmittances computed with the truncated expansions reduce transmittance residuals compared to the former Rodgers-Williams equivalent width based approach by ∼2 orders of magnitude.
Catalytic Asymmetric Synthesis of Butenolides and Butyrolactones
2017-01-01
γ-Butenolides, γ-butyrolactones, and derivatives, especially in enantiomerically pure form, constitute the structural core of numerous natural products which display an impressive range of biological activities which are important for the development of novel physiological and therapeutic agents. Furthermore, optically active γ-butenolides and γ-butyrolactones serve also as a prominent class of chiral building blocks for the synthesis of diverse biological active compounds and complex molecules. Taking into account the varying biological activity profiles and wide-ranging structural diversity of the optically active γ-butenolide or γ-butyrolactone structure, the development of asymmetric synthetic strategies for assembling such challenging scaffolds has attracted major attention from synthetic chemists in the past decade. This review offers an overview of the different enantioselective synthesis of γ-butenolides and γ-butyrolactones which employ catalytic amounts of metal complexes or organocatalysts, with emphasis focused on the mechanistic issues that account for the observed stereocontrol of the representative reactions, as well as practical applications and synthetic potentials. PMID:28640622
Kanematsu, Hideyuki; Kudara, Hikonaru; Kanesaki, Shun; Kogo, Takeshi; Ikegai, Hajime; Ogawa, Akiko; Hirai, Nobumitsu
2016-10-11
A laboratory biofilm reactor (LBR) was modified to a new loop-type closed system in order to evaluate novel stents and catheter materials using 3D optical microscopy and Raman spectroscopy. Two metallic specimens, pure nickel and cupronickel (80% Cu-20% Ni), along with two polymers, silicone and polyurethane, were chosen as examples to ratify the system. Each set of specimens was assigned to the LBR using either tap water or an NB (Nutrient broth based on peptone from animal foods and beef extract mainly)-cultured solution with E-coli formed over 48-72 h. The specimens were then analyzed using Raman Spectroscopy. 3D optical microscopy was employed to corroborate the Raman Spectroscopy results for only the metallic specimens since the inherent roughness of the polymer specimens made such measurements difficult. The findings suggest that the closed loop-type LBR together with Raman spectroscopy analysis is a useful method for evaluating biomaterials as a potential urinary system.
Induction of optical vortex in the crystals subjected to bending stresses.
Skab, Ihor; Vasylkiv, Yurij; Vlokh, Rostyslav
2012-08-20
We describe a method for generation of optical vortices that relies on bending of transparent parallelepiped-shaped samples fabricated from either glass or crystalline solid materials. It is shown that the induced singularity of optical indicatrix rotation leads in general to appearance of a mixed screw-edge dislocation of the phase front of outgoing optical beam. At the same time, some specified geometrical parameters of the sample can ensure generation of a purely screw dislocation of the phase front and, as a result, a singly charged canonical optical vortex.
NASA Astrophysics Data System (ADS)
Kilicaslan, A.; Levasseur, O.; Roy-Garofano, V.; Profili, J.; Moisan, M.; Côté, C.; Sarkissian, A.; Stafford, L.
2014-03-01
An atmospheric-pressure plasma sustained by an electromagnetic surface wave (SW) in the microwave regime combined with a bubbler/flash evaporator for the injection of liquid precursors was used to produce organosilicon and organotitanium nanopowders. Following the addition of hexamethyldisiloxane (HMDSO) vapors in the nominally pure argon plasma, optical emission spectra revealed the apparition of strong C2 molecular bands along with Si and Balmer H emission lines. Such features were not observed in our atmospheric-pressure Ar/HMDSO discharges controlled by dielectric barriers, indicating that microwave plasmas are characterized by much higher fragmentation levels of the precursors due to much higher electron densities. Emission spectra from the Ar/HMDSO SW plasma further showed a high-intensity continuum, the intensity of which decreased with time as powders started to form on the discharge tube walls. In presence of titanium isopropoxide (TTIP) vapors in the nominally pure Ar plasma, the emission was dominated by Ar and Ti lines, with no trace of carbon and no continuum. Fourier-Transform Infrared (FTIR) Spectroscopy of the powders formed in Ar/HMDSO plasmas showed very strong Si-(CH3)x and O-Si-(CH3)x bands, which is consistent with the formation of silicon oxycarbide. Transmission Electron Microscopy (TEM) further showed tube and sheet-like nanofeatures as well as larger structures consisting of agglomerated primary clusters. On the other hand, introduction of O2 in Ar/HMDSO plasmas produced only round-like nanoparticles with strong Si-O-Si bands and no trace of carbon, consistent with the formation of SiOx. The average size of the silica nanoparticles was 50 nm. FTIR spectra of powders formed in Ar/TTIP plasmas showed strong Ti-O signals, even without the addition of O2 in the gas phase. Corresponding TEM analysis showed nano- and agglomerated features comparable to those obtained in Ar/HMDSO although the average size of the titanate nanoparticles was smaller (10 nm). This set of data indicates that SW plasmas represent a promising parametric tool not only to achieve nanopowders with tailored properties for applications, but also for fundamental studies of nanodusty plasmas at atmospheric-pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Ya Fei; Li, Can, E-mail: canli1983@gmail.com; Lu, Song
2016-03-15
The crystal phase structure, surface morphology, chemical states and optical properties of Mn, N mono-doped and co-doped TiO{sub 2} nanoparticles were investigated by X-ray powder diffractometry, Raman spectra, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectroscopy. Meanwhile, geometry structures, formation energies, electronic and optical properties of all systems have been also analyzed by density functional theory. The results showed that the band gap values and the carrier mobility in the valence band, conduction band and impurity levels have a synergetic influence on the visible-light absorption and photocatalytic activity of the doped TiO{sub 2}. The number and themore » carrier mobility of impurity level jointly influence the photocatalytic activity of catalyst under visible-light. Especially, the photocatalytic activity of Mn-2N co-doped TiO{sub 2} beyond three-fold than that of pure TiO{sub 2} under visible-light. - Graphical abstract: The ILs formed by N-2p orbital in N single doped specimen lie above the VB, while the ILs formed by Mn-3d orbital in Mn single doped specimen appear below the CB. However, a large amount of ILs formed by N-2p orbital and Mn-3d orbital in N and Mn codoped specimens. The band gap values and the carrier mobility in the valence band, conduction band and impurity levels have a synergetic influence on the visible-light absorption and photocatalytic activity of the doped TiO{sub 2}. The number and the carrier mobility of impurity level jointly influence the photocatalytic activity of catalyst under visible-light.« less
EDITORIAL: Squeezed states and uncertainty relations
NASA Astrophysics Data System (ADS)
Jauregue-Renaud, Rocio; Kim, Young S.; Man'ko, Margarita A.; Moya-Cessa, Hector
2004-06-01
This special issue of Journal of Optics B: Quantum and Semiclassical Optics is composed mainly of extended versions of talks and papers presented at the Eighth International Conference on Squeezed States and Uncertainty Relations held in Puebla, Mexico on 9-13 June 2003. The Conference was hosted by Instituto de Astrofísica, Óptica y Electrónica, and the Universidad Nacional Autónoma de México. This series of meetings began at the University of Maryland, College Park, USA, in March 1991. The second and third workshops were organized by the Lebedev Physical Institute in Moscow, Russia, in 1992 and by the University of Maryland Baltimore County, USA, in 1993, respectively. Afterwards, it was decided that the workshop series should be held every two years. Thus the fourth meeting took place at the University of Shanxi in China and was supported by the International Union of Pure and Applied Physics (IUPAP). The next three meetings in 1997, 1999 and 2001 were held in Lake Balatonfüred, Hungary, in Naples, Italy, and in Boston, USA, respectively. All of them were sponsored by IUPAP. The ninth workshop will take place in Besançon, France, in 2005. The conference has now become one of the major international meetings on quantum optics and the foundations of quantum mechanics, where most of the active research groups throughout the world present their new results. Accordingly this conference has been able to align itself to the current trend in quantum optics and quantum mechanics. The Puebla meeting covered most extensively the following areas: quantum measurements, quantum computing and information theory, trapped atoms and degenerate gases, and the generation and characterization of quantum states of light. The meeting also covered squeeze-like transformations in areas other than quantum optics, such as atomic physics, nuclear physics, statistical physics and relativity, as well as optical devices. There were many new participants at this meeting, particularly from Latin American countries including, of course, Mexico. There were many talks on the subjects traditionally covered in this conference series, including quantum fluctuations, different forms of squeezing, unlike kinds of nonclassical states of light, and distinct representations of the quantum superposition principle, such as even and odd coherent states. The entanglement phenomenon, frequently in the form of the EPR paradox, is responsible for the main advantages of quantum engineering compared with classical methods. Even though entanglement has been known since the early days of quantum mechanics, its properties, such as the most appropriate entanglement measures, are still under current investigation. The phenomena of dissipations and decoherence of the initial pure states are very important because the fast decoherence can destroy all the advantages of quantum processes in teleportation, quantum computing and image processing. Due to this, methods of controlling the decoherence, such as by the use of different kinds of nonlinearities and deformations, are also under study. From the very beginning of quantum mechanics, the uncertainty relations were basic inequalities distinguishing the classical and quantum worlds. Among the theoretical methods for quantum optics and quantum mechanics, this conference covered phase space and group representations, such as the Wigner and probability distribution functions, which provide an alternative approach to the Schr\\"odinger or Heisenberg picture. Different forms of probability representations of quantum states are important tools to be applied in studying various quantum phenomena, such as quantum interference, decoherence and quantum tomography. They have been established also as a very useful tool in all branches of classical optics. From the mathematical point of view, it is well known that the coherent and squeezed states are representations of the Lorentz group. It was noted throughout the conference that another form of the Lorentz group, namely, the 2 x 2 representation of the SL(2,c) group, is becoming more prominent while providing the mathematical basis for the Poincaré sphere, entanglement, qubits and decoherence, as well as classical ray optics traditionally based on 2 x 2 `ABCD' matrices. The contributions of this special issue cover the most recent trends in all areas of quantum optics and the foundations of quantum mechanics.
Cavalieri, Andrea; Fischer, Ravit; Larkov, Olga; Dudai, Nativ
2014-03-01
Citronellal is one of the most prominent monoterpenes present in many essential oils. Low persistence of essential oils as bioherbicides has often been addressed because of the high volatility of these compounds. Bioconversion of citronellal by wheat seeds releases less aggressive and injurious compounds as demonstrated by their diminished germination. We demonstrated that optically pure citronellal enantiomers were reduced to optically pure citronellol enantiomers with retention of the configuration both in isolated wheat embryos and endosperms. Our findings reveal the potential of essential oils as allelopathic agents providing an insight into their mechanism of action and persistence. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.
Valley-Selective Exciton Bistability in a Suspended Monolayer Semiconductor
NASA Astrophysics Data System (ADS)
Xie, Hongchao; Jiang, Shengwei; Shan, Jie; Mak, Kin Fai
2018-05-01
We demonstrate robust power- and wavelength-dependent optical bistability in fully suspended monolayers of WSe2 near the exciton resonance. Bistability has been achieved under continuous-wave optical excitation at an intensity level of 10^3 W/cm^2. The observed bistability is originated from a photo-thermal mechanism, which provides both optical nonlinearity and passive feedback, two essential elements for optical bistability. Under a finite magnetic field, the exciton bistability becomes helicity dependent, which enables repeatable switching of light purely by its polarization.
Single-crystal silicon optical fiber by direct laser crystallization
Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying; ...
2016-12-05
Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillarymore » fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.« less
Additional security features for optically variable foils
NASA Astrophysics Data System (ADS)
Marshall, Allan C.; Russo, Frank
1998-04-01
For thousands of years, man has exploited the attraction and radiance of pure gold to adorn articles of great significance. Today, designers decorate packaging with metallic gold foils to maintain the prestige of luxury items such as perfumes, chocolates, wine and whisky, and to add visible appeal and value to wide range of products. However, today's products do not call for the hand beaten gold leaf of the Ancient Egyptians, instead a rapid production technology exists which makes use of accurately coated thin polymer films and vacuum deposited metallic layers. Stamping Foils Technology is highly versatile since several different layers may be combined into one product, each providing a different function. Not only can a foil bring visual appeal to an article, it can provide physical and chemical resistance properties and also protect an article from human forms of interference, such as counterfeiting, copying or tampering. Stamping foils have proved to be a highly effective vehicle for applying optical devices to items requiring this type of protection. Credit cards, bank notes, personal identification documents and more recently high value packaged items such as software and perfumes are protected by optically variable devices applied using stamping foil technology.
NASA Astrophysics Data System (ADS)
Sehgal, Preeti; Narula, A. K.
2015-06-01
Zinc oxide nanoparticles were synthesized by precipitation method using triethanolamine (TEA) and hexamine (HA) as capping agents, and their effects on the optical, thermal, and morphological properties were analyzed. We have also analyzed the role of solvents on the aforementioned properties of ZnO nanoparticles. The optical properties of capped zinc oxide nanoparticles were investigated by UV-visible and fluorescent techniques. The HA@ZnO and TEA@ZnO that showed blueshift in comparison with ZnO without surfactant revealed the role of surfactant in reducing the trap sites by forming defect-free nanoparticles. TG-DTA curves indicated that optimum annealing temperature for ZnO nanoparticles was in the range of 360-469 °C depending upon the surfactant and solvent; no weight loss was observed above 469 °C. Synthesized ZnO nanoparticles had pure wurtzite structure as elucidated by X-ray diffraction studies (XRD). Scanning electron microscope revealed that the ZnO synthesized in isopropyl alcohol had spherical morphology, whereas ZnO nanoparticles synthesized in methanol had agglomerate sheet-like structure. The average size of the nanocrystal was estimated around 85-169 nm for ZnO.
Remote quantum entanglement between two micromechanical oscillators.
Riedinger, Ralf; Wallucks, Andreas; Marinković, Igor; Löschnauer, Clemens; Aspelmeyer, Markus; Hong, Sungkun; Gröblacher, Simon
2018-04-01
Entanglement, an essential feature of quantum theory that allows for inseparable quantum correlations to be shared between distant parties, is a crucial resource for quantum networks 1 . Of particular importance is the ability to distribute entanglement between remote objects that can also serve as quantum memories. This has been previously realized using systems such as warm 2,3 and cold atomic vapours 4,5 , individual atoms 6 and ions 7,8 , and defects in solid-state systems 9-11 . Practical communication applications require a combination of several advantageous features, such as a particular operating wavelength, high bandwidth and long memory lifetimes. Here we introduce a purely micromachined solid-state platform in the form of chip-based optomechanical resonators made of nanostructured silicon beams. We create and demonstrate entanglement between two micromechanical oscillators across two chips that are separated by 20 centimetres . The entangled quantum state is distributed by an optical field at a designed wavelength near 1,550 nanometres. Therefore, our system can be directly incorporated in a realistic fibre-optic quantum network operating in the conventional optical telecommunication band. Our results are an important step towards the development of large-area quantum networks based on silicon photonics.
Measurements of the optical properties of thin films of silver and silver oxide
NASA Technical Reports Server (NTRS)
Peters, Palmer N.; Sisk, Robert C.; Brown, Yolanda; Gregory, John C.; Nag, Pallob K.; Christl, Ligia
1995-01-01
The optical properties of silver films and their oxides are measured to better characterize such films for use as sensors for atomic oxygen. Good agreement between properties of measured pure silver films and reported optical constants is observed. Similar comparisons for silver oxide have not been possible because of a lack of reported constants, but self-consistencies and discrepancies in our measured results are described.
Tutorial on photoacoustic tomography
NASA Astrophysics Data System (ADS)
Zhou, Yong; Yao, Junjie; Wang, Lihong V.
2016-06-01
Photoacoustic tomography (PAT) has become one of the fastest growing fields in biomedical optics. Unlike pure optical imaging, such as confocal microscopy and two-photon microscopy, PAT employs acoustic detection to image optical absorption contrast with high-resolution deep into scattering tissue. So far, PAT has been widely used for multiscale anatomical, functional, and molecular imaging of biological tissues. We focus on PAT's basic principles, major implementations, imaging contrasts, and recent applications.
Auto-combustion synthesis and characterization of Mg doped CuAlO{sub 2} nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Shraddha, E-mail: shraddhaa32@gmail.com; Parveen, Azra; Naqvi, A. H.
2015-06-24
The synthesis of pure and Mg doped Copper aluminumoxide CuAlO{sub 2}nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO{sub 2} sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO{sub 2} has been studied over a wide range of frequencies by using complex impedance spectroscopy.Themore » variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.« less
Auto-combustion synthesis and characterization of Mg doped CuAlO2 nanoparticles
NASA Astrophysics Data System (ADS)
Agrawal, Shraddha; Parveen, Azra; Naqvi, A. H.
2015-06-01
The synthesis of pure and Mg doped Copper aluminumoxide CuAlO2nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO2 sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO2 has been studied over a wide range of frequencies by using complex impedance spectroscopy.The variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.
All-optical observation and reconstruction of spin wave dispersion
Hashimoto, Yusuke; Daimon, Shunsuke; Iguchi, Ryo; Oikawa, Yasuyuki; Shen, Ka; Sato, Koji; Bossini, Davide; Tabuchi, Yutaka; Satoh, Takuya; Hillebrands, Burkard; Bauer, Gerrit E. W.; Johansen, Tom H.; Kirilyuk, Andrei; Rasing, Theo; Saitoh, Eiji
2017-01-01
To know the properties of a particle or a wave, one should measure how its energy changes with its momentum. The relation between them is called the dispersion relation, which encodes essential information of the kinetics. In a magnet, the wave motion of atomic spins serves as an elementary excitation, called a spin wave, and behaves like a fictitious particle. Although the dispersion relation of spin waves governs many of the magnetic properties, observation of their entire dispersion is one of the challenges today. Spin waves whose dispersion is dominated by magnetostatic interaction are called pure-magnetostatic waves, which are still missing despite of their practical importance. Here, we report observation of the band dispersion relation of pure-magnetostatic waves by developing a table-top all-optical spectroscopy named spin-wave tomography. The result unmasks characteristics of pure-magnetostatic waves. We also demonstrate time-resolved measurements, which reveal coherent energy transfer between spin waves and lattice vibrations. PMID:28604690
Electro-Optical Characterization of Bistable Smectic A Liquid Crystal Displays
NASA Astrophysics Data System (ADS)
Buyuktanir, Ebru Aylin
My dissertation focuses the characterization and optimization of the electro-optical properties of smectic A (SmA) based liquid crystal (LC) displays. I present the development of robust and flexible bistable SmA LC displays utilizing polymer dispersed liquid crystal (PDLC) technology. The SmA PDLC displays produced on plastic substrates present electrically reversible memory, high contrast ratio, paper-like sunlight readability, and wide viewing angle characteristics. In order to optimize the SmA PDLC display, I investigated polymerization conditions, such as polymer concentration effect, polymerization temperature, and UV-light intensity variations. I characterized the electro-optical responses-such as static-response, time-response, threshold characteristics, and contrast ratio values' of the optimized SmA PDLC display and compared them to those of the pure SmA LC. The best electro-optical performance of SmA PDLC formulation was obtained using the combination of low mW/cm 2 and high mW/cm2 UV-light curing intensity. The contrast ratio of the optimum SmA PDLC at a 5o collection angle was 83% of that of the pure SmA material on plastic substrates. I fabricated 2.5 x 2.5 in., 4 x 4 in., and 6 x 6 in. sized monochrome flexible SmA PDLC displays, as well as red, yellow, and fluorescent dyes colored SmA PDLC displays on plastic substrates. The electro-optic performance of the bistable SmA LC display consisting of a patterned field-induced polymer wall infrastructure was also studied and compared to those of pure SmA material. I found that the contrast ratio of the SmA LC encapsulated between polymer walls was much greater than that of the SmA PDLC system, approaching the contrast ratio value of the pure SmA material. I also improved the electro-optical characteristics of bistable SmA LC displays by adding ferroparticles into the system. Finally, I illustrated the unique capabilities of polarized confocal Raman microscopy (CRM) to resolve the orientational order of SmA LCs in three-dimension by investigating the characteristic vibrational bands of LC molecules. CRM provides a precise characterization of the molecular order at different depths of the LC films. I examined the director patterns of focal conic defects of smectic A LC, colloidal smectic A LC systems, and the field-oriented nematic LC in the horizontal and vertical planes.
Engineer, Anupama S; Dhakephalkar, Anita P; Gaikaiwari, Raghavendra P; Dhakephalkar, Prashant K
2013-12-01
Hydantoinase-mediated enzymatic synthesis of optically pure carbamoyl amino acids was investigated as an environmentally friendly, energy-efficient alternative to the otherwise energy-intensive, polluting chemical synthesis. Hydantoinase-producing bacterial strain was identified as Pseudomonas aeruginosa by 16S rRNA gene sequencing and biochemical profiling using the BIOLOG Microbial Identification System. Hydantoinase activity was assessed using hydantoin analogs and 5-monosubstituted hydantoins as substrates in a colorimetric assay. The hydantoinase gene was PCR amplified using gene-specific primers and sequenced on an automated gene analyzer. Hydantoinase gene sequence of P. aeruginosa MCM B-887 revealed maximum homology of only 87 % with proven hydantoinase gene sequences in GenBank. MCM B-887 resting cells converted >99 % of substrate into N-carbamoyl amino acids under optimized condition at 42 °C, pH 8.0, and 100 mM substrate concentration in <120 min. Hydantoin hydrolyzing activity was D-selective and included broad substrate profile of 5-methyl hydantoin, 5-phenyl hydantoin, 5-hydroxyphenyl hydantoin, o-chlorophenyl hydantoin, as well as hydantoin analogs such as allantoin, dihydrouracil, etc. MCM B-887 resting cells may thus be suitable for bio-transformations leading to the synthesis of optically pure, unnatural carbamoyl amino acids of industrial importance.
Thermophilic archaeal enzymes and applications in biocatalysis.
Littlechild, Jennifer A
2011-01-01
Thermophilic enzymes have advantages for their use in commercial applications and particularly for the production of chiral compounds to produce optically pure pharmaceuticals. They can be used as biocatalysts in the application of 'green chemistry'. The thermophilic archaea contain enzymes that have already been used in commercial applications such as the L-aminoacylase from Thermococcus litoralis for the resolution of amino acids and amino acid analogues. This enzyme differs from bacterial L-aminoacylases and has similarities to carboxypeptidases from other archaeal species. An amidase/γ-lactamase from Sulfolobus solfataricus has been used for the production of optically pure γ-lactam, the building block for antiviral carbocyclic nucleotides. This enzyme has similarities to the bacterial signature amidase family. An alcohol dehydrogenase from Aeropyrum pernix has been used for the production of optically pure alcohols and is related to the zinc-containing eukaryotic alcohol dehydrogenases. A transaminase and a dehalogenase from Sulfolobus species have also been studied. The archaeal transaminase is found in a pathway for serine synthesis which is found only in eukaryotes and not in bacteria. It can be used for the asymmetric synthesis of homochiral amines of high enantioselective purity. The L-2-haloacid dehalogenase has applications both in biocatalysis and in bioremediation. All of these enzymes have increased thermostability over their mesophilic counterparts.
Optical properties and crystallinity of silver mirrors under a 35 krad cobalt-60 radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Po-Kai, E-mail: pkchiu@itrc.narl.org.tw; Chiang, Donyau; Lee, Chao-Te
2015-09-15
This study addresses the effects of thin film optical design and environmental radiation on the optical properties of silver mirrors. Different experimental thin film optical designs are selected, and the film stack is built using Macleod's approach. Mirror elements are exposed to the same dose of radiation and their properties are characterized using a spectrophotometer equipped with an integration sphere and an x-ray diffractometer. Spectrophotometric analyses of mirrors exposed to about 35 krad of {sup 60}Co radiations overall show that the B270 glass substrates coated with titanium oxide (TiO{sub 2}), silicon dioxide (SiO{sub 2}), pure chrome, and pure silver effectivelymore » reduces radiation damage. The absorption spectrum of the TiO{sub 2} film in the visible region decreases after radiation and displays drifting. As thin metal films comparison, the silver thin film exhibits higher radiation resistance than the chrome thin film. The x-ray diffraction analysis on metal film layers reveals that crystallinity slightly increases when the silver thin film is irradiated.« less
NASA Technical Reports Server (NTRS)
Otterman, J.; Susskind, J.; Dalu, G.; Kratz, D.; Goldberg, I. L.
1992-01-01
The impact of water-emission anisotropy on remotedly sensed long-wave data has been studied. Water emission is formulated from a calm body for a facile computation of radiative transfer in the atmosphere. The error stemming from the blackbody assumption are calculated for cases of a purely absorbing or a purely scattering atmosphere taking the optical properties of the atmosphere as known. For an absorbing atmosphere, the errors in the sea-surface temperature (SST) are found to be always reduced and be the same whether measurements are made from space or at any level of the atmosphere. The inferred optical thickness tau of an absorbing layer can be in error under the blackbody assumption by a delta tau of 0.01-0.08, while the inferred optical thickness of a scattering layer can be in error by a larger amount, delta tau of 0.03-0.13. It is concluded that the error delta tau depends only weakly on the actual optical thickness and the viewing angle, but is rather sensitive to the wavelength of the measurement.
Enhanced photoelectrochemical and optical performance of ZnO films tuned by Cr doping
NASA Astrophysics Data System (ADS)
Salem, M.; Akir, S.; Massoudi, I.; Litaiem, Y.; Gaidi, M.; Khirouni, K.
2017-04-01
In this paper, pure and Cr-doped nanostructured Zinc oxide thin films were synthesized by simple and low cost co-precipitation and spin-coating method with Cr concentration varying between 0.5 and 5 at.%. Crystalline structure of the prepared films was investigated by X-ray diffraction (XRD) and Raman spectroscopy techniques. XRD analysis indicated that the films were indexed as the hexagonal phase of wurtzite-type structure and demonstrated a decrease in the crystallite size with increasing Cr doping content. Cr doping revealed a significant effect on the optical measurements such as transmission and photoluminescence properties. The optical measurements indicated that Cr doping decreases the optical band gap and it has been shifted from 3.41 eV for pure ZnO film to 3.31 eV for 5 at.% Cr-doped one. The photoelectrochemical (PEC) sensing characteristics of Cr-doped ZnO layers were investigated. Amongst all photo-anodes with different Cr dopant concentration, the 2 at.% Cr incorporated ZnO films exhibited fast response and higher photoconduction sensitivity.
Tutorial on photoacoustic tomography
Zhou, Yong; Yao, Junjie; Wang, Lihong V.
2016-01-01
Abstract. Photoacoustic tomography (PAT) has become one of the fastest growing fields in biomedical optics. Unlike pure optical imaging, such as confocal microscopy and two-photon microscopy, PAT employs acoustic detection to image optical absorption contrast with high-resolution deep into scattering tissue. So far, PAT has been widely used for multiscale anatomical, functional, and molecular imaging of biological tissues. We focus on PAT’s basic principles, major implementations, imaging contrasts, and recent applications. PMID:27086868
NASA Astrophysics Data System (ADS)
Gupta, Jhalak; Ahmad, Arham S.
2018-05-01
The nanocrystallites of pure and Fe doped Nickel Oxide (NiO) were synthesized by the cost effective co-precipitation method using nickel nitrate as the initial precursor. The synthesized nickel oxide nanoparticles were characterized by X-Ray Diffraction (XRD), Photoluminiscence Spectroscopy (PL), LCR meter. The crystallite size of synthesized pure Nickel Oxide nanoparticles obtained by XRD using Debye Scherer's formula was found to be 21.8nm and the size decreases on increasing the dopant concentration. The optical properties were analyzed by PL and dielectric ones by using LCR meter.
NASA Astrophysics Data System (ADS)
Yahia, I. S.; Bouzidi, A.; Zahran, H. Y.; Jilani, W.; AlFaify, S.; Algarni, H.; Guermazi, H.
2018-03-01
Pure poly (vinyl alcohol) (PVA) and PVA doped Fluorescein-Sodium salt (FSS/PVA composite films) have synthesized on wide scale laser optical filters. The investigated polymeric composite films have been characterized using several methods. The XRD patterns exhibit a decrease of the average crystalline size and an increase of the internal strain, which explained the imperfection and distortion in the prepared films. The optical characterizations showed a decrease in the transmission of the incident light for different samples, which may be explained to the layer formed by intermolecular hydrogen bonding between the PVA matrix and the FSS particles. The FSS/PVA polymeric composite films are being a completely blocking in the UV-Vis light at the range between 190 and 560 nm, agreement with the optical limiting effect, which makes the composite films suitable for CUT-OFF laser filters applications. The decrease in its, directly and indirectly, allowed transition band gaps were controlled by the added FSS dyes molecules. The variation of the exponent frequency (s) of the power law for FSS/PVA polymeric composite films has been characterized to improve the hopping conduction mechanism in the materials. The dielectric permittivity (e‧) and dielectric loss (e'') have been decreased with increasing the applied frequency, and the incorporated FSS molecules due to the DC electric conductivity can cause the decreases of the polarization of the as-prepared films over the studied ranges.
Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles
NASA Astrophysics Data System (ADS)
de Julián Fernández, C.; Mattei, G.; Paz, E.; Novak, R. L.; Cavigli, L.; Bogani, L.; Palomares, F. J.; Mazzoldi, P.; Caneschi, A.
2010-04-01
Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.
Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles.
de Julián Fernández, C; Mattei, G; Paz, E; Novak, R L; Cavigli, L; Bogani, L; Palomares, F J; Mazzoldi, P; Caneschi, A
2010-04-23
Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO(2) matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.
Wettability, structural and optical properties investigation of TiO{sub 2} nanotubular arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zalnezhad, E., E-mail: erfan@hanyang.ac.kr; Maleki, E.; Banihashemian, S.M.
2016-06-15
Graphical abstract: FESEM images of the TiO 2 nanotube layers formed at 0.5 wt% NH4F/ glycerol. - Highlights: • Structural property investigation of TiO{sub 2} nanotube. • Evaluation of wettability of TiO{sub 2} nanotube. • Study on optical properties of TiO{sub 2} nanotube. • The effect of anatase phase on optical and wettability properties of TiO{sub 2.} - Abstract: In this study, the effect of microstructural evolution of TiO{sub 2} nanotubular arrays on wettability and optical properties was investigated. Pure titanium was deposited on silica glass by PVD magnetron sputtering technique. The Ti coated substrates were anodized in an electrolytemore » containing NH{sub 4}F/glycerol. The structures of the ordered anodic TiO{sub 2} nanotubes (ATNs) as long as 175 nm were studied using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The result shows a sharp peak in the optical absorbance spectra around the band gap energy, 3.49–3.42 eV for annealed and non-annealed respectively. The thermal process induced growth of the grain size, which influence on the density of particles and the index of refraction. Furthermore, the wettability tests' result displays that the contact angle of intact substrate (θ = 74.7°) was decreased to 31.4° and 17.4° after anodization for amorphous and heat treated (450 °C) ANTs coated substrate, respectively.« less
A novel optical ozone sensor based on purely organic phosphor.
Lee, Dongwook; Jung, Jaehun; Bilby, David; Kwon, Min Sang; Yun, Jaesook; Kim, Jinsang
2015-02-11
An optical ozone sensor was developed based on the finding that a purely organic phosphor linearly loses its phosphorescence emission intensity in the presence of varying concentration of ozone gas and ozonated water. Compared to conventional conductance-based inorganic sensors, our novel sensory film has many advantages such as easy fabrication, low-cost, and portability. NMR data confirmed that phosphorescence drop is attributed to oxidation of the core triplet generating aldehyde group of the phosphor. We observed that linear correlation between phosphorescence and ozone concentration and it can detect ozone concentrations of 0.1 ppm that is the threshold concentration harmful to human tissue and respiratory organs. Like a litmus paper, this ozone sensor can be fabricated as a free-standing and disposable film.
Racemic resolution of some DL-amino acids using Aspergillus fumigatus L-amino acid oxidase.
Singh, Susmita; Gogoi, Binod K; Bezbaruah, Rajib L
2011-07-01
The ability of Aspergillus fumigatus L-amino acid oxidase (L-aao) to cause the resolution of racemic mixtures of DL-amino acids was investigated with DL-alanine, DL-phenylalanine, DL-tyrosine, and DL-aspartic acid. A chiral column, Crownpak CR+ was used for the analysis of the amino acids. The enzyme was able to cause the resolution of the three DL-amino acids resulting in the production of optically pure D-alanine (100% resolution), D-phenylalanine (80.2%), and D-tyrosine (84.1%), respectively. The optically pure D-amino acids have many uses and thus can be exploited industrially. This is the first report of the use of A. fumigatus L: -amino acid oxidase for racemic resolution of DL-amino acids.
Banerjee, Swastika; Jiang, Xiangwei; Wang, Lin-Wang
2018-04-04
β-Ga2O3 has drawn recent attention as a state-of-the-art electronic material due to its stability, optical transparency and appealing performance in power devices. However, it has also found a wider range of opto-electronic applications including photocatalysis, especially in its porous form. For such applications, a lower band gap must be obtained and an electron-hole spatial separation would be beneficial. Like many other metal oxides (e.g. Al2O3), Ga2O3 can also form various types of porous structure. In the present study, we investigate how its optical and electronic properties can be changed in a particular porous structure with stoichiometrically balanced and extended vacancy channels. We apply a set of first principles computational methods to investigate the formation and the structural, dynamic, and opto-electronic properties. We find that such an extended vacancy channel is mechanically stable and has relatively low formation energy. We also find that this results in a spatial separation of the electron and hole, forming a long-lived charge transfer state that has desirable characteristics for a photocatalyst. In addition, the electronic band gap reduces to the vis-region unlike the transparency in the pure β-Ga2O3 crystal. Thus, our systematic study is promising for the application of such a porous structure of β-Ga2O3 as a versatile electronic material.
Photo-induced optical activity in phase-change memory materials.
Borisenko, Konstantin B; Shanmugam, Janaki; Williams, Benjamin A O; Ewart, Paul; Gholipour, Behrad; Hewak, Daniel W; Hussain, Rohanah; Jávorfi, Tamás; Siligardi, Giuliano; Kirkland, Angus I
2015-03-05
We demonstrate that optical activity in amorphous isotropic thin films of pure Ge2Sb2Te5 and N-doped Ge2Sb2Te5N phase-change memory materials can be induced using rapid photo crystallisation with circularly polarised laser light. The new anisotropic phase transition has been confirmed by circular dichroism measurements. This opens up the possibility of controlled induction of optical activity at the nanosecond time scale for exploitation in a new generation of high-density optical memory, fast chiroptical switches and chiral metamaterials.
Casimir switch: steering optical transparency with vacuum forces.
Liu, Xi-Fang; Li, Yong; Jing, H
2016-06-03
The Casimir force, originating from vacuum zero-point energy, is one of the most intriguing purely quantum effects. It has attracted renewed interests in current field of nanomechanics, due to the rapid size decrease of on-chip devices. Here we study the optomechanically-induced transparency (OMIT) with a tunable Casimir force. We find that the optical output rate can be significantly altered by the vacuum force, even terminated and then restored, indicating a highly-controlled optical switch. Our result addresses the possibility of designing exotic optical nano-devices by harnessing the power of vacuum.
Antibacterial and tribological behavior of self-assembled monolayer on optical lens
NASA Astrophysics Data System (ADS)
Horng, J. H.; Jeng, Y. R.; Wei, C. C.; Tasi, Y. T.
2010-10-01
This paper studies the effects of the antibacterial and anti-adhesion properties of self-assembled monolayers (SAMs) on optical parts. Therefore, the experiments in this study prepared several kinds of SAMs, including alkyl and biphenyl spacer chains with different surface terminal groups (-CH3,-COOH) and head groups (-SH). This study reports the growth of eight self-assembled monolayers on optical parts: OTS, ODS, OTS with antibacterial solution, ODS with antibacterial solution, and pure antibacterial solution, with bio-compatibility. Experimental results regarding the contact angle of five self-assembled monolayers show that ODS with antibacterial illustrated the maximum contact angle 103° 12 hours after reaction. The solutions of OTS, ODS with antibacterial, OTS with antibacterial, and pure anti-bacterial showed contact angles of 102°, 99°, 101°, and 59° respectively. These results indicate that the antibacterial solution has negligible effects on anti-adhesion property of optical lenses. The results of digital optical microscope system analysis show that in the antibacterial experiment of eight kinds of selfassembled monolayers, the OTSanti50% effect cultured for 24 hours achieved the best results, with a growth rate of 12%. The descending order of antibacterial effect is antibacterial 10%>ODS>OTS> antibacterial 50%>ODSanti50%>OTSanti10%>ODSanti10%. In summary, the surface treatment of optical lenses involving OTSanti 50% is the most capable of effectively increasing antifouling and antibacterial functions.
Moreno Fernández, H; Rogler, D; Sauthier, G; Thomasset, M; Dietsch, R; Carlino, V; Pellegrin, E
2018-01-22
Boron carbide (B 4 C) is one of the few materials that is expected to be most resilient with respect to the extremely high brilliance of the photon beam generated by free electron lasers (FELs) and is thus of considerable interest for optical applications in this field. However, as in the case of many other optics operated at light source facilities, B 4 C-coated optics are subject to ubiquitous carbon contaminations. Carbon contaminations represent a serious issue for the operation of FEL beamlines due to severe reduction of photon flux, beam coherence, creation of destructive interference, and scattering losses. A variety of B 4 C cleaning technologies were developed at different laboratories with varying success. We present a study regarding the low-pressure RF plasma cleaning of carbon contaminated B 4 C test samples via inductively coupled O 2 /Ar, H 2 /Ar, and pure O 2 RF plasma produced following previous studies using the same ibss GV10x downstream plasma source. Results regarding the chemistry, morphology as well as other aspects of the B 4 C optical coating before and after the plasma cleaning are reported. We conclude that among the above plasma processes only plasma based on pure O 2 feedstock gas exhibits the required chemical selectivity for maintaining the integrity of the B 4 C optical coatings.
Matrix light and pixel light: optical system architecture and requirements to the light source
NASA Astrophysics Data System (ADS)
Spinger, Benno; Timinger, Andreas L.
2015-09-01
Modern Automotive headlamps enable improved functionality for more driving comfort and safety. Matrix or Pixel light headlamps are not restricted to either pure low beam functionality or pure high beam. Light in direction of oncoming traffic is selectively switched of, potential hazard can be marked via an isolated beam and the illumination on the road can even follow a bend. The optical architectures that enable these advanced functionalities are diverse. Electromechanical shutters and lens units moved by electric motors were the first ways to realize these systems. Switching multiple LED light sources is a more elegant and mechanically robust solution. While many basic functionalities can already be realized with a limited number of LEDs, an increasing number of pixels will lead to more driving comfort and better visibility. The required optical system needs not only to generate a desired beam distribution with a high angular dynamic, but also needs to guarantee minimal stray light and cross talk between the different pixels. The direct projection of the LED array via a lens is a simple but not very efficient optical system. We discuss different optical elements for pre-collimating the light with minimal cross talk and improved contrast between neighboring pixels. Depending on the selected optical system, we derive the basic light source requirements: luminance, surface area, contrast, flux and color homogeneity.
Extended X-Ray Emission around Quasars at Intermediate Redshift
NASA Technical Reports Server (NTRS)
Fiore, Fabrizio
1998-01-01
We compare the optical to soft X-ray spectral energy distribution (SED) of a sample of bright low-redshift (0.048 less than z less than 0.155), radio-quiet quasars, with a range of thermal models which have been proposed to explain the optical/UV/soft X-ray quasar emission: (a) optically thin emission from an ionized plasma, (b) optically thick emission from the innermost regions of an accretion disk in Schwarzschild and Kerr geometries. We presented ROSAT PSPC observations of these quasars in an earlier paper. Here our goals are to search for the signature of thermal emission in the quasar SED, and to investigate whether a single component is dominating at different frequencies. We find that isothermal optically thin plasma models can explain the observed soft X-ray color and the mean OUV color. However, they predict an ultraviolet (1325 Angstrom) luminosity a factor of 3 to 10 times lower than observed. Pure disk models, even in a Kerr geometry, do not have the necessary flexibility to account for the observed OUV and soft X-ray luminosities. Additional components are needed both in the optical and in the soft X-rays (e.g. a hot corona can explain the soft X-ray color). The most constrained modification of pure disk models, is the assumption of an underlying power law component extending from the infrared (3 micrometers) to the X-ray. This can explain both the OUV and soft X-ray colors and luminosities and does not exceed the 3 micrometers luminosity, where a contribution from hot dust is likely to be important. We also discuss the possibility that the observed soft X-ray color and luminosity are dominated by reflection from the ionized surface of the accretion disk. While modifications of both optically thin plasma models and pure disk models might account for the observed SED, we do not find any strong evidence that the OUV bump and soft X-ray emission are one and the same component. Likewise, we do not find any strong argument which definitely argues in favor of thermal models.
Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T
2011-11-22
Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(-)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L(-1) of optically pure D(-)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min(-1) (mg protein)(-1). By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(-) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates.
Wang, Qingzhao; Ingram, Lonnie O.; Shanmugam, K. T.
2011-01-01
Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(−)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L-1 of optically pure D(−)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min-1 (mg protein)-1. By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(−) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761
Time-resolved photon echoes from donor-bound excitons in ZnO epitaxial layers
NASA Astrophysics Data System (ADS)
Poltavtsev, S. V.; Kosarev, A. N.; Akimov, I. A.; Yakovlev, D. R.; Sadofev, S.; Puls, J.; Hoffmann, S. P.; Albert, M.; Meier, C.; Meier, T.; Bayer, M.
2017-07-01
The coherent optical response from 140 nm and 65 nm thick ZnO epitaxial layers is studied using four-wave-mixing spectroscopy with picosecond temporal resolution. Resonant excitation of neutral donor-bound excitons results in two-pulse and three-pulse photon echoes. For the donor-bound A exciton (D0XA ) at temperature of 1.8 K we evaluate optical coherence times T2=33 -50 ps corresponding to homogeneous line widths of 13 -19 μ eV , about two orders of magnitude smaller as compared with the inhomogeneous broadening of the optical transitions. The coherent dynamics is determined mainly by the population decay with time T1=30 -40 ps, while pure dephasing is negligible. Temperature increase leads to a significant shortening of T2 due to interaction with acoustic phonons. In contrast, the loss of coherence of the donor-bound B exciton (D0XB ) is significantly faster (T2=3.6 ps ) and governed by pure dephasing processes.
Red Mn4+-Doped Fluoride Phosphors: Why Purity Matters.
Verstraete, Reinert; Sijbom, Heleen F; Joos, Jonas J; Korthout, Katleen; Poelman, Dirk; Detavernier, Christophe; Smet, Philippe F
2018-06-06
Traditional light sources, e.g., incandescent and fluorescent lamps, are currently being replaced by white light-emitting diodes (wLEDs) because of their improved efficiency, prolonged lifetime, and environmental friendliness. Much effort has recently been spent to the development of Mn 4+ -doped fluoride phosphors that can enhance the color gamut in displays and improve the color rendering index, luminous efficacy of the radiation, and correlated color temperature of wLEDs used for lighting. Purity, stability, and degradation of fluoride phosphors are, however, rarely discussed. Nevertheless, the typical wet chemical synthesis routes (involving hydrogen fluoride (HF)) and the large variety of possible Mn valence states often lead to impurities that drastically influence the performance and stability of these phosphors. In this article, the origins and consequences of impurities formed during synthesis and aging of K 2 SiF 6 :Mn 4+ are revealed. Both crystalline impurities such as KHF 2 and ionic impurities such as Mn 3+ are found to affect the phosphor performance. While Mn 3+ mainly influences the optical absorption behavior, KHF 2 can affect both the optical performance and chemical stability of the phosphor. Moisture leads to decomposition of KHF 2 , forming HF and amorphous hydrated potassium fluoride. As a consequence of hydrate formation, significant amounts of water can be absorbed in impure phosphor powders containing KHF 2 , facilitating the hydrolysis of [MnF 6 ] 2- complexes and affecting the optical absorption of the phosphors. Strategies are discussed to identify impurities and to achieve pure and stable phosphors with internal quantum efficiencies of more than 90%.
Itai, Takuma; Kojima, Tatsuhiro; Kuwamura, Naoto; Konno, Takumi
2017-11-21
A unique example of a coordination system that creates optically pure crystals from a meso compound with d- and l-amino acids is reported. The 1:1 reaction of a newly prepared meso digold(I) complex, [Au 2 (dcpe)(d-Hpen)(l-Hpen)] ([H 2 1]), with Co(OAc) 2 under aerobic conditions yielded a cationic Au I 2 Co III trinuclear complex, [Au 2 Co(dcpe)(d-pen)(l-pen)] + [2] + , in which [1] 2- acts as a hexadentate-N 2 ,O 2 ,S 2 metalloligand to a Co III center. Similar reactions with M(OAc) 2 (M=Ni and Zn) produced analogous but neutral Au I 2 M II complexes, [Au 2 M(dcpe)(d-pen)(l-pen)] ([3 M ]). Complexes [2] + and [3 M ] are chiral (C vs. A) at the octahedral Co III and M II centers due to the arrangement of the N 2 ,O 2 ,S 2 donor set. In addition, through spontaneous resolution, [3 M ] gave optically pure C-[3 M ] and A-[3 M ] crystals, showing the creation of homochirality from meso-[1] 2- and achiral M 2+ through crystallization. Such a phenomenon was not observed for [2] + , which gave a racemic compound containing both C-[2] + and A-[2] + . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Testing the item-order account of design effects using the production effect.
Jonker, Tanya R; Levene, Merrick; Macleod, Colin M
2014-03-01
A number of memory phenomena evident in recall in within-subject, mixed-lists designs are reduced or eliminated in between-subject, pure-list designs. The item-order account (McDaniel & Bugg, 2008) proposes that differential retention of order information might underlie this pattern. According to this account, order information may be encoded when a common form of processing is used alone in a list (e.g., reading), but not when an unusual form of processing is used (e.g., generation) or when a common form and an unusual form are mixed within a list. The production effect--better memory for words said aloud than for words read silently--shows this same design-contingent pattern. In 2 experiments, we investigated whether differential order retention might underlie the production effect. Consistent with the item-order account, we found that retention of order information was better in pure silent lists than in either pure aloud lists or mixed lists, as measured using an order reconstruction test. Moreover, in Experiment 2, order was better preserved in free recall of pure silent lists than of either pure aloud or mixed lists. Thus, production joins the set of tasks identified by McDaniel and Bugg (2008), and our findings suggest a role for order processing in explaining the production effect.
"Vague and artificial": the historically elusive distinction between pure and applied science.
Gooday, Graeme
2012-09-01
This essay argues for the historicity of applied science as a contested category within laissez-faire Victorian British science. This distinctively pre-twentieth-century notion of applied science as a self-sustaining, autonomous enterprise was thrown into relief from the 1880s by a campaign on the part of T. H. Huxley and his followers to promote instead the primacy of "pure" science. Their attempt to relegate applied science to secondary status involved radically reconfiguring it as the mere application of pre-existing pure science. This new notion of extrinsically funded pure science that would produce only contingently future social benefits as a mere by-product came under pressure during World War I, when military priorities focused attention once again on science for immediate utility. This threatened the Cambridge-based promoters of self-referential pure science who collectively published Science and the Nation in 1917. Yet most contributors to this work discussed forms of "applied" science that had no prior "pure" form. Even the U.K.'s leading government scientist, Lord Moulton, dismissed the book's provocative distinction between pure and applied science as unhelpfully "vague and artificial."
NASA Astrophysics Data System (ADS)
Dong, Youming; Wang, Kaili; Tan, Yi; Wang, Qingchun; Li, Jianzhang; Mark, Hughes; Zhang, Shifeng
2018-04-01
The inherent sophisticated structure of wood inspires researchers to use it as a natural template for synthesizing functional nanoparticles. In this study, pure copper nanoparticles were synthesized using poplar wood as a natural inexpensive and renewable template. The crystal structure and morphologies of the copper nanoparticles were characterized by X-ray diffraction and field emission scanning electron microscopy. The optical properties, antibacterial properties, and stability of the hybrid wood materials were also tested. Due to the hierarchical and anisotropic structure and electron-rich components of wood, pure copper nanoparticles with high stability were synthesized with fcc structure and uniform sizes and then assembled into corncob-like copper deposits along the wood cell lumina. The products of nanoparticles depended strongly on the initial OH- concentration. With an increase in OH- concentration, Cu2O gradually decreased and Cu remained. Due to the restrictions inherent in wood structure, the derived Cu nanoparticles showed similar grain size in spite of increased Cu2+ concentration. This combination of Cu nanostructures and wood exhibited remarkable optical and antibacterial properties.
Longitudinal uniformity, time performances and irradiation test of pure CsI crystals
NASA Astrophysics Data System (ADS)
Angelucci, M.; Atanova, O.; Baccaro, S.; Cemmi, A.; Cordelli, M.; Donghia, R.; Giovannella, S.; Happacher, F.; Miscetti, S.; Sarra, I.; Soleti, S. R.
2016-07-01
To study an alternative to BaF2, as the crystal choice for the Mu2e calorimeter, 13 pure CsI crystals from Opto Materials and ISMA producers have been characterized by determining their light yield (LY) and longitudinal response uniformity (LRU), when read with a UV extended PMT. The crystals show a LY of 100 p.e./MeV ( 150 p.e./MeV) when wrapped with Tyvek and coupled to the PMT without (with) optical grease. The LRU is well represented by a linear slope that is on average δ -0.6%/cm. The timing performances of the Opto Materials crystal, read with a UV extended MPPC, have been evaluated with minimum ionizing particles. A timing resolution of 330 ps ( 440 ps) is achieved when connecting the photosensor to the MPPC with (without) optical grease. The crystal radiation hardness to a ionization dose has also been studied for one pure CsI crystal from SICCAS. After exposing it to a dose of 900 Gy, a decrease of 33% in the LY is observed while the LRU remains unchanged.
Evidence of a Critical Phase Transition in Purely Temporal Dynamics with Long-Delayed Feedback
NASA Astrophysics Data System (ADS)
Faggian, Marco; Ginelli, Francesco; Marino, Francesco; Giacomelli, Giovanni
2018-04-01
Experimental evidence of an absorbing phase transition, so far associated with spatiotemporal dynamics, is provided in a purely temporal optical system. A bistable semiconductor laser, with long-delayed optoelectronic feedback and multiplicative noise, shows the peculiar features of a critical phenomenon belonging to the directed percolation universality class. The numerical study of a simple, effective model provides accurate estimates of the transition critical exponents, in agreement with both theory and our experiment. This result pushes forward a hard equivalence of nontrivial stochastic, long-delayed systems with spatiotemporal ones and opens a new avenue for studying out-of-equilibrium universality classes in purely temporal dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juneau, Stéphanie; Bournaud, Frédéric; Daddi, Emanuele
Emission line diagnostic diagrams probing the ionization sources in galaxies, such as the Baldwin-Phillips-Terlevich (BPT) diagram, have been used extensively to distinguish active galactic nuclei (AGN) from purely star-forming galaxies. However, they remain poorly understood at higher redshifts. We shed light on this issue with an empirical approach based on a z ∼ 0 reference sample built from ∼300,000 Sloan Digital Sky Survey galaxies, from which we mimic selection effects due to typical emission line detection limits at higher redshift. We combine this low-redshift reference sample with a simple prescription for luminosity evolution of the global galaxy population to predictmore » the loci of high-redshift galaxies on the BPT and Mass-Excitation (MEx) diagnostic diagrams. The predicted bivariate distributions agree remarkably well with direct observations of galaxies out to z ∼ 1.5, including the observed stellar mass-metallicity (MZ) relation evolution. As a result, we infer that high-redshift star-forming galaxies are consistent with having normal interstellar medium (ISM) properties out to z ∼ 1.5, after accounting for selection effects and line luminosity evolution. Namely, their optical line ratios and gas-phase metallicities are comparable to that of low-redshift galaxies with equivalent emission-line luminosities. In contrast, AGN narrow-line regions may show a shift toward lower metallicities at higher redshift. While a physical evolution of the ISM conditions is not ruled out for purely star-forming galaxies and may be more important starting at z ≳ 2, we find that reliably quantifying this evolution is hindered by selections effects. The recipes provided here may serve as a basis for future studies toward this goal. Code to predict the loci of galaxies on the BPT and MEx diagnostic diagrams and the MZ relation as a function of emission line luminosity limits is made publicly available.« less
The effect of laser ablation parameters on optical limiting properties of silver nanoparticles
NASA Astrophysics Data System (ADS)
Gursoy, Irmak; Yaglioglu, Halime Gul
2017-09-01
This paper presents the effect of laser ablation parameters on optical limiting properties of silver nanoparticles. The current applications of lasers such as range finding, guidance, detection, illumination and designation have increased the potential of damaging optical imaging systems or eyes temporary or permanently. The applications of lasers introduce risks for sensors or eyes, when laser power is higher than damage threshold of the detection system. There are some ways to protect these systems such as neutral density (nd) filters, shutters, etc. However, these limiters reduce the total amount of light that gets into the system. Also, response time of these limiters may not be fast enough to prevent damage and cause precipitation in performance due to deprivation of transmission or contrast. Therefore, optical limiting filters are needed that is transparent for low laser intensities and limit or block the high laser intensities. Metal nanoparticles are good candidates for such optical limiting filters for ns pulsed lasers or CW lasers due to their high damage thresholds. In this study we investigated the optical limiting performances of silver nanoparticles produced by laser ablation technique. A high purity silver target immersed in pure water was ablated with a Nd:YAG nanosecond laser at 532 nm. The effect of altering laser power and ablation time on laser ablation efficiency of nanoparticles was investigated experimentally and optimum values were specified. Open aperture Zscan experiment was used to investigate the effect of laser ablation parameters on the optical limiting performances of silver nanoparticles in pure water. It was found that longer ablation time decreases the optical limiting threshold. These results are useful for silver nanoparticles solutions to obtain high performance optical limiters.
1984-12-01
The concept proposed is an electro - optic technique that would make it possible to spatially modulate a high power pulsed laser beam to thermoelastically induce focused ultrasound in a test material. Being a purely electro - optic device, the modulator, and therefore the depth at which the acoustic focus occurs, can be programmed electronically at electronic speeds. If successful, it would become possible to scan ultrasound continuously in three dimensions within the component or structure under test. (Author)
Catastrophe optics of sharp-edge diffraction.
Borghi, Riccardo
2016-07-01
A classical problem of diffraction theory, namely plane wave diffraction by sharp-edge apertures, is here reformulated from the viewpoint of the fairly new subject of catastrophe optics. On using purely geometrical arguments, properly embedded into a wave optics context, uniform analytical estimates of the diffracted wavefield at points close to fold caustics are obtained, within paraxial approximation, in terms of the Airy function and its first derivative. Diffraction from parabolic apertures is proposed to test reliability and accuracy of our theoretical predictions.
NASA Astrophysics Data System (ADS)
1984-12-01
The concept proposed is an electro-optic technique that would make it possible to spatially modulate a high power pulsed laser beam to thermoelastically induce focused ultrasound in a test material. Being a purely electro-optic device, the modulator, and therefore the depth at which the acoustic focus occurs, can be programmed electronically at electronic speeds. If successful, it would become possible to scan ultrasound continuously in three dimensions within the component or structure under test.
Effect of co-doping process on topography, optical and electrical properties of ZnO nanostructured
NASA Astrophysics Data System (ADS)
Mohamed, R.; Mamat, M. H.; Malek, M. F.; Ismail, A. S.; Yusoff, M. M.; Syamsir, S. A.; Khusaimi, Z.; Rusop, M.
2018-05-01
We investigated of Undoped ZnO and Magnesium (Mg)-Aluminium (Al) co-doped Zinc Oxide (MAZO) nanostructured films were prepared by sol gel spin coating technique. The surface topography was analyzed using Atomic Force Microscopy (AFM). Based on the AFM results, Root Mean Square (RMS) of MAZO films have rougher surface compared to pure ZnO films. The optical and electrical properties of thin film samples were characterized using Uv-Vis spectroscopy and two point probes, current-voltage (I-V) measurements. The transmittance spectra for both thin samples was above 80% in the visible wavelength. The MAZO film shows the highest conductivity compared to pure ZnO films. This result indicates that the improvement of carrier mobility throughout doping process and possibly contribute by extra ion charge.
Spatial phase-shift dual-beam speckle interferometry.
Gao, Xinya; Yang, Lianxiang; Wang, Yonghong; Zhang, Boyang; Dan, Xizuo; Li, Junrui; Wu, Sijin
2018-01-20
The spatial phase-shift technique has been successfully applied to an out-of-plane speckle interferometry system. Its application to a pure in-plane sensitive system has not been reported yet. This paper presents a novel optical configuration that enables the application of the spatial phase-shift technique to pure in-plane sensitive dual-beam speckle interferometry. The new spatial phase-shift dual-beam speckle interferometry (SPS-DBSP) uses a dual-beam in-plane electronic speckle pattern interferometry configuration with individual aperture shears, avoiding the interference in the object plane by the use of a low-coherence source, and different optical paths. The measured object is illuminated by two incoherent beams that are generated by a delay line, which is larger than the coherence length of the laser. The two beams reflected from the object surface interfere with each other at the CCD plane because of different optical paths. A spatial phase shift is introduced by the angle between the two apertures when they are mapped to the same optical axis. The phase of the in-plane deformation can directly be extracted from the speckle patterns by the Fourier transform method. The capability of SPS-DBSI is demonstrated by theoretical discussion as well as experiments.
Optical characterization of pure and Al-doped ZnO prepared by sol-gel method
NASA Astrophysics Data System (ADS)
Belka, Radosław; Keczkowska, Justyna; Kasińska, Justyna
2016-09-01
In this paper the preparation process and optical characterization of pure and Al3+ doped zinc oxide (Al:ZnO) coatings will be presented. ZnO based materials have been studied extensively due to their potential applications in optoelectronic devices as conductive gas sensors, transparent conductive, electrodes, solar cell windows, varistors, UVfilters or photovoltaic cells. It is II-VI semiconductor with wide-band gap of 3.37 eV and large exciton binding energy of 60meV. It is possible to improve the conductivity of ZnO coating by intentionally doping ZnO with aluminium ions during preparation process. Such transparent and conducting thin films, known as AZO (Aluminium Zinc Oxide) films, are very good candidate for application as transparent conducting materials in many optoelectronic devices. The well-known sol-gel method is used for preparation of solution, coated on glass substrates by dip coating process. Prepared samples were investigated by Raman and UV-VIS spectroscopy. Transmittance as well as specular and diffuse reflectance spectroscopy methods were used for studies of optical parameters. We found that Al admixture influences on optical bandgap of ZnO.
On the origin of pure optical rotation in twisted-cross metamaterials
Barr, Lauren E.; Díaz-Rubio, Ana; Tremain, Ben; Carbonell, Jorge; Sánchez-Dehesa, José; Hendry, Euan; Hibbins, Alastair P.
2016-01-01
We present an experimental and computational study of the response of twisted-cross metamaterials that provide near dispersionless optical rotation across a broad band of frequencies from 19 GHz to 37 GHz. We compare two distinct geometries: firstly, a bilayer structure comprised of arrays of metallic crosses where the crosses in the second layer are twisted about the layer normal; and secondly where the second layer is replaced by the complementary to the original, i.e. an array of cross-shaped holes. Through numerical modelling we determine the origin of rotatory effects in these two structures. In both, pure optical rotation occurs in a frequency band between two transmission minima, where alignment of electric and magnetic dipole moments occurs. In the cross/cross metamaterial, the transmission minima occur at the symmetric and antisymmetric resonances of the coupled crosses. By contrast, in the cross/complementary-cross structure the transmission minima are associated with the dipole and quadrupole modes of the cross, the frequencies of which appear intrinsic to the cross layer alone. Hence the bandwidth of optical rotation is found to be relatively independent of layer separation. PMID:27457405
Optical and Structural Properties of Zn2TiO4:Mn2+
NASA Astrophysics Data System (ADS)
Sosman, L. P.; López, A.; Camara, A. R.; Pedro, S. S.; Carvalho, I. C. S.; Cella, N.
2017-12-01
Polycrystalline Zn2TiO4 samples with Mn2+ doping level of 0%, 0.1%, 1.0%, and 5.0% have been produced by conventional solid-state method and their optical and structural properties investigated. Rietveld refinement of x-ray diffraction patterns revealed the formed phases and the crystallographic parameters. The chemical composition was obtained by x-ray fluorescence measurements. The optical properties were studied by photoluminescence, excitation, reflectance, and photoacoustic spectroscopy. All measurements were performed at room temperature. The photoluminescence spectrum of the pure sample (0% Mn2+) showed a band in the red region associated with Zn2TiO4, while the sample with 0.1% Mn2+ exhibited two bands, in the green and red spectral regions, assigned to Mn2+ ions at tetrahedral and octahedral sites. No emission was observed for the samples with 1.0% or 5.0% Mn2+. The excitation results for the sample with 0.1% Mn2+ ions showed characteristic peaks of Mn2+ transitions. Tanabe-Sugano theory was used to obtain the crystal field Dq, B, and C Racah parameters from the energy peak positions in the excitation spectrum of the sample with 0.1% Mn2+. Photoacoustic measurements revealed a broad band, characteristic of semiconductor materials, hiding the Mn2+ transitions.
NASA Astrophysics Data System (ADS)
Hughes, Stephen; Agarwal, Girish S.
2017-02-01
We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double-field pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow triplet regime, we explore the emitted spectra from the driven dipoles and show how a nonpumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.
Hughes, Stephen; Agarwal, Girish S
2017-02-10
We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double-field pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow triplet regime, we explore the emitted spectra from the driven dipoles and show how a nonpumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.
In-Plane Multimagnetron Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Grant E.; Laskin, Julia
2017-04-01
Nanoparticles (NPs) and sub-nanometer clusters containing controlled amounts of different atoms are of interest for a variety of potential applications including catalysis,1, 2 optics,3, 4 magnetics,5-7 sensors,8, 9 and biotheraputics.10, 11 Alloy NPs may possess enhanced physical and chemical properties compared to single metal species due to the additional interplay between their different elemental components. By reducing the quantity of expensive precious metals in alloy NPs by substituting cheaper base metals, it may also be possible to achieve equivalent or even superior performance to pure noble metal NPs for applications such as heterogeneous catalysis at substantially reduced material costs.12 Inmore » addition, alloying of elements that are immiscible in bulk form is possible in NPs because the enthalpy of mixing decreases and becomes negative at small particle sizes.13, 14 As a result, a substantially broader array of alloy species may be generated in the form of NPs and sub-nanometer clusters.« less
Kanematsu, Hideyuki; Kudara, Hikonaru; Kanesaki, Shun; Kogo, Takeshi; Ikegai, Hajime; Ogawa, Akiko; Hirai, Nobumitsu
2016-01-01
A laboratory biofilm reactor (LBR) was modified to a new loop-type closed system in order to evaluate novel stents and catheter materials using 3D optical microscopy and Raman spectroscopy. Two metallic specimens, pure nickel and cupronickel (80% Cu-20% Ni), along with two polymers, silicone and polyurethane, were chosen as examples to ratify the system. Each set of specimens was assigned to the LBR using either tap water or an NB (Nutrient broth based on peptone from animal foods and beef extract mainly)—cultured solution with E-coli formed over 48–72 h. The specimens were then analyzed using Raman Spectroscopy. 3D optical microscopy was employed to corroborate the Raman Spectroscopy results for only the metallic specimens since the inherent roughness of the polymer specimens made such measurements difficult. The findings suggest that the closed loop-type LBR together with Raman spectroscopy analysis is a useful method for evaluating biomaterials as a potential urinary system. PMID:28773945
Hao, Yao-Ming; Lou, Shi-Yun; Zhou, Shao-Min; Yuan, Rui-Jian; Zhu, Gong-Yu; Li, Ning
2012-02-02
In this study, a series of manganese [Mn]-doped zinc oxide [ZnO] hierarchical microspheres [HMSs] are prepared by hydrothermal method only using zinc acetate and manganese acetate as precursors and ethylene glycol as solvent. X-ray diffraction indicates that all of the as-obtained samples including the highest Mn (7 mol%) in the crystal lattice of ZnO have a pure phase (hexagonal wurtzite structure). A broad Raman spectrum from as-synthesized doping samples ranges from 500 to 600 cm-1, revealing the successful doping of paramagnetic Mn2+ ions in the host ZnO. Optical absorption analysis of the samples exhibits a blueshift in the absorption band edge with increasing dopant concentration, and corresponding photoluminescence spectra show that Mn doping suppresses both near-band edge UV emission and defect-related blue emission. In particular, magnetic measurements confirm robust room-temperature ferromagnetic behavior with a high Curie temperature exceeding 400 K, signifying that the as-formed Mn-doped ZnO HMSs will have immense potential in spintronic devices and spin-based electronic technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying
Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillarymore » fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.« less
Recent Results With Coupled Opto-Electronic Oscillators
NASA Astrophysics Data System (ADS)
Yao, X. S.; Maleki, L.; Wu, C.; Davis, L.; Forouhar, S.
1998-07-01
We present experimental results of coupled opto-electronic oscillators (COEOs) constructed with a semiconductor optical-amplifier-based ring laser, a semiconductor Fabry-Perot laser, and a semiconductor colliding-pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 ps and RF signals as high in frequency as 18 GHz with a spectral purity comparable to an HP 8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.
Recent results with the coupled opto-electronic oscillator
NASA Astrophysics Data System (ADS)
Yao, X. S.; Maleki, Lute; Wu, Chi; Davis, Lawrence J.; Forouhar, Siamak
1998-11-01
We present experimental results of coupled opto-electronic oscillators (COEO) constructed with a semiconductor optical amplifier based ring laser, a semiconductor Fabry-Perot laser, and a semiconductor colliding pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 picoseconds and RF signals as high in frequency as 18 GHz with a spectral purity comparable with a HP8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.
Generation of 21.3 Gbaud 8PSK signal using an SOA-based all-optical phase modulator.
Dailey, J M; Webb, R P; Manning, R J
2011-12-12
We describe a novel SOA-based all-optical pure-phase modulator, and show how deleterious cross-gain modulation from the SOAs can be suppressed by utilizing an integrated interferometer structure. We experimentally demonstrate the use of the optical gate as a π/4 phase modulator producing 21.3 Gbaud 8PSK from 21.3 Gbit/s OOK and 21.3 Gbaud QPSK inputs. The modulator produces 3 dB of gain and coherent detection-based bit error rate measurements indicate a 2.4 dB excess penalty. © 2011 Optical Society of America
Pure optical photoacoustic microscopy
Xie, Zhixing; Chen, Sung-Liang; Ling, Tao; Guo, L. Jay; Carson, Paul L.; Wang, Xueding
2011-01-01
The concept of pure optical photoacoustic microscopy(POPAM) was proposed based on optical rastering of a focused excitation beam and optically sensing the photoacoustic signal using a microring resonator fabricated by a nanoimprinting technique. After the refinements of the microring’s working wavelength and in the resonator structure and mold fabrication, an ultrahigh Q factor of 3.0×105 was achieved which provided high sensitivity with a noise equivalent detectable pressure(NEDP) value of 29Pa. This NEDP is much lower than the hundreds of Pascals achieved with existing optical resonant structures such as etalons, fiber gratings and dielectric multilayer interference filters available for acoustic measurement. The featured high sensitivity allowed the microring resonator to detect the weak photoacoustic signals from micro- or submicroscale objects. The inherent superbroad bandwidth of the optical microring resonator combined with an optically focused scanning beam provided POPAM with high resolution in the axial as well as both lateral directions while the axial resolution of conventional photoacoustic microscopy (PAM) suffers from the limited bandwidth of PZT detectors. Furthermore, the broadband microring resonator showed similar sensitivity to that of our most sensitive PZT detector. The current POPAM system provides a lateral resolution of 5 μm and an axial resolution of 8 μm, comparable to that achieved by optical microscopy while presenting the unique contrast of optical absorption and functional information complementing other optical modalities. The 3D structure of microvasculature, including capillary networks, and even individual red blood cells have been discerned successfully in the proof-of-concept experiments on mouse bladders ex vivo and mouse ears in vivo. The potential of approximately GHz bandwidth of the microring resonator also might allow much higher resolution than shown here in microscopy of optical absorption and acoustic propagation properties at depths in unfrozen tissue specimens or thicker tissue sections, which is not now imageable with current optical or acoustic microscopes of comparable resolution. PMID:21643156
Said, Mohammed El-Amin; Vanloot, Pierre; Bombarda, Isabelle; Naubron, Jean-Valère; Dahmane, El Montassir; Aamouche, Ahmed; Jean, Marion; Vanthuyne, Nicolas; Dupuy, Nathalie; Roussel, Christian
2016-01-15
An unprecedented methodology was developed to simultaneously assign the relative percentages of the major chiral compounds and their prevailing enantiomeric form in crude essential oils (EOs). In a first step the infrared (IR) and vibrational circular dichroism (VCD) spectra of the crude essential oils were recorded and in a second step they were modelized as a linear weighted combination of the IR and VCD spectra of the individual spectra of pure enantiomer of the major chiral compounds present in the EOs. The VCD spectra of enantiomer of known enantiomeric excess shall be recorded if they are not yet available in a library of VCD spectra. For IR, the spectra of pure enantiomer or racemic mixture can be used. The full spectra modelizations were performed using a well known and powerful mathematical model (least square estimation: LSE) which resulted in a weighting of each contributing compound. For VCD modelization, the absolute value of each weighting represented the percentage of the associate compound while the attached sign addressed the correctness of the enantiomeric form used to build the model. As an example, a model built with the non-prevailing enantiomer will show a negative sign of the weighting value. For IR spectra modelization, the absolute value of each weighting represented the percentage of the compounds without of course accounting for the chirality of the prevailing enantiomers. Comparison of the weighting values issuing from IR and VCD spectra modelizations is a valuable source of information: if they are identical, the EOs are composed of nearly pure enantiomers, if they are different the chiral compounds of the EOs are not in an optically pure form. The method was applied on four samples of essential oil of Artemisia herba-alba in which the three major compounds namely (-)-α-thujone, (+)-β-thujone and (-)-camphor were found in different proportions as determined by GC-MS and chiral HPLC using polarimetric detector. In order to validate the methodology, the modelization of the VCD spectra was performed on purpose using the individual VCD spectra of (-)-α-thujone, (+)-β-thujone and (+)-camphor instead of (-)-camphor. During this work, the absolute configurations of (-)-α-thujone and (+)-β-thujone were confirmed by comparison of experimental and calculated VCD spectra as being (1S,4R,5R) and (1S,4S,5R) respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
EDITORIAL: The plurality of optical singularities
NASA Astrophysics Data System (ADS)
Berry, Michael; Dennis, Mark; Soskin, Marat
2004-05-01
This collection of papers arose from an Advanced Research Workshop on Singular Optics, held at the Bogolyubov Institute in Kiev, Ukraine, during 24-28 June 2003. The workshop was generously financed by NATO, with welcome additional support from Institute of Physics Publishing and the National Academy of Sciences of Ukraine. There had been two previous international meetings devoted to singular optics, in Crimea in 1997 and 2000, reflecting the strong involvement of former Soviet Union countries in this research. Awareness of singular optics is growing within the wider optics community, indicated by symposia on the subject at several general optics meetings. As the papers demonstrate, the field of singular optics has reached maturity. Although the subject originated in an observation on ultrasound, it has been largely theory-driven until recently. Now, however, there is close contact between theory and experiment, and we speculate that this is one reason for its accelerated development. To single out particular papers for mention here would be invidious, and since the papers speak for themselves it is not necessary to describe them all. Instead, we will confine ourselves to a brief description of the main areas included in singular optics, to illustrate the broad scope of the subject. Optical vortices are lines of phase singularity: nodal lines where the intensity of the light, represented by a complex scalar field, vanishes. The subject has emerged from flatland, where the vortices are points characterized by topological charges, into the much richer world of vortex lines in three dimensions. By combining Laguerre-Gauss or Bessel beams, or reflecting light from plates with spiral steps, intricate arrangements can be generated, with vortices that are curved, looped, knotted, linked or braided. With light whose state of polarization varies with position, different singularities occur, associated with the vector nature of light. These are also lines, on which the electric (or magnetic) polarization ellipse is purely circular (C lines) or purely linear (L lines). The patterns of ellipse-fields are different for purely paraxial and fully three-dimensional fields. White-light diffraction generates richly coloured vortices—the colours of dark light. The description of these chromatic effects, and also those associated with polarization singularities, leads to new applications of coherence theory. For non-monochromatic light, it is natural to seek singularities of the full electromagnetic field, rather than of the electric or magnetic field separately. Such electromagnetic singularities are the Riemann-Silberstein vortices; these are relativistically covariant nodal lines of a complex scalar field constructed from the electromagnetic field. Optical fields have dynamical aspects, particularly those associated with angular momentum. Although angular momentum is not inevitably associated with optical singularities, in practice the two phenomena can occur together. Orbital angular momentum is associated with the spatial structure of light, and in beams with optical vortices it can be used to rotate particles in the field. Spin angular momentum is associated with the polarization structure of the light. There are tricky questions associated with the angular momentum of light in a refracting medium, echoing the Abraham-Minkowski controversy about linear momentum. In optically nonlinear materials (leading to second-harmonic generation, for example), new classes of phenomena can occur, such as, for example, dynamical interaction between vortex lines, whose stability needs to be considered. At a more fundamental level, it is important to investigate quantum effects associated with optical singularities, and a start has been made. The dark centre of an optical vortex can be regarded as a window onto the vacuum fluctuations of quantum optics, with the quantum core emerging as a distinct entity when the classical light is intense. And for light in a rapidly and inhomogeneously flowing material, horizons can develop, analogous to those surrounding black holes in general relativity, and these new optical singularities can be regarded as wave catastrophes, and new associated quantum effects anticipated. Three decades after wave dislocations were introduced as ‘a new concept in ... wave theory’, these phase singularities have been extensively explored and are now familiar. New ideas—in addition to those described in this special issue—continue to emerge. For example, x-ray vortices were observed recently; there is a proposal to create lenses to form atomic beams containing vortices; and astrophysical applications have been suggested for both photon orbital angular momentum and optical vortices. We can safely assume that the science of wave singularities will develop further, and diffuse into new areas of physics.
NASA Astrophysics Data System (ADS)
Bevan, Antonia; Barlow, M. J.
2016-02-01
The late-time optical and near-IR line profiles of many core-collapse supernovae exhibit a red-blue asymmetry as a result of greater extinction by internal dust of radiation emitted from the receding parts of the supernova ejecta. We present here a new code, DAMOCLES, that models the effects of dust on the line profiles of core-collapse supernovae in order to determine newly formed dust masses. We find that late-time dust-affected line profiles may exhibit an extended red scattering wing (as noted by Lucy et al. 1989) and that they need not be flux-biased towards the blue, although the profile peak will always be blueshifted. We have collated optical spectra of SN 1987A from a variety of archival sources and have modelled the Hα line from days 714 to 3604 and the [O I] 6300,6363 Å doublet between days 714 and 1478. Our line profile fits rule out day 714 dust masses >3 × 10-3 M⊙ for all grain types apart from pure magnesium silicates, for which no more than 0.07 M⊙ can be accommodated. Large grain radii ( ≥ 0.6 μm) are generally required to fit the line profiles even at the earlier epochs. We find that a large dust mass (≥0.1 M⊙) had formed by day 3604 and infer that the majority of the present dust mass must have formed after this epoch. Our findings agree with recent estimates from spectral energy distribution fits for the dust mass evolution of SN 1987A and support the inference that the majority of SN 1987A's dust formed many years after the initial explosion.
2007-11-01
of dwarf arctic birch and bog rosemary. Understory in most areas includes Labrador tea, lowbush cranberry , and blueberry. Occasionally the black...wild rose, blueberry, and highbush cranberry are common shrubs. Mixed forests usually develop from stands of pure or nearly pure broadleaftrees...forest type include tamarack, blueberry, lowbush cranberry , labrador tea, and feather moss. It is unclear what type of black spruce lowland forest, if
Role of amphiphilic molecule on liquid crystal phases
NASA Astrophysics Data System (ADS)
Dan, Kaustabh; Roy, Madhusudan; Datta, Alokmay
2013-02-01
We have studied the effect of an amphiphilic fatty acid, Stearic Acid (StA), on the phases, wetting and polarization properties of the liquid crystalline substance N-(4-Methoxybenzylidene)-4-butylaniline (MBBA), through Differential Scanning Calorimetry and Optical Polarization Microscopy. Metastable and mesophases disappear for a MBBA:StA = 1:5 mixture. This mixture wets Si(111) and dewets Si(100) surfaces while pure MBBA dewets both. Films of this mixture also show better polarization than the pure sample.
Method of preparing pure fluorine gas
Asprey, Larned B.
1976-01-01
A simple, inexpensive system for purifying and storing pure fluorine is described. The method utilizes alkali metal-nickel fluorides to absorb tank fluorine by forming nickel complex salts and leaving the gaseous impurities which are pumped away. The complex nickel fluoride is then heated to evolve back pure gaseous fluorine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Joseph S.; Feng, Patrick L.
In this work we report a new class of organic-based scintillators that combines several of the desirable attributes of existing crystalline, liquid, and plastic organic scintillators. The prepared materials may be isolated in single crystalline form or melt-cast to produce highly transparent glasses that have been shown to provide high light yields of up to 16,000 photons/MeVee, as evaluated against EJ-200 plastic scintillators and solution-grown trans-stilbene crystals. The prepared organic glasses exhibit neutron/gamma pulse-shape discrimination (PSD) and are compatible with wavelength shifters to reduce optical self-absorption effects that are intrinsic to pure materials such as crystalline organics. In conclusion, themore » combination of high scintillation efficiency, PSD capabilities, and facile scale-up via melt-casting distinguishes this new class of amorphous materials from existing alternatives.« less
Melt-cast organic glasses as high-efficiency fast neutron scintillators
NASA Astrophysics Data System (ADS)
Carlson, Joseph S.; Feng, Patrick L.
2016-10-01
In this work we report a new class of organic-based scintillators that combines several of the desirable attributes of existing crystalline, liquid, and plastic organic scintillators. The prepared materials may be isolated in single crystalline form or melt-cast to produce highly transparent glasses that have been shown to provide high light yields of up to 16,000 photons/MeVee, as evaluated against EJ-200 plastic scintillators and solution-grown trans-stilbene crystals. The prepared organic glasses exhibit neutron/gamma pulse-shape discrimination (PSD) and are compatible with wavelength shifters to reduce optical self-absorption effects that are intrinsic to pure materials such as crystalline organics. The combination of high scintillation efficiency, PSD capabilities, and facile scale-up via melt-casting distinguishes this new class of amorphous materials from existing alternatives.
Novel Semi-Parametric Algorithm for Interference-Immune Tunable Absorption Spectroscopy Gas Sensing
Michelucci, Umberto; Venturini, Francesca
2017-01-01
One of the most common limits to gas sensor performance is the presence of unwanted interference fringes arising, for example, from multiple reflections between surfaces in the optical path. Additionally, since the amplitude and the frequency of these interferences depend on the distance and alignment of the optical elements, they are affected by temperature changes and mechanical disturbances, giving rise to a drift of the signal. In this work, we present a novel semi-parametric algorithm that allows the extraction of a signal, like the spectroscopic absorption line of a gas molecule, from a background containing arbitrary disturbances, without having to make any assumption on the functional form of these disturbances. The algorithm is applied first to simulated data and then to oxygen absorption measurements in the presence of strong fringes.To the best of the authors’ knowledge, the algorithm enables an unprecedented accuracy particularly if the fringes have a free spectral range and amplitude comparable to those of the signal to be detected. The described method presents the advantage of being based purely on post processing, and to be of extremely straightforward implementation if the functional form of the Fourier transform of the signal is known. Therefore, it has the potential to enable interference-immune absorption spectroscopy. Finally, its relevance goes beyond absorption spectroscopy for gas sensing, since it can be applied to any kind of spectroscopic data. PMID:28991161
NASA Astrophysics Data System (ADS)
Mureşan-Pop, M.; Pop, M. M.; Borodi, G.; Todea, M.; Nagy-Simon, T.; Simon, S.
2017-08-01
Three solid dispersion forms of Myricetin combined with the Polyvinylpyrrolidone were successfully prepared by spray drying method, and characterized by X-ray powder diffraction, thermal analysis, infrared spectroscopy and optical microscopy. Zeta potential measurements provided indications on solid dispersions stability in aqueous suspension related to their storage at elevated temperature and relative humidity, which depends on the Myricetin load. By increase of Myricetin load, the stability of the solid dispersion is impeded due to growth of Myricetin monohydrate crystals. The amorphous dispersions with 10% and 50% Myricetin load are stable and, compared to pure Myricetin, their aqueous solubility is enhanced by a factor of 47 and 13, respectively. The dispersion with 80% Myricetin load is unstable on storage, and this behavior acts in conjunction with the development of Myricetin monohydrate crystals. Single-crystal X-ray diffraction results obtained for Myricetin monohydrate reveal a structure of an infinite 2D network of hydrogen-bonded molecules involving all six hydroxyl groups of Myricetin. The water molecules are positioned in between the infinite chains, and contribute via H-bonds to robust crystal packing. The calculated needle-like morphology of monohydrate form is in agreement with the optical microscopy results. The study shows that the solid amorphous dispersions with up to 50% Myricetin load are a viable option for achieving substantial solubility improvement of Myricetin, and supports their potential use in pharmaceutical applications.
Driving Innovation in Optical Networking
NASA Astrophysics Data System (ADS)
Colizzi, Ernesto
Over the past 30 years, network applications have changed with the advent of innovative services spanning from high-speed broadband access to mobile data communications and to video signal distribution. To support this service evolution, optical transport infrastructures have changed their role. Innovations in optical networking have not only allowed the pure "bandwidth per fiber" increase, but also the realization of highly dependable and easy-to-manage networks. This article analyzes the innovations that have characterized the optical networking solutions from different perspectives, with a specific focus on the advancements introduced by Alcatel-Lucent's research and development laboratories located in Italy. The advancements of optical networking will be explored and discussed through Alcatel-Lucent's optical products to contextualize each innovation with the market evolution.
Growth and characterization of high quality ZnS thin films by RF sputtering
NASA Astrophysics Data System (ADS)
Mukherjee, C.; Rajiv, K.; Gupta, P.; Sinha, A. K.; Abhinandan, L.
2012-06-01
High optical quality ZnS films are deposited on glass and Si wafer by RF sputtering from pure ZnS target. Optical transmittance, reflectance, ellipsometry, FTIR and AFM measurements are carried out. Effect of substrate temperature and chamber baking for long duration on film properties have been studied. Roughness of the films as measured by AFM are low (1-2Å).
Madsen, Heidi Holst; Madsen, Dicte; Gauffriau, Marianne
2016-01-01
Unique identifiers (UID) are seen as an effective key to match identical publications across databases or identify duplicates in a database. The objective of the present study is to investigate how well UIDs work as match keys in the integration between Pure and SciVal, based on a case with publications from the health sciences. We evaluate the matching process based on information about coverage, precision, and characteristics of publications matched versus not matched with UIDs as the match keys. We analyze this information to detect errors, if any, in the matching process. As an example we also briefly discuss how publication sets formed by using UIDs as the match keys may affect the bibliometric indicators number of publications, number of citations, and the average number of citations per publication. The objective is addressed in a literature review and a case study. The literature review shows that only a few studies evaluate how well UIDs work as a match key. From the literature we identify four error types: Duplicate digital object identifiers (DOI), incorrect DOIs in reference lists and databases, DOIs not registered by the database where a bibliometric analysis is performed, and erroneous optical or special character recognition. The case study explores the use of UIDs in the integration between the databases Pure and SciVal. Specifically journal publications in English are matched between the two databases. We find all error types except erroneous optical or special character recognition in our publication sets. In particular the duplicate DOIs constitute a problem for the calculation of bibliometric indicators as both keeping the duplicates to improve the reliability of citation counts and deleting them to improve the reliability of publication counts will distort the calculation of average number of citations per publication. The use of UIDs as a match key in citation linking is implemented in many settings, and the availability of UIDs may become critical for the inclusion of a publication or a database in a bibliometric analysis.
Madsen, Heidi Holst; Madsen, Dicte; Gauffriau, Marianne
2016-01-01
Unique identifiers (UID) are seen as an effective key to match identical publications across databases or identify duplicates in a database. The objective of the present study is to investigate how well UIDs work as match keys in the integration between Pure and SciVal, based on a case with publications from the health sciences. We evaluate the matching process based on information about coverage, precision, and characteristics of publications matched versus not matched with UIDs as the match keys. We analyze this information to detect errors, if any, in the matching process. As an example we also briefly discuss how publication sets formed by using UIDs as the match keys may affect the bibliometric indicators number of publications, number of citations, and the average number of citations per publication. The objective is addressed in a literature review and a case study. The literature review shows that only a few studies evaluate how well UIDs work as a match key. From the literature we identify four error types: Duplicate digital object identifiers (DOI), incorrect DOIs in reference lists and databases, DOIs not registered by the database where a bibliometric analysis is performed, and erroneous optical or special character recognition. The case study explores the use of UIDs in the integration between the databases Pure and SciVal. Specifically journal publications in English are matched between the two databases. We find all error types except erroneous optical or special character recognition in our publication sets. In particular the duplicate DOIs constitute a problem for the calculation of bibliometric indicators as both keeping the duplicates to improve the reliability of citation counts and deleting them to improve the reliability of publication counts will distort the calculation of average number of citations per publication. The use of UIDs as a match key in citation linking is implemented in many settings, and the availability of UIDs may become critical for the inclusion of a publication or a database in a bibliometric analysis. PMID:27635223
Three-dimensional image formation in fiber-optical second-harmonic-generation microscopy.
Gu, Min; Fu, Ling
2006-02-06
Three-dimensional (3-D) image formation in fiber-optical second-harmonic-generation microscopy is revealed to be purely coherent and therefore can be described by a 3-D coherent transfer function (CTF) that exhibits the same spatial frequency passband as that of fiber-optical reflection-mode non-fluorescence microscopy. When the numerical aperture of the fiber is much larger than the angle of convergence of the illumination on the fiber aperture, the performance of fiber-optical second-harmonic-generation microscopy behaves as confocal second-harmonic-generation microscopy. The dependence of axial resolution on fiber coupling parameters shows an improvement of approximately 7%, compared with that in fiber-optical two-photon fluorescence microscopy.
NASA Technical Reports Server (NTRS)
Lee, Joonsuk; Yang, Ping; Dessler, Andrew E.; Baum, Bryan A.; Platnick, Steven
2005-01-01
Cloud microphysical and optical properties are inferred from the bidirectional reflectances simulated for a single-layered cloud consisting of an external mixture of ice particles and liquid droplets. The reflectances are calculated with a rigorous discrete ordinates radiative transfer model and are functions of the cloud effective particle size, the cloud optical thickness, and the values of the ice fraction in the cloud (i.e., the ratio of ice water content to total water content). In the present light scattering and radiative transfer simulations, the ice fraction is assumed to be vertically homogeneous; the habit (shape) percentage as a function of ice particle size is consistent with that used for the Moderate Resolution Imaging Spectroradiometer (MODIS) operational (Collection 4 and earlier) cloud products; and the surface is assumed to be Lambertian with an albedo of 0.03. Furthermore, error analyses pertaining to the inference of the effective particle sizes and optical thicknesses of mixed-phase clouds are performed. Errors are calculated with respect to the assumption of a cloud containing solely liquid or ice phase particles. The analyses suggest that the effective particle size inferred for a mixed-phase cloud can be underestimated (or overestimated) if pure liquid phase (or pure ice phase) is assumed for the cloud, whereas the corresponding cloud optical thickness can be overestimated (or underestimated).
NASA Astrophysics Data System (ADS)
Shimazaki, Y.; Yamamoto, M.; Borzenets, I. V.; Watanabe, K.; Taniguchi, T.; Tarucha, S.
2015-12-01
The field of `Valleytronics’ has recently been attracting growing interest as a promising concept for the next generation electronics, because non-dissipative pure valley currents with no accompanying net charge flow can be manipulated for computational use, akin to pure spin currents. Valley is a quantum number defined in an electronic system whose energy bands contain energetically degenerate but non-equivalent local minima (conduction band) or maxima (valence band) due to a certain crystal structure. Specifically, spatial inversion symmetry broken two-dimensional honeycomb lattice systems exhibiting Berry curvature is a subset of possible systems that enable optical, magnetic and electrical control of the valley degree of freedom. Here we use dual-gated bilayer graphene to electrically induce and control broken inversion symmetry (or Berry curvature) as well as the carrier density for generating and detecting the pure valley current. In the insulating regime, at zero-magnetic field, we observe a large nonlocal resistance that scales cubically with the local resistivity, which is evidence of pure valley current.
Synthesis and photoluminescence of ultra-pure germanium nanoparticles
NASA Astrophysics Data System (ADS)
Chivas, R.; Yerci, S.; Li, R.; Dal Negro, L.; Morse, T. F.
2011-09-01
We have used aerosol deposition to synthesize defect and micro-strain free, ultra-pure germanium nanoparticles. Transmission electron microscopy images show a core-shell configuration with highly crystalline core material. Powder X-ray diffraction measurements verify the presence of highly pure, nano-scale germanium with average crystallite size of 30 nm and micro-strain of 0.058%. X-ray photoelectron spectroscopy demonstrates that GeO x ( x ⩽ 2) shells cover the surfaces of the nanoparticles. Under optical excitation, these nanoparticles exhibit two separate emission bands at room temperature: a visible emission at 500 nm with 0.5-1 ns decay times and an intense near-infrared emission at 1575 nm with up to ˜20 μs lifetime.
NASA Astrophysics Data System (ADS)
El Makkaoui, Mohammed
Iron pyrite (cubic FeS2) is a non-toxic, earth abundant semiconductor possessing a set of excellent optical/electronic properties for serving as an absorber layer in PV devices. Additionally, pyrite is a very efficient hydroxyl radical generator via Fenton chemistry and has shown promise in oxidative protein and DNA foot-printing application. The main focus of this thesis is on fabricating phase and elementally pure iron pyrite thin films using a solution-based approach that employs hydrazine as a solvent. A precursor ink is formed at room temperature by mixing elemental iron and sulfur in anhydrous hydrazine and then deposited on Mo-coated glass substrates, via spin coating, to yield amorphous iron sulfide films that are then annealed in H2S (340°C) and sulfur gas (≤ 500 °C) to form uniform, polycrystalline and phase pure pyrite films with densely packed grains. This approach is likely to yield the most elementally pure pyrite thin films made to date, through a very simple and scalable process. The ink has shown to be very sensitive to environmental conditions and has a very short shelf life (˜1 day). Additionally, the film microstructure is greatly influenced by the S:Fe concentration ratio that when tuned to 3:1, yielded uniform, robust and optically flat iron sulfide thin films with an optimal thickness (˜320 nm) for PV application. The results however were not reproducible, mainly due to failure in applying multiple layers without compromising film morphology. Thinner (< 100 nm) iron sulfide films, on the other hand, are reproducibly produced, but are too thin to be employed in PV devices. Direct annealing in sulfur gas at 475°C for 4 hours, bypassing the > 12 hour H2S annealing step, yielded phase pure pyrite films, with good morphology, at lower processing time and annealing temperatures (< 500°C). The latter part of this thesis regards the use of pyrite nano-crystals in conjunction with high surface area polymer laminates for protein foot-printing application in collaboration with the Brenowitz lab at the Albert Einstein College of Medicine and the Khine lab at the University of California, Irvine. A thin film of pyrite nano-crystals is spray deposited (Video in supplementary ) onto a shape memory polymer that is then thermally treated with a heat gun, causing the sheet to retract and stiffen as the nanocrystalline layer crumples and integrates into the polyolefin, forming a mechanically robust and highly reactive laminate of pyrite nano-crystals. Micro-wells are thermoformed into the laminate under negative pressure. ˙OH dose-oxidation response relationship were established via varying the H2O 2 concentration and reaction time. The flexibility, cost effectiveness and scalability of this platform enables integration into macro-structural analysis systems. Pyrite shrink laminates and hydrazine ink films were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), and Raman Spectroscopy. Drop deposition oxidation experiments and MALDI-TOF "Matrix Assisted Laser Desorption/Ionization-Time of Flight" Mass Spectroscopy of protein aliquots reacted on PSWL were conducted in the Brenowitz lab at the department of biochemistry at the Albert Einstein College of Medicine in New York.
The infantile psychic trauma from us to Freud: pure trauma, retroactivity and reconstruction.
Baranger, M; Baranger, W; Mom, J M
1988-01-01
In the works of Freud, the concept of childhood psychic trauma evolves in the direction of increasing complexity. The authors maintain that this expansion corresponds to a new conception of retroactive temporality (Nachträglich), which is precisely the one we use in the analytic process of reconstruction and historicization from the present toward the past. We are thus led to differentiate the extreme form of the unassimilable 'pure' Trauma, nearly pure death drive, from the retroactively historicized forms which are reintegrated into the continuity of a vital flow of time that we 'invent' in analytic work.
Soapy: an adaptive optics simulation written purely in Python for rapid concept development
NASA Astrophysics Data System (ADS)
Reeves, Andrew
2016-07-01
Soapy is a newly developed Adaptive Optics (AO) simulation which aims be a flexible and fast to use tool-kit for many applications in the field of AO. It is written purely in the Python language, adding to and taking advantage of the already rich ecosystem of scientific libraries and programs. The simulation has been designed to be extremely modular, such that each component can be used stand-alone for projects which do not require a full end-to-end simulation. Ease of use, modularity and code clarity have been prioritised at the expense of computational performance. Though this means the code is not yet suitable for large studies of Extremely Large Telescope AO systems, it is well suited to education, exploration of new AO concepts and investigations of current generation telescopes.
APPLIED OPTICS. Voltage-tunable circular photogalvanic effect in silicon nanowires.
Dhara, Sajal; Mele, Eugene J; Agarwal, Ritesh
2015-08-14
Electronic bands in crystals can support nontrivial topological textures arising from spin-orbit interactions, but purely orbital mechanisms can realize closely related dynamics without breaking spin degeneracies, opening up applications in materials containing only light elements. One such application is the circular photogalvanic effect (CPGE), which is the generation of photocurrents whose magnitude and polarity depend on the chirality of optical excitation. We show that the CPGE can arise from interband transitions at the metal contacts to silicon nanowires, where inversion symmetry is locally broken by an electric field. Bias voltage that modulates this field further controls the sign and magnitude of the CPGE. The generation of chirality-dependent photocurrents in silicon with a purely orbital-based mechanism will enable new functionalities in silicon that can be integrated with conventional electronics. Copyright © 2015, American Association for the Advancement of Science.
Analysis of Square Cup Deep-Drawing Test of Pure Titanium
NASA Astrophysics Data System (ADS)
Ogawa, Takaki; Ma, Ninshu; Ueyama, Minoru; Harada, Yasunori
2016-08-01
The prediction of formability of titunium is more difficult than steels since its strong anisotropy. If computer simulation can estimate the formability of titanium, we can select the optimal forming conditions. The purpose of this study was to acquire knowledge for the formability prediction by the computer simulation of the square cup deep-drawing of pure titanium. In this paper, the results of FEM analsis of pure titanium were compared with the experimental results to examine the analysis validity. We analyzed the formability of deepdrawing square cup of titanium by the FEM using solid elements. Compared the analysis results with the experimental results such as the forming shape, the punch load, and the thickness, the validity was confirmed. Further, through analyzing the change of the thickness around the forming corner, it was confirmed that the thickness increased to its maximum value during forming process at the stroke of 35mm more than the maximum stroke.
NASA Technical Reports Server (NTRS)
Ohl, Raymond G.; Dow, Thomas A.; Sohn, alex
2004-01-01
We present highlights from the American Society for Precision Engineering's 2004 winter topical meeting entitled Free-Form Optics: Design, Fabrication, Metrology, Assembly. We emphasize those papers that are most relevant to astronomical optics. Optical surfaces that transcend the bounds of rotational symmetry have been implemented in novel optical systems with fantastic results since the release of Polaroid's first instant camera. Despite these successes, free-form optics have found only a few niche applications and have yet to enter the mainstream. The purpose of this meeting is to identify the state of the art of free-form optics design, fabrication, metrology and assembly and to identify the technical and logistical challenges that inhibit their widespread use. Issues that will be addressed include: What are free-form optics? How can optical systems be made better with free-form optics? How can designers use free-form optics? How can free-form optics be fabricated? How can they be measured? How are free-form optical systems assembled? Control of multi-axis systems.
Shao, Hua; Pinnavaia, Thomas J
2010-09-01
The low-temperature synthesis (90°C) of nanoparticle forms of a pure phase smectic clay (saponite) and zeolite (cancrinite) is reported, along with phase mixtures thereof. A synthesis gel corresponding to the Si:Al:Mg unit cell composition of saponite (3.6:0.40:3.0) and a NaOH/Si ratio of 1.39 affords the pure phase clay with disordered nanolayer stacking. Progressive increases in the NaOH/Si ratio up to a value of 8.33 results in the co-crystallization of first garronite and then cancrinite zeolites with nanolath morphology. The resulting phase mixtures exhibit a compound particulate structure of intertwined saponite nanolayers and cancrinite nanolaths that cannot be formed through physical mixing of the pure phase end members. Under magnesium-free conditions, pure phase cancrinite nanocrystals are formed. The Si/Al ratio of the reaction mixture affects the particle morphology as well as the chemical composition of the cancrinite zeolite. Ordinarily, cancrinite crystallizes with a Si/Al ratio of 1.0, but a silicon-rich form of the zeolite (Si/Al=1.25) is crystallized at low temperature from a silica rich synthesis gel, as evidenced by (29)Si NMR spectroscopy and XEDS-TEM. Owing to the exceptionally high external surface areas of the pure phase clay (875 m(2)/g) and zeolite end members (8.9 - 40 m(2)/g), as well as their unique mixed phase composites (124 - 329 m(2)/g), these synthetic derivatives are promising model nanoparticles for studies of the bioavailability of poly-aromatic hydrocarbons immobilized in silicate bearing sediments and soils.
Femtosecond pulses propagation through pure water
NASA Astrophysics Data System (ADS)
Naveira, Lucas; Sokolov, Alexei; Byeon, Joong-Hyeok; Kattawar, George
2007-10-01
Recently, considerable attention has been dedicated to the field of optical precursors, which can possibly be applied to long-distance underwater communications. Input beam intensities have been carefully adjusted to keep experiments in the linear regime, and some experiments have shown violation of the Beer-Lambert law. We are presently carrying out experiments using femtosecond laser pulses propagating through pure water strictly in the linear regime to study this interesting and important behavior. We are also employing several new and innovative schemes to more clearly define the phenomena.
Optoelectronic interconnects for 3D wafer stacks
NASA Astrophysics Data System (ADS)
Ludwig, David E.; Carson, John C.; Lome, Louis S.
1996-01-01
Wafer and chip stacking are envisioned as a means of providing increased processing power within the small confines of a three-dimensional structure. Optoelectronic devices can play an important role in these dense 3-D processing electronic packages in two ways. In pure electronic processing, optoelectronics can provide a method for increasing the number of input/output communication channels within the layers of the 3-D chip stack. Non-free space communication links allow the density of highly parallel input/output ports to increase dramatically over typical edge bus connections. In hybrid processors, where electronics and optics play a role in defining the computational algorithm, free space communication links are typically utilized for, among other reasons, the increased network link complexity which can be achieved. Free space optical interconnections provide bandwidths and interconnection complexity unobtainable in pure electrical interconnections. Stacked 3-D architectures can provide the electronics real estate and structure to deal with the increased bandwidth and global information provided by free space optical communications. This paper provides definitions and examples of 3-D stacked architectures in optoelectronics processors. The benefits and issues of these technologies are discussed.
Optoelectronic interconnects for 3D wafer stacks
NASA Astrophysics Data System (ADS)
Ludwig, David; Carson, John C.; Lome, Louis S.
1996-01-01
Wafer and chip stacking are envisioned as means of providing increased processing power within the small confines of a three-dimensional structure. Optoelectronic devices can play an important role in these dense 3-D processing electronic packages in two ways. In pure electronic processing, optoelectronics can provide a method for increasing the number of input/output communication channels within the layers of the 3-D chip stack. Non-free space communication links allow the density of highly parallel input/output ports to increase dramatically over typical edge bus connections. In hybrid processors, where electronics and optics play a role in defining the computational algorithm, free space communication links are typically utilized for, among other reasons, the increased network link complexity which can be achieved. Free space optical interconnections provide bandwidths and interconnection complexity unobtainable in pure electrical interconnections. Stacked 3-D architectures can provide the electronics real estate and structure to deal with the increased bandwidth and global information provided by free space optical communications. This paper will provide definitions and examples of 3-D stacked architectures in optoelectronics processors. The benefits and issues of these technologies will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhe, E-mail: zhenzhe1201@sina.com; Yang, Lei; Hang, Yin
Highly transparent Dy{sup 3+}-doped terbium gallium garnet (TGG) single crystal was grown by Czochralski (Cz) method. Phase composition of the crystal was tested by XRD measurements. The distribution coefficient of Dy{sup 3+} in the crystal was obtained. The optical and magneto-optical properties were analyzed in detail, and magnetic properties of the Dy{sup 3+}-TGG crystal were studied. The paramagnetic behavior is observed down to 10 K. The as-grown crystal exhibited high optical transmittance, particularly in the visible region. The Faraday rotation was investigated over visible and near-infrared regions (VIS–NIR) at room temperature. The Verdet constants increase at measured wavelengths and highmore » thermal stability was found in Dy{sup 3+}-doped TGG, as compared to the properties of pure TGG, indicating that Dy{sup 3+}-doped crystals are preferable for magneto-active materials used in Faraday devices at VIS–NIR wavelengths. - Graphical abstract: Highly transparent Dy{sup 3+}-doped terbium gallium garnet (TGG) and pure TGG single crystals were grown by Czochralski method. The Dy{sup 3+}-doped TGG possesses 20–30% higher Verdet values in reference to TGG independently on wavelength.« less
Okano, Kenji; Zhang, Qiao; Shinkawa, Satoru; Yoshida, Shogo; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko
2009-01-01
In order to achieve direct and efficient fermentation of optically pure D-lactic acid from raw corn starch, we constructed L-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum and introduced a plasmid encoding Streptococcus bovis 148 alpha-amylase (AmyA). The resulting strain produced only D-lactic acid from glucose and successfully expressed amyA. With the aid of secreting AmyA, direct D-lactic acid fermentation from raw corn starch was accomplished. After 48 h of fermentation, 73.2 g/liter of lactic acid was produced with a high yield (0.85 g per g of consumed sugar) and an optical purity of 99.6%. Moreover, a strain replacing the ldhL1 gene with an amyA-secreting expression cassette was constructed. Using this strain, direct D-lactic acid fermentation from raw corn starch was accomplished in the absence of selective pressure by antibiotics. This is the first report of direct D-lactic acid fermentation from raw starch.
Okano, Kenji; Zhang, Qiao; Shinkawa, Satoru; Yoshida, Shogo; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko
2009-01-01
In order to achieve direct and efficient fermentation of optically pure d-lactic acid from raw corn starch, we constructed l-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum and introduced a plasmid encoding Streptococcus bovis 148 α-amylase (AmyA). The resulting strain produced only d-lactic acid from glucose and successfully expressed amyA. With the aid of secreting AmyA, direct d-lactic acid fermentation from raw corn starch was accomplished. After 48 h of fermentation, 73.2 g/liter of lactic acid was produced with a high yield (0.85 g per g of consumed sugar) and an optical purity of 99.6%. Moreover, a strain replacing the ldhL1 gene with an amyA-secreting expression cassette was constructed. Using this strain, direct d-lactic acid fermentation from raw corn starch was accomplished in the absence of selective pressure by antibiotics. This is the first report of direct d-lactic acid fermentation from raw starch. PMID:19011066
NASA Astrophysics Data System (ADS)
Loganathan, A.; Kumar, K.
2016-06-01
In the present work, pure and Sr2+ ions substituted Mg ferrite nanoparticles (NPs) had been prepared by co-precipitation method and their structural, optical, and magnetic properties at different calcination temperatures were studied. On this purpose, thermo gravimetric and differential thermal analysis (TG-DTA), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy, UV-Visible diffused reflectance spectroscopy, impedance spectroscopy, and vibrating sample magnetometer were carried out. The exo- and endothermic processes of synthesized precursors were investigated by TG-DTA measurements. The structural properties of the obtained products were examined by XRD analysis and show that the synthesized NPs are in the cubic spinel structure. The existence of two bands around 578-583 and 430-436 cm-1 in FT-IR spectrum also confirmed the formation of spinel-structured ferrite NPs. The lattice constants and particle size are estimated using XRD data and found to be strongly dependent on calcination temperatures. The optical, electrical, and magnetic properties of ferrite compositions also investigated and found to be strongly dependant on calcination temperatures.
Semiconductor laser-based optoelectronics oscillators
NASA Astrophysics Data System (ADS)
Yao, X. S.; Maleki, Lute; Wu, Chi; Davis, Lawrence J.; Forouhar, Siamak
1998-08-01
We demonstrate the realization of coupled opto-electronic oscillators (COEO) with different semiconductor lasers, including a ring laser, a Fabry-Perot laser, and a colliding pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 picoseconds and RF signals as high in frequency as 18 GHz with a spectral purity comparable with a HP8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.
Structural, optical and AFM characterization of PVA:La3+ polymer films
NASA Astrophysics Data System (ADS)
Ali, F. M.; Maiz, F.
2018-02-01
In this paper the structural and optical properties of pure Polyvinyl alcohol (PVA) and La3+-doped PVA films in the concentration range of 4%, 12% and 20% weight percent of Lanthanum were prepared by the conventional casting technique. X-ray diffraction pattern and atomic force microscopy studies of the investigated samples reveal their semi-crystalline nature. It is found that, absorption coefficient and cluster size of lanthanum:PVA composite increase with increasing salt concentration. However, the optical energy gap shows a slight decreasing trend.
Structural and optical characterization of pure Si-rich nitride thin films
2013-01-01
The specific dependence of the Si content on the structural and optical properties of O- and H-free Si-rich nitride (SiNx>1.33) thin films deposited by magnetron sputtering is investigated. A semiempirical relation between the composition and the refractive index was found. In the absence of Si-H, N-H, and Si-O vibration modes in the FTIR spectra, the transverse and longitudinal optical (TO-LO) Si-N stretching pair modes could be unambiguously identified using the Berreman effect. With increasing Si content, the LO and the TO bands shifted to lower wavenumbers, and the LO band intensity dropped suggesting that the films became more disordered. Besides, the LO and the TO bands shifted to higher wavenumbers with increasing annealing temperature which may result from the phase separation between Si nanoparticles (Si-np) and the host medium. Indeed, XRD and Raman measurements showed that crystalline Si-np formed upon 1100°C annealing but only for SiNx<0.8. Besides, quantum confinement effects on the Raman peaks of crystalline Si-np, which were observed by HRTEM, were evidenced for Si-np average sizes between 3 and 6 nm. A contrario, visible photoluminescence (PL) was only observed for SiNx>0.9, demonstrating that this PL is not originating from confined states in crystalline Si-np. As an additional proof, the PL was quenched while crystalline Si-np could be formed by laser annealing. Besides, the PL cannot be explained neither by defect states in the bandgap nor by tail to tail recombination. The PL properties of SiNx>0.9 could be then due to a size effect of Si-np but having an amorphous phase. PMID:23324447
Structural and optical characterization of pure Si-rich nitride thin films
NASA Astrophysics Data System (ADS)
Debieu, Olivier; Nalini, Ramesh Pratibha; Cardin, Julien; Portier, Xavier; Perrière, Jacques; Gourbilleau, Fabrice
2013-01-01
The specific dependence of the Si content on the structural and optical properties of O- and H-free Si-rich nitride (SiN x>1.33) thin films deposited by magnetron sputtering is investigated. A semiempirical relation between the composition and the refractive index was found. In the absence of Si-H, N-H, and Si-O vibration modes in the FTIR spectra, the transverse and longitudinal optical (TO-LO) Si-N stretching pair modes could be unambiguously identified using the Berreman effect. With increasing Si content, the LO and the TO bands shifted to lower wavenumbers, and the LO band intensity dropped suggesting that the films became more disordered. Besides, the LO and the TO bands shifted to higher wavenumbers with increasing annealing temperature which may result from the phase separation between Si nanoparticles (Si-np) and the host medium. Indeed, XRD and Raman measurements showed that crystalline Si-np formed upon 1100°C annealing but only for SiN x<0.8. Besides, quantum confinement effects on the Raman peaks of crystalline Si-np, which were observed by HRTEM, were evidenced for Si-np average sizes between 3 and 6 nm. A contrario, visible photoluminescence (PL) was only observed for SiN x>0.9, demonstrating that this PL is not originating from confined states in crystalline Si-np. As an additional proof, the PL was quenched while crystalline Si-np could be formed by laser annealing. Besides, the PL cannot be explained neither by defect states in the bandgap nor by tail to tail recombination. The PL properties of SiN x>0.9 could be then due to a size effect of Si-np but having an amorphous phase.
Optical memory based on quantized atomic center-of-mass motion.
Lopez, J P; de Almeida, A J F; Felinto, D; Tabosa, J W R
2017-11-01
We report a new type of optical memory using a pure two-level system of cesium atoms cooled by the magnetically assisted Sisyphus effect. The optical information of a probe field is stored in the coherence between quantized vibrational levels of the atoms in the potential wells of a 1-D optical lattice. The retrieved pulse shows Rabi oscillations with a frequency determined by the reading beam intensity and are qualitatively understood in terms of a simple theoretical model. The exploration of the external degrees of freedom of an atom may add another capability in the design of quantum-information protocols using light.
Magneto-optical effects in semimetallic Bi 1–xSb x (x=0.015)
Dordevic, S. V.; Wolf, M. S.; Stojilovic, N.; ...
2012-09-12
We report the results of infrared and magneto-optical spectroscopy study on electrodynamic response of bismuth doped with 1.5% of antimony. The spectra are presented for temperatures down to 4.2 K, and in magnetic fields as high as 18 T. The results reveal strong magneto-optical activity, similar to pure bismuth, however there are some differences introduced by antimony doping. Analysis of optical functions reveals that the two type of charge carriers respond differently to external magnetic field. Finally, when the system enters the extreme quantum regime, both the inter- and intraband Landau Level transition are observed in the spectra.
Preparation and characterization of Pt loaded WO3 films suitable for gas sensing applications
NASA Astrophysics Data System (ADS)
Jolly Bose, R.; Illyasukutty, Navas; Tan, K. S.; Rawat, R. S.; Vadakke Matham, Murukesan; Kohler, Heinz; Mahadevan Pillai, V. P.
2018-05-01
This paper presents the preparation of nanostructured platinum (Pt) loaded tungsten oxide (WO3) thin films by radio frequency (RF) magnetron sputtering technique. Even though, Pt loading does not produce any phase change in WO3 lattice, it deteriorates the crystalline quality and induces defects on WO3 films. The Pt loading in WO3 has profound impact on structural and optical properties of the films by which the particle size, lattice strain and optical band gap energy are reduced. Nanoporous film with reduced particle size is obtained for 5 wt% Pt loaded WO3 sample which is crucial for gas sensors. Hence the sensing response of 5 wt% Pt loaded sample is tested towards carbon monoxide (CO) gas along with pure WO3 sample. The sensing response of Pt loaded sample is nearly 15 times higher than pure WO3 sample in non-humid ambience at an operating temperature 200 °C. This indicates the suitability of the prepared films for gas sensors. The sensing response of pure WO3 film depends on the humidity while the Pt loaded WO3 film shows stable response in both humid and non-humid ambiences.
Investigation of optical properties and local structure of Gd3+ doped nano-crystalline GeSe2
NASA Astrophysics Data System (ADS)
Hantour, Hanan Hassan
2017-04-01
Pure and Gd-doped nano-crystalline GeSe2 were prepared by the melt-quenching technique. Structure analysis using Rietveld program suggests monoclinic structure for both virgin and doped samples with nano-particle size 41 nm for GeSe2 and 48 nm for Gd-doped sample. A wide optical band gap as estimated from absorbance measurements is 4.1 and 4.8 eV for pure and doped samples in accordance with the confinement effects. Raman spectra show two unresolved components at ˜202 cm-1 with broad line width. Also, well identified low intensity (υ < 145 cm-1) and high intensity (υ > 250 cm-1) bands are detected. For Gd-doped sample, the main band is shifted to lower energies and its full width at half maximum (FWHM) is reduced by ˜50% accompanied by an intensity increase of about ˜17 fold times. The photoluminescence analysis of the pure sample shows a main emission band at ˜604 nm. This band is split into two separated bands with higher intensity. The detected emission bands at wavelength >650 nm are assigned to transmission from 6GJ to the different 6PJ terms.
Mumtaz, Amina; Hussain, Shahid; Yasir, Muhammad
2014-09-01
A simple eco-friendly method has been developed for detection of hydroxyzine dihydrochloride in pure and pharmaceutical dosage forms. Both conventional system and microwave assisted procedures are used for the development of color. The blue coloured complex is measured spectrophotometrically at 750nm. Peak shift in FT-IR spectra also indicated the formation of complex. The reaction obeys Beer's law over the concentration range of 50- 250βg/mL of hydroxyzine dihydrochloride. The precision value (intra-day and inter-day RSD) for the drug is not greater than 0.79% and recoveries were found to be in range of 99.01-99.99%. The designed method is applicable for periodic determination of hydroxyzine dihydrochloride in pure and pharmaceutical dosage forms.
Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation
NASA Astrophysics Data System (ADS)
Li, Junze; Wang, Jun; Zhang, Yingjun; Wang, Haizhen; Lin, Gaoming; Xiong, Xuan; Zhou, Weihang; Luo, Hongmei; Li, Dehui
2018-04-01
The two-dimensional (2D) Ruddlesden-Popper type perovskites have attracted intensive interest for their great environmental stability and various potential optoelectronic applications. Fundamental understanding of the photophysical and electronic properties of the 2D perovskites with pure single phase is essential for improving the performance of the optoelectronic devices and designing devices with new architectures. Investigating the optical and electronic properties of these materials with pure single phase is required to obtain pure single phase 2D perovskites. Here, we report on an alternative approach to fabricate (C4H9NH3)2(CH3NH3) n-1Pb n I3n+1 microplates with pure single n-number perovskite phase for n > 2 by mechanical exfoliation. Micro-photoluminescence and absorption spectroscopy studies reveal that the as-synthesized 2D perovskite plates for n > 2 are comprised by dominant n-number phase and small inclusions of hybrid perovskite phases with different n values, which is supported by excitation power dependent photoluminescence. By mechanical exfoliation method, 2D perovskite microplates with the thickness of around 20 nm are obtained, which surprisingly have single n-number perovskite phase for n = 2-5. In addition, we have demonstrated that the exfoliated 2D perovskite microplates can be integrated with other 2D layered materials such as boron nitride, and are able to be transferred to prefabricated electrodes for photodetections. Our studies not only provide a strategy to prepare 2D perovskites with a single n-number perovskite phase allowing us to extract the basic optical and electronic parameters of pure phase perovskites, but also demonstrate the possibility to integrate the 2D perovskites with other 2D layered materials to extend the device’s functionalities.
Theoretical investigation of stabilities and optical properties of Si12C12 clusters
NASA Astrophysics Data System (ADS)
Duan, Xiaofeng F.; Burggraf, Larry W.
2015-01-01
By sorting through hundreds of globally stable Si12C12 isomers using a potential surface search and using simulated annealing, we have identified low-energy structures. Unlike isomers knit together by Si-C bonds, the lowest energy isomers have segregated carbon and silicon regions that maximize stronger C-C bonding. Positing that charge separation between the carbon and silicon regions would produce interesting optical absorption in these cluster molecules, we used time-dependent density functional theory to compare the calculated optical properties of four isomers representing structural classes having different types of silicon and carbon segregation regions. Absorptions involving charge transfer between segregated carbon and silicon regions produce lower excitation energies than do structures having alternating Si-C bonding for which frontier orbital charge transfer is exclusively from separated carbon atoms to silicon atoms. The most stable Si12C12 isomer at temperatures below 1100 K is unique as regards its high symmetry and large optical oscillator strength in the visible blue. Its high-energy and low-energy visible transitions (1.15 eV and 2.56 eV) are nearly pure one-electron silicon-to-carbon transitions, while an intermediate energy transition (1.28 eV) is a nearly pure carbon-to-silicon one-electron charge transfer.
NASA Astrophysics Data System (ADS)
Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio
2007-10-01
We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1×M bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a , uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.
Transfer of non-Gaussian quantum states of mechanical oscillator to light
NASA Astrophysics Data System (ADS)
Filip, Radim; Rakhubovsky, Andrey A.
2015-11-01
Non-Gaussian quantum states are key resources for quantum optics with continuous-variable oscillators. The non-Gaussian states can be deterministically prepared by a continuous evolution of the mechanical oscillator isolated in a nonlinear potential. We propose feasible and deterministic transfer of non-Gaussian quantum states of mechanical oscillators to a traveling light beam, using purely all-optical methods. The method relies on only basic feasible and high-quality elements of quantum optics: squeezed states of light, linear optics, homodyne detection, and electro-optical feedforward control of light. By this method, a wide range of novel non-Gaussian states of light can be produced in the future from the mechanical states of levitating particles in optical tweezers, including states necessary for the implementation of an important cubic phase gate.
Development of a Nonionic Azobenzene Amphiphile for Remote Photocontrol of a Model Biomembrane.
Benedini, Luciano A; Sequeira, M Alejandra; Fanani, Maria Laura; Maggio, Bruno; Dodero, Verónica I
2016-05-05
We report the synthesis and characterization of a simple nonionic azoamphiphile, C12OazoE3OH, which behaves as an optically controlled molecule alone and in a biomembrane environment. First, Langmuir monolayer and Brewster angle microscopy (BAM) experiments showed that pure C12OazoE3OH enriched in the (E) isomer was able to form solidlike mesophase even at low surface pressure associated with supramolecular organization of the azobenzene derivative at the interface. On the other hand, pure C12OazoE3OH enriched in the (Z) isomer formed a less solidlike monolayer due to the bent geometry around the azobenzene moiety. Second, C12OazoE3OH is well-mixed in a biological membrane model, Lipoid s75 (up to 20%mol), and photoisomerization among the lipids proceeded smoothly depending on light conditions. It is proposed that the cross-sectional area of the hydroxyl triethylenglycol head of C12OazoE3OH inhibits azobenzenes H-aggregation in the model membrane; thus, the tails conformation change due to photoisomerization is transferred efficiently to the lipid membrane. We showed that the lipid membrane effectively senses the azobenzene geometrical change photomodulating some properties, like compressibility modulus, transition temperature, and morphology. In addition, photomodulation proceeds with a color change from yellow to orange, providing the possibility to externally monitor the system. Finally, Gibbs monolayers showed that C12OazoE3OH is able to penetrate the highly packing biomembrane model; thus, C12OazoE3OH might be used as photoswitchable molecular probe in real systems.
ROSAT all-sky survey on the Einstein EMSS sample
NASA Technical Reports Server (NTRS)
Maccacaro, Tomasso
1992-01-01
The cosmological evolution and the luminosity function (XLF) of X ray selected Active Galactic Nuclei (AGN's) are discussed. The sample used is extracted from the Einstein Observatory Extended Medium Sensitivity Surveys (EMSS) and consists of more than 420 objects. Preliminary results from the ROSAT All-Sky Survey data confirm the correctness of the optical identification of the EMSS sources, thus giving confidence to the results obtained from the analysis of the AGN's sample. The XLF observed at different redshifts (up to z approx. 2) gives direct evidence of cosmological evolution. Data have been analyzed within the framework of luminosity evolution models and the two most common evolutionary forms, L sub x(Z) = L sub x(0) x e(sup Cr) and L sub x(Z) = L sub x(0) x (1 + z)(exp C), have been considered. Luminosity dependent evolution is required if the evolution function has the exponential form, whereas the simpler pure luminosity evolution model is still acceptable if the evolution function has the power law form. Using the whole sample of objects the number-counts and the de-evolved (z = 0) XLF have been derived. A comparison of the EMSS data with preliminary ROSAT results presented at this meeting indicates an overall agreement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fajardo, Mario E., E-mail: mario.fajardo@eglin.af.mil; Molek, Christopher D.; Vesely, Annamaria L.
2015-10-14
We report the first successful results from our novel Rubidium Atomic Line Filtered (RALF) Doppler velocimetry apparatus, along with unanticipated oscillatory signals due to coherent optical transients generated within pure Rb vapor cells. RALF is a high-velocity and high-acceleration extension of the well-known Doppler Global Velocimetry (DGV) technique for constructing multi-dimensional flow velocity vector maps in aerodynamics experiments [H. Komine, U.S. Patent No. 4,919,536 (24 April 1990)]. RALF exploits the frequency dependence of pressure-broadened Rb atom optical absorptions in a heated Rb/N{sub 2} gas cell to encode the Doppler shift of reflected near-resonant (λ{sub 0} ≈ 780.24 nm) laser light onto the intensitymore » transmitted by the cell. The present RALF apparatus combines fiber optic and free-space components and was built to determine suitable operating conditions and performance parameters for the Rb/N{sub 2} gas cells. It yields single-spot velocities of thin laser-driven-flyer test surfaces and incorporates a simultaneous Photonic Doppler Velocimetry (PDV) channel [Strand et al., Rev. Sci. Instrum. 77, 083108 (2006)] for validation of the RALF results, which we demonstrate here over the v = 0 to 1 km/s range. Both RALF and DGV presume the vapor cells to be simple Beer's Law optical absorbers, so we were quite surprised to observe oscillatory signals in experiments employing low pressure pure Rb vapor cells. We interpret these oscillations as interference between the Doppler shifted reflected light and the Free Induction Decay (FID) coherent optical transient produced within the pure Rb cells at the original laser frequency; this is confirmed by direct comparison of the PDV and FID signals. We attribute the different behaviors of the Rb/N{sub 2} vs. Rb gas cells to efficient dephasing of the atomic/optical coherences by Rb-N{sub 2} collisions. The minimum necessary N{sub 2} buffer gas density ≈0.3 amagat translates into a smallest useful velocity range of 0 to 2 km/s, which can readily be extended to cover the 0 to 10 km/s range, and beyond. The recognition that coherent optical transients can be produced within low pressure vapor cells during velocimetry experiments may offer new insights into some quantitative discrepancies reported in earlier DGV studies. Future plans include “line-RALF” experiments with streak camera detection, and two-dimensional surface velocity mapping using pulsed laser illumination and/or gated intensified CCD camera detection.« less
Enhanced optical limiting effect in fluorine-functionalized graphene oxide
NASA Astrophysics Data System (ADS)
Zhang, Fang; Wang, Zhengping; Wang, Duanliang; Wang, Shenglai; Xu, Xinguang
2017-09-01
Nonlinear optical absorption of fluorine-functionalized graphene oxide (F-GO) solution was researched by the open-aperture Z-scan method using 1064 and 532 nm lasers as the excitation sources. The F-GO dispersion exhibited strong optical limiting property and the fitted results demonstrated that the optical limiting behavior was the result of a two-photon absorption process. For F-GO nanosheets, the two-photon absorption coefficients at 1064 nm excitation are 20% larger than the values at 532 nm excitation and four times larger than that of pure GO nanosheets. It indicates that the doping of fluorine can effectively improve the nonlinear optical property of GO especially in infrared waveband, and fluorine-functionalized graphene oxide is an excellent nonlinear absorption material in infrared waveband.
Thermodynamic origin of nonimaging optics
NASA Astrophysics Data System (ADS)
Jiang, Lun; Winston, Roland
2016-10-01
Nonimaging optics is the theory of thermodynamically efficient optics and as such depends more on thermodynamics than on optics. Hence, in this paper, a condition for the "best" design is proposed based on purely thermodynamic arguments, which we believe has profound consequences for the designs of thermal and even photovoltaic systems. This way of looking at the problem of efficient concentration depends on probabilities, the ingredients of entropy and information theory, while "optics" in the conventional sense recedes into the background. Much of the paper is pedagogical and retrospective. Some of the development of flowline designs will be introduced at the end and the connection between the thermodynamics and flowline design will be graphically presented. We will conclude with some speculative directions of where the ideas might lead.
NASA Astrophysics Data System (ADS)
Robinson, C. B.; Zarzana, K. J.; Hasenkopf, C. A.; Tolbert, M. A.
2012-12-01
Light extinction by particles is strongly dependent on chemical composition, particle size, and water uptake. Relative humidity affects extinction by causing changes in refractive index and particle size due to hygroscopic growth. The ability of particles to take up water depends on their composition and structure. In both laboratory and field studies, inorganic salts completely covered by an organic coating have been observed. The impact of this coating on water uptake is uncertain, and a systematic study that examines water uptake as a function of relative humidity is highly desirable. These data are critical to evaluate the aerosol direct effect on climate, which is one of the most uncertain aspects of future climate change. In this study, we probe the connection between aerosol composition, size and light extinction directly by measuring fRHext, the ratio of the extinction coefficient for humidified particles to the extinction coefficient for dry particles. Particles were composed of 1,2,6-hexanetriol and ammonium sulfate, a system that forms organic coatings around the inorganic core. A cavity ring-down aerosol extinction spectrometer at 532 nm is used to measure the optical growth factor as a function of relative humidity. The fRHext values for a range of %RH for pure ammonium sulfate, pure 1,2,6-hexanetriol, and ammonium sulfate particles with 1,2,6-hexanetriol coatings were measured. The coated particles are created using a method of liquid-liquid separation, where the particles are exposed to water vapor creating a RH% above their deliquescence RH%. The particles are then dried with a Nafion dryer to a RH% that is below the point where liquid-liquid phase separation is observed, but above the efflorescence RH%. Pure 1,2,6-hexanetriol takes up little water over the observed RH range of 45-65%, and therefore fRHext ~ 1. With pure ammonium sulfate for the same RH% range, the fRHext varied from 1.5 - 2, depending on the RH% and the particle size. For the coated particles, at each RH%, the fRHext values fall between those for pure ammonium sulfate and pure 1,2,6-hexanetriol values. This suggests that the organic coating does not prevent water uptake by the ammonium sulfate cores.
Xie, Yan; Duan, Jingze; Fu, Qingxue; Xia, Mengxin; Zhang, Lei; Li, Guowen; Wu, Tao; Ji, Guang
2015-06-20
Total flavones of Hippophae rhamnoides L. (TFH) are extracted from the widely distributed thorny bush Sea buckthorn (Hippophae rhamnoides L.). Isorhamnetin (IS) is one of the representative ingredients in TFH. In this study, the absorption properties of IS in TFH and its pure form were compared through transepithelial transport and cellular uptake experiments in a Caco-2 cell model. Our results show that the absorption properties of IS in TFH and its pure form were remarkably different: (1) Both PappAB and PappBA of IS in TFH were dramatically increased compared with those of IS pure form; consequently, its Pratio was 2.3-fold higher than that of IS; (2) Both the accumulation and efflux of IS in TFH were significantly enhanced compared with the single compound. One likely reason for these differences is that the multiple components in TFH significantly down regulated the mRNA expression level of MRP2, which lead to a decrease in the protein level of MRP2, based on western blotting and RT-PCR assays. This study highlights the significant differences in the absorption properties of flavonoid components in different forms and the potential multi-component interactions in TFH. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vashistha, Indu B., E-mail: indu-139@yahoo.com; Sharma, S. K.; Sharma, Mahesh C.
2015-08-28
In order to find the suitable alternative of toxic CdS buffer layer, deposition of pure ZnS and doped with Al by chemical bath deposition method have been reported. Further as grown pure and doped thin films have been annealed at 150°C. The structural and surface morphological properties have been characterized by X-Ray diffraction (XRD) and Atomic Force Microscope (AFM).The XRD analysis shows that annealed thin film has been polycrystalline in nature with sphalerite cubic crystal structure and AFM images indicate increment in grain size as well as growth of crystals after annealing. Optical measurement data give band gap of 3.5more » eV which is ideal band gap for buffer layer for solar cell suggesting that the obtained ZnS buffer layer is suitable in a low-cost solar cell.« less
Transaminases for the synthesis of enantiopure beta-amino acids
2012-01-01
Optically pure β-amino acids constitute interesting building blocks for peptidomimetics and a great variety of pharmaceutically important compounds. Their efficient synthesis still poses a major challenge. Transaminases (also known as aminotransferases) possess a great potential for the synthesis of optically pure β-amino acids. These pyridoxal 5'-dependent enzymes catalyze the transfer of an amino group from a donor substrate to an acceptor, thus enabling the synthesis of a wide variety of chiral amines and amino acids. Transaminases can be applied either for the kinetic resolution of racemic compounds or the asymmetric synthesis starting from a prochiral substrate. This review gives an overview over microbial transaminases with activity towards β-amino acids and their substrate spectra. It also outlines current strategies for the screening of new biocatalysts. Particular emphasis is placed on activity assays which are applicable to high-throughput screening. PMID:22293122
On-chip low loss heralded source of pure single photons.
Spring, Justin B; Salter, Patrick S; Metcalf, Benjamin J; Humphreys, Peter C; Moore, Merritt; Thomas-Peter, Nicholas; Barbieri, Marco; Jin, Xian-Min; Langford, Nathan K; Kolthammer, W Steven; Booth, Martin J; Walmsley, Ian A
2013-06-03
A key obstacle to the experimental realization of many photonic quantum-enhanced technologies is the lack of low-loss sources of single photons in pure quantum states. We demonstrate a promising solution: generation of heralded single photons in a silica photonic chip by spontaneous four-wave mixing. A heralding efficiency of 40%, corresponding to a preparation efficiency of 80% accounting for detector performance, is achieved due to efficient coupling of the low-loss source to optical fibers. A single photon purity of 0.86 is measured from the source number statistics without narrow spectral filtering, and confirmed by direct measurement of the joint spectral intensity. We calculate that similar high-heralded-purity output can be obtained from visible to telecom spectral regions using this approach. On-chip silica sources can have immediate application in a wide range of single-photon quantum optics applications which employ silica photonics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klingler, S., E-mail: stefan.klingler@wmi.badw.de; Maier-Flaig, H.; Weiler, M.
Microfocused Brillouin light scattering (BLS) and microwave absorption (MA) are used to study magnon-photon coupling in a system consisting of a split-ring microwave resonator and an yttrium iron garnet (YIG) film. The split-ring resonator is defined by optical lithography and loaded with a 1 μm-thick YIG film grown by liquid phase epitaxy. BLS and MA spectra of the hybrid system are simultaneously recorded as a function of the applied magnetic field magnitude and microwave excitation frequency. Strong coupling of the magnon and microwave resonator modes is found with a coupling strength of g{sub eff} /2π = 63 MHz. The combined BLS and MA datamore » allow us to study the continuous transition of the hybridized modes from a purely magnonic to a purely photonic mode by varying the applied magnetic field and microwave frequency. Furthermore, the BLS data represent an up-conversion of the microwave frequency coupling to optical frequencies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Virender Singh; Tanwar, Amit; Singh, Davender, E-mail: Davender-kadian@rediffmail.com
The pure and Ag-doped TiO{sub 2} nanoparticles were prepared by using Titanium isoproxide (TTIP), silver nitrate sodium hydroxide and sodium hydroxide. The calcined nanoparticles at 400°C were characterized by means of X-ray diffraction (XRD). XRD analyses reveal that the nanoparticles of various doping concentration were having anatase phase. The particle size was calculated by Scherrer formula and was found 11.08 nm for pure TiO{sub 2} and 8.86 nm for 6 mol % Ag doped TiO{sub 2}. The morphology and nature of nanoparticles was analyzed by using scanning electron microscope (SEM), the optical absorption spectra of pure TiO{sub 2} and Ag-doped TiO{sub 2} nanoparticlesmore » showed that absorption edge increases towards longer wavelength from 390 nm (pure) to 450 nm (doped), also band gap energy calculated from Tauc’s plot decrease from 3.20eV to 2.92eV with increase in doing. The measurement of photocatalytic properties of pure TiO{sub 2} and Ag-doped TiO{sub 2} nanoparticles showed that Ag-doped TiO{sub 2} degrades MB dye more efficiently than pure TiO{sub 2}.« less
A metallicity recipe for rocky planets
NASA Astrophysics Data System (ADS)
Dawson, Rebekah I.; Chiang, Eugene; Lee, Eve J.
2015-10-01
Planets with sizes between those of Earth and Neptune divide into two populations: purely rocky bodies whose atmospheres contribute negligibly to their sizes, and larger gas-enveloped planets possessing voluminous and optically thick atmospheres. We show that whether a planet forms rocky or gas-enveloped depends on the solid surface density of its parent disc. Assembly times for rocky cores are sensitive to disc solid surface density. Lower surface densities spawn smaller planetary embryos; to assemble a core of given mass, smaller embryos require more mergers between bodies farther apart and therefore exponentially longer formation times. Gas accretion simulations yield a rule of thumb that a rocky core must be at least 2M⊕ before it can acquire a volumetrically significant atmosphere from its parent nebula. In discs of low solid surface density, cores of such mass appear only after the gas disc has dissipated, and so remain purely rocky. Higher surface density discs breed massive cores more quickly, within the gas disc lifetime, and so produce gas-enveloped planets. We test model predictions against observations, using planet radius as an observational proxy for gas-to-rock content and host star metallicity as a proxy for disc solid surface density. Theory can explain the observation that metal-rich stars host predominantly gas-enveloped planets.
Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke; ...
2015-08-08
Using molecular dynamics simulations, we elucidate irradiation-induced point defect evolution in fcc pure Ni, Ni 0.5Fe 0.5, and Ni 0.8Cr 0.2 solid solution alloys. We find that irradiation-induced interstitials form dislocation loops that are of 1/3 <111>{111}-type, consistent with our experimental results. While the loops are formed in all the three materials, the kinetics of formation is considerably slower in NiFe and NiCr than in pure Ni, indicating that defect migration barriers and extended defect formation energies could be higher in the alloys than pure Ni. As a result, while larger size clusters are formed in pure Ni, smaller andmore » more clusters are observed in the alloys. The vacancy diffusion occurs at relatively higher temperatures than interstitials, and their clustering leads to formation of stacking fault tetrahedra, also consistent with our experiments. The results also show that the surviving Frenkel pairs are composition-dependent and are largely Ni dominated.« less
Stradling, G N; Stather, J W; Gray, S A; Moody, J C; Ellender, M; Hodgson, A; Volf, V; Taylor, D M; Wirth, P; Gaskin, P W
1989-10-01
The pure carboxylated catechoyl amide LICAM(C) and the calcium and zinc salts of diethylenetriaminepenta-acetic acid (DTPA), were tested for efficacy for removing 238Pu and 241Am from rats after inhalation of the nitrate or intravenous injection of the citrate. The results were compared with the efficacy of methylated LICAM(C) used in previous experiments. It was shown that: (1) after inhalation of 238Pu nitrate, DTPA was far superior to pure LICAM(C); (2) after intravenous injection of 238Pu citrate, the infusion of DTPA plus LICAM(C) was only marginally more effective than DTPA alone; and (3) after inhalation or intravenous injection of 238Pu plus 241Am, the efficacy of pure LICAM(C) was only marginally more effective than the methylated form and neither form was effective for the decorporation of 241Am. It was concluded that DTPA, at present, remains the chelating agent of choice for treating persons accidentally contaminated with transportable forms of Pu and Am.
Kamata, Kaori; Piao, Zhenzi; Suzuki, Soichiro; Fujimori, Takahiro; Tajiri, Wataru; Nagai, Keiji; Iyoda, Tomokazu; Yamada, Atsushi; Hayakawa, Toshiaki; Ishiwara, Mitsuteru; Horaguchi, Satoshi; Belay, Amha; Tanaka, Takuo; Takano, Keisuke; Hangyo, Masanori
2014-01-01
Microstructures in nature are ultrafine and ordered in biological roles, which have attracted material scientists. Spirulina forms three-dimensional helical microstructure, one of remarkable features in nature beyond our current processing technology such as lithography in terms of mass-productivity and structural multiplicity. Spirulina varies its diameter, helical pitch, and/or length against growing environment. This unique helix is suggestive of a tiny electromagnetic coil, if composed of electro-conductive metal, which brought us main concept of this work. Here, we describe the biotemplating process onto Spirulina surface to fabricate metal microcoils. Structural parameters of the microcoil can be controlled by the cultivation conditions of Spirulina template and also purely one-handed microcoil can be fabricated. A microcoil dispersion sheet exhibited optically active response attributed to structural resonance in terahertz-wave region. PMID:24815190
Melt-cast organic glasses as high-efficiency fast neutron scintillators
Carlson, Joseph S.; Feng, Patrick L.
2016-06-24
In this work we report a new class of organic-based scintillators that combines several of the desirable attributes of existing crystalline, liquid, and plastic organic scintillators. The prepared materials may be isolated in single crystalline form or melt-cast to produce highly transparent glasses that have been shown to provide high light yields of up to 16,000 photons/MeVee, as evaluated against EJ-200 plastic scintillators and solution-grown trans-stilbene crystals. The prepared organic glasses exhibit neutron/gamma pulse-shape discrimination (PSD) and are compatible with wavelength shifters to reduce optical self-absorption effects that are intrinsic to pure materials such as crystalline organics. In conclusion, themore » combination of high scintillation efficiency, PSD capabilities, and facile scale-up via melt-casting distinguishes this new class of amorphous materials from existing alternatives.« less
Swollen poly(dimethylsiloxane) (PDMS) as a template for inorganic morphologies.
Brennan, Daniel P; Dobley, Arthur; Sideris, Paul J; Oliver, Scott R J
2005-12-06
We report a series of silica, titania, and zirconia microstructures synthesized within swollen poly(dimethylsiloxane) (PDMS). Voids created by solvent-swelling the polymer are used to template the product. The inorganic morphologies range from spheres to networks, depending upon the nature of the polymer, its degree of swelling, and the synthetic conditions. Organic solvents as well as pure metal alkoxide liquids have been used to swell the polymer. Once the alkoxide precursor is inside the swollen polymer, water is introduced to bring about hydrolysis and condensation polymerization. The product is a textured metal oxide within a PDMS matrix. Scanning electron microscopy (SEM), optical microscopy, nuclear magnetic resonance (NMR), and powder X-ray diffraction (PXRD) were used to characterize the products. Microstructures formed in this manner have potential use as an inexpensive route to catalysts, fillers, capsules, or membranes for separations.
Steele, J. A.; Lewis, R. A.; Horvat, J.; Nancarrow, M. J. B.; Henini, M.; Fan, D.; Mazur, Y. I.; Schmidbauer, M.; Ware, M. E.; Yu, S.-Q.; Salamo, G. J.
2016-01-01
Herein we investigate a (001)-oriented GaAs1−xBix/GaAs structure possessing Bi surface droplets capable of catalysing the formation of nanostructures during Bi-rich growth, through the vapour-liquid-solid mechanism. Specifically, self-aligned “nanotracks” are found to exist trailing the Bi droplets on the sample surface. Through cross-sectional high-resolution transmission electron microscopy the nanotracks are revealed to in fact be elevated above surface by the formation of a subsurface planar nanowire, a structure initiated mid-way through the molecular-beam-epitaxy growth and embedded into the epilayer, via epitaxial overgrowth. Electron microscopy studies also yield the morphological, structural, and chemical properties of the nanostructures. Through a combination of Bi determination methods the compositional profile of the film is shown to be graded and inhomogeneous. Furthermore, the coherent and pure zincblende phase property of the film is detailed. Optical characterisation of features on the sample surface is carried out using polarised micro-Raman and micro-photoluminescence spectroscopies. The important light producing properties of the surface nanostructures are investigated through pump intensity-dependent micro-PL measurements, whereby relatively large local inhomogeneities are revealed to exist on the epitaxial surface for important optical parameters. We conclude that such surface effects must be considered when designing and fabricating optical devices based on GaAsBi alloys. PMID:27377213
NASA Astrophysics Data System (ADS)
Kumar, Yogendra; Rana, Amit Kumar; Bhojane, Prateek; Pusty, Manojit; Bagwe, Vivas; Sen, Somaditya; Shirage, Parasharam M.
2015-10-01
ZnO nanostructured films were prepared by a chemical bath deposition method on glass substrates without any assistance of either microwave or high pressure autoclaves. The effect of solute concentration on the pure wurtzite ZnO nanostructure morphologies is studied. The control of the solute concentration helps to control the nanostructure to form nano-needles, and -rods. X-ray diffraction (XRD) studies revealed highly c-axis oriented thin films. Scanning electron microscopy (SEM) confirms the modification of the nanostructure dependent on the concentration. Transmission electron microscopy (TEM) results show the single crystalline electron diffraction pattern, indicating high quality nano-material. UV-vis results show the variation in the band gap from 3.20 eV to 3.14 eV with increasing concentration as the nanostructures change from needle- to rod-like. Photoluminescence (PL) data indicate the existence of defects in the nanomaterials emitting light in the yellow-green region, with broad UV and visible spectra. A sharp and strong peak is observed at ˜438 cm-1 by Raman spectroscopy, assigned to the {{{{E}}}2}{{high}} optical mode of ZnO, the characteristic peak for the highly-crystalline wurtzite hexagonal phase. The solute concentration significantly affects the formation of defect states in the nanostructured films, and as a result, it alters the structural and optical properties. Current-voltage characteristics alter with the measurement environment, indicating potential sensor applications.
The Lightwave programme and roadshow: an overview and update
NASA Astrophysics Data System (ADS)
Wong, Nicholas H. L.; Posner, Matthew T.; John, Pearl V.
2015-10-01
While optics and photonics are exciting disciplines with much research, industrial, and economic potential in the 21st century, this appreciation is only shared by a limited number of science, technology, engineering, and mathematics (STEM) experts, and there is a recognized STEM skills shortage. To widen the pool of talent, it is essential to expose students to optics and photonics throughout their education and particularly starting at a young age. The Lightwave programme, consisting of an interactive collection of photonics demonstrations and experiments targeted for primary school students, was thus created to facilitate this endeavor. The programme is run by doctoral students forming a team of "Lightwave ambassadors". All the demonstrations that comprise Lightwave can be easily integrated into a physics curriculum, enabling educators to generate more student interest and enhance the image of science through an interactive pedagogy. We provide a description of the programme at its initial inception, and report on the recent additions and updates that have brought about its success, moving from a purely outreach driven focus to engaging pupils with our own research. We also discuss our approach to ensuring that our team of ambassadors are from diverse backgrounds and use both male and female students as role models. Finally, we reflect on how evaluation methods to obtain feedback from our activities are key to Lightwave's sustainability and in improving the perception of optics and photonics.
Active integrated filters for RF-photonic channelizers.
El Nagdi, Amr; Liu, Ke; LaFave, Tim P; Hunt, Louis R; Ramakrishna, Viswanath; Dabkowski, Mieczyslaw; MacFarlane, Duncan L; Christensen, Marc P
2011-01-01
A theoretical study of RF-photonic channelizers using four architectures formed by active integrated filters with tunable gains is presented. The integrated filters are enabled by two- and four-port nano-photonic couplers (NPCs). Lossless and three individual manufacturing cases with high transmission, high reflection, and symmetric couplers are assumed in the work. NPCs behavior is dependent upon the phenomenon of frustrated total internal reflection. Experimentally, photonic channelizers are fabricated in one single semiconductor chip on multi-quantum well epitaxial InP wafers using conventional microelectronics processing techniques. A state space modeling approach is used to derive the transfer functions and analyze the stability of these filters. The ability of adapting using the gains is demonstrated. Our simulation results indicate that the characteristic bandpass and notch filter responses of each structure are the basis of channelizer architectures, and optical gain may be used to adjust filter parameters to obtain a desired frequency magnitude response, especially in the range of 1-5 GHz for the chip with a coupler separation of ∼9 mm. Preliminarily, the measurement of spectral response shows enhancement of quality factor by using higher optical gains. The present compact active filters on an InP-based integrated photonic circuit hold the potential for a variety of channelizer applications. Compared to a pure RF channelizer, photonic channelizers may perform both channelization and down-conversion in an optical domain.
Enzymatically cross-linked tilapia gelatin hydrogels: physical, chemical, and hybrid networks.
Bode, Franziska; da Silva, Marcelo Alves; Drake, Alex F; Ross-Murphy, Simon B; Dreiss, Cécile A
2011-10-10
This Article investigates different types of networks formed from tilapia fish gelatin (10% w/w) in the presence and absence of the enzymatic cross-linker microbial transglutaminase. The influence of the temperature protocol and cross-linker concentration (0-55 U mTGase/g gelatin) was examined in physical, chemical, and hybrid gels, where physical gels arise from the formation of triple helices that act as junction points when the gels are cooled below the gelation point. A combination of rheology and optical rotation was used to study the evolution of the storage modulus (G') over time and the number of triple helices formed for each type of gel. We attempted to separate the final storage modulus of the gels into its chemical and physical contributions to examine the existence or otherwise of synergism between the two types of networks. Our experiments show that the gel characteristics vary widely with the thermal protocol. The final storage modulus in chemical gels increased with enzyme concentration, possibly due to the preferential formation of closed loops at low cross-linker amount. In chemical-physical gels, where the physical network (helices) was formed consecutively to the covalent one, we found that below a critical enzyme concentration the more extensive the chemical network is (as measured by G'), the weaker the final gel is. The storage modulus attributed to the physical network decreased exponentially as a function of G' from the chemical network, but both networks were found to be purely additive. Helices were not thermally stabilized. The simultaneous formation of physical and chemical networks (physical-co-chemical) resulted in G' values higher than the individual networks formed under the same conditions. Two regimes were distinguished: at low enzyme concentration (10-20 U mTGase/g gelatin), the networks were formed in series, but the storage modulus from the chemical network was higher in the presence of helices (compared to pure chemical gels); at higher enzyme concentration (30-40 U mTGase/g gelatin), strong synergistic effects were found as a large part of the covalent network became ineffective upon melting of the helices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Budhendra, E-mail: bksingh@ua.pt; Kaushal, Ajay, E-mail: ajay.kaushal@ua.pt; Bdikin, Igor
2015-10-15
Highlights: • Pure and Ni doped ZnO nanopowders were synthesized by low cost sonochemical method. • The optical properties of Zn{sub 1−x}Ni{sub x}O nanopowders can be tuned by varying Ni content. • The results reveal the solubility limit of Ni into ZnO matrix as below 8%. - Abstract: Zn{sub 1−x}Ni{sub x}O nanopowders with different Ni contents of x = 0.0, 0.04 and 0.08 were synthesized via cost effective sonochemical reaction method. X-ray diffraction (XRD) pattern reveals pure wurtzite phase of prepared nanostructures with no additional impurity peaks. The morphology and dimensions of nanoparticles were investigated using scanning electron microscope (SEM).more » A sharp and strong peak for first order optical mode for wurtzite zinc oxide (ZnO) structure was observed at ∼438 cm{sup −1} in Raman spectra. The calculated optical band gap (E{sub g}) from UV–vis transmission data was found to decrease with increase in Ni content. The observed red shift in E{sub g} with increasing Ni content in ZnO nanopowders were in agreement with band gap behaviours found in their photoluminescence (PL) spectra. The synthesised ZnO nanopowders with controlled band gap on Ni doping reveals their potential for use in various electronic and optical device applications. The results were discussed in detail.« less
Sm and Y radiolabeled magnetic fluids: magnetic and magneto-optical characterization
NASA Astrophysics Data System (ADS)
Aquino, R.; Gomes, J. A.; Tourinho, F. A.; Dubois, E.; Perzynski, R.; da Silva, G. J.; Depeyrot, J.
2005-03-01
We report on magnetic fluids based on samarium and ytrium-doped nanoparticles. The nanostructures chemical composition is checked and X-ray diffraction provides both their mean size and a structural characterization. Magnetization and magneto-optical birefringence results are presented and well agree with the pure maghemite behavior. Since these particles can become radioactive after neutron activation, they could therefore represent a new perspective for biomedical applications in the radiation therapy of cancer.
Controlling lightwave in Riemann space by merging geometrical optics with transformation optics.
Liu, Yichao; Sun, Fei; He, Sailing
2018-01-11
In geometrical optical design, we only need to choose a suitable combination of lenses, prims, and mirrors to design an optical path. It is a simple and classic method for engineers. However, people cannot design fantastical optical devices such as invisibility cloaks, optical wormholes, etc. by geometrical optics. Transformation optics has paved the way for these complicated designs. However, controlling the propagation of light by transformation optics is not a direct design process like geometrical optics. In this study, a novel mixed method for optical design is proposed which has both the simplicity of classic geometrical optics and the flexibility of transformation optics. This mixed method overcomes the limitations of classic optical design; at the same time, it gives intuitive guidance for optical design by transformation optics. Three novel optical devices with fantastic functions have been designed using this mixed method, including asymmetrical transmissions, bidirectional focusing, and bidirectional cloaking. These optical devices cannot be implemented by classic optics alone and are also too complicated to be designed by pure transformation optics. Numerical simulations based on both the ray tracing method and full-wave simulation method are carried out to verify the performance of these three optical devices.
An Empirical Mass Function Distribution
NASA Astrophysics Data System (ADS)
Murray, S. G.; Robotham, A. S. G.; Power, C.
2018-03-01
The halo mass function, encoding the comoving number density of dark matter halos of a given mass, plays a key role in understanding the formation and evolution of galaxies. As such, it is a key goal of current and future deep optical surveys to constrain the mass function down to mass scales that typically host {L}\\star galaxies. Motivated by the proven accuracy of Press–Schechter-type mass functions, we introduce a related but purely empirical form consistent with standard formulae to better than 4% in the medium-mass regime, {10}10{--}{10}13 {h}-1 {M}ȯ . In particular, our form consists of four parameters, each of which has a simple interpretation, and can be directly related to parameters of the galaxy distribution, such as {L}\\star . Using this form within a hierarchical Bayesian likelihood model, we show how individual mass-measurement errors can be successfully included in a typical analysis, while accounting for Eddington bias. We apply our form to a question of survey design in the context of a semi-realistic data model, illustrating how it can be used to obtain optimal balance between survey depth and angular coverage for constraints on mass function parameters. Open-source Python and R codes to apply our new form are provided at http://mrpy.readthedocs.org and https://cran.r-project.org/web/packages/tggd/index.html respectively.
Process for forming pure silver ohmic contacts to N- and P-type gallium arsenide materials
Hogan, S.J.
1983-03-13
Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components a n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffuse layer and the substrate layer wherein the n-type layer comprises a substantially low doping carrier concentration.
Optical apparatus for forming correlation spectrometers and optical processors
Butler, Michael A.; Ricco, Antonio J.; Sinclair, Michael B.; Senturia, Stephen D.
1999-01-01
Optical apparatus for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process.
Optical apparatus for forming correlation spectrometers and optical processors
Butler, M.A.; Ricco, A.J.; Sinclair, M.B.; Senturia, S.D.
1999-05-18
Optical apparatus is disclosed for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process. 24 figs.
X-ray studies of quasars with the Einstein Observatory. II
NASA Technical Reports Server (NTRS)
Zamorani, G.; Maccacaro, T.; Henry, J. P.; Tananbaum, H.; Soltan, A.; Liebert, J.; Stocke, J.; Strittmatter, P. A.; Weymann, R. J.; Smith, M. G.
1981-01-01
X-ray observations of 107 quasars have been carried out with the Einstein Observatory, and 79 have been detected. A correlation between optical emission and X-ray emission is found; and for radio-loud quasars, the data show a correlation between radio emission and X-ray emission. For a given optical luminosity, the average X-ray emission of radio-loud quasars is about three times higher than that of radio-quiet quasars. The data also suggest that the ratio of X-ray to optical luminosity is decreasing with increasing redshift and/or optical luminosity. The data support the picture in which luminosity evolution, rather than pure density evolution, describes the quasar behavior as a function of redshift.
Generating and Separating Twisted Light by gradient-rotation Split-Ring Antenna Metasurfaces.
Zeng, Jinwei; Li, Ling; Yang, Xiaodong; Gao, Jie
2016-05-11
Nanoscale compact optical vortex generators promise substantially significant prospects in modern optics and photonics, leading to many advances in sensing, imaging, quantum communication, and optical manipulation. However, conventional vortex generators often suffer from bulky size, low vortex mode purity in the converted beam, or limited operation bandwidth. Here, we design and demonstrate gradient-rotation split-ring antenna metasurfaces as unique spin-to-orbital angular momentum beam converters to simultaneously generate and separate pure optical vortices in a broad wavelength range. Our proposed design has the potential for realizing miniaturized on-chip OAM-multiplexers, as well as enabling new types of metasurface devices for the manipulation of complex structured light beams.
Spectrally pure RF photonic source based on a resonant optical hyper-parametric oscillator
NASA Astrophysics Data System (ADS)
Liang, W.; Eliyahu, D.; Matsko, A. B.; Ilchenko, V. S.; Seidel, D.; Maleki, L.
2014-03-01
We demonstrate a free running 10 GHz microresonator-based RF photonic hyper-parametric oscillator characterized with phase noise better than -60 dBc/Hz at 10 Hz, -90 dBc/Hz at 100 Hz, and -150 dBc/Hz at 10 MHz. The device consumes less than 25 mW of optical power. A correlation between the frequency of the continuous wave laser pumping the nonlinear resonator and the generated RF frequency is confirmed. The performance of the device is compared with the performance of a standard optical fiber based coupled opto-electronic oscillator of OEwaves.
Enhance the performance of liquid crystal as an optical switch by doping CdS quantum dots
NASA Astrophysics Data System (ADS)
Ahmed, Sudad S.; Ibrahim, Rawa K.; Al-Naimee, Kais; Naje, Asama N.; Ibrahim, Omar A.; Majeed, K. A.
2018-05-01
The electrical and optical properties results were studied for Cadmium Sulphide (CdS) Nanoparticles / Nematic liquid crystal (5CB) mixtures. Doping of CdS nanoparticles increases the spontaneous polarization and response time, the increase is due to large dipole-dipole interaction between the liquid crystal (LC) molecules and CdS nanoparticles, which increase the anchoring energy. The electro-optic measurements revealed a decrease (∼40%) in threshold voltage, and faster response time in doped sample cells than Pure 4'-n-pentyl-4-cyanobiphenyl (5CB) nematic liquid crystal.
Inverse Slip Accompanying Twinning and Detwinning during Cyclic Loading of Magnesium Single Crystal
Yu, Qin; Wang, Jian; Jiang, Yanyao
2013-01-01
In situ , observation of twinning and detwinning in magnesium single crystals during tension-compression cyclic loading was made using optical microscopy. A quantitative analysis of plastic strain indicates that twinning and detwinning experience two stages, low and high work hardening de-twinning, and pure re-twinning and fresh twinning combined with retwinning. Slip is always activated. For the first time, inverse slip accompanying with pure retwinning and high work hardening detwinning was experimentally identified, which provides insights in better understanding of the activity of twining, detwinning, and slips.
NASA Astrophysics Data System (ADS)
Burrell, Derek; Middlebrook, Christopher
2016-03-01
Polymer waveguides (PWGs) are used within photonic interconnects as inexpensive and versatile substitutes for traditional optical fibers. The PWGs are typically aligned to silica-based optical fibers for coupling. An epoxide elastomer is then applied and cured at the interface for index matching and rigid attachment. Self-written waveguides (SWWs) are proposed as an alternative to further reduce connection insertion loss (IL) and alleviate marginal misalignment issues. Elastomer material is deposited after the initial alignment, and SWWs are formed by injecting ultraviolet (UV) light into the fiber or waveguide. The coupled UV light cures a channel between the two differing structures. A suitable cladding layer can be applied after development. Such factors as longitudinal gap distance, UV cure time, input power level, polymer material selection and choice of solvent affect the resulting SWWs. Experimental data are compared between purely index-matched samples and those with SWWs at the fiber-PWG interface. It is shown that < 1 dB IL per connection can be achieved by either method and results indicate lowest potential losses associated with a fine-tuned self-writing process. Successfully fabricated SWWs reduce overall processing time and enable an effectively continuous low-loss rigid interconnect.
NASA Astrophysics Data System (ADS)
Chen, Peng; Li, Jiyang; Yu, Jihong; Wang, Yu; Pan, Qinhe; Xu, Ruren
2005-06-01
A new chiral one-dimensional (1D) aluminophosphate chain compound [ d-Co(en) 3][AlP 2O 8]·6.5H 2O (designated AlPO-CJ22) has been hydrothermally synthesized by using the optically pure d-Co(en) 3I 3 complex as the template. Single-crystal structural analysis reveals that its structure is built up from alternating connection of AlO 4 and PO 2(=O 2) tetrahedra to form corner-shared Al 2P 2 four-membered ring (4-MR) chains. The d-Co(en) 33+ complex cations extended along the 2 1 screw axis interact with the inorganic chains through hydrogen-bonds of N⋯O atoms in a helical fashion. Optical rotation measurement shows that AlPO-CJ22 is chiral as with d-Co(en) 33+ complex cations. Crystal data: orthorhombic, I2 12 12 1, a=8.5573(8) Å, b=22.613(2) Å, c=22.605(2) Å, Z=8, R1=0.067, wR2=0.1291, and Flack parameter: -0.02(3). CCDC number: 254179.
Far-infrared study of the mechanochemically synthesized Cu2FeSnS4 (stannite) nanocrystals
NASA Astrophysics Data System (ADS)
Trajic, J.; Romcevic, M.; Paunovic, N.; Curcic, M.; Balaz, P.; Romcevic, N.
2018-05-01
The analysis of the optical properties of mechanochemically synthesized stannite Cu2FeSnS4 nanocrystals has been performed using far-infrared spectroscopy. The Cu2FeSnS4 stannite nanocrystals were synthesized mechanochemically from elemental precursors Cu, Fe, Sn, and S. Milling time was 45, 60, 90 and 120 min. Reflectivity spectra were analyzed using the classical form of the dielectric function, which includes the phonon and the free carrier contribution. The influence of milling time on synthesis of stannite Cu2FeSnS4 is observed. Among the modes that are characteristic for the stannite Cu2FeSnS4, we registered the modes of binary phases of FeS and SnS. The total disappearance of the binary phases of FeS and SnS and forming pure Cu2FeSnS4 is observed when the milling time is 120 min. Effective permittivity of Cu2FeSnS4 and binary phases of FeS and SnS were modeled by Maxwell - Garnet approximation.
Probing the holographic principle using dynamical gauge effects from open spin-orbit coupling
NASA Astrophysics Data System (ADS)
Zhao, Jianshi; Price, Craig; Liu, Qi; Gemelke, Nathan
2016-05-01
Dynamical gauge fields result from locally defined symmetries and an effective over-labeling of quantum states. Coupling atoms weakly to a reservoir of laser modes can create an effective dynamical gauge field purely due to the disregard of information in the optical states. Here we report measurements revealing effects of open spin-orbit coupling in a system where an effective model can be formed from a non-abelian SU(2) × U(1) field theory following the Yang-Mills construct. Forming a close analogy to dynamical gauge effects in quantum chromodynamics, we extract a measure of atomic motion which reveals the analog of a closing mass gap for the relevant gauge boson, shedding insight on long standing open problems in gauge-fixing scale anomalies. Using arguments following the holographic principle, we measure scaling relations which can be understood by quantifying information present in the local potential. New prospects using these techniques for developing fractionalization of multi-particle and macroscopic systems using dissipative and non-abelian gauge fields will also be discussed. We acknowledge support from NSF Award No. 1068570, and the Charles E. Kaufman Foundation.
EDXRF quantitative analysis of chromophore chemical elements in corundum samples.
Bonizzoni, L; Galli, A; Spinolo, G; Palanza, V
2009-12-01
Corundum is a crystalline form of aluminum oxide (Al(2)O(3)) and is one of the rock-forming minerals. When aluminum oxide is pure, the mineral is colorless, but the presence of trace amounts of other elements such as iron, titanium, and chromium in the crystal lattice gives the typical colors (including blue, red, violet, pink, green, yellow, orange, gray, white, colorless, and black) of gemstone varieties. The starting point for our work is the quantitative evaluation of the concentration of chromophore chemical elements with a precision as good as possible to match the data obtained by different techniques as such as optical absorption photoluminescence. The aim is to give an interpretation of the absorption bands present in the NIR and visible ranges which do not involve intervalence charge transfer transitions (Fe(2+) --> Fe(3+) and Fe(2+) --> Ti(4+)), commonly considered responsible of the important features of the blue sapphire absorption spectra. So, we developed a method to evaluate as accurately as possible the autoabsorption effects and the secondary excitation effects which frequently are sources of relevant errors in the quantitative EDXRF analysis.
NASA Astrophysics Data System (ADS)
Peng, Edwin; Bell, Ryan; Zuhlke, Craig A.; Wang, Meiyu; Alexander, Dennis R.; Gogos, George; Shield, Jeffrey E.
2017-10-01
Femtosecond laser surface processing (FLSP) can be used to functionalize many surfaces, imparting specialized properties such as increased broadband optical absorption or super-hydrophobicity/-hydrophilicity. In this study, the subsurface microstructure of a series of mound-like FLSP structures formed on commercially pure titanium using five combinations of laser fluence and cumulative pulse counts was studied. Using a dual beam Scanning Electron Microscope with a Focused Ion Beam, the subsurface microstructure for each FLSP structure type was revealed by cross-sectioning. The microstructure of the mounds formed using the lowest fluence value consists of the original Ti grains. This is evidence that preferential laser ablation is the primary formation mechanism. However, the underlying microstructure of mounds produced using higher fluence values was composed of a distinct smaller-grained α-Ti region adjacent to the original larger Ti grains remaining deeper beneath the surface. This layer was attributed to resolidification of molten Ti from the hydrodynamic Marangoni effect driven fluid flow of molten Ti, which is the result of the femtosecond pulse interaction with the material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroers, Jan; Samwer, Konrad; Szuecs, Frigyes
The reaction of the bulk glass forming alloy Zr{sub 41}Ti{sub 14}Cu{sub 12}Ni{sub 10}Be{sub 23} (Vit 1) with W, Ta, Mo, AlN, Al{sub 2}O{sub 3}, Si, graphite, and amorphous carbon was investigated. Vit 1 samples were melted and subsequently solidified after different processing times on discs of the different materials. Sessile drop examinations of the macroscopic wetting of Vit 1 on the discs as a function of temperature were carried out in situ with a digital optical camera. The reactions at the interfaces between the Vit 1 sample and the different disc materials were investigated with an electron microprobe. The structuremore » and thermal stability of the processed Vit 1 samples were examined by x-ray diffraction and differential scanning calorimetry. The results are discussed in terms of possible applications for composite materials. (c) 2000 Materials Research Society.« less
NASA Astrophysics Data System (ADS)
Lee, Hwan; Cho, Jun-Hyung; Sung, Hyuk-Kee
2017-05-01
The phase modulation (PM) and amplitude modulation (AM) of optical signals can be achieved using a direct-modulated (DM) optical injection-locked (OIL) semiconductor laser. We propose and theoretically analyze a simple method to extract the phase component of a PM signal produced by a DM-OIL semiconductor laser. The pure AM component of the combined PM-AM signal can be isolated by square-law detection in a photodetector and can then be used to compensate for the PM-AM signal based on an optical homodyne method. Using the AM compensation technique, we successfully developed a simple and cost-effective phase extraction method applicable to the PM-AM optical signal of a DM-OIL semiconductor laser.
Self-reporting inhibitors: single crystallization process to get two optically pure enantiomers.
Wan, Xinhua; Ye, Xichong; Cui, Jiaxi; Li, Bowen; Li, Na; Zhang, Jie
2018-05-22
Collection of two optically pure enantiomers in a single crystallization process can significantly increase the chiral separation efficiency but it's hard to realize nowadays. Herein we describe, for the first time, a self-reporting strategy for visualizing the crystallization process by a kind of dyed self-assembled inhibitors made from the copolymers with tri(ethylene glycol)-grafting polymethylsiloxane as main chains and poly(N6-methacryloyl-L-lysine) as side chains. When applied with seeds together for the fractional crystallization of conglomerates, the inhibitors can label the formation of the secondary crystals and guide us to completely separate the crystallization process of two enantiomers with colorless crystals as the first product and red crystals as the secondary product. This method leads to high optical purity of D/L-Asn·H2O (99.9 ee% for D-crystals and 99.5 ee% for L-crystals) in a single crystallization process. Moreover, it requires low feeding amount of additives and shows excellent recyclability. We foresee its great potential in developing novel chiral separation methods that can be used in different scales. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tailoring the optical characteristics of microsized InP nanoneedles directly grown on silicon.
Li, Kun; Sun, Hao; Ren, Fan; Ng, Kar Wei; Tran, Thai-Truong D; Chen, Roger; Chang-Hasnain, Connie J
2014-01-08
Nanoscale self-assembly offers a pathway to realize heterogeneous integration of III-V materials on silicon. However, for III-V nanowires directly grown on silicon, dislocation-free single-crystal quality could only be attained below certain critical dimensions. We recently reported a new approach that overcomes this size constraint, demonstrating the growth of single-crystal InGaAs/GaAs and InP nanoneedles with the base diameters exceeding 1 μm. Here, we report distinct optical characteristics of InP nanoneedles which are varied from mostly zincblende, zincblende/wurtzite-mixed, to pure wurtzite crystalline phase. We achieved, for the first time, pure single-crystal wurtzite-phase InP nanoneedles grown on silicon with bandgaps of 80 meV larger than that of zincblende-phase InP. Being able to attain excellent material quality while scaling up in size promises outstanding device performance of these nanoneedles. At room temperature, a high internal quantum efficiency of 25% and optically pumped lasing are demonstrated for single nanoneedle as-grown on silicon substrate. Recombination dynamics proves the excellent surface quality of the InP nanoneedles, which paves the way toward achieving multijunction photovoltaic cells, long-wavelength heterostructure lasers, and advanced photonic integrated circuits.
NASA Astrophysics Data System (ADS)
Vanalakar, S. A.; Agawane, G. L.; Kamble, A. S.; Patil, P. S.; Kim, J. H.
2017-12-01
Cu2ZnSnSe4 (CZTSe) has attracted intensive attention as an absorber material for the thin-film solar cells due to its high absorption coefficient, direct band gap, low toxicity, and abundance of its constituent elements. In this study nanostructured CZTSe nanoparticles are prepared via green hydrothermal synthesis without using toxic solvents, organic amines, catalysts or noxious chemicals. The structural, optical, and morphological properties of CZTSe nanostructured powder were studied using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy, and transmission electron microscope (TEM) techniques. Raman peaks at 170, 195, and 232 cm-1 confirm the formation of pure phase CZTSe nanostructured particles. In addition, the EDS and XPS results confirm the appropriate chemical purity of the annealed CZTSe nanoparticles. Meanwhile, the TEM analysis showed the presence of phase pure oval like CZTSe particle with size of about 80-140 nm. The UV-Vis-NIR absorption spectra analysis showed that the optical band gap of CZTSe nanostructured particles is about 1.14 eV. This band gap energy is close to the optimum value of a photovoltaic solar cell absorber material.
NASA Technical Reports Server (NTRS)
Hansen, Gary B.; Warren, Stephen G.; Leovy, Conway B.
1991-01-01
Researchers found that it is possible to grow large clear samples of CO2 ice at Mars-like temperatures of 150-170K if a temperature controlled refrigerator is connected to an isolated two-phase pure CO2 system. They designed a chamber for transmission measurements whose optical path between the 13mm diameter window is adjustable from 1.6mm to 107mm. This will allow measurements of linear absorption down to less than 0.01 cm (exp -1). A preliminary transmission spectrum of a thick sample of CO2 ice in the near infrared was obtained. Once revised optical constants have been determined as a function of wavelength and temperature, they can be applied to spectral reflectance/emissivity models for CO2 snow surfaces, both pure and contaminated with dust and water ice, using previously established approaches. It will be useful, also, to develop an infrared scattering-emission cloud radiance model (especially as viewed from near the limb) in order to develop a strategy for the identification of CO2 cloud layers by the atmospheric infrared radiometer instrument on the Mars Observer.
NASA Astrophysics Data System (ADS)
Liu, Wei-Chun; Lo, Yu-Lung; Phan, Quoc-Hung
2018-03-01
A method is proposed for extracting the circular birefringence (CB), circular dichroism (CD) and depolarization (Dep) properties of optical scattering samples using an amplitude-modulation polarimetry technique. The validity of the proposed method is demonstrated by extracting the CB property of pure glucose aqueous samples, the CB/Dep properties of glucose solutions containing 0.02% lipofundin particles, and the CD/Dep properties of chlorophyllin solutions containing suspended polystyrene microspheres. The results show that the proposed technique has the ability to detect pure glucose with a resolution of 66 mg/dL over a concentration range of 0-500 mg/dL. Moreover, the glucose concentration of the CB/Dep samples can be detected over the same range with a resolution of 168 mg/dL. Finally, the chlorophyllin concentration of the CD/Dep sample can be detected over the range of 0-200 μg/dL with a resolution of 6.5 × 10-5. In general, the results show that the proposed technique provides a reliable and accurate means of measuring the CB/CD properties of optical samples with scattering effects, and thus has significant potential for biological sensing applications.
Ceschel, GianCarlo; Bergamante, Valentina; Maffei, Paola; Lombardi Borgia, Simone; Calabrese, Valeria; Biserni, Stefano; Ronchi, Celestino
2005-01-01
The permeation ability of a compound is due principally to its concentration in the vehicle and to its aptitude to cross the stratum corneum of the skin. In this work ex-vivo permeation studies on newly developed formulations containing dehydroepiandrosterone (DHEA) were carried out to investigate vehicles that increase drug permeation through the skin. To enhance the solubility of DHEA, its complex form with alpha-cyclodextrin was used. In addition, the two forms (pure drug and complex form) were introduced in hydrophilic (water), lipophilic (paraffin oil), and microemulsion vehicles to evaluate the synergic effect of cyclodextrins and microemulsion vehicles on solubility and permeation. From the results, DHEA solubility is notably conditioned by the type of the vehicle used: the highest solubilities (both for pure and complex drug forms) were obtained with microemulsion, followed by paraffin oil and water. Moreover, in all the studied vehicles, the c-DHEA was more soluble than DHEA. Permeation profile fluxes showed very interesting differences. That reflect the varying drug forms (pure drug and complex form), vehicles used, and drug concentrations in the vehicles. The major flux was obtained in complex of DHEA with alpha-cyclodextrins in the microemulsion vehicle. Therefore, this type of vehicle and drug form would be very useful in the development of a topical formulation containing DHEA.
Production of substantially pure fructose
Hatcher, Herbert J.; Gallian, John J.; Leeper, Stephen A.
1990-01-01
A process is disclosed for the production of substantially pure fructose from sucrose-containing substrates. The process comprises converting the sucrose to levan and glucose, purifying the levan by membrane technology, hydrolyzing the levan to form fructose monomers, and recovering the fructose.
Whole-body and multispectral photoacoustic imaging of adult zebrafish
NASA Astrophysics Data System (ADS)
Huang, Na; Xi, Lei
2016-10-01
Zebrafish is a top vertebrate model to study developmental biology and genetics, and it is becoming increasingly popular for studying human diseases due to its high genome similarity to that of humans and the optical transparency in embryonic stages. However, it becomes difficult for pure optical imaging techniques to volumetric visualize the internal organs and structures of wild-type zebrafish in juvenile and adult stages with excellent resolution and penetration depth. Even with the establishment of mutant lines which remain transparent over the life cycle, it is still a challenge for pure optical imaging modalities to image the whole body of adult zebrafish with micro-scale resolution. However, the method called photoacoustic imaging that combines all the advantages of the optical imaging and ultrasonic imaging provides a new way to image the whole body of the zebrafish. In this work, we developed a non-invasive photoacoustic imaging system with optimized near-infrared illumination and cylindrical scanning to image the zebrafish. The lateral and axial resolution yield to 80 μm and 600 μm, respectively. Multispectral strategy with wavelengths from 690 nm to 930 nm was employed to image various organs inside the zebrafish. From the reconstructed images, most major organs and structures inside the body can be precisely imaged. Quantitative and statistical analysis of absorption for organs under illumination with different wavelengths were carried out.
Vitali, Rachel V.; Cain, Stephen M.; Zaferiou, Antonia M.; Ojeda, Lauro V.; Perkins, Noel C.
2017-01-01
Three-dimensional rotations across the human knee serve as important markers of knee health and performance in multiple contexts including human mobility, worker safety and health, athletic performance, and warfighter performance. While knee rotations can be estimated using optical motion capture, that method is largely limited to the laboratory and small capture volumes. These limitations may be overcome by deploying wearable inertial measurement units (IMUs). The objective of this study is to present a new IMU-based method for estimating 3D knee rotations and to benchmark the accuracy of the results using an instrumented mechanical linkage. The method employs data from shank- and thigh-mounted IMUs and a vector constraint for the medial-lateral axis of the knee during periods when the knee joint functions predominantly as a hinge. The method is carefully validated using data from high precision optical encoders in a mechanism that replicates 3D knee rotations spanning (1) pure flexion/extension, (2) pure internal/external rotation, (3) pure abduction/adduction, and (4) combinations of all three rotations. Regardless of the movement type, the IMU-derived estimates of 3D knee rotations replicate the truth data with high confidence (RMS error < 4° and correlation coefficient r≥0.94). PMID:28846613
Schrittwieser, Joerg H; Resch, Verena; Wallner, Silvia; Lienhart, Wolf-Dieter; Sattler, Johann H; Resch, Jasmin; Macheroux, Peter; Kroutil, Wolfgang
2011-08-19
A chemoenzymatic approach for the asymmetric total synthesis of the title compounds is described that employs an enantioselective oxidative C-C bond formation catalyzed by berberine bridge enzyme (BBE) in the asymmetric key step. This unique reaction yielded enantiomerically pure (R)-benzylisoquinoline derivatives and (S)-berbines such as the natural product (S)-scoulerine, a sedative and muscle relaxing agent. The racemic substrates rac-1 required for the biotransformation were prepared in 4-8 linear steps using either a Bischler-Napieralski cyclization or a C1-Cα alkylation approach. The chemoenzymatic synthesis was applied to the preparation of fourteen enantiomerically pure alkaloids, including the natural products (S)-scoulerine and (R)-reticuline, and gave overall yields of up to 20% over 5-9 linear steps.
Measurement of complete and continuous Wigner functions for discrete atomic systems
NASA Astrophysics Data System (ADS)
Tian, Yali; Wang, Zhihui; Zhang, Pengfei; Li, Gang; Li, Jie; Zhang, Tiancai
2018-01-01
We measure complete and continuous Wigner functions of a two-level cesium atom in both a nearly pure state and highly mixed states. We apply the method [T. Tilma et al., Phys. Rev. Lett. 117, 180401 (2016), 10.1103/PhysRevLett.117.180401] of strictly constructing continuous Wigner functions for qubit or spin systems. We find that the Wigner function of all pure states of a qubit has negative regions and the negativity completely vanishes when the purity of an arbitrary mixed state is less than 2/3 . We experimentally demonstrate these findings using a single cesium atom confined in an optical dipole trap, which undergoes a nearly pure dephasing process. Our method can be applied straightforwardly to multi-atom systems for measuring the Wigner function of their collective spin state.
NASA Astrophysics Data System (ADS)
Samuel, Bincy Susan; Krishnamurthy, R.; Rajasekaran, R.
2014-11-01
Single crystals of pure and L-aspartic acid doped Zinc (Tris) Thiourea Sulphate (ZTS) were grown from aqueous solution by solution growth method. The cell parameters and structure of the grown crystals were determined by X-ray diffraction studies. The presence of functional group in the compound has been confirmed by FTIR and FT-Raman analysis. The optical transparency range has been studied through UV-Vis spectroscopy. TGA/DTA studies show thermal stability of the grown crystals. Microhardness study reveals that the hardness number (Hv) increases with load for pure and doped ZTS crystals. Dielectric studies have been carried out and the results are discussed. The second harmonic generation was confirmed for L-aspartic acid doped ZTS which is greater than pure ZTS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adesso, Gerardo; CNR-INFM Coherentia, Naples; CNISM, Unita di Salerno, Salerno
2007-10-15
We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1xM bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself andmore » the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a, uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.« less
Caplar, Vesna; Frkanec, Leo; Sijaković Vujicić, Natasa; Zinić, Mladen
2010-03-08
Low molecular weight gelator molecules consisting of aliphatic acid, amino acid (phenylglycine), and omega-aminoaliphatic acid units have been designed. By varying the number of methylene units in the aliphatic and omega-aminoaliphatic acid chains, as defined by descriptors m and n, respectively, a series of positionally isomeric gelators having different positions of the peptidic hydrogen-bonding unit within the gelator molecule has been obtained. The gelation properties of the positional isomers have been determined in relation to a defined set of twenty solvents of different structure and polarity and analyzed in terms of gelator versatility (G(ver)) and effectiveness (G(eff)). The results of gelation tests have shown that simple synthetic optimizations of a "lead gelator molecule" by variation of m and n, end-group polarity (carboxylic acid versus sodium carboxylate), and stereochemistry (racemate versus optically pure form) allowed the identification of gelators with tremendously improved versatility (G(ver)) and effectiveness (G(eff)). Dramatic differences in G(eff) values of up to 70 times could be observed between pure racemate/enantiomer pairs of some gelators, which were manifested even in the gelation of very similar solvents such as isomeric xylenes. The combined results of spectroscopic ((1)H NMR, FTIR), electron microscopy (TEM), and X-ray diffraction studies suggest similar organization of the positionally isomeric gelators at the molecular level, comprising parallel beta-sheet hydrogen-bonded primary assemblies that form inversed bilayers at a higher organizational level. Differential scanning calorimetry (DSC) studies of selected enantiomer/racemate gelator pairs and their o- and p-xylene gels revealed the simultaneous presence of different polymorphs in the racemate gels. The increased gelation effectiveness of the racemate compared to that of the single enantiomer is most likely a consequence of its spontaneous resolution into enantiomeric bilayers and their subsequent organization into polymorphic aggregates of different energy. The latter determine the gel fiber thickness and solvent immobilization capacity of the formed gel network.
One-step surface modification of poly(dimethylsiloxane) by undecylenic acid
NASA Astrophysics Data System (ADS)
Zhou, Jinwen; McInnes, Steven J. P.; Md Jani, Abdul Mutalib; Ellis, Amanda V.; Voelcker, Nicolas H.
2008-12-01
Poly(dimethylsiloxane) (PDMS) is a popular material for microfluidic devices due to its relatively low cost, ease of fabrication, oxygen permeability and optical transmission characteristics. However, its highly hydrophobic surface is still the main factor limiting its wide application, in particular as a material for biointerfaces. A simple and rapid method to form a relatively stable hydrophilised PDMS surface is reported in this paper. The PDMS surface was treated with pure undecylenic acid (UDA) for 10 min, 1 h and 1 day at 80 °C in a sealed container. The effects of the surface modification were investigated using water contact angle (WCA) measurements, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), and streaming zeta-potential analysis. The water contact angle of 1 day UDAmodified PDMS was found to decrease from that of native PDMS (110 °) to 75 °, demonstrating an increase in wettability of the surface. A distinctive peak at 1715 cm-1 in the FTIR-ATR spectra after UDA treatment was representative of carboxylation of the PDMS surface. The measured zeta-potential (ζ) at pH 4 changed from -27 mV for pure PDMS to -19 mV after UDA treatment. In order to confirm carboxylation of the surface visually, Lucifer Yellow CH fluorescence dye was reacted via a condensation reaction to the 1 day UDA modified PDMS surface. Fluorescent microscopy showed Lucifer Yellow CH fluorescence on the carboxylated surface, but not on the pure PDMS surface. Stability experiments were also performed showing that 1 day modified UDA samples were stable in both MilliQ water at 50 °C for 17 h, and in a desiccator at room temperature for 19.5 h.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
... of the Order Merchandise covered by the order is pure magnesium regardless of chemistry, form or size... primary magnesium (including turnings, chips and powder) having a maximum physical dimension (i.e., length...
[Comparison of the effects of exchange forms on social solidarity].
Inaba, Misato; Takahashi, Nobuyuki
2012-04-01
Although social solidarity is an essential component that helps maintaining social order, what produces solidarity and how does it work have not been fully investigated. We conducted an experiment to examine whether experiencing different forms of social exchange produces different levels of solidarity. We compared four forms of social exchange: reciprocal exchange (exchange resources without negotiation), negotiated exchange (with negotiation), pure-generalized exchange (giver can choose who to give) and chain-generalized exchange (giver cannot choose who to give). Two dimensions classify these exchanges: the number of players (two vs. more than two), and involvement of negotiation. Reciprocal and negotiated exchanges occur within dyads, while pure- and chain-generalized exchanges involve three or more players. Only the negotiated exchange involves negotiation process; the other exchanges are purely unilateral giving. Participants played a one-shot social dilemma game (SDG) before and after social exchange session. The more the players cooperated in SDG, the stronger the social solidarity. Results show that the cooperation rate in SDG increased more in the reciprocal, pure- and chain-generalized exchange conditions than that in the negotiated exchange condition, suggesting that social solidarity is facilitated by experiencing social exchange which does not involve negotiation.
Characterization of thin film CO2 ice through the infrared ν1 + ν3 combination mode
NASA Astrophysics Data System (ADS)
He, Jiao; Vidali, Gianfranco
2018-01-01
Carbon dioxide is abundant in ice mantles of dust grains; some is found in the pure crystalline form as inferred from the double peak splitting of the bending profile at about 650 cm-1. To study how CO2 segregates into the pure form from water-rich mixtures of ice mantles and how it then crystallizes, we used Reflection Absorption InfraRed Spectroscopy to study the structural change of pure CO2 ice as a function of both ice thickness and temperature. We found that the ν1 + ν3 combination mode absorption profile at 3708 cm-1 provides an excellent probe to quantify the degree of crystallinity in CO2 ice. We also found that between 20 and 30 K, there is an ordering transition that we attribute to reorientation of CO2 molecules, while the diffusion of CO2 becomes significant at much higher temperatures. In the formation of pure crystalline CO2 in interstellar medium ices, the rate limiting process is the diffusion/segregation of CO2 molecules in the ice instead of the phase transition from amorphous to crystalline after clusters/islands of CO2 are formed.
Clean process to destroy arsenic-containing organic compounds with recovery of arsenic
Upadhye, R.S.; Wang, F.T.
1996-08-13
A reduction method is provided for the treatment of arsenic-containing organic compounds with simultaneous recovery of pure arsenic. Arsenic-containing organic compounds include pesticides, herbicides, and chemical warfare agents such as Lewisite. The arsenic-containing compound is decomposed using a reducing agent. Arsine gas may be formed directly by using a hydrogen-rich reducing agent, or a metal arsenide may be formed using a pure metal reducing agent. In the latter case, the arsenide is reacted with an acid to form arsine gas. In either case, the arsine gas is then reduced to elemental arsenic. 1 fig.
Clean process to destroy arsenic-containing organic compounds with recovery of arsenic
Upadhye, Ravindra S.; Wang, Francis T.
1996-01-01
A reduction method is provided for the treatment of arsenic-containing organic compounds with simultaneous recovery of pure arsenic. Arsenic-containing organic compounds include pesticides, herbicides, and chemical warfare agents such as Lewisite. The arsenic-containing compound is decomposed using a reducing agent. Arsine gas may be formed directly by using a hydrogen-rich reducing agent, or a metal arsenide may be formed using a pure metal reducing agent. In the latter case, the arsenide is reacted with an acid to form arsine gas. In either case, the arsine gas is then reduced to elemental arsenic.
Compound semiconductor optical waveguide switch
Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.
2003-06-10
An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.
NASA Astrophysics Data System (ADS)
Yang, Wei; Hall, Trevor J.
2013-12-01
The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users. As a consequence, the nature of the Internet traffic has been fundamentally transformed from a pure packet-based pattern to today's predominantly flow-based pattern. Cloud computing has also brought about an unprecedented growth in the Internet traffic. In this paper, a hybrid optical switch architecture is presented to deal with the flow-based Internet traffic, aiming to offer flexible and intelligent bandwidth on demand to improve fiber capacity utilization. The hybrid optical switch is capable of integrating IP into optical networks for cloud-based traffic with predictable performance, for which the delay performance of the electronic module in the hybrid optical switch architecture is evaluated through simulation.
All-dielectric resonant cavity-enabled metals with broadband optical transparency
NASA Astrophysics Data System (ADS)
Liu, Zhengqi; Zhang, Houjiao; Liu, Xiaoshan; Pan, Pingping; Liu, Yi; Tang, Li; Liu, Guiqiang
2017-06-01
Metal films with broadband optical transparency are desirable in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and infrared detectors. As bare metal is opaque to light, this issue of transparency attracts great scientific interest. In this work, we proposed and demonstrated a feasible and universal approach for achieving broadband optical transparent (BOT) metals by utilizing all-dielectric resonant cavities. Resonant dielectrics provide optical cavity modes and couple strongly with the surface plasmons of the metal film, and therefore produce a broadband near-unity optical transparent window. The relative enhancement factor (EF) of light transmission exceeds 3400% in comparison with that of pure metal film. Moreover, the transparent metal motif can be realized by other common metals including gold (Au), silver (Ag) and copper (Cu). These optical features together with the fully retained electric and mechanical properties of a natural metal suggest that it will have wide applications in optoelectronic devices.
Purely cubic action for string field theory
NASA Technical Reports Server (NTRS)
Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.
1986-01-01
It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.
Lee, Sun Joo; Choo, Hye Jung; Park, Ji Sung; Park, Yeong-Mi; Eun, Choong Ki; Hong, Sung Hwan; Hwang, Ji Young; Lee, In Sook; Lee, Jongmin; Jung, Soo-Jin
2010-08-01
To describe magnetic resonance imaging (MRI) and ultrasound (US) findings of intravascular papillary endothelial hyperplasia (IPEH) arising in extremities. Six patients with IPEH confirmed by surgical resection were reviewed retrospectively. Before resection, 3 patients underwent both MRI and US and 3 patients underwent only MRI. Two radiologists retrospectively reviewed MR/US imaging results and correlated them with pathological features. The 6 IPEHs were diagnosed as 4 mixed forms and 2 pure forms. The pre-existing pathology of four mixed forms was intramuscular or intermuscular hemangioma. By MRI, the mixed form of IPEH (n = 4) revealed iso- to slightly high signal intensity containing nodule-like foci of high signal intensity on T1-weighted images (T1WI) and high signal intensity-containing nodule-like foci of low signal intensity on T2-weighted images (T2WI). The pure form of IPEH (n = 2) showed homogeneous iso- signal intensity on T1WI and high and low signal intensity containing nodule-like foci of low signal intensity on T2WI. On gadolinium-enhanced fat-suppressed T1WI, 50% of cases (n = 3: mixed forms) revealed peripheral, septal, and central enhancement. The other IPEHs (n = 3: 1 mixed and 2 pure forms) showed peripheral and septal enhancement or only peripheral enhancement. By US, two mixed forms of IPEH showed well-defined hypoechoic masses containing hyperechoic septa and central portion with vascularities. One pure form of IPEH was a homogeneous hypoechoic mass with septal and peripheral vascularities on color Doppler imaging. The foci of high signal intensity on T1WI, foci of low signal intensity on T2WI, and non-enhancing portions on MRI and the hypoechoic portion on US were histopathologically correlated with thrombi and the peripheral/septal or central enhancing areas on MRI, hyperechoic septa and the central portion on US, and septal/central or peripheral vascularities on color Doppler imaging corresponded to hypertrophic papillary epithelium and a fibrovascular core. Even though imaging findings of the pure form of IPEH are rather nonspecific, the mixed form of IPEH should be considered a possible diagnosis when a well-defined mass with T2 hyperintense signal containing nodule-like foci of low signal intensity, T1 iso- to slightly hyperintense signal containing nodule-like foci of high signal intensity, and peripheral/septal or central enhancement on MRI is seen in extremities, along with the US finding of a hypoechoic mass containing hyperechoic septa with vascularities.
NASA Astrophysics Data System (ADS)
Netrvalová, Marie; Novák, Petr; Šutta, Pavol; Medlín, Rostislav
2017-11-01
Zn-Ti-O thin films with different concentrations of titanium were deposited by reactive magnetron co-sputtering in a reactive Ar/O2 atmosphere from zinc and titanium targets. It was found that with increasing Ti content the structure of the films gradually changes from a fully crystalline pure ZnO wurtzite structure with a strongly preferred columnar orientation to an amorphous Zn-Ti-O material with 12.5 at.% Ti. The optical parameters (spectral refractive index and extinction coefficient, optical band gap) and thickness of the films were analysed by the combined evaluation of ellipsometric measurements and measurements of transmittance on a UV-vis spectrophotometer. For evaluation of optical parameters was used Cody-Lorentz dispersion model.
NASA Astrophysics Data System (ADS)
Yannopapas, Vassilios; Paspalakis, Emmanuel
2018-07-01
We present a new theoretical tool for simulating optical trapping of nanoparticles in the presence of an arbitrary metamaterial design. The method is based on rigorously solving Maxwell's equations for the metamaterial via a hybrid discrete-dipole approximation/multiple-scattering technique and direct calculation of the optical force exerted on the nanoparticle by means of the Maxwell stress tensor. We apply the method to the case of a spherical polystyrene probe trapped within the optical landscape created by illuminating of a plasmonic metamaterial consisting of periodically arranged tapered metallic nanopyramids. The developed technique is ideally suited for general optomechanical calculations involving metamaterial designs and can compete with purely numerical methods such as finite-difference or finite-element schemes.
Process technologies of MPACVD planar waveguide devices and fiber attachment
NASA Astrophysics Data System (ADS)
Li, Cheng-Chung; Qian, Fan; Boudreau, Robert A.; Rowlette, John R., Sr.; Bowen, Terry P.
1999-03-01
Optical circuits based on low-loss glass waveguide on silicon are a practical and promising approach to integrate different functional components. Fiber attachment to planar waveguide provides a practical application for optical communications. Microwave Plasma Assisted Chemical Vapor Deposition (MPACVD) produces superior quality, low birefringence, low-loss, planar waveguides for integrated optical devices. Microwave plasma initiates the chemical vapor of SiCl4, GeCl4 and oxygen. A Ge-doped silica layer is thus deposited with a compatible high growth rate (i.e. 0.4 - 0.5 micrometer/min). Film properties are based on various parameters, such as chemical flow rates, chamber pressure and temperature, power level and injector design. The resultant refractive index can be varied between 1.46 (i.e. pure silica) and 1.60 (i.e. pure germania). Waveguides can be fabricated with any desired refractive index profile. Standard photolithography defines the waveguide pattern on a mask layer. The core layer is removed by plasma dry etch which has been investigated by both reactive ion etch (RIE) and inductively coupled plasma (ICP) etch. Etch rates of 3000 - 4000 angstrom/min have been achieved using ICP compared to typical etch rates of 200 - 300 angstrom/min using conventional RIE. Planar waveguides offer good mode matching to optical fiber. A polished fiber end can be glued to the end facet of waveguide with a very low optical coupling loss. In addition, anisotropic etching of silicon V- grooves provides a passive alignment capability. Epoxy and solder were used to fix the fiber within the guiding groove. Several designs of waveguide-fiber attachment will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demján, Tamás; Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest; Vörös, Márton
2014-08-14
Diamondoids are small diamond nanoparticles (NPs) that are built up from diamond cages. Unlike usual semiconductor NPs, their atomic structure is exactly known, thus they are ideal test-beds for benchmarking quantum chemical calculations. Their usage in spintronics and bioimaging applications requires a detailed knowledge of their electronic structure and optical properties. In this paper, we apply density functional theory (DFT) based methods to understand the electronic and optical properties of a few selected pure and modified diamondoids for which accurate experimental data exist. In particular, we use many-body perturbation theory methods, in the G{sub 0}W{sub 0} and G{sub 0}W{sub 0}+BSEmore » approximations, and time-dependent DFT in the adiabatic local density approximation. We find large quasiparticle gap corrections that can exceed thrice the DFT gap. The electron-hole binding energy can be as large as 4 eV but it is considerably smaller than the GW corrections and thus G{sub 0}W{sub 0}+BSE optical gaps are about 50% larger than the Kohn-Sham (KS) DFT gaps. We find significant differences between KS time-dependent DFT and GW+BSE optical spectra on the selected diamondoids. The calculated G{sub 0}W{sub 0} quasiparticle levels agree well with the corresponding experimental vertical ionization energies. We show that nuclei dynamics in the ionization process can be significant and its contribution may reach about 0.5 eV in the adiabatic ionization energies.« less
Preparation and properties of in situ amino-functionalized graphene oxide/polyimide composite films
NASA Astrophysics Data System (ADS)
Lu, Yunhua; Hao, Jican; Xiao, Guoyong; Chen, Lin; Wang, Tonghua; Hu, Zhizhi
2017-11-01
The pure light-colored and transparent polyimide (PI) film was prepared from aromatic dianhydride 4,4‧-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and diamine 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene (6FAPB) in the solvent of DMAc via two-step method. Graphene oxide (GO) was in situ grafted with 6FAPB and directly used as a functional inorganic nanofiller to further synthesize poly(amic acid) (PAA)/GO solution. Then, PI/GO composite films with different loadings of GO were prepared by the thermal imidization. The mechanical, thermal, optical, electrical, surface properties, and electrochemical behavior were characterized. The FTIR and XPS results indicate that amino groups can be successfully grafted on the surface of GO. The tensile strength and Young's modulus of the PI-1.0%GO composite film were increased to 118.4 MPa and 2.91 GPa, respectively, which was an approximate improvement of 30.8% and 39.9% compared with pure PI film. These PI/GO composites showed around 256 °C for the glass transition temperature, and around 535 °C for the 5% thermal decomposition temperature, respectively. However, the optical transmittance was significantly decreased from 81.5% (pure PI) to 0.8% (PI-1.0%GO). Besides, the electrical conductivity increased from 1.6 × 10-13 S/m (pure PI) to 2.5 × 10-9 S/m (PI-1.0%GO). Furthermore, when the incorporation of GO was 1.0 wt%, an obvious reduction from 1.08% (pure PI) to 0.65% in the water uptake was observed for the PI/GO composite films, and the water surface contact angle raised from 72.5° (pure PI) to 83.5°. The electrochemical behavior showed that the ability of oxygen atom on the imide ring to gain and loss electron was increased due to incorporation of GO. These results indicated that the strong interfacial interaction between GO and PAA as well as uniform dispersion of GO in PI matrix were benefit to improve the mechanical, thermal, electrical properties and so on. The in situ amino-functionalized approach provides a strategy for preparing high-performance PI-based composite materials.
Polymer blend lithography for metal films: large-area patterning with over 1 billion holes/inch(2).
Huang, Cheng; Förste, Alexander; Walheim, Stefan; Schimmel, Thomas
2015-01-01
Polymer blend lithography (PBL) is a spin-coating-based technique that makes use of the purely lateral phase separation between two immiscible polymers to fabricate large area nanoscale patterns. In our earlier work (Huang et al. 2012), PBL was demonstrated for the fabrication of patterned self-assembled monolayers. Here, we report a new method based on the technique of polymer blend lithography that allows for the fabrication of metal island arrays or perforated metal films on the nanometer scale, the metal PBL. As the polymer blend system in this work, a mixture of polystyrene (PS) and poly(methyl methacrylate) (PMMA), dissolved in methyl ethyl ketone (MEK) is used. This system forms a purely lateral structure on the substrate at controlled humidity, which means that PS droplets are formed in a PMMA matrix, whereby both phases have direct contact both to the substrate and to the air interface. Therefore, a subsequent selective dissolution of either the PS or PMMA component leaves behind a nanostructured film which can be used as a lithographic mask. We use this lithographic mask for the fabrication of metal patterns by thermal evaporation of the metal, followed by a lift-off process. As a consequence, the resulting metal nanostructure is an exact replica of the pattern of the selectively removed polymer (either a perforated metal film or metal islands). The minimum diameter of these holes or metal islands demonstrated here is about 50 nm. Au, Pd, Cu, Cr and Al templates were fabricated in this work by metal PBL. The wavelength-selective optical transmission spectra due to the localized surface plasmonic effect of the holes in perforated Al films were investigated and compared to the respective hole diameter histograms.
The Use of a Gain Monitoring System in the G0 Experiment
NASA Astrophysics Data System (ADS)
Nakos, Melissa T.
2001-11-01
The main goal of the G0 experiment is to find the contributions of the three light quark flavors to the electromagnetic properties of the nucleon by comparing the electromagnetic and neutral weak form factors, measured through the observation of parity-violating asymmetries in elastic electron-nucleon scattering. The experiment will measure the time of flight and the momentum transfer of protons (at forward scattering angles) and electrons (at backward scattering angles). The detectors used in this experiment are plastic scintillators placed in the focal plane of a magnetic spectrometer such that the momentum transfer is directly measured. A gain monitoring system has been designed to track the timing and gain of the photomultiplier tubes at the end of each scintillator. The system is made of a pulsed ultraviolet laser, pure silica fiber optic cables, and a masking system to mimic a real event.
NASA Astrophysics Data System (ADS)
Hacyan, Shahen
2006-11-01
Since the famous Einstein-Podolsky-Rosen (EPR) paper, it is clear that there is a serious incompatibility between local realism and quantum mechanics. Einstein believed that a complete quantum theory should be free of what he once called "spooky actions at distance". However, all experiments in quantum optics and atomic physics performed in the last two decades confirm the existence of quantum correlations that seem to contradict local realism. According to Bohr, the apparent contradictions disclose only the inadequacy of our customary concepts for the description of the quantum world. Are space and time such customary concepts? In this presentation, I argue that the Copenhagen interpretation is compatible with Kant's transcendental idealism and that, in particular, EPR type paradoxes are consistent with Kant's transcendental aesthetics, according to which space and time have no objective reality but are pure forms of sensible intuition.
Quantum phases of dipolar soft-core bosons
NASA Astrophysics Data System (ADS)
Grimmer, D.; Safavi-Naini, A.; Capogrosso-Sansone, B.; Söyler, Ş. G.
2014-10-01
We study the phase diagram of a system of soft-core dipolar bosons confined to a two-dimensional optical lattice layer. We assume that dipoles are aligned perpendicular to the layer such that the dipolar interactions are purely repulsive and isotropic. We consider the full dipolar interaction and perform path-integral quantum Monte Carlo simulations using the worm algorithm. Besides a superfluid phase, we find various solid and supersolid phases. We show that, unlike what was found previously for the case of nearest-neighbor interaction, supersolid phases are stabilized by doping the solids not only with particles but with holes as well. We further study the stability of these quantum phases against thermal fluctuations. Finally, we discuss pair formation and the stability of the pair checkerboard phase formed in a bilayer geometry, and we suggest experimental conditions under which the pair checkerboard phase can be observed.
Monte Carlo-based Reconstruction in Water Cherenkov Detectors using Chroma
NASA Astrophysics Data System (ADS)
Seibert, Stanley; Latorre, Anthony
2012-03-01
We demonstrate the feasibility of event reconstruction---including position, direction, energy and particle identification---in water Cherenkov detectors with a purely Monte Carlo-based method. Using a fast optical Monte Carlo package we have written, called Chroma, in combination with several variance reduction techniques, we can estimate the value of a likelihood function for an arbitrary event hypothesis. The likelihood can then be maximized over the parameter space of interest using a form of gradient descent designed for stochastic functions. Although slower than more traditional reconstruction algorithms, this completely Monte Carlo-based technique is universal and can be applied to a detector of any size or shape, which is a major advantage during the design phase of an experiment. As a specific example, we focus on reconstruction results from a simulation of the 200 kiloton water Cherenkov far detector option for LBNE.
NASA Astrophysics Data System (ADS)
Li, Zhong; Vikram Singh, Amit; Rastogi, Ankur; Gazquez, Jaume; Borisevich, Albina Y.; Mishra, Rohan; Gupta, Arunava
2017-07-01
Thin films of magnetic garnet materials, e.g. yttrium iron garnet (Y3Fe5O12, YIG), are useful for a variety of applications including microwave integrated circuits and spintronics. Substitution of rare earth ions, such as cerium, is known to enhance the magneto-optic Kerr effect (MOKE) as compared to pure YIG. Thin films of Ce0.75Y2.25Fe5O12 (Ce:YIG) have been grown using the pulsed laser deposition (PLD) technique and their crystal structure examined using high resolution scanning transmission electron microscopy. Homogeneous substitution of Ce in YIG, without oxidation to form a separate CeO2 phase, can be realized in a narrow process window with resulting enhancement of the MOKE signal. The thermally generated signal due to spin Seebeck effect for the optimally doped Ce:YIG films has also been investigated.
NASA Astrophysics Data System (ADS)
Clasen, Rolf; Hornfeck, M.; Theiss, Wolfgang
1991-08-01
The forming and sintering of fumed silica powders is an interesting route for the preparation of large, very pure or doped silica glasses with a precise geometry. The processing from the shaping of a porous compact to the sintering of transparent silica glass can be successfully investigated with optical spectroscopy. As only the dielectric function DF (a dielectric function is the square root of the complex refractive index) characterizes the material, the vibrational bands were calculated from reflectance measurements. In compacts of fine particles, the topology cannot be neglected. Therefore, the models describing topological effects are briefly reviewed. With these model calculations it could be proven that new bands in the compacts and the significant shifts in the reflectance spectra during sintering are mainly caused by topological effects and that changes in the glass structure play only a secondary role.
NASA Astrophysics Data System (ADS)
Javed, Qurat-Ul-Ain; Baqi, Sabah; Abbas, Hussain; Bibi, Maryam
2017-02-01
Hydrothermal method was chosen as a convenient method to fabricate zinc selenide (ZnSe) nanoparticle materials. The prepared nanospheres were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), where its different properties were observed using UV-visible spectroscopy and LCR meter. It was found that the pure ZnSe nanoparticles have a Zinc blende structure with crystallite size 10.91 nm and in a spherical form with average diameter of 35 nm (before sonication) and 18 nm (after sonication) with wide band gap of 4.28 eV. It was observed that there is inverse relation of frequency with dielectric constant and dielectric loss while AC conductivity grows up by increasing frequency. Such nanostructures were determined to be effectively used in optoelectronic devices as UV detector and in those devices where high-dielectric constant materials are required.
Isothermal Decomposition of Hydrogen Peroxide Dihydrate
NASA Technical Reports Server (NTRS)
Loeffler, M. J.; Baragiola, R. A.
2011-01-01
We present a new method of growing pure solid hydrogen peroxide in an ultra high vacuum environment and apply it to determine thermal stability of the dihydrate compound that forms when water and hydrogen peroxide are mixed at low temperatures. Using infrared spectroscopy and thermogravimetric analysis, we quantified the isothermal decomposition of the metastable dihydrate at 151.6 K. This decomposition occurs by fractional distillation through the preferential sublimation of water, which leads to the formation of pure hydrogen peroxide. The results imply that in an astronomical environment where condensed mixtures of H2O2 and H2O are shielded from radiolytic decomposition and warmed to temperatures where sublimation is significant, highly concentrated or even pure hydrogen peroxide may form.
Baba, Koichi; Pudavar, Haridas E.; Roy, Indrajit; Ohulchanskyy, Tymish Y.; Chen, Yihui; Pandey, Ravindra; Prasad, Paras N.
2008-01-01
A carrier free method for delivery of a hydrophobic drug in its pure form, using nanocrystals (nano sized crystals) is proposed. To demonstrate this technique, nanocrystals of a hydrophobic photosensitizing anticancer drug 2-devinyl-2-(1-hexyloxyethyl)pyropheophorbide (HPPH), have been synthesized using re-precipitation method. The resulting drug nanocrystals were monodispersed and stable in aqueous dispersion, without the necessity of an additional stabilizer (surfactant). As shown by confocal microscopy, these pure drug nanocrystals were taken-up by the cancer cells with high avidity. Though the fluorescence and photodynamic activity of the drug were substantially quenched in the form of nanocrystals in aqueous suspension, both these characteristics were recovered under in vitro and in vivo conditions. This recovery of drug activity and fluorescence is possibly due to the interaction of nanocrystals with serum albumin, resulting in conversion of the drug nanocrystals into the molecular form. This was confirmed by demonstrating similar recovery in presence of Fetal Bovine Serum (FBS) or Bovine Serum Albumin (BSA). Under similar treatment conditions, the HPPH in nanocrystal form or in 1% Tween 80/water formulation showed comparable in vitro and in vivo efficacy. PMID:17266331
The electronic structures of AlN and InN wurtzite nanowires
NASA Astrophysics Data System (ADS)
Xiong, Wen; Li, Dong-Xiao
2017-07-01
We derive the relations between the analogous seven Luttinger-Kohn parameters and six Rashba-Sheka-Pikus parameters for wurtzite semiconductors, which can be used to investigate the electronic structures of some wurtzite semiconductors such as AlN and InN materials, including their low-dimensional structures. As an example, the electronic structures of AlN and InN nanowires are calculated by using the derived relations and six-band effective-mass k · p theory. Interestingly, it is found that the ground hole state of AlN nanowires is always a pure S state whether the radius R is small (1 nm) or large (6 nm), and the ground hole state only contains | Z 〉 Bloch orbital component. Therefore, AlN nanowires is the ideal low-dimensional material for the production of purely linearly polarized π light, unlike ZnO nanowires, which emits plane-polarized σ light. However, the ground hole state of InN nanowires can be tuned from a pure S state to a mixed P state when the radius R is larger than 2.6 nm, which will make the polarized properties of the lowest optical transition changes from linearly polarized π light to plane-polarized σ light. Meanwhile, the valence band structures of InN nanowires will present strong band-crossings when the radius R increases to 6 nm, and through the detail analysis of possible transitions of InN nanowires at the Γ point, we find some of the neighbor optical transitions are almost degenerate, because the spin-orbit splitting energy of InN material is only 0.001 eV. Therefore, it is concluded that the electronic structures and optical properties of InN nanowires present great differences with that of AlN nanowires.
Bourbia, A; Draissia, M; Bedboudi, H; Boulkhessaim, S; Debili, M Y
2010-01-01
This article deals with the microstructural strengthening mechanisms of aluminium by means of hard alpha-Al(2)O(3) alumina fine particles. A broad of understanding views covering materials preparations, elaboration process, characterization techniques and associated microstructural characteristic parameters measurements is given. In order to investigate the microstructural characteristic parameters and the mechanical strengthening mechanisms of pure aluminium by hard fine particles, a set of Al-(alpha-Al(2)O(3)) alloys samples were made under vacuum by high fusion temperature melting, the high frequency (HF) process, and rapidly solidified under ambient temperature from a mixture of cold-compacted high-pure fine Al and alpha-Al(2)O(3) powders. The as-solidified Al-(alpha-Al(2)O(3)) alloys were characterized by means of X-ray diffraction (XRD) analyses, optical microscopy observations and Vickers microhardness tests in both brut and heat-treated states. It was found that the as-solidified HF Al-(alpha-Al(2)O(3)) alloys with compositions below 4 wt.% (alpha-Al(2)O(3)) are single-phase microstructures of the solid solution FCC Al phase and over two-phase microstructures of the solid solution FCC Al and the Rhombohedral alpha-Al(2)O(3) phases. The optical micrographs reveal the presence of a grain size refinement in these alloys. Vickers microhardness of the as-solidified Al-(alpha-Al(2)O(3)) is increased by means of pure fine alpha-Al(2)O(3) alumina particles. These combined effects of strengthening and grain size refinement observed in the as-solidified Al-(alpha-Al(2)O(3)) alloys are essentially due to a strengthening of Al by the alpha-Al(2)O(3) alumina particles insertion in the (HF) melted and rapidly solidified alloys.
Influence of sintering time on switching of the femtosecond nonlinear optical properties of CuNb2O6
NASA Astrophysics Data System (ADS)
Priyadarshani, N.; Sabari Girisun, T. C.; Venugopal Rao, S.
2017-04-01
Transition of mixed phases (monoclinic and orthorhombic) to pure orthorhombic phase was achieved during the synthesis process of CuNb2O6 by varying the sintering time. The suppression of monoclinic phase and dominant formation of orthorhombic CuNb2O6 was confirmed from the XRD and FTIR data analysis. FESEM studies demonstrated that due to increase in sintering time, coarsening process initiated the grain growth and trapping of pores leading to pore-free structures. The nonlinear optical (NLO) properties of mixed and pure copper niobate were studied by the Z-scan technique using near-infrared (800 nm, ∼150 fs, 80 MHz) laser excitation. Mixed phases exhibited saturable absorption and self-defocusing behaviour while pure orthorhombic demonstrated reverse saturable absorption and self-focusing process. The switching of nonlinearity along with increase in NLO coefficient of O-CuNb2O6 was attributed to the decreased metal-oxygen bond length and pore free structure. The increase in nonlinear absorption coefficient with input irradiance suggests the occurrence of effective 3 PA (2 PA followed by ESA) process. The magnitudes of nonlinear absorption coefficient (2.14 × 10-23m3/W2) and nonlinear refractive index (6.0 × 0-17 m2/W) of O-CuNb2O6 were found to be higher than well-known NLO materials. Orthorhombic CuNb2O6 exhibited optical limiting action with low limiting threshold of 38.26 μJ/cm2 and favouring NLO properties suggesting that the material to be an entrant candidate for safety devices against ultrashort pulsed lasers.
NASA Astrophysics Data System (ADS)
Laoui, Samir
Photoacoustic tomography is a hybrid imaging modality that takes advantage of the high contrast of pure optical imaging and the high intrinsic resolution of ultrasound without the necessity of ionizing radiation. Photoacoustic imaging (PM) is neither purely optical nor purely acoustical in nature, but a combination of the two. It is fundamentally based on light excitation and ultrasonic detection. Photoacoustic imaging has been successful without the introduction of exogenous contrast agents; however, to image deeper regions of biological tissue, a contrast agent is necessary. Several types of photoacoustic contrast agents have been made available for diagnostic purposes; however, the majority of literature has focused on gold nanoparticle systems for which the surface-plasmon resonance effect is important. The only option currently available for molecular PM contrast agents is to choose an existing near infrared absorbing fluorescent probes with the hope that they may generate a substantial photoacoustic (PA) response. However, these dyes have been designed with an optimized fluorescence emission response and are not anticipated to generate an adequate photoacoustic response. This dissertation addresses this lack of precedence in the literature for understanding the mechanism of a photoacoustic signal generation from strongly absorbing dye molecules including BODIPY, cyanine and curcumin systems. This work represents preliminary efforts in bringing novel molecular photoacoustic contrast agents (MPACs) into the photoacoustic imaging arena. To this end, photoacoustic and optical Z-scan experiments, and quenching studies were employed to demonstrate correlation of photoacoustic emission enhancement with excited state absorption mechanisms. To investigate further the photoacoustic emission in a practical imaging setting, MPACs were imaged using a recently developed photoacoustic imaging tomography system which was constructed exclusively for the purpose of this study.
Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics.
González-Tudela, Alejandro; Porras, Diego
2013-02-22
Implementations of solid-state quantum optics provide us with devices where qubits are placed at fixed positions in photonic or plasmonic one-dimensional waveguides. We show that solely by controlling the position of the qubits and with the help of a coherent driving, collective spontaneous decay may be engineered to yield an entangled mesoscopic steady state. Our scheme relies on the realization of pure superradiant Dicke models by a destructive interference that cancels dipole-dipole interactions in one dimension.
A Spherical Electro Optic High Voltage Sensor
1989-06-01
electro - optic (EO) crystal is introduced for photonic measurement of pulsed high-voltage fields. A spherical shape is used in order to reduce electric field gradients in the vicinity of the sensor. The sensor is pure dielectric and is interrogated remotely using a laser. The sensor does not require the connection of any conducting components, which results in the highest electrical isolation. The spherical nature of the crystal coupled with the incident laser beam, and crossed polarizers (intensity modulation scheme). automatically produces interference figures. The
Optical Properties of Zinc Selenide Grown Using Molecular Beam Deposition Techniques
1989-06-01
studied were grown using a standard MBE machine with insitu diagnostics. The ZnSe material used for growing the samples is highly pure polycrystalline...width of the interference maxima n can be found from equation (1). Beyond 550 nm absorption is varying rapidly and this will cause Tmax to vary...nonlinearity Is utilized - such as in an optically bistable switch. It is known from previous work on ZnSe grown on GaAs 113] that the material begins growing
Highly sensitive evanescent wave combination tapered fiber optic fluorosensor for protein detection
NASA Astrophysics Data System (ADS)
Nardone, Vincent; Kapoor, Rakesh
2008-02-01
In this paper we are reporting the development of a highly sensitive evanescent wave combination tapered fiber optic fluorosensor. We have demonstrated detection of 5 pM Bovine Serum Albumin (BSA) protein using these fiber optic sensors. The sensor can be easily adopted for detection of other proteins. Six identical probes were prepared and affinity pure Goat anti-BSA antibodies were immobilized on the probe surface. We could detect signal from all the probes kept in 5 pM to 1 nM BSA solution while no signal was detected from the probes kept in 20 nM labeled ESA solution.
Miniaturization of Fresnel lenses for solar concentration: a quantitative investigation.
Duerr, Fabian; Meuret, Youri; Thienpont, Hugo
2010-04-20
Sizing down the dimensions of solar concentrators for photovoltaic applications offers a number of promising advantages. It provides thinner modules and smaller solar cells, which reduces thermal issues. In this work a plane Fresnel lens design is introduced that is first analyzed with geometrical optics. Because of miniaturization, pure ray tracing may no longer be valid to determine the concentration performance. Therefore, a quantitative wave optical analysis of the miniaturization's influence on the obtained concentration performance is presented. This better quantitative understanding of the impact of diffraction in microstructured Fresnel lenses might help to optimize the design of several applications in nonimaging optics.
Enhanced optical rotation and diminished depolarization in diffusive scattering from a chiral liquid
NASA Astrophysics Data System (ADS)
Silverman, M. P.; Strange, Wayne; Badoz, J.; Vitkin, I. A.
1996-02-01
Optical rotation and degree of polarization of linearly polarized light were observed by forward, lateral, and back scattering from solutions of D-glucose containing a dispersion of micron-size polystyrene spheres. Rotations increased linearly with glucose concentration at a rate determined by the microsphere concentration and were large even at optical thicknesses sufficiently great to extinguish transmission of the incident beam. Depolarization of light with increasing microsphere concentration occurred at a much slower rate in chiral glucose solution than in pure water. These experiments suggest new possibilities for studying turbid chiral media for which light transmission and specular reflection techniques are inappropriate.
Effective light coupling in reflective fiber optic distance sensors using a double-clad fiber
NASA Astrophysics Data System (ADS)
Werzinger, Stefan; Härteis, Lisa; Köhler, Aaron; Engelbrecht, Rainer; Schmauss, Bernhard
2017-04-01
Many fiber optic distance sensors use a reflective configuration, where a light beam is launched from an optical fiber, reflected from a target and coupled back into the fiber. While singlemode fibers (SMF) provide low-loss, high-performance components and a well-defined output beam, the coupling of the reflected light into the SMF is very sensitive to mechanical misalignments and scattering at the reflecting target. In this paper we use a double-clad fiber (DCF) and a DCF coupler to obtain an enhanced multimodal coupling of reflected light into the fiber. Increased power levels and robustness are achieved compared to a pure SMF configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chunaev, D S; Karasik, A Ya
2014-06-30
The nonlinear two-photon light absorption coefficients have been measured in an optical fibre with a quartz glass (SiO{sub 2}) core and in a fibre with a germanosilicate glass (SiO{sub 2} + GeO{sub 2}) core. The two-photon absorption coefficient β measured at a wavelength of 349 nm in the (SiO{sub 2} + GeO{sub 2})-based fibre (13.7 cm TW{sup -1}) multiply exceeds that for the pure quartz glass optical fibre (0.54 cm TW{sup -1}). (nonlinear optical phenomena)
Optical depth localization of nitrogen-vacancy centers in diamond with nanometer accuracy.
Häußler, Andreas J; Heller, Pascal; McGuinness, Liam P; Naydenov, Boris; Jelezko, Fedor
2014-12-01
Precise positioning of nitrogen-vacancy (NV) centers is crucial for their application in sensing and quantum information. Here we present a new purely optical technique enabling determination of the NV position with nanometer resolution. We use a confocal microscope to determine the position of individual emitters along the optical axis. Using two separate detection channels, it is possible to simultaneously measure reflected light from the diamond surface and fluorescent light from the NV center and statistically evaluate both signals. An accuracy of 2.6 nm for shallow NV centers was achieved and is consistent with other techniques for depth determination.
Effect of temperature on optical properties of PMMA/SiO2 composite thin film
NASA Astrophysics Data System (ADS)
Soni, Gyanesh; Srivastava, Subodh; Soni, Purushottam; Kalotra, Pankaj; Vijay, Y. K.
2018-05-01
Effect of temperature on PMMA/SiO2 composites thin films were investigated. Nanocomposite flexible thin films of 60 µm thicknesses with different loading of SiO2 nanoparticles were prepared using solution casting method. SEM images show that SiO2 nanoparticles are distributed uniformly in PMMA matrix without any lumps on the surface, and PMMA/SiO2 nano composite thin films had a smoother and regular morphology. UV-Vis and optical band gap measurements revealed that both the concentration of SiO2 nanoparticles and temperature affect the optical properties of the composite thin film in comparison to the pure PMMA film.
In vivo vascular flow profiling combined with optical tweezers based blood routing
NASA Astrophysics Data System (ADS)
Meissner, Robert; Sugden, Wade W.; Siekmann, Arndt F.; Denz, Cornelia
2017-07-01
In vivo wall shear rate is quantified during zebrafish development using particle image velocimetry for biomedical diagnosis and modeling of artificial vessels. By using brightfield microscopy based high speed video tracking we can resolve single heart-beat cycles of blood flow in both space and time. Maximum blood flow velocities and wall shear rates are presented for zebrafish at two and three days post fertilization. By applying biocompatible optical tweezers as an Optical rail we present rerouting of red blood cells in vivo. With purely light-driven means we are able to compensate the lack of proper red blood cell blood flow in so far unperfused capillaries.
A dual modality optical fiber sensor
NASA Astrophysics Data System (ADS)
Herrera-Piad, Luis A.; Haus, Joseph W.; Jauregui-Vazquez, Daniel; Lopez-Dieguez, Yanelis; Estudillo-Ayala, Julian M.; Sierra-Hernandez, Juan M.; Hernandez-Garcia, Juan C.; Rojas-Laguna, Roberto
2018-02-01
We propose and demonstrate a fibre optic system based on bi-tapered silica fibre that can simultaneously measure strain and fibre curvature. Both modalities on the signal can be extracted with no measurable crosstalk between them. The experimental signal has a pure phase modulation when strain is applied to the tapered fibre optic section of the sensor and the signal shows only intensity modulation when an un-tapered fibre section is bent. High sensitivity is achieved from the experimental results for strain and bending losses and the estimation of measurement errors is 0.2 and 0.1%, respectively. This system offers low-cost, compactness and it can be adapted for structural health monitoring.
Melioration of Optical and Electrical Performance of Ga-N Codoped ZnO Thin Films
NASA Astrophysics Data System (ADS)
Narayanan, Nripasree; Deepak, N. K.
2018-06-01
Transparent and conducting p-type zinc oxide (ZnO) thin films doped with gallium (Ga) and nitrogen (N) simultaneously were deposited on glass substrates by spray pyrolysis technique. Phase composition analysis by X-ray diffraction confirmed the polycrystallinity of the films with pure ZnO phase. Energy dispersive X-ray analysis showed excellent incorporation of N in the ZnO matrix by means of codoping. The optical transmittance of N monodoped film was poor but got improved with Ga-N codoping and also resulted in the enhancement of optical energy gap. Hole concentration increased with codoping and consequently, lower resistivity and high stability were obtained.
Korte, Dorota; Franko, Mladen
2015-01-01
In this work, complex geometrical optics is, for what we believe is the first time, applied instead of geometrical or wave optics to describe the probe beam interaction with the field of the thermal wave in photothermal beam deflection (photothermal deflection spectroscopy) experiments on thin films. On the basis of this approach the thermal (thermal diffusivity and conductivity), optical (energy band gap), and transport (carrier lifetime) parameters of the semiconductor thin films (pure TiO2, N- and C-doped TiO2, or TiO2/SiO2 composites deposited on a glass or aluminum support) were determined with better accuracy and simultaneously during one measurement. The results are in good agreement with results obtained by the use of other methods and reported in the literature.
Rotary-scanning optical resolution photoacoustic microscopy
NASA Astrophysics Data System (ADS)
Qi, Weizhi; Xi, Lei
2016-10-01
Optical resolution photoacoustic microscopy (ORPAM) is currently one of the fastest evolving photoacoustic imaging modalities. It has a comparable spatial resolution to pure optical microscopic techniques such as epifluorescence microscopy, confocal microscopy, and two-photon microscopy, but also owns a deeper penetration depth. In this paper, we report a rotary-scanning (RS)-ORPAM that utilizes a galvanometer scanner integrated with objective to achieve rotary laser scanning. A 15 MHz cylindrically focused ultrasonic transducer is mounted onto a motorized rotation stage to follow optical scanning traces synchronously. To minimize the loss of signal to noise ratio, the acoustic focus is precisely adjusted to reach confocal with optical focus. Black tapes and carbon fibers are firstly imaged to evaluate the performance of the system, and then in vivo imaging of vasculature networks inside the ears and brains of mice is demonstrated using this system.
Tamura, Masato; Yanagawa, Fumiki; Sugiura, Shinji; Takagi, Toshiyuki; Sumaru, Kimio; Matsui, Hirofumi; Kanamori, Toshiyuki
2014-05-07
Cell sorting is an essential and efficient experimental tool for the isolation and characterization of target cells. A three-dimensional environment is crucial in determining cell behavior and cell fate in biological analysis. Herein, we have applied photodegradable hydrogels to optical cell separation from a 3D environment using a computer-controlled light irradiation system. The hydrogel is composed of photocleavable tetra-arm polyethylene glycol and gelatin, which optimized cytocompatibility to adjust a composition of crosslinker and gelatin. Local light irradiation could degrade the hydrogel corresponding to the micropattern image designed on a laptop; minimum resolution of photodegradation was estimated at 20 µm. Light irradiation separated an encapsulated fluorescent microbead without any contamination of neighbor beads, even at multiple targets. Upon selective separation of target cells in the hydrogels, the separated cells have grown on another dish, resulting in pure culture. Cell encapsulation, light irradiation and degradation products exhibited negligible cytotoxicity in overall process.
NASA Astrophysics Data System (ADS)
Rahman Ansari, Akhalakur; Hussain, Shahir; Imran, Mohd; Abdel-wahab, M. Sh; Alshahrie, Ahmed
2018-06-01
The pure cobalt thin film was deposited on the glass substrate by using DC magnetron sputtering and then exposed to microwave assist oxygen plasma generated in microwave plasma CVD. The oxidation process of Co thin film into Co3O4 thin films with different microwave power and temperature were studied. The influences of microwave power, temperature and irradiation time were investigated on the morphology and particle size of oxide thin films. The crystal structure, chemical conformation, morphologies and optical properties of oxidized Co thin films (Co3O4) were studied by using x-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Raman Spectroscopy and UV–vis Spectroscopy. The data of these films showed complete oxidation pure metallic cobalt (Co) into cobalt oxide (Co3O4). The optical properties were studied for calculating the direct band gaps which ranges from 1.35 to 1.8 eV.
Asymmetric Synthesis of 1,2,9,9a-Tetrahydrocyclopropa[c]benzo[e]indol-4-one (CBI)
Lajiness, James P.; Boger, Dale L.
2011-01-01
A short, asymmetric synthesis of the 1,2,9,9a-tetrahydrocyclopropa[c]benzo[e]indol-4-one (CBI) analogue of the CC-1065 and duocarmycin DNA alkylation subunits is described. Treatment of iodo-epoxide 5, prepared by late-stage alkylation of 4 with (S)-glycidal-3-nosylate, with EtMgBr at room temperature directly provides the optically pure alcohol 6 in 87% yield (99% ee) derived from selective metal–halogen exchange and subsequent regioselective intramolecular 6-endo-tet cyclization. The use of MeMgBr or i-PrMgBr also provides the product in high yields (82–87%), but requires larger amounts of the Grignard reagent to effect metal–halogen exchange and cyclization. Direct transannular spirocyclization of 7 following O-debenzylation of 6 provides N-Boc-CBI. This approach represents the most efficient (9-steps, 31% overall) and effective (99% ee) route to the optically pure CBI alkylation subunit yet described. PMID:21192653
Non-local opto-electrical spin injection and detection in germanium at room temperature
NASA Astrophysics Data System (ADS)
Jamet, Matthieu; Rortais, Fabien; Zucchetti, Carlo; Ghirardini, Lavinia; Ferrari, Alberto; Vergnaud, Celine; Widiez, Julie; Marty, Alain; Attane, Jean-Philippe; Jaffres, Henri; George, Jean-Marie; Celebrano, Michele; Isella, Giovanni; Ciccacci, Franco; Finazzi, Marco; Bottegoni, Federico
Non-local charge carriers injection/detection schemes lie at the foundation of information manipulation in integrated systems. The next generation electronics may operate on the spin instead of the charge and germanium appears as the best hosting material to develop such spintronics for its compatibility with mainstream silicon technology and long spin lifetime at room temperature. Moreover, the energy proximity between the direct and indirect bandgaps allows for optical spin orientation. In this presentation, we demonstrate injection of pure spin currents in Ge, combined with non-local spin detection blocks at room temperature. Spin injection is performed either electrically through a magnetic tunnel junction (MTJ) or optically, by using lithographed nanostructures to diffuse the light and create an in-plane polarized electron spin population. Pure spin current detection is achieved using either a MTJ or the inverse spin-Hall effect across a Pt stripe. Supported by the ANR project SiGeSPIN #ANR-13-BS10-0002 and the CARIPLO project SEARCH-IV (Grant 2013-0623).
Optical Plasma Control During ARC Carbon Nanotube Growth
NASA Technical Reports Server (NTRS)
Hinkov, I.; Farhat, S.; DeLaChapelle, M. Lamy; Fan, S. S.; Han, H. X.; Li, G. H.; Scott, C. D.
2001-01-01
To improve nanotube production, we developed a novel optical control technique, based on the shape of the visible plasma zone created between the anode and the cathode in the direct current (DC) arc process. For a given inert gas, we adjust the anode to cathode distance (ACD) in order to obtain strong visible vortices around the cathode. This enhance anode vaporization, which improve nanotubes formation. In light of our experimental results, we focus our discussion on the relationship between plasma parameters and nanotube growth. Plasma temperature control during arc process is achieved using argon, helium, and their mixtures as a buffer gases. The variation of the gas mixture from pure argon to pure helium changes plasma temperature. As a consequence, the microscopic characteristics of nanotubes as diameter distribution is changed moving from smaller values for argon to higher diameters for helium. We also observe a dependence of the macroscopic characteristics of the final products as Brunauer-Emmett-Teller (BET) surface area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Z.
1993-04-01
Sodium metaborate and metasilicate coatings protect pure iron in the temperature range 800 to 1,000 C. Metaborate and metasilicate inhibit oxidation. Protective vonsenite (4 FeO [times] Fe[sub 2]O[sub 3] [times] B[sub 2]O[sub 3]) forms with metaborate, and protective fayalite (2FeO [times] SiO[sub 2]) forms with metasilicate. It is proposed that noncoherent blocking layers of these compounds effectively decrease the interface area for iron ion diffusion.
Recurrent excitation between motoneurones propagates across segments and is purely glutamatergic
Bhumbra, Gardave S.
2018-01-01
Spinal motoneurones (Mns) constitute the final output for the execution of motor tasks. In addition to innervating muscles, Mns project excitatory collateral connections to Renshaw cells (RCs) and other Mns, but the latter have received little attention. We show that Mns receive strong synaptic input from other Mns throughout development and into maturity, with fast-type Mns systematically receiving greater recurrent excitation than slow-type Mns. Optical recordings show that activation of Mns in one spinal segment can propagate to adjacent segments even in the presence of intact recurrent inhibition. While it is known that transmission at the neuromuscular junction is purely cholinergic and RCs are excited through both acetylcholine and glutamate receptors, here we show that neurotransmission between Mns is purely glutamatergic, indicating that synaptic transmission systems are differentiated at different postsynaptic targets of Mns. PMID:29538375
NASA Astrophysics Data System (ADS)
Imantalab, O.; Fattah-alhosseini, A.; Keshavarz, M. K.; Mazaheri, Y.
2016-02-01
In this work, electrochemical behavior of annealed (micro-) and nano-grained pure copper (fabricated by accumulative roll bonding process) in phosphate buffer solutions of various pH values ranging from 10.69 to 12.59 has been studied. Before any electrochemical measurements, evaluation of microstructure was obtained by optical microscope and transmission electron microscopy. To investigate the electrochemical behavior of the samples, the potentiodynamic polarization, Mott-Schottky analysis, and electrochemical impedance spectroscopy (EIS) were carried out. Potentiodynamic polarization plots and EIS measurements revealed that as a result of grain refinement, the passive behavior of the nano-grained sample was improved compared to that of annealed pure copper. Also, Mott-Schottky analysis indicated that the passive films behaved as p-type semiconductors and grain refinement did not change the semiconductor type of passive films.
Phase control during the synthesis of nickel sulfide nanoparticles from dithiocarbamate precursors
NASA Astrophysics Data System (ADS)
Roffey, Anna; Hollingsworth, Nathan; Islam, Husn-Ubayda; Mercy, Maxime; Sankar, Gopinathan; Catlow, C. Richard A.; Hogarth, Graeme; de Leeuw, Nora H.
2016-05-01
Square-planar nickel bis(dithiocarbamate) complexes, [Ni(S2CNR2)2], have been prepared and utilised as single source precursors to nanoparticulate nickel sulfides. While they are stable in the solid-state to around 300 °C, heating in oleylamine at 230 °C, 5 mM solutions afford pure α-NiS, where the outcome is independent of the substituents. DFT calculations show an electronic effect rather than steric hindrance influences the resulting particle size. Decomposition of the iso-butyl derivative, [Ni(S2CNiBu2)2], has been studied in detail. There is a temperature-dependence of the phase of the nickel sulfide formed. At low temperatures (150 °C), pure α-NiS is formed. Upon raising the temperature, increasing amounts of β-NiS are produced and at 280 °C this is formed in pure form. A range of concentrations (from 5-50 mM) was also investigated at 180 °C and while in all cases pure α-NiS was formed, particle sizes varied significantly. Thus at low concentrations average particle sizes were ca. 100 nm, but at higher concentrations they increased to ca. 150 nm. The addition of two equivalents of tetra-iso-butyl thiuram disulfide, (iBu2NCS2)2, to the decomposition mixture was found to influence the material formed. At 230 °C and above, α-NiS was generated, in contrast to the results found without added thiuram disulfide, suggesting that addition of (iBu2NCS2)2 stabilises the metastable α-NiS phase. At low temperatures (150-180 °C) and concentrations (5 mM), mixtures of α-NiS and Ni3S4, result. A growing proportion of Ni3S4 is noted upon increasing precursor concentration to 10 mM. At 20 mM a metastable phase of nickel sulfide, NiS2 is formed and as the concentration is increased, α-NiS appears alongside NiS2. Reasons for these variations are discussed.Square-planar nickel bis(dithiocarbamate) complexes, [Ni(S2CNR2)2], have been prepared and utilised as single source precursors to nanoparticulate nickel sulfides. While they are stable in the solid-state to around 300 °C, heating in oleylamine at 230 °C, 5 mM solutions afford pure α-NiS, where the outcome is independent of the substituents. DFT calculations show an electronic effect rather than steric hindrance influences the resulting particle size. Decomposition of the iso-butyl derivative, [Ni(S2CNiBu2)2], has been studied in detail. There is a temperature-dependence of the phase of the nickel sulfide formed. At low temperatures (150 °C), pure α-NiS is formed. Upon raising the temperature, increasing amounts of β-NiS are produced and at 280 °C this is formed in pure form. A range of concentrations (from 5-50 mM) was also investigated at 180 °C and while in all cases pure α-NiS was formed, particle sizes varied significantly. Thus at low concentrations average particle sizes were ca. 100 nm, but at higher concentrations they increased to ca. 150 nm. The addition of two equivalents of tetra-iso-butyl thiuram disulfide, (iBu2NCS2)2, to the decomposition mixture was found to influence the material formed. At 230 °C and above, α-NiS was generated, in contrast to the results found without added thiuram disulfide, suggesting that addition of (iBu2NCS2)2 stabilises the metastable α-NiS phase. At low temperatures (150-180 °C) and concentrations (5 mM), mixtures of α-NiS and Ni3S4, result. A growing proportion of Ni3S4 is noted upon increasing precursor concentration to 10 mM. At 20 mM a metastable phase of nickel sulfide, NiS2 is formed and as the concentration is increased, α-NiS appears alongside NiS2. Reasons for these variations are discussed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00053c
Preparation of nanocomposites resin from seed Pterodon emarginatus doped maghemite nanoparticles.
Silveira, L B; Martins, Q S; Maia, J C; Santos, J G
2012-06-01
Electrical characterization and magnetic nanocomposite resin seeds Pterodon emarginatus (PE) doped with nanoparticles of maghemite and treated by different chemical processes is reported in this paper. The pure PE resin showed semiconducting characteristics probably the presence of natural iron oxide in its molecular structure. The analysis of Mössbauer spectra pure resin showed two magnetic sites presented on measurements made at temperature of 300 K. Six "LEDs" to have been doped maghemite nanoparticles forming concentrations of 2.6 x 10(15) to 1.56 x 10(16) particles/cm2 forming the LED-PEMN. In the presence of the applied current versus voltage (0 to 0.9 V) LED-PEMN shown semiconducting properties. In the presence of frequency versus voltage sample of pure resin and LED features small decrease. While samples of LED-PEMN suffers loss frequency linearly with concentration and voltage. The pure PE resin shows high resistance to the applied voltage while the LED-PEMN is observed linear increase with the strength and concentration of nanoparticles of maghemite.
NASA Astrophysics Data System (ADS)
Fonseca, E. S. R.; de Jesus, M. E. P.
2007-07-01
The estimation of optical properties of highly turbid and opaque biological tissue is a difficult task since conventional purely optical methods rapidly loose sensitivity as the mean photon path length decreases. Photothermal methods, such as pulsed or frequency domain photothermal radiometry (FD-PTR), on the other hand, show remarkable sensitivity in experimental conditions that produce very feeble optical signals. Photothermal Radiometry is primarily sensitive to absorption coefficient yielding considerably higher estimation errors on scattering coefficients. Conversely, purely optical methods such as Local Diffuse Reflectance (LDR) depend mainly on the scattering coefficient and yield much better estimates of this parameter. Therefore, at moderate transport albedos, the combination of photothermal and reflectance methods can improve considerably the sensitivity of detection of tissue optical properties. The authors have recently proposed a novel method that combines FD-PTR with LDR, aimed at improving sensitivity on the determination of both optical properties. Signal analysis was performed by global fitting the experimental data to forward models based on Monte-Carlo simulations. Although this approach is accurate, the associated computational burden often limits its use as a forward model. Therefore, the application of analytical models based on the diffusion approximation offers a faster alternative. In this work, we propose the calculation of the diffuse reflectance and the fluence rate profiles under the δ-P I approximation. This approach is known to approximate fluence rate expressions better close to collimated sources and boundaries than the standard diffusion approximation (SDA). We extend this study to the calculation of the diffuse reflectance profiles. The ability of the δ-P I based model to provide good estimates of the absorption, scattering and anisotropy coefficients is tested against Monte-Carlo simulations over a wide range of scattering to absorption ratios. Experimental validation of the proposed method is accomplished by a set of measurements on solid absorbing and scattering phantoms.
NASA Astrophysics Data System (ADS)
Okumuş, Mustafa
2017-11-01
In this study, the thermal and optical properties of quartet mixtures formed at different weight ratios (1:1:1:1 and 1.5:1:1:1) from liquid crystals 4-octyloxy-4‧-cyanobiphenyl (8OCB), 4-hexylbenzoic acid, 4-(octyloxy)benzoic acid and 4-(decyloxy)benzoic acid were investigated by differential scanning calorimeter (DSC) and polarized optic microscopy (POM). The phase transition temperatures of the novel quartet mixtures measured in the DSC experiments are in line with the POM experiments. The experimental results clearly show that the novel liquid crystal mixtures have displayed pure liquid crystalline properties. According to the phase diagram drawn from DSC results, the nematic range of the novel mixture at the eutectic point is larger than the nematic ranges of the components. The mesomorphic structures of produced homolog complex mixtures are found to be smectic and nematic phases. But the smectic phase cannot be observed in the novel complex 1.5:1:1:1 mixture during continuous cooling. The nematic range of the novel complex 1.5:1:1:1 mixture is bigger than the nematic range of the novel complex 1:1:1:1 mixture with increasing 8OCB. Also, the nematic-to-isotropic phase transition temperature decreases with increasing the weight ratio of 8OCB in the complex quartet mixture. Another interesting result is that the produced mixtures are to be like a medical cream at room temperatures. Furthermore, order parameter and thermal stability factor of the transitions are also calculated.
Influence of tea tree oil (Melaleuca alternifolia) on the cattle tick Rhipicephalus microplus.
Pazinato, Rafael; Klauck, Vanderlei; Volpato, Andreia; Tonin, Alexandre A; Santos, Roberto C; de Souza, Márcia E; Vaucher, Rodrigo A; Raffin, Renata; Gomes, Patrícia; Felippi, Candice C; Stefani, Lenita M; Da Silva, Aleksandro S
2014-05-01
The aim of this study was to verify the influence of tea tree oil (TTO) (Melaleuca alternifolia) tested in its pure and nanostructured (TTO nanoparticles) forms on the reproduction of female Rhipicephalus microplus. For our purpose, female ticks were collected from naturally infected animals and treated in vitro with TTO (1, 5, and 10 %) and TTO nanoparticles (0.075, 0.375, and 0.75 %). In order to validate the tests, they were performed in triplicate using positive (amitraz) and negative (untreated) controls. It was possible to observe that pure TTO (5 and 10 %) and TTO nanoparticles (0.375 and 0.75 %) showed 100 % reproductive inhibition on female ticks. Additionally, pure TTO (1 %) also showed an acaricide effect (70 %), similarly to the positive control (78.3 %). This is the first study demonstrating the activity of pure TTO and TTO nanoparticles on female ticks. Therefore, based on these results, we were able to show that both forms and all concentrations of M. alternifolia affected tick reproduction by inhibiting egg laying and hatching. We were also able to show that TTO nanoparticles potentiated the inhibitor effect of pure TTO on the reproduction of R. microplus.
Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo
Liu, Bin; Yuan, Fenglin; Jin, Ke; ...
2015-10-06
Low-energy recoil events in pure Ni and the equiatomic NiCo alloy are studied using ab initio molecular dynamics simulations. We found that the threshold displacement energies are strongly dependent on orientation and weakly dependent on composition. The minimum threshold displacement energies are along the [1 1 0] direction in both pure Ni and the NiCo alloy. Compared to pure Ni, the threshold displacement energies increase slightly in the NiCo alloy due to stronger bonds in the alloy, irrespective of the element type of the PKA. A single Ni interstitial occupying the center of a tetrahedron formed by four Ni atomsmore » and a <1 0 0> split interstitial is produced in pure Ni by the recoils, while only the <1 0 0> split interstitial is formed in the NiCo alloy. Compared to the replacement sequences in pure Ni, anti-site defect sequences are observed in the alloy, which have high efficiency for both producing defects and transporting energy outside of the cascade core. These results provide insights into energy transfer processes occurring in equiatomic alloys under irradiation.« less
2014-01-01
Semiconductor nanowires, due to their unique electronic, optical, and chemical properties, are firmly placed at the forefront of nanotechnology research. The rich physics of semiconductor nanowire optics arises due to the enhanced light–matter interactions at the nanoscale and coupling of optical modes to electronic resonances. Furthermore, confinement of light can be taken to new extremes via coupling to the surface plasmon modes of metal nanostructures integrated with nanowires, leading to interesting physical phenomena. This Perspective will examine how the optical properties of semiconductor nanowires can be altered via their integration with highly confined plasmonic nanocavities that have resulted in properties such as orders of magnitude faster and more efficient light emission and lasing. The use of plasmonic nanocavities for tailored optical absorption will also be discussed in order to understand and engineer fundamental optical properties of these hybrid systems along with their potential for novel applications, which may not be possible with purely dielectric cavities. PMID:25396030
Tong, Yu; Yao, En-Ping; Manzi, Aurora; Bladt, Eva; Wang, Kun; Döblinger, Markus; Bals, Sara; Müller-Buschbaum, Peter; Urban, Alexander S; Polavarapu, Lakshminarayana; Feldmann, Jochen
2018-06-05
Self-assembly of nanoscale building blocks into ordered nanoarchitectures has emerged as a simple and powerful approach for tailoring the nanoscale properties and the opportunities of using these properties for the development of novel optoelectronic nanodevices. Here, the one-pot synthesis of CsPbBr 3 perovskite supercrystals (SCs) in a colloidal dispersion by ultrasonication is reported. The growth of the SCs occurs through the spontaneous self-assembly of individual nanocrystals (NCs), which form in highly concentrated solutions of precursor powders. The SCs retain the high photoluminescence (PL) efficiency of their NC subunits, however also exhibit a redshifted emission wavelength compared to that of the individual nanocubes due to interparticle electronic coupling. This redshift makes the SCs pure green emitters with PL maxima at ≈530-535 nm, while the individual nanocubes emit a cyan-green color (≈512 nm). The SCs can be used as an emissive layer in the fabrication of pure green light-emitting devices on rigid or flexible substrates. Moreover, the PL emission color is tunable across the visible range by employing a well-established halide ion exchange reaction on the obtained CsPbBr 3 SCs. These results highlight the promise of perovskite SCs for light emitting applications, while providing insight into their collective optical properties. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrolytically deposited Cadmium Selenide Films for Photovoltaic Applications
NASA Astrophysics Data System (ADS)
Dervos, C. T.; Palaiologopoulou, M. D.
2012-10-01
CdSe films were electrodeposited on pure nickel substrates. The nickel substrate was polished to a mirror finish by Al2O3 paste, etched in 10% HCl solution for 40 s and rinsed thoroughly by de-ionized water. The deposition bath contained solutions with excessive Cd2+ (0.2M) from CdSO4 and small amounts of SeO2 (1x10-3 M). The pH of the bath was adjusted to a value of 2.2 at RT by adding 10% H2SO4. The bath was first thermostated at the required temperature, which varied from 55°C to 65°C. Plating was accomplished at deposition potential 1000 mV (vs. Hg/Hg2SO4). The films formed had a uniform thickness and it was found to be approximately 2.0 μm thick (for 20 min electrodeposition process. The produced CdSe films were characterized by X-Ray diffraction and SEM. The induced semiconductor doping effect by thermal annealing in pure dry nitrogen gas was also investigated. Gold contacts were placed on top of the CdSe films, either by evaporation, or mechanically. Depending on the deposition parameters the electrical characteristics of the Ni/CdSe/Au structures may exhibit rectification properties. The optical excitation of the structure was investigated for various CdSe thicknesses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballato, John
One binary and three series of ternary non-oxide pure sulfide glasses compositions were investigated with the goal of synthesizing new glasses that exhibit high glass transition (Tg) and crystallization (Tc) temperatures, infrared transparency, and reliable glass formability. The binary glass series consisted of Ges 2 and La 2S 3 and the three glass series in the x(nBaS + mLa2S3) + (1-2x)GeS2 ternary system have BaS:La2S3 modifier ratios of 1:1, 1:2, and 2:1 with . With these glasses, new insights were realized as to how ionic glasses form and how glass modifiers affect both structure and glass formability. All synthesized compositionsmore » were characterized by Infrared (IR) and Raman spectroscopies and differential thermal analysis (DTA) to better understand the fundamental structure, optical, and thermal characteristics of the glasses. After a range of these glasses were synthesized, optimal compositions were formed into glass disks and subjected to gamma irradiation. Glass disks were characterized both before and after irradiation by microscope imaging, measuring the refractive index, density, and UV-VIS-IR transmission spectra. The final total dose the samples were subjected to was ~2.5 MGy. Ternary samples showed a less than 0.4% change in density and refractive index and minimal change in transmission window. The glasses also resisted cracking as seen in microscope images. Overall, many glass compositions were developed that possess operating temperatures above 500 °C, where conventional chalcogenide glasses such as As2S3 and have T gs from ~200-300 °C, and these glasses have a greater than Tc – Tg values larger than 100 °C and this shows that these glasses have good thermal stability of Tg such that they can be fabricated into optical fibers and as such can be considered candidates for high temperature infrared fiber optics. Initial fiber fabrication efforts showed that selected glasses could be drawn but larger samples would be needed for further development and optimization« less
Optical characterization of phase transitions in pure polymers and blends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mannella, Gianluca A.; Brucato, Valerio; La Carrubba, Vincenzo, E-mail: vincenzo.lacarrubba@unipa.it
2015-12-17
To study the optical properties of polymeric samples, an experimental apparatus was designed on purpose and set up. The sample is a thin film enclosed between two glass slides and a PTFE frame, with a very thin thermocouple placed on sample for direct temperature measurement. This sample holder was placed between two aluminum slabs, equipped with a narrow slit for optical measurements and with electrical resistances for temperature control. Sample was enlightened by a laser diode, whereas transmitted light was detected with a photodiode. Measurements were carried out on polyethylene-terephtalate (PET) and two different polyamides, tested as pure polymers andmore » blends. The thermal history imposed to the sample consisted in a rapid heating from ambient temperature to a certain temperature below the melting point, a stabilization period, and then a heating at constant rate. After a second stabilization period, the sample was cooled. The data obtained were compared with DSC measurements performed with the same thermal history. In correspondence with transitions detected via DSC (e.g. melting, crystallization and cold crystallization), the optical signal showed a steep variation. In particular, crystallization resulted in a rapid decrease of transmitted light, whereas melting gave up an increase of light transmitted by the sample. Further variations in transmitted light were recorded for blends, after melting: those results may be related to other phase transitions, e.g. liquid-liquid phase separation. All things considered, the apparatus can be used to get reliable data on phase transitions in polymeric systems.« less
Okano, Kenji; Uematsu, Gentaro; Hama, Shinji; Tanaka, Tsutomu; Noda, Hideo; Kondo, Akihiko; Honda, Kohsuke
2018-05-01
Fermentative production of optically pure lactic acid (LA) has attracted great interest because of the increased demand for plant-based plastics. For cost-effective LA production, an engineered Lactobacillus plantarum NCIMB 8826 strain, which enables the production of optically pure l-LA from raw starch, is constructed. The wild-type strain produces a racemic mixture of d- and l-LA from pyruvate by the action of the respective lactate dehydrogenases (LDHs). Therefore, the gene encoding D-LDH (ldhD) is deleted. Although no decrease in d-LA formation is observed in the ΔldhD mutant, additional disruption of the operon encoding lactate racemase (larA-E), which catalyzes the interconversion between d- and l-LA, completely abolished d-LA production. From 100 g L -1 glucose, the ΔldhD ΔlarA-E mutant produces 87.0 g L -1 of l-LA with an optical purity of 99.4%. Subsequently, a plasmid is introduced into the ΔldhD ΔlarA-E mutant for the secretion of α-amylase from Streptococcus bovis 148. The resulting strain could produce 50.3 g L -1 of l-LA from raw corn starch with a yield of 0.91 (g per g of consumed sugar) and an optical purity of 98.6%. The engineered L. plantarum strain would be useful in the production of l-LA from starchy materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrochemical capture and release of carbon dioxide
Rheinhardt, Joseph H.; Singh, Poonam; Tarakeshwar, Pilarisetty; ...
2017-01-18
Understanding the chemistry of carbon dioxide is key to affecting changes in atmospheric concentrations. One area of intense interest is CO 2 capture in chemically reversible cycles relevant to carbon capture technologies. Most CO 2 capture methods involve thermal cycles in which a nucleophilic agent captures CO 2 from impure gas streams (e.g., flue gas), followed by a thermal process in which pure CO 2 is released. Several reviews have detailed progress in these approaches. A less explored strategy uses electrochemical cycles to capture CO 2 and release it in pure form. These cycles typically rely on electrochemical generation ofmore » nucleophiles that attack CO 2 at the electrophilic carbon atom, forming a CO 2 adduct. Then, CO 2 is released in pure form via a subsequent electrochemical step. In this Perspective, we describe electrochemical cycles for CO 2 capture and release, emphasizing electrogenerated nucleophiles. As a result, we also discuss some advantages and disadvantages inherent in this general approach.« less
Medicinal applications of delta-9-tetrahydrocannabinol and marijuana.
Voth, E A; Schwartz, R H
1997-05-15
The use of crude marijuana for herbal medicinal applications is now being widely discussed in both the medical and lay literature. Ballot initiatives in California and Arizona have recently made crude marijuana accessible to patients under certain circumstances. As medicinal applications of pure forms of delta-9-tetrahydrocannabinol (THC) and crude marijuana are being considered, the most promising uses of any form of THC are to counteract the nausea associated with cancer chemotherapy and to stimulate appetite. We evaluated the relevant research published between 1975 and 1996 on the medical applications, physical complications, and legal precedents for the use of pure THC or crude marijuana. Our review focused on the medical use of THC derivatives for nausea associated with cancer chemotherapy, glaucoma, stimulation of appetite, and spinal cord spasticity. Despite the toxicity of THC delivered in any form, evidence supports the selective use of pure THC preparations to treat nausea associated with cancer chemotherapy and to stimulate appetite. The evidence does not support the reclassification of crude marijuana as a prescribable medicine.
de Costa, B R; Bowen, W D; Hellewell, S B; George, C; Rothman, R B; Reid, A A; Walker, J M; Jacobson, A E; Rice, K C
1989-08-01
The synthesis and in vitro sigma receptor activity of the two diastereomers of U50,488 [(+/-)-2], namely, (1R,2S)-(+)- cis-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacet ami de [(+)-1] and (1S,2R)-(-)-cis-3,4-dichloro- N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide [(-)-1], are described. (+)-1 and (-)-1 were synthesized from (+/-)-trans-N-methyl-2-aminocyclohexanol [(+/-)-3]. Pyridinium chlorochromate (PCC) oxidation of the N-t-Boc-protected derivative of (+/-)-3 afforded (+/-)-2-[N- [(tert-butyloxy)carbonyl]-N-methylamino]cyclohexanone [(+/-)-5]. The sequence of enamine formation with pyrrolidine, catalytic reduction, N-deprotection, and optical resolution afforded (1R,2S)-(-)-cis-2-pyrrolidinyl-N-methylcyclohexylamine [(-)-10] and (1S,2R)-(+)-cis-2-pyrrolidinyl-N-methylcyclohexylamine [(+)-10]. The optical purity (greater than 99.5%) of (-)-10 and (+)-10 was determined by HPLC analysis of the diastereomeric ureas formed by reaction with optically pure (R)-alpha-methylbenzyl isocyanate. The absolute configuration of (-)-10 and (+)-10 was determined by single-crystal X-ray diffractometry of the bis-(R)-mandelate salt. Condensation of optically pure (-)-10 and (+)-10 with 3,4-dichlorophenylacetic acid furnished (+)-1 and (-)-1, respectively. Compounds (+)-1, (-)-1, (-)-2, and (+)-2 were compared for their binding affinities at kappa opioid, sigma, D2-dopamine, and phencyclidine (PCP) receptors in competitive binding assays using [3H]bremazocine ([3H]BREM) or [3H]U69,593, [3H]-(+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine [[3H]-(+)-3-PPP], or [3H]-1,3-di(o-tolyl)guanidine ([3H]DTG), [3H]-(-)-sulpiride [[3H]-(-)SULP], and [3H]-1- [1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP), respectively. In the systems examined, (-)-2 exhibited the highest affinity for kappa receptors, with a Ki of 44 +/- 8 nM. However, (-)-2 also showed moderate affinity for sigma receptors, with a Ki of 594 +/- 3 nM [[3H]-(+)-3-PPP]. The (1R,2R)-(+)-enantiomer, (+)-2, had low affinity for both kappa and sigma receptors, exhibiting Ki values of 1298 +/- 49 nM at kappa ([3H]BREM) and 1270 +/- 168 nM at sigma [[3H]-(+)-3-PPP]. In contrast, the chiral cis compounds (+)-1 and (-)-1 showed high affinity for sigma receptors and negligible affinity for kappa opioid receptors in the [3H]BREM assay. Compound (-)-1 exhibited a Ki of 81 +/- 13 nM at sigma receptors [[3H]-(+)-3-PPP] and 250 +/- 8 nM ([3H]DTG).(ABSTRACT TRUNCATED AT 400 WORDS)
Synthesis and characterization of delafossite thin films by reactive RF magnetron sputtering
NASA Astrophysics Data System (ADS)
Asmat Uceda, Martin Antonio
This work presents a comparative study on optical and electrical properties of CuAlO2 thin films on sapphire (0001) substrates deposited with two different growth conditions using reactive RF-magnetron sputtering technique from metallic Cu and Al targets. CuAlO2 is a very promising material for transparent electronic applications, it is intended that comparison of results obtained from both approaches, could lead to optimization and control of the physical properties of this material, namely its electrical conductivity and optical transmittance. All samples were heat treated at 1100°C using rapid thermal annealing with varying time and rate of cooling. The effect of sputtering conditions and different annealing time on phase formation and evolution is studied with X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is found that for most of the samples CuAlO2 phase is formed after 60 min of annealing time, but secondary phases were also present that depend on the deposition conditions. However, pure CuAlO2 phase was obtained for annealed CuO on sapphire films with annealing time of 60 min. The optical properties obtained from UV-Visible spectroscopic measurement reveals indirect and direct optical band gaps for CuAlO2 films and were found to be 2.58 and 3.72 eV respectively. The films show a transmittance of about 60% in the visible range. Hall effect measurements indicate p-type conductivity. Van der Pauw technique was used to measure resistivity of the samples. The highest electrical conductivity and charge carrier concentration obtained were of 1.01x10-1S.cm -1 and 3.63 x1018 cm-3 respectively.
NASA Astrophysics Data System (ADS)
Jiang, L.; Sims, P. E.; Grzybowski, G.; Beeler, R. T.; Chizmeshya, A. V. G.; Smith, D. J.; Kouvetakis, J.; Menéndez, J.
2013-07-01
Ab initio theoretical simulations of Al(As1-xNx)Si3 alloys, a new class of optoelectronic materials, confirm that these compounds are likely to be disordered via a mechanism that preserves the integrity of the constituent III-V-Si3 tetrahedra but randomizes their orientation in the average diamond lattice of the compound. This type of disorder is consistent with experimental structural data and with the proposed growth mechanism for such alloys, according to which “III:V(SiH3)3” intermediate complexes are formed in the gas phase from reactions between group-III atomic beams and V(SiH3)3 molecules, delivering the entire III-V-Si3 tetrahedra to the growing film. Experimental optical studies of these Al(As1-xNx)Si3 alloys as well as more general [Al(As1-xNx)]ySi5-2y compounds grown on Si substrates were carried out using spectroscopic ellipsometry. The resulting dielectric functions are found to be similar to broadened versions of their counterparts in pure Si. This broadening may have important practical applications, particularly in photovoltaics, because it dramatically enhances the optical absorption of Si in the visible range of the electromagnetic spectrum. A critical point analysis reveals the existence of direct optical transitions at energies as low as 2.5 eV, well below the lowest direct absorption edge of Si at 3.3 eV. Such transitions are predicted theoretically for perfectly ordered III-V-Si3 compounds, and the experimental results suggest that they are robust against tetrahedra orientational disorder.
Glass formation and short-range order structures in the BaS + La 2S 3 + GeS 2 system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Josh R.; Martin, Steve W.; Ballato, John
Here, infrared (IR) optical materials have enabled a broad range of optical sensing and measurement applications in the mid-wave and long-wave IR. Many IR transmitting glasses are based on covalently-bonded selenides and tellurides, such as As 2Se 3 and GeTe 2, which typically have relatively low glass transition temperatures ( T g) on the order of 200 to 350 °C. Many applications have working temperatures above the T g of these materials, which compels the development of new IR materials. This work studies the underlying short-range order (SRO) structure and glass formability of a new family of ionically-bonded sulfide glasses,more » xBaS + yLa 2S 3 + (1 – x – y)GeS 2, to develop high T g optical materials with a broad IR transmission range. These sulfide glasses were produced by melting sulfide materials inside evacuated and sealed carbon-coated silica ampoules at 1150 °C for 12 h and quenching to room temperature to form glass. Glass samples were then characterized by IR and Raman spectroscopies and differential thermal analysis (DTA). It was found that by increasing the modifier concentration, the predominantly Ge 4 SRO units, the superscript defines the number of bridging sulfur (BS) ions in the tetrahedral network found in GeS 2 glasses, are ultimately converted to Ge 0 units at >40 mol% network modifier content through the generation of non-bridging sulfur (NBS) ions. These molecular ionic units still form a glassy network, with some of the highest reported T g values to date for a pure sulfide glass. This suggests that this composition has strong ionic bonds between negatively-charged tetrahedral SRO units and the positively-charged modifier cations. While the glass network is depolymerized in the high modifier content glasses though the formation of a high concentration of molecular ionic Ge 0 SRO groups, they are, nevertheless, homogeneous glassy materials that exhibit the largest T g and Δ T (difference between crystallization temperature, T c, and T g) values of glasses in this system, making them the optimal glasses for high T g IR optical components, including, potentially, refractory IR optical fibers.« less
Glass formation and short-range order structures in the BaS + La 2S 3 + GeS 2 system
Roth, Josh R.; Martin, Steve W.; Ballato, John; ...
2018-06-01
Here, infrared (IR) optical materials have enabled a broad range of optical sensing and measurement applications in the mid-wave and long-wave IR. Many IR transmitting glasses are based on covalently-bonded selenides and tellurides, such as As 2Se 3 and GeTe 2, which typically have relatively low glass transition temperatures ( T g) on the order of 200 to 350 °C. Many applications have working temperatures above the T g of these materials, which compels the development of new IR materials. This work studies the underlying short-range order (SRO) structure and glass formability of a new family of ionically-bonded sulfide glasses,more » xBaS + yLa 2S 3 + (1 – x – y)GeS 2, to develop high T g optical materials with a broad IR transmission range. These sulfide glasses were produced by melting sulfide materials inside evacuated and sealed carbon-coated silica ampoules at 1150 °C for 12 h and quenching to room temperature to form glass. Glass samples were then characterized by IR and Raman spectroscopies and differential thermal analysis (DTA). It was found that by increasing the modifier concentration, the predominantly Ge 4 SRO units, the superscript defines the number of bridging sulfur (BS) ions in the tetrahedral network found in GeS 2 glasses, are ultimately converted to Ge 0 units at >40 mol% network modifier content through the generation of non-bridging sulfur (NBS) ions. These molecular ionic units still form a glassy network, with some of the highest reported T g values to date for a pure sulfide glass. This suggests that this composition has strong ionic bonds between negatively-charged tetrahedral SRO units and the positively-charged modifier cations. While the glass network is depolymerized in the high modifier content glasses though the formation of a high concentration of molecular ionic Ge 0 SRO groups, they are, nevertheless, homogeneous glassy materials that exhibit the largest T g and Δ T (difference between crystallization temperature, T c, and T g) values of glasses in this system, making them the optimal glasses for high T g IR optical components, including, potentially, refractory IR optical fibers.« less
"Quantum Interference with Slits" Revisited
ERIC Educational Resources Information Center
Rothman, Tony; Boughn, Stephen
2011-01-01
Marcella has presented a straightforward technique employing the Dirac formalism to calculate single- and double-slit interference patterns. He claims that no reference is made to classical optics or scattering theory and that his method therefore provides a purely quantum mechanical description of these experiments. He also presents his…
NASA Astrophysics Data System (ADS)
Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Robotham, A. S. G.; Seibert, M.; Kelvin, L. S.
2014-02-01
We present a non-parametric cell-based method of selecting highly pure and largely complete samples of spiral galaxies using photometric and structural parameters as provided by standard photometric pipelines and simple shape fitting algorithms. The performance of the method is quantified for different parameter combinations, using purely human-based classifications as a benchmark. The discretization of the parameter space allows a markedly superior selection than commonly used proxies relying on a fixed curve or surface of separation. Moreover, we find structural parameters derived using passbands longwards of the g band and linked to older stellar populations, especially the stellar mass surface density μ* and the r-band effective radius re, to perform at least equally well as parameters more traditionally linked to the identification of spirals by means of their young stellar populations, e.g. UV/optical colours. In particular, the distinct bimodality in the parameter μ*, consistent with expectations of different evolutionary paths for spirals and ellipticals, represents an often overlooked yet powerful parameter in differentiating between spiral and non-spiral/elliptical galaxies. We use the cell-based method for the optical parameter set including re in combination with the Sérsic index n and the i-band magnitude to investigate the intrinsic specific star formation rate-stellar mass relation (ψ*-M*) for a morphologically defined volume-limited sample of local Universe spiral galaxies. The relation is found to be well described by ψ _* ∝ M_*^{-0.5} over the range of 109.5 ≤ M* ≤ 1011 M⊙ with a mean interquartile range of 0.4 dex. This is somewhat steeper than previous determinations based on colour-selected samples of star-forming galaxies, primarily due to the inclusion in the sample of red quiescent discs.
NASA Astrophysics Data System (ADS)
Fujioka, K.; Fujimoto, Y.; Tsubakimoto, K.; Kawanaka, J.; Shoji, I.; Miyanaga, N.
2015-03-01
The refractive index of a potassium dihydrogen phosphate (KDP) crystal strongly depends on the deuteration fraction of the crystal. The wavelength dependence of the phase-matching angle in the near-infrared optical parametric process shows convex and concave characteristics for pure KDP and pure deuterated KDP (DKDP), respectively, when pumped by the second harmonic of Nd- or Yb-doped solid state lasers. Using these characteristics, ultra-broadband phase matching can be realized by optimization of the deuteration fraction. The refractive index of DKDP that was grown with a different deuteration fraction (known as partially deuterated KDP or pDKDP) was measured over a wide wavelength range of 0.4-1.5 μm by the minimum deviation method. The wavelength dispersions of the measured refractive indices were fitted using a modified Sellmeier equation, and the deuteration fraction dependence was analyzed using the Lorentz-Lorenz equation. The wavelength-dependent phase-matching angle for an arbitrary deuteration fraction was then calculated for optical parametric amplification with pumping at a wavelength of 526.5 nm. The results revealed that a refractive index database with precision of more than 2 × 10-5 was necessary for exact evaluation of the phase-matching condition. An ultra-broad gain bandwidth of up to 490 nm will be feasible when using the 68% pDKDP crystal.
Nagano, Hiroyuki; Shibano, Kana; Matsumoto, Yu; Yokota, Atsushi; Wada, Masaru
2017-06-01
An enzyme catalyzing the ammonia-lyase reaction for the conversion of d-erythro-3-hydroxyaspartate to oxaloacetate was purified from the cell-free extract of a soil-isolated bacterium Pseudomonas sp. N99. The enzyme exhibited ammonia-lyase activity toward l-threo-3-hydroxyaspartate and d-erythro-3-hydroxyaspartate, but not toward other 3-hydroxyaspartate isomers. The deduced amino acid sequence of the enzyme, which belongs to the serine/threonine dehydratase family, shows similarity to the sequence of l-threo-3-hydroxyaspartate ammonia-lyase (EC 4.3.1.16) from Pseudomonas sp. T62 (74%) and Saccharomyces cerevisiae (64%) and serine racemase from Schizosaccharomyces pombe (65%). These results suggest that the enzyme is similar to l-threo-3-hydroxyaspartate ammonia-lyase from Pseudomonas sp. T62, which does not act on d-erythro-3-hydroxyaspartate. We also then used the recombinant enzyme expressed in Escherichia coli to produce optically pure l-erythro-3-hydroxyaspartate and d-threo-3-hydroxyaspartate from the corresponding dl-racemic mixtures. The enzymatic resolution reported here is one of the simplest and the first enzymatic method that can be used for obtaining optically pure l-erythro-3-hydroxyaspartate.
NASA Astrophysics Data System (ADS)
Azab, A. A.; Ateia, Ebtesam E.; Esmail, S. A.
2018-07-01
Nano-crystalline of TM-doped ZnO with general formula Zn0.97TM0.03O (TM: Mn, Fe, Co, and Ni) was prepared using sol-gel method. The dependence of crystal structure, morphology, and optical and magnetic properties on the type of transition metals was investigated. The XRD investigation of pure and TM-doped ZnO nanoparticles samples confirms the formation of single-phase hexagonal wurtzite structure. The estimated crystallite sizes are found in the range of 17 and 38 nm for the doped and pure samples, respectively. The obtained data suggest that the dopant type plays a vital role in the physical properties of the investigated samples. The optical band-gap energy Eg has been calculated from near infrared (NIR) and visible (VIS) reflectance spectra using the Kubelka-Munk function. Minimum value of 2.398 eV and maximum one of 3.29 eV were obtained for Manganese-doped ZnO and pure ZnO, respectively. The analysis of XRD and VSM of the samples confirms that the observed room-temperature (RT) ferromagnetism can be attributed to an intrinsic property of doped material sample and not due to formation of any secondary phase. The magnetic results show that Mn is the most effective dopant for producing ferromagnetism in nanoparticles of ZnO.
Characterization of the Roman curse tablet
NASA Astrophysics Data System (ADS)
Liu, Wen; Zhang, Boyang; Fu, Lin
2017-08-01
The Roman curse tablet, produced in ancient Rome period, is a metal plate that inscribed with curses. In this research, several techniques were used to find out the physical structure and chemical composition of the Roman curse tablet, and testified the hypothesis that whether the tablet is made of pure lead or lead alloy. A sample of Roman Curse Tablet from the Johns Hopkins Archaeological Museum was analyzed using several different characterization techniques to determine the physical structure and chemical composition. The characterization techniques used were including optical microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). Because of the small sample size, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence (XRF) cannot test the sample. Results from optical microscopy and SEM, enlarged images of the sample surface were studied. The result revealed that the sample surface has a rough, non-uniform, and grainy surface. AFM provides three-dimensional topography of the sample surface, studying the sample surface in atomic level. DSC studies the thermal property, which is most likely a lead-alloy, not a pure lead. However, none of these tests indicated anything about the chemical composition. Future work will be required due to the lack of measures finding out its chemical composition. Therefore, from these characterization techniques above, the Roman curse tablet sample is consisted of lead alloy, not pure lead.
Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics
NASA Astrophysics Data System (ADS)
İlter, Işıl; Akyıl, Saniye; Devseren, Esra; Okut, Dilara; Koç, Mehmet; Kaymak Ertekin, Figen
2018-02-01
In this study, the effect of hot air and microwave drying on drying kinetics and some quality characteristics such as water activity, color, optic index and volatile oil of garlic puree was investigated. Optic index representing browning of the garlic puree increased excessively with an increase in microwave power and hot air drying temperature. However, volatile oil content of the dried samples was decreased by increasing of temperature and microwave power. By increasing drying temperature (50, 60 and 70 °C) and microwave power (180, 360 and 540 W), the drying time decreased from 8.5 h to 4 min. In order to determine the kinetic parameters, the experimental drying data were fitted to various semi-empirical models beside 2nd Fick's diffusion equation. Among them, the Page model gave a better fit for microwave-drying, while Logarithmic model gave a better fit for hot air drying. By increasing the microwave power and hot air drying temperature, the effective moisture diffusivity, De values ranged from 0.76×10-8 to 2.85×10-8 m2/s and from 2.21×10-10 to 3.07×10-10 m2/s, respectively. The activation energy was calculated as 20.90 kJ/mol for hot air drying and 21.96 W/g for microwave drying using an Arrhenius type equation.
Forming mandrels for making lightweight x-ray mirrors
NASA Astrophysics Data System (ADS)
Blake, Peter N.; Saha, Timo; Zhang, William W.; O'Dell, Stephen; Kester, Thomas; Jones, William
2011-09-01
Future x-ray astronomical missions, similar to the proposed International X-ray Observatory (IXO), will utilize replicated mirrors to reduce both mass and production costs. Accurately figured and measured molds (called mandrels) - on which the mirror substrates are thermally formed, replicating the surface of the mandrels - are essential to enable these missions. The Optics Branches of the Goddard Space Flight Center (GSFC) and Marshall Space Flight Center (MSFC) have developed fabrication processes along with metrologies that yield high-precision mandrels; and through the SBIR program, they encourage small businesses to attack parts of the remaining problems. The Goddard full-aperture mandrel polisher (the MPM-500) has been developed to a level where mandrel surfaces match the 1.5 arcsec HPD level allocation in a 5 arcsec telescope program. This paper reviews this current technology and describes a pilot program to design a suite of machine tools and process parameters capable of producing many hundreds of these precision objects. A major challenge is to keep mid-spatial frequency errors below 2 nm rms - a severe specification; but we must also note the factors which work to our advantage: e.g., how the figure departs from a pure cone by only one micron, and how the demanding figure specifications which apply in the axial direction are relaxed by an order of magnitude in the azimuthal. Careful study of other large optical fabrication programs in the light of these challenges and advantages has yielded a realistic plan for the economical production of mandrels that meet program requirements in both surface and quantity.
Optical spectroscopy of the Weyl semimetal TaAs
Xu, B.; Dai, Y. M.; Zhao, L. X.; ...
2016-03-24
Here, we present a systematic study of both the temperature and frequency dependence of the optical response in TaAs, a material that has recently been realized to host the Weyl semimetal state. Our study reveals that the optical conductivity of TaAs features a narrow Drude response alongside a conspicuous linear dependence on frequency. The weight of the Drude peak decreases upon cooling, following a T 2 temperature dependence, in good agreement with theoretical predictions. Two linear components with distinct slopes dominate the low-temperature optical conductivity. A comparison between our experimental results and theoretical calculations suggests that the linear conductivity belowmore » ~230 cm –1 arises purely from interband transitions near the Weyl points, providing rich information about the Weyl semimetal state in TaAs.« less
The interpretation of optical light variations of Centaurus X-3
NASA Technical Reports Server (NTRS)
Mauder, H.
1976-01-01
The interpretation of optical light variations of X-ray binaries is discussed for the case of negligible reflection effect. The limiting cases of synchronous rotation of the visible star (Roche configuration) and of no rotation (pure tidal deformation) are considered. The theoretical results are compared with the available light curves of Cen X-3. X-ray data of the Copernicus satellite are used to get an impression of the atmospheric structure of the outer layers of the visible component. It is shown, that the X-ray eclipse duration is in good agreement with the mass ration derived from the optical variations. The X-ray eclipse duration is discussed with respect to the extended low states, and a possible correlation of the extended lows with the appearance of the optical light curves is considered.
Decrease and enhancement of third-order optical nonlinearity in metal-dielectric composite films
NASA Astrophysics Data System (ADS)
Ning, Tingyin; Lu, Heng; Zhou, Yueliang; Man, Baoyuan
2018-04-01
We investigate third-order optical nonlinearity in gold nanoparticles embedded in CaCu3Ti4O12 (CCTO) films using the Z-scan method. We observe that the effective third-order nonlinear optical susceptibilities in such composite films can not only be enhanced, in line with the conventional behavior, but also be decreased, depending on the volume concentration of gold. In particular, the nonlinear absorption behavior can be changed from saturable absorption in pure CCTO films to reversed saturable absorption in composite films, and theoretically, even zero nonlinear absorption could be obtained. These results indicate that it should be possible to tune the third-order optical nonlinearity in Au:CCTO composite films by altering the gold concentration, thus making them suitable for applications in photonic devices.
A simple approach to CO cooling in molecular clouds
NASA Astrophysics Data System (ADS)
Whitworth, A. P.; Jaffa, S. E.
2018-03-01
Carbon monoxide plays an important role in interstellar molecular clouds, both as a coolant, and as a diagnostic molecule. However, a proper evaluation of the cooling rate due to CO requires a determination of the populations of many levels, the spontaneous and stimulated radiative de-excitation rates between these levels, and the transfer of the emitted multi-line radiation; additionally, this must be done for three isotopologues. It would be useful to have a simple analytic formulation that avoided these complications and the associated computational overhead; this could then be used in situations where CO plays an important role as a coolant, but the details of this role are not the main concern. We derive such a formulation here, by first considering the two asymptotic forms that obtain in the limits of (a) low volume-density and optical depth, and (b) high volume-density and optical depth. These forms are then combined in such a way as to fit the detailed numerical results from Goldsmith & Langer (1978, ApJ, 222, 881; hereafter GL78). The GL78 results cover low temperatures, and a range of physical conditions where the interplay of thermal and sub-thermal excitation, optical-depth effects, and the contributions from rare isotopologues, are all important. The fit is obtained using the Metropolis-Hastings method, and reproduces the results of GL78 well. It is a purely local and analytic function of state — specifically a function of the density, ρ, isothermal sound speed, a, CO abundance, XCO, and velocity divergence, ∇ṡυ. As an illustration of its use, we consider the cooling layer following a slow steady non-magnetic planar J-shock. We show that, in this idealised configuration, if the post-shock cooling is dominated by CO and its isotopologues, the thickness of the post-shock cooling layer is very small and approximately independent of the pre-shock velocity, υo, or pre-shock isothermal sound speed, ao.
Ultralow-loss polaritons in isotopically pure boron nitride.
Giles, Alexander J; Dai, Siyuan; Vurgaftman, Igor; Hoffman, Timothy; Liu, Song; Lindsay, Lucas; Ellis, Chase T; Assefa, Nathanael; Chatzakis, Ioannis; Reinecke, Thomas L; Tischler, Joseph G; Fogler, Michael M; Edgar, J H; Basov, D N; Caldwell, Joshua D
2018-02-01
Conventional optical components are limited to size scales much larger than the wavelength of light, as changes to the amplitude, phase and polarization of the electromagnetic fields are accrued gradually along an optical path. However, advances in nanophotonics have produced ultrathin, so-called 'flat' optical components that beget abrupt changes in these properties over distances significantly shorter than the free-space wavelength. Although high optical losses still plague many approaches, phonon polariton (PhP) materials have demonstrated long lifetimes for sub-diffractional modes in comparison to plasmon-polariton-based nanophotonics. We experimentally observe a threefold improvement in polariton lifetime through isotopic enrichment of hexagonal boron nitride (hBN). Commensurate increases in the polariton propagation length are demonstrated via direct imaging of polaritonic standing waves by means of infrared nano-optics. Our results provide the foundation for a materials-growth-directed approach aimed at realizing the loss control necessary for the development of PhP-based nanophotonic devices.
Introduction of a new opto-electrical phase-locked loop in CMOS technology: the PMD-PLL
NASA Astrophysics Data System (ADS)
Ringbeck, Thorsten; Schwarte, Rudolf; Buxbaum, Bernd
1999-12-01
The huge and increasing need of information in the industrial world demands an enormous potential of bandwidth in telecommunication systems. Optical communication provides all participants with the whole spectrum of digital services like videophone, cable TV, video conferencing and online services. Especially fast and low cost opto-electrical receivers are badly needed in order to expand fiber networks to every home (FTTH--fiber to the home or FTTD--fiber to the desk, respectively). This paper proposes a new receiver structure which is designed to receiver optical data which are encoded by code division multiple access techniques (CDMA). For data recovery in such CDMA networks phase locked loops (PLL) are needed, which synchronize the local oscillator with the incoming clock. In optical code division multiple access networks these PLLs could be realized either with an electrical PLL after opto-electrical converting or directly in the optical path with a pure optical PLL.
Linear and passive silicon optical isolator
Wang, Chen; Zhong, Xiao-Lan; Li, Zhi-Yuan
2012-01-01
On-chip optical isolation plays a key role in optical communications and computing based on silicon integrated photonic structures and has attracted great attentions for long years. Recently there have appeared hot controversies upon whether isolation of light can be realized via linear and passive photonic structures. Here we demonstrate optical isolation of infrared light in purely linear and passive silicon photonic structures. Both numerical simulations and experimental measurements show that the round-trip transmissivity of in-plane infrared light across a silicon photonic crystal slab heterojunction diode could be two orders of magnitudes smaller than the forward transmissivity at around 1,550 nm with a bandwidth of about 50 nm, indicating good performance of optical isolation. The occurrence of in-plane light isolation is attributed to the information dissipation due to off-plane and side-way scattering and selective modal conversion in the multiple-channel structure and has no conflict with the reciprocal principle. PMID:22993699
Ultralow-loss polaritons in isotopically pure boron nitride
NASA Astrophysics Data System (ADS)
Giles, Alexander J.; Dai, Siyuan; Vurgaftman, Igor; Hoffman, Timothy; Liu, Song; Lindsay, Lucas; Ellis, Chase T.; Assefa, Nathanael; Chatzakis, Ioannis; Reinecke, Thomas L.; Tischler, Joseph G.; Fogler, Michael M.; Edgar, J. H.; Basov, D. N.; Caldwell, Joshua D.
2018-02-01
Conventional optical components are limited to size scales much larger than the wavelength of light, as changes to the amplitude, phase and polarization of the electromagnetic fields are accrued gradually along an optical path. However, advances in nanophotonics have produced ultrathin, so-called `flat' optical components that beget abrupt changes in these properties over distances significantly shorter than the free-space wavelength. Although high optical losses still plague many approaches, phonon polariton (PhP) materials have demonstrated long lifetimes for sub-diffractional modes in comparison to plasmon-polariton-based nanophotonics. We experimentally observe a threefold improvement in polariton lifetime through isotopic enrichment of hexagonal boron nitride (hBN). Commensurate increases in the polariton propagation length are demonstrated via direct imaging of polaritonic standing waves by means of infrared nano-optics. Our results provide the foundation for a materials-growth-directed approach aimed at realizing the loss control necessary for the development of PhP-based nanophotonic devices.
Properties of the 4.45 eV optical absorption band in LiF:Mg,Ti.
Nail, I; Oster, L; Horowitz, Y S; Biderman, S; Belaish, Y
2006-01-01
The optical absorption (OA) and thermoluminescence (TL) of dosimetric LiF:Mg,Ti (TLD-100) as well as nominally pure LiF single crystal have been studied as a function of irradiation dose, thermal and optical bleaching in order to investigate the role of the 4.45 eV OA band in low temperature TL. Computerised deconvolution was used to resolve the absorption spectrum into individual gaussian bands and the TL glow curve into glow peaks. Although the 4.45 eV OA band shows thermal decay characteristics similar to the 4.0 eV band its dose filling constant and optical bleaching properties suggest that it cannot be associated with the TL of composite peaks 4 or 5. Its presence in optical grade single crystal LiF further suggests that it is an intrinsic defect or possibly associated with chance impurities other than Mg, Ti.
Apparatus and process for determining the susceptibility of microorganisms to antibiotics
NASA Technical Reports Server (NTRS)
Gibson, Sandra F. (Inventor); Fadler, Norman L. (Inventor)
1976-01-01
A process for determining the susceptibility of microorganisms to antibiotics involves introducing a diluted specimen into discrete quantities of a selective culture medium which favors a specific microorganism in that the microorganism is sustained by the medium and when so sustained will change the optical characteristics of the medium. Only the specific microorganism will alter the optical characteristics. Some of the discrete quantities are blended with known antibiotics, while at least one is not. If the specimen contains the microorganisms favored by the selective medium, the optical characteristics of the discrete quantity of pure selective medium, that is the one without antibiotics, will change. If the antibiotics in any of the other discrete quantities are ineffective against the favored microorganisms, the optical characteristics of those quantities will likewise change. No change in the optical characteristics of a discrete quantity indicates that the favored microorganism is susceptible to the antibiotic in the quantity.
A Convenient and Safer Synthesis of Diaminoglyoxime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Eric C.; Sabatini, Jesse J.; Zuckerman, Nathaniel B.
A new procedure for the synthesis and isolation of diaminoglyoxime (DAG) is described. A previous procedure involved treating glyoxal with two equivalents each of hydroxylammonium chloride and sodium hydroxide to form glyoxime, followed by further treatment of this intermediate with two additional equivalents of hydroxylammonium chloride and sodium hydroxide at 95 °C to form DAG. Two recrystallizations were needed to obtain the desired product in pure form. Another previous procedure employed glyoxal in the presence of four equivalents each of hydroxylammonium chloride and sodium hydroxide at 95 °C to form DAG. Though this latter procedure gives product after a fewmore » hours, yields do not exceed 40%, and the reaction is prone to thermal runaway. Furthermore, the use of decolorizing carbon, and recrystallization of the crude solid is necessary to obtain a pure product. The new disclosed procedure involves treating a preheated aqueous hydroxylamine solution (50 wt. %, ten equivalents) with aqueous glyoxal (40 wt. %), followed by heating at 95 °C for 72-96 h. The reaction is cooled to room temperature, and then to 0-5 °C to obtain DAG in pure form, without recrystallization or decolorizing carbon in 77-80% yield. The exothermic nature of the reaction is also minimized by this updated process.« less
A Convenient and Safer Synthesis of Diaminoglyoxime
Johnson, Eric C.; Sabatini, Jesse J.; Zuckerman, Nathaniel B.
2017-11-29
A new procedure for the synthesis and isolation of diaminoglyoxime (DAG) is described. A previous procedure involved treating glyoxal with two equivalents each of hydroxylammonium chloride and sodium hydroxide to form glyoxime, followed by further treatment of this intermediate with two additional equivalents of hydroxylammonium chloride and sodium hydroxide at 95 °C to form DAG. Two recrystallizations were needed to obtain the desired product in pure form. Another previous procedure employed glyoxal in the presence of four equivalents each of hydroxylammonium chloride and sodium hydroxide at 95 °C to form DAG. Though this latter procedure gives product after a fewmore » hours, yields do not exceed 40%, and the reaction is prone to thermal runaway. Furthermore, the use of decolorizing carbon, and recrystallization of the crude solid is necessary to obtain a pure product. The new disclosed procedure involves treating a preheated aqueous hydroxylamine solution (50 wt. %, ten equivalents) with aqueous glyoxal (40 wt. %), followed by heating at 95 °C for 72-96 h. The reaction is cooled to room temperature, and then to 0-5 °C to obtain DAG in pure form, without recrystallization or decolorizing carbon in 77-80% yield. The exothermic nature of the reaction is also minimized by this updated process.« less
Model for multishot all-thermal all-optical switching in ferromagnets
NASA Astrophysics Data System (ADS)
Gorchon, J.; Yang, Y.; Bokor, J.
2016-07-01
All-optical magnetic switching (AOS) is a recently observed rich and puzzling phenomenon that offers promising technological applications. However, a fundamental understanding of the underlying mechanisms remains elusive. Here we present a model for multishot helicity-dependent AOS in ferromagnetic materials based on a purely heat-driven mechanism in the presence of magnetic circular dichroism (MCD). We predict that AOS should be possible with as little as 0.5% of MCD, after a minimum number of laser shots heat the sample close to the Curie temperature. Finally, we qualitatively reproduce the all-optically switched domain patterns observed experimentally by numerically simulating the result of multiple laser shots on an FePtC granular ferromagnetic film.
An optical flow-based state-space model of the vocal folds.
Granados, Alba; Brunskog, Jonas
2017-06-01
High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters.
Nanohole optical tweezers in heterogeneous mixture analysis
NASA Astrophysics Data System (ADS)
Hacohen, Noa; Ip, Candice J. X.; Laxminarayana, Gurunatha K.; DeWolf, Timothy S.; Gordon, Reuven
2017-08-01
Nanohole optical trapping is a tool that has been shown to analyze proteins at the single molecule level using pure samples. The next step is to detect and study single molecules with dirty samples. We demonstrate that using our double nanohole optical tweezing configuration, single particles in an egg white solution can be classified when trapped. Different sized molecules provide different signal variations in their trapped state, allowing the proteins to be statistically characterized. Root mean squared variation and trap stiffness are methods used on trapped signals to distinguish between the different proteins. This method to isolate and determine single molecules in heterogeneous samples provides huge potential to become a reliable tool for use within biomedical and scientific communities.
Two-temperature synthesis of non-linear optical compound CdGeAs2
NASA Astrophysics Data System (ADS)
Zhu, Chongqiang; Verozubova, G. A.; Mironov, Yuri P.; Lei, Zuotao; Song, Liangcheng; Ma, Tianhui; Okunev, A. O.; Yang, Chunhui
2016-12-01
In this work, we report on a new approach to synthesize large-scale nonlinear optical chalcopyrite compound CdGeAs2 (cadmium germanium arsenide), in which the arsenic (As) precursor and the mixture of the cadmium (Cd) and the germanium (Ge) were separated in two distinct temperature-defined zones of a furnace. Through probing the intermediate product prepared at pre-set temperature points of hot-zone area, it was revealed that the ternary compound CdGeAs2 was formed through chemical reactions among Cd3As2, CdAs2, GeAs, GeAs2 and Ge. A new intermediate crystalline compound, with determined crystal parameter c=0.9139 nm and unknown a parameter, was identified when the temperature of the mixture of Cd and Ge was set to 680 °C, which, however, disappeared when the temperature was set to 770 °C, yielding pure CdGeAs2 product. Most likely, the identified new intermediate compound has layered graphite-like structure. Moreover, we show that the described two-temperature synthesis method allows us to produce near 250 g CdGeAs2 product during one run in a horizontal furnace and 500 g in a tilted horizontal furnace with rotated reactor.
Analysis of Phase Separation in Czochralski Grown Single Crystal Ilmenite
NASA Technical Reports Server (NTRS)
Wilkins, R.; Powell, Kirk St. A.; Loregnard, Kieron R.; Lin, Sy-Chyi; Muthusami, Jayakumar; Zhou, Feng; Pandey, R. K.; Brown, Geoff; Hawley, M. E.
1998-01-01
Ilmenite (FeTiOs) is a wide bandgap semiconductor with an energy gap of 2.58 eV. Ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Single crystal ilmenite has been grown from the melt using the Czochralski method. Growth conditions have a profound effect on the microstructure of the samples. Here we present data from a variety of analytical techniques which indicate that some grown crystals exhibit distinct phase separation during growth. This phase separation is apparent for both post-growth annealed and unannealed samples. Under optical microscopy, there appear two distinct areas forming a matrix with an array of dots on order of 5 pm diameter. While appearing bright in the optical micrograph, atomic force microscope (AFM) shows the dots to be shallow pits on the surface. Magnetic force microscope (MFM) shows the dots to be magnetic. Phase identification via electron microprobe analysis (EMPA) indicates two major phases in the unannealed samples and four in the annealed samples, where the dots appear to be almost pure iron. This is consistent with micrographs taken with a scanning probe microscope used in the magnetic force mode. Samples that do not exhibit the phase separation have little or no discernible magnetic structure detectable by the MFM.
Early Developments in Argumentation in Physics.
ERIC Educational Resources Information Center
Bazerman, Charles
An evaluation of four seventeenth and eighteenth century essays on optics revealed early trends in the evolution of scientific articles. The later articles showed a growing tendency to (1) separate practice from pure knowledge, (2) organize information around problems of knowledge and theory rather than around chronological events, (3) emphasize…
Transversely polarized sub-diffraction optical needle with ultra-long depth of focus
NASA Astrophysics Data System (ADS)
Guan, Jian; Lin, Jie; Chen, Chen; Ma, Yuan; Tan, Jiubin; Jin, Peng
2017-12-01
We generated purely transversely polarized sub-diffraction optical needles with ultra-long depth of focus (DOF) by focusing azimuthally polarized (AP) beams that were modulated by a vortex 0-2 π phase plate and binary phase diffraction optical elements (DOEs). The concentric belts' radii of the DOEs were optimized by a hybrid genetic particle swarm optimization (HGPSO) algorithm. For the focusing system with the numerical aperture (NA) of 0.95, an optical needle with the full width at half maximum (FWHM) of 0.40 λ and the DOF of 6.23 λ was generated. Similar optical needles were also generated by binary phase DOEs with different belts. The results demonstrated that the binary phase DOEs could achieve smaller FWHMs and longer DOFs simultaneously. The generated needles were circularly polarized on the z-axis and there were no longitudinally polarized components in the focal fields. The radius fabrication errors of a DOE have little effect on the optical needle produced by itself. The generated optical needles can be applied to the fields of photolithography, high-density optical data storage, microscope imaging and particle trapping.
Fabrication of GaN doped ZnO nanocrystallines by laser ablation.
Gopalakrishnan, N; Shin, B C; Bhuvana, K P; Elanchezhiyan, J; Balasubramanian, T
2008-08-01
Here, we present the fabrication of pure and GaN doped ZnO nanocrystallines on Si(111) substrates by KrF excimer laser. The targets for the ablation have been prepared by conventional ceramic method. The fabricated nanocrystallines have been investigated by X-ray diffraction, photoluminescence and atomic force microscopy. The X-ray diffraction analysis shows that the crystalline size of pure ZnO is 36 nm and it is 41 nm while doped with 0.8 mol% of GaN due to best stoichiometry between Zn and O. Photoluminescence studies reveal that intense deep level emissions have been observed for pure ZnO and it has been suppressed for the GaN doped ZnO structures. The images of atomic force microscope show that the rms surface roughness is 27 nm for pure ZnO and the morphology is improved with decrease in rms roughness, 18 nm with fine crystallines while doped with 1 mol% GaN. The improved structural, optical and morphological properties of ZnO nanocrystalline due to GaN dopant have been discussed in detail.
Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys
Jin, Ke; Zhang, Yanwen; Bei, Hongbin
2015-09-09
In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 10 13 to 5 × 10 15 ions cm –2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. Withmore » continuously increasing the ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Here, under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.« less
Microbial extremophiles from the 2008 Schirmacher Oasis Expedition: preliminary results
NASA Astrophysics Data System (ADS)
Hoover, Richard B.; Pikuta, Elena V.; Townsend, Alisa; Anthony, Joshua; Guisler, Melissa; McDaniel, Jasmine; Bej, Asim; Storrie-Lombardi, Michael
2008-08-01
Among the most interesting targets for Astrobiology research are the polar ice caps and the permafrost of Mars and the ice and liquid water bodies that may lie beneath the frozen crusts of comets, the icy moons of Jupiter (Europa, Io and Ganymede) and Saturn (Titan and Enceladus). The permanently ice-covered lakes of Antarctica, such as Lake Vostok and Lake Untersee, provide some of the best terrestrial analogues for these targets. The 2008 International Tawani Schirmacher Oasis/Lake Untersee Expeditions have been organized to conduct studies of novel microbial extremophiles and investigate the biodiversity of the glaciers and ice-covered lakes of Dronning Maud Land, East Antarctica. This paper describes the preliminary analysis of the anaerobic microbial extremophiles isolated from samples collected during the 2008 International Schirmacher Oasis Antarctica Reconnaissance Expedition. These samples showed great diversity of psychrophlic and psychrotolerant bacteria. Six new anaerobic strains have been isolated in pure cultures and partially characterized. Two of them (strains ARHSd-7G and ARHSd-9G) were isolated from a small tidal pool near the colony of African Penguins Spheniscus demersus. Strain ARHSd-7G was isolated on mineral anaerobic medium with 3 % NaCl, pH 7 and D-glucose, it has motile, vibrion shape cells, and is Gram variable. Strain ARHSd-9G grew on anaerobic, alkaline medium with pH 9 and 1 % NaCl at 3°C. The substrate was D-glucose supplemented with yeast extract (0.05 %). Cells of strain ARHSd-9G had morphology of straight or slightly curved elongated rods and demonstrated unusual optical effects under dark-field visible light microscopy. The cells were spore-forming and Gram positive. From the mat sample collected near Lake Zub, the new strain LZ-3 was isolated in pure culture at 3°C. Strain LZ-3 was anaerobic and grew on 0.5 % NaCl mineral medium with Dglucose as a substrate. The gram positive cells were spore-forming. They exhibited a distinctive morphology of large rods with rounded ends and size 1x10 μm. From the sample of ice sculpted by wind and melting by solar heating, containing many entrained black rocks collected near Lake Podprudnoye the new strain ISLP-22 was isolated in pure culture. The cells of this strain had vibrion shape and were spore-forming and had "baseball bat" shapes). This culture preferred 0.1 % NaCl mineral anaerobic medium and grew rapidly at 3 °C. Currently, all strains are under physiological study and phylogenetic analysis.
Nishizawa, Nozomi; Nishibayashi, Kazuhiro; Munekata, Hiro
2017-02-21
We report the room-temperature electroluminescence (EL) with nearly pure circular polarization (CP) from GaAs-based spin-polarized light-emitting diodes (spin-LEDs). External magnetic fields are not used during device operation. There are two small schemes in the tested spin-LEDs: first, the stripe-laser-like structure that helps intensify the EL light at the cleaved side walls below the spin injector Fe slab, and second, the crystalline AlO x spin-tunnel barrier that ensures electrically stable device operation. The purity of CP is depressively low in the low current density ( J ) region, whereas it increases steeply and reaches close to the pure CP when J > 100 A/cm 2 There, either right- or left-handed CP component is significantly suppressed depending on the direction of magnetization of the spin injector. Spin-dependent reabsorption, spin-induced birefringence, and optical spin-axis conversion are suggested to account for the observed experimental results.
Reliable quantum certification of photonic state preparations
Aolita, Leandro; Gogolin, Christian; Kliesch, Martin; Eisert, Jens
2015-01-01
Quantum technologies promise a variety of exciting applications. Even though impressive progress has been achieved recently, a major bottleneck currently is the lack of practical certification techniques. The challenge consists of ensuring that classically intractable quantum devices perform as expected. Here we present an experimentally friendly and reliable certification tool for photonic quantum technologies: an efficient certification test for experimental preparations of multimode pure Gaussian states, pure non-Gaussian states generated by linear-optical circuits with Fock-basis states of constant boson number as inputs, and pure states generated from the latter class by post-selecting with Fock-basis measurements on ancillary modes. Only classical computing capabilities and homodyne or hetorodyne detection are required. Minimal assumptions are made on the noise or experimental capabilities of the preparation. The method constitutes a step forward in many-body quantum certification, which is ultimately about testing quantum mechanics at large scales. PMID:26577800
Generation of a sub-half-wavelength focal spot with purely transverse spin angular momentum
NASA Astrophysics Data System (ADS)
Hang, Li; Fu, Jian; Yu, Xiaochang; Wang, Ying; Chen, Peifeng
2017-11-01
We theoretically demonstrate that optical focus fields with purely transverse spin angular momentum (SAM) can be obtained when a kind of special incident fields is focused by a high numerical aperture (NA) aplanatic lens (AL). When the incident pupil fields are refracted by an AL, two transverse Cartesian components of the electric fields at the exit pupil plane do not have the same order of sinusoidal or cosinoidal components, resulting in zero longitudinal SAMs of the focal fields. An incident field satisfying above conditions is then proposed. Using the Richard-Wolf vectorial diffraction theory, the energy density and SAM density distributions of the tightly focused beam are calculated and the results clearly validate the proposed theory. In addition, a sub-half-wavelength focal spot with purely transverse SAM can be achieved and a flattop energy density distribution parallel to z-axis can be observed around the maximum energy density point.
Zhao, Jinfang; Xu, Liyuan; Wang, Yongze; Zhao, Xiao; Wang, Jinhua; Garza, Erin; Manow, Ryan; Zhou, Shengde
2013-06-07
Polylactic acid (PLA), a biodegradable polymer, has the potential to replace (at least partially) traditional petroleum-based plastics, minimizing "white pollution". However, cost-effective production of optically pure L-lactic acid is needed to achieve the full potential of PLA. Currently, starch-based glucose is used for L-lactic acid fermentation by lactic acid bacteria. Due to its competition with food resources, an alternative non-food substrate such as cellulosic biomass is needed for L-lactic acid fermentation. Nevertheless, the substrate (sugar stream) derived from cellulosic biomass contains significant amounts of xylose, which is unfermentable by most lactic acid bacteria. However, the microorganisms that do ferment xylose usually carry out heterolactic acid fermentation. As a result, an alternative strain should be developed for homofermentative production of optically pure L-lactic acid using cellulosic biomass. In this study, an ethanologenic Escherichia coli strain, SZ470 (ΔfrdBC ΔldhA ΔackA ΔpflB ΔpdhR ::pflBp6-acEF-lpd ΔmgsA), was reengineered for homofermentative production of L-lactic acid from xylose (1.2 mole xylose = > 2 mole L-lactic acid), by deleting the alcohol dehydrogenase gene (adhE) and integrating the L-lactate dehydrogenase gene (ldhL) of Pediococcus acidilactici. The resulting strain, WL203, was metabolically evolved further through serial transfers in screw-cap tubes containing xylose, resulting in the strain WL204 with improved anaerobic cell growth. When tested in 70 g L-1 xylose fermentation (complex medium), WL204 produced 62 g L-1 L-lactic acid, with a maximum production rate of 1.631 g L-1 h-1 and a yield of 97% based on xylose metabolized. HPLC analysis using a chiral column showed that an L-lactic acid optical purity of 99.5% was achieved by WL204. These results demonstrated that WL204 has the potential for homofermentative production of L-lactic acid using cellulosic biomass derived substrates, which contain a significant amount of xylose.
Doughnut shape atom traps with arbitrary inclination
NASA Astrophysics Data System (ADS)
Masegosa, R. R. Y.; Moya-Cessa, H.; Chavez-Cerda, S.
2006-02-01
Since the invention of magneto-optical trap (MOT), there have been several experimental and theoretical studies of the density distribution in these devices. To the best of our knowledge, only horizontal orbital traps have been observed, perpendicular to the coil axis. In this work we report the observation of distributions of trapped atoms in pure circular orbits without a nucleus whose orbital plane is tilted up to 90 degrees with respect to the horizontal plane. We have used a stabilized time phase optical array in our experiments and conventional equipment used for MOT.
Pure nanodiamonds for levitated optomechanics in vacuum
NASA Astrophysics Data System (ADS)
Frangeskou, A. C.; Rahman, A. T. M. A.; Gines, L.; Mandal, S.; Williams, O. A.; Barker, P. F.; Morley, G. W.
2018-04-01
Optical trapping at high vacuum of a nanodiamond containing a nitrogen vacancy centre would provide a test bed for several new phenomena in fundamental physics. However, the nanodiamonds used so far have absorbed too much of the trapping light, heating them to destruction (above 800 K) except at pressures above ∼10 mbar where air molecules dissipate the excess heat. Here we show that milling diamond of 1000 times greater purity creates nanodiamonds that do not heat up even when the optical intensity is raised above 700 GW m‑2 below 5 mbar of pressure.
De Jonckheere, J; Narbonneau, F; Jeanne, M; Kinet, D; Witt, J; Krebber, K; Paquet, B; Depre, A; Logier, R
2009-01-01
The potential impact of optical fiber sensors embedded into medical textiles for the continuous monitoring of the patient during Magnetic Resonance Imaging is presented. We report on two pure optical sensing technologies for respiratory movements monitoring - a macro bending sensor and a Bragg grating sensor, designed to measure the elongation due to abdominal and thoracic motions during breathing. We demonstrate that the two sensors can successfully sense textile elongation between, 0% and 3%, while maintaining the stretching properties of the textile substrates for a good comfort of the patient.
New Icosahedral Boron Carbide Semiconductors
NASA Astrophysics Data System (ADS)
Echeverria Mora, Elena Maria
Novel semiconductor boron carbide films and boron carbide films doped with aromatic compounds have been investigated and characterized. Most of these semiconductors were formed by plasma enhanced chemical vapor deposition. The aromatic compound additives used, in this thesis, were pyridine (Py), aniline, and diaminobenzene (DAB). As one of the key parameters for semiconducting device functionality is the metal contact and, therefore, the chemical interactions or band bending that may occur at the metal/semiconductor interface, X-ray photoemission spectroscopy has been used to investigate the interaction of gold (Au) with these novel boron carbide-based semiconductors. Both n- and p-type films have been tested and pure boron carbide devices are compared to those containing aromatic compounds. The results show that boron carbide seems to behave differently from other semiconductors, opening a way for new analysis and approaches in device's functionality. By studying the electrical and optical properties of these films, it has been found that samples containing the aromatic compound exhibit an improvement in the electron-hole separation and charge extraction, as well as a decrease in the band gap. The hole carrier lifetimes for each sample were extracted from the capacitance-voltage, C(V), and current-voltage, I(V), curves. Additionally, devices, with boron carbide with the addition of pyridine, exhibited better collection of neutron capture generated pulses at ZERO applied bias, compared to the pure boron carbide samples. This is consistent with the longer carrier lifetimes estimated for these films. The I-V curves, as a function of external magnetic field, of the pure boron carbide films and films containing DAB demonstrate that significant room temperature negative magneto-resistance (> 100% for pure samples, and > 50% for samples containing DAB) is possible in the resulting dielectric thin films. Inclusion of DAB is not essential for significant negative magneto-resistance, however, these results suggest practical device applications, especially as such effects are manifested in nanoscale films with facile fabrication. Overall, the greater negative magneto-resistance, when undoped with an aromatic, suggests a material with more defects and is consistent with a shorter carrier lifetime.
The pure rotational spectrum of CaNC
NASA Astrophysics Data System (ADS)
Scurlock, C. T.; Steimle, T. C.; Suenram, R. D.; Lovas, F. J.
1994-03-01
The pure rotational spectrum of calcium isocyanide, CaNC, in its (0,0,0) X 2Σ+ vibronic state was measured using a combination of Fourier transform microwave (FTMW) and pump/probe microwave-optical double resonance (PPMODR) spectroscopy. Gaseous CaNC was generated using a laser ablation/supersonic expansion source. The determined spectroscopic parameters are (in MHz), B=4048.754 332 (29); γ=18.055 06 (23); bF=12.481 49 (93); c=2.0735 (14); and eQq0=-2.6974 (11). The hyperfine parameters are qualitatively interpreted in terms of a plausible molecular orbital descriptions and a comparison with the alkaline earth monohalides and the alkali monocyanides is given.
NASA Astrophysics Data System (ADS)
Menzel, Dorothee; Mews, Mathias; Rech, Bernd; Korte, Lars
2018-01-01
The electronic structure of thermally co-evaporated indium-tungsten-oxide films is investigated. The stoichiometry is varied from pure tungsten oxide to pure indium oxide, and the band alignment at the indium-tungsten-oxide/crystalline silicon heterointerface is monitored. Using in-system photoelectron spectroscopy, optical spectroscopy, and surface photovoltage measurements, we show that the work function of indium-tungsten-oxide continuously decreases from 6.3 eV for tungsten oxide to 4.3 eV for indium oxide, with a concomitant decrease in the band bending at the hetero interface to crystalline silicon than indium oxide.
NASA Astrophysics Data System (ADS)
Zha, Xinwei; Da, Zhang; Ahmed, Irfan; Zhang, Dan; Zhang, Yanpeng
2018-02-01
In this paper, we determine the complementarity relations for pure quantum states of N qubits by presenting the definition of local and non-local forms. By comparing the entanglement monogamy equality proposed by Coffman, Kundu, and Wootters, we prove that there exist strict monogamy laws for quantum correlations in all many-qubit systems. Further, the proper form of general entanglement monogamy equality for arbitrary quantum states is found with the characterization of total quantum correlation of qubits. These results may open a new window for multi-qubit entanglement.
Microstructures and Dry Sliding Wear Resistance of the Laser Ceramics Composite Coating on Pure Ti
NASA Astrophysics Data System (ADS)
Liu, Peng; Zhang, Yuanbin; Luo, Hui; Huo, Yushuang
2012-06-01
In this study, Al-Ti-Co was used to improve the surface performance of pure Ti. Laser cladding is an important surface modification technique, which can be used to improve the surface performance of pure Ti. Laser cladding of the Al-Ti-Co + TiB2 pre-placed powders on pure Ti can form ceramics reinforced the composite coating, which improved the wear resistance of the substrate. Characteristics of the composite coating were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and wear tests. And the laser-cladded coating can also have major dilution from the substrate. Due to the action of the fine grain strengthening and the phase constituent, the wear resistance and microhardness of pure Ti surface were greatly improved.
Polarizing Beam Splitter: A New Approach Based on Transformation Optics
NASA Astrophysics Data System (ADS)
Mueller, Jonhatan; Wegener, Martin
Standard optical elements (e.g. lenses, prisms) are mostly designed of piecewise homogeneous and isotropic dielectrics. However, in theory one has far more possibilities to influence electromagnetic waves, namely all the components of the permittivity and permeability tensors. In the past few years, on the one hand, new micro fabrication methods allowed for new freedom in controlling of the optical parameters using so called artificial metamaterials. On the other hand, the theory of transformation optics has given a somewhat intuitive approach for the design of such structures. The most popular feature of this kind is certainly optical cloaking (i.e. [1,2]). However, the full capabilities of other transformation optical devices are far from being fully explored. In my work, I focused on pure dielectric structures in a non-resonant and therefore non-lossy regime. Although the relative permittivity one can achieve this way is limited by the available natural dielectrics, a broad spectrum of features can be realized.
NASA Astrophysics Data System (ADS)
Song, Yufeng; Liang, Zhiming; Jiang, Xiantao; Chen, Yunxiang; Li, Zhongjun; Lu, Lu; Ge, Yanqi; Wang, Ke; Zheng, Jilin; Lu, Shunbin; Ji, Jianhua; Zhang, Han
2017-12-01
Antimonene, a new type of mono/few-layer two-dimensional (2D) mono-elemental material purely consisting of antimony similar as graphene and phosphorene, has been theoretically predicted with excellent optical response and enhanced stability. Herein, we experimentally investigated the broadband nonlinear optical response of highly stable few-layer antimonene (FLA) by performing an open-aperture Z-scan laser measurement. Thanks to the direct bandgap and resonant absorption at the telecommunication band, we demonstrated the feasibility of FLA-decorated microfiber not only as an optical saturable absorber for ultrafast photonics operation, but also as a stable all-optical pulse thresholder that can effectively suppress the transmission noise, boost the signal-to-noise ratio (SNR), and reshape the deteriorated input signal. Our findings, as the first prototypic device of absorption of antimonene, might facilitate the development of antimonene-based optical communication technologies towards high stability and practical applications in the future.
Combined processing of lead concentrates
NASA Astrophysics Data System (ADS)
Kubasov, V. L.; Paretskii, V. M.; Sidorin, G. N.; Travkin, V. F.
2013-06-01
A combined scheme of processing of lead concentrates with the production of pure metallic lead and the important components containing in these concentrates is considered. This scheme includes sulfating roasting of the lead concentrates and two-stage leaching of the formed cinder with the formation of a sulfate solution and lead sulfate. When transformed into a carbonate form, lead sulfate is used for the production of pure metallic lead. Silver, indium, copper, cadmium, nickel, cobalt, and other important components are separately extracted from a solution. At the last stage, zinc is extracted by either extraction followed by electrolytic extraction of a metal or the return of the forming solution of sulfuric acid to cinder leaching.
Electro-optic component mounting device
Gruchalla, M.E.
1994-09-13
A technique is provided for integrally mounting a device such as an electro-optic device in a transmission line to avoid series resonant effects. A center conductor of the transmission line has an aperture formed therein for receiving the device. The aperture splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface which is spaced apart from the center conductor with a dielectric material. One set of electrodes formed on the surface of the electro-optic device is directly connected to the center conductor and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface. The electrodes formed on the surface of the electro-optic device are formed on curved sections of the surface of the device to mate with correspondingly shaped electrodes on the conductor and ground surface to provide a uniform electric field across the electro-optic device. The center conductor includes a passage formed therein for passage of optical signals to an electro-optic device. 10 figs.
Vawter, G Allen [Corrales, NM
2010-08-31
An optical data latch is formed on a substrate from a pair of optical logic gates in a cross-coupled arrangement in which optical waveguides are used to couple an output of each gate to an photodetector input of the other gate. This provides an optical bi-stability which can be used to store a bit of optical information in the latch. Each optical logic gate, which can be an optical NOT gate (i.e. an optical inverter) or an optical NOR gate, includes a waveguide photodetector electrically connected in series with a waveguide electroabsorption modulator. The optical data latch can be formed on a III-V compound semiconductor substrate (e.g. an InP or GaAs substrate) from III-V compound semiconductor layers. A number of optical data latches can be cascaded to form a clocked optical data shift register.
Broadband optical radiation detector
NASA Technical Reports Server (NTRS)
Gupta, A.; Hong, S. D.; Moacanin, J. (Inventor)
1981-01-01
A method and apparatus for detecting optical radiation by optically monitoring temperature changes in a microvolume caused by absorption of the optical radiation to be detected is described. More specifically, a thermal lens forming material is provided which has first and second opposite, substantially parallel surfaces. A reflective coating is formed on the first surface, and a radiation absorbing coating is formed on the reflective coating. Chopped, incoming optical radiation to be detected is directed to irradiate a small portion of the radiation absorbing coating. Heat generated in this small area is conducted to the lens forming material through the reflective coating, thereby raising the temperature of a small portion of the lens forming material and causing a thermal lens to be formed therein.
Advanced Secure Optical Image Processing for Communications
NASA Astrophysics Data System (ADS)
Al Falou, Ayman
2018-04-01
New image processing tools and data-processing network systems have considerably increased the volume of transmitted information such as 2D and 3D images with high resolution. Thus, more complex networks and long processing times become necessary, and high image quality and transmission speeds are requested for an increasing number of applications. To satisfy these two requests, several either numerical or optical solutions were offered separately. This book explores both alternatives and describes research works that are converging towards optical/numerical hybrid solutions for high volume signal and image processing and transmission. Without being limited to hybrid approaches, the latter are particularly investigated in this book in the purpose of combining the advantages of both techniques. Additionally, pure numerical or optical solutions are also considered since they emphasize the advantages of one of the two approaches separately.
NASA Astrophysics Data System (ADS)
Zulina, Natalia A.; Pavlovetc, Ilia M.; Baranov, Mikhail A.; Denisyuk, Igor Yu.
2017-03-01
In this work Ag nanoparticles (NPs) stable colloid solution were prepared by laser ablation of chemically pure silver rod in liquid monomer isodecyl acrylate (IDA). Sizes of obtained nanoparticles were determined by scanning electron microscope and vary from 27 to 120 nm. Nanocomposites films were prepared from obtained stable colloid solution of AgNPs by photocuring. For aliphatic polymer IDA long molecules cross-linking Diurethane dimethacrylate, 1,6-Hexandiol diacrylate and Tetra (ethylene glycol) diacrylate were used. Prepared nanomaterials exhibit strong third-order nonlinear optical responses, which was estimated by using z-scan technique. The third-order nonlinear optical coefficients of the studied nanocomposites were found to be up to Reχ(3)=1.31×10-5 (esu) and Imχ(3)=7.64×10-5 (esu).
Optical filter including a sub-wavelength periodic structure and method of making
Kaushik, Sumanth; Stallard, Brian R.
1998-01-01
An optical filter includes a dielectric layer formed within a resonant optical cavity, with the dielectric layer having formed therein a sub-wavelength periodic structure to define, at least in part, a wavelength for transmission of light through the resonant optical cavity. The sub-wavelength periodic structure can be formed either by removing material from the dielectric layer (e.g. by etching through an electron-beam defined mask), or by altering the composition of the layer (e.g. by ion implantation). Different portions of the dielectric layer can be patterned to form one or more optical interference filter elements having different light transmission wavelengths so that the optical filter can filter incident light according to wavelength and/or polarization. For some embodiments, the optical filter can include a detector element in optical alignment with each optical interference filter element to quantify or measure the filtered light for analysis thereof. The optical filter has applications to spectrometry, colorimetry, and chemical sensing.
Optical filter including a sub-wavelength periodic structure and method of making
Kaushik, S.; Stallard, B.R.
1998-03-10
An optical filter includes a dielectric layer formed within a resonant optical cavity, with the dielectric layer having formed therein a sub-wavelength periodic structure to define, at least in part, a wavelength for transmission of light through the resonant optical cavity. The sub-wavelength periodic structure can be formed either by removing material from the dielectric layer (e.g. by etching through an electron-beam defined mask), or by altering the composition of the layer (e.g. by ion implantation). Different portions of the dielectric layer can be patterned to form one or more optical interference filter elements having different light transmission wavelengths so that the optical filter can filter incident light according to wavelength and/or polarization. For some embodiments, the optical filter can include a detector element in optical alignment with each optical interference filter element to quantify or measure the filtered light for analysis thereof. The optical filter has applications to spectrometry, colorimetry, and chemical sensing. 17 figs.
Mode entanglement of Gaussian fermionic states
NASA Astrophysics Data System (ADS)
Spee, C.; Schwaiger, K.; Giedke, G.; Kraus, B.
2018-04-01
We investigate the entanglement of n -mode n -partite Gaussian fermionic states (GFS). First, we identify a reasonable definition of separability for GFS and derive a standard form for mixed states, to which any state can be mapped via Gaussian local unitaries (GLU). As the standard form is unique, two GFS are equivalent under GLU if and only if their standard forms coincide. Then, we investigate the important class of local operations assisted by classical communication (LOCC). These are central in entanglement theory as they allow one to partially order the entanglement contained in states. We show, however, that there are no nontrivial Gaussian LOCC (GLOCC) among pure n -partite (fully entangled) states. That is, any such GLOCC transformation can also be accomplished via GLU. To obtain further insight into the entanglement properties of such GFS, we investigate the richer class of Gaussian stochastic local operations assisted by classical communication (SLOCC). We characterize Gaussian SLOCC classes of pure n -mode n -partite states and derive them explicitly for few-mode states. Furthermore, we consider certain fermionic LOCC and show how to identify the maximally entangled set of pure n -mode n -partite GFS, i.e., the minimal set of states having the property that any other state can be obtained from one state inside this set via fermionic LOCC. We generalize these findings also to the pure m -mode n -partite (for m >n ) case.
Study of Sn and SnAgCu Solders Wetting Reaction on Ni/Pd/Au Substrates
NASA Astrophysics Data System (ADS)
Liu, C. Y.; Wei, Y. S.; Lin, E. J.; Hsu, Y. C.; Tang, Y. K.
2016-12-01
Wetting reactions of pure Sn and Sn-Ag-Cu solder balls on Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates were investigated. The (Au, Pd)Sn4 phase formed in the initial interfacial reaction between pure Sn and Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates. Then, the initially formed (Au, Pd)Sn4 compound layer either dissolved or spalled into the molten Sn solder with 3 s of reflowing. The exposed Ni under-layer reacted with Sn solder and formed an interfacial Ni3Sn4 compound. We did not observe spalling compound in the Sn-Ag-Cu case, either on the thin Au (100 Å) or the thick Au (1000 Å) substrates. This implies that the Cu content in the Sn-Ag-Cu solder can efficiently suppress the spalling effect and really stabilize the interfacial layer. Sn-Ag-Cu solder has a better wetting than that of the pure Sn solder, regardless of the Au thickness of the Au/Pd/Ni substrate. For both cases of pure Sn and Sn-Ag-Cu, the initial wetting (<3-s reflowing) on the thin Au (100 Å) substrate is better than that of the thick Au (1000 Å) substrate. Over 3-s reflowing, the wetting on the thicker Au layer (1000 Å) substrate becomes better than the wetting on the thinner Au layer (100 Å) substrate.
Photoacoustic tomography guided diffuse optical tomography for small-animal model
NASA Astrophysics Data System (ADS)
Wang, Yihan; Gao, Feng; Wan, Wenbo; Zhang, Yan; Li, Jiao
2015-03-01
Diffuse optical tomography (DOT) is a biomedical imaging technology for noninvasive visualization of spatial variation about the optical properties of tissue, which can be applied to in vivo small-animal disease model. However, traditional DOT suffers low spatial resolution due to tissue scattering. To overcome this intrinsic shortcoming, multi-modal approaches that incorporate DOT with other imaging techniques have been intensively investigated, where a priori information provided by the other modalities is normally used to reasonably regularize the inverse problem of DOT. Nevertheless, these approaches usually consider the anatomical structure, which is different from the optical structure. Photoacoustic tomography (PAT) is an emerging imaging modality that is particularly useful for visualizing lightabsorbing structures embedded in soft tissue with higher spatial resolution compared with pure optical imaging. Thus, we present a PAT-guided DOT approach, to obtain the location a priori information of optical structure provided by PAT first, and then guide DOT to reconstruct the optical parameters quantitatively. The results of reconstruction of phantom experiments demonstrate that both quantification and spatial resolution of DOT could be highly improved by the regularization of feasible-region information provided by PAT.
NASA Technical Reports Server (NTRS)
Delgado, Jesus; Chullen, Cinda; Mendoza, Edgar
2014-01-01
Advanced space life support systems require lightweight, low-power, durable sensors for monitoring critical gas components. A luminescence-based optical flow-through cell to monitor carbon dioxide, oxygen, and humidity has been developed and was demonstrated using bench top instrumentation under environmental conditions relevant to portable life support systems, including initially pure oxygen atmosphere, pressure range from 3.5 to 14.7 psi, temperature range from 50 F to 150 F, and humidity from dry to 100% RH and under liquid water saturation. This paper presents the first compact readout unit for these optical sensors, designed for the volume, power, and weight restrictions of a spacesuit portable Life support system and the analytical characterization of the optical sensors interrogated by the novel optoelectronic system. Trace gas contaminants in a space suit, originating from hardware and material off-gassing and crew member metabolism, are from many chemical families. The result is a gas mix much more complex than the pure oxygen fed into the spacesuit, which may interfere with gas sensor readings. The paper also presents an evaluation of optical sensor performance when exposed to the most significant trace gases reported to be found in spacesuits. The studies were conducted with the spacecraft maximum allowable concentrations for those trace gases and the calculated 8-hr. concentrations resulting from having no trace contaminant control system in the ventilation loop. Finally, a profile of temperature, pressure, humidity, and gas composition for a typical EVA mission has been defined, and the performance of sensors operated repeatedly under simulated EVA mission conditions has been studied.
NASA Astrophysics Data System (ADS)
Dygert, Nick; Lin, Jung-Fu; Marshall, Edward W.; Kono, Yoshio; Gardner, James E.
2017-11-01
Much of the lunar crust is monomineralic, comprising >98% plagioclase. The prevailing model argues the crust accumulated as plagioclase floated to the surface of a solidifying lunar magma ocean (LMO). Whether >98% pure anorthosites can form in a flotation scenario is debated. An important determinant of the efficiency of plagioclase fractionation is the viscosity of the LMO liquid, which was unconstrained. Here we present results from new experiments conducted on a late LMO-relevant ferrobasaltic melt. The liquid has an exceptionally low viscosity of 0.22-0.19+0.11 to 1.45-0.82+0.46 Pa s at experimental conditions (1,300-1,600°C; 0.1-4.4 GPa) and can be modeled by an Arrhenius relation. Extrapolating to LMO-relevant temperatures, our analysis suggests a low viscosity LMO would form a stratified flotation crust, with the oldest units containing a mafic component and with very pure younger units. Old, impure crust may have been buried by lower crustal diapirs of pure anorthosite in a serial magmatism scenario.
Quantum Optical Aspects of Topological Phases, Such as Berry’s Phase
1993-11-10
by Franson, and by Home, Shimosy and Zeilinger , in two recent Physical Review Leuers (62, 2205 and 2209 (1989)), in order to observe a purely quantal...interferometer. We also set up a two-photon interferometer, similar to the ones suggested by Franson, and by Home, Shimony and Zeilinger , in two
Crystal Growth of New Functional Materials for Electro-Optical Applications
2001-01-01
Ga2O3 single crystals have been grown by the floating zone technique as promising transparent conductive oxides. 1. INTRODUCTION The important role of...through the addition of dopants while preserving the transparency of the pure B- Ga2O3 makes of this material a substitutive candidate for transparent
Electronic and optical properties of hydrogenated silicon carbide nanosheets: A DFT study
NASA Astrophysics Data System (ADS)
Delavari, Najmeh; Jafari, Mahmoud
2018-07-01
Density-functional theory has been applied to investigate the effect of hydrogen adsorption on silicon carbide (SiC) nanosheets, considering six, different configurations for adsorption process. The chair-like configuration is found to be the most stable because of the adsorption of hydrogen atoms by silicon and carbon atoms on the opposite sides. The pure and hydrogenated SiC monolayers are also found to be sp2- and sp3-hybridized, respectively. The binding energy of the hydrogen atoms in the chair-like structure is calculated about -3.845 eV, implying the system to be much more stable than the same study based on graphene, though with nearly the same electronic properties, strongly proposing the SiC monolayer to be a promising material for next generation hydrogen storage. Optical properties presented in terms of the real and the imaginary parts of the dielectric function also demonstrate a decrease in the dielectric constant and the static refractive index due to hydrogen adsorption with the Plasmon frequency of the chair-like, hydrogenated monolayer, occurring at higher energies compared to that of the pure one.
Chen, Tingfang; Wang, Aiji; Kong, Lingrui; Li, Yongliang; Wang, Yinshu
2016-04-01
Pure and Cl- incorporated ZnO nanofilms were grown by the ultrasonic spray-assisted chemical vapor deposition (CVD) method. The properties of the nanofilms were investigated. The effects of growth temperature and Cl- concentration on the crystal structure, morphology, and optical properties of the nanofilms were studied. Temperature plays an important role in the growth mode and morphology of the pure nanofilms. Preferential growth along the c-axis occurs only at modulating temperature. Lower temperature suppresses the preferential growth, and higher temperature suppresses the growth of the nanofilms. The morphologies of the nanofilms change from lamellar and spherical structures into hexagonal platelets, then into separated nanoparticles with an increase in the temperature. Incorporating Cl- results in the lattice contracting gradually along with c-axis. Grains composing the nanofilms refine, and the optical gap broadens with increasing of Cl- concentration in growth precursor. Incorporating Cl- could reduce oxygen vacancies and passivate the non-irradiated centers, thus enhancing the UV emission and suppressing the visible emission of ZnO nanofilms.
Entropically Driven Self-Assembly of Colloidal Crystals on Templates in Space
NASA Technical Reports Server (NTRS)
Yodh, Arjun G.; Zimmerli, Gregory A.
2002-01-01
These experiments aim to create new colloidal crystalline materials, to study the assembly and thermodynamics of these materials, to measure the optical properties of these materials. and to fix the resulting structures so that they can be brought back and studied on earth. In microgravity, the elimination of particle sedimentation effects creates a purely "thermodynamic" environment for colloidal suspensions wherein particle size, volume fraction, and interparticle interactions are the primary determinants of the assembled structures. We will control the colloidal assembly process using attractive, entropic particle interactions brought about by the depletion effect. By using attractive interactions for colloidal assembly we create conditions for growth that resemble those associated with "conventional" microscopic systems such as atoms and molecules. This approach differs qualitatively from the more common "space-filling" mode of colloidal crystal growth that is driven purely by packing constraints. It is anticipated that at least some of the solidified structures will survive reentry to earth's gravitational field, and that their optical, magnetic, and electrical properties can then be studied in detail upon return.
Enantioselective behaviour of the herbicide fluazifop-butyl in vegetables and soil.
Qi, Yanli; Liu, Donghui; Liu, Chang; Liang, Yiran; Zhan, Jing; Zhou, Zhiqiang; Wang, Peng
2017-04-15
The enantioselective dissipation of the enantiomers of fluazifop-butyl in tomato, cucumber, pakchoi, rape and soil under field condition was investigated to elucidate the enantioselective environmental behaviours and chiral stability of the optical pure product. Fluazifop, the major chiral metabolite of fluazifop-butyl, was also detected. Fluazifop-butyl dissipated rapidly in the vegetables and soil with the half-lives of the enantiomers ranging from 1.62 to 2.84days. Enantioselective degradations of fluazifop-butyl were found. In tomato and cucumber, S-fluazifop-butyl dissipated faster than R-enantiomer, while R-fluazifop-butyl showed a faster degradation in pakchoi, rape and soil. Fluazifop was found almost immediately after the application of fluazifop-butyl and had relatively longer persistent time. When the optical pure product fluazifop-P-butyl was applied, rapid degradation to R-fluazifop was found with half-lives from 1.24 to 2.28days, and no S-fluazifop-butyl or S-fluazifop was detected showing the herbicidally active fluazifop-P-butyl and R-fluazifop were configurationally stable. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neu, Anna-Katrin; Pleissner, Daniel; Mehlmann, Kerstin; Schneider, Roland; Puerta-Quintero, Gloria Inés; Venus, Joachim
2016-07-01
In this study, mucilage, a residue from coffee production, was investigated as substrate in fermentative l(+)-lactic acid production. Mucilage was provided as liquid suspension consisting glucose, galactose, fructose, xylose and sucrose as free sugars (up to 60gL(-1)), and used directly as medium in Bacillus coagulans batch fermentations carried out at 2 and 50L scales. Using mucilage and 5gL(-1) yeast extract as additional nitrogen source, more than 40gL(-1) lactic acid was obtained. Productivity and yield were 4-5gL(-1)h(-1) and 0.70-0.77g lactic acid per g of free sugars, respectively, irrespective the scale. Similar yield was found when no yeast extract was supplied, the productivity, however, was 1.5gL(-1)h(-1). Down-stream processing of culture broth, including filtration, electrodialysis, ion exchange chromatography and distillation, resulted in a pure lactic acid formulation containing 930gL(-1)l(+)-lactic acid. Optical purity was 99.8%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Yilong; Xu, Yongkai; Zhang, Yun; Sun, Aijun; Hu, Yunfeng
2018-06-01
The two enantiomers of ethyl 3-hydroxybutyrate are important intermediates for the synthesis of a great variety of valuable chiral drugs. The preparation of chiral drug intermediates through kinetic resolution reactions catalyzed by esterases/lipases has been demonstrated to be an efficient and environmentally friendly method. We previously functionally characterized microbial esterase PHE21 and used PHE21 as a biocatalyst to generate optically pure ethyl (S)-3-hydroxybutyrate. Herein, we also functionally characterized one novel salt-tolerant microbial esterase WDEst17 from the genome of Dactylosporangium aurantiacum subsp. Hamdenensis NRRL 18085. Esterase WDEst17 was further developed as an efficient biocatalyst to generate (R)-3-hydroxybutyrate, an important chiral drug intermediate, with the enantiomeric excess being 99% and the conversion rate being 65.05%, respectively, after process optimization. Notably, the enantio-selectivity of esterase WDEst17 was opposite than that of esterase PHE21. The identification of esterases WDEst17 and PHE21 through genome mining of microorganisms provides useful biocatalysts for the preparation of valuable chiral drug intermediates. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ramazanov, M. A.; Imamaliyev, A. R.; Humbatov, Sh. A.; Agamaliev, Z. A.
2018-02-01
The effect of submicron ferroelectric BaTiO3 particles on the dielectric and electro-optical properties of the smectic-A liquid crystal (LC) with a high negative dielectric anisotropy is investigated. It is shown that the addition of BaTiO3 particles with a weight amount of 1% reduces insignificantly the transverse dielectric permittivity component ɛ ⊥ of, but significantly increases the longitudinal dielectric permittivity component ɛ // of the smectic-A LC. As a result, the anisotropy of the dielectric permittivity Δɛ = ɛ // - ɛ ⊥ of the smectic-A LC decreases. The addition of BaTiO3 particles shifts the dispersion ɛ ⊥ toward lower frequencies. Both components of the electrical conductivity of LC colloid + BaTiO3 are an order of magnitude higher than of the pure LC. The threshold voltage of the homeotropic-planar transition of the colloid is twice smaller, and its velocity is 6 times higher in comparison with the pure LC. A simple model explaining qualitatively all results obtained is presented.
Absorption Amelioration of Amorphous Si Film by Introducing Metal Silicide Nanoparticles.
Sun, Hui; Wu, Hsuan-Chung; Chen, Sheng-Chi; Ma Lee, Che-Wei; Wang, Xin
2017-12-01
Amorphous Si (a-Si) films with metal silicide are expected to enhance the absorption ability of pure a-Si films. In this present study, NiSi (20 nm)/Si (40 nm) and AlSi (20 nm)/Si (40 nm) bilayer thin films are deposited through radio frequency (RF) sputtering at room temperature. The influence of the film's composition and the annealing temperature on the film's optical absorption is investigated. The results show that all the NiSi/Si films and AlSi/Si films possess higher absorption ability compared to a pure a-Si film (60 nm). After annealing from 400 to 600 °C under vacuum for 1 h, the Si layer remains amorphous in both NiSi/Si films and AlSi/Si films, while the NiSi layer crystallizes into NiSi 2 phase, whereas Al atoms diffuse through the whole film during the annealing process. Consequently, with increasing the annealing temperature, the optical absorption of NiSi/Si films increases, while that of AlSi/Si films obviously degrades.
Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Zendo, Takeshi; Sakai, Kenji; Sonomoto, Kenji
2015-01-01
Production of optically pure lactic acid from lignocellulosic material for commercial purposes is hampered by several difficulties, including heterofermentation of pentose sugars and high energy consumption by mesophilic lactic acid bacteria. Here, we report a novel lactic acid bacterium, strain QU 50, that has the potential to produce optically pure l-lactic acid (≥99.2%) in a homofermentative manner from xylose under thermophilic conditions. Strain QU 50 was isolated from Egyptian fertile soil and identified as Enterococcus faecium QU 50 by analyzing its sugar fermentation pattern and 16S rRNA gene sequence. Enterococcus faecium QU 50 fermented xylose efficiently to produce lactic acid over wide pH (6.0-10.0) and temperature ranges (30-52°C), with a pH of 6.5 and temperature of 50°C being optimal. To our knowledge, this is the first report of homofermentative lactic acid production from xylose by a thermophilic lactic acid bacterium. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Analysis of pure and malachite green doped polysulfone sample using FT-IR technique
NASA Astrophysics Data System (ADS)
Nayak, Rashmi J.; Khare, P. K.; Nayak, J. G.
2018-05-01
The sample of pure and malachite green doped Polysulfone in the form of foil was prepared by isothermal immersion technique. For the preparation of pure sample 4 gm of Polysulfone was dissolved in 50 ml of Dimethyl farmamide (DMF) solvent, while for the preparation of doped sample 10 mg, 50 mg and 100 mg Malachite Green was mixed with 4 gm of Polysulfone respectively. For the study of structural characterization of these pure and doped sample, Fourier Transform Infra-Red Spectroscopy (FT-IR) technique was used. This study shows that the intensity of transmittance decreases as the ratio of doping increases in pure polysulfone. The reduction in intensity of transmittance is clearly apparent in the present case more over the bands were broader which indicates towards charge transfer interaction between the donar and acceptor molecule.
Optical beam forming techniques for phased array antennas
NASA Technical Reports Server (NTRS)
Wu, Te-Kao; Chandler, C.
1993-01-01
Conventional phased array antennas using waveguide or coax for signal distribution are impractical for large scale implementation on satellites or spacecraft because they exhibit prohibitively large system size, heavy weight, high attenuation loss, limited bandwidth, sensitivity to electromagnetic interference (EMI) temperature drifts and phase instability. However, optical beam forming systems are smaller, lighter, and more flexible. Three optical beam forming techniques are identified as applicable to large spaceborne phased array antennas. They are (1) the optical fiber replacement of conventional RF phased array distribution and control components, (2) spatial beam forming, and (3) optical beam splitting with integrated quasi-optical components. The optical fiber replacement and the spatial beam forming approaches were pursued by many organizations. Two new optical beam forming architectures are presented. Both architectures involve monolithic integration of the antenna radiating elements with quasi-optical grid detector arrays. The advantages of the grid detector array in the optical process are the higher power handling capability and the dynamic range. One architecture involves a modified version of the original spatial beam forming approach. The basic difference is the spatial light modulator (SLM) device for controlling the aperture field distribution. The original liquid crystal light valve SLM is replaced by an optical shuffling SLM, which was demonstrated for the 'smart pixel' technology. The advantages are the capability of generating the agile beams of a phased array antenna and to provide simultaneous transmit and receive functions. The second architecture considered is the optical beam splitting approach. This architecture involves an alternative amplitude control for each antenna element with an optical beam power divider comprised of mirrors and beam splitters. It also implements the quasi-optical grid phase shifter for phase control and grid amplifier for RF power. The advantages are no SLM is required for this approach, and the complete antenna system is capable of full monolithic integration.
Electro-optic component mounting device
Gruchalla, Michael E.
1994-01-01
A technique is provided for integrally mounting a device such as an electro-optic device (50) in a transmission line to avoid series resonant effects. A center conductor (52) of the transmission line has an aperture (58) formed therein for receiving the device (50). The aperture (58) splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface (54), which is spaced apart from the center conductor with a dielectric material (56). One set of electrodes formed on the surface of the electro-optic device (50) is directly connected to the center conductor 52 and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface (54). The electrodes formed on the surface of the electro-optic device are formed on curved sections of the surface of the device to mate with correspondingly shaped electrodes on the conductor and ground surface to provide a uniform electric field across the electro-optic device. The center conductor includes a passage ( 60) formed therein for passage of optical signals to an electro-optic device.
Powerful radiative jets in supercritical accretion discs around non-spinning black holes
NASA Astrophysics Data System (ADS)
Sądowski, Aleksander; Narayan, Ramesh
2015-11-01
We describe a set of simulations of supercritical accretion on to a non-rotating supermassive black hole (BH). The accretion flow takes the form of a geometrically thick disc with twin low-density funnels around the rotation axis. For accretion rates {gtrsim } 10 dot{M}_Edd, there is sufficient gas in the funnel to make this region optically thick. Radiation from the disc first flows into the funnel, after which it accelerates the optically thick funnel gas along the axis. The resulting jet is baryon loaded and has a terminal density-weighted velocity ≈0.3c. Much of the radiative luminosity is converted into kinetic energy by the time the escaping gas becomes optically thin. These jets are not powered by BHrotation or magnetic driving, but purely by radiation. Their characteristic beaming angle is ˜0.2 rad. For an observer viewing down the axis, the isotropic equivalent luminosity of total energy is as much as 1048 erg s- 1 for a 107 M⊙ BH accreting at 103 Eddington. Therefore, energetically, the simulated jets are consistent with observations of the most powerful tidal disruption events, e.g. Swift J1644. The jet velocity is, however, too low to match the Lorentz factor γ > 2 inferred in J1644. There is no such conflict in the case of other tidal disruption events. Since favourably oriented observers see isotropic equivalent luminosities that are highly super-Eddington, the simulated models can explain observations of ultraluminous X-ray sources, at least in terms of luminosity and energetics, without requiring intermediate-mass BHs.
Compositional analysis of projectile residues on LDEF instrument AO187-1
NASA Technical Reports Server (NTRS)
Bernhard, Ronald P.; Horz, F.
1992-01-01
Impact craters greater than 30 microns and associated projectile residues were analyzed by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Analysis (EDXA). Objectives were to analyze a statistically significant number of projectiles to evaluate their chemical variability and possible clustering into discrete particle types. Bay A11 exposed six collector surfaces of anodized 1100-T4 (greater than 99 percent pure) aluminum sheets, 0.32 cm thick, yielding an exposed surface area of 1.1 sq. m. Four of the six panels have been retained at JSC, and were optically scanned, one (A11E00E) was prepared for SEM/EDX analysis. Bay A03 was occupied by high purity (99.99 percent) gold sheets, 0.5 mm thick, yielding an exposed surface area of 0.85 sq. m. Sample processing included the optical scanning (6X), labeling, and dislodging (by a punch-die device) of each individual impact greater than 75 microns for the aluminum and 30 microns for the gold. The 209 craters were dislodged form A11E00E, having crater diameters up to 3500 microns. Optical examination of the gold surfaces detected 238 craters, 198 of which were retained at JSC and analyzed via SEM/EDX. The analytical procedures included maximizing the geometric efficiency (take-off angles), using relatively long count times (500-1000 sec) and sufficiently high accelerating currents (25-30Kev). Despite diligent examination, a large number of craters did not exhibit measurable signals above background. Detectable resides were classified as either micrometeoritic or as man-made debris.
Liu, Shu-Juan; Chen, Yang; Xu, Wen-Juan; Zhao, Qiang; Huang, Wei
2012-04-13
Polymers containing transition-metal complexes exhibit excellent optical and electronic properties, which are different from those of polymers with a pure organic skeleton and combine the advantages of both polymers and metal complexes. Hence, research about this class of polymers has attracted more and more interest in recent years. Up to now, a number of novel polymers containing transition-metal complexes have been exploited, and significant advances in their optical and electronic applications have been achieved. In this article, we summarize some new research trends in the applications of this important class of optoelectronic polymers, such as chemo/biosensors, electronic memory devices and photovoltaic devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Cárdenas, M. C.; Rodríguez Gómez, J.
2011-11-01
PANIC, the PAnoramic Near Infrared Camera, is a new instrument for Calar Alto Observatory (CAHA) is a wide-field infraredimager for the CAHA 2.2 m and 3.5 m telescopes. The optics is a folded single optical train, pure lens optics, with a pixel scale of 0.45 arcsec/pixel (18 microns) at the 2.2 m telescope and 0.23 arcsec/pixel at the 3.5 m. A mosaic of four Hawaii-2RG detectorsprovides a field of view (FOV) of 0.5x0.5 degrees and 0.25x0.25 degrees, respectively. It will cover the photometric bandsfrom Z to K_s (0.8 to 2.5 microns) with a low thermal background due to cold stops. Here we present the current status of the project.
Limit on Excitation and Stabilization of Atoms in Intense Optical Laser Fields.
Zimmermann, H; Meise, S; Khujakulov, A; Magaña, A; Saenz, A; Eichmann, U
2018-03-23
Atomic excitation in strong optical laser fields has been found to take place even at intensities exceeding saturation. The concomitant acceleration of the atom in the focused laser field has been considered a strong link to, if not proof of, the existence of the so-called Kramers-Henneberger (KH) atom, a bound atomic system in an intense laser field. Recent findings have moved the importance of the KH atom from being purely of theoretical interest toward real world applications; for instance, in the context of laser filamentation. Considering this increasing importance, we explore the limits of strong-field excitation in optical fields, which are basically imposed by ionization through the spatial field envelope and the field propagation.
Roy, Nathalie; Roy, Gilles; Bissonnette, Luc R; Simard, Jean-Robert
2004-05-01
We measure with a gated intensified CCD camera the cross-polarized backscattered light from a linearly polarized laser beam penetrating a cloud made of spherical particles. In accordance with previously published results we observe a clear azimuthal pattern in the recorded images. We show that the pattern is symmetrical, that it originates from second-order scattering, and that higher-order scattering causes blurring that increases with optical depth. We also find that the contrast in the symmetrical features can be related to measurement of the optical depth. Moreover, when the blurring contributions are identified and subtracted, the resulting pattern provides a pure second-order scattering measurement that can be used for retrieval of droplet size.
NASA Astrophysics Data System (ADS)
Boukhenoufa, N.; Mahamdi, R.; Rechem, D.
2016-11-01
In this work, sol—gel dip-coating technique was used to elaborate ZnO pure and ZnO/Al films. The impact of Al-doped concentration on the structural, optical, surface morphological and electrical properties of the elaborated samples was investigated. It was found that better electrical and optical performances have been obtained for an Al concentration equal to 5%, where the ZnO thin films exhibit a resistivity value equal to 1.64104 Ω·cm. Moreover, highest transparency has been recorded for the same Al concentration value. The obtained results from this investigation make the developed thin film structure a potential candidate for high optoelectronic performance applications.
Fast production of Bose-Einstein condensates of metastable helium
NASA Astrophysics Data System (ADS)
Bouton, Q.; Chang, R.; Hoendervanger, A. L.; Nogrette, F.; Aspect, A.; Westbrook, C. I.; Clément, D.
2015-06-01
We report on the Bose-Einstein condensation of metastable 4He atoms using a hybrid approach, consisting of a magnetic quadrupole and an optical dipole trap. In our setup we cross the phase transition with 2 ×106 atoms, and we obtain pure condensates of 5 ×105 atoms in the optical trap. This approach to cooling 4He provides enhanced cycle stability, large optical access to the atoms and results in the production of a condensate every 6 s—a factor 2 faster than the state of the art. This speed-up will significantly reduce the data acquisition time needed for the measurement of many particle correlations, made possible by the ability of metastable helium atoms to be detected individually.
Ruggiero, Anthony J.
2005-05-03
An integrated optical capillary electrophoresis system for analyzing an analyte. A modulated optical pump beam impinges on an capillary containing the analyte/buffer solution which is separated by electrophoresis. The thermally-induced change in the index of refraction of light in said electrophoresis capillary is monitored using an integrated micro-interferometer. The interferometer includes a first interferometer arm intersecting the electrophoresis capillary proximate the excitation beam and a second, reference interferometer arm. Changes in index of refraction in the analyte measured by interrogating the interferometer state using white light interferometry and a phase-generated carrier demodulation technique. Background thermo-optical activity in the buffer solution is cancelled by splitting the pump beam and exciting pure buffer solution in a second section of capillary where it crosses the reference arm of the interferometer.
Faraday effect in hybrid magneto-plasmonic photonic crystals.
Caballero, B; García-Martín, A; Cuevas, J C
2015-08-24
We present a theoretical study of the Faraday effect in hybrid magneto-plasmonic crystals that consist of Au-Co-Au perforated membranes with a periodic array of sub-wavelength holes. We show that in these hybrid systems the interplay between the extraordinary optical transmission and the magneto-optical activity leads to a resonant enhancement of the Faraday rotation, as compared to purely ferromagnetic membranes. In particular, we determine the geometrical parameters for which this enhancement is optimized and show that the inclusion of a noble metal like Au dramatically increases the Faraday rotation over a broad bandwidth. Moreover, we show that the analysis of the Faraday rotation in these periodically perforated membranes provides a further insight into the origin of the extraordinary optical transmission.
UV-green iridescence predicts male quality during jumping spider contests.
Lim, Matthew L M; Li, Daiqin
2013-01-01
Animal colour signals used in intraspecies communications can generally be attributed to a composite effect of structural and pigmentary colours. Notably, the functional role of iridescent coloration that is 'purely' structural (i.e., absence of pigments) is poorly understood. Recent studies reveal that iridescent colorations can reliably indicate individual quality, but evidence of iridescence as a pure structural coloration indicative of male quality during contests and relating to an individual's resource-holding potential (RHP) is lacking. In age- and size-controlled pairwise male-male contests that escalate from visual displays of aggression to more costly physical fights, we demonstrate that the ultraviolet-green iridescence of Cosmophasis umbratica predicts individual persistence and relates to RHP. Contest initiating males exhibited significantly narrower carapace band separation (i.e., relative spectral positions of UV and green hues) than non-initiators. Asymmetries in carapace and abdomen brightness influenced overall contest duration and escalation. As losers retreated upon having reached their own persistence limits in contests that escalated to physical fights, losers with narrower carapace band separation were significantly more persistence. We propose that the carapace UV-green iridescence of C. umbratica predicts individual persistence and is indicative of a male's RHP. As the observed UV-green hues of C. umbratica are 'pure' optical products of a multilayer reflector system, we suggest that intrasexual variations in the optical properties of the scales' chitin-air-chitin microstructures are responsible for the observed differences in carapace band separations.